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Abstract

Modern mobile devices have evolved into small computers that can render multimedia

streaming content anywhere and anytime. These devices can extend the viewing time of

users and provide more business opportunities for service providers. Mobile devices, how-

ever, make a challenging platform for providing high-quality multimedia services. The goal

of this thesis is to identify these challenges from various aspects, and propose efficient and

systematic solutions to solve them. In particular, we study mobile video broadcast net-

works in which a base station concurrently transmits multiple video streams over a shared

air medium to many mobile devices. We propose algorithms to optimize various quality-

of-service metrics, including streaming quality, bandwidth efficiency, energy saving, and

channel switching delay. We analytically analyze the proposed algorithms, and we evaluate

them using numerical methods and simulations. In addition, we implement the algorithms

in a real testbed to show their practicality and efficiency. Our analytical, simulation, and

experimental results indicate that the proposed algorithms can: (i) maximize energy saving

of mobile devices, (ii) maximize bandwidth efficiency of the wireless network, (iii) minimize

channel switching delays on mobile devices, and (iv) efficiently support heterogeneous mo-

bile devices. Last, we give network operators guidelines on choosing solutions suitable for

their mobile broadcast networks, which allow them to provide millions of mobile users much

better viewing experiences, attract more subscribers, and thus increase the revenues.

Keywords: video streaming; mobile video; broadcast networks; transmission schedul-

ing; scalable video coding
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Chapter 1

Introduction

In this chapter, we introduce mobile video broadcast networks and highlight important

performance metrics in them. We describe the challenges of providing high-quality streaming

services in these networks, and we present several research problems to overcome these

challenges. We then summarize our contributions on solving these research problems. Last,

we give the organization of the thesis.

1.1 Introduction

Technology advances have tremendously increased the communication and computational

powers of many mobile devices, such as laptops, PDAs (Personal Digital Assistants), smart

phones, and PMPs (Portable Media Players). These mobile devices, despite their small sizes,

have evolved to almost full-fledged mobile computers and can render multimedia content.

Therefore, increasingly more users use these mobile devices to watch videos streamed over

wireless networks, and they demand more contents at better quality. For example, video

broadcast services have been deployed in parts of Europe, Africa, and Asia, and in pilot-

testing in several locations in North America and South America [1]. In addition, market

forecasts reveal that video streaming, such as mobile TV, will catch up with gaming and

music, and become the most popular application on mobile devices: more than 140 million

subscribers worldwide, and multi-billion dollar revenues in North America by 2011 [2].

While videos can be delivered using unicast over a cellular network to individual mobile

devices, doing so incurs high bandwidth requirement, which grows linearly with the number

of mobile devices. Therefore, delivering videos over a cellular network may easily overload

1
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Figure 1.1: Time slicing in mobile broadcast networks to save energy.

the network, and thus does not scale well. Analysis, a market research group, predicted

that 3G cellular networks would be overloaded with only 40 percent of cellular phone users

watching eight minutes of video per day [3]. In fact, a recent news report reveals that smart

phone users are already very close to saturate the bandwidth of 3G cellular networks as of

in 2009 [4].

In contrast, streaming videos from a base station using one-to-many multicast/broadcast

service achieves high spectrum efficiency, and can support a large number of mobile de-

vices. Therefore, we consider video streaming over wireless networks that support multi-

cast/broadcast, and we call these wireless networks as broadcast networks. Sample broad-

cast networks include WiMAX networks [5, 6], MBMS (Multimedia Broadcast Multicast

Services) cellular networks [7], and mobile TV broadcast networks such as DVB-H (Digi-

tal Video Broadcast-Handheld) [8–11], MediaFLO (Forward Link Only) [12,13], and ATSC

(Advanced Television Systems Committee) mobile DTV [14] networks. While broadcast

networks naturally support live, TV-like, video streaming, they can also support Video-on-

Demand (VoD) services using various periodic broadcast techniques. With periodic broad-

cast, each video is divided into several segments, and each segment is broadcast on multiple

broadcast channels at different times [15]. Therefore, periodic broadcast enables mobile

devices to quickly find desired segments no matter when they tune to that video. While

we do not discuss VoD services in this thesis, most of our solutions can be integrated with

techniques such as periodic broadcast to support VoD services.

In broadcast networks, a base station concurrently broadcasts multiple video streams

over a shared air medium to many mobile devices. Mobile devices have stringent battery ca-

pacity and heat dissipation requirements. Thus, they cannot accommodate additional chips

that consume too much energy. For instance, the DVB-H standard [16] states that, with
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current battery and semiconductor technologies, signal receivers with power consumption

higher than 100 mW cannot be integrated with mobile devices. However, even the state-of-

the-art prototype chips consume about 200 mW [17], while commercial chips consume more

than 400 mW [18]. Since energy consumption on mobile devices is critical, many broadcast

standards, such as DVB-H [8,10,11] and MediaFLO [12], dictate using energy saving schemes

to increase the viewing time on mobile devices. The typical scheme for saving energy is to

make the base station broadcast the video data of a video stream in bursts at a bit rate

much higher than its encoding rate. Mobile devices, therefore, can receive a burst of traffic

and turn off their receiving circuits until the next burst. This is called time slicing, and it

is illustrated in Figure 1.1 for one video stream. Previous works in the literature show that

time slicing is effective in reducing energy consumption on mobile devices [16, 19]. While

time slicing enables mobile devices to save energy, it increases the channel switching delay,

which is the time that a user waits before s/he starts viewing a selected video stream when

a change of video stream is requested by that user. The switching delay is an important

performance metric, because many users quickly flip through several streaming videos before

they decide on watching the specific ones. Long and variable switching delays are annoying

to users and may turn them away from the video broadcast service. Therefore, operators of

video broadcast networks have to maintain low and constant switching delays. The energy

saving and the channel switching delay are two of the most important Quality-of-Service

(QoS) metrics for mobile users.

While network operators must strive to achieve high energy saving and short channel

switching delay to retain their subscribers, they also need to maintain high bandwidth effi-

ciency. Bandwidth efficiency refers to the number of video streams that can be concurrently

broadcast at a quality no worse than a given target quality within a bandwidth limita-

tion. Bandwidth efficiency is critical to network operators because the wireless spectrum is

expensive. For example, AT&T sold a WiMAX spectrum in the southeast USA to Clear-

wire for $300 million [20], and Inukshuk paid $46 million to license a WiMAX spectrum

in Canada [21]. Hence, to be commercially viable, network operators need to achieve high

bandwidth efficiency and broadcast as many video streams as possible for higher profits.

In addition to bandwidth efficiency, supporting mobile devices with heterogeneous re-

sources, such as screen resolution, decoder capability, and battery level, is also critical for

network operators in order to increase the number of service subscribers. To support het-

erogeneous devices, network operators may broadcast each video in multiple versions, where
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each version is suitable for one mobile device type. This is called multi-version video broad-

casting. Multi-version broadcasting is inefficient in terms of bandwidth as it effectively

reduces the number of different videos that can be concurrently broadcast. Hence, network

operators must carefully prepare the broadcast signals in order to support heterogeneous

mobile devices without sacrificing bandwidth efficiency. The bandwidth efficiency and the

support of heterogeneous mobile devices are two of the most important goals for network

operators.

In this thesis, we study mobile video broadcast networks in which a base station concur-

rently transmits multiple video streams over a shared air medium to many mobile devices.

We consider three QoS metrics: energy saving and channel switching delay on mobile de-

vices, and bandwidth efficiency in broadcast networks. The goal of this thesis is to optimize

broadcast networks from various aspects: we propose several algorithms to (i) maximize

energy saving of mobile devices, (ii) maximize bandwidth efficiency of the network, (iii)

minimize channel switching delays on mobile devices, and (iv) efficiently support hetero-

geneous mobile devices. Implementing our algorithms in mobile video broadcast networks

provides millions of users better streaming quality and higher user satisfaction, and allows

network operators to achieve higher bandwidth efficiency and support more mobile devices

for higher revenues.

1.2 Thesis Contributions

In this section, we summarize the research problems studied and addressed in this thesis.

We also highlight our contributions for solving each problem.

1.2.1 Energy Saving of Mobile Devices

Time slicing, illustrated in Figure 1.1, is widely used in mobile video broadcast networks to

save energy on mobile devices and increase users’ viewing times. While time slicing leads

to energy conservation, burst schedules, which specify the burst start times and sizes, must

be carefully composed to guarantee streaming quality and proper functioning of the system.

This is because of a number of reasons. First, since mobile devices have limited receiving

buffer capacity, arbitrary burst schedules can result in buffer over/underflow instances that

cause playout glitches and degrade viewing experience. Second, as several video streams

share the same air medium, burst schedules must not have any burst conflicts, which occur
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when two or more bursts intersect with each other in time. Third, turning on receiving

circuits to receive next burst is not instantaneous, because it takes receiving circuitry some

time to power up and lock on to the radio signals before data can be demodulated [16].

This imposes overhead on energy consumption and this overhead must be considered when

constructing burst schedules.

Current practices of computing burst schedules are rather ad-hoc. For example, the

heuristic method proposed in the DVB-H standard documents [16, pp. 66] provides schedules

for only one video stream. This heuristic simply allocates a new burst only after the data

of its preceding burst is consumed by the player at the receiver. This cannot be generalized

to multiple video streams with different bit rates, because the computed schedule may have

burst conflicts and may result in buffer under/overflow instances. Thus, many network

deployments had to resort to encoding all video streams at the same bit rate, and simply

stagger video streams next to each other. For example, the trial mobile TV service in Paris

broadcast 13 video streams all encoded at 270 kbps [22]. Encoding all video streams at

the same bit rate is clearly inefficient and may yield huge quality variations among different

kinds of video streams. For example, encoding a sports game requires a much higher bit rate

than encoding a talk show. If we encode all video streams at the same high bit rate, some

video streams may unnecessarily be allocated more bandwidth than they require and this

extra bandwidth yields only marginal or no visual quality improvement. Thus, the expensive

wireless bandwidth of the broadcast network could be wasted. On the other hand, if we

encode all video streams at the same low or moderate bit rate, not all video streams will

have good visual quality, which is annoying to users of a commercial service.

To the best of our knowledge, there exist no systematic ways in the literature that solve

the problem of burst scheduling of video streams coded at different bit rates in order to

maximize energy saving on mobile devices, despite the importance of energy consumption

on mobile devices. We formally describe the burst scheduling problem to maximize energy

saving in the following.

Problem 1 (Maximizing Energy Saving). Consider several video streams to be concurrently

broadcast from a base station to multiple mobile devices. Each video stream is broadcast as

bursts of data to save the energy of mobile devices. Construct the optimal burst schedule

for all video streams to maximize the system-wide energy saving, while achieving optimal

streaming quality, i.e., resulting in no playout glitches on mobile devices. Playout glitches

occur when the burst schedule has any burst collisions or receiving buffer violations. A burst
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schedule has burst collisions when two or more bursts have nonempty intersection in time.

A buffer violation occurs for a video stream when receivers have either no data in the buffer

to pass on to video decoders for playout (buffer underflow), or have no space to store data

during a burst transmission (buffer overflow).

We address this problem in Chapter 3, and particularly, we make the following contri-

butions [23–26]:

• We formulate a general burst scheduling problem in mobile video broadcast networks.

Our formulation is general because each video stream can be coded at any arbitrary

encoding rate. The objective of the formulation is to maximize the overall energy

saving of all mobile devices. We also show that this problem is NP-complete for video

streams with arbitrary bit rates [23].

• Since the general problem may not be efficiently solved, we first propose a practical

simplification of the general problem, which allows video streams to be classified into

multiple classes and each class has a different bit rate. The bit rate of class c, rc, can

take any value in the form of rc = 2i × r1, where i ∈ {0, 1, 2, 3, . . . }, and r1 is the bit

rate of the lowest class. r1 can take any arbitrary bit rate. Using this simplification,

we develop an optimal (in terms of energy consumption) burst scheduling algorithm.

We analytically show that the proposed algorithm is efficient [24].

• We implement our algorithm for the simplified problem in a mobile TV testbed and

demonstrate its practicality and effectiveness in saving energy. We also conduct ex-

tensive simulations to quantify the performance of our algorithm under wide ranges

of broadcast parameters.

• We solve the general formulation in which each video stream can be coded at any

arbitrary encoding rate. Because the problem is NP-complete and cannot be optimally

solved within reasonable amount of time, we propose an approximation algorithm for

it. We prove the correctness of our proposed algorithm, and we show that it runs in

polynomial time. Moreover, we analytically and numerically show that burst schedules

produced by the proposed algorithm achieve near-optimal energy saving [25,26].

• We implement our approximation algorithm in a mobile TV testbed to show its practi-

cality and efficiency. We also implement this algorithm in a simulator, which captures
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important aspects related to the burst scheduling problem but abstracts away irrel-

evant details. We use this simulator to exercise the proposed algorithm with wider

ranges of parameters that are difficult to set in the real testbed.

1.2.2 Bandwidth Efficiency of Broadcast Networks

While solving Problem 1 allows network operators to provide mobile streaming services with

high energy saving and optimal streaming quality, it does not consider the bandwidth effi-

ciency of broadcast networks. Bandwidth efficiency is critical for network operators because

higher bandwidth efficiency generally leads to more concurrent video streams within a given

network bandwidth. One way to increase bandwidth efficiency is to encode videos in VBR

(Variable-Bit-Rate), rather than CBR (Constant-Bit-Rate), because VBR coding achieves

higher coding efficiency and higher statistical multiplexing gain [27]. Coding efficiency refers

to the ratio between video quality and encoding bit rate, while statistical multiplexing gain

refers to the increase in number of video streams that can be concurrently broadcast at a

target video quality using a given network bandwidth. More details about VBR coding are

given in Section 2.2.1.

The higher statistical multiplexing gain of VBR streams is due to the fact that each

video contains scenes with different scene complexity, and multiple videos are unlikely to

have high complexity scenes at the same time. Therefore, by adjusting the encoding rates

of individual videos based on their scene complexities, network operators may better utilize

the bandwidth of their broadcast networks. Packet switched networks, such as the Internet,

achieve statistical multiplexing by dividing data into small packets (e.g., up to 1.5 KB in

the Internet [28]) and then routing each packet separately. However, doing so in mobile

video broadcast networks may result in low energy saving and/or playout glitches, as these

networks usually transmit data in much larger bursts: in the order of a few hundreds

KB [16]. Therefore, base stations must carefully construct bursts for multiple VBR video

streams to achieve optimal streaming quality and high energy saving on mobile devices,

while maximizing the goodput in the broadcast network. The goodput refers to the fraction

of the amount of ontime delivered video data over the broadcast network capacity. Goodput

includes only the video data delivered before their decoding deadlines, as late video data

cannot be rendered to users and are essentially useless.

To the best of our knowledge, optimally broadcasting multiple VBR streams over wireless

networks has not been fully addressed in the literature. Recent papers [29, 30] emphasize
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that efficiently broadcasting VBR streams is one of the most critical and challenging open

problems in mobile broadcast networks. We formally describe the burst scheduling problem

of VBR streams to maximize network goodput and energy saving in the squeal.

Problem 2 (Maximizing Goodput). Consider several VBR video streams to be concurrently

broadcast by a base station to multiple mobile devices. Each video stream is broadcast as

bursts of data to save energy on mobile devices. Construct the optimal burst schedule for

all video streams to maximize the goodput of the broadcast network and the energy saving

on mobile devices, while achieving optimal streaming quality, i.e., resulting in no playout

glitches on mobile devices.

We solve this problem in Chapter 4. In particular, we make the following contributions

[31]:

• We formulate the problem of broadcasting multiple VBR streams from a base station

to many mobile devices, in order to maximize: (i) the goodput in the network, (ii) the

energy saving of mobile devices, and (iii) the streaming quality on mobile devices. We

show that this problem is NP-complete [31].

• We consider our problem in two types of broadcast networks: closed-loop networks,

in which all video streams are jointly encoded to ensure their total bit rate does not

exceed the broadcast network bandwidth, and open-loop networks, in which videos

are encoded using standalone coders, and thus must be carefully broadcast to avoid

buffer violations and playout glitches.

• We propose an approximation algorithm to solve this problem, and we show that the

resulting burst schedules are optimal in terms of goodput and near-optimal in terms

of energy saving [31]. We then show that the proposed algorithm produces glitch-free

schedules in closed-loop networks, and minimizes the number of glitches in open-loop

networks.

• We develop a trace-driven simulator, and we implement the proposed algorithm in it.

The simulation results show that the proposed algorithm outperforms the algorithms

currently used in commercial base stations in both open- and closed-loop broadcast

networks.
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• We also use a real mobile TV testbed to show the practicality and efficiency of the

proposed scheduling algorithm. The results from the testbed confirm that our pro-

posed algorithm runs in real-time, and produces feasible burst schedules that result

in good streaming quality, high goodput, and high energy saving.

• Although the proposed scheduling algorithm works in open-loop broadcast networks,

it may result in some playout glitches when the total bit rate of all video streams

exceeds the network bandwidth. To address this issue, we propose a new scheduling

algorithm that employs longer lookahead windows and utilizes slack times of the air

medium for fewer playout glitches.

1.2.3 Channel Switching Delay of Mobile Devices

Every network operator concurrently broadcasts multiple video streams over a broadcast

network, and each user tunes his/her mobile device to receive a single video stream at any

time. That is, users of mobile broadcast services often switch among many video streams,

or better known as channels1, before they decide on watching the specific ones. Switching

video channels incurs channel switching delays. Long and variable channel switching delays

are annoying to users and may turn them away from the mobile video broadcast service. For

example, the Digital Television consortium of Northern Europe recommends a maximum

switching delay of 1.5 sec for digital TV services [32]. Therefore, in addition to video

streaming quality and energy saving, network operators must also maintain low and constant

switching delays, in order to achieve good user experience.

While time slicing saves energy on mobile devices, it also increases channel switching

delay because the video data are broadcast in bursts. More precisely, channel switching

delay is composed of several parts, in which frame refresh delay and time slicing delay are

the two dominating contributors [29,33]. The frame refresh delay refers to the time period

between receiving the first bit of a new video stream and receiving the next random access

point, typically an intra-coded frame, of that video. Frame refresh delay is controlled by

video coders in the application layer, and thus is orthogonal to burst scheduling in the

link layer. The time slicing delay refers to the time period between locking onto a channel

and reaching the first burst of that channel. Since time slicing delay is a by-product of the

1We interchangeably use video streams and channels throughout this thesis.
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burst scheduling algorithms, we only consider time slicing delay throughout this thesis, and

assume all other components of the channel switching delay are fixed.

We consider the problem of controlling the switching delay in broadcast networks that

employ time slicing to save energy. Our goal is to provide a guarantee on the maximum

switching delay from a TV channel to any other channel without sacrificing the energy saving

of mobile devices. We formally describe the considered problem in the following.

Problem 3 (Bounding Channel Switching Delay). Consider several video streams to be con-

currently broadcast by a base station to multiple mobile devices. Construct the optimal burst

schedule for all video streams to guarantee that the channel switching delay from any stream

to any other stream does not exceed a maximum allowable channel switching delay, while

maximizing the energy saving on mobile devices and achieving optimal streaming quality,

i.e., resulting in no playout glitches on mobile devices.

We address this problem in Chapter 5, and particularly, we make the following contri-

butions [34,35]:

• We analyze the time slicing scheme currently used in many deployed mobile video

broadcast networks, and we show that it is not efficient in terms of energy saving of

mobile devices, especially when short channel switching delays are required [34].

• We propose three new time slicing schemes that ensure that a given maximum switch-

ing delay is not exceeded, while at the same time the energy saving of mobile devices

is maximized. The new time slicing schemes employ simulcasting of video streams

with and without scalable video coding techniques (described in Section 2.2.2) [35].

• We prove the correctness of the proposed schemes and derive closed-form equations for

the achieved energy saving. We numerically analyze the performance of the proposed

schemes and provide guidelines on choosing the most suitable time slicing scheme for

a given mobile video broadcast network.

• We implement the proposed schemes in a mobile TV testbed. Our experimental results

validate our theoretical analysis and show that the proposed schemes indeed meet the

target channel switching delays and achieve high energy savings for mobile devices.
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1.2.4 Supporting Heterogeneous Mobile Devices

In the previous problems, we assume mobile devices are homogeneous and we broadcast

each video stream once for all mobile devices. In reality, mobile devices have heterogeneous

resources such as screen resolution, decoder capability, and battery capacity. For example,

while laptop computers can display 720p (1280x720) videos, most smart phones only have

QVGA (320x240) displays. Therefore, it is important to concurrently support all these

mobile devices: broadcasting a video stream in QVGA resolution results in unacceptable

video quality on laptop computers, while broadcasting in high resolution results in higher

overhead, and thus higher energy consumption, on smart phones with no visible quality

improvement. More importantly, broadcasting in 720p resolution could deny smart phones

that are not computationally powerful enough from the mobile video broadcast services. To

partially cope with this problem, network operators could broadcast every video in multiple

versions, where each version targets a type of mobile device. This is known as multi-version

video broadcasting. Multi-version broadcasting is inefficient in terms of bandwidth as it

effectively reduces the number of video streams that can be concurrently broadcast.

Scalable video broadcasting, in contrast, enables network operators to support various

mobile devices without exhausting network bandwidth. This is achieved by using scalable

video coders to encode each video into a single stream with multiple layers, and broadcast

each layer only once. Such a coded stream is scalable because several substreams, with

one or a few layers, can be extracted from the complete stream and are still decodable.

Each mobile device can then choose and render the substream that is most appropriate to

its capability and network conditions. Broadcasting scalable video streams in broadcast

networks that employs time slicing to save energy is difficult, because the base station must

prepare burst schedules to achieve optimal streaming quality while carefully considering the

dependency among layers.

We study the scalable video broadcasting problem in mobile video broadcast networks,

where each video is encoded into a scalable video stream with multiple layers, and several

video streams are concurrently broadcast over a shared air medium to many mobile devices

with heterogeneous resources. We formally describe our problem in the squeal.

Problem 4 (Supporting Heterogeneous Devices). Consider several scalably-coded video

streams to be broadcast by a base station to heterogeneous mobile devices, which have di-

verse capability and can decode different substreams extracted from the complete scalable
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video streams. Organize the scalable video streams into data bursts and construct a burst

schedule for all video streams for each mobile device to efficiently receive the most appropri-

ate substream while achieving high energy saving and low channel switching delay from any

channel to any other channel. The appropriate stream of each mobile device may depend on

the device capability, the target energy consumption level, and user preferences.

We solve this problem in Chapter 6. In particular, we make the following contributions

[36,37]:

• We analyze the current mobile video broadcast networks and we show that they are

not efficient for scalable video streams. This is done by first presenting several time

slicing schemes to enable scalable video broadcasting in current systems, and then

pointing out their drawbacks. Moreover, we analytically show that these time slicing

schemes lead to lower energy saving compared to our proposed schemes [36].

• We design two time slicing schemes to support heterogeneous devices using scalable

video streams [37]. The scalable video streams may have different layer bit rates, which

allow the coded streams to be better matched with the capability of various types of

mobile devices. We analytically prove that both schemes achieve high energy saving.

In addition, one of the schemes is designed to also maintain low channel switching

delays.

• We implement these two time slicing schemes in a real mobile TV testbed to demon-

strate their practicality and efficiency. The experimental results indicate that the

proposed schemes allow mobile devices to trade perceived quality for energy saving,

as they can opt to receive a smaller substream to prolong battery lifetime.

1.3 Thesis Organization

The rest of this thesis is organized as follows. We present some background about mobile

video broadcast networks as well as video coding techniques in Chapter 2. We formulate and

solve the problem of maximizing energy saving in Chapter 3. In Chapter 4, we consider the

problem of maximizing goodput and energy saving using VBR video streams. We consider

the problem of controlling channel switching delays in Chapter 5, and we present time slicing
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schemes to support heterogeneous mobile devices in Chapter 6. We conclude the thesis and

outline future research directions in Chapter 7.



Chapter 2

Background

In this chapter, we provide a background about mobile video broadcast networks and video

coding techniques. We also present rate regulation techniques that allow network operators

to cope with the bit rate variations of VBR streams. We describe the burst scheduling

algorithms currently used in commercial broadcast base stations, and we empirically measure

the actual energy consumption of real mobile devices.

2.1 Broadcast Network Standards

Delivering video streams to mobile devices can be done over wireless cellular networks,

generic packet switched networks, and over dedicated broadcast networks. We survey each

of them below. We focus more on dedicated broadcast networks as they are the main target

of our research.

2.1.1 Cellular and MBMS Networks

Despite the broadcast nature of wireless communication, traditional cellular networks only

support unicast, and thus are not bandwidth efficient especially in urban areas where there

are many users receiving the same content. More specifically, with unicast, the base station

transmit a copy of video stream to each mobile device, which can easily saturate the network

bandwidth. To cope with this problem, the 3G Partnership Project (3GPP) has defined

an integrated multicast and broadcast extension, called MBMS [38], for Universal Mobile

Telecommunications Systems (UMTS). MBMS allows many mobile devices, within the range

14
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of a cellular tower, to receive the same video stream without duplicating video streams in

wireless and wire networks, and thus become more bandwidth efficient.

2.1.2 WiMAX Networks

IEEE 802.16 WiMAX [6,39] is a standard for metropolitan area wireless networks. WiMax

is envisioned as an alternative solution to traditional wire-based broadband access. For

the emerging countries like China, Russia and India, WiMAX is a cost-effective last-mile

solution, and they are expected to be the major WiMAX market. WiMax has the capa-

bility of delivering high-speed services up to a range of 30 miles. WiMax uses Orthogonal

Frequency Division Multiplex (OFDM) and Orthogonal Frequency Division Multiple Access

(OFDMA) to improve the transmission range and increase bandwidth utilization. OFDM

prevents inter-channel interference among adjacent wireless channels, which allows WiMAX

to achieve high network bandwidth. In link layer, WiMAX supports QoS differentiation

and ensures the target bandwidth and latency of each QoS class are met. Multicast and

broadcast services are also supported in WiMAX. Therefore, WiMAX is suitable for broad-

casting video streams that impose high data volume and stringent QoS requirements. In

most common WiMAX networks, the wireless channel is divided using time division into

frames. Each frame is divided into downlink subframe and uplink subframe. The down-

link subframe is used by the base station to broadcast to all wireless stations. The uplink

subframe is further divided into variable-length transmission periods, where each period is

allocated to a wireless station to transmit data to the base station. The length of each

transmission period is computed by the base station and is included in the beginning of

each frame.

2.1.3 Dedicated Video Broadcast Networks

Overview

There are several standards for dedicated video broadcast networks, including T-DMB

(Terrestrial-Digital Multimedia Broadcasting) [40], ISDB-T (Integrated Services Digital

Broadcasting-Terrestrial) [41], MediaFLO [12,13], and DVB-H [8–11].

A brief overview of each follows. T-DMB [40] is an extension for the DAB (Digital

Audio Broadcast) standard [42] to add video broadcast services to the high-quality audio
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Figure 2.1: The main components of mobile TV broadcasting systems.

services offered by DAB. The extension includes both source coding, such as using MPEG-

4/AVC encoding, and channel coding, such as employing Reed-Solomon (R-S) code. The

development of T-DMB is supported by the South Korean government, and T-DMB is

the first commercial mobile video broadcast service. In addition to South Korea, several

European countries may deploy T-DMB as they already have equipment and experience

with DAB systems. ISDB-T [41] is a digital video broadcast standard defined in Japan,

which is not only for fixed video receivers but also for mobile receivers. ISDB-T divides its

spectrum into 13 segments, where 12 of them are used for broadcasting HDTV and one is

for broadcasting to mobile devices. T-DMB and ISDB-T are narrow bandwidth networks

and cannot employ time slicing technique to save energy on mobile devices. In contrast,

MediaFLO and DVB-H networks have much higher bandwidth and can save energy using

time slicing [12,43].

MediaFLO Networks

MediaFLO [12] is a video broadcast network developed by Qualcomm and the FLO forum

[44]. MediaFLO is designed from scratch for video broadcast services to mobile devices.

The details of the design are not public. In contrast, DVB-H [9,10] is an open international

standard [8]. We use the open DVB-H standard in our discussion throughout the thesis.

Nonetheless, in our problem formulation and solution we abstract away the specific details

of the DVB-H standard. Therefore, our solution is also applicable to the MediaFLO system

and other wide band video broadcast networks that may be developed in the future.
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DVB-H Networks

With participants from over 35 countries, the Digital Video Broadcast (DVB) consortium

started designing a series of international standards to support digital television and data

broadcast services in 1993. Many of these standards, such as DVB-S for broadcasting over

satellite links, DVB-C for broadcasting over cables, DVB-T for broadcasting over airwaves,

have been widely deployed. It is reported that more than 170 million DVB receivers have

been sold at the time of writing [45]. Several updates of these standards, the second-

generations, are being actively developed. In the late 90’s, DVB consortium investigated

the potential of receiving DVB-T signals using mobile devices. They have concluded that

with a spatial diversity antennas for better reception, DVB-T signals can be received by

mobile devices [46].

While DVB-T can support some mobile usages, it is not suitable for streaming multime-

dia contents to small mobile devices such as cellular phones for three reasons. First, most

mobile devices are battery-powered and have very limited power. Unfortunately, power

consumption was never a considered factor when designing DVB-T standard as DVB-T re-

ceivers are often powered by external sources. Second, mobile devices suffer from serious

and varying Doppler shift, fading and interference because their various degree of move-

ments and heterogeneous environments (in-door, out-door, or in-car). In addition, many

of these devices concurrently support broadcast and cellular networks, which leads to more

inter-system interference. This problem is even more severe considering these mobile devices

can only adopt small built-in antennas, which rules out most of the advanced antennas such

as direction and spatial diversity antennas, and results in poor antenna gain. Thus, radio

performance better than what can be achieved by the DVB-T standard is desired for robust

broadcasting. Third, mobile devices require a faster, soft, handoff mechanism as they are

often on-the-move. To cope with these challenges, the DVB consortium developed the DVB-

H standard [8], which is an extension of the DVB-T standard but tailored to mobile devices.

DVB-H, published in 2004, addresses the three requirements mentioned above. Currently,

trial or full-service DVB-H networks have been deployed in many countries [1]. Figure 2.1

illustrates the main components of a DVB-H system.

The DVB-H standard defines protocols below the network layer and uses IP as the inter-

face with the higher-layer protocols as illustrated in Figure 2.2. The DVB-H standard uses a

physical layer compatible with the DVB-T standard, which employs Orthogonal Frequency
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Figure 2.2: The protocol stack of mobile TV networks using the DVB-H standard.

Division Multiplexing (OFDM) modulation. To support interactive end-to-end broadcast-

ing systems, the DVB consortium started the development of the IP Datacast standard

in 2004, which not only specifies higher layer protocols but also enables cooperation with

cellular networks such as UMTS. Incorporating access to cellular networks provides bidi-

rectional communications and enables many interactive services such as Electronic Service

Guide (ESG). The IP Datacast standard was finalized in 2007 [47].

DVB-H encapsulates IP packets using Multi-Protocol Encapsulation (MPE) sections

to form MPEG-2 transport streams (TS). Thus, data from a specific TV channel form a

sequence of MPEs. The MPE encapsulation is done in a module called the IP encapsulator.

The encapsulated data is then fed to an RF signal modulator to be transmitted over the

air medium. The IP encapsulator realizes two additional features of DVB-H: time slicing

and forward error correction (FEC). In the following, we describe these two features, which

provide several performance optimization opportunities.

To save energy of mobile devices, MPEs belonging to a given TV channel are transmitted

in bursts with a bit rate much higher than the video stream itself. Thus, mobile devices can

receive a burst of traffic and then turn off their receiving circuits till the next burst. This

is known as time slicing. The time period between two adjacent bursts (the off period) is

flexible in the sense that the time offset between the start time of the next burst and the

current MPE section is sent as part of the MPE header. This enables DVB-H systems to

adopt variable burst durations and off durations not only for different video streams but also

for the same video stream at different times. We note that the activation of the receiving

circuits is not instantaneous for two reasons: delay jitter and channel synchronization. Since

the next burst start time is broadcast as an offset to the current time, constant transmission
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delay does not affect its accuracy. However, delay jitter skews the start time of the next

burst. This jitter is accommodated by adding an extra jitter delay after each off duration,

which prevents collisions among bursts. In addition, synchronization time refers to the time

for receiving circuits to search for and lock on the broadcast frequency. We collectively refer

to the sum of jitter delay and synchronization time as overhead duration since no data is

transmitted during this period. We use To sec to denote the overhead duration, which is a

system parameter of broadcast networks. In addition to energy saving, with time slicing,

mobile devices can use their receiving circuits to search for signal in adjacent cells between

two bursts for seamless, soft, handoffs. Handoffs happen when a mobile device moves from

a broadcast cell to an adjacent cell. Soft handoff means a device locks up to the signal in

the new cell before ignoring the signal in the old cell; hence, there is no service interruption

during soft handoffs, which leads to good user-experience. Without time slicing, auxiliary

receiving circuits are required to support soft handoffs, which lead to higher costs.

The DVB-H standard applies R-S code and time interleaving in its link layer to protect

IP packets in each burst transmission, which largely reduces the minimal carrier-to-noise

(C/N) ratio for successful decoding with the same antenna gains. This C/N improvement

is reported to be equivalent to the antenna gain given by the spatial diversity [8], however,

no additional space is taken nor more power is consumed by the spatial-diversity antenna

module. To compute the R-S parity bits, DVB-H uses an MPE-FEC frame with 255 columns

and at most 1024 rows, where each element is a byte. Therefore, the maximum size of MPE-

FEC frame is about 255 KB. Each MPE-FEC frame is divided into an application data table

(ADT) with 191 columns of IP packets and an R-S data table (RSDT) with 64 columns of

parity bits, where the parity bits are calculated row-wise from the IP packets in the same

MPE-FEC frame. Once the R-S bits are ready, IP packets in the same MPE-FEC frame are

sequentially transmitted as MPE sections, which are followed by the R-S bits encapsulated

in multiprotocol encapsulation sections. At the receiver side, CRC-32 section trailers and

R-S parity bits are used for error detection and correction from transmission errors. Notice

that, accessing MPE-FEC frames is column-wise while calculating parity-bit is row-wise,

which leads to time interleaving that also helps to combat fading and interference. In

common cases, default R-S coding ratio supports recovery from as high as 25% packet loss

ratio [9]. However, DVB-H supports adaptive R-S coding ratios: padding all zero packets

in ADT leads to stronger R-S coding, while puncturing some parity bits results in weaker

R-S coding. When MPE-FEC is jointly used with time slicing, each transmission burst is
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correspondent to a MPE-FEC frame. As a consequence, the burst size cannot go beyond

255 KB, which simplifies the receiver hardware design as a fixed memory can be reserved

for decoding.

While DVB-H employs MPEG-2 transport streams (TSes) to carry data, the video

streams are not directly put in TSes, but in the IP packets that are in turn encapsulated in

TSes. Since both video stream data and singling messages are IP-based, many IETF-defined

protocols are adopted by IP Datacast standard [10, 11] for a complete mobile TV service.

Above the network layer, IP Datacast uses UDP protocol in its transport layer. There are

two protocols on top of the UDP protocol for different content delivery: real-time stream-

ing protocol (RTP) for multimedia streaming traffic and file delivery over unidirectional

transport protocol (FLUTE) for file and meta-data transfers. While IP Datacast chooses

H.264/AVC and VC-1 (Windows Media format) for video coding and MPEG4 AAC+ for

audio coding, any codec that supports streaming over IP networks can be used. IP Datacast

also defines the XML-based Electronic Service Guide (ESG) that delivers TV channel in-

formation to users and TV channel initialization parameters to mobile TV receivers. More

precisely, ESG uses Session Description Protocol (SDP) to describe initialization parameters.

SDP is extensible, e.g., it has been extended to support H.264/SVC scalable coders [48].

2.2 Video Coding Standards

2.2.1 CBR and VBR Coding

Video coders can be roughly categorized into constant bit rate (CBR) and variable bit rate

(VBR) coders. CBR coders adjust the coding parameters to maintain a fixed frame size, and

thus a constant bit rate throughout a video. Algorithms that analyze video complexity and

determine coding parameters for individual frames are called rate control algorithms. CBR

coded streams have fixed bandwidth requirements, which largely simplify the problem of

bandwidth allocation in packet switched networks. Encoding a video in CBR requires us to

either over-subscribe the network bandwidth in best-effort networks, or make a bandwidth

reservation in reservation based networks.

While streaming videos coded in CBR is less complicated, doing so leads to degraded

user experience and lower bandwidth efficiency. This is because each video consists of scenes

with diverse complexities, and encoding all scenes at the same bit rate results in quality

fluctuations which are annoying to users. Moreover, to maintain a minimum target quality,
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a video must be encoded at a bit rate high enough for the most complex scene to achieve that

target quality [27]. This in turn leads to wasting of bandwidth, because less complex scenes

are unnecessarily coded at high quality that has little or no impact on human perception.

To address these two issues, VBR coders can be used to provide constant video quality

and avoid wasting of bandwidth. This is achieved by dynamically distributing the available

bandwidth among frames of the same video so that more complex scenes and more critical

frames get more bits. That is, VBR coders enable bit budget redistribution along the time-

axis of a given video, and achieve better coding and bandwidth efficiency. VBR coders that

encode videos without considering buffer and network status is called unconstrained VBR

(UVBR) coders. Since the individual frame sizes are not constrained by any constraints,

UVBR coders encode videos only from the perspective of coding efficiency, and achieve the

best possible video quality. UVBR streams, however, consist of high bit rate variability,

and the variability is increasingly significant in modern video coders such as H.264/AVC

[49]. Therefore, smoothly streaming UVBR streams coded by modern coders becomes very

challenging, because the coded streams may require instantaneous bit rates much higher

than the bandwidth of the underlaying networks.

Constrained VBR (CVBR) coders take one or more target streaming environments as

input, and create a VBR stream that can be smoothly streamed under the target streaming

environments. Common streaming environments include channel bandwidth, smoothing

buffer size, and initial buffering delay [50]. To ensure smooth playouts, CVBR coders

implement rate control algorithms, which monitor the complexities of scenes and frames,

determine the target size of each frame, and constrain the frame size while encoding a video.

The rate control algorithms are similar to those used in CBR coders, but in CVBR coders

bit rate variability is allowed as long as it is within the constraints imposed by the target

streaming environments.

To prepare coded streams for packet switched networks, service providers may choose

different video coders for various reasons. Service providers who would trade bandwidth ef-

ficiency for deployment simplicity may choose CBR coders, and deploy a reservation based

network, such as WiMAX, or over-subscribe bandwidth, such as deploying an isolated Gi-

gabit Ethernet for each residential user. Service providers which care about bandwidth

utilization may prefer VBR coders for the higher coding efficiency. When distribution net-

works support bandwidth reservation, or the target streaming environments are known at

the encoding time, the service providers may choose CVBR coders for fewer playout glitches
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and thus better streaming quality. Finally, service providers may choose UVBR coders if

the streaming conditions are not known at the encoding time.

Statistical Multiplexing

Statistical multiplexing refers to the capability of sharing the network bandwidth among

multiple data streams that have variable bit rate requirements. Statistical multiplexing

allows the network to achieve higher bandwidth efficiency. Packet switched networks achieve

statistical multiplexing by dividing each data stream into small packets and routing each

packet independently over potentially diverse paths to the destination. This allows routers

to interleave packets of different data streams on network links in order to share the link

bandwidth among data streams. More specifically, packets arrive at each router are first

stored. The router then runs a packet scheduling algorithm to determine the next packet to

be transmitted. In general, using VBR streams enables network operators to multiplex more

videos over a bandwidth limited network, because the bit rate of each video is proportional

to its current scene complexity, and not many VBR streams would require high bit rate

at the same time. Sharing the network bandwidth among multiple VBR streams achieves

statistical multiplexing, and the increase in number of video streams that can be broadcast

at a given target video quality by VBR coding is called statistical multiplexing gain.

2.2.2 Scalable Video Coding

Traditional video coders compress each video sequence into a coded stream at a user-specified

spatial resolution, temporal frequency, and fidelity level. These video coders are called non-

scalable video coders because a decoder can either decode a coded stream at its full-quality

as specified at encoding time, or cannot produce any meaningful reconstruction. Nonscal-

able coders are not suitable for modern video communication systems that are in general

built over dynamic RTP/IP networks and various end systems with different decoding ca-

pabilities [51]. Scalable video coders, in contrast, encode a video sequence into a base layer

that provides basic video quality and one or a few enhancement layers that add incremental

quality refinements. These layers are then encapsulated into a single scalable stream that

can be decoded at various qualities. At the receiver side, a scalable video decoder extracts

enhancement layer bits based on its capabilities as well as current network conditions and

reconstructs a video sequence at proportional quality. Compared to concurrently streaming
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several nonscalable coded streams at different bit rates, streaming a scalable coded stream

simplifies the transmission and synchronization issues and saves bandwidth consumption.

For example, in H.264/SVC [51], switching from one medium grained scalable (MGS) layer

to another can be done at any time, while switching from one nonscalable stream to another

can only be done at random access points, which typical are intra-coded frames.

In the past two decades, scalable video coding has been extensively studied in the liter-

ature. In addition, several standardization efforts, such as MPEG-2, H.263, and MPEG-4

Visual, have defined some coding tools to support scalable video coding. However, these

scalable coding tools are seldom used in actual applications because of coding efficiency

and decoding complexity. More specifically, a scalable coded stream results in lower qual-

ity compared to a nonscalable coded stream when both streams are decoded at the same

bit rate. Moreover, a scalable coded stream incurs additional decoding operations at the

decoder side that increases the decoding complexity. Since 2003, these two shortcomings

of previous scalable coding standards have stimulated the development of H.264/SVC [52]

as an scalable extension to the state-of-art nonscalable coder H.264/AVC [53]. H.264/SVC

has been recently finalized by the ITU-T VCEG group and MPEG video group and has

become an annex of H.264/AVC. H.264/SVC supports several types of scalability, including

display resolution (spatial) scalability, frame rate (temporal) scalability, fidelity (quality)

scalability and hybrid scalability of some or all of the above. More importantly, H.264/SVC

achieves comparable coding efficiency to nonscalable coders without incurring too much de-

coding overhead [51]. High coding efficiency and low decoding complexity make H.264/SVC

very competitive in real-life applications, including wireless video streaming [54] and Google

Video Chat [55], H.264/SVC has become a focus of many codec chip manufactures. For ex-

ample, only a few months after H.264/SVC standard is finalized, Stretch announced their

decoder solution for mobile devices in Spring 2008 [56]. More H.264/SVC decoder chips are

expected to hit the market soon.

2.3 Mobile Video Broadcast Systems

A mobile video broadcast system is illustrated in Figure 2.3, which consists of three entities:

content providers, network operators, and mobile users. Content providers are compa-

nies that create videos. Since content providers send the same video to multiple network

providers that have diverse needs, the newly created videos are encoded in high-quality
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Figure 2.3: Main components of a closed-loop video broadcast system.

streams and sent to network operators. Each network operator may transcode the video

stream following its quality requirements and available bandwidth. Network operators are

companies that manage base stations and provide services to mobile users. A network op-

erator multiplexes several videos into a broadcast stream, and transmits it over a broadcast

network with a fixed bandwidth. Because the broadcast network is bandwidth limited,

the multiplexer must ensure that the bit rate of the broadcast stream does not exceed the

network bandwidth.

One way to control the bit rate is to employ joint video coders, which encode multiple

videos and dynamically allocate available network bandwidth among them, so that the

aggregate bit rate of the coded streams never exceeds the network bandwidth. As shown in

Figure 2.3, a joint video coder consists of a joint rate allocator, several decoders, and several

VBR coders. The joint rate allocator collects scene complexities from decoders/coders,

distributes available bandwidth among video streams, and instructs the coders to avoid

overloading the broadcast network by controlling their encoding bit rates. There are several

joint video coders proposed in the literature, e.g., [29, 57–59]. Commercial joint coders,

such as [60], are also available in the market. We call broadcast systems with joint video

coders as closed-loop broadcast systems. While deploying joint video coders can simplify the

design of the multiplexer, doing so may not always be possible for several reasons, such as

complex business agreement and higher deployment cost. Furthermore, setting up closed-

loop broadcast systems for temporary services, such as systems for special sports events and

emergency services, leads to high configuration overhead and thus may not be possible. We

call broadcast systems with standalone video coders as open-loop broadcast systems. We
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Figure 2.4: Dynamics of the rate regulation buffers of sender and receiver.

notice that video broadcast systems that broadcast CBR video streams are essentially closed-

loop broadcast systems, because the aggregate bit rate of all video streams is constant in

these systems. In either closed- or open-loop networks, the multiplexer generates a broadcast

stream, which in turn is broadcast via a tower to mobile users. Mobile users use mobile

devices to receive video streams over the broadcast network. Each user tunes to a video

stream at any moment.

2.4 Rate Regulation of VBR Streams

As mentioned in Section 2.2.1, CBR coded streams incur coding inefficiency and high quality

fluctuation, and are not suitable to mobile video broadcast systems. Modern video coding

standards, such as H.264/AVC [61], support CBR coding in a relaxed sense, where streaming

servers employ a rate regulation buffer to regulate VBR coded streams into CBR streams

at streaming time. We describe the rate regulation process in the following.

The rate regulation operation can be described by the Hypothetical Reference Decoder

(HRD) model of H.264/AVC [62], which guides streaming systems to properly set up buffer

to smooth out the streaming traffic without introducing any buffer under/overflow instances

for smooth playouts. Similar to hypothetical reference decoders defined in previous video
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coding standards, the H.264/AVC HRD model is based on the leaky bucket model. Fig-

ure 2.4 illustrates the buffer dynamics at both the sender (on the left) and the receiver (on

the right), which are connected by a CBR communication channel with a constant delay. At

the sender side, each coded frame is instantaneously inserted into the sender’s buffer, where

the coded frames can be generated by an online video coder or read from a file that was

generated offline. Since coded frames can have different sizes, the accumulated data amount

of the video stream is a staircase, where the heights of steps are different. The buffered

data is drained and sent to the receiver at a constant bit rate r, where r is the slope of the

straight line beneath the staircase, and the area below the staircase (shaded in the figure)

represents the remaining buffered data in the sender’s buffer.

After a constant transmission delay, the data arrives at the receiver also at bit rate r, and

is stored in the receiver’s buffer. Since coded frames have various sizes, the video decoder

at the receiver waits for enough number of bits, and instantaneously removes each coded

frame from the receiver’s buffer for decoding, which is represented as another staircase in

this figure. The area above this staircase (shaded in the figure) represents the remaining

buffered data in the receiver’s buffer. We note that the upper-left line at the sender side

indicates the sender’s buffer limit, and the lower-right line at the receiver side indicates the

receiver’s buffer limit.

Note that no buffer under/overflow is possible if the staircase (at either sender or re-

ceiver) stays within the tube of the two straight lines, and the tube can be uniquely specified

by its streaming rate, buffer capacity, and initial delay [62]. Therefore, streaming systems,

including mobile video broadcast systems, can employ the HRD model and use rate regula-

tion buffers to regulate the streaming rates of video streams, although the frames were not

coded in uniform size. We refer to VBR streams that are rate regulated as rate regulated

VBR streams, which is a type of CVBR streams defined in Section 2.2.1.

Rate regulated VBR streams can be broadcast in mobile video broadcast systems as

illustrated in Figure 2.5. We use some mobile TV terminology, defined in Section 2.1.3,

in the following description. At the base station, from the left to right, the coded frames

are inserted into a Rate Regulation Buffer that adopts a traffic regulator to produce a

CBR stream at a constant streaming rate. This CBR stream is sent over RTP packets to

the Multi-Protocol Encapsulation Buffer, where they form MPE bursts, which are larger

than the RTP packets. MPE bursts are then broadcast over the air medium, and stored in

Multi-Protocol Decapsulation Buffer before being decapsulated back to a CBR stream at the
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Figure 2.5: Rate regulator and other buffers in mobile video broadcast systems.

mobile device. Finally, the CBR stream is converted back to the original video stream by the

traffic regulator in the Rate Regulation Buffer on the mobile device. The burst scheduling

algorithm proposed in this thesis manages the Multi-Protocol Encapsulation Buffer, which

resides after the Traffic Regulator at the base station. We mention that buffer layout similar

to Figure 2.5 is mentioned in the DVB-H standard documents [63, Section 5.1.3], and are

being used in real systems.

Finally, we discuss the issues of broadcasting rate regulated VBR streams. To get rate

regulated VBR streams, we need to specify the streaming rates, buffer capacity, and initial

delays at encoding time, which instruct video coders to constrain the size of each coded

frame in order to avoid over/underflowing the rate regulation buffer. Broadcasting the

resulting rate regulated VBR streams may lead to a couple of drawbacks. First, they are

not unconstrained VBR streams, as the coded frame size may be limited by the leaky bucket

tubes illustrated in Figure 2.4. Therefore, the resulting coding efficiency is lower than that

of UVBR streams. Second, the rate regulation process requires a rate regulation buffer

and incurs longer initial delay. The memory requirements and the initial delays are user-

specified, and thus can be controlled in reasonable ranges. Therefore, using mobile video
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Figure 2.6: Video streams can be transmitted as (a) parallel and (b) serial services. Shaded
areas represent overhead durations.

broadcast networks illustrated in Figure 2.5 to broadcast videos coded as rate regulated VBR

streams is feasible and leads to better quality-of-service than broadcasting CBR streams.

Nevertheless, a better solution is to directly broadcast unconstrained VBR streams for higher

coding efficiency, shorter initial delays, and smaller memory requirements.

2.5 Burst Scheduling in Existing Base Stations

As mentioned in Section 2.3, for VBR video streams, multiplexers must ensure that the total

bit rate of all video streams never exceeds the network bandwidth. Mobile video broadcast

systems have already been deployed in Europe, Africa, and Asia, and in pilot-testing in

several cities in North and South America [1]. The base stations in these deployments

use commercial multiplexers such as UDCast IPE-10 [64], UBS DVE-6000 [65], and Grass

Valley Opal II [66], which are some of the most popular multiplexers for DVB-H and DVB-

SH (satellite services to handhelds) broadcast networks [8–10]. Most of the multiplexers

implement two burst scheduling schemes: slotted scheduling that allocates fixed size bursts

for each video stream, and dynamic scheduling that allows certain burst size flexibility, and

requires a joint video coder to work. Slotted scheduling is the default burst scheduling

algorithm because it is simple to implement, while dynamic scheduling is more complex and

may not be available in low-end multiplexers. In this section, we study how to broadcast

multiple VBR streams using these two scheduling schemes. Before that, we first review a

simple way to broadcast VBR streams using parallel services.
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2.5.1 Parallel Services

The multiplexers may support broadcasting multiple VBR video streams by considering

each video stream as a parallel service. This is illustrated in Figure 2.6(a), in which the

multiplexer combines three videos into two bursts. The multiplexer dynamically allocates

different shares of bursts to individual video streams, based on their current bit rates. For

example, as illustrated in in Figure 2.6(a), the multiplexer allocates more bits to stream 2

in burst 1, because stream 2 has a higher bit rate during burst 1. Similarly, the multiplexer

assigns more bits to stream 1 in burst 2, because stream 1 has a higher bit rate during

burst 2. While parallel services enable network operators to broadcast VBR streams, they

incur high energy consumption on mobile devices, and thus shorten the battery life. This is

because mobile devices have to turn on their receiving circuits for longer periods to receive

all video streams sent in the same burst, despite that each mobile device only renders one of

them. In contrast, sending every video stream as a serial service, as shown in Figure 2.6(b),

enables each mobile device to only receive the video stream it is tuned to, and turn off its

receiving circuit earlier. Since the parallel service leads to high energy consumption, we do

not consider it in the rest of this thesis.

Figure 2.6(b) also illustrates that multiplexers must carefully construct burst schedules

for higher energy saving and better bandwidth efficiency. More precisely, we make two ob-

servations on this figure. First, the first bursts of all three video streams are very short.

Therefore, the overhead durations To become relatively large to these video streams, which

result in high energy consumption and short watch time on mobile devices. Second, video

stream 3 has too much data to send during its second burst, and some of its data, indi-

cated by the dashed rectangle in this figure, cannot be transmitted although there is slack

time among the first three bursts. Unsent data leads to late packets and playout glitches.

These two observations show the importance of the burst scheduling problem in broadcast

systems: an ill-formated burst schedule may lead to high energy consumption and/or low

video quality.

2.5.2 Slotted Scheduling

Slotted scheduling algorithm schedules bursts in round-robin fashion, and can be used in

open-loop broadcast systems. In slotted scheduling, network operators specify a system-

wide inter-burst time period ∆T sec, and a burst size bs kb for each video stream s. The
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Figure 2.7: Per-GoP rate variations for two representative coded streams: (a) Silence of the
Lambs, and (b) Tokyo Olympics.

multiplexer then schedules a burst every ∆T sec for every stream s, where each burst is bs kb

long. The slotted scheduling is very simple to implement, but it is not flexible because each

video stream can only be transmitted in its allocated, fixed size bursts. More specifically,

video streams that do not have enough accumulated video data to fill up its current burst

would finish the transmission early, but the allocated time slot is not usable for other video

streams. This leads to wasting of bandwidth. In addition, the multiplexers must drop some

video data from those video streams that have more data to send than the sizes of their

current bursts. This results in degraded streaming quality.

The slotted scheduling requires network operators to manually choose ∆T and bs values

to form a burst schedule that results in smooth playouts. The selections are often made

through heuristics and are vulnerable to human errors. Selecting broadcast parameters for

modern VBR coders is even more difficult, because these VBR coders trade high bit rate

variations for better coding efficiency [49]. To illustrate the high rate variations, we choose

two H.264/AVC coded video streams from the ASU Video Trace Library [67], and we plot

the average bit rate of each GoP (Group of Pictures) in Figure 2.7. This figure indeed

shows that real VBR streams consist of extreme rate fluctuations. We report GoP-level rate

variations to be conservative: frame-level rate variations are even more severe.

There are two approaches to transmit VBR streams over constant bit-rate channels

provided by the slotted scheduling: (i) directly sending each VBR stream at a heuristically

chosen rate rs, and (ii) adding a rate regulator for each video stream, and transmitting the
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Figure 2.8: CDFs of Per-GoP bit rate of two representative coded streams: (a) Silence of
the Lambs, and (b) Tokyo Olympics.

rate regulated VBR streams. We describe these two approaches in the following.

VBR (variable-bit-rate). We use rs to denote the streaming rate of video stream

s. Without loss of generality, we let r1 ≤ r2 ≤ · · · ≤ rS; otherwise, we relabel the video

streams. To ensure there is absolutely no buffer underflow instances, network operators

have to set rs to be the maximal bit rate of stream s, which is indicated by the solid

line in Figure 2.7. Doing so, however, is too conservative and leads to oversubscription

and wasting of bandwidth. Network operators may avoid the oversubscription issue by

choosing a smaller rs at the mean bit rate of that video stream, as indicated by the dashed

line in Figure 2.7. This, however, may result in playout glitches due to buffer underflow

instances on mobile devices. Therefore there exists a tradeoff between wasted bandwidth and

video quality. To better quantify this tradeoff, we compute and plot the CDF (cumulative

distribution function) curve Fs(r) of per-GoP bit rate for the two considered streams in

Figure 2.8. We then define a VBR burst scheduling algorithm VBRα as streaming each

video stream s (1 ≤ s ≤ S) at the smallest bit rate rs so that Fs(rs) ≥ α. For example,

VBR100% conservatively sets the streaming rate at the maximal bit rate, and VBR50% sets

the streaming rate at the mean bit rate.

Once the rs is determined, we compute ∆T and bs. We first choose a ∆T value as follows.

We assume that mobile devices have a receiving buffer of Q kb. The ∆T value is bounded

by ∆T ≤ Q/rS , because longer ∆T would overflow the Q kb buffer of mobile devices that

render video stream S. To achieve high energy saving, we set ∆T = Q/rS , as shorter ∆T
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Figure 2.9: Regulating VBR streams into CBR streams using buffers may cause: (a) high
oversubscribed, wasted, bandwidth, and (b) prohibitively long preroll buffering delay.

value leads to shorter bursts, and thus lower energy saving. We then divide the air medium

time ∆T among all video streams proportionally to their bit rates. Mathematically, we

write bs = R rs
∑S

i=1
ri

∆T , where R kbps is the broadcast network bandwidth.

RVBR (regulated-variable-bit-rate). Traffic regulators absorb VBR traffic bursti-

ness at the expense of higher memory requirements and longer preroll delays. Preroll delay

is the minimal buffering time to fill the regulator buffer before mobile devices can start

getting data out of it without risking for playout glitches in the future. The preroll delay,

unfortunately, could be prohibitively long and annoying to users. To illustrate, we analyze

three video streams, and we use the H.264/AVC HRD model [62] to compute the buffer size

and preroll delay requirements for any given streaming rate rs. We notice that the leaky

bucket model allows buffer underflow instances at the sender side [50], which is acceptable

in Internet streaming systems because the Internet can use any oversubscribed bandwidth

toward packets of other, background, traffics. However, oversubscribed bandwidth in broad-

cast networks is wasted, because the base station computes the burst schedule and reserves

air medium time for individual video streams. To quantify this negative impact, we com-

pute the oversubscribed bandwidth and minimum preroll delay at various rs, and we plot

the results in Figure 2.9. This figure indicates that long preroll delay is required if network

operators want to avoid wasted bandwidth. For example, streaming Silence of the Lambs at

a bit rate lower than 280 kbps leads to no wasted bandwidth, but it results in more than 6

min preroll delay, which is clearly not acceptable to users. Therefore, there exists a tradeoff
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between wasted bandwidth and user experience. To better quantify this tradeoff, we define

a burst scheduling algorithm RVBRβ as streaming each video stream s (1 ≤ s ≤ S) using a

rate regulator. The regulated VBR stream has bit rate rs that is the smallest bit rate such

that ds(rs) ≤ β sec, where ds(rs) represents the minimum preroll delay under streaming rate

rs. For each video stream s, ds(rs) can be computed using the algorithm given in [62] as we

show in Figure 2.9. For example, RVBR3 sets rs at the minimal streaming rate so that the

preroll delay incurred by the rate regulation is less than 3 sec. Once the rs is determined,

∆T and bs can be computed as mentioned above.

2.5.3 Dynamic Scheduling

Multiplexers may support closed-loop broadcast networks using dynamic scheduling. Dy-

namic scheduling also allocates a burst for each video stream in round-robin fashion within

each ∆T scheduling window. Unlike slotted scheduling, dynamic scheduling allows flexi-

ble burst size, i.e., video streams currently have higher bit rates may extend their bursts

beyond what were reserved for them. However, bursts cannot span over more than one

scheduling window. Within each scheduling window, the dynamic scheduling allocates each

video stream a burst with size of its aggregate frame size in that scheduling window. Since

closed-loop networks employ joint video coders to control the aggregate bit rate of all video

streams, the air medium time of each scheduling window ∆T can accommodate all frames

within that scheduling window without overloading the broadcast network.

Joint video coders, however, do not monitor the buffer states of mobile devices, and thus

cannot ensure the mobile devices are free from buffer overflow instances. It is, therefore,

network operators’ responsibility to manually choose a proper ∆T value to avoid buffer

overflow instances. We describe a very general approach to determine ∆T in the following.

DVBR (dynamic-variable-bit-rate). In general, larger scheduling window leads to

longer bursts and thus higher chance to overflow receiving buffer on mobile devices. One

way to avoid buffer overflow instances is to set ∆T = Q/R, which prevents multiplexers from

sending any burst longer than Q kb. Doing so, however, may result in too many short bursts

and is not efficient in terms of energy saving. Therefore, network operators may increase ∆T

for higher energy saving at the expense of potential buffer overflow instances. To cover a wide

range of base station configurations, we define DVBRτ as the dynamic scheduling algorithm

with a scheduling window size ∆T = τQ/R, where τ ≥ 1 is a system parameter. To quantify

the implication of τ on system performance, we simulate a closed-loop broadcast network
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Figure 2.10: With different τ value, dynamic scheduling results in different: (a) energy
saving and (b) fraction of overload.

with six H.264/AVC videos from the ASU Video Trace Library [67]. We notice that this

Video Trace Library only provides trace files coded by standalone video coders. To mimic

a typical joint video coder, we write scripts to allocate network bandwidth among these

six videos using the Lagrangian optimization method [68], which allow us to maximize the

average video quality under the constraint of limited network bandwidth. More specifically,

for each video stream, we first use the trace files with different quantization parameters to

derive its empirical R-D (rate-distortion) curves of each scheduling window. The empirical

R-D curves allow us to predict the video quality at various encoding bit rates without going

through time-consuming encoding process. Our scripts then compute the optimal bit rate

allocation of all video streams in each scheduling window, and we use the resulting bit

allocation as the video traces of a typical joint video coder.

We consider a broadcast network with 16.09 Mbps bandwidth, which is a common mod-

ulator configuration of DVB-H broadcast networks [16]. We assume mobile devices have 2

Mb receiver buffer. We concurrently broadcast six videos over this broadcast network for

10 minutes. We consider two performance metrics: energy saving, which is the fraction

of time mobile devices can turn off their receiving circuits, and fraction of overflow data,

which is the fraction of bursts that cannot fit into the receiver buffer. For each metric, we

first compute the average performance of each video stream throughout the broadcast, we

then report the mean value among all six video streams. We repeat the simulation multiple

times, each with a different τ value from 1 to 64.
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We plot the results in Figure 2.10. Figure 2.10(a) shows that the energy saving achieved

under three typical overhead duration To: 50, 100, and 200 msec. This figure illustrates

that mobile devices may suffer from low energy saving when τ is small. For example, when

τ = 1 and To = 100 msec, the energy saving is about 40%, which is only half of the 80%

energy saving when τ ≥ 16. We plot the fraction of lost data in Figure 2.10(b). This

figure reveals that larger τ value leads to more lost data, which results in playout glitches.

For example, when τ = 16, mobile devices on average lose 40% of the video data, which

clearly would prevent the video streams from proper rendering. Figure 2.10 shows that,

in dynamic scheduling, network operators must carefully choose the ∆T . Otherwise, the

broadcast network may suffer from low energy saving and/or degraded user experience.

More importantly, closed-loop networks suffer from buffer overflow instances unless τ is set

to 1. Therefore, we assume that network operators adopt τ = 1 for glitch-free broadcast, if

not otherwise specified.

2.5.4 Summary

We described slotted scheduling and dynamic scheduling algorithms implemented in current

commercial multiplexers. They both require network operators to manually choose broad-

cast parameters, which is time-consuming and error-prone. We defined three scheduling

algorithms VBRα, RVBRβ , and DVBRτ , which simplify the process for network operators

to choose broadcast parameters for current base stations. We also use these algorithms as

the benchmarks of our proposed burst scheduling algorithms in Chapter 4.

2.6 Inferring Overhead Duration of Real Mobile Devices

With current technology, To is reported to be in the range of 50—250 msec [9, 10, 16], and

for a specific example, the Philips mobile TV chip has an To of 150 msec [69]. In this

section, we design and conduct an experiment to infer the actual overhead duration To of a

real mobile device. We use this value in most of the experiments and analyses conducted

in this thesis. We use Nokia N96 cellular phones in this experiment because it is the most

recent Nokia phone that supports DVB-H at the time of writing. Hence, its To value can

serve as a lower bound of other legacy, older mobile devices. In order to infer the To value of

Nokia N96, we need to know the power consumption of its DVB-H chip before applying the

time slicing technique, which is denoted by c mW. Unfortunately, the make and model of
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Figure 2.11: (a) Sample power consumption results captured on a Nokia N96 cellular phone,
and (b) overhead duration inferred from different broadcast schemes and chip specifications.

the DVB-H chip used by Nokia N96 are not public. Therefore, we consider the data sheet

released by a popular DVB-H chip manufacturer [18], which indicates the first generation

of DVB-H chips have a power consumption of 700 mW, while the most recent ones have a

power consumption of 400 mW. We consider c = 400, 500, and 600 mW in the experiment.

We conduct the experiment using a real mobile TV testbed that implements a DVB-H

network. Details of this testbed are given in Section 3.6. We capture a 10-minute news

clip over a digital cable service, and we encode the video using an H.264/AVC encoder at

bit rate 450 kbps, and the audio using an eAAC+ encoder at 32 kbps. We use our mobile

TV base station to broadcast the coded video stream, and we restart the stream upon the

end of it is reached. We broadcast the video stream with a fixed inter-burst time period

of 250 msec for 3.5 hrs. We cannot conduct longer experiments, because the battery of

N96 only lasts for 3.5 hrs in some test scenarios. We use a Nokia N96 to watch this TV

channel, and we measure its energy consumption using a built-in battery discharge monitor,

called Juice. Juice is a light-weight monitor that runs in the background, measures battery

voltage, current, as well as power consumption, and saves the results into a log file. A recent

study reports that Juice is fairly accurate [70], compared to external instruments. Upon

getting the log file for this 3.5-hr experiment, we fully charge the cellular phone battery.

We then broadcast the same video with a different inter-burst time period. We consider

five different broadcasting schemes with inter-burst periods: 250, 500, 1000, 2000, and 3000

msec, and we collect a log file for each of them.
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We plot two sample curves of N96 power consumption in Figure 2.11(a); curves for

other broadcasting schemes are similar and not shown for brevity. This figure illustrates

that broadcasting schemes with shorter inter-burst time periods result in shorter sleep time,

while schemes with longer inter-burst time periods lead to longer sleep time between bursts.

Moreover, these log files allow us to compute the average power consumption of each broad-

cast scheme over the 3.5-hr broadcast time. Next, we draw an important observation: the

power consumption difference between any two of the broadcasting schemes can be com-

pletely attributed to the number of overhead durations To they impose. This is because

we broadcast exactly the same video stream using each of these broadcast schemes, so that

the energy consumed by receiving, decoding, rendering, and displaying the video are the

same for all of them. That is, if we use the 250 msec broadcast scheme as the baseline, we

can derive the To value for each broadcast scheme using the energy consumption difference

between them. As an illustrative example, consider a 1-sec period of time, the energy con-

sumption difference between the 250 and 500 msec broadcast schemes is due to the two extra

overhead durations of the 250 msec scheme, compared to the 500 msec scheme. Therefore,

given a DVB-H chip energy consumption c, we can infer the To based on these two schemes.

Similarly, we can infer the To by comparing 200 msec scheme with 1000, 2000, and 3000

msec schemes. We report the inference results in Figure 2.11(b). This figure reveals that,

even with modern cellular phones such as Nokia N96, the overhead duration To is about

80–140 msec, which is non-trivial compared to burst lengths, which usually are a few hun-

dreds msec long. The experimental results confirm the overhead duration range of 50–250

msec reported in the literature [9, 10,16].



Chapter 3

Energy Optimization

In this chapter, we formally describe and formulate the energy optimization problem in mo-

bile video broadcast networks. We then show its hardness and propose an optimal algorithm

to solve a practical simplification of the general optimization problem. We also propose a

near-optimal algorithm for the general problem. These two algorithms are analytically

analyzed and throughly evaluated using simulations and experiments.

3.1 Introduction

We study the energy optimization problem described in Problem 1 (stated in Section 1.2.1),

in which a base station concurrently broadcasts multiple video streams to mobile devices

over a common wireless medium to many mobile devices. In such networks, base stations

employ time slicing to save energy and they must carefully compose burst transmission

schedules, which specify the burst start times and sizes, in order to guarantee streaming

quality and proper functioning of the system. Despite the importance of burst scheduling,

current base stations employ simple heuristics to construct burst schedules. For example,

the base station in Nokia Mobile Broadcast Solution (MBS) [71] can only take a system-

wide scheduling window length, which is manually specified by the network operator. That

is, all video streams, despite their encoding bit rates, have the same number of bursts

in every scheduling window, while the burst size of each video stream may be different.

Manually selecting a scheduling window length and burst sizes for individual video streams

with different bit rates is challenging and error-prone, and the resulting burst schedules may

not be optimal in terms of energy saving. This is because when video streams have different

38
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bit rates, the number of bursts that each video stream requires as well as the size of each

burst will be different in optimal schedules. Therefore, each video stream should not only

have diverse but also dynamic inter-burst periods, which are not supported by current base

stations such as Nokia MBS. Hence, a more efficient burst scheduling (in terms of energy

saving) is required.

In this chapter, we formulate the energy optimization problem in mobile video broadcast

networks. We show that this problem is NP-complete for video streams with arbitrary bit

rates. We then solve this problem in two steps. First, we propose a practical simplification

of the general problem, which allows video streams to be classified into multiple classes and

each class has a different bit rate. The bit rate of class c, rc, can take any value in the form

of rc = 2i × r1, where i ∈ {0, 1, 2, 3, . . . }, and r1 is the bit rate of the lowest class. r1 can

take any arbitrary bit rate. For example, the bit rates 800, 400, 200, and 100 kbps could

make four different classes for encoding sports events, movies, low motion episodes, and

talk shows, respectively. Using the above simplification, we develop an optimal (in terms

of energy saving) burst scheduling algorithm, which is quite efficient: its time complexity is

O(S log S), where S is the total number of video streams.

Next, we propose a near-optimal algorithm for the general burst scheduling problem

that does not require any assumption on the stream bit rates. This algorithm allows content

providers to choose the appropriate encoding bit rates for different types of video content

without being constrained by power-of-two bit rate increments. This in turn provides bet-

ter bandwidth efficiency of the expensive wireless spectrum and thus more offered video

streams, as well as higher perceived video quality and thus wider adoption of the mobile

video broadcast networks. The proposed algorithm achieves all of the above while making

the energy consumption of mobile devices very close to the absolute possible minimum. We

evaluate both algorithms using real implications and simulations. We design and build a

real mobile TV testbed, and we implement the proposed algorithms in the testbed. The

experimental results from the testbed demonstrate the practicality and effectiveness of our

proposed algorithms. We also conduct simulation experiments to analyze the performance

of our algorithms under wide ranges of parameters.
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3.2 Related Work

Several works have addressed energy saving in mobile video broadcast networks. The authors

of [19] and [16] estimate the effectiveness of the time slicing for given burst schedules. Both

works indicate that time slicing enables mobile devices to turn off their receiving circuits

for a significant fraction of the time. These two works do not construct burst schedules,

they only compute the achieved energy saving for given pre-determined burst schedules. In

contrast, we formulate and solve the burst scheduling problem for arbitrary channel bit

rates. To the best of our knowledge, there exist no other burst scheduling algorithms that

can accommodate video streams at different bit rates in the literature.

The authors of [72] propose an energy saving strategy for DVB-H networks by not

receiving some MPE-FEC sections once the received sections can successfully reconstruct

the data. Skipping a few MPE-FEC sections means that mobile devices can turn off their

receiving circuits earlier, which leads to additional energy saving compared to receiving all

MPE-FEC sections regardless whether they are necessary. The authors of [73] consider

mobile devices with an auxiliary short range wireless interface and construct a cooperative

network among several receivers over this short range wireless network. Mobile devices share

received IP packets over this short range network, so that each mobile device only receives

a small fraction of IP packets directly from the DVB-H network. This allows receivers to

reduce the frequency of turning on their receiving circuits. Assuming sending/receiving IP

packets through the short range network is more energy efficient than receiving DVB-H

sections, this cooperative strategy can reduce energy consumption. The proposals in [72,73]

are orthogonal and complementary to ours , as they reside in the mobile devices themselves

and try to achieve additional energy saving on top of that achieved by time slicing. In

contrast, our proposed algorithms are to be implemented in the base station broadcasting

video streams to mobile devices.

Optimizing mobile video broadcast networks from aspects other than energy saving has

also been studied in the literature, including the radio performance optimization in [74],

and the frame refresh delay reduction in [33, 75–77]. The author of [74] studies DVB-H

radio performance using simulations. The DVB-H system parameters are classified into

three sets: physical layer, time slicing module, and MPE-FEC module, while interaction

among parameters in different sets are outlined. The simulation results in [74] indicate that

extending the time interleaving depth in MPE-FEC to at least 100 msec results in good
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radio link performance, while increasing it beyond 300 msec yields no further improvements.

Extending the time interleaving depth, however, increases burst durations and imposes

negative impact on power consumption.

The frame refresh delay refers to the time period between receiving the first bit of a new

video stream and reaching the next random access point, typically an intra-coded frame,

of that video. Shorter frame refresh delays lead to shorter channel switching delays, and

thus more responsive systems. To reduce frame refresh delays, the authors of [75] propose

to periodically add redundant intra-coded frames into video streams coded by H.264/AVC

[78]. By frequently adding low quality intra-coded redundant frames into a video stream,

more random access points are created, which in turn reduces the refresh delay. Instead of

sending low-quality intra-coded frames over dedicated channels, intra-coded frames can also

be transmitted at the beginning of bursts to shorten frame refresh delays [33,76,77].

None of the aforementioned works presents burst scheduling algorithms. In fact, unlike

our burst scheduling problem which is in the link layer, the radio performance optimization

lies in the physical layer, and both frame fresh delay reduction and video quality optimization

fall in the application layer. Therefore, all these works are complementary to our work on

maximizing energy saving.

Finally, we note that receivers in broadcast networks usually have separate receiving cir-

cuit and antenna for processing broadcast signals, other than the circuits for receiving and

making phone calls. Our work focuses only on optimizing the energy saving for broadcast

receiving circuits. In addition, because of the one-way nature of broadcast networks, feed-

back channels from numerous receivers to the base station are not practical. Thus, many

of the energy saving techniques designed for video streaming to the general wireless devices

are not applicable to mobile TV networks. For example, the throttling technique proposed

in [79], which enables a wireless receiver to indirectly control the sending pattern of an

Internet streaming server, requires a feedback channel from the receiver to the server, which

may not be possible in one-way broadcast networks.

3.3 Notations and Hardness

In this section, we define notations for the energy optimization problem described in Prob-

lem 1. We then show that it is NP-complete. We list all symbols used in the chapter in

Table 3.1 for quick reference.
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Table 3.1: List of symbols used in energy optimization.
Sym Definition Sym Definition

To overhead duration ns no. bursts for s
S number of video streams fk

s time of burst k for s
R burst bit rate bk

s burst size
Q receiver buffer size ck

s buffer level
rs bit rate for stream s us init. buffer level
p scheduling window length γ energy saving
L burst schedule d ch. switching delay
ws set of subframes for s wk

s subwindow k for s
xk

s start time of wk
s zk

s end time of wk
s

yk
s total burst time of wk

s ek
s completion time of wk

s

......

Time

Ch. S

Ch. 2

Ch. 1

Frame 2Frame 1 Frame 3

pp

Figure 3.1: The burst scheduling problem in mobile video broadcast networks.
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Figure 3.2: The dynamics of the receiver buffer during in successive frames.

We consider video broadcast networks in which a base station concurrently broadcasts S

video streams to users with mobile devices over a wireless medium with bandwidth R kbps.

Each video stream s, 1 ≤ s ≤ S, has a bit rate rs kbps, which is typically much less than R.

The base station broadcasts each video stream in bursts at bit rate R kbps. After receiving

a burst of data, the receiving circuits are switched off until the time of the next burst, which

is computed by the base station and included in the header fields of the current burst. The

receiving circuits of mobile devices must be open slightly before the burst time, because

it takes some time to wake up and synchronize the circuitry before it can start receiving

data. This time is called the overhead duration and is denoted by To. To is in the range of

50—250 msec [9,10,16], and in Section 2.6, we empirically show that a recent Nokia cellular

phone has To in the range of 80–140 msec. The energy saving achieved by mobile devices

receiving video stream s is denoted by γs and it is calculated as the ratio of time the video

stream is in off mode to the total time [16, 19]. We define the system-wide energy saving

metric over all video streams as γ =
(

∑S
s=1 γs

)

/S. The energy saving as well as the burst

scheduling itself are performed on a recurring time window called a scheduling window. We

let p denote the scheduling window length, which is a system parameter in mobile video

broadcast networks. Figure 3.1 shows an example of three recurring windows. In general,

longer scheduling windows provide more chances to shuffle bursts around for better energy

saving. However, a longer p may increase the channel switching delay and computation

complexity of the burst scheduling algorithm. We will empirically study these tradeoffs in

Section 3.9.
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Figure 3.1 illustrates a simple example for the burst scheduling problem. Notice that

the bursts have different sizes, are disjoint in time, and are repeated in successive frames. In

addition, there can be multiple bursts for a video stream in each recurring scheduling window

to ensure that there are no buffer under/overflow instances. To illustrate the receiver buffer

dynamics for a valid solution of the burst scheduling problem, we demonstrate in Figure 3.2

the buffer level as a function of time. This is shown for a receiver of an arbitrary video

stream s with two bursts in each scheduling window. We make two observations on this

figure. First, during a burst, the buffer level increases with a rate (slope of the line) of R−rs,

which is much larger than the consumption rate of −rs when there is no burst. Second, the

scheduling window starts with an initial buffer level (denoted by us) and ends at the same

buffer level. Clearly, this is a requirement for any valid burst scheduling solution, otherwise

there is no guarantee that the buffer will not suffer from over or underflow instances.

It is important to note that in video streaming systems, there are typically multiple

buffers in different layers, and these buffers are coordinated using signaling mechanisms

of the protocols in the corresponding layers. For example, in the application layer, an

H.264/AVC video encoder can use the buffering model described in the standard document

[53, Annex. C] to specify the buffer requirements for the decoder in order to have a smooth

playout of the encoded video. The DVB-H standard, on the other hand, defines a buffering

model for the physical, link, and application layers [80, Section 5.3]. As we mentioned in

Section 3.2, our burst scheduling problem belongs to the time slicer in the link layer. Thus,

the receiver buffer mentioned in Problem 1 and throughout the chapter is the link-layer

buffer, which is also known as the time slicing buffer [81, Section 9.4].

We prove in the next theorem that the burst scheduling problem is NP-complete.

Theorem 1 (Burst Scheduling). The burst scheduling problem stated in Problem 1 is NP-

complete.

Proof. We first show that the problem of maximizing energy saving (Problem 1) is the same

as the problem of minimizing the total number of bursts in each scheduling window for

a given scheduling window length p. To maximize energy saving γ, we have to minimize

the receiving circuit on-time for receivers. Notice that the receiving circuit on-time can

be divided into two parts: burst and overhead durations as illustrated in Figure 1.1. The

burst duration represents the time in which mobile devices receive the video data. Since we

consider steady burst schedules, where the number of received bits is equal to the number
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of consumed bits in each scheduling window for all mobile devices, the burst duration must

be constant across all feasible burst schedules. Notice also that each burst incurs a fixed

overhead To. Therefore, minimizing the receiving circuit on-time is equivalent to minimizing

total number of bursts in each scheduling window, because it minimizes the total overhead.

Next, we reduce the NP-complete problem of task sequencing with release times and

deadlines [82, pp. 236] to the problem of minimizing the total number of bursts in each

scheduling window. The task sequencing problem consists of T tasks, where each task

t = 1, 2, . . . , T is released at time xt with length yt sec and deadline zt. The problem is

to determine whether there is a single machine (non-preemptive) schedule that meets all

constraints of release times and deadlines. For any task sequencing problem, we set up a

burst scheduling problem as follows. We let S = T and map every task to a video stream.

We let p = p∗ be the optimum scheduling window length, which will be derived in the next

section. We choose an arbitrary burst bit rate R. For any video stream s (s = 1, 2, . . . , S),

we let video stream bit rate rs = Rys/p
∗ to balance the number of received bits and the

number of consumed bits. We set the initial buffer level us = (zs − ys)rs, which guarantees

that a burst with length ys will be scheduled (and finished) before the deadline zs, or

mobile devices will run out of data for playout (underflow). We let the receiver buffer size

bs = us + ysR − (xs + ys)rs − ǫ, where ǫ > 0 is an arbitrary small number. Selecting such

an bs guarantees that a burst with length ys will be scheduled after the release time xs,

otherwise mobile devices will run out of buffer space (overflow).

Clearly, we can set up the burst scheduling problem in polynomial time. Furthermore,

solving the burst scheduling problem leads to the solution of the task sequencing problem

because the minimum total number of bursts is equal to S if and only if there is a non-

preemptive schedule that satisfies the constraints on release times and deadlines of the task

sequencing problem. Thus, the burst scheduling problem is NP-hard. Finally, determining

whether a given burst schedule meets the collision free and buffer violation free requirements,

i.e., a valid solution for Problem 1, takes polynomial time. Hence, the burst scheduling

problem is NP-complete.

We notice that this theorem might seem counter intuitive at first glance, because the

burst scheduling problem looks somewhat similar to preemptive machine scheduling prob-

lems. However, there is a fundamental difference between our burst scheduling problem and

various machine scheduling problems: most of the machine scheduling problems consider
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costless preemption model [83]. In contrast, our burst scheduling problem adopts costly

preemption model, as our problem aims at minimizing the total number of bursts in a

scheduling window, which is essentially the number of preemptions. Therefore, the algo-

rithms developed for various machine scheduling problems are not applicable to our burst

scheduling problems (see [83] for a comprehensive list of machine scheduling problems).

The costly preemption model has only been considered in a few works [84–87]. The authors

of [85, 86] partially cope with preemption costs by adding constraints to limit the number

of preemptions. The authors of [84] solve the problem of minimizing the weighted sum of

the total task flow time and the preemption penalty, where the weight is heuristically cho-

sen. The author of [87] considers the problem of minimizing weighted completion time and

task makespan under a given preemption cost. Unlike these problems, our burst scheduling

problem solely uses the preemption cost as the objective function and does not allow any

late task, which renders the algorithms proposed in [84–87] inapplicable to our problem.

3.4 Problem Formulation

We show a simple example of the burst scheduling problem in Figure 3.1. This figure depicts

that, in the considered problem, the bursts have various sizes, are disjoint in time, and are

repeated in all recurring frames. Furthermore, a video stream can have multiple bursts in

each scheduling window to ensure that there is no buffer violations. To illustrate the receiver

buffer dynamics for a valid schedule, we demonstrate in Figure 3.2 the receiver buffer level

of a video stream with two bursts in each scheduling window. We make two observations

on this figure. First, during a burst, the buffer level increases with a rate (slope of the line)

of R − rs, which is much larger than the consumption rate of −rs when there is no burst.

Second, the scheduling window starts with an initial buffer level (denoted by us) and ends at

the same buffer level. Clearly, this is a requirement for any valid burst scheduling solution,

otherwise the receiver buffer may have over/underflow instances.

Let ns be the number of bursts of video stream s in each scheduling window. We denote

the start time and burst size of burst k of stream s as fk
s sec and bk

s kb, respectively, where

s = 1, 2, . . . , S and k = 1, 2, . . . , ns. Since mobile devices open their receiving circuits To

msec before fk
s and it takes bk

s/R to transfer bk
s kb data, the receiving circuits are on for

burst k of stream s during time period [fk
s −To, fk

s + bk
s/R). In addition, any burst bk

s must

be smaller than the receiver buffer size Q, i.e., 0 < bk
s ≤ Q. We define the buffer level at
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the beginning of burst k of video stream s as ck
s kb. As illustrated in Figure 3.2, ck

s can be

computed as:

ck
s = us +

k−1
∑

i=1

bi
s − fk

s rs,

where the second term accounts for the received data and the third term accounts for

the consumed data. The output of the burst scheduling algorithm is a schedule L =

{L1,L2, . . . ,LS}, where Ls is the schedule for video stream s. In addition, Ls = <ns, us, fs,

bs>, where ns is the number of bursts, us is the initial buffer level, fs = {f1
s , f2

s , . . . , fns
s }

indicates the burst start times, and bs = {b1
s, b

2
s, . . . , b

ns
s } represents the burst sizes.

The burst scheduling problem can then be formulated as:

max
L

γ =
S
∑

s=1

(

1 −
ns
∑

k=1

(To + bk
s/R)/p

)

/

S (3.1a)

s.t.
[

fk
s , fk

s + bk
s

R

)

⋂

[

f k̄
s̄ , f k̄

s̄ + bk̄
s̄

R

)

= ∅; (3.1b)

ck
s ≥ 0; (3.1c)

ck
s + bk

s −
bk
s

R rs ≤ Q; (3.1d)

0 ≤ us ≤ Q; (3.1e)
∑ns

i=1 bi
s = prs; (3.1f)

∀ 1 ≤ s 6= s̄ ≤ S, 1 ≤ k ≤ ns, 1 ≤ k̄ ≤ ns̄.

The goal is to compute the schedule L to maximize the objective function in (3.1a), i.e.,

the system-wide energy saving γ. The constraints (3.1b)–(3.1f) guarantee that the resulting

burst schedule is feasible as defined in Problem 1. In particular, (3.1b) ensures that there

are no burst intersections among all S streams. (3.1c) validates the buffer level for stream s

at the start time of every burst to prevent buffer underflow instances. We note that ck
s is a

function of fk
s , bk

s , and us as defined above. (3.1d) validates the buffer level for stream s at

the end time of every burst to prevent buffer overflow instances. It is sufficient to check the

buffer level only at the start and end times, because the buffer level only increases during

the bursts as illustrated in Figure 3.2. The buffer under/overflow instances at scheduling

window boundaries are prevented by (3.1e). (3.1f) says that the number of received and

consumed bits for stream s are equivalent in every scheduling window, which in turn ensures

that the buffer level at the end of every scheduling window is equal to the initial buffer level

us.
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3.5 Optimal Solution for a Practical Simplification

In Section 3.3, we proved that the general burst scheduling problem is NP-complete. In

this section, we present an algorithm that optimally and efficiently solves this problem

under a certain assumption that usually holds in practice. To simplify the presentation, we

first describe an overview of the algorithm and an illustrative example. We then analyze

the algorithm and prove its correctness, optimality, and efficiency. Then, we analyze the

tradeoff between the achieved energy saving and the channel switching delay. Finally, we

discuss several practical issues of the proposed algorithm.

3.5.1 Overview

We propose an optimal algorithm for the burst scheduling problem when the bit rate of a

video stream s, 1 ≤ s ≤ S, is given by rs = 2i × r1 for any i, where i ∈ {0, 1, 2, 3, . . . }, and

r1 can be any arbitrary bit rate. As mentioned in Section 3.1, the video streams can be

divided into classes, where each class contains similar-type multimedia content encoded at

the same bit rate. Without loss of generality, we assume that the bit rates of the S streams

are ordered such that r1 ≤ r2 ≤ · · · ≤ rS . If otherwise, a re-labeling based on the bit rates

is applied. We also assume that the bandwidth of the wireless medium satisfies R = 2k ×r1,

where k is a positive integer. We present in Figure 3.3 an optimal algorithm for solving the

burst scheduling problem in this case.

The basic idea of our algorithm is as follows. The algorithm first computes the optimal

value for the scheduling window length p∗ (We derive p∗ in Theorem 3). It then divides

p∗ into bursts of equal size p∗r1 bits. Thus, there are (p∗R)/(p∗r1) = R/r1 bursts in each

scheduling window. Then, each video stream is allocated a number of bursts proportional to

its bit rate. That is, video stream s, 1 < s ≤ S, is allocated rs/r1 bursts and video stream

1 is allocated only one burst in each scheduling window. Moreover, bursts of video stream

s are equally spaced within the scheduling window, with inter-burst distance of p∗/(rs/r1)

sec. This ensures that there will be no underflow instances in the receiver buffer, because

the consumption rate of the data in the buffer for video stream s is rs bps and the burst

size is p∗r1 bits. Since the optimal scheduling window length can be written as p∗ = b/r1,

the size of each burst is p∗r1 = b, which is no larger than the receiver buffer size b. This

ensures that there is no buffer overflow instances. Finally, bursts of different video streams

are arranged such that they do not intersect in time, that is, the resulting schedule is conflict
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free.

To achieve the above steps in a systematic way, the pseudo code in Figure 3.3 works

as follows. It builds a binary tree bottom-up. Leaf nodes representing video streams are

created first, where the leaf node of video stream s is annotated with the value rs/r1. The

algorithm uses this value as the key, and inserts all leaf nodes into a priority queue. This

priority queue is implemented as a binary heap to efficiently find the node with the smallest

key. The algorithm then repeatedly merges the two nodes that have the least key values into

a new internal node. This new internal node has a key value equivalent to the sum of the

key values of its children. This is done by popping the smallest two values from the heap,

and then pushing the newly created node into it. The merging of nodes continues till the

tree has a height of log(R/r1). The last merged node becomes the root of the binary tree.

Note that if the wireless medium is fully utilized by the video streams, i.e.,
∑S

s=1 rs = R, the

computed bursts of the different video streams will completely fill the scheduling window

p. If otherwise (i.e., < 100% utilization), the wireless medium will have to be idle during

some periods within the scheduling window. The algorithm represents these idle periods as

dummy nodes in the tree.

Once the binary tree is created, the algorithm constructs the burst schedule. It allocates

to each video stream a number of bursts that is equal to its key value. In order to ensure

conflict-free schedule, the algorithm computes the start time for each burst as follows. For

each leaf node representing a video stream, the algorithm traverses the tree top-down.

During the traversal, each node is assigned the reverse bit pattern from the root to this

node, where the right branch has the bit 1 and the left branch has the bit 0. The bit

pattern for a leaf node encodes the number of bursts and their start times for the video

stream corresponding to that node. For example, in a tree of depth 3, the bit pattern 010

means that the video stream is assigned only the second burst in a scheduling window of

eight bursts. For leaf nodes at levels less than the depth of the tree, the bit pattern is

padded with one or more ‘x’ to the left. For example, if a leaf node has the bit pattern x01

in a tree of depth 3, this means that the node is at level 2 from the root. It also means

that this node should be assigned the two bursts: 001 and 101. Notice that the first burst

assigned to any video stream is equal to the numeric value of its bit pattern, with all ‘x’ bits

set to zero. The algorithm computes this value and refers to it as the offset. The algorithm

then computes successive bursts relative to this offset.
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Power-of-Two Optimal (P2OPT) Algorithm

1. Compute optimal scheduling window length p∗

2. Allocate a leaf node l for every stream s, let l.ch = s
3. Push all leaf nodes to a priority queue P with key rs/r1

4. while true{
5. let m1 = pop min(P ), m2 = pop min(P );
6. if m2 is null or m1.key < m2.key { // no sibling
7. if m2 is not null push(P , m2); // return m2 back to P
8. Allocate a dummy node m2, where m2.key = m1.key
9. }
10. Create an internal node n with children n.left & n.right
11. let n.left = m1, n.right = m2;
12. let n.key = m1.key + m2.key;
13. push(P , n); // insert this internal node
14. if n.key ≥ R/r1 break;
15. }
16. if |P | > 1 return ∅; // no feasible schedule
17. let T = ∅; // start composing schedule T

18. Traverse the tree from root down, annotate each node with an offset with the value
18. of the reverse bit pattern from root till this node
19. foreach leaf node l {
20. for i = 0 to l.key - 1 {
21. start = offset + i × (R/r1)/l.key;
22. // add a burst to stream l.ch at time start × p∗r1/R
23. insertBurst(T, start × p∗r1/R, l.ch);
24. }
25. }
26. return T;

Figure 3.3: An optimal algorithm to solve the burst scheduling problem.
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Figure 3.4: An illustrative example for the P2OPT algorithm.

3.5.2 Illustrative Example

Consider four video streams distributed over three different classes: two streams in class

I with r1 = r2 = 256 kbps, one in class II with r3 = 512 kbps, and one in class III with

r4 = 1024 kbps. Let the wireless medium bandwidth R = 2048 kbps, and the receiver buffer

b = 1 Mb. As explained later, p∗ is given by p∗ = b/r1 = 4 sec. The algorithm divides each

scheduling window into R/r1 = 8 bursts, and assigns 1, 1, 2, 4 bursts to streams 1, 2, 3,

4, respectively. The algorithm constructs a binary tree bottom-up as shown in Figure 3.4.

Four leaf nodes are created, each representing a video stream and has a key value equal to

the number of bursts that should be allocated to that stream. Notice that the leaf nodes are

logically placed at different levels based on their key values. Then the algorithm recursively

merges nodes with the same key values till it creates the root node with key value 8 = R/r1.

Then, the algorithm constructs the schedule by traversing the tree from the root down to

assign bit patterns to leaf nodes, which are shown in Figure 3.4. Using these bit patterns, the

offset for each node is computed and the bursts are assigned. The resulting burst schedule

is: T = {(0.0, 1), (0.5, 4), (1.0, 3), (1.5, 4), (2.0, 2), (2.5, 4), (3.0, 3), (3.5, 4)}, where the first

element in the parentheses is the start time of sending the burst, and the second element

indicates the video stream.

Notice that we present a rather simple example for illustration, and the P2OPT algo-

rithm is quite flexible on the bit rates of individual video streams. In fact, network operators
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can broadcast each video stream s (2 ≤ s ≤ S) at an average bit rate rs = 2i × r1 for any

i, where i ∈ {0, 1, 2, 3, . . . }. For instance, by setting i = 0 for all video streams, network

operators can compute the optimal broadcast schedule for video streams with uniform bit

rate. Therefore, the P2OPT algorithm provides a systematic way to construct optimal burst

schedules for mobile broadcast networks that broadcast streams at uniform bit rates, which

is currently a common practice.

3.5.3 Analysis

We show the correctness, efficiency, and optimality of our algorithm in the following two

theorems.

Theorem 2 (Correctness and Efficiency). The burst scheduling algorithm P2OPT in Fig-

ure 3.3 returns a conflict-free schedule with no buffer under/overflow instances, if one ex-

ists. And it has a worst-case time complexity of O(S log S), where S is the number of video

streams.

Proof. We prove the correctness part in two steps. First, observe that a burst schedule

produced by P2OPT is conflict-free because the algorithm assigns each video stream a

unique bit pattern that specifies the allocated bursts to that video stream. Moreover, the

bit pattern is padded with zero or more ‘x’ to the left, which guarantees that video stream s

is assigned rs/r1 equally-spaced bursts. Hence, if P2OPT returns a schedule, this schedule

is conflict-free with no buffer under/overflow instances.

Second, we prove that if P2OPT fails to return a schedule, there exists no feasible

schedule for the given video streams. P2OPT only merges nodes at the same binary tree

level and nodes at lower levels have strictly smaller key values than nodes at higher levels.

Therefore, P2OPT merges all nodes from bottom-up and creates at most one dummy node

at every level. Moreover, P2OPT uses line 12 to ensure the key value of each node indicates

how many time slots are consumed by itself (for a leaf node) or by all leaf nodes in its

subtree (for an internal node). P2OPT returns no feasible solution for a given problem if a

full binary tree with height h = log(R/r1) is built and |P | > 1 in line 16. Let z be the first

merged node with key value R/r1, which is the last merged node before returning from line

16. Since |P | > 1, we let w 6= z be an arbitrary node in P . w must have key value no less

than 1
2R/r1, otherwise w would have been merged before the children of z. We account for

the number of time slots consumed by real (non-dummy) leaf nodes in subtrees beneath w
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and z. w resides either at the same or higher level than z (case I), or at a level lower than z

(case II). In case I, we know that w.key ≥ z.key = R/r1 and w is a real leaf node, because z

is the first merged node at its level. Since P2OPT guarantees that at most one dummy leaf

node exists at each level, the total time slots occupied by dummy leaf nodes in z’s subtree

cannot exceed
log R/r1−1
∑

i=0

2i = R/r1 − 1

time slots. This shows that w and z consume at least

2
R

r1
− (

R

r1
− 1) = R/r1 + 1

time slots. Since R/r1 +1 exceeds the total number of available time slots R/r1, there exists

no feasible schedule. Case II can be shown in a similar way and is omitted for brevity.

For time complexity, P2OPT can be efficiently implemented using a binary heap, which

can be initialized in time O(S). Notice that we have at most log R/r1 dummy leaf nodes

because there is at most one dummy leaf node for each level. The while loop in lines 4–15

iterates at most O(S + log R/r1) = O(S) times, because log R/r1 can be considered as a

constant for practical encoding bit rates. Since each iteration takes O(log S) steps, the while

loop takes O(S log S) steps. Constructing the burst schedule in lines 17–25 takes O(S) steps,

since the tree has up to 2S nodes. Thus, the time complexity of P2OPT is O(S log S).

The following theorem shows that the P2OPT algorithm produces optimal burst sched-

ules in terms of maximizing energy saving.

Theorem 3 (Optimality). The scheduling window length p∗ = b/r1, where b is the re-

ceiver buffer size, computed by P2OPT maximizes the average energy saving γ over all

video streams.

Proof. We leverage the fact that we established in the proof of Theorem 1: the problem

of maximizing energy saving is equivalent to the problem of minimizing the total number

of bursts in each scheduling window for a given scheduling window length p. To maximize

energy saving γ, we have to minimize the ratio of receiving circuit on-time to the scheduling

window length. We again divide receiving circuit on-time into burst and overhead durations.

Notice that the ratio of burst duration to scheduling window length is constant for any

feasible schedule because each video stream is broadcast at a given bit rate. Since each

burst incurs overhead To sec, following the definition of γ, our burst scheduling problem
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Figure 3.5: The trade-off between energy saving and channel switching delay.

is reduced to the problem of minimizing the total number of bursts normalized to the

scheduling window length p.

We first prove by contradiction that any scheduling window length p < p∗ cannot result

in higher energy saving. Assume a feasible schedule T1 results in higher energy saving with

scheduling window length p1 than schedule T
∗ with scheduling window length p∗, which is

produced by P2OPT, where p1 < p∗. To outperform T
∗, T1 must have fewer number of

bursts than T
∗, i.e., |T1| ≤ |T∗|. However, T1 must lead to some buffer overflow, because

fewer number of bursts is equivalent to longer bursts, but P2OPT has fully utilized (filled

up) the receiver buffer b for all bursts. This contradicts the assumption that T1 is a feasible

schedule.

We next consider p > p∗. Assume T2 is a feasible schedule that results in better energy

saving with scheduling window length p2, where p2 > p∗. Let k = ⌈p2/p
∗⌉. Define T

′

by repeating T
∗, which is produced by P2OPT, k times. Since burst schedule T

′ also fills

up receiver buffer in all bursts, following the same argument as above, we show that T2

must lead to some buffer overflow. This contradicts the assumption that T2 is a feasible

schedule.
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3.5.4 Tradeoff between Energy Saving and Switching Delay

We first compute the average energy saving γ∗. Since video stream s has an inter-burst

duration of b/rs and the burst length is b/R, the average energy saving is given by:

γ∗ =

S
∑

s=1

(

1 − rs(1/R + To/b)
)/

S = 1 −

S
∑

s=1

rs
1/R + To/b

S
. (3.2)

Next, we analyze another important metric in mobile video broadcast networks: the

channel switching delay d, which is the time a user waits before s/he starts viewing a

selected channel when a change of channel is requested by her/him1. Channel switching

delay is composed of several parts, in which the frame refresh delay and time slicing delay

are the two dominating contributors [29,33]. In Section 3.2, we defined the frame fresh delay

and described several works in the literature on minimizing it. The frame refresh delay is

controlled in the application layer and is orthogonal to our burst scheduling problem. The

time slicing delay refers to the time period between locking onto the radio signals and

reaching the first burst of the subject video stream. Since time slicing delay is a by-product

of the time slicing based energy saving scheme, we only consider time slicing delay in our

work. We assume all other parts of channel switching delays are constant as they are outside

of the scope of this chapter. The average channel switching delay due to the optimal schedule

γ∗ is then given by:

d∗ =
(

S
∑

s=1

b/2rs

)/

S =
(

S
∑

s=1

1/rs

)

(b/2S). (3.3)

Notice that there is a tradeoff between γ and d and the main control parameter is the

buffer size b. To examine this tradeoff, we present an illustrative example. We consider a

broadcast service with R = 10 Mbps and 25 video streams equally distributed in five classes

of heterogeneous bit rates (i.e., 1024, 512, 256, 128, and 64 kbps). We plot the energy saving

and channel switching delay under different overhead durations in Figure 3.5. This figure

shows that larger buffer sizes and smaller overhead durations lead to higher energy savings

and also to higher channel switching delays.

1Each channel carries a video stream. We interchangeably use the terms “channel” and “stream” in this
thesis.
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3.5.5 Discussion

We discuss several practical issues related to the burst scheduling problem and our proposed

P2OPT algorithm. First, we do not restrict the coding of videos to the exact power-of-two

bit rates. We do not even restrict them to be CBR (constant-bit-rate) coded. What we

assume is that network operators will broadcast the video over the closet power-of-two band-

width, and smoothing buffers at the base station will be used to regulate the traffic. VBR

streams achieve higher coding efficiency compared to CBR coded ones, and users of recent

video coding standards, such as H.264/AVC, no longer use strict CBR coding [50]. Instead,

users usually specify the network bandwidth and smoothing buffer parameters at encoding

time, and the video coders perform rate control to ensure the resulting VBR coded streams

can be transmitted over the CBR network channel without any buffer under/overflow in-

stances. Therefore, our algorithm allows video streams to be VBR-coded and transmitted

over CBR network channels using smoothing buffers, which is currently a common practice.

Nevertheless, as mentioned in Section 2.4, smoothing buffers result in longer initial delay

and higher memory requirements. Therefore, we directly solve the problem of broadcasting

VBR streams in Chapter 4.

Second, we need to recompute the burst schedule many times during the broadcast in

order to cope with the broadcast service dynamics. For example, each TV channel frequently

changes programs (say each 30 min). Clearly different programs may have different video

characteristics, and thus we need to reschedule whenever a change of program occurs on

any TV channel. Given that there could be 20–50 TV channels concurrently broadcast

over the same wireless medium, there will be a very high-level of dynamic changes that

must be considered in real time by the burst scheduling algorithm. In addition, even during

one TV program on a single TV channel, there are typically many commercial ads. Each

commercial is a different video clip with different characteristics and bit rate. Furthermore,

during a single commercial period, ads (video clips) change very fast, on the order of 30–60

sec. Each change on any TV channel triggers rescheduling. Hence, the efficiency of the

proposed P2OPT scheduling algorithm is important. A brute-force approach to compute

burst schedules for 20–50 channels may take prohibitively long time and may not even be

doable at all, as the complexity is exponential in the total number of bursts for all channels.
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Third, our P2OPT algorithm constructs transmission schedules that minimizes the en-

ergy consumption for mobile devices, and hence maximizes the viewing time for uses. Cur-

rently, there are some heuristic methods used in practice to construct burst schedules. For

example, in Nokia’s Mobile Broadcast Solution (MBS) [71, 88], network operators specify

an inter-burst time period p sec, and a burst size bs kb for each video stream s. The base

station then schedules a burst every p sec for each video stream s, where the burst size is bs

kb long. In such a base station, network operators have to manually choose ∆T and bs to

form a burst schedule that leads to no burst overlapping in time and no buffer overflow in-

stances on mobile devices. This task is time consuming and error-prone. More importantly,

the resulting energy saving is not maximized.

Finally, as mentioned in Section 2.3, video streams are typically obtained from multiple

sources, e.g., from news, movies, and sports channels. It is also common that the operators

of broadcast networks decode and then re-encode video streams to customize them for their

networks and meet the limitations on the bandwidth of the allocated wireless spectrum. In

addition, network operators have the option to broadcast video streams at different qualities.

For example, sports channels can be broadcast at higher quality because they are watched

by many users. Our proposed algorithm allows this differentiation in quality.

3.6 Design and Implementation of a Mobile TV Testbed

This section provides the details of the hardware and software components of a real mobile

TV testbed2. We use this real testbed to evaluate the algorithms proposed in this and other

chapter, in order to show their practicality and effectiveness. Figure 3.6 shows a picture of

the testbed in our laboratory. We divide our description of the testbed into three parts:

base station, mobile receivers and data analyzers, and signaling and electronic service guide.

Each part is described in one of the following three subsections.

We note that our design is modular with well-defined interfaces between the components.

Therefore, different hardware/software components can be updated with minimal effects on

the others. Thus, we believe our testbed implementation will be useful for future generations

of mobile TV systems.

2This testbed was designed and implemented in collaboration with Yi Liu and Cong Ly who are also
graduate students of my advisor, Dr. Mohamed Hefeeda.
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Figure 3.6: The hardware setup of the mobile TV testbed. Left: the base station; Right:
the receivers/analyzers.

Figure 3.7: Setup of the Mobile TV (DVB-H) testbed.
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Figure 3.8: The proposed design for mobile TV base stations.

3.6.1 Base Station

We implement the base station in a Linux box in which we install the Radio Frequency (RF)

signal modulator DTA-110T-SP available from DekTec [89]. This modulator implements the

physical layer of the protocol stack and transmits DVB-H standard compliant signals via an

indoor antenna. We use the low-cost antenna LP49-DTV [90]. The RF output level of the

modulator, however, is quite low (∼ -29 dBm) and can only reach up to 1-meter broadcast

range for receivers with 6 dB gain antenna. Mobile devices typically have antenna gains

much lower than 6 dB. We use the low-power amplifier available from Enensys [91] to boost

the signal to about 0 dBm, which gives us approximately 20-meter range for cellular phones

in our lab environment.

A simplified view of our software architecture of the base station is shown in Figure 3.8.

Notice that this software architecture represents only the data plane of the testbed. The

control plane is described in Section 3.6.3. In addition to this software architecture, we have

developed a graphical user interface for managing the testbed; a snapshot of this interface is

shown in Figure 3.9. Using this interface, many parameters of the base station can easily be

configured. The parameters include: choosing the time slicing algorithm, setting the MPE-

FEC frame size, adding and removing TV channels, choosing the physical layer modulation

scheme and bitrate, setting the channel PIDs (packet identifiers) and IP multicast addresses,

and so on. This interface facilitates conducting various experiments, because it does not

require researchers to modify and compile the source code of different components of the

system.

We now briefly describe the software architecture in Figure 3.8. The base station per-

forms many operations in real time. Some of these operations involve blocking I/O tasks

(e.g., reading data from a network socket) and expensive processing tasks (e.g., computing

checksums and/or FEC codes of bursts). To efficiently support these operations, we employ
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a multi-threaded design for the base station. As shown in Figure 3.8, our design has three

thread groups: Timeslicer, Encapsulator, and Transmitter. Each of the first and third group

has a single thread, while the second group has a pool of n threads, where n is a config-

uration parameter. We use this multi-threaded design to utilize the multi-core processor

architectures that are quite common nowadays to provide the needed capacity to broadcast

multiple TV channels. In addition, by adjusting thread priorities, the multi-threaded design

with either single or multi-core processors can meet the real-time nature of broadcasting

TV channels on a commodity PC or low-end server. For example, we make the priority of

the Transmitter thread higher than other threads such that bursts are broadcast on time.

All threads process video data contained in bursts. A burst is a data structure that has

fields for all needed protocol headers as well as a payload section. Every burst is treated

as an independent unit, which allows us to move it from one processing stage to the next

without copying data in the memory; only pointers are manipulated and passed between

stages. The burst structure has fields for the RTP, UDP, IP, MPE, MPE-FEC, and MPEG-2

TS protocols in order to accelerate the encapsulation process. In addition, each burst has

a timestamp field, which specifies the scheduled broadcast time for that burst. As shown

in Figure 3.8, once a burst finishes processing in a stage, it is put in a priority queue for

the next stage. The queue is sorted based on the timestamp in order to process bursts with

closer deadlines earlier.

Timeslicer Thread. The Timeslicer thread receives video data from a local video

database and/or remote IP video streaming servers. The local database may have pre-

encoded TV programs such as TV series, documentary, and movies. The streaming servers

can provide live content such as sports events and live talk shows. They also could provide

pre-encoded content from online video databases. The Timeslicer thread has two main

functions: TimeSliceAlg and PrepareBurst.

The TimeSliceAlg function implements the burst transmission scheduling algorithm,

which determines the start time and size of each burst for every TV channel. The scheduling

algorithm must ensure smooth playback of the video data by the mobile receivers, i.e., the

receivers should not have buffer underflow or overflow instances. We designed the TimeSlicer

thread to allow different scheduling algorithms to be easily implemented and evaluated.

The PrepareBurst function takes the burst schedule produced by the TimeSliceAlg, and

divides the data streams of different TV channels into bursts with appropriate sizes and

timestamps. The output of the PrepareBurst function is bursts with filled payload sections
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Figure 3.9: A snapshot of the web-based interface for managing the mobile TV testbed.
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and timestamps as well as empty header fields (to be completed later by Encapsulator

threads). Before filling the payload section, the PrepareBurst function performs a sanity

check on the schedule to rule out any possible buffer overruns, due to the limitation on

maximal MPE frame size. Note that, performing this check in the PrepareBurst simplifies

the design: we do not re-implement this check in every TimeSliceAlg instance.

Encapsulator Threads. The Encapsulator threads complete the header fields for

the different protocols according to the DVB-H standard, as shown in Figure 3.8. One of

the functions performed by the Encapsulator threads is computing checksums and FEC

codes for bursts, which is relatively expensive given that it needs to be done in real time for

potentially many bursts. It is why we create a pool of Encapsulator threads to utilize any

idle processing unit in the base station. We also separate the Encapsulation threads from

the TimeSlicer thread because the latter could block on reading data from the local data

base or from the network socket. Thus, the Encapsulator threads never block unless there is

no burst in the Request Queue to be encapsulated. We set the priority of the Encapsulator

threads to be lower than the priority of the TimeSlicer thread, such that once the TimeSlicer

thread is ready to create bursts it will get a chance to do so.

Transmitter Thread. The Transmitter thread is assigned the highest priority among

all other threads in our design in order to ensure the on-time delivery of bursts. It reads the

bursts from the Ready Queue based on their timestamps and calls the appropriate function

in the APIs of the RF signal modulator card. It also monitors the actual transmission

of bursts and reports any abnormal delays. The Transmitter thread also supports time

multiplexing of DVB-H bursts with non DVB-H services, such as PSI/SI (Program Specific

Information/Service Information) information. This multiplexing is done as follows. During

burst scheduling, the TimeSliceAlg considers the available channel bandwidth as b−x kbps,

where b is the total channel bandwidth and x is the amount of bandwidth assigned to non

DVB-H services. b is a function of physical- and link-layer settings, while x is a configurable

system parameter. Since the TimeSliceAlg schedules bursts for a channel bandwidth lower

than the actual one, the resulting schedule consists of reserved time slots for carrying non

DVB-H services at bit rate x. Therefore, the Transmitter thread can insert packets of non

DVB-H services without affecting DVB-H services. Last, we note that DVB-H provides a

constant bit rate channel: the base station must send traffic packets even when there is no

data to transmit. To achieve this, the Transmitter thread sends null packets between any

two bursts and for any unused bandwidth reserved for non DVB-H services. We intentionally
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delay the null packet insertion to the Transmitter in order to reduce the processing overhead

of other components such as Encapsulator threads: a statically allocated null packet is

repeatedly reused without re-encapsulation.

Logging Subsystem: We have implemented an event logging module for analyzing

the correctness and performance of the base station. The logging module supports multiple

levels of events, which allows researcher to collect logs with the most appropriate amount

of details. For example, to validate the implementation, we can enable DEBUG-level logs,

which consist of many information including packet dumps. However, once the system is

stable, we can switch to STATS-level logging which suppresses all DEBUG info but still

saves statistical samples. Finally, for real deployments, the logging module can be disabled

to avoid any processing and memory overhead.

3.6.2 Mobile Receivers and Data Analyzers

The goal of the proposed testbed is to analyze various quantitative as well as qualitative

performance metrics of mobile TV networks. These metrics include visual quality, energy

consumption of mobile devices, channel switching delay, user interactivity with the system,

and ease and intuitiveness of the electronic service guide. To assess these performance

metrics, we have integrated different types of receivers into the proposed testbed, which are

briefly described below.

Nokia N96 Mobile Phones. We use Nokia N96 (and its predecessor N92) phones as

receivers. These phones are equipped with a DVB-H signal receiver, the receiver-side part of

the DVB-H protocol and a video player. These phones are used to verify the correctness and

compliance of our base station implementation to the DVB-H and IP Datacast standards.

The phones can also be used in user studies to assess the subjective visual quality of the

broadcast videos. This can be useful, for example, when new video encoders are being

tested or when searching for the bit rates for different types of video content to maximize

the visual quality on actual mobile receivers. Also mobile phones can be used to evaluate

the user interface of the mobile services and test new applications such as integrating cell

phone and video broadcasting services (e.g., interactive TV shows with user inputs/votes).

At lower layers, the actual energy consumption of receiving DVB-H signals and switching

delay among TV channels can be measured on the Nokia phone. The energy consumption

can be measured using the Nokia Energy Profiler application, which runs on the mobile

phone to monitor energy consumption in real time. The Energy Profiler is quite flexible,
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Figure 3.10: A snapshot of the graphical user interface of the DiviCatch analyzer.
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and it supports exporting measurement data logs to files for further analysis. The channel

switching delay, on the other hand, can be measured either by instrumenting the video

player or by implementing a utility as the middle-box between the DVB-H receiver and the

video player. The second approach is more feasible because the video player on the Nokia

phone is proprietary, which prevents us from augmenting it.

DVB-H Signal Analyzers. As the mobile TV application is proprietary, the mobile

phones cannot be used for evaluating the correctness and performance of different protocols

in the testbed implementation. To cope with this, we add a DVB-H analyzer, called Divi-

Catch RF T/H tester, available from Enensys [92] to the testbed. This analyzer is attached

to a PC via a USB port, and comes with a visualization software that runs on Windows.

The software provides detailed real-time information on the RF signals, the MPE frames,

the burst schedules, the burst jitters, among others. Figure 3.10 presents a snapshot of this

It also comes with visualization software, which presents crucial information in an intuitive

and user-friendly way, and is suitable for field testing, e.g., to locate dead zones in a real

deployment. However, based on our experience, we believe that this analyzer is not very

useful in validating the testbed implementation. This is because the analyzer, as a real

time tester, does not allow byte-level packet analysis. Hence, it can only diagnose serious

implementation errors such as early bursts.

To overcome this limitation, we use another DVB-H analyzer, called dvbSAM, available

from Decontis [93]. Different from DiviCatch, dvbSAM is a software based solution that is

compatible with many DVB-T USB receivers in the market. For example, we use a low-cost

WinTV-NOVA-T receiver from Hauppauge [94]. dvbSAM is also a Windows application.

It allows us to dump various information, such as PSI/SI tables and ESG fragments, in

hexadecimal format to debug the testbed implementation. Hence, we believe dvbSAM is

more useful for researchers to validate the algorithms and protocols implemented in the base

station, while DiviCatch is suitable for planning broadcast networks. We note that the costs

of these two analyzers are comparable: $5,000–$6,000.

Our Open-Source Analyzer. The above commercial analyzers are useful for debug-

ging the implementation of new protocols and algorithms. However, their source codes are

not available, and therefore cannot be programmed to measure new performance metrics

that may be of interest to researchers. For example, while measuring the channel switching

delay is quite important [29, 33, 34], none of the commercial analyzers provides a system-

atic way to collect samples of the channel switching delay. In addition, they are relatively
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expensive. Hence, an open-source DVB-H analyzer is desirable.

We have developed an open-source analyzer in Java that runs on Linux. The analyzer

leverages several utilities developed by the Linux TV project [95]. The Linux TV project,

part of the official Linux 2.6 kernel, supports many DVB-T TV receivers, including the low-

cost WinTV-NOVA-T receiver [94]. Our analyzer supports capturing TS and IP streams as

follows. Upon setting up the DVB drivers, the USB receiver shows up as /dev/dvb, which

allows us to perform a signal scan using the dvbscan utility. The dvbscan utility returns

the modulator parameters, such as frequency, bandwidth, and modulation scheme. With

these parameters, the USB receiver can be tuned to the right network using the tzap utility.

Then, we can use the dvbsnoop utility to record and analyze the MPEG-2 TS streams. To

extract IP streams from the TS streams, the analyzer uses the dvbnet utility to configure a

network interface for each DVB-H channel, and demultiplex TS packets based on the PIDs.

The analyzer then uses libpcap library to capture the IP streams.

With the capability of capturing both TS and IP streams, our analyzer can measure sys-

tem performance from different aspects, such as the energy saving and the channel switching

delay. Our analyzer has four parts: tuner, channel monitor, video player, and user interface.

The tuner sets up the DVB-T receiver and network interfaces. Each channel monitor is a

thread capturing IP packets for a specific DVB-H channel, where each packet is associated

with a receiving timestamp. Based on the timestamps, the channel monitor clusters packets

into bursts, then measures the performance metrics. At any moment, a channel monitor can

relay the captured packets to the video player for play-out. The user interface presents the

statistics collected by the channel monitors, and allow users to select a channel to watch.

Since the analyzer is open-source, it can be easily extended to evaluate other performance

metrics.

3.6.3 Signaling and Electronic Service Guide

This section describes the control plane of the testbed. Unlike the data plane which handles

broadcasting the actual data of TV channels, the control plane manages the auxiliary in-

formation transmitted by the base station in order to enable mobile devices to receive and

successfully decode different TV channels. The control plane has two parts: PSI/SI (Pro-

gram Service Information and Service Information) and ESG (Electronic Service Guide).

We describe each of them in the following.
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The PSI/SI provides link-layer signaling for carrying network configurations. It is or-

ganized as tables, where each table is encapsulated in one or more TS packets. The TS

packets of the same PSI/SI table share a PID, which allows receivers to reassemble PSI/SI

tables. Several tables are defined in the standard, e.g., Network Information Table (NIT)

carries the tuning information such as frequency, bandwidth, and modulation scheme. To

enable new receivers to find the DVB-H services, every PSI/SI table is re-transmitted every

few hundred milliseconds (the standard specifies various maximum retransmission period

for different tables). As aforementioned, the TS packets of PSI/SI tables are multiplexed

with the DVB-H packets by the Transmitter thread. This can be done very efficiently by

repeatedly sending the same packets in memory, as most PSI/SI tables are fairly stable over

time.

In the testbed, we abstract each PSI/SI table as a class that provides three functions.

First, it allows users to modify table content on-line, through a graphic user interface.

Second, it can read/write the content from/to a human-readable file, which enables users

to change the content offline. Third, and most importantly, it can pack table content into

TS packets following the packet format defined in the standard. The packed TS packets are

then sent by the Transmitter thread.

The ESG provides application-layer signaling to describe the offered TV services, which

allows mobile devices to present information about available programs to users. In addition,

ESG also carries session information that enables mobile devices to locate and play the

specific IP streams. ESG information is written as XML files, which are then divided into

fragments. There are several fragment types defined in the standard, e.g., Content fragments

provide textual description of TV programs. To reduce the processing time at receivers, ESG

fragments are encapsulated into a few binary container files with indexing fields. These files

are sent to mobile devices using the File Delivery over Unidirectional Transport (FLUTE)

protocol. To support new receivers, ESG fragments are also periodically retransmitted, but

with a longer period (in the order of seconds). The IP streams of the FLUTE protocol

are encapsulated as DVB-H channels, which are then time-sliced with other DVB-H TV

channels.

We implemented ESG as XML files in the testbed. We developed scripts to systemat-

ically create these XML files, and encapsulate them into binary container files. To send

these container files, we integrated an open-source FLUTE implementation [96] into our
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testbed after several modifications/customizations. The customizations are required in or-

der to comply with the IP Datacast standard [10], because the FLUTE implementation

targets many applications other than DVB-H ESG. We should mention that our experience

indicates that dvbSAM analyzer is better than DiviCatch for debugging ESG: dvbSAM

provides more details on ESG fragments and is more stable.

3.7 Evaluation of the Optimal P2OPT Algorithm

We evaluate the proposed P2OPT algorithm using actual implementation in the mobile TV

testbed (described in Section 3.6) as well as simulation. We also analyze the limitations of

the current practice of assigning the same bit rate for all TV channels, and we experimen-

tally show that our power of two bit rate increments solution can result in better viewing

experience by reducing quality variation among all TV channels.

3.7.1 Setup of the Mobile TV Testbed

As illustrated in Section 3.6, we have set up a testbed for DVB-H networks, which provides a

realistic platform for analyzing our burst scheduling algorithm. We configure the modulator

to use a 5 MHz radio channel with Quadrature Phase-Shift Keying (QPSK) modulation.

This leads to 5.445 Mbps air medium bandwidth according to the DVB-H standard [16]. We

concurrently broadcast 9 TV channels using our P2OPT algorithm for 10 minutes. These

TV channels are classified into 4 classes: 2 channels at 64 kbps, 3 channels at 256 kbps, 2

channels at 512 kbps, and 2 channels at 1024 kbps. The receiver buffer size is 1 Mb. For

each of these TV channels, we set up a streaming server on the base station to send 1-kB IP

packets at the specified bit rate. To conduct statistically meaningful performance analysis,

we collect detailed event logs from the base station. The logs contain the start and end

times (in msec) of broadcasting every burst of data and its size.

We develop software utilities to analyze the logs for three performance metrics: bit rate,

time spacing between successive bursts, and energy saving. We compute the bit rate for

each TV channel by considering the start times of two consecutive bursts and the burst

size. We use the bit rate to verify that our burst scheduling algorithm leads to no buffer

under/overflow instances. We compute the time spacing between bursts by first sorting

bursts of all TV channels based on their start times. Then, we sequentially compute the

time spacing between the start time of a burst and the end time of its immediate, previous,
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Figure 3.11: Experimental validation of the P2OPT algorithm: (a) and (b) show no
over/underflow instances, and (c) shows no burst conflicts.



CHAPTER 3. ENERGY OPTIMIZATION 70

burst. We use the time spacing to verify that there are no burst conflicts, as a positive time

spacing indicates bursts do not intersect with each other. We compute the energy saving

for each TV channel as the ratio between the receiving circuit on time and off time. We

assume the overhead duration To = 100 msec.

3.7.2 Experimental Results

Experimental validation of P2OPT correctness. We first validate the correctness of

our P2OPT algorithm from the actual testbed implementation. Figure 3.11 demonstrates

the correctness of the P2OPT algorithm. In Figs. 3.11(a) and 3.11(b), we plot the cumulative

data received by receivers of two sample channels as the time progresses (other results are

similar). We also show the consumed data with the time. To account for the worst case,

we assume that the receiver starts consuming (playing back) the video data immediately

after receiving a burst. The two figures clearly show that there are: (i) no buffer underflow

instances as the consumption line never crosses the stair-case curve representing arrived

data, and (ii) no buffer overflow instances as the distance between the data arrival and

consumption curves never exceeds the buffer size (1 Mb). Notice that Figs. 3.11(a) and

3.11(b) show only short time periods for clarity; but since these short periods cover multiple

scheduling windows and the burst scheduling is identical in successive frames, the results

are the same for the whole streaming period.

In order to show that there are no burst conflicts, we plot the CDF curve of the time

spacing between successive bursts in Figure 3.11(c). This CDF curve is computed from all

bursts of all TV channels broadcast during the experiment period (10 minutes). Negative

time spacing would indicate that two bursts are intersecting in time, i.e., burst conflict.

This figure clearly shows that our P2OPT algorithm results in no burst conflicts.

Energy saving achieved by P2OPT. Next, we report the energy saving achieved

by our algorithm. Figure 3.12 presents the energy saving of each TV channel. We observe

that the energy saving for low bit rate TV channels can be as high as 99%, while it is only

76% for high bit rate TV channels. This dramatic difference emphasizes the importance of

broadcasting TV channels at heterogeneous bit rates: to maximize energy saving on mobile

devices, a TV channel should be sent at the lowest bit rate that fulfills its minimum quality

requirement.

Optimality of P2OPT. Last, we verify that the energy saving achieved by our P2OPT

algorithm is indeed optimal. To do this, we compute the absolute maximum energy saving
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Figure 3.12: Energy saving achieved by our P2OPT algorithm for individual TV channels.

that can be achieved by any algorithm for a given TV channel. We compute this maximum

by making the base station broadcast only the given TV channel. In this case, the base

station easily maximizes the energy saving by allocating the largest burst that can fill the

receiver’s buffer. The receiving circuit of the receiver is then turned off till the data of this

burst is consumed. We repeat this experiment nine times; once for each considered TV

channel, and we compute the maximum possible energy saving. We then run our algorithm

to compute the burst schedule for the nine TV channels, and we make the base station

broadcast all of them concurrently. We compute the energy saving for each TV channel.

Sample results for channels 1 and 6 are presented in Figure 3.13; all other results are similar.

The figure confirms the optimality of the P2OPT algorithm in terms of energy saving.

3.7.3 Simulation Analysis

To evaluate our algorithm under wider ranges of parameters, we have implemented a simu-

lator for mobile TV networks. The simulator captures the important aspects of mobile TV

networks that are relevant to the burst scheduling problem, and it abstracts away details

such as sending program guide to mobile devices and FEC protection on video packets,

which are orthogonal to burst scheduling algorithms.

We simulate a mobile TV network with a wireless medium bandwidth R = 6.4 Mbps.

We set the receiver buffer size b = 2 Mb and the overhead duration To = 100 msec. We

broadcast multiple TV channels using the optimal burst schedules computed by P2OPT. We

vary the number of TV channels to achieve different target bandwidth utilization values. We
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Figure 3.13: Optimality of P2OPT: Comparing the energy saving achieved by P2OPT
against the absolute maximum saving.

consider bandwidth utilization from 30% to 100% to cover most practical scenarios, and to

validate the scalability of our P2OPT algorithm. We randomly construct burst scheduling

problems for each bandwidth utilization value by selecting TV channel bit rates from 50,

100, 200, 400, and 800 kbps, so that the total bit rate does not exceed the bandwidth

utilization value. We solve the burst scheduling problems using our P2OPT algorithm and

measure the following metrics: maximum energy saving, average channel switching delay,

and running time. We repeat each experiment 100 times and report the minimum, mean,

and maximum values of each performance metric. We run our simulation on a commodity

PC running Linux.

Figure 3.14 summarizes the performance of the P2OPT algorithm. Figure 3.14(a) shows

that our algorithm constantly leads to high energy saving: more than 92%. This means

that mobile devices can turn off their receiving circuits for 92% of the time, which increases

battery life and watch time. Figure 3.14(b) implies that the channel switching delay is

less than 5 seconds on average. Figure 3.14(c) reports the running time of our P2OPT

algorithm. This figure shows that our algorithm is very efficient: it terminates in less

30 msec on average under all considered bandwidth utilization levels. Most importantly,

Figure 3.14(c) implies that our P2OPT algorithm is scalable and can be employed in fully

loaded mobile TV networks.
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Figure 3.14: Performance of the P2OPT algorithm: (a) energy saving, (b) channel switching
delay, and (c) running time.

Table 3.2: List of video sequences for experiments.
Seq. Res. FPS Seq. Res. FPS

Foreman QCIF 7.5 Mobile QCIF 7.5
Foreman QCIF 15 Mobile QCIF 15
Foreman CIF 15 Mobile CIF 15
Foreman CIF 30 Mobile CIF 30
Soccer 4CIF 30 Soccer 4CIF 60
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3.7.4 Power of Two versus Uniform Bit Rates

We experimentally quantify the potential benefits of classifying TV channels into multiple

classes with heterogeneous bit rates. Sending all TV channels at the same bit rate can

lead to under utilization of the wireless medium and/or degraded video quality. This is

because different video streams need to be encoded at bit rates proportional to their content

complexity. For example, to achieve an acceptable video quality, encoding a sports event,

such as a football game, requires higher bit rate than encoding a talk show. In addition to

content complexity, video frame rates and display dimensions also have significant impact

on the TV channel bit rates for achieving a target video quality.

To verify the above intuition and quantify its impacts, we encode three video sequences:

Foreman, Mobile, and Soccer at five different frame rates and three screen resolutions.

Foreman has a talking person with camera movements, Mobile contains many spatial details,

and Soccer features fast motion. Table 3.2 lists all considered, 10-sec long, video sequences.

We encode each of these sequences into a video stream using the H.264 reference coder [97]

with typical configurations used in previous works [98, 99]. To derive the R-D curves, we

encode each video sequence at six sampling bit rates: from 32 to 1024 kbps. We then decode

each coded stream and compute the average video quality quantified by the peak signal-to-

noise ratio (PSNR). Figure 3.15 shows four sample R-D curves among all considered video

sequences. This figure indicates that encoding all video sequences at a uniform bit rate

results in significant quality variation. For example, at 512 kbps, the quality difference

among different sequences can be as high as 20 dB. Serving all TV channels at a uniform

bit rate, therefore, leads to huge quality variations among channels, which degrades user

experience especially when they switch channels.

To show that proper selection of bit rates can reduce the quality variation, we consider

the following rate allocation problem for multiple concurrent TV channels: given the R-

D characteristic of each TV channel, determine the best power of two coding rates for

individual TV channels that minimize the video quality variation. In particular, we consider

the ten video sequences listed in Table 3.2 and the six coding rates used before, and compute

the best rate allocation using exhaustive search. We then compare the resulting quality

variation against the quality variations if we were broadcasting all TV channels at any of

the uniform bit rates. We note that we did not solve this rate allocation problem with more

efficient algorithms because we only want to quantify the potential benefits of using our
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burst scheduling algorithm.

Figure 3.16 reports the quality variation produced by the optimal power of two and

uniform bit rate allocations. The quality variation is computed as the standard deviation

of the PSNR values of the ten video sequences when they are encoded at the specified bit

rate. This figure shows that broadcasting TV channels at uniform bit rates can lead to

high quality variations, up to almost 10 dB in terms of standard deviation. In contrast,

broadcasting TV channels at power of two bit rates reduces video quality variation: a

standard deviation less than 1 dB can be achieved with only six possible encoding rates.

As low video quality variation is desirable, service providers who use our P2OPT algorithm

to broadcast TV channels at heterogeneous bit rates can provide better service quality and

higher user satisfaction, which in turn will increase their revenue.

Finally, we study advantages of using the P2OPT algorithm other than lower quality

variation. We consider a network operator who needs to broadcast the aforementioned ten

video sequences at video quality no less than the basic quality of 30 dB in PSNR. If uniform

encoding rate is employed, all video sequences are encoded at 1 Mbps to achieve this basic

quality. In contrast, using the P2OPT algorithm, video sequences with fewer details/motions

can be encoded at as low as 32 kbps while still achieving the basic quality. Consider a mobile

TV network with a wireless medium bandwidth R = 10.556 Mbps, the network load with

uniform encoding rate is 1024 ∗ 10/10556 = 94.73%, and the load with P2OPT algorithm is

4096/1056 = 38.50%. Clearly, using P2OPT algorithm enables network operators to reduce

the network load and increase the number of concurrently broadcast TV channels. Next, we

plot the energy saving of individual TV channels in Figure 3.17. This figure shows that the

P2OPT algorithm allows mobile devices to save more energy. More precisely, broadcasting

the video sequences at a uniform encoding rate results in 80.30% energy saving for all

TV channels, while broadcasting them using the P2OPT algorithm leads to 92.18% energy

saving on average. In summary, in addition to lower quality variation, the P2OPT algorithm

enables network operators to broadcast more TV channels, and allows mobile devices to save

more energy.

3.8 Near-Optimal Solution for the General Problem

We solve the general form formulation of Problem 1 in this section. We first observe that

the formulation in Eq. (3.1) has two tightly-coupled constraints: (i) no burst intersection
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(Eq. (3.1b)) and no receiver buffer violation (Eqs. (3.1c)–(3.1f)). These two constraints pre-

vent us from employing many common techniques for solving machine scheduling problems.

Therefore, in Section 3.8.1, we propose to decouple these two constraints by transforming

the original formulation in Eq. (3.1) into another formulation, which only has one con-

straint and is easier to solve. We call the new formulation transformed formulation. In

Section 3.8.2, we present an efficient algorithm to solve the transformed formulation with

near-optimality. We also convert the near-optimal schedule for the transformed formulation

back to the original formulation in the same subsection. In Section 3.8.3, we analytically

study the proposed algorithm, and we show its correctness, complexity, and approximation

factor.

3.8.1 Transform

The goal of the transform is to construct a formulation with a single constraint of no burst

collisions. The transformed formulation is then similar to those of the machine scheduling

problems, and can be efficiently solved with near-optimality. To achieve this goal, we propose

to split the receiver buffer into two equal-sized buffers, called B and B′, and we divide

the scheduling window into multiple subwindows, such that the number of bits that is

received for smooth playout in each subwindow never exceeds the size of B (or B′). In every

subwindow, a mobile device stores the received data in one of its buffer, say B, for later

usage, and decodes the previously received data from another buffer B′. The mobile device

swaps its two buffers upon a new subwindow is reached: it stores the received data in the

empty buffer B′, and decodes the data from the filled buffer B. For smooth playouts, we

need to make sure that the number of received bits in each subwindow is the same as the

number of consumed bits in the subsequent subwindow, and we present a systematic way

of doing this in the following.

We let ws be a set of subwindows of video stream s, where s = 1, 2, . . . , S. More
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specifically, we define ws = {wk
s | k = 1, 2, . . . , ⌈2prs/Q⌉} and wk

s = <xk
s , y

k
s , zk

s >, where:

xk
s = (k − 1)Q/(2rs); (3.4a)

zk
s =











kQ/(2rs), 1 ≤ k ≤ ⌊2prs/Q⌋;

p, k = ⌈2prs/Q⌉ if 2prs/Q /∈ Z;
(3.4b)

yk
s =











Q/(2R), 1 ≤ k ≤ ⌊2prs/Q⌋;

Q
2R ×

p mod Q

2rs
Q

2rs

, k = ⌈2prs

Q ⌉ if 2prs

Q /∈ Z.
(3.4c)

In this definition, wk
s is subwindow k of video stream s, and is written as a 3-tuple

<xk
s , y

k
s , zk

s >, where xk
s and zk

s are the start and end times of this subwindow, and yk
s is the

total burst time that should be assigned to the video stream between xk
s and zk

s for smooth

playouts. With the above notations, we write the transformed formulation as:

min
L

S
∑

s=1

ns (3.5a)

s.t.
[

f k̂
s , f k̂

s + bk̂
s

R

)

⋂

[

f k̄
s̄ , f k̄

s̄ + bk̄
s̄

R

)

= ∅; (3.5b)
∑

xk
s≤f i

s≤zk
s

bi
s = Ryk

s ; (3.5c)

∀ 1 ≤ s 6= s̄ ≤ S, 1 ≤ k ≤ ⌈2prs/Q⌉, 1 ≤ k̂ ≤ ns, 1 ≤ k̄ ≤ ns̄.

In this formulation, the objective function in Eq. (3.5a) minimizes the number of total

bursts in the scheduling window. This is because fewer bursts lead to less overhead due

to waking up receiving circuits, and thus result in higher energy saving. The constraint in

Eq. (3.5b) prevents any intersected bursts, and the constraint in Eq. (3.5c) ensures that the

total burst length scheduled for video stream s between times xk
s and zk

s equals to yk
s . We

notice that the rationale behind the definition of ws is to make sure that every subwindow

wk
s gets scheduled bursts that are sufficient to transmit Q/2 kb video data (indicated by

Eq. (3.4c)), which equals the amount of data required for smooth playouts in the subsequent

subwindow (indicated by Eqs. (3.4a) and (3.4b)). In addition, while each subwindow wk
s

(s = 1, 2, . . . , S and k = 1, 2, . . . , ⌈2prs/Q⌉) requires total burst time yk
s , it needs not be

from a single burst.
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3.8.2 Efficient Algorithm

We present an efficient algorithm to solve the transformed formulation in Eq. (3.5) in the

following, and we call it Double Buffering Scheduling (DBS) algorithm. We define decision

points as the time instances at which either a new subwindow starts, i.e., at time xk
s for

any s and k, or bursts scheduled to a subwindow have met the required burst length, i.e.,

satisfying the constraint in Eq. (3.5c). At each decision point t, our scheduling algorithm

schedules a burst for the subwindow with the smallest end time zk
s among all outstanding

subwindows with start time earlier than the current time, i.e., xk
s ≤ t. We say a subwindow

is outstanding if and only if it requires more bursts, i.e., the current schedule has not

satisfied its constraint in Eq. (3.5c) yet. Moreover, we let ek
s be the completion time of

subwindow wk
s , where ek

s represents the time at which its constraint in Eq. (3.5c) is met.

Our scheduling algorithm terminates whenever there is no outstanding subwindow nor a

subwindow that has a start time in the future. In Lemma 1, we prove that our algorithm

gives a burst schedule that minimizes the subwindow lateness, which is defined as ek
s − zk

s .

The achieved lateness allows us to determine whether the resulting burst schedule is feasible

or not. More precisely, we check whether ek
s − zk

s is non-positive for all s and k. If this

is true, we know that the resulting burst scheduling is feasible. Otherwise, our algorithm

prompts the network operator to reduce the number of video streams, because the required

bandwidth exceeds the network capacity.

Figure 3.18 gives a high-level pseudo code of the proposed DBS burst scheduling algo-

rithm. In lines 1–4, the algorithm constructs the transformed formulation by defining the

subwindows for all video streams. In lines 5–9, it traverses through all decision points in the

transformed formulation and builds a burst schedule. Last, it checks whether the resulting

schedule is feasible in lines 10–13.

3.8.3 Analysis

We first show, in the next lemma, that the DBS algorithm can solve the transformed for-

mulation.

Lemma 1. The DBS algorithm finds a burst schedule for the transformed formulation in

Eq. (3.5) if and only if one exists.

Proof. First, we prove that if the DBS algorithm returns a schedule L, then L is a fea-

sible solution for the formulation in Eq. (3.5). In Figure 3.18, the for-loop between lines
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Double Buffering Scheduling (DBS) Algorithm

1. // construct the transformed formulation
2. for s = 1 to S
3. for k = 1 to ⌈2prs/Q⌉
4. determine xk

s , yk
s , and zk

s using Eqs. (3.4a)—(3.4c)
5. // schedule bursts
6. let L = ∅

7. foreach decision point {
8. add a burst from times tc to tn to channel s, where wk

s has the smallest zk
s among

8. outstanding subwindows, tc is current time, and tn is time of the next decision point
9. }
10. // feasibility check
11. if max{ek

s − zk
s } ≤ 0 // complete on time

12. return L
13. return no feasible schedule

Figure 3.18: A near-optimal algorithm to solve the general form burst scheduling problem.

7–9 iterates through all decision points, which are defined as the time instances at which

a subwindow starts or a subwindow reaches its required burst length. While at each deci-

sion point, line 8 schedules the outstanding subwindow with the smallest subwindow end

time. Therefore, resulting schedules of the DBS algorithm have no burst collisions, and

satisfies Eq. (3.5b). We notice that, this for-loop actually composes a burst schedule L

that minimizes the maximal subwindow lateness ek
s − zk

s among all subwindows of all video

streams. This can be proved by transforming any optimal burst schedule to L with a finite

number of burst swaps without compromising the schedule feasibility. This burst swapping

technique is similar to the one used in [83, Theorem 4.4], which solves a single machine

preemptive scheduling problem for minimizing task lateness. In lines 11–13, the algorithm

checks whether L satisfies Eq. (3.5c) by comparing the maximal subwindow lateness against

zero. Since L returned in line 13 satisfies Eq. (3.5), the proof follows.

Second, we show that if the algorithm does not find a feasible burst schedule, there

exists no solution for the formulation in Eq. (3.5). We prove this by contradiction. Assume

that there is a feasible schedule L̂ and our algorithm in line 13 claims the resulting L

is not feasible. Note that line 13 says that L is not feasible only if the corresponding
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maximal subwindow lateness is positive. However, the feasible schedule L̂ must have a non-

positive maximal subwindow lateness, and the maximal subwindow lateness of L̂ is smaller

than that of L. However, as discussed above the for-loop between lines 7–9 minimizes the

maximal subwindow lateness, which leads to a contradiction because the algorithm should

have returned L̂ instead.

We then show, in the next lemma, that the proposed transform does not affect the

existence of feasible burst schedules.

Lemma 2. There exists a feasible schedule for the transformed formulation in Eq. (3.5) if

and only if there exists a feasible schedule for the original formulation in Eq. (3.1).

Proof. We claim that for an arbitrary buffer size Q̄, there exists a feasible burst schedule for

the original burst scheduling formulation in Eq. (3.1) if and only if
∑S

s=1 rs ≤ R. We show

this by constructing a feasible schedule as follows. Without loss of generality, we assume

that r1 ≤ r2 ≤ · · · ≤ rS . We allocate a burst to each video stream every Q̄/rS sec, the

burst size for video stream s is Q̄
rS

× rs, and bursts for different video streams are placed in

a round-robin fashion. We note that the resulting schedule leads to no buffer violations for

any video stream s. More importantly, the total burst length in each round (
∑S

s=1
Q̄
rS

× rs

R )

is no longer than the round duration (Q̄/rS) if and only if
∑S

s=1 rs ≤ R. This shows that the

existence of a feasible burst schedule for the original formulation in Eq. (3.1) is independent

from the receiver buffer size Q. Hence the proposed transform does not affect the existence

of feasible schedules.

With these two lemmas, we can now show that the DBS algorithm always finds a feasible

burst schedule for the original burst scheduling formulation in Eq. (3.1).

Theorem 4 (Correctness). The DBS algorithm produces a feasible schedule for the original

formulation in Eq. (3.1).

Proof. Lemmas 1 and 2 reduce the proof to showing that any feasible schedule for the

formulation in Eq. (3.5) is also feasible for the formulation in Eq. (3.1). In lines 2–4, we

divide each scheduling window into ⌈2prs/Q⌉ disjoint subwindows, where each subwindow

has a required burst length Q/2 kb. Therefore, following the definition of yk
s in Eq. (3.4c),

any feasible burst schedule L for the transformed formulation in Eq. (3.5) transmits Q/2

kb data in every subwindow. Furthermore, the definitions of xk
s and zk

s in Eqs. (3.4a) and
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(3.4b) indicate that the duration of each subwindow is Q/(2rs) and the amount of data to

support smooth playout in a subwindow is Q/2. Finally letting us = Q/2 (s = 1, 2, . . . , S)

gives a burst schedule for the original formulation in Eq. (3.1), where mobile devices always

consume the data received in the, immediate, preceding subwindow. Therefore, this schedule

satisfies the constraints in Eqs. (3.1c)–(3.1f), which yields the theorem.

This theorem completes our proof of correctness. Next, we derive the approximation

factor of the DBS algorithm and its time complexity.

Theorem 5 (Approximation Factor and Time Complexity). The DBS algorithm produces

a near-optimal burst schedule with the number of bursts at most two times the number of

bursts in the optimal schedule. Furthermore, the approximation factor of energy saving is

given as
γ∗

γ
≤

1 − ToR/SQ − 1/S

1 − 2ToR/SQ − 1/S
, (3.6)

where γ∗ and γ are the average energy saving achieved by the optimal scheduling algo-

rithm and the DBS algorithm, respectively. Moreover, the DBS algorithm runs in time

O(pS log(pS)).

Proof. To compute the approximation factor, we first determine the number of bursts in

the optimal schedule L∗ and in the schedule L that is produced by the DBS algorithm.

Consider any transformed formulation constructed by the for-loop in lines 2–4 with a set

of subwindows w. The number of subwindows is given as |w| =
∑S

s=1⌈2prs/Q⌉. Notice

that fewer preemptions in general leads to higher energy saving. However, to prevent buffer

overflow instances, any optimal burst schedule L∗ must have at least ⌈prs/Q⌉ bursts for

each video stream s, i.e., n∗
s ≥ ⌈prs/Q⌉. Thus, we have |w| ≤ 2 |L∗|. We then consider the

number of bursts produced by the DBS algorithm. We note that the total number of bursts

is bounded by the number of decision points, which are defined as the time instances at

which either a subwindow starts or completes. Observe that, except for the boundary cases,

a new subwindow is only created when the previous subwindow completes. This means that

the total number of decision points is |w| + S ≅ |w|. Since |w| ≤ 2 |L∗|, the number of

bursts in L is at most 2 times the number of bursts in the optimal schedule L∗. Thus, we

have
∑S

s=1 ns ≤ 2
∑S

s=1 n∗
s.

Now, we derive the approximation factor γ∗/γ as follows. Following the definition of the
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average energy saving γ, we write the optimal energy saving as:

γ∗ = 1 −
To

pS

S
∑

s=1

n∗
s −

1

RS

S
∑

s=1

rs ≈ 1 −
To

S

∑S
s=1 rs

Q
−

∑S
s=1 rs

RS
. (3.7)

Similarly, we write the energy saving achieved by our algorithm as:

γ = 1 −
To

pS

S
∑

s=1

ns −
1

RS

S
∑

s=1

rs ≥ 1 − 2
To

pS

S
∑

s=1

n∗
s −

1

RS

S
∑

s=1

rs

≈ 1 − 2
To

S

∑S
s=1 rs

Q
−

∑S
s=1 rs

RS
. (3.8)

While combining these two inequalities gives the approximation factor γ∗/γ, the resulting

equation is too complex to reveal useful insights. To simplify it, we assume the bandwidth

of the mobile video broadcast network is saturated: R ≈
∑S

s=1 rs. This is a reasonable as-

sumption, because the wireless spectrum is expensive, and service providers would broadcast

as many video streams as possible. With this practical assumption, we get Eq. (3.6).

Last, we analyze the time complexity of the DBS algorithm. Observe that construct-

ing the set w takes O(|w|), sorting subwindows on start times takes O(|w| log |w|), and

storing outstanding subwindows in the priority queue and composing L take O(|w| log |w|).

Moreover |w| =
∑S

s=1(2prs/Q), and rs/Q can be considered as a small constant for prac-

tical encoding bit rates (few hundreds kbps) and buffer sizes (few Mb). Thus, the time

complexity of the DBS algorithm is O(|w| log |w|) = O(pS log(pS)).

To shed some lights on the approximation factor derived in the above theorem, we

numerically analyze it using a range of practical values. We consider mobile TV networks

with various wireless medium capacities between 4.354 and 19.595 Mbps. These values

cover possible bit rates of a 7 MHz frequency band with different modulation and coding

schemes [16]. We let the overhead duration To = 100 msec. We first fix receiver buffer

size at Q = 2 Mb and vary number of video streams between 10 to 40. We compute

the approximation factor γ∗/γ and plot it in Figure 3.19(a) for different capacities of the

wireless medium. The figure shows that our DBS algorithm produces very close results to

the optimal ones. For example, using our algorithm to broadcast 10 to 40 video streams over

a 7.620 Mbps medium, the average energy saving achieved by mobile devices is about 5%

less than the absolute maximum energy saving that can be achieved using any algorithm to

solve this NP-complete problem. Also, as detailed in the evaluation section, our algorithm
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Figure 3.19: The approximation factor of the DBS algorithm.

obtains these near-optimal results in the order of tens of milliseconds on a commodity PC.

Notice also that, as the number of video streams increases, the approximation factor of

our algorithm actually improves and approaches one. Next, we analyze the approximation

factor as the receiver buffer Q varies from 1 to 16 Mb, while the number of video streams

is fixed at 30. The results, shown in Figure 3.19(b), confirm that the approximation factor

is typically close to 1, and it becomes even closer to 1 as the receiver buffer size increases,

which is an expected trend in the future. These numerical results imply that our algorithm

will yield almost optimal results in most deployments of mobile video broadcast networks.

We mention that γ∗/γ, is not always close to 1. More precisely, following Eq. (3.6),

γ∗/γ becomes larger when To

SQ/R increases. For example, γ∗/γ could be higher than 3

if To

SQ/R ≥ 0.4. However, broadcast networks with To

SQ/R ≥ 0.4 are extreme cases, as this

inequality means that the overhead duration (To) of one burst is longer than 40% of the total

burst length of all video streams. Energy saving in such networks would already be extremely

low no matter how we construct burst schedules. Finally, we acknowledge that when To

SQ/R

is extremely small, even if there were more bursts scheduled, i.e., the number of scheduled

bursts is more than two times the optimal number of bursts, the approximation factor of

energy saving may not be much worse than that of the DBS algorithm. Nevertheless, DBS

algorithm still outperforms all other algorithms, as we are not aware of any algorithm in the

literature that leads to an approximation factor lower than the that of the DBS algorithm.
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3.9 Evaluation of the Near-Optimal DBS Algorithm

In this section, we conduct extensive experiments using a real mobile TV testbed as well as

simulations to validate the correctness, efficiency, and near optimality of the proposed burst

scheduling algorithm. We start by presenting the results from our testbed. Then, we use

simulations to analyze wider ranges of several system parameters and their impact on the

performance.

3.9.1 Setup of the Mobile TV Testbed

As illustrated in Section 3.6, we have set up a testbed for DVB-H networks for a realistic

platform to analyze our burst scheduling algorithm. For the experiments, we configured

the modulator to use a 5 MHz radio channel with QPSK modulation scheme. According to

the DVB-H standard documents, this leads to 5.445 Mbps effective shared bandwidth [16].

We concurrently broadcast 12 TV channels using our algorithm for 10 minutes. We set the

scheduling window length as 10 sec. The TV channel bit rates are randomly chosen between

200 and 800 kbps. The receiver buffer size is 1 Mb. For each TV channel, we set up a video

streaming server on the base station to send 1-kB IP packets at the chosen bit rate. We set

the overhead duration To = 100 msec. We collect detailed burst logs at the base station.

The logs contain the start and end times (in msec) of every burst of data and its size.

We developed several software utilities to analyze the logs for three performance metrics:

cumulative received bits, time spacing between successive bursts, and energy saving.

3.9.2 Experimental Results

Correctness of the DBS algorithm. We first validate the correctness of the proposed

algorithm, i.e., we make sure that the algorithm results in no buffer violations for the

receivers and no burst conflicts. For buffer violations, we compute the cumulative received

bits (from the broadcasting base station) as the time progresses and compare this number

against the cumulative consumed bits and the buffer upper limit. The cumulative consumed

bits are computed by multiplying the bit rate of each TV channel with the time elapsed. The

buffer upper limit is computed as the number of consumed bits plus the receiver’s buffer size

Q, which is set to 1 Mb. Sample results are presented in Figure 3.20 for two TV channels,

results for other channels are similar. The figure shows the dynamics of the received bits,

as the number of bits increases upon receiving a burst and then stays the same till the next
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Figure 3.20: Buffer level dynamics of the resulting burst schedules of our algorithm: no
over/underflow instances are observed.

burst. Meanwhile, the consumed bits and the buffer upper limits are continuously increasing

with slope equals to the bit rate of the TV channel. The figure clearly shows that the curve

representing the received bits never goes below the line representing consumed bits (i.e., no

buffer underflow instances) and never exceeds the buffer upper limit (i.e., no buffer overflow

instances). Note that these two figures show shorter time period, 20 sec, for the clarity

of the figure. Nonetheless, this period covers multiple frames and the burst scheduling is

identical in successive frames. Thus, the results are the same for the whole streaming period

(10 minutes).

To check for burst conflicts, we compute time spacing between all bursts. We first sort

bursts of all TV channels based on their start times. Then, we sequentially compute the

time spacing between the start time of a burst and the end time of its immediate, previous,

burst. We use the time spacing to validate that the resulting schedule leads to no burst

conflicts, as a negative time spacing indicates bursts may intersect with each other. Our

logs show that there are no buffer conflicts among bursts computed by our algorithm.

Energy saving and near-optimality of the DBS algorithm. We report the energy

saving achieved by receivers of different TV channels when our burst scheduling algorithm

is used. Figure 3.21(a) shows the energy saving of four representative TV channels; the

energy saving of other channels are not shown for the clarity of the figure. We observe

that the energy saving for low bit rate TV channels can be as high as 92%, while it is only

78% for high bit rate TV channels. This significant difference highlights the importance of
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Figure 3.21: (a) Energy saving achieved by our algorithm for individual TV channels. (b)
Comparing the energy saving achieved by our algorithm against a conservative upper bound
on the energy saving.

choosing the appropriate bit rates to encode TV channels carrying diverse video content.

The appropriate bit rate is not only important for enhancing the perceived visual quality,

but it is also important for maximizing the energy saving and hence prolonging the viewing

time on mobile devices.

Next, we compare the energy saving achieved by our algorithm against a very con-

servative upper bound on the maximum achievable energy saving. Recall that the burst

scheduling problem is NP-complete and finding the exact optimal solution may take pro-

hibitively long time to compute. We compute this upper bound as follows. For every TV

channel, we make the base station broadcast only this channel without any other channels.

The base station can maximize the energy saving by allocating the largest burst that can

fill the receiver’s buffer. The receiving circuit of the receiver is then turned off till the data

of this burst is consumed. Clearly, this is a conservative upper bound on the energy saving

that can be achieved by the receivers of the considered channel. This is because the base

station has a complete freedom to allocate the largest burst without considering any inter-

actions from other channels. We repeat this experiment 12 times; once for each considered

TV channel. Then, we run our algorithm to compute the burst schedule for the 12 TV

channels, and we make the base station broadcast all of them concurrently. We compute

the energy saving achieved by mobile devices of each TV channel, and compare it against

the upper bound on the energy saving. We report the results for two sample TV channels
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in Figure 3.21(b); the results for other TV channels are similar. This figure shows that our

algorithm produces near-optimal results: The gap between the energy saving achieved by

our algorithm and the upper bound is less than 7% in all cases (including the ones not shown

in the figure). We emphasize that this gap analysis is very conservative as we compare our

algorithm, which concurrently broadcasts several TV channels at arbitrary bit rates, against

the maximum energy saving of broadcasting a single TV channel.

Running time of the DBS algorithm. In all of the above experiments, our algorithm

was running in real time on a commodity PC. The running time of our algorithm was in

the order of tens of milliseconds. Thus, the algorithm can be invoked frequently as needed

and in real time. This is a useful property for the network operators as it allows them to

handle the dynamic nature of mobile TV networks and the usual changes in the offered

TV programs. For example, broadcasting a commercial ad with high motion and rich visual

content (and thus high bit rate) during a talk show (low bit rate) is quite simple: just before

broadcasting the first burst of the commercial ad, our burst scheduling algorithm is invoked

to compute a new burst transmission schedule considering the new bit rate of the ad. The

same can be done for transitioning between shows and adding new TV channels.

Finally, we mention that the relative start time of each burst is recorded in the header

of its predecessor burst such that the receivers know when they need to wake up to receive

data [8, 10]. As the start time is sent in the relative form, its accuracy is not affected

by any constant delays between the base station and its receivers. However, the start

time is sensitive to the clock jitter caused by the inaccuracy of the timers of mobile devices.

Therefore, mobile devices cope with this by waking up their receiving circuits slightly earlier

to absorb the clock inaccuracy, which is referred to as delay jitter, and it is in the order of

10 msec [16].

3.9.3 Simulation Setup

We have implemented a simulator for mobile TV broadcast networks in Java. The simulator

captures all important aspects relevant to the burst scheduling problem and it abstracts

away details such as sending program guide to mobile devices, that are orthogonal to this

problem. We developed the simulator to analyze wider ranges of the parameters, including

extreme and boundary values that are difficult to exercise in the real testbed. This is useful

to fully understand the merits and shortcomings of our algorithm.

Unless otherwise specified, we use the following parameters. The receiver buffer size
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Figure 3.22: Impact of the receiver buffer on energy saving and switching delay.

Q = 2 Mb, wireless medium bit rate R = 6.4 Mbps, scheduling window length p = 10

sec, and overhead duration To = 100 msec. We randomly choose the bit rates of TV

channels between 50 to 1,000 kbps to emulate different types of TV programs. We repeat

each experiment 100 times, and we report the means and 95% confidence intervals of the

performance metrics.

We consider several performance metrics, including: energy saving γ, channel switching

delay d, and running time of our algorithm. The channel switching time is an important

metric in mobile TV networks, as many users tend to flip through several channels before

they decide on a specific channel to watch. We define the channel switching delay as the

time a user waits before s/he starts viewing a selected channel when a change of channel

is requested by that user. The channel switching delay is composed of several accumulated

parts, in which the frame refresh delay and time slicing delay are the two dominating

contributors [29, 33]. The frame refresh delay refers to the time period between receiving

the first bit of a new video stream and receiving the next random access point, typically an

intra-coded frame, of that video. The time slicing delay refers to the time period between

locking on a mobile TV signal and receiving enough bursts of the selected TV channel for

a smooth playout. Our simulator captures only the time slicing delay. The frame refresh

delay is difficult to simulate, because it depends on the specific video content, how it is

encoded, and how the frames are organized. In addition, The time slicing delay is a direct

outcome of our burst scheduling algorithm, while the frame refresh delay is orthogonal to

our algorithm.
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3.9.4 Simulation Results

Tradeoff between energy saving and channel switching delay. Our results reveal

a trade off between the achieved energy saving by mobile devices and the average channel

switching delay. Furthermore, this tradeoff can be controlled by choosing the appropriate

receiver buffer size. To demonstrate this tradeoff, we vary the receiver buffer size between

128 kb and 2,048 kb. We run our simulator and compute the energy saving and the channel

switching delay for each buffer value. The results of channel switching delay are shown in

Figure 3.22. This figure shows that smaller channel switching delays—which are desirable

for better viewing experience—require smaller receiver buffer sizes. For example, the average

switching delay is reduced from 4 to 2 sec by reducing receiver buffer size from 2 to 1 Mb.

This indicates that changing the buffer size can control channel switching delays. However,

smaller receiver buffer sizes dictate shorter bursts, which increases the energy consumption

as the receiving circuit of the receivers needs to wake up more often for smaller bursts and

in each time it incurs an additional overhead (of at least To msec). This is also shown in

Figure 3.22 as the energy saving diminishes when receiver buffer size becomes very small.

The figure indicates that a buffer size of at least 1,000 kb is needed to achieve an average

energy saving of 75%. With 1,000 kb buffer, the average switching delay is about 2 sec.

If further smaller switching delays are desired without sacrificing the energy saving, other

mechanisms may be needed. For example, scalable video coding can be used to encode

each TV channel into multiple layers [34]. This scalable video coding, however, imposes an

additional overhead as it consumes a small fraction of the wireless medium bandwidth.

Impact of wireless medium utilization. Next, we evaluate the performance of our

algorithm under different bandwidth utilizations of the shared air medium. We consider

various bandwidth utilization: from 30% to 100% to cover all practical scenarios. The

scheduling window length is fixed at 10 sec. For each bandwidth utilization, we construct

burst scheduling problems with TV channels encoded at arbitrary bit rates randomly chosen

between 50 and 1,000 kbps. We then solve each burst scheduling problem using our DBS

algorithm and measure the energy saving and the switching delay. The results , shown in

Figure 3.23, imply that increasing the bandwidth utilization has a minor impact on the

energy saving and the switching delay. For example, the average energy saving (figure not

shown here due to space limitations) is reduced by less than 5% as the utilization increases

from 30% to 100%, while Figure 3.23(a) shows that the channel switching delay decreases
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Figure 3.23: The implication of bandwidth utilization on: (a) energy saving, and (b) channel
switching delay.
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Figure 3.24: The implication of scheduling window length on: (a) energy saving, and (b)
channel switching delay.
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Figure 3.25: Running time of our algorithm under different: (a) medium utilization values,
and (b) scheduling window lengths.

from 5.8 to 4.2 sec as the utilization increases. This degradation of energy saving is intuitive,

because heavy loaded mobile TV networks leave smaller rooms for arranging the bursts of

different TV channels to save energy, which results in more bursts for each TV channel. More

bursts, however, lead to lower channel switching delay because mobile devices can reach the

next burst faster. Most importantly, this set of experiments shows that our algorithm is

robust and functions properly even in fully loaded networks.

Impact of scheduling window length. We analyze the impact of various scheduling

window lengths on the performance. We vary the scheduling window length from 10 sec

to 4 min, and measure the energy saving and the channel switching delay in each case.

We fix the bandwidth utilization at 90%. We report the results in Figure 3.24, which

shows that increasing the scheduling window length from 10 sec to 4 min improves the

average energy saving by only about 2%, while it doubles the average channel switching

delay. The marginal energy saving improvement is clearly not desirable given the significant

increase in the switching delay. This experiment indicates a scheduling window length in the

range between 10 and 60 sec would achieve a high energy saving without incurring excessive

channel switching delays. The specific value of the scheduling window can be decided by the

network operator based on other considerations, such as the desired level of responsiveness

to changes in the video content of the TV channels.

Running time. Finally, we report the average running time of our algorithm on

a commodity PC with a 2.6 GHz processor that runs Linux. Figure 3.25(a) shows the
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running time of the algorithm to compute the burst transmission schedules as the bandwidth

utilization varies from 30% to 100%, while the scheduling window length is fixed at 10 sec.

The figure shows that the maximum running time is less than 110 msec on a commodity PC,

to compute burst schedules for fully-utilized mobile TV network. These results confirm our

results from the real testbed that our algorithm can indeed run in real time.

We also collect the running time of our algorithm as the scheduling window length varies

from 10 to 256 sec, while the bandwidth utilization is fixed at 90%. We plot the results in

Figure 3.25(b). This figure shows that for practical scheduling window lengths (less than

60 sec), our algorithm terminates in the order of milliseconds. Larger frames contain many

bursts and require more computations to carefully specify the start and end of each of

them. But even for such (unusual) large frames, our algorithm terminates in less than 1.1

sec. Notice also that the running time of 1.1 sec is insignificant compared to a scheduling

window length of 256 sec, because our algorithm is invoked at most once in each scheduling

window.

3.10 Conclusions

In this chapter, we studied the energy optimization problem in mobile video broadcast

networks, in which a base station broadcasts multiple video streams in bursts with bit rates

much higher than the encoding rates of the video streams. We showed that the energy

optimization problem is NP-complete when video streams have arbitrary bit rates. We then

solved the problem in two steps. We first studied a practical simplification of the problem,

which enables the use of different classes for video streams, where each class has a different

bit rate. The bit rate of class c, rc, can take any value in the form of rc = 2i × r1, where

i ∈ {0, 1, 2, 3, . . . }, and r1 is the bit rate of the lowest class. r1 can take any arbitrary bit

rate. We showed that this classification can result in better viewing experience by reducing

quality variation among all video streams. We did this by encoding various video sequences

with diverse content complexities and empirically analyzing their R-D characteristics. We

proposed an optimal burst scheduling algorithm, called P2OPT (Power-of-Two Optimal),

for the simplified problem, which runs in O(S log S) time, where S is the number of video

streams. We proved the correctness and optimality of the P2OPT algorithm. We derived

closed form equations for the energy saving achieved by the P2OPT algorithm and the

resulting channel switching delay. We numerically analyzed theses equations to demonstrate
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the existence of a tradeoff between energy saving and channel switching delay, and to show

that this tradeoff can be controlled by the receiver’s buffer size. In addition, we evaluated

the performance of the P2OPT algorithm using simulations, and we showed that it achieves

an average energy saving of more than 92%. We implemented the P2OPT algorithm in

an actual mobile TV testbed. We analyzed several logs from the testbed and empirically

showed that our P2OPT algorithm can run in real-time, results in no buffer under/overflow

instances and no burst conflicts, and yields optimal energy saving.

Next, we studied the general form formulation of the energy optimization problem in

mobile video broadcast networks, in which multiple video streams with arbitrary bit rates

are concurrently broadcast by a base station. We proposed a novel approximation algorithm,

called DBS (Double Buffering Scheduling), for this burst scheduling problem. We proved

that the DBS algorithm has a small approximation factor, and it has a time complexity of

O(pS log(pS)), where S is the number of video streams , and p is the scheduling window

length on which the burst scheduling problem is solved. We implemented and validated

our DBS algorithm in a real mobile TV testbed that complies to the DVB-H standard. We

also developed a simulator for mobile video broadcast networks to study the impact of wide

ranges of various parameters on the performance of the DBS algorithm. Our experimental

and simulation results show that the resulting schedules are correct and the approximation

factor of the DBS algorithm is very close to one for most practical mobile video broadcast

networks. They also verify that the DBS algorithm can run in real time and it scales well

to large scheduling problems.



Chapter 4

Goodput Optimization

In this chapter, we solve the goodput optimization problem in both open- and close-loop

networks, where a base station concurrently broadcasts multiple VBR streams to mobile

devices. We formulate this problem into a multiobjective optimization problem and show

its hardness. We propose two algorithms to solve this problem, which are suitable for

different broadcast networks. We analyze the proposed algorithms, and we evaluate them

using simulations and a real mobile TV testbed.

4.1 Introduction

We study the goodput maximization problem stated in Problem 2. This problem is to

construct burst schedules for the multiplexer in a broadcast network that transmits VBR

streams in order to achieve the following three goals:

1. Streaming Quality: Video streaming is a real-time application. Video data that miss

their decoding deadlines cannot be rendered to users, and are essentially useless. In

addition, video data that arrive too early may use up the buffer space, and prevent

newly received data from being buffered. Therefore, sending video data too early or

too late both lead to playout glitches and may drive users away from the service.

Hence, multiplexers should ensure that there is no buffer violation instance on mobile

devices. A buffer violation occurs when the receiver of a video stream either: (i) has

no data in the buffer to play out (buffer underflow), or (ii) has no space to store the

received data (buffer overflow).

95
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2. Energy Consumption: Mobile devices are battery-powered, and thus are vulnerable

to high energy consumption, which leads to shorter watch time before users replac-

ing or recharging their batteries. Shorter watch time leads to more toxic waste of

primary (non-rechargeable) or rechargeable batteries, and thus is not environmentally

friendly. Hence, multiplexers should reduce the energy consumption on mobile devices

to increase user satisfaction and reduce pollution.

3. Goodput: The wireless spectrum is expensive: licensing a spectrum usually costs many

millions of dollars annually. Therefore, to be commercially viable, network operators

must achieve high goodput in their wireless networks. The goodput refers to the

fraction of the amount of video data delivered ontime over the network capacity.

Higher goodput in general leads to more video streams concurrently broadcast within

a given spectrum. Hence, multiplexers should achieve high goodput to increase the

net profits of network operators.

We solve Problem 2 in this chapter. We first formulate this problem as an optimization

problem, and we show that it is NP-complete. We propose an approximation algorithm to

solve this problem, and we show that the resulting burst schedules are optimal in terms

of goodput and near-optimal in terms of energy saving. We then show that the proposed

algorithm produces glitch-free schedules in closed-loop networks, and minimizes the number

of glitches in open-loop networks. We evaluate the proposed algorithm using simulations

and experiments. We develop a trace-driven simulator, and we implement the proposed

algorithm in it. The simulation results show that the proposed algorithm outperforms the

algorithms currently used in commercial base stations in both open- and closed-loop net-

works. Finally, we use a real mobile TV testbed to show the practicality and efficiency of

the proposed scheduling algorithm. The results from the testbed confirm that our proposed

algorithm runs in real-time, and produces feasible burst schedules that result in high en-

ergy saving. Although the proposed algorithm minimizes the playout glitches in open-loop

broadcast networks, it may result in some playout glitches when the total bit rate of all video

streams exceeds the network bandwidth. To address this issue, we propose a new scheduling

algorithm for open-loop networks. The new scheduling algorithm employs longer lookahead

windows and utilizes the air medium time to reduce the number of playout glitches. We use

trace-drive simulations to show the effectiveness of this new scheduling algorithm.
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4.2 Related Work

The energy saving of mobile devices in broadcast networks that send videos in bursts has

been considered in several works. For example, the authors of [19] and [16] study the

energy saving achieved by a given burst schedule. These two works do not solve the burst

scheduling problem. In Chapter 3, we optimally solve a simplified version of the burst

scheduling problem where video streams are classified into a few classes and each class

has a different bit rate. We also present an efficient burst scheduling algorithm for video

streams that can take any arbitrary bit rates. The burst scheduling algorithms proposed

in Chapter 3 target CBR video streams, and do not consider the rate variability within

each video stream. In this chapter, we solve the burst scheduling problem for VBR video

streams, which may lead to better streaming quality, shorter delay, and more concurrent

broadcast streams [27]. More importantly, in this chapter, we also maximize the goodput

in broadcast networks, in addition to maximize energy saving for mobile devices.

Streaming VBR videos in the Internet is challenging. Several smoothing algorithms

have been proposed in the literature, e.g., in [100,101], which absorb bit rate variations of a

VBR stream by adding buffers at both sender and receiver, and compute a constant-bit-rate

(CBR) transmission schedule that results in no buffer violations instances. These smoothing

algorithms are based on the leaky bucket algorithm [50,62], and they assume that packets are

small. While the packet size assumption holds in the Internet, broadcast networks transmit

videos in much larger bursts to save energy. Therefore, these smoothing algorithms cannot

solve the problem considered in this chapter. Camarda et al. [102] extend the Internet

smoothing algorithms for mobile networks that transmit videos in bursts. They consider the

problem of placing frames of a VBR stream into bursts of some predefined burst schedules,

such that the mobile devices are free from buffer violation instances and the number of late

frames is minimized. Their work is different from ours, because they consider a given burst

schedule, while we compute near-optimal burst schedules. Furthermore, the smoothing

algorithms in [50, 62, 100–102] only consider a single VBR stream while our problem is to

concurrently broadcast multiple video streams.

Joint video coders have been well studied in the literature. For example, several works,

such as [29, 57–59, 103], propose joint coder designs for popular video coding standards.

Wang and Vincent [103] propose a joint coder for MPEG-2 coded streams. Tagliasacchi et

al. [57] and He and Wu [58] propose joint coders for H.264/AVC coders. Rezaei et al. [29]
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also propose a joint coder for H.264/AVC using fuzzy logic, which achieves low end-to-end

delay and uniform quality among video streams. Jacobs et al. [59] propose a joint coder that

adjusts the bit rate of multiple scalable streams encoded using H.264/SVC coded coders.

H.264/SVC coders significantly reduce the cost of adapting and transcoding video streams.

These works on joint coders are quite different from ours, as they do not construct burst

schedules. In this chapter, we solve the burst scheduling problem in broadcast networks

with and without joint coders.

Rezaei et al. [104] propose a burst scheduling algorithm for mobile TV networks. They

divide the broadcast time into fixed-length scheduling windows, and then schedule all video

streams in round-robin fashion in each window. To adapt to bit rate variations, the burst

length is flexible in each scheduling window, but bursts cannot span over more than two

scheduling windows. They propose an empirical model to predict future frame sizes, and

then compute the probable start time of the next burst. That is, their burst schedules

always wake the receiving circuits up early so that mobile devices do not miss bursts. Our

work is different from theirs in two aspects. First, our algorithm constructs schedules with

completely flexible burst start times and lengths, i.e., without the constraints of scheduling

windows. This gives us opportunities to achieve better energy saving. Second, we assume

that there is a small lookahead window (a few seconds) for constructing burst schedules,

which enables us to compute precise burst start times. This in turn allows us to avoid

waking up receiving circuits too early, and thus our algorithm saves more energy. We note

that a small lookahead window is a reasonable assumption because many programs are pre-

recorded, while live streams are often delayed to allow censoring and editing. Since the

work in [104] probabilistically schedules bursts, it has to wake up receiving circuits earlier

to accommodate any prediction errors. Therefore, its energy saving can never be better

than the current base stations in closed-loop networks, which employ the same round-robin

scheduling but use actual frame sizes which are more accurate than the predicted frame

sizes. Therefore, we only compare our algorithm against the current base stations.

4.3 Problem Formulation

4.3.1 Problem Statement and Hardness

We list all symbols used in the chapter in Table 4.1 for quick reference. We study broadcast

networks in which a base station transmits S video streams to many mobile devices over a
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Table 4.1: List of symbols used in goodput optimization.
Sym Definition Sym Definition

To overhead duration f s
k time of burst k for s

S number of video streams bs
k size of burst k for s

R burst bit rate cs
k buffer level at time f s

k

T broadcast time L burst schedule
I no. frames ns no. bursts for s
F frame rate ms

p last frame for window p of s

Q receiver buffer size ys
p no. bits for window p of s

lsi size of frame i of stream s xs
p start time for window p of s

γ energy saving zs
p end time for window p of s

σ goodput d initial delay

shared air medium with bandwidth R kbps. We consider a broadcast time of T sec, in which

each video stream has I frames, and is coded at F fps (frame-per-second). Therefore, we

have T = I/F . We consider very general VBR streams: each frame i (1 ≤ i ≤ I) of video

stream s has a size of lsi kb. We assume streams have instantaneous bit rates smaller than

the air medium bandwidth, i.e., lsi F < R. To guarantee smooth playouts, every frame i

must arrive at mobile devices no later than its decoding deadline i/F sec. The base station

transmits every video stream in bursts at bit rate R kbps. Therefore, once a burst of data

is received, mobile devices put the receiving circuits into sleep until the next burst in order

to save energy.

We define two performance metrics for video streaming over wireless networks: energy

saving and goodput, from mobile users’ and network operators’ point of view, respectively.

For users, we define energy saving as the ratio of time that mobile devices can put their

receiving circuits into sleep to the total time, and we write the energy saving of video stream

s as γs. We define the system-wide energy saving as γ =
(

∑S
s=1 γs

)

/S. Similar definition of

energy saving has been used in broadcast networks [16,19]. For network operators, we define

the goodput σ as the fraction of the ontime transmitted data amount, which is the aggregate

size of ontime bursts, over the maximum data amount offered by the air medium, which

is TR kb. This definition only considers the video data transmitted before their decoding

deadlines, as late video data cannot improve video quality. With these definitions, we can

re-state Problem 2 as: find the optimal burst schedule for S concurrent VBR video streams

to maximize the goodput σ and the energy saving γ, without resulting in any playout glitches

on mobile devices.
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In this optimization problem, the goodput is the primary objective. Higher goodput in

general leads to more concurrent video streams. Since the wireless spectrum is precious,

concurrently streaming more video streams leads to higher profits for network operators.

The energy consumption is the secondary objective. Mobile devices are energy-limited and

higher energy saving results in longer watch time, thus higher user satisfaction. A burst

schedule specifies for each burst the start time and its size for all video streams. The

resulting schedule cannot have burst intersections, which happen when two bursts have

nonempty intersection in time. Furthermore, the schedule must ensure that there are no

buffer violation instances for any channel. A buffer violation occurs when a mobile device

has either no data in the buffer to pass on to the decoder for playout (buffer underflow), or

has no space to store data during a burst transmission (buffer overflow).

Problem 2 is a generalization of Problem 1, where we consider CBR video streams

with only one objective function: maximizing energy saving for mobile devices. Yet, this

single-objective function problem has been proved to be NP-complete in Theorem 1. There-

fore, Problem 2, which considers VBR streams and two objective functions, is clearly NP-

complete.

We note that our optimization problem is quite different from many other multi-objective

scheduling problems, which are often solved by defining an overall objective function as a

weighted sum of the given objective functions. Solving those multi-objective problems is

tricky because the weights for objective functions are either heuristically chosen or deter-

mined by analyzing the complex tradeoff among objective functions [105, Section 4.3]. More

importantly, the resulting schedules are compromised, because they are unlikely to be opti-

mal in terms of either objective function. In contrast, our problem consists of two objective

functions that are independent of each other, which does not require us to define a weighted

overall objective function. In Section 4.4, we solve this problem, and we prove that the re-

sulting schedule is optimal in terms of goodput, and near-optimal in terms of energy saving

in closed-loop networks.

4.3.2 Mathematical Formulation

We let ns be the number of bursts scheduled for video stream s, where 1 ≤ s ≤ S. We

use f s
k sec and bs

k kb to denote the start time and burst size of burst k of video stream

s, where 1 ≤ k ≤ ns. Since the air medium has bandwidth R kbps, it takes bs
k/R sec to

transfer burst k of stream s. Notice that receiving circuits need to be waken up earlier
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than the next burst time, because it takes some time to lock to the radio frequency and

synchronize to the symbols before data can be demodulated. This time period is referred

to as overhead duration To sec. The value of To could be high in wireless networks, e.g.,

in mobile TV broadcast networks, To ranges from 50 to 250 msec [9, 10, 16]. Moreover, in

Section 2.6, we empirically show that a recent Nokia cellular phone has To in the range of

80–140 msec. Since mobile devices must turn on the wireless interfaces To sec earlier than

the burst, the wireless interfaces stay on between [f s
k − To, f s

k + bs
k/R) in order to receive

burst k of stream s. Last, we let the receiver buffer size be Q kb. Given these notations,

we can define cs
k kb as the buffer level of mobile devices at the beginning of burst k of video

stream s. Mathematically, cs
k is written as:

cs
k = max

(

0,

k−1
∑

j=1

bs
j −

h
∑

i=1

lsi

)

,

where h is the maximum positive integer such that h/F ≤ f s
k . This equation computes the

volume difference between the received data (the first summation) and the consumed data

(the second summation), and returns 0 if there is no received data in the buffer. Finally, we

write a schedule L as a set of bursts: {<f s
k , bs

k> | 1 ≤ s ≤ S and 1 ≤ k ≤ ns} for all video

streams.

The burst scheduling problem for VBR streams can be formulated as:

Pri : max
L

σ =

∑S
s=1

∑ns

j=1 bs
j

/

R

I/F
; (4.1a)

Sec : max
L

γ = 1 −

∑S
s=1

∑ns

k=1(To + bs
k/R)

I/F

/

S; (4.1b)

s.t.
[

f s
k , f s

k +
bs
k

R

)

⋂

[

f s̄
k̄
, f s̄

k̄
+

bs̄
k̄

R

)

= ∅; (4.1c)

cs
k > 0; (4.1d)

cs
k + bs

k −
∑

fs
k≤ j/F< fs

k+bs
k/R lsj ≤ Q; (4.1e)

∀ 1 ≤ s 6= s̄ ≤ S, 1 ≤ k ≤ ns, 1 ≤ k̄ ≤ ns̄.

In this formulation, the primary goal is to maximize the goodput σ, which is the fraction

of the ontime transmitted data amount,
∑S

s=1

∑ns

j=1 bs
j, over the maximum data amount,

RT = RI/F . The secondary goal is to maximize the energy saving γ, which is the fraction

of time that mobile devices can put their receiving circuits into sleep over the total time.
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Consider stream s, the aggregate receiving circuits ontime is
∑ns

s=1(To + bs
k/R) sec, and

the video length is I/F sec. Therefore, the energy saving of stream s can be computed by

1 −
∑ns

s=1
(To+bs

k/R)
I/F . Computing the average energy saving γ among all video streams gives

the system-wide energy saving. The constraints in Eqs. (4.1c)–(4.1e) guarantee that the

resulting burst schedule is feasible. In particular, Eq. (4.1c) ensures that there are no burst

intersections among all S video streams. Eq. (4.1d) checks the buffer level for stream s at

the start time of every burst to prevent buffer underflow instances. Eq. (4.1e) validates the

buffer level for stream s at the end time of every burst to prevent buffer overflow instances,

where the third term (summation) includes all frames that have deadlines during that burst.

It is sufficient to check the buffer level only at the burst start and end times, because the

buffer level of mobile devices increases if and only if there is a burst at that moment.

4.4 Problem Solution

We propose, in Section 4.4.1, an approximation algorithm to solve the burst scheduling

problem. In Section 4.4.2, we show that our algorithm achieves optimality along one ob-

jective function (goodput) and near-optimality along the other objective function (energy

saving). In Section 4.4.3, we describe some practical considerations when implementing the

proposed algorithm in actual base stations.

4.4.1 Scheduling Algorithm for VBR Streams

The high-level idea of our algorithm is similar to the one described in Section 3.8. We

mathematically transform our problem to another scheduling problem for which we design

an efficient approximation algorithm. We then transform the solution found by the ap-

proximation algorithm to a solution for the original problem. We analytically bound the

approximation gap and prove the correctness of our algorithm.

Our transformation idea produces a simpler scheduling problem with only one constraint:

no burst intersection, and it gets rid of the other constraint: no buffer violation instances.

This is achieved by using two separate buffers, say B and B′, so that B can be drained when

B′ is filled up, and B′ can be drained when B is filled up. More specifically, we propose

to split the receiver buffer Q into two equal-sized buffers, and divide the sending time of

video stream s into ps disjoint time windows. We design a scheduling algorithm to properly

send all S video streams, so that mobile devices of any video stream s in window p, where
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2 ≤ p ≤ ps, render the video data that have been received in window p − 1, and thus are

free from buffer overflow instances. That is, mobile devices use a buffer for receiving (filling

up) data and another buffer for decoding (draining) data in every time window p, and they

swap these two buffers upon reaching a new time window p + 1. We notice that windows

of the same video stream have different lengths in time due to the VBR nature of video

streams, and window boundaries of different video streams are not aligned either.

Following are some details about our algorithm. To perform the transform, we first

need to decide how many frames can be sent in each window p without resulting in buffer

overflow on mobile devices. For any video streams s and any window p (1 ≤ p ≤ ps), we let

ms
p be the last frame (with the largest frame index) that gets included in window p. Since

the receiving buffer size is Q/2 kb in all windows, for any stream s, we can write ms
p by

induction as:






















ms
p = 0, p = 0;

ms
p

∑

j=ms
p−1

+1

lsj ≤ Q
2 <

ms
p+1
∑

j=ms
p−1

+1

lsj , ∀ 1 ≤ p ≤ ps.
(4.2)

This induction stops once ms
p̂ = I for some integer p̂. Upon ms

p is determined, we

know that frames [ms
p−1 + 1,ms

p] are the maximum number of frames that can be fit in the

receiving buffer of window p, for 1 ≤ s ≤ S and 1 ≤ p ≤ ps. Letting ys
p be the aggregate

data amount that must be received in window p, we can write ys
p as:

ys
p =

ms
p

∑

j=ms
p−1

+1

lsj . (4.3)

Furthermore, observe that mobile devices in window p always render the data received

in window p − 1. This means that the time length of window p depends on the number of

frames received in window p − 1, e.g., if 5 frames are received in the previous window, the

playout time of the current window is 5/F sec, where F is the frame rate. Let xs
p and zs

p be

the start and end times of window p for video stream s. Then, we can write xs
p and zs

p as:

xs
p =











0, p = 1;

(ms
p−2 + 1)/F, 2 ≤ p ≤ ps,

(4.4)

zs
p =











∑S
s=1 ys

1/R p = 1;

ms
p−1/F, 2 ≤ p ≤ ps.

(4.5)
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We mention that the windows are defined in a very dynamic way: video streams with

higher instantaneous bit rates get shorter windows, while others get longer windows. This

allows our algorithm to quickly adapt to the rate variations in VBR video streams, and

utilize the receiving buffer B (or B′). Notice that in the first window (p = 1) of all video

streams, mobile devices have no data to playout and only receive and buffer data. Therefore,

any window length could be assigned to the first window. To maximize the goodput and

minimize the delay, we let the first window size be
∑S

s=1 ys
1/R, which is the shortest possible

window length to send data in the first window of all video streams. Since ys
1 ≤ Q/2

(indicated by Eqs. (4.2) and (4.3)), the delay incurred by the SMS algorithm is bounded by

d = (SQ)/(2R). (4.6)

Using these notations, we can formally write the transformed scheduling problem as:

Pri : max
L

∑S
s=1

∑ns

j=1 bs
j ; (4.7a)

Sec : min
L

∑S
s=1 ns; (4.7b)

s.t. ys
p =

∑

∀ xs
p≤fs

k<zs
p

bs
k; (4.7c)

∀ 1 ≤ s ≤ S, 1 ≤ p ≤ ps.

This formulation first maximizes the goodput by maximizing the amount of ontime

delivered video data in Eq. (4.7a). It then maximizes the energy saving by minimizing the

number of bursts in Eq. (4.7b), as each burst incurs a constant overhead duration To. The

constraint in Eq. (4.7c) ensures that the aggregate size of scheduled bursts in every window

equals to the aggregate size of frames associated with that window, which avoids buffer

violation instances (both overflow and underflow).

To solve the transformed problem, we first define decision points as the time instances

at which either: (i) a new window starts, i.e., at time xs
p, (ii) a window exceeds its decoding

deadline, i.e., at time zs
p, or (iii) bursts scheduled to a window have met the required

aggregate data amount ys
p. At each decision point t, we schedule a burst for the window

with the smallest end time zs
p among all outstanding windows p′ with start time xs

p′ earlier

than current time t and end time zs
p′ later than current time t. We use outstanding window

to refer to a window that needs more bursts: its accumulated data amount has not met

the required amount ys
p. Note that windows p′ with xs

p′ > t are not considered, because
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these windows have not started and the video data may not be available yet. Moreover,

windows p′ with zs
p′ < t are not considered either, because these windows are already late,

and late frames are essentially useless for streaming videos. The scheduling algorithm builds

a schedule with a moving current time t and stops if there exist no outstanding windows,

nor windows with start times in the future. Last, we define the completion time of window

p of stream s as the time that window achieves the required data amount ys
p.

We call this algorithm Statistical Multiplexing Scheduling (SMS) algorithm, and give

its high-level pseudocode in Figure 4.1. This algorithm constructs the first window for each

video stream in lines 3–5. It uses the for-loop between lines 7 and 11 to traverse through

all decision points in ascending order of time. It schedules a new burst in line 8 to video

stream s, and then checks whether the window of s is complete or late in lines 9 and 10.

New window is generated in line 10 if the current window either completes or is late. The

algorithm stops when no more decision points exist.

We note that the SMS algorithm considers a window p for each stream s at any moment,

and only advances to window p + 1 if window p completes or is late (lines 9–10). Thus, it

only requires a small lookahead window (in the order of a few seconds) for frame size lsi , and

is an online scheduling algorithm. In addition, the SMS algorithm can handle the dynamic

nature of video service. For example, to transition from a video stream to a new one, the

SMS algorithm simply discards the current window and generates a new window for the

new video stream, and continues to schedule bursts with no interruptions nor running-time

penalty. Finally, the SMS algorithm does not need joint video coders, and can work with

any VBR streams, and imposes no limitations on the video coders for rate control. Hence, it

allows video coders to encode video streams with the maximum coding efficiency, and thus

achieve the best streaming quality.

4.4.2 Analysis of the SMS Algorithm in Closed-Loop Networks

We first prove that the proposed algorithm produces feasible burst schedules in closed-loop

networks, which employ joint rate allocators to encode multiple videos into VBR streams so

that the aggregate bit rates of video streams do not exceed the bandwidth of their broadcast

networks. We then prove that the resulting schedule is optimal in terms of goodput. We

show that the resulting schedule is near optimal in terms of energy saving, and we give its

approximation gap. Last, we derive its time complexity.
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Statistical Multiplexing Scheduling (SMS) Algorithm

1. // Input: multiple VBR streams.
2. // Output: burst transmission schedule for all bursts.
3. // initial transform
4. for s = 1 to S
5. generate the first window for s and determine xs

1, ys
1, and zs

1 using Eqs. (4.2)—(4.5)
6. // burst scheduling
7. foreach decision point of window p for stream s {
8. schedule a burst from times t to tn for s, where window p of s has the smallest zs

p

8. among all windows p′ with xs
p′ ≤ t and zs

p′ > t, and t is the current time, tn is the
8. time of the next decision point
9. if window p of s completes or is late
10. generate a new window p for s and determine xs

p, ys
p, and zs

p using Eqs. (4.2)—(4.5)
11. }

Figure 4.1: An efficient burst scheduling algorithm.

Theorem 6 (Correctness). The SMS algorithm returns a feasible burst schedule for the

original burst scheduling problem (Problem 2) in closed-loop broadcast networks.

Proof. The for-loop in lines 7–11 produces a schedule that has no burst intersections. This is

because we assign every time interval [t, tn) to a single stream s in line 8, and we immediately

advance t to tn. Moreover, line 9 guarantees that ys
p ≥

∑

∀ xs
p≤fs

k<zs
p
bs
k holds, because it

stops assigning bursts to p if p is complete or late. To show that Eq. (4.7c) holds, we prove

ys
p ≤

∑

∀ xs
p≤fs

k
<zs

p
bs
k in the following. Notice that the joint video coder in a closed-loop

broadcast network prevents the aggregate bit rate of all video streams from exceeding the

broadcast network bandwidth. Therefore, the multiplexer always has enough air medium

time to broadcast all video streams ontime, i.e., any burst scheduling algorithm that achieves

optimal goodput leads to no late data. Next, we borrow the result from Theorem 7, which

states the SMS algorithm maximizes the goodput. This means that the SMS algorithm

produces burst schedules with late data, i.e., ys
p ≤

∑

∀ xs
p≤fs

k<zs
p
bs
k, which yields Eq. (4.7c).

Hence, the SMS algorithm finds a feasible schedule for the transformed problem. Since

we divide the receiver’s buffer into two halves and we make sure that the aggregate data

received in each window equals to half of the receiver’s buffer (see Eq. (4.2)), the resulting

schedule leads to no buffer violation instances in the original problem.
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Busy Time Slack Time Busy Time Slack Time

· · · · · ·

v1u1 w1 = u2 v2 w2 = u3

Figure 4.2: The resulting schedule of the SMS algorithm consists of interleaved busy and
slack time periods. Different shaded blocks represent bursts for different video streams.
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Insert an
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late Window p
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Move a Burst for Window p′

of Stream s′
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Figure 4.3: Inserting a burst requires moving another burst, as there is no gap between
bursts in busy time periods.

Theorem 7 (Optimality of Goodput). The SMS algorithm produces optimal burst schedules

in terms of goodput.

Proof. Observe that the for-loop starting in line 7 always schedules a burst as long as there is

at least one window that is outstanding and is not late. Therefore, the resulting schedule L

consists of interleaved busy time periods and slack time periods, as illustrated in Figure 4.2.

Let the t-th busy time period starts at time ut sec and ends at time vt sec, and the t-th

slack time period starts at time vt sec and ends at time wt sec. During slack time periods,

there is no video data to be sent: all data has been sent earlier in the corresponding busy

time periods.

Next, any resulting schedule L falls into one of two cases. Case I: all windows complete

in line 9. Case II: there is at least one window late in line 9. In case I, since all windows

complete on time, the SMS algorithm meets all demands ontime. Thus, SMS is optimal

in case I. For case II, we only need to show that there is no schedule better than L. We
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use proof by contradiction and illustrate the argument in Figure 4.3. Consider an arbitrary

window p of stream s in L, where p is not completed in busy window [ut, vt). Assume

there exists a better schedule L∗, which allocates an additional θ-sec burst to window p,

where θ > 0. By definition, goodput only considers video data that arrive ontime, so this

additional burst (darkened in the figure) must be inserted before zs
p, otherwise L∗ would

not be a better schedule. Furthermore, as there is no gap among bursts in the busy time

period, L∗ must move another burst for window p′ of stream s′ (also darkened in the figure)

to a time later than zs
p in order to make room for the additional burst. However, line 9 says

that the SMS algorithm always schedules the window with the smallest deadline, thus we

know zs′

p′ ≤ zs
p. This means that moving the burst for window p′ of stream s′ after time zs

p

renders it becoming a late burst, which cancels out the additional goodput brought by the

new burst! Therefore, the amount of ontime delivered bursts in L and L∗ are the same,

which contradicts the assumption.

Theorem 8 (Near-Optimality of Energy Saving). The SMS algorithm produces a near-

optimal burst schedule with the number of bursts at most two times the number of bursts in

the optimal schedule. Moreover, the approximation gap of energy saving is written as:

∆γ = γ∗ − γ ≤ Tor/Q, (4.8)

where γ∗ and γ are the system-wide energy saving achieved by the optimal scheduling algo-

rithm and by the SMS algorithm, respectively, and r represents the average coding bit rate

across all video streams.

Proof. Let n∗
s be the optimal number of bursts scheduled for video stream s. As each burst

contains no more than Q kb data, we have n∗
s ≥

∑I
i=1 lsi /Q. Then, following the definition

of energy saving, we write the energy saving of stream s as:

γ∗
s = 1 −

∑n∗

s

k=1(To + bs
k/R)

I/F
≤ 1 −

To
∑I

i=1 lsi /Q +
∑I

i=1 lsi /R

I/F
= 1 − (

To

Q
+

1

R
)rs,

where rs =
∑I

i=1 lsi /(I/F ) is the average coding bit rate for stream s. Following the defini-

tion of system-wide energy saving, we have:

γ∗ ≤ 1 − (
To

Q
+

1

R
)

S
∑

s=1

rs/S = 1 − (
To

Q
+

1

R
)r.
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Next, we let ns be the number of bursts scheduled for s by the SMS algorithm. Based on

Eq. (4.2), we use δs
p = Q

2 −
∑ms

p

j=ms
p−1

+1 lsj to represent a small portion of Q that is not fully

utilized in window p. We notice that δs
p ≅ 0, because typical receiver buffers are much larger

than frame size, e.g., media players buffer for several seconds of playout time, or hundreds

of frames, before rendering videos. Since δs
p is insignificant, we write ps =

∑I
i=1 lsi

/

(Q/2).

Then, we notice that the total number of bursts among all video streams is bounded by the

number of decision points, which are defined as the time instances at which either a new

window starts, completes or becomes late. Observe that, except for the boundary cases,

a new window is only created when the previous window of the same stream completes or

becomes late. This means that the number of decision points is
∑S

s=1 ps + S ≅
∑S

s=1 ps.

Hence, we write
∑S

s=1 ns ≤
∑S

s=1 ps. Then, we write the system-wide energy saving:

γ = 1 −
S
∑

s=1

nsTo +
∑I

i=1 isi/R

SI/F
= 1 −

To
∑S

s=1 ns

SI/F
−

∑S
s=1 rs

RS
.

Since
∑S

s=1 ns ≤
∑S

s=1 ps = 2
∑s

s=1

∑I
i=1 lsi /Q, we have: γ ≥ 1 − (2To

Q + 1
R )r. Combining γ

and γ∗ yields the theorem.

Theorem 9 (Time Complexity). The SMS algorithm runs in time O(PS + S2), where S

is the number of video streams, and P is the maximum number of windows among all video

streams.

Proof. Since there are
∑S

s=1 ps+S decision points, and we check S windows at each decision

point, the complexity of line 8 is O(PS + S2), where P =
∑S

s=1 ps. Moreover, constructing

windows in lines 5 and 10 takes time O(
∑S

s=1 I) in total, which can be written as O(PS) as

the receiver buffer size Q and number of frames in each window are small constants. Thus,

the SMS algorithm runs in time O(PS + S2) + O(PS) = O(PS + S2).

The above theorems show that the SMS algorithm produces burst schedules that are

optimal in terms of goodput, and near-optimal in terms of energy saving. In addition, it

produces glitch-free bursts in closed-loop broadcast networks. Moreover, the approximation

gap of energy saving given in Theorem 8 has a few desirable properties. First, the gap

decreases when the overhead duration To decreases, which is expected as the hardware

technology advances. Second, the gap decreases when the receiver buffer size Q increases.

The receiver buffer gets larger whenever the unit price of memory chips reduces, which has

been a trend for several years. Last, the gap decreases when the average coding bit rate r
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Figure 4.4: The proposed algorithm leads to small approximation gap with typical param-
eters: (a) average coding bit rate is 512 kbps, and (b) receiver buffer is 1 MB.

reduces, which is likely to happen as newer coding standards always achieve higher coding

efficiency, and thus lower coding bit rates. These properties show that the SMS algorithm

will even perform better as the technology advances.

To illustrate the energy saving performance of the SMS algorithm under current tech-

nology, we numerically analyze its approximation gap using a range of practical parameters.

We consider overhead duration from 50 to 200 msec, receiver buffer size from 256 KB to 4

MB, and coding bit rate from 128 to 1536 kbps. We plot the numerical results in Figure 4.4.

Figure 4.4(a) shows that the gap becomes very small if the receiver has a reasonable buffer

size, e.g., the gap is less than 1.5% if receiver buffer is larger than 1 MB. Figure 4.4(b)

illustrates that the gap becomes smaller when coding bit rate is smaller, e.g., the gap is less

than 1.25% for coding bit rate is 512 kbps and below. Notice that 512 kbps is high enough

for video streaming to mobile devices, because these devices have small display resolutions.

These two figures confirm that the SMS algorithm achieves a very small approximation gap

on energy saving with current technology.

We mention that ∆γ is not always small. More specifically, following Eq. (4.8), ∆γ

becomes larger when To

Q/r increases. However, broadcast networks with large To

Q/r are extreme

cases, and in these networks the ratio of overhead duration (To) and burst length (Q/r)

is large. Therefore, no matter how we construct burst schedules, energy saving in such

networks would be very low. In addition, we acknowledge that when To

Q/r is extremely small,

even if there were more bursts scheduled, i.e., the number of scheduled bursts is more than
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two times the optimal number of bursts, the approximation gap of energy saving may not be

much worse than that of the SMS algorithm. Nevertheless, SMS algorithm still outperforms

all other algorithms, as we are not aware of any algorithm in the literature that leads to an

approximation gap lower than the that of the SMS algorithm.

Last, we comment on the delay incurred by the SMS algorithm, which is bounded by

(SQ)/(2R) as shown in Eq. (4.6). For illustration, we employ common network parameters,

where the air medium bandwidth R = 10 Mbps, receiver buffer size Q = 2 Mb, and stream

coding rate is 512 kbps. We first consider a service provider who broadcasts five video

streams, its delay is less than 500 msec which is negligible. For a service provider who

saturates the bandwidth and broadcasts 20 video streams, the delay is no more than 2

sec. We emphasize that the SMS algorithm does not employ smoothing buffers to regulate

the bit rates of VBR streams. This is different from the RVBR algorithm described in

Section 2.5 and used in current base stations. Hence, the SMS algorithm does not suffer

long preroll delay due to the smoothing buffer, which can be more than 400 sec as illustrated

in Figure 2.9(b).

4.4.3 Practical Considerations

Wireless networks may impose limitations on the burst size. For example, DVB-H standard

specifies that a burst cannot exceed the maximum burst size of 2 Mb [9]. Broadcast net-

works may also have constraints on minimum burst size, because short bursts require higher

receiver sensitivity, and could lead to higher transmission error rates [73]. Furthermore, as

we mentioned earlier, shorter bursts in general result in lower energy saving, thus should be

avoided. Incorporating maximum and/or minimum burst size in the SMS algorithm can be

done by slightly changing line 7 of Figure 4.1. First, instead of next decision point, a burst

may terminate early to comply to the maximum burst size. Second, any decision points that

would lead to a burst shorter than the minimum burst size are suppressed for that iteration.

Therefore, the SMS algorithm is general and can support constraints on burst size, which

are network-specific parameters.

4.5 Scheduling in Open-Loop Broadcast Networks

In this section, we consider the problem of broadcasting VBR streams in open-loop broadcast

networks , in which the aggregate bit rate of all video streams may occasionally exceed the
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network bandwidth. In Section 4.5.1, we first show that the proposed SMS algorithm can

be used in open-loop broadcast networks, and give the sufficient condition of the resulting

burst schedules to be feasible, i.e., leads to no playout glitches. For general open-loop

broadcast networks, we propose in Section 4.5.2 another burst scheduling algorithm that

employs a larger lookahead window to mitigate the potential late frames due to overloading

the broadcast network.

4.5.1 The SMS Algorithm in Open-Loop Networks

Compared to open-loop broadcast networks, a closed-loop broadcast network requires ad-

ditional components, such as a joint rate allocator, and several joint-coding enabled video

coders. Therefore, open-loop broadcast networks are less expensive to deploy, and thus

are more suitable to small scale network operators such as local TV stations, temporary

base stations, and startup broadcast companies with limited budget. The SMS algorithm

proposed in Figure 4.1 can be used in open-loop broadcast networks. The next corollary

states the sufficient condition for the SMS algorithm to construct glitch-free burst schedules

in open-loop networks.

Corollary 1 (Sufficient Condition). The SMS algorithm gives glitch-free burst schedules,

i.e., leads to no buffer violation instances in open-loop broadcast network if the aggregate

bit rate of all video streams does not exceed the broadcast network bandwidth. That is,
∑S

s=1 lsi ≤ R/F for all 1 ≤ i ≤ I.

This corollary is a direct result of Theorem 6, in which we use the fact that joint video

coders prevent the video coders from overloading the broadcast network at all time to

prove the burst schedules produced by the SMS algorithm have no buffer underflow in-

stances. Fortunately, for small scale network operators, not too many video streams need

to be broadcast. Therefore, these network operators are unlikely to saturate the network

bandwidth. Hence, these network operators may implement the SMS algorithm in the mul-

tiplexers without purchasing expensive joint video coders. When the aggregate bit rate

of the video streams instantaneously exceeds the network bandwidth, the SMS algorithm

will minimize the number of glitches in open-loop networks, by scheduling as much data as

possible, which is proved in Theorem 7.
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Figure 4.5: Video streams in open-loop networks may overload the broadcast network, which
may in turn lead to buffer underflow instances on mobile devices.

4.5.2 Algorithm for Glitch-Free Playouts

The condition in Corollary 1 may not hold in heavily-loaded open-loop broadcast networks.

Therefore, the SMS algorithm could drop some video data when the broadcast network is

overloaded. Specifically, when the aggregate bit rate of all video streams is higher than the

network bandwidth, the SMS algorithm may suffer from late windows in line 9 of Figure 4.1.

The SMS algorithm will move on to the next window, because the late video data can no

longer be rendered to users. This in turn lead to buffer underflow instances and playout

glitches. Figure 4.5 shows an illustrative example of the aggregate bit rate of an open-loop

network. There is a period of time the aggregate bit rate exceeds the broadcast network

bandwidth, and video streams are vulnerable to playout glitches during this time period.

Therefore, a better burst scheduling algorithm is needed for open-loop broadcast networks.

We make an observation on the illustrative bit rate curve in Figure 4.5. We notice

that the aggregate bit rate only occasionally overloads the broadcast network, while the

broadcast network often has slack medium time. Therefore, we propose to utilize the slack

medium time, before the broadcast network is overloaded, to transmit the video data that

will be otherwise dropped by the multiplexer due to overloaded network. Sending some

video data using slack medium time enables us to absorb the aggregate bit rate spikes that

exceed the broadcast network bandwidth.

We propose an SMS′ burst scheduling algorithm to solve the scheduling problem in

open-loop broadcast networks. While the SMS′ algorithm is based on the SMS algorithm,

they have two major differences. First, the SMS′ algorithm keeps track of and utilize

slack medium time to mitigate playout glitches caused by overloaded broadcast networks.
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Second, the SMS′ employs a longer lookahead window to construct burst schedules. The

SMS′ algorithm needs a longer lookahead window for early detection of aggregate bit rate

spikes. The length of this lookahead window ζ is a system parameter. Longer lookahead

window gives the SMS′ algorithm more opportunities to mitigate buffer violation instances,

but may not be suitable for live programs.

The SMS′ algorithm works as follows. We first construct the transformed formulation,

and then iterate through all decision points (defined in Section 4.4.1). At each decision

point, we schedule a burst to the outstanding window with the smallest end time. The

burst length is from the current decision point to the next decision point. If there is no

outstanding window with a start time earlier than the current decision point, there is no

video data to schedule and thus we have a slack time slot. We push this slack time slot into

a stack for later usage, and move to the next decision point.

Upon reaching a decision point which is also the end time of a window ps we check

whether ps is complete, i.e., whether we have delivered all ps’s data ontime. If window ps

has any residue data to send, we pop a slack time slot from the stack and allocate a burst

for video stream s. Since slack time slots are on a stack, we always get the most recent slack

time slot, which reduces the chance for buffer overflow instances on mobile devices receiving

stream s. Depending on the amount of residue data in window ps, it may require one or

more slack time slots. We iteratively pop slack time slots for ps until it is complete. We

mention that when allocating a slack time to a video stream, we need to validate whether

the new burst would lead to buffer overflow instances on mobile devices. This can be done

by computing the buffer level at the end of the new burst using Eq. (4.1e). Slack time slots

that have been fully used are discarded. Partially used slack time slots are pushed back

to the stack after adjusting its start and end times. Slack time slots in the past are also

discarded as they can no longer be used. We move from the end time of window ps to the

next decision point when: (i) the ps is complete or (ii) no more bursts can be allocated.

We present the high-level pseudocode of the SMS′ algorithm in Figure 4.6. This algo-

rithm constructs the first window for each video stream in lines 3–5. It uses the for-loop

between lines 7 and 16 to iterate through all decision points. In line 8, it checks whether

there is any outstanding window. If not, it inserts a slack time slot into the stack in line

9; otherwise, it schedules a burst to video stream s in line 11. The if statement in lines 12

and 13 allocates slack time slots to any late window, until that window is complete or there

is no more bursts can be allocated. New window is generated in line 18 upon a window is
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The SMS′ Algorithm

1. // Input: multiple VBR streams.
2. // Output: burst transmission schedule for all bursts.
3. // initial transform
4. for s = 1 to S
5. generate the first window for s and determine xs

1, ys
1, and zs

1 using Eqs. (4.2)—(4.5)
6. // burst scheduling
7. foreach decision point of window p for stream s
8. if there is no window p′ with xs

p′ ≤ t and zs
p′ > t, where t is the current time

9. push a slack time slot into the stack
10. else
11. schedule a burst from times t to tn for s, where window p of s has the smallest zs

p

11. among all windows p′ with xs
p′ ≤ t and zs

p′ > t, and tn is the time of the next
11. decision point
12. if window p of s is late
13. allocate one or more bursts to stream s using the slack time slots in the stack
14. if window p of s completes or is late
15. generate a new window p for s and determine xs

p, ys
p, and zs

p using Eqs. (4.2)—(4.5)
16. }

Figure 4.6: A burst scheduling algorithm for open-loop broadcast networks.
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complete or late. The algorithm terminates once there is no other decision points.

We comment on the time complexity of the SMS′ algorithm. Compared to the SMS

algorithm, the only additional complexity of the SMS′ algorithm is the slack time slots

operation. We note that the total number of slack time slots is bound by O(PS), where

P is the maximum number of windows among all S video streams. We consider the size

of the stack is a small constant. This is because the stack size is limited by the lookahead

window, which is usually not too long. However, if the lookahead window is long, such as

for pre-recorded videos, we can also enforce a maximum stack size in order to bound the

complexity. Since stack operations are constant, we know the additional time complexity

imposed by managing slack medium time is O(PS). Combining this with Theorem 9, we

know the SMS′ algorithms also has a small time complexity of O(PS + S2).

4.6 Simulation

In this section, we use simulations and real video traces to evaluate the proposed SMS and

SMM′ algorithms in open-loop and closed-loop networks.

4.6.1 Simulation Setup

We have implemented a trace-driven simulator for broadcast networks. The simulator takes

trace files of real VBR coded streams as inputs and can simulate both open- and closed-loop

networks. We have designed a clean interface for the simulator to facilitate various burst

scheduling algorithms, and we have implemented the proposed SMS and SMS′ algorithms

in the simulator. We have also implemented the current VBRα, RVBRβ, and DVBRτ

algorithms (which are described in Section 2.5) for comparison. We only consider these

three algorithms because we are not aware of any other burst scheduling algorithm in the

literature. This, however, is not a major concern, as we analytically prove that our algorithm

achieves optimal goodput and almost-optimal energy saving. Furthermore, in some of our

experiments, we compare the results of our algorithm against an upper bound on the energy

saving that can be achieved by any algorithm.

We first evaluate the SMS algorithm in open-loop networks. For the network parameters,

we use 16-QAM modulation scheme, 5/6 channel coding rate, 1/8 guard interval, and 5

MHz channel bandwidth. This gives us a broadcast network with bandwidth R = 17.2

Mbps [16]. We consider an overhead duration To = 100 msec and receiver buffer size Q = 4
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Figure 4.7: Burst schedules produced by considered algorithm: (a) SMS, (b) VBR70%, and
(c) RVBR1.
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Figure 4.8: Missed frame ratio produced by: (a) all considered algorithms, (b) the VBRα

algorithm with various α values, and (c) the RVBRβ algorithm with various β values.
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Mb (= 0.5 MB). To saturate network bandwidth, we concurrently broadcast up to 20 VBR

video streams, where each stream has different characteristics. We downloaded 20 trace

files from a Video Trace Library [67]. These trace files are for CIF video streams coded by

H.264/AVC coders at 30 fps. We follow the recommendations given in [106] to generate a

realistic video traffic workload from these traces in two steps. First, we construct a 60-min

trace by starting from a random time and wrapping around if the end of the original coded

stream is reached. Second, we scale the frame sizes of each video stream so that it has

a random average bit rate between 100 to 1250 kbps. These two steps generate a set of

video trace files with diverse and varying video characteristics to mimic the video streams

broadcast in real open-loop networks.

To cover all possible burst schedules that can be used in current base stations, we vary

the α value of the VBRα algorithm from 48% to 98% and we vary the β value of the

RVBRβ algorithm from 1 to 64 sec. If not otherwise specified, we concurrently broadcast

20 video streams for 60 min using each burst scheduling algorithm, and we compute three

performance metrics: missed frames, number of concurrent video streams, and energy saving.

The missed frames include video frames that cannot be broadcast due to shortage of

bandwidth reserved to video streams, and frames that are late and cannot be decoded. We

define the missed frame ratio as the number of missed frames to the number of total frames,

which is an important QoS metric because higher missed frame ratios result in more playout

glitches that are annoying to users. We define the number of concurrent video streams as

the number of streams that can be broadcast by each scheduling algorithm without resulting

in too many missed frames. More precisely, we choose a target missed frame ratio and we

try to achieve this target using different scheduling algorithms. We start by broadcasting 20

video streams using the considered scheduling algorithms for 60 min. For each algorithm,

we compute the average missed frame ratio over the whole broadcast period. If the average

missed frame ratio is higher than the target ratio, we reduce the number of concurrently

broadcast video streams by one and repeat the 60-min broadcast, until we achieve the

target missed frame ratio. We note that, at each iteration, we drop the video stream with

the smallest bit rate. The rationale is that video streams with lower bit rates may be less

important, and dropping them earlier may allow us to achieve higher goodput. Finally, we

consider the system-wide energy saving as a performance metric.

We then evaluate the SMS algorithm in closed-loop networks. We use the same net-

work parameters mentioned above. We instruct the simulator to jointly encode 10 VBR
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video streams, based on the video traces from a Video Trace Library [67]. The simulator

employs Lagrangian optimization method [68] to maximize the average video quality under

the bandwidth constraint. It then concurrently broadcasts these coded streams for 60 min

using various scheduling algorithms. We consider the SMS and DVBRτ algorithm, and we

vary τ value from 1 to 2 sec. For all considered algorithms, we compute the energy saving

for each channel. We report the mean, maximum, and minimum per-channel energy saving.

For the DVBRτ algorithm, we also calculate the number of overflow/missed frames.

Last, we evaluate the SMS′ algorithm in open-loop networks. We do not consider the

SMS′ algorithm in closed-loop networks as its performance would be the same as the SMS

algorithm. For open-loop networks, we use the same broadcast parameters and concurrently

broadcast 20 VBR video streams as mentioned above. We use the SMS′ algorithm to

broadcast these video streams several times with different lookahead window size ζ: from

0 to 70 secs. For each ζ value, we compute the total number of missed frames among all

videos. We also calculate the system-wide energy saving.

4.6.2 Simulation Results

Visual Validation. We first plot the burst schedules computed by each considered

algorithms in Figure 4.7 to visually validate their correctness. We zoom into a short period

of 7 sec; burst schedules during other time periods are similar. We observe that the bursts

scheduled by the SMS algorithm are in variable size and they come in various frequencies.

This is because the SMS algorithm quickly adapts to the instantaneous bit rate variations of

VBR streams. In contrast, the current algorithms, both VBR70% and RVBR1, schedule burst

in round-robin fashion. We can draw two observations on the burst schedules computed by

the current algorithms. First, they contain slack time, e.g., the air medium is idle around

the time 86 sec in Figure 4.7(b). This means the current scheduling algorithms are not

optimal in terms of goodput. Second, due to the round-robin nature of current algorithms,

video streams with lower bit rates, such as stream 20 in Figure 4.7(c), have very short

bursts, which lead to low energy saving. Therefore, current scheduling algorithms are not

optimal in terms of energy saving either. Our results illustrate that the current scheduling

algorithms are not efficient in terms of goodput and energy saving.

Missed Frames. We compute the mean and maximal missed frame ratios of all

video streams in 5-min intervals for the considered algorithm. We report the results in

Figure 4.8(a), which shows that the SMS algorithm produces almost no missed frames, while
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VBR70% results in up to 33% missed frame ratio and RVBR1 leads to up to 12% missed

frame ratio. Clearly, the current scheduling algorithms may lead to unacceptable QoS: a

playout glitch every 1 and 3 secs for VBR70% and RVBR1, respectively. This experiment

shows that the SMS algorithm results in much better perceived quality than the current

scheduling algorithms.

Next, we vary the α and β values and compute the missed frame ratio for each of them.

Our SMS algorithm is not shown in the figures as it does not depend on α and β, and

as indicated by Figure 4.8(a) it produces almost no missed frames. We plot the results of

VBRα algorithm with different α values in Figure 4.8(b). This figure reveals that changing

the α value does not solve the QoS issue at all: at least 4% of missed frame ratio is observed

no matter what α value is used. This means that even if network operators exhaustively try

all possible α values with the current VBRα algorithm, no burst schedule with acceptable

QoS is possible. Then, we plot results of the RVBRβ algorithm with various β values in

Figure 4.8(c). This figure shows that the average missed frame ratio decreases when the

preroll delay of the RVBRβ algorithm increases. However, we observe that a preroll delay

of 48 sec is required for a zero average missed frame ratio. Unfortunately, a 48-sec preroll

delay significantly degrades user experience, and thus is not acceptable for mobile video

services. Therefore, the current RVBRβ algorithm can not achieve acceptable QoS either.

This experiment confirms that the current scheduling algorithms can only achieve inferior

perceived quality than the proposed SMS algorithm in open-loop networks.

Number of Concurrent Video Streams. We next study how many video streams

can the burst scheduling algorithms concurrently broadcast for a given QoS target: 0.5%

missed frame ratio. We iteratively reduce the number of concurrent video streams as outlined

in Section 4.6.1, and we compute the missed frame ratio at each step. We plot the average

missed frame ratio throughout the broadcasts in Figure 4.9(a). This figure shows that while

the SMS algorithm can concurrently broadcast 20 video streams, the RVBR1 algorithm

can only broadcast 14 video streams and the VBR70% algorithm can only broadcast 2

video streams. In Figure 4.9(b), we plot the maximum number of video streams that

can be concurrently broadcast by each scheduling algorithm. This figure shows that no

matter what α value is used in the VBRα algorithm, it can only broadcast 2 video streams.

Moreover, a β value larger than 16 is required for the RVBRβ to achieve the same number

of video streams as the SMS algorithm, which significantly degrades user experience due to

its excessive preroll delay of 32 sec. This experiment shows that the SMS algorithm allows
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Figure 4.9: (a) Missed frame ratio achieved by various scheduling algorithms with different
number of video streams. (b) Maximum number of video streams that can be broadcast.

network operators to broadcast many more video streams under the same QoS requirements,

which leads to higher revenues.

Near-optimality on Energy Saving. We next compare the energy saving achieved

by the SMS algorithm against the current burst scheduling algorithms. We also compare

against a very conservative upper bound on the maximum achievable energy saving. We use

this upper bound because the burst scheduling problem is NP-complete, and computing the

exact optimal solutions may take long time. We compute the upper bound as follows. For

each video stream, we broadcast only this stream without any other streams for 60 min.

The resulting schedule achieves maximum energy saving by allocating the largest possible

bursts that can fit in receiver’s buffer. The receiving circuits of mobile devices are put into

sleep after getting a burst until that burst is completely consumed. Clearly, the schedule

leads to a conservative upper bound on the energy saving, and we denote this upper bound

as UB in the figure. We repeat this experiment for 20 times: once for every video stream.

Then, we run the SMS and the current burst scheduling algorithms to compute the burst

schedules for all 20 video streams concurrently. Sample energy saving achieved by different

burst scheduling algorithms are reported in Figure 4.10; results for other video streams are

similar. We draw two observations out of this figure. First, the SMS algorithm achieves

near-optimal energy saving: as close as 2% lower than the conservative upper bound, and up

to 7%. Second, the SMS algorithm achieves higher energy saving than the current VBR98%

and RVBR16 with a margin as high as 12% and 5%, respectively. This experiment shows



CHAPTER 4. GOODPUT OPTIMIZATION 123

1 4 7 10 13 16 19
75

80

85

90

95

100

Video Stream s

E
n
er

g
y

S
av

in
g

γ
s

(%
)

 

 

UB
SMS
RVBR16

VBR98%

Figure 4.10: Energy saving achieved by considered burst scheduling algorithms and a con-
servative upper bound.

that the proposed SMS algorithm achieves energy saving that is very close to the optimal,

and is better than that of the current scheduling algorithms in open-loop networks.

Applicability in Closed-Loop Networks. Next, we compare the performance of

the SMS algorithm against the current burst scheduling algorithm in closed-loop networks.

We report the mean, maximum, and minimum per-channel energy saving of the SMS and

DVBRτ algorithm in Figure 4.11. We draw two observations on this figure. First, the

SMS algorithm constantly results in higher energy saving than the current algorithm. For

example, Figure 4.11(a) shows that the SMS algorithm achieves about 80% average energy

saving at all time, while the DVBR1 algorithm only achieves about 45%. Second, the DVBRτ

algorithm achieves higher energy saving when τ increases. For example, Figure 4.11(b)

reveals that the DVBR2 algorithm achieves about 65% energy saving on average, which

is better than that of DVBR1. However, higher τ value may result in lost frames due to

buffer overflow on mobile devices, which in turn lead to playout glitches, and thus cannot

be used in commercial base stations. To understand whether DVBR2 produces a glitch-free

burst schedule in the simulation, we plot the number of missed frames in Figure 4.12. This

figure shows that while DVBR2 results in higher energy saving than DVBR1, it also leads

to playout glitches. This experiment illustrates that the current DVBRτ aalgorithm leads

to low energy saving in closed-loop networks, and using our proposed SMS algorithm can

improve the average energy saving by about 80%/45% ≈ 1.7 times.

Lookahead Window Size. We next study the benefits of using the SMS′ algorithm

in open-loop networks. We quantify the performance different between the SMS algorithm
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Figure 4.11: Per-channel energy saving comparison between the SMS and DVBRτ algo-
rithms, with: (a) τ = 1 and (b) τ = 2.
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Figure 4.13: Implication of lookahead window size on: (a) number of late frames and (b)
energy saving.

and the SMS′ algorithm with different ζ values, and we plot the results in Figure 4.13. We

note that SMS algorithm is essentially the same as the SMS′ algorithm with ζ = 0. We

first run each considered algorithm and compute the total number of late frames of all 20

video streams throughout the 60 min broadcast. We plot the results in Figure 4.13(a). We

draw two observations on this figure. First, larger ζ value in general results in fewer missed

frames. For example, with 50 sec (or longer) lookahead window, the SMS′ algorithm leads to

no missed frames by transmitting some video data earlier when the broadcast network had

some slack times. Second, we notice that, the number of missed frames is not monotonically

decreasing as ζ increases. For example, the SMS′ algorithm performs worse with ζ = 25

than ζ = 20. This happens because the SMS′ only considers a small lookahead window,

and the way it reuses slack time (line 13 in Figure 4.6) may not be optimal in terms of

minimizing buffer violation instances. This, however, is understandable as we have shown

that the burst scheduling problem is NP-complete. Network operators who have a lookahead

window of ζ̂ sec, may run the SMS′ multiple times with several ζ < ζ̂ values, and then pick

the best burst schedule out of all returned ones. In summary, Figure 4.13(a) indicates the

SMS′ algorithm effectively reduces the number of missed frames.

We next consider the energy saving achieved by the SMS′ algorithm. We compute the

system-wise energy saving γ for the SMS′ algorithm with different ζ value, and we plot

them in Figure 4.13(b). This figure clearly shows that energy saving degradation caused by

larger ζ is negligible: the energy saving is about 91.4% in all experiments. Hence, the SMS′
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algorithm produce glitch-free burst schedules without sacrificing energy saving.

Running Time. Finally, we report the running time of the SMS algorithm on a

commodity PC with a 2.33 GHz processor and runs Linux. It takes the proposed algorithms

less than 1 sec to construct the burst schedule for the 60 min simulation. This clearly shows

that the proposed algorithms incur negligible processing overhead, and can run in real time.

4.7 Implementation on a Mobile TV Testbed

In this section, we use a mobile TV testbed implemented in our Lab to evaluate the SMS

algorithm. This testbed, described in Section 3.6, complies with the DVB-H standard [9,10].

4.7.1 Testbed Setup

We have implemented the proposed SMS algorithm in a complete testbed for mobile TV

networks, which is detailed in Section 3.6. For the experiments, we configured the modulator

to use an 8 MHz radio channel with QPSK (Quadrature Phase-Shift Keying) modulation

scheme. According to the DVB-H standard documents, this leads to 8.289 Mbps shared air

medium bandwidth [16]. We set the overhead duration To = 100 msec, and the receiver

buffer size Q = 4 Mb. To form a realistic set of video streams, we use five production-

quality video sequences provided by the Canadian Broadcasting Corporation (CBC). CBC

is the largest content provider and broadcaster in Canada. These video sequences include

documentary, talk show, soap opera, TV game show, and sports event. Thus, the test

sequences have quite diverse video characteristics. Each sequence lasts for 5 min. We

encode each video sequence into two H.264/AVC coded VBR streams, with average bit

rates of 250 and 768 kbps, respectively. That is, we get 10 coded streams in total. We also

encode the audio at 96 kbps using an MPEG-4 AAC encoder. We then multiplex the video

and audio tracks into mp4 files, which are supported by the streaming server implemented

in our testbed. We concurrently broadcast 20 video streams (each mp4 file is broadcast

over two channels) using the SMS algorithm for three min, and we collect detailed logs at

the base station. The logs contain the start and end times (in microsecond) of every burst

of data and its size. We developed several software utilities to analyze the logs for three

performance metrics: cumulative received bits, time spacing between successive bursts, and

energy saving.
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Figure 4.14: (a) Buffer dynamics for the SMS algorithm, and (b) time spacing between
successive bursts.
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Figure 4.15: Energy saving achieved by our algorithm for individual video streams.

4.7.2 Results from Mobile TV Testbed

Correctness. We first validate the correctness of the SMS algorithm, i.e., it produces

burst schedules that adapt to bit rate variation in VBR streams, and results in no burst

conflicts. To show the bit rate adaptation, we compute the cumulative received bits (from

the broadcasting base station) as the time progresses. Sample results are presented in

Figure 4.14(a) for two video streams with different average bit rates; results for other streams

are similar. The figure shows the dynamics of the received bits, and reveals that the SMS

algorithm adapts to the bit rate variations quite well. For example, the bit rate of video

stream 6 between 25 and 35 sec is higher than other time periods. Furthermore, we notice



CHAPTER 4. GOODPUT OPTIMIZATION 128

the SMS algorithm allocates dynamic inter-burst time to each video stream: bursts are

further apart when the instantaneous bit rate is lower, and they are closer otherwise. This

is shown by the variable widths of the steps in the staircase lines in the figure. Dynamic

inter-burst time allows the SMS algorithm to send burst as long as possible, which results in

high energy saving. Note that this figure shows shorter time period, 90 sec, for the clarity.

The results are similar for the whole streaming period.

Next, we compute the time spacing between all bursts to validate the nonexistence of

burst conflicts. We first sort bursts of all video streams based on their start times. Then,

we sequentially compute the time spacing between the start time of a burst and the end

time of its immediate, previous, burst. Note that a negative time spacing indicates bursts

intersect with each other. In Figure 4.14(b), we plot the CDF of the time spacing between

two adjacent bursts. This figure clearly shows that there are no conflicts among the resulting

bursts.

Energy Saving. We report the energy saving achieved by receivers of different video

streams when the SMS algorithm is used. Figure 4.15 shows the energy saving of four

representative video streams; the energy saving of other streams are not shown for the

clarity of the figure. We observe that the energy saving for low bit rate video streams (250

kbps) can be as high as 96%, while it is at least 80% for high bit rate video streams (768

kbps). This figure shows that the SMS algorithm achieves fairly high energy saving in a

real testbed.

Running Time. In all of the above experiments, the SMS algorithm was running in real

time on a commodity PC. The running time of scheduling bursts for the whole experiment

(5 min long) was in the order of tens of milliseconds. Note that, in our testbed, the same PC

also runs several video streaming servers and modulation software as background threads.

These threads impose realistic loads on the PC, and confirm that the proposed algorithm is

practicable and efficient.

4.8 Conclusions

We studied the problem of broadcasting multiple VBR streams over a broadcast network to

many mobile devices. These streams are broadcast in bursts to enable mobile devices to save

energy by frequently putting their receiving circuits into sleep. We considered two types of

the broadcast networks: closed-loop, in which the aggregate bit rate of all video streams is
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controlled by a joint video coder and never exceeds the network bandwidth, and open-loop, in

which the video streams may occasionally overload the broadcast network since their coding

rates are not jointly controlled. We formulated a burst scheduling problem that adopts:

(i) goodput as the primary objective function, and (ii) energy saving as the secondary

objective function. We showed that this burst scheduling problem is NP-complete. We then

proposed an efficient, approximation algorithm, called Statistical Multiplexing Scheduling

(SMS), to solve the problem. We proved that the SMS algorithm achieves optimal goodput

and it provides near-optimal energy saving. Our analysis indicates that a small energy

saving gap of at most 1.5% from the optimal is achieved under typical network parameters.

We analytically showed that the SMS algorithm produces glitch-free schedules in closed-

loop networks, and minimizes the number of glitches in open-loop networks. The SMS

algorithm is an online scheduling algorithm with a small lookahead window, and can handle

the dynamic nature of the video broadcast service. However, in open-loop networks, the

SMS algorithm might lead to some playout glitches when the aggregate bit rate of all video

streams exceeds the network bandwidth. We propose another scheduling algorithm, called

SMS′ to address this problem. The SMS′ algorithm employs a longer lookahead window and

utilize any slack times of the air medium to absorb the burstiness in aggregate bit rate. The

length of this lookahead window is a configurable system parameter. The SMS′ algorithm

also runs fast, and thus is an online algorithm as well.

We conducted extensive trace-driven simulations. For open-loop networks, we concur-

rently broadcast 20 VBR video streams using the SMS algorithm and the scheduling algo-

rithms used in current base stations. The simulation results reveal that the SMS algorithm

outperforms the current burst scheduling algorithms in terms of: (i) missed frame ratio, (ii)

number of concurrent video streams, and (iii) energy saving. For closed-loop networks, we

broadcast 10 jointly coded VBR streams using the SMS algorithm and the algorithm cur-

rently used in practice. Our simulation results showed that the SMS algorithm can achieve

much higher energy saving: about 1.7 times improvement was observed. Finally, we study

the implication of different lookahead window size in the SMS′ algorithm. The simulation

results reveal that: (i) longer lookahead windows in general lead to fewer missed frames and

(ii) lookahead window sizes have little impact on energy saving of mobile devices.

The proposed algorithm for efficiently broadcasting VBR video streams are general and

can be employed in different broadcast networks. We achieve this generality by abstracting
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away the peculiarities of different networks in the formulation of the problem and the pro-

posed scheduling algorithm. To demonstrate the practicality of our proposed algorithm, we

have implemented the SMS algorithm in a real testbed for DVB-H services. We encoded

different types of videos into VBR streams, where each stream consists of both video and

audio tracks. We concurrently broadcast 20 streams using the testbed to mobile phones, and

we collected detailed logs for performance analysis. The results from the testbed confirm

that the SMS algorithm: (i) does not result in playout glitches, (ii) achieves high energy

saving, and (iii) runs in real time.



Chapter 5

Controlling Channel Switching

Delay

In this chapter, we solve the problem of controlling channel switching delay in mobile video

broadcast networks. We first show that existing base stations cannot efficiently control

channel switching delay. We then propose three time slicing schemes to ensure that switching

from a channel to any other channel never exceed a given maximum switching delay. We

implement the proposed schemes in a real mobile TV testbed to show their practicality and

efficiency.

5.1 Introduction

We study Problem 3 to construct burst schedules for controlling channel switching delays.

While time slicing enables mobile devices to save energy, it increases the channel switching

delay, which is the time that a user waits before s/he starts viewing a selected channel

when a change of channel is requested by that user. The switching delay is an important

performance metric, because many users quickly flip through several channels before they

decide on watching the specific ones. Operators of mobile video broadcast networks have

to maintain low and constant switching delays, as long and variable switching delays are

annoying to users and may turn them away from the mobile video broadcast service. Our

goal is to design time slicing schemes to bound the maximum switching delay from a channel

to any other channel to a target value without sacrificing the energy saving of mobile devices.

131
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We first analyze the time slicing scheme currently used in many deployed mobile video

broadcast networks, and we show that it cannot efficiently achieve short channel switching

delays. More precisely, current time slicing scheme achieves low energy saving when short

channel switching delays are required. We then propose three new time slicing schemes

that ensure that a given maximum switching delay is not exceeded, while at the same time

the energy consumption of mobile devices is minimized. Our proposed schemes employ

simulcasting of video streams with and without scalable video coding techniques, which was

described in Section 2.2.2. We prove the correctness of the proposed schemes and derive

closed-form equations for the achieved energy saving. We numerically analyze the perfor-

mance of the proposed schemes and provide guidelines for network operators to choose the

most suitable time slicing scheme for their mobile video broadcast networks. We imple-

ment the proposed schemes in a mobile TV testbed. Our experimental results validate our

theoretical analysis and show that the proposed schemes indeed meet the target channel

switching delays and achieve high energy savings for mobile devices: up to 95% energy

saving is observed.

5.2 Related Work

Channel switching delay is composed of several parts, in which frame refresh delay and time

slicing delay are the two dominating contributors [29, 33]. The frame refresh delay refers

to the time period between receiving the first bit of a new video stream and receiving the

next random access point, typically an intra-coded frame, of that video. The time slicing

delay refers to the time period between locking onto a mobile TV signal and reaching the

first burst of the selected TV channel. Existing switching delay reduction solutions in the

literature can be roughly categorized into three classes: solutions that use an auxiliary

cellular network [32], solutions that reduce frame refresh delays [29, 33, 75–77, 107], and

solutions that reduce time slicing delays [16, 75]. We briefly survey each of them in the

following.

Ollikainen and Peng [32] propose a vertical handover approach for DVB-H networks,

where each mobile device maintains a unicast connection to the base station over a Universal

Mobile Telecommunications Systems (UMTS) network. Video streams are not only carried

by the DVB-H network but also relayed by the cellular network, which enables a mobile TV

device to quickly handoff to the unicast connection when the DVB-H signal is degraded. This
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auxiliary network can also be used for reducing channel switching delays. Unfortunately,

maintaining a unicast connection for each mobile device for video traffic imposes tremendous

load on cellular networks and streaming servers, and therefore is not scalable. In contrast,

our solution requires no additional connections over the cellular network and is simpler and

more scalable.

To reduce frame refresh delays, Vadakital et al. [75] propose to periodically add redun-

dant intra-coded frames into video streams coded by H.264/AVC. In H.264/AVC, redundant

frames are only decoded when primary, normal, frames are not decodable. By frequently

adding low quality intra-coded redundant frames into a video stream, more random access

points are added, which in turn reduces refresh delays. Instead of sending low-quality intra-

coded frames over dedicated channels, intra-coded frames can be dynamically inserted at the

beginning of every burst by the IP encapsulator to shorten frame refresh delays [29,33,76,77].

This is done by sending two coded video streams, primary and auxiliary, from the video

streaming server to the IP encapsulator over a local wired network. The IP encapsulator

substitutes an intra-coded frame (on the auxiliary stream) for an inter-coded frame (on the

primary stream) that is about to be encapsulated as the first frame in a burst. Since every

burst starts with an intra-coded frame, a mobile device can decode immediately after re-

ceiving the first frame in each burst. The works on minimizing refresh delays are orthogonal

to our work, and they can be combined with our work on reducing the time slicing delay.

The closest works to ours are those that try to reduce the time slicing delay [16,75]. The

DVB-H standard suggests to employ parallel elementary streams for channel switching delay

reduction [16], in which network operators bundle several TV channels into a channel group.

The channel group is then encapsulated into a series of time slicing bursts. Mobile devices

which want to receive any of these TV channels will have to process all bursts of the group,

despite the fact that not all the data is useful to them. In addition, parallel elementary

streams cannot reduce channel switching delay if the selected TV channel is not in the same

channel group as the current TV channel. Therefore, determining the channel grouping

strategy itself is a difficult question. In contrast, our proposed schemes provide guaranteed

switching delays between any two arbitrary channels, and do not need any heuristics to

group TV channels. Since the channel grouping strategy is not specified in [16], we cannot

compare our work against the parallel elementary stream method. Even if the grouping

strategy is known, it would be an unfair comparison (in favor of our schemes), because

our schemes are designed to minimize energy consumption, while the parallel elementary
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Table 5.1: List of symbols used in controlling channel switching delays.
Sym Definition Sym Definition

To overhead duration d channel switching delay
S number of video streams dm maximum switching delay
R burst bit rate γ energy saving
b receiver buffer size γb γ in bootstrap stage
r channel bit rate γp γ in steady stage
rl reduced-quality bit rate w per-channel watch time

streams method results in suboptimal energy consumption since mobile devices spend more

time and energy on receiving irrelevant data. Hence, we compare against the time slicing

scheme where each mobile device only receives the video data of its TV channel. This is

referred to as the current time slicing scheme in this chapter, because it is currently used in

deployed networks.

Vadakital et al. [75] consider the problem of interleaving C versions of a video stream to

minimize the time slicing delay for C classes of mobile devices, where class-c mobile devices

can decode any stream version i (i ≤ c). They show that arranging the bursts of these

versions maximally apart from each other minimizes the time slicing delay. Unlike their

work, which does not bound the time slicing delay, we propose a systematic way to meet

the (controllable) delay requirement. More importantly, their work fixes the inter-burst

durations of different stream versions, hence allocates too many bursts for versions at low

bit rates, which results in poor energy savings. In contrast, our allocation schemes are

provably optimal in terms of energy saving. We do not compare our schemes against their

work in this chapter.

5.3 Problem Statement and Solution Approach

In this section, we formally state Problem 3 addressed in this chapter, and we analyze

the performance of the solution currently used in many deployed mobile video broadcast

networks. We list all symbols used in the chapter in Table 5.1 for quick reference. We also

present an overview of our proposed solutions and discuss the advantages and disadvantages

of each of them.
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Figure 5.1: Time slicing schemes in mobile video broadcast networks. Bursts of three TV
channels are shown with different colors. (a) Current scheme, and (b)–(d) proposed schemes,
which use simulcast with and without scalable video coding. For scalable video streams,
hatched areas represent the enhancement layers.



CHAPTER 5. CONTROLLING CHANNEL SWITCHING DELAY 136

5.3.1 Problem Statement

We consider a mobile video broadcast network in which a base station concurrently broad-

casts several TV channels to a large number of mobile devices over a shared air medium

with bandwidth R kbps. Each TV channel carries a video stream and is allocated a bit

rate r kbps. r is much smaller than R. The base station broadcasts each TV channel in

a series of bursts at bit rate R kbps, which is referred to as a burst train. The burst size

is denoted by b kb. A mobile receiver receives a burst of data and turns off its receiving

circuit until the next burst of the same burst train. This is called time slicing. While time

slicing saves the energy of the mobile devices, it may increase the channel switching delay.

Figure 5.1(a) illustrates a simple example in which a base station broadcasts bursts of three

TV channels (shown with different colors in the figure). Mobile devices tuned-in for TV

channel 1 (dark bursts) turn their receiving circuits off during the transmission of the other

bursts. If a user watching TV channel 1 decides to switch to channel 3, the user will have

to wait until the next burst of channel 3 is broadcast by the base station. This is referred

to as the time slicing delay. As mentioned in Section 1.2.3, in addition to the time slicing

delay, the user will have to wait for other delays before viewing channel 3, such as the delay

until the first intra-coded video frame arrives (known as frame refresh delay) and the time

to decode and render the stream. These delays combined are referred to as the channel

switching delay, which is denoted by d. Since the time slicing delay is the major component

of the channel switching delay, we focus in this chapter on designing efficient time slicing

schemes to control the time slicing delay. We assume that other delays are fixed, and we do

not consider them anymore.

We notice that the relative start time of each burst is recorded in the header of its

predecessor burst such that the receivers know when they need to wake up to receive data

[8, 10, 11]. As the start time is sent in relative form, its accuracy is not affected by any

constant delays between the base station and its receivers. However, the start time is

sensitive to the clock jitter caused by the inaccuracy of the timers of mobile devices. To

cope with this, mobile devices have to wake up their receiving circuits slightly earlier to

absorb the clock inaccuracy, which is referred to as delay jitter, and it is in the order of 10

msec [16]. Furthermore, waking up the receiving circuits is not instantaneous, because it

takes some time to lock to the frequency and synchronize to the symbols before data can

be demodulated. This is called resynchronization time. We define the overhead duration as
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the amount of time the receiving circuits of mobile TV devices must be turned on before

the burst time for successful demodulation, which is the sum of the delay jitter and the

resynchronization time. We denote the overhead duration by To. To is in the range of

50—250 msec [9,10,16], and in Section 2.6, we empirically show that a recent Nokia cellular

phone has To in the range of 80–140 msec. Therefore, we use To = 100 msec in our analysis

below, if not otherwise specified.

The energy saved by a mobile device because of the time slicing scheme is denoted by

γ, and it is calculated as the ratio of time the receiving circuit is in off mode to the total

time [16, 19]. Since TV channels have the same bit rate r, their bursts have the same size

and are periodically broadcast by the base station. Thus, the energy saving γ achieved by

any mobile device is the same regardless of the specific TV channel being received by that

device.

With the above definitions and notations, we can state Problem 3 as designing optimal

time slicing schemes for a broadcast network with bandwidth R kbps, such that the channel

switching delay from any channel to any other channel is at most dm sec, where dm is given

as the maximum allowed channel switching delay. Solving this problem is important for

the success of mobile TV services, and it has direct impacts on the profitability of service

providers. This is because high switching delays may drive subscribers away from mobile

TV services. In addition, this problem maximizes the energy saving for mobile devices, thus

stretches the possible viewing time for mobile users and allows them to consume more TV

content. Therefore, optimally solving the problem is beneficial for both operators and users

of mobile TV services.

5.3.2 Limitations of the Current Time Slicing Scheme

Current mobile video broadcast networks implement simple time slicing schemes. For exam-

ple, the scheme proposed in the DVB-H standard documents [16, pp. 66] provides schedules

for one TV channel: it allocates a new burst only after the data of its preceding burst is

consumed by the player at the receiver. This means that bursts of all TV channels will

be of the same size b, because the TV channels are encoded at the same bit rate r. While

the current time slicing scheme simplifies the design of the base station, it may lead to

long switching delays and/or waste the energy of mobile devices. We analyze the channel

switching delay d and energy saving γ of this scheme in the following. Since mobile video

broadcast networks allocate periodical bursts to keep receivers in a steady state without
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Figure 5.2: The trade-off between energy saving and switching delay with different: (a)
video bit rates, and (b) overhead values.

buffer over/underflow, the inter-burst period between two adjacent bursts of the same TV

channel should be computed so that the number of received bits is equal to the number of

consumed bits during that period. Given that each burst has a size b and the TV channel

bit rate is r, the inter-burst period should be b/r to avoid buffer over/underflow. Thus, the

worst case channel switching delay is d = b/r.

For the energy saving, consider a burst period b/r between two adjacent bursts. Since

we need to transmit b kb over a shared medium with R kbps bandwidth, the burst duration

is b/R sec. We also need to take into consideration the overhead duration To, during which

the receiving circuits of the receivers have to be open to search for and lock on the radio

signal. Thus, we have:

γ = 1 −
b/R + To

b/r
= 1 −

r

R
−

Tor

b
, (5.1)

where b/R + To is the on-time of the receiving circuit and b/r is the total time. Eq. (5.1)

reveals an important trade-off between the channel switching delay and the energy saving

as both d and γ increase when b increases. To illustrate this trade-off, we vary the burst size

b between 10 kb and 2000 kb and compute the energy saving γ and the channel switching

delay d. We set R = 10 Mbps and To = 100 msec. Figure 5.2(a) plots γ and d versus b

for three sample TV channel bit rates: 150, 300, 450 kbps. Notice that the figure has two

y-axes. This figure shows that the channel switching delay can be as high as 13 seconds for

TV channels at low bit rates.

The current time slicing scheme can ensure a given maximum switching delay dm by
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scaling down the burst size, i.e., by setting b = rdm. To examine the implication of scaling b

down, we plot the trade-off again with different overhead To values in Figure 5.2(b), where

r is fixed at 250 kbps. This figure shows that there is a dramatic decrease in energy saving

when a small switching delay is desired for all practical To values. For example, for To = 100

msec, reducing the channel switching delay from 1.5 to 0.25 seconds results in reducing the

energy saving from 90% to 55%. This shows that reducing the switching delay by reducing

the amount of data transmitted in each burst is not efficient in terms of energy saving, and

a better solution for Problem 3 is needed.

5.3.3 Overview of the Proposed Solutions

To achieve both low switching delays and high energy savings, we propose to simulcast

each TV channel over two burst trains. Simulcast refers to a strategy that simultaneously

broadcasts two versions of the same TV channel, but at different bit rates. We design new

time slicing schemes such that one burst train is optimized for energy savings (referred to

as the primary train), and the other burst train is optimized for switching delays (referred

to as the bootstrap train). A mobile device that just switches to a new TV channel tunes to

the bootstrap train first, which enables the device to start the playout of video very quickly.

The device tunes to the primary train upon the next primary burst of its TV channel is

transmitted. Switching over to the primary train enables the device to save more energy.

Devices that are receiving the bootstrap trains are referred to as in the bootstrap stage, and

devices that are receiving the primary trains are considered in the steady stage.

We further propose and analyze two methods for simulcast: (i) simulcast with traditional

nonscalable video coding (referred to as SIMU), and (ii) simulcast with scalable video coding

(referred to as SIMU-S). In its simplest form, SIMU broadcasts the same video stream

twice with different burst sizes over the bootstrap and primary burst trains. This, however,

reduces the effective utilization of the air medium as fewer TV channels can be broadcast. To

mitigate this problem, a reduced-quality video stream can be transmitted over the bootstrap

burst train, while the full-quality stream is transmitted over the primary burst train. Since

mobile TV receivers only playout bursts from bootstrap trains for a short time period (order

of seconds), showing a lower quality video in the bootstrap stage is not very noticeable. In

Section 5.5.2, we experimentally show through encoding multiple video sequences using an

H.264/SVC coder at reduced bit rates that the quality is reasonable. Furthermore, users who

quickly flip through TV channels barely realize that the video quality is reduced, because
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Figure 5.3: Burst allocation for the SIMU and SIMU-S schemes.

it takes human eyes some time to detect the visual details in a new scene/channel. In fact,

a recent work [108] shows that users prefer a shorter reduced-quality startup phase than a

longer one, which indicates that reduced-quality video streams are not annoying to users.

Finally, the video quality in the bootstrap stage is a configurable parameter, and can be

determined by service providers. Figure 5.1(b) illustrates the SIMU scheme. The SIMU

scheme, while effective in delay reduction and energy saving, has two drawbacks. First, for

each video, two separate streams need to be compressed and stored, which imposes higher

costs on computational power and storage space. Second, switching from the bootstrap

stream to the primary stream introduces complexities such as stream synchronization and

reference frame management.

To address these drawbacks, SIMU-S employs scalable video coding, where a video

stream is encoded into a base layer and one or more enhancement layers. SIMU-S transmits

the reduced-quality stream (base layer) over the bootstrap burst train, and the full-quality

stream (both base and enhancement layers) over the primary burst train. SIMU-S requires

lower computational power and smaller storage space, simplifies video stream switching

procedure, and allows gradual quality transition from reduced- to full-quality videos. Fig-

ure 5.1(c) illustrates the SIMU-S scheme. While SIMU-S addresses the storage and multiple

compression problems, it still incurs replication over the air medium. As shown in Fig-

ure 5.1(c), the base layers are broadcast over both the primary and bootstrap trains. This

replication may not be desirable in broadcast networks with limited bandwidth. To handle

this case, we propose to broadcast the base layer only over the bootstrap burst train and
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the enhancement layer over the primary burst train. We call this scheme SIMU-S+, and it

is shown in Figure 5.1(d).

As we will show in the next section, all three proposed schemes (SIMU, SIMU-S, and

SIMU-S+) can provide a guarantee on channel switching delay, i.e., they solve Problem 3.

However, they have different advantages and are suitable in different environments. SIMU

is useful in legacy environments where scalable video decoders are not widely available to

mobile devices. SIMU-S is more suitable for mobile video broadcast networks with some idle

bandwidth, while SIMU-S+ is for bandwidth saturated mobile video broadcast networks.

We note that SIMU and SIMU-S result in much better energy savings than SIMU-S+, but

lower bandwidth utilization.

5.4 Details of the Proposed Solutions for Bounding Switching

Delays

In this section, we present the detailed design of the proposed time slicing schemes. We also

derive closed-form equations for the achieved energy saving.

5.4.1 Time Slicing with Simulcast

As shown in Figure 5.1(b), SIMU transmits two versions of each video stream: one over the

primary burst train with bit rate r, and another over the bootstrap burst train with bit

rate rl, where rl ≤ r. We propose an optimal (in terms of energy consumption) time slicing

scheme that specifies the transmission time and the size of each burst in the primary and

bootstrap trains. This time slicing scheme is illustrated in Figure 5.3. The basic idea is

to divide the time into recurring windows of size Sdm each, where S is the number of TV

channels and dm is the maximum allowed switching delay. Within this window, only one

(large) primary burst of each TV channel is transmitted. This burst has just enough video

data to be played back until the next primary burst of the same TV channel. The primary

bursts of TV channel s(s = 1, 2, . . . , S) are allocated as follows:

< (s − 1)dm, Sdmr >, (5.2)

where the first element is the burst start time in seconds and the second element is the

burst size in kb. Allocating the primary bursts according to Eq. (5.2) minimizes the energy
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consumption in the steady stages (as shown below in Theorem 10), but it does not ensure

that the switching delay is bounded by dm. To do so, the inter-burst period between two

bursts of the same TV channel in the bootstrap train must be at most dm. Thus in a window

of size Sdm, we need S bootstrap bursts for each TV channel, which are equally spaced with

distance dm. The bootstrap bursts of TV channel s(s = 1, 2, . . . , S) are allocated as follows:

< (k − 1)dm +
r

r + rl
dm + (s − 1)

rl

r + rl

dm

S
, dmrl >, k = 1, 2, . . . , S, (5.3)

where the first element is again the burst start time, and the second is its size. The following

theorem shows that the above allocation for primary and bootstrap bursts is valid and

optimal.

Theorem 10. For simulcasting with nonscalable coding in mobile video broadcast networks,

allocating the primary and bootstrap bursts according to Eqs. (5.2) and (5.3), respectively

yields a valid time slicing scheme (i.e., with no buffer over/underflow for any TV channel),

meets the switching delay constraint dm, and maximizes the energy saving for mobile devices.

Moreover, the energy saving is given by

γb = 1 −
rl

R
−

To

dm
, (5.4)

and

γp = 1 −
r

R
−

To

Sdm
, (5.5)

where γb and γp are energy savings for devices in bootstrap and primary (steady) stages,

respectively.

Proof. Consider a mobile device receiving an arbitrary TV channel out of the S channels.

If the mobile device is in the primary stage, it gets Sdmr kb video data in every recurring

time window of length Sdm sec. This is equivalent to streaming at rate (Sdmr)/(Sdm) kbps,

which is equal to the full-quality video at bit rate r. If the mobile device is in the bootstrap

stage, it gets dmrl kb video data at interval of dm as there are S bursts assigned to each TV

channel in each recurring window of length Sdm sec. This is equivalent to streaming at rate

dmrl/dm, which is equal to the reduced-quality video at bit rate rl. Since the received bit

rates are equal to the consumed bit rates, our allocation leads to no buffer over/underflow

and is a valid time slicing scheme.

Next, consider any two adjacent bootstrap bursts (k and k + 1) for a TV channel s.

According to Eq. (5.3), the difference in the start time between them is dm, as (k − 1)dm is
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the only term that depends on k. Therefore, for a channel switching event occurring at an

arbitrary time, there is a bootstrap burst within at most dm sec. This shows that our time

slicing scheme meets the switching delay constraint.

To show that our burst allocation scheme in SIMU minimizes energy consumption, we

first show that any scheme that does not use simulcasting (i.e., broadcasts a single version

of each video at bit rate r) will result in higher energy consumption than ours. To guarantee

a maximum switching delay of dm, any such allocation scheme must place two successive

bursts of the same video no further apart than dm sec. Therefore, it can achieve energy

saving no better than 1 − r
R − To

dm
, which is always worse than the energy saving of our

scheme γp = 1 − r
R − To

Sdm
(γp is derived later in this proof). In addition, simulcasting

schemes with more than two versions of the video will always consume more energy than

our scheme (which has only two versions). This is because more versions of each video

results in smaller (thus more) bursts and incurs more overhead duration periods To.

Now we show that our allocation scheme minimizes energy consumption by contradiction.

Since we consider a steady system where the receiving number of bits equals the consumed

number of bits, any valid time slicing scheme with the same recurring window size consumes

the same amount of energy on receiving video data. Therefore, what differentiates the energy

consumption of one time slicing scheme from another is the number of overhead duration To

periods incurred in receiving the data. This enables us to reduce our problem of minimizing

energy consumption to minimizing the number of bursts and hence minimizing the number of

overhead periods incurred. Assuming there exists a valid time slicing scheme with recurring

window w1 > Sdm and the same number of primary bursts as our scheme, i.e., the new

scheme results in better energy consumption. To meet the delay constraint, the new scheme

must allocate bootstraps burst for every TV channel at time intervals dm. Moreover, to keep

the number of primary bursts the same as our scheme, the new scheme can only assign one

burst for each TV channel. Since the burst bit rate is R, it takes the new scheme rw1

R + rlw1

R

sec to complete one primary burst and S bootstrap bursts. Since S = R
r+rl

, manipulating

the above equation leads to:

rw1

R
+

rlw1

R
= (r + rl)

w1

R
>

(r + rl)Sdm

R
> dm.

This contradicts the assumption that the new scheme is a valid allocation. Next, assuming

there is a valid time slicing scheme with recurring window w2 < Sdm that produces higher

energy savings than our scheme. Both this new scheme and our scheme consist of S primary
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bursts, while the new scheme has to allocate w2/dm bootstrap bursts for each TV channel to

meet the switching delay constraint. Consider each burst imposes a fixed overhead duration,

the new scheme always results in worse energy savings than our scheme in the steady stage

because the overhead STo is averaged over a shorter time period w2 < Sdm. Meanwhile,

the energy saving in bootstrap state is the same in both schemes. This completes our proof

of optimality (in terms of energy saving).

Last, we derive the energy saving in both steady and bootstrap stages. Consider a

recurring window of Sdm. In the bootstrap stage, S bursts is assigned to each TV channel

where the aggregate burst length is dmrlS/R. Following the definition of energy saving, we

have γb = 1− dmrlS/R+STo

Sdm
. In the steady stage, a burst with length Sdmr/R is assigned to

each TV channel. Thus, we have γs = 1 − Sdmr/R+To

Sdm
.

The above theorem gives the energy savings for mobile devices in bootstrap and primary

stages, and reveals that mobile devices in primary stage achieve higher energy savings than

those in bootstrap stage. Therefore, the energy saving achieved by a user is determined by

the average time period that user would continuously watch a TV channel, which is referred

to as average watch time w in this chapter. The w value captures the channel switching

behavior of a user and allows us to derive the average energy saving γ for that user. For

a user with w ≥ Sdm, the average energy saving can be computed by taking the weighted

sum of energy savings in bootstrap and primary stages, where the bootstrap stage lasts for

Sdm/2 sec on average. Hence, we write the energy saving for a user with watch time w as:

γ =
Sdm/2

w

(

1 −
rl

R
−

To

dm

)

+
w − Sdm/2

w

(

1 −
r

R
−

To

Sdm

)

=
Sdm

2w

[

r − rl

R
−

(S − 1)To

Sdm

]

+

(

1 −
r

R
−

To

Sdm

)

. (5.6)

This equation shows that the energy saving γ approaches γp when the watch time w is

large. This is because mobile devices receive primary bursts most of the time. Moreover,

we observe that γ = γb when w < Sdm, as mobile devices do not get chance to switch to

primary burst trains at all.

5.4.2 Time Slicing with Simulcast and Scalable Coding

We next present our SIMU-S scheme, which adopts scalable video coding to save computa-

tional complexity and storage space and to reduce stream switching complexity. As shown
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Figure 5.4: Burst allocation for the SIMU-S+ scheme.

in Figure 5.1(c), SIMU-S encodes each TV channel in two layers: base and enhancement

layers. We provide a simple mapping between SIMU-S and SIMU, which will enable us to

use the time slicing scheme presented in the previous subsection for SIMU-S. This mapping

can easily be done by encoding each TV channel at base layer bit rate rb = rl kbps and

enhancement layer bit rate re = r−rb kbps. SIMU-S then streams the base layer over boot-

strap bursts and the complete stream (both base and enhancement layers) over primary

bursts using this mapping. Theorem 10 is also applicable to SIMU-S.

Next, we develop our SIMU-S+ scheme. Since bandwidth saturated networks cannot

afford the replication of video data over the shared air medium, we cannot transmit base layer

twice as we did in SIMU-S scheme. Therefore, as shown in Figure 5.1(d), we transmit the

base layer only over bootstrap bursts and the enhancement layer over primary bursts. Mobile

devices that just switch to a new TV channel can start playing the base layer for reduced-

quality videos and add enhancement layer streams for full-quality videos whenever bursts on

primary trains are available. We now design a time slicing scheme for SIMU-S+. The main

difference between SIMU-S+ and SIMU-S is that mobile devices have to receive bootstrap

bursts even in the steady stage. That is, more antenna on/off operations are required in

each recurring window, which leads to higher energy consumption as each antenna on/off

operation imposes an overhead duration To. To minimize this negative impact, we propose

to shift every subsequent bootstrap burst by one as indicated in Figure 5.4. The shifting

operation enables us to concatenate three bursts that belong to the same TV channel, say

channel 2 as illustrated in Figure 5.4, together so that mobile devices can receive three
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bursts without turning off their antennas.

However, due to the shifting operations, the last burst in each bootstrap burst cluster

should be smaller than other bootstrap bursts. This is because the last burst has a shorter

inter-burst time as it will become the first burst in the following bootstrap burst cluster,

while all other bursts must be shifted to the right for one time slot. Let x be this bootstrap

time slot width. Let d′m be the time length of a primary burst and a cluster of bootstrap

bursts. To guarantee that the channel switching delay does not exceed dm sec, we set

d′m +x = dm, which keeps any two adjacent bootstrap bursts of the same TV channel apart

no longer than dm sec. Since the bit rates of the primary and the bootstrap burst trains are

given and the air medium bandwidth is a constant, we allocate r−rl

r d′m time slots to each

primary burst for any channel s, and rl

r d′m for every bootstrap burst cluster. The latter one

is then split into rl

rS

[

d′m − (S − 1)x
]

for the last bootstrap burst and rl

rS (d′m + x) for others.

Following the definition of x we have:

rl

rS
(d′m + x) = x =⇒ x =

rl

rS
dm and dm =

rS

rS − rl
d′m.

The above equation gives us the bootstrap slot size x. We then allocate the primary

bursts of TV channel s(s = 1, 2, . . . , S) as follows:

< (s − 1)d′m, (r − rl)Sd′m >, (5.7)

where the first element is the burst start time in seconds, the second element is the burst

size in kb, and d′m = rS−rl

rS dm. The bootstrap bursts of TV channel s (s = 1, 2, . . . , S) are

allocated as follows:

< kd′m −
rld

′
m

r
+

(i − 1)rldm

rS
,

r − rl

r
dmrl >, (1 ≤ k ≤ S and i = S),

< kd′m −
rld

′
m

r
+

(i − 1)rldm

rS
, dmrl >, (1 ≤ k ≤ S and i 6= S), (5.8)

where the first element is the burst start time, the second is its size, and i =
[

(S + k − s)

mod S
]

+ 1. Note that, i represents the position of each bootstrap burst within a burst

cluster and accommodates the shifting operations. The following theorem shows that the

above allocation for primary and bootstrap bursts is valid and optimal.

Theorem 11. For simulcasting with scalable coding in mobile video broadcast networks,

allocating the primary and bootstrap bursts according to Eqs. (5.7) and (5.8), respectively
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yields a valid time slicing scheme (i.e., with no buffer over/underflow for any TV channel),

meets the switching delay constraint, and minimizes the energy consumption. Moreover, the

energy saving is given by γ = 1 − r
R − (S−1)To

Sd′m
, where d′m = rS−rl

rS dm.

Proof. We first show the allocation is valid. For any mobile device within a recurring

window Sdm, it receives one primary burst with size (r − rl)Sd′m and S bootstrap bursts

with aggregate size r−rl

r dmrl + dmrl(S − 1). Rearranging the aggregate size of bootstrap

bursts leads to:

r − rl

r
dmrl + dmrl(S − 1) =dmrl −

rl

r
dmrl + Sdmrl − dmrl

=
rS − rl

rS
dmSrl = d′mSrl. (5.9)

Hence, the number of received bits between adjacent bootstrap bursts is equal to the number

of consumed bits before the first primary burst arrives (at reduced-quality with bit rate rl),

and the same balance holds when receiving the primary bursts (at full-quality with bit rate

r). Therefore, our allocation is valid.

Second, according to Eq. (5.8), the distance between two consecutive bootstrap bursts

is d′m + rldm

rS = d′m + x = dm. Hence, our scheme meets the switching delay constraint.

Third, the optimality of the SIMU-S+ scheme can be shown by contradiction using the

same idea of the proof in Theorem 10. The details are not given for brevity.

Last, we derive the energy saving achieved by this scheme, in which mobile devices receive

both primary and bootstrap bursts all the time. Notice that as we concatenate three bursts

together as mentioned above, the total number of bursts in steady stage is S−1. In addition,

the aggregate receiving time is Srd′m/R. The γ is then given as γ = 1− Srd′m/R+(S−1)To

Sd′m
.

5.5 Evaluation on a Mobile TV Testbed

In this section, we evaluate our proposed time slicing schemes in a mobile TV testbed.

For homogeneous mobile devices, we focus on the SIMU-S scheme because it combines the

advantages of the SIMU scheme with the low storage and simple stream management of

scalable coding. We also have shown in Section 5.4 that both SIMU and SIMU-S achieve

the same energy saving, which is higher than that of SIMU-S+.
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5.5.1 Testbed Setup and Metrics

We use the real mobile TV testbed described in Section 3.6 to evaluate the proposed time

slicing schemes. We have implemented the SIMU-S time slicing scheme in the broadcast

base station. We have also implemented the current time slicing scheme for comparison. To

conduct our experiments, we configure the testbed as follows. We use a 5 MHz DVB-H chan-

nel with QPSK modulation, which leads to 5.445 Mbps air medium bandwidth according

to the DVB-H standard [16]. To evaluate the SIMU-S scheme, we configure the streaming

sever to send packets of size 1.5 KB at bit rate r = 300 kbps, and we set the reduced-quality

bit rate rl = 100 kbps. Therefore, our broadcast network can concurrently broadcast up to

13 TV channels. We set the target maximum channel switching delay to be 500 msec. For

each considered time slicing scheme, we broadcast 8 TV channels for 10 minutes. Our Linux

server running the base station code could not handle (encapsulate, FEC-encode, etc.) more

than 8 TV channels in real time. This is why we broadcast only 8 channels.

To conduct statistically meaningful performance analysis, we collect detailed event logs

from the base station. The logs contain the start time (in msec) of broadcasting every burst

of data and its size. Using these logs, we develop a software utility to emulate the behavior

of a large number (1 million) of mobile devices. We generate random channel switching

events using Bernoulli trials. For every mobile receiver, we toss a biased coin every second

and issue a channel switching command if the trial is success. The new selected channel

is randomly chosen from all broadcast channels other than the currently watched one. We

set the probability of success in a way that we have on average w = 100 sec watch time

for each channel. We chose a small w for conservative evaluation, because our proposed

schemes consume more energy in the bootstrap stage. In typical cases, the watching time

should be longer than 100 sec, and the results will be better than those presented in this

section. Figure 5.5 depicts the distribution of the channel switching events with w = 100 sec,

which shows mobile devices on average change their channels 6 times within the 10-minute

broadcast.

We then consider the proposed SIMU-S scheme under extreme conditions by varying the

watch time w from 10 to 160 sec. We repeat the above experiment for each w value. We let

the watch time w = 100 sec. For each time slicing scheme, we broadcast 8 TV channels for

30 minutes and we store the details on individual bursts in log files.

We run the emulator against each log file produced by the actual DVB-H broadcast
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Figure 5.6: Bursts allocated by SIMU-S and
the current allocation schemes for a TV chan-
nel.

base station and we measure channel switching delays and energy savings. We measure the

channel switching delay by searching for the next burst of the new selected TV channel and

computing the time difference. We measure the energy saving by computing the fraction

of time that the antenna is on. We set the overhead duration To = 100 msec. When using

the proposed schemes, we divide each watching period into a bootstrap stage and a steady

stage. We measure the energy savings in both stages, and report the weighted average of

them as mobile devices first receive bootstrap bursts and switch to primary bursts whenever

the latter ones become available.

5.5.2 Results

Correctness. We first validate the correctness of our testbed implementation. Figure 5.6

plots a sample result of allocated bursts for a TV channel during a minute of broadcast.

Burst allocations for longer time periods and for other TV channels are similar. This figure

shows that to meet a channel switching delay of 500 msec, the current scheme allocates

many short bursts, thus results in low energy savings. While the SIMU-S scheme also em-

ploys short bootstrap bursts, it allocates primary bursts with a longer inter-burst distance.

By switching from bootstrap to primary bursts, the SIMU-S scheme achieves both short

switching delays and high energy savings.
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Validation of our analytical analysis. We validate the analytical energy saving

formulas using the collected empirical data as follows. We consider several TV channel bit

rates: from 250 to 500 kbps. For each TV channel bit rate r, we select a reduced-quality bit

rate rl = 0.2r kbps. We then broadcast for 15 minutes at various r using both current and

SIMU-S schemes. We measure the energy saving from the collected logs for the SIMU-S and

the current time slicing schemes. We also compute the theoretical energy saving from the

corresponding equations in Section 5.3 and Section 5.4. We plot the theoretical (denoted by

Th.) and the empirical results in Figure 5.7. This figure clearly shows that our analytical

formulas closely follow the empirical data collected from the real DVB-H testbed.

Switching delay guarantee. In Section 5.3, we prove that our time slicing schemes

provide a guarantee on channel switching delay. Here, we show that our testbed implemen-

tation does achieve the guaranteed delays. Figure 5.8 shows the distribution of the channel

switching delay observed by the mobile devices switching among randomly chosen channels.

This figure shows that the switching delays for all mobile devices are below the target delay

of 500 msec.

Energy Saving. Figure 5.9 reports the average energy saving achieved by the current and

SIMU-S schemes. This figure shows that while the current scheme results in 74% energy

saving, our proposed SIMU-S scheme yields up to 93% energy saving while providing a

guarantee on switching delay. Note that, as the current scheme allocates bursts at uniform
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distance, the average energy saving does not depend on the time of channel switching events.

Hence, most mobile devices achieve about 74% energy saving. In contrast, in the SIMU-

S scheme, mobile devices achieve slightly diverse energy saving. This is because of the

existence of the bootstrap and primary burst trains. Recall that mobile devices first tune

for the bootstrap bursts, then switch to the primary bursts once they become available.

Figure 5.10 plots the average period of time a mobile device waits in the bootstrap stage

until it receives the first primary burst. We observe some diversity in this waiting period,

which explains the minor differences in the achieved energy saving for SIMU-S in Figure 5.9.

This figure illustrates that it takes mobile devices on average only 3.8 sec to switch to high-

quality videos in this test scenario. The short period in the bootstrap stage is desirable,

because it means that users will obtain full-quality video sooner, and they may not observe

the reduced-quality during the short transition period.

Implication of watch time. We report the energy savings achieved by the SIMU-S

scheme under different watch time w. We repeat the experiment several times with various

w values: 10, 20, 40, 80, and 160 sec, and we measure the average energy saving achieved

by mobile devices. We plot the results in Figure 5.11. This figure shows that the proposed

scheme achieves on average 87% even under an extreme condition where users watch each

TV channel for only 10 sec. This is in contrast to 74% energy saving achieved by the current

scheme, as illustrated in Figure 5.9. As high as 95% energy saving is possible when users
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Figure 5.12: Energy saving achieved under
different number of TV channels.

continuously watch a TV channel for more than a couple of minutes, which is the common

scenario as TV commercials are apart for at least 10 minutes.

Scalability. Since SIMU-S burst allocation scheme realizes the time division multi-

plexing, each TV channel gets reversed time slots and do not interfere with each other. We

use our testbed implementation to validate this. We do this by concurrently broadcasting

several TV channels for 15 minutes. We vary the number of TV channels from 4 to 16. Fig-

ure 5.12 depicts that number of TV channels does not affect achieved energy saving as the

average energy saving remains at more than 94% in all considered number of TV channels.

Video quality. Finally, we study whether the reduced bit rates for bootstrap bursts can

provide reasonable video quality. We encode two video sequences, soccer and harbour, using

the H.264/SVC reference coder [97]. Both video sequences are in CIF format at 15 frames

per second (fps), which is very close to the popular QVGA resolution adopted by many

mobile TV devices in the market. We compress these two sequences at various bit rates. To

visually inspect the resulting frame quality, we present sample reconstructed frames of each

sequence at two bit rates in Figs. 5.13 and 5.14. Notice that several impairments can be

observed in the reduced-quality frames, e.g., there are many blocking artifacts around the

right-most runner’s leg in frame 96 of the soccer sequence when it is encoded at 100 kbps.

Nevertheless, the reduced-quality frames provide users rough representations, and enable a

much higher energy saving as we have shown above.
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(a) 300 kbps, frame 40 (b) 300 kbps, frame 96 (c) 300 kbps, frame 136

(d) 100 kbps, frame 40 (e) 100 kbps, frame 96 (f) 100 kbps, frame 136

Figure 5.13: Sample reconstructed frames from Soccer sequence coded at two bit rates.
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(a) 300 kbps, frame 64 (b) 300 kbps, frame 105 (c) 300 kbps, frame 149

(d) 100 kbps, frame 64 (e) 100 kbps, frame 105 (f) 100 kbps, frame 149

Figure 5.14: Sample reconstructed frames from Harbour sequence coded at two bit rates.
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Figure 5.15: Modern video coding standards enable us to transmit reasonable quality videos
at bootstrap time.
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To better quantify the video quality, we compute the average peak signal-to-noise ratio

(PSNR) values of individual coded streams. We plot the rate-distortion (R-D) curves in

Figure 5.15. This figure shows that H.264/AVC achieves reasonable video quality even at a

low bit rate. For example, 30 dB video quality can be achieved at 300 kbps for the harbour

sequence, and at 100 kbps for the soccer sequence. We note that PSNR values above 30 dB

are considered fairly good quality [109, pp. 29]. In summary, this experiment shows that

video streams coded at a fairly low bit rate could result in acceptable video quality.

5.6 Conclusions

In this chapter, we considered the problem of controlling the channel switching delay in

mobile video broadcast networks that use time slicing to save energy. Our objective is to

provide a guarantee on the maximum switching delay from a channel to any other channel,

without sacrificing energy savings for mobile devices. We analyzed the time slicing scheme

used in the current mobile video broadcast networks and showed that it does not minimize

the energy consumption for mobile devices. We proposed new time slicing schemes: SIMU,

SIMU-S, and SIMU-S+, which are provably optimal in terms of energy saving. Our analysis

showed that there are three aspects in mobile video broadcast networks: energy saving,

channel switching delay, and bandwidth utilization. These three aspects cannot be optimized

at the same time. For example, the current time slicing scheme can achieve full bandwidth

utilization, but it trades energy saving for shorter switching delays. Our proposed SIMU

and SIMU-S schemes achieve optimal energy savings and small switching delays, but at the

expense of reduced bandwidth utilization. Our SIMU-S+ scheme achieves a slightly better

energy saving than the current scheme while fully utilizing the bandwidth and meeting a

required maximum channel switching delay.

Using our analysis, the appropriate time slicing scheme can be chosen for a given en-

vironment: most broadcast networks should adopt SIMU or SIMU-S scheme to achieve

the optimal energy saving on mobile devices, and bandwidth saturated broadcast networks

should employ SIMU-S+ scheme. We implemented the proposed time slicing schemes in a

mobile TV testbed. We conducted real-time broadcast experiments and emulated a large

number of mobile devices that are randomly switching among many TV channels. Our ex-

periments confirmed the correctness of our analysis and demonstrated that using our time

slicing schemes, an energy saving as high as 95% can be achieved while guaranteeing a
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channel switching delay of at most 500 msec. In contrast, the current time slicing scheme

can achieve 500 msec switching delay, but at a much lower energy saving of 73%.



Chapter 6

Supporting Heterogeneous

Receivers

In this chapter, we study the problem of supporting heterogeneous devices in mobile video

broadcast networks. We first show that existing base stations cannot efficiently support

mobile devices with heterogeneous resources. We then propose two time slicing schemes to

broadcast scalable video streams. We implement and evaluate our solutions in a real mobile

TV testbed.

6.1 Introduction

Efficiently supporting heterogeneous devices, as described in Problem 4, is important be-

cause modern mobile devices have diverse resources such as screen resolution, decoder capa-

bility, and battery capacity. Therefore, encoding each video into a single video stream may

be inefficient to some mobile devices, and may deny some mobile devices from the mobile

video broadcast service. Network operators can partially cope with the problem by broad-

casting each video in multiple versions. This, however, results in bandwidth inefficiency.

This inefficiency becomes even more severe if we categorize mobile devices into groups by

not only device models but also by working conditions of the same device. For example,

mobile devices with low battery levels or in poor wireless channel conditions may prefer to

receive at a lower bit rate to save energy and/or reduce bit error rate.

157
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Instead of multi-version broadcasting, we propose to use scalable video streams to sup-

port heterogeneous mobile devices. Scalable video coding is described in Section 2.2.2. We

use scalable video coders to encode each video into a single stream with multiple layers, and

broadcast each layer only once. Each mobile device then chooses and renders the substream

that is most appropriate to its capability and condition. Scalable video broadcasting, how-

ever, is quite challenging for the base station broadcasting multiple video streams. This is

because the base station must prepare bursts for all concurrently broadcast video streams

to ensure that: (i) mobile devices can receive enough data for smooth playouts, and (ii) no

bursts intersect with each other in time. Furthermore, preparing bursts for scalable videos

is complicated because the dependency among layers must be carefully considered.

Our problem is to encapsulate and broadcast video streams encoded in a scalable manner,

so that heterogeneous mobile devices can render the most appropriate video substreams

to achieve high energy saving and low channel switching delay. The appropriate streams

depend on the device capability and the target energy consumption level. More precisely,

we first analyze the current mobile video broadcast networks and we show that they are

not efficient for scalable coded streams. This is done by first showing that limitations of

the current systems, and then analytically show that these broadcast schemes lead to lower

energy saving compared to our proposed schemes. We propose two new broadcast schemes

for scalable video streams with arbitrary layer bit rates, and we analytically analyze their

performance. The two proposed schemes are flexible in terms of bit rates of individual

layers, which allow the coded video streams to be better matched with the capability of

mobile devices. We analytically prove that these schemes achieve high energy saving and

result in low channel switching delays. We implement the broadcast schemes in a real mobile

TV testbed to show their practicality and efficiency. The experimental results confirm our

analytical analysis, and indicate that the proposed schemes allow mobile devices to trade

perceived quality for energy saving, as they can opt to receive a smaller substream to prolong

battery lifetime. Furthermore, very short channel switching delay, as low as a few hundred

milliseconds, can be achieved using one of the proposed schemes.

6.2 Related Work

The energy saving of mobile devices has been studied for mobile video broadcast networks,

where video streams are coded in nonscalable fashion. See Section 3.2 for a survey. In
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addition, reducing channel switching delay of mobile video broadcast networks has also

been explored in the literature. See Section 5.2 for a survey.

Scalable video coding has been adopted in mobile TV networks to support mobile devices

under diverse reception conditions [110]. For example, unequal error protection (UEP)

methods were proposed to improve video quality for mobile devices with bad radio receptions

[111,112]. Haddadi et al. [111] propose to transmit the base layer and the enhancement layers

with different modulation and coding schemes, so that the base layer is sent over a more

robust low bit rate channel while the enhancement layer is sent over a less robust high bit

rate channel. This is called hierarchical modulation and channel coding, and is supported

by many broadcast networks including DVB-T [113]. Hellge et al. [112] consider the layering

dependency in multi-layer video streams, and propose to use parity bits of higher layers to

protect lower layers, which need to be more resilient to errors as they are more critical to

successful decoding. None of these works considers burst transmission for saving energy,

thus they are orthogonal to our work.

Multicast of scalable video streams over the Internet has been studied in the literature

and many protocols and algorithms have been proposed to support multicast routing, re-

source reservation, robustness, and flow and congestion controls [114, 115]. None of these

proposals is applicable in mobile TV networks, because they are single-hop broadcast net-

works, rather than the multi-hop Internet. For example, in RLM (Receiver-driven Layered

Multicast) [116], different layers of a video stream are sent to different multicast groups, and

receivers periodically join the next higher layer’s group until experiencing excessive packet

loss. RLM is not useful in mobile TV networks because of their broadcast nature: more

receivers do not incur higher network loads, and packet loss ratio on a mobile device is

independent of how much data it receives. Hence, the previous works on multicast over the

Internet or wireless networks are not applicable in mobile TV networks.

6.3 Problem Statement

In this section, we first define the problem considered in this chapter. We then describe

the operation of current mobile video broadcast networks. We list all symbols used in the

chapter in Table 6.1 for quick reference.
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Table 6.1: List of symbols used in supporting heterogeneous devices.
Sym Definition Sym Definition

S no. channels γ energy saving
R burst bit rate γc γ of class c in steady stage
C no. layers γb γ in bootstrap stage
r channel bit rate b base layer burst size
rc bit rate of layer c d channel switching delay
To overhead duration dm maximum switching delay

6.3.1 Burst Transmission to Heterogeneous Mobile Devices

We consider a mobile video broadcast network in which a base station concurrently broad-

casts multiple TV channels over a shared air medium with bandwidth R kbps to mobile

devices with heterogeneous resources. The network bandwidth is divided among TV chan-

nels. Each TV channel carries a video stream and is assigned a bit rate of r kbps. To

support heterogeneous mobile devices, each video stream is encoded into C layers using

scalable video coders, where each layer c (1 ≤ c ≤ C) has a bit rate of rc kbps. The base

station broadcasts each video stream as a series of bursts, and a mobile device receives a

burst of data and turns off its receiving circuit until the next burst of the same video stream

to save energy. This is called time slicing.

Time slicing is critical to the quality of service in mobile video broadcast networks for

two reasons. First, time slicing enables mobile devices to save energy by turning off their

receiving circuits while not receiving bursts. Higher energy saving results in longer battery

lifetime and watch time. Second, time slicing has an impact on channel switching delay,

which refers to the time a user waits before s/he starts viewing a selected channel when a

change of channel is requested by that user [29,33]. High and varying channel switching delay

degrades view experience because many users quickly flip through numerous TV channels

before they decide to watch specific ones.

Next, we formally define the energy saving and the channel switching delay. The energy

saved by a mobile device because of time slicing is denoted by γ, and it is calculated as the

ratio of time the receiving circuit is in off mode to the total time [16,19]. When computing

the energy saving, we need to consider the wake-up time of the receiving circuits on mobile

devices to receive the next burst. This is because it takes receiving circuits some time to

power up and lock onto the radio signals before data can be demodulated [16]. This period

is called overhead duration and is denoted as To. To is not negligible, and can be as high
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as 250 msec [9, 10, 16]. Furthermore, in Section 2.6, we empirically show that a recent

Nokia cellular phone has To in the range of 80–140 msec. The channel switching delay d

consists of several components, in which the frame refresh delay and time slicing delay are

the two dominating contributors [29, 33]. As mentioned in Section 1.2.3, we only consider

time slicing delay, and assume all other components of the channel switching delay are fixed.

Furthermore, we define dm as the maximal (the worse case) channel switching delay.

Using the above notations, we can restate Problem 4 as follows. Consider a mobile

video broadcast network with air medium bandwidth R kbps shared among S TV channels,

where each TV channel has a bit rate of r kbps. Every TV channel is encoded into C layers,

and layer c (1 ≤ c ≤ C) has a bit rate of rc kbps, where
∑C

c=1 rc = r. Mobile devices are

classified into C classes so that devices in class c receive and decode all layers c̄, where c̄ ≤ c.

The coded streams are encapsulated into bursts, and broadcast over the shared air medium.

Design a broadcast scheme such that mobile devices in any class c achieves high energy

saving and low channel switching delay from any channel to any other channel. A broadcast

scheme assigns IP packets to individual bursts, and specifies the start time of each burst.

Solving this problem at a base station allows users to watch more video streams (due to

longer battery lifetime), while keeping channel switching delay short. This will improve user

satisfactory and eventually increase the number of subscribers as well as profits of network

operators.

6.3.2 Burst Preparation in Mobile TV Networks

We present how mobile video broadcast base stations prepare transmission bursts in the fol-

lowing. We use DVB-H network as an example. In a DVB-H network, each mobile TV base

station consists of three main components: video server, IP encapsulator, and modulator,

as illustrated in Figure 2.1. The video server encapsulates video data, pre-encoded or live,

into RTP packets, and sends these packets over an IP network to the IP encapsulator. The

IP encapsulator receives these IP packets and puts them in MPE (multiprotocol encapsu-

lation) frames. MPE frames are used by IP encapsulator for preparing transmission bursts

of a specific TV channel, and each MPE frame is sent as one burst. The MPE frame can

optionally be protected by Reed-Solomon (R-S) codes. This is achieved by extending the

MPE frame into the MPE-FEC frame, which consists of FEC parity bytes. Since mobile

devices are vulnerable to bad radio channel conditions, MPE-FEC frames are important

as they provide better error resilience. We note that the name IP encapsulator is a bit
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Figure 6.1: The structure of MPE-FEC frame. IP packets are sequentially placed in the
Application Data Table.

misleading as it actually encapsulates IP packets into bursts, thus it should be better called

burst encapsulator. We, however, use the term IP encapsulator in this chapter, following

previous works in the standardization documents [16] and in the literature [19,72].

Figure 6.1 reveals the structure of an MPE-FEC frame, which is divided into two parts:

an application data table (ADT) that carries IP packets and an R-S data table (RDT) that

carries the parity bytes. To compute the parity bytes, received IP packets are sequentially

placed in the ADT column-by-column, from left to right. Zeros are padded in the remaining

space of the ADT if there are not enough data to fill the ADT. Once the ADT is full (by

data and/or zeros), the parity bytes are computed row-by-row, and stored in the RDT. After

the parity bytes are computed, the whole MPE-FEC frame is sent, column-by-column, as a

burst. Note that, the padded zeros are for computing parity bytes only; they are not trans-

mitted over the wireless medium [9]. We study the problem of designing broadcast schemes

to optimize the quality of service, therefore the proposed schemes will be implemented in

the IP encapsulator.

Despite different terminology, MediaFLO base stations also have to prepare transmission

bursts in a time-slicing manner [117]. More specifically, MediaFLO base stations transmit

signals in a superframe structure, where each superframe consists of four frames and each

frame has 250 OFDM symbols. A TV channel is assigned several OFDM symbols in every

frame, and this assignment defines a period of time that mobile devices must turn on their

receiving circuits to receive data. Therefore, MediaFLO base stations prepare transmission

bursts in the form of assigning OFDM symbols to individual TV channels, and most of our



CHAPTER 6. SUPPORTING HETEROGENEOUS RECEIVERS 163

TV Channel 2

Parity

(RDT)

Parity

(RDT)

Parity

(RDT)

Parity

(RDT)

Parity

(RDT)

Parity

(RDT)

Parity

(RDT)

Parity

(RDT)

Parity

(RDT)

Parity

(RDT)

Parity

(RDT)

Parity

(RDT)

Time

Data

(ADT)

Layer 1

Data

(ADT)

Layer 2

Data

(ADT)

Layer 3

Data

(ADT)

Layer 1

Data

(ADT)

Layer 2

Data

(ADT)

Layer 3

Data

(ADT)

Layer 1

Data

(ADT)

Layer 2

Data

(ADT)

Layer 3

Data

(ADT)

Layer 1

Data

(ADT)

Layer 2

Data

(ADT)

Layer 3

S
en

d
in

g
 R

a
te

TV Channel 1 TV Channel 2 TV Channel 1

Figure 6.2: Parallel Services.

L
a
y
er

 2

P
ic

tu
re

 1

L
a
y
er

 1

P
ic

tu
re

 3

L
a
y
er

 2

P
ic

tu
re

 3

Column−by−Column
Parity Bytes Computed

P
a
d

d
in

g

P
a
d

d
in

g

Application Data Table
Table
Data

L
a
y
er

 1

R−S

P
ic

tu
re

 2

L
a
y
er

 1

P
ic

tu
re

 1

L
a
y
er

 2

P
ic

tu
re

 3

Figure 6.3: Layer-Aware
FEC frame.

works in this chapter are also applicable to MediaFLO networks.

6.4 Broadcasting Scalable Streams in Current Systems

Traditional, nonscalable, coded streams must be decoded in their entirety, and are not

efficient for mobile devices with heterogeneous resources. This is because all mobile devices

have to receive the complete video streams even though some of them do not have enough

resources to render the complete streams. In contrast, scalable video coders encode each

TV channel into a single video stream that can be sent and decoded at various bit rates.

This is achieved by extracting substreams from the complete (original) stream, where each

substream can be decoded and displayed at a lower perceived quality.

While scalable coded streams enable efficient substream extractions, broadcasting them

in mobile video broadcast networks is challenging because of the dependency among layers

of the same coded stream. In this section, we present three schemes to broadcast scalable

video streams in current systems, and we show their shortcomings.

6.4.1 Single Service: SS

To support heterogeneous mobile devices, network operators can upgrade the video server

(see Figure 2.1) to support scalable streams, and keep other components of the network

unchanged. That is, each scalable stream is transmitted as a TV channel, and we refer to

this scheme as single service (SS). With the SS scheme, existing broadcast networks can be
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used to broadcast scalable video streams. Unfortunately, this “patched” base station is not

efficient as we show in the following illustrative example.

We consider a small time window of three pictures1, where each picture is coded into

two layers. We assume that each layer is encapsulated into a single IP packet, and these

packets are sent by the video server and received by the IP encapsulator in the following

order: (picture 1, layer 1), (picture 1, layer 2), (picture 2, layer 1), (picture 2, layer 2),

(picture 3, layer 1), (picture 3, layer 2). Since the IP encapsulator sequentially places IP

packets in the receiving order within the ADT part of MPE-FEC frames, these packets are

stored into a frame as illustrated in Figure 6.1. This MPE-FEC frame is then sent over the

broadcast network as a burst. Consider a mobile device that can only render the base layer

(layer 1), this mobile device must receive and process the complete burst for two reasons.

First, IP packets belonging to the base layer (unshaded in the figure) are scattered all over

the MPE-FEC frame, and a deep inspection (at RTP or video-coding layer) is required to

locate them. Second, the parity bytes are computed over IP packets from various layers,

and are useless if some IP packets are not received. Receiving complete bursts degrades the

energy saving of that mobile device, because it has to open the receiving circuit for a longer

time period to receive some data that will be dropped eventually.

6.4.2 Parallel Services: PS

The example in Section 6.4.1 shows that single service leads to no additional energy saving

for mobile devices that cannot render the complete video streams. To cope with this issue,

we need to design a better IP encapsulator that takes the layering structure of scalable

streams into considerations when preparing transmission bursts. One way to achieve this

is to send each layer of a TV channel as a parallel service (PS), which can be implemented

using multiple IP streams with different multicast IP addresses, or using multiple parallel

elementary streams [16, Section 8.6]. Figure 6.2 shows an example of broadcasting two TV

channels with three layers, where each block inside bursts is a parallel service and carries IP

packets of a specific layer only. Compared to single service, parallel service scheme supports

efficient demultiplexing of IP packets to individual layers based on either IP addresses or

MPEG-2 PIDs (packet IDs). This allows mobile devices to extract substreams without

inspecting the complete stream, and thus reduces its processing overhead. Unfortunately,

1We interchangeably use frame and picture throughout this chapter.
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as all services are sent in parallel, mobile devices have to open their receiving circuits for

the complete burst duration. Therefore, all mobile devices achieve the same energy saving

despite how many layers they receive and decode. Observe that parallel service is inefficient

because mobile devices may receive and discard data (in irrelevant layers) that are useless

to them. This leads to longer on time of receiving circuits, and thus lower energy saving.

6.4.3 Layer-Aware FEC: LAF

To cope with the inefficiency of parallel service, the IP encapsulator may rearrange the IP

packets received from streaming services, so that packets belonging to layer c are sent before

packets belonging to layer c+1. This allows mobile devices that do not decode the complete

scalable streams to turn off their receiving circuits before each burst ends. If we reuse the

illustrative example given in Section 6.4.1, the IP packets should be sent in the following

order: (picture 1, layer 1), (picture 2, layer 1), (picture 3, layer 1), (picture 1, layer 2),

(picture 2, layer 2), (picture 3, layer 2), as illustrated in Figure 6.3. The layer number can

be prepended before the MPE header as an one-byte extension header, which allows mobile

devices to efficiently determine the boundaries between layers, e.g., between (picture 3, layer

1) and (picture 1, layer 2) in this example,

However, even after reordering IP packets, mobile devices still have to receive complete

bursts in order to perform error correction, which again prevents them from getting higher

energy saving. This is because the FEC parity bytes are sent after all the IP packets, at the

end of each burst. To address this issue, we can compute parity bytes column-by-column,

and send these bytes right after each column of data bytes. This allows mobile devices to

perform error corrections without receiving complete bursts. That is, mobile devices can

receive partial bursts and turn off the receiving circuits to save energy. We call this new

frame format as Layer-Aware FEC (LAF) frame, which is illustrated in Figure 6.3.

While LAF frame allows mobile devices to efficiently receive and extract substreams, it

has several drawbacks. First, LAF does not comply to mobile TV standards, which causes

compatibility issues between the base station and mobile devices. Second, implementing

LAF requires significant changes as error corrections are usually done in hardware/firmware

for the sake of performance. Third, computing parity bytes column-by-column makes the

FEC decoder vulnerable to bursty channel errors because it does not provide virtual time

interleaving as by MPE-FEC frames [9]. Most importantly, in Section 6.5, we prove in
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Figure 6.4: Proposed broadcast Scheme: GLATS.

Lemma 3 that the LAF scheme achieves lower energy saving compared to the scheme de-

veloped in that section.

6.4.4 Limitations of Current Systems

We have presented three schemes to broadcast scalable video streams in current systems:

single service (SS), parallel service (PS), and layer-aware FEC (LAF) frame. The SS and

PS schemes require all mobile devices, despite which classes they are in, to receive complete

scalable streams. Therefore, they result in no energy saving differentiation as all mobile

devices turn on their receiving circuits for the same amount of time. While the LAF scheme

enables energy saving differentiation, it is: (i) not standard compliant, (ii) hard to imple-

ment, (iii) vulnerable to bad channel conditions, and (iv) achieves lower energy saving than

our broadcast scheme proposed in Section 6.5. Hence, we conclude that current mobile TV

broadcast networks cannot efficiently support scalable video streams, and we need to design

better broadcast schemes to solve Problem 4.

6.5 Generalized Layer-Aware Time Slicing

We propose a new broadcast scheme which we call Generalized Layer-Aware Time Slicing

(GLATS). We analytically analyze the performance of the proposed scheme, and we conduct

numerical analysis on it using typical network parameters.
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Figure 6.5: An illustrative example of the proposed GLATS scheme.

6.5.1 Overview

The GLATS scheme works on a recurring window, and its key feature is that the IP encap-

sulator prepares a different burst (or MPE-FEC frame) in the recurring window for each

layer of every TV channel. More specifically, every burst in the GLATS scheme consists

of IP packets from the same layer of the same TV channel, which allows mobile devices to

safely skip bursts that contain IP packets for irrelevant layers and save more energy. To

illustrate, Figure 6.4 shows an example of the GLATS scheme, in which all IP packets in

the left-most burst belong to the base layer of TV channel 1, while IP packets in the third

burst belong to layer 2 of TV channel 1. With the GLATS scheme, mobile devices that are

rendering TV channel 1 at the base layer quality do not need to receive the third burst,

because it is of no use to them. More importantly, mobile devices know which layer the IP

packets are in, even before receiving a burst. Therefore, mobile devices need not open their

receiving circuits and inspect IP packets for substream extractions, and thus more energy

can be saved. In fact, no additional signaling from the base station to mobile devices is

required: to determine which bursts (layers) to receive, mobile devices only need to know

the total number of layers C, which is already sent to them for decoding the scalable stream.

Furthermore, the GLATS scheme naturally works with existing MPE-FEC frame, because

whenever a mobile device decides to decode layer c, it has to receive all IP packets in layer c

for successful video reconstruction. Therefore, all IP packets in ADT will be received before

error correction, and the FEC decoder (implemented in hardware/firmware) can work as-is.

We derive the GLATS scheme in the following, and give the burst start time and the
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burst size of each layer of individual TV channels. First, the number of TV channels that

can be concurrently broadcast is: S = ⌊R/r⌋. We let b kb be the burst size of base layers,

which is a system parameter. The burst size for layer c is proportionally set to brc/r1

kb. Since the recurring window consists of a burst for every layer of each TV channel,

the aggregate burst size of the complete stream of a TV channel within the window is
∑C

c=1 brc/r1 = b
∑C

c=1 rc/r1 = br/r1 kb. Since the broadcast bandwidth is R kbps, the

recurring window size is
(

br/r1

R

)

× S = (brS)/(r1R), where br/r1

R is the amount of time

the GLATS scheme must reserve for a TV channel, and there are S TV channels in total.

Finally, the GLATS scheme produces the time slicing schedule with bursts

GLATS :
{

〈

s, c,
b
∑c−1

i=1 ri/r1

R
S +

brc/r1

R
(s − 1), brc/r1

〉
∣

∣

∣

∀s = 1, 2, . . . , S, c = 1, 2, . . . , C

}

, (6.1)

where the third element of the 4-tuple is the burst start time, and the last element is the

burst size.

Figure 6.5 gives a simple example of the GLATS scheme with three TV channels, where

each TV channel is scalably coded into three layers. Notice that the GLATS scheme aligns

layers c of all S TV channels together, which occupy the air medium for time brc/r1

R × S.

Therefore, the start time of the burst of TV channel 1 layer c is given by
b
∑c−1

i=1
ri/r1

R S, which

leads to the start time (the third element of the 4-tuple) in Eq. (6.1).

We mention that the GLATS scheme is fairly general, as it supports layers with diverse

bit rates. In contrast, the Layer-Aware Time Slicing (LATS) scheme proposed in our earlier

work [36] assumes all layers have the same bit rate, i.e., rc = r/C for all c = 1, 2, . . . , C.

Hence, the LATS scheme is a special case of the newly proposed GLATS scheme.

6.5.2 Analytical Analysis

In the next theorem, we formally prove the correctness of the proposed GLATS scheme, and

we quantify its performance in terms of energy saving and channel switching delay.

Theorem 12. The GLATS scheme (Eq. (6.1)) specifies a feasible time slicing scheme for

a recurring windows of brS
r1R sec, where (i) no two bursts overlap with each other, and (ii)
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bursts are long enough to send data for all mobile devices to playout until the next burst.

Furthermore, the energy saving achieved by mobile devices in class c is given by:

γc = 1 −

∑c
i=1 ri

rS
−

RTocr1

brS
where c = 1, 2, . . . , C. (6.2)

Finally, the maximum channel switching delay is:

dm = b/r1. (6.3)

Proof. First, sending a burst of brc/r1 kb takes time brc/r1

R sec to transmit. Thus. by the

definition of Eq. (6.1), the resulting scheme has no overlapping bursts. Second, consider any

arbitrary layer c, where 1 ≤ c ≤ C, the required amount of data for smooth playout is:

brS

r1R
× rc ≤

br

r1R
×

R

r
× rc = b

rc

r1
,

where the inequality comes from the definition of S. This inequality shows that the scheduled

time period is long enough to carry the playout data.

For energy saving, observe that mobile devices in class c turn on their receiving circuits

for c times in each recurring window. Combining this with the aggregate burst size, we

have:

γc = 1 −

b
∑c

i=1
ri/r1

R + cTo

brS
r1R

.

In this equation, the first term of the numerator accounts for the time to receive actual

video data, the second term of the numerator represents the total overhead durations, and

the denominator is the recurring window size. Manipulating this equation yields Eq. (6.2).

For channel switching delay, we first consider mobile devices in class 1. The worst case

happens when a user switches to a channel s right after the burst for layer 1 of channel s is

broadcast: the user has to wait for the complete recurring window, i.e., dm = brS
r1R . Following

the definition of S, we write:

dm =
brS

r1R
≤

br

r1R
×

R

r
= b/r1,

which yields Eq. (6.3). This result can be extended to any class c: mobile devices, despite

how many layers they receive, can start playing out with the base layer (layer 1) whenever

it arrives. Mobile devices gradually add enhancement layers whenever they are available for

incremental quality improvements.
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This theorem shows that GLATS scheme is correct and allows mobile devices in different

classes to receive and render at different perceived quality, while achieving proportional

energy saving. It also shows that the maximal channel switching delay is the same for

mobile devices in all classes. This is a nice property, as the GLATS scheme offers consistent

guarantees on the channel switching delay.

In the next lemma, we compare the performance of the GLATS scheme against and the

LAF scheme proposed in Section 6.4.3.

Lemma 3. The GLATS scheme achieves higher energy saving than the LAF scheme for

class c mobile devices if c 6= C. These two schemes lead to the same energy saving for class

C mobile devices.

Proof. With the LAF scheme, mobile devices in class c (c = 1, 2, . . . , C) receive a frac-

tion/prefix of every burst, and turn off their receiving circuits earlier to save energy. Since b

is the base layer bit rate in the GLATS scheme, we consider a LAF scheme, where each TV

channel has C bursts and their aggregate size is br/r1, for a fair comparison. Observe that

class c mobile devices must open their receiving circuits for
b
∑c

i=1
ri/r1

R , since the network

bandwidth is R. Moreover, all mobile devices must turn on their receiving circuits C times

in every recurring window of (brS)
/

(r1R). Therefore, we write the energy saving achieved

by class c mobile devices as:

γ̂c = 1 −

b
∑c

i=1
ri/r1

R + CTo

brS
r1R

= 1 −

∑c
i=1 ri

rS
−

RToCr1

brS
where c = 1, 2, . . . , C. (6.4)

Comparing Eq. (6.4) against Eq. (6.2) yields the lemma.

This lemma shows that the GLATS scheme outperforms the LAF scheme in terms of

energy saving, as aforementioned in Section 6.4.3.

The following corollary is a direct result of Theorem 12.

Corollary 2. Consider a special case of the GLATS scheme, where all layers have the same

bit rate, i.e., rc = r/C for all c = 1, 2, . . . , C. The energy saving achieved by class c mobile

devices is given as:

γc = 1 −
c

CS
−

RToc

bCS
.
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Figure 6.6: Diverse energy saving supported by the GLATS scheme, and resulting channel
switching delay.

Moreover, the maximal channel switching delay is given as:

dm = bC/r.

This corollary considers simplified scalable streams where layers have uniform bit rates,

and quantifies the performance of the GLATS scheme under such assumption. We notice

that we call this simplified scheme as Layer-Aware Time Slicing (LATS) scheme in our

previous results [36], and this corollary is consistent with our earlier analytical analysis

presented in [36].

6.5.3 Numerical Analysis and Discussion

We apply typical network parameters to numerically study the performance of the GLATS

scheme. More precisely, we consider a mobile video broadcast network with bandwidth
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R = 9 Mbps, and several TV channels that are encoded into scalable streams at full rate

of r = 900 kbps. Each of these scalable stream is divided into four layers. We note that

the GLATS scheme supports layers with diverse bit rates, and we consider three different

scenarios to assign bit rates to individual layers, which are: (i) uniform, in which r1 =

r2 = · · · = rC = r/C, (ii) linear, in which rc = c × 2r
(1+C)C , and (iii) exponential, in which

rc = 2c−1 × r
2C−1

. We then assume the overhead duration To = 100 msec, and we vary

the base layer burst size b. We compute the energy saving and channel switching delay of

mobile devices in different classes using formulas derived in Theorem 12.

We plot the results in Figure 6.6, which clearly shows that the GLATS scheme allows

mobile devices to achieve a wide range of energy saving values. For example, letting b = 1000

kb, 75% to 95% energy saving is possible in uniform scenario, and 85% to 95% energy saving

can be achieved in the other two considered scenarios. The range of supported energy saving

is even larger when b is smaller. This energy saving diversity enables mobile devices that

are short of resources to be conservative on energy for longer watch time, while others can

render TV channels at higher perceived quality. We mention that this diversity may come

at an expensive of high channel switching delay. For example, as illustrated in Figure 6.6(a),

the channel switching delay is about 5 sec when b = 1000 kbps, which may not be desirable

for some users. A simple way to cope with long delays is to send bursts more often, which

is equivalent to reducing b. Smaller b values, however, may lead to low energy saving as

illustrated by Figure 6.6. For example, in Figure 6.6(a), setting b = 200 kb results in

about 40% energy saving for mobile devices that render the complete video streams, which

is significantly smaller than the 85% energy saving that is achieved when b = 2000 kb.

Therefore, reducing b is not an efficient way to control channel switching delays, and we

need to develop a better solution.

6.6 Generalized Layer-Aware Time Slicing with Delay Bound

We propose a new broadcast scheme to achieve energy saving diversity without incurring

long channel switching delays, and we refer to it as Generalized Layer-Aware Time Slicing

with Delay Bound (GLATSB). We analytically study its performance, and we numerically

analyze it using common network parameters.
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Figure 6.7: The proposed broadcast scheme with switching delay bound: GLATSB.

6.6.1 Overview

The GLATSB scheme is an extension of the GLATS scheme presented in Section 6.5, and

it aims to reduce channel switching delays. The delay reduction is based on the following

observation. Long channel switching delays are partially due to the dependency among

different layers. This is because, despite how many layers a mobile device plans to receive,

it cannot decode the coded stream until the base layer (layer 1) arrives, and the waiting

time can be as long as the whole recurring window. To better control the channel switching

delay, we propose to insert short and frequent bootstrap bursts between any two adjacent

bursts defined in the GLATS scheme, and send the base layers of TV channels using these

bootstrap bursts. We refer to the bursts defined in the GLATS scheme as normal bursts.

Figure 6.7 illustrates how we insert the bootstrap bursts: a small piece of base layer

from each TV channel is sent between any two normal bursts. This figure shows that two

bootstrap bursts for TV channel 1 and 2, respectively, are added between any two normal

bursts. Since the bootstrap bursts are sent very often, the user who switches to a new

channel can receive the bootstrap bursts and start playing the base layer very quickly.

Upon reaching the next normal burst for layer 1 of the selected TV channel, mobile devices

switch over to normal bursts. Normal bursts provide higher energy saving, because they are

longer, and thus the overhead duration To is relatively insignificant to them.

We derive the GLATSB scheme in the following, and give the burst start and the burst

size of each layer of individual TV channels. First, the number of TV channels that can be

concurrently broadcast is: S = ⌊(R)/(r+r1)⌋. This is because we send each base layer twice
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in the recurring window: both in bootstrap and normal bursts. We let b be the normal burst

size for base layers, and brc/r1 be the normal burst size for layer c, where c = 1, 2, . . . , C. b is

a system parameter. Then, the recurring window size is:
(

b(r1+r)S
)

/(r1R) sec. Compared

to that of the GLATS scheme, the window size of the GLATSB scheme has an additional

r1 in the numerator to accommodate the inserted bootstrap bursts, which essentially carry

base layers that has a bit rate of r1 kbps. Next, we define b̄(c) = brc/r be the aggregate

burst size of all bootstrap bursts of a TV channel s (s = 1, 2, . . . , S) between its layer c

and c + 1 normal bursts. Since there are S normal bursts between any two consecutive

normal bursts belonging to the same TV channel, the size of a bootstrap burst after a layer

c normal burst is b̄(c)/S = (brc)/(rS). Finally the GLATSB scheme produces the time

slicing schedule with bursts

GLATSB (normal) :
{

〈

s, c, b

∑c−1
i=1 ri/r1

R
S +

∑c−1
i=1 b̄(i)

R
S +

brc/r1

R
(s − 1)+

b̄(c)(s − 1)

R
,

brc

r1

〉
∣

∣

∣
∀s = 1, 2, . . . , S, c = 1, 2, . . . , C

}

; (6.5)

GLATSB (bootstrap) :
{

〈

s, c, b

∑l−1
i=1 ri/r1

R
S +

∑l−1
i=1 b̄(i)

R
S +

brl/r1

R
k+

b̄(l)(k − 1)

R
+ (s − 1)

b̄(l)

S
,

b̄(l)

S

〉
∣

∣

∣
∀s = 1, 2, . . . , S,

l = 1, 2, . . . , C, and k = 1, 2, . . . , S

}

, (6.6)

where the four elements are TV channel, device class, burst start time, and burst size,

respectively. We notice that the second and the fourth terms of the burst start time in

Eq. (6.5) consider the amount of air medium time occupied by the bootstrap bursts. The

main difference between Eqs. (6.5) and (6.6) is the last term in Eq. (6.6), which effectively

assigns the time between two normal bursts to bootstrap bursts of all S TV channels.

Figure 6.8 shows a simple example of the GLATSB scheme with two TV channels, where

each TV channel is scalably coded into two layers. Notice that, the GLATSB scheme adds

bootstrap bursts after each normal burst of layer c, where these bootstrap bursts occupy
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Figure 6.8: An illustrative example of the proposed GLATSB scheme.

the air medium for time b̄(c). This air medium time is equally divided among TV channel,

e.g., each bootstrap burst in this example has burst size b̄(1)
2 (or b̄(2)

2 ) kb. Last, inserting

bootstrap bursts would shift normal bursts to their right, which is taken into considerations

in the start time (the third element of the 4-tuple) in Eqs. (6.5) and (6.6).

We mention that the GLATSB scheme is fairly general, as it supports layers with diverse

bit rates. In contrast, the Layer-Aware Time Slicing with Delay Bound (LATSB) scheme

proposed in our earlier work [37] assumes all layers have the same bit rate, i.e., rc = r/C

for all c = 1, 2, . . . , C. Hence, the LATSB scheme is a special case of the newly proposed

GLATSB scheme.

6.6.2 Analytical Analysis

We prove the correctness of the proposed GLATSB scheme in the next theorem. We also

quantify its performance in the same proof.

Theorem 13. The GLATSB scheme (Eqs. (6.5) and (6.6)) specifies a feasible time slicing

scheme for a recurring window of b(r1+r)S
r1R sec, where (i) no two bursts overlap with each

other, and (ii) bursts are long enough to send data for all mobile devices to playout till

the next burst. Furthermore, the energy saving achieved by mobile devices in class c (c =
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1, 2, . . . , C) is given by:

γc = 1 −

∑c
i=1 ri

(r1 + r)S
−

RTocr1

b(r + r1)S
. (6.7)

The energy saving achieved by mobile devices that receive the bootstrap bursts is:

γb = 1 −
r1

(r1 + r)S
−

RCTor

(rl + r)b
. (6.8)

Finally, the maximal channel switching delay is:

dm =
b(r + r1)maxC

c=1 rc

Rrr1
. (6.9)

Proof. First, the construction of the GLASTB scheme guarantees that no bursts intersect

with each other in time as the air medium of R kbps is fast enough to transmit all bursts

within allocated time slots. Second, consider all S bootstrap bursts for an arbitrary TV

channel between its normal bursts of layer c and c + 1. Each of these bootstrap bursts is

b̄(c)/S long, and thus the aggregate burst size is b̄(c) = brc/r
S kb. Furthermore, the bootstrap

bursts after the normal burst of layer c+1 arrives b̄(c)+brc/r1

R sec later. Because the bootstrap

bursts carry the base layer with a bit rate of r1 kbps, each bootstrap burst can support a

playout time of:

brc/r

Sr1
≥

brc/(rr1)

R/(r + r1)
=

brc(
1
r + 1

r1
)

R
=

b̄(c) + brc/r1

R
,

where the inequality follows the definition of S (i.e., S ≤ R
r+r1

). Since the playout time is

no shorter than the time period to the next burst, the bootstrap bursts are long enough

for smooth playout. We next consider two adjacent normal bursts for the same layer c of a

specific TV channel. The burst transmits up to b rc

r1
kb data, and the time difference between

them is S b(r1+r)
r1R sec. Since these two normal bursts carry the layer c with a bit rate of rc

kbps, each such normal burst can support a playout time of:

b(r1 + r)S

r1R
≤

b(r1 + r)R

r1R(r + r1)
=

b

r1
= b

rc

r1
,

which indicates that the normal bursts are long enough for smooth playout. This proves

the correctness of the GLATSB scheme.

Next, following the definition of energy saving, the energy saved for mobile devices that

receive c layer is:

γc = 1 −

b
∑c

i=1
ri/r1

R + cTo

S b(r1+r)
r1R

,
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and the energy saved for mobile devices that receive bootstrap bursts is:

γb = 1 −
b/R + CSTo

S b(r1+r)
r1R

.

In these two equations, the first term of the numerator is the time to receive actual video

data, the second term of it accounts for the total overhead duration, and the denominator

is the recurring window size. Simplifying these two equations leads to Eqs. (6.7) and (6.8).

Finally, the channel switching delay is the maximal time difference between two boot-

strap bursts for the same TV channel. Note that, the time difference between two bootstrap

bursts after a layer c normal burst is b̄(c)+brc/r1

R , where the first term in the numerator ac-

counts for the bootstrap bursts and the second term of it accounts for the normal burst.

Hence, the maximal channel switching delay is:

dm =
maxC

c=1[b̄(c) + brc/r1]

R
= b

(r + r1)maxC
c=1 rc

Rrr1
,

which leads to Eq. (6.9).

The next corollary enables network operators to bound the channel switching delay

precisely. This is a direct result of Eq. (6.9).

Corollary 3. For a given maximal channel switching delay dm, applying the GLATSB

scheme (Eqs. (6.5) and (6.6)) with any normal burst size b, b ≤ bm guarantees that mobile

devices never suffer from switching delay longer than dm, where bm = dm
Rrr1

(r+r1)maxC
c=1

rc
.

The following corollary is a direct result of Theorem 13.

Corollary 4. Consider a special case of the GLATSB scheme, where the layers have uniform

bit rates, i.e., rc = r/C for all c = 1, 2, . . . , C. The energy saving achieved by mobile devices

in class c (c = 1, 2, . . . , C) is given by:

γc = 1 −
c

(C + 1)S
−

RToc

b(C + 1)S
.

The energy saving achieved by mobile devices that receive the bootstrap bursts is:

γb = 1 −
1

(C + 1)S
−

RCTo

(C + 1)b
.

Finally, the maximal channel switching delay is:

dm =
b + b/C

R
.
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Figure 6.9: Diverse energy saving supported by the GLATSB scheme, and resulting channel
switching delay.

This corollary considers simplified scalable streams where layers have uniform bit rates,

and quantifies the performance of the GLATSB scheme under such assumption. We notice

that we call this simplified scheme as Layer-Aware Time Slicing with Delay Bound (LATSB)

scheme in our previous results [37], and this corollary is consistent with our earlier analytical

analysis presented in [37].

6.6.3 Numerical Analysis and Discussion

We apply the same network parameters used in Section 6.5.3 to numerically study the

performance of the GLATSB scheme. Since the GLATSB scheme supports layers with

diverse bit rates, we consider three different scenarios to assign bit rate to individual layers,

including uniform, linear, and exponential. Specific definition on these scenarios are given
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in Section 6.5.3. We vary the base layer burst size b, and we compute the energy saving

and channel switching delay of mobile devices in different classes using formulas derived in

Theorem 13.

We plot the results in Figure 6.9, which shows that the GLATSB scheme enables mobile

devices to achieve a wide range of energy saving values. More importantly, this figure

reveals that, compared to the GLATS scheme, the GLATSB scheme dramatically reduces

the channel switching delay: less than 300 msec delay can be achieved in the uniform

scenario, and the delays never exceed 2 sec in all considered scenarios. This means the

GLATSB scheme does achieve its goal to reduce channel switching delays. We mention that,

in this analysis, we assume mobile devices receive bootstrap bursts for short, transient, time

periods, and only consider mobile devices that receive normal bursts. We eliminate this

assumption when conducting the the empirical evaluation in Section 6.7.

Last, we notice that low channel switching delays achieved by GLATSB scheme comes at

an expense of bandwidth overhead of Sr1 kbps, since the base layers are transmitted twice.

This overhead is, however, controllable: network operators may decide to use a lower base

layer rate. Smaller base layer not only mitigates bandwidth overhead, but also supports

more heterogeneous mobile devices. This is because mobile devices that are not capable to

receive and render the base layer are effectively excluded from the mobile TV service.

6.7 Evaluation on a Mobile TV Testbed

We evaluate the proposed broadcasting schemes using a real mobile TV testbed. We first

describe the testbed and experimental setup. We then present the results.

6.7.1 Setup

We use a real mobile TV testbed presented in Section 3.6 to evaluate our proposed schemes.

We have also implemented both the GLATS and GLATSB schemes in the testbed. We

notice that, to the best of our knowledge, there exists no other broadcast schemes for

broadcasting scalable video streams in current systems. For comparison, we implement the

single service (SS) and parallel service (PS) broadcast schemes presented in Secs. 6.4.1 and

6.4.2, respectively. These two schemes work in current systems, and achieve the same energy

saving and channel switching delay. Hence, we denote them as CUR in the figures. Using the

H.264/SVC [51] reference software [97], we have encoded the City video sequence, into four
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Figure 6.10: Cumulative received data: (a) CUR, (b) GLATS, and (C) GLATSB.
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Figure 6.11: Sample energy saving achieved by a mobile device in each classes: (a) CUR,
(b) GLATS, and (C) GLATSB.
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Figure 6.12: Energy saving achieved by (all) mobile devices in different classes: (a) CUR,
(b) GLATS, and (C) GLATSB.
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SNR scalability layers, where each layer has a bit rate of 192 kbps and is in CIF (352x288)

resolution at 30 fps frame rate, Given that the City sequence is quite short, we concatenated

it several times to form a 5-min video sequence. We broadcast the same sequence in all TV

channels, because different video characteristics do not significantly affect the quality of

service metrics considered in this section. Furthermore, as there is no effective rate control

algorithms built in the H.264/SVC reference software [97], we had to search for appropriate

quantization parameter (QP) values by encoding the same video many times. This is very

time consuming even for a single video sequence, e.g., encoding a 10-sec sequence could take

more than 12 hours in our experience. With the coded stream, we configured the modulator

card to use 8 MHz bandwidth, QPSK (quadrature phase-shift keying) modulation, 3/4 code

ratio, and 1/8 guard interval. This leads to the channel bandwidth of 8.289 Mbps [46]. We

broadcast 4 TV channels for 5 min using the GLATS and GLATSB schemes, and repeated

the same test using the CUR scheme.

We have instrumented the testbed to save log files for offline analysis. The log files

contain start and end times of each burst, its size, and the layer it belongs to. Using

these logs, we wrote a software utility to emulate the channel switching behavior of a large

number (1 million) of mobile devices. We generate random channel switching events using

Bernoulli trials. For every mobile device, we toss a biased coin every second and issue a

channel switching command if the trial is success. The new selected channel is randomly

chosen from all broadcast channels other than the currently watched one. We configured

the probability of success to vary the average watch time of each channel from 1 sec to 60

sec. We also varied the burst size from 500 to 1500 kb. If not otherwise specified, we present

sample results for 60-sec average watch time, and 1000 kb burst size.

We ran the simulation against every log file collected from the testbed, and we computed

the channel switching delay d and energy saving γ. We measured the channel switching delay

by searching for the next burst of the selected TV channel and computing the time difference

between it and the channel switching event. We let the overhead duration To = 100 msec,

and measured the energy saving by calculating the fraction of time that the receiving circuit

is on between every two channel switching events. We emphasize that when computing the

energy saving for the GLATSB scheme, we divide the watching period into two parts: when

a device receives bootstrap bursts, and when it receives normal bursts. We calculated

the energy saving in both periods and reported the weighted average of them. Since we

consider both time periods in the experiments, we no longer assume that mobile devices
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Figure 6.14: Implication of watch time.

receive bootstrap bursts only for a transient time period as we did in Section 6.6.3.

6.7.2 Results

We present sample results for TV channel 1, while results for other TV channels are similar.

Cumulative Data Dynamics: We first plot the cumulative received data in Fig-

ure 6.10 for a 15-sec time period. In this figure, every staircase step represents a received

burst. This figure reveals that the CUR scheme does not allow mobile devices to receive

substreams that are smaller than the complete video streams, while both the GLATS and

GLATSB schemes enable mobile devices to skip those bursts that are of no use to them. In

addition Figure 6.10(c) illustrates that in GLATSB, bootstrap bursts come more often, and

the accumulated bit rate of bootstrap bursts is equivalent to that of the base layer.2 This

shows that mobile devices who receive bootstrap bursts can quickly render the video at the

base layer quality.

Diverse energy saving: We first plot the energy saving achieved by a sample mobile

device in Figure 6.11. We then compute the average energy saving of all mobile devices,

and report the CDF curves in Figure 6.12. These two figures show that the CUR scheme

leads to no energy saving differentiation, while the GLATS and GLATSB schemes enable

proportional energy saving for mobile devices in different classes. This confirms our earlier

2The line of bootstrap bursts consists of staircases, but in smaller scale.
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Figure 6.15: Implication of burst size on energy saving and channel switching delay: mobile
devices that receive all 4 layers.
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Figure 6.16: Implication of burst size on energy saving and channel switching delay: mobile
devices that receive 2 layers.
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observations (in Section 6.4.4) that broadcasting scalable streams using CUR scheme cannot

support heterogeneous mobile devices.

Channel Switching Delay: We plot the CDF curves of channel switching delays

for all considered schemes in Figure 6.13. This figure shows that although GLATS scheme

supports mobile devices with heterogeneous resources, it may lead to high channel switching

delay: up to 4-sec delay is observed in this experiment. In contrast, GLATSB scheme results

in negligible channel switching delay: about 200 msec is achieved.

Implication of burst size: We next vary burst size b from 500 to 1500 kb. This covers

the whole practical range of b values, since 1565 kb is the maximal burst size specified by

DVB-H standard documents [16]. We first present results for the mobile devices that receive

the complete streams. We plot the CDF curves of energy saving and channel switching delay

in Figure 6.15. Figure 6.15(a) shows that increasing burst size allows the GLATS scheme

to achieve higher energy saving. However, Figure 6.15(b) reveals that larger burst size also

increases the channel switching delay: letting b = 1500 kb leads to as high as 6-sec delay.

These two figures show that the GLATS scheme uses b to control the tradeoff between

energy saving and channel switching delay, which is inefficient. In contrast, Figs. 6.15(c)

and 6.15(d) show that increasing b in the GLATSB scheme also leads to higher energy saving,

however, it does not result in excessive channel switching delay: the delay is shorter than

200 msec in all cases. Figure 6.16 shows the results for mobile devices that receive 2 layers.

The observations made in Figure 6.15 are also applicable to this figure. This confirms that

the above discussions are true for all mobile devices despite how many layers they receive

and decode.

Implication of per channel watch time: In the GLATSB scheme, mobile devices

that receive bootstrap bursts incur lower energy saving. Hence, the frequency of channel

switching events can affect the average energy saving. To quantify this impact, we vary the

time that a user would watch a TV channel from 1 sec to 60 sec. We plot the CDF curves

of average energy saving of mobile devices that receive the complete streams in Figure 6.14.

This figure shows that frequent channel switching events only degrade the energy saving in

extreme cases, in which users constantly change TV channels.
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6.8 Conclusions

In this chapter, we studied the problem of broadcasting scalable video streams over a shared

air medium to mobile devices with heterogeneous resources, such that mobile devices can

render the most appropriate substreams while achieving high energy saving and low channel

switching delay. We analyzed current mobile video broadcast networks, and analytically

showed that they cannot efficiently broadcast scalable coded streams. We then proposed

two scalable broadcast schemes: GLATS and GLATSB. We formally proved the correctness

of the proposed schemes, and we analytically quantified their performance in terms of energy

saving and channel switching delay. The proposed schemes can be implemented in current

base stations, and they produce bursts of traffic that are compliant with current mobile

video broadcasting standards such as DVB-H. The main difference between GLATS and

GLATSB is that the latter ensures very small channel switching delays, but at a small cost

of lower bandwidth utilization. We implemented the GLATS and GLATSB schemes in a

real mobile TV testbed to show their practicality and efficiency. Our extensive experiments

showed that both the GLATS and GLATSB schemes enable energy saving differentiation:

between 75% and 95% were observed. Moreover, the GLATSB scheme also achieves low

channel switching delays: 200 msec is possible with typical system parameters.



Chapter 7

Conclusions and Future Work

In this chapter, we first summarize our contributions of this thesis. We then give network

operators some guidelines on choosing the solutions suitable for their mobile video broadcast

networks. Finally, we outline several future research directions.

7.1 Conclusions

We studied mobile video broadcast networks in which a base station concurrently trans-

mits multiple video streams over a shared air medium to many mobile devices. Such mobile

networks support one-to-many multicast/broadcast communications and achieve high band-

width efficiency because a copy of video stream can be received by all mobile devices within

the range of the base station. These mobile networks are expected to attract millions of

subscribers worldwide. The goal of this thesis is to improve the efficiency and quality-of-

services of these networks. The thesis presented systematic and provably optimal (or very

close to optimal) algorithms to: (i) maximize streaming quality, (ii) maximize energy saving,

(iii) maximize bandwidth efficiency, (vi) efficiently control channel switching delay, and (v)

support heterogeneous mobile deices. All proposed algorithms are practical and can run

in real time, as verified by our implementation in actual mobile video streaming testbed

that conforms to one of the most common international standard (DVB-H). Therefore, we

believe that the research contributions of this thesis will have significant practical impacts

on mobile video streaming networks and will provide millions of mobile users much better

quality-of-service in terms of better perceived video quality, longer viewing time, shorter

channel switching delay, and more flexibility in customizing video streams to better match

189
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users’ needs and the capacity of their mobile devices.

Since mobile devices are battery powered, energy conservation is critical for them to

achieve long viewing time before users have to replace or recharge batteries. Therefore,

modern broadcast network standards, such as DVB-H and MediaFLO, dictate energy saving

mechanism in order to prolong viewing times. The most common technique for saving

energy is to broadcast each video stream in bursts at a bit rate much higher than the

encoding bit rate of that stream. Mobile devices, therefore, can receive a burst of video

data and put their receiving circuits into sleep to save energy. This is called time slicing.

In Chapter 3, we considered the problem of maximizing energy saving of mobile devices in

a mobile video broadcast network, in which a base station concurrently transmits multiple

Constant-Bit-Rate (CBR) streams to many users. To prevent playout glitches and achieve

the optimum streaming quality, the base station must carefully construct burst schedules

that result in: (i) no buffer violations, (ii) no burst conflicts, and (iii) high energy saving. We

considered a very general problem in which every video stream can be coded at a difference

bit rate. We formulated this problem as an optimization problem, and we formally proved

that it is NP-complete. We then solved this problem in two steps. First, we proposed a

practical simplification, which allows video streams to be classified into multiple classes with

power-of-two bit rate increments. We proposed a burst scheduling algorithm, called P2OPT

(Power-of-Two Optimal), to solve this practical simplification. We analytically proved that

the P2OPT algorithm is optimal in terms of energy saving and runs in polynomial time.

We used simulations and experiments to validate the correctness and optimality of the

P2OPT algorithm. The experimental results from a real mobile TV testbed indicate that

the P2OPT algorithm achieves optimal energy saving: savings between 77% to 99% were

observed for streams at different bit rates. In addition, we empirically showed that, with

only six possible bit rates, using the P2OPT algorithm to broadcast 10 videos can achieve

vary small quality variation among videos: less than 1 dB was observed in our experiments.

The P2OPT algorithm is suitable for network operators that encode videos in CBR streams

and would trade strict video quality fairness for optimal energy saving.

In Chapter 3, we also solved the general form of the energy optimization problem in

which CBR streams can have arbitrary bit rates. Since the energy optimization problem

is NP-complete, we proposed an approximation algorithm, called DBS (Double Buffering

Scheduling), to solve this general form formulation. We showed the correctness and efficiency

of the DBS algorithm. More importantly, we analytically gave an approximation factor of
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the DBS algorithm, and we numerically showed that the approximation factor is less than

5% under typical network parameters. This means that the DBS algorithm is near-optimal

in terms of energy saving. We implemented the DBS algorithm in a simulator as well as in

a real mobile TV testbed. Our simulation and experimental results indicate that the DBS

algorithm runs efficiently and achieves high energy saving. For example, the DBS algorithm

achieves an energy saving no worse than 7% lower than a conservative upper bound of energy

saving. Such high energy savings were achieved without incurring high time complexity: the

DBS algorithm runs in real-time. The DBS algorithm is suitable for network operators that

encode videos in CBR streams and require fairness in terms of quality among video streams.

In Chapter 4, we considered the problem of constructing burst schedules for a mobile

video broadcast network in which a base station concurrently transmits multiple Variable-

Bit-Rate (VBR) streams to many users, such that the energy saving of mobile devices

and the goodput of the network are both maximized. Unlike CBR streams that impose

a constant workload on the broadcast network, transmitting VBR streams may lead to

dynamic aggregate bit rates that might exceed the network bandwidth. We considered

two type of mobile video broadcast networks: closed-loop networks, in which all video

streams are jointly encoded to ensure the aggregate bit rate does not exceed the network

bandwidth, and open-loop networks, in which video streams are independently encoded and

may occasionally overload the broadcast network. We formulated the problem of maximizing

energy saving and maximizing goodput as an multiobjective optimization problem, and we

showed that it is NP-complete. We then proposed an approximation algorithm, called

SMS (Statistical Multiplexing Scheduling), to solve this problem. The SMS algorithm only

requires a small lookahead window (in the order of a few seconds) for frame sizes, and thus

is an online algorithm. We showed that the correctness of the SMS algorithm, and proved

that it is optimal in terms of goodput and near-optimal in terms of energy saving. Moreover,

the SMS algorithm runs in polynomial time. Most importantly, we analytically gave the

approximation gap of the SMS algorithm and numerically showed the approximation gap is

less than 1.5% under typical network parameters.

We showed that the SMS algorithm produces glitch-free burst schedules in closed-loop

networks, and thus it is suitable for network operators of closed-loop networks. We also

argued that the SMS algorithm minimizes the number of glitches in open-loop networks, and

can also be used by network operators of open-loop networks. However, the SMS algorithm

might lead to playout glitches in open-loop networks. We studied the open-loop networks
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that have longer lookahead windows, and proposed another burst scheduling algorithm,

called SMS′, to reduce the number of playout glitches due to burstiness of aggregate bit

rates. The SMS′ algorithm utilizes the slack time of the air medium and tries to send some

video data in advance in order to absorb the rate burstiness. Hence, the SMS′ algorithm

is suitable for open-loop networks of recorded videos where longer lookahead windows are

possible, while the SMS algorithm is suitable for open-loop networks of live videos where

only a short lookahead window is feasible. We implemented both SMS and SMS′ algorithms

in a trace-driven simulator, and compared their performance against the burst scheduling

algorithms currently used in commercial base stations. The simulation results indicate

that the SMS and SMS′ algorithms outperform current burst scheduling algorithms from

several aspects. More specifically, the SMS algorithm produces burst schedules that lead

to: (i) fewer missed frames, (ii) more concurrent video streams, and (iii) higher energy

saving. Moreover, compared to the SMS algorithm, the SMS′ algorithm effectively reduces

the number of playout glitches without sacrificing energy saving. We also implemented the

SMS algorithm in a real mobile TV testbed to show its practicality and efficiency. The

results from this testbed confirmed that the SMS algorithm: (i) runs efficiently, (ii) achieves

high energy saving, and (iii) result in no playout glitches.

In Chapter 5, we considered the problem of constructing time slicing schemes to control

channel switching delay, such that the channel switching delay from any channel to any

other channel never exceeds a maximum switching delay specified by network operators. In

addition, the broadcast schemes should also achieve high energy saving, which is critical

for mobile devices. We first analyzed the time slicing scheme currently used in deployed

mobile video broadcast networks, and we showed that it achieves low energy saving when

short channel switching delays are required. That is, the current time slicing scheme cannot

efficiently control the channel switching delay. We then proposed three time slicing schemes

for network operators who need to control the channel switching delays: SIMU, SIMU-S

and SIMU-S+. The SIMU scheme is suitable in legacy environment where scalable video

decoders are not available on mobile devices. The SIMU-S scheme is suitable for mobile

video broadcast networks with some idle bandwidth, while the SIMU-S+ scheme is for

bandwidth saturated networks. We proved the correctness of these time slicing schemes, and

we analytically analyze their performance. More importantly, we implemented the proposed

time slicing schemes in a real mobile TV testbed. The experimental results from the testbed

showed that the proposed time slicing schemes prevent mobile devices from exceeding the
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target channel switching delay, while achieving much higher energy saving compared to the

time slicing scheme currently used in base stations. For example, in our experiments, the

SIMU-S scheme achieves up to 93% energy saving, while the current scheme only results in

74%.

In Chapter 6, we studied the problem of encapsulating multiple scalable coded streams

into bursts and broadcasting these bursts to many mobile devices in an appropriate way

so that a mobile device may opt for receiving a lower quality substream in order to save

energy and prolong watch time. We first showed that existing base stations cannot efficiently

broadcast scalable video streams, because, without properly organizing video data in bursts,

mobile devices that receive a lower quality substream do not achieve higher energy saving.

We then proposed two time slicing schemes for network operators who need to support

heterogeneous mobile devices. The GLATS (Generalized Layer-Aware Time Slicing) scheme

allocates a burst for each layer of every video stream, so that mobile devices can selectively

receive relevant bursts to achieve proportional energy saving. The GLATSB (Generalized

Layer-Aware Time Slicing with Delay Bound) scheme employs the idea used in SIMU/SIMU-

S schemes and can efficiently control the channel switching delay. The GLATS algorithm is

suitable for network operators that want to support heterogeneous mobile devices, but do

not have stringent switching delay requirements. For network operators that want to trade

some network bandwidth for controlling channel switching delay, the GLATSB algorithm is

more appropriate. We proved the correctness of the GLATS and GLATSB algorithms, and

we analytically quantify their performance. More importantly, we implemented the GLATS

and GLATSB algorithms in a real mobile TV testbed. The experimental results from the

testbed reveal that both algorithms allow users to opt for the most appropriate video quality

in order to save more energy, while the GLATSB algorithm also prevents mobile devices

from exceeding the target channel switching delay. The diverse energy saving and short

channel switching delays are not possible in the time slicing scheme currently used in base

stations.

Last, we summarize the proposed burst scheduling algorithms and time slicing schemes

in Table 7.1. In the same table, we also give recommendations to network operators for

choosing the solution most suitable to their mobile video broadcast networks. Figure 7.1

further breaks down the recommendations into three main features: device heterogeneity,

bounding switching delay, and high bandwidth efficiency. Network operators may follow

this figure and answer up to three questions in order to find the most suitable solutions for
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Table 7.1: List of the proposed solutions and recommendations for network operators.
Solution Suitable Broadcast Networks

P2OPT CBR streams, trade channel quality variation for optimal energy saving

DBS CBR streams, no channel quality variation, near-optimal energy saving

SMS
VBR streams, closed-loop networks

VBR streams, open-loop networks, live videos

SMS′ VBR streams, open-loop networks, recorded videos

SIMU controlling switching delay, legacy mobile devices

SIMU-S controlling switching delay, mobile devices with scalable decoders

SIMU-S+ controlling switching delay, saturated network bandwidth

GLATS support heterogeneity, no switching delay requirements

GLATSB support heterogeneity, trade bandwidth for controlling switching delays

No

Hetrogeneity

Bounding

Switching 

Delay

High

Bandwidth

Efficiency

SMS, SMS’

P2OPT, DBS

GLATSB

Bounding

Switching 

Delay

GLATS

SIMU−S+

High

Bandwidth

Efficiency

SIMU−S
No

Yes

Yes

Yes

Yes

Yes

No

No

No

Device

Figure 7.1: Questionnaire to guide network operators to choose the most suitable burst
scheduling algorithms.
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them.

7.2 Future Work

The problems studied in this thesis can be extended in several directions. This section

presents a number of possible extensions for future research.

7.2.1 Statistical Multiplexing of Live and Recorded Video Streams

In Chapter 4, we study the problem of statistical multiplexing of multiple VBR streams

in order to minimize the number of playout glitches and maximize the energy saving. We

propose the SMS′ algorithm for open-loop networks to reduce the number of playout glitches

caused by overloading the broadcast network, which happens when the total bit rate of all

video streams exceeds the network bandwidth. Compared to the SMS algorithm, the SMS′

algorithm employs a longer lookahead window in order to identify the spikes of the total

bit rate, and then utilizes the slack time of the air medium to transmit some video data

in advance if the bit rate spikes will overload the broadcast network. The SMS′ algorithm

is more suitable for recorded video streams because these streams have long lookahead

windows for the frame size. In contrast, broadcast networks with live video streams may

need to resort to the SMS algorithm if only a small lookahead window is available, and thus

are vulnerable to playout glitches.

Typical video broadcast networks, however, consist of many recorded programs, such as

movies and TV episodes, and a few live programs, such as TV news and sports games. Since

a longer lookahead window may not be available in live programs, typical broadcast networks

may not benefit from the SMS′ algorithm. Hence, enhancing the proposed SMS′ algorithm

to support mobile video broadcast networks with a mixture of recorded and live programs

will improve its applicability. There are several ways to enhance the SMS′ algorithm. For

example, we may use longer lookahead windows on recorded programs to know their bit

rate requirements and employ VBR video traffic models, such as [118], on live programs

to predict their bit rate requirements, in order to identify spikes of the total bit rate. We

may then utilize any slack time of the air medium to absorb the bit rate spikes, so that the

number of playout glitches is minimized.
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7.2.2 Time Slicing in other Mobile Video Broadcast Networks

Although we use DVB-H networks as the sample mobile video broadcast network throughout

this thesis, the proposed solutions can be readily applied to many other broadcast networks.

In particular, similar to DVB-H, several broadcast standards also encapsulate broadcast

stream in MPEG-2 TS format, which include T-DMB, ISDB-T, A-VSB (Advanced Vesti-

gial SideBand, developed in USA), DMB-T/H (Digital Terrestrial Multimedia Broadcast,

developed in China), and CDMB (China’s Digital Multimedia Broadcasting) [119]. These

networks sequentially transmit the fixed-size packets of MPEG-2 TS streams over the air

medium, which enables the base station to construct logical channels using Time Division

Multiplex (TDM) and implement time slicing in order to save energy on mobile devices.

Therefore, our proposed solutions can be directly used in these mobile video broadcast

networks to improve streaming quality and bandwidth efficiency.

Although MediaFLO (described in Section 2.1.3) employs a new multiplexing format that

is different from MPEG-2 TS, this multiplexing format also consists of fixed-size packets

organized into logical channels called Multicast Logical Channels (MLCs) [119]. MediaFLO

divides the whole wireless spectrum into 4000 subcarriers and it aggregates these subcarriers

into eight interlaces, where each interlace spans over the whole wireless spectrum for higher

frequency diversity. MediaFLO supports time slicing that is more sophisticated than other

broadcast networks: each MLC is assigned a time slot in the granularity of an OFDM sym-

bol, and a frequency slot in the granularity of an interlace. Similar to DVB-H, MediaFLO

base stations embed the time and frequency slots of the next burst in the headers of the

current burst, and mobile devices turn off their receiving circuits between bursts to save

energy.

While our solutions are applicable to MediaFLO networks, they may not fully utilize the

additional flexibility provided by the frequency slots. Enhancing our solutions for MediaFLO

networks will allow us to achieve even better performance by capitalizing on the additional

flexibility. The new solutions, designed for MediaFLO, will also be useful for other wireless

networks developed in the future. This is because OFDM has been widely used in many

modern wireless network standards, and these networks may support multiplexing along

both the time and frequency axes.
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7.2.3 Integrated Multiobjective Scheduling Framework

Although we outline the guidelines, in Section 7.1, for network operators to choose burst

scheduling algorithms that are most suitable to their needs, it is desired to have a complete

burst scheduling framework that can dynamically adapt to network operators’ requirements

at run-time. This framework should concurrently support high energy saving, high goodput,

controlled channel switching delays, and device heterogeneity, but also allows network oper-

ators to drop some of these capabilities if they are not needed. We call this new scheduling

framework as Integrated Multiobjective Scheduling Framework, or IMS framework.

The IMS framework borrows ideas and experiences gathered during designing the follow-

ing three burst scheduling algorithms: SIMU (Chapter 5) for controlling channel switching

delays, GLATS (Chapter 6) for supporting heterogeneous mobile devices, and SMS (Chap-

ter 4) for scheduling bursts to achieve optimal goodput of the broadcast network and near-

optimal energy saving on mobile devices. More specifically, similar to the SIMU algorithm,

the IMS framework reserves x% of bandwidth for bootstrap trains in order to keep channel

switching delays shorter than a dmax value specified by network operators. The residue

bandwidth is then used by primary trains, which contain L scalable layers, where L ≥ 1.

The IMS framework is similar to GLATS algorithm in the sense that data from different

layers are grouped into different bursts. Last, the IMS framework uses the idea of the SMS

algorithm to schedule the primary bursts. This allows network operators to maximize the

goodput of the network and energy saving of mobile devices.

We notice that, the IMS framework takes the layer dependency into consideration and

sequentially allocates bandwidth to layers from lower- to higher-layers. Therefore, all re-

ceived data in the IMS framework are decodable on mobile devices. Last, the IMS framework

is very flexible and can meet various needs from network operators. For example, network

operators may choose number of scalable layers L depending on the number of device models

supported in their broadcast networks. They can even set L = 1 if there exists no hetero-

geneity. Similarly, network operators may set x = 0% if controlled channel switching delays

are not required. Using the IMS framework allows network operators to achieve almost all

merits they could get from any of the burst scheduling algorithms proposed in this thesis.

More importantly, network operators can adjust various tradeoffs by configuring the system

parameters of the IMS framework, rather than implementing several scheduling algorithms

in their base stations.
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7.2.4 Transmission Scheduling in Hybrid Cellular-Broadcast Networks

for VoD Services

In Section 1.1, we mention that most of our solutions for burst scheduling in broadcast

networks can be integrated with techniques such as periodic broadcast to support VoD

services. Providing VoD services using broadcast networks, however, may consume too

much bandwidth as each video stream is carried by several broadcast channels or multicast

groups. To minimize bandwidth requirements, depending on the number of receivers for

individual video streams, some videos may better be broadcast/multicast, while others may

be more suitable to be unicast. For illustration, consider a video stream requested by

one VoD receiver, devoting several broadcast channels to it is not bandwidth efficient. In

such scenario, streaming using unicast in 3G cellular networks is more efficient because

more broadcast channels can be used to send other videos that are received by many more

receivers. Therefore, hybrid cellular-broadcast networks for VoD services could lead to better

bandwidth efficiency, and thus become more scalable than 3G cellular networks or broadcast

networks. Several works in the literature investigate the potential benefits of building such

hybrid networks, e.g., Bria studies hybrid networks from the aspect of delivery cost reduction

[120]. Transmission scheduling in such hybrid networks, however, is challenging and has not

been fully addressed. While a recent work presents a scheduling algorithm for VoD services

over multicast-enabled IP networks [121], transmission scheduling over wireless networks to

mobile devices is more difficult as we showed in this thesis. Hence, designing an effective

and efficient scheduling algorithm for hybrid networks is one of our future works.

7.2.5 Quality-Power Adaptation Framework for Mobile Video Streaming

In Chapter 6, we propose time slicing schemes to efficiently broadcast scalable coded streams,

and we show that mobile devices may receive substreams of the full-quality stream in order

to save more energy. While the proposed GLATS and GLATSB algorithms allow users

to trade video quality for higher energy saving, it may not be easy for users to determine

the appropriate version of substream to receive. In fact, the most appropriate version of

substream depends on the device capability, the target energy consumption level, and user

preferences. To help users on making decisions, we may design a quality-power adaptation

framework to systematically control the perceived video quality and the length of viewing

time on battery-powered mobile devices. The framework should be general, and it may be
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used for standalone receivers (e.g., DVD players and notebooks) as well as mobile receivers

obtaining video signals from wireless networks (e.g., mobile TV and video streaming over

WiMAX). Furthermore, the framework should support both live streaming (e.g., live TV

shows) and pre-encoded streams (e.g., DVD movies).

The framework consists of several quantitative models that map basic energy consump-

tion and video bit rate to intuitive, and easy-to-understand, performance metrics such as

the length of viewing time in hours and expected perceived quality in MOS (mean opinion

score). To illustrate the potential of this framework, consider a user, Amy, who wants to

watch a 30-min TV episode using her cellular phone that only has remaining battery ca-

pacity for watching the show for 25 min. Most of current mobile devices cannot adapt to

the energy constraint, because video streams coded by nonscalable coders must be received

and decoded in their entirety. Consequently, Amy would watch the episode for 25 min, and

then miss the (most important) ending, which significantly degrades her viewing experience

and may drive her away from the mobile video streaming service. Using the quality-power

adaptation framework will allow Amy to finish this episode at a slightly lower video quality,

which in turns leads to a much better user experience.

7.2.6 Multistandards Mobile TV Testbed

In Section 3.6, we present the design and implementation of a complete, end-to-end, testbed

for evaluating the real performance of mobile TV networks from various angles. The pro-

posed testbed is totally open source and available to the research community. Thus, we

believe it will stimulate and enable more research in improving the performance of mo-

bile TV networks, which are expected to be pervasive in the near future. The testbed is

developed for networks employing the popular DVB-H standard. The design of the pro-

posed testbed is modular with well-defined interfaces between the hardware and software

components. This enables updating different hardware/software components with minimal

impacts on the others. Therefore, the testbed is useful for current and future generations

of mobile video broadcast networks. In addition, because of its modularity, the testbed can

easily be extended to support other broadcast standards, such as DVB-T (terrestrial), DVB-

C (cable), DVB-S (satellite), and DVB-S/H (satellite to handhelds), among many others.

This extension would enable studying the benefits/costs of integrating different standards

in a comprehensive framework for providing digital video content to anybody, anywhere,

and at anytime.
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