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Abstract

In current radiology workstations, a scroll mouse is typically used as the primary input

device for navigating image slices and conducting operations on an image. Radiological

analysis and diagnosis rely on careful observation and annotation of medical images. During

analysis of 3D MRI and CT volumes thousands of mouse clicks are performed every day,

which can cause wrist fatigue. This thesis presents a dynamic Control-to-Display (C-D)

gain mouse movement method, controlled by an eye-gaze tracker as the target predictor.

By adjusting the C-D gain according to the distance to the target, the target width in motor

space is effectively enlarged, thus reducing the index of difficulty of the mouse movement.

Results indicate that using eye-gaze to predict the target position, the dynamic C-D gain

method can improve pointing performance and increase the accuracy over traditional mouse

movement.
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Chapter 1

Introduction

Pointing is a daily issue for computer users, as the popularity of graphical interface in all

kinds of computer systems increases. Due to the growing complexity of graphical interfaces,

as well as the increasing resolution and size of the display monitor, how to increase the

pointing accuracy and reduce the movement time come to the agenda.

In the field of radiology, radiologists often navigate through long sequences of 2D image

slices generated from MR or CT volume data. For example, up to 1,000 images are generated

by abdominal CT exams, and each image must be viewed [32].

The typical display mode seen in radiology shows an axial and coronal view spanning

multiple monitors. Precise targeting is frequently needed in radiology tasks. For example, it

is often necessary in MRI and CT scans to cross-reference small lesions (<10mm) between

anatomic planes (axial, saggital and coronal). This is done with a mouse click on the lesion

in one plane, which by nature of lesions’ small size, must be precise. Furthermore, for MRI

it is often necessary to cross-reference small lesions between different pulse sequences, to

better understand the tissue characteristics. In the case where multiple images are shown

simultaneously, it becomes necessary to routinely move the cursor from one monitor to

another for cross-referencing [18]. It is easy to become fatigued and stressed after hundreds

of such procedures, particularly when the target is small, and the distance to move is large,

such as across two display monitors [31].

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: The Contour Design Shuttle Xpress jog & shuttle wheel.

1.1 Other Interactive Methods for Radiology Workstations

Other than using a typical scroll-wheel mouse, there are some alternative methods for the

interaction with the radiology workstation such as trackball, tablet, gaming joystick. etc.

Sherbondy et al. [33] reported the use of alternative interaction devices for navigating

through large CT data sets. Four devices were compared: a trackball, a tablet with two

interactive techniques, a jog-shuttle wheel made by Contour Design (Figure 1.1), and a

mouse. Each participant (four radiologists) looked for artificial targets in five different large

CT data sets; each data set was viewed using a different interaction technique. Results

showed that the trackball was significantly slower and less preferred over other methods,

but there was no significant difference among the other methods. The trackball used in

the study required participants to hold down a button while rotating the ball. Its poor

performance was hypothesized to arise because users have to make large repetitive motions

to traverse large numbers of slices; the authors speculate that it is possible that a different

interaction technique which did not require the button might improve the ratings of the

trackball.
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Atkins et al. [3] considered three interaction techniques for image navigation during

stack-mode viewing. Two involved different interactions using a scroll-wheel mouse, and

one involved the Contour Design jog-shuttle wheel. They found that radiologists were faster

using the unfamiliar jog-shuttle wheel, but most preferred the familiar scroll-wheel mouse.

These results imply that people prefer the interactive method that they were familiar with.

Weiss et al. [37] conducted a study that required six radiologists to evaluate six alter-

native user interface devices (UIDs), including 5-button and 8-button mice, a gyroscopic

mouse, a multimedia controller, a handheld mouse-and-keyboard combination device, and

a gaming joystick. Each participant assessed each device during the real-time daily imag-

ing interpretation of magnetic resonance, computed tomographic, and general X-ray studies

over a 2-week period. Participants also completed a detailed questionnaire on the ease of

use, comparative utility as an alternative device to mouse and QWERTY keyboard, effi-

ciency, workflow, and the ease of customized programming. In this qualitative study, no

single device was completely able to replace the mouse and keyboard in the estimation

of participants, and the 5-button mouse was preferred over the 8-button mouse, although

several participants noted that this might be a function of learning curves that exceeded

the 2-week study period for each device. This result confirms that the mouse is the most

preferred interactive method by radiologists.

The above studies indicate that although some alternative methods are shown to be

more efficient in some circumstances, radiologists still prefer the scroll-wheel mouse that

they are most familiar with.

1.2 To Be Expected

Pointing tasks are performed frequently and extensively as the most common used interac-

tive method. We observed radiologists at work and noted that they typically use a regular

scroll-wheel mouse to complete a pointing task. Consequently, reducing the time required

for pointing tasks can enhance the usability of the interactive technology. Although alterna-

tive interactive methods have been developed [33, 37], most of these methods showed poor

performance and were also less preferred by users. Therefore, we decided it was still mean-

ingful to improve the performance of the regular scroll-wheel mouse, leading higher working

efficiency. Moreover, scroll wheel mouse is still the most common used interactive device,

so that this work can be easily extended to scenarios other than a radiology workstation.
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In this thesis, we hypothesized we could improve the pointing performance by using the

dynamic control-to-display (C-D) gain method in conjunction with eye-gaze targeting.

Control-to-Display Gain

The gain of the resulting cursor distance to the control (mouse) is called the control-to-

display gain. Detail will be introduced in 2.4.1.

Eye-gaze Targeting

People look at what they are working on [20]. We believe that in a pointing task, the

location of the target can be predicted by obtaining the user’s eye-gaze location. Details

will be introduced in 2.4.3.

1.3 Structure of the Thesis

The rest of the thesis is organized as following: chapter 2 explores the related work on

methods which improve pointing performance, and details about the dynamic C-D gain

method, as well as the eye-gaze targeting. Chapter 3 discusses the methodology and results

of each of four studies: pilot study 1 in 3.1 evaluates the parameter of the dynamic C-D

gain in 2-D space; pilot study 2 in 3.2 evaluates the accuracy of the eye-gaze tracker; study

1 in 3.3 develops a platform to simulate the radiology workstation operations and evaluates

the performance of the dynamic C-D gain on known targets; study 2 in 3.4 evaluates the

performance of the dynamic C-D gain + eye-gaze targeting on predicted targets. Chapter 4

concludes this thesis.



Chapter 2

Literature Review

Pointing tasks are performed frequently and extensively as the most common used interac-

tive method. Consequently, reducing the time required for pointing tasks can enhance the

usability of the interactive technology. Lots of studies have been contributed to this area.

In 2.1, 2.2 and 2.3, discussions are categorized into three groups: single pre-specified

targets, multiple pre-specified targets and unspecified targets. Single pre-specified targets

exist in an ideal experimental scenario. In this scenario, there is only one object to be

chosen, which is considered the target. Both the user and the system know the location of

the target.

In the scenario of multiple pre-specified targets, there are more than one objects and

their locations are known to the system. Only one object is considered the target and known

to the user, but unknown to the system.

In the scenario of unspecified targets, the system does not have any information about

the target.

Section 2.4 introduces our method that uses the dynamic control-to-display (C-D) gain in

conjunction with an eye-gaze tracker. Our method aimed to improve pointing performance

in the scenario of unspecified targets, which is the most practical and the most difficult case.

Section 2.5 concludes this chapter and lists expected results and work to be done in later

studies.

5
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2.1 Single Pre-specified Targets

In the context that a single target is pre-specified at a time, studies to reduce the pointing

time are in ideal experimental scenarios where the neighbor objects of the target are not

considered.

Blanch, Guiard and Lafon proposed Semantic Pointing in which the control-display

ratio changes according to the distance to the target [6]. The movement of the device in

the physical world will be converted to a longer cursor movement on the display when the

cursor is far away from the target, and a shorter cursor movement when the cursor is close

to the target. This method reduces the pointing time by up to 17%.

In Blanch et al.’s method, the mapping method of the cursor movement to the physical

movement affects the pointing time. Sawminathan and Sato [34] concluded that in the con-

text of large displays “nonlinear mappings are too counterintuitive to be a general solution

for pointer movement”.

Blanch et al.’s method can be concluded as a dynamic mapping of the physical movement

to the cursor movement on the display. Such method can also be interpreted as a dynamic

magnification of the physical space where the mouse movements take place.

Similarly, fisheye views use magnification of the visual space. Fisheye views distort a

visualization by magnifying a particular point [12]. This method is considered a visual

expansion of the target. It has been applied to a variety of contexts but its impact on

pointing performance is controversial. Cockburn et al. [9] showed that for small targets,

visual expansion (that occurs only when the cursor crosses the targets motor boundary) is

helpful because it provides visual feedback that the cursor is on the target. However, other

studies showed that these visual-only expansions have been shown to be harmful to pointing

performance [15], since they may fool users into thinking that the target is larger than it

really is. Also, radiologists will not tolerate visual distortions [36]. Therefore, we tended to

develop a method that uses motor expansion.

2.2 Multiple Pre-specified Targets

In the context in which multiple pre-specified targets exist, mostly in the so-called WIMP

paradigm (Windows, Icons, Menus, and Pointers), locations of objects (icons, menus, etc.)

are usually pre-specified and known to both the user and the system. At any time there
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is only one object to be chosen, which becomes the target. Some predictive methods have

been proposed by taking advantage of pre-specified locations.

Guiard, Blanch and Lafon [14] proposed a method called Object Pointing. Traditional

pointing can be modeled as selecting pixels in bitmap displays. Object pointing is a novel

interaction technique based on a special screen cursor that skips empty spaces. It requires

identifying the target object. This is achieved by analyzing the cursor’s initial motion in

angular terms. Once the instantaneous direction of motion has been identified, the system

searches the new objects around this direction. Then the cursor jumps to the proximal

boundary of the nearest object.

Atsuo Murata [29] proposed a similar method for the prediction of a target on the basis

of the trajectory of the mouse cursor. This method compares the angle of the movement to

the angles of the mouse to those potential targets. The target with the minimum difference

with this angle is determined as the prediction target.

The above methods can dramatically reduce the pointing time in some circumstances.

However, the object to which the cursor jumps is determined solely by the movement di-

rection, and the nearest neighbor is always picked. Therefore, directional errors frequently

happen, that is, the initial mouse movement may not follow the direction to the real target,

leading the cursor jump to the wrong object. Also, with a number of objects lying on the

same direction, both methods jump to non-target objects.

2.3 Unspecified Targets

In this section, we discuss the most difficult, and the most practical situation, that is, where

the user wants to click is not known to the system. No objects are pre-specified as candidate

targets.

The Delphian Desktop predicts the target location by the maximum velocity during the

mouse movement [1]. For individual users, the target distance linearly corresponds to the

peak velocity. The peak velocity is determined by sampling, and the mouse cursor jumps to

the predicted location. It enables the user to warp sparse areas. But it requires the user to

correct the cursor position after the warping. Sometimes users may lost track of the cursor

because of the warping. Also, directional errors frequently happen in this method.

Eye-tracking utilizes eye movement to assist the pointing tasks. Scientists have shown

that people continuously explore their environment by moving their eyes. They look around
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quickly and with little conscious effort. Researchers have also found that people look at

what they are working on [20]. The eyes do not wander randomly. Thus the eye gaze can

be used for pointing tasks as an input device. Murata [30] compared the usability of the

eye-gaze input among three age groups (young, middle-aged, and older adults) and with

that of a traditional PC mouse. The eye-gaze input system led to a faster pointing time

as compared with mouse input for targets of 30 pixels in radius, especially for older adults.

However, the overhead of eye-tracking is that a fixation does not tell us precisely where the

user is looking because the fovea (the sharp area of focus) covers approximately one degree

of visual angle [19], corresponding to about 20 pixels on the display. This feature causes

the inaccuracy of eye-gaze targeting, making it inappropriate in circumstances where high

accuracy is required.

To increase the accuracy, some efforts have been made. One approach uses target magni-

fication [4] such that the user can increase the effective size of target objects by temporarily

“zooming in” on the target area during a single selection. This technique is based on the

principle of fisheye views [12, 2].

MAGIC Pointing [40] is an interactive technique in which pointing and selection re-

mained a primarily a manual control task but are also aided by gaze tracking. The key idea

is to use gaze to dynamically warp the “home” position of the cursor to be at the vicinity

of the target, which by definition was what the user was looking at, thereby reducing the

cursor movement amplitude needed for target selection. Once the cursor position had been

warped, the user would need to only make a small movement to, and click on the target

with a regular manual input device. Similarly to the Delphian Desktop, the cursor jumping

might cause the user lose track of the cursor.

2.4 Dynamic C-D Gain with Eye-tracking

For radiology tasks, the target is unpredictable since suspicious features can lie anywhere

in the image. Therefore, simply applying one or two of approaches in 2.1, 2.2 or 2.3 can-

not effectively improve the pointing performance. We proposed a method called dynamic

control-to-display (C-D) gain in conjunction with eye-gaze targeting to adaptively change

the speed of the mouse, to make the target effectively larger.
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2.4.1 C-D Gain

In an interactive system, movements of the mouse for a fixed distance causes the cursor

to move a corresponding distance on the screen. The ratio of the resulting cursor distance

to the control (mouse) is called the control-to-display (C-D) gain. Setting this gain high

implies that small mouse movements cause larger cursor movements. The user can cross

long screen distances with less effort but precise pointing can be difficult. Setting the C-D

gain low has the inverse effect; long movements requires more effort but precise pointing is

easier.

2.4.2 Fitts’ Law

Fitts’ law [11] states that the movement time (MT ) in pointing to a target depends on the

index of the difficulty (ID). The ID is controlled by the width (W ) and distance (D) of the

target.

MT = a + b log2
2D

W
(2.1)

where ID = log2
2D
W . Here a and b are constants characterizing the system and user.

Variations of the formulation have been proposed by Welford [38] and MacKenzie [23, 22],

as shown in equations 2.2 and 2.3.

Using the Fitts’ or Welford formulation (equations 2.1 and 2.2), the ID is negative if the

distance is less than half the target width; that is, D < W
2 .

MT = a + b log2(
D

W
+ 0.5) (2.2)

Equation 2.3, known as the Shannon Formulation, always gives a positive rating for the

ID ; that is, as D approaches zero, ID approaches zero but never becomes negative.

MT = a + b log2(
D

W
+ 1) (2.3)

In our later experiments, the case in which D < W
2 would be excluded. To simplify

the calculation, we chose the Fitts formulation (equation 2.1). Hence Fitts’ law links the

movement time to acquire a target to the task’s ID in one-dimension space.

To be generalized into two or three dimensions, other issues such as the shape of targets

need to be considered [24].
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From the equation: ID = log2
2D
W , it is seen that the distance to the target is a factor

that affects the MT. As the resolution and size of displays increases, the number of pixels in

one dimension has increased. Thus the visual distance and motor distance (under constant

C-D gain) on a display screen also increases. Increasing the C-D gain can reduce the effective

motor distance to the target, however, as the speed goes up, the accuracy simultaneously

decreases [17]. This arises because while reducing the distance D by speeding up the cursor,

the target width W is also affected. That is, when the C-D gain is increased to achieve a

faster cursor speed, the relative width of the target is effectively reduced by the increase

in the C-D gain. Therefore, simply increasing or decreasing the cursor speed would not

improve the pointing performance.

Fitts’ law has led people to develop techniques to facilitate pointing tasks by enlarging

target width or reducing the distance [5, 7, 10, 28]. Control-to-Display Adaptation [21, 39,

10] is another approach to improve the pointing performance. When the mouse speed reaches

a threshold, the C-D gain will be adapted, usually being doubled. This method is now used

in some Windows operating systems, but to our knowledge, it has not been thoroughly

analyzed by Fitts’ law. A typical adaptation in current use is the so-called “acceleration”,

where the C-D gain is changed when the mouse cursor covers a certain number of pixels

more quickly. However, most computer game players switch the “acceleration” off, turning

the mouse into a pseudo absolute device to enhance pointing performance. Thus, adjusting

C-D gain according to the position rather than to the acceleration might be more preferred

in terms of pointing performance.

Bubble cursor [13] enlarges the cursor’s activation area and the result showed that the

average selection time for targets (pre-specified) can be shortened. However, the enlarged

cursor activation area is not suitable for radiology tasks because any operations on an image

need to be precise.

2.4.3 Dynamic C-D Gain

As seen in the Fitts’ law equation, changing the cursor speed only cannot change the ID

because D and W are affected simultaneously. The dynamic C-D gain method proposed

that by adaptively changing the C-D gain during the mouse movement, the ID can be

reduced as shown in the following section.
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Dynamic C-D Gain in 1-D Space

The index of difficulty can be reduced by expanding just the target size in motor space [6].

The concept of the dynamic C-D gain is that by decreasing the C-D gain when the cursor is

over the target, the target width becomes effectively bigger in motor space. This is because

as the C-D gain decreases, crossing the same number of pixels on the screen requires a longer

movement in motor space, thus enlarging the motor width of the target. This method has

been shown to improve pointing performance [6].

On the other hand, when the cursor is not over the target, the C-D gain remains at

the initial value. Therefore, the W (width) in Fitts’ law increases while the D (distance)

remains mostly as before, thus reducing the ID.

As seen in equation 2.4, once the cursor speed is reduced by dividing by the slowing down

ratio R, the effective width of the target becomes WR. Additionally, the space in which the

cursor speed is reduced will be called the slowing down area (quantified as S in diameter).

If the cursor slows down just over the target, then the ID is reduced by subtracting log2R,

as shown in equation 2.5. Theoretically, the greater R becomes, the more ID is decreased.

ID = log2
2D

WR
,where R is the slowing down ratio (2.4)

= log2
2D

W
− log2R (2.5)

Dynamic C-D Gain in 2-D Space

The dynamic C-D gain is proved to be effective to improve mouse performance. Some of

the studies were conducted in 1-D space [6, 10, 8]. In 1-D space, the target width is strictly

defined, and the cursor can easily follow the unique path to the target. Some studies were

in 2-D space [21, 39]. These studies were usually icon-based, which means targets were

pre-set. In the scenario of a radiology workstation, some targets can be pre-set such as

icons or buttons. However, while making notes on suspicious areas on the image, the target

is unpredictable and cannot be pre-set.

In 2-D space, the situation becomes more complicated. First of all, the target width is

much harder to determine due to different target shapes and entry angles. Several methods

have been proposed to solve this problem. One is called STATUS QUO [25], which uses the

horizontal extent of the target. A second and more sophisticated method is to substitute



CHAPTER 2. LITERATURE REVIEW 12

Figure 2.1: Using “cut corner” as target width

for W a measure more consistent with the 2-D nature of the task. It uses the “cut corners”

(Figure 2.1) as the target width [25] . Another possible method is “the smaller of W or H”.

In this method, the target width is defined as the smaller of the two dimensions.

Secondly, path variation is another issue brought to 2-D space. In 1-D tasks, there is a

unique path from the starting point to the target, that is, the target can be reached as long

as the moving direction is correct. This important feature makes the dynamic C-D gain

very effective in 1-D. For example, an average of 16.9% improvement was demonstrated [6].

In that case, the greater slowing down ratio R is, the less is ID. In 2-D tasks, path varia-

tions include target re-entry, task axis crossing, movement direction change and orthogonal

direction change. The path variation can significantly affect the MT [26]. Therefore, only

increasing the value of R may not enhance the pointing performance especially when targets

are small (Figure 2.2) because the path variation might dominate the MT.

We proposed that if we were able to expand the slowing down area beyond the visual

boundaries of the target, the influence of path variations could be reduced since the mouse

cursor is relatively easily captured. In addition, the expanded slowing down area is able

to tolerate inaccurate target prediction or acquisition, making the implementation more
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Figure 2.2: Path variation for big targets and small targets. With the same amount of path
variation, the cursor can reach the big target but will miss the small target.

practical. For example, in some situations where potential targets are located close to each

other, or where the target prediction is inaccurate, the actual target can still be covered by

the expanded slowing down area based on the predicted target.

Equations 2.6 - 2.8 show that the new effective distance D′ and new effective width W ′

increase together,

D′ =

∫ D

0
CD(x)dx (2.6)

= (D − S

2
) × CD +

S

2
× CD ×R (2.7)

W ′ =

∫ W

0
CD(x)dx = W × CD ×R (2.8)

where S is the width (diameter) of the expanded slowing down area and R is the slowing

down ratio.

Equation 2.10 recalculate the ID based on D′ and W ′. Although we add some extra

distance to move in motor space, it does not significantly affect the ID when D is large and

W is small.

ID′ = log2
2D′

W ′
= log2

2 × ((D − S
2 ) + S

2 ×R)

W ×R
(2.9)

ID′ = log2
2D + S(R− 1)

W ×R
(2.10)
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Eye-gaze Targeting in Dynamic C-D Gain

As described above, people look at what they are working on [20]. Consequently, the target

location predicted by an eye-gaze tracker can be used to dynamically adjust the C-D gain.

Although the eye-gaze tracker is only accurate within approximately 1 cm (about 20 pixels)

viewed at a distance of 50 cm, we expected that pointing performance can still be enhanced

using the dynamic C-D gain. However, due to the limited accuracy of the eye-gaze tracker,

an expanded slowing down area is needed.

2.5 Summary

In this chapter, we discussed previous studies that address single pre-specified targets, mul-

tiple pre-specified targets and unspecified targets. We found that only applying one or two

of those methods cannot fit the need in the radiology where suspicious targets are unknown

to the system. Thus we proposed a method that use the dynamic C-D gain in conjunction

with an eye-gaze tracker to improve pointing performance in radiology tasks. There are two

major reasons that we used an expanded slowing down area. First, an expanded slowing

down area can more effectively capture the mouse cursor when the target to click is small.

Second, inaccurate target predictions can be tolerated by the expanded slowing down area,

thus making the dynamic C-D gain technique implementable.

However, when we expand the slowing down area, we inevitably increase the distance

to travel. The extra distance can only be ignored when the size of the slowing down area is

not too large and the slowing down ratio is not too big. This constraint might prevent us

from using bigger R which can dramatically enlarge the target width.

In next chapter, we will talk about the studies we have conducted to evaluate this

method.
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Experiments and Results

We ran two pilot studies and two studies. The pilot study 1 was designed to preliminary

evaluate the performance improvement of the dynamic C-D gain method, finding out the

optimal parameter S and R. The pilot study 2 was to analyze the accuracy of the Tobii 1750

eye-tracker. Next, two studies were performed separatedly by a period of several months, and

featured different participants. Study 1 evaluated the optimal performance of the dynamic

C-D gain method based on the parameter found in pilot study 1 by using predetermined

targets. Study 2 evaluated the practical performance by using targets predicted by eye-gaze.

3.1 Pilot Study 1 - Determination of Optimal Parameters

3.1.1 Assumption

According to the new formula of calculating ID’ (equation 2.10), increasing the value of R

widens the target width in motor space, however, it also enlarges the distance. Further

more, when S is small, increasing R could enlarge the target width and has little effect

on the distance in motor space. But note that small S can not reduce the impact of path

variation, as discussed in section 2.4.3. On the other hand, big S helps reduce the impact

of path variation but leads to a longer distance.

The theoretical improvement was calculated by the reduction of ID. The quantity of the

impact of path variation (small, medium and large) was based on our observations.

Tables 3.1, 3.2, 3.3 and 3.4 indicate the change of ID and the impact of path variation

for different kinds of trials with different S and R. Table 3.1 shows the change of ID and the

15
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impact of path variation for big targets with short distance. As shown, the ID reduction is

large with small impact of path variation. Table 3.2 shows the change of ID and the impact

of path variation for big targets with long distance. The ID reduction is not as significant

as for short distance but still, with small impact of path variation. Table 3.3 shows the

change of ID and the impact of path variation for small targets with short distance. When

the S is small (40 pixels), the ID reduction is very large, but leading to a big impact of path

variation. When the S is enlarged to 60 pixels, the ID reduction is slightly affected but the

impact of path variation is changed to normal. Table 3.4 shows the change of ID and the

impact of path variation for small targets with long distance. Similarly, the ID reduction is

significant with big impact of path variation when S is small. Increasing S can change the

impact of path variation from big to normal, with a little cost of ID reduction.

Table 3.1: Pilot Study 1 - Expected Result: W = 100 pixels, D = 200 pixels, ID = 2

Calculated
S R ID ID′ Improvement Impact of Path Variation

100 10 2 0.38 81% small
150 10 2 0.80 60% small
200 10 2 1.14 43% small

Table 3.2: Pilot Study 1 - Expected Result: W = 100 pixels, D = 800 pixels, ID = 4

Calculated
S R ID ID′ Improvement Impact of Path Variation

100 2 4 3.09 23% small
150 2 4 3.13 22% small
200 2 4 3.17 21% small

3.1.2 Objective

Tables 3.1, 3.2, 3.3 and 3.4 gave us a coarse idea of how the performance varies from different

parameter. However, since the impact of path variation is not well quantified, we still need
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Table 3.3: Pilot Study 1 - Expected Result: W = 20 pixels, D = 200 pixels, ID = 4.32

Calculated
S R ID ID′ Improvement Impact of Path Variation

40 10 4.32 1.57 64% large
60 10 4.32 1.74 60% medium
80 10 4.32 1.93 55% medium

Table 3.4: Pilot Study 1 - Expected Result: W = 20 pixels, D = 800 pixels, ID = 9.64

Calculated
S R ID ID′ Improvement Impact of Path Variation

40 2 9.64 5.34 45% large
60 2 9.64 5.35 45% medium
80 2 9.64 6.32 34% medium

to conduct a pilot study to evaluate the actual performance of different combinations of S

and R.

3.1.3 Method

We used the Windows XP Application Programming Interface (API) to access the C-D gain

during the movement. By capturing the mouse movement events, the C-D gain was adjusted

according to the current position of mouse cursor. Microsoft added the “acceleration” as a

parameter for mouse movement. The effect of acceleration means that when the speed of the

mouse reaches a certain threshold, the C-D gain will be changed, normally approximately

doubling it. In order to control the variable during the experiment, we removed the built in

”acceleration” during the experiment.

Microsoft scales the C-D gain on an abstract scale from 1 (slowest) to 20 (highest). By

experiment we found that the C-D gain is linearly changed from the lowest to the highest.

Thus, the new speed V’ under certain slowing down ratio R could be V ′ = V ′

R where V is

the current mouse speed. Similarly, the new C-D gain CD′ = CD
R where CD is the current

C-D gain.
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Task Setup

In this pilot study, targets were pre-set, that is, the system knows the location of the

target. Thus the C-D gain was adjusted according to the distance between the current

cursor location with the target location. We aimed to quantify the relationship between the

movement time (MT ) and the combination of S and R as shown in Figure 3.1. There were

four independent variables for the study: target width W (100, 40, 20 and 10 pixels), target

distance D (800, 400 and 200 pixels), slowing down area diameter S and slowing down ratio

R.

Targets with W ≥ 40 pixels were considered Big. Targets with W < 40 were considered

Small. For the Big targets, we took the value of 2×, 1.5× and 1× of the W for S. Note

that when the S was set to be equal to the W, the mouse cursor was only slowed down over

the target. For Small targets, the value of slowing down area diameter (S ) was taken 80,

60 and 40 pixels (Table 3.5). For both Big and Small targets, the R was set to 2, 3.3, 5 and

10. Note that we used different schemes of choosing S for Big targets and Small targets.

The reason is that the eye-gaze tracker may not be accurate enough to achieve 40 pixels

accuracy, so the dynamic C-D gain may not be effective if S is below 40 pixels. Further

more, we believe that bigger S could help capture the mouse cursor for Small targets.

Table 3.5: Pilot Study 1: Experiment parameters

Parameter Value

W 10, 20, 40, 100
D 200, 400 ,800
S 2 ×W , 1.5 ×W , 1 ×W when W ≥ 40

80, 60, 40 when W < 40
R 2, 3.3, 5, 10

In this pilot study, for both Big and Small targets, there were 12 combinations of R and

S plus the Base which used the constant C-D gain. For each combination of R and S, the

participant first double-clicked the start point at the center of the screen, then left-clicked

on the target randomly appeared. Except for the Base, the C-D gain was adjusted according

to the distance to the target. Participants repeated the procedure with different W s and

Ds taken from the Table 3.5. Each participant performed the same sequence. A given (R,S )
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Figure 3.1: Pilot Study 1 - Experiment descriptions: target randomly appears at the orbit
at distance of 200, 400 and 800 pixel. For each target, the slowing down area diameter
varies from 1 time to 2 times target width. The red circle in the center is the starting point
and the inner yellow circle is the target.

pair formed a set of trials with combinations of W and D.

Completing a target selection was defined as one trial. For each combination of D,

W, S and R, the user performed 2 trials consecutively with targets in different positions.

Therefore, the total number of trials was (12 (R,S) + 1 Base ) × 3 widths × 4 distances ×
2 targets = 312. The study lasted about 30 minutes. Note that during the study, the Base

(constant C-D gain) was performed before other combinations of R and S

During the study, the movement time (MT ) which was the lapsed time from target pre-

sentation to left-click completed was recorded, as well as the error clicks which corresponded

to the click conducted outside the target.

Initially, the C-D gain was set to the value corresponding to mouse cursor speed 10 in

Windows XP. In the base condition (constant C-D gain condition), the mouse cursor speed

remained at 10 all the time. In the dynamic C-D gain condition, the mouse cursor speed

was set to 5,3,2 and 1 according to the value of R= 2, 3.3, 5 and 10 while approaching

targets.
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The study was conducted on a computer running Windows XP SP2, with an AMD

Athlon Dual core 2.4G, 2G memory and a 22 inch monitor with resolution of 1680 × 960.

Participants

There were two volunteer participants. Both were daily computer users (more than two

hours everyday) and right-handed. Participant 1: Male, age 22, daily computer user .

Participant 2: Female, age 24, daily computer user. During the study, participants were

using a Logitech G1 laser mouse.

3.1.4 Result and Discussion

Figure 3.2 shows the average MT of the two participants in all combinations of R and S

for Big targets. In Figure 3.2, the black line shows the average MT in the constant C-D

gain condition (Base). After combinations of R and S with obviously poor performance

were removed, we found that 5 conditions: R(2)S(2×W ), R(2)S(1.5×W ), R(3.3)S(1.5×W ),

R(2)S(1×W ) and R(3.3)S(1×W ), had some data points below the constant C-D gain condi-

tion. Among these, we found that R(2)S(1.5×W ) and R(3.3)S(1×W ) were best (Figure 3.3).

The result for Big targets indicates that big R cannot improve the pointing performance.

Small R can sometimes improve the performance but needs to collaborate with small S. This

result was expected since we knew that big R amplifies the D too much. When R is small,

with big S it can still over-enlarge the D.

Figure 3.4 shows the average MT of the two participants in all combinations of R and

S for Small targets. In Figure 3.4, the black line shows the average MT in the con-

stant C-D gain condition (Base). After those combinations of R and S with obviously

poor performance were removed, we found that 5 combinations: R(2)S(80), R(2)S(60),

R(3.3)S(60),R(2)S(40) and R(3.3)S(40), had some data points below the constant C-D gain

condition. Among these, we found that R(2)S(80), R(2)S(60) and R(2)S(40) were the best

(Figure 3.5).

Similarly to the result for Big targets, big R was not preferred for Small targets.

Summary

Table 3.6 shows a summary of parameters with poor performance. We found that for

Big targets, applying big R on the expanded slowing down area significantly decreased
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Figure 3.2: Pilot Study 1: The average MT of the two participants in all combinations of
R and S for Big targets

the pointing performance. This result was expected since the distance in motor space was

largely increased. Then the increase of D overwhelmed the enlargement of W, making trials

more difficult.

Similarly for the Small targets, big R brought negative effect on the pointing performance

since we only applied expanded slowing down area for Small targets. And, the big R over-

enlarged the D.

Among the remaining combinations of R and S, R(2)S(1.5×W ) and R(3.3)S(1×W ) had

the best performance for Big targets. R(2)S(80), R(2)S(60) and R(2)S(40) had the best

performance for Small targets.

Note that during this pilot study, participants were asked to perform under the constant

C-D gain (Base) first. The effect of fatigue might have affected the result in the later

condition, as no break was given. From these results, we could expect that the dynamic

C-D gain with certain combinations of S and R should be able to bring more improvement

for the pointing performance.
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Figure 3.3: Pilot Study 1: The average MT of the two participants in combinations of R
and S which have the best performance for Big targets

3.2 Pilot Study 2 - Evaluating Eye-gaze Targeting

3.2.1 Objective

The purpose of this pilot study was to evaluate how accurate the prediction by an eye-

gaze tracker could be. As we found in the previous pilot study, some combinations of S

and R could achieve a high upgrade of the pointing performance but small S requires an

accurate prediction of targets. The result of this pilot study should indicate which of those

combinations are practical to implement.

3.2.2 Method

The study setup was mostly the same as the previous pilot study, except there were some

changes of the parameters. We chose combinations of S and R which were found helpful for

the pointing performance in the previous study. The distance D varied by 200, 400 and 600

pixels. Width W was taken 10, 20 and 50 pixels. For the combinations of S and R, when W
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Figure 3.4: Pilot Study 1: The average MT of the two participants in all combinations of
R and S for Small targets

was 10 or 20 pixels, combinations chosen are shown in Table 3.7. When W was 50 pixels,

we took combinations shown in Table 3.8. For each combination of W, D, S and R, there

was 1 trial. Thus there were 81 trials for each participant. We recruited 4 participants for

this pilot study, so the total number of trials was 81 × 4 = 324.

Before the study, all participants needed to calibrate to the eye-gaze tracker.

3.2.3 Result and Discussion

Within the data we collected, there were 52 trials (out of 324 trials in total) with invalid

gaze points. The data for those trials were recorded when the eye-gaze tracker lost track

of participants’ eyes. The reason causing this could be the significant change of the head

position, or the eye-blinking. We excluded those trials from the analysis.

We found that the gaze points for one trial were distributed mostly in two areas: One

around the starting point and one around the target (Figure 3.6), so for each trial, we

excluded gaze points which were further than 200 pixels from the target and took the
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Figure 3.5: Pilot Study 1: The average MT of the two participants in combinations of R
and S which have the best performance for Small targets

average of the remaining gaze points as the predicated location.

For the remaining trials, we divided them into two groups: Big targets (W ≥ 40,

40 trials) and Small targets (W < 40, 232 trials).

In the group of Big targets, the average offset between the gaze point and the center of

target for each trial was 29 ± 20 (standard deviation) pixels. Within this group, 16 trials

(40%) had offset less than 20 pixels. 17 (43%) trials had offset between 20 and 40 pixels. 7

(17%) trials had offset larger than 40 pixels.

In the group of Small targets, the average offset between the gaze point and the center

of target for each trial was 28± 17 (standard deviation) pixels. Within this group, 82 trials

(35%) had offset less than 20 pixels. 101 trials (44%) had offset between 20 and 40 pixels.

49 trials (21%) had offset larger than 40 pixels.

The result of this pilot study showed that majority of the trials had offset between the

fixation point and the target less than 40 pixels (about 80% of the trials with valid gaze

points). For trials without valid gaze, we had no way distinguishing whether the data is

lost. As long as the slowing down area has diameter larger than 40 pixels and the eye-gaze
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Table 3.6: Pilot Study 1: Combinations of slowing down area diameter and ratio with poor
performance.

R S

W ≥ 40 3.3 2×W
5.0 2×W , 1.5×W , 1×W

10.0 2×W , 1.5×W , 1×W

W < 40 3.3 80
5.0 80, 60, 40

10.0 80, 60, 40

Table 3.7: Pilot Study 2: Experiment parameters when W = 10, 20

R S

5.0 20, 30
3.3 20, 30, 40
2.0 20, 30, 40
1.0 20, 30, 40

can be maintained, the mouse cursor could still be possibly slowed down while approaching

the target.

3.3 Study 1 - Specified Target

3.3.1 Objective

As shown in Figure 3.5, all R(2)S(80), R(2)S(60) and R(2)S(40) boosted the pointing per-

formance for Small targets. In consideration of the accuracy that the eye-gaze tracker can

achieve, we took the R(2)S(80) as the optimal parameter for later studies.

We conducted a study to evaluate the performance of the dynamic C-D gain on Small

targets [35]. In this study, all targets were pre-set and known to the system. The reason for

using known targets was to determine the optimal improvement of the dynamic C-D gain

method.
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Table 3.8: Pilot Study 2: Experiment parameters when W = 50

R S

10.0 1×W
5.0 1×W
3.3 1×W
2.0 1×W
1.0 1×W

3.3.2 Method

The experimental screen shot is shown in Figure 3.7.

Tasks

Participants were required to use the mouse to point to targets on the MR images. Four

sets of images were used. To begin each image set, participants first right-clicked anywhere

on the screen to activate a popup menu, and selected “linking” from a menu. The software

displayed a red target dot. After clicking on each target, a new dot appeared; there were

8 targets for each set of four images. When all 8 dots had been clicked, participants again

right-clicked and selected “linking” to begin the next set. Image sets were blocked, with

each set recurring four times per block. Note that since the location where the user clicked

to activate the “linking” was varying, the D of the first trial in each set was no longer

fixed. Thus we discarded the first trial of each set. Therefore, the total number of trials

was 7 dots×4sets×4 blocks = 112 trials per participant. All mouse clicks were logged and

time-stamped by the experimental software.

The order that the dots appear must be carefully arranged. If dots appear on the screen

in a fixed order, participants might learn to predict the location of the next target, con-

founding the results. Appropriate dot order can also provide a balanced variety of movement

distances and angles. In this study, there were four image sets in each block. Target dots

appeared in one image at a time in pseudo-random positions at different distances and an-

gles. Dots sequences for each set are shown in Figure 3.8 and distances for each direction

are shown in Table 3.9. Table 3.10 shows how many targets were at each distance D. We

applied this sequence to all four blocks.
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Figure 3.6: Pilot Study 2: The typical distribution of the gaze points for a typical trial.

The slowing down ratio we used was R = 2. The slowing down area was S = 80 pixels

in diameter. The expected ID for different distances is shown in Table 3.11.

Participants

We recruited 12 participants for this study. Participants were all students with an average

age of 24.8. The study was conducted following a strict written procedure, which did not

give any indication of change of mouse settings (see Appendix A.1). The whole procedure

was managed by the experiment administrator. Participants were first introduced to the

mouse trials, and completed a general questionnaire to gain information regarding their age,

education and experience of using a mouse (see Appendix B.1.1).

Procedure

All trials were performed under two conditions (constant C-D gain and dynamic C-D gain).

In order to minimize the impact of fatigue, participants were required to have a short

break every five minutes. Order of each condition was counterbalanced, with half of the

participants performing the trials under constant C-D gain before the dynamic C-D, and

vice-versa for the remaining half of the participants. After each condition, participants were
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Figure 3.7: Study 1: The experiment platform layout (Participants were told to ignore the
white cursor originally on each image)

requested to complete a questionnaire about the preceding condition. After completion

of both conditions, each participant was given a questionnaire for subjectively comparing

any perceived difference between the two conditions. The whole procedure was about 30

minutes.

3.3.3 Expected Improvement

Table 3.11 shows the theoretical improvement possibly brought from the dynamic C-D gain

method. By the new equation of calculating the ID’, we estimated that the MT which

linearly corresponds to the ID could be reduced by from 12.4% to 13.6%.

3.3.4 Result and Discussion

The analysis for this study consisted of controlling for learning, times accuracy and user

preference.
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(a) (b)

(c) (d)

Figure 3.8: Study 1: The order in which targets appeared on the screen. The big circle
indicates the starting point, however, participants may click other place to activate “linking”
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Table 3.9: Study 1: The distances (pixel) between targets labeled in Figure 3.8.

a b c d

1 450 550 600 1025
2 400 500 650 1025
3 450 750 884 700
4 600 500 650 1025
5 600 750 600 700
6 450 750 650 750
7 600 500 884 750
8 450 750 650 700

Table 3.10: Study 1: Number of trials N for each distance D.

D N

400 36
450 108
500 108
600 144
650 144
700 108
750 216
884 72

1025 72

Controlling For Learning

Since we did not provide any practice for participants before starting the experiment, the

learning effects may influence the result. Then we should determine how many blocks par-

ticipants required for learning. Because we counterbalanced the order of the two conditions

during the experiment, there were 6 participants (participant 1, 3, 5, 7, 9, 11) firstly did the

experiment under the constant C-D gain, and vice-versa for the others.

Figure 3.3.4 shows the average total completion time for each block over 12 participants

under both constant and dynamic C-D gain. We observed that out of the four blocks in the

overall procedure, the first block had the longest completion time under both constant C-D
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Table 3.11: Study 1: Original ID vs new ID′ = log2
2D+(R−1)S

W×R , R = 2, S = 80

D (pixel) W (pixel) ID (bit) ID ’ (bit) Improvement

400 10 6.32 5.46 14%
450 10 6.49 5.61 14%
500 10 6.64 5.75 13%
600 10 6.91 6.00 13%
650 10 7.02 6.11 13%
700 10 7.13 6.21 13%
750 10 7.23 6.30 13%
884 10 7.47 6.53 13%
1025 10 7.68 6.73 12%

gain and dynamic C-D gain. Additionally, the remaining three blocks had a relatively stable

performance. This result enabled us to conservatively assume that the duration of trials in

the first block was enough for participants to adapt to the experimental platform and mouse

movement trials. Moreover, Figure 3.10 shows the performance difference between training

stage (the first block) and the remaining three blocks. We saw that in both constant C-D

gain and dynamic C-D gain, the average total completion time over 12 participants during

the training stage was longer than that during the remaining three blocks. This confirmed

the assumption that the participants had already adapted to the experimental setup after

the first block.

Times

As described above, we excluded the first block from the analysis and then evaluated the

performance improvement on the remaining three blocks. Figure 3.11 shows the average MT

and standard deviation corresponding to distances under constant C-D gain and dynamic

C-D gain. We saw that the average MT under dynamic C-D gain was always shorter than

that under constant C-D gain for all distances. Table 3.12 shows the average MT under

both conditions, percentage improvement of the dynamic C-D gain, number of trials and

the p-value. The p-value of the difference between constant and dynamic C-D gain is shown

in the last column of Table 3.12. Most improvements were significant at the 0.01 level. The

highest improvement is 19.2% which occurred at D = 450 pixels, while the lowest was 11.7%
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Figure 3.9: Study 1: The average total completion time for each block over 12 participants.

(a) (b)

Figure 3.10: Study 1: The average movement time and standard deviation corresponding to
distances. First block vs the remaining three blocks. The left figure is that under constant
C-D gain, the right figure is that under dynamic C-D gain
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Figure 3.11: Study 1: Mean performance comparison for both conditions at each distance
D. Error bar is the standard deviation.

which occurred at D = 700 pixels. This result was consistent with our prediction shown

in Table 3.11 that the improved dynamic C-D gain would provide about 13% performance

improvement.

By looking at the standard deviation in Figure 3.11 and Table 3.12, we found that the

standard deviation for each distance was quite large. This could be explained by individual

differences. Note that the standard deviation appears smaller for dynamic gain than con-

stant gain. Also, by looking into the questionnaire, we found that some participants were

left-handed mouse users. These left-handed users would certainly perform less accurately

using the right-handed mouse, and spend more time on each trial. Some other people com-

plained that the default mouse speed was not what they were familiar with, and claimed

that they could perform much better under their own preferred mouse speed.

Accuracy

The cursor was displayed as a cross 20 pixel wide with an active area of a single pixel. We

computed the percentage of error clicks (clicks outside the 10 pixels wide circular target)

over all trials. The dynamic C-D gain always provided a lower error rate comparing to
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Table 3.12: Study 1: The mean movement time (seconds), standard deviation and number
of trials under both conditions for each distance D, and the p-value from the paired t-test.

Observed
D Constant C-D Dynamic C-D Improvement df p-value

400 1.73 ± 0.44 1.47 ± 0.21 15% 36 0.04
450 1.81 ± 0.50 1.46 ± 0.35 19% 108 0.02
500 1.82 ± 0.54 1.53 ± 0.29 16% 108 0.02
600 1.90 ± 0.48 1.58 ± 0.29 17% 144 0.01
650 1.81 ± 0.61 1.53 ± 0.31 15% 144 0.01
700 1.96 ± 0.52 1.73 ± 0.40 12% 108 0.01
750 1.92 ± 0.61 1.64 ± 0.34 15% 216 0.01
884 1.88 ± 0.40 1.65 ± 0.35 12% 72 0.01

1025 1.97 ± 0.50 1.64 ± 0.28 17% 72 0.00

constant C-D gain (Figure 3.12). The result was consistent with the questionnaire on that

all participants claimed they could perform equally or more accurately under the dynamic

C-D gain than the constant C-D gain.

User Preference

For the perceptibility, 8 participants out of 12 claimed that they did not perceive any

differences between the two conditions (Questions can be found in Appendix B.1.4). For

the remaining 4, all preferred the dynamic gain. Of interest was one participant who did

not feel any difference but still ranked the dynamic gain above the constant gain. No

participants preferred the constant gain.

3.3.5 Summary

This study indicated that dynamic gain improved the pointing time to a known target by

15%, with a lower error rate and higher user preference.

In this study, all targets were pre-set (known to the system). In the next study, we

employed eye-gaze tracking for target prediction, which generalizes the dynamic C-D gain

method to all kinds of mouse trials without any knowledge of the underlying interface or

tasks.
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Figure 3.12: Study 1: The error rate for training (first block) and remaining (second,third
and forth block)

3.4 Study 2 - Eye-gaze Prediction of Likely Target

3.4.1 Objective

The study 1 indicated an average of 15% performance improvement on the known targets.

To fulfill the need for unknown targets in radiology, we conducted another study with

predicted targets to get a practical result with comparison to the optimal result obtained

from the study 1. The experiment setup for this study was identical to the study 1 except

using gaze point data from the eye-gaze tracker.

3.4.2 Method

Tasks and Procedure

In this study, the real target location is unknown to the system and the mouse cursor was

slowed down according to the target location predicted by the Tobii 1750 eye-tracker. The

eye-gaze tracker was calibrated to the individual participant, even for the condition where
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the eye-gaze was not used to alter the C-D gain.

Participants

We recruited 12 participants for this study. Participants were all students at Simon Fraser

University with an average age of 26. None of them participated in the pilot studies or

study 1.

Gaze Data

The location of each sampled gaze point was used to adjust the C-D gain. Note that

unusually, we did not use fixations of durations>150 msec, as taking the average of several

gaze points would not leave enough time to slow the mouse down before it reached the

target.

When the eye-gaze tracker lost the track of participants’ eyes, participants were notified

by noticeable beeping sound. So they could adjust their head position to resume the tracking.

3.4.3 Result and Discussion

Controlling For Learning

The process for learning was mostly identical to the study 1.

Figure 3.13(a) shows the completion time by block for participants who began with

constant C-D gain. Figure 3.13(b) shows the completion time by block for participants who

first did the experiment under dynamic C-D gain. Figure 3.13(a) shows a strong reduction

in time from Block 1 to Block 2 for four of the six participants. The time for the remaining

blocks is generally less than for the first block. In Figure 3.13(b), however, all participants

have approximately the same completion time for each block. We have no explanation for

the apparent absence of learning in this group. To reduce the confounding effect of learning,

Block 1 was excluded from the analysis for all participants.

Times

Figure 3.14 shows the average MT with constant C-D gain and dynamic C-D gain. For

trials with D>600 pixels, the average MT with dynamic C-D gain was always less than

that with constant C-D gain. However, when we looked into the p-value through the paired
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(a) (b)

Figure 3.13: Study 2: The completion time of each block for each participant. (a) partic-
ipants who performed under the constant C-D gain first. (b) participants who performed
under the dynamic C-D gain first.

t-test as shown in Table 3.13, it does not indicate any statistically significant difference.

The possible reason is that due to the imprecise prediction from the eye-gaze tracker, some

trials with dynamic C-D gain had the gain adjusted in a region far from the actual target.

Then the cursor might slow down within an improper area or it did not slow down at all.

In order to get a more detailed result, we categorized the data by the precision of the target

prediction.

For each trial we traced back the previous three gaze points, and use the average as the

target fixation point. Each target fixation point was analyzed to see how far it was from the

target. Trials were split into three categories. Trials with target prediction errors of less than

20 pixels were categorized as “Precise” (43% of the trials). For these trials, no matter where

the area of reduced cursor speed was placed relative to the target, the cursor would still

always be slowed for some distance (Column 1, Figure 3.15). Trials with prediction errors

between 20 pixels and 40 pixels were categorized as “Medium” (34% of the trials). For such

predictions, the cursor might not be slowed down in the worst case, as the worst case only

occurs when the actual target lies between the predicted target location and the starting

point (Column 2, Figure 3.15). The rest of the trials were categorized as “Imprecise” (23%

of the trials). For prediction errors over 40 pixels, the actual target location will always be

outside of the area of the reduced cursor speed (Column 3, Figure 3.15). All participants

had some trials in every category.

The mean movement time for the “Precise” trials is shown in Table 3.14. The column df
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Figure 3.14: Study 2: Mean performance comparison for both conditions at each distance
D. Error bar is the standard deviation.

(degree of freedom) in Table 3.14 was related to the number of participants involved in that

D in “Precise”, that is, if 5 participants out of 12 had trials in D = 400 in “Precise”, the

df for D = 400 is 4. The mean movement time with dynamic C-D gain for trials with 650

pixels≤ D<1025 pixels is significantly lower than for constant C-D gain. Overall, there is

an average of 7.8% improvement for those trials. Furthermore, more statistically significant

difference for the improvement is found in this group. We cannot explain why dynamic

gain had no effect for trials with D=1025 pixels. Perhaps this distance was too large to

cross with a single hand motion under the active mouse speed setting, requiring the user to

physically re-position the mouse.

The mean movement time for the “Medium” trials is shown in Table 3.15. The perfor-

mance under dynamic gain for all trials is faster than for constant gain. But the improvement

are small and none is close to statistically significant. The lack of strong effect for these tri-

als is expected, because dynamic gain is unreliable in this case, where the region of reduced

cursor speed can be any direction from the actual target. If the slower region is on the line

connecting the starting point and the target, the cursor slows as it approaches the target.

If instead the predicted location is offset from the line, the dynamic gain has little to no
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Table 3.13: Study 2: The mean movement time (seconds), standard deviation and number
of trials under both conditions for each distance D, and the p-value from the paired t-test.

Observed
D Constant C-D Dynamic C-D Improvement df p-value

400 1.66 ± 0.24 1.74 ± 0.18 -5% 36 0.23
450 1.66 ± 0.27 1.67 ± 0.25 0% 108 0.48
500 1.72 ± 0.16 1.70 ± 0.16 1% 108 0.39
600 1.74 ± 0.16 1.74 ± 0.20 0% 144 0.48
650 1.80 ± 0.22 1.74 ± 0.16 4% 144 0.14
700 1.87 ± 0.18 1.77 ± 0.19 5% 108 0.04
750 1.81 ± 0.20 1.77 ± 0.19 3% 216 0.16
884 2.01 ± 0.21 1.86 ± 0.16 8% 72 0.04

1025 1.97 ± 0.20 1.88 ± 0.25 4% 72 0.21

effect on the cursor.

Since the target prediction for the “Imprecise” trials was completely incorrect, there

should be no difference between trials with constant C-D gain and dynamic C-D gain in this

group. The result in Table 3.16 shows that the average movement time in both conditions

is almost identical and no significant difference was found, except for D=400 in which the

dynamic C-D gain was significantly slower. This result is unreliable because of the small

sample size

Accuracy

The cursor was displayed as a cross 20 pixels wide with an active area of a single pixel

in the center. We computed the percentage of error clicks (clicks outside the 10 pixels

wide circular target) over all trials. Figure 3.16 shows the error rates of each participant

under each condition. The error rate under dynamic gain is mostly lower than that under

constant gain. The average rate with constant gain was 8.20% versus 6.25% with dynamic

gain (t=2.20, p<0.03, df =11).
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Figure 3.15: Study 2: The best, medium and worst case of predictions in Precise, Medium
and Imprecise. The black circle is the actual target. The grey circle is the predicted target.
Area inside the dotted circle is the slowing down area. The red circle is the starting point.

User Preference

Most participants (10/12) claimed that they did not perceive any differences between the two

conditions. For the remaining 2, one preferred the dynamic gain and the other preferred the

constant gain. This differs strongly from the preferences expressed by participants in study

1. One possible reason is that many trials in the dynamic gain condition were performed

with medium or imprecise target prediction. The dynamic gain condition effectively mixed

dynamic and constant-gain trials, reducing perceptibility of the dynamic gain.

3.4.4 Summary

In this more realistic condition, in which eye-gaze was used to predict the likely target

location, improvement in pointing performance varied with prediction accuracy. For trials

in which the prediction was within 20 pixels of the target, pointing time was improved

7.8% for distances larger than 600 pixels. However, no effect was found for the longest

distance, 1025 pixels, perhaps because this distance required the user to re-position the

mouse, overwhelming the effect of the dynamic gain.

For trials with moderately accurate prediction (error within 20 and 40 pixels), dynamic
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Table 3.14: Study 2 - Group Precise: The mean movement time (seconds), standard devia-
tion and degree of freedom (df ) under both conditions for each distance D, and the p-value
from the paired t-test.

Observed
D Constant C-D Dynamic C-D Improvement df p-value

400 1.68 ± 0.17 1.75 ± 0.25 -4% 6 0.29
450 1.74 ± 0.25 1.68 ± 0.32 3% 11 0.26
500 1.75 ± 0.26 1.63 ± 0.17 7% 11 0.06
600 1.78 ± 0.21 1.72 ± 0.18 3% 11 0.22
650 1.82 ± 0.34 1.65 ± 0.23 9% 11 0.04
700 1.89 ± 0.21 1.78 ± 0.12 6% 11 0.05
750 1.82 ± 0.25 1.74 ± 0.24 4% 11 0.06
884 2.02 ± 0.31 1.77 ± 0.18 12% 9 0.02

1025 1.95 ± 0.23 1.93 ± 0.25 1% 10 0.45

gain had essentially no effect. For trials with the most inaccurate prediction (error greater

than 40 pixels), the effect of dynamic gain varied widely, in the worst case actually slowing

the user’s performance.

Dynamic gain also reduced the error rate slightly and was typically imperceptible to

users.

3.5 Discussion

The result of pilot studies encouraged us to use R = 2;S = 80 as the parameter for small

targets because the S(80) can be tolerated by the accuracy of the eye-gaze tracker which is

28±17 pixels. By using this parameter, we conducted a study (study 1) with 12 participants.

We used known targets to estimate the optimal improvement possible with a dynamic C-

D gain in a radiology context. From study 1, we found an average of 13.6% (p<0.01)

improvement on the average movement time for known targets with a significantly lower

error rate and higher user preference in study 1.

We also conducted a second study (study 2) with 12 different participants to evaluate

the role of eye-gaze targeting in the realistic situation of unknown target positions. The

result of the second study indicated the practical performance of the dynamic C-D gain
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Table 3.15: Study 2 - Group Medium: The mean movement time (seconds), standard
deviation and degree of freedom (df ) under both conditions for each distance D, and the
p-value from the paired t-test.

Observed
D Constant C-D Dynamic C-D Improvement df p-value

400 1.74 ± 0.39 1.64 ± 0.19 6% 6 0.28
450 1.68 ± 0.24 1.64 ± 0.20 2% 8 0.29
500 1.72 ± 0.29 1.67 ± 0.24 3% 10 0.31
600 1.74 ± 0.28 1.72 ± 0.20 1% 11 0.41
650 1.71 ± 0.21 1.70 ± 0.25 0% 11 0.48
700 1.83 ± 0.19 1.77 ± 0.23 3% 11 0.19
750 1.81 ± 0.23 1.77 ± 0.18 2% 11 0.30
884 1.83 ± 0.17 1.78 ± 0.27 3% 9 0.29

1025 1.92 ± 0.33 1.81 ± 0.27 6% 9 0.22

method with an eye-gaze tracker. Due to the imprecise prediction, we expected and found

the result to be less promising than the study 1 which was the optimal. We found an

average of 7.8% improvement for trials with distance larger than 600 pixels for trials with

precise target prediction (error<20 pixels). However, no effect was found for the longest

distance, 1025 pixels, perhaps because this distance required the user to re-position the

mouse, overwhelming the effect of the dynamic gain. For trials with moderately accurate

prediction (error within 20 and 40 pixels), dynamic gain had essentially no effect. For trials

with the most inaccurate prediction (error>40pixels), the effect of dynamic gain varied

widely, in the worst case actually slowing the user’s performance. Furthermore, dynamic

gain reduced the error rate over constant gain. Finally, there was no difference perceived

by users.
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Table 3.16: Study 2 - Group Imprecise: The mean movement time (seconds), standard
deviation and degree of freedom (df ) under both conditions for each distance D, and the
p-value from the paired t-test.

Observed
D Constant C-D Dynamic C-D Improvement df p-value

400 1.53 ± 0.12 1.78 ± 0.22 -16% 3 0.05
450 1.70 ± 0.57 1.69 ± 0.36 0% 10 0.49
500 1.78 ± 0.41 1.81 ± 0.28 -2% 9 0.44
600 1.70 ± 0.20 1.77 ± 0.28 -4% 10 0.21
650 1.75 ± 0.26 1.82 ± 0.12 -4% 10 0.21
700 1.76 ± 0.24 1.74 ± 0.25 1% 9 0.41
750 1.78 ± 0.29 1.73 ± 0.16 3% 9 0.31
884 1.97 ± 0.46 2.02 ± 0.26 -2% 6 0.39

1025 1.96 ± 0.29 1.76 ± 0.29 11% 7 0.10

Figure 3.16: Study 2: The percentage error for every participant.
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Conclusion

This thesis makes an exploration of the feasibility of using the dynamic control-to-display

(C-D) gain technique with an eye-gaze tracker to improve the pointing performance for

radiology tasks.

Pointing tasks are performed frequently and extensively in radiology workstations. Re-

ducing time required for pointing tasks can improve the usability of the interaction, upgrad-

ing the efficiency for radiologists. Among all existing interactive methods, the scroll-wheel

mouse is the most preferred commonly used device. Although there are other methods

shown to be more efficient in some circumstances than the scroll-wheel mouse, people still

prefer the device that they are most familiar with.

We improved the dynamic C-D gain technique, integrating with an eye-gaze tracker, to

improve the pointing performance using the traditional scroll-wheel mouse. The concept

behind the dynamic C-D gain is that by dynamically adjusting the C-D gain, the index of

the difficulty (ID) of a pointing task can be reduced. We slowed down the mouse cursor

when it is close to the target, making the target effectively bigger in the motor space. In

order to apply this method to the 2-D space, and make it more effective for small targets,

we proposed an extended slowing down area instead of just slowing the cursor down over

the target. Previous studies showed that people look at where they are working on. Based

on this fact, we proposed that the gaze location of the user can be used to predict the target

location. We used an Tobii 1750 eye-gaze tracker to obtain the gaze data from the user,

and then dynamically changed the C-D gain according to the cursor location to the gaze

location.

44
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By experiments we found that R = 2;S = 80 are the best parameters; that is, the op-

timum value of the slowing down ratio R is 2, and the optimum value of the slowing down

area diameter S is 80 pixels which can be tolerated by the accuracy of the eye-gaze tracker

(28± 17 pixels). By using this parameter, we obtained an average of 13.6% improvement in

pointing time from study 1 in which only known targets were used. Also in study 1, dynamic

gain significantly reduced the error rate over constant gain. No differences between dynamic

gain and constant gain were perceived by participants. Next, we conducted a second study

(study 2) with 12 different participants to evaluate the role of eye-gaze targeting in the

realistic situation of unknown target positions. We found an average of 7.8% improvement

for trials with distance larger than 600 pixels for trials where the eye-gaze prediction of the

target was precise (error<20 pixels). However, no effect was found for the longest distance,

1025 pixels, perhaps because this distance required the user to re-position the mouse, over-

whelming the effect of the dynamic gain. For trials where the eye-gaze only predicted the

target with moderate precision (error within 20 and 40 pixels), dynamic gain had essen-

tially no effect. For trials with the most inaccurate prediction (error>40pixels), the effect

of dynamic gain varied widely, in the worst case actually slowing the user’s performance.

Furthermore, dynamic gain reduced the error rate over constant gain. Finally, there was no

difference perceived by users.

4.1 Difficulties

During the exploration, there were some major difficulties. The first difficulty is in deter-

mining how much the cursor should be slowed down (slowing down ratio R), and how big

the slowing down area should be (slowing down area diameter S ). Since both S and R can

affect the ID, as well as the path variation, it’s difficult to determine the best value for S

and R by theoretical calculation. Therefore, we conducted a pilot study to coarsely evaluate

different combinations of S and R. We found that R(2)S(80), R(2)S(60) and R(2)S(40) can

improve the pointing performance.

Another challenge is how to balance the value of S with the accuracy of the eye-gaze

tracker. As we found, if the S is too big, the distance D will be significantly affected; if

the S is too small, the impact of path variation is high, so we cannot achieve the optimum

performance. To solve this, we conducted another pilot study to evaluate the accuracy of

the eye-gaze tracker. We found that there’s an average of about 20 pixels offset between the



CHAPTER 4. CONCLUSION 46

target and the predicted target. Combining this result with the result from the first pilot

study, S = 80 pixels and R = 2 were chosen.

4.2 Future Work

Currently, about 43% of the target predictions in our experiment were precise (error<20

pixels). This proportion of the trials brought the highest improvement for the pointing

performance. We believe that with a better calibration procedure and a better real-time

analysis method for the real time gaze data, the accuracy of the prediction can be improved.

Also, we could combine the eye-gaze tracker with other target predicting methods, to get

a more accurate and confident prediction. Candidate methods such as Delphian Desktop

[1] should be able to handle unspecified targets. Once more than one predictive method is

employed, the prediction from each method can be combined to the final prediction.

Moreover, only “slowing down” was applied in the current method. Theoretically, if the

“speeding up” can be applied while the cursor is far away from the target, the ID can be

reduced further. Besides, with “speeding up”, tasks with longer distance can be completed

with a single hand motion, thus potentially reducing the movement time.

In the future, the mouse path for each trial can be tracked to get a more detailed analysis.

For example, we can compare trials of overshoot and undershoot, and directional bias. Also

we can analyze the path variations.

Since we were constrained to just a single monitor because of our eye-gaze tracking

equipment, in future, with different eye-gaze trackers, we would like to employ multiple

monitors to test the more realistic situations encountered in radiology, and examine the

performance improvements over much larger distances.

The dynamic C-D gain method is completely context-free. This feature is useful because

our technique is applicable to any display without specific knowledge of the GUI system.

Hence our method can actually be used on any system, instead of being applicable only

radiology workstations. However, if we add our knowledge to a radiology workstation,

taking advantage of known positions of icons, buttons etc., there might be a further boost

in the improvement. For example, methods such as [14, 29] which can handle pre-specified

targets will be eligible to combine with. Note that no matter what method is proposed in

the future, validations with radiologists will be necessary.



Appendix A

Experiment Descriptions

Participants in study 1 and study 2 followed a strict written procedure, as shown in the

following sections.

A.1 Study 1

Mouse pointing with control gain - User instructions
Dec 11th, 2008

Description of tasks

In this experiment, you will be using a standard mouse to perform clicking actions.

In this experiment, you will only need to use the mouse to click on circular targets shown

as small red dots surrounded by a larger yellow ring.

∙ To begin, right-click anywhere on the screen, and select “linking” from the menu which

appears.

∙ Then click on each red dot as they appear; there will be 8 dots in each set.

∙ When 8 dots have been clicked, please again right-click and select ”linking” to begin

the next set.

∙ The experiment ends when 16 sets with each of 8 dots have been completed.

This procedure will be repeated twice. At the end of each, you need to fill up a questionnaire.

This experiment may take approximately 10-15 minutes to complete.
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Your performance will be timed; please try to work quickly, but also try to ensure you

hit the targets accurately.

Please inform the experimenter if you wish to take a break; you are also free to withdraw

from the experiment at any time.

Thank you for your participation!

A.2 Study 2

Mouse pointing with control gain - User instructions
Mar 6th, 2009

Description of task

In this study, you will be using a standard mouse to perform clicking actions.

In this study, you will only need to use the mouse to click on circular targets shown as

small red dots surrounded by a larger yellow ring. Your eye-gaze fixations will be recorded.

Note that you can ask for reversing the mouse keys if you are left-handed mouse user. The

study has two experiments.

∙ Before each experiment, the eye-gaze tracker needs to be calibrated. Simply use your

eyes to follow the blue ball on the screen.

∙ To begin, right-click anywhere on the screen, and select ”linking” from the menu which

appears.

∙ Then click on each red dot as they appear; there will be 8 dots in each set.

∙ When 8 dots have been clicked, please again right-click and select ”linking” to begin

the next set.

∙ The experiment ends when 16 sets each with 8 dots have been completed.

During the experiment, if your eye-gaze signal is lost, there will be a beeping sound. If you

hear this sound, please adjust your head position until the beeping stops. This can usually

be done by facing the eyetracking monitor squarely at the advised distance.

This experiment will be repeated twice. At the end of each, you will be asked to complete

a questionnaire.

This study may take approximately 15-20 minutes to complete.
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Your performance will be timed; please try to work quickly, but also try to ensure you

hit the targets accurately.

Please inform the experimenter if you wish to take a break; you are also free to withdraw

from the study at any time.

Thank you for your participation!



Appendix B

Questionnaires

During both study 1 and study 2, participants were given questionnaires before and after

the experiment.

B.1 Study 1

B.1.1 Background Questionnaire

Background information
Before beginning the experiment, we would like to collect some general demographical

information and to know your level of computer experience.

1. Age: years

2. Gender: Female

Male

3. Approximately how many hours per week do you use a computer (please check the

closest answer)?

Less than half Less than 2 Less than 7 Less than 7 14 or more

an hour a week hours a week hours a week hours a week hours a week

Experience:
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4. How much do you use the mouse to point at and click on small targets (e.g. about

the size of one letter on this sheet of paper)? Please check the most suitable answer.

Never Rarely Somewhat often Frequently

5. Which hand do you prefer for using the mouse? Right

Left

Either

6. Do you prefer to reverse the “left” and “right” mouse buttons? No

Yes

Thank you for your responses. Please follow the instructions of the experimenter. Re-

member that you are free to take a break or withdraw from the study at any time.

B.1.2 Questionnaire After the Constant Gain Condition

Evaluation of experimental condition
For the experimental condition you have just completed, please rate your experience

with respect to the following characteristics:

Please circle the number best matching your experience.

1. Speed of clicking the target:

(Slow) 1 2 3 4 5 6 7 (Quick)

2. Accuracy of clicking the target:

(Inaccurate) 1 2 3 4 5 6 7 (Accurate)

3. Comfort of using this interface:

(Uncomfortable) 1 2 3 4 5 6 7 (Comfortable)

4. How effectively did this interface support you to do the target pointing task?

(Poorly) 1 2 3 4 5 6 7 (Well)

B.1.3 Questionnaire After the Dynamic Gain Condition

Evaluation of experimental condition
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For the experimental condition you have just completed, please rate your experience

with respect to the following characteristics:

Please circle the number best matching your experience.

1. Speed of clicking the target:

(Slow) 1 2 3 4 5 6 7 (Quick)

2. Accuracy of clicking the target:

(Inaccurate) 1 2 3 4 5 6 7 (Accurate)

3. Comfort of using this interface:

(Uncomfortable) 1 2 3 4 5 6 7 (Comfortable)

4. How effectively did this interface support you to do the target pointing task?

(Poorly) 1 2 3 4 5 6 7 (Well)

B.1.4 Questionnaire After Both Conditions

Ranking & open-ended questions
Preference ranking

1. If you cannot remember or did not notice any difference between the two conditions,

indicate this in the spaces provided below.

Cannot remember the conditions

No noticeable difference between the conditions

2. If you noticed a difference between the two conditions, please rank the two experimen-

tal conditions in order of your preference (1 = most preferred, 2 = least preferred).

Rank Condition

First

Second

General feedback

3. Please give any comments you have in the space provided below:

This concludes the experimental session. Thank you for your participation. We appre-

ciate your valuable time, please enjoy the refreshments before you leave.
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B.2 Study 2

Background information
Before beginning the experiment, we would like to collect some general demographical

information and to know your level of computer experience.

1. Age: years

2. Gender: Female

Male

3. Approximately how many hours per week do you use a computer (please check the

closest answer)?

Less than half Less than 2 Less than 7 Less than 7 14 or more

an hour a week hours a week hours a week hours a week hours a week

Experience:

4. How much do you use the mouse to point at and click on small targets (e.g. about

the size of one letter on this sheet of paper)? Please check the most suitable answer.

Never Rarely Somewhat often Frequently

5. Which hand do you prefer for using the mouse? Right

Left

Either

6. Do you prefer to reverse the “left” and “right” mouse buttons? No

Yes

7. Have you ever used an eye-gaze tracker before? No

Yes

If Yes, for how long?

Thank you for your responses. Please follow the instructions of the experimenter. Re-

member that you are free to take a break or withdraw from the study at any time.
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B.2.1 Questionnaire After the Constant Gain Condition

Evaluation of experimental condition
For the experimental condition you have just completed, please rate your experience

with respect to the following characteristics:

Please circle the number best matching your experience.

1. Speed of clicking the target:

(Slow) 1 2 3 4 5 6 7 (Quick)

2. Accuracy of clicking the target:

(Inaccurate) 1 2 3 4 5 6 7 (Accurate)

3. Comfort of using this interface:

(Uncomfortable) 1 2 3 4 5 6 7 (Comfortable)

4. How effectively did this interface support you to do the target pointing task?

(Poorly) 1 2 3 4 5 6 7 (Well)

B.2.2 Questionnaire After the Dynamic Gain Condition

Evaluation of experimental condition
For the experimental condition you have just completed, please rate your experience

with respect to the following characteristics:

Please circle the number best matching your experience.

1. Speed of clicking the target:

(Slow) 1 2 3 4 5 6 7 (Quick)

2. Accuracy of clicking the target:

(Inaccurate) 1 2 3 4 5 6 7 (Accurate)

3. Comfort of using this interface:

(Uncomfortable) 1 2 3 4 5 6 7 (Comfortable)

4. How effectively did this interface support you to do the target pointing task?

(Poorly) 1 2 3 4 5 6 7 (Well)
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B.2.3 Questionnaire After Both Conditions

Ranking & open-ended questions
Preference ranking

1. If you cannot remember or did not notice any difference between the two conditions,

indicate this in the spaces provided below.

Cannot remember the conditions

No noticeable difference between the conditions

2. If you noticed a difference between the two conditions, please rank the two experimen-

tal conditions in order of your preference (1 = most preferred, 2 = least preferred).

Rank Condition

First

Second

During the experiment, there was a beep noise notifying you when your

eye-gaze signal is lost.

3. Please rate how noticeable the noise was:

(very unnoticeable) 1 2 3 4 5 6 7 (very noticeable)

4. Please rate how intrusive the noise was:

(very unintrusive) 1 2 3 4 5 6 7 (very intrusive)

5. Was it clear how you needed to readjust your posture to regain accurate eyetracking?

(very unclear) 1 2 3 4 5 6 7 (very clear)

6. Was it easy to adjust and maintain your posture to regain accurate eyetracking?

(very difficult) 1 2 3 4 5 6 7 (very easy)

General feedback

7. Please give any comments you have in the space provided below:

This concludes the study. Thank you for your participation. We appreciate your valuable

time, please enjoy the refreshments before you leave.
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