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Abstract

Epidemiologic and genetic studies often involve the testing of a large number of hypotheses

with test statistics that are potentially dependent. In this project, we investigate multiple

testing procedures to control the family-wise error rate and false discovery rate. We consider

several classic and novel multiple hypothesis testing procedures. Furthermore, we compare

the results of the procedures which take advantage of the dependent structure among test

statistics to those of the procedures which do not. The data we used is from a case-control

study of non-Hodgkin Lymphoma.

Keywords: multiple testing procedures; dependence; family-wise error rate; false dis-

covery rate; adaptive procedures; adjusted p-values
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Chapter 1

Introduction

1.1 Motivation

The development of technology enables modern epidemiologic studies to measure large num-

bers of exposures (e.g. genetic data of the subjects, environmental risk factors). In order to

obtain the associations between the exposures and disease, researchers need to test many

hypotheses simultaneously. Therefore, a multiple testing procedure should be applied to

control the Type I error rate over all the hypotheses tested.

During the last few decades, many multiple testing procedures have been developed and

improved, and this issue has become more important recently because more and more scien-

tific areas need multiple hypothesis testing control. Moreover, powerful procedures taking

advantage of the dependence structure among the test statistics are desirable because expo-

sure variables are frequently dependent and, therefore, so are their test statistics. Initially,

procedures were developed for independent test statistics. Later, it was proven that several

of these procedures also control the Type I error rate under positive dependence structure.

More recently, multiple testing procedures were developed that take into account general

dependence among the test statistics. This project aims to investigate selected multiple test-

ing procedures, compare their powers, and then suggest procedures which can be applied to

future studies.

1



CHAPTER 1. INTRODUCTION 2

1.2 Outline

This project is organized as follows. In Chapter 2, we introduce the background information

for the case-control study of Spinelli et al. (2007) on which the project is based. We also

list some basic results of the sub-study data from which our analysis data were extracted.

Chapter 3 begins with the fitted model used to analyze the data. In Section 3.2, we give

the basic definitions which are involved in the multiple testing procedures, and then we

describe the multiple testing procedures controlling different Type I error rates (family-wise

error rate and false discovery rate) that will be applied to the data. Some other procedures

which we do not apply are also reviewed. An example is given in Section 3.3 to illustrate

the definitions and how the procedures work. In Chapter 4, the multiple testing procedures

described in Chapter 3 are applied, and results are provided in order to compare these

procedures. Finally, in Chapter 5, we summarize our results, and discuss possible directions

for future work.



Chapter 2

Data

The data used in the project is from an organochlorine analysis for a case-control study of

non-Hodgkin lymphoma (NHL) undertaken by Spinelli et al. (2007).

2.1 Background

In order to have a better idea of the data we are using, we will introduce some background

knowledge about NHL and organochlorines.

2.1.1 Non-Hodgkin lymphomas

Lymphoma is a cancer that originates in the lymphocytes, a type of white blood cell of

the immune system. There are two classifications of lymphomas: Hodgkin lymphoma and

non-Hodgkin lymphoma. The indicator of Hodgkin lymphoma, which comprises 10% of

lymphoma, is the presence of Reed-Sternberg cells (Fisher and Fisher, 2004). NHL has

many subclassifications depending on morphology, immunophenotype, and somatic genetics.

The incidence rate of NHL has doubled over the last two decades, and it is the fifth most

common cancer in Canada according to Canadian Cancer Statistics (2009).

The risk of NHL increases exponentially with age (Fisher and Fisher, 2004), and it is

more common in men than women. The incidence rates of NHL are low in Asian and African

3



CHAPTER 2. DATA 4

countries, and high in North America and Australia. In the United States, Caucasians have

higher incidence rate than African-Americans. Immune suppression is the major known risk

factor for NHL.

2.1.2 Organochlorines

An organochlorine is an organic compound containing at least one covalently bonded chlorine

atom. Organochlorines are lipophilic (dissolve in fat), stable and degradation resistant.

Since organochlorines have these characteristics, they will accumulate in the fatty tissues of

humans and therefore may affect human health. Organochlorines are often used in chemical

processes in agriculture and industry. Although most of them were banned in the 1970s

due to harm to the environment and health, they still exist in the environment and human

bodies.

Generally, organochlorines can be classified into two groups: pesticides and non-pesticides.

Pesticide organochlorines were widely used in agriculture. Polychlorinated biphenyls (PCBs),

non-pesticide organochlorines with similar chemical structures and properties, were widely

used as coolants and insulating fluids. There are 209 possible congeners which are num-

bered from 1 to 209 (Ng, 2007). Dioxins (polychlorinated dibenzo-para-dioxins (PCDDs))

have similar properties to PCBs, so the PCB congeners which have structures similar to

dioxins are grouped together as dioxin-like PCBs. Since the organochlorines’ descriptions

are highly technical, we will not introduce them in detail. Readers are referred to Ng

(2007) for the full description. Spinelli et al. (2007) considered eight pesticide or pesticide

metabolites: β-HCCH; cis-Nonachlor; p, p′-DDE; p, p′-DDT; HCB; mirex; oxychlordane and

trans-Nonachlor; and eleven PCB congeners with numbers 28, 99, 105, 118, 138, 153, 156,

170, 180, 183, 187.

2.2 Study

In the study, cases included subjects with newly diagnosed NHL, aged 20-79, diagnosed

between March 2000 and February 2004, from greater Vancouver or Victoria (Canada)
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without evidence of HIV infection. Population controls were randomly selected from the

Client Registry of the BC Ministry of Health and frequency matched to cases by sex, age

and residential location in an approximate 1:1 ratio. There were 828 cases and 848 controls

who participated in the study. All subjects were requested to answer a questionnaire and to

provide a blood or saliva sample. Demographic characteristics, sunlight exposure, medical

history and other information were included in the questionnaire.

In this project, we analyzed the organochlorine data from the study. Organochlorines

were only measured in cases who provided blood before chemotherapy and who had weight

loss information and under 10% weight loss in the year prior to blood collection. This is be-

cause chemotherapy treatment and weight loss have been found to significantly affect plasma

levels of organochlorines (Baris et al., 2000; Chevrier et al., 2000). Frequency matched con-

trols were chosen for the organochlorine analysis from the parent study in an approximate

1:1 ratio. Therefore, the total number of subjects used in the organochlorine analysis is

881, where 422 of them are cases and 459 are controls. The nineteen specific organochlorine

analytes (measured PCB congeners and pesticides) and three variables representing sums of

PCB congeners (total summed PCBs, total dioxin-like summed PCBs and total non dioxin-

like summed PCBs) were examined. All the sums of PCB congeners, two dioxin-like PCBs

– PCB 118 and PCB 156; five non dioxin-like PCBs – PCB 138, PCB 153, PCB 170, PCB

180 and PCB 187; and six pesticides – β-HCCH; p, p′-DDE; HCB; mirex; oxychlordane and

trans-Nonachlor were significantly associated with NHL (Spinelli et al., 2007).

This project further examines the associations between all twenty-two organochlorine

analytes and NHL. Since we are testing multiple hypotheses simultaneously, we investigate

multiple testing procedures to control the overall Type I error rate. The reason for choosing

this study dataset is as follows. From the paper of Spinelli et al. (2007), we know that the

organochlorine analytes are highly correlated. Thus the test statistics will be dependent.

The power of multiple testing procedures for dependent tests has been an important issue in

recent years. We can use these data to investigate these procedures. In the next chapters,

we will take a closer view of the various multiple testing procedures, and compare their



CHAPTER 2. DATA 6

results on this dataset.



Chapter 3

Methods

3.1 Analysis Methods

Unconditional logistic regression is used to model the association between organochlorine

exposure and the likelihood of NHL. The organochlorine variables are categorized into four

groups based on the quartiles of their distribution, and then recoded as ordinal variables

with values set as the medians of the quartiles in controls. (Some organochlorines with

more than 25% subjects below the detection limit have three or two categories instead.)

Each recoded organochlorine variable is analyzed as a continuous variable in a separate

logistic regression model with case/control status as the outcome. Significance of individual

regression estimates is tested by Wald statistics. The same confounding variables are used

in all the logistic regression models. They are age, sex, region, ethnicity, education level,

family history of NHL, BMI one year before study participation and farming. Interaction

terms between organochlorine exposure and confounders were not found to be statistically

significant, so they are not included in the model.

Since there are 22 organochlorine exposures examined in this study, we are testing 22

hypotheses simultaneously. Therefore, we need to use a multiple testing procedure to control

the overall Type I error rate.

7



CHAPTER 3. METHODS 8

3.2 Multiple testing procedures

Hypothesis testing is an approach using observed data to decide properties of the unknown

data generating distribution. Often, one or more null hypotheses are stated that restrict

or simplify the form of this data generating distribution. People decide which of these

null hypotheses should be rejected by calculating test statistics (e.g., t-statistics, likelihood

ratio statistics, etc.) from the observed data and applying a procedure based on the test

statistics. If one simultaneously tests m > 1 null hypotheses, we call this is a multiple

testing situation. According to Dudoit and van der Laan (2008, page 9), “a multiple testing

procedure (MTP) is a data-dependent set of rejected hypotheses that estimates the set of

false null hypotheses”. Our development of ideas and notation is based on their treatment.

Procedures we consider are primarily from their book and from the review of Farcomeni

(2008).

3.2.1 Basic Definitions

Type I Error Rates

We will focus on the two main types of errors in testing problems: Type I error and

Type II error. Dudoit and van der Laan (2008) also refer to Type III error which occurs for

two-sided tests when a false null hypothesis is correctly rejected but an incorrect conclusion

is reached about the direction of the departure from the null hypothesis. We do not consider

Type III errors in this project. A Type I error, also known as a false positive, occurs when a

hypothesis test incorrectly rejects a true null hypothesis. A Type II error, or false negative,

occurs when a hypothesis test incorrectly accepts a false null hypothesis. Unfortunately,

one cannot minimize the two types of errors at the same time. Therefore, we aim to control

the Type I error rate. By control, we mean that the Type I error rate will be less than or

equal to some user-defined upper bound, which we refer to as the level α.

There are many possible definitions for the Type I error rate when testing a family of

multiple hypotheses. We will focus on two of them: the family-wise error rate (FWER) and
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the false discovery rate (FDR). To help illustrate the ideas, we will rely on the following

summary table of multiple testing decisions for m null hypotheses (Table 3.1). For the

table, we use test statistics T1, . . . , Tm to decide whether or not to reject null hypotheses

H01, . . . ,H0m. The rules for rejecting depend on the MTP, the Type I error rate being

controlled and the level at which we are aiming to control the Type I error rate. The m0

null hypotheses that are true are in the set H0 and the m1 null hypotheses that are false

are in H1. The numbers of true and false hypotheses, m0 and m1, are non-random but

unknown. The counts V , S, and R are data-dependent and therefore random.

Table 3.1: Summary of multiple testing decisions.

Null hypotheses
not rejected rejected Total

True null hypothesis H0 m0 − V V m0

False null hypothesis H1 m1 − S S m1

Total m−R R m

The FWER is the probability of making one or more Type I errors in a MTP; i.e.,

referring to the notation defined in Table 3.1,

FWER = Pr(V > 0).

The FDR, introduced by Benjamini and Hochberg (1995), is the expected proportion of

false discoveries in all the rejected hypotheses; i.e.,

FDR = E(
V

R
),

where 0
0 is defined as 0. Therefore,

FDR = E(
V

R
)

= E(
V

R
|R > 0)Pr(R > 0) + E(

V

R
|R = 0)Pr(R = 0)

= E(
V

R
|R > 0)Pr(R > 0) + E(

0
0
|R = 0)Pr(R = 0)
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= E(
V

R
|R > 0)Pr(R > 0) (3.1)

In the second term on the third line, we use the fact that, when R = 0, V ≤ R is identically

0. We will often use the alternate definition of FDR given by (3.1).

When m0 = m, FWER = FDR. Because all the m null hypotheses are true, all the

rejected hypotheses are true null hypotheses. Thus, V = R and V
R = 1 so that

FDR = E(
V

R
|R > 0)Pr(R > 0)

= E(1|R > 0)Pr(R > 0)

= Pr(R > 0)

= Pr(V > 0) = FWER.

Procedures controlling FWER also control FDR. To see why, note that

V

R
≤ I(V > 0)

where I is the indicator function. When V = 0, V
R = I(V > 0) = 0; when V > 0,

V
R ≤ I(V > 0) = 1 because V ≤ R. Then, taking the expectation on both sides of the

inequality, we obtain

E(
V

R
) ≤ E(I(V > 0)) = Pr(V > 0).

Thus, FDR ≤ FWER and so procedures controlling FWER also control FDR.

P -values

Dudoit and van der Laan (2008, page 27) define the unadjusted p-value for the null

hypothesis H0j as:

pj = inf{α ∈ [0, 1] : H0j is rejected at single test level α}, j = 1, . . . ,m,

where the level α is an upper bound for any Type I error rate. The unadjusted p-value

is the smallest value of the level of the Type I error rate for the single hypothesis testing
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procedure at which H0j would be rejected given the observed value of its test statistic. For

a single test (m = 1), the unadjusted p-values for FWER and FDR are the same. To see

this, note that, since V ∈ {0, 1},

FWER = Pr(V > 0)

= Pr(V = 1)

= Pr(V = 1) ∗ 1 + Pr(V = 0) ∗ 0

= E(V ),

and that, by equation (3.1),

FDR = E(
V

R
|R > 0)Pr(R > 0)

= E(V |R = 1)Pr(R = 1)

= E(V |R = 1)Pr(R = 1) + E(V |R = 0)Pr(R = 0)

= E(V ).

On the third line of the equation for the FDR, E(V |R = 0)Pr(R = 0) = 0, because

0 ≤ V ≤ R by definition so that E(V |R = 0) = 0. Therefore, FWER = FDR.

In MTPs, people often use the adjusted p-values to present the results. For any Type I

error rate, Dudoit and van der Laan (2008, page 32) define the adjusted p-value for the null

hypothesis H0j as:

p∗j = inf{α ∈ [0, 1] : H0j is rejected at MTP level α}, j = 1, . . . ,m,

where the MTP level is an upper bound for any MTP Type I error rate. Thus, for an MTP,

the adjusted p-value for a hypothesis H0j , j = 1, . . . ,m is the smallest level of the Type I

error rate for the multiple test of all m hypotheses at which the hypothesis H0j would be

rejected given the observed values of the test statistics; if no such level exists, the adjusted

p-value is 1. When m = 1, p∗j = pj , the unadjusted p-value.

FWER-controlling MTPs which reduce to a single test with exact control of the type I

error rate have adjusted p-values that are greater than or equal to the unadjusted p-values.
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To see why, let αu be the level of the test of the single hypothesis H0i, Ai be the event that

H0i is rejected, and H0i ∈ H0. Under exact control of the type I error rate for the single

test of H0i, we have αu = Pr(Ai) for any i. Thus,

Pr(V > 0) = Pr(
⋃
H0j

Aj) ≥ Pr(Ai) = αu,

since
⋃

H0j
Aj ⊃ Ai for any i. Let αM be the level of the FWER-controlling multiple testing

procedure, then we have Pr(V > 0) ≤ αM . Therefore, αM ≥ Pr(V > 0) ≥ Pr(Ai) = αu.

It follows that the FWER adjusted p-value for a hypothesis will be at least as big as the

unadjusted p-value. In general, however, the adjusted p-value need not be bigger than the

unadjusted p-value. This will be illustrated in Section 3.3.

The advantages of using adjusted p-values are:

• The Type I error level does not to be chosen in advance.

• The adjusted p-values reflect the strength of evidence against a hypothesis.

• Different MTPs controlling the same Type I error rate can be conveniently compared

by comparing their adjusted p-values.

Types of Multiple Testing Procedures

One way to categorize a MTP is as a single-step or stepwise procedure. In single-step

procedures, each null hypothesis is tested independently, and the outcome is independent of

those of other hypothesis tests. By contrast, in stepwise procedures, the decision of rejecting

(or not) one null hypothesis depends on the results of other hypothesis tests.

Stepwise MTPs are of two types: step-down and step-up, depending on the order in

which null hypotheses are tested. In step-down procedures, the hypothesis test with the

smallest unadjusted p-value is examined first, and then the hypothesis tests with larger

unadjusted p-values are examined successively, depending on the outcome of the previous

tests. Once one test accepts a null hypothesis, no null hypotheses whose unadjusted p-values
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are greater than that of this hypothesis are rejected. In contrast, for step-up procedures, the

hypothesis test with largest unadjusted p-value is examined first. Once one null hypothesis

is rejected, all other null hypotheses whose unadjusted p-values are less than that of this

hypothesis are rejected.

A second way to group a MTP is as a marginal or a joint procedure. Marginal multiple

testing procedures are based on the marginal distribution of the test statistics, while joint

procedures take into account the dependence structure among the test statistics. Joint

multiple testing procedures tend to be more powerful than the marginal ones, because

the joint distribution of the test statistics contains more information, i.e. the dependence

structure, than the marginal distribution.

Finally, a third way to group a MTP is as an adaptive or a non-adaptive procedure.

Non-adaptive MTPs conservatively take m0 = m, while adaptive MTPs use an estimate of

m0 to revise a non-adaptive MTP so that it is less conservative. Adaptive MTPs can take

advantage of small m0.

3.2.2 Procedures Controlling FWER

To control the FWER, we apply the single-step Bonferroni Agresti and Franklin (2007) and

the step-down Holm (1979) procedures. Both of these MTPs are marginal procedures. We

also apply several resampling-based procedures that take advantage of the positive depen-

dence among test statistics. They include the Dudoit and van der Laan (2008) bootstrap-

based maxT/minP procedures, in both a single-step and step-down version, and also the

permutation-based step-down minP procedure of Westfall and Young (1993).

Table 3.2 summarizes the FWER-controlling procedures applied.

Bonferroni

The Bonferroni single-step procedure is the best-known classical procedure for FWER

control. It controls the FWER for arbitrary test statistics joint null distribution; i.e. under
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Table 3.2: Summary of FWER-controlling procedures.∗

marginal joint

single-step Bonferroni Dudoit and van der Laan maxT/minP single-step

step-down Holm
Dudoit and van der Laan maxT/minP step-down
Westfall and Young minP

∗ None of the procedures are adaptive.

arbitrary dependence (Dudoit and van der Laan, 2008). If one wants to control the FWER

at level α, the common p-value “cut-off” is α
m . The value of α

m is a cut-off in the sense that if

pi, the unadjusted p-value for H0i, satisfies pi < α
m , reject H0i. The rationale for the cut-off

is as follows. Using the notation above,

Pr(V > 0) = Pr(
⋃

H0j∈H0

Aj) ≤
∑

H0j∈H0

Pr(Aj)

≤ m0 × max
H0j∈H0

Pr(Aj)

≤ m× max
H0j∈H0

Pr(Aj)

≤ m× max
H0j∈H0

(αj),

where the first line of the equation uses Boole’s Inequality and αj is the single-test level for

H0j ; and m0 and m were defined in Table 3.1. Thus, choosing α = m ×max{H0j∈H0}(αj)

ensures that Pr(V > 0) ≤ α. For example, given α, we may set αi = α
m for i = 1, . . . ,m.

The Bonferroni procedure’s cut-off for any unadjusted p-value is therefore α
m ; i.e.

• If pi ≤ α
m , reject H0i.

• Else accept H0i.

The adjusted p-value for a hypothesis is the smallest level α for the whole testing procedure

at which the hypothesis would be rejected given the observed values of the test statistics.

We would reject H0j if pj ≤ α
m or if α ≥ mpj . Hence, the adjusted p-value for H0j is mpj ,
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provided that mpj ≤ 1; otherwise, the adjusted p-value is 1. Thus, the equation for the

adjusted p-value for H0j is

BonfP
∗
j = min{mpj , 1}.

Holm

The Holm step-down procedure attempts to improve the power of the Bonferroni proce-

dure based on the following reasoning. For m tests of hypotheses, let p(1), p(2), . . . , p(m) be

the unadjusted p-values, ordered from smallest to largest, and let H0(i), i = 1, . . . ,m, be the

corresponding hypotheses. If we reject H0(1) using the Bonferroni critical value α
m , we have

only m − 1 further hypotheses to test, so that the critical value for H0(2) should be α
m−1

and so forth. Thus, the Holm procedure uses different cut-offs for the ordered unadjusted

p-values: αj = α
m−j+1 , for j = 1, . . . ,m. For m > 1, the Holm critical values for the unad-

justed p-values are greater than the Bonferroni critical value. Like the Bonferroni procedure,

the Holm procedure controls the FWER for arbitrary test statistics joint null distribution

(Dudoit and van der Laan, 2008). Adjusted p-values can be calculated as follows.

Because this is a step-down procedure, to control FWER at level α, the steps are: For

i = 1, . . . ,m,

• If p(i) ≤ αi = α
m−i+1 , reject H0(i) and continue.

• Else accept H0(i), . . . ,H0(m) and stop.

In order to get the adjusted p-value for H0(j), j = 1, . . . ,m, we reason as follows. The

adjusted p-value for H0(j) is the smallest FWER level at which the hypothesis would be

rejected given the observed values of the test statistics. But, before we reject H0(j), we

must reject H0(1), . . . ,H0(j−1) in this step-down procedure. Hence, we have the inequalities:

p(i) ≤ αi =
α

m− i + 1
, i = 1, . . . , j.
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The MTP level α satisfies all the following j inequalities provided that the numbers on the

right-hand side are ≤ 1:

α ≥ (m− i + 1)p(i), i = 1, . . . , j.

That is,

α ≥ max
i∈{1,...,j}

{(m− i + 1)p(i)},

provided the maximum is ≤ 1; otherwise it is 1. Hence, the adjusted p-values for H0(j) can

be written as:

HolmP ∗
(j) = min{ max

i∈{1,...,j}
{p(i) × (m− i + 1)}, 1}, j = 1, . . . ,m.

Dudoit and van der Laan single-step maxT/minP

The Dudoit and van der Laan maxT and minP procedures in both single-step and step-

down versions are all bootstrap-based procedures. These procedures take into account the

dependence structure of the test statistics, and control FWER for arbitrary test statistic

joint-null distributions (Dudoit and van der Laan, 2008, page 118). Therefore, they are joint

multiple testing procedures.

To obtain the appropriate null distribution, we take the following steps. First, bootstrap

B samples with replacement from cases and controls separately, such that each sample has

the same number of cases and controls as in the observed data. Controls are sampled from

the control covariate vectors and cases are sampled from the case covariate vectors. Second,

for each of the B samples, test m hypotheses simultaneously to get m test statistics. Then

we have a B × m matrix of test statistics T which can be used to obtain a bootstrap

estimate of the joint distribution of the test statistics. The bootstrap method preserves

the dependency structure among test statistics, but does not remove the systematic effects

(Farcomeni, 2008). Here systematic effects are the departures from means of zero in the

distributions of the test statistics that are brought about by the alternative hypotheses.
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To obtain a bootstrap estimate of the joint-null distribution, one may center the test

statistics to get a B ×m matrix Z such that

Z[i, j] = |T[i, j]− E(T[j])|, i = 1, . . . , B, j = 1, . . . ,m,

where Z[i, j] and T[i, j] are the (i, j)th entry of Z and T, respectively, and E(T[j]) is

the bootstrap mean of the jth column of T. Dudoit and van der Laan (2008) suggest

dividing Z[i, j] by sd(T[j]), the bootstrap standard deviation of the jth column of T. Under

a correctly specified model, dividing the bootstrapped test statistics by their bootstrap

standard deviation should not impact their asymptotic variance of 1. However, when we

have missing covariates (confounders), the asymptotic variance of test statistics can be

greater than 1 (Efron, 2007). Thus, dividing by the standard deviation can lead to a null

reference distribution that is too narrow and to false positive results.

In the single-step maxT/minP procedure, let qα be the (1 − α)th quantile of the null

distribution of max(|T1|, |T2|, . . . , |Tm|) and q′α be the αth quantile of the null distribution

of min(p1, p2, . . . , pm), where T1, T2, . . . , Tm are test statistics with the same marginal null

distribution and p1, p2, . . . , pm are their unadjusted p-values. We reject H0i if |Ti| ≥ qα or

equivalently, if pi ≤ q′α.

To obtain the adjusted p-values p∗i , i = 1, . . . ,m, we compare each of the observed |ti| to

the bootstrap null distribution of max(|T1|, |T2|, . . . , |Tm|). The tail area of this bootstrap

null distribution to the right of |ti| is a bootstrap estimate of p∗i . Specifically, the proportion

of the B row maxima of Z that are greater than or equal to |ti| estimates p∗i .

The observed pi, i = 1, . . . ,m, are monotonically decreasing functions of the |ti|. Hence

p∗i , i = 1, . . . ,m, can also be obtained by comparing each pi to the bootstrap null distribution

of min(p1, p2, . . . , pm). Specifically, the proportion of the B row minima of the unadjusted

p-values for Z less than or equal to pi will also estimate p∗i .

Dudoit and van der Laan step-down maxT/minP

To obtain the bootstrap estimate of the joint null distribution of the test statistics, the
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step-down procedure (Dudoit and van der Laan, 2008, page 126) uses the same bootstrap

method as the single-step procedure.

In the step-down maxT procedure, let the absolute values of the observed test statistics

be ordered from largest to smallest and denote them by |t|(1) ≥ . . . ≥ |t|(m). Let i1, . . . , im

index the corresponding test statistics such that |ti1 | = |t|(1), . . . , |tim | = |t|(m). The

procedure can be described as follows.

Step1 Let qα1 be the (1− α) quantile of the null distribution for

max{j=1,...,m}(|Tj |) = max{j=1,...,m}(|Tij |). Reject H0(1) if |t|(1) ≥ qα1 and continue to

next step. Else stop and accept H0(1), . . . ,H0(m).

Step2 Let qα2 be the (1 − α) quantile of the null distribution for max{j 6=i1;j=1,...,m}(|Tj |).

Reject H0(2) if |t|(2) ≥ qα2 and continue to next step. Else stop and accept H0(2), . . . ,

H0(m).

Step3 Let qα3 be the (1−α) quantile of the null distribution for max{j /∈{i1,i2};j=1,...,m}(|Tj |).

Reject H0(3) if |t|(3) ≥ qα3 and continue to next step. Else stop and accept H0(3), . . . ,

H0(m).

etc.

If we use the unadjusted p-values instead of the observed test statistics:

Step1 Let q′α1 be the α quantile of the null distribution for

min{j=1,...,m}(pj) = min{j=1,...,m}(pij ). Reject H0(1) if p(1) ≤ q′α1 and continue to next

step. Else stop and accept H0(1), . . . ,H0(m).

Step2 Let q′α2 be the α quantile of the null distribution for min{j 6=i1;j=1,...,m}(pj). Reject

H0(2) if p(2) ≤ q′α2 and continue to next step. Else stop and accept H0(2), . . . , H0(m).

Step3 Let q′α3 be the α quantile of the null distribution for min{j /∈{i1,i2};j=1,...,m}(pj). Reject

H0(3) if p(3) ≤ q′α3 and continue to next step. Else stop and accept H0(3), . . . , H0(m).

etc.
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The adjusted p-values are based on the distributions of the maxima of test statistics

over successive nested and decreasing subsets of ordered null hypotheses. In the step-down

maxT procedure, we start with H0(1) which has the smallest unadjusted p-value and also the

largest test statistic |t|(1). The B row maxima of Z comprise the bootstrap null distribution

of max(|T1|, . . . , |Tm|). The tail area of this bootstrap null distribution to the right of |t|(1)
is a bootstrap estimate of p∗(1). Specifically, the proportion of the B row maxima of Z that

are greater than or equal to |t|(1) estimates p∗(1).

Now delete the (i1)th column of Z, so we have a new matrix Z1 with dimension B×(m−1).

The B row maxima of Z1 comprise the bootstrap null distribution of max{j 6=i1;j=1,...,m}(|Tj |).

The tail area of this bootstrap null distribution to the right of |t|(2) is a candidate for

estimating p∗(2). Specifically, let prop2 be the proportion of the B row maxima of Z1 greater

than or equal to |t|(2). Then the tail area prop2 is a candidate for estimating p∗(2). However,

the adjusted p-value for H0(2) depends on the outcome of H0(1) and is the smallest MTP

level α such that both hypotheses are rejected. Therefore, p∗(2) = min{p∗(1), prop2}.

The steps in the paragraph above are repeated for other hypothesis tests to obtain the

adjusted p-values p∗(h), for h = 3, . . . ,m. Specifically, for h = 3, . . . ,m, delete the (ih−1)th

column of Zh−2 to obtain a new matrix Zh−1 with dimension B × (m− h + 1). The B row

maxima of Zh−1 comprise the bootstrap null distribution of max{j /∈{i1,...,ih};j=1,...,m}(|Tj |).

The tail area of this bootstrap null distribution is a candidate for estimating p∗(h). In

particular, the proportion, proph, of the B row maxima of Zh−1 greater than or equal to

|t|(h) is a candidate for estimating p∗(h). However, p∗(h) must satisfy H0(1), . . . ,H0(h) being

rejected, and so p∗(h) = min{p∗(h−1), proph}. It follows that the adjusted p-values can be

written as

mTP ∗
(i) = min

h∈{1,...,i}
{

∑B
b=1(I(maxZh−1(b) ≥ |t|(h)))

B
},

where maxZh−1(b) is the maximum of the bth row in the matrix Zh−1 and I is the

indicator function.

In the step-down minP procedure, the adjusted p-values are the same as for the maxT

procedure, but the algorithm we use to get them is more computationally efficient (Pesarin,
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2001; Ge et al., 2003) at the expense of being less understandable. First, re-arrange the

columns of Z in the order of (i1, . . . , im), and then define a matrix P of dimension B ×m

with the corresponding unadjusted p-values as entries. Therefore, the ith column of P

corresponds to H0(i). Create a new matrix P′ from P such that

P′[i, m] = P[i,m] and P′[i, j] = min{P′[i, j + 1],P[i, j]}, j = 1, . . . ,m− 1,

where P[i, j] is the (i, j)th entry of P. Then we can use P′ to obtain the estimates of the

adjusted p-values as follows. The proportion, prop′j , of elements in the jth column of P′

less than or equal to p(j) is a candidate for estimating p∗(j). Again, however, since this is a

step-down procedure, we should compare the proportion to the previous adjusted p-values in

order to obtain the smallest level α for H0(j) at which all the hypotheses H0(i), i = 1, . . . , j

are rejected. Hence, p∗(j) = max{p∗(j−1), prop′j}. The adjusted p-values can therefore be

expressed as

mPP ∗
(i) = max{

∑B
b=1(I(P′[b, i] ≤ p(i)))

B
,mP P ∗

(i−1)}, i = 1, . . . ,m,

where we define mPP ∗
(0) = 0.

For both the single-step and step-down versions, the maxT and minP multiple testing

procedures of Dudoit and van der Laan are equivalent because the unadjusted p-value is a

monotone decreasing transformation of the test statistics; i.e, there is a one-to-one corre-

spondence between |t|(i) and p(i), i = 1, . . . ,m. Hence,

mTP ∗
(i) =mP P ∗

(i), i = 1, . . . ,m.

Westfall and Young minP

The MTP is the same as for the Dudoit and van der Laan step-down minP procedure,

except that the Westfall and Young minP procedure uses the permutation distribution

instead of the bootstrap distribution to obtain the critical values for q′α. This procedure is
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a step-down procedure that controls FWER under a general dependence structure for the

test statistics.

The B permuted datasets are generated by shuffling the case/control status of the ob-

served data. The algorithm for calculating the adjusted p-values is the same as that of the

Dudoit and van der Laan minP procedure. The adjusted p-values can therefore be expressed

as

WYP ∗
(i) = max{

∑B
b=1(I(P′[b, i] ≤ p(i)))

B
,WY P ∗

(i−1)}, i = 1, . . . ,m,

where we define WYP ∗
(0) = 0.

Other FWER-controlling procedures

Following the Holm step-down procedure, Hochberg (1988) proved that using the same

cut-offs, a step-up procedure is more powerful, although this procedure is only valid under

certain dependence structures for the test statistics (Farcomeni, 2008). Sidak (1967) devel-

oped a single-step procedure with common cut-off 1− m
√

1− α, and after that an improved

step-down procedure with common cut-offs 1− m−j+1
√

1− α for j = 1, . . . ,m (Sidak, 1971).

Both the Sidak procedures are valid under positive orthant dependence (Farcomeni, 2008).

These other FWER-controlling procedures were not applied in this project.

3.2.3 Procedures Controlling FDR

As m increases, so does m0 and the chance of rejecting any true null hypothesis. Thus,

procedures controlling FWER can become too strict and lose power when some of the null

hypotheses are false (i.e. m1 = m − m0 > 0). In these situations, procedures controlling

FDR are a useful alternative. When m and m1 are large FDR-controlling procedures tend

to reject more false null hypotheses than FWER-controlling procedures (Benjamini and

Hochberg, 1995). In this section, we consider some FDR-controlling procedures.

To control the FDR, we applied the general step-up Benjamini and Hochberg (1995)

procedure, the step-down Gavrilov et al. (2009) procedure and the step-down Benjamini
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and Liu (1999) procedure. These procedures are marginal procedures and the latter requires

independent test statistics to be valid. We also applied the joint bootstrap-based procedure

that takes advantage of the positive dependence among test statistics: the single-step Dudoit

and van der Laan empirical Bayes procedure (Dudoit and van der Laan, 2008, page 319).

Table 3.3 summarizes the FDR-controlling procedures applied.

Table 3.3: Summary of FDR-controlling procedures.

marginal joint

single-step — Dudoit and van der Laan empirical Bayes

step-up Benjamini and Hochberg —

step-down Gavrilov∗ —
Benjamini and Liu

∗ the only adaptive procedure.

Benjamini and Hochberg

The Benjamini and Hochberg step-up procedure is the first developed and most com-

monly used method to control FDR. This procedure is a marginal multiple testing procedure.

Benjamini and Hochberg (1995) showed that, if m0 were known, this procedure would con-

trol FDR at level αm0/m for independent test statistics. Later Benjamini and Yekutieli

(2001) extended the result to test statistics that have positive regression dependency with

test statistics from H0.

For this procedure the cut-offs are j
mα, for j = 1, . . . ,m. Since it is a step-up procedure,

we test the least significant hypothesis first, and once we reject one hypothesis, we reject all

other more significant hypotheses. The steps are:

For j = m, . . . , 1:

• If p(j) > j
mα, accept H0(j) and continue.
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• Else reject H0(j), . . . ,H0(1).

Another way to understand the procedure is this: we reject H0(j), j = 1, 2, . . . ,m, if there

exists i ∈ {j, . . . , m} such that p(i) ≤ i
mα. In order to get the adjusted p-value for H0(j),

we use this understanding. To obtain the smallest level α at which H0(j), j = 1, 2, . . . ,m,

would be rejected, we need

p(i) ≤
i

m
α, for some i ∈ {j, . . . , m}.

Thus,

α ≥ m

i
p(i), for some i ∈ {j, . . . , m}.

provided the right-hand sides are ≤ 1. Since only one i is needed to satisfy the inequality,

the inequality becomes

α ≥ min
i∈{j,...,m}

{m

i
p(i)}

provided the minimum ≤ 1. Thus, the adjusted p-values for the Benjamini and Hochberg

step-up procedure are

BHP ∗
(i) = min{ min

j∈{i,...,m}
{p(j) ×

m

j
}, 1}, i = 1, . . . ,m.

From the equation above, we can find that the adjusted p-values for the Benjamini and

Hochberg step-up procedure have to be greater than or equal to their unadjusted p-values

because,

min
j∈{i,...,m}

{p(j) ×
m

j
} = min{p(i) ×

m

i
, p(i+1) ×

m

i + 1
, . . . , p(m) ×

m

m
}

≥ min{p(i) ×
m

m
, p(i+1) ×

m

m
, . . . , p(m) ×

m

m
}

= min{p(i), p(i+1), . . . , p(m)}

= p(i),

and 1 ≥ p(i). Hence, min{minj∈{i,...,m}{p(j) × m
j }, 1} ≥ p(i).

In general, however, the adjusted p-values for FDR-controlling procedures need not be

greater than or equal to their unadjusted p-values.
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Gavrilov

The Gavrilov procedure is an adaptive step-down FDR-controlling procedure which con-

trols the FDR when the test statistics are independent. However, through simulations, the

authors find that the FDR is controlled at or slightly above the desired level under positive

dependence of the test statistics. Conceptually, the procedure is adaptive in that it uses

an estimated value of m0 to revise the Benjamini and Hochberg procedure so that it is less

conservative. The revised Benjamini and Hochberg procedure is based on the following rea-

soning. The usual level α Benjamini and Hochberg procedure has FDR ≤ αm0/m, which is

too conservative when m0/m is small. Gavrilov et al. (2009) note that, if m0 were known,

we could increase power, while continuing to ensure FDR ≤ α, by applying the Benjamini

and Hochberg procedure with level α′ = m0
m α.

The Gavrilov procedure is a simpler case of the multiple-stage linear step-up procedure

of Benjamini et al. (2006), which outlines how to estimate m0. From Table 3.1, we know

S ≤ m1

⇒ R− V = S ≤ m1 = m−m0

⇒ R− V ≤ m−m0

⇒ m0 ≤ m− (R− V ).

Because E(V
R ) ≤ α, we have the approximation V

∼
≤ αR. Thus,

m0 ≤ m− (R− V )
∼
≤ m− (R− αR)

= m− (1− α)R,

and we may set

m̂0 = m− (1− α)R.

If m̂0 is used instead of m in the Benjamini and Hochberg procedure, the resulting adaptive

procedure rejects the same hypotheses as the Gavrilov procedure.
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For the Gavrilov procedure, the cut-offs are iα
m+1−i(1−α) for i = 1, . . . ,m:

• If p(i) ≤ iα
m+1−i(1−α) , reject H0(i) and continue.

• Else accept H0(i), . . . ,H0(m) and stop.

The adjusted p-value for H0(j) is the smallest level α at which H0(j) would be rejected.

But, in a step-down procedure, H0(j) cannot be rejected unless H0(1), . . . ,H0(j) are. There-

fore,

p(i) ≤
iα

m + 1− i(1− α)
, i = 1, . . . , j.

Thus,

α ≥
(m + 1− i)p(i)

(1− p(i))i
, i = 1, . . . , j,

given the numbers on the right-hand side of the equations are ≤ 1. Thus, α should satisfy

α ≥ max
i∈{1,...,j}

{
(m + 1− i)p(i)

(1− p(i))i
},

provided the maximum is ≤ 1. It follows that the adjusted p-values are:

GavP
∗
(i) = min{1, max

j∈{1,...,i}
{
(m + 1− j)p(j)

(1− p(j))j
}} i = 1, . . . ,m. (3.2)

Benjamini and Liu

The Benjamini and Liu procedure, which can be either step-up or step-down, also con-

trols the FDR when the test statistics are independent. Based on a large simulation study,

the step-down procedure turned out to be more powerful when the number of tested hy-

potheses was small and many of the hypotheses were far from being true (Benjamini and

Liu, 1999). We will thus only consider the Benjamini and Liu step-down procedure. For the

procedure, the cut-offs are 1− [1−min(1, m
m−j+1α)]

1
m−j+1 , j = 1, . . . ,m:

• If p(i) ≤ 1− [1−min(1, m
m−i+1α)]

1
m−i+1 , reject H0(i) and continue.
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• Else accept H0(i), . . . ,H0(m) and stop.

The adjusted p-value for H0(j) is the smallest level α at which H0(j) would be rejected.

In a step-down procedure, however, H0(j) cannot be rejected unless H0(1), . . . ,H0(j) are.

Therefore,

p(i) ≤ 1− [1−min(1,
m

m− i + 1
α)]

1
m−i+1 , i = 1, . . . , j,

or

1− (1− p(i))
m−i+1 ≤ min{1,

m

m− i + 1
α}, i = 1, . . . , j.

The latter set of inequalities can be rewritten as

1− (1− p(i))
m−i+1 ≤ 1 and 1− (1− p(i))

m−i+1 ≤ m

m− i + 1
α, i = 1, . . . , j.

Since 1− (1− p(i))m−i+1 ≤ 1 for any i, α satisfies all j inequalities when

α ≥ m− i + 1
m

× [1− (1− p(i))
m−i+1], i = 1, . . . , j.

Moreover, the right-hand side is never greater than 1 because m−i+1
m ≤ 1 and 1 − (1 −

p(i))m−i+1 ≤ 1. Hence,

α ≥ max
i∈{1,...,j}

{m− i + 1
m

× [1− (1− p(i))
m−i+1]}.

Therefore, the adjusted p-values equation is:

BLP ∗
(i) = max

j∈{1,...,i}
{m− j + 1

m
× [1− (1− p(j))

m−j+1]}, i = 1, . . . ,m.

Dudoit and van der Laan empirical Bayes

The Dudoit and van der Laan empirical Bayes procedure is a bootstrap-based joint MTP

(Dudoit and van der Laan, 2008, page 298). For a given level α at which to control the

FDR, this single-step procedure uses a common cut-off c(α) for rejecting the test statistics:
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Reject H0i if |Ti| ≥ c(α). If we knew the true distribution of the test statistics, we could let

c(α) be the smallest c such that

FDR = E

[
V (c)

V (c) + S(c)

]
≤ α,

where

V (c) =
∑
i∈S0

I(|Ti| ≥ c), S(c) =
∑
i∈Sc

0

I(|Ti| ≥ c),

S0 is the set of indices of the true null hypotheses and Sc
0 is the complement of S0. However,

the distribution of V (c)
V (c)+S(c) is unknown and so is the set S0.

If S0 were known, the distribution of the test statistics corresponding to null hypotheses

in S0 could be approximated by the bootstrap null distribution. Let the number of rejected

hypotheses in S0 under this bootstrap null distribution be

V ′ =
∑
i∈S0

I(|T ′
i | ≥ c),

where the T ′
i come from the bootstrap null distribution. Dudoit et al. (2004) prove that,

asymptotically, V ′ tends to be larger than V . As a result, asymptotically, V ′

V ′+S tends to be

larger than V
V +S . Though we don’t know S0, we could imagine using another set of indices

s̃0 instead, guessed so that s̃0 ⊃ S0. Let

Ṽ =
∑
i∈s̃0

I(|T ′
i | ≥ c),

be the number of rejected hypotheses in s̃0 under the bootstrap null distribution and

S̃ =
∑
i∈s̃c

0

I(|Ti| ≥ c)

be the number of rejected hypotheses in s̃c
0 under the true data generating distribution.

Then Ṽ ≥ V ′ because Ṽ is a sum of rejection decisions over a set s̃0 as large or larger than

S0 and S̃ ≤ S because S̃ is a sum of rejection decisions over a set s̃ c
0 as small or smaller

than Sc
0. Therefore,

Ṽ

Ṽ + S̃
≥ V ′

V ′ + S
.
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But, asymptotically, V ′

V ′+S tends to be larger than V
V +S and so we can control E(V/(V +S))

by controlling E
(

Ṽ
Ṽ +S̃

)
. However, a guessed set s̃0 that is too big can lead to type 1 error

rates that are smaller than the nominal level. To protect against this possibility, van der

Laan et al. (2005) propose hedging by repeatedly drawing S̃0 from a certain distribution

(discussed below) constructed so that these random guessed sets tend to be larger than S0

for finite samples and, for large samples, approach S0 with probability 1.

A random guessed set S̃0 is constructed by sampling m independent Bernoulli random

variables indicating the truth of the corresponding null hypothesis. If the ith Bernoulli

random variable is a success, the ith null hypothesis is included in the set. Each Bernoulli

random variable is assigned a success probability equal to the posterior probability of the

corresponding hypothesis given its test statistic. This posterior probability is calculated

under a working model for the marginal distribution f of the test statistics such that

f = π0f0 + (1− π0)f1,

where π0 = m0/m, f0 is the null distribution of the test statistics and f1 is the non-null

distribution. Under this working model, the required posterior probability is

Pr(H0i|Ti) = π0
f0(Ti)
f(Ti)

. (3.3)

For good finite-sample behaviour, the random sets should tend to cover the actual set S0

of true null hypotheses. Thus, setting π0 = 1 is recommended, even thought this can be

too conservative when π0 = m0
m < 1. We estimate f0 by a normal distribution with mean

zero and variance equal to the sample variance of the bootstrap null distribution. We use a

kernel density estimator to estimate f from the uncentered bootstrapped test statistics.

Once S̃0 is sampled, we may sample Ṽ and S̃. To sample Ṽ , the number of rejected

hypotheses in S̃0 under the bootstrap null distribution, test statistics are sampled from

the bootstrap null distribution. However, sampling S̃, the number of rejected hypotheses

in S̃ c
0 under the true data generating distribution, is not possible because the true data

generating distribution is unknown. van der Laan et al. (2005) suggest approximating the

distribution of S̃ by the distribution of the number of rejections in S̃ c
0 based on the observed
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test statistics. However, for finite samples, this ignores the variation in S̃ due to randomness

in the test statistics. Instead we propose to use the number of rejections in S̃ c
0 based on

test statistics sampled from the uncentered bootstrap distribution.

Therefore, the distribution of V (c)
V (c)+S(c) is estimated by the distribution of Ṽ (c)

Ṽ (c)+S̃(c)
.

Substituting this related proportion leads to the following procedure:

• For a given level α, let c(α) be that smallest c such that

g(c) ≡ E

[
Ṽ (c)

Ṽ (c) + S̃(c)

]
≤ α.

• Reject H0i if |Ti| ≥ c(α).

To obtain the adjusted p-values from this procedure, we could naively try p∗i = g(|ti|)

in the hopes that g(c) is monotone decreasing. However, for finite sample sizes, g(c) can

be non-monotone as shown in Figure 3.1, leading to the undesirable behaviour that p∗(i) =

g(|t|(i)) < g(|t|(j)) = p∗(j) for some i > j. To avoid this undesirable behaviour, we reason as

follows. As shown in Figure 3.1, for a point c∗ at which g(c) starts to increase, let c′∗ > c∗

be the next largest value such that g(c′∗) = g(c∗) = α∗. Suppose c∗ < |ti| < c′∗. Then, from

the figure, we can see that

α∗ = inf{g(c) : |ti| ≥ c}.

The cut-off function is defined as c(α) = inf{c : g(c) ≤ α}. Hence c(α∗) = c∗ and, for

any α < α∗, c(α) > c′∗ > |ti| > c∗ = c(α∗). The adjusted p-value for H0i is defined as

p∗i = inf{α : |ti| ≥ c(α)} and it follows that p∗i = α∗. But α∗ = inf{g(c) : |ti| ≥ c} and so we

may conclude that

p∗i = inf{g(c) : |ti| ≥ c} or p∗(i) = inf{g(c) : |t|(i) ≥ c}.

To approximate this infimum, we can take the minimum over the set of m observed test

statistics:

p∗(i) ≈ min
j∈{1,..,m}

{
g(|t|(j)) : |t|(i) ≥ |t|(j)

}
= min

j∈{i,..,m}
{g(|t|(j))} (3.4)
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c

g(
c)

c* |ti| c'*

αα *

Figure 3.1: Hypothetical FDR curve from the empirical Bayes procedure.

R pseudo-code to implement the procedure is provided in the Appendix A.

Other FDR-controlling procedures

Although the Benjamini and Hochberg procedure controls FDR for test statistics that

have positive regression dependency with test statistics from the set of true null hypothe-

ses, the procedure is conservative when false null hypotheses exist (m1 > 0). Therefore,

Benjamini and Hochberg (2000) developed an adaptive step-up procedure to improve the

power of their original procedure. Their adaptive procedure estimates the number of true
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null hypotheses m̂0 first, and then use this estimator instead of m in the cut-offs. Thus, the

cut-offs are j
m̂0

α, for j = 1, . . . ,m. Their adaptive procedure controls FDR for independent

test statistics, but is still useful in cases of dependency. Storey et al. (2004) developed

another adaptive procedure based on their estimator of the number of true null hypothe-

ses. The Storey procedure is valid when weak dependence exists and the number of tests is

large. A resampling-based procedure of Yekutieli and Benjamini (1999) controls FDR under

dependence, but this procedure is not guaranteed to yield FDR control (Farcomeni, 2008).

Previous studies have shown that these other FDR-controlling procedures all have their own

advantages in certain situations. However, we do not examine them in this project due to

time limitations.

3.3 Example

To illustrate the definitions and procedures, we go through the following example.

Example 1: Suppose T1 and T2 are independent normally distributed test statis-

tics with variance 1 and means µ1 = 10 and µ2 = 0, respectively. We know that

the test statistics are independent and normally distributed with variance 1 but

we don’t know their means. We would like to use data to simultaneously test

H0i : µi = 0 versus H1i : µi 6= 0, i = 1, 2.

We collect data that leads to observed test statistics t1 = 9.7 and t2 = −0.8.

In Example 1, the test statistic T1 ∼ N(0, 1) under H01. The single-test FWER for H01

when H01 is false is zero; otherwise it is the tail probability

Pr(V = 1|H01) = Pr(|T1| ≥ qα|H01) = α,

where critical value qα is the (1 − α)th quantile of |T1| under H01 : µ1 = 0. We only

worry about controlling the single-test FWER when H01 is true because when it is false,
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FWER = 0. To control the single-test FWER at level α, we reject H01 if |t1| ≥ qα given

T1 = t1. The unadjusted p-value is therefore the smallest α at which |t1| ≥ qα. Any quantile

q to the left of |t1| will satisfy the inequality, but the one that has the smallest tail probability

is q = |t1|. Hence, the unadjusted p-value for H01 is p1 = Pr(|T1| ≥ |t1||H01). The numeric

values of the unadjusted p-values for the two tests in the example are < 1 ∗ 10−16 and 0.42.

Applying the step-down multiple testing procedure of Gavrilov et al. (2009), we use the

equation (3.2) of GavP
∗
(i), i = 1, . . . ,m to calculate the adjusted p-values. Substituting the

numeric values of p(1) = 0 and p(2) = 0.42, we have GavP
∗
(1) = 0 and GavP

∗
(2) = 0.36. The

adjusted p-value for the second hypothesis test (0.36) is less than the unadjusted p-value

(0.42). Intuitively, the small p(1) observed from our data indicates that H0(1) is a sure bet

for a correct rejection. Thus, a step-down procedure controlling E(V
R ) could reject H0(2)

at the second step, in spite of the large p(2), because there is room for a mistake given

the certainty about H0(1) being false. This example shows that, in general, the adjusted

p-values for FDR-controlling procedures need not be bigger than the unadjusted p-values,

in contrast to what is shown in Section 3.2.1 for FWER-controlling procedures.
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Analysis

We fit the models outlined in Section 3.1, and got unadjusted p-values for all the organochlo-

rine exposures in our study. Then, we applied all the MTPs we considered in Chapter 3.

Our aim was to control the overall Type I error rate at level 5%.

In order to approximate the marginal distributions of the test statistics, we generated

5000 bootstrap samples and calculated twenty-two Wald statistics for each sample. Boxplots

of the twenty-two distributions are shown in Figure 4.1. The boxes are ordered by the size

of the bootstrapped means of the test statistics. The red boxes with red labels represent

the organochlorines with more than 20% subjects below the detection limit. Four out of

twenty-two organochlorines have test statistics with bootstrapped 75th percentiles below 2.

Thus, we can roughly estimate that about four null hypotheses are true, m0 ≈ 4.

Figure 4.2 shows the proportions of subjects with organochlorine levels below the detec-

tion limit for each organochlorine. Six organochlorines, PCB 28, cis-Nonachlor, PCB 105,

p, p′-DDT, mirex and PCB 183, have more than 20% of subjects with levels below the detec-

tion limit and they are marked by red filled squares in all figures. Going back to check Figure

4.1, we find that the organochlorines with higher proportions below the detection limit tend

to have smaller test statistics. Figure 4.3 shows the relationship between the unadjusted

p-value and the proportion below the detection limit. The 0.05 value of the unadjusted

p-value is marked by the dashed line. As can be clearly seen, the four organochlorines with

33
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Figure 4.1: Boxplot of bootstrap test statistics.

the largest proportion below the detection limit have the largest p-values.

We also examined the bootstrap test statistic correlations to get a better idea of the

dependence structure. Figure 4.4 is the histogram of the test statistic correlations. No

negative correlation is observed, and around 50 out of 231 correlations are greater than

0.6. Figure 4.5 is the heatmap of the squared Pearson correlations between the bootstrap

test statistics, where red represents correlation 1 and white correlation 0. The names of

the organochlorines with more than 20% subjects below the detection limit are in red with

a star mark follows. We can see that the test statistics for some of organochlorines are
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Figure 4.2: Plot of ordered proportions below detection limit.

highly correlated (e.g. PCB 156, PCB 187, PCB 170 and PCB 180), while the test statistics

for some other organochlorines have very low correlations with all other test statistics for

other ones (e.g. mirex, PCB 28 and β-HCCH). For each organochlorine, we calculated the

average correlation between its test statistic and the test statistics for all other organochlo-

rines. Figure 4.6 shows the relationship between the average correlations for organochlorines

and the proportion of subjects below the detection limit. The four points with the lowest

average correlations are β-HCCH, mirex, p, p′-DDT and PCB 28. Except for β-HCCH,
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these organochlorines are among the six organochlorines which have more than 20% of sub-

jects below the detection limit. Therefore, the test statistics of organochlorines with higher

proportions below the detection limit tend to have lower average correlation with the test

statistics of other organochlorines.

4.1 Results for FWER-controlling procedures

Table 4.1 shows the unadjusted p-values and the adjusted p-values for all the FWER-

controlling procedures we considered. The p-values are rounded to 4 decimal places and

a horizontal line indicating the 0.05 threshold is shown. Since the Dudoit and van der Laan

maxT and minP procedures are equivalent in this case, only one column for each of the

single-step (DL-SS) and step-down procedures (DL-SD) are shown. Figure 4.7 plots of the

unadjusted p-values versus the adjusted p-values for the FWER-controlling procedures, on

the log10 scale for both axes. The lower the curve is, the smaller the adjusted p-values are.

Comparing the entries in the table and the curves in the plot, we can see that the adjusted

p-values for single-step procedures are generally larger than those of step-down procedures

for a specific organochlorine analyte. The Dudoit and van der Laan procedures are good

examples of this. The adjusted p-values for their step-down procedures are smaller than

the adjusted p-values for their single-step procedures. For a 0.05 MTP level, the Bonferroni

procedure has the least number (seven) of adjusted p-values less than the threshold while

all the other procedures have nine adjusted p-values less than the 0.05 threshold.

Take PCB 180 as an example. First, from Table 4.1, we see that the Bonferroni procedure

does not reject the null hypothesis for it at the 0.05 level, but all other procedures do.

Second, for PCB 180, all the adjusted p-values from marginal MTPs are greater than those

from joint MTPs. Finally, the step-down procedures give smaller adjusted p-values for PCB

180 than the single-step procedures.
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4.2 Results for FDR-controlling procedures

Table 4.2 shows the unadjusted p-values and the adjusted p-values for all the FDR-controlling

procedures we considered. As in Table 4.1, the p-values are rounded to 4 decimal places and

a horizontal line indicating the 0.05 threshold is shown. For the empirical Bayes procedure,

we approximated the distribution of S̃ by the distribution of the number of rejections in S̃ c
0

based on both the observed test statistics and the test statistics sampled from the uncen-

tered bootstrap distribution. The two methods gave similar results, so we only provide the

results based on the test statistics sampled from the uncentered bootstrap distribution in

the table. Figure 4.8 plots of the unadjusted p-values versus the adjusted p-values for the

FDR-controlling procedures, on the log10 scale for both axes. As in Figure 4.7, the lower

the curve is, the smaller the adjusted p-values are.

Comparing the entries in the table, the adjusted p-values for all the procedures do

not show a pattern related to whether the procedure is single-step or stepwise procedure.

For a 0.05 MTP level, the Benjamini and Liu procedure has the least number of adjusted

p-values less than the threshold; twelve out of twenty-two. The numbers of rejected null hy-

potheses for the Benjamini and Hochberg, the Gavrilov and the empirical Bayes procedures

are respectively fourteen, eighteen and fifteen. Except for the largest unadjusted p-value,

the Gavrilov procedure has the smallest adjusted p-values; and except for the four largest

unadjusted p-values, the Benjamini and Liu procedure has the largest adjusted p-values.

The empirical Bayes procedure (the only joint procedure considered) does not always have

smaller adjusted p-values than the marginal procedures.

Take the organochlorine p, p′-DDE as an example. Neither the Benjamini and Hochberg

nor the Benjamini and Liu procedures reject the null hypothesis at the 0.05 threshold.

However, the adjusted p-value for the Benjamini and Hochberg procedure is smaller (0.0540)

than the one for the Benjamini and Liu procedure (0.0944). Both the Gavrilov and the

empirical Bayes procedures reject the null hypothesis, but the adjusted p-value for the

empirical Bayes procedure (0.0486) is twice Gavrilov’s adjusted p-value (0.0204). In fact,

for organochlorines with unadjusted p-values greater than 0.0033, the adjusted p-values
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for the empirical Bayes procedure are about twice the adjusted p-values for the Gavrilov

procedure. However, the Gavrilov procedure is adaptive: it estimates m̂0 = 4.9, and uses

this estimate to revise the Benjamini and Hochberg procedure in an attempt to gain power.

By contrast, all the other MTPs, including the empirical Bayes procedure, are not adaptive

and conservatively take m0 = m = 22.
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Figure 4.7: Relationship between adjusted and unadjusted p-values, on the log10-scale, for
FWER-controlling procedures. The locations of unadjusted p-values are marked by the rug on the

x-axis. The 5% cut-off for adjusted p-values is marked by a horizontal dashed line. ‘SS DL’, Dudoit and van

der Laan’s single-step maxT/minP procedure; ‘SD DL’, Dudoit and van der Laan’s step-down maxT/minP

procedure; ‘WY minP’, Westfall and Young minP procedure. The smallest adjusted p-values for the ‘SS DL’

and ‘SD DL’ procedures are 0 and are not shown.
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Figure 4.8: Relationship between adjusted and unadjusted p-values, on the log10-scale,
for FDR-controlling procedures. ‘DL’, Dudoit and van der Laan’s empirical Bayes procedure; ‘BL’,

Benjamini and Liu procedure; ‘BH’, Benjamini and Hochberg procedure; ‘Gav’, Gavrilov procedure. The

smallest adjusted p-values for the ‘DL’ and ‘Gav’ procedures are 0 and are not shown.



Chapter 5

Conclusions

5.1 Discussion

In this project, we discussed multiple testing procedures controlling the family-wise error

rate and the false discovery rate using the organochlorine dataset from the NHL study.

The organochlorine analytes with large proportions (over 20%) of subjects below the

detection limit tend to have large unadjusted p-values and low correlations with the test

statistics. If we had assays with lower detection limit for these organochlorines, we may have

found stronger associations between these organochlorines and NHL; and these organochlo-

rines may have been highly correlated with the test statistics for other organochlorines.

For FWER-controlling procedures, the stepwise procedures have smaller adjusted p-

values than the single-step procedures, as expected. This suggests that the stepwise proce-

dures are more powerful than the single-step procedures. The joint procedures also tend to

have smaller adjusted p-values than the marginal procedures, as expected. Thus, the joint

procedures appear to be more powerful than the marginal procedures. Despite the high cor-

relations between some of the organochlorine analytes (see Figure 4.4), the joint procedures

which account for dependence structure among the test statistics do not lead to dramatic

reductions in adjusted p-values. All the procedures controlling FWER perform similarly,

and suggest more power than the Bonferroni procedure which is known to be conservative.

47
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For FDR-controlling procedures, the Benjamini and Liu procedure, which assumes in-

dependent test statistics, stands out for rejecting two fewer hypotheses than the benchmark

Benjamini and Hochberg procedure. The joint empirical Bayes procedure only rejects one

more hypothesis than the marginal benchmark procedure, perhaps because the benchmark

procedure can control FDR under positive regression dependency. All the test statistic

correlations are positive for our dataset, and this situation is a special case of the posi-

tive regression dependency (Benjamini and Yekutieli, 2001). The most striking comparison

against the benchmark procedure is for the adaptive Gavrilov procedure which rejects four

more hypotheses. Interestingly, the marginal Gavrilov procedure rejects three more hy-

potheses than the joint empirical Bayes procedure. As test statistic correlations are quite

high (see Figure 4.4), one might expect more power from the joint procedure. The reason

for the apparent decreased power might be that we use π0 = m0/m = 1 to estimate the

posterior probability in the empirical Bayes procedure, while the Gavrilov procedure uses

the estimate m̂0/m = 0.22. In Chapter 4, from the boxplots of the marginal distributions

of test statistics, we roughly estimated that only four out of twenty-two null hypotheses are

true. Therefore, the empirical Bayes procedure is likely too conservative, and the Gavrilov

procedure would be expected to have more power. For this specific dataset, taking advantage

of small m0
m seems more important than taking advantage of dependence.

If an adaptive empirical Bayes procedure using the estimator of m̂0 in the Gavrilov

procedure is applied, we expect more null hypotheses will be rejected. The test statistics

are highly correlated and a joint procedure that takes advantage of the positive dependence

structure among the test statistics, while simultaneously taking advantage of small m0/m

should reject at least the same number of null hypotheses as that rejected by the marginal

Gavrilov procedure.

Finally, we did not consider adaptive FWER-controlling procedures in this project. How-

ever, if we consider an adaptive version of the Bonferroni procedure that also uses the estima-

tor of m̂0 as in the Gavrilov procedure, this adaptive FWER-controlling procedure rejects

five more null hypotheses than the non-adaptive Bonferroni procedure. Again, for this
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dataset, adaptive procedures appear to have better power than non-adaptive procedures.

5.2 Future work

A direction for future research would be to compare the statistical properties of the various

MTPs by way of a simulation study. Knowing which null hypotheses are false, we could

find which MTPs correctly reject the false null hypotheses for any simulated data set. This

would allow us to understand which MTPs have optimal statistical properties in different

situations controlled by simulation parameters such as:

• The number of tested null hypotheses, m.

• The proportion of tested null hypotheses that are true, m0/m.

• The dependence structure among the test statistics.

In the simulation study, we could also examine additional MTPs including those reviewed

but not applied in this project.

In the future, we also plan to apply these MTPs to a new dataset from the NHL study,

to analyze the associations between NHL and variants in candidate genes. This dataset has

information for about 1500 genetic variants, known as single-nucleotide polymorphisms or

SNPs, measured on the NHL cases and controls. In this project, we only tested 22 null

hypotheses simultaneously. However, for the new dataset, we will test hundreds of null

hypotheses.



Appendix A

R pseudo-code

A.1 Dudoit and van der Laan’s empirical Bayes procedure

In this appendix, we will use the notation and bootstrapped data defined in the description

of the Dudoit and van der Laan maxT/minP procedures in Chapter 3. We estimate the

density f in equation (3.3) at a set of 13000 fixed points by

dens<-density(Tmat,n=13000,from=-4.5,to=8.499)

The limits of -4.5 and 8.499 are set so that all the observed values of the bootstrapped

test statistics are included.

We use linear interpolation in f.func() to return the density at any value of a test

statistic.

f.func<-function(t,dens) {

temp.int<-floor((t--4.5)/0.001+1)

temp.f<-dens$y[temp.int]+(t-dens$x[temp.int])/0.001

*(dens$y[temp.int+1]-dens$y[temp.int])

50
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return(temp.f)

}

We program the posterior probability (q-value) function in equation (3.3) as

q.func<-function(t,dens,pi0) {

temp.q<-pi0*dnorm(t,0,var.tmat)/f.func(t,dens)

temp.q<-pmin(1,temp.q)

return(temp.q)

}

where var.tmat is the variance of the bootstrapped test statistics and pi0 is the π0

value. Thus, the q-values can be calculated as

q<-q.func(realT,dens,pi0)

where realT is the observed test statistics. Following step 1 of procedure 7.1 in Dudoit

and van der Laan (2008, page 298-299), we use q to generate B binary vectors of length m

representing “guessed” true and false null hypotheses for each bootstrap replicate. We put

these binary vectors row-by-row into a B ×m matrix H. The binary matrix H has elements

coded as 1 for guessed true null hypotheses and 0 for guessed false null hypotheses. For

example,

H<-matrix(rbinom(n=B*m,size=1, q)),nrow=B,byrow=T)
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Then we follow step 3 of the common cut-off version of the procedure, which is modified

to control for FDR as suggested on page 319 of Dudoit and van der Laan (2008).

The matrix Z and a given common cut-off γ for the test statistics are used to create a

matrix R1 of rejected hypotheses under the bootstrap null distribution

R1<-matrix(NA, nrow=B, ncol=m)

for(i in 1:m)

R1[,i]<-as.numeric(abs(Z[,i])> gamma)

The matrices R1 and H are then used to create a vector V with B elements giving the

number of rejected hypotheses in each bootstrapped null dataset, coming from null hypothe-

ses guessed to be true. V is constructed so that, asymptotically, it tends to be larger than

V , the random variable describing the number of incorrectly rejected null hypotheses under

the true data-generating distribution.

V<-rowSums(H*R1)

Next we create a B ×m matrix R2 of rejected hypotheses under the bootstrap approxi-

mation to the true test statistics distribution:

R2<-matrix(NA,nrow=B, ncol=m)

for(i in 1:m)

R2[,i]<-as.numeric(abs(T[,i]) > gamma)

The matrices R2 and H are then used to create a vector S with B elements giving the

guessed number of correctly rejected null hypotheses in each bootstrapped data set:
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S<-rowSums((1-H)*R2)

To get the adjusted p-value for H0(i), i = 1, . . . ,m, we use |t|(i) as the common cut-off

for the test statistics in the calculation of R1 and R2. A candidate for the estimate of the

adjusted p-value p∗(i) is the average of V/(V + S) over the B bootstrap replicates using the

cut-off |t|(i). However, following equation (3.4), we take the minimum

p∗(i) = min
j∈{i+1,...,m}

{p∗(j)}.
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