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Abstract

For a (finite or infinite) family IL of oriented graphs, a new parameter called the compress-
ibility number of L and denoted by z(LL) is defined. The main motivation is the application
of this parameter in a special case of Turan-type extremal problems for digraphs, in which
it plays the role of chromatic number in the classic extremal problems. We estimate this
parameter for some special group of oriented graphs. Determining this parameter, in the
most explicit possible form, for oriented graphs with bounded oriented coloring number

(planar graph in particular) leads us to the famous Erdés-Hajnal conjecture.
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Chapter 1

Introduction

1.1 Background and old results

By digraph we mean a directed graph which contains no loop and no multi-arcs: two or
more arcs with the same direction between a pair of vertices. But it can have two opposite
arcs between a pair of vertices, which are called symmetric arcs. For any digraph H we
denote by V(H) and E(H), the set of vertices and arcs of H, respectively. The same
definitions apply when replacing the notion digraph and arc with simple graph and edge,
respectively. From now on by graph we mean simple graph. For z,y € V(H), we write
Ty to indicate that there is an arc in F(H) oriented from x to y. The same notation also
represents the arc itself. A digraph H is called a sub-digraph of another digraph H’, and
denoted by H C H', if V(H) C V(H') and E(H) C E(H'). For S C V(H’), we say the
digraph H is called the induced sub-digraph of S in H’, and denote by H'|g, if V(H) = S
and E(H) consists of all members of E(H’) with their endpoints in S.

A homomorphic mapping f from a digraph H to another digraph H’ is a mapping f :
V(H) — V(H’) such that m whenever Z7. In this case we write H — H' and say H
is homomorphic to H'. Should the mapping f be a bijection with its inverse function being
also a graph homomorphic mapping, then f is called a graph isomorphic mapping and we
say H is isomorphic to H'. We say that H' contains H if H is isomorphic to a sub-digraph

of H', otherwise we say H' avoids H or, equivalently, H' is H-free.
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In their joint paper, [5], Brown and Harary initiated the study of extremal digraphs by
considering the digraph analogues of the Paul Turdn’s classic extremal theorem [19, 20]:
What is the maximum number of arcs in a digraph avoiding a certain forbidden digraph?
And what are such extremal digraphs? Their study gives precise answers for the forbidden

digraphs with four or less vertices.

Later on Brown, Erdés and Simonovits, in a series of papers [2, 3, 4], studied this problem
and its extension to any family (finite or infinite) of forbidden digraphs. Given integer n > 1
and a square matrix A with zero or one along the main diagonal and zero or two anywhere
else, in [2], they introduce a method for constructing a digraph A(n) where |V (A(n))| = n.
Then they show that for any family (finite or infinite) of forbidden digraphs, there is a
matrix A such that for every n > 1, A(n) contains non of the forbidden digraphs and
|E(A(n))| is very close to its optimal. Thus, this study ensures the existence of such a
family of approximately extremal digraphs and gives some insight into its structure. But
it does not answer the digraph version of the Paul Turdn’s extremal theorem, i.e., a clear
estimation for the number of arcs of the extremal digraphs with n vertices. This is due to

the unknown order of the matrix A which is used in the construction.

Attempts were made to find some estimations for this value. In [4] an algorithm is intro-
duced to calculate it. In [16] some upper bounds were proved in terms of some parameters
of the forbidden digraphs. These studies revealed the inherent complexity for finding any
meaningful estimation of the number of extremal digraphs’s arcs. This is in contrast to the
undirected version in which a result of Erdds, Stone and Simonovits [9] gives us an exact
asymptotic value for the number of edges of the extremal graphs in terms of the chromatic

numbers of the forbidden graphs.

The situation becomes more tractable if we limit ourselves to the special case of oriented
graphs: a family of digraphs which contain no pair of symmetric arcs. Actually this is
suggested by Brown and Harary themselves in the last section of their paper [5] as a possible
direction for future works. But this case, which we call the extremal theory of oriented
graphs, was not considered in the later works of Brown et al. [2, 3, 4] and other subsequent

works [16].
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The work in the present thesis is along this unstudied direction. We say a oriented graph
H is an orientation of a graph G if it is obtained from G by assigning an orientation to each
edge of G. If H is acyclic (contains no directed cycle), then we say H is an acyclic orientation
of G. An orientation of a complete graph is called tournament. An acyclic tournament is
called transitive tournament. From extremal theory’s point of view, the chromatic number
of a graph G can be re-defined as the smallest number k such that G is homomorphic
to the complete graph on k vertices. This definition can be naturally reformulated for
oriented graphs by replacing the notion graph with the notion oriented graph, however
the term ’complete graph on k vertices’ cannot be simply replaced with ’complete oriented
graph (=tournament) on k vertices’ as we have many such tournaments. Thus the oriented

analogues of this definition, after generalizing to a family of oriented graphs, will read:

Definition 1.1.1. For any finite or infinite family IL of oriented graphs, z(LL), the compress-
ibility number of L, is the smallest number k such that for any tournament on k vertices,
at least one member of L is homomorphic to it. When L has only one member H, we may

use the notations z(L) and z(H) interchangeably.

Later in Theorem 2.1.1 we will see that z(IL) is well-defined, should L contain at least one
acyclic oriented graph. We will show (Theorem 2.2.8) that this chromatic-type parameter

replaces the role of chromatic number in the extremal oriented graph problem.

Definition 1.1.2. For any oriented graph H, we define p(H) to be the length (number of
edges) of the longest directed path in H.

One may find the definition of z(H) similar to that of one-color oriented Ramsey number
r(H) (for example refer to [12]). r(H) is defined to be the smallest integer k such that H
is isomorphic to any tournament on k vertices. It must be noted that in calculating the
Ramsey number r(H), we look for an isomorphic copy of H in any arbitrary tournament
while in the case of z(H) we look for a homomorphic copy of H. This makes a huge difference
as we will see. Thus, the known results for oriented Ramsey theory (see [12] for a list of
references) cannot contribute significantly to the compressibility number as the concept of
isomorphism is different from homomorphism except in some rare cases. One such case is
when H is a transitive tournament. In this case a well known result of Erdés-Moser [8] (re-

stated in Theorem 3.2.1) gives some estimation for the values of z(H ). Presently, this is the
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only remarkable contribution of oriented Ramsey theory in determining a compressibility

number.

Motivated by these relations we embark on determining z(L) for any family of oriented
graphs. Here we see that, in contrast to the oriented Ramsey problem which is hard even
for orientations of paths and cycles (see [12]), compressibility number is more tractable. By
employing various graph theoretic concepts (like chromatic number, planarity, etc) we well
estimate z(H) for some large and important groups of oriented graphs H, including orien-
tations of trees (Theorem 3.1.1), cycles (Theorem 3.1.3), unions of internally disjoint paths
with the same endpoints (Theorem 3.1.6). In these cases, the value of z(H) is expressed in
terms of p(H). Additionally some estimations are given for acyclic orientations of complete

graphs (Theorem 3.2.1) and complete bipartite graphs (Theorems 3.2.4,3.2.5).

The oriented coloring number of an arbitrary oriented graph H, denoted by x,(H), is the
smallest number £ > 0 such that H is homomorphic to an oriented graph on k vertices.
Inspired by these results we target a more general family of oriented graphs which encom-
passes the previous ones: When H is an orientation of a planar graph. Based on the previous
results we conjecture that z(H) is upper bounded by p(H )¢ for some constant d (Conjecture
3.1.9). We show a direct connection (Theorem 4.0.17) between this conjecture and the so-
called oriented Erd6s-Hajnal conjecture (re-stated in Conjecture 4.0.10). Introduced in [1],
this conjecture is about the existence of a transitive sub-tournament with polynomial order
in any tournament which avoids a forbidden oriented graphs. We show (Corollary 4.0.18)
that the oriented Erd6s-Hajnal conjecture implies our planar graph conjecture and even
a more general conjecture claiming the same upper bound when H has bounded oriented

coloring number (of which planar graph orientations are a special case, see [14]).

This connection enables us to come up with good estimations of z(H) in terms of p(H),
should we validate the oriented Erdés-Hajnal conjecture, at least for some certain forbidden
oriented graphs (Theorem 5.0.22). This makes further motivation to study this conjecture .
A result in [1] states that this conjecture is equivalent to the classic Erdés-Hajnal conjecture
(re-stated in Conjecture 4.0.9) for graphs [7]. Moving along this direction we try to come
up with the oriented analogous of some Erdds-Hajnal related problems stated in [7, 1]
(Theorems 4.0.12,4.0.20,5.2.3). The result of this analysis is the validation of the oriented

Erdés-Hajnal conjecture for some special classes of forbidden oriented graphs (Corollaries
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5.1.5,5.1.6) along with a pseudo-polynomial upper bound in terms of p(H) for z(H), when
H has bounded oriented number (Corollary 4.0.21).

1.2 New results and the thesis structure

A simple argument (Theorem 2.1.1) in the first part of Chapter 2 ensures the existence
of z(IL) with the condition that L. contains at least one acyclic oriented graph. The famous
Erdds-Stone-Simonovits theorem [9] (re-stated in Theorem 2.2.2) states that the maximum
number of edges of a graph on n vertices avoiding a family of forbidden graphs is asymptot-
ically % (Z) with r being the minimum chromatic number among the forbidden graphs. In
the second part of Chapter 2 we show the oriented version of this theorem (Theorem 2.2.8)
with the chromatic number r substituted with the compressibility number parameter: the
maximum number of arcs of any oriented graph on n vertices which avoids all member of
LL is asymptotically (Definition 2.2.3): (j%g:f
(Definition 2.2.4) has order z(L) — 1 and the oriented graphs generated by this matrix are

) (%). Furthermore the optimal matrix for L

certain orientations of the Turdn graphs with z(IL) — 1 parts (Theorem 2.2.8).

In Chapter 3 we well-estimate the value of z(H), in terms of p(H) in most cases, when H
is any orientation of the following classes of graphs: trees (Theorem 3.1.1), cycles (Theorem
3.1.3), unions of internally disjoint paths with shared endpoints (Theorem 3.1.6), complete
(Theorem 3.2.1) and complete bipartite graphs (Theorem 3.2.4). Based on these results we
conjecture that in general z(H) is upper bounded by p(H)? for some constant d when H is

any acyclic orientation of a planar graph (Conjecture 3.1.9).

Chapter 4 is dedicated to the latter conjecture. We show a close connection between the
compressibility number and the order of the biggest transitive sub-tournament in a tourna-
ment avoiding some forbidden tournament (Theorem 4.0.17). This way we link (Corollary
4.0.18) our conjecture for the planar graph orientations and a more general class of graphs
(i.e. the class of oriented graphs with bounded oriented coloring numbers) with the oriented

version of Erdés-Hajnal conjecture formulated in [1] (re-stated in Conjecture 4.0.10).

In Chapter 5 we study some Erdés-Hajnal related problems motivated by the results of the
previous chapter. With a very straightforward argument we convert some results from [7]

(re-stated in Theorem 4.0.19) and [1] (re-stated in Theorem 5.2.2) to their oriented versions
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(Theorems 4.0.20,5.2.3). The conversion of the first theorem (Theorem 4.0.20) ensures a
transitive sub-tournament with pseudo-polynomial order for restricted tournaments. This
leads to the result that z(H) is upper bounded by p(H)#°e?(H) (for some constant d) for any
oriented graph H with bounded oriented coloring number (Corollary 4.0.21). The conversion
of the second theorem (Theorem 5.2.3) gives us a very powerful blow-up construction method
to validate the oriented Erdds-Hajnal conjecture for more oriented graphs composed of the
known ones. We prove this conjecture for any oriented graph of order at most four as well
as any directed cycle as the forbidden oriented graph. Armed with these results we can
validate the conjecture for even more oriented graphs, i.e., all tournaments with the length

of its biggest directed cycle at most four (Corollary 5.2.4).

1.3 Notations

For an oriented graph H, we denote by |V (H)| the order of H. Let v € V(H), we denote
by Nt (v) and N~ (v) the set {u € V(H)|vti} and {u € V(H)|ud}, respectively. |[NT(v)| and
|N~(v)| are called out-degree and in-degree of v in H, respectively. The sum of in-degree
and out-degree of v is called the degree of v. The single arc oriented graph is an oriented
graph with two vertices and an arc between them. A directed walk W = (vg,v1,---,v;) of
order [ in H is defined as a sequence of vertices of H (not necessarily distinct) such that for
every 0 < i < [, v;0;51. We call vy and v; the starting and ending vertex of W, respectively.
At some occasions during this work, we may treat W as a set of its vertices (for instance
when we define a mapping on W or talk about its membership), in this occasions consider
it as the set {vg,v1, -+, v;}. We say W is a directed path if all of its vertices are distinct.
A directed path with an additional arc going from its ending vertex to its starting vertex is

called a directed cycle. Any orientation of a path is called oriented path.



Chapter 2

The nature of compressibility

number

2.1 The existence

In this section we show that when z(L) is well-defined:

Theorem 2.1.1. a) For any finite or infinite family L of oriented graphs, z(IL) has a finite
value if and only if L has at least one acyclic oriented graph. b) Given an acyclic oriented
graph H, z(H) > p(H) + 1

Proof. a) If L contains no acyclic oriented graph, then every transitive tournament avoids
all its members, so z(LL) if not defined. Now suppose H € L is an acyclic oriented graph.
Then according to Erdés-Moser theorem [8], H is homomorphic to any tournament of order
2lVUI=1 " This means z(LL) is upper bounded by 2IV(HI=1 1) Obviously H cannot be
homomorphic to the transitive tournament of order p(H ), as the latter has no oriented walk

of order p(H) + 1, so the inequality follows. O

2.2 Oriented Erdos-Stone-Simonovits

In this section we show the role of compressibility number in extremal oriented graph theory.

Definition 2.2.1. For any family L of graphs and n > 1, we define ex(n,L) to be the biggest

integer k such that there is a graph G with n vertices and k edges which has no member of
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L as sub-graph. All such graphs G which yield this mazrimum are called extremal graphs.
We define €x(n, L) similarly with the notions graph and edge replaced with digraph and are,
respectively. We define exo(n,LL) similar to ex(n,L) with the extra condition of digraph G

being an oriented graph.
Erdés-Stone-Simonovits theorem ([9]) gives the following asymptotic estimation for ex(n,L):

Theorem 2.2.2. For any family L of graphs, let r = minpep {x(F)}. Suppose r > 2. Then

ex(n, L) = <7’: —2+ 0(1)) <Z> (2.1)

where o(1) — 0 as n — o0

Finding a similar estimation for ex(n,L) is more challenging (at least up until now no

good estimation is found):

Definition 2.2.3. (/2]) The sequence S = (Hi, Ha,---) of digraphs with |V (Hy)| = n for
every n > 1, is called a sequence of asymptotic extremal digraphs for L, if no member of S
contains any member of L and: B
5

Definition 2.2.4. ([2/) Givenn > 1 and a matriz A = (a; ;)i j<r with 0 or 1 along the main
diagonal and O or 2 outside of the diagonal. The optimal matrix graph A(n) is a directed
graph on n vertices with mazimum number of arcs such that V(A(n)) can be partitioned into
r classes C1,Cy, - -+, C, satisfying two conditions: First, for all 1 < i # j < r: Ty for every
x € C; and y € C; if and only if a; ; = 2, second, for all 1 <i < r: The induced sub-digraph
of C; is a transitive tournament if a;; = 1 and an empty graph (no arcs) otherwise. If there

are several choices for A(n), pick one of them arbitrary.
Now the main result of [2] concerning the value €x(n,LL) is as follows:

Theorem 2.2.5. ([2]) For any finite or infinite family L of digraphs there exists a matriz

A = (aij)ij<r such that {A(n)},>1 is a sequence of asymptotic extremal digraphs for L.

This result and the techniques used in its proof are not used anywhere in this thesis. So
I do not include its long full proof here and instead, I give a general outline of the proof.

Please refer to the original paper [2] for the complete proof.
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Definition 2.2.6. For an n x n matriz A we define g(A), the density of the matrix A, as
max{uAu~t} where the mazimum is taken over all vectors u = (u1,ug, -+, up) with u; >0
and Y u; = 1.

Proof. (Theorem 2.2.5, A short summary from [2]) Given a matrix A and a family of digraphs
{G"} , we shall say that A is weakly contained by the family {G"} if the maximum m = m,,
for which A(m) C G™ is unbounded as n — oo. Suppose L. = {Lj, Lo, --}. First, a
sequence {Z"},—1 2... of digraphs with following extremal property is defined: for each n,
Z™ avoids the members of I and each of its vertices has degree > d where d is the maximum
integer for which such a sequence of digraphs exists. The aim is to construct a matrix B
which is weakly contained in {Z"},,—; o.... and has maximum density. They show that this
condition guarantees {B(n)}n—=12.. to be a sequence of asymptotic extremal digraphs. To
find such a matrix B, they use the following recursive construction: Suppose the matrix A
is weakly contained by the family {Z"} and g(A) < limsup,,_,., dn/n (dy is the minimum
degree in Z™). Then they construct (in a lemma) a matrix A" which is weakly contained in
{Z"}p=1,,.. and g(A’) > g(A). Now they start from the matrix D, = (2 — d;;); j<, where
0;; is the Kronecker symbol: 1 if ¢ = j and 0 otherwise and r is the largest integer such that
D, is weakly contained in {Z"},—12,... They show that such an r exists. At each step this
construction is applied to the matrix obtained in the last step, until we arrive at a matrix
B where g(B) = limsup,,_,, d,/n. They show that this matrix is obtainable in finite steps.
Note that B(n) avoids all the members of L since B is weakly contained in {Z"},—1 2 ... and
Z™ avoids all the members of L. Next they show that the condition g(B) = limsup,,_, . dn/n

indeed grantees its being a sequence of asymptotic extremal digraphs. O

In our attempt to estimate the value €x(n,LL), we need the oriented graph version of
Definition 2.2.3:

Definition 2.2.7. The sequence S = (Hi, Ha,---) of oriented graphs with |V (Hy)| = n for
every n > 1, is called a sequence of asymptotic extremal oriented graphs for L if no member
of S contains any member of L and:

E(H,
L B

=1.
n—oo ezo(n, L)

We formulate the oriented graph version of Theorem 2.2.5 which contains more infor-

mation about the structure of matrix A owing to the simpler structure of oriented graphs
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compared to digraphs. This extra clarification helps us to come up with a clear asymptotic

estimation for exo(n, L) which is similar to that of Theorem 2.2.2:

Theorem 2.2.8. a) For any finite or infinite family L of oriented graphs, with at least
one acyclic member with more than one arc and z(IL) > 2, there exists a matrix A =
(@ij)ij<zy—1 such that {A(n)}n>1 is a sequence of asymptotic extremal oriented graphs for
L.

b) Furthermore the matriz A has two properties: first, all the entries along the main diagonal
are zero and second, a;; + a;; = 2 for every 1 < i # j < z(L) — 1. In other words, A(n)
(n > 1) is an orientation of the Turdn graph T, .qy—1. Thus:

eo(n, L) = CEB:? + 0(1)> (Z) (2.2)

where o(1) — 0 as n — oo

The comparison of (2.2) in Theorem 2.2.8 to (2.1) in Theorem 2.2.2 implies that com-
pressibility number is the exact substitute for chromatic number when it comes to extremal
problems for graphs and oriented graphs, respectively. The part (a) of Theorem 2.2.8 is ob-
tained by applying Theorem 2.2.5 to the family LU {A} of digraphs where A is the digraph
consisting of two vertices and a pair of symmetric arcs between them. So our proof mainly

targets part (b). We need a Ramsey-type argument before proving this theorem:

Lemma 2.2.9. There exists an unbounded non-decreasing function f : N — N such that, for
everyn > 1 and an arbitrary orientation H of a complete bipartite graph, with parts A and B
having n vertices each, there exist subsets A1 C A and By C B such that |A1| = |B1| = f(n)

and all the arcs between A1 and By have the same orientation.

Proof. Suppose n is large enough such that m = [logn — loglogn| < n (define f(n) =1
for small ns). Choose m arbitrary vertices vy, va,- -, vy, in part A. Make the sets C, C
Cmn-1 C --- C C1 C (Cp recursively as follows: Set Cy = B, for any m > i > 1, C;
is either N1 (v;) N Cy_1 or N~ (v;) N C;—1 depending on which one has bigger size. Then
obviously |C,,| > |B|/2™ > logn. For each v;, all the arcs between this vertex and Cp,
have the same orientation. Then according to the Pigeon hole principle we can find a subset
D C {v1,va,- -, vp} with |D| > m/2 such that, all the arcs between D and C,, have the

same orientation. Since these sets both have the size larger than m/2 we can safely set

f(n) = [m/2]. =
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Proof. (Theorem 2.2.8) Let T,)_; be a tournament on z(L) — 1 vertices avoiding all the
members of L. Let V(T,q)—1) = {v1,va, -, vw)—1} Let A = (ai;); <z1w)—1 be a matrix
with zero along the main diagonal and a;; = 2 if ©;0; and zero otherwise. We claim
that this is the desirable matrix. Given an arbitrary n > 1. Let C1,Cs,---,Cyry-1 be
the vertex classes of V(A(n)) as defined in Definition 2.2.4. Suppose for some H € L,
H — A(n). Let f: V(H) — V(A(n)) be the corresponding homomorphic mapping. Define
the homomorphic mapping g from H to T,)_; as follows: for every h € V/(H) let i be the
index such that, f(h) € C;, then define g(h) = v;. This mapping contradicts the definition
of T1)—1- Thus A(n) avoids all members of L. Let B be a (z(L) — 1) x (2(L) — 1) matrix
such that {B(n)},>1 is a sequence of asymptotic extremal oriented graphs for L. Suppose
{B(n)}n>1 is not a sequence of asymptotic extremal oriented graphs for L. Then we will

have:
_ EBM)
WU B (A )|

This implies that there is an infinite set N1 C N such that:

=b>1 (2.3)

L BB

N T BAmy) 0 (24)

Note that according to the Turdn’s theorem [19, 20] A(n), in order to have the maximum
number of arcs, should be an orientation of the Turdn graph T;, .(1)—1. Pick a large enough
n € Np (later in the proof we will see how large). According to Erdds-Stone theorem ([10]),
(2.4) implies that there exists an unbounded monotone function ¢t : N — N such that,
B(n) contains a certain orientation of the complete z(LL)-partite graph with ¢(n) vertices in
each part. Call this oriented graph W and its parts Wy, Wa, -+, W, ). Run the following
algorithm: Consider an arbitrary order for all the pairs (i,7) with 1 <i < j < z(L). Then
according to this order for each pair (¢,7), in its turn, replace the sets W; and W; with
the sets A; and Bj respectively where the last two sets are obtained by applying Lemma
229 to A= W; and B = W,. Let f be the function defined in this lemma. After this
process, the original oriented graph W will have changed to a smaller oriented graph with
all its arcs between every two parts W; and W; having the same orientation. Let Ty,
be a tournament on z(IL) vertices wy, w2, - -, w,r) such that w;w; (i # j) iff the common
orientation of the arcs between W; and W; in W, is from the latter to the former set.
Then there exists H € I which possesses a homomorphic mapping f : V(H) — V (T, ).
We can easily define a one-to-one homomorphic mapping g : V(H) — V(W) as follows:
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for any h € V(H) suppose f(h) = w;. Then assign an arbitrary vertex in W;, which has
not been assigned yet, to g(h). Such assignment is possible if n is large enough such that
(Wi = £#@=1(t(n)) > |V (H)| (recall f is the function defined in Lemma 2.2.9). Since both
f and t are unbounded monotone functions, we can pick up a large enough n to fulfill the
latter inequality. The consequence is, the mapping g introduces a sub-oriented graph of W
isomorphic to H, in other words B(n) will contain H, contradiction. Thus the assumption
stated in (2.3) is wrong and thus we conclude that {A(n)},>1 is a sequence of asymptotic

extremal oriented graphs. O

Open Question 2.2.10. Adopting the notations defined in this section, in the Erdds-
Simonovits theorem [9], the notion z(L) is replaced with minge{x(G)}. We conjecture
that it is not true in the oriented version, i.e. z(L) # mingep{z(H)} for some family L of

acyclic oriented graphs.



Chapter 3

Compressibility number for some

oriented graphs

3.1 Sparse graphs

The second part of theorem 2.1.1 gives p(H) + 1 as a lower bound for z(H). The results
below show that for some sparse graphs, z(H) is very close, and sometimes equal to this

minimum:
Theorem 3.1.1. Suppose H is an orientation of a tree, then z(H) =p(H)+1 .
To prove this theorem and some others in this thesis, we need the following useful lemma:

Lemma 3.1.2. Assume H is an oriented acyclic graph, then it is homomorphic to transitive

tournament with order p(H) + 1.

Proof. For every v € V(H) define I(v) to be the length of the longest directed path ending
at v. Obviously 0 < [(v) < p(H). Additionally if u? then I(v) > I(u), since due to H being
acyclic, the longest directed path P ending at u of length [(u) can be further extended to
a directed path of length I(u) + 1 by adding the arc ud to P. Now given the transitive
tournament 7' of order p(H) + 1 with the vertex sequence < tg,t1,---,t,z) > where iTt;

when i < j, define the following homomorphic mapping f from H to T: For all v € H,
f(v) = tyw)- O

Proof. (Theorem 3.1.1) Let T be a tournament of order p(H) + 1. If T is transitive, then

H — T according to Lemma 3.1.2. Otherwise T contains a directed cycle C' of order 3.

13
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One can easily see H — C (assign one of the labels 0, 1,2 recursively to the vertices of H
as follows: assign 0 to the root. For a vertex v if its parent w is assigned the label i, then
assign i + 1(mod 3) to v if w¥ and i — 1(mod 3) otherwise. Let ¢, ¢1, ca be vertices of C' in
clockwise order (¢;¢i11,7 = 0, 1,2, index calculations are mod 3). Then map all the vertices
of H with label i [i =0, 1,2] to ¢). O

Theorem 3.1.3. Suppose H is an acyclic orientation of a cycle, then z(H) < max{p(H)+
1,6} .

Definition 3.1.4. Let (s,t) € V(T') x V(T') be a pair of vertices in a tournament T'. For
[ > 0 we say (s,t) accepts a directed walk of order 1 if and only if there exists an order |
directed walk W in T with s and t as its starting and ending vertex, respectively. According
to this, define the accepting set of pair (s,t) as {l|(s,t)accepts a directed walk of order 1}
and denote it by Dr(s,t) (note that if s =t then 0 € Dr(s,t))

Proof. (Theorem 3.1.3) V(H) can be arranged in a sequence A = (hg,h1,---,hn—1) such

that, for 0 < i < n, either h;h;y1 or h;11h; (index calculations are mod n). Since H

itself is acyclic, w.l.o.g. we can assume hohy and hoh,—1. To each vertex h; (0 < i < n),
assign the letter 'f’ if hzh—m) and ’b’ otherwise. In this case hg and h,_; are assigned
'f” and ’b’ respectively. Considering this fact, it’s easy to see that there exists a number
t > 0 and 2t non-empty sequences Fi, By, Fo, Bo, -, F;, By of vertices of H such that
A=F ®B;®---F, ® By (operation @ stands for sequence concatenation) and all vertices
in F; and B; (1 <1 < t) are assigned 'f’ and ’b’, respectively. Let T, be a tournament
with m = max{p(H) + 1,6} vertices. Suppose there exist (s,t) € V(T,) x V(T},) such
that {1,2,---,m — 1} C Dg, (s,t), then we H — T,,, since we can define a homomorphic

mapping f : V(H) — V(T,,) as follows: for every v € V(H) consider two cases:

1. v e F; for some 1 <3<t
Suppose F; = (u1,---,Um,;) and v = u;j. The definition of p(H) yields m; < m — 1,
thus m; € Dr, (s,t), i.e. there is an order m; directed walk from s to t in T,,. Let

W = (wi,wa, -+, wm,+1) be such a walk. Define f(v) = wj.

2. ve B; forsome 1 <¢<t¢
Suppose B; = (u1,- -+, Upy,) and v = uj. With the same argument as the previous
case we conclude that there is a walk W = (wy, we, - - -, Wi, +1) from s to ¢. This time

define f(v) = Wm,;+2—;-
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One can easily check that f is indeed a homomorphic mapping. This argument brings down
our task to proving that there is indeed a pair (s, t) € V(T,) xV(T,,) such that {1,2,---, m—
1} € Dy, (s,t). Tt is easy to see the following additive property: For (s,t), (t,u) € V(T),) X
V(Tw), D1, (s,t) + Dr, (t,u) € D, (s,u) (for two sets X and Y define X +Y = {z +
ylr € X,y € Y}). Now we take the last step. Suppose T, contains a directed cycle of
length 3 and let v be one of its vertices. Then clearly {3k|k > 0} C Dp,(v,v). Suppose
\N;m (v)] > [N, (v)| (the opposite case can be handled similarly). Let F' be the oriented
graph induced by Njfm(v) (Ng, (v)), then |V(F)[ > 3 since m > 6. Thus F' contains
three distinct vertices z,y,z such that Ty and yZ. Then clearly Dr,, (v,2) (D, (z,v))
contains {1,2,3}. By applying the additive property, we can deduce that this set contains
{1,2,3} + D, (v,v) D {1,2,3} + {3k|k > 0} D {1,2,---,m — 1}. So we may assume that
T, is free from directed 3-cycles, and thus a transitive tournament. Let (vg,v1, -+, Um—1)
be an ordering of T, such that 7;0; if and only if ¢ < j. In this case it is quit trivial that

(v, Um—1) is the desired pair. O

Corollary 3.1.5. For any H being an acyclic orientation of a cycle with p(H) > 5, we
have z(H) = p(H) + 1

Note that the case p(H) < 5 in the above corollary may result in z(H) bigger than
p(H) + 1. For example when H is a transitive tournament of order 3 (p(H) = 2,2(H) = 4).

Theorem 3.1.6. Suppose H is an acyclic orientation of a union of vertex disjoint paths
with the same endpoints. Then z(H) = O(p(H)?) for some constant d (independent of H ).

The main tool to prove this theorem is the following lemma:

Lemma 3.1.7. Let L be the tournament consisting of two order 3 directed cycles by, by, ba
and by, by, by with all arcs oriented from b; to b for 0 < 4,j < 2. Let H be an acyclic

orientation of a union of vertex disjoint paths with the same endpoints, then H — L.

Proof. Let u and v be the shared endpoints of the oriented paths in H. w.l.0.g., by choosing
the right labels for the endpoints, we can assume that there is no directed path from v to u
in H. We show that for any oriented path P of order k > 1 with endpoints u and v (except
any directed path from v to ), there is homomorphic mapping f from P to L such that
f(u) = by and f(v) = bj. Obviously by putting all such mappings together for all oriented

paths P in H we get H — L. Let < u = wqp, w1, -+, Wkp_1,w = v > be an arrangement of
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V(P) where for each 1 < i < k either w;,—jw; or w;w;—1. There should be an index r such
that w,_1w,, otherwise P will be a directed path from v to u. Define the oriented paths
Py, P; to be the induced sub-oriented graphs of the subsets {wp, - - -, w,—1} and {wy, - -+, wg }
in P, respectively. Clearly P; is homomorphic to the order 3 directed cycle bg, b1, bo in L.
Let fi be homomorphic mapping corresponding to this homomorphism. We can assume
fi1(wo) = bg. Similarly let fo be the homomorphic mapping from P, to the order 3 directed
cycle bf, b}, b, such that fo(wy) = bj. Then by putting fi and fo together we obtain the

desired homomorphic mapping f from P to L. O

Proof. (Theorem 3.1.6) To complete the proof we need to use some concepts and theorems

expounded in Sections 4 and 5. So we postpone the proof to the end of Section 5. O

Open Question 3.1.8. For which oriented graphs H, z(H) = p(H) + 17 or z(H) =
O(p(H)+1)?

The above oriented graphs are all special cases of planar graphs:

Conjecture 3.1.9. There is a constant d such that for every acyclic orientation H of a
planar graph, we have: z(H) = O(p(H)?).

This conjecture will be discussed in the next chapter.

3.2 Dense graphs

A well known result of Erdés-Moser [8] can be translated as follows:

Theorem 3.2.1. ([8]) Suppose H is a transitive tournament with n vertices, then 2" <
z(H) <2n 1,

Proof. ([8]) By induction on n we show that every tournament of order 2"~! contains a
transitive sub-tournament of order 2"~ !. For n = 1 it is trivial. Suppose the claim holds for

2F=1 with k less than n > 2. Let T be an arbitrary tournament

all tournaments with order
on n vertices. Let v € V(T) such that |[N*(v)| > [N~ (v)|. Such a vertex exists because
2veV(T) INT(v)] = > vevry N7 (v)]. Then the set N7T(v) has a at least 272 vertices.
According to the induction hypothesis it should contain a transitive sub-tournament of order
n — 1. Adding the vertex v to this tournament, we arrive at a transitive sub-tournament of

order n.



CHAPTER 3. COMPRESSIBILITY NUMBER FOR SOME ORIENTED GRAPHS 17

Now suppose that every tournament of order m contains a transitive sub-tournament of
order n. Using a probabilistic argument we will find a lower bound on m. Consider m
distinct vertices. Every tournament on these vertices contains a transitive sub-tournament
of order n which must have one of the (73) subsets as its vertices. Any one of these subsets
in order to be transitive, can be ordered in n! ways. Having fixed the transitive subset
(including its order) we observe that such a transitive subset can appear in exactly 2(5)-(3)
tournaments, since such a tournament is determined by the orientations on its (”21) edges
with (g) of which have already been fixed. Finally, since each of 2(%3) oriented graphs has
a transitive sub-tournament of n vertices we have:

(m)m(@)—(;) > o(%)

n
By using (") < m"/n! we get m > 2%, O

For a,b > 1 the (a,b)-graph is the complete bipartite (simple) graph with a vertices on
one part and b vertices on the other part. We consider acyclic orientations of the (a,b)-
graph. In this case the compressibility number varies widely depending on the orientation.

We attempt to find the worst case:

Definition 3.2.2. For integers a,b, define z(a,b) = max{z(H)} where the mazimum is

taken over all acyclic orientations H of the (a,b)-graph.

Definition 3.2.3. For every integer a, T(a,a + 1) is an orientation of the (a,a + 1)-
graph with two parts A and B such that the elements of A and B can be arranged in a
sequence (x1,x2, -+, xq) and (y1,Y2, -, Yat+1) respectively with these properties: for every
1<i<a+1landi<j<a, yz; and for every 1 <i<a andi < j <a+1, Tyy;. The
oriented graph T'(a,a) is obtained from T(a,a + 1) by eliminating the vertex yg+1.

Theorem 3.2.4. Suppose b > a > 1, then z(a,b) = z(T(a,a + €)) where e =1 if b > a and

zero otherwise.

Proof. Let G be the (a,b)-graph with parts A (JA|] = a) and B. Obviously G can be
oriented in such a way that it contains T'(a,a+€). So z(a,b) > z(T'(a,a+¢€)). Now we show
H — T(a,a+ ¢€), for any acyclic orientation H of the (a,b)-graph. H being acyclic, one can
arrange its vertices in a sequence A =< vy, va, -+, Vs4p > such that there are no indexes

¢ < j such that v;v;. In a similar way define the arrangement B =< uy,ug, -, Ugq4e > for
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the oriented acyclic graph T'(a,a + €). Now define the mapping f : V(H) — V(T (a,a + €))
recursively as follows: f(vi) = uj and for ¢ = 2,---,a + b, suppose f(vi—1) = u;, then
define f(v;) to be u; if v; and v;—1 both belong to the same part of H (i.e. either A or B)
and u;11 otherwise. It is easy to see that this recursion works its way to the end without
encountering any problem and the resulted mapping f is indeed a homomorphic mapping
from H to T'(a,a + €). This implies that z(H) < T'(a,a + €) for every orientation H of the
(a,b)-graph. Thus z(a,b) < z(T(a,a+¢€)) and by combining with the first inequality we get
2(a,b) = 2(T(a,a + ¢€)). O

It is interesting to note that z(T'(a,a + €)) equals to 7(T'(a,a + €))) for € € {0,1} (one

color Ramsey number of T'(a,a+€), see [12]). A similar probabilistic argument to [8] yields:
Theorem 3.2.5. z(T(a,a + €)) > 2%/2.

Proof. (a slight modification of the theorem 3.2.1’s proof given in [8]) Suppose every tour-
nament of order m contains a T'(a,a+¢). We want to find a lower bound on m. Consider m
distinct vertices. Every tournament on these vertices contains a T'(a, a+ €) which must have

one of the ( ) subsets as its vertices. Any one of these subsets in order to be a T'(a, a+¢),

m
2a+€
first must be divided into two parts A and B, having a and b vertices respectively. This can

be done in (2?6)

ways. Then each part must be ordered, this gives al(a + €)! alternatives.
Having fixed the T'(a,a + €) subset (including its order) we observe that such a subset can
appear in exactly 9(%)—ala+e) tournaments, since such a tournament is determined by the
orientations on its (’;) edges with a(a + €) of which have already been fixed. Finally, since

m
2

each of 2(3) oriented graphs contains a T'(a,a + €) we have:

(o ) (2255t patir-ateso o0

2a +¢€ a
By using (") < m?*t¢/(2a + €)! we get m > 2%/2. O

Conjecture 3.2.6. z(T(a,a + €)) < 201700 for e € {0,1}
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Relationship with Erdos-Hajnal

conjecture

For a graph G we say the subset S C V(G) is a homogeneous set if its induced subgraph
is either a clique or a graph with no edges. We denote by hom(G) the size of the largest
homogeneous set in G. Similarly we define hom(7") for a tournament 7" as the size of its
biggest transitive sub-tournament. The classic Erd6s-Hajnal [7] conjecture deals with the
value of hom(G) when G avoids a certain forbidden graph. We say the graph G avoids
another graph F', or is F-free, if it has no induced subgraph isomorphic to F' (see [7]).

Definition 4.0.7. The family of monotone functions {gf : N — N}y_19.. is called an
Erdés-Hajnal function family if for every f > 1, n > 1 and every graph F with size at most
[ the following condition holds: For every size n F-free graph G' we have hom(G) > g¢(n).
The same definition applies to oriented FErdds-Hajnal function family, with F being an
arbitrary oriented graph (with size at most f) and the notions F-free graph G and hom(G)

replaced with F-free tournament T' and hom(T'), respectively.

Definition 4.0.8. We say the oriented graph F' is an oriented Erdés-Hajnal Restriction
(EHR), if there exists a constant ¢(F') such that for every F-free tournament T' on n vertices
hom(T) > nE) . The same definition can be applied to the case when F is a graph. In this
case we say F is an EHR, if there exists a constant c¢(F') such that for every F-free graph

G on n vertices hom(G) > n¢U),

Based on the above definitions, the Erdés-Hajnal conjecture can be formulated as follows:

19
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Conjecture 4.0.9. ([7]) Every graph is an EHR, or equivalently, for every integer f, there

exists a positive integer c(f) such that {nc(f)}le,z... is an Erdés-Hajnal function family.
Alon et al., in [1], introduce the oriented version of the above conjecture:

Conjecture 4.0.10. ([1]) Every oriented graph is an oriented EHR, or equivalently, for
every integer f, there exists a positive integer c(f) such that {nc(f)}f:m,... is an oriented

Erdés-Hajnal function family.
They proved that these two conjectures are equivalent.
Theorem 4.0.11. ([1]) Conjectures 4.0.9 and 4.0.10 are equivalent
Based on their techniques, one can come up with a slightly more generalized statement:

Theorem 4.0.12. Let {gy : N — N} y—1 5 ... be a family of monotone functions. The function
family {g} : N — N}royo.. is defined as g} = Glef310g? f] for every f > 1 where c is a big
enough constant (during the proof we will see how big it should be). Then {g}} s an oriented
Erdds-Hajnal function family if {g¢} is an Erddés-Hagjnal function family. Similarly, {g}} is
an Erdés-Hajnal function family if {gs} is an oriented Erdds-Hajnal function family.

The proof of the above theorem is based on two results from [1] and [15]:

Definition 4.0.13. A graph G with o linear order < on its vertices is called an ordered
graph and denoted by (G, <). An ordered graph (G, <) is a subgraph of another ordered graph
(G', <), if there is a mapping [ : V(G) — V(G") with these two conditions: 1. f(u) <" f(v)
if and only if u <wv, 2. (f(u), f(v)) € E(G') if and only if (u,v) € E(G).

Definition 4.0.14. A tournament T with a linear order < on its vertices is called an ordered

tournament and denoted by (T,<). An ordered tournament (T,<) is a sub-tournament of

another ordered tournament (T', <), if there is a mapping f : V(T) — V(T") with these
_—

two conditions: 1. f(u) <" f(v) if and only if u < v, 2. f(u)f(v) if and only if uv.

Theorem 4.0.15. (/15]) For any ordered graph (G, <) on n vertices, there exists a graph
G’ on O(n3log?®n) vertices such that, for every ordering <' of G', (G, <) is a subgraph of
(G', <.

Theorem 4.0.16. (The oriented version of 4.0.15 [1]) For any ordered tournament (T, <)
on n vertices, there exists a tournament T' on O(n®log?n) such that, for every ordering <'

of T!, (T, <) is a sub-tournament of (T',<').
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The proofs of these two theorems are based on probabilistic method. I do not include
these proofs as they are very long and the techniques are not related to this thesis. The

reader may refer to the original references for the complete proofs.

Proof. (theorem 4.0.12) Suppose {g¢} is an Erdés-Hajnal function family. Let F' be an
arbitrary oriented graph on f vertices. w.l.o.g. we can assume that F' is a tournament.
Define an arbitrary ordering <y on the vertices of F'. Let < vy, vs,---,vy > be the linear
arrangement of V(F') where v; <p v; with ¢ < j. Let G(F,<p) be the ordered graph
obtained from (F, <p) by replacing all arcs v;0; for ¢ < j, with an edge and eliminating
the rest of arcs. Let G’ be the graph obtained by applying Theorem 4.0.15 to the ordered
graph G(F, <p). Now suppose the order n tournament 7" avoids F'. Let <7 be an arbitrary
ordering on the vertices of T' and define the ordered graph G(T,<r) in a similar way to
G(F,<p). Then the graph G(T, <r), without considering its vertex ordering, should avoid
G', otherwise G(T, <r) will contain the ordered sub-graph (G’, <¢) for some ordering <
on the vertices of G’. The definition of G’ implies G(F, <) is an ordered sub-graph of
G(T,<r) which, in turn, means 7' contains F, contradiction. So G(T,<r) contains a
homogeneous set of order gx(n), where k is any upper bound on the number of vertices
of G'. According to Theorem 4.0.15 there is a constant d such that k < [df?log? f]. By
choosing the constant ¢ (in the theorem’s statement) bigger than d, we conclude that the
order of this homogenoues set is at least g}(n) which induces a transitive tournament of the
same order in T'. Thus {g}} is an oriented Erdés-Hajnal function family.

The proof of the second part is very similar. Suppose {gs} is an oriented Erdés-Hajnal
function family and F' be an arbitrary simple graph on f vertices. For an arbitrary ordering
< on the vertices of F'. Let T'(F, <) be the ordered tournament obtained from the ordered
graph (F,<p) =< v1,v2,---,vf > as follows: for every 1 < i < j < f place the arc v;v;
if there is an edge between v; and v; (and remove this edge too), otherwise place the arc
U;U;. Let T' be obtained by applying Theorem 4.0.16 to the ordered tournament T'(F, <p).
Now suppose the order n graph G avoids F. A similar argument to the above show that
T(G,<¢) (defined similar to T(F, <)) should avoid 7”, and thus it contains a transitive
sub-tournament of order gx(n) with k£ being any upper bound on the number of vertices of
T'. By choosing the constant ¢ big enough (in relation to Theorem 4.0.16) one concludes

that G' contains a homogeneous set of order g}(n) O

The following very general theorem shows a direct link between the "Erd6s-Hajnal-type’
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problems and the compressibility number:

Theorem 4.0.17. Let {g¢}s=12.. be an oriented Erdds-Hajnal function family and H be
an acyclic oriented graph whose oriented coloring number is at most r. Define k as the

smallest integer such that gr(k) > p(H) + 1 Then we have z(H) < k.

Proof. Let T be an arbitrary tournament of size k. Since x,(H) < r, there should be an
oriented graph H' on at most r vertices such that H — H’. If T contains H' then it means
H — T and we are done. If T avoids H’, then it contains a transitive sub-tournament 7’
with g,(k) > p(H)+ 1 vertices. Then according to Lemma 3.1.2 H — T” which again means
H—-T. O

Corollary 4.0.18. Assuming Congecture 4.0.9 (or equivalently 4.0.10), for every class of
oriented graphs H with oriented coloring number not exceeding a constant b, there is a
constant d(b) such that z(H) = O(p(H)*®). In particular the conjecture 3.1.9 follows as

planar graph orientations have bounded oriented coloring number (see [14]).

Proof. Let {n<(} f=1,2,. be an oriented Erdds-Hajnal function family as described in Con-
jecture 4.0.10. Applying Theorem 4.0.17 for this function family, we get k = [(p(H) +
1)1/¢®7 and the corollary follows by placing d(b) = 1/¢(b). O

Additionally the above corollary holds for other families of oriented graphs with bounded
oriented coloring number such as oriented graphs with bounded degree, or tree width, or
genus (see [11, 13, 17, 18]).

Erdés and Hajnal, in [7], proved a weaker version of conjecture 4.0.9:

Theorem 4.0.19. ([7]) For every graph F', there exists a constant c¢(F) such that for every
F-free graph G on n vertices: hom(G) > 9c(F)Vlogn

The techniques used in the proof of this theorem are not used anywhere in this thesis.
So I do not include its long full proof here and instead, I give a general outline of the proof.

Please refer to the original paper [7] for the complete proof.

Proof. (Theorem 4.0.19, A short summary from [7]) They define by induction a family I
of graphs, which is called co-graphs, as follows: Initially I' contains the graph with one
vertex. Assume G1,Gy € I Then G € T where V(G) = V(G1) UV (Gy) and E(G) is
either E(G1) U E(G2) or E(G1) U E(G2) U E*, in which E* = {(u1,u2) : u1 € V(G1),us €
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V(G2)}. Let f = |V(F)|. A simple observation is for H € T', hom(H) > |V (H)|'/2.
Thus it is sufficient to show that every F-free graph G on n vertices contains a members
of I' with order at least g(n) = V15"~ K for some constant ¢ (depending on F) and
K = (flog2+ 2log f)/f. This claim is proofed by induction on n. The key lemma used
for this induction states that if an order n graph G avoids F', then it contains two large
(in terms of n, f and a free variable used for optimization) disjoint vertex subsets A and B
such that either each vertex of A is connected to many vertices of B (i.e. almost complete
bipartite graph) or each vertex of A is connected to a few vertices of B (i.e. almost an empty
bipartite graph). Then applying the induction hypothesis to A, we get that A contains an
order g(|A|) subset A; with its induced subgraph being in I". Then, based on the property
of A, B, they find a large subset By of B which either each vertex of A; is connected to each
vertex of By or no vertex of A; is connected to any vertex of B;. Now applying the induction
hypothesis to By, we get an order g(|B1]|) subset By of By with its induced subgraph being
in I'. Putting A; and Bj together gives us a member of I' again (see the definition of I") of
order |A1| + |B2| = g(|A]) + ¢g(|B1|). Then the values of |A| and |B;| being large enough,
they prove that g(|A|) + g(|B1]|) is indeed > g(n) and we are done. O

One can easily convert it to its oriented analogous:

Theorem 4.0.20. For every oriented graph F', there exists a constant ¢/ (F') such that every

F-free tournament T with n vertices contains a transitive sub-tournament whose size is at

least 2¢ (F)Vlogn

Proof. Theorem 4.0.19 states that there is a function d : N — R such that, {gf(n) =
[2d(f)vIogn] }f=1,2,... is an Erd6s-Hajnal function family. Applying Theorem 4.0.12, we are
led to the oriented Erdds-Hajnal function family {g}(n)} defined as g};(n) = g1, s3 1542 41 (7)) =
[Qd((cfglog fDViogn] " Thus we just need to define d'(f) = d([cf?log? f]) and ¢(F) =
IV (F)). n

This provides us with the oriented Erdés-Hajnal function family {g;(n) = 2¢'()vicen} . o
where ¢(f) = min{c/(F)} with minimum taken over all oriented graphs F' with at most f

vertices. By plugging this function family into theorem 4.0.17 we get:

Corollary 4.0.21. For every oriented graph H with oriented coloring number bounded by
a constant b (in particular planar graphs’ orientations), there is a constant d(b) such that
2(H) = 0(p(H)d(b) logp(H))‘
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Proof.

, log(p(H)+1) log 3
gp(k) = 27OVIEF > b (H) 41 = k= [(p(H) +1) “®7 | = d(b) =

" log2- c(b)?



Chapter 5

Some oriented Erdos-Hajnal

problems

Theorem 4.0.17 motivates us to find as many oriented EHRs as possible. The following

theorem gives a more specific relation between conjecture 3.1.9 and oriented EHRs:

Theorem 5.0.22. For every family I of oriented graphs, if there exists a finite set X of
oriented EHRs such that, for every H € L.: H — X for some X € X, then there exists a
constant d such that z(H) = O(p(H)?) for every H € L.

Proof. For every X € X let ¢(X) be the constant that is defined in Definition 4.0.8. Let
¢ = minxex{c(X)} and define d = [1/c]. For an arbitrary H € L, let X € X be the oriented
graph such that H — X. Let T be any tournament of order (p(H) 4 1)%. If T contains X,
then H — T. Otherwise, X being an oriented EHR, T contains a transitive sub-tournament
T’ of order |V(T)|**) > p(H)+ 1. Then according to Lemma 3.1.2, H will be homeomorph
to T” and thus H — T again. O

Open Question 5.0.23. Is there any finite set X of oriented EHRs such that, for every
acyclic orientation H of a planar graph, H — X with X € X(The affirmative answer to
this question immediately implies Congjecture 3.1.9).

5.1 Partitioning restrictions

Definition 5.1.1. The vertex cut (A, B) of the oriented graph H, with none of A and B

being empty, is called an oriented cut, if all the arcs of the cut, if there is any, are oriented

25
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from A to B.

Definition 5.1.2. The oriented graph F of order f > 3 is called a partitioning restriction

if every F'-free tournament of order at least f has an oriented cut.

For example every directed cycle is a partitioning restriction (see theorem 5.1.4). The

implication is:
Theorem 5.1.3. Fvery partitioning restriction is an oriented EHR.

Proof. By induction on n we show that every tournament T" with n > 2 vertices avoiding
a partitioning restriction F' of order f > 2, contains a transitive sub-tournament of order
[%#] + 2 and thus F' should be an oriented EHR. It’s easy to check it when n < f, since
every such tournament has a 2-transitive sub-tournament. Now suppose T is of order at
least f and the claim holds for all smaller tournaments. Since 7' avoids F', according to
the definition of F, T has an oriented cut (A, B). Let T} and T3 be the largest transitive
sub-tournament of the sub-tournaments induced by A and B respectively. Let T™* be the
induced sub-tournament of V(71) U V(T3). Trivially 7™ is transitive. w.lo.g. assume
V(Th) > V(Tz) > 1. If |[V(T3)| = 1 then we must have |B| = 1. This means |A| =
n — 1 > 2. Thus by applying the induction hypothesis to the induced graph of A we get:
V(T = [V(TV)| + [V(T2)| > %3] +2+ 1> %] +2. Now suppose |V(T)| > 2. The
apply the induction hypothesis to both induced graphs of A and B, we’ll have: |V(T%)| =

V@) + [V(T2) > [ +2+ B+ 2> 2]+ 2. So the inductive argument follows. [
Here we introduce one family of partitioning restrictions:
Theorem 5.1.4. Fvery directed cycle C of order ¢ > 3 is a partitioning restriction.

Proof. Let T be a tournament of order n > 2 avoiding C. If ¢ = 3 then C is transitive and
trivially we are done. So we may assume that ¢ > 4 and T has a cycle of length 3. Let k
be the largest number < ¢, such that T contains a cycle K of order k. Obviously k < c.
Let vg,v1,- -+, vk_1 be the vertices of K in the clockwise order. For each v € V(T') — V(K),
either NT(v)NV(K) =0 or N~ (v)NV(K) = . For otherwise, there are z,y € V(K) such
that 70 and 7. K being a cycle, we can easily deduce that there is an index 0 < i < k
such that v;0 and vv;77 (index calculations are all mod k). Then we have the directed cycle
V, V41, Vit2, - - v; of order k+1. Contradicting the definition of k. Let AT and A~ be the set
of vertices v for which N~ (v)NV(K) = 0 and N (v)NV(K) = 0, respectively. The previous
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argument states ATUA™ = V(T)—V (K). We claim that all the arcs between AT and A~ are
oriented from the former to the latter. Otherwise there are u € AT and w € A~ such that
wt. Then the directed cycle u, vg_1,vg_2, -+, v1,w has length k+1. Again the definition of
k is violated. Either A" or A~ is nonempty, since [ATUA™|=|V(T)-V(K)|=n—k > 1.
Call the nonempty one A. Then it’s easy to see that either (A, V(T') — A) or (V(T) — A, A)

is an oriented cut. O

Corollary 5.1.5. Every directed cycle is an oriented EHR.
Corollary 5.1.6. Every oriented graph F with at most four vertices is an oriented FHR.

Proof. W.L.G we can assume F' is a tournament. It is trivial when |[V(F)| < 2. When
|V(F)| = 3, F is either a transitive tournament (an obvious oriented EHR) or a directed
cycle. In the latter case ¢(F) = 1. Now suppose |V (F')| = 4. Suppose F' contains a vertex
v with either in-degree or out-degree zero. Let F’ be obtained from F by deleting v. Let
A be the single arc oriented graph. Then F is isomorphic to A(v, F') (refer to 5.2.1 for the
definition). Knowing that both A and F’ are oriented EHRs, by applying Theorem 5.2.3
(in the next subsection) we conclude that so is F'. Let T be an arbitrary tournament on n
vertices. If it avoids the order 4 directed cycle, then according to Corollary 5.1.5 it contains
a transitive sub-tournament of order n® for some constant ¢. Now suppose 1" contains a
directed cycle with vertex set X = {xg,x1,z2, 23} where T;z;11 for all i = 0,---,3 (index
calculations are mod 4). Then if F' does not contain such a vertex v, a simple argument
shows that F' — T'|x. Thus we can set ¢(F') = c. O

5.2 A constructive method

A powerful constructive method in [1] enables us to make new EHRs, out of the known
EHRs.

Definition 5.2.1. For any graph G with V(G) = {vi,ve,---,vx} and k other graphs
Fi, Fy, -+, Fy, we define G(Fy, Fy,---, F}) as the graph obtained from G by replacing each
v; with a copy of F;, and joining any vertex of the copy of F; to any vertex of a copy of F; ,
J # 1, if and only if viv; € E(H). Similarly we define H(Fy, F,---, Fy,), for oriented graphs
H Fy,Fy, -, F with V(H) = {v1,v2,---,v;}, by replacing each v; with a copy of F; and
joining each vertex in F; to each vertex Fj, i # j, with an arc oriented from the former set

to the latter set if and only if U;0;.
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Theorem 5.2.2. ([1]) If G, Fy,- -, Fy, are simple EHRs, then so is G(Fy, Fy, - -, F},).
Similar to theorem 4.0.20, one can come up with its oriented version:
Theorem 5.2.3. If H, F,- -, Fy, are oriented EHRs, then so is H(Fy, Fa, -+, F}).

The proof of the above theorem is easily obtained from the proof of Theorem 5.2.2
by replacing the terminologies for graphs with that of oriented graphs. More precisely,
for a vertex v in a graph, the notions of set {u : w and v are adjacent} and set {u :
w and v are not adjacent} must be replaced with the notions NT(v) and N~ (v), respec-

tively in the oriented version of the proof (in which v will be a vertex in an oriented graph).

Proof. (Theorem 5.2.3. Oriented version of the theorem 5.2.2’s proof given in [1]) Let
V(H) = {vi,v2,---,v}. Obviously, it is sufficient to show that H(Fi,ve,---,vx) is an
oriented EHR. Let Hy denote the oriented graph obtained from H by the deletion of v;.
For simplicity, write H(Fy) for H(Fy,ve,---,v). Let T be an H(F})-free tournament with
n vertices, and assume that hom(T) < n°)% (¢(H) is the constant defined in Definition
4.0.8). We would like to get a contradiction, provided that § > 0 is sufficiently small.
Let m = [n%] > k. By the definition of ¢(H), any m-element subset of U C V(T) must
contain H. Otherwise, we would find a transitive sub-tournament of order > m¢¥) which

is impossible. Therefore, T" has at least ( ) / ("71C

- m_k) induced sub-oriented graphs isomorphic
to H. For each of these sub-graphs, fix an isomorphic mapping from H into 7. Since the
number of mappings from Hy to T is smaller than n(n — 1)---(n — k 4 2), there exists a

mapping, which can be extended to an isomorphic mapping of H to T in at least

(m)
M=— m (5.1)
(P )n(n—1)---(n—k+2)
different ways. In other words, there are k — 1 vertices v5, - --, v, € V(T'), and there exists

an at least M-element subset W C V(T') such that, for every w € W:

f(vl):waf(vi):vg(i:zf"’k)

is an isomorphic mapping from H to T. Consider now the sub-tournament 7’|y of T induced
by W. This tournament must be Fj-free, otherwise 7" would not be H(F})-free. Since F}
an oriented EHR, we know that the order of

hom (T |y) > |[W[eUD) > pretf)
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On the other hand:
n > hom(T) > hom(T|w)

Comparing the last two inequalities and plugging in the value (5.1) for M, we obtain that:

" —k+1
peCH)/e(F) - (;n) _ n + S plokd

m—Fk

which gives the desired contradiction, provided that:

c(F)
c(H)+k-c(F)

o<

O]

Corollary 5.2.4. Every tournament F, with the order of its largest directed cycle at most
four, is an oriented EHR.

Proof. Induction on the order of F. For |V (F')| < 4 the claim holds according to Corollary
5.1.6. Assume |V (F')| > 5. Since F' avoids the length 5 directed cycle, then according to
Theorem 5.1.4 F contains an oriented cut (B, C). B and C are both tournaments with order
smaller than the order of F' and contain no directed cycle larger than 4. So according to
the induction hypothesis both are oriented EFH Rs. Let A be the single arc oriented graph.
Then applying Theorem 5.2.3 we conclude that F' = A(B,C) (Definition 5.2.1) is also an
oriented EHR. t

Conjecture 5.2.5. Fvery oriented graph F', with the order of its largest directed cycle less
than four, is an oriented FHR.

Now we can give the proof of Theorem 3.1.6:

Proof. (Theorem 3.1.6) Let A and B be the single arc oriented graph and the order 3
directed cycle, respectively. Then we observe that the tournament L defined in Lemma
3.1.7 is exactly A(B, B) (Definition 5.2.1). Note that both A and B are oriented EHRs, so
according to Theorem 5.2.3, L = A(B, B) is an oriented EHR too. Now applying Theorem
5.0.22, for the family of oriented graphs H and X = {L}, guarantees the existence of such

constant d. O
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