
ERROR CONTROL FOR H.264/AVC VIDEO

STREAMING

by

Seyed Mohsen Amiri

B.Sc., Isfahan University of Technology, Iran, 2004

M.Sc., Sharif University of Technology, Iran, 2006

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Applied Science

in the School

of

Engineering Science

c© Seyed Mohsen Amiri 2009

SIMON FRASER UNIVERSITY

Fall 2009

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

Last revision: Spring 09

Declaration of
Partial Copyright Licence
The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the “Institutional Repository” link of the SFU Library website
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing
the content, to translate the thesis/project or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in
part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Abstract

In recent years, the development of network and multimedia technologies has increased the

demand for video delivery over various types of networks, such as the Internet or wireless

networks. However, video delivery over packet-based networks poses several challenges,

such as packet loss protection, limited bandwidth, and limitation on the maximum allowable

delay. This thesis focuses on developing different error control techniques for video streaming

over various networks to combat these challenges.

First, we focused on developing a new two-stage encoder structure, which enables motion-

compensated predictive encoders to have real-time Reference Picture Selection (RPS). In the

second part of this thesis, we developed a novel noncausal whole-frame error concealment

algorithm. Finally, we studied error control for multicast video transmission. We developed

a subset selection scheme based on Type-II hybrid ARQ/FEC, which chooses video packets

to be protected based on their influence on the decoded video quality.

iii

Executive Summary

This thesis focuses on developing different error control techniques for video streaming over

various networks to combat these challenges. First, we focused on developing a new two-

stage encoder structure, which enables motion-compensated predictive encoders to have

real-time Reference Picture Selection (RPS). RPS is a strong error resilience technique.

Servers usually do not choose RPS as their error resilience feature, because it is highly com-

putationally demanding. In this thesis, the proposed two-stage encoder achieves significant

speed-up at the streaming time at the expense of additional storage space needed.

Using channel coding such as ARQ or FEC can reduce channel errors, but can not com-

pletely eliminate them. Therefore, every video decoder needs to have an error concealment

module to mitigate the effect of channel errors. In the second part of this thesis, we devel-

oped a novel noncausal whole-frame error concealment algorithm. The proposed algorithm

has the ability to extract the information in the preceding and succeeding frames, and use

this information to conceal the lost frame.

Finally, we studied error control for multicast video transmission. We developed a subset

selection scheme based on Type-II hybrid ARQ/FEC, which chooses video packets to be

protected based on their influence on the decoded video quality. This approach enables

better utilization of parity packets in cases where there is not enough bandwidth to transmit

sufficiently many parity packets to correct all losses at all users.

iv

To my parents and my beloved wife

v

“Would you that splang of Existance spend

About the Secret-quick about it, Friend!

A hair perhaps devides the False from True

And upon what , prithee, does life depend ”

— The Keepr, Omar Khayyám, 1123AD

vi

Contents

Approval ii

Abstract iii

Executive Summary iv

Dedication v

Quotation vi

Contents vii

List of Tables xi

List of Figures xiv

Preface xix

1 Background 1

1.1 Video Compression Concepts . 3

1.2 H.264/AVC Overview . 5

1.2.1 Features . 6

1.3 Error Resilience . 8

vii

1.3.1 Error Resilience Tools in H.264/AVC 9

1.3.2 Reference Picture Selection (RPS) . 11

1.4 Error Concealment . 14

1.4.1 Whole Frame Concealment . 15

1.5 Channel Coding . 16

1.5.1 Forward Error Correction (FEC) . 16

1.5.2 Automatic Repeat reQuest (ARQ) . 19

1.5.3 Hybrid ARQ/FEC . 20

1.6 Contributions of the Thesis . 20

2 Two-Stage Encoder for Fast RPS 23

2.1 Overview of the Proposed Two-Stage Encoder 24

2.2 Performance modeling of the two-stage encoder 29

2.3 Performance Evaluation of the Two-stage Encoder 33

2.3.1 Characterization of the two-stage encoder 34

2.3.2 Performance over a lossy network . 35

2.3.3 Encoding speed . 36

3 Noncausal Whole-frame Concealment 43

3.1 Whole-frame Concealment . 44

3.1.1 The Method Proposed in [14] . 44

3.2 Noncausal Whole-frame Concealment . 46

3.2.1 Noncausal optical flow . 46

3.2.2 Using Optical Flow in the Proposed Error Concealment Algorithm . 49

3.2.3 Spatiotemporal boundary matching 50

3.3 Performance Evaluation of the Noncausal Whole-Frame concealment 52

viii

4 End to End System Performance Evaluation 60

4.1 Experimental results . 60

4.2 Conclusions . 65

5 Channel Coding for Video Multicast 67

5.1 Conventional Error Control Techniques for Multicasting 68

5.1.1 FEC . 69

5.1.2 ARQ . 69

5.1.3 Hybrid ARQ/FEC type-II . 69

5.1.4 RPS . 71

5.1.5 Rate Distortion Optimization (RaDiO) and Collision Distortion Op-

timization (CoDiO) . 72

5.2 Subset Selection in Hybrid ARQ/FEC for Video Multicast 73

5.3 Subset Selection in Type-II Hybrid ARQ/FEC for Video Multicast with One

Subset . 74

5.3.1 Full Search for the Best Subset . 74

5.3.2 Suboptimal Search Based on Simulated Annealing 82

5.4 Experimental Results . 82

5.5 Analytical Results . 87

5.5.1 Error Distribution . 88

5.5.2 Subset Selection Effects on the Residual Packet Loss Rate without

Feedback . 91

5.5.3 Subset Selection Effects on the Receivers Distortion without Feedback 96

5.6 Subset Selection in Type-II Hybrid ARQ/FEC for Video Multicast with Mul-

tiple subsets . 96

6 Conclusion and Future Work 99

ix

A Performance Modeling of the Two-stage Encoder 102

A.1 Modeling of the motion vector estimation error 102

A.2 Modeling of the difference between two motion vector fields 106

B User Guide 110

B.1 Files on the DVD . 110

Bibliography 114

Index 120

x

List of Tables

2.1 PSNR in dB of the JM 12.4 encoder (JM), our two-stage encoder (2-ST), and

their difference (∆) when the losses happen independently, with rate control

turned on. Encoded bit rate is shown in the top row of the table. 41

2.2 PSNR in dB of the JM 12.4 encoder (JM), our two-stage encoder (2-ST),

and their difference (∆) over a Gilbert channel with LB = 2.5, and with rate

control turned on. Encoded bit rate is shown in the top row of the table. . . 41

2.3 PSNR in dB of the JM 12.4 encoder (JM), our two-stage encoder (2-ST), and

their difference (∆) over measured packet traces from [60], with rate control

turned on. Encoded bit rate is shown in the top row of the table. 42

2.4 Motion search methods in five configurations of the JM encoder. 42

2.5 Average encoding time per frame (in milliseconds) for various JM configu-

rations (JM-1 through JM-5), and our two-stage encoder (two-stage). At at

the first stage, the encoder uses JM-1 for motion estimation 42

3.1 PSNR performance in dB of different concealment algorithms when RTT =

60 ms. The gain of the proposed method over the one in [14] is also shown. . 58

3.2 PSNR performance in dB of different concealment algorithms when RTT =

120 ms. The gain of the proposed method over the one in [14] is also shown. . 58

3.3 Average time required to conceal one frame, rounded up to the nearest mil-

lisecond. 59

xi

4.1 PSNR in dB of system A (JM 12.4 encoder (JM)+Belfiore’s concealment),

system B (JM 12.4 encoder (JM)+our noncausal error concealment), system

C (our two-stage encoder (two-stage)+Belfiore’s concealment), and system D

(our two-stage encoder (two-stage)+our noncausal error concealment) when

the losses happen independently, with rate control turned on. Encoded bit

rate is shown in the top row of the table. 62

4.2 PSNR in dB of system A (JM 12.4 encoder (JM)+Belfiore’s concealment),

system B (JM 12.4 encoder (JM)+our noncausal error concealment), system

C (our two-stage encoder (two-stage)+Belfiore’s concealment), and system D

(our two-stage encoder (two-stage)+our noncausal error concealment) over a

Gilbert channel with LB = 2.5, and with rate control turned on. Encoded

bit rate is shown in the top row of the table. 63

4.3 PSNR in dB of system A (JM 12.4 encoder (JM)+Belfiore’s concealment),

system B (JM 12.4 encoder (JM)+our noncausal error concealment), system

C (our two-stage encoder (two-stage)+Belfiore’s concealment), and system

D (our two-stage encoder (two-stage)+our noncausal error concealment) over

measured packet traces from [60], with rate control turned on. Encoded bit

rate is shown in the top row of the table. 63

4.4 PSNR difference of different systems with system A in dB when the losses

happen independently, with rate control turned on. Encoded bit rate is shown

in the top row of the table. System A is (JM 12.4 encoder (JM)+Belfiore’s

concealment), system B is (JM 12.4 encoder (JM)+our noncausal error con-

cealment), system C is (our two-stage encoder (two-stage)+Belfiore’s conceal-

ment), and system D is (our two-stage encoder (two-stage)+our noncausal

error concealment) . 64

xii

4.5 PSNR difference of different systems with system A in dB over a Gilbert chan-

nel with LB = 2.5, with rate control turned on. Encoded bit rate is shown

in the top row of the table. System A is (JM 12.4 encoder (JM)+Belfiore’s

concealment), system B is (JM 12.4 encoder (JM)+our noncausal error con-

cealment), system C is (our two-stage encoder (two-stage)+Belfiore’s conceal-

ment), and system D is (our two-stage encoder (two-stage)+our noncausal

error concealment) . 64

4.6 PSNR difference of different systems with system A in dB over measured

packet traces from [60], with rate control turned on. Encoded bit rate is shown

in the top row of the table. System A is (JM 12.4 encoder (JM)+Belfiore’s

concealment), system B is (JM 12.4 encoder (JM)+our noncausal error con-

cealment), system C is (our two-stage encoder (two-stage)+Belfiore’s conceal-

ment), and system D is (our two-stage encoder (two-stage)+our noncausal

error concealment) . 65

4.7 Comparison between computation complexity of different systems. 66

5.1 CPU usage by the two subset selection algorithms. 87

xiii

List of Figures

1.1 Abstraction of a Video Communication System 2

1.2 Standard video coder based on motion compensation. 4

1.3 Structure of the H.264/AVC . 6

1.4 RPS-ACK . 13

1.5 RPS-NACK . 14

1.6 Binary symmetric channel (BSC). A transmitted 0 may be detected as 0 or

as 1, or vice versa . 17

1.7 Erasure Channel. One transmitted symbol may be received correctly or may

be lost . 17

1.8 (n, k, L) convolutional encoder . 18

1.9 Packet structure for error protection using FEC and CRC 19

2.1 Standard video coder based on motion compensation. 24

2.2 The proposed two-stage encoder. 26

2.3 Estimation of motion vector using different references. To estimate the solid

motion vector, Frame Ŷ1 is used as the reference. And, to estimate the dashed

motion vector, Frame Ŷ2 is used as the reference which causes motion vector

displacement . 30

xiv

2.4 The difference between motion vectors when using two differently quantized

reference frames. QP1 is the quantization parameter for one of the refer-

ences and QP2 is the quantization parameter of the other one. Measured

data are directly measured in the encoder and Estimated data are calculated

using (A.18). 31

2.5 Estimated ∆R2,1(extra bits/pixels). Measured data represents measured val-

ues of ∆R2,1 when a two-stage encoder is used compare to the standard

encoder, and Estimated data are calculated using (2.7). QP1 is the quantiza-

tion parameter for the first stage and QP2 is the quantization parameter for

the second stage. 33

2.6 Quality degradation when QP in the first stage (QP1) is different from the

QP in the second stage. (a) Bus, (b) Crew, (c) Foreman, and (d) Soccer. . . . 39

2.7 Bit-rate increase when QP in the first stage (QP1) is different from the QP

in the second stage. (a) Bus, (b) Crew, (c) Foreman, and (d)Soccer. 40

3.1 Causal MV recovery: original MV from frame t− 3 to frame t− 1 shown by

solid line, recovered MV from frame t− 1 to frame t shown by dashed line. . 47

3.2 Anti-causal MV recovery: original MV from frame t+1 to frame t+2 shown

by solid line, recovered MVs for the two lost frames, t and t + 1, shown by

dashed line. 48

3.3 Noncausal MV recovery: original MV from frame t− 1 to frame t + 2 shown

by solid line, recovered MV from frame t− 1 to frame t shown by dashed line. 50

3.4 Boundary matching. 52

3.5 Frame 144 of Soccer. (a) Loss-free decoded frame, (b) Reconstructed by frame

copy (frame 144 is lost) (c) Reconstructed by the method from [14] (frame

144 is lost), and (d) Reconstructed by the proposed method (frame 144 is lost). 55

xv

3.6 Frame 145 of Soccer. (a) Error free decoded frame, (b) Reconstructed by

frame copy (frame 144 is lost), (c) Reconstructed by the method from [14]

(frame 144 is lost), and (d) Reconstructed by the proposed method (frame

144 is lost). 56

3.7 The difference between original version of Frame 144 and its erroneous ver-

sion. (a) Reconstructed by frame copy (frame 144 is lost), (b) Reconstructed

by the method from [14] (frame 144 is lost), and (c) Reconstructed by the

proposed method (frame 144 is lost). 57

3.8 The difference between original version of Frame 145 and its erroneous ver-

sion. (a) Reconstructed by frame copy (frame 144 is lost), (b) Reconstructed

by the method from [14] (frame 144 is lost), and (c) Reconstructed by the

proposed method (frame 144 is lost). 57

5.1 Probability of retransmission . 70

5.2 Comparison of ARQ and Hybrid ARQ/FEC type-II.(N = 12) 72

5.3 Motivation for subset selection in Type-II hybrid ARQ/FEC. 74

5.4 Different frames have different importance for the decoded video quality. . . . 77

5.5 Creating subgroups of receiver for gathering feedback from receivers when

the server deals with a large group of clients 78

5.6 Lost frames indicated by darker shading. 79

5.7 ARQ may choose to retransmit any of the lost frames, say the ninth frame,

since it cannot distinguish their importance. In this particular case, there

is no benefit even to user #3, because the ninth frame depends on the fifth

frame, which is also lost. 80

5.8 RaDiO and CoDiO schedulers retransmit the fifth frame of the GOP, which

leads to the recovery of 14 frames across the users. In this case, only users

#2 and #3 benefit from the retransmission. 81

xvi

5.9 The optimal subset for parity generation is composed of the first, fifth, and

eleventh frame of the GOP. Reception of the parity packet at all users would

lead to the recovery of 26 frames. 81

5.10 Performance comparison of different error control schemes as a function of

packet loss probability, with one error control packet per GOP. 84

5.11 Performance comparison of different error control schemes as a function of

packet loss probability, with two error control packets per GOP. 85

5.12 Performance comparison of different error control schemes as a function of

the number of users, with one error control packet per GOP. 86

5.13 Average PSNR in dB for the Foreman sequence with one error control packet

per GOP. 87

5.14 Gilbert Model. pBG be the probability of going to a G state from a B state,

and pGB is the probability of going to a B state from a G state 89

5.15 Error distribution for different packet loss patterns, when the packet loss rate

is 10%. 90

5.16 A simple subset protection for pure FEC. In this scheme nu information

packet are left unprotected, and the remaining information packets are pro-

tected with nc parity packets . 91

5.17 The residual packet loss probability in the subset selection without feedback

scheme for channel model 1 . 93

5.18 The achieved coding gain in the subset selection without feedback scheme for

channel model 1 . 94

5.19 The probability of having mc lost packets among nc parity packets can be

found using π (m + 1, n + 1) when the last protected packed is received cor-

rectly (top image) or using π́ (m + 1, n + 1) when the last protected packed

is lost (bottom image) . 95

xvii

5.20 Motivation for subset selection in Type-II hybrid ARQ/FEC with multiple

subsets. 97

6.1 Hybrid structure for streaming server. In default, this structure uses pre-

compressed video stream. But whenever a frame uses an invalid reference it

switched to two-stage encoder for fast RPS. 101

A.1 Two equivalent linear space invariant (LSI) systems that can produce ψ (x, y) 108

xviii

Preface

First I would like to thank Dr. Ivan Bajic, for providing me the great opportunity of working

with him and learning a lot from him. I greatly enjoyed and learned from his structural

methodology in research. I would like to thank Dr. Jie Liang and Dr. Mohamed M. Hefeeda

for reading my thesis and helping me to enhance it. I would like to thank Dr. Atousa Haj

Shirmohammadi for reading my thesis and chairing the defense.

I would like to thank my fellow graduate students in multimedia communication research

group at Simon Fraser University.

I would also thank my parents and my beloved wife for their great support and providing

a wonderful condition for me to continue my graduate study.

xix

Chapter 1

Background

In recent years, the development of different types of networks, such as the Internet, wireless

and mobile networks, has created new applications for new and popular communication

facilities. Some of the most interesting applications are based on multimedia and video

communications. Over the past decade some of these technologies appeared and became

very popular, such as YouTube [66]. YouTube is a video sharing website, which has been

launched on February 2005, and just one year later was bought by Google for 1.65 billion

dollars [2]. Based on the Alexa reports [1], it has the third highest traffic rank among all

websites in the Internet, and about 18 percent of the Internet users visit YouTube at least

once a day.

Compression is an essential component of digital video in the current technology world,

because uncompressed digital video requires a huge amount of storage to be stored on the

disks, and huge amount of bandwidth to be transmitted from one point to another. As an

example, transmitting one second of digital CIF video with 30 frames per second requires

36.9 Mbits/sec bandwidth approximately, and for digital HD video, it requires more than 620

Mbits/sec. These numbers become more comprehensible when we compare them with the

common size of storage and also with the available bandwidths of common communication

1

CHAPTER 1. BACKGROUND 2

Lossy Channel
Figure 1.1: Abstraction of a Video Communication System

systems. As an example, a 500 Gbyte hard disk can store about thirty hours of uncompressed

CIF video, or less than two hours of uncompressed HD video. As another example, by using

an IEEE 802.11n (300 Mbits/sec) wireless network, it takes about 7.4 minutes to download

one hour of uncompressed CIF video, and about 2 hours is required to download one hour

of uncompressed HD video.

Considering the importance of the compression for video technologies, in this chapter

we first talk about the basics of video coding in section 1.1, then we introduce H.264/AVC

standard as the state of the art video compression standard in section 1.2. It should be

noted that H.264/AVC is used for video compression in this thesis.

Furthermore, most of popular channels were not specialized for video transmission. Fig-

ure 1.1 shows an abstraction of a packet-based video transmission system. The main chal-

lenge for the system in Figure 1.1 is that packet losses may happen in the lossy channel.

Almost every channel has errors or packet losses, and compressed video is very sensitive to

packet loss. To solve the problem of packet errors or packet losses, the application can use

Forward Error Correction (FEC) [59] or Automatic Repeat reQuest (ARQ) [54] such as in

TCP protocol in IP networks . Conventional downloading applications mainly use ARQ

to provide very robust file transfer (e.g. File Transfer Protocol (FTP)) [54]. Even though

CHAPTER 1. BACKGROUND 3

downloading protocols can offer robust data transfer, they suffer from two serious problems

when used by a multimedia application; their receivers may need to have large buffers, and

users need to wait for a long time before starting playback.

To solve problems with packet losses in a video communication system, several techniques

have been proposed [54]. These error control techniques are specialized for streaming of video

over lossy channels, and they consider video streaming systems’ requirements. Generally,

we can divide these techniques into three different categories; Error Resilience (section 1.3),

Error Concealment (section 1.4), and Channel Coding Techniques (section 1.5).

1.1 Video Compression Concepts

Data compression is the process of reducing the number of bits required for representation

of the data by removing its redundancy. It can be either lossless or lossy. In lossless data

compression, the original data can be perfectly recovered using the compressed data. How-

ever, in most cases lossless data compression can not achieve suitable compression ratios for

video applications. Since Human Vision System (HVS) can not perceive fine details of the

video, lossy video compression with higher compression ratios can be applied in most video

applications [47]. Generally, there are three different types of redundancy in raw video,

namely statistical redundancy, spatial redundancy, and temporal redundancy. Statistical

redundancy is the hidden redundancy in the pixel histograms, and can be easily removed

by entropy encoding (lossless encoding). Spatial redundancy is the hidden redundancy be-

tween the neighboring pixels and usually can be removed by spatial transformations such

as Karhunen-Loeve Transform (KLT), or Discrete Cosine Transform (DCT). Statistical re-

dundancy and spatial redundancy are in common between still images and videos. The last

type of redundancy is temporal redundancy. Usually, there is a strong similarity and large

redundancy between neighboring video frames. The basic idea behind video compression

algorithms is to take advantage of motion estimation and motion compensation to remove

CHAPTER 1. BACKGROUND 4

Figure 1.2: Standard video coder based on motion compensation.

this redundancy [59].

Figure 1.2 demonstrates an effective and widely used video encoder structure, which

has been adopted in most video encoding standards. The demonstrated structure is very

successful in removing all three types of redundancy mentioned above.

In this encoder, the motion compensation module predicts input frames using their

neighboring frames and corresponding motion vectors, to remove temporal redundancy.

These motion vectors are estimated by motion estimation module in the encoder. Since

the prediction may not be exactly the same as the original frame, the encoder subtracts the

predicted frame from the original frame to find its Motion Compensated Prediction Residual

(MCPR), and encodes the resulting MCPR.

The encoder performs a transform such as Discrete Cosine Transform (DCT) to remove

the spatial redundancy of the video signal. Then, to achieve a higher compression ratio,

quantizes the transformed MCPR coefficients, then performs entropy coding to the trans-

formed and quantized MCPR coefficients. The encoder can control its output’s bitrate by

adjusting a quantizer .

On the decoder side, the decoder reconstructs received frames by using their motion

vectors, MCPR and the previously received reference frames. The reference frames in the

decoder are usually different from their original version in the encoder, because they have

CHAPTER 1. BACKGROUND 5

been quantized before transmission. If the encoder uses one version of a reference frame

to estimate a frame and the decoder uses a different version to reconstruct it, the output

of the decoder will encounter a cumulative error known as drift. To prevent this problem,

there is always a feedback path in the encoder, which simulates the decoder operations. The

feedback path performs dequantization, inverse transform, reconstructs the encoder frame,

and stores in the reconstructed frame buffers. Subsequently, stored frames in the previous

reconstructed frames buffer will be used by motion estimation and motion compensation

modules.

1.2 H.264/AVC Overview

H.264/AVC is the latest coding standard from ITU-T Video Coding Expert Group (VCEG)

and the ISO/IEC Moving Picture Expert Group (MPEG) [47]. The VCEG and the

MPEG developed H.264/AVC to present a new digital video coding standard with a su-

perior compression performance. Also, H264/AVC is a network-friendly video represen-

tation for conversational applications such as video telephony or video conferencing, and

non-conversational applications such as storage and broadcasting [63].

Many video coding standards had been proposed prior to H.264/AVC, such as MPEG-

1, H.261, H.262 (MPEG-2), H.263, H.263+, and MPEG-4 (Part 2). However, growth of

different networks, such as the Internet, wireless networks, and increasing popularity of

video applications provide a demand to increase the coding efficiency while maintaining

high quality. Finally in late 2001, the VCEG, and the MPEG-ISO/IES formed a joint video

team (JVT). In March 2003, JVT published the first draft of H.264/AVC [56, 63].

The published standard by the JVT only describes the syntax of the encoded bitstream,

and enforces every H.264/AVC decoder to understand this bitstream syntax. This sort

of explanation of the standard allows developers to adapt their implementations to their

application, and explore trade-off between compression performance and required resources.

CHAPTER 1. BACKGROUND 6

Control Data
Figure 1.3: Structure of the H.264/AVC

1.2.1 Features

H.264/AVC has been designed for a variety of application such as

• Broadcasting over cable, satellite, and the Internet.

• Interactive or serial storage on CD and DVD.

• Conversational services over the Internet, LAN, and wireless mobile networks.

Managing this variety of applications requires a large degree of adaptability in the codec.

To deal with this need, H.264/AVC has two separate parts. The first part is Video Coding

Layer (VCL), which deals with compression/decompression of the video content, and the

second part is Network Abstraction Layer (NAL), which formats VCL data for delivery over

a variety of transportation layers or storage technologies (Figure 1.3) [63].

In H.264/AVC, the Network Abstraction Layer can map the VCL data into different

transport layer formats such as:

CHAPTER 1. BACKGROUND 7

• RTP/IP for video streaming over IP networks,

• File format such as ISO MP4 for storing on disks,

• H.32X for conversational services,

• and MPEG-2 system format for digital TV broadcasting.

The NAL in H.264/AVC encapsulates the VCL data in NAL units. NAL units contains an

integer number of bytes. The first byte of each NAL unit works as the header of the NAL

unit, and remaining bytes are the payload. Some output formats such as MPEG-2, use NAL

unit as a byte-stream, and some other transporters such as internet protocol (IP) or real

time transport protocol (RTP) systems encapsulate NAL units in their own packet formats.

The next important duty for the NAL is transmission of encoding parameters to the decoder

such as video format, entropy coding type, instantaneous decoding refresh (IDR) flag, end

of sequence flag, etc.

Comparing to the prior video coding standards, H264/AVC offers a better compression

performance, because of some improvements on its prediction structure. Some of the most

important of them are listed bellow:

• Hierarchal variable block-size motion compensation with support of small block size,

which are 16x16, 16x8, 8x16, 8x8, 8x4, 4x8, and 4x4 for image luma (and 8x8, 8x4,

4x8, 4x4, 4x2, 2x4, and 2x2 for image chroma),

• Subpixel motion vector accuracy up to 1/4 pixel,

• Multiple reference picture motion compensation,

• Decoupling of referencing order from displaying order,

• Allowing encoder to use B-frames for prediction,

• Weighted prediction,

CHAPTER 1. BACKGROUND 8

• Directional spatial prediction for Intra coding,

• Loop Filter,

• Context adaptive entropy coding: H.264 supports two modes, Context Adaptive Bi-

nary Arithmetic Coding (CABAC), and Context Adaptive Variable-Length Coding

(CAVLC).

Also, comparing to prior standards, H.264/AVC has more robustness to loss and errors,

and offers more flexibility with different networks and communication infrastructures. These

advantages are mainly because of the following new options of H.264/AVC.

• Parameter set structure,

• Flexible Macroblock Ordering (FMO),

• Arbitrary Slice Ordering (ASO),

• Redundant pictures,

• Data partitioning,

• SP/SI synchronization/switching pictures,

• Flexible slice size.

Going through the details of H.264 in not the focus of this thesis. Interested readers can

refer to [47] [59], and [63] for comprehensive details of H.264/AVC.

1.3 Error Resilience

Generally in error resilience techniques, the encoder tries to increase the robustness of

the encoded bitstream against the error prone communication channel. In contrast to the

channel coding techniques, in an error resilience technique, the encoder does not directly add

CHAPTER 1. BACKGROUND 9

redundancy such as parity packets, or retransmitted packets. Usually in an error resilient

encoder, by changing its prediction process, the encoder removes less redundancy, which

helps the decoder to mitigate some effects of errors or losses by using embedded redundancy

in the bitstream. Depending on the existence of the feedback channel, two types of error

resilience can be developed. When the video communication system does not have access

to the feedback channel, the encoder can use intra-refresh, possibly with loss-aware rate-

distortion optimization to decide on intra-refresh strategy [20, 70]. On the other hand, when

the feedback channel is available, the system can use Reference Picture Selection (RPS) to

prevent error propagation.

1.3.1 Error Resilience Tools in H.264/AVC

Unlike some early video coding standards, H.264/AVC provides powerful error resilience

tools, which help the video communication system to work in error prone environments.

Since most earlier video coding standards such as MPEG-1, and MPEG-2 were developed

to store video on physical storage devices, developers only considered some simple error

resilience features for them. However, modern video coding standards are also designed for

video transmission over communication channels. The focus of this part of the thesis is

on describing some important embedded tools of H.264/AVC, which allow us to have error

resilient H.264/AVC bitstreams.

Slice Coding

Slice is a set of MacroBlocks (MB), which are grouped together and encoded independently

of other slices of the current frame. Since slices are encoded independently, when a slice is

lost, the decoder is still able to decode the affected frame partially. Also, using multiple

slices allows the decoder to remain synchronized with the encoder, if at least one slice per

frame is received correctly. However, using multiple slices degrades the performance of

CHAPTER 1. BACKGROUND 10

spatial redundancy removal in the encoder.

Flexible Macroblock Ordering (FMO)

In some earlier video coding standards, MBs were encoded in a raster scan order, which

starts from the top-left of the frame and continues to the bottom-right side. Therefore, if

a slice is lost, a large connected area needs to be concealed in the decoder. Error conceal-

ment techniques in the decoder use the information of the neighboring MBs to conceal the

erroneous area. Hence, concealment of a large connected area may be difficult. Using an

appropriate FMO can spatially interleave MBs to increase the performance of error conceal-

ment algorithms in the decoder. Similarly to multiple slices, using FMO can decrease the

performance of spatial redundancy removal at the encoder [16, 61].

Data Partitioning (DP)

Different parts of the H.264/AVC bitstream have different importance for the decoder. For

example, the decoder can not use encoded motion vectors and residuals without headers,

nor can it use coded residuals when motion vectors are not present. Therefore in H.264,

encoder can divide the coded bitstream in up to three parts: headers, coded motion vec-

tors, and coded residuals. The transmitter can protect these three parts differently. For

example, the transmitter tries its best to protect headers, because, the decoder can keep

its synchronization with the encoder only when it has headers available. The transmitter

protects coded motion vector with the next lower degree of protection, and protects coded

residuals with the lowest protection level.

Redundant Slices

The H.264/AVC encoder may generate and transmit redundant slices. If the original version

of the slice is lost, the decoder has the chance to receive its redundant version, and keep the

CHAPTER 1. BACKGROUND 11

frame quality at a higher lever. Redundant Slices are more useful when there is Region Of

Interest (ROI) in the video and the encoder wants to provide a better error resilience for

that region [9].

Flexible Reference Frame Concept

In contrast to the earlier standards, in H.264, the encoder can use any arbitrary combi-

nation of the previously encoded frames as reference frames (the only limitation is the

available memory in the decoder for reference buffering). This ability helps the encoder to

exploit more temporal redundancy, but does not directly increase the error resiliency of the

bitstream. However, this ability enables other error resilience algorithms (e.g. Reference

Picture Selection) to have a comprehensive control over the usage of the reference frames in

motion compensated prediction.

Instantaneous Decoder Refresh (IDR)

When a packet is lost, the error can easily propagate through future frames. The simplest

solution is that the encoder uses an Instantaneous Decoder Refresh frame and encodes the

next frame as an Intra frame, to stop error propagation. Since the encoder can not remove

temporal redundancy of the intra coded frames, they need more bandwidth and reduce the

compression efficiency significantly. Additionally, Intra frame are more sensitive in error

prone environments, because they need more packets, or longer packets. In practice, longer

packets are more sensitive to channel errors.

1.3.2 Reference Picture Selection (RPS)

When a feedback channel is available, the receiver can inform the transmitter about the

“received” or “not received” packets. Therefore, the transmitter can take an action, and

reduce error effects. One solution is using retransmission-based methods such as ARQ,

CHAPTER 1. BACKGROUND 12

but these techniques may lead to a very long latency, which is not appropriate for video

streaming. Another solution is “Instantaneous Decoder Refresh,” as described above. IDR

can stop error propagation very fast and does not provide long latency as ARQ does. Intra

coding can not exploit temporal redundancy between frames, therefore it will impair coding

efficiency. Also, I-frames are longer than P-frames and B-frames; therefore they are more

sensitive to channel errors.

In RPS, the encoder uses the feedback information to manage the usage of reference

frames in motion compensation. In contrast to ARQ and IDR, because RPS can remove

some temporal redundancy, RPS can stop error propagation without a significant loss of

coding efficiency, and does not add any extra latency. Simulations of RPS have demonstrated

its effectiveness and advantages against FEC, ARQ, and intra-refresh [29, 38, 40, 70]. Two

main types of RPS have been proposed, RPS-ACK and RPS-NACK.

RPS-ACK

The first type of RPS is RPS-ACK, in which the decoder sends a positive acknowledgement

(ACK) to the encoder for each correctly received frame, so the encoder uses only those frames

that have been flagged as correctly received for motion compensation. This is illustrated

in Figure 1.4. In Figure 1.4, the acknowledgment for receiving frame t is received before

encoding of frame t + 2, therefore encoder uses frame t for encoding of frame t + 2. Similar

thing happens for frames t+3 and t+4, because the acknowledgments are received on time.

Now, assume that frame t+3 has been lost during transmission, therefore the encoder does

not receive any acknowledgment for frame t+3, when it wants to encode frame t+5. Thus,

the encoder uses frame t+2 to encode frame t+5. In this example, the decoded video only

has distorted frame t + 3, and errors will not propagate further.

CHAPTER 1. BACKGROUND 13

ACK t ACK t+1 ACK t+2 ACK t+4
Figure 1.4: RPS-ACK

RPS-NACK

The second type of RPS is RPS-NACK, in which the decoder sends a negative acknowl-

edgment (NACK) for each damaged or lost frame. The encoder then avoids using those

frames for motion compensation. This is illustrated in Figure 1.5. Here, the encoder uses

frame t to encode frame t + 1. The encoder behaves similarly for encoding t + 2, t + 3, and

t + 4. Since frame t + 3 has been lost, the decoder can not use it to decode frame t + 4,

so both frames t + 3 and t + 4 will be distorted. But the encoder receives the negative

acknowledgement about frame t + 3 before starting to encode frame t + 5, therefore, uses

frame t + 2 for encoding frame t + 5 and stops error propagation at this point.

In RPS-ACK, the encoder never uses an erroneous frame as a reference, hence there

is no error propagation. However, compression efficiency is reduced because the encoder

often uses temporally distant reference frames for motion compensation. Typically, the

number of correctly received frames is much higher than the number of damaged/lost frames,

therefore the number of ACKs in RPS-ACK is much higher than the number of NACKs

in RPS-NACK. Hence, RPS-NACK is more efficient than RPS-ACK in term of bandwidth

consumption, both on the forward and backward channel.

CHAPTER 1. BACKGROUND 14

NACK t+3
Figure 1.5: RPS-NACK

1.4 Error Concealment

Coding efficiency always suffers from using channel coding techniques and error resilience

methods, because they add redundancy, or do not remove some parts of the existing re-

dundancy from the encoded bitstream. In contrast, without suffering from degradation of

coding efficiency, error concealment techniques hide error and loss effects at the decoder

side using the remaining redundancy in the received bit-stream. The redundancy may exist

in temporal domain [34], spatial domain [46], or spatiotemporal domain [17]. Consequently,

three different categories of error concealment have been developed.

1. Spatial Error Concealment Spatial concealment techniques usually use the spa-

tial smoothness property of the video signal and attempt to use the information from

neighboring MBs to interpolate the corrupted pixels. Sharp edges and complex tex-

tures disrupt the smoothness of the video signal. In such cases, an edge preserving

smoothness criterion is needed to interpolate the corrupted pixels [26].

2. Temporal Error Concealment Temporal concealment algorithms usually reesti-

mate motion vectors (MVs) of the corrupted macroblocks (MBs) to be used in motion

CHAPTER 1. BACKGROUND 15

compensation.

3. Spatiotemporal Error Concealment Spatiotemporal error concealment techniques

use both remaining temporal redundancy and spatial redundancy in the bitstream to

recover damaged parts of a video.

1.4.1 Whole Frame Concealment

In low bit rate coding of low resolution (e.g., QCIF) video, each encoded frame typically fits

within a single network packet, so the loss of a packet during transmission of compressed

bit-stream may cause the loss of a whole video frame [8]. Even in high bit rate scenarios,

traffic congestion causes burst errors which may also lead to whole-frame loss. When a

whole-frame loss happens, the error concealment algorithms mentioned above are of limited

use, because most of them use information from neighboring MBs to recover the motion

vector information in temporal concealment, or to interpolate the corrupted pixels in spatial

concealment. Therefore, to deal with a whole-frame loss, the concealment algorithm needs

to use a different strategy. In [14], Belfiore et al. proposed a novel whole-frame concealment

method, which is based on multi-frame optical flow estimation. This algorithm estimates

the motion of the lost frame by extending the motion vectors of the last decoded frame

and projecting that frame onto the lost frame. In [14], it was reported that this algorithm

outperforms the simple frame copy method in the JM H.264 decoder by several dBs in

PSNR. However, it is too complex to run in real time, because it uses several median

filtering operations in the pixel domain. To solve the high complexity problem of the method

from [14], in [8] Baccichet et al. proposed a block-based whole-frame concealment which

can work in real time at the expense of losing some quality.

CHAPTER 1. BACKGROUND 16

1.5 Channel Coding

Shannon’s channel coding theorem states that if the data entropy is lower than the channel

capacity, then a channel code can be found to guarantee arbitrary small error rate [52]. Two

important classes of channel coding schemes have been proposed. The first class is usually

called Forward Error Correction (FEC) algorithms, and the second one Automatic Repeat

reQuest (ARQ) based algorithms [41, 53].

1.5.1 Forward Error Correction (FEC)

In Forward Error Correction (FEC) algorithms, the encoder generates some redundancy

and transmits it along with the data. Based to the amount of redundancy, the decoder can

recover lost or corrupted data up to a threshold. Since the loss rate may change in time,

the encoder continually needs to adjust its FEC rate. This adjustment is often problematic,

since a reliable channel state information is generally not available, so FEC often tends

to be either over-designed or under-designed, as noted in [7]. Combination of FEC with

long interleaving can, to some extent, mitigate the variable loss rate problem, but the

latency caused by the interleaver makes this kind of FEC unsuitable for interactive video

services [41].

The error in communication systems usually appears as erroneous detected bits. The

simplest model for this type of error is memoryless binary symmetric channel. Figure 1.6

illustrates a memoryless binary symmetric channel with error probability of p. In this

channel, an error happens when a 0 is transmitted but detected as 1, or vice versa.

Another famous channel model is the erasure channel. In erasure channel, there are two

possibilities for a transmitted symbol; a symbol may be received correctly (with probability

1−pL) or it may be not received at all (with probability pL). The second situation is usually

called erasure. Figure 1.7 illustrates erasure channel.

CHAPTER 1. BACKGROUND 17

Figure 1.6: Binary symmetric channel (BSC). A transmitted 0 may be detected as 0 or as
1, or vice versa pLpL
Figure 1.7: Erasure Channel. One transmitted symbol may be received correctly or may be
lost

Convolutional Codes

Convolutional codes are one of the most famous forward error correction codes which were

first introduced by Elias [22] in 1955. The main application of convolutional codes is bit

error correction in the receiver. These codes became popular after a fast and easy way to

implement the decoder was proposed by Viterbi in [41, 57]. Figure 1.8 illustrates a (n, k, L)

convolutional encoder, which can be implemented with n modulo-2 adders at the output,

and no more than Lk bits shift register. In this implementation, the encoder at each step

gets k bits and returns n encoded bits at its output.

Reed-Solomon (RS) Codes

Reed-Solomon codes are very popular in competing with erasures. In a RS (n, k) code ,

the encoder adds n − k redundant symbols to the data, and the decoder can recover the

original data if it receives k or more symbols. The basic idea of Reed-Solomon codes is

over-sampling a polynomial. Assume that we have a k-degree polynomial, we are able to

CHAPTER 1. BACKGROUND 18

Figure 1.8: (n, k, L) convolutional encoder

recover the polynomial if we have at least k points on the polynomial. In a Reed-Solomon

code, the encoder chooses n > k point on a polynomial over a finite field which contains

k input points. Then the decoder can recover original points using any k out of n points.

Because the performance of Reed-Solomon Codes with short code word length can become

very close to the channel theorem limits, they are very popular in combating with packet

erasure/loss in communication systems.

Cyclic redundancy check

Communication systems use Error Detection codes to detect bit error at the receivers. Cyclic

Redundancy Check (CRC) codes are popular class of error detection codes. One of the main

applications of Error Detection codes is converting a channel with bit errors to a channel

with erasures. Dealing with erasures is much simpler than dealing with bit errors in many

communication systems, and devices usually prefer to only deal with accurate date. But

the bit error is the common error that happens in a communication link.

To convert a channel with bit error to an erasure channel, communication systems can

use the following scheme. The encoder adds some error detection redundancy to the data for

enabling the decoder to check the correctness of the data after decoding (e.g. using CRC).

Then, adds some error correction redundancy to enable the decoder to correct possible bit

errors. Finally, all this data is sent to the receiver as a packet (Figure 1.9).

CHAPTER 1. BACKGROUND 19

Figure 1.9: Packet structure for error protection using FEC and CRC

At the receiver side, the decoder tries to correct possible errors in the data and CRC.

Then, it checks the CRC to make sure that everything is correct. If the CRC determines

that there are some bit errors in the received data, the receiver drops the whole packet and

signals a packet loss. Figure 1.9 shows the packet structure for this scheme.

1.5.2 Automatic Repeat reQuest (ARQ)

When transmission in a communications system is two-way, the error correction can be

achieved using error detection in the receiver and retransmission by the transmitter, called

Automatic Repeat request (ARQ). In an ARQ system, when an error is detected in the

receiver, a request is sent for the transmitter to repeat the message, and it continues until

the message is received correctly. Therefore, performing ARQ does not require any chan-

nel information and only requires a two-way channel. Another important advantage of

using ARQ over FEC is that the error detection and retransmission is much simpler than

encoding/decoding in FEC-based schemes. Conversely, several error-detections and retrans-

missions may happen until the message is received correctly, which can add up to a long

communication delay [41, 58].

CHAPTER 1. BACKGROUND 20

1.5.3 Hybrid ARQ/FEC

As we compared ARQ and FEC, each of them has some advantages and some drawbacks. By

properly combining of FEC and ARQ, a communication system can use the advantages of

both techniques and overcome their drawbacks. Two popular types of this combination have

been proposed, called Type-I Hybrid ARQ/FEC and Type-II Hybrid ARQ/FEC [11, 41].

Type-I Hybrid ARQ/FEC

One hybrid strategy is using FEC as a subsystem which is contained in an ARQ based

system. The function of FEC portion is to protect the data for the most frequent errors.

Therefore, ARQ is less likely to become a cause for throughput decrease. When an infrequent

error happens, the ARQ portion can retransmit the required part of the data. Using ARQ

on top of FEC in this scheme prevents over-designing of the FEC part and saves the required

bandwidth.

Type-II Hybrid ARQ/FEC

Another hybrid strategy for combining ARQ and FEC involves the transmission of parity

packets for the lost or erroneous data. If the receiver detects error or loss in the received

data, it can request for parity until the data is received correctly. In unicast scenarios, when

there is only one receiver, the performance of this scheme becomes very similar to pure

ARQ. The advantage of Type-II Hybrid ARQ/FEC only appears when there is more than

one receiver. In chapter 5, we will discuss Type-II Hybrid ARQ/FEC in more detail.

1.6 Contributions of the Thesis

In this thesis, we focus on three major aspects of error control for a video communication

system. In chapter 2, we propose a new encoder structure named two-stage encoder for

implementing the fast reference picture selection feature. First, in section 2.1, we propose

CHAPTER 1. BACKGROUND 21

the new structure, then in section 2.2 we model the performance of the proposed encoder

structure, and finally in section 2.3 we examine the performance of the two-stage encoder

different test conditions. The results indicate that the proposed encoder has compression

performance comparable to the JM 12.4 encoder, while achieving significant encoding speed-

up at streaming time.

In chapter 3, we propose a new whole-frame concealment algorithm, named noncausal

whole-frame concealment. In this framework, the decoder has the ability to extract the

information in the preceding and succeeding frames, and use this information to conceal

the lost frame. In section 3.1.1, we describe a state-of-the-art whole-frame concealment

method from [14], and in section 3.2, we introduce our noncausal error concealment in detail.

First, we describe our modification on the optical flow estimation to have the noncausal

optical flow, and then we employ spatiotemporal boundary matching algorithm. and finally

in section 3.3, we examine the performance of the proposed noncausal error concealment

algorithm. The results indicate that the proposed method outperforms the state-of-the-

art method in both objective and subjective visual performance, all at a fraction of the

computational cost.

In chapter 4, we combine the encoder from chapter 2 and the decoder from chapter 3, and

evaluate the performance of the combined system. We compare the combined system with

three other video transmission systems in term of their resulting PSNR, time complexity

at the server side, and time complexity at the client side. The results indicate the the

proposed system is the only system which has a low complexity at both the encoder side

and the decoder side. In addition, it has the second rank among other systems, when we

compare them in terms of their rate-distortion performance.

In chapter 5, we propose a new coding scheme for video multicasting, named subset

selection in Hybrid ARQ/FEC. In section 5.2 we introduce the proposed subset selection

CHAPTER 1. BACKGROUND 22

algorithm, and in section 5.3 we introduce the optimum full search algorithm and a sub-

optimal simulated annealing algorithm for selecting an appropriate subset. In section 5.4,

we compare the performance of the proposed subset selection algorithm with some other

channel coding schemes. And then in section 5.5, we study the performance of the subset

selection algorithm in analytical point of view. The results indicate that subset selection can

bring an improvement of 1-1.5 dB in decoded video PSNR compared to a state-of-the-art

error control scheme based on rate-distortion optimization.

In chapter 6, we sum up contribution in the thesis and give some suggestion to improve

the proposed methods. Also, the thesis has two appendixes. In appendix A, we derive an

analytical approach to estimate the accuracy of precomputed motion vector in the two-stage

encoder. And in appendix B, we provide a user manual for the code developed during this

research.

Chapter 2

Two-Stage Encoder for Fast

Reference Picture Selection

Error propagation is a serious problem affecting transmission of predictively-coded video.

Even a single erroneous bit can cause error propagation through the whole video, and

significantly degrade the video quality at the output. Errors cause received frames at the

decoder to be different from the ones that were used in the encoder for motion compensation.

Once an erroneous frame gets into the decoder’s motion compensation loop, the errors

propagate to future frames. This way, an error in one frame may propagate to many future

frames, degrading the quality of the decoded video.

Reference Picture Selection (RPS) has been proven as a strong error resilience tool for

video streaming applications. But, RPS has rarely been used in commercial video streaming

systems. The main reason for rare usage of RPS in commercial applications is that RPS

requires a high computational power at streaming time. In this chapter we introduce a new

structure for the encoder, which enables fast reference picture selection suitable for real-time

implementation. we proposed this structure in [5].

23

CHAPTER 2. TWO-STAGE ENCODER FOR FAST RPS 24

Figure 2.1: Standard video coder based on motion compensation.

2.1 Overview of the Proposed Two-Stage Encoder

Figure 2.1 shows the structure of a standard video coder based on motion-compensated pre-

diction [58]. Incoming video frame (called “current frame”) is subject to motion estimation

with respect to previous reconstructed frame(s). Using the resulting motion vectors (MVs),

a prediction of the current frame is made. The difference between the current frame and

the prediction (called motion-compensated prediction residual, MCPR) is then subject to

transform, quantization, and entropy coding along with MVs, to create the compressed bit

stream. In addition, quantized MCPR is dequantized, inversely transformed, and added to

the prediction to create the reconstructed version of the current frame, which is then stored

in the frame buffer for future motion estimation and compensation.

Motion estimation can account for up to 80% of the processing time and memory usage in

H.264/AVC video coding [39]. However, in typical streaming applications such as video-on-

demand, video content is available ahead of streaming time. This gives us the opportunity to

perform motion estimation ahead of time, leaving motion compensation, quantization, and

entropy coding for real-time operation during the streaming session. Hence, in our proposed

two-stage encoder, we reduce real-time processing requirements of the video encoder by

decoupling motion estimation from motion compensation.

CHAPTER 2. TWO-STAGE ENCODER FOR FAST RPS 25

Let f be the video frame rate and N be the number of previous reconstructed frames

stored in the encoder buffer to be used as references for encoding the current frame. Because

H.264/AVC encoder uses multi-frame references, the value of N can be greater than one.

Since RPS-enabled encoder works based on ACK or NACK messages from the decoder, there

is a strong relationship between a suitable value of N and the Round Trip Time (RTT).

Hence, parameter N should be chosen depending on the maximum expected RTT.

For a given RTT, the delay (in terms of frames) between sending a frame, and receiving

feedback related to that frame, is n = dRTT × fe. Hence, the encoder can only perform

RPS when n < N . If n ≥ N , RPS-ACK encoder will reduce to an intra-frame encoder,

while the RPS-NACK encoder will insert an I-frame whenever it receives a NACK message,

which reduces compression performance significantly. Therefore, the value of N should be

chosen to be at least dRTTmax × fe. For example, if RTTmax = 110 ms = 0.11 s, and the

frame rate f = 30 fps, then N ≥ dRTTmax × fe = 4 frames.

Figure 2.2 shows the structure of the proposed two-stage encoder. In the first stage, the

switch connects the motion estimation module to the motion compensation module, and

the entropy coder is turned off. The encoder estimates motion vectors (MVs) between each

frame and its N previous frames for each coding mode (16× 16, 16× 8, 8× 16, 8× 8, 8× 4,

4× 8, and 4× 4 blocks) and stores the computed motion vectors on the storage device. To

reduce the amount of memory on the storage, the encoder removes all the modes which use

more than one reference for each macro-block and then, among the remaining modes, for

each macro-block and for each reference, chooses the one which minimizes the macro-block

rate-distortion Lagrangian cost function (2.1). In (2.1), l is the macro-block index, ml is the

mode for the l-th macro-block, Jl is the macro-block rate-distortion Lagrangian cost, Dl is

the distortion of the l-th macro-block, Rl is the rate of the l-th macro-block and λ is the

Lagrange multiplier. In many H.264/AVC encoders, the Lagrange multiplier λ is defined as

CHAPTER 2. TWO-STAGE ENCODER FOR FAST RPS 26

Figure 2.2: The proposed two-stage encoder.

Algorithm 1 First stage of the proposed two-stage encoder (for one macro-block)

for all frames(r) used as reference do
Jr,min ←∞
for all modes(m) that only use frame r as the reference do

find associated motion vectors (mvm,r) and Lagrangian cost function
(J (r,m,mvm,r))
if J (r,m, mvm,r) < Jr,min then

Jr,min ← J (r,m,mvm,r)
MV ← mvm,r

MODE ← m
end if

end for
STORE (MV, MODE) \\ store motion vectors and mode on the storage device

end for

a function of QP (2.2) [62]. The procedure discussed above is implemented as Algorithm 1.

Jl (ml) = Dl (ml) + λRl (ml) (2.1)

λ = 0.85 · 2QP−12
3 (2.2)

The second stage is the standard motion compensation loop without motion estimation.

Now, the switch in Figure 2.2 connects the motion compensation module to the storage. In

this case, the motion estimation module is turned off, and the entropy coder is turned on.

CHAPTER 2. TWO-STAGE ENCODER FOR FAST RPS 27

Depending on the feedback from the decoder, the encoder chooses the appropriate refer-

ence frame for each macro-block from the reference picture buffer, and uses the associated

(pre-computed) motion vectors and coding modes to perform motion compensation (Algo-

rithm 2). Only this second stage needs to run at streaming time. As demonstrated in the

results section, by avoiding motion estimation, the second stage of the two-stage encoder

has a much lower complexity than the standard encoder, and is more suitable for real-time

operation.

In RPS-ACK, the decoder sends an ACK message for each received frame to the encoder.

Initially, all frames are marked as INV ALID references at the encoder. When the encoder

receives an ACK about a particular frame, it marks that frame as a V ALID reference. On

the other hand, in RPS-NACK, all frames are initially marked as V ALID references. The

decoder sends a NACK for each erroneous frame to encoder. When the encoder receives a

NACK about a particular frame, it uses Algorithm 3 to mark that frame, and subsequent

frames that depend on it, as INV ALID. Motion compensation in Algorithm 2 then uses

only V ALID frames as references.

Note that the proposed two-stage encoder generates the compressed video bitstream

only in the second stage, while streaming. Prior to streaming, video is stored in the raw

(uncompressed) format at the server along with the motion vectors generated in the first

stage. Hence, reducing the complexity of the second stage, which needs to run in real time

during the streaming session, will cost us some extra storage space at the server. To estimate

this extra cost, we can use the following simplified analysis. Suppose that, on the average,

one motion vector is assigned to every 8×8 block of pixels in each frame (in reality, larger or

smaller block sizes may be used; some blocks are coded in the I-mode without any associated

motion information). If the motion search range is ±127 (an overestimate in most cases),

then x- and y-component of a motion vector each take 8 bits (one byte) to be stored. Hence,

if the encoder uses N = 4 previous frames as references, we get N × 2 = 8 extra bytes for

CHAPTER 2. TWO-STAGE ENCODER FOR FAST RPS 28

Algorithm 2 Second stage of the proposed two-stage encoder (for one macro-block)

JInter ←∞
for all frames(r) used as reference do

if CheckV alidity(r) == V ALID then
READ (MV, MODE) \\ read motion vectors from the storage
compute Lagrangian cost function J (r,m, mvm,r)
if J (r,m, mvm,r) < JInter then

MODEInter ← MODE
MVInter ← MV
JInter ← J (r,m, mvm,r)

end if
end if

end for
Find the best Intra-coding mode and its Lagrangian JIntra

if JIntra ≥ JInter then
Encode the macro-block as a P-block using MODEInter and MVInter

else
Encode the macro-block as a I-block using MODEIntra.

end if

each group of 64 pixels, which represents an increase of 8/64 = 12.5% for gray-scale video, or

8/96 ≈ 8.3% for YUV 4:2:0 video. So the increase in storage requirements is approximately

8%− 12% with respect to raw video size. Whether the ability to do fast RPS justifies this

increase in size, and the fact that the video is not compressed until the streaming begins,

depends on the particular application and the associated business model. Availability of

cheap storage makes this trade-off very attractive.

Another point that needs to be considered is the issue of quantization of reference frames.

Note that the standard encoder of Figure 2.1 estimates the motion between the reconstructed

(i.e., quantized) previous frame, and the original (i.e., unquantized) current frame. Since

the quantization parameter QP may vary, one may wonder what kind of effect would this

have on the resulting MVs, and subsequently on the compression performance. It turns

out that different QP values generally lead to different MVs. In subsections 2.2 and 2.3,

we study the effect of QP values used in the first stage on the compression performance

achieved in the second stage of our two-stage encoder.

CHAPTER 2. TWO-STAGE ENCODER FOR FAST RPS 29

Algorithm 3 Encoder receives a feedback in RPS-NACK (frame r has been lost)

mark frame r as an INV ALID reference.
for k ← r + 1 to the last encoded frame do

if frame k 6= I-frame then
for all frames r′ used as reference of frame k do

if frame r′ is marked as INV ALID then
mark frame k as INV ALID

end if
end for

end if
end for

2.2 Performance modeling of the two-stage encoder

In the second stage of the proposed two-stage encoder, the encoder uses pre-computed mo-

tion vectors in the motion compensation module. It is important to analyze the effect of

using such motion vectors on the performance of the encoder. Using equation (A.18) (Ap-

pendix A) enables us to estimate the covariance matrix of the difference between two sets

of motion vectors. To find Σ∆ ~mvŶ1,Ŷ2
using (A.18), we only need to have two differently

quantized versions of the reference frame and the current frame as shown in Figure 2.3

. If these frames are not available in the encoder, one can use a model to estimate the

required parameters. To examine the validity of (A.18), we used a modified two-stage

encoder to encode several video sequences with different qualities by using differently quan-

tized references. Meanwhile, the encoder stored all different motion vectors to calculate the

probability density function of the difference of motion vectors estimated using differently

quantized reference frames. Figure 2.4 makes a comparison between results generated with

the model (A.18), and real data measurement results. QP1 is the quantization parameter

for one of the references and QP2 is the quantization parameter of the other one. Measured

data are directly measured in the encoder and estimated data are calculated using (A.18).

In Figure 2.3, when the quantization parameter in the first stage QP1 is greater than the

CHAPTER 2. TWO-STAGE ENCODER FOR FAST RPS 30

Figure 2.3: Estimation of motion vector using different references. To estimate the solid
motion vector, Frame Ŷ1 is used as the reference. And, to estimate the dashed motion
vector, Frame Ŷ2 is used as the reference which causes motion vector displacement

quantization parameter in the second stage QP2, the model can estimate the motion dis-

placement with 10% error. But, when QP2 is greater than QP1 the model can not follow

the changes as accurate as previous case because of the approximations that we consider to

drive an analytically close form model.

The main difference between the two-stage encoder and other encoders is in using pos-

sibly less accurate precomputed motion vectors, therefore the next step is analyzing the

performance of using inaccurate motion vectors in the performance of an encoder. Based

on the Appendix, we can find the covariance matrix of the error in precomputed motion

vectors using (A.18).

When an encoder uses inaccurate motion vectors, the motion compensation module loses

its efficiency and generates a residual with higher variance. In [27], Girod showed that the

power spectral density of the residuals after motion compensation using inaccurate motion

vectors can be estimated by (2.3) and (2.4).

CHAPTER 2. TWO-STAGE ENCODER FOR FAST RPS 31

20 22 24 26 28 30 32 34 36 38 40
0

0.5

1

1.5

2

2.5

3

Quantization Parameter of the second stage (QP
2
)

V
ar

ia
nc

e
of

 d
is

ta
nc

es
 b

et
w

ee
n

M
V

1 a
nd

 M
V

2

Measured (QP
1
=25)

Estimated (QP
1
=25)

Measured (QP
1
=30)

Estimated (QP
1
=30)

Figure 2.4: The difference between motion vectors when using two differently quantized
reference frames. QP1 is the quantization parameter for one of the references and QP2 is
the quantization parameter of the other one. Measured data are directly measured in the
encoder and Estimated data are calculated using (A.18).

Φee1 (ωx, ωy) = Φss (ωx, ωy)
(
1 + |F (ωx, ωy) |2

−2<{F (ωx, ωy) P1 (ωx, ωy)})

+ Φnn (ωx, ωy) |F (ωx, ωy) |2
(2.3)

Φee2 (ωx, ωy) = Φss (ωx, ωy)
(
1 + |F (ωx, ωy) |2

−2<{F (ωx, ωy) P2 (ωx, ωy)})

+ Φnn (ωx, ωy) |F (ωx, ωy) |2
(2.4)

In (2.3) and (2.4), Φee1 (ωx, ωy) and Φee2 (ωx, ωy) represent the power spectral density

(PSD) of the remaining residuals after the motion compensation. F (ωx, ωy) is the Fourier

transform of the loop filter which is used for deblocking. P (ωx, ωy) is the Fourier trans-

form of the error probability distribution in motion vectors which are used during motion

CHAPTER 2. TWO-STAGE ENCODER FOR FAST RPS 32

compensation.

The power spectral density (PSD) of a frame Φss (ωx, ωy) can be modeled by (2.5), an

isotropic spatial power spectrum [15]. And, Φnn (ωx, ωy) the power spectral density (PSD)

of the noise can be modeled as a typical white noise with a flat PSD [28].

Φss (ωx, ωy) =
2πσ2

s

ω2
0

(
1 +

ω2
x + ω2

y

ω2
0

)
(2.5)

Consequently, the coder needs more bits to keep the quality constant. In [44], Noll and

et al showed that when the frame and its motion compensated residual can be modeled as

a Gaussian Wide-Sense Stationary (WSS) signals, the maximum achievable bit-rate saving

by motion compensation (in bits/pixel) for the encoder can be represented by (2.6).

∆R =
1

8π2

∫ π

−π

∫ π

−π
log2

(
Φee (ωx, ωy)
Φss (ωx, ωy)

)
ωx.ωy (2.6)

In (2.6), Φee (ωx, ωy) and Φss (ωx, ωy) are the power spectral densities of the motion

compensated residual, and original frame respectively. The bit-rate at the output of the

encoder is usually different from the suggested value by (2.6), especially because (2.6) does

not consider the required bits for encoding and transmitting motion vectors. In this analysis,

we want to compare the performance of two encoders. The first one uses estimated motion

vector and has Φee1 (ωx, ωy) as the PSD of the MC residual and the second one uses the

precomputed motion vetoers and has Φee2 (ωx, ωy) as the PSD of the MC residual. If we

assume residuals are optimally encoded and achieve maximum bit-rate saving whit respect

to intra coding, the difference of their bit-rate, ∆R2,1 is shown by (2.7).

∆R2,1 =
1

8π2

∫ π

−π

∫ π

−π
log2

(
Φee2 (ωx, ωy)
Φss (ωx, ωy)

)
ωx.ωy − 1

8π2

∫ π

−π

∫ π

−π
log2

(
Φee1 (ωx, ωy)
Φss (ωx, ωy)

)
ωx.ωy

=
1

8π2

∫ π

−π

∫ π

−π
log2

(
Φee2 (ωx, ωy)
Φee1 (ωx, ωy)

)
ωx.ωy

(2.7)

CHAPTER 2. TWO-STAGE ENCODER FOR FAST RPS 33

20 22 24 26 28 30 32 34 36 38 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Quantization Parameter of the second stage (QP
2
)

N
or

m
al

iz
ed

 c
ha

ng
e

in
 B

its
/P

ix
el

Estimated (QP
1
=25)

Measured (QP
1
=25)

Estimated (QP
1
=30)

Measured (QP
1
=30)

Figure 2.5: Estimated ∆R2,1(extra bits/pixels). Measured data represents measured values
of ∆R2,1 when a two-stage encoder is used compare to the standard encoder, and Estimated
data are calculated using (2.7). QP1 is the quantization parameter for the first stage and
QP2 is the quantization parameter for the second stage.

∆R2,1 represents extra bit/pixels required to keep the quality constant when a server uses

two-stage encoder instead of the standard encoder. Figure 2.5 illustrates the measured ∆R2,1

and estimated ∆R2,1. To generate Figure 2.5, we used the estimated motion inaccuracy

values from Figure 2.4 (using (A.18)), plugged them in (2.3) and (2.4) to find Φee1 and

Φee1 . Then, we use (2.7) to generate Figure 2.5. These values do not represent estimation

of ∆R2,1, when the residuals are not optimally encoded. Using non-optimal encoder for the

residuals and error in (A.18) cause to have a mismatching between estimated and measured

results in 2.5.

2.3 Performance Evaluation of the Two-stage Encoder

Both stages of our two-stage encoder have been implemented using the JM 12.4 reference

software. The necessary modifications were made to store MVs on the hard disk and turn

off the entropy coding module in the first stage. Then, we use these pre-computed MVs

instead of motion estimation and turn on the entropy coding module in the second stage.

CHAPTER 2. TWO-STAGE ENCODER FOR FAST RPS 34

Comparison of RPS against other error control techniques is available elsewhere in literature,

for example [70] and references therein. Hence, our main objective here is to compare

the compression performance and complexity of our two-stage encoder versus the standard

JM 12.4 reference encoder within the RPS framework. We perform this comparison on

several standard test sequences - Bus, Crew, Foreman, and Soccer - all in YUV 4:2:0 format,

QCIF resolution, at 15 fps.

In subsection 2.3.1, we validate the performance of the two-stage encoder and investigate

the effects of using different QP values in the two stages. Next, in subsection 2.3.2 we

test the performance of the two-stage encoder with RPS over a lossy network. Finally,

in subsection 2.3.3 we illustrate the execution speed of the second stage of the two-stage

encoder by comparing its execution time to the JM 12.4 encoder.

2.3.1 Characterization of the two-stage encoder

To characterize the two-stage encoder, we perform the following tests. For the first stage of

the encoder, we turn off the rate control, and set the quantization parameter manually to

QP ∈ {0, 25, 30, 35, 40}, where QP = 0 corresponds to using the original (unquantized)

previous frames for motion estimation and compensation. Using these QP values, we esti-

mate the MVs between each frame and its previous N = 4 frames. For each QP value, the

output of this stage is the set of MVs, which we store on the hard disk.

In the second stage, we keep the rate control off, and choose various values of QP between

26 and 42 to cover a range of QP values that are typically used in encoding. For each of

the QP values in the second stage, we read from the hard disk the MVs corresponding to

one QP value from the first stage, and use those MVs for encoding. In this test, we are

testing coding efficiency rather than lossy transmission performance, so we run our tests

in an error-free environment. In Figure 2.6, we show the PSNR difference between the the

video produced by the JM encoder (which uses the same QP value as the second stage of our

CHAPTER 2. TWO-STAGE ENCODER FOR FAST RPS 35

encoder), and our two-stage encoder which, in the second stage, uses the QP value indicated

on the horizontal axis in the graph. Note that when the QP values from the first stage and

the second stage match, the two-stage encoder produces essentially the same video quality

(indeed, the same bitstream) as the JM encoder. When there is a mismatch in the two QP

values, the performance degrades. Hence, for VBR video (with fixed QP), the two-stage

encoder can achieve the same performance as the JM encoder, as long as the same QP value

is used in both stages. However, for CBR video, QP values change according to the rate

control algorithm employed. In order to achieve the same performance as the JM encoder,

we would need to generate and store MVs for all QP values that the JM encoder may use,

which would require additional disk space.

Mismatch in the QP values in the two encoder stages may also increase the resulting bit

rate. Figure 2.7 shows the resulting bit rate of the two-stage encoder, normalized to the bit

rate produced by the JM 12.4 encoder. As in Figure 2.6, we see that the two-stage encoder

produces the same bit-rate as the JM encoder as long as the QP values used in the two

stages are the same. Overall, the results show that the two-stage encoder can have the same

compression performance as the standard H.264/AVC encoder if the second encoding stage

has access to the same MVs as the standard encoder. In the CBR case, this means that the

first encoding stage needs to produce and store MVs for the QP values that are likely to be

used by the standard encoder under the chosen rate control policy.

2.3.2 Performance over a lossy network

To test the performance of the two-stage encoder over a lossy network, we assume that

each frame is sent in a single RTP packet. We use three commonly used loss models:

independent, identically distributed (IID) loss pattern, two-state Markov (Gilbert) packet

loss model with average burst length equal to 2.5, and measured packet traces from [60],

which are commonly used in testing video transmission performance. The average packet

CHAPTER 2. TWO-STAGE ENCODER FOR FAST RPS 36

loss rates (PLRs) were 0.03, 0.05, 0.10, and 0.20. The encoder uses RPS-NACK (since it

is more efficient than RPS-ACK) to decide on the reference frames to be used for motion-

compensated prediction. Acknowledgements are assumed to be delivered correctly, but with

a variable RTT generated as a normal random variable with a mean of 120 ms and standard

deviation of 2 ms. In this test, both the JM encoder and the second stage of our two-stage

encoder use rate control, with bit rate ∈ {100, 150, 200} kbps. The encoded frame sizes

were between 800 Bytes and 1600 Bytes. The second stage of the two-stage encoder uses

MVs produced by using the same rate as in the first stage. We ran 300 simulation runs for

the loss rate of 0.03, 200 simulation runs for the loss rate of 0.05, and 100 runs for the loss

rates of 0.10 and 0.20.

The average PSNR results in dB are shown in Table 2.1 for the IID loss pattern, Table 2.2

for the Gilbert loss pattern with average burst length of 2.5, and Table 2.3 for measured

packet traces from [60]. In Tables 2.1 - 2.3, ∆ represents the PSNR of the two-stage encoder

minus the PSNR of the JM decoder. The performance gap between the JM encoder and

our two-stage encoder is no more than 0.6 dB in these lossy transmission scenarios with

rate control. Perhaps surprisingly, at higher loss rates, the two-stage encoder sometimes

provides a higher PSNR than the JM encoder, despite the fact that it has fewer MVs and

coding modes to choose from in the second stage. This is because the the rate-distortion

optimization in the JM encoder is optimal only for error-free transmission, as demonstrated

in [68].

2.3.3 Encoding speed

H.264 is not only well known for its excellent compression performance, but also for its

high complexity. The complexity of H.264 encoder poses significant challenges for real-time

implementation. Therefore, complexity reduction of H.264 has been the focus of many

CHAPTER 2. TWO-STAGE ENCODER FOR FAST RPS 37

research works. Since motion estimation is the most time consuming part of H.264 cod-

ing [39], several methods have been proposed to speed up motion estimation, such as fast

motion search methods [69, 19], VLSI-based implementations [39], and implementations on

SIMD1/MIMD2 processors.

Fast motion search methods are commonly used for speeding up video encoding. Some

of these methods use heuristic motion search instead of exhaustive search to find the best

motion vector candidate [69, 19]. Another category of fast motion estimation methods

takes the advantage of the motion correlation between adjacent macro-blocks [3] to reduce

the motion search range. The proposed method in [69] has been included in JM12.4 and

the results are demonstrated in Table 2.5 for comparison it with the proposed two-stage

encoder. It should be noted that the required time for the first stage of the two-stage

encoder depends on the used motion vector estimation algorithm, and the required time is

very close to required time for the JM12.4 encoder in Table 2.5.

Several research works show the advantage of using VLSI implementations for motion

estimation, such as parallel structures or high bandwidth pipelines between processor units

and memory. But VLSI implementations are usually too expensive to become common so-

lution. Using SIMD/MIMD processors is also an expensive solution, because SIMD/MIMD

processors cost more and consume more power than SISD processors. The advantage of

the proposed two-stage encoder is that it can achieve fast performance on a cheap general

purpose processor, without relying on the more expensive SIMD/MIMD processors or VLSI

solutions.

Although real-time H.264/AVC encoders such as x.264 are available today, we choose JM

encoder for our tests because JM it is the “official” reference encoder for H.264/AVC, and

our goal here is not to compare JM encoder against x.264 encoder, but rather to quantify the

complexity reduction achieved by decoupling motion estimation from motion compensation,

1Single Instruction, Multiple Data [21]
2Multiple Instruction, Multiple Data [21]

CHAPTER 2. TWO-STAGE ENCODER FOR FAST RPS 38

which we have done within the “official” JM framework.

To test the encoding speed, we compare the time it takes to encode the Foreman se-

quence by the JM 12.4 encoder, and the second stage of our two-stage encoder. Both were

compiled using the Microsoft Visual Studio 2005 C++ compiler, and tested on the Intel

Core 2 machine with 2.13 GHz CPU and 2.00 GB of RAM. The JM encoder was tested

in five configurations with various motion estimation algorithms listed in Table 2.4. These

configurations range from the most complex one, involving full search motion estimation

(JM-1), to the least complex one based on Enhanced Predictive Zonal Search (EPZS, JM-

5). Encoding times are listed in Table 2.5 for N ∈ {2, 4, 8} frames in the reference picture

buffer. Encoding time for the two-stage encoder includes reading the pre-computed MVs

from the hard disk. Note that neither encoder is optimized for the particular processor used

in this test; in fact, both are based on the general-purpose JM 12.4 software, which is rather

slow, so the encoding times listed in the table are somewhat pessimistic. As shown, the

second stage of our two-stage encoder achieves approximately a 9-fold speed-up compared

to the JM encoder for N = 4 with full search motion estimation, and even higher speed-up

for larger N .

CHAPTER 2. TWO-STAGE ENCODER FOR FAST RPS 39

26 28 30 32 34 36 38 40 42
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

QP in the second stage

P
S

N
R

 d
eg

ra
da

tio
n

(d
B

)

loss less
QP

1
 = 25

QP
1
 = 30

QP
1
 = 35

QP
1
 = 40

26 28 30 32 34 36 38 40 42
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

QP in the second stage

P
S

N
R

 d
eg

ra
da

tio
n

(d
B

)

loss less
QP

1
 = 25

QP
1
 = 30

QP
1
 = 35

QP
1
 = 40

(a) (b)

26 28 30 32 34 36 38 40 42
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

QP in the second stage

P
S

N
R

 d
eg

ra
da

tio
n

(d
B

)

loss less
QP

1
 = 25

QP
1
 = 30

QP
1
 = 35

QP
1
 = 40

26 28 30 32 34 36 38 40 42
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

QP in the second stage

P
S

N
R

 d
eg

ra
da

tio
n

(d
B

)

loss less
QP

1
 = 25

QP
1
 = 30

QP
1
 = 35

QP
1
 = 40

(c) (d)

Figure 2.6: Quality degradation when QP in the first stage (QP1) is different from the QP
in the second stage. (a) Bus, (b) Crew, (c) Foreman, and (d) Soccer.

CHAPTER 2. TWO-STAGE ENCODER FOR FAST RPS 40

26 28 30 32 34 36 38 40 42
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

QP in the second stage

B
it

ra
te

 in
cr

em
en

t f
ac

to
r

loss less
QP

1
 = 25

QP
1
 = 30

QP
1
 = 35

QP
1
 = 40

26 28 30 32 34 36 38 40 42
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

QP in the second stage

B
it

ra
te

 in
cr

em
en

t f
ac

to
r

loss less
QP

1
 = 25

QP
1
 = 30

QP
1
 = 35

QP
1
 = 40

(a) (b)

26 28 30 32 34 36 38 40 42
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

QP in the second stage

B
it

ra
te

 in
cr

em
en

t f
ac

to
r

loss less
QP

1
 = 25

QP
1
 = 30

QP
1
 = 35

QP
1
 = 40

26 28 30 32 34 36 38 40 42
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

QP in the second stage

B
it

ra
te

 in
cr

em
en

t f
ac

to
r

loss less
QP

1
 = 25

QP
1
 = 30

QP
1
 = 35

QP
1
 = 40

(c) (d)

Figure 2.7: Bit-rate increase when QP in the first stage (QP1) is different from the QP in
the second stage. (a) Bus, (b) Crew, (c) Foreman, and (d)Soccer.

CHAPTER 2. TWO-STAGE ENCODER FOR FAST RPS 41

Sequence PLR
100kbs 150kbs 200kbs

JM 2-ST ∆ JM 2-ST ∆ JM 2-ST ∆

Foreman
0.03 34.77 34.36 −0.41 36.83 36.51 −0.32 37.96 37.75 −0.22
0.05 33.81 33.50 −0.32 35.63 35.38 −0.25 37.21 36.99 −0.22
0.10 32.70 32.52 −0.17 34.46 34.30 −0.16 35.68 35.53 −0.15
0.20 28.84 28.95 +0.11 29.77 29.74 −0.03 30.55 30.60 −0.05

Crew
0.03 32.07 31.73 −0.34 33.87 33.70 −0.17 35.24 35.11 −0.13
0.05 31.58 31.26 −0.32 33.31 33.12 −0.19 34.47 34.35 −0.11
0.10 30.84 30.60 −0.25 32.48 32.37 −0.12 33.53 33.40 −0.13
0.20 28.31 28.32 −0.02 29.49 29.59 +0.11 30.34 30.22 −0.12

Bus
0.03 27.72 27.44 −0.29 29.83 29.61 −0.22 31.51 31.33 −0.18
0.05 27.00 26.74 −0.26 29.02 28.84 −0.18 30.44 30.32 −0.12
0.10 26.39 26.16 −0.23 28.14 28.06 −0.08 29.50 29.49 −0.01
0.20 20.74 20.73 −0.01 19.42 19.47 +0.05 19.73 19.85 +0.12

Soccer
0.03 33.43 33.12 −0.31 35.57 35.36 −0.21 37.24 37.03 −0.20
0.05 33.27 32.09 −0.36 35.41 35.16 −0.25 37.08 36.85 −0.24
0.10 32.88 32.44 −0.44 35.05 34.74 −0.31 36.72 36.44 −0.29
0.20 32.41 31.87 −0.55 34.64 34.26 −0.38 36.32 35.98 −0.34

Table 2.1: PSNR in dB of the JM 12.4 encoder (JM), our two-stage encoder (2-ST), and
their difference (∆) when the losses happen independently, with rate control turned on.
Encoded bit rate is shown in the top row of the table.

Sequence PLR
100kbs 150kbs 200kbs

JM 2-ST ∆ JM 2-ST ∆ JM 2-ST ∆

Foreman
0.03 34.57 34.37 −0.20 35.88 35.72 −0.16 37.35 37.18 −0.17
0.05 33.57 33.70 +0.13 34.44 34.51 +0.07 35.89 36.01 +0.12
0.10 29.66 29.72 +0.06 31.78 32.19 +0.41 33.37 33.65 +0.28
0.20 28.95 29.16 +0.21 30.32 30.86 +0.54 31.61 32.03 +0.42

Crew
0.03 32.20 31.90 −0.30 33.93 33.80 −0.13 35.29 35.16 −0.13
0.05 31.43 31.17 −0.26 32.96 32.77 −0.19 34.32 34.25 −0.07
0.10 29.33 29.15 −0.18 30.23 30.09 −0.13 31.45 31.42 −0.03
0.20 28.57 28.47 −0.11 29.51 29.40 −0.11 30.46 30.44 −0.01

Bus
0.03 28.00 27.73 −0.28 30.06 29.92 −0.14 31.73 31.54 −0.19
0.05 26.99 26.80 −0.19 28.96 28.87 −0.09 30.43 30.31 −0.11
0.10 24.50 24.34 −0.16 26.49 26.60 +0.11 28.11 28.00 −0.11
0.20 21.06 21.25 +0.19 21.96 22.28 +0.33 21.34 21.87 +0.53

Soccer
0.03 33.52 33.30 −0.22 35.65 35.52 −0.13 37.33 37.19 −0.14
0.05 33.41 33.13 −0.29 35.55 35.37 −0.18 37.23 37.05 −0.18
0.10 33.12 32.72 −0.40 35.29 35.02 −0.27 36.97 36.73 −0.24
0.20 32.72 32.19 −0.53 34.92 34.56 −0.36 36.61 36.29 −0.33

Table 2.2: PSNR in dB of the JM 12.4 encoder (JM), our two-stage encoder (2-ST), and
their difference (∆) over a Gilbert channel with LB = 2.5, and with rate control turned on.
Encoded bit rate is shown in the top row of the table.

CHAPTER 2. TWO-STAGE ENCODER FOR FAST RPS 42

Sequence PLR
100kbs 150kbs 200kbs

JM 2-ST ∆ JM 2-ST ∆ JM 2-ST ∆

Foreman
0.03 35.00 34.66 −0.34 36.95 36.71 −0.24 38.44 38.20 −0.24
0.05 34.46 34.09 −0.37 36.37 36.04 −0.33 37.76 37.59 −0.17
0.10 28.76 29.04 +0.29 30.10 30.35 +0.25 30.79 31.12 +0.33
0.20 28.77 28.61 −0.16 30.02 29.89 −0.13 30.88 30.74 −0.14

Crew
0.03 32.33 32.09 −0.24 34.15 33.98 −0.18 35.44 35.33 −0.11
0.05 31.89 31.62 −0.27 33.59 33.51 −0.08 34.97 34.85 −0.13
0.10 28.77 28.61 −0.16 30.02 29.89 −0.13 30.88 30.74 −0.14
0.20 28.21 28.12 −0.09 29.33 29.29 −0.04 30.15 30.12 −0.02

Bus
0.03 28.11 27.83 −0.28 30.19 30.01 −0.19 31.77 31.64 −0.14
0.05 27.58 27.29 −0.29 29.63 29.47 −0.16 31.16 31.00 −0.16
0.10 23.94 23.99 +0.05 25.33 25.52 +0.18 26.34 26.40 +0.05
0.20 28.06 28.36 +0.30 29.31 29.50 +0.20 30.06 30.30 +0.24

Soccer
0.03 33.39 33.08 −0.32 35.53 35.31 −0.21 37.20 36.99 −0.21
0.05 33.47 33.20 −0.27 35.60 35.42 −0.18 37.28 37.10 −0.18
0.10 32.83 32.52 −0.31 35.01 34.68 −0.33 36.68 36.38 −0.30
0.20 32.32 32.07 −0.25 34.56 34.27 −0.28 36.22 35.98 −0.24

Table 2.3: PSNR in dB of the JM 12.4 encoder (JM), our two-stage encoder (2-ST), and
their difference (∆) over measured packet traces from [60], with rate control turned on.
Encoded bit rate is shown in the top row of the table.

JM configuration Motion search
JM-1 Full Search
JM-2 Fast Full Search
JM-3 UMHex
JM-4 Simplified Hexagon Search
JM-5 EPZS

Table 2.4: Motion search methods in five configurations of the JM encoder.

Encoder N = 2 N = 4 N = 8
JM-1 173.86 336.55 688.51
JM-2 192.22 355.83 691.61
JM-3 68.37 106.78 188.56
JM-4 57.80 88.38 156.22
JM-5 63.24 92.13 150.75
2-stage (2nd stage) 33.54 37.10 42.17

Table 2.5: Average encoding time per frame (in milliseconds) for various JM configurations
(JM-1 through JM-5), and our two-stage encoder (two-stage). At at the first stage, the
encoder uses JM-1 for motion estimation

Chapter 3

Noncausal Whole-frame

Concealment

In contrast to all other error control techniques, error concealment algorithms have a unique

advantage, which is that their use does not cause degradation of coding efficiency. Many

of them contemplate on the available information at the decoder. The decoder can use the

remaining redundancy in the received bit-stream. The redundancy may exist in temporal

domain [34], spatial domain [46], or spatiotemporal domain [17]. Temporal concealment

algorithms usually reestimate motion vectors (MVs) of the corrupted macroblocks (MBs) to

be used in motion compensation. In contrast, spatial concealment techniques usually use the

spatial smoothness property of the video signal and attempt to use the information form

neighboring MBs to interpolate the corrupted pixels. Sharp edges and complex textures

disrupt the smoothness of the video signal. In such cases, an edge preserving smoothness

criterion is needed to interpolate the corrupted pixels [26]. In this chapter, we describes the

Noncausal Whole-frame Concealment technique that we proposed in [6]

43

CHAPTER 3. NONCAUSAL WHOLE-FRAME CONCEALMENT 44

3.1 Whole-frame Concealment

In low bit rate coding of low resolution (e.g., QCIF) video, each encoded frame typically

fits within a single network packet, therefore the loss of a packet during transmission of

compressed bit-stream may cause the loss of a whole video frame [8]. Even in high bit rate

scenarios, traffic congestion causes burst errors, which can again lead to whole-frame loss.

When a whole-frame loss happens, the error concealment algorithms mentioned above are

of limited use, because most of them use information from neighboring MBs to recover the

motion vector information in temporal concealment, or to interpolate the corrupted pixels

in spatial concealment. So, to deal with a whole-frame loss, the concealment algorithm

needs to use a different strategy. In [14], Belfiore et al. proposed a novel whole-frame

concealment method, which is based on multi-frame optical flow estimation. This algorithm

estimates the motion of the lost frame by extending the motion vectors of the last decoded

frame and projecting that frame onto the lost frame. In [14], it was reported that this

algorithm outperforms the simple “frame copy” method in the JM H.264 decoder by several

dBs in PSNR. However, it is too complex to run in real time, because it uses several median

filtering operations in the pixel domain. To solve the high complexity problem of the method

from [14], Baccichet et al. in [8] proposed a block-based whole-frame concealment which

can work in real time at the expense of losing some quality.

3.1.1 The Method Proposed in [14]

The algorithm proposed in [14] is based on the optical flow theory. Belfiore et al. assumed

that motion of the objects in one frame does not change seriously in the consecutive frames.

Therefore, the algorithm can project these objects to the lost frame and use the projected

motion vectors for concealment.

To have a more detailed explanation for the algorithm, assume that frame t has been lost

and frame t− 1 is correctly decoded. The proposed algorithm will accomplish the following

CHAPTER 3. NONCAUSAL WHOLE-FRAME CONCEALMENT 45

steps to conceal frame t

1. The first step is estimation of the optical flow. Instead of working with blocks and

macroblocks, this algorithm works with pixels. In this stage, a motion vector for each

pixel in frame t − 1 is computed in order to construct a forward motion vector field.

Then these motion vectors are rescaled according to their temporal distance, and their

accuracy is reduced from quarter pixel to half pixel.

2. It is possible to have some holes (areas without assigned motion vector) in the forward

motion vector field of the previous step, because some pixels in frame t− 1 might be

encoded in intra prediction. To fill these points the algorithm applies a 7x7 median

filter. Then, the algorithm applies a 15x15 median filter to make the forward motion

vector field smoother.

3. After construction of forward motion vector field, every pixel in the frame t − 1 is

moved to temporary buffer for frame t. Since motion vectors have half-pixel accuracy,

the size of the temporary buffer is twice of the original buffer, and every 2x2 block of

the pixels in the buffer corresponds to a pixel in the final recovered frame. For every

pixel in the temporary buffer, it is possible to be pointed by several point in the frame

t − 1. The algorithm proposed in [14] simply calculates the average of these points

and replaces the average value.

4. There is a possibility to still have some empty point in the temporary buffer. The

algorithm recursively fill them using a 9x9 median filter.

5. At the final step, the resulted frame in the temporary buffer is downsampled by factor

2 and to prevent aliasing the frame is smoothed by 2x2 averaging filter.

CHAPTER 3. NONCAUSAL WHOLE-FRAME CONCEALMENT 46

3.2 Noncausal Whole-frame Concealment

Most existing concealment algorithms use causal processing. To the best of our knowledge,

there has been only a few works that take advantage of the receiver-side buffer to enhance

the concealment process by noncausal processing [12, 13]. The proposed algorithm works

sequentially in time-forward direction, but it uses noncausal information during error con-

cealment. To explain the algorithm more precisely, we divide it into two steps. The first

step uses the Optical Flow principle [58], and assumes that every object in the video has a

constant velocity (similar to what is assumed in [14]) in order to synthesize a preliminary

version of the concealed frame. Subsequently, the second step uses a boundary-matching

algorithm to re-estimate the motion vectors of the remaining empty areas. The following

two subsections describe the two steps of the proposed algorithm.

3.2.1 Noncausal optical flow

The first step of the algorithm uses the optical flow to estimate the motion vectors of the

lost frame. If the frame at time t (called frame t for short) has been lost, the algorithm has

three different sources of information to estimate its motion vectors.

Causal source:

Frame t− 1 can act as a causal source of motion vector information. With the assumption

of constant velocity for each pixel in frame t − 1, we can find the location of each pixel in

the current frame t by extending and scaling its motion vector from frame t − 1 to frame

t, except for the intra-coded pixels in frame t − 1. MV recovery from the causal source is

illustrated in Figure 3.1 and summarized in Algorithm 4. In Figure 3.1, we assume that

frame t is lost while frame t − 1 is received. The illustrated MV in frame t − 1 uses frame

t − 3 as the reference. Since the temporal distance between frame t − 3 and frame t − 1 is

twice the temporal distance between frame t− 1 and frame t, the MV is extended forward

CHAPTER 3. NONCAUSAL WHOLE-FRAME CONCEALMENT 47

Figure 3.1: Causal MV recovery: original MV from frame t − 3 to frame t − 1 shown by
solid line, recovered MV from frame t− 1 to frame t shown by dashed line.

and scaled by 1/2.

Algorithm 4 Causal MV recovery
if frame t is lost then

Initialize]candidatecausal(pt, t) ← 0
tn ← t− 1
for all pixels ptn in frame tn do

if ptn belongs to a P-coded block then
scale = Temporal distance between ptn and its reference
(dx, dy) = 1

scale (MVx (x, y, tn) , MVy (x, y, tn))
f (x− dx, y − dy, t) = f (x, y, t− 1)
]candidatecausal(pt, t) ++

end if
end for
for all pixels pt in frame t do

if]candidatecausal(pt, t) == 1 then
SET (MVcausal(pt, t) is VALID)

end if
end for

end if

Anti-causal source:

The first correctly received frame after the lost frame, once decoded, may suffer from error

propagation if the lost frame is used as its reference in the motion compensation loop. How-

ever, its MVs can be used as an anti-causal source for MV recovery. Our algorithm extends

CHAPTER 3. NONCAUSAL WHOLE-FRAME CONCEALMENT 48

Figure 3.2: Anti-causal MV recovery: original MV from frame t + 1 to frame t + 2 shown
by solid line, recovered MVs for the two lost frames, t and t + 1, shown by dashed line.

the MVs of the next correctly received frame backwards, with appropriate scaling if neces-

sary. MV recovery from the anti-causal source is illustrated in Figure 3.2 and summarized

in Algorithm 5. In Figure 3.2, we assume that frames t and t + 1 are lost, while frame t + 2

is correctly received. The illustrated MV in frame t + 2 uses frame t + 1 as the reference.

In this case, our algorithm decides to extend this MV in the time-reversed direction. The

recovered MV for frame t will be the portion of the extended MV that lies between frames

t− 1 and t, while the recovered MV for frame t + 1 will be the portion of the extended MV

that lies between frames t and t + 1.

Noncausal source:

If the video communication system uses RPS-NACK (Figure 1.5), the proposed algorithm

can use the MVs of the reset frame (noncausal source of MV information) to recover the

MVs of the lost frame. Noncausal MV recovery is illustrated in Figure 3.3, where we assume

that frame t is lost, frame t + 1 is correctly received (but may suffer from error propagation

once decoded), and frame t + 2 is the RPS-NACK reset frame. The illustrated MV in the

reset frame uses frame t− 1 as the reference, which stops error propagation. Our algorithm

uses the portion of this MV that lies between frames t − 1 and t as the recovered MV for

frame t. The procedure is summarized in Algorithm 6.

CHAPTER 3. NONCAUSAL WHOLE-FRAME CONCEALMENT 49

Algorithm 5 Anti-causal MV recovery
if frame t is lost then

Initialize]candidateanti−causal(pt, t) ← 0
tn ← Find Next Correctly Received Frame(t)
for all pixels ptn in frame tn do

if ptn belongs to a P-coded block then
scale = Temporal distance between ptn and its reference
(dx, dy) = tn−t

scale (MVx (x, y, tn) , MVy (x, y, tn))
f (x− dx, y − dy, t) =

f
(
x− dx

tn−t , y − dy
tn−t , t− 1

)

]candidateanti−causal(pt, t) ++
end if

end for
for all pixels pt in frame t do

if]candidateanti−causal(pt, t) == 1 then
SET (MVanti−causal(pt, t) is VALID)

end if
end for

end if

3.2.2 Using Optical Flow in the Proposed Error Concealment Algorithm

After collecting all candidate MVs from the three sources (causal, anti-causal, or noncausal),

for each pixel in the lost frame there are three possible outcomes: having no MV candidates,

having only one MV candidate, or having more than one MV candidate. Occlusions and

intra-coding may cause a pixel to have no MV candidates, or multiple MV candidates from

the same source (for example, multiple causal MV candidates). For the pixels with a single

MV candidate, the causal source usually gives the best performance due to its temporal

proximity to the lost frame, while the noncausal source is the least accurate due to the fact

that its MV is stretched over a large temporal distance. Therefore, we first fill in all pixels

with only one causal MV candidate. Among the remaining pixels, we then fill in all those

pixels with only one anti-causal MV candidate. Finally, among the remainning pixels, we

fill in all those pixels with only one noncausal MV candidate.

After performing the tasks outlined above, we remove the outlier MVs from the MV

CHAPTER 3. NONCAUSAL WHOLE-FRAME CONCEALMENT 50

Figure 3.3: Noncausal MV recovery: original MV from frame t− 1 to frame t + 2 shown by
solid line, recovered MV from frame t− 1 to frame t shown by dashed line.

field in the following way. Each pixel that was assigned a MV in one of the previous steps

is labeled as VALID, while the remaining pixels are labeled INVALID. We put a 5× 5 mask

around each pixel and count all its VALID neighbors in the mask. If a pixel has less than

5 VALID neighbors in a 5 × 5 neighborhood, its MV is suspected of being noisy and it is

removed, while the pixel is labeled INVALID. At this point, the preliminary version of the

lost frame is created. INVALID pixels constitute empty areas in this preliminary frame.

3.2.3 Spatiotemporal boundary matching

MV recovery by boundary matching [17] has proven to be a powerful spatiotemporal tech-

nique in video error concealment. Boundary matching uses two important properties of

video signals: temporal correlation and spatial correlation. Strong correlation usually exists

between temporally neighboring frames. Therefore, the empty areas in the preliminary ver-

sion of the lost frame can be replaced by areas of the same shape from a previous frame, or

from a correctly decoded future frame. For the i-th empty area, we extract its boundary Bi

in order to find the best match for it in one of the neighboring frames. We use the sum of

absolute differences (SAD) of boundary pixels as the distortion function, and find the MV

corresponding to the minimum SAD, as in [17]. The procedure is illustrated in Fig 3.4, and

CHAPTER 3. NONCAUSAL WHOLE-FRAME CONCEALMENT 51

Algorithm 6 Noncausal MV recovery
if frame t is lost then

Initialize]candidatenoncausal(pt, t) ← 0
tn ← Find RPS-NACK Reset Frame(t)
if tn is available then

for all pixels ptn in frame tn do
if ptn belongs to a P-coded block then

scale = Temporal distance between ptn and its reference
(dx, dy) = tn−t

scale (MVx (x, y, tn) ,MVy (x, y, tn))
f (x− dx, y − dy, t) =

f
(
x− dx

tn−t , y − dy
tn−t , t− 1

)

]candidatenoncausal(pt, t) ++
end if

end for
for all pixels pt in frame t do

if]candidatenoncausal(pt, t) == 1 then
SET (MVnoncausal(pt, t) is VALID)

end if
end for

end if
end if

summarized in equations (3.1) and (3.2). In words, among the K previous frames and the

RPS-NACK reset frame (if available), we choose the frame t0 and the corresponding MV

that yield the lowest SAD for boundary Bi. In (3.1), D is the Round Trip Time (RTT) in

frames, so t + D is the index of the RPS-NACK reset frame.

(
t0, ~MV

)
= argmin︸ ︷︷ ︸

t0=t−1,··· ,t−K,t+D

SAD
(
t0, ~MV

)
, (3.1)

SAD
(
t0, ~MV

)
=

∑

~n∈Bi

∣∣∣f (~n, t)− f
(
~n− ~MV , t0

)∣∣∣ . (3.2)

CHAPTER 3. NONCAUSAL WHOLE-FRAME CONCEALMENT 52

Figure 3.4: Boundary matching.

3.3 Performance Evaluation of the Noncausal Whole-Frame

concealment

The proposed noncausal whole-frame concealment algorithm has been implemented in the

JM12.4 H.264/AVC decoder, which has the ability to interact with the encoder in a RPS-

NACK framework. To characterize the performance of the proposed algorithm, we use four

standard video sequences, namely Soccer, Foreman, Crew, and Bus. All the sequences are

QCIF resolution at 15 fps. They were encoded using full search motion estimation with

16× 16 search window and four reference frames, at 100, 150, and 200kbps.

To gather the experimental results in this section, we do not assume any specific traffic

or packet loss model. We simply drop each frame in turn from the bit-stream, and conceal

CHAPTER 3. NONCAUSAL WHOLE-FRAME CONCEALMENT 53

it using the state-of-the-art method from [14] and our proposed method. We report the

average Peak Signal-to-Noise Ratio (PSNR) in dB of all affected frames for each frame loss.

The performance of error concealment depends on RTT for several reasons. First, when

RTT increases, it takes longer for the encoder to become aware of the loss through a NACK

message, so the number of affected frames between the correctly received frame and the RPS-

NACK reset frame increases. Second, in the case of our proposed method, the accuracy of

the noncausal MV candidate is degraded when RTT increases, because the assumption of

constant velocity over large temporal distances becomes less valid.

We tested the performance of the proposed algorithm with two RTTs - 60 ms and 120 ms.

The average PSNR performance of our proposed method and the one from [14] is reported

in Table 3.1 for RTT = 60 ms and Table 3.2 for RTT = 120 ms. Data in Table 3.1 and 3.2

represent the average PSNR of concealed frames, and those frames that use the concealed

frames as a reference, compared to the original frames in dB. We also report the gain of our

method compared to the method from [14]. The results show PSNR gains of up to about

1.2 dB.

Figures 3.5 and 3.6 show visual comparison of the concealed frames. In Figure 3.5,

frame 144 of Soccer is lost. The proposed method offers a better recovery of the lost frame

compared to the method from [14], especially in the high-motion areas in the foreground

where the soccer player is located. This example shows that the proposed algorithm provides

better visual quality.

In Table 3.3, we show the average required time to conceal one frame using the two

concealment methods. The results in Table 3.3 have been obtained by running the modified

JM decoder, which has been compiled using the Microsoft Visual Studio 2005 C++ compiler,

and have been obtained on Intel Core 2 machine with 2.13 GHz CPU and 2 GB of RAM.

These data show that the proposed algorithm runs much faster than the method from [14].

To have a real time decoder, when the frame rate is 15 fps, the decoder has about 66.7

CHAPTER 3. NONCAUSAL WHOLE-FRAME CONCEALMENT 54

ms on the average to decode a received frame or to conceal a lost frame. Based on the

measurements we did on the machine described above, decoding a QCIF frame by the JM

decoder needs 14.69 ms. Therefore, the remaining time may be used for concealment of lost

frames. Let p be the packet loss probability, and assume the decoder has a long enough

buffer to smooth out its playback. Then the decoder can run in real time in the steady-state

only if inequality (3.3) is satisfied [42]. In inequality (3.3), p is probability of packet (frame)

loss, tc is the average required time to conceal a frame, td is the average time required to

decode a frame, and F is the frame rate.

ptc + (1− p)td ≤ 1
F

. (3.3)

Based on(3.3) and the data from Table 3.3, we can find the maximum value of p which

allows the decoder to work in real time in the steady state. The value of p is limited above by

0.1684 when the decoder uses our proposed method to conceal the lost frames. In contrast,

the maximum value for p when the decoder uses the method from [14] is 0.0012, which is

much more restrictive, and smaller than the common packet loss probabilities found in real

communication systems.

CHAPTER 3. NONCAUSAL WHOLE-FRAME CONCEALMENT 55

(a) (b)

(c) (d)

Figure 3.5: Frame 144 of Soccer. (a) Loss-free decoded frame, (b) Reconstructed by frame
copy (frame 144 is lost) (c) Reconstructed by the method from [14] (frame 144 is lost), and
(d) Reconstructed by the proposed method (frame 144 is lost).

CHAPTER 3. NONCAUSAL WHOLE-FRAME CONCEALMENT 56

(a) (b)

(c) (d)

Figure 3.6: Frame 145 of Soccer. (a) Error free decoded frame, (b) Reconstructed by frame
copy (frame 144 is lost), (c) Reconstructed by the method from [14] (frame 144 is lost), and
(d) Reconstructed by the proposed method (frame 144 is lost).

CHAPTER 3. NONCAUSAL WHOLE-FRAME CONCEALMENT 57

(a) (b) (c)

Figure 3.7: The difference between original version of Frame 144 and its erroneous version.
(a) Reconstructed by frame copy (frame 144 is lost), (b) Reconstructed by the method
from [14] (frame 144 is lost), and (c) Reconstructed by the proposed method (frame 144 is
lost).

(a) (b) (c)

Figure 3.8: The difference between original version of Frame 145 and its erroneous version.
(a) Reconstructed by frame copy (frame 144 is lost), (b) Reconstructed by the method
from [14] (frame 144 is lost), and (c) Reconstructed by the proposed method (frame 144 is
lost).

CHAPTER 3. NONCAUSAL WHOLE-FRAME CONCEALMENT 58

Sequence Bit rate Method from [14] Proposed Gain

Soccer
100 kbs 24.66 25.25 +0.59
150 kbs 25.41 26.06 +0.64
200 kbs 26.03 26.59 +0.55

Foreman
100 kbs 28.79 28.88 +0.08
150 kbs 29.66 29.78 +0.11
200 kbs 30.31 30.41 +0.10

Crew
100 kbs 25.77 26.19 +0.32
150 kbs 25.88 26.43 +0.36
200 kbs 25.89 26.54 +0.45

Bus
100 kbs 23.08 24.10 +1.02
150 kbs 23.51 24.57 +1.06
200 kbs 23.72 24.89 +1.17

Table 3.1: PSNR performance in dB of different concealment algorithms when RTT = 60
ms. The gain of the proposed method over the one in [14] is also shown.

Sequence Bit rate Method from [14] Proposed Gain

Soccer
100 kbs 21.68 22.12 +0.45
150 kbs 21.87 22.27 +0.40
200 kbs 21.80 22.29 +0.48

Foreman
100 kbs 26.28 26.40 +0.12
150 kbs 26.50 26.67 +0.17
200 kbs 26.62 26.76 +0.14

Crew
100 kbs 26.13 26.57 +0.29
150 kbs 26.42 26.86 +0.32
200 kbs 26.52 27.01 +0.39

Bus
100 kbs 23.21 24.19 +0.98
150 kbs 23.66 24.70 +1.05
200 kbs 23.88 25.06 +1.18

Table 3.2: PSNR performance in dB of different concealment algorithms when RTT = 120
ms. The gain of the proposed method over the one in [14] is also shown.

CHAPTER 3. NONCAUSAL WHOLE-FRAME CONCEALMENT 59

Concealment method Time (tc)
Method from [14] 43988 ms
Proposed 322 ms

Table 3.3: Average time required to conceal one frame, rounded up to the nearest millisec-
ond.

Chapter 4

End to End System Performance

Evaluation

In chapter 2 and chapter 3 we proposed, respectively, a new structure for H.264 encoder

which has fast RPS and a noncausal error concealment algorithm for H.264 decoder. The

performance evaluation of two-stage encoder shows that it is fast enough for run in real time,

but the video quality is lower then the JM encoder. On the other hand, the proposed error

concealment works better in recovering the damaged frames and provides better qualities

than the competing method from [14].

In a complete video communication system, it necessary to enhance robustness of the

bitstream in the encoder using error resilience techniques, and combat the remaining errors

in the decoder using an error concealment algorithm. Therefore, in this chapter, we evaluate

joint performance of both proposed algorithms to examine their efficiency for real video

communication systems.

4.1 Experimental results

We use four video communication systems in our simulations.

60

CHAPTER 4. END TO END SYSTEM PERFORMANCE EVALUATION 61

• A: A is the reference system and contains a JM encoder which is modified to run

reference picture selection (RPS), and a JM decoder which uses the Belfiore’s algorithm

in the error concealment module [14].

• B: B contains a JM encoder which is modified to run reference picture selection (RPS),

which uses the proposed noncausal error concealment algorithm.

• C: C contains the proposed two-stage encoder, which has fast RPS, and a JM decoder

which uses the Belfiore’s algorithm in the error concealment module [14].

• D: D contains the proposed two-stage encoder, which has fast RPS, and a JM decoder

which uses the proposed noncausal error concealment algorithm.

To evaluate these systems, we simulated their performance using the following conditions:

• We use four different video sequences (Foreman, Crew, Bus, and Soccer) with different

properties to cover different situations that a system may encounter.

• We use a range of practical packet loss rages (PLR ∈ {3%, 5%, 10%, 20%}) in a video

communication system.

• Also, we use three different packet loss patterns, namely

1. Independent packet losses,

2. Packet losses with average burst loss length of 2.5 packets,

3. Traces of real packet loss patterns over the Internet [60].

We run the simulations for each condition 100 times. PSNR averages are reported in

Tables 4.1, 4.2, and 4.3. For each test condition, four numbers are reported: one value is

for the average PSNR of the received video in system A, one value is for the average PSNR

of the received video in the system B, one value is for the average PSNR of the received

video in the system C, and one value is for the average PSNR of the received video in the

CHAPTER 4. END TO END SYSTEM PERFORMANCE EVALUATION 62

Sequence PLR
100kbs 150kbs 200kbs

A B C D A B C D A B C D

Foreman
0.03 35.84 36.02 35.03 35.26 38.01 38.21 37.38 37.61 39.65 39.87 39.02 39.33
0.05 35.55 35.74 34.70 34.88 37.76 37.94 36.97 37.28 39.41 39.63 38.70 39.03
0.10 34.96 35.14 33.83 34.13 37.23 37.43 36.34 36.64 38.90 39.10 38.21 38.43
0.20 34.24 34.44 33.11 33.33 36.61 36.80 35.67 35.93 38.33 38.53 37.43 37.76

Crew
0.03 32.75 32.91 32.08 32.38 34.70 34.88 34.18 34.44 36.18 36.37 35.67 35.97
0.05 32.57 32.75 31.98 32.15 34.53 34.73 34.02 34.25 36.03 36.21 35.55 35.80
0.10 32.17 32.35 31.52 31.69 34.19 34.38 33.61 33.86 35.71 35.88 35.20 35.46
0.20 31.68 31.85 30.84 31.14 33.76 33.95 33.14 33.40 35.31 35.49 34.78 35.04

Bus
0.03 28.81 28.97 28.25 28.49 30.92 31.10 30.50 30.69 32.65 32.81 32.26 32.42
0.05 28.53 28.70 27.89 28.16 30.54 30.85 30.11 30.38 32.43 32.60 31.86 32.12
0.10 27.94 28.08 27.25 27.41 29.90 30.23 29.36 29.65 31.85 32.02 31.12 31.42
0.20 27.20 27.33 26.27 26.54 28.81 29.04 27.90 28.45 31.14 31.31 30.33 30.62

Soccer
0.03 33.43 33.61 32.86 33.12 35.57 35.77 35.04 35.36 37.24 37.44 36.76 37.04
0.05 33.26 33.43 32.66 32.90 35.41 35.61 34.97 35.16 37.08 37.25 36.64 36.85
0.10 32.88 33.06 32.21 32.44 35.05 35.24 34.49 34.74 36.72 36.94 36.19 36.44
0.20 32.41 32.57 31.56 31.87 34.64 34.82 34.04 34.26 36.32 36.53 35.66 35.98

Table 4.1: PSNR in dB of system A (JM 12.4 encoder (JM)+Belfiore’s concealment), system
B (JM 12.4 encoder (JM)+our noncausal error concealment), system C (our two-stage
encoder (two-stage)+Belfiore’s concealment), and system D (our two-stage encoder (two-
stage)+our noncausal error concealment) when the losses happen independently, with rate
control turned on. Encoded bit rate is shown in the top row of the table.

system D. Also, to emphasize on the PSNR difference of the received videos, Tables 4.4, 4.5,

and 4.6 report the PSNR difference of system B, system C, and system D with the reference

system (system A).

Since the JM encoder has slightly better rate-distortion performance, we are expecting

that systems which use JM encoder provide better PSNR compared to their corresponding

systems with two-stage encoder. Also, since the proposed noncausal error concealment

algorithm provides better qualities compared to Belfiore’s algorithm, we are expecting that

systems using proposed noncausal error concealment in their decoders provide better PSNR

compared to their corresponding systems with Belfiore’s algorithm.

The reported results confirm both of the expectations and we can sort systems from the

best quality to the worst quality as follows:

• system B

• system A

• system D

CHAPTER 4. END TO END SYSTEM PERFORMANCE EVALUATION 63

Sequence PLR
100kbs 150kbs 200kbs

A B C D A B C D A B C D

Foreman
0.03 36.02 36.21 35.29 35.59 38.17 38.38 37.58 37.88 39.79 39.99 39.27 39.57
0.05 35.80 36.00 34.98 35.20 37.98 38.17 37.31 37.57 39.62 39.83 38.98 39.29
0.10 35.39 35.60 34.46 34.66 37.62 37.82 36.92 37.11 39.28 39.51 38.60 38.87
0.20 34.72 34.90 33.57 33.85 37.04 37.26 36.17 36.39 38.72 38.92 37.91 38.21

Crew
0.03 32.85 33.02 32.37 32.59 34.78 34.96 34.31 34.60 36.27 36.45 35.84 36.11
0.05 32.74 32.91 32.20 32.38 34.68 34.84 34.20 34.44 36.17 36.37 35.79 35.97
0.10 32.44 32.60 31.78 32.01 34.43 34.60 33.90 34.13 35.93 36.12 35.43 35.70
0.20 32.02 32.19 31.30 31.51 34.06 34.23 33.51 33.72 35.58 35.76 35.03 35.33

Bus
0.03 28.90 29.05 28.52 28.73 31.04 31.16 29.89 30.90 32.78 32.94 32.31 32.62
0.05 28.71 28.85 28.25 28.43 30.86 30.99 29.60 30.62 32.59 32.74 32.12 32.35
0.10 28.31 28.44 27.73 27.90 30.47 30.61 29.06 30.12 32.20 32.37 31.56 31.86
0.20 27.70 27.84 26.91 27.11 29.86 30.03 28.44 29.39 31.60 31.76 30.90 31.15

Soccer
0.03 33.52 33.70 33.12 33.30 35.65 35.83 35.20 35.52 37.33 37.50 36.97 37.19
0.05 33.41 33.59 32.87 33.11 35.55 35.73 35.06 35.35 37.23 37.43 36.81 37.04
0.10 33.12 33.32 32.57 32.72 35.29 35.47 34.82 35.02 36.97 37.18 36.52 36.73
0.20 32.72 32.89 32.01 32.19 34.92 35.09 34.40 34.56 36.61 36.79 35.97 36.29

Table 4.2: PSNR in dB of system A (JM 12.4 encoder (JM)+Belfiore’s concealment), system
B (JM 12.4 encoder (JM)+our noncausal error concealment), system C (our two-stage
encoder (two-stage)+Belfiore’s concealment), and system D (our two-stage encoder (two-
stage)+our noncausal error concealment) over a Gilbert channel with LB = 2.5, and with
rate control turned on. Encoded bit rate is shown in the top row of the table.

Sequence PLR
100kbs 150kbs 200kbs

A B C D A B C D A B C D

Foreman
0.03 35.80 35.98 34.91 35.20 37.98 38.18 37.32 37.56 39.61 39.82 38.94 39.28
0.05 35.94 36.14 35.21 35.41 38.10 38.32 37.44 37.74 39.72 39.91 39.18 39.44
0.10 34.85 35.04 33.73 34.01 37.15 37.35 36.34 36.53 38.82 39.00 38.06 38.33
0.20 33.99 34.19 32.82 33.09 36.40 36.58 35.38 35.71 38.11 38.31 37.33 37.55

Crew
0.03 32.74 32.92 32.09 32.37 34.68 34.86 34.18 34.42 36.17 36.35 35.67 35.96
0.05 32.82 33.01 32.23 32.50 34.75 34.93 34.23 34.53 36.24 36.42 35.83 36.05
0.10 32.12 32.30 31.35 31.58 34.10 34.30 33.53 33.76 35.62 35.80 35.17 35.36
0.20 31.55 31.71 30.75 31.00 33.62 33.81 33.05 33.26 35.18 35.38 34.70 34.91

Bus
0.03 28.74 28.90 28.25 28.43 30.89 31.01 29.59 30.64 32.61 32.76 32.20 32.37
0.05 28.86 29.02 28.45 28.64 31.01 31.12 29.86 30.82 32.74 32.91 32.39 32.55
0.10 27.78 27.92 26.97 27.18 29.96 30.11 28.45 29.58 31.69 31.85 30.99 31.23
0.20 26.99 27.16 26.17 26.33 29.21 29.34 27.60 28.81 30.95 31.12 30.19 30.43

Soccer
0.03 33.41 33.59 32.92 33.10 35.55 35.74 35.11 35.34 37.22 37.40 36.68 37.02
0.05 33.49 33.67 32.95 33.23 35.62 35.81 35.13 35.45 37.29 37.47 36.88 37.12
0.10 32.83 33.01 32.11 32.36 35.01 35.22 34.40 34.68 36.68 36.85 36.17 36.38
0.20 32.32 32.49 31.52 31.77 34.56 34.75 33.91 34.17 36.22 36.40 35.62 35.88

Table 4.3: PSNR in dB of system A (JM 12.4 encoder (JM)+Belfiore’s concealment), system
B (JM 12.4 encoder (JM)+our noncausal error concealment), system C (our two-stage
encoder (two-stage)+Belfiore’s concealment), and system D (our two-stage encoder (two-
stage)+our noncausal error concealment) over measured packet traces from [60], with rate
control turned on. Encoded bit rate is shown in the top row of the table.

CHAPTER 4. END TO END SYSTEM PERFORMANCE EVALUATION 64

Sequence PLR
100kbs 150kbs 200kbs

∆B−A ∆C−A ∆D−A ∆B−A ∆C−A ∆D−A ∆B−A ∆C−A ∆D−A

Foreman
0.03 0.18 −0.81 −0.58 0.20 −0.63 −0.40 0.22 −0.63 −0.32
0.05 0.19 −0.86 −0.68 0.18 −0.80 −0.48 0.22 −0.71 −0.38
0.10 0.19 −1.13 −0.82 0.20 −0.89 −0.59 0.19 −0.70 −0.47
0.20 0.20 −1.14 −0.91 0.19 −0.94 −0.68 0.20 −0.90 −0.56

Crew
0.03 0.16 −0.67 −0.37 0.18 −0.52 −0.26 0.20 −0.51 −0.21
0.05 0.18 −0.59 −0.42 0.20 −0.51 −0.29 0.18 −0.48 −0.23
0.10 0.18 −0.65 −0.48 0.19 −0.58 −0.33 0.17 −0.51 −0.25
0.20 0.16 −0.84 −0.54 0.19 −0.61 −0.36 0.18 −0.53 −0.27

Bus
0.03 0.16 −0.55 −0.32 0.18 −0.42 −0.24 0.16 −0.40 −0.24
0.05 0.16 −0.65 −0.37 0.31 −0.43 −0.16 0.17 −0.57 −0.31
0.10 0.14 −0.69 −0.52 0.33 −0.54 −0.25 0.18 −0.73 −0.42
0.20 0.14 −0.93 −0.66 0.23 −0.91 −0.36 0.17 −0.81 −0.52

Soccer
0.03 0.18 −0.57 −0.31 0.21 −0.52 −0.21 0.19 −0.48 −0.20
0.05 0.17 −0.60 −0.36 0.20 −0.43 −0.25 0.17 −0.43 −0.23
0.10 0.18 −0.67 −0.44 0.19 −0.56 −0.31 0.22 −0.53 −0.29
0.20 0.15 −0.85 −0.55 0.18 −0.61 −0.38 0.21 −0.66 −0.34

Table 4.4: PSNR difference of different systems with system A in dB when the losses happen
independently, with rate control turned on. Encoded bit rate is shown in the top row of the
table. System A is (JM 12.4 encoder (JM)+Belfiore’s concealment), system B is (JM 12.4
encoder (JM)+our noncausal error concealment), system C is (our two-stage encoder (two-
stage)+Belfiore’s concealment), and system D is (our two-stage encoder (two-stage)+our
noncausal error concealment)

Sequence PLR
100kbs 150kbs 200kbs

∆B−A ∆C−A ∆D−A ∆B−A ∆C−A ∆D−A ∆B−A ∆C−A ∆D−A

Foreman
0.03 0.19 −0.73 −0.43 0.21 −0.59 −0.29 0.20 −0.52 −0.21
0.05 0.20 −0.82 −0.60 0.19 −0.68 −0.41 0.21 −0.63 −0.32
0.10 0.21 −0.94 −0.74 0.20 −0.70 −0.51 0.24 −0.68 −0.41
0.20 0.18 −1.15 −0.87 0.22 −0.87 −0.65 0.20 −0.81 −0.51

Crew
0.03 0.17 −0.48 −0.26 0.18 −0.47 −0.18 0.19 −0.42 −0.15
0.05 0.18 −0.54 −0.36 0.16 −0.48 −0.25 0.21 −0.37 −0.19
0.10 0.16 −0.66 −0.43 0.17 −0.52 −0.30 0.19 −0.50 −0.23
0.20 0.17 −0.72 −0.51 0.17 −0.55 −0.33 0.18 −0.55 −0.25

Bus
0.03 0.15 −0.38 −0.17 0.12 −1.15 −0.14 0.16 −0.46 −0.15
0.05 0.15 −0.45 −0.27 0.13 −1.25 −0.23 0.15 −0.47 −0.23
0.10 0.13 −0.59 −0.42 0.14 −1.41 −0.35 0.17 −0.64 −0.34
0.20 0.15 −0.79 −0.59 0.17 −1.42 −0.47 0.16 −0.70 −0.45

Soccer
0.03 0.18 −0.40 −0.22 0.18 −0.45 −0.13 0.17 −0.36 −0.14
0.05 0.18 −0.54 −0.30 0.18 −0.49 −0.19 0.20 −0.42 −0.19
0.10 0.20 −0.55 −0.40 0.18 −0.46 −0.27 0.20 −0.45 −0.24
0.20 0.17 −0.71 −0.53 0.17 −0.53 −0.36 0.17 −0.64 −0.33

Table 4.5: PSNR difference of different systems with system A in dB over a Gilbert channel
with LB = 2.5, with rate control turned on. Encoded bit rate is shown in the top row of the
table. System A is (JM 12.4 encoder (JM)+Belfiore’s concealment), system B is (JM 12.4
encoder (JM)+our noncausal error concealment), system C is (our two-stage encoder (two-
stage)+Belfiore’s concealment), and system D is (our two-stage encoder (two-stage)+our
noncausal error concealment)

CHAPTER 4. END TO END SYSTEM PERFORMANCE EVALUATION 65

Sequence PLR
100kbs 150kbs 200kbs

∆B−A ∆C−A ∆D−A ∆B−A ∆C−A ∆D−A ∆B−A ∆C−A ∆D−A

Foreman
0.03 0.17 −0.89 −0.60 0.19 −0.66 −0.43 0.20 −0.67 −0.33
0.05 0.20 −0.72 −0.52 0.22 −0.66 −0.36 0.19 −0.54 −0.28
0.10 0.19 −1.12 −0.84 0.20 −0.81 −0.62 0.19 −0.76 −0.49
0.20 0.19 −1.18 −0.90 0.18 −1.02 −0.69 0.20 −0.77 −0.56

Crew
0.03 0.18 −0.65 −0.38 0.17 −0.51 −0.26 0.18 −0.50 −0.21
0.05 0.18 −0.60 −0.33 0.18 −0.52 −0.23 0.19 −0.40 −0.19
0.10 0.18 −0.77 −0.54 0.20 −0.57 −0.34 0.18 −0.45 −0.26
0.20 0.16 −0.80 −0.55 0.18 −0.58 −0.36 0.20 −0.48 −0.27

Bus
0.03 0.15 −0.49 −0.31 0.12 −1.30 −0.25 0.15 −0.41 −0.24
0.05 0.16 −0.41 −0.22 0.11 −1.15 −0.19 0.17 −0.35 −0.19
0.10 0.14 −0.80 −0.59 0.14 −1.52 −0.38 0.16 −0.69 −0.46
0.20 0.17 −0.83 −0.66 0.13 −1.61 −0.40 0.17 −0.76 −0.52

Soccer
0.03 0.18 −0.49 −0.31 0.20 −0.43 −0.21 0.18 −0.54 −0.20
0.05 0.18 −0.54 −0.26 0.19 −0.48 −0.17 0.18 −0.41 −0.17
0.10 0.19 −0.72 −0.47 0.21 −0.61 −0.33 0.17 −0.51 −0.30
0.20 0.17 −0.80 −0.55 0.19 −0.65 −0.38 0.18 −0.60 −0.34

Table 4.6: PSNR difference of different systems with system A in dB over measured packet
traces from [60], with rate control turned on. Encoded bit rate is shown in the top row of the
table. System A is (JM 12.4 encoder (JM)+Belfiore’s concealment), system B is (JM 12.4
encoder (JM)+our noncausal error concealment), system C is (our two-stage encoder (two-
stage)+Belfiore’s concealment), and system D is (our two-stage encoder (two-stage)+our
noncausal error concealment)

• system C

In addition to the end user PSNR quality, another important factor which should be taken

into account when selecting a system suitable for a certain application is the computational

complexity of each of the elements of the system. Table 4.7 uses the reported results in

tables 2.5 and 3.3 to compare system A, system B, system C, and system D in terms of

their server side and client side speed. Based on this comparison, system D is the only

feasible real time system that can be implemented in software. Meanwhile, its performance

is within 1dB of the state-of-the-art system A.

4.2 Conclusions

Both error concealment algorithms used for these systems are designed based on the esti-

mation of motion vectors for a lost frame. Also both of the methods assume that objects

CHAPTER 4. END TO END SYSTEM PERFORMANCE EVALUATION 66

System name Realtime encoder Realtime decoder
System A 7 7

System B 7 3

System C 3 7

System D 3 3

Table 4.7: Comparison between computation complexity of different systems.

do not have acceleration in their movement, and their speed and direction do not change

dramatically between neighboring frames. In the JM encoder, motion vectors are more

accurate than the two-stage encoder. Therefore, when a bitstream is encoded using a JM

encoder, the zero acceleration remains more realistic for both error concealment algorithms.

In addition, in two-stage encoder, some inaccuracy for motion vectors exists. The mech-

anism which is used in both error concealment algorithms can not vanish this inaccuracy,

therefore it accumulates the error to the motion recovery error. In conclusion, both error

concealment algorithms provide better performance, when they are paired with JM encoder.

Chapter 5

Channel Coding for Video

Multicast

Successful development of network technologies and their increasing popularity, provide

a great demand for new applications for new networks. One fascinating application is

providing a service such as video delivery for multiple users. As an example, nowadays, many

news websites provide video content as part of their news coverage. Even though current

network technologies are fairly capable of providing an acceptable video delivery service

for a single client, the technology does not provide enough resources of video streaming

for multiple clients. Therefore, in this challenge, video communication systems need to be

equipped with specific tactics. Technically, there are four different approaches for video

delivery for multiple users.

• Virtual Multicast: In this approach, the server virtually provides a multicast

streaming for a group of clients. In fact, the server starts a separate unicast for

each user [32]. This approach is quite simple and easy to implement. But, it utilizes

more resources than necessary and suffers from the lack of efficiency. Thus, the maxi-

mum number of clients is highly restricted depending on the available resources at the

67

CHAPTER 5. CHANNEL CODING FOR VIDEO MULTICAST 68

server and the bandwidth.

• Multicast: In contrast to virtual multicast, the clients in video multicast session

share the same channel; hence the server can put the data or stream on the channel

once and clients can receive it. If a feedback channel is available, the users can send

feedback, therefore the server can monitor the transmission quality and interact with

users, but usually feedback implosion is an issue which needs to be considered carefully.

• Broadcast: In contrast to video multicasting, a video broadcasting server is responsi-

ble for a large number of users, up to millions in TV stations [25]. Therefore, the server

can not monitor the receivers’ quality or channel conditions, and can not interact with

the users.

• Peer to Peer: In contrast to the traditional client-server applications, where the

servers only provide the data and the users consume the data, a peer-to-peer dis-

tributed network is composed of peers that are both suppliers and consumers of data.

Each peer utilizes a portion of its uplink bandwidth to provide data for other peers

without intermediary hosts or servers. Therefore, these networks do not require any

dedicated infrastructure and are self-scaling as the resources of the network increase

with the number of users [50]. The major difference between a general peer-to-peer

system and a peer-to-peer media streaming system is that in the data sharing mode

among peers, the former uses the open-after-downloading mode, while the latter uses

the play-while-downloading mode which implies certain delay constraints [64].

This chapter describes the subset selection scheme that we proposed in [4].

5.1 Conventional Error Control Techniques for Multicasting

Before introducing the proposed coding scheme for video transmission, we need to become

familiar with the capabilities of some famous conventional error control techniques.

CHAPTER 5. CHANNEL CODING FOR VIDEO MULTICAST 69

5.1.1 FEC

It can be shown that in a multicast scenario, the encoder can send data with low error

probability with any rate less than the worst channel capacity by using FEC [33]. This

rate is an upper bound for error-free data communication rate and the encoder can only

achieve the rate if it uses very long code words. Very long code word might provide long

delay in decoding, because when error happens the decoder can not provide output until

receiving enough parity packets. Furthermore, this situation is not desirable for users with

better channel conditions, because they receive more parity packets than they really need,

and can not achieve the best possible quality. On the other hand, the encoder can choose a

different strategy, for example designing the FEC code for an average channel. Consequently,

users with high quality channel conditions can achieve a better quality, but users with poor

channel quality may not able to use the FEC due to the low number of parity packets.

5.1.2 ARQ

In ARQ and other retransmission-based algorithms, the encoder retransmits damaged or

lost frames. In unicast scenarios, ARQ might provide a long latency in the communica-

tion. In multicast scenarios, when the number of users in a multicast group increases, the

probability that a frame is lost at least in one of the users, increases. Therefore, the ARQ

requires retransmitting more frames. In a multicast group with n users, if losses happen in-

dependently for different users with probability Pl, the server should retransmit each frame

with probability of PARQ = 1 − (1− Pl)
n (Figure 5.1), which decreases the whole system

throughput.

5.1.3 Hybrid ARQ/FEC type-II

As mentioned in section 1.5, the encoder can use the combined advantages of ARQ and FEC

by using hybrid ARQ/FEC. Hybrid ARQ/FEC type-II is more interesting for multicast

CHAPTER 5. CHANNEL CODING FOR VIDEO MULTICAST 70

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of users

P
ro

ba
bi

lit
y

of
 s

en
di

ng
 a

n
A

R
Q

 (
P

A
R

Q
)

P
L
=0.01

P
L
=0.02

P
L
=0.05

P
L
=0.10

Figure 5.1: Probability of retransmission

scenarios. In Hybrid ARQ/FEC type-II, the encoder first sends a group of packets through

the multicast channel. Then each user replies with the number of lost frames. At this point

in time, the encoder generates the necessary number of parity packets from a systematic

Reed-Solomon code and sends these parity packets to the users. To make every user able

to recover all losses, the encoder needs to generate at least as many parity packets as the

maximum number of losses at any one user. In this scheme, the encoder adaptively tunes

the FEC rate, and also the expected number of required parity packets is less than the

expected number of required ARQ retransmissions.

As an example, Figure 5.2 demonstrates a situation in which server sends packets in

groups of N = 12 packets to n receivers, and after sending each group, it will send parities

or ARQ packets, and losses happen independently.

In this situation, (5.1) shows the average number of required ARQ packets. To derive the

CHAPTER 5. CHANNEL CODING FOR VIDEO MULTICAST 71

corresponding equation for the number of required packets for Hybrid ARQ/FEC type-II, we

first find the cumulative distribution function of the number of required parity packets, (5.2),

then the probability mass function, (5.3). (5.4) can be calculated by using (5.3). (b (k, n, p)

is the probability density function of a binomial distribution and B (k, n, p) is its cumulative

function, and li is the number of losses in user i)

E [#ARQ packets] = N (1− (1− Pl)
n) (5.1)

P

[
max

i=0,1,··· ,n
(li) < l0

]
= P [l1 < l0, · · · , andln < l0] = P [l < l0]

n

= (B (l0, N, Pl))
n

(5.2)

P

[
max

i=0,1,··· ,n
(li) = lmax

]
= P

[
max

i=0,1,··· ,n
(li) < lmax + 1

]
− P

[
max

i=0,1,··· ,n
(li) < lmax

]

= (B (lmax + 1, N, Pl))
n − (B (lmax, N, Pl))

n

(5.3)

E [#Parity packets in type-II Hybrid ARQ/FEC] =
N∑

l=1

l. [(B (l + 1, N, Pl))
n − (B (l, N, Pl))

n]

(5.4)

5.1.4 RPS

RPS has been studied in subsection 1.3.2 for unicast scenarios. But, RPS does not show an

acceptable performance in multicast scenarios [11]. The main problem with RPS happens

when we have a large multicast group. In such a situation, it is difficult to find a reference

frame which has been received correctly by all users. However, there are situations in

which RPS can be suitable. For example where errors in different users are correlated or

the channel has burst error. For these situation, it is easier for the encoder to find an

appropriate reference frame.

CHAPTER 5. CHANNEL CODING FOR VIDEO MULTICAST 72

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

Number of users

E
xp

ec
te

d
nu

m
be

r
of

 r
eq

ui
re

d
pa

rit
y

or
 A

R
Q

 p
ac

ke
ts

ARQ, PLR = 5%
Hybrid ARQ/FEC type−II, PLR = 5%
ARQ, PLR = 10%
Hybrid ARQ/FEC type−II, PLR = 10%

Figure 5.2: Comparison of ARQ and Hybrid ARQ/FEC type-II.(N = 12)

5.1.5 Rate Distortion Optimization (RaDiO) and Collision Distortion Op-

timization (CoDiO)

These state-of-the-art methods provide media packet scheduling based on, respectively, rate-

distortion and congestion-distortion optimization. A good overview of these methods can be

found in [35]. Using a general distortion measure, RaDiO provides a transmission schedule of

media packets that minimizes the expected distortion under a bandwidth constraint. Thus,

the server requires knowledge about the available bandwidth. On the other hand, CoDiO

provides a similar schedule under an end-to-end delay constraint, which makes the server

independent of any bandwidth allocation or bandwidth estimation algorithm.

CHAPTER 5. CHANNEL CODING FOR VIDEO MULTICAST 73

5.2 Subset Selection in Hybrid ARQ/FEC for Video Multi-

cast

In this section, we propose an error control technique for video multicast based on the Type-

II hybrid ARQ/FEC [41]. The proposed method uses the feedback information about the

losses in the previously transmitted Group of Pictures (GOP). Based on this information,

the server chooses a subset of frames in the previous GOP, computes parity packets for the

selected frames using a Reed-Solomon (RS) encoder, and multicasts these parity packets to

the users.

In conventional Type-II hybrid ARQ/FEC, for each block of n packets, each user informs

the server of the number of packets (li) it has lost in the previous block. The server then

finds the maximum (lmax) of these numbers and multicasts lmax parity packets to the users.

Due to limited bandwidth, however, it may be impossible to always send as many parity

packets as required for recovering all losses at all users. Consequently, some users may end

up being unable to recover any losses, because they did not receive a sufficient number of

parity packets.

To solve this problem, we propose the following strategy. Instead of assigning parity for

the entire block of packets, the server selects a subset of packets for which parity will be

assigned. Then it computes the parity packets for this subset. In a more general scenario,

the server can select multiple subsets and assign separate parity to each of them. In subsec-

tion 5.3, we consider the case of a single subset, and in section 5.6 we consider the case of

multiple subsets. This strategy may allow partial loss recovery at some users that otherwise

would not able to recover any lost packets. To illustrate this point, consider the situation

shown at the top of Figure 5.3, where each of the two users has lost two packets (shaded

in gray) out of a block of five packets. Suppose the bandwidth limitations allow the server

to multicast only one parity packet for this block. If the parity is computed across all five

packets in the block, neither user can recover any of its lost packets. However, if the parity

CHAPTER 5. CHANNEL CODING FOR VIDEO MULTICAST 74

Figure 5.3: Motivation for subset selection in Type-II hybrid ARQ/FEC.

is computed only for, say, packets 2 and 5, as shown in the bottom of Figure 5.3, then user

1 will be able to recover packet 2, and user 2 will be able to recover packet 5.

In the context of video multicast, each packet affects decoding of one or more frames at

all users. The server needs to consider the effect of the loss of each packet in order to select

the subset of packets for which parity will be generated. The best subset of packets in this

context is the one that will maximize decoded video quality across all users.

5.3 Subset Selection in Type-II Hybrid ARQ/FEC for Video

Multicast with One Subset

5.3.1 Full Search for the Best Subset

Before introducing the full search algorithm, we need to define several symbols.

• E∅ is the loss indicator matrix which indicates the loss or reception of each packet at

each user. It is generated based on user feedback as follows.

E∅ [i, j] =





0, j-th frame of i-th user received,

1, j-th frame of i-th user lost.
(5.5)

The i-th user sends its feedback to the server as a bitmap corresponding to the i-th

row of E∅. For typical GOP sizes of 15 to 30 frames, feedback information requires

less then 4 Bytes/GOP/user, which is reasonably small.

CHAPTER 5. CHANNEL CODING FOR VIDEO MULTICAST 75

• Ek,S is the loss indicator matrix after the correct reception of k parity packets for the

subset S of the packets from the GOP. Since k parity packets will correct all losses at

users that have k or fewer lost packets in S, we can find Ek,S as follows:

Ek,S [i, j] =





0, j ∈ S and
∑

f∈S

E∅ [i, f] ≤ k,

E∅ [i, j] , otherwise.

(5.6)

• D∅
i is the decoded video distortion of one GOP at user i ∈ {1, 2, ..., N} prior to

receiving any parity packets for that GOP. Note that D∅
i is a function of the loss

indicator matrix E∅ or, more precisely, a function of the i-th row of E∅. Its estimation

is discussed below.

• D∅ is the total distortion at all users for one GOP prior to receiving any parity

packets for that GOP. It is computed as the sum of individual user’s distortions:

D∅ =
∑N

i=1 D∅
i .

• Dk,S
i is the distortion at user i after receiving k parity packets for subset S of the

packets from the GOP. It is a function of the i-th row of the loss indicator matrix

Ek,S .

• Dk,S is the total distortion at all users after receiving k parity packets for subset S of

the packets from the GOP, defined as Dk,S =
∑N

i=1 Dk,S
i .

In the following, we assume that the users buffer the packets from a GOP and wait for

the error control packets for that GOP before decoding and playing out the frames. This is

a reasonable assumption, since the common media players such as Windows Media Player

or RealPlayer usually use buffers that are at least several seconds long [10].

Estimating distortion at each user (i.e., finding D∅
i and Dk,S

i) is not an easy task. In

principle, one could simply decode the given GOP at the server using the loss pattern

specified by the i-th row of the loss indicator matrix to find the exact distortion, but this

CHAPTER 5. CHANNEL CODING FOR VIDEO MULTICAST 76

process is extremely time-consuming when there are many users, and needs to be repeated

for each GOP. Several methods have been proposed to estimate the distortion at the decoder,

including Recursive Optimal per-Pixel Estimation of decoder distortion (ROPE) [67] and

Multi-Decoder Distortion Estimation (MDDE) [54], among others. Many of these distortion

estimation methods are not suitable for our task, because they provide an estimate of the

distortion as a function of the packet loss rate, rather than a given loss pattern. Instead,

we adopt the technique of Setton et al. [49, 48], who proposed a very simple and effective

measure of the importance of a frame, which can be related to the distortion caused by

the loss of that frame. In their technique, the importance of a given frame is equal to the

number of frames that would be affected by the loss of that frame. They show that the

performance of a video streaming system that uses this measure of importance is fairly close

to the performance achieved by using the exact distortion.

To illustrate this measure of importance of a frame, consider the example in Figure 5.4

that shows a GOP of size 12 frames with structure IBBBPBBBP... . If a user loses an

I-frame, decoding of 15 frames will be affected (12 frames from the same GOP plus three B-

frames from the previous GOP), because the I-frame is used as a direct or indirect reference

for encoding these frames. Hence, in the scheme of Setton et al. [49, 48], the I-frame would

receive a weight of 15. The weights for other frames in this example would be as shown in

the bottom part of Figure 5.4. Note that the weights in this scheme are associated with

the loss of a single frame. For example, the recovery of a lost I-frame would improve the

quality of 15 frames provided no other frame in that GOP is lost; if that is not the case, the

number of affected frames may be different. Despite this deficiency, we adopt the described

method as a simple and effective way to help us choose which packets should receive parity

in our error control scheme. We assume that each frame is stored in a single packet, so the

importance (weight) of a frame becomes the weight of its packet.

CHAPTER 5. CHANNEL CODING FOR VIDEO MULTICAST 77

Figure 5.4: Different frames have different importance for the decoded video quality.

Because the maximum packet size (MTU) is limited for different networks, it is possible

to have an encoded frame larger than the MTU, especially when the encoder is dealing with

I-frames. In this situation, encoders usually use more than one slice to keep the size of

each encoded slice less than the MTU. Therefore, the proposed distortion model in [49, 48]

is not appropriate to this problem and needs to be modified. One modification can be

assuming that by losing one slice, the corresponding frame will be partially distorted. For

other frames, which use this frame as their reference, this error will propagate and distort

larger part of them. By summing up all these distorted parts of frames, one can find a more

accurate approximation of the total distortion in a GOP.

In the subset selection algorithm, the server needs to know which packets have been re-

ceived for each user. Therefore each user must send a feedback message to the server about

its received packets and lost packets. When the server deals with a large multicast group,

collecting feedback from all users requires a large amount of resources (especially time and

bandwidth). This problem is usually called feedback implosion in the literature [11]. To

prevent this problem in the subset selection algorithm, we can divide users into several

smaller subgroups, then for each subgroup choose a proxy to manage feedbacks from the

members of that subgroup and to send a summary of all feedback messages to the server or

higher proxy layers. The important information for the server is the total amount of distor-

tion removed by recovering each frame in the multicast group. Hence, the summarization

procedure in each subgroup can easily provide this information for its own subgroup and

send it for the server. This procedure involves the addition of the distortion estimations of

all users together and therefore it does not require much CPU usage.

CHAPTER 5. CHANNEL CODING FOR VIDEO MULTICAST 78

Figure 5.5: Creating subgroups of receiver for gathering feedback from receivers when the
server deals with a large group of clients

For example, in Figure 5.5, the server (n0) multicasts information for twelve users. To

prevent feedback implosion, we can divide users into 3 subgroups and choose a proxy for

each subgroup (user n1 for subgroup 1, user n2 for subgroup 2, and user n3 for subgroup 3).

Each proxy receives feedback from its subgroup members, and then provides the distortion

estimation message for the whole subgroup and transmits the summary to the server (n0).

The full search algorithm for finding the best subset is based on the exhaustive search

through all possible subsets of the packets from the GOP. The algorithm estimates what

the total distortion, Dk,S , across all users would be after sending k parity packets for each

subset S. Finally, it returns the subset Soptimal which promises the lowest total distortion.

Soptimal = arg min
S

(
Dk,S

)
. (5.7)

The value for k is usually determined by the constraints of the system, such as the

maximum delay or the maximum available bandwidth. To illustrate how subset selection

CHAPTER 5. CHANNEL CODING FOR VIDEO MULTICAST 79

Figure 5.6: Lost frames indicated by darker shading.

works, assume there are four users in the system, and the loss pattern for a particular GOP

is as shown in Figure 5.6, where darker shading indicates lost packets/frames. Also, assume

the available bandwidth only allows the server to send one error control packet (k = 1),

either by retransmitting one of the lost packets, or by sending one parity packet. In this

example, a total of eight frame losses across four users cause a total of 39 distorted frames

(across all users). Let us examine how various error control schemes might react in this

case.

ARQ

Being a transport (or sometimes link) layer error control scheme, ARQ has no concept of

packet or frame importance. It may choose to retransmit any one of the seven lost frames,

for example the ninth frame of the GOP, as shown in Figure 5.7. In this particular case,

even if the retransmitted frame is received correctly, none of the lost frames can be fully

recovered, because the ninth frame of user #3 is dependent on the fifth frame, which is also

lost.

Type-II hybrid ARQ/FEC

One parity packet will be generated for the entire GOP and multicast to the users. However,

even if correctly received, this parity packet will not help any of the users, because each

user has lost two packets.

CHAPTER 5. CHANNEL CODING FOR VIDEO MULTICAST 80

Figure 5.7: ARQ may choose to retransmit any of the lost frames, say the ninth frame, since
it cannot distinguish their importance. In this particular case, there is no benefit even to
user #3, because the ninth frame depends on the fifth frame, which is also lost.

RaDiO and CoDiO

These state-of-the-art methods provide media packet scheduling based on, respectively, rate-

distortion and congestion-distortion optimization. A good overview of these methods can be

found in [35]. Using a general distortion measure, RaDiO provides a transmission schedule

of media packets that minimizes the expected distortion under a bandwidth constraint. On

the other hand, CoDiO provides a similar schedule under an end-to-end delay constraint.

Although neither of these schemes considers multicast explicitly, for the purposes of this

paper, we could simply define the distortion measure as Dk,S in the previous section, and

run these algorithms to decide on scheduling retransmissions. Figure 5.8 shows how RaDiO

or CoDiO might work in our example. Because only one retransmission is allowed, both

algorithms search over different possible retransmissions and try to find the one which would

minimize Dk,S . In this particular case, it is best to retransmit the fifth frame of the GOP,

because this leads to the recovery of 14 frames across the users.

Proposed Subset Selection for Type-II hybrid ARQ/FEC

With this scheme, the server will select the best subset of packets/frames from the GOP

and assign one parity packet to them. The best subset, Soptimal, in this case is shown in

CHAPTER 5. CHANNEL CODING FOR VIDEO MULTICAST 81

Figure 5.8: RaDiO and CoDiO schedulers retransmit the fifth frame of the GOP, which
leads to the recovery of 14 frames across the users. In this case, only users #2 and #3
benefit from the retransmission.

Figure 5.9: The optimal subset for parity generation is composed of the first, fifth, and
eleventh frame of the GOP. Reception of the parity packet at all users would lead to the
recovery of 26 frames.

Figure 5.9, and is composed of the first, fifth, and eleventh frame. The reception of the

parity packet for this susbset will allow user #1 to recover the first frame of the GOP, users

#2 and #3 will be able to recover the fifth frame of the GOP, and user #4 will be able to

recover the eleventh frame of the GOP. This would lead to the recovery of the total of 26

frames across the users. Note that the optimal subset is not unique in this case. For example,

we could include the seventh (instead of eleventh) frame, or the second frame (which has

not been lost at any of the users) into the subset, and obtain the same performance.

CHAPTER 5. CHANNEL CODING FOR VIDEO MULTICAST 82

5.3.2 Suboptimal Search Based on Simulated Annealing

High compression efficiency usually requires choosing fairly large GOPs. However, since the

number of subsets grows exponentially with the size of the GOP, subset selection via full

search becomes impractical for large GOPs, as will be illustrated in Section 5.4. Because of

this, we develop a suboptimal, but faster, search method based on simulated annealing [37].

Algorithm 7 shows how simulated annealing can be used to solve the subset selection prob-

lem. Sbest stores the best subset selected until now and Dmin is the corresponding estimated

distortion. Current subset, S, is initialized with a random subset of the GOP. Then, for each

iteration in the main loop, the algorithm randomly finds one of the “neighbors” (Sn) of the

current subset S, and estimates the corresponding Dk,Sn . In our implementation, a “neigh-

bor” of the subset is another subset which has either one more frame, or one less frame in it.

The algorithm accepts Sn as the current subset S with probability P (D, Dn, iter/itermax)

based on the Metropolis state calculation rule [43]:

P

(
D,Dn,

iter

itermax

)
=





1, Dn < D,

exp

(
Dn−D

1− iter
itermax

)
, Dn ≥ D.

(5.8)

Hence, when Dn < D, Sn is accepted as the current subset S with probability 1. Otherwise,

Sn can still be accepted with a certain probability which reduces as the number of iterations

(iter) increases. This helps the algorithm escape some of the local optima. The maximum

number of iterations (itermax) was set to 3000 in our experiments.

5.4 Experimental Results

In our simulations, we used two standard test sequences (Foreman and Bus), both CIF

resolution at 30 fps, encoded using the H.264 JM 12.4 encoder. Unless otherwise specified,

the GOP was 16 frames long, with a structure IBBBPBBBP... The server multicasts video

packets to five users, each of which sees an independent packet loss channel.

CHAPTER 5. CHANNEL CODING FOR VIDEO MULTICAST 83

Algorithm 7 Subset selection based on simulated annealing

Sbest ← GOP ;Dmin ← Dk,GOP

S ← RandomSubset (GOP) ; D ← Dk,S ; iter ← 0
repeat

Sn ← neighbor (S) ; Dn ← Dk,Sn

with probability of (P (D, Dn, iter/itermax))
S ← Sn; D ← Dn

if D < Dbest then
Sbest ← S; Dmin ← D

end if
end with
iter + +

until Dmin == 0 or iter == itermax

In the first set of experiments, we measure the number of frames, across all users, affected

by packet loss. These measurements are important because our distortion metric Dk,S is

directly related to the number of frames affected by packet loss. The results are reported

in terms of the probability of affected frames, computed as the ratio of the total number of

affected frames to the total number of transmitted frames, across all users. Figure 5.10 shows

the probability of affected frames vs. packet loss probability of the two proposed methods

for subset selection (Full Search - FS, and Simulated Annealing - SA) and other error control

methods mentioned in the previous section - ARQ, Type-II hybrid ARQ/FEC and RaDiO.

The performance of a system which does not use error control (labeled as ‘Not protected’ in

the figure) is also shown. In these simulations, the server is allowed to send only one error

control packet (either retransmission or parity) per GOP. As seen in the figure, the proposed

subset selection methods outperform other error control techniques by a healthy margin.

Also note that the results obtained by simulated annealing are virtually indistinguishable

from the ones obtained by full search. Similar results are shown in Figure 5.11, where we

plot the performance of the error control schemes when two error control packets are allowd

per GOP.

In Figure 5.12 we show how the performance varies with the number of users in the

CHAPTER 5. CHANNEL CODING FOR VIDEO MULTICAST 84

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Probability of packet loss

P
ro

ba
bi

lit
y

of
 a

ffe
ct

ed
 fr

am
es

Subset Selection FS
Subset Selection SA
Type−II hyprid ARQ/FEC
RaDiO
ARQ
Not protected

Figure 5.10: Performance comparison of different error control schemes as a function of
packet loss probability, with one error control packet per GOP.

system. As before, one error control packet is allowed per GOP. Note that the performance of

the proposed subset selection is fairly steady with the number of users, a property inherited

from Type-II hybrid ARQ/FEC. ARQ and RaDiO are less scalable, and their performance

decreases noticeably as the number of users increases.

In Figure 5.13 we show the Peak Signal-to-Noise Ratio (PSNR) of the Y-component of

the Foreman sequence, averaged over all users, as a function of the packet loss rate. One

error control packet was allowed per GOP. The sequence was encoded at 750 kbps for the

cases when error control is used and, for fair comparison, at a higher rate of 800 kbps for

the system without error control (Not protected), because this system does not use error

control packets. The proposed subset selection can improve upon the plain Type-II hybrid

ARQ/FEC by over 4 dB in decoded video PSNR at higher loss rates. In addition, its

CHAPTER 5. CHANNEL CODING FOR VIDEO MULTICAST 85

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Probability of packet loss

P
ro

ba
bi

lit
y

of
 a

ffe
ct

ed
 fr

am
es

Subset Selection FS
Subset Selection SA
Type−II hyprid ARQ/FEC
RaDiO
ARQ
Not protected

Figure 5.11: Performance comparison of different error control schemes as a function of
packet loss probability, with two error control packets per GOP.

advantage compared to the next best scheme, RaDiO, is about 1-1.5 dB.

It is interesting to compare the performance of the non-protected system against plain

ARQ and plain Type-II hybrid ARQ/FEC. At very low loss rates, even a single error control

packet allows both ARQ and Type-II hybrid ARQ/FEC to provide slight improvement over

the non-protected system. At moderate loss rates (around 0.05), non-protected system

apparently becomes slightly better than ARQ. Here, users are more likely to lose two or

more packets per GOP, while ARQ can only recover one of them, so it seems better to

spend bits on video coding rather than retransmission. However, at higher loss rates (0.15

and above), ARQ becomes better than either non-protected system or plain Type-II hybrid

ARQ/FEC. Now, many users lose more than one packet per GOP, so plain Type-II hybrid

ARQ/FEC with one parity packet cannot recover any of them. ARQ at least recovers one

CHAPTER 5. CHANNEL CODING FOR VIDEO MULTICAST 86

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

Number of users

P
ro

ba
bi

lit
y

of
 a

ffe
ct

ed
 fr

am
es

Subset Selection FS
Subset Selection SA
Type−II hyprid ARQ/FEC
RaDiO
ARQ
Not protected

Figure 5.12: Performance comparison of different error control schemes as a function of the
number of users, with one error control packet per GOP.

lost packet.

Finally, to assess the practicality of the proposed subset selection algorithms, we im-

plemented them in C++, compiled them using the Microsoft Visual Studio 2005, and ran

them on an Intel Core 2 machine with 2.13 GHz CPU and 2 GB of RAM. We measured the

CPU usage when running subset selection for 5 users at 30 frames per second. The results,

summarized in Table 5.1, show that full search is only practical for short GOPs (in this

configuration, 12 frames or less), while the proposed suboptimal algorithm can run with an

acceptable CPU usage even for long GOPs. For GOP sizes of 20 and higher, full search

took much longer than the time interval of the GOP, so it was not able to run in real time.

Hence, no result is shown in the table for these cases.

CHAPTER 5. CHANNEL CODING FOR VIDEO MULTICAST 87

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
26

28

30

32

34

36

38

Probability of packet loss

A
ve

ra
ge

 d
ec

od
ed

 v
id

eo
 P

S
N

R
 (

dB
)

Subset Selection FS
Subset Selection SA
Type−II hyprid ARQ/FEC
RaDiO
ARQ
Not protected

Figure 5.13: Average PSNR in dB for the Foreman sequence with one error control packet
per GOP.

5.5 Analytical Results

In subsection 5.4, we demonstrated the performance of subset selection based on experimen-

tal results. In this subsection, we examine the performance of subset selection analytically.

GOP size 4 8 12 16 20 24
FS 0.01% 0.17% 2.14% 32.70% - -
SA 0.78% 0.78% 0.78% 0.81% 0.87% 0.99%

Table 5.1: CPU usage by the two subset selection algorithms.

CHAPTER 5. CHANNEL CODING FOR VIDEO MULTICAST 88

5.5.1 Error Distribution

Before starting our analysis, we need to find the error distribution in different channel

conditions. We define error distribution for a block of received packets as P (m,n), which

determines the probability of having m lost packets among n transmitted packets. For

multicast environments, Four popular channel models have been used in the literature [55,

65]. In all of these models, the assumption is that the channel qualities between different

users and the server are identical.

Model 1: In model 1, losses happen independently between different users, and for each

user losses at different times happen independently. In this model, users experience

losses independently and identically, therefore P (n,m) can be calculated indepen-

dently for one of the users and be used for others. In this case, P (n,m) is a simple

binominal distribution, (5.9), where Pl is the packet loss rate:

P (m,n) =
(

m

n

)
(1− Pl)

n−m pm
l . (5.9)

Model 2: In model 2, losses happen independently between different users, and for each

user, losses at different times are correlated. To model the temporal correlation be-

tween losses, we use Gilbert model (2-state Markov process), as depicted in Figure 5.14.

In this model, state B stands for bad channel condition, where a loss happens. State

G stands for a good channel condition, where packet will be received correctly. The

channel state can be changed from good condition to bad condition with probability

pGB, or remain in good condition with probability 1 − pGB. In the same way, the

channel state can be changed from bad condition to good condition with probability

pBG, or remain in bad condition by probability of 1− pBG.

To find the error distribution function for a Gilbert channel, we modify the technique

CHAPTER 5. CHANNEL CODING FOR VIDEO MULTICAST 89

Figure 5.14: Gilbert Model. pBG be the probability of going to a G state from a B state,
and pGB is the probability of going to a B state from a G state

proposed in [23]. First, let g (v) = P
(
0ν−11 | 1)

12 be the probability of a gap with

length ν, in which after a loss, ν − 1 packets are received correctly. Equation (5.10)

shows the value of g (v) for a Gilbert process.

g (v) =





1− pBG, ν = 1,

pBG (1− pGB)ν−2 pGB, ν > 1.
(5.10)

Consequently, we can define G (v) = P
(
0ν−1 | 1)

which is the probability of all the

gaps with more than v−1 losses. Equation 5.11 shows the value of G (v) for a Gilbert

process.

G (v) =





1, ν = 1,

pBG (1− pGB)ν−2 , ν > 1.
(5.11)

Let π (m,n) be the probability of m − 1 packet losses within the next n − 1 packets

following a lost packet. It can be calculated using the recursive method in (5.12):

π (m,n) =





G (n) , m = 1,
n−m+1∑

ν=1

g (ν) π (m− 1, n− ν) , 2 ≤ m ≤ n.
(5.12)

10 indicates a correct reception, and 1 indicates a loss.
20α means α packets are lost consecutively.

CHAPTER 5. CHANNEL CODING FOR VIDEO MULTICAST 90

0 1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Total number of lost packet in a block of 12 packets

P
ro

ba
bi

lit
y

IID
L

B
=2.5

L
B
=3.5

L
B
=25

Figure 5.15: Error distribution for different packet loss patterns, when the packet loss rate
is 10%.

Now, we can calculate P (m,n) using π (m,n) as (5.13), where PB = pBG
pBG+pGB

is the

loss probability.

P (m, n) =
n−m+1∑

ν=1

PBG (ν) π (m,n− ν + 1) , 1 ≤ m ≤ n (5.13)

Figure 5.15 demonstrates the results of using (5.9) and (5.13) for calculating error

distribution, P (m,n), for different patterns of packet loss.

Model 3: In model 3, losses between different users are correlated, and for each user losses

at different times happen independently. We do not use it in our analysis.

Model 4: In model 3, losses between different users are correlated, and for each user, losses

are correlated at different times. This model is the most realistic model, but due to

its complexity we do not use it in our analysis.

CHAPTER 5. CHANNEL CODING FOR VIDEO MULTICAST 91

Figure 5.16: A simple subset protection for pure FEC. In this scheme nu information packet
are left unprotected, and the remaining information packets are protected with nc parity
packets

5.5.2 Subset Selection Effects on the Residual Packet Loss Rate without

Feedback

Due to the restrictions on the available bandwidth, the encoder sometimes can not send

enough parity packets to protect the transmitted information completely. The problem

shows up when the number of received parity packets is not high enough for recovering lost

packets. In such a condition, the channel decoder can not recover any of the lost packets

by parity packets. In this subsection, we will show that subset selection can be useful even

it is combined with a pure FEC3. Figure 5.16 demonstrates a simple structure to combine

subset selection with FEC. In this structure, the transmitter has n = nu + np packets to

send. The first nu packets are left unprotected, and the next np packets are protected with

nc parity packets.

The average number of lost information packets (lt) is simply equal to the average number

of lost packets in unprotected area (lu) plus the average number of lost packets in protected

area (lp). The average number of lost packets in the unprotected (lu) part of this structure

can easily be calculated by lu = pnu.

3when there is no feedback available.

CHAPTER 5. CHANNEL CODING FOR VIDEO MULTICAST 92

If the total number of lost packets in the protected part and parity packets is not greater

than nc, the channel decoder can recover the lost packets entirely. Therefore, the average

number of lost packets in the protected part and in parity packets, lp+c, can be found

by (5.14):

lp+c =
np+nc∑

j=nc+1

jP (j, np + nc) (5.14)

When model 1 is used as the channel model, losses happen independently. Therefore,the

portion of losses in the information part is equal to the code rate of the protected part:

lp =
np

np + nc

np+nc∑

j=nc+1

jP (j, np + nc) . (5.15)

Therefore when the channel model is model 1, and P (., .) is its corresponding loss

distribution function, the residual packet loss probability can be computed using (5.16):

pr =
lu + lp
nu + np

=
nu

nu + np
p +

1
nu + np

np

np + nc

np+nc∑

j=nc+1

jP (j, np + nc) . (5.16)

Figure 5.17 demonstrates the numerical results of the residual packet loss probability

when subset selection without feedback is used for error protection. For a certain number of

protected packets (np), the code provides the best results. And, Figure 5.18 demonstrates

the numerical results of the achieved coding gain when subset selection without feedback is

used for error protection. In this figure, the achieved coding gain is the ratio of the residual

packet loss rate after using FEC and after using subset selection without feedback, therefore

a larger value of this ratio means better error protection. For a certain number of protected

packets (np) the code provides the best results.

When model 2 is used as the channel model, losses do not happen independently

anymore. To find the portion of losses in the information part, we first need to find the

probability of three new events.

CHAPTER 5. CHANNEL CODING FOR VIDEO MULTICAST 93

0 2 4 6 8 10 12
0.05

0.1

0.15

0.2

Total number of protected packets (n
p
) in a block of 12 packets

R
es

id
ua

l p
ac

ke
t l

os
s

pr
ob

ab
ili

ty

p=10%
p=15%
p=20%

Figure 5.17: The residual packet loss probability in the subset selection without feedback
scheme for channel model 1

• ǵ (v) = P
(
0ν−11 | 0)

is the probability of ν − 1 correctly received packets after one

correctly received packet, and can be calculated using (5.17):

ǵ (v) =





pGB, ν = 1,

(1− pGB)ν−1 pGB, ν > 1.
(5.17)

• π́ (m,n) is the probability of m − 1 losses within the next n − 1 packets following a

correctly received packet, and can be calculated using (5.18):

π́ (m,n) =





(1− p) (1− pGB)n−1 , m = 1,
n−m+1∑

ν=1

ǵ (ν) π (m− 1, n− ν) , 2 ≤ m ≤ n.
(5.18)

CHAPTER 5. CHANNEL CODING FOR VIDEO MULTICAST 94

0 2 4 6 8 10 12
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Total number of protected packets (n
p
) in a block of 12 packets

A
ch

ie
ve

d
co

di
ng

 g
ai

n

Unit gain
p=10%
p=15%
p=20%

Figure 5.18: The achieved coding gain in the subset selection without feedback scheme for
channel model 1

As Figure 5.19 shows, the probability of having mc lost packets among nc parity packets

can be found using π (m + 1, n + 1), if the last protected packet has been received correctly.

Otherwise this probability can be found using π́ (m + 1, n + 1). Since the sequence of channel

realizations in model 2 is an ergodic process4, the probability of having a lost packet at

the last position of protected packets is mp

np
, when mp packets are lost among nc protected

packets. And, the probability of having a correctly received packet in that position is 1−mp

np
.

Thus, we can write the probability of having mc losses among nc parity packets as (5.19),

when we know than mp packets have been lost among np protected packets.

4It can be shown that a finite state irreducible Markov chain is ergodic if it has an aperiodic state [51]
and the Gilbert model which is used in this thesis has this property

CHAPTER 5. CHANNEL CODING FOR VIDEO MULTICAST 95

Figure 5.19: The probability of having mc lost packets among nc parity packets can be found
using π (m + 1, n + 1) when the last protected packed is received correctly (top image) or
using π́ (m + 1, n + 1) when the last protected packed is lost (bottom image)

P (mc, nc,mp, np) =
mp

np
π (mc + 1, nc + 1) +

(
1− mp

np

)
π́ (mc + 1, nc + 1) . (5.19)

Now, we can calculate the expected number of losses in the protected area of the code,

E [mp | m], using (5.21):

P (mp, nc, np | m) =
P (mp, np)

P (m,nc + np)
P (mc, nc,mp, np) , (5.20)

E [mp | m] =
m∑

mp=0

mpP (mp, nc, np | m) , (5.21)

CHAPTER 5. CHANNEL CODING FOR VIDEO MULTICAST 96

lp =
np+nc∑

j=nc+1

E [mp | j] P (j, np + nc) . (5.22)

Therefore, after channel decoding, the average number of lost packets in the protected area

can be determined using (5.22) and the total residual loss probability can be calculated

using (5.23)

pr =
lp + lu
nu + np

(5.23)

5.5.3 Subset Selection Effects on the Receivers Distortion without Feed-

back

When there is no feedback information, there is still a chance to use subset selection algo-

rithm for increasing the quality of decoder’s outputs. In such a situation, more important

packets are more probable to be selected for the subset and consequently protected by a

channel code. In this thesis, we will not analyze this case, because it is a very simple

case of unequal error protection of a video bitstream, which has been studied in the litera-

ture [18, 30, 36].

5.6 Subset Selection in Type-II Hybrid ARQ/FEC for Video

Multicast with Multiple subsets

The proposed subset selection algorithm can be modified to divide available bandwidth

(parity packets) between more than one subset. The modified algorithm has a higher degree

of freedom, therefore it may be able achieve better performance in controlling errors.

To illustrate this point, consider the situation in Figure 5.20, where each of the users has

lost two packets (shaded in gray) out of the block of five packets. Suppose the bandwidth

CHAPTER 5. CHANNEL CODING FOR VIDEO MULTICAST 97

Figure 5.20: Motivation for subset selection in Type-II hybrid ARQ/FEC with multiple
subsets.

limitation allows the server to multicast only two parity packets. In this situation subset

selection with only one subset can not achieve any gain compare to plain type-II hybrid

ARQ/FEC. Each decoder can recover two packets if and only if it receives both of the

parity packets. And, if a decoder only receives one of the parity packets, it can not use it

to recover lost packets.

However, if the server chooses two separate subsets, namely subset1 = {Frame1, F rame2}
and subset2 = {Frame4, F rame5} as shown in Figure 5.20, then, computes one parity

packet for each subset. Thus, a decoder is able to recover lost packets partially when it

received only one parity packet.

If we assume that losses happen independently with probability of p,

• In the first scheme, when there is only one subset, each decoder only can recover two

lost frames, if it correctly receives both parity packets (with probability of (1− p)2).

Otherwise, it can not recover any lost frame (with probability of 1− (1− p)2).

• In the second scheme, when there are two subsets, each decoder can recover two lost

frames, if it correctly receives both parity packets (with probability of (1− p)2). In

addition, it can recover one frame, if it received only one of the parity packets (with

probability of 2 ∗ p (1− p)).

CHAPTER 5. CHANNEL CODING FOR VIDEO MULTICAST 98

Equation (5.24) shows the achievable gain in coding efficiency when the decoder uses two

subsets in the the example of Figure 5.20 (when independent losses happen with probability

of p):

Gain =
2 ∗ (1− p)2 + 2 ∗ p (1− p)

2 ∗ (1− p)2
=

1
1− p

(5.24)

Extending the proposed full search and simulated annealing optimization for the subset

selection in subsections 5.3.1 and 5.3.2 to use more than one subset may be the future

research direction based on the proposed subset selection in this chapter.

Chapter 6

Conclusion and Future Work

In this thesis, we focused on one of the most attractive problems in the new technology

world. Nowadays, people have more demand for high-quality videos over the Internet and

wireless networks. Our focus was on one important challenge of video delivery, which is

combating errors that occur during video communication.

Combating errors can be accomplished in different parts of a video communication sys-

tem. In this thesis, we divided these techniques into three different categories:

1. The encoder can increase the robustness of the encoded bitstream,

2. the transmission module can use effective channel codes for video transmission,

3. and the decoder can use various techniques to recover damaged frames.

We have analyzed all of these categories and for each of them we tried to propose new

improvements. In chapter 2, we proposed a new structure for the H.264 encoder. The new

proposed structure enables the encoder to increase the resilience of the encoded bitstream

using fast reference picture selection (RPS). In chapter 3, the focus was on proposing a new

error concealment algorithm for decoders. The new proposed algorithm uses the information

available in the noncausal part of the bitstream to recover damaged frames in the received

99

CHAPTER 6. CONCLUSION AND FUTURE WORK 100

bitstream. And in chapter 5, we focused on the development of a new error control technique

for video multicast.

The future works and improvements based on this thesis can be categorized as bellow:

1. The first stage of the proposed encoder structure needs to run offline, because it

is responsible for motion estimation, which is the most time consuming part of video

compression. Therefore the two-stage encoder can only be useful for pre-recorded video

streaming scenarios, where the video contents are available before the transmission

time. The next generation for this encoder can find a solution to run all the steps in

real time and be able to stream live and interactive video contents. One suggestion to

have such an encoder is using available motion vectors in the encoder to reduce search

space for RPS reset frame’s motion vectors.

Also, in the second stage of the current version of the two-stage encoder, the encoder

deals with raw video files which require a huge amount of space on the storage de-

vice. Using such large data storages makes the implementation of the video storage

impractical and unjustified. To improve the two-stage encoder, one can store com-

pressed video files and precomputed motion vectors on the streaming server. During

the transmission time the server streams precompressed video packets. Whenever the

server realizes that an invalid frame was used for encoding a subsequent frame, it

switches to two-stage encoder for fast RPS. Since the two-stage encoder requires raw

video, the streaming system needs to run the decoder to provide uncompressed version

of this frame. This hybrid structure is illustrated in Figure 6.1

2. In the chapter 3, we proposed a noncausal error concealment algorithm, which uses

the noncausal information hidden in frames after the damaged part of the bitstream.

The proposed algorithm does not use the scene information such as conceptual shape

models [31] for frame concealment. One improvement based on this part of the work

can be done by using this information for frame recovery. The advantage of this

CHAPTER 6. CONCLUSION AND FUTURE WORK 101

Figure 6.1: Hybrid structure for streaming server. In default, this structure uses pre-
compressed video stream. But whenever a frame uses an invalid reference it switched to
two-stage encoder for fast RPS.

improvement is not only limited to achieving better PSNRs, but it may also be able

to enhance the perceived subjective video quality for the person who is watching the

received video.

3. In chapter 5, we proposed a subset selection algorithm for type-II hybrid ARQ/FEC.

The proposed algorithm chooses a subset among lost frames to try to recover using

Reed-Solomon code. The first improvement for this algorithm can be developing an

extension for selecting multiple subsets. Nowadays, new video technologies motivate us

to develop more effective tools for multi-view video transmission. The subset selection

can be easily developed to fit in the requirement of multi-view video transmission.

Appendix A

Performance Modeling of the

Two-stage Encoder

Since the value of the QP parameter may be different in the two encoding stages, the motion

vectors obtained in the first stage may be different from the best motion vectors that could

be obtained in the second stage of the two-stage encoder, if motion estimation were to

be performed in the second stage. Therefore, to analyze the performance of the proposed

encoder, first we need to know how different these motion vectors are.

A.1 Modeling of the motion vector estimation error

In motion compensated prediction we have

X = Y
(−−→
MVt

)
+ ε,

where X is the current frame, Y is the reference frame, and ε is the motion-compensated

prediction residual. In this notation,
−−→
MVt is used as the true displacement to indicate that

we assume that the true motion between Y and X is translatory (i.e. displacement), and

that is different from the estimated motion vector,
−−−→̂
MVY .

102

APPENDIX A. PERFORMANCE MODELING OF THE TWO-STAGE ENCODER 103

Encoders usually use least mean square error (LMSE) estimator for motion vector esti-

mation:
−−−→̂
MVY = arg min

~ν

∑∑

D

(X − Y (~ν))2 .

By treating frames as 2-D continuous functions, we can formulate this estimation as bellow

(D is the domain of X and Y):
−−−→̂
MVY = arg min

~ν

∫ ∫

D
(X − Y (~ν))2 dA

= arg min
~ν

∫ ∫

D

(
X2 − 2XY (~ν) + Y 2 (~ν)

)
dA.

(A.1)

X2 does not depend on ~ν, therefore it has no effect on the minimization with respect to ~ν.

Y 2 (~ν) does depend on ~ν. But, if the MV field ~ν is reasonably smooth, then
∫ ∫

D Y 2 (~ν) dA ≈
const., which means

∫ ∫
D Y 2 (~ν) dA does not depend on ~ν very much. Hence, (A.1) can be

reduced to a simpler form. When Λ (~ν) is defined as
∫ ∫

D (X.Y (~ν)) dA (the correlation of

X and Y), then Λ (~ν) can be used for motion vector estimation.
−−−→̂
MVY = arg min

~ν

∫ ∫

D
(X − Y (~ν))2 dA

= arg min
~ν

∫ ∫

D

(
X2 − 2XY (~ν) + Y 2 (~ν) dA

)

≈ arg min
~ν

∫ ∫

D
−2XY (~ν) dA

= arg max
~ν

∫ ∫
XY (~ν) dA = arg max

~ν
Λ (~ν) .

(A.2)

We can further rewrite correlation as follows:

−−−→̂
MVY = arg max

~ν
Λ (~ν)

= arg max
~ν

∫ ∫

D
(X.Y (~ν)) dA

= arg max
~ν

∫ ∫

D

[(
Y

(−−→
MVt

)
+ ε

)
.Y (~ν)

]
dA

= arg max
~ν

[∫ ∫

D
Y

(−−→
MVt

)
.Y (~ν) dA

+
∫ ∫

D
ε.Y (~ν) dA

]
.

(A.3)

APPENDIX A. PERFORMANCE MODELING OF THE TWO-STAGE ENCODER 104

If the motion estimation is reasonably accurate then it is supposed to estimate the value

of M̂VY very close to the
−−→
MVt. Also, the cross-correlation of two continuous functions

with limited energies is always bounded and has a maximum [45]. And, being a continuous

function, cross-correlation is always concave around its peak [24]. Therefore, a necessary

condition for maximum of Λ (~ν) is that its gradient vanishes:

∇Λ
(−−−→̂

MVY

)
= ∇

∫ ∫

D
Y

(−−→
MVt

)
.Y

(−−−→̂
MVY

)
dA

︸ ︷︷ ︸
CY Y

(−−−→̂
MVY −

−−→
MVt

)

+∇
∫ ∫

D
ε.Y

(−−−→̂
MVY

)
dA

︸ ︷︷ ︸
~ξ

= ∇CY Y

(−−−→̂
MVY −−−→MVt

)
+ ~ξ = ~0.

(A.4)

It should be noted that gradient operators ∇ in (A.4) are gradients with respect to

horizontal and vertical components of
−−−→̂
MVY . Y

(−−→
MVt

)
is constant with respect to these

parameters, so we can write

∇CY Y

(−−−→̂
MVY −−−→MVt

)
= ∇

[∫ ∫

D
Y

(−−→
MVt

)
.Y

(−−−→̂
MVY

)
dA

]

=
∫ ∫

D
∇Y

(−−→
MVt

)

︸ ︷︷ ︸
equal to 0

.Y

(−−−→̂
MVY

)
dA +

∫ ∫

D
Y

(−−→
MVt

)
.∇Y

(−−−→̂
MVY

)
dA

=
∫ ∫

D
Y

(−−→
MVt

)
.∇Y

(−−−→̂
MVY

)
dA.

(A.5)

Since finding this gradient is not straightforward, we use (A.6) and (A.7) to find the

gradient in terms of spatial gradient of frame Y to rewrite (A.4) as (A.9).

APPENDIX A. PERFORMANCE MODELING OF THE TWO-STAGE ENCODER 105

∂Y

(
x−

−−−−→̂
MVY,x, y −

−−−−→̂
MVY,y

)

∂
−−−−→̂
MVY,x

= lim
dmvx→0

Y

(
x−

(−−−−→̂
MVY,x + dmvx

)
, y −

−−−−→̂
MVY,y

)

dmvx

= lim
dmvx→0

Y

(
(x− dmvx)−

−−−−→̂
MVY,x, y −

−−−−→̂
MVY,y

)

dmvx

= lim
dmvx→0

Y

(
(x + dmvx)−

−−−−→̂
MVY,x, y −

−−−−→̂
MVY,y

)

−dmvx

= −
∂Y

(
x−

−−−−→̂
MVY,x, y −

−−−−→̂
MVY,y

)

∂x

(A.6)

∂Y

(
x−

−−−−→̂
MVY,x, y −

−−−−→̂
MVY,y

)

∂
−−−−→̂
MVY,y

= lim
dmvy→0

Y

(
x−

−−−−→̂
MVY,x, y −

(−−−−→̂
MVY,y + dmvy

))

dmvy

= lim
dmvy→0

Y

(
x−

−−−−→̂
MVY,x, (y − dmvy)−

−−−−→̂
MVY,y

)

dmvx

= lim
dmvy→0

Y

(
x−

−−−−→̂
MVY,x, (y + dmvy)−

−−−−→̂
MVY,y

)

−dmvx

= −
∂Y

(
x−

−−−−→̂
MVY,x, y −

−−−−→̂
MVY,y

)

∂y

(A.7)

Hence,

−∇CY Y (~emv,Y) + ~ξ = ~0, (A.8)

or

∇CY Y (~emv,Y)− ~ξ = ~0. (A.9)

The general analytical solution for (A.9) is not easily obtained. Therefore, we use the

linear approximation, (A.10), of ∇CY Y (~emv,Y) to solve (A.9):

APPENDIX A. PERFORMANCE MODELING OF THE TWO-STAGE ENCODER 106

∇CY Y (~emv,Y) ≈ G (~emv,Y) .~i + H (~emv,Y) .~j

=




Hx

(
~(0)

)
Hy

(
~(0)

)

Gx

(
~(0)

)
Gy

(
~(0)

)







emx

emy


 = Ω.




emx

emy


 . (A.10)

If Ω is an invertible matrix we can find ~emv,Y as (A.11), otherwise there are multiple

solutions to (A.3). This situation can happen in smooth areas without strong texture.

~emv,Y =




emx

emy


 = Ω−1.~ξ. (A.11)

In this text, we use a Gaussian distribution as an approximation for the distribution of

the residual,ε, to keep our model tractable. When the residual ε has a Gaussian distribution

with variance of σ2 and a zero mean, ~ξ =
∫ ∫

D ε.∇Y

(−−−→̂
MVY

)
dA has a Gaussian distribution

too. Therefore, ~emv,Y =
−−−→̂
MVY − −−→MVt has a Gaussian distribution as well. Therefore, we

can find the covariance matrices for ~ξ and ~emv,Y as bellow:

Σ~ξ
= σ2

ε




(
∂Y
∂x

)2 ∂Y
∂x .∂Y

∂y

∂Y
∂x .∂Y

∂y

(
∂Y
∂y

)2


 , (A.12)

Σ~emv,Y
= Ω−1ΣξΩ−1T

. (A.13)

A.2 Modeling of the difference between two motion vector

fields

Equations (A.12) and (A.13) show the covariance matrix for the diffference between the

estimated motion vector field and the true motion vector field. But the interesting parameter

for us is finding the probability density function of the difference between the estimated

motion vector fields using Ŷ1 and Ŷ2, where X = Ŷ1

(−−−→̂
MVŶ1

)
+ε1 and X = Ŷ2

(−−−→̂
MVŶ2

)
+ε2.

APPENDIX A. PERFORMANCE MODELING OF THE TWO-STAGE ENCODER 107

One can calculate the difference (∆ ~mvŶ1,Ŷ2
) between the estimated motion vector fields using

Ŷ1 and Ŷ2 (Figure 2.3) by (A.14):

∆ ~mvŶ1,Ŷ2
=

−−−→̂
MVŶ1

−
−−−→̂
MVŶ2

=
−−−→̂
MVŶ1

−−−→MVt +
−−→
MVt −

−−−→̂
MVŶ2

= ~emv,Ŷ1
− ~emv,Ŷ2

= Ω−1

Ŷ1

~ξŶ1
− Ω−1

Ŷ2

~ξŶ2
. (A.14)

If Ŷ1 and Ŷ2 represent the same reference frame quantized by two different quantizers,

as in our case, then we expect ΩŶ1
≈ ΩŶ2

≈ ΩŶ , and ε1 ≈ ε2 ≈ ε. Hence, (A.14) can be

approximated by (A.15):

∆ ~mvŶ1,Ŷ2
= Ω−1

Ŷ1

~ξŶ1
− Ω−1

Ŷ2

~ξŶ2

= Ω−1

Ŷ

(
~ξŶ1

− ~ξŶ2

)

= Ω−1

Ŷ

[∫ ∫

D
ε1.∇Ŷ1

(−−−→̂
MVŶ1

)
dA

−
∫ ∫

D
ε2.∇Ŷ2

(−−−→̂
MVŶ2

)
dA

]

≈ Ω−1

Ŷ

∫ ∫

D
ε.



∇

(
Ŷ1

(−−−→̂
MVŶ1

)
− Ŷ2

(−−−→̂
MVŶ2

))

︸ ︷︷ ︸
N̂1,2




dA

= Ω−1

Ŷ

∫ ∫

D
ε.∇N̂1,2.dA

︸ ︷︷ ︸
ψ0

(A.15)

The top linear space invariance (LSI) system in Figure A.1 generates ψ (x, y) = ε ∗
(
h∇ ∗ N̂1,2 (x, y)

)
where the input is N̂1,2 (x, y). In this situation, the intermediate signal

before entering the LSI system with impulse response ε, is ∇N̂1,2 (x, y). So based on the

definition of ψ0, the output value at point (0, 0) is ψ (0, 0) = ψ0. On the other hand, because

APPENDIX A. PERFORMANCE MODELING OF THE TWO-STAGE ENCODER 108

() ()()yxNhhyx ,ˆ**, 2,1∇= εψ()yxN ,ˆ
2,1

() () ()
()yxN

yxNhhyx

,ˆ

,ˆ*,

2,1

2,1

∗∇=

∗= ∇

ε

ψ ε

()yxN ,ˆ
2,1

() ()yxNyxNh ,ˆ,ˆ* 2,12,1 ∇=∇

εε ∇=∇ hh *

Figure A.1: Two equivalent linear space invariant (LSI) systems that can produce ψ (x, y)

this system is a LSI system we can combine two internal LSI systems (as shown at the bottom

of Figure A.1) and then convolve it with N̂1,2 (x, y). In this case, the impulse response of

the combined system is ε ∗ h∇ = ∇ε, therefore we can find the value of ψ0 = ψ (0, 0)

using equation (A.16). Then, the covariance matrix for ψ0 and ∆ ~mvŶ1,Ŷ2
can be calculated

by ((A.17)) and ((A.18)).

ψ0 =
∫ ∫

D
ε.∇N̂1,2.dA =

∫ ∫

D
∇ε.N̂1,2.dA (A.16)

Σψ0 = σ2
N̂1,2

∫ ∫

D
∇ε (x, y) (∇ε (x, y))T dxdy (A.17)

Σ∆ ~mvŶ1,Ŷ2
= Ω−1

Ŷ
Σψ0Ω

−1

Ŷ

T (A.18)

(A.18) does not directly connect the Σ∆ ~mvŶ1,Ŷ2
to the coding parameters, such as quan-

tization parameters (QP) or encoding rate. Since Σ∆ ~mvŶ1,Ŷ2
is a function of ΩŶ and Σψ0 ,

to use (A.18) we need to use ΩŶ and Σψ0 .

To find ΩŶ , we can calculate the autocorrelation of the reconstructed reference in the

encoder buffer, find its gradient, then use (A.10) to find ΩŶ .

To find Σψ0 , we need to calculate

• σ2
N̂1,2

: for calculation of N̂1,2, we need to subtract to motion compensated predictions

of the current frame using the first set of motion vectors (
−−−→̂
MVŶ1

) and reference frame

APPENDIX A. PERFORMANCE MODELING OF THE TWO-STAGE ENCODER 109

(Ŷ1), and the second set of motion vector
−−−→̂
MVŶ2

and reference frame (Ŷ2). These can

be generated using two different quantization parameter(QP) in the encoder. Then,

we can compute the variance of N̂1,2

• ∇ε (x, y): ε is the residual of the prediction in the encoder.

then plug these values into (A.17).

Appendix B

User Guide

This appendix provides a user guide for the enclosed DVD which contain developed codes

during this thesis and simulation scripts to regenerate the results for future developments.

Section B.1 briefly describes different files on the DVD.

B.1 Files on the DVD

The enclosed DVD contains several folders and files. In this section, we briefly describe

them.

• data

∗ ErrorPatternsForInternetExperiments: This folder measured packet traces

from [60]

∗ RawVideoSequences: This folder contains raw video sequences which have

been used for experimental results in the thesis. There are also two applications

which can be useful when someone want to work with these sequences. seqview.exe

is a very handy player for YUV file, and yuv2avi.exe is a handy converter to

convert YUV files to AVI files

110

APPENDIX B. USER GUIDE 111

• SourceCodes

∗ jm16.0.zip : JM16.0 is the latest version of H.264/AVC reference software.

∗ jm12.4 JM12.4 is the version of H.264/AVC reference software, which has been

used for development of the proposed algorithm in this thesis.

∗ JM2Stage This folder contains the implementation of the proposed two-stage

encoder. This folder contains both JM encoder and JM decoder, but the only

modified part is the encoder to form two-stage encoder. A file named loss.txt

must be present in the folder of the executable file. loss.txt helps the encoder to

simulate feedback messages from the receiver.

∗ NoncausalErrorConcealment The proposed noncausal error concealment al-

gorithm is implemented in two separate codes. To run the code

¦ we first need to run the JM decoder to extract motion vector information

of the bitstream, then run the C++ code in offlineConcealment folder to

recover the motion vectors which belong to the lost frame (this part of code

can perform the algorithm from [14] and the proposed noncausal error con-

cealment algorithm in chapter 3).

¦ Then we need to run the modified JM decoder in folder JMNCDecoder.

∗ SubsetSelection

¦ Simulator This folder contains required C++ codes for simulating the pro-

posed subset selection algorithm, the algorithm from [35], ARQ, and Reed-

Solomon codes.

¦ matlab This folder contains required Matlab codes for analyzing different

coding schemes and regenerating the analytical results in section 5.5.

∗ PacketDropper In many of the simulation, we need to simulate the effect of the

channel on the bitstream. The packetDropper is a simple program that performs

APPENDIX B. USER GUIDE 112

this task for us. packetDropper assumes that the bitstream contains RTP packets

and removes the lost packets from the bitstream. There are three ways to use

packetDropper.

1. packetdropper.exe

In this mode, packetDropper uses default parameters. test.264 and the

input file, out.264 as the output file, and loss.txt for loss drop pattern

file.

2. packetdropper.exe input-file output-file drop-pattern: In this mode,

the packetDropper used the user-defined file names.

3. packetdropper.exe input-file output-file drop-pattern · · ·
· · · FPS buffer-length In this mode, the packetDropper used the user-

defined file names. In addition to the previous mode, in this mode the

packetDropper consider a buffer for the decoder, and drop packets which are

received to late.

• Simulation

∗ readme.xls: this excel file describe the content and tasks of the folder here.

∗ sequences: The raw video sequences have been used for the simulation. this

folder should not be changed or moved, because some the simulations need to

use the files here.

∗ STEP1: Runs the first stage for two-stage encoder to store all motion vectors

on the disk. By running batch1.m, it generate *.smv files. In this script, the en-

coder uses 8 reference frames for encoding, and stores motion vector for different

conditions (refer to readme.xls).

∗ STEP2: Generates all error patterns. By running allSTLossPatterns.m, it will

generate all loss pattern and to store them in ./stdloss. These loss pattern will

APPENDIX B. USER GUIDE 113

be used by other scripts.

∗ STEP3: Encodes sequences using JM encoder and two-stage encoder and then

drops lost packets and sorts the results in ./std264. By running batch3.m, the

encoder uses all the loss patterns in stdlosses to generate h.264 files.

∗ STEP4: Measures the performance of the proposed noncausal whole-frame con-

cealment algorithm. By running batch4.m, the script decode different com-

pressed video sequences and measures their resulted PSNR, where different error

concealment algorithms have been used.

∗ STEP5: Simulates systems A, B, C, and D which are described in chapter 4.

To run this test, one should first runs batch5.m to simulates the systems, then

runs extract-snr.m to extract the results.

∗ SimulationSubsetSelection: Runs an error protection algorithm for video mul-

ticast. To change the error protection, one only needs to change the value of

sMethod in test.m and run test.m

∗ MotionAccuracy: This simulation can be used to validate the proposed rate-

distortion model for the two stage encoder. To reproduce the results for motion

accuracy and the required data for drawing Figure 2.4, one can use test1.m.

To reproduce the results for rate penalty, one can use extrabit.m to obtain the

results illustrated in Figure 2.5.

Bibliography

[1] Traffic details for youtube from alexa. http://www.alexa.com/siteinfo/youtube.com.

[2] Google to acquire youtube for 1.65 billion dollar in stock. Google Press Center, October
9, 2006.

[3] I. Ahmad, W. Zheng, J. Luo, and M. Liou. A fast adaptive motion estimation algorithm.
IEEE Transactions on Circuits and Systems for Video Technology, 16(3):420–438, 2006.

[4] S. M. Amiri and I. V. Bajić. Subset selection in type-ii hybrid arq/fec for video multi-
cast. In IEEE International Conference on Communications (ICC 2009), June 2009.

[5] S.M. Amiri and I.V. Bajić. A two-stage H.264/AVC encoder for video streaming
with fast reference picture selection. In Proceedings of the 4th ACM workshop on
Wireless multimedia networking and performance modeling, pages 37–44. Vancovuer,
BC, Canada, 2008.

[6] S.M. Amiri and I.V. Bajic. A novel noncausal whole-frame concealment algorithm for
video streaming. In IEEE International Symposium on Multimedia (ISM 2008), pages
154–159. IEEE Computer Society, Berkeley, CA, USA, 2008.

[7] J.G Apostolopoulos and M.D Trott. Path diversity for enhanced media streaming.
IEEE Communications Magazine, 42(8):80–87, 2004.

[8] P. Baccichet, D. Bagni, A. Chimienti, L. Pezzoni, and F.S Rovati. Frame concealment
for H.264/AVC decoders. IEEE Transactions on Consumer Electronics, 51(1):227–
233, 2005.

[9] P. Baccichet, S. Rane, A. Chimienti, and B. Girod. Robust low-delay video transmis-
sion using H.264/AVC redundant slices and flexible macroblock ordering. In IEEE
International Conference on Image Processing (ICIP2007), volume 4, 2007.

[10] I.V. Bajić. Efficient cross-layer error control for wireless video multicast. IEEE Trans-
actions on Broadcasting, 53(1):276–285, 2007.

[11] I.V. Bajić. Error control for broadcasting and multicasting: An overview. in Mo-
bile Multimedia Broadcasting Standards: Technology and Practice, (F.-L. Luo, ed.).
Springer, 2008.

114

BIBLIOGRAPHY 115

[12] I.V. Bajić. Noncausal error control for video streaming over wireless packet networks.
IEEE Transactions on Multimedia, 8(6):1263–1273, Dec. 2006.

[13] I.V. Bajić and J.W. Woods. Error concealment for scalable motion-compensated sub-
band/wavelet video coders. IEEE Transactions on Circuits and Systems for Video
Technology, 17(4):508–514, 2007.

[14] S. Belfiore, M. Grangetto, E. Magli, and G. Olmo. Concealment of whole-frame losses
for wireless low bit-rate video based on multiframe optical flow estimation. IEEE
Transactions on Multimedia, 7(2):316–329, 2005.

[15] V. Bhaskaran and K. Konstantinides. Image and video compression standards: algo-
rithms and architectures. Kluwer academic publishers, 1997.

[16] H. Chen, Z. Han, R. Hu, and R. Ruan. Adaptive FMO selection strategy for error
resilient H.264 coding. In International Conference on Audio, Language and Image
Processing (ICALIP2008), pages 868–872, 2008.

[17] Y. Chen, Y. Hu, O.C. Au, H. Li, and C.W. Chen. Video error concealment using spatio-
temporal boundary matching and partial differential equation. IEEE Transactions on
Multimedia, 10(1):2–15, 2008.

[18] L. Cheng, W. Zhang, and L. Chen. Rate-distortion optimized unequal loss protection
for fgs compressed video. IEEE Transactions on Broadcasting, 50(2):126–131, 2004.

[19] C.H. Cheung and L.M. Po. Novel cross-diamond-hexagonal search algorithms for fast
block motion estimation. IEEE Transactions on Multimedia, 7(1):16–22, 2005.

[20] P.A. Chou and Z. Miao. Rate-distortion optimized streaming of packetized media.
IEEE Transactions on Multimedia, 8(2):390–404, 2006.

[21] R. Duncan. A survey of parallel computer architectures. Computer, 23(2):5–16, 1990.

[22] P. Elias. The noisy channel coding theorem for erasure channels. The American Math-
ematical Monthly, 81(8):853–862, 1974.

[23] E.O. Elliot. A model of the switched telephone network for data communications. Bell
Systems Technical Journal, 44:89–109, 1965.

[24] G.B. Folland. Real Analysis: Modern Techniques and Their Applications. Pure and
Applied Mathematics: A Wiley-Interscience Series of Texts, Monographs and Tracts,
1999.

[25] A. Ganjam and H. Zhang. Internet multicast video delivery. Proceedings of the IEEE,
93(1):159–170, 2005.

BIBLIOGRAPHY 116

[26] H. Gharavi and S. Gao. Spatial interpolation algorithm for error concealment. In IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP2008),
pages 1153–1156, 2008.

[27] B. Girod. Motion-compensating prediction with fractional-pel accuracy. IEEE Trans-
actions on Communications, 53(3):1053–1060, 1993.

[28] B. Girod. Efficiency analysis of multihypothesis motion-compensated prediction for
video coding. IEEE Transactions on Image Processing, 9(2):173–183, 2000.

[29] B. Girod and N. Farber. Feedback-based error control for mobile video transmission.
Proceedings of the IEEE, 87(10):1707–1723, 1999.

[30] J. Goshi, A.E. Mohr, R.E. Ladner, E.A. Riskin, and A. Lippman. Unequal loss pro-
tection for H.263 compressed video. IEEE Transactions on Circuits and Systems for
Video Technology, 15(3):412–419, 2005.

[31] A. Hampapur, L. Brown, J. Connell, A. Ekin, N. Haas, M. Lu, H. Merkl, and
S. Pankanti. Smart video surveillance: exploring the concept of multiscale spatiotem-
poral tracking. IEEE Signal Processing Magazine, 22(2):38–51, 2005.

[32] E. Hladka, P. Holub, and J. Denemark. User empowered virtual multicast for multi-
media communication. In International Conference on Networking (ICN2004), 2004.

[33] T. Ho and D. Lun. Network coding: an introduction. Cambridge University Press,
2008.

[34] S. Huang and S. Kuo. Temporal error concealment for H.264/AVC using optimum
regression plane. Lecture Notes in Computer Science, 4903:402, 2008.

[35] M. Kalman and B. Girod. Network-Adaptive Media Transport. Multimedia Over IP
and Wireless Networks (P. A. Chou and M. van der Schaar, Eds.). Academic Press,
2007.

[36] J. Kim, R.M. Mersereau, and Y. Altunbasak. Distributed video streaming using mul-
tiple description coding and unequal error protection. IEEE Transactions on Image
Processing, 14(7):849–861, 2005.

[37] S. Kirkpatrick. Optimization by simulated annealing: Quantitative studies. Journal of
Statistical Physics, 34(5):975–986, 1984.

[38] S. Kumar, L. Xu, M.K. Mandal, and S. Panchanathan. Error resiliency schemes in
H.264/AVC standard. Journal of Visual Communication and Image Representation,
17(2):425–450, 2006.

[39] D.X. Li, W. Zheng, and M. Zhang. Architecture design for H.264/AVC integer mo-
tion estimation with minimum memory bandwidth. IEEE Transactions on Consumer
Electronics, 53(3):1053–1060, 2007.

BIBLIOGRAPHY 117

[40] Y.J. Liang, B. Girod, and Q.C. Technol. Network-adaptive low-latency video communi-
cation over best-effort networks. IEEE Transactions on Circuits and Systems for Video
Technology, 16(1):72–81, 2006.

[41] S. Lin and D.J. Costello. Error Control Coding: Fundamentals and Applications. Pren-
tice Hall, 1983.

[42] J.D.C. Little. A proof of the queuing formula l= w. Operations Research, 9(3):383–387,
1961.

[43] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller. Equation
of state calculations by fast computing machines. The Journal of Chemical Physics,
21(6):1087, 1953.

[44] P. Noll and N.S Jayant. Digital Coding of Waveforms: Principles and Applications to
Speech and Video. Prentice Hall, Englewood Clis, New Jersey, 1984.

[45] A. Papoulis and S.U. Pillai. Probability, random variables, and stochastic processes,
4th Edition. McGraw-Hill New York, 1991.

[46] D. Persson, T. Eriksson, and P. Hedelin. Packet video error concealment with gaussian
mixture models. IEEE Transactions on Image Processing, 17(2):145–154, 2008.

[47] I.E.G. Richardson. H.264 and MPEG-4 video compression: video coding for next-
generation multimedia. Wiley, 2003.

[48] E. Setton, P. Baccichet, and B. Girod. Peer-to-peer live multicast: a video perspective.
Proceedings of the IEEE, 96:25–38, 2008.

[49] E. Setton and B. Girod. Peer-to-Peer Video Streaming. Springer, 2007.

[50] E. Setton, J. Noh, and B. Girod. Rate-distortion optimized video peer-to-peer multicast
streaming. In ACM workshop on Advances in peer-to-peer multimedia streaming, pages
39–48. ACM New York, NY, USA, 2005.

[51] K.S. Shanmugam. Digital and analog communication systems. Chichester, 1985.

[52] C.E. Shannon. A mathematical theory of communication. Bell System Technical Jour-
nal, 1954.

[53] W. Stallings. Data and computer communications, 8th Edition. Prentice hall, 2007.

[54] T. Stockhammer, M.M. Hannuksela, and T. Wiegand. H.264/AVC in wireless environ-
ments. IEEE Transactions on Circuits and Systems for Video Technology, 13(7):657–
673, 2003.

[55] W. Tan and A. Zakhor. Video multicast using layered fec and scalable compression.
IEEE Transactions on Circuits and Systems for Video Technology, 11(3):373–386, 2001.

BIBLIOGRAPHY 118

[56] Joint Video Team (JVT) of ISO/IEC 14496-10 and ITU-T VCEG. Draft ITU-
T recommendation and final draft international standard of joint video specification
(ITU-T rec. H.264— ISO/IEC 14496-10 AVC). Technical report, JVT-G050r1,
Geneva, Switzerland, 2003.

[57] A. Viterbi. Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE Transactions on Information Theory, 13(2):260–269, 1967.

[58] Y. Wang, Y. Zhang, and J. Ostermann. Video Processing and Communications. Pren-
tice Hall PTR Upper Saddle River, NJ, USA, 2001.

[59] Y.K. Wang, M.M. Hannuksela, V. Varsa, A. Hourunranta, and M. Gabbouj. The error
concealment feature in the H.264/AVC test model. In IEEE International Conference
on Image Processing (ICIP2002), 2002.

[60] S. Wenger. Proposed error patterns for Internet experiments. ITU-T Study Group 16
H.263+ Video Experts Group, 15, 1999.

[61] S. Wenger, A.G. Teles, and G. Berlin. H.264/AVC over IP. IEEE Transactions on
Circuits and Systems for Video Technology, 13(7):645–656, 2003.

[62] T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, and G.J. Sullivan. Rate-constrained
coder control and comparison of video coding standards. IEEE Transactions on Circuits
and Systems for Video Technology, 13(7):688–703, 2003.

[63] T. Wiegand, G.J. Sullivan, G. Bjontegaard, and A. Luthra. Overview of the h.
264/AVC video coding standard. IEEE Transactions on Circuits and Systems for
Video Technology, 13(7):560–576, 2003.

[64] D. Xu, M. Hefeeda, S. Hambrusch, and B. Bhargava. On peer-to-peer media streaming.
In 22nd International Conference on Distributed Computing Systems (ICDCS 2002),
pages 363–371, 2002.

[65] M. Yajnik, J. Kurose, and D. Towsley. Packet loss correlation in the mbone multicast
network. In Global Telecommunications Conference, (GLOBECOM 1996), pages 94–99,
1996.

[66] Youtube’s website. http://youtube.com.

[67] R. Zhang, S. L. Regunathan, and K. Rose. Video coding with optimal inter/intra-mode
switching for packetloss resilience. IEEE Journal on Selected Areas in Communications,
18(6):966–976, 2000.

[68] Y. Zhang, W. Gao, Y. Lu, Q. Huang, and D. Zhao. Joint source-channel rate-distortion
optimization for h. 264 video coding over error-prone networks. IEEE Transactions on
Multimedia, 9(3):445–454, 2007.

BIBLIOGRAPHY 119

[69] C. Zhu, X. Lin, and L.P. Chau. Hexagon-based search pattern for fast block mo-
tion estimation. IEEE Transactions on Circuits and Systems for Video Technology,
12(5):349–355, 2002.

[70] C. Zhu, Y.K. Wang, and H. Li. Adaptive redundant picture for error resilient video
coding. In IEEE International Conference on Image Processing (ICIP2007), volume 4,
pages 253–256, 2007.

Index

ACK, 12
ACK message, 25
Alexa, 1
aliasing, 45
anti-causal, 47, 49
Arbitrary Slice Ordering, 8
ARQ, 2, 11, 12, 16, 19, 69, 79, 83
ASO, 8
Automatic Repeat reQuest, 2, 16, 19
average burst length, 35

B-frame, 7, 12
Binary symmetric channel, 17
binomial distribution, 71
bit-error, 18
bitrate, 4
block-based whole-frame concealment, 44
Boundary matching algorithym, 50
boundary-matching algorithm, 46
Broadcast, 68
Broadcasting, 6
BSC, 17
burst error, 15

CABAC, 8
cable, 6
causal, 46, 49
CAVLC, 8
CBR video, 35
channel capacity, 16
Channel Coding, 3, 16
CIF, 1, 2
client-server, 68
CoDiO, 72, 80
Collision Distortion Optimization, 72

commercial video streaming systems, 23
Compression, 1
conferencing, 5
Context Adaptive Binary Arithmetic Cod-

ing, 8
Context adaptive entropy coding, 8
Context Adaptive Variable-Length Coding, 8
Conversational, 6
conversational, 5
Convolutional Codes, 17
convolutional encoder, 18
CRC, 18, 19
cumulative error, 5
cumulative function, 71
current frame, 24
Cyclic redundancy check, 18

Data Partitioning, 10
Data partitioning, 8
DCT, 3
dequantization, 5
digital TV broadcasting, 7
Digital Video, 1
Directional spatial prediction, 8
Discrete Cosine Transform, 3, 4
displaying order, 7
DP, 10
drift, 5

edge preserving smoothing, 43
entropy coding, 4, 24
erasure channel, 16–18
Error Concealment, 3, 14
error concealment, 10, 43
error detection, 18

120

INDEX 121

Error Distribution, 88
Error propagation, 23
error propagation, 9
Error Resilience, 3, 8
exhaustive search, 78

fast RPS, 28
FEC, 2, 12, 16, 19, 69
feedback, 9, 11
feedback channel, 68
feedback implosion, 68
File Transfer Protocol, 2
Flexible Macroblock Ordering, 8, 10
Flexible Reference Frame Concept, 11
Flexible slice size, 8
FMO, 8, 10
Forward Error Correction, 2, 16
frame buffer, 24
FS, 83
FTP, 2
Full Search, 74, 83
full search algorithm, 78

Gilbert, 35
Google, 1
GOP, 73
Group of Pictures, 73

H.261, 5
H.262, 5
H.263, 5
H.263+, 5
H.264/AVC, 2, 5, 24
H.32X, 7
HD, 2
HD Video, 1
header, 10
Human Vision System (HVS), 3
Hybrid ARQ/FEC, 20
Hybrid ARQ/FEC type-II, 69

I-frame, 12, 76
IDR, 11, 12
IEEE 802.11n, 2

IID, 35
independent, identically distributed, 35
infrequent error, 20
Instantaneous Decoder Refresh, 11
Interactive, 6
interleaver, 16
Internet, 1, 5, 6
Intra coding, 8, 12
intra-coded pixels, 46
intra-coding, 49
intra-frame encoder, 25
intra-refresh, 9, 12
inverse transform, 5, 24
IP network, 2
ISO MP4, 7
ISO/IEC Moving Picture Expert Group, 5
ITU-T Video Coding Expert Group, 5

joint video team, 5
JVT, 5

Karhunen-Loeve Transform, 3
KLT, 3

Lagrange multiplier, 25
Lagrangian cost function, 25
LAN, 6
linear space invariance, 107
local optima, 82
Loop Filter, 8
loss indicator matrix, 75
loss-aware rate-distortion optimization, 9
lossless compression, 3
lossy channel, 2
lossy compression, 3
LSI, 107

Macroblocks, 9
MCPR, 4, 24
MDDE, 76
measured packet traces, 35
median filter, 45
memoryless binary symmetric channel, 16
Metropolis state calculation rule, 82

INDEX 122

MIMD, 37
mobile network, 6
Motion Compensated Prediction Residual, 4
motion compensation, 3–5
Motion estimation, 24
motion estimation, 3–5
motion vectors, 10
motion-compensated prediction, 24
motion-compensated prediction residual, 24
MPEG, 5
MPEG-1, 5, 9
MPEG-2, 5, 9
MPEG-4 (Part 2), 5
MPEG-ISO/IES, 5
Multi-Decoder Distortion Estimation, 76
multi-frame optical flow estimation, 44
Multicast, 68
multicast group, 71
multicast streaming, 67
Multiple Instruction, Multiple Data, 37
Multiple reference, 7

NACK message, 25
NAL, 6, 7
Network Abstraction Layer, 6
network-friendly, 5
non-conversational, 5
noncausal, 49
Noncausal optical flow, 46
noncausal source, 48
Not protected, 83

Occlusion, 49
open-after-downloading, 68
optical flow estimation, 15
Optical Flow principle, 46
over-designed FEC, 16

P-frame, 12
P2P, 68
Parameter set structure, 8
Peer to Peer, 68
pixel-based whole-frame concealment, 44
play-while-downloading, 68

positive acknowledgement, 12
power spectral density, 30
pre-computed motion vectors, 27
predictively-coded video, 23
PSD, 30
PSNR, 53

QCIF, 15
quantization, 24
quantized MCPR, 24
quantizer, 4

RaDiO, 72, 80, 83
Rate Distortion Optimization, 72
rate-distortion, 25
RealPlayer, 75
Recursive Optimal per-Pixel Estimation of

decoder distortion, 76
redundancy, 3
Redundant pictures, 8
Redundant Slices, 10
Reed-Solomon, 73
Reed-Solomon code, 17
Reference Picture Selection, 9, 11, 23
referencing order, 7
Region Of Interest, 11
residuals, 10
retransmission-based algorithms, 69
ROI, 11
ROPE, 76
Round Trip Time, 25, 51
RPS, 9, 11, 23, 71
RPS-ACK, 12, 13, 27
RPS-NACK, 12–14, 27, 48
RS, 73
RS code, 17
RTP, 35
RTP/IP, 7
RTT, 25, 51

SA, 83
satellite, 6
self-scaling, 68
serial storage, 6

INDEX 123

Shannon’s channel coding theorem, 16
Signal-to-Noise Ratio, 53
SIMD, 37
Simulated Annealing, 82, 83
Single Instruction, Multiple Data, 37
SISD, 37
Slice Coding, 9
SP/SI, 8
spatial domain, 43
Spatial Error Concealment, 14
spatial redundancy, 3
spatiotemporal, 50
Spatiotemporal boundary matching, 50
spatiotemporal domain, 43
Spatiotemporal Error Concealment, 15
standard video coder, 4, 24
statistical redundancy, 3
Suboptimal Search, 82
Subpixel motion vector accuracy, 7
subset, 73
Subset Selection, 73, 80
synchronization/switching pictures, 8
systematic Reed-Solomon code, 70

TCP, 2
temporal domain, 43
Temporal Error Concealment, 14
temporal redundancy, 3
traffic congestion, 15
transform, 24
TV stations, 68
two-stage encoder, 25, 27
two-state Markov, 35
two-way channel, 19
Type-I Hybrid ARQ/FEC, 20
Type-II Hybrid ARQ/FEC, 20
Type-II hybrid ARQ/FEC, 73, 79, 80, 83

under-designed FEC, 16
unicast, 20, 67
uplink, 68

variable block-size, 7
VBR video, 35

VCEG, 5
VCL, 6
video, 2
Video Coding Layer, 6
Video Compression, 3
video sequences, 34
video-on-demand, 24
Virtual Multicast, 67
Viterbi algorithm, 17
VLSI, 37

Weighted prediction, 7
Whole Frame Concealment, 15
Wide-Sense Stationary, 32
Windows Media, 75
wireless networks, 5
WSS, 32

YouTube, 1
YUV 4:2:0, 28

