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ABSTRACT 

Many current models of categorization assume full knowledge of the 

properties of the stimulus to be categorized. To remedy this situation, it is first 

necessary to understand how humans categorize stimuli with missing 

information. To that end, two visual category learning experiments were 

conducted using an inverse base-rate effect paradigm. In the second experiment, 

transfer trials included stimuli in which a category-diagnostic present/absent 

feature was occluded. Response proportions showed that people tend to treat 

occluded features as being absent from the stimulus, suggesting a more general 

tendency to assign default values to features of unknown status at the time of 

categorization. This pattern of results could not be replicated by several 

computational models – EXIT, SUSTAIN, or EXALT, a modification of EXIT 

implementing additive similarity.  

 
Keywords:  categorization; visual cognition; visual completion; object 
recognition; occlusion; missing information 
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1: INTRODUCTION 

Imagine that you are driving down the street toward a busy intersection 

when you see a red, rounded metal object with windows, doors, two wheels, and 

a bumper with a winch on it poking out from behind the corner of a nearby 

building. You would probably recognize this as the front end of a pickup truck, 

waiting for a break in traffic to turn right at the intersection. The building that 

blocks your view of the rest of the pickup probably hides two more wheels, a 

truck bed, and perhaps a canopy – but how do you know this? Did you infer what 

the rest of the vehicle might look like from your classification of it as a pickup 

truck, or did you decide that a truck bed and wheels are most likely present due 

to the jacked-up suspension and winch on the front, and only then categorize it 

as a pickup based on that inference? This question concerns the nature of the 

interaction of two distinct psychological processes: categorization and 

completion. Categorization is the process by which objects are classified as 

members of one category or another – for instance, the object in the above 

example is classified as a member of the category “truck.” Completion is the 

perception of partially visible objects as a unified whole through extension and 

interpolation of available visual information, such as contours and surfaces. With 

a few notable exceptions, previous research in visual categorization has been 

limited to stimuli with all their relevant features visible; similarly, the majority of 

the completion literature has focused on simple stimuli, such as lines and 
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geometric shapes, rather than complex real-world objects. While these are both 

eminently sensible approaches, they appear to have led to some neglect of the 

connection between the two processes. Exactly how we come to a categorization 

decision for a partially visible complex object remains largely uninvestigated. 

Completion is broadly necessary for adaptive functioning in the world, as 

visual input is often fragmentary and incomplete. Completion takes this imperfect 

sensory input and shapes it into unified object representations. Although there is 

some debate as to whether completion is a unitary process or is actually served 

by separable neural subsystems (e.g. Kellman, 2003; Albert, 2007), for the 

purposes of phenomenology it is generally subdivided into the component 

processes of modal and amodal completion. A familiar example of modal 

completion is the Kanizsa illusory square (see Figure 1, left) – it seems as though 

the contours of the “square” outside of the notched circles are actually visible, in 

spite of the fact that they have no physical counterpart in the image itself. Modal 

completion, then, is the interpolative process by which separate object contours 

and surfaces are connected with one another in a perceptually salient manner. 

In contrast, amodal completion does not induce illusory contours; rather, it 

allows partially occluded objects (see Figure 1, right) to be perceived as a whole 

object, rather than as an object fragment (Kellman, 2003). Thus, a square 

partially occluded by a circle is not perceived as a square with a rounded chunk 

missing; rather, it is seen as a whole square with a circle in front of it (Johnson & 

Olshausen, 2005). The contours of the square behind the circle are not visible, 

but we infer that they are there regardless, and can easily and reliably determine 
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where they would lie. Amodal completion effects are observed with a high degree 

of reliability in the presence of relative depth cues indicating that one object 

occludes another, and has obvious adaptive value for real-world functioning. It 

has been observed not only in adult humans, but also in pigeons (Nagasaka, 

Lazareva, & Wasserman, 2007), and its presence has been demonstrated in 

young children after the age of five or six months (Otsuka, Kanazawa, & 

Yamaguchi, 2006). 

Figure 1:  The Kanizsa illusory square, an example of modal completion (left); a square 
partly occluded by a circle, exemplifying amodal completion (right). 

 

As alluded to above, much of the previous work on completion processes 

has focused on low-level perceptual stimuli, such as elementary geometric 

shapes or simple line drawings (e.g. Albert, 2007; He & Nakayama, 1993; de Wit, 

Schlooz, & Hulstijn, 2007; Rauschenberger, Lu, Slotnick, & Yantis, 2006; 

Scheessele & Chaaban, 2008; Kellman, Gutman, & Wickens, 2001). One attempt 

to extend amodal completion beyond simple contour interpolation involves the 



 

 4

idea of global completion – completion based on broader stimulus properties, 

such as symmetry, rather than on the extension of local contours. While Kellman 

(2003) expressed skepticism regarding the amenability of amodal completion to 

such relatively high-level perceptual processes, Plomp and van Leeuwen (2006) 

found evidence to the contrary: in a primed same/different task, test pairs 

consistent with a global amodal-completion interpretation of ambiguous 

composite primes led to faster responses than did test pairs consistent with local 

amodal completion interpretations. However, maximizing symmetry is quite 

clearly not the usual approach to completion in the environment; seeing the head 

of a tiger poking out from behind an occluding tree does not lead us to believe 

that there is an identical tiger head lurking behind the tree! 

Despite the extensive research on both categorization and completion 

processes, it remains unclear how partially visible complex objects are 

categorized. That question is the focus of the present study – specifically, what 

inferences do people make about hidden object components that are useful for 

categorization? To return to an earlier example, a truck bed is highly relevant in 

categorizing a vehicle as a pickup truck versus a minivan, but how do we factor 

the presence or absence of a truck bed into a categorization decision if it is 

unseen? Previous work on this issue has suggested that missing information is 

used in categorization decisions by inferring a kind of mean value for unknown 

features (e.g. Ganzach & Krantz, 1990; White & Koehler, 2004). For instance, if 

we wish to categorize a particular vehicle as being a truck or a minivan, the size 

of the engine may be relevant. If we do not know the engine size, we might 
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somehow accord it the mean value of all the engine sizes we’ve seen, and then 

use that inferred value as the basis for a categorization decision.  

However, it is not clear how widely this finding can be applied. As a 

representative example, White and Koehler (2004) found evidence for mean-

value inference in a probability-based disease-diagnosis paradigm in which it 

was impossible to obtain perfect accuracy, and no cue was universally category-

diagnostic. This may have encouraged a hedging strategy, while a more 

deterministic system of feature-category associations could induce a stronger 

assumption as to the value of a missing feature. In addition, disease diagnosis 

uses abstract symptom descriptions as features rather than visual stimuli, and 

recent work by Johnson and Olshausen (2005) indicates that there is a 

qualitative difference between how missing information and occluded information 

are processed. Since occlusion can induce completion, it seems plausible that 

occluding a stimulus feature could lead to a stronger inference of a particular 

feature value than would be elicited by simply stating that its value is unknown. 

At any rate, there should be some involvement of categorization or 

recognition processes in the completion of complex visual stimuli in a naturalistic 

setting, otherwise completion would likely be of limited practical use. Kellman 

(2003) proposed a system of Recognition by Partial Information (RPI), by which a 

familiar occluded object is recognized or judged to most likely be symmetrical 

based on whatever information is visually available, and subsequently completed 

based on this inference. Thus, in Kellman’s view, recognition is an intermediate 

stage between initial presentation and completion of complex visual stimuli. 



 

 6

Although RPI was invoked specifically as an explanation for post-perceptual 

global completion effects in the absence of symmetry as a contributor to initial 

amodal completion, it could quite plausibly be extended to more complex visual 

stimuli. A partially occluded natural object could be categorized on the basis of its 

visible category-diagnostic features, and then completed by “filling in” the missing 

information based on previously stored exemplars of the chosen category. This 

would be a case of categorization informing the completion process, although 

completion in this case would be quite different from modal completion of a 

Kanisza square or amodal completion of a simple occluded geometric shape. 

RPI, then, has some promise as a model for completion of complex 

stimuli. The question of how exactly to categorize the occluded stimuli, however, 

was not specified by Kellman (2003). Although there are many candidates for a 

plausible model of categorization or recognition, it is an unfortunate assumption 

of many such current models that all properties of a visually presented stimulus 

are known and available for making a categorization decision – that is, the 

models do not account for missing information (e.g. ALCOVE, Kruschke, 1992; 

EXIT, Kruschke, 2001). One model that is explicitly equipped to account for 

missing data is ADDCOVE (Verguts, Ameel, & Storms, 2004), an extension of 

Kruschke’s (1992) ALCOVE model which computes the similarity of a stimulus to 

stored exemplars additively rather than through a standard geometric (Euclidean 

or city-block) distance function. In ADDCOVE, the similarity of two exemplars is 

roughly equal to the weighted sum of all matching components; missing features 

are simply not included in this summation. In contrast, ALCOVE computes 
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similarity according to the distance between the two exemplars in a 

multidimensional space. In spite of the fact that it does not incorporate previous 

findings regarding the inference of mean values for unknown features, 

ADDCOVE accounts for human data from tasks with missing information much 

better than does ALCOVE, and performs at least as well as its predecessor in 

fitting data from a standard categorization task (Verguts et al., 2004). 

A second possible route for the completion of complex occluded stimuli 

involves using visible features to infer the structure of unseen stimulus features, 

and categorizing the object on the basis of a combination of visible and inferred 

components – perhaps the partial stimulus is compared to previously stored 

exemplars, and is completed using values for the missing features taken from its 

nearest neighbour in a collapsed multidimensional space. Rauschenberger et al. 

(2006) found that amodal completion occurs fairly early in the visual stream, 

which makes it at least somewhat plausible that completion may take place 

before categorization. Indeed, there are indications that this may be the case for 

complex objects; for instance, Johnson and Olshausen (2005) found that images 

of common objects, such as chairs or violins, are more easily recognized when 

parts of them are occluded than when the same components are simply deleted 

from the image. 

ERP studies have demonstrated the plausibility of completion informing 

categorization of complex objects. Johnson and Olshausen’s Experiment 2 

(2003) found differences in occipitoparietal cortical activation patterns between 

partially occluded and partially deleted images as early as 130ms after initial 
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stimulus presentation, suggesting that completion effects occur quite early in the 

visual stream. Animal studies appear to support this assessment; single-cell 

recordings of macaque V1 cells show that completion effects may occur as early 

as 100ms after stimulus onset (Lee, 2003), though in more naturalistic settings 

this would likely be delayed somewhat by the necessity of processing depth cues 

in the scene in order to determine appropriate targets for completion (Johnson & 

Olshausen, 2003). In contrast, the neural correlates of categorization or 

recognition processes seem to occur a good deal later: Philiastides and Sajda 

(2005) found that the major occipitotemporal EEG component thought to be 

involved with the consideration of evidence in categorizing a visual stimulus 

occurred between 300 and 450 milliseconds after stimulus presentation. A 

related component, the well-known N170 involved with face processing, did 

appear much earlier in the visual stream (around 170ms); however, this 

component was highly stimulus-specific and did not appear to be correlated with 

the latency of psychophysical performance on the categorization task. The 

apparent temporal separation of completion and categorization processes, even 

for complex objects, lends plausibility to the hypothesis that the former may 

inform the latter. 

Why would it be at all advantageous to infer the presence of category-

diagnostic features rather than simply applying a category label to an object on 

the basis of what is immediately visible? Making inferences about the unseen 

features of an object before categorizing it does not extract any new information 

from the stimulus itself, and would at first seem to be an unnecessary 
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intermediate step that could be easily dispensed with. Although this is 

undoubtedly true in many cases, there are situations in which inferences about 

occluded category-diagnostic features could change the categorization decision 

made about the object – perhaps for the better. For instance, in the inverse base-

rate effect (IBRE; Medin & Edelson, 1988), the presence or absence of an 

imperfectly diagnostic but previously omnipresent feature in a transfer task has a 

considerable effect on categorization decisions. If the existence of such a feature 

were made ambiguous through occlusion, a completion effect that infers the 

presence of the feature would change the way in which the stimulus is 

categorized. 

The IBRE is a rather perplexing effect in which people categorize an 

ambiguous stimulus counter to the principles of normative Bayesian reasoning. A 

particular combination of features that provides equal evidence for membership 

in a common category and a rare one leads, paradoxically, to a preponderance 

of rare-category classifications. A simplified example (Kruschke, 1996) involves a 

simulated medical diagnosis task with two diseases: one common and one rare 

(the usual ratio of cases of the common disease to cases of the rare disease is 

3:1, though this varies – see Shanks, 1992). Subjects are asked to diagnose a 

patient with one of these diseases, based on the presence or absence of three 

symptoms. Symptom “I” (Imperfectly diagnostic) is always present in both 

diseases, symptom “PC” (Perfectly diagnostic of the Common disease) is always 

present in the common disease, and symptom “PR” (Perfectly diagnostic of the 

Rare disease) is always present in the rare one. Thus, the common disease is 
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always characterized by symptoms I+PC (say, headaches and dizziness), and 

the rare one is characterized by symptoms I+PR (headaches and nausea). I is 

thus an imperfectly diagnostic cue, as it occurs in both diseases, and would 

presumably be irrelevant to a categorization decision. Subjects are trained in this 

category structure until a learning criterion is reached, at which point they are 

tested on a number of novel symptom combinations, including three ambiguous 

combinations: I, I+PC+PR, and PC+PR. Patients with symptom I only or with all 

three symptoms are most often diagnosed as having the common disease, in 

accordance with base rates. However, when participants are asked to diagnose a 

patient with symptoms PC+PR only, they choose the rare disease more often 

than the common disease, contrary to the principles of normative Bayesian 

reasoning. This is the inverse base-rate effect. 

It should be noted that Medin and Edelson (1988) actually used three such 

pairs of rare and common diseases, for a total of six. In contrast, Johansen, 

Fouquet, and Shanks (2007; Experiment 1) had only one such pair, while 

Kruschke (1996) had two. The issue of exactly how many categories to use is a 

complex one; in a medical diagnosis task with verbally or textually presented 

stimuli, one pair of diseases seems to suffice. However, having more than two 

categories serves to increase task difficulty, and is necessary in versions of the 

IBRE paradigm that employ visual stimuli. For instance, Lamberts and Kent 

(2007) used images of microorganisms rather than descriptions of diseases. 

Microorganism species C1 and R1 were characterized by PC1+I1 and PR1+I1 

respectively, whereas species C2 and R2 were characterized by PC2+I2 and 
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PR2+I2. Having multiple category pairs is necessary when the stimuli are 

presented visually, so that the imperfectly diagnostic features are distinguishable 

from the invariant structure of the stimulus during training, and are thus seen as 

potentially useful features for categorization. Including multiple category pairs 

does influence the diagnosticity of the imperfectly diagnostic feature to some 

degree; the presence of a certain I-feature will effectively narrow the field of 

possible categories from some arbitrary number to only two, and could potentially 

be considered useful for a kind of superordinate categorization. Fortunately, this 

does not seem to impact the reliability of the IBRE; in accordance with previous 

work, Lamberts and Kent found a robust difference between PC+PR and 

I+PC+PR. 

Why does the IBRE occur? Kruschke (1996, 2001) explained the effect as 

the result of cue competition between symptoms and rapidly shifting attention, as 

exemplified by models such as RASHNL (Kruschke & Johansen, 1999). This 

explanation is supported by the fact that the IBRE only arises when the 

imperfectly diagnostic cue (I) is present. The difference in base rates causes the 

common disease to be learned more quickly, and to be associated with 

symptoms I and PC. When the rare disease is learned, attention rapidly shifts 

away from symptom I as it is now recognized as not being category-diagnostic; 

however, due to cue competition (Kruschke, 1996), the association with the 

common disease is still split between I and PC. Thus, the association between 

PR and the rare disease will be stronger than the association between PC and 

the common disease, and the stimulus PC+PR will be more likely to evoke a 
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“rare” response. In this account of the IBRE, then, base rates in themselves are 

not an essential component; rather, the effect arises as a result of divided 

attention and learning one category before another (however, base rates are 

taken into account when presented with the I+PC+PR stimulus, resulting in a 

greater proportion of common responses). Indeed, in a paradigm with equal base 

rates, Bohil, Maddox, and Markman (2005) observed an effect analogous to the 

IBRE – a preference for one category over another when presented with both 

perfectly-diagnostic features – when the PR-equivalent cue was made much 

more salient than the others. In the same study, the equivalent of I+PC+PR also 

yielded a greater proportion of common responses. This result, among others, 

appears to provide evidence against the strictly rule-based eliminative-inference 

explanation for the IBRE put forward by Winman and colleagues (e.g. Winman, 

Wennerholm, & Juslin, 2003; Winman, Wennerholm, Juslin, & Shanks, 2005). 

 Theoretical explanations for the IBRE aside, it is abundantly clear that an 

ambiguous stimulus will elicit very different responses when symptom I is present 

compared to when it is not. The stimulus I+PC+PR is most often categorized as 

the common disease, while PC+PR is most often classified as the rare disease. 

This abstract category structure, translated into a visual medium along the lines 

of Lamberts and Kent (2007), affords a unique opportunity to investigate the 

nature of the completion-categorization relationship. If participants are trained in 

the IBRE category structure and presented with a transfer stimulus in which the 

PR and PC cues are present but the area where the I cue usually appears is 

occluded, their categorization decisions will reveal the presence or absence of 
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completion before categorization. If complex stimuli are completed based on 

previously seen stored exemplars before a categorization decision is made, 

participants should complete the stimulus as possessing feature I, since I would 

have been present in all training exemplars containing PC or PR. Categorization 

of the completed stimulus I+PC+PR would then yield a preference for the more 

common category. In contrast, if the stimulus is not completed prior to the 

categorization decision, participants would categorize based on only the visible 

features PC+PR, leading to an observable inverse base-rate effect – a 

preference for the rare category. If participants infer a mean value for the I-

feature, in accordance with the findings of White and Koehler (2004), 

categorization responses to an occluded stimulus should fall somewhere 

between the two. There are reasons to expect that this latter possibility is not the 

case, however – a mean value for a present/absent feature is unlikely to make 

much sense, and in general people make predictions based on what they feel is 

most likely to be the case, while completely discounting plausible alternatives 

(Ross & Murphy, 1996). 
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2: EXPERIMENT 1 

Although several studies have been conducted on the IBRE, very few (e.g. 

Lamberts & Kent, 2007) have used visual stimuli rather than abstract disease 

descriptions. It was thus unclear whether the stimulus set developed for the 

present study would be appropriate for the task. As such, it was deemed prudent 

to demonstrate that this particular stimulus set could indeed produce an IBRE. If 

no IBRE was observed in a simple task involving the new stimuli, using the IBRE 

to determine the nature of the relationship between categorization and 

completion would be quite fruitless. Experiment 1, then, was an attempt at a 

simple replication of the effect with the current stimulus set. A positive result 

would ensure that the stimuli were appropriate for the larger task at hand. 

2.1 Method 

2.1.1 Participants 

Participants were 40 undergraduate students from Simon Fraser 

University who participated in exchange for course credit in introductory 

psychology courses. No demographic variables were thought likely to have any 

impact upon the validity of the proposed research, and as such no restrictions on 

participation were imposed except for a requirement of normal or corrected-to-

normal vision, as Experiment 1 was centered on making judgments regarding the 

category membership of visually presented images. 
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2.1.2 Materials 

2.1.2.1 Equipment 

All testing was conducted using iMac computers running Windows XP, 

located in individual, dimly lit, sound-dampened rooms. The computer program 

used to carry out the experiment was written using E-Prime 2.0 by the author. 

Participants seated themselves at a comfortable distance from the monitor, and 

responses were given using the computer mouse. 

2.1.2.2 Stimuli 

The visual stimuli used were created using the computer game Spore 

(Wright, 2008), and comprised semi-realistic computer-generated images of 

walking, ostrich-like birds approximately 300 pixels in width by 400 pixels in 

height (see Figure 2, left). The birds varied on six unique binary-valued 

dimensions, determined by the presence or absence of certain physical features: 

a feathered plume on the bird’s head, a ridged protrusion on the neck, a shark-

like fin on the back, a pair of claws on the lower legs, a cluster of spikes on the 

body, and a large, rounded tail.  
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Figure 2: Composite training stimuli showing all six features for Experiments 1 (left) and 
2 (right). Category-diagnostic features include a feather on the head, neck 
ridge, claws, shark-like fin, body spikes, and tail. Wing, beak, feet, and other 
features are category-invariant. 

 

The category structure followed Kruschke (1996). There were four 

separate bird species, each of which had its own perfectly diagnostic cue and 

shared an imperfectly diagnostic cue with one other bird (see Table 1). The base 

rates with which each species was presented during training followed previous 

work on the inverse base-rate effect: two species were designated as common 

and two as rare, with the common species appearing three times as often as the 

rare species. There was no variation within species in the training task, and 

feature assignment was counterbalanced such that each feature represented 

each abstract cue an equal number of times across subjects (for instance, the 

claws represented I to some subjects, PC, to others, and PR to the rest). Three 

different images of each exemplar were used in training, showing the same 

stimulus against a plain black background with subtle differences in posture; for 

the transfer phase, two different images of each bird were used, each of which 

appeared against a background of grass and trees. 
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Table 1: Sample category structure for Experiment 1 training phase. 

Species Frequency Nondiagnostic 
feature (I) 

Diagnostic 
feature (PC/PR) 

Peruvian Common Feather on head Spikes on body 
Bolivian Rare Feather on head Rounded tail 
Chilean Common Ridged neck Fin on back 
Mexican Rare Ridged neck Curved claws 

2.1.3 Procedure 

2.1.3.1 Training 

Participants were instructed that four new, related species of flightless bird 

have been discovered in Latin America, and that they must learn which birds 

belong to which species: Bolivian, Peruvian, Mexican, and Chilean. Training took 

the form of a self-paced supervised category learning task, in which the 

participant would see a bird, select an answer after making a decision about the 

bird’s category membership, and be given corrective feedback before moving on 

to the next trial. The training phase was divided into twelve randomized blocks of 

eight trials each for a total of 96 trials; each block consisted of three exemplars of 

each common species and one of each rare species. An early learning criterion 

was implemented, whereby 24 consecutive correct answers would result in an 

early termination of the learning phase. 

2.1.3.2 Transfer 

Once the training phase ended, the transfer phase would begin. 

Participants were informed that they would see a series of photographs of birds 

taken by an amateur photographer somewhere in South America, and must 

decide on the basis of these photos which species the birds belong to. The 

transfer stimuli were all novel, and had the abstract structures I, PC, PR, PC+PR, 
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and I+PC+PR. This mirrors the transfer phase of Kruschke’s (1996) Experiment 

1, excluding the stimuli that combine cues from multiple category pairs (I1+PC2, 

PC1+PR2, etc.). For instance, consider a case where feature I is a feathered 

plume on the bird’s head, feature PC is a shark-like fin on the back, and feature 

PR is a rounded tail. Thus, the stimulus PC+PR would be a bird with a fin, a tail, 

and no feather on its head. Each transfer stimulus was presented twice for each 

category pair, for a total of 20 transfer trials. Response options were the same as 

in the learning phase – Bolivian, Chilean, Mexican, and Peruvian – but no 

feedback was given after the answer was provided for each trial..  

2.2 Results 

All statistical analyses were conducted using SPSS 15.0 statistics 

software. The mean response proportions for each abstract transfer stimulus 

were obtained. Category pair membership was taken into account such that the 

response to each stimulus was classified as common versus rare, and consistent 

versus inconsistent with the category pair implied by the visible features. For 

example, categorizing a bird with features I1+PC1+PR1 as species C1 or R1 would 

be consistent with implied category pair membership, whereas categorizing the 

same bird as a member of species C2 or R2 would be inconsistent. This allowed 

response proportions to be collapsed across category pairs, greatly simplifying 

analysis. Following Medin and Edelson (1988), an IBRE was considered to exist 

if the stimulus characterized by the ambiguous I+PC+PR feature combination 

produced a higher proportion of common category responses than the equally 
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ambiguous PC+PR stimulus; this was tested using a paired-samples one-tailed t-

test.  

Consistent with the presence of an IBRE, the I+PC+PR stimulus was 

categorized as a member of the consistent common category 40.6% of the time, 

while the PC+PR stimulus was categorized as such only 23.8% of the time (see 

Table 2). The difference was statistically significant, t(39) = 4.281, p < .001. It 

could potentially be argued that this difference was an artifact of a discrepancy in 

the proportion of consistent-category responses, either rare or common, between 

the two stimuli; while PC+PR was categorized as a member of either consistent 

category 86.9% of the time, I+PC+PR was categorized as such 92.5% of the 

time. However, this difference is quite small in magnitude, and in any event did 

not reach significance, t(39) = 1.548, p > .15. The proportion of consistent 

common categorizations for the I+PC+PR stimulus was not significantly different 

from 50%, t(39) = -1.891, p = .066; at best, it is a marginal difference, and not in 

the normative direction.  

Table 2: Categorization response proportions to transfer stimuli in Experiment 1. 

Stimulus Consistent 
common Consistent rare Inconsistent 

I 63.1 14.3 22.6 
I+PC+PR 40.6 51.9 7.5 
PC+PR 23.7 63.1 13.2 

2.3 Discussion 

The robust difference between category responses to I+PC+PR and 

PC+PR indicates a strong IBRE, an encouraging sign for the use of this stimulus 
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set in Experiment 2. However, there appears to be a systematic bias in the 

responses - in previous research, I+PC+PR has generally been categorized as a 

member of the common category more often than as a member of the rare 

category (e.g. Lamberts & Kent, 2007; Kruschke, 2001). This discrepancy was 

likely due to a systematic salience advantage of the PR feature. While this would 

not do any great injury to the validity of a study focusing on the IBRE, equating 

salience across features would likely provide a significant advantage in reducing 

error variance across category structures and in more closely fitting the 

assumptions of computational models such as EXIT (Kruschke, 2001). 

Further examination of the data revealed consistent differences in 

response proportions across the three different feature assignments. When the 

head and tail were the two PC features, the proportion of common category 

responses was quite high – 64.3% for I+PC+PR and 51.8% for PC+PR. When 

the tail or head was used as an I feature, the difference between PC+PR and 

I+PC+PR became quite large – a mean of 19.3%, compared to 12.5% when the I 

features were the claws and body-spikes. This seems to suggest that the head 

and tail possessed a much higher initial salience than the other stimulus features.  

In an attempt to more closely equate salience across stimulus features, 

two modifications were made to the stimulus set – the size of the head-feather 

feature was decreased, as was the size of the tail (see Figure 2, right). It was 

suspected that these changes would give the head and tail features less initial 

salience in Experiment 2, though it seems likely that a significant amount of their 

salience originated from their position on the bird. Being at the extreme ends of 
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the bird, they were inherently quite noticeable, perhaps much more so than 

medial features such as claws. 
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3: EXPERIMENT 2 

Experiment 2 had the same general structure as Experiment 1, though its 

purpose was to directly test the relationship between categorization and 

completion rather than to validate the stimulus set. This was achieved by adding 

an additional transfer stimulus, ?+PC+PR, which included the PC and PR 

features, but with an opaque occluder, such as a tree or a rock, blocking the 

participant’s view of the I feature (see Figure 3). With the imperfectly diagnostic 

feature thus occluded, the nature of the responses to ?+PC+PR would provide 

important insight into how we categorize partially visible objects. If ?+PC+PR 

were categorized in a similar manner to I+PC+PR, it would suggest that people 

attempt to make informed inferences about the likely value of hidden features 

from previously stored exemplars, and take the inferred feature values into 

account when making a categorization decision. Conversely, a close 

resemblance in response proportions between PC+PR and ?+PC+PR would 

suggest that people simply categorize based on immediately available 

information, and would treat missing features as though they were absent. A 

result somewhere between the two would indicate that people remain agnostic 

regarding the value of hidden features – or infer a mean value (White & Koehler, 

2004) – and adjust their categorization decisions accordingly. The second option 

would be the outcome predicted by RPI (Kellman, 2003), though the first seems 

plausible as well.  
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Figure 3: A sample transfer stimulus from Experiment 2 with the head feature occluded. 

 

To further elucidate the processes underlying high-level completion of 

complex objects, a recognition test was also administered as part of Experiment 

2. Although the imperfectly diagnostic feature would not have been seen during 

the learning phase, there is a qualitative difference between an absent feature 

and a feature whose presence or absence is unknown (Verguts et al., 2004). 

Thus, chance responding on the recognition test would suggest either a lack of 

completion effects, as both outcomes would seem equally familiar, or mean-

value completion as suggested by White and Koehler (2004). 
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3.1 Method 

3.1.1 Participants 

42 undergraduate students from Simon Fraser University agreed to 

participate in Experiment 2 in exchange for either course credit or a cup of coffee 

and a doughnut. Three of the participants did not yield useable data due to 

computer-related difficulties; as such, the sample size for statistical purposes 

was 39. 

3.1.2 Materials 

The materials for Experiment 2 were essentially identical to those used in 

Experiment 1, with the exception of the novel transfer stimulus ?+PC+PR and the 

changes in the head and tail features. The learning phase was substantially the 

same as in Experiment 1, but the transfer task was split into three distinct 

phases: a categorization task involving the occluded stimuli alone, a recognition 

test, and finally, a series of transfer trials identical to those in Experiment 1. 

3.2 Results 

3.2.1 IBRE replication 

To detect the presence or absence of an IBRE, it suffices to test whether 

the proportion of common-species responses was greater for the I+PC+PR 

stimulus or for the PC+PR stimulus. Consistent with the hypothesis, PC+PR was 

categorized as a member of the common species less often than was I+PC+PR 

(28.2% vs. 39.7%), t(38) = 2.262, p < .05 (see Table 3). 
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Table 3: Human categorization response proportions to transfer stimuli in Experiment 
2. 

Stimulus Consistent 
common 

Consistent 
rare 

Inconsistent 
common 

Inconsistent 
rare 

I 60.3 21.2 14.1 4.5 
I+PC+PR 39.7 55.1 3.8 1.3 
PC+PR 28.2 66.0 1.9 3.8 
?+PC+PR 28.2 65.4 1.3 5.1 
PC 73.1 4.5 16.7 5.8 
PR 7.7 82.7 5.1 4.5 

3.2.2 Occluded stimulus 

The primary concern of the present study was whether the partially 

occluded stimulus ?+PC+PR was categorized in a more similar fashion to 

PC+PR or to I+PC+PR (see Figure 4). In fact, the proportions of consistent 

common responses to PC+PR and ?+PC+PR were identical (28.2% and 28.2%), 

t(38) = 0.00, p = 1.00, while ?+PC+PR was categorized as common significantly 

less often than was I+PC+PR (28.2% vs. 39.7%), t(38) = 1.780, p < .05 (one-

tailed). 



 

 26

Figure 4:  Response proportions (consistent categories only) to the three critical 
transfer stimuli in Experiment 2. Error bars represent standard error. 
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3.2.3 Recognition test 

It was originally predicted that the recognition test, administered just after 

the occluded-stimulus transfer trials, would reveal a general preference for the 

I+PC+PR stimulus. In fact, this was not the case; participants responded that the 

PC+PR bird looked more familiar than the I+PC+PR bird 57.7% of the time. 

However, this was not a statistically reliable departure from chance, χ2(1) = 

1.846, p > .15. 

3.3 Discussion 

In one sense, the occluded-stimulus transfer trial results are in accordance 

with the prediction made by the RPI framework. When a stimulus feature was 



 

 27

occluded, the stimulus was categorized almost exactly as though it were a fully 

visible, otherwise identical stimulus from which the same feature was absent. 

People do not appear to make informed inferences about the value of hidden 

features, and in this sense, the stimulus is categorized strictly on the basis of 

partial information. In another sense, though, RPI is not a good description of the 

completion of complex occluded objects. When a category-diagnostic feature is 

occluded, people tend to assume the absence of unseen features – to 

extrapolate the general structure of the stimulus, but to infer the presence of 

nothing beyond that – and to use that inference in categorization. 

The pattern of responses to the recognition trials is somewhat 

unexpected, and may be due to demand characteristics. In order to avoid 

showing participants possible completions of the occluded stimulus before the 

recognition test, the recognition trials came immediately after the occluded 

stimuli. This provision may have rendered the purpose of the recognition test 

rather obvious; participants, seeing a bird hidden behind a tree and then being 

asked to choose two possible completions of that bird, could very easily guess 

the purpose of the test. At any rate, the results are somewhat equivocal; there 

was no significant preference for either bird. 

A perplexing discrepancy between this result and those of earlier IBRE 

studies is the fact that both I+PC+PR and PC+PR elicited comparatively few 

common-species responses; indeed, they were both categorized as rare a 

majority of the time (55.1% and 66.0%, respectively). Again it seems likely that 

this is an effect of salience; such an effect could result from a much stronger 
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association between PR and the rare category than between PC and the 

common category. As was suspected to be the case in Experiment 1, such a 

difference in associative strength could well be the result of systematic salience 

differences between features. Although Experiment 1 was devised with the 

specific aim of remedying this issue, it would appear that the stimulus 

modifications did not do much to mitigate the salience problem. At any rate, a 

global deviation in response proportions is of little importance to the central aim 

of Experiment 2; as long as there is a reliable difference in response proportions 

between I+PC+PR and PC+PR, the two stimuli can be used as a fruitful basis for 

comparison with the partially occluded stimulus ?+PC+PR. 
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4: COMPUTATIONAL MODELING 

The question of modeling human performance in Experiment 2 is a 

complicated one. In recent years there has been a great expansion in the 

number and scope of available models of human category learning, allowing 

models to accurately predict increasingly diverse human datasets. For instance, 

ALCOVE (Kruschke, 1992), though one of the most robust exemplar-based 

connectionist models available for many years (Kurtz, 2007), cannot account for 

base-rate effects (Kruschke, 1996) and has no obvious way to handle incomplete 

input – stimuli with one or more features of unknown valuation. The base-rate 

issue was addressed by Kruschke with the ADIT model (1996), whose extension, 

EXIT, includes a selective attention mechanism and has been shown to provide a 

good fit for data from several category learning experiments in animals and 

humans (Kruschke, 2001). Incomplete information, however, remained a problem 

for the ALCOVE lineage of models until the development of ADDCOVE several 

years later (Verguts et al., 2004). 

The problem of handling unknown feature values is arguably inherent to 

the distance metric used in models such as ALCOVE and EXIT (Verguts et al., 

2004). Stimuli in these two exemplar-based models are encoded as discrete 

points in an n-dimensional psychological space (where n is the number of object 

features), such that an exemplar’s position along a certain dimension is 

equivalent to its value on the corresponding dimension. The perceptual similarity 
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between two points in the space is said to be equivalent to the distance between 

them, computed either using a Euclidean (as in ALCOVE) or city-block (as in 

EXIT) metric. Tversky (1977) presented several arguments against the utility of 

the geometric distance assumption and proposed two alternatives: the contrast 

model, which instead computes the similarity between two stimuli based on the 

number of shared and distinctive features they possess, and the ratio model, 

which expresses similarity as the ratio of matching to nonmatching features. 

These two approaches fall under the umbrella of additive methods of computing 

similarity – each additional common feature adds to the total similarity between 

the two stimuli being compared. This is in contrast to geometric distance-based 

methods of measuring similarity, in which adding a common feature to two stimuli 

produces no change in the perceived similarity between them.  

Among the problems remedied by an additive approach to similarity is the 

issue of comparing two stimuli with different numbers of known feature values. 

For instance, assume that stimulus A has feature values [1 0], while stimulus B 

has feature values [1 ?] (“?” representing an unknown feature valuation – 

perhaps the second feature in stimulus B is occluded). A model using geometric 

distance to compute similarity would have no way of directly comparing these two 

stimuli, as the position of stimulus B along the second dimension is 

indeterminate. The only solution would seem to be to collapse the space such 

that the second feature is not taken into account, and compare the stimuli on the 

basis of the first feature alone. Since the distance between 1 and 1 is zero, the 

stimuli should be judged to be the same. This leads to the curious prediction that 
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there should be no difference in perceived similarity between [1 ?] and [1 0] on 

the one hand and [1 0] and [1 0] on the other, as the distance is zero in both 

cases. Verguts et al. (2004) tested exactly this prediction in their Experiment 1, 

and unsurprisingly found it to be false.  

To address this shortcoming, Verguts et al. (2004) devised the ADDCOVE 

model, a modification of ALCOVE. Whereas ALCOVE uses a Euclidean distance 

computation to determine the similarity of two exemplars, ADDCOVE employs an 

additive feature-matching similarity metric reminiscent of Tversky’s ratio model 

(Tversky, 1977). By design, ADDCOVE is much better equipped than its 

predecessor to handle stimuli with missing data. In the situation described above, 

[1 0] and [1 ?] have only one matching feature out of a possible two, while [1 0] 

and [1 0] have two matching features out of a possible two, making the latter pair 

the more similar of the two. This is made possible by, among other things, 

doubling the number of nodes at the input layer. In ALCOVE and EXIT, the 

presence or absence of each feature is indicated by the activation or 

nonactivation of a single node. In contrast, each feature in ADDCOVE is 

represented by two nodes: one is active when the feature is present, the other 

when it is absent. If it is not known whether the feature is present or absent, 

neither node is activated, rendering the feature unable to contribute to additive 

similarity. 

Unfortunately, no current model of categorization is known to be able to 

both handle missing features and reproduce base-rate effects observed in 

human data. While EXIT’s rapid attentional shifting and attention to base rates 
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produce a close fit to human data in the inverse base-rate effect and apparent 

base-rate neglect paradigms (Kruschke, 1996), its geometric distance-based 

method of computing similarity will most likely render it unable to fit human 

performance on trials with incomplete stimulus information, as in the transfer 

phase of Experiment 2. Conversely, ADDCOVE solves the problem of missing 

information, but is quite similar to ALCOVE in its general structure (Verguts et al., 

2004). Like its predecessor, then, it is unlikely to produce an acceptable fit to 

human data when base rates are uneven, as is the case in the present study.  

One possibility for a model that can solve both of these problems is 

SUSTAIN (Love et al., 2004), which employs an additive method of comparing 

probes to stored stimulus clusters. Although SUSTAIN is a connectionist model, 

it employs a clustering-based architecture quite distinct from that of the ALCOVE 

lineage of exemplar models, and may conceivably be able to accurately model 

human performance in the inverse base-rate effect and apparent base-rate 

neglect paradigms. To the authors’ knowledge, however, no data yet exists 

regarding SUSTAIN’s effectiveness in modeling either of these effects. 

Another solution is to develop a new model that is to EXIT as ADDCOVE 

is to ALCOVE – that is, a version of EXIT with a feature-matching rather than a 

geometric-distance similarity measure. Such a model would provide a solution to 

both of the above issues, and if found to be a good model of performance, may 

aid in generating useful hypotheses for future work in this area. Following the 

tradition of rather strained acronyms for models of category learning (for 

instance, ALCOVE stands for Attention Learning COVEring map and EXIT 
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stands for EXtended adIT), the new model is entitled EXALT, for EXit with 

Additive simiLariTy.  

Thus, the goodness of fit of all three models – SUSTAIN, EXIT, and 

EXALT – to human performance data in Experiment 2 was examined. It was 

predicted that SUSTAIN and EXALT would provide better fits than EXIT due to 

their reliance on additive similarity.  

4.1 Method 

The present study’s implementation of the EXIT model, done in MATLAB, 

was essentially identical to the version used by Kruschke (2001) as a comparison 

against the eliminative-inference model of Juslin et al. (ELMO; 1999). Aside from 

the data used as input, the only substantive difference between the two versions 

lay in the exemplar-input similarity computation; since the original EXIT code did 

not have a specific provision for dealing with missing data, a conditional 

statement was added such that any missing input feature would not contribute to 

the city-block distance between exemplars and inputs, effectively treating missing 

features as matching features (following Verguts et al., 2004).  

EXALT was developed through minor modifications to the original EXIT 

code: first, an additive similarity metric replaced EXIT’s city-block distance 

computation; second, the format of the input was changed such that each feature 

was represented by two nodes – one of which was active when the feature was 

present, the other active when it was absent, and neither active when the feature 

value was unknown (see Figure 5 for an illustration of the model’s architecture; 
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see also Appendix A for a full specification of the differences between EXIT and 

EXALT). 

Figure 5:  Architecture of the EXALT connectionist model. 

 

Both EXIT and EXALT were fit to human data using constrained function-

minimization with a Nelder-Mead simplex algorithm. The models both had seven 

free parameters, which were constrained such that none was allowed to 

approach zero or to be too large (see Appendix B for details of the constraints). 
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This decision was motivated by two factors: first, by considerations of model 

plausibility (for example, an unconstrained fit of EXIT to the data produced a 

good qualitative fit, but only when the attentional capacity parameter was allowed 

to take an extraordinarily high value); second, by the fact that a zero value for 

many of the parameters would obviate large chunks of model architecture (for 

instance, an exemplar-specificity of zero in EXIT or EXALT would cause all 

exemplars to be equally activated by any stimulus, while a zero value for bias 

salience would render both models unable to account for base-rate effects). 

Model fit for each iteration of the function-minimization algorithm was determined 

by computing the root mean-squared deviation (RMSD) between the model’s 

response proportions on the transfer task and the corresponding human data. 

The code for the SUSTAIN model, written in Python 2.4, was originally 

developed to model learning curves from the seminal category-learning study of 

Shepard, Hovland, and Jenkins (1966; Love et al., 2004). Substantial 

modifications to the provided program were required in order to bring the model 

in line with the requirements of the present study; although the basic architecture 

of SUSTAIN remained unchanged, it was necessary to rewrite segments of the 

code in order to allow for the existence of a transfer phase, and to implement a 

comparison between computer- and human-generated response proportions 

rather than an examination of learning rates and block-by-block accuracy. As 

with EXIT and EXALT, a simplex function-minimization algorithm was used to 

find local minima, with appropriate constraints applied to SUSTAIN’s four free 

parameters. 
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For all three models, best-fitting parameters were obtained through 

minimization of RMSD. Since there is no general solution whereby a global 

function minimum can be found, simplex minimization tends to get caught in local 

minima; as such, multiple initial parameter values were used in order to attempt a 

best-fit convergence from several independent directions. A full listing of 

parameter constraints, function minimization starting points, and resulting RMSD 

values is provided in Appendix B. 

4.2 Results 

4.2.1 Fit of EXIT 

An unconstrained fit of EXIT was obtained using the initial parameters in 

Experiment 2 of Kruschke (2001); in addition, two constrained simulations were 

run. One started from the eventual best-fitting parameters in the same 

experiment, the other from the minimum values for each parameter. Local 

minima were found in each case, though a different result was obtained each 

time. 

The best fitting parameters (c = 0.152, P = 3.932, ψ = 3.192, λg = 4.787, 

λw = 0.357, λx = 0.247, σ1 = 1.4862), derived from a constrained minimization 

starting at the final parameters used in Experiment 2 of Kruschke (2001), 

resulted in a total RMSD of 4.01 (see Table 4). In spite of the relatively close fit, 

the model was not able to capture some of the qualitative patterns of the data. Of 

greatest interest is the preponderance of common categorizations of the 

occluded stimulus ?+PC+PR; it was categorized as common more often (31.1%) 
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than either PC+PR (27.7%) or I+PC+PR (28.8%), which were quite close to one 

another. While most of the parameter values in this fit are eminently reasonable, 

one that stands out is the bias-salience free parameter (σ1) which represents the 

salience of the response prompt relative to the features of the stimulus. Here, the 

best-fitting value for bias salience was 1.49, which is considerably greater than 

the salience of each cue (1.0 by default) – a seemingly unlikely scenario, and a 

value over a hundred times greater than the best-fitting value of 0.0143 obtained 

by Kruschke (2001). 

Table 4: Best fit of EXIT to human transfer data from Experiment 2 

Stimulus  Consistent 
common 

Consistent 
rare 

Inconsistent 
common 

Inconsistent 
rare 

I  55.8 23.4 11.3 9.5 
I+PC+PR  28.8 62.9 4.2 4.2 
PC+PR  27.7 62.9 4.7 4.6 
?+PC+PR  31.1 62.5 3.1 3.2 
PC  76.9 6.6 8.8 7.8 
PR  4.7 83.0 6.3 5.9 

4.2.2 Fit of EXALT 

As with EXIT, the EXALT model was run using several different initial 

parameter values. One unconstrained run was performed starting at the initial 

parameter values used by Kruschke (2001), as well as several constrained runs 

with different starting points. 

The best fitting parameters in EXALT (c = 0.406, P = 2.822, ψ = 6.553, λg 

= 0.587, λw = 0.123, λx = 0.102, σ1 = 0.015) yielded an RMSD of 3.34, a slightly 

better fit than was obtained using EXIT (see Table 5). However, the relative 

response proportions for PC+PR, I+PC+PR, and ?+PC+PR are not quite in line 
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with the human data (see Figure 6); all three are quite similar to one another, and 

?+PC+PR actually lies in between the other two. The parameters required to 

obtain this fit are in line with what one would expect from the model; while the 

choice-decisiveness parameter is somewhat high, it is not overly so, and the best 

fitting bias salience is nearly identical to the result obtained by Kruschke (2001).  

Table 5: Best fit of EXALT to human transfer data from Experiment 2 

Stimulus  Consistent 
common 

Consistent 
rare 

Inconsistent 
common 

Inconsistent 
rare 

I  64.6 14.5 15.1 5.7 
I+PC+PR  33.4 60.6 2.9 3.1 
PC+PR  31.0 60.4 4.7 3.9 
?+PC+PR  31.8 55.3 6.2 6.8 
PC  61.7 2.6 20.3 4.2 
PR  8.5 78.4 8.1 5.0 
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Figure 6:  Each model’s best-fitting proportion of consistent common category 
responses to the three critical transfer stimuli in Experiment 2, with human 
data for comparison. 
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4.2.3 Fit of SUSTAIN 

Although the SUSTAIN model was successfully implemented, function 

minimization proved quite difficult. In spite of the fact that SUSTAIN has only four 

free parameters, the shape of the function was such that the minimization 

program was unable to find a consistent local minimum. Attempts to solve this 

issue were in vain; increasing the number of simulated subjects did not improve 

the situation, and other minimization algorithms built into the same module 

yielded the same result. An alternative minimization module was not forthcoming 

for a compatible version of the Python language. Due to this unforeseen difficulty, 

SUSTAIN failed to converge to a solution; however, the simulation was run from 
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several different starting points in an attempt to find a local minimum. 

The resulting best fitting parameters (r = 1.388, β = 2.635, d = 3.480, η = 

0.556) did not produce response proportions approaching the accuracy of EXIT 

or EXALT, with an RMSD of 54.023 (see Table 6). The proportion of consistent 

common responses was considerably lower for ?+PC+PR than for either of the 

other ambiguous transfer stimuli, indicating that SUSTAIN provides neither a 

good qualitative nor quantitative fit to the data.  

Table 6: Best fit of SUSTAIN to human transfer data from Experiment 2 

Stimulus  Consistent 
common 

Consistent 
rare 

Inconsistent 
common 

Inconsistent 
rare 

I  47.3 26.0 14.3 12.6 
I+PC+PR  54.7 26.6 9.5 9.3 
PC+PR  47.1 27.4 12.8 12.8 
?+PC+PR  32.4 45.3 10.8 11.6 
PC  78.9 6.5 7.5 7.1 
PR  8.5 74.1 8.5 8.9 

4.3 Discussion 

The relative inability of SUSTAIN, EXIT, and EXALT to provide a good 

qualitative fit for the critical data indicates that there exists a discrepancy 

between the architecture of each model and the way in which humans respond to 

missing data. Indeed, this could be anticipated by looking at the provisions that 

each model makes for unknown feature values. Due to its reliance on city-block 

distance as a way of calculating exemplar activation, EXIT counts a missing 

feature as a matching feature across all exemplars – that is, for the occluded 

transfer task in the present study, the missing feature did not serve to 

differentiate the input from any of the four previously stored exemplars. As such, 
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EXIT’s response proportions varied rather unpredictably; in one simulation, the 

proportion of common responses for ?+PC+PR was higher than that of either 

I+PC+PR or PC+PR; in another, it was the lowest of the three; in yet another, all 

three of those transfer stimuli elicited an approximately equal number of 

consistent common categorizations. 

In contrast to its predecessor, EXALT produced a fairly consistent pattern 

of responses to the occluded transfer stimulus across several model fitting 

attempts. Unlike EXIT, however, EXALT produces no additional exemplar 

activation when a feature value is unknown – that feature simply does not factor 

into exemplar similarity computations at all. As such, EXALT effectively remains 

agnostic as to the presence or absence of the unknown feature, which resulted in 

a proportion of consistent common responses to ?+PC+PR that fell in between 

the values for PC+PR and I+PC+PR.  

 Finally, the technical difficulties with SUSTAIN was make it difficult to draw 

strong conclusions about the model’s suitability for tasks involving missing data. 

What results were obtained were not encouraging, however, and much like 

EXALT and ADDCOVE before it, it essentially implements a form of additive 

similarity. Each cluster has a receptive field for each cue, and the closer a cue’s 

value is to the center of that receptive field, the more activation it produces for 

the cluster. A missing feature would produce no activation at all; indeed, a 

provision for this exact situation is built directly into the model. Like EXALT, then, 

SUSTAIN essentially remains agnostic about the identity of missing features. The 

results of the present study indicate that this is not a good approximation of how 
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people categorize objects with unknown features; rather, they seem to make the 

positive assumption that the unseen features are absent. 
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5: GENERAL DISCUSSION 

The results of the present study, particularly of Experiment 2, point to a 

previously unexpressed tendency in human visual categorization. Although 

Kellman’s (2004) formulation of complex-object completion as a kind of 

recognition by partial information could be argued to be correct, the way in which 

that recognition happens is something that existing models simply cannot 

approximate: partially visible stimuli are generally categorized as though unseen 

category-diagnostic features are absent. This only appears to be the case at a 

particular value of feature diagnosticity, however. To illustrate this, it would 

perhaps be instructive to return to an example from the beginning of the present 

study, of a pickup truck whose back end is occluded by a building. 

The object can immediately be categorized as some kind of motor vehicle, 

based on the visible features – headlights, wheels, and a driver sitting behind a 

steering wheel. From the results of Experiment 2, it seems likely that the gross 

stimulus structure – the presence of wheels, windows, and so on – is inferred 

based on what is visible, with help from low-level completion processes such as 

contour and surface extension. If it is not immediately obvious to which 

subordinate category the vehicle belongs (pickup truck, minivan, sports car, etc.), 

the precise identity of those features, as well as other identifying markings that 

might lead to subordinate categorization, may be set to particular default values. 

This can be seen in the results for Experiment 2; there is no indication that 
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people perceived the partially occluded stimuli as belonging to a novel stimulus 

class, such as headless birds or wildlife bisected by trees. Recognizing that they 

had the general structure of other birds seen in the experiment, participants 

categorized the birds on a superordinate level, completed the overall structure of 

the birds accordingly (assuming the presence of a head, of feet, etc.) and 

subsequently set the appropriate unknown features to their default values before 

making a subordinate categorization decision (were the birds Chilean, Bolivian, 

Peruvian, or Mexican?). Completion of a stimulus region containing category-

diagnostic features could thus be termed default-feature completion (DFC) – the 

general structure is inferred based on superordinate categorization, and 

important features are set to some default value.  

If DFC is a generally accurate description of the categorization of partially 

occluded objects, further elucidation of the process by which it takes place could 

be fruitfully dealt with in future research. The precise identity of the default values 

is one question – if the feature values of the bird stimuli used here were 

“inverted” such that features were present by default, and their absence was 

significant for category membership, the default value for completed features 

would not be immediately clear a priori. If such an experiment was conducted 

and features were perceived as present when occluded, it would suggest that the 

least informative feature value is used as the default. On the other hand, if the 

stimuli were categorized as though the occluded features were absent, it would 

suggest that the default assumption is absence, regardless of how informative or 

uninformative such information would be. The latter seems the more probable 
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option, as the imperfectly diagnostic feature in the training stage of Experiment 2 

was equally informative regardless of its value – exactly one of the two 

imperfectly diagnostic features was always present, such that one feature’s 

absence was perfectly correlated with the other’s presence. This contrasts 

sharply with previous work regarding categorization based on missing 

information – White and Koehler (2004) suggested that the “mean” value is 

generally inferred for missing features, but the mean value for the imperfectly 

diagnostic features in Experiment 2 would be half-present, half-absent. Perhaps 

the tendency to use the mean as a default value is restricted to continuously 

valued features, or to probability-based learning paradigms in which no single 

feature is perfectly category-diagnostic. 

Thus, there are some unanswered questions regarding the generality of 

the present study’s findings. It is not clear whether the tendency to perform DFC 

is particular to visual categorization or whether it might apply to other modalities 

as well. For instance, much of the literature on the IBRE to date has focused on 

using abstractly described symptoms to settle upon a medical diagnosis; indeed, 

the only previous work looking at missing data in the IBRE (Verguts et al., 2004) 

used just such a task. White and Koehler (2004) also used abstract disease 

descriptions in their investigation of the contribution of missing information to 

categorization; it may be that there is something particular to visual stimuli that 

makes the absence of a feature more likely to be the default value. An important 

difference here is that visual stimuli are subject to low-level completion process, 

while abstract descriptions are not. For instance, in the present study, the 
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category-diagnostic features of the birds were mostly discontinuous surfaces or 

appendages that protruded from the bird’s body. If the section generally 

containing one of those features were occluded, the bird would be amodally 

completed across the occluder – and the completed bird would not include the 

feature, as its presence would require a deviation from the visible contours or 

surfaces on either side of the occluder, counter to what one might expect from 

amodal completion. However, the head and tail features may constitute a 

counterexample to this account of the apparent DFC effect; when Experiment 2’s 

head feature was occluded, the entire head and a good portion of the neck were 

blocked out by the tree, rather than just the feather – this results in a significant 

discontinuity between the last visible portion of the neck and the tip of the beak 

visible on the other side of the tree, rendering it seemingly unlikely that the 

general contours of the head could be meaningfully interpolated at all (see Figure 

3). The tail feature in Experiment 2 was a rough continuation of the contours of 

the bird’s body, so it seems as likely as not that a tail would be included in any 

amodal completion of the bird. The same is true for the claws; the contours of the 

claws are essentially a continuation of the contours of the bird’s upper legs, so 

one would expect amodal continuation to capture the claw-contour in the 

occluded condition, as the knee joint, lower legs, and feet were all blocked by the 

occluder. 

Of course, contour relatability, as explained by Kellman et al. (2001), is 

only a restriction on local completion effects; a large contour discontinuity does 

not preclude global completion from affecting the participants’ perception of the 
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occluded stimulus. While the status of global completion is a matter of some 

debate (e.g. Kellman, 2003; Plomp & van Leeuwen, 2006), the findings of the 

present study may suggest that DFC is a specific kind of global completion – one 

based not specifically on symmetry, but on assumptions regarding gross stimulus 

structure as a result of superordinate categorization. 

The possibility that low-level amodal completion may account for the 

apparent DFC effect may be fruitfully examined in future research, perhaps by 

restricting category-diagnostic visual cues such that amodal completion of an 

occluded section would not produce a firm prediction as to a feature’s presence 

or absence. It may also be instructive to perform an IBRE task similar to that 

used in Experiment 2, but, following Johnson and Olshausen (2005), with 

“deleted” stimuli used in addition to occluded ones. As deletion of sections of a 

visual stimulus does not produce amodal completion effects in the same way that 

occlusion does, the results of such a study would provide further insight into the 

processes underlying DFC – is it dependent upon depth and occlusion cues, or is 

it simply a reaction to missing information? 

Along with the behavioural results from the transfer task of Experiment 2, 

the failure of the tested models to provide a good fit for the data indicates a 

systematic problem in the way that missing information is conceptualized in the 

current categorization literature. By and large, existing connectionist models do 

not specify how missing data is dealt with (e.g. ALCOVE, EXIT), while those few 

models that include provisions for missing data make assumptions about how 

unknown feature values play into the categorization of complex objects that, on 
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the basis of the present study, are now known to be faulty (SUSTAIN, 

ADDCOVE). 

ADDCOVE and EXALT, along with SUSTAIN, deal with missing data in 

essentially the same way – they take missing features out of exemplar similarity 

computations, so that anything that is unknown does not contribute to the 

activation of previously stored items. This is equivalent to assuming that missing 

features are universally nonmatching and do not increase additive similarity, no 

matter the fully-informed exemplar with which they are compared. Paradoxically, 

then, though the new models sought to improve upon the way in which ALCOVE 

and EXIT dealt with missing data, they fell into the same trap of assuming that 

missing features would affect similarity to all stored exemplars in the same way. 

While the newer models assume that missing information is perceived as 

universally discrepant from items in memory, the older models treat missing 

information as a universal match. The present experiment, along with previous 

work (e.g. Ganzach & Krantz, 1990; White & Koehler, 2004), has demonstrated 

that both of these approaches are fundamentally flawed. People do not to treat 

missing information about a particular category-diagnostic feature in a 

qualitatively different way from other features; rather, they simply accord some 

sort of default value, and use that default value in making subordinate 

categorization decisions. 

It is premature to attempt to describe a model that incorporates DFC as a 

method of dealing with unknown data. The factors contributing to the assignment 

of default values are currently unknown, as is the generality of the effect – is DFC 
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common to all categorization problems, only those involving visual stimuli, only 

occluded visual stimuli, or only occluded visual stimuli with discretely valued 

features? Regardless, the present study has made it abundantly clear that 

current models of categorization are simply inadequate, and that further 

investigation into DFC is necessary if future models are to deal with unknown 

feature values in a coherent, empirically supported way.  
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APPENDICES 

Appendix A – EXALT Model Specification 

EXALT, or EXit with Additive simiLariTy, is, as its name implies, an 

extension of the connectionist model EXIT (Kruschke, 2001). While it mimics its 

predecessor in most respects, EXALT uses an additive rather than a distance-

based similarity metric and possesses twice as many input nodes for each 

stimulus feature, allowing it to deal with missing data in a different way from the 

original model. A broad overview of the architecture of EXALT for a structure with 

two input features, one exemplar, and two possible category outputs is shown in 

Figure 4; bold arrows represent learned weights. 

Each input cue is represented by two nodes; one is active when the 

feature is present in the stimulus, the other is active if the feature is absent, and 

when the status of the feature is unknown neither one is activated. When a 

stimulus is presented, activation propagates to each output node according to a 

weighted sum of the input cues, and the model’s output is chosen from the 

available category outputs via the Luce choice rule. 

The weights accorded to each input node are determined by activation in 

the attentional system, which includes exemplar-specific attentional gatings that 

weight cues differently according to the similarity of the input to previously stored 
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exemplars. In EXIT, the activation of a given exemplar follows an inverse 

exponential curve based on the city-block distance between exemplar and input, 

)exp( ∑ −−=
i

in
ixii

ex
x aca ψσ ,  (Eqn. 3; Kruschke, 2001) 

where ex
xa  is the activation of exemplar x, c is a free parameter that determines 

the specificity of exemplars, iσ  is the perceptual salience of cue i¸ xiψ  is the 

activation of cue i in the exemplar, and in
ia  is the activation of cue i in the input. 

EXALT computes activation in a somewhat different way, 

)exp( ∑=
i

in
ixii

ex
x aca ψσ , 

such that exemplar activation follows a positive exponential curve depending on 

the number of matching features between exemplar and input (a match is defined 

as a cue being present or absent in both input and exemplar). 

Attention then propagates to the gain nodes, where exemplar weights and 

input data are combined and then normalized to form attentional weights that can 

be applied to the original input to determine which categorization decision is 

made. When feedback is received, weights are adjusted via gradient descent on 

error. 

The exemplar-specificity equation and the number of input nodes are the 

only differences between EXIT and EXALT; further information on any of the 

components of EXALT is available in the original specification of the EXIT model 

(Kruschke, 2001). 
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Appendix B: Supplemental Modelling Information 

Response proportions generated by EXIT, EXALT, and SUSTAIN were all 

fit to human data from multiple starting points, both with and without constraints. 

Constraints were chosen somewhat arbitrarily, based on the plausibility of 

particular parameter values within each model. For the majority of these 

analyses, model fit was calculated for all six transfer stimuli; however, for each 

model a three-stimulus case was also attempted, in which only response 

proportions for the three critical transfer stimuli (I+PC+PR, PC+PR, and 

?+PC+PR) were recorded and compared. This restriction did not produce 

substantially different response proportions in any of the models, and as such the 

results of the three-stimulus case are not reported in detail here. 

EXIT/EXALT 

The exemplar specificity parameter, c, determines the tolerance of the 

exemplar similarity computation to discrepant values. It was constrained to the 

range (0.1, 5). 

Attention capacity, symbolized by P, affects the model’s ability to distribute 

attention. A low value of P indicates that an increase in attention to one cue must 

be accompanied by a large decrease in attention to other cues. P was 

constrained to the range (0.1, 10). 

φ, the choice decisiveness parameter, determines how likely the model is 

to pick the winning output. The lower the decisiveness, the larger the stochastic 

component in determining output. Decisiveness was constrained to fall within 
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(0.1, 10). 

The attention shifting rate, λg, determines how quickly the model can shift 

its attention from one cue to another. It was constrained to the range (0.1, 5). 

λw, the learning rate for output weights, was kept within the range: (0.1, 5). 

The learning rate for associative weights from exemplars to gain nodes, 

λx, was constrained to the range (0.1, 5) as well. 

Finally, bias salience, σ, represents the salience of the response prompt 

relative to the features of the stimuli to be categorized. σ is the parameter that 

allows EXIT to model base rate effects; as such, it was constrained to the range 

(0.01, 1.5). 

For EXIT, the starting points used were (c=0.01, P=2.3881, φ=3.9175, 

λg=0.3633, λw=0.0502, λx =0.0167, σ =0.0143), from the best-fitting values of 

Experiment 2 in Kruschke (2001); (c=0.5, P=2.4, φ=5.0, λg=0.36, λw=0.05, λx 

=.018, σ =0.01); (c=0.1, P=0.1, φ=0.1, λg=0.1, λw=0.1, λx =0.1, σ =0.1); and 

(c=0.5, P=0.5, φ=0.5, λg=0.5, λw=0.5, λx =0.5, σ =0.5). The best-fitting values 

ultimately resulted from the simulation with the Kruschke values as a starting 

point (see Table 4 for response proportions). In general, RMSD values ranged 

from 4-10, and the response proportions for the critical transfer stimuli I+PC+PR, 

PC+PR, and ?+PC+PR were quite close to one another, with ?+PC+PR typically 

eliciting fewer common-category responses than the other two. 

EXALT was run with the same starting points; however, the best fit 

ultimately resulted from the second, (c=0.5, P=2.4, φ=5.0, λg=0.36, λw=0.05, λx 

=.018, σ =0.01; see Table 5 for response proportions). Model fit values were in 
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the range 3-10, and response proportions were consistent across starting points, 

with I+PC+PR eliciting the most common-category responses, PC+PR having the 

fewest, and ?+PC+PR falling somewhere in between. 

SUSTAIN 

 The attentional focus parameter r, which determined the speed of 

attentional shifting, was constrained to fall within the range (0.1, 20). 

 β, the cluster competition parameter, governed the degree to which 

different clusters inhibited one another. It was restricted to the range (0.1, 10). 

 Decision consistency, symbolized by d, affected the probability of making 

an odd or counterintuitive categorization decision. It was set to fall within (0.1,20). 

 Finally, η was the learning rate, which determined the speed with which 

cluster-output connections changed in response to corrective feedback. It was 

constrained to be within the range (0.1, 5). 

 SUSTAIN was run from the starting points (r=9.012, β=1.252, d=16.924, 

η=0.092), (r=5.0, β =2.0, d =8.0, η =0.01), (r=1.0, β =1.0, d =1.0, η =0.1), (r=4.0, 

β =4.0, d =4.0, η =0.5), and (r=0.1, β =0.5, d =18.0, η =0.5). The best fitting value 

resulted from the third simulation, (r=1.0, β =1.0, d =1.0, η =0.1), with an RMSD 

of 54.023 (see Table 6 for response proportions). Due to the model-fitting 

algorithm’s tendency to crash, this value is derived from a rather small number of 

iterations; as such, the exact response proportions cannot be expected to serve 

as a good approximation to human behavioural data. Model fit values ranged 

widely, from 54 to 90, and the pattern of responses tended to be less consistent 

with SUSTAIN than with EXALT and EXIT. While I+PC+PR elicited the greatest 
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number of common-category responses across most parameter values, there 

was a higher degree of variance in the responses to PC+PR and ?+PC+PR. 
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