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Abstract 

Abstract State Machines (ASMs) are a proven methodology for the precise high-level spec- 

ification of formal requirements in early phases of software design. Many extensions to 

ASMs have been proposed and used widely, including Distributed ASMs, Turbo ASMs, 

Gurevich's partial updates, and syntactically convenient rule forms. This, coupled with the 

fact that ASMs do not bind the user to any predetermined data types or operators, allows 

for extreme flexibility in exploration of the problem space. Striving to provide this same 

level of freedom with executable ASMs, the CoreASM engine and language have been de- 

signed with syntactic and semantic extensibility in mind. We formally specify extensibility 

mechanisms that allow for language augmentation with arbitrary data structures support- 

ing simultaneous incremental modification, new operators, and additional language syntax. 

Our work is a major step toward providing an environment suitable for both further exper- 

imentation with ASMs and for the machine-aided creation of robust software specifications. 

Keywords: abstract state machine (ASM), executable ASMs, specification language ex- 

tensibility, aggregation, partial updates 
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"Begin at the beginning,. . . " 
- King of Hearts, Alice in Wonderland 

Chapter 1 

Introduction 

The CoreASM project is a research effort aiming to specify and implement an extensible 

execution engine for a language that is as close to the mathematical definition of pure 

Abstract State Machines (ASM) [35] as  possible. This thesis presents work done to ensure 

that the CoreASM engine and language remain as flexible as the ASM formalism on which 

they are based. We will use ASMs to formally specify how extensibility mechanisms for 

distributed incremental modification of data structures, operators, and language syntax 

have been incorporated into the engine. This specification has been used to establish the 

basis for implementing these features in CoreASM, further bolstering the already strong 

reputation of ASMs as a powerful formal specification method. 

In early phases of system design, the transformation of informal requirements into precise 

specifications is invaluable, as deficiencies hidden in informal requirements can be found and 

dealt with. Through analysis of key design choices and their implications, software designs 

can be more thoroughly validated prior to implementation. ASMs provide a framework 

for precise semantic modelling of functional requirements, a framework that is built on a 

rigourous mathematical foundation [5, 361. Because the ASM formalism allows for a high 

level of abstraction, it is an effective tool for gaining a clear understanding of design problems 

and their solutions. It is also an attractive choice for system specification, because the ASM 

language uses a syntax akin to that of imperative programming languages and so it will be 

familiar to those involved in implementation. 

The product of formalizing a system using the ASM paradigm is a representative ASM 

ground model  [9], a semantic 'blueprint' which documents the key system requirements, 
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that is visible and inspectable by analytical means and empirical techniques. The versa- 

tility of ASMs has been proven through their practical application, which has resulted in 

ground models for many programming and system specification languages (see Section 4), 

communication architectures [33, 341, and embedded control systems [14, 3, 131. 

Many semantic extensions, that make modelling with ASMs more convenient, have been 

defined and adopted over the years of ASM study and use in academia and industry: Dis- 

tributed Abstract State Machines (DASM) [15, Chapters 5-61 facilitate the modelling of 

multi-agent distributed systems; Turbo ASMs [15, Chapter 41 facilitate highly structured 

modelling; the notion of partial updates [38, 391 allow for a data structure instance to be 

simultaneously modified by different parts of a system. These extensions, coupled with 

the freedom to define and then use data types and operators specific to the system being 

modelled, give a systems architect great flexibility. 

ASMs provide a simplified view of system behaviour as the evolution of abstract states 

over discrete time steps, where abstract states are represented as variants of first-order 

(Tarski) structures. These simple state transition systems can in principle be simulated using 

a computer, resulting in executable ASM specifications. Making specifications machine- 

executable has many advantages: 

0 The behaviour of a model can be easily observed and explored under different condi- 

tions, allowing unwanted or unexpected behaviours to be found and eliminated. 

0 The specifications executed have a single well-defined semantics which is enforced by 

the execution environment, resulting in unambiguous interpretation by all parties. 

0 Further guarantees on the correctness of a specification can be given, since real-time 

interaction and inspection with analytical and empirical techniques becomes feasi- 

ble (e.g. user interaction and visualization with graphical mockups and GUIs [52], 

automated regression testing and test case generation [31], and symbolic model check- 

ing [lg]). 

In general, machine assistance makes the design, validation, and implementation of practical 

systems more feasible. 
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1.1 Motivation and Related Work 

Since the inception of ASMs, many executable variants have been developed; the most 

popular and advanced are: AsmL (ASM Language) 1441, the ASM Workbench [IS], XASM 

(extensible Abstract State Machines) 121, and AsmGofer [48]. 

While the CoreASM project is not the first attempt to make ASMs executable, both the 

engine and language have many novel features which differentiate them from their prede- 

cessors 1231. Underlying the CoreASM project has been a core ideology we define here, that 

provides motivation for the endeavour and guides CoreASM development: 

1. The preservation of pure ASM semantics: Other variants have had concessions made 

with respect to their semantics in the form of strict typing conventions and object 

oriented characteristics. CoreASM semantics should not deviate from the original pure 

mathematical definition of ASMs. While new semantic and syntactic additions are 

welcome, these cannot not be included at the cost of modifying existing semantics. 

2. Ensuring freedom through extensibility: While other variants do allow for a certain 

level of customizability, all have many restrictions including the data types available, 

operators available, and syntax which can be used. ASMs do not have such restrictions, 

and the CoreASM language should similarly allow for the same amount of freedom; it 

accomplishes this via a robust plug-in architecture. 

Motivated by the second tenet of the CoreASM core ideology, this thesis focuses primarily 

on three different extensibility mechanisms for the CoreASM engine and language. 

In this work we present a comprehensive formal specification of a framework which allows 

for a data structure in CoreASM to be incrementally modified by multipleagents simulta- 

neously. Consider two clients adding and removing portions of the same file using a central 

source configuration management system (SCM)l such as CVS or Perforce2; when modifi- 

cations are made concurrently by the clients, the SCM must ensure that all changes made 

are aggregated together resulting in a single consistent global change to the file. To incor- 

porate similar functionality in ASMs, all incremental modifications must be collected and 

'SCMs are client/server systems used to facilitate concurrent team-based development and to provide 
file revision history in software projects. CVS is a well known and free SCM and Perforce is a commercial 
variant. 

'Perforce Software, h t t p  : / / w w  .perf orce . corn 
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aggregated together to determine the resultant change to be applied to the data structure 

and to ensure that incremental modifications do not conflict semantically with each other. 

Before Gurevich's work on partial updates [38, 391, ASMs could not handle simultaneous 

incremental modification (vs. overwriting) of individual memory locations. His work has 

resulted in a general mathematical framework providing the theoretical support for the dis- 

tributed simultaneous modification of data structures within ASMs. The incorporation of 

this framework into ASMs involves amendments to the classic process of ASM state transi- 

tion which do not change or violate, but rather build upon, ASM semantics. This framework 

has been incorporated into AsmL3, resulting in the first executable ASM specification lan- 

guage allowing for incremental modification of data structures. CoreASM will be the second 

such language. However, unlike AsmL, this functionality will not be constrained only to 

data types which come with the engine. The CoreASM language can be easily extended with 

third-party plug-ins introducing new data types along with aggregation methods relevant to 

their data structures. We showcase this functionality by defining a data type for sets which 

supports incremental change. 

We also formalize the process used in CoreASM to execute the correct variant of an 

overloaded operator. In most programming languages, data type requirements of operators 

are known at compile-time or run-time and are used to choose the appropriate operator 

variant [I, Section 6.51. All other executable ASM languages are strictly typed and as a 

result, choose operator variants in much the same way. Adherence to the first tenet of the 

project ideology has steered CoreASM away from the adoption of a strictly-typed language 

model, and adherence to the second tenet has led to the support of extensions allowing new 

operators to be defined for use. The novelty of our operator evaluation approach is that 

selection of operator variant need not depend on data type information. 

Lastly, we discuss the extensibility mechanism in the engine which allows for the ex- 

tension of the language syntax, and facilitates the addition of new operators, literals for 

new data types, etc. We show that the language at any time is based on the CoreASM 

specification being executed, and how the grammar of the language is structured to allow 

for syntactic extension. To the best of our knowledge, no other computer language includes 

a plug-in based system that allows such extension. In programming languages, the common 

approach for dealing with syntax extensions is to use macro languages to express them; this 

3~urevich spearheaded the effort to create AsmL during his tenure with the Foundations of Software 
Engineering group at Microsoft Research, Redmond. 
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approach involves a preprocessing step before compilation (or interpretation) where the syn- 

tax is extended according to macros defined in the source file. Run-time grammar extension 

using such macro languages has been explored [16], however we have found no discussion 

of grammar structure and how it facilitates syntax extensibility. In CoreASM the ability to 

extend the language syntax is essential for realizing the flexibility we aim to provide. 

1.2 Objective and Significance 

The freedom and flexibility that ASMs provide in modelling are key to their usefulness in 

system specification. The main objective of our work is to infuse into CoreASM the same 

level of flexibility by: 

Integrating Gurevich's notion of partial updates into a CoreASM step. We call our 

method of accommodating simultaneous incremental change into CoreASM, aggrega- 

tion. 

Allowing for future extension of the engine with arbitrary data types that permit 

aggregation. 

Formalizing a method of operator evaluation that allows for the definition of arbi- 

trary overloaded operator behaviours, but that is not bound to selection of overloaded 

behaviour based on operand data type. 

Formally describing our pragmatic approach to extending the CoreASM language with 

additional syntax. 

While we have used Gurevich's mathematical framework as an inspiration for aggrega- 

tion in CoreASM, the move from theory to practice is not simple. Although the partial 

update framework has been incorporated into the AsmL compiler, no specification of or 

documentation on the approach taken to its implementation could be found at the time of 

writing. In our attempt to incorporate a similar yet extensible framework in CoreASM, we 

have not only realized our goal of forward compatibility of aggregation with arbitrary data 

structures, we have also produced a solid ASM ground model for executable ASM semantics 

with support for simultaneous incremental change. 

Our efforts towards CoreASM extensibility ensure that it imposes few restrictions which 

stifle freedom of experimentation and exploration of the problem space. Through our work, 
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data types, operations and language additions specific to each problem's domain can be 

added as needed. The development of our extensible specification execution environment 

will be beneficial both to researchers, who will be able to test future extensions to ASMs, 

and to industry, who will use the engine and its extensions to make more precise software 

specifications resulting in more reliable software. 

The result of the formalization of our extensibility mechanisms is a specification that 

can be validated through machine-aided simulation and testing using the CoreASM engine 

once it is complete. 

1.3 Organization of Thesis 

We begin by providing an overview of ASMs and useful extensions including DASMs, Turbo 

ASMs and Gurevich's partial updates in Chapter 2. Chapter 3 is a brief primer on compiler 

theory concepts required to fully understand the CoreASM engine and language specifica- 

tion. Previous work done on formalizing functional requirements of the CoreASM engine 

architecture and language is presented using a high-level ASM specification in Chapter 4; in 

subsequent chapters we shall build on this work. In Chapter 5 we describe how the concept 

of Gurevich's partial updates is incorporated into the CoreASM engine through aggregation 

while facilitating future extensibility with arbitrary data types. We then provide a full 

specification of the Set Plug-in which uses the newly introduced extensibility mechanism 

for distributed incremental updates on set data structures, as well as other extensibility 

mechanisms for defining the Set data type and set related literals, operators and rule forms. 

Chapter 6 describes the difficulties associated with overloaded operators and their evalua- 

tion in CoreASM, and ends with a description of how the CoreASM language syntax is made 

extensible. Chapter 7 concludes the thesis with a summary of our work, a description of 

efforts made towards the implementation of CoreASM, and directions for future work. 



"I've been doing a lot of abstract painting lately, 

extremely abstract. No brush, no paint, no 

canvas, I just think about it." 
- Steven Wright 

Chapter 2 

Abstract State Machines 

Both the executable specifications interpreted by CoreASM, and the CoreASM model pre- 

sented are based on the Abstract State Machine (ASM) paradigm. We will, in this chapter, 

briefly describe ASM concepts from their most basic foundations, to many novel and neces- 

sary additions. In the first section we will introduce Basic ASM concepts, which are central 

to the ASM paradigm, and common to all variants; this will include facilities for parallelism 

and non-determinism. This will be followed by a description of the Turbo ASM extensions 

which allow for structured composition as well as sequential and iterative execution within 

models. Distributed Abstract State Machines (DASM), which facilitate the modelling of 

multi-agent distributed systems, will be introduced in the third section. With a firm un- 

derstanding of these ASM variants, we will further introduce additional rule forms, Control 

State ASMs, Background Classes, and the concept of Partial Updates. We end this chapter 

with a brief discussion of the applicability of ASMs to computer language development and 

a description of notational conventions used to present our ASM models. 

While our introduction to ASMs is sufficient for a rich understanding of the work pre- 

sented in this thesis, it can by no means be considered anything more than an informal yet 

intuitive description of key concepts. We will direct the reader to original literature with 

more comprehensive definitions where appropriate. 

2.1 Basic Abstract State Machine 

For a detailed description of Basic ASMs, the reader is directed to [35] and [15, Chapter 

1-31. A Basic ASM M consists of a program PM, a set of states SM, and a collection of 
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initial states IM where IM SM. 
Each state S E SM of an ASM M can be interpreted with the same vocabulary (or 

signature) T ,  a finite collection of function and predicate names each with a fixed arity. 

T M  will always contain these static function names: the equality sign (=), nullary function 

names tme, false, undef and the names of the usual Boolean operations (A, V, 1). Notice 

that states of ASMs are not unlike first-order structures in mathematical logic. 

Any state S is a nonempty set U, known as the superuniverse or base set, along with 

the interpretations of T on U. An n-ary function name interpreted as a function from Un 

to U, is called a basic function of S. An n-ary relation name interpreted as a relation from 

Un to {tme, false), is referred to as a basic relation or predicate of S. A location 1 consists 

of an n-ary function or predicate f and any n-ary tuple Z consisting of elements from U; 

so 1 is equivalent to f (z). The concept of locations provides the ASMs with memory, while 

allowing for abstraction from the methods of memory addressing and object referencing. In 

any S a given location holds a value, that being a single element of U. All functions and 

relations are total; the default value of all basic functions is undef and of all basic relations 

is false. The logic names tme and false, along with undef are interpreted to be distinct 

elements of U, and the Boolean operations behave as they normally would on the values 

tme and false. 

Special unary predicates defined over U allow us to view any S as a many-sorted struc- 

ture; such predicates can be viewed as special universes or domains. Note that universe 

membership may overlap, as is the case with all universes and the superuniverse. 

ASM terms represent a location in a state. Given that f is an n-ary function name 

and tl, t2, .  . . , tn are terms, then f (tl, t2 , .  . . , t,) is a term as well. Nullary functions or 

predicates are also called variables. 

Every ASM mle produces a (~otentially empty) - set of updates, each update consisting 

of a location and a new value: u = (1, v). An ASM program consists of a single rule which is 

interpreted in the current state of the machine S1; as will be seen, rules may be composed 

of other rules. 

The most basic rule of ASMs, the update-rule, assigns a value to a given location and 

is of the form: 

Here to, ... , tn are evaluated in the current state S1 resulting in values vo, ..., vn E U; this 
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rule produces an update of the form (f (vl, v2, . . . , v,), vo). The update represents an action 

to be taken, namely that in the next state S2 of the ASM machine, the current value of the 

location f (vl, v2, . . . , v,) should be replaced with a new value vo. 

An ifelse-rule, being a conditional rule, has the form 

if t then 

R1 
else 

R2 

which if the term t evaluates to true executes the rule R1, and otherwise executes R2. 

When describing an algorithm, often times it is necessary to have resources available fa- 

cilitating the introduction of new elements. In ASMs, the import-rule dynamically allocates 

fresh elements from a set called the reserve. 

import e 

Rbl 

The import-rule selects an element from the reserve, points the temporary function e to 

it, removes it from the reserve, and initiates execution of the rule R. We use the notation 

R[x] to mean that x occurs freely in transition rule R. Only R has access to (or is in scope 

of) e, and may use the new element. It is important to note that neither the reserve set 

nor any of its elements can be directly accessed. Also note that although the reserve is not 

required to be present in a vocabulary T ,  when fresh elements are required by program PM 

of ASM M, it is assumed that T M  does include the function Reserve; all members of the 

reserve are then present in UM, and hence in every state S [35]. Similarly, a universe can 

be extended with a new element dynamically, using the extend-rule: 

extend DOMAIN with e 

Rbl 

Again an element from the reserve is selected and assigned to e, followed by the execution 

of R. However, the rule also creates an update of the form   DOMAIN(^), true), making the 

new element a member of the domain DOMAIN. 

When creating abstract specifications, one may wish to create placeholders for future 

refinement. This is accomplished with the skip-rule 
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skip 

which produces an empty set of of updates, effectively doing nothing. 

Facilitating modularization and maintenance of organized specification, call-rules or 

named-rules can be defined. A rule declaration for a rule name NamedRule of arity n has 

the form: 

NamedRule(xl, . . . , x,) = 
R[xI, . . . , xn] 

When any named-rule is declared in a specification, it is executed with a call: 

NarnedRule(t1,. . . , t,) 

This results in an execution of R, with all instances of free variables xi replaced by the 

corresponding values vi obtained by evaluating all terms t l ,  . . . , t, in the current state. 

2.1.1 Non-det erminism 

To describe processes at high levels of abstraction, non-determinism is beneficial. Details of 

scheduling of subprocesses in execution can be hidden from the user. Basic ASMs provide 

the choose-rule to facilitate this: 

choose e E C 

Riel 

An element which is a member of C is chosen non-deterministically, this element is assigned 

to e, and then R is then executed. If there is no such element, nothing is done. 

The choose-rule can both be augmented with a guard, and/or an ifnone clause: 

choose e E C with g[e] 

Rl [el 
ifnone 

R2 

Before rule R1 can be executed, the element e chosen from C must satisfy the guard condition 

g; Essentially e is chosen from Cg c C where Cg = {x I x E C,g(x) = true). With the 
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ifnone clause in place, Rz is executed iff no e can be chosen (e.g. if C is empty, or no 

element of C satisfies the guard). 

2.1.2 Parallelism 

Every ASM M has one main rule or program PM. This main rule may only result in 

the execution of multiple rules with the use of one of the, soon to be introduced, parallel 

constructs. As such, when the main rule is executed, all of its child rules are executed - in 

parallel. Simultaneous execution has two main benefits for high-level design and specification 

[I 51 : 

1. It provides a convenient way to abstract from sequentiality where it is irrelevant. 

2. It allows for the local description of a global state change: a transition to the - next 

state is the result of updates created independently of each other. 

The block-rule or par-rule provides the following parallel rule notation: 

where all rules R1, . . . , R, are executed simultaneously. Often times the keyword par 

is dropped, with the implication that all rules occurring one after the other are executed 

simultaneously. 

The forall-rule, allows for an enhanced notion of parallelism, having the form 

where R is executed simultaneously for all e E C. 

In a similar fashion to choose, the forall-rule can be extended with a guard: 

forall e E C with g[e] 

R[el 

The rule R will only be executed for those elements of C which satisfy the guard g. 
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A Transition System 

The result of the execution of the main rule of M is a transition or move from one state 

Si to Si+1. All transition rules executed by evaluation against Si result in updates which 

are collected into the update set A. If the update set is considered to be consistent, the 

computation of this step, done by applying (also known as firing) the update set, yields 

the next state Si+1. To be called consistent, an update set must not contain two different 

updates to the same location (i.e. no two updates where {(l,v), (1 ,~ ' ) )  E updateset with 

v # v'). An inconsistent update set creates ambiguity in the interpretation of what state 

should follow, precluding the possibility of a transition, and resulting in the machine halting. 

A run of an ASM M is a sequence of states beginning from an initial state S1 E I M .  A 

transition between states Si + Si+1 will be denoted as Ti, and the update set causing said 

transition will be denoted Ai. 
An ASM can model reactive systems which cycle their computation step indefinitely, 

but for the case of systems which terminate when complete, various termination criteria can 

be selected [15]: 

No rule is applicable any more. 

0 The machine yields an empty update set: rules may be executed, but no updates are 

produced by their execution. 

0 The state does not change any more: updates are produced, but are redundant. 

2.1.3 Function/Relation Classification and Environment 

Every ASM may interact with its environment or other agents. By the term environment 

we mean anything not under the control of current agent being executed. 

Figure 2.11 depicts the hierarchy of functional classification in ASMs. All functions (and 

relations) can be split into two types: basic functions and derived functions. Basic functions 

are those whose individual locations may not necessarily be defined by a mathematical 

function. Derived n-ary functions are functions whose value at any given location can be 

defined by some mathematical formula, typically with n corresponding free variables; derived 

functions are not updatable, but may rely on basic function locations. 

 his figure was reproduced from Figure 2.4 on page 33 of [15] with kind permission of Springer Science 
and Business Media. 
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function/relation/ location 

basic derived 

static 

F+T&m monitored controlled shared 

Figure 2.1: Classification of ASM functions, relations, and locations. 

Basic functions can be further split into two different classes, static and dynamic. Static 

functions are those whose value does not change during the run of M and so whose arguments 

never depend on any single state of M. Clearly one would not find a static function on the 

left-hand side of an update-rule. 

Dynamic functions, on the other hand, may change as a consequence of updates or by 

the intervention of the environment. This class can be further divided into four subclasses 

based on who can modify them and who can read their locations. 

Monitored (in) - can only be read by M,  and written to only by the environment. 

Such a function will not be found on the left side of an update-rule. 

Controlled - can be written to only by M. This class of functions may be found 

on either side of an update-rule. If the function f is controlled, and the update 

(f (x), v) E Ai is applied in Ti, then one can be sure the f (x) = v in Si+1. 

Shared - can be read from and written to by M - or the environment. Such a function 

may be found on either side of an update-rule. If the function f is Shared, and the 

update (f (x),v) E Ai is applied in z, then one cannot be sure the f (x) = v in Si+l; 

the environment may have updated the location after Ai was applied but before Ti+1 

was initiated. 
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0 O u t  - can written to by only M, and read only by the environment. An out function 

would only be found on the left side of an update-rule. 

2.2 Turbo ASMs 

While convenient for high level specification of simple models, Basic ASMs lack in syntax 

facilitating practical composition and support for structuring principles. Turbo ASMs, an 

extension to the basic paradigm, offer building blocks such as sequential composition and 

iteration. For more in depth coverage of this subject, the reader is directed to [15, Chapter 

With Turbo ASMs, a step is still considered to happen instantaneously, however each 

step may contain elementary actions or micro steps, which are executed in a fixed order. 

The internals of these subcomputations are hidden by compressing them into a single step 

of the machine. 

Sequential Composition 

The seq-rule allows for sequential execution of multiple rules with the the Basic ASM 

concept of simultaneous updates of locations in the global state of the machine: 

First R1 is executed on state S1, resulting in updates Al. If Al is consistent then it is fired 

producing a temporary state S2 on which R2 is executed. If A2 is also consistent, then the 

two update sets must be sequentially composed (via @) into a single set of updates ASeq 
that being the set of updates produced by the rule in this ASM step. Thus 

where Locs(Ai) = (1 I (1,v) E A,} or the set of all locations which would be affected by 

application of the update set i. 

It is important to note that if either Al or A2 are inconsistent, an inconsistent update 

set is returned. The definition of update set composition is then extended to the following 

definition [15, Def. 4.1 .I]: 
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((1, v) E A, 1 1 6 Locs(A2)) u A,, if consistent(A,) a..,=a,~a2= { A, , otherwise. 

2.2.1 Iterative Composition 

Simple iterative execution of a rule is provided by the iterate-rule 

iterate 
R 

The rule R will be executed until a termination condition exists: successful termination oc- 

curs when the update set becomes empty, and failed termination occurs when an inconsistent 

update set is produced by an iteration. Given that n iterations occur before termination of 

the rule and that R0 = skip , the n-th iteration of the rule can be described using seq 

Rn = seq R 

with the corresponding update set produced. 

The while-rule, an extension to iterate, additionally allows for conditional termination, 

occurring when the guard g is satisfied: 

while g 

R 

2.3 Distributed Abstract State Machines 

Distributed ASMs, useful for the design and analysis of distributed systems, extend Basic 

and Turbo ASM concepts with autonomously operating agents, each running their own 

program. If ASM M is a DASM, vocabulary Y includes a finite universe AGENT of agents, 

a unary function program, and a nullary function self. A new agent can be introduced into 

the DASM at any time by extending the domain AGENT. 

The unary function program holds the program associated with a given agent. Behaviour 

of any agent a in Ti is defined by program(a) as it is interpreted in Si. If the value of 

~rogram(a) is an element representing rule R, the rule R will be executed whenever a is run. 
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To terminate a ,  program(a) must be set to undef. Hence in a given step, the set of agents 

which may execute is defined as: 

agentset G {x E AGENT I program(x) # undef) 

When the program of an agent a is executed, self evaluates to a (i.e. self = a for all 

references to self in program(a)). The self function allows an agent to store information 

relevant to itself. For example, a unary function status could be used to hold status infor- 

mation for each agent (e.g, status(self) := idle could mean that agent a is going into an idle 

mode). 

DASMs can be further divided into synchronous (see [15, Chapter 51) and asynchronous 

(see [15, Chapter 61) varieties, each differentiated by the execution of their agents. A 

synchronous DASM is characterized by having a set of agents which execute their own 

programs in parallel, synchronized using an implicit global system clock. Essentially, at 

each step of M, all a E agentset execute program(a). 

In contrast, with asynchronous DASMs, at each tick of the global clock a subset of agents 

are chosen for execution from the set of executable agents agentsset. So at each each step of 

M, the programs of all agents a E selectedAgentsSet, where selectedAgentsSet agentset, 

are executed in parallel. 

DASMs facilitate both the true-to-life modelling of mutually exclusive tasks performed 

by individual agents, and the analysis of interaction between agents via global state. 

The reader should note that asynchronous DASMs are a superset of synchronous DASMs; 

notice the case when the algorithm used for agents selection during a step of an asynchronous 

DASM always yields selectedAgentsSet = agentset. We note that a single agent DASM is 

essentially a Basic ASM. 

2.4 Additional Rule Forms 

So called "syntactic sugar" is welcome in any language to facilitate ease of use and intuitive 

understanding. Quite a few additional rules have been introduced to ASMs over time for 

this purpose, and those used in this document will be briefly described here. 
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2.4.1 Temporary Variables 

When performing calculations, temporary variables that are only necessary during compu- 

tation of a result, may be useful. This helpful functionality is made available to the ASM 

modeller via the Turbo ASM local-clause which may be used with named-rules: 

NamedRule = 
local f := t 

Rltl 

Here upon execution of NamedRule, the temporary function f is first initialized to the value 

of term t and then followed by execution of the body R. A call to this named-rule produces 

an update set as expected, however all updates to f are discarded. Thus, f can be used with 

impunity, resulting in no updates to it in the global state. 

2.4.2 Return Values 

In programming languages it is often useful for a subroutine to return a value to the caller. 

Similarly, we introduce a rule denoted by a t and defined in [15, Def. 4.1.71 (which we 

refer to as the result-rule), that provides such a mechanism allowing one to retrieve the 

intended return value of a named rule from a location determined by the result-rule call: 

Evaluation of this named rule would yield a set of updates as usual, however a side effect 

of this is that a special result would be assigned to the location I; an update of the form 

(1,result) is produced by the evaluation this rule. The named rule called is expected to 

have result (in this case both a keyword and function) as a free variable: 

NamedRule = 
R[result] 

and to assign some value to this function during its execution. 

While this method of retrieving returned values is sufficient in many cases, it is not always 

practical. Its syntactic form only allows for the return of a value into a given variable, and 

so it cannot be used inside a complex expression. For example, one has to write 
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Par 

5 1  R1 

x2 + R2 

sf4 
x := X l  + 2 2  

instead of the more natural 

-- - 

The return-clause is introduced in [23] to remedy just this problem 

NamedRule ZE 

return x in 

R[xI 

When a named rule with a return-clause is found in an expression, its rule body R is eval- 

uated, and the final value of x resulting from its execution is substituted into the expression 

where it is called. Since it is semantically atypical for an expression to produce an update 

set, the update set produced by such a named rule is discarded. 

2.4.3 Substitution 

Frequently, a simple value is required to specify some aspect of a model, but the calculations 

done to derive said value are quite tedious. Other times the result of a term is required 

many times in a specification, but the process of deriving the result is not important for 

the understanding of behaviour. In Section 2.2 for example, we used the unary function 

Locs in the definition of sequential composition, giving its meaning after. In such cases it 

is convenient to separate the use of a result, from it's derivation. 

The let-rule form provides this functionality 

let x = t in 

R [ X I  

where the term t is evaluated and assigned to the variable x just before evaluating R. Named 

rules may also be equipped with a where-clause 
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NamedRule = 
R[zl, . . . zn] 

where 

21 = tl 

Here xi is assigned the value resulting from the evaluation of term ti just before the evalu- 

ation of every instance of xi in R. It is good practice when using these facilities in a model 

to give appropriate names to the free variables to allow for correct interpretation (by the 

reader) of the value stored in the variable without needing to refer to the calculations which 

produced it. 

2.5 Control State ASMs 

The flow of control of an application at a high level of abstraction is often better understood 

when depicted in pictorial or chart form. Here we introduce control state ASMs, which allow 

for the description of control flow using a diagrams. A control state ASM is an ASM whose 

rules may be, at a high level of abstraction, defined pictorially as depicted in Figures 2.2-2.5. 

Similar to the traditional flow chart, conditions are depicted using the typical diamond type 

symbol (a), so called control states are depicted using circular symbols (O), rules to be 

executed are depicted as rectangular symbols (I), and flow depicted with directed arrows 

(-4. 

Figure 2.2: Control State ASM : Conditional execution of rule with conditional control state 
change. 

if dlState = i then 
if gl then g1 1 

R1 
. . . dlState := ji 

... 

gn R" 
if g, then 
R, 
ctlState := j ,  
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Figure 2.3: Control State ASM : Execution of single rule with conditional control state 
change. 

gl if ctlState = i then 
R 

R, if dls tate  = i then 
if g then 

b 

else 

'32 
Rz 
ctlState := jz 

J if gl then 
R . - .  dlState := ji 

. . .  

Figure 2.4: Control State ASM : Execution rule and control state change based on truth of 
single condition. 

if gn then 
gn ctlState := jn 

if ctlState = i then 
R, '32 RI seq RZ 

ctlState := j 

Figure 2.5: Control State ASM : Sequential execution of rules. 
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The control states2 ctlState E (1, ..., m) resemble the internal states of finite state 

machines, and can be used to describe different system modes (see [15, Section 2.2.61). It 

is important to notice that any transition between control states represents a step of the 

underlying machine. 

The examples given in Figures 2.2-2.5 illustrate common control state ASM forms, and 

the corresponding ASM rule which describes their behaviour; basic conditional execution 

and state change along with sequential execution are shown. While we do not give examples 

here, it should be clear that iterative execution, parallelism, and non-deterministic choice 

can all be easily described with control state ASMs as well. 

2.6 Background Classes 

In some applications, it may be useful to represent and make use of well defined data 

structures as elements of the state, thus increasing the working space with such elements. 

For example we may wish to use binary trees in our model. Recall (from Section 2.1) that 

fresh elements can be allocated for use by an algorithm, but only from the reserve; all 

members of the reserve set exist in all states of an ASM M, and so new elements can not 

actually be added to any state S of M at any time. Adhering to this foundational principle 

of ASMs, one is required to define each binary tree used, by first using the import-rule 

to retrieve a new element from the reserve and specifying its contents, ultimately worrying 

about the nature of these newly created elements. 

However, it would be much more convenient to assume that every state contains all 

hereditarily finite binary trees3 over all its atomic elements4. This is achieved by assuming 

that the reserve, which has no predefined internal structure over it, has some external 

structure over it. Thus, when a reserve element is imported, binary trees containing it 

already exist and do not need to be created separately (by importing additional elements 

and appropriately defining the membership relation on them). Any binary tree could then 

just be used by an algorithm, with the knowledge that it has already been defined and ready 

for use. This idea can be trivially extended to  other sorts of data structures, such as sets, 

'Control states are not states of the underlying ASM, but rather are modes of the system being modelled. 

3The set of all hereditarily finite binary trees contains finite binary trees of elements (and finite binary 
trees of these, etc.). 

4Here an atomic element refers to any element of the state which is not a binary tree. 
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maps, strings, numbers, and the list goes on. 

When the assumption is made that all states of an ASM include all elements of a par- 

ticular sort, it is said that the ASM uses the background class of that sort. The concept of 

background classes was formalized in [4]. 

2.7 Partial Updates 

Basic ASM updates provide for the replacement of the value v at a given location 1 with a 

new value v'. However, it is often convenient to look at a value as a complex data structure 

which has its own internal state, that may itself receive multiple incremental updates during 

a step, resulting in a total update of its internal state. The narrow view of the modification 

of state in Basic ASMs precludes the ability to make such partial updates. 

For example, during the process of modelling a message passing protocol, it might be 

convenient to keep messages in a set. Let us assume that messages is a set which currently 

contains some messages. If Basic ASM updates were all that were available, and we wish 

to add messages msg,  and msgy  to messages, but potentially independently of each other, 

we may attempt to accomplish this like so: 

if g,  then 

messages := messages U {msg,) 

if g, then 

messages := messages U {rnsg,) 

Notice that our attempt here to add messages msg,  and msgy into the set messages can 

succeed only if - one of the messages is added in a single step. In the case that both guards 

are satisfied, the updates produced by attempting to add msg,  and msgy simultaneously 

would result in an inconsistent update set. Therefore the above approach is not sufficient. 

Using partial updates solves this problem: 

if g,  then 

add msg, to messages 

if g, then 

add rnsg, to messages 

Essentially, individual partial updates of a step are first collected and then integrated (see 

[38]) into a total update, that update resulting from the total change to messages caused 
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by - all the partial updates. 

Partial updates have been explored in [38] and [39]. These papers introduce a general 

mathematical framework for handling these incremental changes in ASMs. 

2.7.1 General Mat hemat ica l  Framework  

The goal of [38] and [39] was to allow for the incremental change of elements, while preserving 

the traditional ASM setting, namely that location contents are changed by only updates. 

The authors introduce the notion of particles, which represent total and incremental 

changes of an element; particles are, in essence, mathematical functions representing the 

particular change to be made on an element of U. For example, a regular update to a 

value v' can be represented by a particle o v e r w r i t e , , .  Similarly the update resulting in the 

addition of element v" to a set may be represented by a particle setad&,,.  

Partial updates, which are in this framework produced by both update-rules and par- 

t ial  upda te  type rules (such as the add-to-rule introduced in our message example), consist 

of a location and a particle: pu = (1, p) . 
Once all partial updates produced are collected into a partial update multiset15 (denoted 

w 

A, notice the tilde), an update set of total updates A is produced by the integration of all 

partial updates for each individual location. The binary operator o results in one particle, 

being the combination of two particles in order. A total update for any location can only 

be produced by integration, if particles can be combined in an order independent manner. 

So if the particles setaddmsg, and s e t a d L S g y  were produced by our example, integration 

could only produce a total update for messages successfully if: 

s e t  addmsgx o setaddmsgy = setaddmsgy o s e t a d L S g x  

w 

A new notion of consistency is introduced for a partial update multisets : A can only 

be considered consistent if for every location, all partial update particles can be combined 

in an order independent manner as explained above. 

'The authors of [38, 391 use a multiset to collect partial updates, as they have found that integration 
may depend on the multiplicity of partial updates; for example multiple increments to integer counters [38, 
Section 61. 
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2.7.2 Turbo ASMs and Sequential Composition 

In regards to Turbo ASMs, we note that the sequential composition of partial updates 

should result in partial updates rather than total updates; put in another way, partial 

updates should not be integrated by a Turbo ASM rule. 

Recall the seq-rule: 

With the introduction of partial updates, R1 and R2 result in partial update multisets Al 
N N 

and A2 respectively, and the seq-rule itself should yield a multiset of partial updates ASeq 
N 

resulting from their composition. Partial update multisets composed sequentially (via @) 

are defined as follows 

N 
N 

{(l,p2' 0 plZ) I 1 E L ) ,  if consistent(Al) A,,=A,G~~= { otherwise. 

N N 

where L = Locs(Al) U Locs(A2), and pi1 refers to all particles operating on location 1 in 
N N 

partial update-multiset A,. Notice that particles are combined6 such that Al occurs before 
N 

A2; in a seq-rule, relative ordering of particles between the two partial update-multisets 

must be preserved. 

2.7.3 Rule Forms 

In this document we use one of two partial update rule forms which operate on both sets 

and multisets: the add-to-rule and the remove-from-rule. The add-to-rule causes the 

addition of the element v,, resulting from the evaluation of term t,, into the set or multiset 

v,, resulting from the evaluation of term t,: 

add t ,  to t ,  

In contrast, remove-from-rule results in the removal of element v, from the set or 

multiset v,: 

6 ~ e  have pzl opl1 rather than pi' opzl because of the way particle combination works: (pzi opll)(x) = 
pzl(pi'(x)) [38, Remark 8.21. 
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remove t ,  from t ,  

Note that if v, does not exist in v, this rule has no effect. Also note that when v, is a 

multiset that currently contains multiple instances of v,, only one instance of the element 

is removed from the multiset. 

2.8 Modelling Computer Languages 

ASMs have been used to formalize many computer languages (see Section 4). We note 

that another widely accepted methodology used to formalize the semantics of computer 

languages is denotational semantics [49]. Here we briefly discuss the ASM paradigm and 

denotational semantics in the context of computer language development, and show why 

the ASM method is more appropriate for our purposes. For more in-depth coverage of this 

topic, we refer the reader to [8, 201. 

The denotational semantics methodology is used to define language semantics math- 

ematically, modelling data types as domains (i.e. sets categorizing data) and modelling 

programs of a language as functions between domains, thus allowing for the precise defini- 

tion of certain language semantics. However denotational semantics abstracts away from the 

dynamics of computation - change over time - and thus cannot easily capture all semantics. 

So, while denotational semantics are powerful and concise in certain cases, limitations in 

what can be expressed with it make it appropriate only for certain language constructs as 

mentioned in 181: 

Such  [denotational] semantics . . . allows one t o  establish m a n y  useful properties, 

but there i s  a price. N o t  all programming constructs lend themselves t o  such 

treatment which limits the  applicability of the method. 

The operational semantics [49] approach defines the operational semantics of a p r e  

gram in a language via sequence of internal machine configurations that a machine moves 

through over time as it executes the program instructions, thus capturing the dynamics of 

computation. A common way to rigourously formalize the operational semantics is through 

state-transition systems [46], and all ASMs are state-transition systems. ASMs with their 

abstract state composed of interpretations of functions between elements of universes, allow 
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for a precise, mathematically-structured definition of semantics like denotational semantics, 

while also incorporating the notion of state-transition. With ASMs one can also define 

operational semantics at  the desired level of abstraction, avoiding unneeded complexity in 

formalization.[8]. The suitability of the ASM method for formalization of computer pro- 

grams is stated concisely in [20]: 

A bitter consequence is that applications of such domain based methods [denota- 

tional semantics] are u~ua l l y  restricted to relatively simple properties for small 

classes of programs; . . .pure versions of various functional programs (pure in- 

stead of common LISP programs), Horn clauses or slight extensions thereof in- 

stead of Prolog programs, structured WHILE programs instead of imperative pro- 

grams appearing i n  practice (for example Java programs with not at all harmful, 

restricted forms of go to). . . . The add on of ASMs with respect to denotational 

methods is that properties and proofs can be phrased i n  terms of abstract runs, 

thus providing a mathematical framework for analyzing also runtime properties, 

e.g. the initialization of programs, optimizations, communication and concur- 

rency ( in  particular scheduling) aspects, conditions which are imposed by imple- 

mentation needs (for example concerning resource bounds), exception handling, 

etc. 

Essentially the ASM paradigm should be used where the expression and analysis of oper- 

ational behaviour is important. Because we wish to formalize and validate both CoreASM en- 

gine operation and language semantics, the ASM method is appropriate for our application. 

It is interesting to note, however, that Basic ASMs have been defined using denotational 

semantics [40]. 

2.9 Notational Conventions 

All ASM specifications presented in this thesis use the following notational conventions for 

improved readability: 

0 Named rules and always begin with an upper case letter. When a name contains 

multiple words, individual words begin with capital letters, and are not separated by 

any alternate characters. When called from within another rule, the name will appear 

in sans serif type (e.g. NamedRule) 
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When a named rule or submachine is first defined, their name appears in bold- 

face sans serif type followed by the equivalence symbol, and their rule body R (e.g. 

NamedRule = R) 

Domains appear in all capital letters, with larger sized capitals beginning individual 

words (e.g. DOMAINNAME). 

Function and predicate names always begin with a lower case letter and appear itali- 

cized. When a function or predicate name contains multiple words, individual words 

after the first begin with capital letters, and words are not separated by any alternate 

characters (e.g. functionName). 

All ASM reserved words appear in boldface lowercase letters (e.g. skip). 

Comments are always prefixed with double slashes (e.g. // Comment). 

ASM specifications can found throughout this document, intermingled with text. Such 

specification segments are separated from the text by two horizontal lines: A thick 

line ( ) indicating the start of the segment and a thin line ( ) indicating its 

end. Some segments may contain a title at the top right hand corner of the segment, 

appearing in small sans serif type (e.g. ASM Segment ~ i t l e ) :  

ASM Segment 

/ /  Body 

ASM specifications which are numbered for reference elsewhere are enclosed in a full 

frame, with their number and caption below: 

Specification 2.1: The specification description. 

Such specifications also appear in the List of Specifications on Page xiv of this docu- 

ment. 



"A compiler's primary function i s  t o  compile, 

Chapter 3 

organize the  compilation, and go right back t o  

compiling. It  compiles basically only those things 

that require to  be compiled, ignoring things that 

should no t  be compiled. T h e  m a i n  way a compiler 

compiles, i s  t o  compile the  things t o  be compiled 

unt i l  the  compilation i s  complete." 

- Student's wrong answer o n  C S  exam. 

Compiler Theory Preliminaries 

In this chapter we give a brief introduction of compiler theory concepts necessary for an 

understanding of the CoreASM project and this thesis. We begin with a short comparison of 

interpretation and compilation in the context of computing. We follow this with an intro- 

duction to language definition, input representation and evaluation, and operator specific 

concepts. We end with a discussion of types and semantic analysis in computer languages. 

All information presented can be found in [I] unless otherwise noted. 

3.1 Interpreter vs. Compiler 

An interpreter interprets a computer program, resulting in its execution. In contrast a 

compiler simply translates a computer program from its language to another, and involves 

no execution of any kind. 

However, both an interpreter and a compiler do share some components, namely the 

lexical analyzer, syntactic analyzer (parser), and semantic analyzer. Each component, re- 

spectively, represents a successive stage in the processing of the input. While we restrict our 

discussion to the case where their execution (in the error-free case) results in an intermediate 

representation of the input program, note that some approaches to compilation translate 

input directly to output, and thus do not produce an intermediate representation. 

The purpose of the lexical analysis phase is to break up the input into small portions, 

called tokens; tokens are found by pattern matching against input, looking for specific 

segments of text (e.g. reserved words, numbers, identifiers). Tokens are fundamental units 

of an input language. 



CHAPTER 3. COMPILER THEORY PRELIMINARIES 29 

A syntax analyzer takes tokens from the lexical analysis phase and creates a repre- 

sentation of the input, as a tree. The tree is built based on syntactic constraints of the 

input language, which have been encoded in its context-free gmmmar (grammar for short); 

in essence, a grammar gives a precise syntactic specification of the input language. Syntax 

analysis ensures that input is correctly structured by making certain that the order in which 

tokens were found is acceptable. 

During the semantic analysis phase, checks are made to ensure that the meaning of the 

input is unambiguous and the input program instructions are supported by the computer 

language. One such check is type checking1, where (amongst other things) checks are made 

so that, for instance, all operators have operands of a type (e.g. integer, real, string) that 

they are capable of operating on. 

From this stage onward in their respective processes, an interpreter will use its represen- 

tation of the input to interpret the meaning and execute the tasks which the input language 

describes, whereas the compiler will use the representation to translate the meaning into 

the target language. 

3.2 Language Definition 

The syntax of a language is specified by a gmmmar, which naturally describes the hierar- 

chical construction of the language it depicts. A grammar consists of four components2: 

1. A set of terminal symbols, each terminal being associated with a particular token3. 

2. A set of nonterminals. 

3. A set of productions where each production consists of a nonterminal called the left- 

hand side (LHS) of the production, an arrow, and a sequence of tokens and or non- 

terminals, called the right-hand side (RHS) of the production. 

4. A single nonterminal, designated as the start symbol. 

'Many other semantic error checks can be performed, including those for variable and subroutine decla- 
ration, variable initialization, etc. However, we focus only on type checking here because it alone is relevant 
to this work. 

'These four points were taken from [I] with little modification. 

3Note that different character strings in input, called lexemes, may be represented by a single token (e.g. 
"foe" and "bar" could both be represented by the Identifier token). 
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When presenting grammars or grammar segments, we follow these conventions: 

0 Typewriter font will always be used (e.g. typewriter font) .  

0 Nonterminals will always begin with an upper-case letter. When a nonterminal con- 

tains multiple words, individual words begin with capital letters, and are not separated 

by any characters (e.g. NonterminalExample). 

Terminal symbols will always be delimited by single quotes (e.g. ' terminal ' ) .  

0 Arrows will be depicted as : ->. 

0 If an entire grammar is being depicted, the designated start symbol will be the LHS of 

the first production listed. Otherwise, the grammar segment will begin with ellipses. 

0 Because more than one production can have the same LHS, we allow a LHS to have 

multiple RHSs for convenience. Multiple RHSs of a production are separated with a 

pipe (e.g. I). 

We will consider for the purposes of illustration, a simple language which contains arith- 

metic expressions consisting of single digits along with multiplication and minus signs. The 

grammar for this language is shown in Figure 3.1: 

Expr -> Expr '-' Digit  I Expr ' * '  Digi t  I Digit  
Digit  -> '0 '  I '1' 1 ' 2 '  1 '3 '  1 '4 '  1 '5' 1 ' 6 '  1 '7' 1 '8' I ' 9 '  

Figure 3.1: A simple expression grammar. 

The grammar presented in Figure 3.1 will accept strings 1 * 5 - 7 or 2 * 3 - 8, but not 1 * 10 

or -5. 

3.3 Input Represent at ion and Evaluation 

Because the process of syntactic analysis (or parsing) is complicated and technical, we do 

not discuss it in detail here. However it suffices to say that the parser uses the grammar to 

build a representation of input as a tree of tokens. This tree may be a parse tree, which is an 

exact representation of the nonterminals and terminals used for the parse, or it may be an 
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abstract syntax tree (AST), which abstracts away from the exact symbols of the grammar 

used but still describes the meaning of the input. Figures 3.2 and 3.3 show the parse tree 

and AST for the expression 2 * 3 - 4; notice that the AST is much smaller than the parse 

tree. ASTs are generally more practical representations of input than parse trees are. 

Digit 0 
Figure 3.2: Example parse tree. 

Figure 3.3: Example abstract syntax tree. 

To determine the meaning of any tree representation, a tree is traversed in a depth-first 

postorder4 fashion; all nodes are visited after their children5. In a compiler, visiting a node 

4Here we are describing the general case. However, in an interpreter for example, during interpretation 
of control structures such as loops, children may be revisited after visiting the parent. 

5The order in which the children of a node are visited (if they are visited at all) is dependent on the node 
itself. 
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entails translation of program instructions, while in an interpreter, visiting a node results 

in the execution of program instructions. However, it is important to note that the end 

result of executing a compiled program and interpreting the same program is identical. In 

our AST examples we shall focus on this end result through interpretation, and so we use 

the term evaluated to refer to a node that has been visited. 

The results of evaluated subtrees are used by the parent node. This is illustrated in 

Figure 3.4, where, by first evaluating the its subtrees, and then the root of the AST, a result 

of 2 is derived for 2 * 3 - 4. 

Figure 3.4: Evaluated abstract syntax tree. 

3.4 Operator Classification and Precedence 

For our purposes, we define an operator to be one or more symbols which denote a process 

or action called an operation, which takes one or more arguments called operands; the evalu- 

ation of an operator results in a value. Operators can be divided into classes based on their 

syntactical form: u n a r y  (eg. numerical negation "-"), binary (e.g. multiplication "*"), 

t ernary  (e.g. conditional assignment "? :"), grouping (e.g. expression grouping "( )") and 

indexing (e.g. array index "[ I"). 
Every operator can also be classified as le f t  associative (LA) or right associative (RA). 

Associat ivi ty  of operators is defined by the side of an expression from which evaluation 

begins: LA operators are evaluated from left to right; RA operators are evaluated from 

right to left. We shall use the binary operators for arithmetic subtraction ("-") and as- 

signment ("="), which are LA and RA respectively, as an example: notice that a - b - 4 

is equivalent to (a - b) - 4 whereas a = b = 4 is equivalent to a = (b = 4). Recall that 
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evaluation of input requires postorder traversal of the AST. As such the representation for 

two seemingly similarly constructed expressions a - b - 4 and a = b = 4, are two completely 

different ASTs (Figure 3.5). 

Figure 3.5: AST for left and right associative operators. 

While associativity defines how multiple instances of the same operator are to be eval- 

uated, opemtor  precedence (OP) defines how multiple operators are to be evaluated in the 

absence of parenthesis. According to arithmetic conventions the expression 5 - 6 * 8 is equiv- 

alent to 5 - (6 * 8) and not (5 - 6) * 8; arithmetic multiplication has a higher precedence 

than does arithmetic subtraction. 

Any grammar can be structured such that the parse tree (and hence the AST) produced 

by a parse, has OP in mind. A grammar in which the acceptable order of operations is 

encoded is called an opemtor precedence grammar (OPG). In an AST produced by such a 

grammar, higher precedence operators appear lower in the tree, where they will be evaluated 

before operators of lower precedence (see Figure 3.6). 

Incorrect 
Interpretation 

Correct Operator 
Precedence 

Figure 3.6: AST resulting from OPG. 



CHAPTER 3. COMPILER THEORY PRELIMINARIES 34 

The OPG presented in Figure 3.7 results from simple modifications to the grammar 

shown in Figure 3.1. It implements the correct operator precedence for arithmetic multipli- 

cation and subtraction, ensuring that multiplication will be evaluated before addition: 

Expr -> Expr '-' Term I Term 
Term -> Term ' * '  Digit I Digit 
Digit -> ' 0 '  I '1' 1 ' 2 '  1 '3 '  1 ' 4 '  1 '5' 1 '6' 1 '7 '  I '8' 1 '9 '  

Figure 3.7: Expression grammar, now an OPG, taking into account operator precedence. 

3.5 Types and Semantic Analysis 

In programming languages, variables, and hence memory locations, hold a certain type of 

value. In examples to follow, we assume that the variable "a" holds values of an integer 

type called Integer, the variable "b" holds values of a real type called Real, and the variable 

"c" holds values of a string type called String. 

Type checking ensures that only operands of a certain type can be used with a given 

operator. Given an arithmetic operator for addition ("+"), a type checker would prevent 

a + c from being accepted, as arithmetic addition is undefined for an Integer and a String. 

An "overloaded" symbol is one that has different meanings depending on its context [I]. 

Operators may be overloaded6 by providing an implementation for operands of different 

types, with different implementations provided by either the user or the language itself. For 

example, the "+" operator may be overloaded for use with Integer addition or Real addition. 

However, for it to work with operands of different types, the Integer must be converted to 

a Real or vice versa. The compiler or interpreter is generally aware of all types of operands 

provided by the language, and which conversions are possible. 

The process of automatic conversion from one type to another is called coercion. So, if 

a = 1 and b = 2.2 then before a + b can be computed, a must be coerced to the value 1.0, 

resulting in the evaluation: 

'Note that a polymorphic operator is not the same as  an overloaded operator; the former has a single 
implementation for all types, while the latter has different implementations for different types. 
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Programming languages may also provide facilities for the programmer to explicitly con- 

vert  information from one type to another. This type of conversion is also know as cast- 

i ng  [53].  

3.5.1 Dynamic vs. Static Typing 

A statically typed (or strictly typed) computer language requires the user to specify the type 

of every variable used, where as dynamically  typed languages do not have this restriction. 

In dynamically typed languages, a single variable may, during execution of a program, hold 

information of multiple types. 

Thus, type checking for languages such as C++ and Java, which use static typing, is 

done at compile time. Dynamically typed languages such as Perl, Python, and PHP do 

their type checking at interpret-time. 

3.5.2 Strong vs. Weak Typing 

As mentioned earlier, the compiler or interpreter is aware of all type conversions supported 

by a language, if any. The coercions which are supported7 allow for variables of one type 

to be automatically viewed and used as variables of other types where it is appropriate 

(e.g. where an operand is of one type but the operator works only with another type). A 

language that places many restrictions on how variable types can be viewed and used is said 

to be strongly typed,  while a language that has few such restrictions is said to be weakly 

typed [53].  

For instance, a strongly typed language may only allow numeric types to be coerced into 

other numeric types. Recalling our earlier example where a = l  and b=2.2, a strongly typed 

language would be able to compute a+b with a simple coercion of a to its equivalent Real 

value. The languages C++, Java, and Python are all strongly typed languages. 

In contrast, a weakly typed language may also allow for non-numeric types to be viewed 

as numbers. For example if a=5 and c holds the String "3.3", a weakly typed language 

would, before the evaluation of a + c, coerce a to 5.0 and c to 3.3, resulting in: 

7To simplify the discussion we focus on automatic conversions that involve actual coercion of the source 
value to the target type, versus the simple reinterpretation of information in memory as the target type, as 
is done in weakly typed languages like C. 
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To achieve this same outcome in a strongly typed language, explicit conversion of the String 

"3.3" would be required prior to expression evaluation. Both PHP and Per1 are weakly 

typed languages. 



"Computer language design is just like a stroll i n  

the park. Jurassic Park, that is. " 
- Lamy Wall 

Chapter 4 

CoreASM Overview 

Semantic foundations of many widely known computer languages have been modelled us- 

ing the ASM formalism. These include industrial system design languages like the ITU-T 

standard for SDL [32, 47, 22, 411; the IEEE language VHDL [12, 111 and its successor 

SystemC 1451; programming languages like JAVA [51, 211, C# [lo] and Prolog [6, 71; and 

the Business Process Execution Language for Web services 129, 30, 281. As such, the ASM 

formalism is a natural choice for the formal specification of the CoreASM engine, language, 

and toolset. 

In this chapter we shall give a basic overview of the CoreASM engine and language. 

First we provide a high-level architectural view of the CoreASM engine. Then we present 

its components in some detail and discuss the extensibility provisions in its architecture. 

An abstract specification of the CoreASM language is then presented, along with several 

examples of how the core language and its extensions are specified. 

The CoreASM tools presented in this chapter are the result of incremental design and 

specification presented by Farahbod et. a1 in 125, 24, 23, 261; various diagrams and the 

notation used, have been borrowed and/or adapted from these earlier and upcoming doc- 

uments. We introduce the engine with the intention of refining the description of certain 

components' behaviour and making amendments to this design, in subsequent chapters. 

Because the specification paradigm being modelled is identical to that being used to 

model it, at times it may not be clear which ASM we are referring to. In such cases, we 

refer to the CoreASM engine and its execution as the simulated machine, and the underlying 

ASM used to model it as the underlying machine. 
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4.1 Engine Architecture 

The CoreASM engine is composed of four modules, namely the parser1, the Intevreter, the 

Scheduler, and the Abstract Storage (Figure 4.12). All these components work together to 

simulate an asynchronous DASM run. The Control API, a liaison between the engine and 

environment, facilitates and coordinates their interaction. 

Control API 

u 
CoreASY Engine 

Figure 4.1: Architectural Overview of CoreASM Engine 

First the Parser produces an AST representing the CoreASM specification provided. The 

Interpreter then traverses the AST, executing rules and evaluating expressions, and then it 

collects all updates produced. It is the responsibility of the Abstract Storage to manage 

the data model, and in particular the basic function and predicate locations of simulated 

machine state. The current state of the simulated machine is stored along with a history of 

previous states of the current run. The history can be used to explore the series of moves 

resulting in the current state or to rollback to a previous state and reengage the computation 

from there.3 While evaluating a program, the Interpreter interacts with the Abstract Storage 

in order to obtain the values of locations in the current state. As there may be multiple 

agents which execute in a single DASM step, the Scheduler is charged with selecting a 

set of agents that will contribute to the next computation step and with coordinating the 

 he Parser module handles both lexical and syntactic analysis of specifications. 

 his figure was reproduced from [24] by permission. 

3While the rollback mechanism is able to rollback the machine state, it is important to mention that it 
has no control over the environment. 
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execution of those agents. The Scheduler must also handle cases of inconsistency in update 

sets generated in each step. Essentially the Scheduler coordinates the execution of each step 

of the simulated machine. 

The actions which constitute a single step in the CoreASM engine are as follows (refer 

also to Figures 4.6-4.9: 

1. The Control API sends a STEP command to the Scheduler. 

2. The Scheduler retrieves the entire set of executable agents from the abstract storage. 

3. The Scheduler selects a subset of these agents to perform computation during the next 

step. 

4. The Scheduler selects a single agent from the subset, assigning it to the special variable 

self in the Abstract Storage. 

5. The Scheduler instructs the Interpreter to run the program of the current agent (which 

can be retrieved by evaluating program(se1f) in the current state). 

6. The Interpreter executes the program.4 

7. When evaluation is complete, the Interpreter notifies the Scheduler that the interpre- 

tation of the agent's program has completed. 

8. The Scheduler chooses a different unevaluated agent from the subset. If there are no 

more unevaluated agents left in the subset, the Scheduler calls the Abstract Storage 

to fire the accumulated updates. 

9. The Abstract Storage notifies the Scheduler whether the update set has any conflicts 

or it was successfully fired. An inconsistent update set will lead to selection of a 

previously untested subset of agents (if any) and their execution in this step, while 

a successful firing of the update set will cause control to be sent back to the Control 

API. 

4 ~ h i s  generally involves interaction between the Interpreter and the Abstract Storage to evaluate terms 
against the current state. 
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4.1.1 CoreASM Components 

In this section we present the modules of the CoreASM engine in greater detail, along with 

its extensibility mechanisms. 

The engine is modularized along two dimensions (see Figure 4.25). Until now we have 

presented the architecture in terms of thc four main components of which it is composed: 

Parser, Interpreter, Scheduler, and Abstract Storage. However, the second dimension al- 

lows us to distinguish between what is absolutely necessary to DASM semantics, which is 

contained in the kernel of the engine, and what is not, which is handled by plug-ins. The 

language accepted by the CoreASM engine may be progressively extended using plug-ins, 

thereby augmenting the basic functionality of the kernel. 
.._ ___ .- ____.." _- _ _., *.- _.. . I  

1 Parser 1 Interpreter ; i Abstract Storage 1 Scheduler 
I 

I KERNEL I 
sets Round-robin 

... Pseudo-random 
a 

For-all 

Figure 4.2: Layers and Modules of the CoreASM Engine 

Before a CoreASM specification can be interpreted, the Parser must generate an anno- 

tated AST for it. Each node in the tree produced may be annotated with a reference to the 

plug-in where the corresponding syntax and semantics for its evaluation is defined. Our ex- 

ample in Figure 4.36 has nodes associated with the Boolean, Set, and Number plug-ins; the 

Interpreter and Abstract Storage will use this information to correctly evaluate the nodes 

with respect to their corresponding plug-ins. 

5This figure was reproduced from [24] by permission. 

 his figure is based on one from [24]. 
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k(5) := { x I x E A with f(x) A g(x) ) 

Figure 4.3: Sample annotated AST 

The Interpreter traverses the AST, executing rules and potentially giving control to 

plug-ins when coming across nodes for which they are responsible; any node containing no 

plug-in information is handled directly by the kernel. While traversing the tree, a set of 

updates is generated by the evaluation of all rules. Interaction with Abstract Storage is 

required for the evaluation of terms against the current state. 

The current state of the simulated machine is maintained by the Abstract Storage mod- 

ule. Interfaces provided by this module allow thc retrieval of values from any location in the 

current state and for the application of consistent updates upon the completion of a success- 

ful step. In the underlying machine, simulated state is modelled as a map from locations to 

elements of the universe ELEMENT. 

The Scheduler orchestrates the evaluation of each step in the DASM run. A step is ini- 

tiated upon receipt of a STEP command from the Control API. First a subset of executable 

agents is chosen to participate in the next step, requiring interaction with the Abstract Stor- 

age to retrieve the current set of agents. For each agent in this subset, the Scheduler passes 

control to the Interpreter to evaluate the program of the agent, and when evaluation of the 

agent's program is complete, it collects the set of updates generated. When all selected 
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agents have been executed, all updates generated (if consistent) are then applied, resulting 

in the next state. The environment is notified of the final status of the step attempt via the 

Control API, thus completing the step. 

4.1.2 Engine Life-cycle 

Informally, the process of executing a CoreASM specification using the CoreASM engine is: 

1. Initializing the engine 

(a) Initializing the kernel 

(b) Loading the plug-ins library catalogue 

(c) Loading and activating plug-ins from a standard library 

2. Loading a CoreASM specification 

(a) Parsing the specification header 

(b) Loading further needed plug-ins as declared in the header 

(c) Parsing the specification body 

(d) Initializing the Abstract Storage 

(e) Setting up the initial state 

3. Execution of the specification 

(a) Execute a single step 

(b) If termination condition not met, goto 3a to execute next step. 

A high-level formal specification of this procedure is provided as a control state ASM, 

and is shown in Figures 4.44.9. During execution of a CoreASM specification, control moves 

between the different components of the engine. As an aid to the reader, modules and the 

Control API are depicted in one of five colours, and portions of the process handled by a 

given component are enclosed in an appropriately coloured and labelled rounded box (m). 
When control moves out of one component and into another, the module to which control 

moves is written in a note shape (B). 

For the remainder of this section we will walk through the control state ASM model; 

note that lower level interfaces provided by the modules of the simulated machine, and used 
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in the model, are formally defined in Appendix A. The ASM rules and conditions making 

up a single step of the simulated machine (see 3a above) will be given special attention. The 

current control state of the model is stored in the variable engineMode; at times we refer to 

this as simply the mode of the engine. When the engine is first executed, it begins its life 

in the Idle mode in the Control API, waiting for one of three commands (i.e. INIT, LOAD, 

and STEP). As commands from the environment arrive, they are inserted into a queue and 

evaluated in FIFO order. 

When given the INIT command, the engine starts the initialization process (Figure 4.47), 

first initializing the kernel, then creating a catalog of all plug-ins currently available, and 

finally activating all plug-ins which are included in the standard library. Once initialization 

is complete, the engine again waits in Idle mode, ready for another command. 

Loadcatalog 

I 

Figure 4.4: Control State ASM of Engine Initialization 

The LOAD command causes a chain of events resulting in the loading of a specification 

(Figure 4.58). The engine gives the CoreASM specification to the Parser which examines 

the header of the specification and determines which plug-ins are required for its execution. 

This information is used by the Control API to load the necessary plug-ins. Once the 

plug-ins (and thus their extensions to the engine) are loaded, the Parser is called to parse 

the specification, with the result being an AST. Based on this AST, the Abstract Storage 

will initialize the simulated machine state data structure with required functions, and the 

Scheduler will load the initial state of the simulated machine. Once the loading of the 

specification is complete, the engine again returns to Idle mode. 

7 ~ h i s  figure was reproduced from 1261 by permission. 

 h his figure was reproduced from [26] by permission. 
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lnitAbstractStorage 

&STRACT STORAGE SCHEDULER 

Figure 4.5: Control State ASM of Loading of CoreASM Specification 

Once the engine is initialized and loaded, it is ready to commence the execution of a 

simulated run. The engine waits for a STEP command, via the Control API, from the envi- 

ronment (e.g., an interactive GUI or a debugger), to start the actual computation of a step 

(Figures 4.6 to 4.9'); the receipt of this command results in a switch to mode Starting Step, 

and transfers control to the Scheduler. 

Figure 4.6: Control State ASM of a STEP command: Control API Module 

The Startstep rule in the Scheduler initializes updateset (the set of computed updates 

for the step), agentset  (the current set of active agents of the simulated machine), and 

selectedAgentsSet (the set of agents selected to perform computation in the current step). 

Then via the RetrieveAgents, the selectedAgentsSet is then assigned the value of agents from 

'These figures were adapted from [23] by permission. 
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the current simulated state. To retrieve information regarding the value of a location, the 

Abstract Storage module must be queried; this interaction is modelled using an abstract 

function getValue(1) which takes a location 1 and retrieves the value of the location from the 

simulated state. The notation "term" refers to a function or predicate named term in the 

simulated machine. The mode is then changed to Selecting Agents. 

Scheduler 

Startstep - 
updateset := { ) 
agentset  := undef 

selectedAgentsSet := { ) 

RetrieveAgents = 
agentset  := get Value(( "agents", 0)) 

- 

ChooseAgent 

Succeeded 
Control API 

Updates 

Failed 

Execution 
Interpreter I 

Figure 4.7: Control State ASM of a STEP command : Scheduler 
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When in the Selecting Agents mode, if there are no agents to execute, the step of the 

simulated machine is considered to be complete; otherwise, the SelectAgents rule selects a 

set of agents to perform computation in this step, and control moves to the Choosing Agents 

mode. Then the ChooseAgent rule selects an agent from this set and changes the mode to 

Initializing SELF, which leads to the execution of the SetChosenAgent and GetChosenPro- 

gram rules in the Abstract Storage module. Once the execution of the agent is concluded, 

the updates computed are collected by the AccumulateUpdates rule in the Choosing Next 

Agent mode. The engine returns to the Choosing Agent mode until all selected agents have 

been executed. 

Scheduler 

SelectAgents r 

choose s with s C agentset  A Is( 2 1 do 

selectedAgentsSet := s 

ChooseAgent - 
choose a in selectedAgentsSet do 

remove a from selectedAgentsSet 

chosenAgent := a 

ifnone 

chosenAgent := undef 

AccumulateUpdates E 

add updates(root(chosenProgram)) to updateset  

Before the execution of any agent, the engine enters the mode Initializing SELF in 

Abstract Storage. In this mode, the chosen agent is set (by assigning it to the distinguished 

variable self in the simulated state), and the program associated with the chosen agent is 

retrieved (by accessing program(se1f) in the simulated state). Control then returns to the 

Scheduler, going into mode Initiating Execution. 
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Abstract Storage 

SetChosenAgent = 
Setvalue(( "self", ()), chosendgent) 

GetChosenPrograrn E 

chosenProgram := getValue(("prograrn", ( " se l f " ) ) )  

SetChosenAgent ~ G e t C h o s e n P r o g r a r n  

,.., ABSTRACT ST0 ... . .......................... 

Figure 4.8: Control State ASM of a STEP command : Abstract Storage 

The execution of the chosen agent's program is first initialized in the Init iating Execut ion 

mode in the Scheduler, and then begins in the Program Execut ion mode in the Interpreter. 

Evaluation of each program results in updates being produced and collected in the updateset. 

When all selected agents have completed their computation, control moves to the Firing Up- 

dates mode where application of updates is attempted. If the update set is consistent, it 

will be applied to the current state; if it is inconsistent, it will result in a failed update. 

During interpretation of a program, values, updates and locations computed are associ- 

ated with nodes of its AST. Just before commencing the interpretation of a program, the 

InitiateExecution rule removes all information resulting from the previous interpretation of 

the chosen program, and sets a pointer (always holding the current position in the tree - 

denoted by the nullary function pos )  to the root node of the tree representing the program 

of the chosen agent. 

InitiateExecution = 
ClearTree(root(chosenProgram)) 

pos := root( chosenProgram) 

Scheduler 
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A full specification of the method used for interpretation of concrete rules and expres- 

sions is presented in greater detail in Section 4.2. However, the way in which the Interpreter 

interacts with plug-ins to delegate interpretation of the AST is discussed here. This offload- 

ing of interpretation is done in the Program Execution mode, where the ExecuteTree rule 

(found in Specification 4.1) is repeatedly executed. 

It was mentioned in Section 4.1.1 that nodes of the parse tree corresponding to syn- 

tax provided by a plug-in are annotated with a plug-in identifier; a special oracle, the 

plugin(node) function, is used to abstract from the details of how this annotation is imple- 

mented. When a node is found to refer to a particular plug-in, control over its interpretation 

is given to the plug-in. This is accomplished by first using the pluginRule function to retrieve 

the underlying machine rule for the plug-in, and then executing this rule. 

Figure 4.9: Control State ASM of a STEP command : Interpreter 

However, nodes not associated with any plug-in are interpreted by the kernel via the 

Kernellnterpreter (see Specification 4.2 in Section 4.2). Results of the interpretation of node 

pos are stored alongside the node, and are accessed by three functions in the underlying 

machine: value(pos) holds the value computed for an expression node, updates(pos) holds 

the set of updates generated by a rule node, and loc(pos) holds the location denoted by the 

node (which is used as LHS-value within the update-rule). More precise definitions of these 

can be found in Section 4.2.1. 
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interprete 

ExecuteTree = 
if -evaluated(pos) then 

if plugin(pos) # undef then 

let R = pluginRule(plugin(pos)) in 

R 

else 

Kernellnterpreter 

else 

if parent(pos) # undef then 

pos := parent(pos) 

Specification 4.1: The ExecuteTree rule in the Interpreter module. 

When all selected agents have been executed, and the engine is in the Choosing Agents 

mode of the Scheduler, the update instructions produced by all agents will have been col- 

lected in updateset.  At this point, control will move to the Firing Updates mode in Abstract 

Storage. The consistency of the update set is queried using the isConsistent function pro- 

vided by Abstract Storage (see Appendix A). Abstract Storage provides the Se tValue  rule, 

which applies a single update to the simulated state. If the update set is consistent, the next 

state is obtained by the FireUpdateSet  rule, which uses this interface to Abstract Storage to 

apply all updates in the update set. 

Abstract Storage 

FireUpdateSet = 
forall ( 1 ,  v )  E updateset do 

SetValue(1, v )  

However, if an inconsistent update is produced, the simulated machine provides an 

indication of failure by changing its mode to Update Failed. The HandleFailedUpdate rule 

in the Scheduler module then attempts to select a previously untested subset of agents for 

execution, and the step is re-initiated. The process is repeated until one of two conditions 

is met: either a consistent set of updates is produced, in which case the engine moves 

to the Step Succeeded mode of the Control API; all possible combinations of agents have 
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been exhausted, which alternately results in a switch to the S t e p  Failed. In both cases, the 

environment is notified of the outcome via the Notifysuccess and NotifyFailure rules in the 

Control API. The engine then returns to the Idle mode awaiting further commands from 

the environment. 

4.1.3 The Kernel and Plug-ins 

A key feature of CoreASM is its extensibility; only the most fundamental DASM functionality 

is provided by the kernel (see Figure 4.2). 

As the state of the simulated machine is defined by functions and universes, both domains 

of functions and universes are included in the kernel. Because universes are represented by 

their characteristic functions, the Boolean domain and its two elements are included in the 

kernel. As all basic functions are partial (resulting in undef ,  when a function location is 

not specified), the distinguished element undef  is included in the kernel. Every rule of a 

CoreASM specification is represented as an element in the simulated machine, and as such 

the domain of rules is included in the kernel. 

Only two rules are defined in the kernel: the update-rule and the import-rule. Without 

updates being generated, there would be no way of making a transition to a new state, 

making the update-Rule a necessity. The import-rule is important as it has privileged 

access to the reserve. 

Finally function term evaluation and local variable evaluation, as well as named-rule 

execution is included in the kernel, as these are required to execute a step of any structured 

ASM specification. 

All other functionality is provided by plug-ins. Many common rule forms coming from 

Basic ASMs and Turbo ASMs, common background classes such as numbers and sets, and 

operations involving elements of these sorts, are included in the standard library of plug-ins 

which is automatically loaded for use with all CoreASM specifications. The architecture 

supports the following kinds of extensions, of which a plug-in may provide any or all: 

0 The addition of background classes containing elements of a certain sort. This would 

require: 

(i) An extension to the Parser defining the concrete syntax (literals, static functions, 

etc.) needed for working with elements of the background. 
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(ii) An extension to Abstract Storage providing encoding and decoding functions for 

representing elements of the background for storage purposes. 

(iii) An extension to the Interpreter providing the semantics for all the literals defined 

in the background. 

The definition of additional operators. The plug-in must provide: 

(i) An extension to the Parser defining the concrete syntax all of operators provided. 

(ii) An extension to the Interpreter providing the semantics for all the operators 

defined. 

0 The definition of additional rule forms. This would require: 

(i) An extension to the Parser defining the concrete syntax of the rule form. 

(ii) An extension to the Interpreter defining the semantics of the rule form. 

Extension plug-ins which are not distributed as part of the standard library, must be 

explicitly imported into an ASM specification by a use directive. 

4.2 The CoreASM Language 

In this section, CoreASM language syntax and semantics are modelled through specification 

of their interpretation. The notation used in the specification of the Interpreter will be first 

introduced. A number of kernel specific constructs are presented, followed by a selection of 

rules and operators present in the standard library. 

4.2.1 Notation 

The Interpreter is specified as a collection of rules which mimic evaluation through traversal 

of an AST, producing a combination of value, location, and updates resulting from the 

evaluation of nodes. The following assumptions are made: 

1. Nodes in the tree are in the domain of the following functions: 

first : NODE -+ NODE, next : NODE -+ NODE, parent : NODE -+ NODE are static 

functions that facilitate tree navigation; by using these functions, the Interpreter 
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can access all the children nodes of a given node, or go back to its parent, (see 

Figure 4.3 for reference). 

class : NODE -t CLASS returns the syntactical class of a node (i.e., used to classify 

and identify the node when its token is not sufficient). 

token : NODE -t TOKEN returns the syntactical token which the node represents 

(e.g., either a keyword, an identifier, or a literal value). 

I[.] : NODE -t LOC x UPDATES x ELEMENT holds the result of the interpretation 

a node, given by a triple formed by a location (i.e. the LHS-value of an expression, 

when it is defined), a multiset of update instructions, and a value (i.e. the RHS- 

value of an expression)lO. Properties of these triples may be established through 

the following derived functions: 

- loc : NODE -t LOC returns the location (LHS-value) associated with the given 

node, i.e. loc(n) = in] 1 1. 

- updates : NODE -t UPDATES returns the updates associated to the given 

node, i.e. updates(n) = in] 1 2 .  
- value : NODE -t ELEMENT returns the value (RHS-value) associated with the 

given node, i.e. value(n) - in] 1 3. 

- evaluated : NODE -t BOOLEAN indicates if a node has been fully evaluated, 

where 

evaluated(n) = in] # undef 

plugin : NODE -t PLUGIN is the plug-in associated with the node, and hence 

responsible for parsing and evaluating it. 

2. At all times the Interpreter's current position in the tree is kept in a distinguished 

variable pos . 

3. A form of pattern matching which allows for concisely specifying complex conditions 

on the nodes. In particular: 

arbitrary nodes are denoted with m. 
''Organization of the triple is intended to be mnemonic with respect to an update-rule , the LHS-value 

being in the leftmost position, and the RHS-value in the rightmost position of a triple. Updates which would 
be produced by the evaluation of a rule, reside in the central position. 
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0 arbitrary unevaluated nodes are denoted with 0; as an aid to the reader, the 

semantically equivalent H, m, and denote unevaluated nodes whose evaluation 

is expected to result, respectively, in a value (from an expression), a set of updates 

(from a rule), and a location. 

0 an identifier node is denoted with x. 

0 an evaluated expression node (that is, a node whose value - resultant value 

- is not undef) is denoted with v; an evaluated statement node (a node whose 

updates - resultant set of g d a t e s  - are not undef) is denoted with u; an 

evaluated expression for which a location has been computed (a node whose 

loc - resultant location - is not undef) is denoted with 1 .  Subscripts may be 

appended to these variables, or different names for the variables may be used, for 

special cases and are discussed as appropriate. 

0 prefixed Greek letters are used to denote positions in the AST (typically children 

of the current node as denoted by pos) as in if " e  t hen  Pr where cr and ,L3 denote, 

respectively, the condition node and the then-part node of an ifelse-rule being 

interpreted. 

0 pattern-action rules (PA rules) of the form 

lpa t tern  D --+ actions 

are to be read as 

if conditions t hen  actions 

where the meanings of conditions and actions are derived using the notation 

convention informally described above, and formally specified in Table 4.1. In 

the action part of such a PA rule: any unquoted and unbound occurrence of 1 is to 

be interpreted by the reader as the loc of the corresponding node; any unquoted 

and unbound occurrence of v is to be interpreted by the reader as the value of the 

corresponding node; any unquoted and unbound occurrence of u as the updates 

of the corresponding node; and any unquoted and unbound occurrence of x as 

the token of the corresponding node. 

In summary, the pattern part of a PA rule depicts, using the given notation, condi- 

tions on the current node and its subtree, including the status of node and subtree 
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Abbreviation in  ( I 

class(a) # Id A levaluated(a) 
class(a) # Id A levaluated(a) 
class(a) = Id 
value(a) # undef 
updates(a) # undef 

PA-rule 
a, /3 etc. 

ffpJ 

ffl  I loc(a) # undef I loc(a) 
These symbols are semantically equivalent to the 0 symbol, however as a visual cue to the reader, t 

embedded letters express the intended result of their evaluation. 

Meaning i n  P a t t e r n  pa r t  
first(pos), next(first(pos)), etc. 
class(a) # Id 

Table 4.1: Abbreviations and their meanings in syntactic PA rules. 

Meaning i n  Action part 
first(pos), next(first(pos)), etc. 

evaluation. The action part describes the actions to  be taken by the underlying ma- 

chine if the condition expressed in the pattern part is met. Table 4.2 illustrates how 

this notation can be translated into ASM rules for the interpretation of an ifelse-rule. 

Multiple PA rules may be used to define the semantics of a single syntactic form in the 

simulated machine; each PA rule of a syntactic form's definition represents a different 

stage in the interpretation of that form's node (i.e. beforelafter children of the node 

are interpreted). 

4. The value of local variables (e.g., those defined in let-rules) is maintained by a global 

dynamic function of the form env : TOKEN + ELEMENT. 

5. The static function bkg : ELEMENT + BACKGROUND provides, for any arbitrary value 

v, the background class of the value or undef if the value is not of any specific sort 

(e.g. if the ELEMENT was imported from the reserve). 

It is important to notice that nodes are interpreted only when evaluated(pos) is not 

true (i.e. if the current node has not been evaluated - see rule ExecuteTree described in 

Specification 4.1). Control moves from node to node either by: 

Explicitly setting the value of pos to the node to which control should be given. 

Setting [[pos] to a value which is not undef ; control then is given to the parent of pos 

by the ExecuteTree rule. 
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PA-rule notation 

( i f %  then D U D +  . . .  

A token(pos) = If f  hen 
A class(first(pos)) # Id 
A levaluated(first(pos)) 
A class(next(first(pos))) # Id 
A levaluated(next(first(pos))) 

then 
pos := first(pos) 

if class(pos) # Id 
A token(pos) = Iff hen 
A value(first(pos)) # undef 
A class(next(first(pos))) # Id 
A ~evaluated(next(first(pos))) 

Corresponding ASM rule 
if class(pos) # Id 

then 
if value(first(pos)) = tt then . . . 

if class(pos) # Id 
A token(pos) = Iffhen 
A value(first(pos)) # undef 
A updates(next(first(pos))) # undef 

then . . .  

Table 4.2: Examples of how PA rule notation is translated into ASM rules. 
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Thus, the interpretation of any given node should result in all needed subtrees being first 

evaluated (by moving control to children nodes via explicit assignment to pos), followed by 

the evaluation of the node itself using information from evaluated children (the result of the 

evaluation stored in [[pos]), causing control to be return back to its parent. Using notation 

in Table 4.2, it is easy to visualize this process by the progressive substitution of evaluated 

u nodes for unevaluated nodes, and of v or I nodes for unevaluated @ nodes. 

4.2.2 Kernel Interpreter 

The portions of the CoreASM language provided by the kernel are interpreted via the Ker- 

nellnterpreter rule shown in Specification 4.2 (via ExecuteTree found in Specification 4.1). 

This rule causes the parallel execution (using a block-rule) of PA rules, resulting in the 

correct interpretation of a kernel node based on pattern conditions. 

Kernellnterpreter - 
(patternl D + actionsl 

(pattern, D -4 actions, I :  

lnterprete 1 

Specification 4.2: The Kernellnterpreter rule in the Interpreter module. 

As mentioned earlier, the kernel provides the Boolean universe and its literals, the undef 

element, function evaluation, named-rule call, the update-rule, and the import-rule. Here 

we introduce a subset of this functionality, namely the evaluation of distinguished element 

literals, and the upda te  and import rules. 

The evaluation of the literals simply results in the retrieval of the appropriate element 

from the state of the simulated machine and setting it as the value of the node: 

Kernel Interpreter: Literals 

( true D + [pos] := (undef, undef, tt) 
( false D + [pas] := (undef, undef, ff) 
Q undef D [pos] := (undef, undef, uu) 



CHAPTER 4. CoreASM OVERVIEW 57 

Note that tt,  ff, and u u  represent the distinguished elements true, false, and undef in the 

simulated machine, respectively. 

An update-rule (see the ":=" node in Figure 4.3) is interpreted as follows: 

Kernel Interpreter: Update Rule 

Qan := POD + choose T E {a, P )  with ~evaluated(~) 

POS := T 

ifnone 

if loc(a) # undef 

bas] := (undef, {(loc(a), value(/3))), undej) 
else 

Error('Cannot update a non-location.') 

Notice that only child nodes evaluating to locations may be assigned values. The evaluation 

of subtrees representing functions (see the " func()" node in Figure 4.3) should result in 

both a location and value, the location being used if the function term is on the left-hand 

side of an update-rule, and the value being used if on the right-hand side. 

The import-rule is interpreted as follows: 

Kernellnterpreter: Import Rule 

(I import ax do D + let e =  ELE ELEMENT) in 

pos := p 

Q import ax do Pu D + env(x) := undef / /  No riesting 

bas] := (undef, u, undefl 
- - -- 

Here a new ELEMENT (being an element of the simulated machine universe) is created and 

assigned to the value of the identifier x in the local environment. The rule part is then 

evaluated in this new environment by setting pos to P. Once the evaluation of the rule part 

subtree is complete, the local value of the given identifier is erased. This illustrates how 

the local environment of the simulated machine is modified using the env function of the 

underlying machine, thus only allowing the use of a variable in the proper scope. 

4.2.3 Extension Interpretation 

When the kernel is not responsible for the interpretation of the node, the interpretation 

rule from the plug-in (from the standard library or otherwise) associated with the node is 
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executed. In the ExecuteTree in Specification 4.1, the pluginRule function returns a rule of 

the form 

Arbitrary Plugin Interpreter 

qpattern, D + actions, 

which is provided by the plugin, and is similar in structure to the Kernellnterpreter rule 

introduced in Specification 4.2. Here we present some rules and operators which are provided 

by plug-ins of the CoreASM standard library. In particular, we will provide PA rules for the 

par ,  ifelse, and seq rules, followed by the equals (=), Boolean AND (A),  and numerical 

unary minus (-) operators. 

Rule  Extensions 

The par-rule is interpreted as follows11 : 

Par Rule 

1 par 'lm . . . '"a D + choose i E [l..n] with levaluated(Xi) 

pos := Xi 

ifnone 

[pas] := (undef, UiEll..,] updates(Xi), undefl 

Notice that rules in a block are executed in an order which is unspecified, the final result 

being the union of all the updates produced by evaluation of these rules. 

In the ifelse-rule interpretation, any guard resulting an a tt results in execution of the 

if part, otherwise the else part being executed: 

''We provide interpretation for an n-rule block where n 1 1. Also note that here we are disregarding the 
scope constructors provided by the grammar - indentation or a matching endpar are often used. 
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( if " m  then p H  D 4 pos := a 

IfElse Rule 

( if Qv then D 4 if v = tt then pos := ,B else [ ~ o s ]  := (undef, {), undef) 

( i f  % then p u  D 4 [pos] := (undef, u ,  undef) 

Q if " m  then p H  else Yg D 4 POS := a 

Q if " v  then P O  else D 4 if v = tt then pos := ,B else pos := y 

( i f  Qv then p u  else Y O  D 4 [pas] := (undef, u ,  undef) 

( if " v  then p H  else Yu D 4 [pas] := (undef, u ,  undef) 

Recall that the seq-rule models sequential execution of rules. The semantics of sequential 

execution requires us to model the effect of evaluating the second rule in the state produced 

by applying the updates produced by the first rule. However this application of updates 

must be simulated (i.e. not really modifying the current state). Using a stack of states, the 

manipulation of a temporary copy of the state is achieved. That stack is managed through 

three rules: PushState puts a copy of the current state on top of the stack, PopState retrieves 

the state from the top of the stack (thus discarding the temporary state), and Apply(u) 

applies the updates in the update set u to the state residing on top of the stack. Formal 

definitions for these macros are given in Appendix A. Using this functionality the seq-rule 

can be specified as shown in Specification 4.3 below 

Seq Rul 

( "01 seq pH2 D 4 pos := a 

( " u 1  seq PO2 D 4 if i sConsis tent (u l )  then 
PushState 

A P P I Y ( u ~ )  

pos := p 
else 

[pas] := (undef, u1,  undef) 

Q " u 1  seq Pu2 D 4 PopState 

[pos] := (undef, u l  @ 212, undef) 

Specification 4.3: The PA rule for interpretation of the seq-rule. 
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where the $ operator is as defined in Section 2.2. 

Operator Extensions 

The CoreASM equivalence operator shown in Specification 4.4 uses the CoreASM wide notion 

of element equality (see the definition of equal in Appendix Section A.l.l).  Two elements 

are considered to be equal iff at least one of their backgrounds regards the values as equal. 

As such, each background implementation must provide an equality function for elements 

originating from them. 

1 "m = 0 0  D + choose X E { a ,  P )  with l eva lua ted(X)  

pos := X 

ifnone 

let e l  = va lue(a) ,  e2 = value(@ in 
if equal(el , e2)  then 

[pas] := (undef ,  undef,  tt) 

else 
[pos] := (undef ,  undef,  ff) 

Equivalence Operato 

I 

Specification 4.4: PA rule depicting semantics of the equivalence operator. 

The Boolean AND operator results in tt if both of its operands evaluate to tt,  and f f  

otherwise: 

Boolean Operator: AND 

( "m A D + choose X E { a ,  0) with levaluated(X)  

pos := X 

ifnone 

if (va lue (a)  = tt) A (va lue (p)  = tt) then 

[pas] := (undef ,  undef ,  tt) 

else 
[pos] := (unde f ,  undef,  ff) 

- - - - - - - 

The unary numerical negation operator would be interpreted as follows: 
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Numerical Operator: Unary Minus 

Q + pos := cr 

Q -% D + let r = negNum(u) in 

[pas] := (undef, undef, r )  

Here the negNum function results in an element representing the numerical negation of the 

operand. 



"The world is moved along, not only by the 

mighty shoves of its heroes, but also by the 

aggregate of the tiny pushes of each honest 

worker. " 
- Helen Keller 

Chapter 5 

Distributed Incremental Change 

with Aggregation 

In Section 2.7 we introduced the notion of incremental change to elements that have an 

internal structure. In particular, we briefly described the general mathematical framework 

of Gurevich's partial updates and integnztion for distributed incremental change of elements. 

In this chapter we formally specify how we incorporate this functionality into the CoreASM 

engine, while ensuring future extensibility. 

While our pragmatic approach is similar in spirit to Gurevich's mathematical framework, 

it is not the same. Our method of representing and resolving simultaneous incremental 

change is different, and thus, the terminology we use different as well. Where Gurevich 

refers to partial updates as updates representing a partial modification of an element, we 

use the term incremental updates. Where Gurevich refers to the process of combining partial 

updates into a total update as integration, the process which we use in CoreASM is called 

aggregation. 

In this chapter we first describe how incremental updates are represented in the simulated 

machine, and how aggregation is incorporated into a step of the simulated machine. This is 

followed by a description of how Turbo ASM sequential composition is accomplished with 

our approach. The chapter ends with a formal specification of the entire Set Plug-in which 

includes set-related background, rule, operator and aggregation extensions to the CoreASM 

engine. 
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5.1 Aggregation and Incremental Updates 

In this section, we introduce incremental updates and aggregation into the CoreASM en- 

gine architecture described in Chapter 4. In particular we discuss how the embodiment of 

aggregation affects the engine architecture and a CoreASM step as a whole. 

5.1.1 Rules and Their Side Effects 

As each rule of a CoreASM specification is executed by the Interpreter, it is expected to 

produce a (potentially empty) set of updates, each update being viewed as a 2-tuple expected 

to consist of a location and a value: 

The union of all of these sets returned by rules during a single step of the simulated machine 

constitute the update set for a CoreASM step. 

However, the possibility of having elements within the simulated machine which are 

themselves based on axioms and structure (e.g. sets, maps, trees) and whose internal struc- 

tures may also be updated by rules, requires the CoreASM have facilities to handle such 

incremental updates. Recall that Gurevich's partial updates consist of a location and a 

particle. The particle represents the partial modification to be made to the element at 

the given location; the particle is a mathematical function in which the entire incremental 

change is encoded. Notice that the essential function of a particle in a partial update is to 

represent the type of incremental change to perform, and a value associated to that change; 

for instance the setaddmag= particle, introduced in our message passing protocol example 

in Section 2.7, represents the addition of an element to a set and the value of the element 

to be added which is msg,. 

To accommodate the representation of incremental change into CoreASM, we allow rules 

to return update instructions, rather than updates; like updates, they consist of location 

and value, but they also include an action to be performed on the element at the the given 

location. Update instructions are viewed as a 3-tuple of the form: 

(Loc, ELEMENT, ACTION) 

The combination of the value and action represent the intended incremental modification 

to be made to the element residing at the given location. Update instructions containing 
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incremental modification actions are referred to as incremental updates. Going back to 

our example, the incremental update resulting in the addition of element rnsg, to a set at  

location 1 would produce an update instruction of the form: 

(1, msg,, setAddAction) 

where setAddAction E ACTION and ACTION is the domain of all actions supported by the 

simulated machine. 

Regular  U p d a t e s  

For the sake of homogeneity we require the update-rule to return update instructions as 

well. However the action for such regular updates is always updateAction E  ACTION.^ 

(Loc, ELEMENT, updateAction) 

U p d a t e  and U p d a t e  Ins t ruct ion 

When discussing ASMs, the term update is typically used to refer to both the act of modify- 

ing a location, as well as the data structure representing an update. With the introduction 

of the update instruction, when discussing the CoreASM machine we use the term update 

to refer to the act of modifying a location, whereas the term update instruction is used to 

refer to the data structure representing an update of any kind (i.e. regular or incremental 

update); however, at  times we also use these terms interchangeably when the difference 

between them is irrelevant. 

5.1.2 Update Instruction Notation 

All update instructions have the following functions defined over them: 

0 ((.)) : UPDATEINST + LOC x ELEMENT x ACTION holds the constituents of the up- 

date instruction given by a triple formed by a location, a value, and an action to be 

performed. We access elements and establish properties of such triples through the 

following derived functions: 

 his follows Gurevich's approach, where a total update to a location results in a partial update containing 
an overwrite particle. See Section 2.7 for more information. 
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- uiLoc : UPDATEINST + LOC returns the location associated with the given update 

instruction, i.e. u iLoc (u i )  = ((ui)) 1 1. 

- uiVal  : UPDATEINST + ELEMENT returns the value associated with the given 

update instruction, i.e. u iVa l (u i )  = ((ui)) 1 2. 

- u iAc t ion  : UPDATEINST + ACTION returns the action associated with the given 

update instruction, i.e. u iAc t ion (u i )  = ((ui)) 1 3. 

0 aggStatus : UPDATEINST x PLUGIN + FLAG indicates the aggregation status of an up- 

date instruction, as set by a given aggregator plug-in; FLAG = {successful, failed). If 

an update instruction has not been processed by a plug-in, undef  is returned. Note 

that the purpose this function will become more clear in subsequent sections. 

5.1.3 A CoreASM Step 

The computation of a single step of an ASM program can be summarized very simply as 

follows: 

1. Execute the program rule and collect the updates into a set. 

2. If update set is consistent, apply the updates. 

Notice that step 1 of this process is completed in the Scheduler, upon transition to the 

Fir ing  Updates mode in the Interpreter (see Figures 4.7 and 4.8). Step 2 is accomplished in 

the Fir ing  Updates mode of the engine, where the consistency of the update set is queried 

with the i s cons i s t en t  function, and if updateset  is consistent, all updates are fired by the 

FireUpdateSet rule. 

However, with the introduction of incremental updates, the process of creating the final 

update set requires additional work. Update instructions are collected into an update mul -  

t iset2 stored in the function updateInstructions.  Once the execution of the program rule is 

complete, all update instructions pertaining to a particular location are aggregated into one 

single update per location. Aggregation is the process of combining all update instructions 

affecting a single location of a machine into one single update called the resultant update.  

The aggregation phase of a CoreASM step performs aggregation on all locations affected by 

'~ecal l  from Section 2.7, that Gurevich also uses multisets to hold partial updates, as multiplicity may 
be important in their integration. 
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the step. Note that resultant updates cannot and should not depend on the order in which 

all update instructions for a location are combined, as all updates producing them occur 

simultaneously according to ASM semantics; we shall explain this further in Section 5.1.6. 

It is important to highlight the difference between regular, resultant, and basic updates. 

A regular update is a typical ASM update produced by an update-rule, whereas a resultant 

update is an ASM update produced by aggregating all incremental update instructions and 

all regular updates into one unified change affecting a single location of the machine. The 

word "resultant", "regular" will be dropped when its' meaning is obvious from context. 

An update is basic if every update operating on its location is regular, thus implying no 

aggregation need be performed on its location. 

The aggregation phase results in an update set, consisting of basic updates and resultant 

updates. The traditional ASM step augmented with the aggregation phase is summarized 

as follows: 

1. Execute the program rule and collect the update instructions into a multiset. 

2. Aggregate the update instructions in the multiset, producing the update set. 

3. If the aggregation phase is successful and update set is consistent, apply the updates. 

In Figures3 5.1 and 5.2 respectively, we show revised control state ASMs for the Scheduler 

and Abstract Storage modules depicting how the aggregation phase augments a CoreASM 

step. 

When control is in the Scheduler (in the Choosing Agents mode) and all agents selected 

to execute in a step have been executed, control now moves to the Aggregation mode in 

Abstract Storage. Here the rule Aggregateupdates (which is formally defined in the next 

section) performs the aggregation of the multiset updatelnstructions. When aggregation is 

complete, control moves to the Firing Updates mode where both update set consistency and 

aggregation consistency are confirmed before application of the update set. 

' ~ h e s e  figures were adapted from [23] by permission. 
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RetrieveAgents 

I 

Selecting 

Agents Selecttgents 

ChooseAgent 

SCHEDULER 
I 

Figure 5.1: Revised control state ASM of a Step command with Aggregation : Scheduler 

ABSTRACT STORAGE 

Figure 5.2: Revised control state ASM of a Step command with Aggregation : Abstract 
Storage 
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5.1.4 Responsibility for Aggregation 

Background plug-ins, which extend CoreASM with a background class should provide all 

that is necessary to manipulate elements which originate from their background4. For back- 

grounds that consist of elements with internal structure that can be manipulated, back- 

ground plug-ins provide rule forms that result in incremental update instructions, as well 

as provide an algorithm for aggregation. We call these plug-ins aggregators or aggregator 

plug-ins. 

We say that an aggregator plug-in is responsible for: 

An action other than the updateAction action (see Section 5.1.5), if it is equipped to 

handle its aggregation. 

Aggregation of a given update instruction if the update instruction: 

- Contains an action for which the plug-in is responsible. 

- Contains an updateAction (making it a regular update) and there is another update 

instruction which it is responsible for that also operates on the the same location. 

A location if update instructions operating on that location are its responsibility. 

Upon being called for aggregation, a plug-in will aggregate all update instructions for 

which it is responsible, flagging those update instructions it has processed. It is important 

to note that the order in which plug-ins are called to perform aggregation does not affect 

the resultant updates produced. Also note that the failure in aggregation of a single plug-in 

will not foil the aggregation attempts of other plug-ins. Upon completion of the aggregation 

phase, an update set is created from the union of resultant updates. 

4While we expect a plug-in providing a background class to provide all that is necessary to manipulate 
elements of its background, there may be cases where it is more appropriate for functionality to be present 
in different plug-ins. Thus, we do not enforce this expectation. 
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Abstract Storage 

Aggregateupdates 

updateset +- Aggregate(updateInstructions) 

Aggregate(uMset : UPDATEMULTISET) - 
let up = {a I a E PLUGIN A aggregator(a)) in 

forall p E up do 
resultantUpdates(p, uMset) +- InvokeAggregation(p, uMset) 

seq 
// Results in an update set 

result := Upcap resultantUpdates(p, uMset) 

InvokeAggregation(p : PLUGIN, uMset : UPDATEMULTISET) - 
let R = aggregatorRule(p) in 

result +- R(uMset) 

The resu1tantUpdate.s function is used to collect resultant updates from plug-ins for a given 

multiset of update instructions, and the aggregatorRule function is expected to return the rule 

implementing the aggregation algorithm of the given plug-in. Note that the parameterized 

rule for aggregation, Aggregate, may be called on any update multiset; thus, it can be used 

by Turbo ASM rule-form implementations to perform aggregation on update multisets of 

their simulated steps. Also note that in InvokeAggregation, a plug-in aggregator rule is 

expected to accept a multiset as an argument, and its invocation should cause the return of 

its resultant updates. 

5.1.5 Basic Update Aggregator 

The keen observer will have noticed that once all aggregator plug-ins have completed ag- 

gregation successfully, the resultant update set will not contain basic updates (i.e. regular 

updates for locations which do not require aggregation). The Basic Update Aggregator solves 

this problem by masquerading as an aggregator plug-in and returning a set of all regular 

updates for locations which do not require any aggregation. It is defined as follows 
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BasicUpdateAggregator(uMset : UPDATEMULTISET) E 

result := { ) 

- - 

Abstract Storage 

seq 
forall ui E uMset with uiAction(ui) = updateAction do 

if ,B ui' E uMset, uiLoc(ui) = uiLoc(ui') A uiAction(ui') # updateAction then 

add ui to  result 

aggStatus(ui, buP1ugin) := successful 

where buplugin represents the Basic Update Aggregator as a plug-in, buPlugin E PLUGIN and 

aggregator(buP1ugin) = true. Evaluation of aggregatorRule(buP1ugin) results in the rule 

BasicU pdateAggregator. The Basic Update Aggregator is called by Aggregate along with all 

aggregator plug-ins. Note that the Basic Update Aggregator flags all update instructions it 

processes with successful. 

5.1.6 Plug-in Aggregation Consistency 

While a plug-in is performing its aggregation on the multiset, it may encounter a situa- 

tion where the update instructions for a given location that it is responsible for cannot be 

aggregated into a regular update. Such a situation occurs when one of the following holds: 

There are update instructions which make no semantic sense in context5. (e.g. the 

addition of an element to a set, on a location which contains no set element in the 

current state). 

The result of aggregation of a location depends on the order in which incremental 

update instructions for that location are combined. Recall that since incremental 

updates resulting from a single step of the machine occur the same time according 

to ASM semantics, the result of their aggregation must not be ambiguous for their 

aggregation to be consistent. 

When the aggregation of all update instructions affecting a given location is deemed 

inconsistent, the following rule is called by the plug-in to flag all updates to the location as 

failed: 

'Acceptable semantics of incremental updates, and the aggregation resulting from their update instruc- 
tions, are defined by the aggregation algorithm which processes them. 
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Abstract Storage 

HandlelnconsistentAggregation(1 : Loc, uMset : UPDATEMULTISET,~ : PLUGIN) = 
forall ui E uMse t  with uiLoc(ui) = 1 do 

aggStatus(ui, p) := failed 

Although aggregation for a single location may have failed, the aggregation of the rest 

of the update instructions the plug-in is responsible for would continue. 

5.1.7 Aggregation Algorithms Provided 

There are very few hard-and-fast requirements on the algorithm provided by an aggregator 

plug-in. It is expected to: 

Aggregate all update instructions in the update multiset that it is responsible for, and 

return the set of all its resultant updates. 

Determine if aggregation on a given location will result in inconsistency, and handle 

such inconsistencies appropriately. 

Flag all update instructions considered during its aggregation as either successful or 

failed. 

The process of aggregation and consistency determination depends largely on the seman- 

tics of incremental updates for a given background and its elements. Axioms of the internal 

structure of the elements guide the plug-in writer in determining what is considered consis- 

tent (i.e. what makes sense), and what is not. In some cases, the multiplicity of an update 

instruction performed on a given location is important in determining the semantics of the 

incremental update: [38] gives the example of the background class of counters to illustrate 

this point. For this reason, the data structure used for collecting update instructions is a 

multiset rather than a set. 

The freedom given to plug-ins in determining their own aggregation promotes the ex- 

tensibility of the engine with background classes for the widest possible variety of sorts. 

5.1.8 Aggregation Phase Consistency 

Once the aggregation phase is complete, aggregation consistency can be checked with the 

following function: 
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derived aggregationconsistent : UPDATEMULTISET -+ BOOLEAN 

returns true if aggregation was completed with consistency; false is returned otherwise. 

It is defined as: 

There are two conditions which must be met in order to ensure the consistency of 

aggregation: 

1. All updates in the multiset should have been processed (and should have some status 

flag). Every update instruction should have either been processed by the Basic Update 

Aggregator, or an aggregator plug-in. 

derived all UpdatesProcessed : UPDATEMULTISET -+ BOOLEAN 

returns true if all update instructions have been processed; false is returned otherwise. 

It is defined as: 

all UpdatesProcessed(uMset) = 
Vui E uMset, 3p E PLUGIN, aggregator(p) A aggStatus(ui, p) # undef 

2. There should be no update instructions in the multiset which have been flagged as 

failed. 

derived noAggregationFailures : UPDATEMULTISET -+ BOOLEAN 

returns true if all locations were aggregated consistently; false is returned otherwise. 

I t  is defined as: 

noAggregationFailures(uMset) = 
Vui E uMset, ,Bp E PLUGIN, aggregator(p) A aggStatus(ui,p) = failed 

When the aggregation phase is considered to be inconsistent, this constitutes a failed step 

of the simulated machine (as does an inconsistent update set). 

Notice that aggregation is not considered to be inconsistent if update instructions have 

been successfully processed more than once, potentially by multiple plug-ins. In such a 

situation, each plug-in processing instructions for a location will produce a resultant update 
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for that location. This will not pose a problem if the two resultant updates do not conflict. 

However, if they do indeed conflict, this problem will be caught during the update set 

consistency check. Thus, multiple successfully processed update instructions are not always 

problematic and so a check for this situation is not incorporated into aggregationConsistent 

with the understanding that, if there is a problem, it will be caught during the update set 

consistency check. 

5.2 Turbo ASMs and Sequential Composition 

Aggregation as we have described it thus far gives semantically acceptable results with Basic 

ASMs. However for Turbo ASMs, which allow for sequential composition and iteration of 

ASMs within one single step of the machine, this is insufficient. With the introduction 

of incremental updates resulting in the modification of elements at a given location, it is 

not always desirable for a Turbo ASM rule to return aggregated resultant updates (see 

Section 2.7.2). 

In this subsection we discuss how support for sequential composition of update multisets 

is incorporated into the engine an extensible fashion. We then provide a modified version 

of the CoreASM seq-rule introduced in Specification 4.3 which uses both aggregation and 

sequential composition to produce its updates. 

5.2.1 Update Multiset Composition 

Recall that in our introduction to Gurevich's partial updates, we discussed their intricacies 

in Turbo ASMs and redefined sequential composition to accommodate them (see description 

of the 6 operator in Section 2.7.2). Similarly, with incremental updates we must provide a 

means of deriving the sequential composition of two update multisets. As such, we redefine 
w 

sequential composition as expressed by the @ operator in CoreASM 

w w w 

Compose(&, A,+l), if consistent(&) A seq =AiGAi+l= { - 
Ai 7 otherwise. 

V V V 

where Ai and A,+l are update multisets produced by consecutive steps, ASeq is the update 

multiset resulting from the sequential composition of two others, and consistent returns 

true if the update multiset is consistent with respect to both aggregation and typical ASM 
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consistency conditions. It is important to note that the Compose rule expects both the 

aggregation of the first update multiset and the update set resulting from the aggregation 

of the first update multiset, to be consistent. 

Notice that the Compose rule is essentially a black box. To support Turbo ASM seman- 

tics along with extensibility, all aggregator plug-ins are required to provide an algorithm 

which, when given two update multisets, will produce a multiset containing composed up- 

date instructions for all locations for which it is responsible. The semantics of sequential 

composition of incremental updates for which plug-ins are responsible are provided solely by 

them. A plug-in is deemed responsible for the composition of updates at  a given location, 

iff one of the following holds: 

The plug-in is responsible for aggregation of the location based on the second update 

multiset. 

0 The plug-in is responsible for aggregation of a location based on the first update 

multiset, iff that location is not modified by the second update multiset. 

- 
A,,, is the union of all composed update instructions produced by individual plug-ins. 

Abstract Storage 

let ap = {a I a E PLUGIN A aggregator(a)) in 

forall p E ap do 

let R = composerRule(p) in 

composedUpdates(p, uMsetl, uMseb) + R(uMsetl, uMseb) 

seq 
/ /  Kcs~ilts in an update rnultiset 

result := Up,,, composed Updates@, uMsetl, uMset2) 

The composedUpdates function is used to collect the updates resulting from plug-ins perform- 

ing sequential composition of two update multisets. The composerRule function is expected 

to return the rule from the given plug-in which implements the composition of updates on 

locations for which it is responsible. Note that the composition rule for each plug-in accepts 

two multisets as arguments, and its invocation results in the sequentially composed update 

multiset. 
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5.2.2 Basic Update Composer 

To complement the Basic Update Aggregator, the Basic Update plug-in buPlugin also pro- 

vides the Basic Update Composer. The Basic Update Composer is responsible for per- 

forming sequential composition of locations affected solely by basic updates. Recall (from 

Section 2.2) the @ operator for sequential composition of update sets in ASMs without par- 

tial or incremental updates. The composed update set produced by the @ operator, where 

A, is consistent an update set, is defined as: 

The Basic Update Composer processes all basic updates in update multisets for which it is 

responsible, in a similar fashion: 

w - 
where Locs(n2) = {uiLoc(ui) I ui €A2}. The addition of the isBasicUpdate function ensures 

that, in this more complicated case where update instructions are present, the algorithm 

handles only the sequential composition of those update instructions for which it is respon- 

sible. The Basic Update Composer is defined as follows: 

Abstract Storage 

BasicUpdateComposer(uMsetl : UPDATEMULTISET, uMseb : UPDATEMULTISET) - 
result := (I ) 

seq 
..2 ... 

j /  {u i l  €Al 1 U I L O C ( I L ~ ~ )  6 Locs(A2) A ZSBUZC CTpdi~te(u~~)) 

forall uil E uMsetl with docUpdated(uMseb, uzLoc(u~1)) A 

add uil  to result 
b 

j /  {71i2 €AP ~ i ' s B u s i ~ U ~ d a t e ( u i 9 ) )  

forall uiz  E uMseb with i sBasicUpdate(uMse~,  ui2) do 
add uiz to result 

where 

isBasic Update(uMset, u i )  - V ( 1 ,  v, a )  E uMset ,  1 = uiLoc(ui) A a = updateAction 

locUpdated(uMset, 1 )  - 1 u i  E uMset, 1 = uiLoc(ui) 

The evaluation of composerRule(buPlugin) results in the rule BasicUpdateComposer; hence, 

the Basic Update Composer is called by Compose alongside all the sequential composition 
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algorithms provided by other plug-ins. 

5.2.3 Interpretation of the Seq-rule 

With the incorporation of aggregation and incremental updates into CoreASM, the interpre- 

tation of Turbo ASM rules is handled differently. The creation of temporary states upon 

evaluation of sequential and iterative rules requires the use of the Aggregate and Compose 

rules. We redefine the interpretation of the seq-rule introduced in Specification 4.3 to show 

how the introduction of aggregation into an ASM step the affects Turbo ASM rules which 

themselves simulate ASM steps. 

Before consistency of the update instructions produced by the first rule can be checked, 

aggregation of the resultant update multiset must be done. If both aggregation consistency 

and update set consistency hold, the resultant update set is applied to the current state 

producing a temporary state; otherwise the first update multiset is returned. If the update 

instructions produced by the first rule are consistent, the second rule is fired in the temporary 

state, resulting in the second update multiset. The first and second update multisets must 

then be sequentially composed. The update multiset resulting from sequential composition 

is the update multiset produced by the seq-rule in the simulated machine. 

Seq Rule with Aggregation 

QamlseqPmzD + pos:=a 

Q a ~ l  seq  Q2 D + local uSet 

uSet + Aggregate(u1) 

seq  
if isConsistent(uSet) A aggregationConsistent(ul) t h e n  

Pushstate 

A P P ~ Y ( ~ S ~ ~ )  
pos := p 

else 

[pos] := (undef, u l ,  undefl 

daul s e q  D + local uMset 

uMset + Cornpose(u1, t i2) 

s e q  
PopState 
[pos] := (undef, uMset, undefl 
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5.3 Set Plug-in 

In this section we showcase the extensibility of CoreASM by providing the entire specification 

of the Set Plug-in. It provides all that is needed to work with finite sets as elements in the 

engine, including facilities for aggregation and incremental updates. The Set Plug-in extends 

the CoreASM engine with: 

The background class of sets. This is accomplished via: 

- An extension to Abstract Storage providing encoding and decoding functions for 

sets. 

- Extensions to the Parser and Interpreter defining concrete syntax and semantics 

for set literals including set enumeration, and set comprehension. 

Several set related operations extending the engine via: 

- An extension to the Parser and Interpreter defining concrete syntax and semantics 

for set union, set intersection, and set diflerence operators. 

The definition of set specific rule forms extending the engine via: 

- Extensions to the Parser and to the Interpreter defining concrete syntax and 

semantics for the add-to and remove-from rules which result in incremental 

updates to sets. 

Set specific aggregation and composition algorithms. 

We will not discuss Parser extensions here (as this is discussed in more detail in Sec- 

tion 6.2). However, it suffices to say that Parser extensions involve the addition of produc- 

tions to the CoreASM language grammar, and procedures to create the appropriate AST 

upon reduction of these productions. 

Note that in the underlying machine, the Set Plug-in is represented by setplugin, where 

setPlugin E PLUGIN. 

5.3.1 Background Extension 

In the underlying machine, all set elements come from the SETELEMENT domain. The 

background of set elements is provided by setBack, where: 
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setBack E BACKGROUND 

The set background is one of the backgrounds provided by the simulated machine. 

name(setBack) = "Set" 

The name of the set background is "Set". 

newValue(setBack) = a SETELEMENT representing the empty set 

When a new value is of the set background is required, a set element containing no 

members is returned. 

Set Membership 

All set elements in the simulated machine belong to the set background: 

VS  E SETELEMENT, bkg(s) = "Set". 

The set background provides an interface with the functionality required to  represent 

and access information about the internal structure of set elements in the simulated machine: 

controlled setMember : SETELEMENTX ELEMENT -+ BOOLEAN 

holds true if the element is a member of this set, and false otherwise. 

Enumerability Of Input 

An ASM may contain structures that group elements in different ways: universes, sets, 

multisets, trees. At times it is convenient to have one single view of all the various kinds of 

structures in an ASM which represent a group, so that these similar but different structures 

can be used in the same context by the CoreASM engine. As such, the kernel provides the 

enumerability interface which a background can implement for its elements. This interface 

is defined formally in Appendix A.1.2. 

All set elements implement the enumerability interface as follows: 

Vs E SETELEMENT, enumemble(s) 

All set elements are enumerable. 

derived enumerateset : SETELEMENT -+ ELEMENTCOLLECTION 

The enumeration of a set, provides a collection6 containing all elements of the set: 

'Notice our use of square braces to denote a collection. We define a collection as a simple group of items 
with no axioms imposed on its structure. 
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enumerate(s) = [e I e E ELEMENT A setMember(s, e)] 

Set  Literals 

The Set Plug-in provides two methods of set description: namely set enumeration and 

set comprehension. Set enumeration affords the description of the members of a set by 

individually enumerating each of the elements it contains: 

( { 'lml,. . . ,'"On ) D 4 choose i E [l..n] with -evaluated(Xi) 

pos := Xi  

ifnone 
let newSet = newValue(setBack) in 

forall i E [l . .n] 

setMember(newSet, value(&)) := 

bas] := (undef, undef, newse t )  

Set Enumeration 

true 

Set comprehension allows one to describe set contents algorithmically. Since set compre- 

hension was born in the mathematical world rather than the computational world, there are 

many accepted syntactic and semantic variants of it. Given the general set comprehension 

expression form 

{Q is expo I XI in expl,. . . ,a;, in  exp, with exp,) 

we refer to the free variable Q as the specifier variable, the expression expo as the speci- 

fier expression, the free variables xl . . . a;, as the constminer variables, expl . . . exp, as the 

constminer expressions, and exp, as the guard. In CoreASM we provide two variants which 

encompass a wide range of algorithmically expressible finite sets. While the PA rules for 

variants presented contain guards, both variants can be used without a guard (which is 

equivalent to the guard being set to tt). 

The simplest variant of set comprehension binds the specifier variable to each element 

in the constrainer expression, adding any element which satisfies the guard to the resulting 

set. Note that within the guard, the specifier variable should be a free variable: 
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Set Comprehension : Variant A 

( { "x I @xi in 7u with 'u} D -+ 

if x = x1 then 

pos := y 

considered(pos) := { } 

newSet(pos) := newValue(setBack) 

else 

Error('Constrainer variable must 

1 { "x I fixl in 'v with D -+ 

if -enumerable(ualue(y)) then 

Error('Free variables may only 

else 

let s = enumerate(ualue(y)) \ 
choose e E s do 

env(x) := e 

add e to considered(pos) 

pos := 6 

ifnone 

have same name as specifier variable') 

be bound to enumerable elements') 

considered(pos) in 

[[posn := (undef, undef, newSet(pos)) 

Q { "x I fix1 in 'v with 'v} D -+ 

if value(6) = tt then 

setMember(newSet(pos), enu(x)) := tme 

env(x) := undef 

ClearTree(6) 

pos := 6 

The considered function is used to  keep a record of all elements of the constrainer expression 

which have already been considered for addition into the resultant set. This variant supports 

set comprehension expressions such as: 

{x I x in allniverse} 

{x I x in 1..100 with mod(x, 2) = 0) 

Note that this variant is particularly useful for creating set elements from other enumerable 

elements. 
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T h e  second variant allows t he  specifier t o  b e  defined in terms of t he  specifier expression; 

the  constrainer variables are  themselves expected t o  b e  present in  the  specifier expression, 

and this expression is re-evaluated for all possible combinations of the  constrainer variables. 

If the  guard is satisfied, the  result of the  evaluation of t he  specifier expression is added t o  

the  resultant set: 

Set Comprehension : Variant B 

'B I Plxl inylml,Pzq inyzm2,. . . ,Pnxn i n m m n  wi th  ' 0 ) )  -+ 

if gtOneConst Variable t h e n  

if notSameName Constspec Var t h e n  

choose j E [l..n] wi th  value(yj) = undef d o  

pos := yj  

ifnone 

if sameNameTwoConst Var t h e n  

Error('No two constrainer variables may have the same name') 

else if constExpNotEnumerable t h e n  

Error('Constrainer variables may only be bound to  enumerable elements') 

else if constExpEmptyEnumerable t h e n  

[pas] := (undef, undef, newValue(setBack)) 

else 

newSet(pos) := newValue(setBack) 

lnitializeChooseConsideredCornbos 

pos := 6 

else 

Error('Constrainer variable cannot have same name as specifier') 

else 

Error('At least one constrainer variable must be present') 

where 

gtOneConstVariable = n 1 1 

notSameNameConstSpec Var - 3 j  E [1 . .n] , x # xj 

sarneNameTwoConstVar = 3k E [l..n], 31 E [l..n] k # 1 A xk = xq 

constExpNotEnumerable - 3m E [l ..n], ~enumerable(value(y,)) 

constExpEmptyEnumerable = 3p [l..n] ~enumerate(value(yp))~ = 0 
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Q { i s  'm I.Plxl i n  Y ~ V ~ , P ~ ~  i n  72v2,. . . ,PnG i n  'nu, w i t h  6v)D -+ 

if value(6) := t t  t h e n  

pos := E 

e lse  

if OtherCombosToConsider then 

ChooseNextCornbo 

ClearTree(G) 

pos := 6 

e lse  

ClearConsideredCombos 

[pos] := (undef, undef, newSet(pos)) 

( { Q x i ~ ' v  IP1xl in'1vl,P2q inY2vz ,  ...,On ~ i n ~ v , w i t h ~ v ) D  -+ 

setMember(newSet(pos), value(c)) 

if OtherCombosToConsider then 

ChooseNextCornbo 

ClearTree(6) 

ClearTree(~) 

pos := 6 

e lse  

Clearconsideredcorn bos 

[pas] := (undef, undef, newSet(pos)) 

The macros InitiaIizeChooseConsideredCombos, ChooseNextCombo, ClearConsideredCombos 

and OtherCombosToConsider are used to consider every possible combination of the ele- 

ments from the n constrainer expressions. The actual assignment of elements to constrainer 

variables is done within these rules. A formal definition of each of these rules is provided in 

Appendix A.2. 

Variant B is quite a bit more expressive than variant A, as it allows sets consisting of 

more complex elements to be built. For example: 

{x is {a, b, c )  I a in 1..100, b in {1,2 ,3) ,  c  in aSet) 

Notice that in the second example this variant is used to build a set of sets. 
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5.3.2 Operators Extension 

The Set Plug-in provides the set union, set intersection, and set difference operators along 

with a definition for equality of set elements. 

Operators 

You will notice that all the set operators provided by the Set Plug-in can operate on any 

enumerable element. However, the result produced by all operators is always a set element. 

The set intersection operator results in a set element containing the intersection of its 

operands: 

Set Intersection 

( "m n choose X E {a, p) with -evaluated(X) 

pos := X 

ifnone 
if enumerable(value(a)) A enumerable(value(p)) then 

let newset = newValue(setBack) in 
forall eL E enumerate(value(a)) do 

choose eR E enumerate(value(p)) with equal(eR, eL) do 
setMember(newSet, eL) := true 

[pas] := (undef, undef, newset) 

else 
Error('Both operands must be enumerable.') 

The set difference operator results in a set element containing all elements in the LHS 

operand which are not in the RHS operand: 
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Set Difference 

1 "m\Pm D -+ choose X E { a ,  P)  with ~evaluated(X) 

pos := X 

ifnone 

if enumerable(value(a)) A enumerable(value(@)) then 

let newset  = newValue(setBack) in 

forall e L  E enumerate(value(a)) do 

if B e R  E enumerate(value(p)), equal(eR, e L )  then 

setMember(newSet, e L )  := true 

bas] := (undef, undef, newse t )  

else 

Error('Both operands must be enumerable.') 
--- -- 

The set union operator results in a set element containing all elements contained in both 

operands: 

Set Union 

Q U POD + choose X E {a ,  p )  with -evaluated(X) 

pos := X 

ifnone 

if enumerable(value(a)) A enumerable(value(/3)) then 

let newset  = newValue(setBack) in 

forall e L  E enumerate(value(a)) do 

setMember(newSet, e L )  := true 

forall e R  E enumerate(value(p)) do 

setMember(newSet, e R )  := true 

[pas] := (undef, undef, newse t )  

else 

Error('Both operands must be enumerable.') 

Equivalence Definition 

Notice that all operations provided result in a new set element being created and manipu- 

lated, rather than the modification of an existing set element. This implies that it is possible 

to have two unique set elements in a state of the simulated machine which both represent 

the same set. As such, uniqueness of set elements in the simulated machine is not enough to 

determine the equivalence of two set elements. Recall that the equivalence operator shown 
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in Specification 4.4 relies on the background to provide its own notion of equality of its own 

elements; for set elements, equality is formally defined as follows: 

derived equals,, : ELEMENT x ELEMENT + BOOLEAN 

where we have: 

For two set elements to be equal, they must represent sets containing the same elements and 

be the same size. Notice that the CoreASM equality function equal (defined in Appendix 

Section A.l.l) is used to ensure that member elements of sl are also members of 5-2. 

5.3.3 Rule Extension 

To facilitate incremental updates to sets, the add-to-rule and remove-from-rule are sup- 

ported by the Set Plug-in. The addition of an element to a set using the add-to-rule results 

in an update instruction consisting of the setAddAction action. It is formally defined as 

Add-To Rule 

1 add Qa to  OH D choose T E { a ,  P )  with  value(^) = undef 

pos := T 

ifnone 
[pos] := (undef, 4 (loc(P), value(a), setAddAction)D, undej) 

where setAddAction E ACTION. 

The removal of a single element from a set, or the remove-from-rule, results in an 

update instruction containing a setRemoveAction action. Its formal definition is 
~~~p~~ - - 

Remove-From Rule 

(remove from O m  D 4 choose T E { a ,  P )  with  value(^) = undef 

pos := 7- 

ifnone 
[pas] := (undef, a(loc(P), value(a), setRemoveAction)), undej) 
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where setRemoveAction E ACTION. 

Notice that in both rules, no checks are made to ensure that a set is being manipulated. 

This check is deferred to when sets are aggregated. 

5.3.4 Aggregation Algorithm 

The aggregation algorithm described here facilitates the aggregation of instructions pro- 

duced by the add-to,  remove-from, and update-rules; successful aggregation produces a 

resultant set element for each aggregated location. Note that our approach to incremental 

modification of sets is similar in spirit to both the set integration example in [38] and the 

AsmL specific approach briefly discussed in [37], and achieves the same results. 

It is worthwhile to note that the Set Plug-in is only required to aggregate update in- 

structions operating on those locations for which the Set Plug-in is responsible. Put another 

way, the aggregation algorithm for sets will not aggregate update instructions for a location 

unless there is a set-related incremental update instruction which will modify that location. 

When only basic updates resulting in a set are made to a given location, the Basic Update 

Aggregator introduced in Section 5.1.5 takes care of their aggregation. 

When the aggregation phase of the machine is being executed, aggregatorRule(setP1ugin) 

results in the rule Aggregatesets: 
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AggregateSets(uMset : UPDATEMULTISET) -= 

local resultant Update 

result := {) 

seq 
forall 1 E 1ocsToAggregate do 

if regularUpdatesExist then 

/ /  Case l a  

if inconsistentRegularUpdates then 

HandlelnconsistentAggregation(1, uMse t ,  setplugin) 

/ /  Case 111 

else if regularUpdateIsNotSet 

HandlelnconsistentAggregation(1, uMse t ,  setplugin) 

;/ Case 1 c 

else if addRemoveConflict WithR U then 

HandlelnconsistentAggregation(1, uMse t ,  setplugin) 

else 

resultant Update + GetRegularUpdate(1, uMse t )  

seq 
add resultantupdate to result 

else 

/ /  Case 2a 

if addRemoveConflict then 

HandlelnconsistentAggregation(1, uMse t ,  setplugin) 

I/ Case 2b  

else if setNotInLocation then 

HandlelnconsistentAggregation(l, uMse t ,  setplugin) 

else 

resultantupdate + BuildResultantUpdate(1, uMse t )  

seq 
add resultant Update to result 
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where 

IocsToAggregate = { I  I ( I ,  v ,  a) E uMset /\ a E {setAddAction, setRemoveAction)) 

regularUpdatesExist - 3(1, v ,  updateAction) E uMset 

inconsistentRegularUpdates 3(1, vl, updateAction) E uMset, 3(1, vz, updateAction) E uMset, 

V l  # v2 
regularUpdateIsNotASet - 3(1, v ,  updatedction) E uMset, bkg(v) # "Set" 

addRemoveConflict WithR U = addconflict WithR U V removeConflict WithR U 

addconflict WithRU - 3(1, vRU, updateAction) E uMset, 3(1, vSU, setAddAction), 

vSU $ enumerate(vRU) 

removeConflict WithR U = 3(1, vRU, updateAction) E uMset, 3( l ,  vSU, setRemoveAction), 

vSU E enumerate(vRU) 

addRemoveConflict = 3(1, v ,  setAddAction) E uMset, 3(1, v ,  setRemoveAction) E uMset 

setNotInLocation = bkg(GetValue(1)) # "Set" 

Set aggregation is done on a per-location basis. It is important to note that set aggrega- 

tion of a location consisting only of a number of incremental updates is handled differently 

than the case where both incremental updates and regular updates are aggregated. This is 

the case with both inconsistency checking and the actual procedure of aggregation. 

All consistency checks for a location are performed before the actual aggregation takes 

place. Violation of any one of the following requirements results in the aggregation of the 

location being considered inconsistent (comments appearing in the formal definition of set 

aggregation correspond to inconsistency cases described here): 

1. If there is a regular update to a given location along with incremental updates: 

(a) There cannot exist two regular updates to the location, resulting in two unique 

values; this is a typical consistency check of regular updates. 

(b) All regular updates to a location may only result in a set element. 

(c) There cannot be a setAddActzon of an element not found in the set value of a 

regular update, nor can there be a setRemoveActzon of an element found in the 

set value of a regular update to the location. 

2. If there are only incremental updates to a given location 

(a) There cannot exist two incremental updates, one performing a setAddAction and 

the other performing a setRemoveActzon, on the same location and for the same 
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value. 

(b) The value of the location in the current state must be a set element. 

When set incremental updates and set regular updates are successfully aggregated, the 

resultant update is simply the value of (any of) the regular updates to the location; all 

regular updates to the location should be consistent, and all incremental updates should 

not conflict with the regular update value: 

GetRegularUpdate 

GetRegularUpdate(1 : L o c ,  uMset : UPDATEMULTISET) - 
forall u i  E uMset with uiLoc(ui) = 1 do 

if uiAction(ui) = updateAction 

result := u i  

aggStatus(ui, setplugin) := successful 

The keen observer may notice that the result  function is potentially assigned a value within 

each thread of the forall-rule, and that if result  is updated to two unique values there 

would be an inconsistency in the underlying machine. However the aggregation consistency 

checking done before GetRegularUpdate is called, and in particular the check done with the 

inconsistentRegularUpdates derived function, ensures that if multiple regular updates to the 

given location do exist, that they are identical as well. 

The resultant update produced by the successful aggregation of incremental updates 

alone is the set resulting from the addition and removal of elements from the set at the 

location in the current state. 

BuildResultantUpdate(1 : LOC, uMset : UPDATEMULTISET) r 

local newset := newValue(setBack) 

forall e E enumerate(GetValue(1)) 

if ,•’l(l, e ,  setRemoveAction) do 

setMember(newSet, e )  := t m e  

forall ( I ,  v ,  setAddAction) do 

setMember(newSet, v )  := true 

result := ( I ,  newset, updateAction) 

forall u i  E uMset with uiLoc(ui) = 1 do 

aggStatus(ui, setPlugin) := successful 
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5.3.5 Composition Algorithm 

To support aggregation in Turbo ASMs, the Set Plug-in provides a sequential composi- 

tion algorithm. When the sequential composition of two update multisets is requested, 

composerRule(setP1ugin) results in the rule Cornposesets: 

ComposeSets 

ComposeSets(uMsetl : UPDATEMULTISET, uMseb : UPDATEMULTISET) r 

result := 4) 
seq 
forall 1 E 1ocsAffected do 

// Case l a  

if locAddRemove(uMsetl) A 4ocUpdated(uMseb) then 

forall ui E uMsetl with uiLoc(ui) = 1 do 

add ui to result 

;/ Case l b  

else if 4ocUpdated(uMsetl) A locAddRemove(uMse~) then 

forall u i  E uMseh with uiLoc(ui) = 1 do 

add u i  to result 

// C~ISC 2 

else if locAddRemove(uMse~) A locRegularUpdate(uMse~) then 

forall ui E uMseb with uiLoc(ui) = 1 do 

add ui to result 

// Casr 3a 

else if locAddRemove(uMsetl) A locRegularUpdate(uMsetl) A locAddRemove(uMse~) then 

add AggregateLocation(1, uMsetl, uMseb) to result 

I/ Casn 3b 
else if locAddRemove(uMsetl) A locAddRemove(uMse~) then 

forall u i  E EradicateC~nflictingIncrementalUpdates(l, uMsetl, uMseb) do 

add u i  to result 

where 

1ocsAffected r (11 I ( I ,  v ,  a )  E uMsetl) U (12 ( ( 1 ,  v ,  a )  E uMseh)  

locAddRemove(uMset) = 3(1, v ,  a )  E uMset, a = setAddAction A a = setRemoveAction 

locRegularUpdate(uMset) = 3(1, v ,  a )  E uMset, a = updateAction 

locUpdated(uMset) r 3(1, v ,  a )  E uMset 

The Set Plug-in will only perform sequential composition on locations for which it is re- 

sponsible. This plug-in is responsible for composition of a given location when that location 
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is affected by set-related incremental update instructions: 

In the second update multiset. 

In the first update multiset, and the location is not affected at all by any update in 

the second update multiset. 

When only basic updates resulting in a set are made to a given location, the Basic Update 

Composer introduced in Section 5.1.5 takes care of their sequential composition. 

Comments appearing in the formal definition of set aggregation correspond to the cases 

where set composition is the responsibility of the plug-in, as described here: 

1. Include update instructions for locations affected exclusively by only one of the steps: 

(a) Include update instructions for locations in the first step, which are not updated 

in the second step. 

(b) Include all update instructions for locations from the second step, if those loca- 

tions are not updated in the first step. 

2. If a regular update along with incremental updates affect a location in the second step, 

include all update instructions from only the second step, excluding all from the first. 

3. Manipulate update instructions on a single location that if simply added (without 

any transformation) from the first and second step into the resultant update multiset 

would conflict with each other causing inconsistency: 

(a) A regular update which occurred in the first step (e.g. (1, {1,2), updateAction)), 

may conflict with incremental updates which occurred in the second step (e.g. 

(1,2, setRemoveAction)) if included together in the same incremental updates 

multiset. In this situation, sequential composition should produce a regular up- 

date. The regular update produced is created by aggregating the incremental 

updates of the second step, with the assumption that the location currently con- 

tains the value of the regular update from the first step. 
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AggregateLocation 

AggregateLocation(1 : Loc, uMsetl : UPDATEMULTISET, 

uMsei$ : UPDATEMULTISET) = 
return resultant Update in 

let newSet := newValue(setBack) do 

forall e E enumerate(getLocR UValue(uMsetl)) 

if B( l ,  e,  setRemoueAction) E uMseQ do 

setMember(newSet, e )  := true 

forall ( 1 ,  u ,  setAddAction) E uMsei$ do 

setMember(newSet, u )  := true 

resultant Update := ( 1 ,  newset, updateAction) 

where 

getLocRUValue(uMset) - v s.t. ( 1 ,  v, a)  E uMset A a = updateAction 

(b) Two instructions performing a setAddAction and setRemoveAction to the same 

value causes aggregation consistency failure. However, such instructions occur- 

ring in sequence nullify one another: 

i. For any location, a setAddAction occurring in the first step followed by a 

setRemoveAction in the second, clearly causes no change to a given set upon 

the completion of the second step. Update instructions containing both 

these opposing actions on the same location should be omitted from the final 

composed update multiset. 

ii. For any location on which a setRemoveAction in the first step is followed by 

a setAddAction in the second, the removal is nullified by the addition. Thus, 

update instructions containing such a setRemoveAction should be excluded 

from the composed update multiset. 

iii. All other updates operating on a location should be included in the compo- 

sition of the location. 
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EradicateConflictinglncrementalUpdates 

EradicateConflictingIncrementalUpdates(l : Loc, uMsetl : UPDATEMULTISET, 

uMseb : UPDATEMULTISET) = 
return remaining Updates in 

remainingupdates := { 1 
seq 

forall v E 1ocValues do 
// Case 3(b)i 

if locValAct(uMsetl, v ,  setAddAction)~ 

loc ValAct(uMseb, v ,  se t~emove~c t ion) '  then 
skip 

// Case 3(b)ii 

else if locValAct(uMsetl, v ,  setRemoveAction)A 

locValAct(uMse~, v ,  setAddAction) then 

forall ui E { ( l ,  v ,  setAddAction) E uMseb1 do 
add ui to remainingupdates 

/ /  Case 3(b)iii 

else 
forall ui E getA11LocValUpdates do 

add ui to remainingupdates 

where 

locValues E (v1 I (1,vl, a l )  E uMsetl) U (v2 I ( 1 , 2 1 2 , ~ ~ )  E uMseb)  

locValAct(uMset, v ,  a )  - 3(1, v ,  a )  E uMset 

getAllLocValUpdates - { ( I ,  v ,  a l )  E uMsetl) U ((1, v ,  a2) E uMseb)  

5.4 Summary 

In this chapter we described how distributed incremental change is facilitated in the CoreASM 

simulated machine using our framework of incremental updates and aggregation. We use the 

Set Plug-in as an example of general engine extensibility. Our approach offloads the burden 

of aggregation and sequential composition of particular sorts to the appropriate plug-in. It 

is important to note that the semantics of aggregation and sequential composition are un- 

known to the kernel, and in the hands of the plug-ins responsible. This promotes unlimited 

future extensibility of CoreASM with background classes of aggregatable sorts. 



"Call now. Operators are standing by." ' 

- Every late-night infomercial 

Chapter 6 

Operator Evaluation and Language 

Addit ions 

Recall that in our introductory discussion of ASMs, while syntax and semantics of rule forms 

were presented, we do not mention specific sorts or operators provided by ASMs. This is 

due to the fact that ASMs do not restrict the user to any predetermined data types1 or 

operators2, thus allowing for extreme flexibility in modelling complex systems. Also recall 

that many syntactic and semantic extensions have been introduced beyond Basic ASMs, 

including Turbo ASMs and incremental modification of elements. It is not unusual for such 

conveniences to be introduced and used in a specific model, provided that their semantics are 

well-defined and that they operate within the semantic constraints of the ASM paradigm. 

In this chapter, we discuss some of the specific CoreASM engine design decisions made to 

facilitate such freedom and flexibility of modelling. 

We will first discuss issues which arise during operator evaluation in the CoreASM engine. 

We then describe how these issues are addressed. This is followed by a discussion of general 

language extensibility and how this is accomplished. In particular, we describe how the 

parser used by the Parser module, and the grammar accepted by the parser, is extended by 

plug-ins and generated dynamically based on individual specification requirements. 

'The only required data type is Boolean. 

2The only required operator is the equals sign "=" for equality. 
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6.1 Operator Extension and Evaluation 

In Section 5.3 we gave a formal definition of the Set Plug-In, which provides well-defined 

syntax and semantics for the set sort in CoreASM. Along with the definition of this sort 

came several definitions of operations on set elements (i.e. set union, set difference, and set 

intersection). In general any plug-in may extend the CoreASM language with new operators. 

Here we formally specify the procedure used to evaluate operators in CoreASM. 

6.1.1 ASM Type Conventions 

ASM typing is a nebulous topic that deserves a lengthy discussion that is beyond the scope 

of this thesis. We give it only a cursory coverage here, since it is important only to our 

discussion of the significance of operator evaluation in CoreASM. We shall present a view of 

ASM typing which is convenient for our purposes and does not contradict the well-defined 

semantics of ASMs. 

ASMs by definition have no concrete typing conventions3. However the notion of a type, 

or in algebraic specification language terms a sort, does exist; as mentioned in Section 2.1, 

universe membership allows any state of an ASM to be viewed as a many-sorted structure. 

Elements introduced by background classes are identified using universe membership. For 

example the Boolean background class provides the universe BOOLEAN containing the ele- 

ments true and false. It is important to note that the sorts available for use in a specification 

are not dependent on what ASMs provide by default. Rather, the sorts available for use 

are those defined for use in a given ASM specification; sets, trees, numbers, strings and any 

other user defined data structure may be used if defined. 

There is no restriction on how many universes an element may be a member of. This 

means that an element may be many sorts simultaneously. For instance, the true element 

may also be a member of the user-defined universe TRUTH; the true element is then of the 

sorts truth, boolean and superuniverse. 

One may argue that ASMs are untyped because it seems like there is no predefined 

restriction on the kind of sort which is contained in a location or is used in a location 

tuple or named-rule call. We can associate this seeming lack of typing to  parametric 

polymorphism: every location and rule parameter can be an element of the superuniverse 

3The only type related restriction is that predicates must always result in a value of true or false. 
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(and by the definition of ASMs, every element is a member of the superuniverse). Another 

view that we can take is that all elements of an ASM have a common sort which we refer 

to here as the base sort; this implies that all elements are members of the superuniverse. 

In other words, all elements, regardless of the different universes they belong to, have a 

common sort. We can then attribute the untyped characteristic to the assumption that 

locations and rule parameters are always expected to be of the base sort. In any case, there 

is never a type inconsistency experienced with locations and rule parameters in ASMs. 

Strictly-typed ASMs which require that all locations, location arguments, and rule ar- 

guments be bound to particular sorts have been proposed in [17, 54, 55, 56, 571. Functions 

and rules must have signatures defined which express the expected sorts for each parameter. 

These specialized ASM variants have not, however, been fully embraced. The majority of 

the community feel that freedom-of-typing allows for rapid creation of high-level specifica- 

tions by abstracting away from type specific details which are not important to the problem 

at hand. Only as specifications become more complex and begin to describe lower level 

intricacies does strict typing become more useful than restrictive. 

6.1.2 Operators in ASMs 

While ASMs seem untyped with respect to locations and rules, typing can, and often does, 

play a part in the evaluation of operators in ASMs. Operators used in a specification 

may either have generally accepted semantics (e.g. for numerical addition) which 

require no further explanation, or have semantics that are explicitly defined for use in the 

specification. Nevertheless, to be used in a formal specification, operators must have well- 

defined semantics. 

Operators with overloaded meanings can be useful. For example, the "+" operator can be 

defined to produce results dependent on the sorts of operands used (e.g. numerical addition 

if both operands are numbers, and string concatenation if both operands are strings): 

numAddition(e1 , e2), if el ,  e2 E NUMBER 
el + e2 = 

stringConcat(el, ez), if el ,  e2 E STRING 

6.1.3 CoreASM Type Conventions and Operator Extension 

CoreASM type conventions are based on the classic definition of ASMs. All elements of the 

simulated state are of the (base) sort Superuniverse. Sorts are defined via the introduction 
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of universes and their elements by the user with background plug-ins. Location arguments 

and values, along with named-rule call parameters, are expected to be elements of the base 

sort. As such, the use of locations and rules require no type checking. 

Operators may be introduced by any plug-in. Recall that the syntax and semantics of 

each operator provided by the Set Plug-In is fully contained in PA rules; we refer to PA 

rules that together describe a behaviour of an operator as one operator behaviour (OB). An 

OB is a completely self-contained definition of the syntax and semantics of an operator in 

CoreAS M.  With the behaviour of an operator fully modularized, the engine can be extended 

with new operators without it needing to be aware of their syntax and semantics; to it, an 

OB is a black box which can be used to compute the result of operator evaluation. Like 

ASMs, CoreASM is not bound to any particular set of operators, but may be extended with 

an arbitrary number of operators. 

CoreASM allows for the definition of overloaded operators by allowing multiple OBs to 

be introduced for a single operator, each potentially originating from a different plug-in; 

OBs for overloaded operators have a common syntax but differ in their semantics. The OBs 

which together define the overloaded behaviour of an operator are referred to collectively 

as an operator definition (OD). In an OD with overloaded OBs, the OBs are not aware of 

each other or their differing semantics. Because of this black box approach, the challenge 

of determining which (if any) OBs are appropriate for the given operands arises during 

operator evaluation. 

The semantics of an OB may depend on its operands being of a specific sort. The 

OB may perform a type check to ensure that the operands are of a sort supported by 

the operation it provides. This means that typing becomes important in CoreASM during 

operator evaluation. 

Because locations in the simulated state may hold any element, and operator type is 

only queried at interpret-time by OBs if they so choose, the CoreASM language is clearly 

dynamically typed4. However, we cannot categorize CoreASM as either weakly or strongly 

typed. Because plug-ins may introduce operators as well as background classes for any 

number of sorts, an OB can never be aware of all the sorts available for use. The plug-in 

4There are plans to introduce loose and str ict  directives to CoreASM which will require function signa- 
tures to be defined a priori; upon function and rule definition, the sort expected for each argument and value 
will have to be defined. In these two cases either the user will, respectfully be warned of type inconsistency, 
or type consistency will be enforced by not allowing the ASM to run a t  all. Both of these options would 
allow for increasingly more strict typing conventions as specifications become more mature. 
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writer may provide OBs which are capable of sort coercion if they so choose. As a result, 

CoreASM is as strongly or weakly typed as plug-in writers make it. 

6.1.4 Significance of Operat or Evaluation in CoreASM 

Because all CoreASM operators are defined using OBs and the language is dynamically 

typed, at interpret-time the engine must determine which OB (if any) applies to each usage 

of an operator in a specification. 

Dynamically typed programming languages such as Python similarly allow for operator 

behaviour to be overloaded by the user5 (see [43, Chapter 211). In such languages, at 

interpret-time the correct operator implementation is chosen based on matching the types 

of the operands with the types accepted by an operator implementation. Even though the 

CoreASM engine is completely unaware of the requirements of OBs, including the sorts of 

operands that they are able to operate on, it must determine which OB is the appropriate 

one to use in each case. 

To accomplish this, the engine simply allows each OB to perform its own computation 

using the operands. It then decides if a valid result exists for the operation based on the 

examination of results produced by all OBs. If an operator completes without error, the 

result it returns is the result of its operation. We shall, in the following sections, formally 

define how operator evaluation works in CoreASM. 

Clearly, both the complexity of this problem and the efficiency of operator evaluation 

could be reduced by requiring that OBs inform the engine of the sorts of elements they are 

able to operate on. However, making OBs explicitly type-dependent will unnecessarily stifle 

freedom of experimentation by forcing OBs to be designed with operand sort in mind. At 

the early stages of system design, the correctness of a model, which is facilitated through 

freedom of experimentation and exploration of the problem space, is more important than 

efficiency of interpretation. 

6.1.5 CoreASM Operator Evaluation 

When an OB is given operands to operate on, it is expected to return a result. Upon 

successful completion of the operation, the result is an element of the simulated machine's 

'Python only allows for existing arithmetic operators to be overloaded. However, what is important to 
our discussion is method of deciding which of the overloaded operator implementations is used. 
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Superuniverse, which is itself the underlying machine's ELEMENT domain. If an error, including 

one that is related to type checking, has occurred during the OB's attempt to complete the 

operation, it results in an element of the underlying machine's ERROR domain. 

Recall that the ExecuteTree rule presented in Specification 4.1 implements the interpre- 

tation of AST nodes in the engine and is responsible for giving control of interpretation 

of a node to the appropriate plug-in. There the plugin function serves as an oracle which, 

when given a node, results in the plug-in that is responsible for the interpretation of the 

node. To facilitate operator evaluation, we refine the plugin function such that for all nodes 

representing operators, the plugin function does not need to behave as an oracle. Rather, it 

performs a procedure that, after determining the correct OB for the operator node, returns 

the appropriate plug-in which contains that OB: 

plugin : NODE + PLUGIN is the plug-in associated with the node, and hence responsible 

for parsing and evaluating it. For nodes which are operators of the simulated specifi- 

cation, the DetermineOperatorPlugin rule is called to determine and return the plug-in 

which contains the OB associated with the node. If the node is not an operator, the 

function behaves as an oracle. 

DetermineOperatorPlugin(n), if operator(n) 
~ l u ~ i n ( n )  = 

// Oraclc, otherwise. 

The result of this modification is that interpretation of any operator node encountered will 

be handled by the plug-in containing the appropriate OB. The DetermineOperatorPlugin rule 

performs the following procedure to determine which plug-in is suitable for interpretation 

of the given operator node: 

1. Evaluate all operand subtrees of the operator node. Operand values are then imme- 

diately available for use. 

2. Get the OD for this operator. 

3. For each OB in the OD: 

(a) Compute the result of its operation on the operand values. 

(b) Store its result in a set. Along with the result, store a reference to the plug-in 

which provided the OB. 
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4. Decide if there is a valid result for this operator. The decision is based on examination 

of the set of results produced by the OD. 

(a) If there is a valid result, return the plug-in containing the OB which provided the 

result. This plug-in will be given control of interpretation of the operator node. 

(b) Otherwise, the engine has no plug-in equipped to handle the interpretation of the 

operator node. 

This operator evaluation algorithm is described formally as follows 

Interpreter: Operator Evaluation 

DetermineOperatorPlugin(n : NODE) = 
return pluginResponsible in 

obResults(n) := { ) 

seq 
// Stcp 1 

EvaluateOperands(n) 

seq 
// S t ~ p  2 

obSet(n) := getOD(token(n)) 

seq 
// Step 3 

forall ob E obSet do 

add ExecuteOB(n, ob) to obResults(n) 

seq 
// Stcp '1 

pluginResponsible := DecideOnPlugin(n) 

where 

getOD(t) - // Itctu~n set of all 013s for 01). giwn opcrator token 

EvaluateOperands(n : NODE) // Evaluate subirees of operator pertaining to operalids 

ExecuteOB(n : NODE, ob : OPERATORBEHAVIOR) - 
return (obValue(n, ob), obPlugin(ob)) 

where 

obValue(n, ob) = // Return result of 013s computation 011 given nodc 

obPlugin(ob) - // Hclurrl plug-in which providcs OF3 
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where Evaluateoperands is an abstract rule, and getOD, obValue and obPlugin axe abstract 

functions. 

The Evaluateoperands rule simply does what is necessary to evaluate the operand sub- 

trees of the AST and then makes the operand values available for the OBs to use. The 

ExecuteOB rule executes an OB using the pre-computed operand values, and returns a 

2-tuple consisting of the result of the operation and the plug-in to which the OB belongs. 

Notice that all operand subtrees axe evaluated before giving control to OBs. We con- 

sidered giving a copy of each operand subtree to each OB and allowing the OB to have 

control of operand evaluation, but ruled out this approach as it is unnecessarily inefficient; 

Consider that for a single operator evaluation attempt, if an OD consists of k OBs, each 

operand subtree would be evaluated k times. Our approach evaluates each operand subtree 

only once regardless of the size of k. On first examination of this design decision, this seems 

to preclude the possibility of lazy evaluation of operands (the evaluation of operands only 

when needed). For example, during the evaluation of the Boolean conditional AND "&&" 

operator in Java, the second operand is evaluated only if the first evaluates to true; this 

operator is used in cases where, if the first operand is not true, an attempt to evaluate 

the second operand will result in an error. We feel that lazy evaluation of operands can 

be accomodated in CoreASM, but have only carried out an preliminary investigation of the 

issue. We have found that that the effects of lazy evaluation can be simulated in all cases 

except when the evaluation of an operand results in a non-terminating computation. To 

mitigate the case where an error results from evaluating an operator that in lazy evaluation 

would be evaluated only if necessary, error suppression can be used. In the case where a 

non-terminating computation occurs, it would be necessary to have a mechanism to detect 

and halt that computation. These issues are non-trivial, however, and so we leave them for 

future work. 

To determine which plug-in should be responsible for the evaluation of the operator 

node, the collection of results must first be examined in order to determine whether the OD 

was sufficient for operator evaluation, and if there is a well-defined result for the operation. 

There is one case when operator evaluation is considered to be well-defined: 

0 All non-error results are equivalent. In this case we ignore all error results and assume 

that the OBs producing the errors are simply not equipped to  handle operating on 

the given operands. However, what is important here is that all OBs that produce a 
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result, produce the same result. 

The operator evaluation fails in all other cases. These cases can be summarized as follows: 

There are differing non-error results. This means that multiple OBs are equipped to 

handle the computation of a result but do not agree on the result. As such we cannot 

be sure of what the result of the operation should be. 

All OBs result in an error as a consequence of not being equipped to handle the given 

operands. 

We note that a situation may arise where a failure in operator evaluation is caused by 

multiple OBs producing valid but conflicting results. Although the engine may not have the 

information it needs to choose the correct OB, the user might. In such cases, the ability to 

select a particular OB for the operator would be convenient. Different methods for selecting 

an OB have been discussed, and one proposed solution involves additional syntax allowing 

the user to specify the plug-in containing an OB for any particular use of an operator in a 

specification. For example, if there was an OB for "+" provided by the String Plug-in and 

another provided by the Number Plug-in, the user could force numerical addition by using 

the operator suffixed with the plug-in name (i.e. +.Number), and then only the OB from 

the indicated plug-in would be executed. We don't formalize this here and leave the details 

of it for future work. 

When operator evaluation is well-defined, any one of the plug-ins associated with an OB 

that produces a non-error result can be given control of the interpretation. The DecideOn- 

Plugin rule is the formal definition of the procedure used to determine the plug-in suitable 

for interpretation of an operator node: 
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Interpreter: Operator Evaluation 

DecideOnPlugin(n : NODE) r 
return pluginResponsible 

if allSameResult then 

choose (v ,p)  E nonErrorResults do 

else 

pluginResponsible := undef 

where 
allSameResult r V(vl ,  pl) E nonErrorResults, V(v2,pz) E nonErrorResults, vl = vz 

nonErrorResults - { ( v ,  p) I (v ,  p )  E obResults(n) A v 4 ERROR) 

Notice that a failure of operator evaluation results in the engine being unable to determine 

which plug-in is responsible for the evaluation of this particular use of the operator. 

6.2 Parser Extensibility 

The Parser module of CoreASM handles both the lexical analysis and syntactic analysis 

stages of interpretation. Recall that the syntax of a language is specified using a grammar 

(see Section 3.2). Because computer languages generally do not change between major 

versions, their grammar is static. The CoreASM language is an oddball in this respect 

because it is required to be fully extensible by plug-ins with new rule forms, operators, and 

literals. As such, the grammar used to describe the language is dynamic. In this section we 

briefly describe how syntactic extensibility by plug-ins is facilitated. 

6.2.1 The CoreAS M Language Dependance on Specifications 

In Section 4.1.2 we described the engine life-cycle. During the initialization stage of the 

engine, depicted in Figure 4.4, the LoadStdPlugins rule loads all standard plugins; these plug- 

ins contain grammar extensions. While in the process of loading a specification (depicted 

in Figure 4.5) in the Parsing Header mode of the engine, the header of the specification is 

parsed via the ParseHeader rule of the Parser. The ParseHeader rule looks for use directives 

which specify additional plug-ins to be loaded for use in execution of the specification (see 

Figure 6.1). 

The engine mode then becomes Loading Plug-ins, where the loading of these additional 
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// Header 
use Tree 
use Map 

// Body 
. . .  

Figure 6.1: An example use of use directives in a CoreASM specification. While the standard 
plug-ins are automatically loaded, the Tree and Map plug-ins are loaded especially for use 
with this specification. 

plug-ins is done via the LoadSpecPlugins rule in the Control API. These additional plug-ins 

may also contain grammar extensions. Thus the CoreASM language syntax is dependent on 

the plug-in requirements of the specification to be interpreted, and hence can differ from 

one specification to another. 

Once all plug-ins required by a specification have been loaded, the engine moves to the 

Parsing Spec mode of the engine, and executes the Parsespecification rule: 

Parser: Parse Specification 

Parsespecification = 
BuildGrammar 

seq 
BuildAST 

At a high-level, the act of parsing the specification can be broken down into two major 

steps: 

1. Building the grammar to use based on all grammar extensions provided by loaded 

plug-ins. 

2. Using this grammar to building the AST which represents the specification. 

Here we concentrate on how the first step is achieved. The second step involves typical 

lexical and syntactic analysis which we do not describe here. We direct the reader to [I] for 

more information on these stages of interpretation. 
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6.2.2 Dynamic Grammar 

Recall that the kernel contains only the minimum functionality necessary for basic DASM 

semantics. The kernel provides a grammar which specifies the syntax for rules, operators, 

and literals to support these semantics. Regardless of which other plug-ins are required by 

a specification, the grammar included by the kernel is guaranteed to be present. 

With this in mind, the kernel gmmmar has been structured in such a way that it is 

hierarchically segregated with respect to aspects of the language with extensible syntax. 

S t a r t  -> . . . 

Rules -> . . .  
Operators -> . . . 
Li t e r a l s  -> . . . 

Figure 6.2: The kernel grammar structure showing GEPs. 

In Figure 6.2 the general structure of the grammar is shown. The grammar is structured 

such that all productions describing rule form syntax are reached via the Rules production 

and all productions describing literal syntax can be reached via the L i t e r a l s  production. 

For each production extending the kernel grammar, we simply append that production to 

the RHS of the appropriate kernel grammar production. Productions which are designed to 

be extensible in this way are called gmmmar extension points (GEP). 

For example, the Set Plug-In provides both new rule forms and literals. Assume that 

the productions which describe the Set Plug-In specific syntax are as follows: 

Then the kernel grammar is extended at both the Rule and L i t e r a l  GEPs with these 

additional productions: 
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S t a r t  -> . . . 

Rules -> . . .  I SetRules 

L i t e r a l s  -> . . . I SetLiterals  

. . . 
SetRules -> . . . 
SetLi te ra l s  -> . . .  

Extending the parser with new operators is a more complicated process that we describe 

here at a very high-level. In Section 3.4 we described how OP and operator associativity are 

encoded in the structure of the AST produced by a parse using a grammar. In CoreASM the 

segment of the grammar which describes operator syntax is built dynamically with operator 

classes, precedence levels and associativity in mind. This OPG is then integrated into the 

grammar via the Operators GEP. Upon loading plug-ins, the engine is made aware of the 

operators provided by each plug-in, as well as operator class (i.e. unary, binary, ternary, 

etc.), operator associativity (i.e. LA or RA) and operator precedence (which in the case of 

CoreASM is specified via a number between 0 and 100). Using all this information, the engine 

dynamically constructs the OPG productions required to properly describe the syntax and 

characteristics of all operators to be supported. 

6.3 Summary 

In this chapter we described CoreASM extensibility mechanisms for both operators and 

language syntax. With our black box approach to operator extension, an OB's operand re- 

quirements are hidden from the engine; we presented the procedure the engine uses to choose 

the correct OB without relying on sort information. We have also described how the struc- 

ture of the kernel grammar is significant in facilitating language syntax extensibility, and 

have described how additional rule-form, literals, and operator syntax are accommodated. 



". . . and go on till you come to the end: then 

stop." 
- King of Hearts, Alice in  Wonderland 

Chapter 7 

Conclusion and Accomplishments 

We have presented in this thesis the design of several extensibility mechanisms and how 

they have been incorporated into the CoreASM engine and language for executable ASMs. 

Their presence will ensure that CoreASM, like the ASM formalism on which it is based, is 

flexible enough to accommodate application-specific data structures, operators and language 

syntax. Our specific accomplishments are: 

We have integrated into a CoreASM step the ability to aggregate incremental updates 

representing distributed partial modification of elements. 

Our aggregation framework is forward-compatible with data structure specific algo- 

rithms for aggregation and sequential composition, thus facilitating the introduction 

of new data types which require incremental update support. 

Our approach to operator extensibility allows for overloading without constraining 

the operator's behaviours to specific data types. Our method of operator evaluation 

results in the correct OB being chosen without the engine being aware of the operands' 

sorts. 

We have achieved syntactic flexibility through kernel grammar extension and dynamic 

grammar generation at run-time. 

By adopting a black box approach to extending the engine with aggregation algorithms, 

composition algorithms, and operators, we have guaranteed that very few restrictions are 

imposed on such extensions, thus allowing CoreASM to meet the formalization needs of 
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nearly any problem domain. Using ASMs for specifying their formal requirements, we have 

given precise descriptions of both how these mechanisms function and the few requirements 

that must be met by plug-ins for the engine to accommodate their extensions. 

The product of our efforts to integrate distributed incremental change of elements into 

the CoreASM engine is the first documented formal specification of both executable classic 

ASM and executable Turbo ASM steps with support for Gurevich's notion of partial up- 

dates. Moving from theory to practice has been no small feat, however the flexibility and 

freedom provided by the ASM formalism resulted in a precise specification for aggregation. 

This specification and the resulting implementation give further evidence that multi-agent 

incremental change can be achieved in ASMs without violating the original semantics of an 

ASM state transition. 

By adhering to its tenets, our work has given further support to the feasibility of the 

CoreASM core ideology. The CoreASM engine itself forms the kernel of a novel environment 

for model-based engineering of abstract formal requirements and design specifications during 

the early stages of the software design and development process. The flexibility to extend 

this kernel will encourage and facilitate experimentation resulting in new tools to support 

the machine-aided exploration of many problem spaces. 

7.1 Implementation and Project Involvement 

The CoreASM project [27] is a Java-based Open Source software project which has grown 

into a collaborative effort with many active participants. Various design decisions for the 

engine and language have been influenced by our own input. Translating the true ASM 

semantics and syntax from the mathematical domain into a tangible tool while keeping it 

both pure and extensible was no trivial task. However, the modelling of CoreASM formal 

requirements using ASMs and the use of the specification as a guide have resulted in the 

speedy development of software which works as intended. 

To date, the CoreASM engine kernel modules and engine extensibility mechanisms have 

been implemented. However the standard plug-in library planned for distribution with the 

kernel, and which uses the aforementioned extensibility mechanisms, is still under develop- 

ment. 

We undertook many responsibilities in implementation. Using requirements described 

in the CoreASM specification, we designed and successfully implemented the entire Parser 
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module. We first determined the steps required to produce an AST from a specification 

while allowing for syntactic extensibility by plug-ins. Because the language syntax is dy- 

namic, a parser must be generated for each specification based on the grammar produced by 

extending the kernel grammar at GEPs with productions provided by plug-ins. We designed 

an interface through which plug-ins are able to specify operator and grammar extension in- 

formation, and implemented an algorithm to assemble all this information into the grammar 

used for parsing the specification. 

After a broad search for parser generators, we decided upon the use of RIT OOPS 1501, 

a novel parser generator that uses a fully object-oriented method to parse input [42]. Parser 

generators allow one to specify actions to be performed by the generated parser during 

the parsing process. These actions are triggered when nonterminals and terminals of the 

language grammar are recognized. In our case, each action contributes to the construction 

of an AST, the final result being a tree representing a CoreASM specification. While most 

parser generators require these actions to be specified inside the grammar source file, OOPS 

has facilities to encapsulate these actions in objects, thereby separating the grammar from 

the actions. This modularization of actions simplifies the syntactic extension process by 

allowing plug-ins to separately provide the Parser module both with grammar productions 

and with objects containing actions for building AST fragments for these productions as 

they are recognized. 

In the Interpreter module, we implemented the operator evaluation framework and de- 

signed the OB interface that is used by plug-ins to extend the language with new operators. 

The operators provided by the Set Plug-In have been implemented and tested using that 

framework and interface. 

We implemented the aggregation and incremental update framework in the Abstract 

Storage module and designed the aggregator and composer interfaces. The Set Plug-In, 

which introduces the background class of sets and uses the aggregation-related extensibility 

mechanisms formalized in this work, has been mostly1 implemented as well. 

Along with the accomplishments presented in this thesis, we have also time on the for- 

malization and implementation of other standard plug-ins. These include both the Number 

Plug-in, providing the background class of decimal numbers, and the String Plug-in, prcF 

viding the background class of character strings. 

'The implementations of set comprehension and the sequential composition algorithm for set incremental 
updates provided by the Set Plug-in are partially complete at  the time of writing. 
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7.2 Future Work 

Our framework for aggregation of distributed incremental change of elements has been in- 

corporated into the engine. So far, this framework has been used by the set background. 

Further validation of the framework and additional guarantees of its stability can be achieved 

via both empirical testing and practical use, thereby uncovering possible inconsistencies or 

additional requirements that must be met. Directions for future work thus include the spec- 

ification and implementation of additional background plug-ins that provide aggregatable 

sorts and use the aggregator and composer interfaces. 

While the operator evaluation method introduced serves our immediate needs, it does 

not allow for all kinds of operators to be included in the engine. CoreASM is unable to sup- 

port operators requiring lazy evaluation of operands since our operator evaluation method 

requires that all operands be evaluated before executing individual OBs. We believe that 

lazy evaluation of operands can be simulated in the engine by augmenting our approach, 

but this requires further exploration. 

Finally, our operator evaluation method does not yet allow the user to explicitly request 

the use of a particular OB upon operator evaluation. Proposed solutions include prepending 

plug-in names with operator symbols, thereby requesting that the OB provided by the named 

plug-in be used for that particular use of the operator. Before adopting any approach the 

implications of such functionality must be studied. 



Appendix A 

CoreASM Component and Plug-In 

Interfaces 

This appendix contains the interfaces provided by CoreASM components and plug-ins, which 

are not defined anywhere else in this document; these interfaces (i.e. ASM rules and func- 

tions) are used by the underlying machine. Note that only portions of each interface which 

are relevant to this thesis appear here. For more thorough coverage of CoreASM component 

and plug-in interfaces, the reader is directed to the most recent CoreASM technical report 

available1 . 

A.l Abstract Storage 

The simulated state is modeled as a function content : STATEX LOC --t ELEMENT, where 

locations are defined, as usual, by pairs of function names and arguments. All the functions 

in this section are controlled functions. 

0 state : STATE 

is the current state of the simulated machine. 

0 getvalue : Loc --t ELEMENT 

returns the value of a given location. This function is defined as follows: 

'The latest CoreASM documentation can be downloaded from the project website [27] 



APPENDIX A. CoreASM COMPONENT AND PLUG-IN INTERFACES 

content(state, l), if content(state, 1) # undef; 
get Value(1) = 

otherwise. 

rule SetValue(1 : Loc, v : ELEMENT) 

sets the value of the given location to the given value. This rule is defined as follows: 

rule PushState 

copies the current state in the stack. This rule is defined as follows2: 

Push 

PushState - 
asStack(asPtr) := state 

asPtr := asPtr + 1 

rule PopState 

retrieves the state from the top of the stack (thus discarding the current state). This 

routine is defined as follows: 

PopState - 
state := asStack(asPtr - 1)  

asPtr := asPtr - 1 

rule Apply(u : UPDATESET) 

applies the updates in the update set u to the current state. 

Apply 

APP~Y(U) - 
forall (1, v )  E u do 

SetValue(1, v )  

isconsistent : UPDATESET + BOOLEAN 

holds if the update set is consistent according to [15, Def. 2.4.51. 

'We are assuming asPtr = 0 in the initial state. 
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A . l . l  Elements of the Superuniverse 

The following functions are defined over all elements of the superuniverse. 

0 bkg : ELEMENT + NAME 

is the name of the background of the given element. The default value is "Element". 

equalElement : ELEMENTX ELEMENT -+ BOOLEAN 

returns t rue  if the two elements are equal. We have 

0 derived equal : ELEMENTX ELEMENT -+ BOOLEAN 

returns t rue  if the given elements are equal. This function is defined as 

Notice that backgrounds which elements belong to provide sort specific methods for 

defining equality of their elements. 

A. 1.2 Element Enumerability 

An enumerable element is any element which through some processing, can provide a col- 

lection of all the elements which constitute its internal structure. This general idea of 

enumerability can be easily applied to sets, a multisets, trees, records, etc.. The collection 

provided by these elements is a simple unordered group, which can contain duplicates. 

The enumerable interface is useful as it provides a universal interface for all elements 

which can be represented (in albeit a simple form) by collection. The interface required by 

all enumerable elements is as follows: 

0 controlled enumemble  : ELEMENT -+ BOOLEAN 

holds t rue  if the element is enumerable, and false otherwise. The default value of this 

function is false. 

0 derived enumerate : ELEMENT -+ ELEMENTCOLLECTION 

provides a collection of elements contained within the internal structure of the enu- 

merable element, and is defined by its background: 
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A.2 Set Plug-In 

In evaluating the sets produced by set comprehension variant B, every possible combination 

of values for constrainer variables XI..., (given that the sets they are constrained to their 

constrainer expression enurnerate(val~e(y~,.~)) respectively) must be considered. Here we 

describe the rules used by these variants to generate all combinations. 

The following function constitutes the simple structure used to keep record of considered 

combinations: 

controlled consideredset : NODE x INTEGER x ELEMENT + BOOLEAN 

is used to keep track of possible values considered for a given constrainer variable q 

where i E [l..n]. 

The following rules describe the procedures used to do higher level tasks associated with 

book keeping, and combination choice: 

rule InitializeConsideredCombos 

initializes consideredset function in order to keep track of considered combinations of 

values for assignment to constrainer variables, chooses first combination to be consid- 

ered, and assigns these ELEMENTS to their respective local variables. 

lnitializeChooseConsideredCombos = 
forall i E [l..n] do 

choose c E enumerate(value(yi)) 

forall e E enumerate(value(yi)) 

if equal(e, c )  then 

else 

consideredSet(pos, i ,  e )  := false 

rule OtherCombosToConsider 

returns t r u e  if all combinations have not been considered at this point, and returns 

false otherwise. 
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OtherCombosToConsider 

OtherCombosToConsider s 

return o ther  in 

if 3 i  E [l..n] AlllnSetConsidered(i) = false 

o the r  := t r u e  

else 
o ther  :=false 

rule ChooseNextCornbo 

chooses another combination to be considered, and assigns these ELEMENTS to their 

respective local variables. 

ChooseNextCornbo 

ChooseNextCombo = 
ChooseNext(n) 

rule ClearConsideredCombos 

resets data structures used for book keeping, and clear local variable definitions. 

ClearConsideredCornbos 

ClearConsideredCombos = 
forall i E [l..n] do 

forall e E enumerate(value(-yi)) 

consideredSet(pos, i, e )  := false 

RemoveEnv(q) 

The following rules perform specific low level tasks, and are called by the higher level tasks 

described just above: 

rule AlllnSetConsidered(i : INTEGER) 

returns true if all elements in the set produced by the constrainer expression at  yi 

have been considered for assignment to its respective constrainer variable a;., and false 

otherwise. 
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AlllnSetConsidered 

AlllnSetConsidered(i : INTEGER) = 
return allConsidered in 

if 3e E enumerate(value(yi)) consideredSet(pos, i ,  e )  = false 

allConsidered :=false 

else 

allConsidered := true 

rule ChooseNext(i : INTEGER) 

is a recursive rule which when called with i = n causes the next unconsidered combi- 

nation of elements to be chosen, and assigns these ELEMENTS to their respective local 

variables. 

ChooseNext 

ChooseNext(i  : INTEGER) - 
if AlllnSetConsidered(i) = true then 

ResetChooseSetConsidered(i) 

ChooseNext(i - 1 )  

else 

choose c in enumerate(value(yi)) with consideredSet(pos, i ,  c) = false do 

consideredSet(pos, i ,  c)  := true 

e n v ( q )  := c 

rule ResetChooseSetConsidered(i : INTEGER) 

resets the cons ideredse t  function such that all elements of the set produced by the 

constrainer expression at yi are flagged to not have been considered, except one single 

element which will now be considered assigned to its respective constrainer variable 

xi. 
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choose c E enumerate(value(y~)) 

forall e E enumerate(value(yi)) 

if equal(e, c) then 

consideredSet(pos, i ,  c) := true 

env (q )  := c 

else 

consideredSet(pos, i ,  e )  := false 



Appendix B 

How to Shoot Yourself in the Foot 

with CoreASM 

"You write 'shoot self i n  foot7, but it's too abstract to execute, so you wind up 

having to define the gun, the bullets, the cylinder, your foot, your arm, your 

hand, the trigger, the firing pin, the ballistics, and your circulatory system, as 

well as how to load, aim and fire the gun. You then point the gun at your foot and 

pull the trigger. All six bullets in the cylinder are fired simultaneously, but the 

five not pointed down the barrel baclcfire, causing the gun to explode and blowing 

08 your hand and lower arm. The sixth bullet shoots you i n  the foot." 

- Michael Letourneau 
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