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Abstract

The Vehicle Routing Problem (VRP) is a generalization of the Traveling Salesman Problem

(TSP) and is also one of the most challenging tasks in the area of combinatorial optimization.

In the VRP we are given p vehicles and an undirected complete graph G = (V, E) where

edge weights satisfying the triangle inequality. The objective is to find a separate tour for

each vehicle while minimizing the total cost of the tours. In the Capacitated Vehicle Routing

Problem (CVRP), each vehicle has a limited capacity k, and it is required that the vehicle

should never exceed its capacity at any point of the tours.

In this thesis we present approximation algorithms for the CVRP. The CVRP, in fact,

represents a large class of TSP-like problems. We consider approximation algorithms for

three variants of the CVRP, namely the Capacitated Vehicle Routing Problem with Pick-

ups and Deliveries (CVRPPD), variants of the Cycle Covering Problem (CCP), and the

Capacitated Vehicle Routing Problem with Multi-Depots and Multi-Vehicles.

Many practical applications, such as mail delivery, parcel delivery and pickup, and bus

routing, can be modeled by the CVRPPD. In this class of problems, we focus on the k-

delivery Traveling Salesman Problem, the Capacitated Dial-a-Ride Problem, and the Black

and White Traveling Salesman Problem (BWTSP). We design a matching-based constant

factor approximation algorithm for the BWTSP, and we propose a rule to improve the

approximation ratios for the k-delivery TSP and the Capacitated Dial-a-Ride Problem.

Finding cycle covers with minimum edge costs is a fundamental graph problem. In the

second part of the thesis we investigate some NP-hard variants of the CCP. These variants

consider two additional constraints. One of the constraints is on the number of vertices in

each cycle of a cycle cover, and the other is on the number of cycles appearing in a cycle

cover. We present constant factor approximation algorithms for these problems.

Different from the default settings of the CVRP, where only a central depot is involved,

iii



in the CVRP with Multi-Depots and Multi-Vehicles, the vehicles may start from different

depots. In this category we study a model of the Multi-Depot Capacitated Vehicle Routing

Problem (MDCVRP) and the Multi-Vehicle Scheduling Problem (MVSP). We propose a

dynamic programming based method to design approximation algorithms for these prob-

lems.

Keywords

Approximation Algorithms Vehicle Routing Problem Capacity

iv



To my parents, my wife, and the coming baby.
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“To be or not to be: that is the question:”

— Hamlet, William Shakespeare, 1600
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Chapter 1

Introduction

1.1 The Capacitated Vehicle Routing Problem (CVRP)

In some business sectors, transportation adds a significant or even a decisive cost to the

goods or services provided to the customers. Examples include mail delivery, milk transport,

and bus routing. As the distribution process is repeated daily, a tiny improvement on the

vehicle routing process can lead to tremendous energy and monetary savings. In 2005, the

transportation sector contributed about 4.2% of Canada’s GDP, while the number is 3.7%

for Canada’s huge mining and oil and gas extraction industry [29]. In [57] it is shown that

the annual excess travel in the United States has been estimated at about $45 billion.

In this thesis we investigate computer algorithms to minimize the vehicle routing cost. A

simple model of a transportation system is the famous Traveling Salesman Problem (TSP)

[74]. It is defined as follows. Given a set of points and their pairwise distances, the problem

is to find the shortest tour where each point is visited exactly once. Mathematical problems

related to TSP, e.g. the Hamiltonian Cycle Problem [43], were treated early in 1800s by W.

R. Hamilton and Thomas Kirkman. The general form of the TSP is formulated in 1930 by

Karl Menger [74]. The TSP is NP-hard [50] and has been studied intensively in the area of

combinatorial optimization. The best known approximation ratio for TSP, 3
2 , is obtained

by the Christofides-Serdyukov heuristic [20, 77].

The Vehicle Routing Problem (VRP) introduced by Dantzig and Ramser [26] is a gener-

alization of the TSP, and models more complex real world applications. In the VRP, we are

given p vehicles and an undirected complete graph G with edge costs satisfying the triangle

inequality, and the objective is to find a separate tour for each vehicle while minimizing the

1



CHAPTER 1. INTRODUCTION 2

total edge cost of the tours. The VRP has numerous variations, and has also been exten-

sively investigated by many researchers. In this thesis our main focus is on the Capacitated

Vehicle Routing Problem (CVRP) [84], where each customer is associated with a demand

and each vehicle has a uniform capacity constraint. At any point in the tours of the CVRP,

the total demands of the customers that have already been serviced by a vehicle should

never exceed the vehicle capacity. In summary, the optimal solution of the CVRP satisfies

the following:

(1) each tour starts from and ends at a location, called depot.

(2) the total customer demands serviced by a vehicle in its tour is at most the vehicle

capacity.

(3) each customer’s demand is serviced by exactly one vehicle.

(4) the total edge cost of all the tours is minimized.

An example CVRP solution is given in Figure 1.1. In this example it is assumed that

each customer has a demand of 1. The vehicle capacity is set to 7.

Depot

Customer

Figure 1.1: An example of the CVRP.
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1.2 Approximation Algorithms

Unfortunately, the CVRP is NP-hard as it has the TSP as a special case. More precisely,

the CVRP represents a large class of NP-hard problems. Because of the NP-hardness of the

CVRP, it is natural to compromise the quality of the solution in order to compute a solution

in reasonable time. Heuristics and meta-heuristics are of this type, however, they cannot

provide formal evidence to show how “good” the solutions are. On the other hand, there

is a special type of algorithm, called approximation algorithms in the literature [85], which

is designed to produce provably good quality solutions in provably polynomial computation

time. The main objective of this thesis is to design approximation algorithms with good

performance guarantees for the CVRP.

In the following, we explain more about approximation algorithms. Typically an approx-

imation algorithm runs in polynomial time, and gives solutions with theoretically bounded

errors. Most commonly, these errors are multiplicative for approximation algorithms. This

means that for all possible cases, the error produced by an approximation algorithm should

be bounded in terms of the optimum. We give a formal definition of performance guarantee

or approximation ratio for approximation algorithms as follows:

Definition 1.2.1. An approximation algorithm has approximation ratio of α(n), if for any

input of the problem, the cost C of its solution is within factor ρ of the cost of the optimal

solution C∗, i.e.

max ( C
C∗ ,

C∗
C ) ≤ ρ

Note that the above definition works for both minimization and maximization problems.

It would be ideal if the approximation ratio ρ is a small constant, but for many hard

problems, the best known approximation ratio ρ is a function of the input size n and/or

some other parameters associated with the problem.

1.3 Variants of the Capacitated Vehicle Routing Problem

The CVRP itself represents a large class of graph problems. This thesis investigates the

following variants of the CVRP.
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1.3.1 Capacitated Vehicle Routing Problem with Pickups and Deliveries

In the Capacitated Vehicle Routing Problem with Pickups and Deliveries (CVRPPD), each

vertex is associated with a pickup or delivery demand. A vehicle, or a fleet of vehicles

with limited capacity k, traverses the edges and serves all the pickup and delivery demands.

During the traversal, the vehicle capacity constraint should always be satisfied. In this thesis

we investigate three variants of the CVRPPD, namely the k-delivery Traveling Salesman

Problem (the k-delivery TSP) [15], the Capacitated Dial-a-Ride Problem [16], and the Black

and White Traveling Salesman Problem (BWTSP) [10].

k-delivery Traveling Salesman Problem

Consider a distribution system which consists of a set of dispersed inventories and a set of

retailers. A single type of product is stored in the inventories and needs to be distributed

to the retailers. Each inventory stores, and each retailer needs a certain amount of product.

The total amount of product in the inventories equals the total demands of the retailers.

An example of the system is given in Figure 1.2.

Retailer

Inventory

Figure 1.2: An example of the k-delivery TSP. k=3.

In Figure 1.2, a black dot represents one unit of the product in an inventory, and a

white dot represents one unit of demand of a retailer. Therefore inventories and retailers are

represented as clustered black and white dots respectively. There is a single truck available

to pick up the product from the inventories and deliver them to the retailers. The truck has

a limit capacity and can only hold at most 3 units of the product at one time. To maximize

the profit, the shortest tour needs to be computed to service the retailers.

This example represents an instance of the k-delivery TSP. In the k-delivery TSP, the
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vertex set is partitioned into a set of pickup vertices and another set of delivery vertices.

Each pickup vertex is associated with an item, and each delivery vertex requires one item.

All the items are identical, and the vehicle should gather items from the pickup vertices and

deliver them to the delivery vertices.

Black and White Traveling Salesman Problem

The k-delivery TSP is symmetric, in the sense that the same amount of product is provided

or needed by each pickup or delivery vertex. We consider another distribution system where

this symmetry does not hold. This distribution system consists of a set of suppliers and

a set of inventories. A single type of product is provided by the suppliers and needs to

be stored at the inventories. An inventory can store up to k units of product, for a given

integer k. The total capacity of the inventories may surpass the total amount of supply. An

example of the system is given in Figure 1.3.

Supplier

Inventory

Figure 1.3: An example of the Black and White Traveling Salesman Problem. k=3.

In Figure 1.3, a black dot represents an inventory, and a white dot represents one unit of

supply. Therefore suppliers are represented as clustered white dots. The example in Figure

1.3 represents an instance of the Black and White Traveling Salesman Problem (BWTSP).

The BWTSP is defined on an undirected complete graph, G = (V,E), where a vertex set,

V = VB ∪VW , is partitioned into a set of black vertices, VB, and a set of white vertices, VW ,

and an edge set, E, with edge costs w(e) for all e ∈ E satisfying the triangle inequality. The

BWTSP is to determine a minimum cost Hamiltonian tour of G subject to the following

restrictions:

1. Cardinality constraint in which the number of white vertices on “black to black” paths
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is bounded above by a positive integer constant k, and

2. Length constraint in which the cost of any path between two consecutive black vertices

is bounded above by a positive value L.

In this thesis we show that the BWTSP cannot be approximated unless P = NP if

the length constraint is specified. There are some similarities between the k-delivery TSP

and the BWTSP with the cardinality constraint. However an algorithm designed for the

k-delivery TSP cannot be used directly for the BWTSP with the cardinality constraint.

The reason is that in the BWTSP, k times the number of the black vertices may exceed the

number of the white vertices in the graph. Therefore without knowing the optimal solution,

we cannot determine the number of white vertices assigned to an arbitrary black vertex.

Capacitated Dial-a-Ride Problem

In the k-delivery TSP and the BWTSP, we assume that the items associated with the

pickup or white vertices are identical. This assumption, however, does not apply to some

real world applications. Consider some transportation systems, e.g. the shared taxi system,

where customers call a vehicle service agency to request picking up an item from a source

location and delivering the same item to a different destination location. To reduce the cost,

the agency first gathers customer requests for a period of time in order to compute a better

schedule for servicing these requests. A vehicle with limited capacity is then dispatched to

service the customers based on the computed schedule. In these systems, an item picked

up from one location must be delivered to its pre-specified destination location. A servicing

example of this system is illustrated in Figure 1.4.

1

2

2

3

3

1

(b)(a)

Figure 1.4: An example of the Capacitated Dial-a-Ride Problem on a path. k=2.
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The example in Figure 1.4 represents an instance of the Capacitated Dial-a-Ride Prob-

lem. In the Capacitated Dial-a-Ride Problem, we are given an undirected complete graph

G = (V, E) with edge costs satisfying the triangle inequality, a depot d and a set of jobs,

where each job is represented by a source vertex and a destination vertex in G. A vehicle

with capacity k is used to serve each job by carrying the item (of one unit) from its source

to its destination. The goal is to compute the shortest tour that starts from d and also

returns to d after serving all the jobs. It is required that at any point of the tour the vehicle

should never carry more than k items. In Figure 1.4, the problem is defined on a path and

the depot lies at the left-most vertex of the path. The gathered jobs are given in Figure

1.4(a) and the order of servicing the jobs are marked in Figure 1.4(b).

1.3.2 Cycle Covering Problem

The second part of the thesis considers some variants of the Cycle Covering Problem (CCP).

The CCP is a fundamental graph problem and is well related to the VRP. A cycle cover, or

a 2-factor of an undirected complete graph G = (V, E), is a set of disjoint simple cycles in

G where all the vertices are covered. The CCP is to find a cycle cover with the minimum

total edge cost.

Consider the following integer program formulation for the TSP [27]:

(TSPIP ) Min
∑
e∈E

cexe

subject to:
∑

e∈δ(i)

xe ≥ 2 ∀i ∈ V

∑
e∈E(S)

xe ≤ |S| − 1 ∀S ⊂ V

xe ∈ {0, 1} e ∈ E

Here δ(S) denotes the cross edges between S and V −S, ce represents the cost of an edge e,

xe indicates that whether the edge e is included in the solution, and E(S) denotes the set

of selected edges between the vertices in S. The first set of constraints in (TSPIP) is called

the degree constraints, and the second set of constraints in (TSPIP) is called the subtour

elimination constraints.

The CCP can be formulated by the following integer program:
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(CCIP ) Min
∑
e∈E

cexe

subject to:
∑

e∈δ(i)

xe ≥ 2 ∀i ∈ V

xe ∈ {0, 1} e ∈ E

The above linear program can be obtained from (TSPIP) after dropping the subtour

elimination constraints. Therefore the CCP is a relaxation of the TSP. The TSP is NP-

hard, however efficient algorithms exist for the CCP [30, 31]. This thesis considers two

NP-hard variants of the CCP, namely the Cycle Covering Problem with Bounded Length k

(CCPBL), and the p-constrained Cycle Covering Problems (pCCCP).

Cycle Covering Problem with Bounded Length k

Given an integer k and an undirected complete graph G = (V, E), where each edge e∈E is

associated with a cost ce, the Cycle Covering Problem with Bounded Length k (CCPBL) is

to find a cycle cover of G with minimum total edge cost. In addition, each cycle in the cycle

cover is required to have at least 3 but at most k vertices. As the length bound models the

vehicle capacity, the CCPBL is a variant of the CVRP with multiple vehicles.

p-constrained Cycle Covering Problem

The p-constrained Cycle Covering Problem (pCCCP) is a variant of network design problems

with downwards monotone functions [41]. In practice, p denotes the number of vehicles

available to service the customers.

Given an undirected graph G = (V, E) with non-negative edge weights, and a function

f : 2V → {0, 1}, a network design problem can be formulated as the following integer

program:

(IP ) Min
∑
e∈E

cexe

subject to:
∑

e∈δ(S)

xe ≥ f(S) Ø 6= S ⊂ V

xe ∈ {0, 1} e ∈ E

A downwards monotone function f has the following properties: 1) f(V ) = 0; 2) f(A) ≥
f(B), if and only if A ⊆ B ⊆ V . In this thesis we consider a class of network design problems
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which can be modeled as an integer program of the type (IP) with downwards monotone

functions. For example, in the k-Cycle Covering Problem, we are given an integer k, and

the objective is to find a minimum cost cycle cover of G, where each cycle in the cycle

cover contains at least k vertices. For the k-Cycle Covering Problem, the corresponding

downwards monotone function f can be defined as: f(S) = 1 if and only if S has fewer than

k vertices, and 0 otherwise.

The pCCCP is obtained by adding an extra constraint to network design problems with

downwards monotone functions. More specifically, given an integer p, we require that there

should be at most p connected components in the optimal solution. In practice, p can be

interpreted as the number of vehicles available to service the customers. For example, the

p-constrained version of the k-Cycle Covering Problem models the application scenario that,

we have at most p vehicles to service the customers, and each vehicle should collect at least

k demands from the customers.

1.3.3 Capacitated Vehicle Routing Problem with Multi-Depots

In a typical setting of the Capacitated Vehicle Routing Problem, a central depot is given,

and each vehicle will start and end at the depot. However the assumption of a central

depot does not reflect the needs of many real world applications. For example, Krumke

et al. [60] mentioned an application with German Automobile Club Allgemeiner Deutscher

Automobile-Club (ADAC), where a fleet of vehicles is used to assist people whose cars break

down. In this application, requests are batched for a period of time, and whenever a vehicle

is dispatched for an accident, the vehicle will remain at the accident position before being

assigned a new request received in the next period. It is easy to see that in this application

the vehicles may start from different depots for a particular round of service.

This thesis investigates the following two variants of the Capacitated Vehicle Routing

Problem with Multi-Depots or Multi-Vehicles.

Multi-Depot Capacitated Vehicle Routing Problem (MDCVRP)

In the MDCVRP we are given an undirected complete graph G = (V ∪ D, E), where V

and D denote a set of customers and a set of depots respectively, and E denotes the set

of weighted edges satisfying the triangle inequality. A vehicle with capacity k is located at

each depot node and can be used to serve at most k customers. It is assumed here that the
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number of customer nodes |V | is no more than |D| × k. The objective of the MDCVRP is

to find a minimum cost set of tours covering all the customer nodes of V such that each

tour contains at most k customers, and a distinct depot.

The known approximation results for the Vehicle Routing Problem with Multi-Depots

[18, 67], considered the MDCVRP in the following settings (called MCVRP in [67]): the

underlying graph G is defined similarly to that in the MDCVRP; the vehicle also has a

capacity of k; however, in the MCVRP when a vehicle returns to its depot after servicing

some customers, the same vehicle can start another round of servicing immediately. Because

of the hard capacity constraint in the MDCVRP, the MDCVRP is a further generalization

of the MCVRP.

A problem closely related to the MDCVRP, called the Vehicle Dispatching Problem

(VDP), is studied by Krumke et al. in [60]. The VDP is defined similarly to the MDCVRP,

with the only difference being that each vehicle will not return to its home base (depot).

Multi-Vehicle Scheduling Problem (MVSP)

The MVSP is a further generalization of the Single Vehicle Scheduling Problem (SVSP) in

[53]. In the SVSP each vertex u is associated with a job ju that has a release time r(u)

and a handling time h(u). A job ju can only be serviced after its release time r(u) and the

job need h(u) time to finish. Again a vehicle is given to service the jobs, and the objective

of the problem is to minimize the makespan. The makespan is the time when the vehicle

completes all the jobs. In the MVSP the jobs are defined similarly as in the SVSP, however

there are m identical vehicles to service the jobs. The objective is to minimize the makespan

of all the vehicles. No capacity constraint is involved in the MVSP. We include the MVSP

in Chapter 5 because our algorithm for the MVSP shares the same solution framework with

that for the MDCVRP.

1.4 Approximations of metric spaces

In this thesis several approximation algorithms are designed for variants of the CVRP in

trees. The motivation to work on trees comes from the following. An approximation algo-

rithm with ratio α for the CVRP in trees implies an approximation algorithm with ratio

O(α log n) for the CVRP in general graphs [32]. This is due to the fact that an n-point

metric space can be approximated by tree metrics with a distortion factor of O(log n) [32].
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Let V be a set of points and let M be a metric space over V . Let u and v be two points

of V . Denote dM (u, v) to be the distance between u and v in the metric M . The following

definitions are from [6].

Definition 1.4.1. A metric space N over V , α-approximates a metric space M over V if

for every u, v ∈ V , dM (u, v) ≤ dN (u, v) ≤ α · dM (u, v).

Definition 1.4.2. A set of metric spaces S over V , α-probabilistically approximates a metric

space M over V , if (1) for every u, v ∈ V and N ∈ S, dN (u, v) ≥ dM (u, v), (2) and there

exists a probability distribution over metric space N ∈ S such that for every u, v ∈ V

E(dN (u, v)) ≤ α · dM (u, v).

Definition 1.4.3. A k-hierarchical separated tree (k-HST) is defined as a rooted weighted

tree such that (1) the edge weight from any node to each of its children is the same, (2) and

the edge weights along any path from the root to a leaf are decreasing by a factor of at least

k.

The following theorem is established in [32].

Theorem 1.4.4 (Fakcharoenphol, Rao and Talwar). Every metric space M over V can be

α-probabilistically approximated by the set of 2-HSTs, where α = O(log n).

By Theorem 1.4.4, an instance I of the CVRP in general graphs can be converted to

an instance I ′ of the CVRP in trees. Let OPTI denote the cost of the optimal solution of

I, and let OPTI′ denote the cost of the optimal solution of I ′. Then E(OPTI′) ≤ βOPTI ,

where α = O(log n). Therefore a β-approximation for the CVRP in trees also gives an

O(β log n)-approximation for the CVRP in general graphs.

There are other reasons to investigate the CVRP in trees. In practice, tree networks arise

naturally in river networks and pit mine railways [63]. Another example is tree road networks

in logging areas of northern Canada, where road construction costs far exceed routing costs.

There are also some applications where the general CVRP can be approximated by reducing

the network to a tree. For example, Basnet et al. in [8] mentioned an application of

routing milk tankers in a rural area of New Zealand where the underlying network can

be approximated as a tree, since road building is extremely costly in that area due to its

mountainous terrain.
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1.5 Layout of the Thesis

We summarize the abbreviations of the problems investigated in this thesis in Table 1.1.

Table 1.1: Abbreviations of the problems investigated.
Abbreviation Problem

VRP Vehicle Routing Problem
CVRP Capacitated Vehicle Routing Problem
CVRPPD Capacitated Vehicle Routing Problem with Pickups and Deliveries
k-delivery TSP k-delivery Traveling Salesman Problem
BWTSP Black and White Traveling Salesman Problem
CCP Cycle Covering Problem
CCPBL Cycle Covering Problem with Bounded Length
pCCCP p-constrained Cycle Covering Problem
MDCVRP Multi-Depot Capacitated Vehicle Routing Problem
VDP Vehicle Dispatching Problem
SVSP Single Vehicle Scheduling Problem
MVSP Multi-Vehicle Scheduling Problem

The thesis is organized as follows.

In Chapters 2 and 3 we discuss several approximation algorithms for the Capacitated

Vehicle Routing Problem with Pickups and Deliveries(CVRPPD). Three variants of the

CVRPPD, namely the k-delivery Traveling Salesman Problem (the k-delivery TSP), the

Capacitated Dial-a-Ride problem, and the Black and White Traveling Salesman Problem

(BWTSP), are investigated in this thesis. In all these variants, a vehicle with capacity k is

given to service a set of customers. The objective is to find a minimum cost Hamiltonian

Cycle to serve the customers, and at any point of the tour the vehicle capacity should always

be satisfied.

In Chapter 2 we propose a rule called the come-back rule, for the k-delivery TSP and the

Dial-a-Ride problem in trees. Under this rule the vehicle may come back and pick up more

vertices before crossing an edge when some condition occurs. The triggering conditions vary

for different problems. By using the come-back rule, we obtain an optimal algorithm for the

k-delivery TSP on paths, and improve the approximation ratio to 5
3 for the k-delivery TSP

in trees. We also improve the approximation ratio to 2.5 for the Capacitated Dial-a-Ride

Problem on paths.
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In Chapter 3 we first show that BWTSP cannot be approximated if the length constraint

is specified. We then present a 4-approximation algorithm for the BWTSP when only the

cardinality constraint is specified. This algorithm is based on matching and König’s theorem

[58]. We also improve the approximation ratio slightly for the case where the number of

white vertices is exactly k times the number of black vertices.

In Chapter 4, we address two NP-hard variants of the Cycle Covering Problem (CCP),

namely the Cycle Covering Problem with Bounded Length (CCPBL), and the p-constrained

Cycle Covering Problem (pCCCP). In the pCCCP, given an integer p, there should exist at

most p cycles in the final solution. For the CCPBL, we show that a 4-approximation can

be obtained by an application of the GW-algorithm [40]. A 2-approximation algorithm is

given for the pCCCP.

Chapter 5 studies two variants of the Multi-Depot Vehicle Routing Problem (MDVRP),

the Multi-Depot Capacitated Vehicle Routing Problem (MDCVRP), and the Multi-Vehicle

Scheduling Problem (MVSP). A framework is proposed for both the MDCVRP and the

MVSP in trees. In this framework, dynamic programming is used to indirectly decompose

the original problem P into a set of disjoint subproblems. Solving these subproblems gives

us the desired solution for P with constant factor approximation ratios in trees. As an

arbitrary metric space can be α-approximated by tree metrics (2-HSTs) with α = O(log n)

[32], we obtain O(log n)-approximations for the MDCVRP and the MVSP in general graphs.

Chapter 6 gives the conclusion of this thesis. Some future research directions are also

discussed in this chapter.



Chapter 2

Capacitated Pickup and Delivery

Vehicle Routing

2.1 Introduction

In the Capacitated Vehicle Routing Problem with Pickups and Deliveries (CVRPPD), we

are given an undirected complete graph G=(V, E) with edge costs satisfying the triangle

inequality, and each vertex v is associated with a pickup or delivery demand dv. A vehicle,

or a fleet of vehicles with limited capacity k, traverses the edges of G and serves all the

pickup and delivery demands. During the traversal, the vehicle should never exceed its

capacity. In this chapter, we investigate approximation algorithms for two models of the

CVRPPD; more specifically, we concentrate on the k-delivery Traveling Salesman Problem

(k-delivery TSP) and the Capacitated Dial-a-Ride Problem on paths and in trees.

2.1.1 k-delivery Traveling Salesman Problem

In the k-delivery TSP, we are given an undirected complete graph G = (V, E), where a

vertex set V = Vp ∪Vd is partitioned into a set Vp of pickup vertices and a set Vd of delivery

vertices and an edge set E with edge costs satisfying the triangle inequality. Each vertex

of Vp is associated with an item, and each vertex of Vd requires one item. A vehicle with

capacity k gathers products from pickup vertices, and delivers them to delivery vertices. All

the items are identical; an item picked up from a vertex in Vp can be delivered to any vertex

of Vd. The objective of the k-delivery TSP is to determine a minimum cost Hamiltonian

14
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tour of G subject to the vehicle capacity constraint.

The k-delivery TSP is also called the Capacitated Pickup and Delivery Traveling Sales-

man Problem (CPDTSP) in [81]. Lim et al. [81] showed that the problem can be solved

optimally in time O(n2/min(k, n)) on paths, where n is the number of vertices of G. The au-

thors proved in the same paper that the k-delivery TSP is NP-hard in the strong sense even

for trees with height 2, using a reduction from the 3-partition problem. A 2-approximation

algorithm for the k-delivery TSP in trees is later given in [68]. This algorithm follows the

rule that the vehicle would continue to pick up (or deliver) items if possible.

The best known approximation ratio 5 for the k-delivery TSP in general graphs is due to

Charikar et al. in [15]. The first constant factor approximation algorithm for the k-delivery

TSP in general graphs is given by Chalasani et al. in [14]. These methods use TSP tours

involving a subset of vertices as lower bounds for the k-delivery TSP in general graphs.

2.1.2 Capacitated Dial-a-Ride Problem

In the Capacitated Dial-a-Ride Problem, we are given an undirected complete graph G =

(V, E) with edge costs satisfying the triangle inequality, a depot d and a set of jobs, where

each job is represented by a source vertex and a destination vertex in G. A vehicle with

capacity k is used to serve each job by carrying the item (of one unit) from its source to its

destination. The goal is to compute the shortest tour that starts from d and then returns

to d after serving all the jobs. It is required that at any point of the tour the vehicle should

never carry more than k items.

When k = 1, the Capacitated Dial-a-Ride Problem is also called the Stacker-Crane

Problem. The Stacker-Crane Problem on paths can be solved optimally as shown in [4].

Frederickson et al. in [34] proposed a 9
5 -approximation algorithm for the Stacker-Crane

Problem in general graphs. Later, they improved the ratio to 5
4 for trees in [33].

For the Capacitated Dial-a-Ride Problem with arbitrary vehicle capacity, the best known

approximation ratio O(
√

k log n) in general graphs is given by Charikar et al. in [16]. This

algorithm is in fact for a type of special structured tree, called the height balanced tree [16].

It is proved in [16] that from an α-approximation for some problems in height balanced

trees, we can obtain an O(α log n)-approximation for the same problems in general graphs.

For paths, Krumke et al. [61] presented a 3-approximation algorithm. In this chapter we

improve this approximation ratio to 2.5.
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2.1.3 Our results and solution techniques

Our results are summarized as follows:

(1)For the k-delivery TSP on paths, we obtain an optimal linear time algorithm. This

improves the running time O(n2/min(k, n)) of the algorithm described in [81].

(2)For the Capacitated Dial-a-Ride Problem on paths, we improve the approximation

ratio to 2.5 from 3 as in [61].

(3)For the k-delivery TSP in trees, we improve the approximation ratio to 5
3 . The best

known approximation ratio 2 is due to Lim et al. [68].

In this chapter we propose a strategy called the come-back rule for the two models of

the CVRPPD on paths and in trees. Our algorithms are all based on this strategy. Under

the come-back rule, the vehicle would not be allowed to cross a particular edge e if some

condition is met. Such conditions vary for different problems. In other words, the come-

back rule states that, the vehicle may not consume its load immediately, but can come back

and pick up more items for a better schedule. We use the k-delivery TSP on paths as an

example. Assume that the vehicle has a capacity of 100, and the vehicle carries 40 items

before visiting the next vertex u. If u is a delivery vertex, then the vehicle may still choose

to not serve u at this time but to come back and pick up 60 more items before visiting u

again. As a consequence, the vehicle may traverse several edges without servicing any jobs,

even when it has a large load. This is somewhat contrary to our intuition.

Note that for all the problems we solved, we bound the costs of our solutions to the

optimum of the preemptive version of these problems. In the preemptive version of these

problems, the vehicle is allowed to drop all or part of its current load temporarily at some

intermediate points. The vehicle will come back and collect the dropped items later. Our

algorithms also answer the question of to what extent the optimum of the non-preemptive

version of these problems are bounded to that of the preemptive version of these problems.

This chapter is organized as follows. In Section 2.2, we define some notations and discuss

several lower bounds for the Capacitated Dial-a-Ride Problem and the k-delivery TSP on

paths and in trees. In Section 2.3, we present a linear time optimal algorithm for the k-

delivery TSP and use this algorithm as the first concrete example of the come-back rule. In

Section 2.4, we show how to utilize the come-back rule to improve the approximation ratio

to 2.5 (from 3 as in [61]) for the Capacitated Dial-a-Ride Problem on paths. In Section 2.5,

we apply the come-back rule in a more complicated setting and improve the approximation
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ratio to 5
3 (from 2 as in [68]) for the k-delivery TSP in trees.

2.2 Lower bounds

In this section, we introduce three lower bounds known in the literature [15, 16, 81], called

the flow bound, the Steiner tree bound and the TSP bound, for the k-delivery TSP and the

Capacitated Dial-a-Ride Problem in trees. These lower bounds are used widely to design

exact or approximate solutions for these problems. We also set some notations for later

discussion. Some notations for these lower bounds are from [16, 81].

The flow bound for the Capacitated Dial-a-Ride Problem is defined as follows. Consider

an edge e = (u, v) of the path or the tree. Let f1(e) and f2(e) be the number of jobs

that need to cross e from u to v and from v to u respectively. An observation is that in

any transportation scheme, the number of times the vehicle moves from u to v equals the

number of times the vehicle moves from v to u. Let λe = max{f1(e), f2(e)}. As the vehicle

has capacity k, in the optimal solution, e is crossed at least 2dλe
k e times. This is due to the

fact that the vehicle has to return to the depot. We refer to this as the flow bound for the

Capacitated Dial-a-Ride Problem.

The vehicle located at depot d is required to visit all the jobs in a single tour, therefore

the jobs should be connected in some way. The Steiner tree bound for the Capacitated

Dial-a-Ride Problem considers the cost of connecting the jobs. The formal definition of the

Steiner tree bound is as follows. A vertex in the tree network is called interest if it lies on a

path to serve a job. Let T be the Steiner tree connecting all such vertices. Then the Steiner

tree bound states that any Dial-a-Ride tour must traverse every edge in T at least twice. We

give the Capacitated Dial-a-Ride Problem on paths as an example. Assume in an instance

we only have two jobs j1 and j2 defined on a path and the two jobs are non-overlapping,

in the sense that the two path segments P1 and P2 obtained from servicing the two jobs

are disjoint. Then after servicing one job, say j1, the vehicle needs to be forwarded to the

source of j2 to serve j2, otherwise the tour is not feasible. Therefore the edges connecting

P1 and P2 will also have to be traversed twice in any transportation.

The flow bound for the k-delivery TSP is defined similarly as that for the Capacitated

Dial-a-Ride Problem. Denote a subtree rooted at vertex u by Tu and the parent of u by

p(u). For each vertex u of G, we associate it with a label a(u), which is set to 1 if u is

a pickup vertex, and -1 if u is a delivery vertex. For paths, we define n(u) =
∑u

t=1 a(t)
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to be the net number of items among vertices to the left of u (including u); for trees, we

define n(u) =
∑

v∈Tu
a(v) to be the net number of items of all the vertices in Tu. Then any

k-delivery TSP tour must traverse e = (p(u), u) at least 2max{d |n(u)|
k e, 1} times. For an

edge e = (u, v), we define n(e) to be equal to n(u), if e is on a path and u is to the left of

v, or e is in a tree and v = p(u).

A lower bound called the TSP bound [15] is used for the k-delivery TSP in general

graphs. The TSP bound simply uses the minimum-cost TSP tour involving a subset of

vertices of the graph as a lower bound for the optimum. The 9.5-approximation algorithm

in [14] and the 5-approximation algorithm in [16] are based on the TSP bound. There are

no lower bounds known for the Capacitated Dial-a-Ride Problem in general graphs.

2.3 A linear time algorithm for the k-delivery TSP on paths

In this section, we propose a simple linear time algorithm for the k-delivery TSP on paths.

It is also the first example of our come-back rule. As implied by the flow bound, an optimal

solution of the k-delivery TSP on a path may contain O(n2/min(k, n)) edges. That is

the reason why the algorithm in [81] takes time O(n2/min(k, n)), which is also the best

possible running time if the final solution is constructed by explicitly enumerating its edge

sequences. However, in this chapter we show that there is an optimal solution with a succinct

representation, whose size is only linear to the number of vertices; in this way we are able

to give an optimal algorithm for the k-delivery TSP on paths.

vu
e

1 1 1

2

3 3 3

4 4

2 2

4

Figure 2.1: A succinct representation of an optimal solution for the k-delivery TSP on a
path where k=2. A white circle represents a pickup vertex and a black circle represents a
delivery vertex.
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In the succinct representation (please see Figure 2.1 for an example), the solution

comprises several subroutes, r1, r2, · · · , rt, where 1 ≤ t ≤ n. Each vertex is marked to be

picked up or delivered by one such subroute. For each subroute ri, where 1 ≤ i ≤ t, the

vehicle travels along the path from the left-most vertex to the right-most vertex, which are

marked by this subtour. In the meantime, the vehicle services all the vertices marked by

the subtour. After reaching the right-most vertex, the vehicle comes back to the left-most

vertex marked by the next subtour ri+1, and the above process continues. It is clear that

such a representation needs only O(n) space.

Procedure come back1(G, start, direction)

Input: An undirected graph G = (V,E) defined on a path with nonnegative edge costs;

start is the starting point of the path segment; the algorithm will process leftwards if

direction = 1, and rightwards if direction = −1

Output: A succinct representation of an optimal solution for the path segment

1 Comment: initialization

2 init stack(vehicle)

3 init stack(repository)

4 route number = i = 0

5

6 while 0 ≤ i ≤ |V | − 1

7 if the ith vertex is a pickup vertex

8 Comment: the vehicle carries less than k items

9 if vehicle.size() < k then

10 vehicle.push(i)

11 mark[i]=route number

12 else

13 repository.push(i)
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14 endif

15 else if the ith vertex is a delivery vertex then

16 if k − vehicle.size()=repository.size() mod k then

17 m=repository.size() mod k

18 if m=0 and vehicle.size() = 0 then

19 m=k

20 endif

21 route number=route number+1

22 for j=1 to m

23 vehicle.push(repository.pop())

24 mark[i]=route number

25 endfor

26 endif

27 v=vehicle.pop()

28 mark[i]=route number

29 delivery[i]=v

30 endif

31 i = i+direction

32 endwhile

33 return mark, delivery

Figure 2.2: The algorithm for the k-delivery TSP on a path segment.
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Our main algorithm, called come back1, is for a path segment where n(v) is 0 for the

right-most vertex v, and greater than 0 for every other vertex on this segment. Its pseudo

code is listed in Figure 2.2. The algorithm simply scans the segment from left to right,

and maintains a route number and two stacks. The route number represents the number of

the current subtour and is used to mark each vertex for a succinct representation. A stack,

called vehicle, is used to simulate the behaviour of the vehicle, pushing a vertex to the stack

has the same effect as loading one item into the vehicle, and popping from the stack means

that the vehicle delivers one item. In the algorithm, a pickup vertex is put into this stack

if the current vehicle load is less than k. Another stack, called repository, stores all the

pickup vertices which cannot be served when the vehicle passes by (the vehicle is full). In

the procedure, a pickup vertex is put into the vehicle stack if the current vehicle load is less

than k. Otherwise it is stored in another stack called repository. Note that the vertices in

the vehicle stack belong to the current subtour, and the vertices in the repository stack are

serviced in later subtours.

The come-back rule applies when a particular delivery vertex u is to be visited. We

define S1(t) and S2(t) to be the sets of items in the vehicle and the repository at time t

respectively. Assume the vehicle is moving rightwards and at time t′ it reaches u, which is

the left end point of an edge e = (u, v). For the k-delivery TSP on paths, the triggering

condition of the come-back rule is whether (|S1(t′)|+|S2(t′)|) mod k = 0. In other words, the

vehicle is allowed to cross e from u to v only if (|S1(t′)|+ |S2(t′)|) mod k 6= 0. Otherwise, the

current subtour is terminated and the vehicle comes back to pick up the topmost (|S2(t′)|
mod k) items in the repository. This can be implemented by increasing the route number

by 1 and transferring the topmost |S2(t′)| mod k items of the repository stack to the vehicle

stack. To ease the analysis, we assume that the vehicle picks up these items on its way back

from u (when the vehicle is moving leftwards).

The come-back rule guarantees that the solution produced by the algorithm abides by

the flow bound for the k-delivery TSP. Therefore in this solution each edge e is traversed

exactly 2dn(e)
k e times. Before proving this claim, we show that the solution may not be

optimal if we do not come back when the triggering condition is satisfied. Consider the

example in Figure 2.1. Let the first two delivery vertices be u and v in this example. Let

the edge connecting u and v be e. When the second delivery vertex v is to be visited at time

t, one item remains in the vehicle and three items are stored in the repository. Therefore

(|S1(t)| + |S2(t)|) mod 2 = 0, and according to our rule the vehicle should come back and
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pick up one more item before serving v. If otherwise we continue to dump the item in the

vehicle to v in the first subtour, then e would have to be traversed at least 2 more times

from left to right, since there are 3 pickup vertices still not served among the vertices to the

left of v. Such a solution is not optimal as e is only allowed to be crossed 2dn(e)
2 e = 4 times.

The following lemma is crucial to prove that the algorithm indeed finds an optimal

solution.

Lemma 2.3.1. For an edge e of the path segment, let the subtours found by the algorithm

passing through e be r1, r2, · · · , rm. Then in each of the routes r3, · · · , rm, the vehicle

crosses e from left to right with exactly k items. The vehicle carries the rest (more than k)

of the items in r1 and r2.

Proof. Let the left and right endpoints of e be u and v respectively. Notice that when

the vehicle crosses e in r1, all the delivery vertices to the left of v must have already been

serviced. Otherwise, let v′ be such a delivery vertex. Then the vehicle must carry nothing

when visiting v′, or else the vehicle can deliver one item to v′. But this is either contradictory

to the definition of the path segment on which we are working, or is contradictory to the

come-back rule. Therefore at time t1 just before the vehicle crosses e from u to v in r1, the

number of items in the two stacks equals n(e).

u

t’

e v u’ e’ v’

r1

r2

t1

t2

Figure 2.3: The first and second routes.

Let x be the residual n(e) mod k. We already know that |S1(t1)|+ |S2(t1)| mod k equals

x. The vehicle would cross e again in r2, only if there exists an edge e′ = (u′, v′) such that v′

is to the right of both v and u′, and |S1(t′)|+ |S2(t′)| mod k equals 0 where t′ is the time just

after the vehicle services v′ in r1. In this case, the vehicle would cross e from v to u to pick

up some more items. Let this time (just before the vehicle visits u) be t2. Then we have

|S2(t2)| = |S2(t1)| and (|S1(t2)| + |S2(t2)|) mod k = 0. The first equality holds because in

the algorithm the repository is operated as a stack, so at time t2 the items in S2(t1) remain
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untouched in S2(t2), and the items in S2(t′) but not in S2(t1) (collected from some pickup

vertices between v and v′) must have already been transferred to the vehicle stack. The

second equality holds since at time t′ all the delivery vertices between v and v′ must have

already been serviced, so when the vehicle moves straight from v′ to u (from time t′ to t2),

the only change on the two stacks is to transfer some items from the repository stack to the

vehicle stack. Therefore |S1(t2)| + |S2(t2)| = |S1(t′)| + |S2(t′)|. According to the definition

of t′, the equality |S1(t2)|+ |S2(t2)| mod k = 0 holds.

We now claim that |S1(t2)| = |S1(t1)|−x. According to the definition of x, we have that

|S1(t1)|−x+|S2(t1)|mod k = 0. Since |S2(t2)| = |S2(t1)|, we obtain that |S1(t1)|−x+|S2(t2)|
mod k = 0. We know that (|S1(t2)|+ |S2(t2)|) mod k = 0, and observing that both |S1(t1)|
and |S1(t2)| are no more than k, we establish that |S1(t2)| = |S1(t1)| − x.

Therefore the vehicle would pick up another k−|S1(t1)|+x items from the left of u before

it crosses e again from u to v in r2. So in r2, the vehicle crosses e from left to right with k

items; in r1 and r2, the vehicle crosses e from left to right with |S1(t1)|+k−|S1(t1)|+x = k+x

distinct items in total.

Similarly we can prove that the vehicle carries exactly k items when crossing e from left

to right in each of the routes r3, · · · , rm. We show the proof for r3. Again the vehicle would

cross e in r3, only if there exists an edge e′′ = (u′′, v′′) such that v′′ is to the right of both u′′

and v′, and (|S1(t′′)|+ |S2(t′′)|) mod k = 0 where t′′ is the time just after the vehicle services

v′′. Let t3 be the time just after the vehicle crosses e from v to u in r2 (back from u′′).

Similarly, as in the above discussion we have that |S1(t′′)| + |S2(t′′)| = |S1(t3)| + |S2(t3)|.
Since the vehicle carries exactly k + x items when crossing e from left to right in r1 and

r2, we obtain that |S2(t3)| mod k = 0. With (|S1(t3)| + |S2(t3)|) mod k = 0, it follows

that |S1(t3)| mod k = 0. The vehicle chooses to cross e from right to left for more items at

time t3, therefore the vehicle must be empty. The vehicle would pick up k items from the

repository and cross e from left to right with k items in r3.

The following theorem can be obtained by directly applying Lemma 2.3.1.

Theorem 2.3.2. For an edge e = (u, v) of the segment, the tour found by the main algorithm

passes through e exactly 2dn(e)
k e times.

Note that the vehicle may carry more than (n(e) mod k) but less than k items when

crossing an edge e from left to right in the first subtour. This is due to the fact that the
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priority of loading items is given to the vehicle stack. However the algorithm is still optimal

as we proved in Lemma 2.3.1 that the vehicle carries k + (n(e) mod k) distinct items in

total when crossing e in the first and second subtours from left to right.

Next we complete the final algorithm for the k-delivery TSP on a path. Our strategy is

similar to that in [81] for the 1-delivery TSP on a path. We first identify the edges whose

flow bound is zero. These edges, when removed, partition the path into disjoint subpaths.

These subpaths can be determined in linear time. We then apply the come back1 routine

to each of these subpaths to obtain the optimal routes. Note that the vehicle will traverse

each edge with 0 flow bound exactly twice, the same as in any optimal solution.

Therefore we establish the following theorem.

Theorem 2.3.3. The optimal route of an instance of the k-delivery TSP can be determined

in linear time.

2.4 Approximation algorithms for the Capacitated Dial-a-

Ride Problem on paths

In this section we show how to utilize the come-back rule to improve the approximation ratio

to 2.5 for the Capacitated Dial-a-Ride Problem on paths. Our algorithm first decomposes

the original problem into independent subproblems, then the come-back rule is applied for

each subproblem. We also show that the best known 3-approximation algorithm (called the

KRW algorithm in the following) can be integrated within our decomposition framework.

The approximation ratio 2.5 is obtained by balancing the two solutions produced by our

algorithm, and the KRW algorithm fused with our decomposition strategy.

2.4.1 A decomposition strategy for the Capacitated Dial-a-Ride Problem

on paths

Our algorithm is iterative; in each iteration, the algorithm deals with a smaller size sub-

problem. The subproblem is formed by selecting a suitable subset of arcs (jobs) from the

original graph. These arcs are removed from the graph once the subproblem is solved. The

process is then repeated. We show the schema of the decomposition in Figure 2.4.

Let J→ be the set of jobs whose sources are to the left of their destinations. Similarly,

let J← be the set of jobs whose sources are to the right of their destinations. Our algorithm
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A1 B1

A2

A3

B2

Figure 2.4: A decomposition of a capacitated Dial-a-Ride instance.

deals with the jobs in J→ and J← separately. In Figure 2.4, it is assumed that all the jobs

are from J→. The algorithm and the analysis can be easily adapted for the jobs in J←.

We illustrate the first two rounds of the decomposition in Figure 2.4. We say a job

j crosses an edge e if and only if e is on the path to service j. We define an A-segment

(B-segment) to be a maximal set of contiguous edges crossed by at most (more than) k jobs.

The path then can be viewed as a sequence of alternating A-segments and B-segments. In

Figure 2.4, A1 denotes all such A-segments and B1 denotes all such B-segments. In the

first round of our algorithm, a set S of jobs are first selected by applying a job selection

procedure on the original problem instance. S includes all the jobs crossing some edges of

the A-segments, and possibly also some jobs which do not cross any edges of the A-segments.

More details of the job selection procedure are described in Figure 2.5. After determining

S, we relabel the A-segments and B-segments of the path with respect to the jobs in S.

A feasible schedule is then computed to service the jobs in S based on the partition of the

segments. The procedure to compute the schedule is described in Figure 2.6. In the second

round, only the segments in B1 need to be considered. Note that jobs in different segments

can be scheduled separately. The sets A2 and B2 are formed similarly. In general, if letting

λ = dmaxe(λe)
k e (recall that λe is the maximum number of jobs crossing e in one direction),

then there are λ such iterations. Therefore ‖A1‖ + ‖B1‖ = L (L is the total edge cost of

the path), and ‖Ai‖+ ‖Bi‖ = ‖Bi−1‖, for 2 ≤ i ≤ λ. Here ‖Ai‖ and ‖Bi‖ denote the total

edge cost of Ai and Bi segments respectively.

We use the flow bound cost 2
∑

edλe
k ece to approximate the Capacitated Dial-a-Ride

Problem on paths. In iteration i, only a subset S of the jobs is selected to form the

subproblem for this iteration. The set S includes all the jobs which cross some A-segments,
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and some additional jobs that lie within the B-segments. The purpose of including these

additional jobs is to ensure that, after the removal of these jobs from the graph at the end of

each iteration, the number of crossings of the remaining jobs over any edge in a B-segment

decreases by at least k. This guarantees that we can use ‖Ai‖+ ‖Bi‖ as the lower bound to

service these jobs. This also allows us to focus on designing approximation algorithms for

the subproblem represented by S. Assume we have an α-approximation algorithm for each

subproblem, namely it finds a transportation with cost at most α · (‖Ai‖+ ‖Bi‖), then it is

easy to see that the total cost of solving all the subproblems is bounded by α ·∑edλe
k ece.

The procedure in Figure 2.5 shows the details of selecting the jobs for each iteration of

our algorithm.

The job selection procedure is for a particular B-segment Bi. It firstly places all the

jobs crossing some A-segments of Bi (with respect to all the remaining jobs) in S. Then we

check whether there is an edge e in a B-segment of Bi (with respect to all the remaining

jobs) that is crossed by k1 < k jobs in S. If such an edge e exists, then we arbitrarily

choose k − k1 additional jobs crossing e. These jobs must have their two ends in the same

B-segment.

The following simple lemma is guaranteed by lines 10-12 of the job selection procedure.

It is crucial for designing approximation algorithms for the subproblems. After relabeling

the A-segments and B-segments, it is equivalent to say that every selected job must cross

an edge of some A-segment.

Lemma 2.4.1. In each subproblem, a selected job must cross at least one edge which needs

to be traversed by at most k selected jobs.

Finally we need to show that our decomposition strategy is correct. We propose the

following lemma without proof since it is directly implied by the selection procedure.

Lemma 2.4.2. The number of crossings of the remaining jobs on an edge e before the

beginning of iteration i, is at most dλe
k e − (i− 1).

2.4.2 The come-back rule for the Capacitated Dial-a-Ride Problem on

paths

With the clearly defined subproblems, we are ready to present an approximation algorithm

for the Capacitated Dial-a-Ride Problem on paths. The input to the algorithm is a subprob-

lem which can be viewed as a sequence of alternating A-segments and B-segments (starting
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Procedure select jobs(G, Bi)
Input: an undirected graph G = (V, E) defined on a path, with nonnegative edge costs,
and a B-segment Bi

Output: a set S of jobs

1 JA ← all the jobs crossing some A-segments of Bi

2 JB ← all the jobs not in JA

3

4 S ← JA

5 while ∃e ∈ Bi+1 s.t. e is crossed by k1 < k jobs in S do

6 S ← S + { k − k1 jobs crossing e in JB }
7 JB ← JB − { the k − k1 jobs selected in the previous step}
8 endwhile

9

10 while ∃j ∈ S s.t. every edge crossed by j is traversed by ≥ k jobs in S do

11 S ← S − { j }
12 endwhile

13

14 relabel the A-segments and B-segments with respect to S

Figure 2.5: A procedure for selecting a subset of jobs to form a subproblem.
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and ending with A-segments), defined with respected to the selected jobs in S. Let ‖A‖ and

‖B‖ denote the total edge cost of all the A-segments and B-segments respectively, then we

will show that the algorithm come back2 outputs a transportation with cost bounded by

‖A‖+ 3‖B‖.

Algorithm come back2(G, Sp)
Input: an undirected graph G = (V, E) defined on a path, with nonnegative edge costs,
and a sequence Sp of alternating A-segments and B-segments
Output: a schedule servicing all the selected jobs with cost at most ‖A‖+ 3‖B‖

1 for each segment s in Sp

2 if s is an A-segment then

3 service all the jobs originating or ending in s

4 else

5 service all the jobs ending in s

6 go to the starting vertex of s

7 pick up all the jobs originating in s

8 endif

9 endfor

Figure 2.6: The algorithm for solving a subproblem for the Capacitated Dial-a-Ride Prob-
lem.

The algorithm in Figure 2.6 adopts the come-back rule. The triggering condition is

whether the ending (right-most) point of a B-segment is reached for the first time. So

when the current segment s is an A-segment, the vehicle would pick up any new jobs it

encountered in s and also deliver some of its load to s if these jobs end in s. When s is a

B-segment, the vehicle would first service all the jobs ending in s till the endpoint of s is

reached. Then the vehicle would come back to the starting point of s and begin to service

all the new jobs with source points in s. An example of the schedule found by the algorithm

is given in Figure 2.7.

It is critical to show that the come-back strategy produces a feasible transportation,

namely the vehicle should never carry more than k items at any point of the route. We



CHAPTER 2. CAPACITATED PICKUP AND DELIVERY VEHICLE ROUTING 29

BA

Figure 2.7: A Capacitated Dial-a-Ride example of the come-back strategy.

prove the correctness of the come-back strategy in Lemma 2.4.3.

Lemma 2.4.3. The schedule produced by algorithm come back2 is feasible.

Proof. Assume the vehicle is passing through a segment s. According to the algorithm, all

the jobs that end prior to the starting vertex of s should have already been serviced. Then

the lemma holds if s is an A-segment, for the number of jobs that originate in or before s

and cross some edges of s should be no more than k. This is due to the definition of an

A-segment. If s is a B-segment, then the next segment s′ must be an A-segment. Since the

vehicle first services all the jobs that end in s, the number of items in the vehicle before

collecting the new jobs in s, plus the number of new jobs originating from s, is at most k.

This is because these jobs must cross some edges of s′, and according to the definition of an

A-segment, the number of such jobs should be less than or equal to k.

The algorithm come back2 can also be adapted easily for the jobs in J←. After solving

each subproblem by the algorithm, we obtain two sets of routes R→ and R←, where R→

represents the set of routes for the jobs in J→, and R← represents the set of routes for the jobs

in J←. We treat each route in R→ and R← as a new job with source and destination being

the starting and ending vertices of the route respectively, and use the optimal algorithm

in [4] for the Capacitated Dial-a-Ride Problem on paths with unit vehicle capacity, to find

another set of edges to connect these routes and form the final solution.

For the sake of completeness, we briefly explain the algorithm in [4]. Firstly a set of

balancing directed edges are added for each path edge e = (u, v), to make the number of
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directed edges from u to v equals the number of directed edges from v to u. This is from

the observation that in the optimal solution, if the vehicle traverses e in one direction, then

it needs to visit e again from the other direction. The graph then becomes Eulerian, and

the Euler tour of a strongly connected component yields an optimal transportation for the

involved jobs. The second step of the algorithm is to connect these strongly connected com-

ponents, by forming a new graph with the strongly connected components as its vertices,

and the cost of the edge between two vertices corresponding to strongly connected compo-

nents c1 and c2, equals the minimum distance between a vertex of c1 and a vertex of c2. It

is not difficult to see that a minimum spanning tree of the new graph represents a set of

path edges that connect the strongly connected components with the minimum cost.

The same algorithm can be applied to connect the routes in R→ and R←. According to

our decomposition strategy, the number of crossings on a particular edge e is at most the

number of crossings on e in the optimal solution. Thus some balancing directed edges can

be added to the original graph to form strongly connected components among these routes.

Clearly, the total cost to connect these strongly connected components is at most 2L. Let

‖Aλ‖ = max(‖A→λ ‖, ‖A←λ ‖). Since the solution for the subproblems in an iteration under

the decomposition strategy has a cost of at most ‖Ai‖+3‖Bi‖, the cost of the final solution

of this algorithm is bounded by
∑λ−1

i=1 (‖A→i ‖+ 3‖B→
i ‖+ ‖A←i ‖+ 3‖B←

i ‖) + ‖A→λ ‖+ ‖A←λ ‖
+ 2L. As implied in the proof of Theorem 2.4.5, this algorithm alone is a 3-approximation

for the Capacitated Dial-a-Ride Problem on paths.

2.4.3 The KRW algorithm

We improve the ratio to 2.5 by balancing the solutions produced by our algorithm, and the

KRW algorithm in [61]. In the following, we sketch their algorithm and show that it can be

integrated with our decomposition strategy.

For the jobs in J→, the KRW algorithm first finds a set of transportation segments where

each segment consists of several non-overlapping jobs. Thus a vehicle with unit capacity

can service the jobs of one such segment by proceeding forward along the segment. We

denote such a segment by an unit-capacity segment. The algorithm then groups every

k unit-capacity segments to form a set R→ of new transportation segments, where each

new segment can be serviced by forwarding a vehicle with capacity k. The segment set

R← for the jobs in J← is formed similarly. Treating each segment in R→ and R← as

a new job, the problem can be transformed to the Capacitated Dial-a-Ride Problem on
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paths with unit vehicle capacity. The second step of the algorithm in [61] is to use the

algorithm in [4] to find a set of augmenting edges with minimum cost to paste the segments

together. For each vertex v, define v + 1 to be its right neighbor. Since the set of arcs

{(v, v + 1), (v + 1, v) : 1 ≤ v ≤ n − 1} is a feasible set of connecting arcs, it is easy to see

that the augmenting edges found in the second step are bounded by the optimal solution.

To obtain a 3-approximation, the cost of the edges in the segments needs to be bounded

by twice the optimum. The main idea of [61] is to find two unit-capacity segments at a

time, where each involved path edge is covered by at least one of the two segments. For a

subset of jobs J ⊆ J→, let α(J) and ω(J) be the left- and right-most vertices involved in J→

respectively. Note that α(J) must be the source of a job, and ω(J) must be the destination

of the same or another job. Let S1 and S2 be the two unit-capacity segments the algorithm

finds in one iteration. Firstly, a job j1 with α(J→) as its source vertex is included in S1.

Then from the jobs whose source vertices lie between the source and destination of j1, the

job j2 with the right-most destination is chosen to be in S2. Similarly, among all the jobs

whose source vertices lie between the destinations of j1 and j2, the job j3 with the right-most

destination is chosen to be included in S1. By repeating such a process, the two segments

are assigned a job at a time alternately until ω(J→) is reached. Then the chosen jobs are

removed from J→, and a new iteration begins if J→ is still not empty. It is mentioned in

[61] that the above greedy selection strategy is crucial to the performance guarantee. An

example of a run of the algorithm is shown in Figure 2.8. The right part of the figure shows

the six unit-capacity segments constructed by the algorithm, and also the order of selecting

the jobs.
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Figure 2.8: The 3-approximation KRW algorithm applied to a graph.

In one iteration, the KRW algorithm in [61] always finds two unit capacity segments,

which together cover all the edges between the left-most source and right-most destination



CHAPTER 2. CAPACITATED PICKUP AND DELIVERY VEHICLE ROUTING 32

vertices of the remaining jobs. However, there may exist some edges which are not covered by

any job. In this case, the KRW algorithm would add some pseudo jobs covering these edges

to the original graph. Therefore each unit capacity segment corresponds to a transportation

where a vehicle with unit capacity moves straight from the left-most source to the right-most

destination of the remaining jobs just before this segment is formed.

The KRW algorithm can be integrated seamlessly into our decomposition framework.

Recall that in each subproblem formed by a run of the job selection procedure in Figure

2.5, a selected job j must cross at least one edge which needs to be traversed by at most

k selected jobs. This property allows us to bound the cost of the solution produced by the

KRW algorithm. More details are given in the proof of Lemma 2.4.4.

Lemma 2.4.4. For a subproblem with A-segment set Ai and B-segment set Bi, the solution

given by the KRW algorithm has a cost bounded by 2‖Ai‖+ 2‖Bi‖.

Proof. Assume 2k unit-capacity segments have been created in a run of the KRW algorithm.

Let S be the set of jobs crossing a particular edge e. According to the KRW algorithm, e must

be covered by every two unit-capacity segments found by the KRW algorithm. Notice that

pseudo jobs are added only if all the jobs crossing e have already been consumed. Therefore

if |S| ≤ k, all the jobs in S must be serviced within the 2k unit-capacity segments. Since

in a subproblem a job must cross an edge that needs to be traversed by at most k selected

jobs, every job is included in the 2k unit-capacity segments. This completes the proof.

2.4.4 Performance analysis

Our final solution is the tour with the smaller cost from the two tours produced by the

algorithm come back2 and the KRW algorithm in [61]. We prove that the approximation

ratio of this tour is 2.5 in Theorem 2.4.5.

Theorem 2.4.5. The cost of the transportation with smaller cost from the two tours pro-

duced by the algorithm come back2 and the algorithm in [61], is bounded by 2.5 times the

optimum.

Proof. As mentioned above, the cost of the tour after running algorithm come back2, is at

most

∑λ−1
i=1 (‖A→i ‖+ 3‖B→

i ‖+ ‖A←i ‖+ 3‖B←
i ‖) + ‖A→λ ‖+ ‖A←λ ‖ + 2L (1)
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Since ‖A→1 ‖ + ‖B→
1 ‖ = L, ‖A→λ ‖ = ‖B→

λ−1‖, and ‖A→i ‖ + ‖B→
i ‖ = ‖B→

i−1‖ for 2 ≤ i ≤
λ− 1, we have

∑λ−1
i=1 (‖A→i ‖+ 3‖B→

i ‖) + ‖A→λ ‖ + L = 2L +
∑λ−1

i=1 3‖B→
i ‖

Similarly,

∑λ−1
i=1 (‖A←i ‖+ 3‖B←

i ‖) + ‖A←λ ‖ + L = 2L +
∑λ−1

i=1 3‖B←
i ‖

Thus (1) is less than or equal to

4L +
∑λ−1

i=1 3‖B→
i ‖+

∑λ−1
i=1 3‖B←

i ‖. (2)

By combining the main idea in [61] and our decomposition strategy, the cost of the

solution is bounded by

∑λ−1
i=1 (2‖A→i ‖+ 2‖B→

i ‖+ 2‖A←i ‖+ 2‖B←
i ‖) + 2‖A→λ ‖+ 2‖A←λ ‖ + 2L (3)

Eliminating ‖A→i ‖ and ‖A←i ‖ as above, (3) is less than or equal to

6L +
∑λ−1

i=1 2‖B→
i ‖+

∑λ−1
i=1 2‖B←

i ‖. (4)

The optimal solution has a cost at least twice

‖A→1 ‖+ 2‖A→2 ‖+ · · ·+ λ‖A→λ ‖ =‖A→1 ‖+ 2(‖B→
1 ‖ − ‖B→

2 ‖) + · · ·+ λ‖A→λ ‖
=‖A→1 ‖+ 2‖B→

1 ‖+ ‖B→
2 ‖+ · · ·+ ‖B→

λ−1‖ =L +
∑λ−1

i=1 ‖B→
i ‖

Similarly, the optimal solution has a cost at least twice of L +
∑λ−1

i=1 ‖B←
i ‖.

Since
∑λ−1

i=1 ‖B→
i ‖ ≤ max(

∑λ−1
i=1 ‖B→

i ‖,
∑λ−1

i=1 ‖B←
i ‖), we have

OPT ≥ 2L +
∑λ−1

i=1 ‖B→
i ‖+

∑λ−1
i=1 ‖B←

i ‖. (5)

Adding (2) and (4), the total cost of the two solutions is at most

10L +
∑λ−1

i=1 5‖B→
i ‖+

∑λ−1
i=1 5‖B←

i ‖ (6)

From (5) and (6), the approximation ratio of the final solution is at most

α ≤ 1
2 ·

10L+
∑λ−1

i=1 5‖B→i ‖+∑λ−1
i=1 5‖B←i ‖

2L+
∑λ−1

i=1 ‖B→i ‖+∑λ−1
i=1 ‖B←i ‖ = 2.5.
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2.5 Approximation algorithms for the k-delivery TSP in trees

In this section we study the k-delivery TSP in trees. As shown in [81], the problem is

NP-complete even in a tree of height 2. We present a 5
3 -approximation algorithm called the

half-load algorithm for the k-delivery TSP in arbitrary trees. This algorithm is a (3
2 − 1

2k )-

approximation for the k-delivery TSP in trees of height 2. The half-load algorithm is also

based on the come-back rule, albeit in a more complicated form.

The following notations are used to describe the algorithms. We call a branch positive

(or negative) if this branch contains a positive (or negative) net number of items. Similarly,

a vertex u is positive (or negative) if the subtree Tu is positive (or negative), and an edge

e = (p(u), u) is positive (or negative) if u is positive (or negative). For an edge e = (p(u), u),

we say some vertices are picked up from (or delivered to) e or u, if we pick up (or deliver)

these vertices from (or to) the subtree Tu; Moreover, we say e has a load of n(e), or e

contains n(e) vertices, if exactly n(e) net number of items need to be picked up or delivered

through e. Finally we denote the flow bound for a particular edge e (the number 2dn(e)
k e)

by FBe. To ease the explanation, we denote 1
2 · FBe by LBe and we say the vehicle visits

(crosses, traverses) e if the vehicle moves from p(u) to u.

2.5.1 Exploring the symmetry of the k-Delivery TSP

Our improvements for the k-delivery TSP in trees explore the symmetry inherent in the

problem. In the k-delivery TSP, the underlying graph has only two types of vertices. If we

flip the type of each vertex, to get a new graph, say G′, then any feasible solution of the

k-delivery TSP on G′ can be converted to a feasible solution of G with the same edge cost,

by just reversing its edge directions. Therefore we have the following lemma.

Lemma 2.5.1. Any feasible solution of the k-delivery TSP on G′ can be converted to a

feasible solution of G with the same edge cost, by reversing its edge directions.

This property allows us to design approximation algorithms for the k-delivery TSP in

trees in the following way. We partition the edge set E of the graph into two sets S and

E−S. Consider an approximation algorithm which is particularly “good” to S, in the sense

that in the tour produced by the algorithm, each edge e in S and E−S is traversed at most

α and β times LBe respectively, for some α < β. It is then easy to see that after flipping

the type of each vertex and obtaining the second tour on G′, each edge e would be crossed
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at most (α +β)LBe times on average. Therefore the approximation ratio is reduced to α+β
2

from β after running the same algorithm on both G and G′. In the half-load algorithm, S

is defined to be the set of positive edges of G. For the k-delivery TSP in trees of height 2,

the proposed algorithm achieves α = 1 and β = 2.

2.5.2 Preprocessing step of the half-load algorithm

The half-load algorithm contains two phases, the planning phase and the actual route gen-

erating phase. In the planning phase, the original graph is transformed to a multi-graph G′′

as follows. Firstly, in G′′ all the pickup and delivery demands are assumed to be located at

the leaves. This can be done by adding a pseudo vertex u′ for each non-leaf vertex u of G,

and attaching an edge between u and u′ with zero cost. Secondly, each positive tree edge

e = (p(u), u) is split into several pseudo edges, as shown in Figure 2.9. These pseudo edges

are incident on p(u) and u and their total load is equal to n(e). Intuitively they record the

number of items the vehicle would pick up during each of its visits to Tu. In a tree of height

2, an edge e = (p(u), u) is split into dn(e)
k e pseudo edges. Each of the first bn(e)

k c edges has

load of k. The last pseudo edge of e contains the residual of n(e) mod k.

5 5 8 3

8
5 385

r

+ + + − − −
11
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12 11

Figure 2.9: An example of building pseudo edges (k=8).

In the example in Figure 2.9, the capacity k is set to 8. A pseudo edge of the transformed

tree is represented by a dashed line, and a subtree is represented by a triangle with a number

showing the net number of items inside this subtree. Since the first positive tree edge has

a load of more than k, it is split into two edges with loads 8 and 4 respectively. Other tree

edges do not split, since they are either negative or their loads are less than k.
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Given a list L of pseudo edges, we use a procedure called merge to produce a new set of

pseudo edges, where each new edge (except possibly one) has a load more than k
2 . We list

the pseudo code of the merge procedure in Figure 2.10.

Procedure merge(L)
Input: a list L of pseudo edges
Output: a list of pseudo edges s.t. all except possibly one have loads > k

2

1 while ∃ei, ej ∈ L s.t. n(ei), n(ej) ≤ k
2 do

2 n(ei) ← n(ei) + n(ej)

3 ei.link ← concatenate the link lists of ei and ej

4 L ← L - {ej}
5 endwhile

6

7 return L

Figure 2.10: The merge procedure for a list of pseudo edges.

This procedure repeatedly merges two arbitrary pseudo edges with loads ≤ k
2 , if possible.

A set S of pseudo edges, which are merged together is treated as a single pseudo edge e′, and

when n(e′) items are requested from e′, they are actually picked up from the pseudo edges

in S. This can be implemented by creating a group link for each group of merged pseudo

edges. In addition, each pseudo edge e = (p(u), u) is associated with a link, called the child

link, to remember where its load is from. More specifically, e is linked with a set S of edges

which are incident on u and some children of u. In the second phase, when the load of e is

requested, these links can be used to locate all the pseudo edges that ever participated in

generating e (reachable from e by following the links).

Recall that the task of the planning phase is to split the positive tree edges into positive

pseudo edges. The second actual route generating phase is based on these positive pseudo

edges. We list the pseudo code of the planning phase in Figure 2.11.

The pseudo edges and their links are built recursively in a bottom-up fashion. Pseudo

edges are firstly created from leaves, and then spread to higher levels of the tree. For a

positive vertex u, given the lists L+ and L−, which contain all the positive (pseudo) and
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Procedure half load plan(Tu)
Input: an undirected tree Tu, with nonnegative edge costs
Output: a multi-graph with positive pseudo edges

1 L+ ← ∅
2 if u is a leaf then

3 create a new pseudo edge e from to u its parent with n(e) = 1

4 return e

5 endif

6

7 for each positive child c of u

8 L+ ← merge(L+ ‖ half load plan(Tc))

9 endfor

10

11 L− ← all the negative tree edges from u to its children

13 e′ ← a new edge from u to p(u), which is linked with the edges of L− and several
edges of L+ whose load is just enough to serve the edges of L−

16 remove these edges from L+

17

18 while L+ is not empty do

19 create a new edge e′ from u to its parent

20 e′ ← a copy of the head e of L+

21 L+ ← L+ − {e}
22 endwhile

23

24 L+ ← all the newly created pseudo edges

25 return merge(L+)

Figure 2.11: The planning phase of the half-load algorithm for the k-delivery TSP in trees.
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negative edges from u to its children respectively, the algorithm firstly computes the internal

schedule for the negative edges, by selecting a minimal subset S of edges from L+, whose

load is just enough to consume the total load of the edges in L−. A new pseudo edge e′ is

created from u to its parent and is linked with the edges in S and L−. The merge procedure

is then applied to the rest of the positive pseudo edges, and each resulting pseudo edge e is

propagated one level up by placing a copy e′ of e between u and p(u). We also link e′ with

e through the child link of e′. An example of building L+ for a positive vertex u is shown

in Figure 2.12.
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Figure 2.12: An example of building pseudo edges in the planning phase (k=8).

In this example, it is assumed that the pseudo edges from u to its children have already

been built. Two pseudo edges e1 and e2 will be built for the tree edge e = (p(u), u). Counting

from left to right, let the 7 edges from u to its children be e′1, e
′
2, · · · , e′7. The load of e′1 and

e′2 is enough to service the two negative edges e′6 and e′7. The net load of e′1, e′2, e′6 and e′7
is 1, therefore we create a linked list L that includes e′1, e′2, e′3, e′6 and e′7. e1 is then created

and linked with the edges in L through the child link of e1. Similarly, we create e2 and link

e2 with the remaining two pseudo edges e′4 and e′5. When picking up the 6 and 7 vertices

through e1 and e2 respectively in the second phase of our algorithm, we actually follow the

child links of e1 and e2 to locate these vertices.

The merging step is necessary for our 5
3 -approximation algorithm for the k-delivery TSP

in trees with arbitrary heights. It also keeps the number of positive pseudo edges in the



CHAPTER 2. CAPACITATED PICKUP AND DELIVERY VEHICLE ROUTING 39

order of O(n2

k ). Implied by the approximation ratio, the time and space complexities of the

half-load algorithm are both O(n2

k ). Please refer to Lemma 2.5.4 for more details.

2.5.3 Come-back rule for the k-delivery TSP in trees

The come-back rule of the half-load algorithm is applied in the scenario when we are given

two lists L+ and L− and a vertex u, where the negative edges in L− are from u to its

children, and they must be serviced by the items from the positive pseudo edges in L+. The

pseudo code of the come-back rule for the k-delivery TSP in trees is listed in Figure 2.13.

To ease the explanation, we assume that the tree is of height 2. This procedure also works

for trees with arbitrary heights. The explanations for the general case will be given later in

this chapter.

Procedures, pickup and deliver, are called in the algorithm. For trees of height 2,

picking up from (delivering to) an edge e = (p(u), u) can be implemented by simply picking

up (delivering) the predetermined number of items from (to) the leaves of the branch. The

vertices not going outside this branch with the vehicle can be serviced during the first visit

of the vehicle to the branch.

The algorithm runs in iterations, and in each iteration we maintain two variables e1

and e2 pointing to the first edges of L+ and L− respectively. Recall that under the come-

back rule, the vehicle may not be allowed to cross an edge e if some condition occurs. The

triggering condition in this algorithm is whether the load of e1 fits the remaining capacity

of the vehicle. Therefore in each iteration of the algorithm, if the current load of the vehicle

plus the load of e1 is ≤ k, then the vehicle will come back and pick up the load of e1.

Otherwise, the vehicle begins to deliver all or part of its current load to the head e2 of L−.

Whenever the load of e1 or e2 is fully consumed, it is removed from L+ or L−. The above

process continues until L+ or L− or both become empty.

An example is given in Figure 2.14 to show the effectiveness of our come-back strategy. In

this example, k = 8, the input to the algorithm is a list L+ which contains edges e1, e2, · · · , e5

with loads 6, 6, 6, 6, 2 respectively, and a list L− which contains edges e′1, e
′
2, e

′
3, e

′
4 with

loads 5, 7, 7, 7 respectively. It is not difficult to verify that only e′3 will be traversed twice

if following the come-back rule. Therefore e1, · · · , e5, e
′
1, · · · , e′5 will be traversed 1, 1, 1, 1,

1, 1, 1, 2, 1 times respectively. If we flip the types of the vertices and run the algorithm

in 2.13, then only e1 needs to be visited twice. In this case e1, · · · , e5, e
′
1, · · · , e′5 will be

traversed 2, 1, 1, 1, 1, 1, 1, 1, 1 times respectively. However, if we follow the strategy in [16]
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Procedure come back3(α, L+, L−)
Input: an undirected tree of arbitrary height, with nonnegative edge costs; an initial
vehicle load α; two lists L+ and L− contain some positive and negative edges respectively.
Output: a tour satisfying the capacity constraint

1 Comment: the vehicle may already have a load

2 while L+ and L− are not empty do

3 e1 ← the head of L+

4 e2 ← the head of L−

5

6 if α + n(e1) ≤ k then

7 Comment: pick up the vertices from e1

8 pickup(α, e1)

9 L+ ← L+ - {e1}
10 else if α ≥ n(e2) then

11 Comment: deliver to e2

12 deliver(L+, α, e2)

13 L− ← L− - {e2}
14 else

15 Comment: deliver all the vehicle load to e2

16 deliver(L+, α, e2)

17 n(e2) ← n(e2) - α

18 endif

19 endwhile

20

21 return

Figure 2.13: Come-back rule for the k-delivery TSP in trees.
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and [68] where the vehicle would continue to pick up (or deliver) items if possible (which

we call the full-load strategy in the following), then e1, · · · , e5, e
′
1, · · · , e′4 will be traversed

1, 2, 2, 1, 1, 1, 2, 2, 2 times respectively. It is not difficult to see that the come-back rule

outperforms the full-load strategy clearly in this example.
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Figure 2.14: An example of the come-back strategy with k=8.

On average, e1, · · · , e5, e
′
1, · · · , e′4 will be visited 3

2 , 1, 1, 1, 1, 1, 1, 3
2 , 1 times respectively

in the two tours after applying the come-back rule. We prove in Lemma 2.5.2 that the

approximation ratio is 3
2 of the come back3 algorithm for the k-delivery TSP in trees of

height 2.

Lemma 2.5.2. The come back3 algorithm in Figure 2.13 approximates the k-delivery TSP

in trees of height 2 within 3
2 of its optimum.

Proof. It is not difficult to see that the vehicle always obeys the capacity constraint. Accord-

ing to the come-back rule, each positive pseudo edge in L+ is only visited once. Therefore all

we need to show is that after applying the algorithm, each negative edge in L− is traversed

at most twice.

In the algorithm in Figure 2.13, the vehicle starts to deliver its load, if and only if its

load plus the load of the next positive edge is more than k. Because L− consists of real

negative tree edges, during every visit on e ∈ L−, this check is enforced. Also note that

if the vehicle starts to visit e for the first time, then the subsequent delivery tasks occur

also on e, until all the load of e is satisfied. Thus during every two consecutive visits of

the vehicle to a negative tree edge e, the vehicle carries more than k vertices. Let t be the

number of traversals the vehicle makes on e, we show that t ≤ 2 ∗ LBe. It is trivially true

if t = 1, so in the following subcases, we assume the vehicle capacity k ≥ 2.
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Subcase 1: t is odd. Assume that for every two consecutive visits except the last one,

the vehicle dumps k+1 pickup vertices to e in total. This is also the worst case our algorithm

could have on e. Therefore LBe ≥ t−1
2 + 1 = t+1

2 , which is equivalent to t ≤ 2 ∗ LBe − 1.

Subcase 2: t is even. Assume that for every two consecutive visits, but except the last

two, the vehicle dumps k + 1 pickup vertices to e in total. Therefore LBe ≥ t−2
2 + 1 = t

2 ,

which is equivalent to t ≤ 2 ∗ LBe.

Because each positive edge becomes negative in G′, in the two solutions, e is visited at

most 3 ∗ LBe.

It is possible to further improve the ratio to 3
2 − 1

2k for the k-delivery TSP in trees of

height 2. In this method, the negative edges are also split into pseudo edges, each with a

load of no more than k, and these pseudo edges are sorted in non-decreasing order of their

edge costs in L−. When the vehicle starts to dump its load on a negative edge of L−, it

is known that the vehicle load l1 plus the load l2 of the next positive pseudo edge is more

than k. The algorithm chooses to dump only l1 + l2−k vertices to the head of L−, then the

vehicle would pick up the l2 vertices from the next positive edge, and dump the k vertices

in the vehicle to the tail of L−. This process is continued until all the vertices are served.

Assume a pseudo edge e of L− is traversed m times, where 1 < m ≤ k. Then for each

of the first m − 1 visits, an edge e′ in L−, which has a cost no smaller than that of e, will

be traversed optimally. In total there would be m edges involved when visiting e, and these

edges will be traversed 2m − 1 times. In any solution these edges have to be traversed

at least m times. Given that the cost of e is the smallest among that of these edges, the

approximation ratio is 2m−1
m ≤ 2 − 1

k . Since the negative edges will become positive and

therefore will be traversed optimally after flipping the types of the vertices, we achieve an

approximation ratio of (3
2 − 1

2k ) for the k-delivery TSP in trees of height 2.

2.5.4 Pickup procedure for the half-load algorithm

Assume L+ and L− contain the edges in the first level of the transformed tree, then our

solution can be expressed as come back3 (0, L+, L−). The half-load algorithm would be

complete if we have appropriate pickup and deliver procedures.

Both our pickup and deliver procedures run recursively. Given a positive pseudo edge

e = (p(u), u), the pickup procedure is applied when the vehicle with a load α tries to cross

e to pick up n(e) items from Tu. It is also assumed that the actual route has already been
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Procedure pickup(α, e)
Input: a positive pseudo edge e = (p(u), u); the vehicle load α satisfies α + n(e) ≤ k.
Output: routes showing how to pick up the n(e) vertices from e.

1 if u is a leaf then

2 pick up u

3 α ← α + 1

4 return

5 endif

6

7 Comment: edges in L+ and L− involved in generating e and

8 they are from u to some children of u

9 come back3(α, merge(L+), L−)

10 for each edge e′ of L+

11 Comment: pick up the rest vertices

12 pickup(α, e′)

13 endfor

14

15 return

Figure 2.15: Pickup procedure for the half-load algorithm for trees.
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built for the α vertices in the vehicle. Let S be the set of edges involved in generating e,

and let the edges of S induce subtree TS . Then the vehicle should service all the delivery

vertices of TS (by calling come back3) and leave e (from u to p(u)) with α + n(e) items.

Note that because of the non-preemptive nature, the vehicle may enter e and leave e with

no items in common. An example of picking up vertices from a pseudo edge is given in

Figure 2.16.
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Figure 2.16: An example of picking up vertices from an edge e = (p(u), u). k = 8 and the
vehicle has an initial load of 2.

The example in Figure 2.16 is a subgraph of the example in Figure 2.12. We want to

show how to pick up 6 vertices from the first positive pseudo edge e1 = (p(u), u) in Figure

2.12. Before visiting e1, the vehicle is assumed to already carry 2 vertices; since k = 8, the

vehicle should be able to leave p(u) with 8 vertices. We only consider the schedule among

the edges from u to its children involved in generating e1. Let e+
1 , e+

2 , e+
3 , e−1 and e−2 be the

5 edges from u to its children as shown in Figure 2.16, respectively from left to right. In

this example, the vehicle visits these edges in the order of e+
2 , e−1 , e+

1 , e−1 , e−2 , e+
3 . The 8

vertices leaving p(u) with the vehicle are from e+
1 and e+

3 .

The route implied by the planning phase for TS assumes zero initial vehicle load. One

may doubt whether the tour is still feasible if the vehicle already has a load. Recall that in

the come back3 procedure, further picking up through a positive pseudo edge e is allowed,

only if the load of e fits the rest of the vehicle capacity. Therefore when the algorithm

decides to pick up the n(e) items, it is always guaranteed that the vehicle can service all

the vertices in S and come back to p(u) without breaking the capacity constraint. This also
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shows the effectiveness of our planning phase.

2.5.5 Deliver procedure for the half-load algorithm

The deliver procedure is applied when the vehicle with α items tries to service a negative

edge e = (p(u), u). The pseudo code of the deliver procedure is given in Figure 2.17.

Procedure deliver(L′+, α, e)
Input: α vertices in the vehicle need to be delivered to e = (p(u), u); L′+ is a list of pseudo
edges not in Tu

Output: routes showing how the vertices in the vehicle are delivered to e

1 if u is a leaf then

2 service u

3 α ← α− 1

4 return

5 endif

6

7 Comment: edges in L+ and L− are from u to its children

8 L+ ← L+ ‖ L′+

9

10 come back3(α, merge(L+), L−)

11 return

Figure 2.17: Deliver procedure for the half-load algorithm.

The deliver function is similar to the pickup function, with the major difference being

that it needs an additional parameter L′+. In the algorithm, L′+ is maintained to contain

some positive pseudo edges (not in Tu), from which n(u) delivery vertices of Tu can be

served. We call our algorithm the half-load algorithm for two reasons. One reason is that

when a negative edge e is being serviced, according to the come-back rule, the vehicle should

take more than k vertices during two consecutive visits to e. It can be viewed as that the

vehicle is at least half full whenever it visits e. The other reason is that, when the vehicle



CHAPTER 2. CAPACITATED PICKUP AND DELIVERY VEHICLE ROUTING 46

comes back to u to pick up more items, say from an edge e′, the deliver procedure guarantees

that the vehicle carries more than k
2 distinct items on its way from e′ to e (except possibly

one of the visits).

For the first reason, before servicing the delivery vertices of Tu, the edges of L′+ are

attached to the end of the list L+ that consists of the positive pseudo edges from u to its

children. According to the come-back rule, before visiting a negative edge e′ of L−, e.g.

when the vehicle gathers the vertices from the last positive pseudo edge of the original L+,

the deliver procedure requires the information of the next positive pseudo edge of L′+. This

information will be used to decide whether the vehicle should come back and pick up some

more supplies from outside Tu, in order to guarantee that e′ is traversed no more than

twice the optimum. Besides the first edge of L′+, if some delivery vertices of Tu are still not

serviced, more edges of L′+ are further needed for Tu.

An example showing the necessity of stitching L′+ and L+ is given in Figure 2.18. For

simplicity, only the residual n(e) mod k is shown for each negative edge e in this example.

It is easy to see that all the positive pseudo edges are needed for serving the negative edges

incident on u.
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Figure 2.18: An example of delivering vertices to an edge e = (p(u), u). k = 8 and r is the
root of the tree.

For the second reason, after the stitching of L′+ and L+, the algorithm merges two

positive pseudo edges if they both have loads no more than k
2 . Thus it is maintained that,

when the procedure come back3 is called, L+ only contains at most one pseudo edge with



CHAPTER 2. CAPACITATED PICKUP AND DELIVERY VEHICLE ROUTING 47

load of no more than k
2 . Since the algorithm runs recursively, the priority of merging is

given to positive pseudo edges in higher levels of the tree. The merging and also the way

of merging in the algorithm are important for the performance guarantee. They together

ensure that if the vehicle comes back and picks up some more vertices before serving a

negative edge e′, then not only e′, but also the other edges along the path are traversed no

more than twice their optimum. A formal proof for the correctness of the strategy is shown

in Lemma 2.5.3.

Lemma 2.5.3. In the half-load algorithm, for two consecutive visits on a negative tree edge

e = (p(u), u) in the direction of p(u) → u, the vehicle carries more than k vertices from

outside Tu.

Proof. In the half-load algorithm after stitching L′+ and L+, the new list L+ includes the

available positive pseudo edges (from outside Tu) which can be used to service e. In addition

to the proof of Lemma 2.5.2, in trees of general heights, the crossing of e from p(u) to u

might be triggered by insufficient load of the vehicle when it tries to service a negative edge

inside Tu. In this case the vehicle would come back and cross e from u to p(u) to pick up

more items from outside Tu. We claim that the pickup vertices (not in Tu) passing through

e from p(u) to u, are picked up consecutively from the edges of the list L′+ starting from its

head, and all except possibly one of the edges in L′+ contain more than k
2 vertices.

The first part of the claim holds, because in the deliver procedure, the edges of L′+ are

attached to the end of L+. So after all the positive edges in the original L+ are consumed,

the pickup vertices (not in Tu) crossing e from p(u) to u, must be picked up consecutively

from the edges of the list L′+. The latter part of the claim holds, because the deliver

procedure gives merging priority to higher level pseudo edges of the tree. So no matter

L′+ is obtained during the planning phase, or during an earlier call of the pickup or deliver

procedure, the merging step has always been deployed on L′+. This completes the proof.

While the proof follows naturally from the algorithm, in the following we further explain

why the way of merging in the deliver function is important for the performance guarantee.

Suppose there is an edge in L′+, say e′, which has a load of no more than k
2 when the deliver

function is called for Tu. This edge might be merged with another edge in L+ to form a new

pseudo edge containing more than k
2 vertices. When this new edge is requested, the vehicle

will cross e from u to p(u) to pick up the vertices in e′. For this traversal on e, the vehicle
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contains only no more than k
2 vertices from outside Tu. However, it is the only exception,

since all other positive pseudo edges of L′+ contain more than k
2 vertices. These edges may

also be created by merging some pseudo edges with loads of no more than k
2 , but since the

merging priority is given to pseudo edges in higher levels of the tree, they must have been

formed and stay in L′+ when the deliver function is called for Tu. Thus the vertices in one

such edge are all from outside Tu, and they will cross e with the vehicle all at one time.

Note that for the last visit on e, although the vehicle may contain more than k
2 vertices, it

might dump less than k
2 vertices on e.

Consider the tree in Figure 2.18. Recall that only the residual n(e) mod k is shown for

each negative edge e. Let the four negative children of u be v1, v2, v3, and v4 respectively

(from left to right). For the edge e = (p(u), u), LBe = 2. Assume the pseudo edges in Figure

2.18 are not merged. Before serving each negative edge ei = (u, vi), where 1 ≤ i ≤ 4, the first

three positive pseudo edges in L+ have loads 8, 5, 2. It is easy to see that in this example,

the edge e = (p(u), u) is traversed 2.5 times of LBe if the come-back rule is deployed. If

the priority of merging is not given to edges in higher levels of a tree, e.g., if each positive

pseudo edge with load 5 is merged with a positive edge with load 2, then e will also be

traversed 2.5 times LBe.

The half-load algorithm alone is a 2-approximation for the k-delivery TSP in trees. The

details of the performance guarantee for the half-load algorithm are shown in the proof of

Lemma 2.5.4. They are important for the analysis of our final theorem.

Lemma 2.5.4. The half-load algorithm is a 2-approximation for the k-delivery TSP in

trees.

Proof. First, it is not difficult to see that the tour is feasible, since in the tour all the vertices

are served and the capacity constraint is always obeyed. Given an edge e of the tree, we

prove that the number of traversals the half-load algorithm makes on e = (p(u), u) is no

more than 2 ∗ LBe. Let r be the residual of e (n(e) mod k). We have the following two

cases:

Case 1: Tu is positive. Let the list L+ contain all the pseudo edges on e. Each pseudo

edge e′ in L+ is traversed only once in the algorithm, because the algorithm will not traverse

this edge if the load of the vehicle plus the load of e′ is more than the capacity. Thus the

number of traversals the algorithm makes on e is just the number of pseudo edges in L+.

According to our merging rule in the planning phase, all pseudo edges, except possibly one,
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must have loads more than k
2 . Assume the vehicle carries exactly bk

2c+1 vertices each time

during the first |L+| − 1 visits on e, and let the last edge in L+ be e′. This is the worst case

our algorithm could have on e. When k is odd, the vehicle should carry at least bk
2c + 1

vertices during the last visit on e. In the following we show that |L+| ≤ 2 ∗ LBe − 1 when

k is even. The case when k is odd can be argued similarly.

Subcase 1: |L+| is odd. For the first |L+| − 1 visits, the lower bound of the number

of traversals on e (part of LBe) is |L+|−1
2 , if excluding |L+| − 1 vertices from these visits.

There must be one additional visit for these excluded vertices and the vertices in e′, e.g.,

if the number of these vertices equals to the residual of e. So in total LBe ≥ |L+|−1
2 + 1 =

|L+|+1
2 , which is equivalent to |L+| ≤ 2 ∗ LBe − 1.

Subcase 2: |L+| is even. For the first |L+| − 2 visits, if excluding |L+| − 2 vertices,

the lower bound of the number of traversals on e (part of LBe) is |L+|−2
2 . The vehicle

must also carry more than k vertices during the last two visits, so there must also be two

additional visits in LBe. Thus in total LBe ≥ |L+|−2
2 + 2 = |L+|+2

2 , which is equivalent to

|L+| ≤ 2 ∗ LBe − 2.

Case 2: Tu is negative. Unlike the first case, in this case we may have two visits on e,

where the vehicle dumps less than k
2 pickup vertices on e. However, according to Lemma

2.5.3, the total vehicle load is more than k during every two consecutive traversals on e.

The proof then follows much in the same way as the proof of Lemma 2.5.2.

2.5.6 The 5
3
-approximation for the k-delivery TSP in trees of arbitrary

heights

In this section, we prove that the smallest cost tour from three tours, namely obtained by

applying the full-load algorithm on G (or G′), and the half-load algorithm on G and G′, is

bounded by 5
3 times the optimum.

We explain the algorithm in [68] (which we call the full-load algorithm) as follows. For

a vertex u, let L+ = {c+
1 , c+

2 , · · · , c+
i } and L− = {c−i+1, · · · , c−l } be two lists consisting of

the positive and negative children of u respectively. We also assume that in L+ and L−
the vertices and the subtrees rooted at these vertices are sorted arbitrarily. In the full-load

algorithm, the vehicle would pick up k items at a time consecutively from the subtrees

Tc+1
, · · · , Tc+i

, and deliver the k items consecutively to the subtrees Tc−i+1
, · · · , Tc−l

. This

also means that the vehicle services the subtrees in the sorted order, and when the vehicle
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starts to pick up (deliver), the vehicle would continue to load (consume) items if possible.

For the sake of completeness, we show our implementation of the full-load algorithm in the

appendix.

The full-load algorithm has its advantages and disadvantages. The advantage is that

after the vehicle gathers k items, it traverses several subsequent edges optimally. The

disadvantage is that, before the vehicle is full, and after delivering these k vertices begins,

some edges of the tree might have to be traversed twice their optimum. It is not difficult to

see that the half-load algorithm exchanges its advantages and disadvantages with the full-

load algorithm. This explains intuitively why we balance three tours as our final solution.

We give our analysis of the approximation ratio in Lemma 2.5.5.

Lemma 2.5.5. In the solution produced by the full-load algorithm, each edge e = (p(u), u)

is traversed at most LBe + 1 times.

Proof. Consider the case when e is positive. In the full-load algorithm, when the vehicle

starts to visit an edge, it will traverse the edge consecutively for picking up vertices until

all the load of this edge is serviced. Problems may occur if the vehicle has a load before its

first visit on e. However, in this case the vehicle can carry less than k vertices only during

its first and last visits on e. For all other visits, the vehicle picks up exactly k vertices from

e. Thus in the solution e is visited at most LBe + 1 times. The other case can be proved

similarly.

We formally prove the approximation ratio 5
3 of our final solution in Theorem 2.5.6.

This theorem also implies that the time and space complexities of the half-load algorithm

are O(n2

k ).

Theorem 2.5.6. The solution with the smallest cost from 3 tours, namely after applying

the full-load algorithm on G (or G′), and applying the half-load algorithm on both G and

G′, is a 5
3 -approximation for the k-delivery TSP in trees of general heights.

Proof. Given an edge e of the tree, we prove that the number of traversals in the 3 tours

together on e is no more than 5 times its optimum. Let Sol1 be the solution after applying

the full-load algorithm on G (or G′), and Sol2 and Sol3 be the solution after applying the

half-load algorithm on G and G′ respectively. As shown in Lemma 2.5.5, e is traversed at

most LBe + 1 times in Sol1. For Sol2 and Sol3, we have the following cases:
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Case 1: e is positive. In this case, e is visited at most 2 ∗ LBe − 1 times in Sol2

according to Lemma 2.5.4. e is negative in G′ , so e is crossed at most 2 ∗ LBe times in

Sol3 (established in the proof of Lemma 2.5.4). Summing together, e is traversed at most

3 times LBe in Sol1 and Sol2, and therefore at most 5 times LBe in the three solutions.

Case 2: e is negative. Because of the symmetry, if e is negative in G, its corresponding

edge e′ is positive in G′, so similarly we can prove that the total number of traversals in

Sol1 and Sol3 is bounded by thrice LBe. Thus we have proved that e is traversed at most

5 ∗ LBe times in the 3 solutions.



Chapter 3

The Black and White Traveling

Salesman Problem

3.1 Introduction

In this chapter, we consider an extension of the classical Traveling Salesman Problem (TSP).

The problem is defined on an undirected graph, G = (V, E), where a vertex set, V = VB∪VW ,

is partitioned into a set of black vertices, VB, and a set of white vertices, VW , and an edge

set, E, with edge costs w(e) for all e ∈ E satisfying the triangle inequality. The Black and

White Traveling Salesman Problem (BWTSP) is to determine a minimum cost hamiltonian

tour of G subject to the following restrictions:

1. Cardinality constraint in which the number of white vertices on “black to black” paths

is bounded above by a positive integer constant k, and

2. Length constraint in which the cost of any path between two consecutive black vertices

is bounded above by a positive value L.

Clearly, the BWTSP reduces to the classical TSP when L = k = ∞, and is therefore

NP-hard. An application of the directed BWTSP arises in short-haul airline operations

([78, 69]). The flight leg between two stations p and q is determined by a white vertex vpq

and a maintenance station s corresponds to a black vertex vs. An arc represents a leg-leg, leg-

maintenance, or maintenance-leg sequence. The problem is to determine a flying sequence

such that the number of takeoffs and landings, as well as the total operating cost between

52
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any two maintenance sequences are bounded as above. The undirected case has applications

in telecommunications ([24, 87]). Cosares et al. [24] and Wasem [87] describe an application

of the undirected BWTSP arising in the design of telecommunication ring networks, in

which black vertices are “ring offices” and white vertices are “hubs”. In order to achieve

a survivable synchronous optical network (SONET) architecture, any two consecutive ring

offices on the network must be separated by at most k hubs and a length not exceeding L.

Another particular case of the BWTSP is the Vehicle Routing Problem (VRP) where each

client has unit demand, the vehicle has capacity k, and maximal route length of the vehicle

is at most L.

Attempts have been made to optimally solve the BWTSP for small size problems ([12,

87]). Ghiani, Laporte and Semet recently developed an exact branch-and-cut algorithm

for the undirected case ([38]). Mak and Boland [69] have proposed a simulated annealing

algorithm for the directed BWTSP and have applied it to instances involving 36 vertices.

Bourgeois, Laporte and Samet [12] proposed five heuristic algorithms for the BWTSP, along

with extensive computational comparisons.

In this chapter we are interested in designing efficient approximation algorithms with

guaranteed performances for the BWTSP. We first show that the BWTSP cannot be ap-

proximated if the length constraint is specified. However, approximation algorithms with

guaranteed performances can be designed when only the cardinality constraint is specified.

The BWTSP with the cardinality constraint k = 1 occurs in routing papers with differ-

ent names: the bipartite Traveling Salesman Problem or the k-delivery TSP where k = 1.

Anily and Hassin [2] have shown a 2.5-approximation algorithm for another generalization

of this problem, known as the Swapping Problem. Their algorithm finds a perfect matching

M , consisting of edges that connect black and white vertices, and it uses the Christofides-

Serdyukov heuristic [20] to find a tour, T , of the black vertices. The final route consists

of visiting the black vertices in the sequence specified by the tour T, using the matching

edges in M. Later, Chalasani and Motwani [14] developed a 2-approximation algorithm for

1-delivery TSP using combinatorial properties of bipartite spanning trees and matroid inter-

section. We expand the idea proposed in [2] and present a (4− 3
2k )-approximation algorithm,

when the number of white vertices between two consecutive black vertices is bounded above

by k. The bound can be slightly improved to (4 − 15
8k ), if the number of white vertices is

exactly k · |VB|. When |VW | = 2 · |VB|, the bound can be improved to 2.5.
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The organization of this chapter is as follows: In Section 3.2, we show that the BWTSP

is NP-hard when the length constraint is specified. Section 3.3 deals with the BWTSP when

only the cardinality constraint is specified. Various approximation algorithms are provided

for different variants of the cardinality constraint.

3.2 BWTSP with length constraint

In this section we show that the BWTSP with length constraint can not be approximated

in the following theorem.

Theorem 3.2.1. There is no polynomial time approximation algorithm for the BWTSP

with length constraint unless P = NP .

Proof. We first show that the following problem is NP-complete. Given a complete weighted

graph G, with black and white vertices, satisfying the triangle inequality, determine whether

G has a BWTSP route wherein the cost of the path between two consecutive black vertices

in the cycle is no more than L. The above result then implies that the problem of designing

approximation algorithms for the BWTSP is NP-hard, if the length constraint is specified.

Let us consider an instance of the Hamiltonian Path Problem. Let G = (V, E) be the

input graph with |V | = n. Consider the following graph G′. G′ has n black vertices VB and

n copies of V (say, V1, V2, . . . , Vn) which are all white. Suppose L = n + 1 and k = ∞. The

cost of the edge between u and v is fixed as follows:

( i) if u ∈ VB and v ∈ VB, w(u,v) = 2,

( ii) if u ∈ VB and v ∈ Vi, for any i, w(u,v) = 1,

(iii) if u ∈ Vi and v ∈ Vj , for any i 6= j, w(u,v) = 2,

(iv) if u ∈ Vi, v ∈ Vi and (u, v) ∈ E, w(u,v) = 1, and

( v) if u ∈ Vi, v ∈ Vi and (u, v) 6∈ E, w(u,v) =2.

G′ is a complete weighted graph satisfying the triangle inequality. Denote the vertices

in VB to be v′1, v
′
2, · · · , v′n, then in G′ a black vertex v′i(1 ≤ i ≤ n) in fact corresponds to

the vertex set Vi. We give an example of G′ in Figure 3.1. In this example small circles

with black and white fills represent black and white vertices respectively, and the sets of
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vertices are illustrated by large dashed circles. A BWTSP tour with length constraint 5 is

also shown in this figure by solid lines.
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Figure 3.1: An example of the new graph G′.

In the following we prove that G′ has a BWTSP route satisfying the length constraint,

if and only if, the graph G has a hamiltonian path.

⇐= assume that the graph G has a hamiltonian path P . Without loss of generality, let

the path P visits the vertices in the order of v1, v2, · · · , vn. A BWTSP tour of G′ satisfying

the length constraint can be constructed as follows. For the vertices in Vi(1 ≤ i ≤ n), we

find the same path P , and connect the copies of v1 and vn in Vi to two black vertices v′i and

v′i+1 respectively. For the copy vn in Vn, we connect it to v′1. It is not difficult to verify that

the length constraint is satisfied in this tour.

=⇒ assume that the graph G′ has a BWTSP tour P ′ satisfying the length constraint.

As the number of black vertices equals to the number of sets of white vertices and any edge

between two white vertices is at least 1, there must be exactly n white vertices between

two consecutive black vertices in P ′. Since the edges between two vertices in Vi and Vj

respectively where i ≤ j have large cost, the n vertices between any two consecutive black

vertices must be from the same set of white vertices. Therefore any path segment between

two consecutive black vertices defines a hamiltonian path in G.

Now assume we have a polynomial time approximation algorithm A for the BWTSP

with the length constraint. As the length constraint is “hard”, in the sense that given an

arbitrary graph G, the solution produced by algorithm A on the graph G′ constructed as
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above must obey the length constraint. But from the above discussion, this also means that

algorithm A would be able to compute a hamiltonian path of G in polynomial time. This

completes the proof as the Hamiltonian Path Problem is NP-hard.

3.3 BWTSP with only the cardinality constraint specified

As it is impossible to find approximate solutions to the BWTSP when the length constraint

is specified, we consider the case where only the cardinality constraint is satisfied. In other

words, Given a graph G = (V, E) where V = VB ∪ VW , VB ∩ VW = ∅, with the edges

satisfying the triangle inequality, determine a minimum cost traveling salesman tour such

that the number of white vertices between two consecutive black vertices in the tour is at

most a given integer k.

Let |VB| = n and |VW | = m. Without any loss of generality, we assume that m ≤ k · n,

otherwise an instance does not have a feasible solution. Also note that if m ≤ k, any

Hamiltonian cycle satisfies the cardinality constraint and we get the classical TSP. Therefore,

we assume that k < m ≤ k · n.

3.3.1 Lower bounds

In this subsection we establish two lower bounds for the BWTSP with the cardinality

constraint. The first lower bound which is called the TSP bound in the sequel is as follows:

Lemma 3.3.1. Given an instance of the BWTSP, the cost of the optimal traveling salesman

tour that visits only a subset of vertices of the instance is at most the cost of the optimal

BWTSP tour satisfying the cardinality constraint.

Proof. This is due to the fact that the triangle inequality holds in the underlying graph,

and the cardinality constraint is not considered in the optimal traveling salesman tour for

only a subset of vertices of the graph.

Let L∗ be the length of the optimal tour of the BWTSP in G = (V, E), satisfying the

cardinality constraint. Let L∗B and L∗W denote the lengths of the optimal traveling salesman

tour of the black and white vertices respectively. Applying Lemma 3.3.2, we have L∗ ≥ L∗B
and L∗ ≥ L∗W . Albeit simple, this fact is one of the basis of our algorithm. As shown in

Section 3.3.2, our algorithm starts from a TSP tour involving all the white vertices.
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The TSP bound is especially important for the general case of the BWTSP with the

cardinality constraint, where k < m < k · n. In this case there might be less than k ver-

tices between two consecutive black vertices in the optimal BWTSP tour. This brings some

difficulties to design approximation algorithms for the problem, as we don’t have any in-

formation about the number of white vertices between two arbitrary black vertices. We

circumvent this difficulty by introducing “dummy” white vertices to the original graph, and

take advantage of the TSP bound to bound the cost of the traveling salesman tour involving

these “dummy” vertices. Details will follow in Section 3.3.2.

The second lower bound is based on a structure called k-factor in this chapter. We

define a k-factor of G as a set of edges Ek ⊆ E, such that for each black vertex v ∈ VB,

σ(v) ≤ k, and for each white vertex, v ∈ VW , σ(v) = 1, where σ(v) is the number of edges

of Ek incident on v. An example k-factor is given in Figure 3.2.

Figure 3.2: An example k-factor. k=3.

The second lower bound called the k-factor bound in the sequel is as follows:

Lemma 3.3.2. Given an instance of the BWTSP, the cost of the optimal k-factor is at

most k
2 times the cost of the optimal BWTSP tour satisfying the cardinality constraint.

Proof. Given a tour TBW of black and white vertices, a white vertex w is said to be closer

to a black vertex u than to a black vertex v in TBW if the number of vertices between w

and u in TBW is less than the number of vertices between w and v in TBW . Suppose in

the optimal tour we connect each white vertex to the closest black vertex. If black to black

path in the optimal tour has an odd number of white vertices in between, the middle white

vertex can be connected to either of the black vertices. Our strategy of connection is such

that each black vertex is allowed to be connected to one such middle vertex. This way each

black vertex is connected to at most k white vertices. Thus, the obtained set of edges is a

k-factor. An example of such a k-factor is given in Figure 3.3.
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Figure 3.3: An example of the k-factor bound. k=4.

Let L∗Ek
be the total cost of edges connecting the black and white vertices, using the above

rule on the optimal tour of the BWTSP. We can estimate the cost of each edge between black

and white vertices by using the triangle inequality. We claim that L∗Ek
≤ k

2L∗. Consider

the following two cases.

Case 1: k is even. In this case the k-factor can be decomposed into k
2 different 2-factors

each with cost at most L∗. In Figure 3.3, the dashed edges form one such 2-factor, and the

dotted edges form another 2-factor. Therefore we establish that L∗Ek
≤ k

2L∗.

Case 2: k is odd. In this case the k-factor can similarly be decomposed into k−1
2 different

2-factors each with cost at most L∗. There are two ways of connecting the remaining white

vertices to the black vertices. One way is to assign white vertices to black vertices in the

clockwise order, and the other way is to assign the white vertices in the counter clockwise

order. One of them must have cost at most 1
2L∗. Therefore L∗Ek

≤ k
2L∗ also holds when k

is odd.

3.3.2 Approximation algorithm when k < m ≤ k · n
We describe our approximation algorithm below. In the following we assume that in any

tour of G there are at most k white vertices between two consecutive black vertices. Each

step is followed by a brief discussion and implementation details if needed.

Algorithm BWTSP (n,m)
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Step 1: Construct a minimum cost flow instance K as follows.

We first construct a complete bipartite graph K where one part of K contains the

black vertices, and the other part contains the white vertices. We then add a vertex

s to K, and connect s to each black vertex by an edge with cost of 0 and capacity of

k. We further associate a positive integer |VW | (supply) with s, and -1 (demand) with

each white vertex in K.

Step 2: Find a minimum cost k-factor Ek of K.

The minimum cost k-factor Ek can be computed after running minimum cost flow

algorithms on K. The total cost of the edges in Ek, denoted by ‖Ek‖, is at most

L∗Ek
. Note that as there may not be enough white vertices, some black vertices in the

k-factor may be assigned less than k white vertices.

Step 3: Transform graph G to graph Ĝ as follows.

Let hv be the degree of black vertex v in the induced graph (V, Ek). For each black

vertex v add k − hv “dummy” white vertices, and associate them with black vertex

v in the following way. Each dummy white vertex is connected to v with edge cost

zero. The dummy vertices are connected to other black and white vertices with edge

costs being the same as the edge costs with v. This way we get k · n white vertices in

total. It is easy to show that the triangle inequality is still satisfied in Ĝ. Intuitively

the dummy vertices are copies of their corresponding black vertices. An example of

adding dummy vertices is shown in Figure 3.4.

0 00

Figure 3.4: Adding dummy vertices. Dummy vertices are represented by small circles with
grey fills. Dummy edges are represented by dashed edges in the minimum cost 3-factor.

Note that we add dummy vertices to the original graph only based on the minimum k-

factor. To understand better our way of introducing the dummy vertices, we may try

adding dummy vertices into the optimal BWTSP tour. In this way we can make the
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number of white vertices equals exactly k times the number of black vertices, and also

leave the optimal solution after introducing the dummy vertices unchanged. However

as we do not have any information about the optimal BWTSP tour, it is not possible to

design polynomial time algorithms in this way. In later steps we show that introducing

dummy vertices based on the minimum k-factor will lead to a 4-approximation for the

BWTSP with the cardinality constraint.

Step 4: We find a near optimal hamiltonian tour T̂W in graph ĜW = (V̂W , ÊW ).

This tour fixes the order of the white vertices in the proposed tour of the BWTSP.

We use the Christofides-Serdyukov algorithm [20] to obtain T̂W . Let LT̂W
denote the

length of T̂W . From the discussions in step 3, the optimal TSP tour T̂ ∗W involving all

the white vertices (including the dummy vertices) of ĜW has the same cost as the

optimal TSP tour of G, and therefore the cost of T̂ ∗W is less than L∗. So we have

LT̂W
≤ 1.5L∗.

Step 5: Partition the tour T̂W into paths Pi on k vertices, i = 1, 2, . . . n of minimum cost.

Let Pi = (ui1, ui2, . . . , uik), i = 1, 2, . . . , n be the minimum cost paths. Since there

exist k different ways to partition tour T̂W , the total cost of the paths Pi, i = 1, 2, . . . , n

is at most k−1
k L(T̂W ).

Step 6: Construct a bipartite multigraph H in the following way.

One part contains the vertices VB and the other part contains n vertices y1, y2, . . . , yn

(called super nodes in the sequel) where the element yi represents path Pi computed

in step 5. Now (u, y), u ∈ VB and y ∈ {y1, y2, . . . , yn}, is an edge in H, if and only if

there exists an edge (u, v′) in Ek (computed in step 2) such that u ∈ VB and v′ is a

vertex of the path represented by y. Thus H is a bipartite multigraph and each vertex

of H is of degree k.

An example of the graph is illustrated in Figure 3.5. In the figure super nodes

corresponding to the paths obtained in step 5 are represented by large dashed circles.

It is easy to see that each vertex in the graph has degree of 3.

Step 7: Find a proper edge coloring of H in k colors.

Each vertex in H has degree k. According to König [58], the chromatic index of a

bipartite multigraph with maximum degree h is h. It is also shown in [58] that in
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Figure 3.5: An example of the multigraph H. k = 3.

a bipartite multigraph, there exists a matching that saturates all the vertices with

the maximum degree. Therefore, the edges of H can be colored using k colors, and

the set of edges of the same color covers the vertices of H. For example, in Figure

3.5 the edges can be partitioned into 3 perfect matchings between two parts of the

vertices (the solid edges, the dashed edges and the dotted edges). Let C1, C2, . . . , Ck

be the partition of the set of edges of Ek where Ci contains all the i-colored edges.

Note here that each Ci determines an assignment between black vertices and paths

P1, P2, . . . , Pn.

Step 8: Select the set Cq from C1, C2, . . . , Ck with minimum length.

Clearly, ‖Cq‖ ≤ 1
k‖Ek‖. Therefore, ‖Cq‖ ≤ 1

2L∗.

Step 9: Let vi be the black vertex assigned to Pi. Construct two hamiltonian tours R1 =

(v1, u11, u12, . . . , u1k, v2, u21, u22, . . . , u2k, . . . , vi, ui1, ui2, . . . , uik, vi+1, . . . , vn,

un1, un2, . . . , unk) and R2 = (u11, u12, . . . , u1k, v1, u21, u22, . . . , u2k, v2, . . . , ui1,

ui2, . . . , uik, vi, . . . , un1, un2, . . . , unk, vn). Remove the dummies from R1 and R2,

and take the tour, say R, with the minimal cost as a BWTSP tour of G. As in the

new graph the triangle inequality still holds, and the dummy vertices only appear on

the paths of white vertices, they can be removed without increasing the total cost by

taking appropriate shortcuts. We show an example of the two tours in Figure 3.6.

In Figure 3.6, the edges (between the black and white vertices) in the two tours are

represented by solid and dashed lines respectively. The edges between white vertices remain

the same in the two tours.
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u11 u21 u31

v1 v2 v3

u13 u23 u33

Figure 3.6: An example of the two tours constructed by algorithm BWTSP1. k = 3.

3.3.3 Performance analysis

We show the approximation ratio of the above algorithm in the following theorem:

Theorem 3.3.3. The black and white traveling salesman problem with only the cardinality

constraint can be approximated to within (4 − 3
2k ), where k is the maximum number of

consecutive white vertices that can appear in the route.

Proof. We can estimate the total cost of each tour by separately estimating the cost of the

edges between the white vertices and between the black and white vertices. The total length

of the edges between the white vertices is the total cost of n paths obtained in step 4 and

is at most k−1
k LT̂W

.

We now estimate the total edge cost of the edges between black and white vertices in

tour R. Let us first consider the total cost of edges connected to the black vertex vi in

routes R1 and R2. For route R1, suppose (vi, uij) ∈ Cq for some j, 1 ≤ j ≤ k, then

w(ui−1,k, vi) + w(vi, ui1) ≤ w(ui−1k, ui1) + L(ui1, ui2, . . . , uij) + w(uij , vi) +

L(ui1, ui2, . . . , uij) + w(vi, uij).

Here L(Pi) indicates the cost of path Pi.

For tour R2 we have

w(uik, vi) + w(vi, ui+1,1) ≤ w(uij , vi) + L(uij , . . . , uik) + w(uij , vi) +

L(uij , . . . , uik) + w(uik, ui+1,1).
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Since min{LR1 , LR2} ≤
LR1

+LR2
2 we can now write

min{LR1 , LR2} ≤ (4‖Ck‖+ 2
k − 1

k
LT̂W

+ 2LT̂W
)/2

≤ 2‖Ck‖+
k − 1

k
LT̂W

+ LT̂W

≤ (4− 3
2k

)L∗.

Running Time

The following computations dominate the running time of the algorithm.

1. Computing near optimal hamiltonian tour T̂W of ĜW = (VW , ÊW ) (Step 4).

The running time of Christofides-Serdyukov’s algorithm [20] to compute T̂W is domi-

nated by the Perfect Matching Problem in a subgraph of ĜW which, in the worst case,

takes O(|VW |3) time[66]. Since the dummy white vertices are copies of some black

vertices, it takes O((m + n)3) time to compute T̂W .

2. Computing a k-factor Ek (Step 2).

This problem has been shown to be equivalent to a Minimum Cost Flow Problem in

a graph involving m + n vertices (excluding the source). Therefore, we can find the

minimum cost k-factor of K in O((m + n)3) time.

3. Finding a proper edge coloring of bipartite multigraph H (Step 6).

We can use the algorithm proposed by Cole and Hopcroft [23] to find an edge coloring

of the bipartite multigraph in O(m log k) time.

Thus, the approximation algorithm proposed to solve the cardinality constrained BWTSP

in a graph with n black vertices and m (k < m ≤ k · n) white vertices takes O((m + n)3)

time to compute.
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3.3.4 Approximation algorithms when m = k · n
In this section we discuss ways of improving the performance bounds in the case when

m = k · n. Let E∗
BW be the 2n edges of the optimal BWTSP solution L∗ connecting

the black and white edges. The cost of the k-factor, described in Section 3.3.1, can be

alternately bounded by ‖E∗
BW ‖+ k−2

2 ∗L∗. The argument for this new bound is almost the

same once the edges of E∗
BW are separated. Also note that G and Ĝ are the same in Step

3 of BWTSP (n,m). Let α = ‖E∗BW ‖
L∗ , then we can write

min{LR1 , LR2} ≤ 2‖Ck‖+
k − 1

k
LT̂W

+ LT̂W
≤ (4− 7

2k
+

2α

k
)L∗.

We describe below another algorithm, called BWTSP2(n, k · n), where the number of

white vertices between two consecutive black nodes is exactly k. Most of the steps of Algo-

rithm BWTSP (n,m) are the same in the new algorithm. Steps 3, 4 and 5 are replaced by

step 3-4-5 and steps 8 and 9 are replaced by steps 8-9(a) and 8-9(b). As before, each new

step is followed by a brief discussion and comments, if needed.

Algorithm BWTSP2(n, k · n)

Step 3-4-5: Partition the white vertices into a set of paths, each containing exactly k

vertices, using the algorithm of Goemans and Williamson [40].

As described in [40], the Exact Path Partitioning Problem (partitioning GW = (VW , EW )

into disjoint paths, each path containing exactly k vertices) can be approximated to

within 4(1− 1
k )(1− 1

|V |), i.e. within 4(1− 1
k ). Thus the set of paths we found in this

step has a total cost of less than 4(1 − 1
k )(1 − α)L∗. This step can be performed in

time O(n2 log n) [40] which was later improved to O(n2) [35]. Let PW be the set of

paths.

Step 8-9(a): Find a near-optimal tour TB in GB = (VB, EB).

Step 8(b): Construct a tour involving the edges of Cq, PW and TB.

This tour uses the edges of Cq and the edges of the paths in PW , found in step

3-4-5, twice and the edges of TB once. Thus we can get a feasible solution of the

BWTSP with a cost less than (1.5 + 8(1 − 1
k )(1 − α) + 2

k (α + k−2
2 ))L∗, i.e. less than

(10.5− 10
k − (8− 10

k )α)L∗.
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We show the approximation ratio of the above algorithm in the following theorem:

Theorem 3.3.4. The Black and White Traveling Salesman Problem with only the cardi-

nality constraint can be approximated to within (4 − 15
8k ), where k is the maximum number

of consecutive white vertices that can appear in the route and the number of white vertices

is exactly k times the number of black vertices.

Proof. We now have two solutions with the costs of (4− 7
2k + 2α

k )L∗ and (10.5− 10
k − (8−

10
k )α)L∗ respectively. We can choose the one with the smaller cost to be our final solution.

It is interesting to verify that the two cost functions have the same value for all k when

α = 13
16 . Substituting 13

16 for α, the approximation ratio is then 4− 15
8k . The gain of 3

8k from

our previous ratio of 4− 3
2k is meaningful for small k.

Further improvement when m = 2n

In the following we show that for m = 2n (k = 2), the approximation bound can be im-

proved to 2.5. This is due to the fact that both the white-white edges (denoted by E∗
WW )

and the black-white edges (denoted by E∗
BW ) of an optimal BWTSP solution L∗BW can be

efficiently approximated. Note that there are n edges in E∗
WW and 2n edges in E∗

BW . The

algorithm is formally described below.

Algorithm BWTSP3(n, 2 · n)

Step 1: Construct a bipartite graph K in the following way. One part contains n black

vertices of VB and the other part contains all 2n white vertices of VW . Only the edges

of G connecting the black and white vertices are present in K.

Step 2: Find a minimum cost 2-factor E2 of K.

Since E∗
BW is a 2-factor, then ‖E2‖ ≤ ‖E∗

BW ‖.

Step 3: Find a minimum cost perfect matching M of GW = (VW , EW ).

Clearly ‖M‖ ≤ ‖E∗
WW ‖. Consider the induced graph (V, M ∪ E2). This graph is a

collection of cycles. Each cycle involving black and white vertices is a tour (on a

subset of vertices) satisfying the cardinality constraint. We represent each cycle by

CY CLE(v) where v is an arbitrary black vertex in the cycle. Let VA be the set of
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arbitrary black vertices chosen to represent the cycles. We note that ‖M ∪ E2‖ =

‖M‖+ ‖E2‖ ≤ ‖E∗
BW ‖+ ‖E∗

WW ‖ = L∗.

Step 4: Find a near-optimal TSP tour TA of GA, the subgraph of G induced by the vertices

of VA.

Step 5: Starting from an arbitrary black vertex v ∈ VA we make the round of all vertices

of CY CLE(v). After that we move to the next black vertex in tour TA. The order in

which the vertices appear in this walk define a tour T .

The cost of T is bounded by the total cost of the edges of M ∪ E2 and edges in

tour TA. So we have LT = LTA
+ ‖M‖ + ‖E2‖ ≤ 5

2L∗ and therefore, the algorithm

BWTSP3(n, 2n) is a 2.5-approximation algorithm.



Chapter 4

Variants of the Cycle Covering

Problem

4.1 Introduction

Given an undirected complete graph G = (V,E), where each edge e∈E is associated with

a cost ce, the Cycle Covering Problem (CCP) is to find a set of disjoint simple cycles in

G with the minimum total cost of their edges. These simple cycles together cover all the

vertices in V . A cycle cover is also called a two-factor in graph theory, as each vertex has

degree two in a cycle cover.

Finding cycle covers with minimum edge costs is a fundamental graph problem. It

is a natural generalization of the matching problem, as a perfect matching is also a one-

factor. Moreover, cycle covers are relaxations of Hamiltonian tours. The Hamiltonian Cycle

Problem is just the CCP with the additional constraint that there should be only one cycle

in the final solution. This fact has been utilized in designing combinatorial algorithms for

the Traveling Salesman Problem (TSP) [39]. In these algorithms a cycle cover is firstly

computed, and the cycles are then gradually patched together to form a Hamiltonian tour.

The CCP without any restrictions can be solved efficiently [30, 31]. In this thesis we

investigate the CCP with two constraints, one is on the number of vertices in each cycle

of a cycle cover, and the other is on the number of cycles appearing in a cycle cover.

More specifically, we study the Cycle Covering Problem with Bounded Length k, and the p-

constrained Cycle Covering Problem where the second constraint is involved. In this section

67
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we introduce the two problems. As these problems are NP-hard, we present approximation

algorithms with bounded performance guarantees for the two problems in later sections.

4.1.1 The Cycle Covering Problem with Bounded Length k

Given an integer k and an undirected complete graph G = (V, E), where each edge e∈E is

associated with a cost ce, the Cycle Covering Problem with Bounded Length k (CCPBL) is

to find a set of disjoint simple cycles in G with the minimum total cost of their edges and

these simple cycles together cover all the vertices in V . Each cycle is required to have at

least 3 but at most k vertices.

While the CCP without any restrictions can be solved efficiently [30, 31], the CCPBL is

NP-hard [44]. In [44], the complexity of the L-restricted Two-Factor Problem is considered.

The L-restricted Two-Factor Problem is to compute a minimum cost set of disjoint simple

cycles covering a given general graph G, subject to the constraint that each cycle must have

a size in a given set L. In [44], it is proved that for almost all sets L, the L-restricted Two-

Factor Problem is NP-hard. More specifically, if L− = {3, 4, · · · } −L, then the L-restricted

Two-Factor Problem is NP-hard unless L− ⊆ {3, 4}. Bodo Manthey in [70, 71] showed that

the L-restricted Two-Factor Problem is APX-hard for undirected graphs with edge costs

zero, one.

The only known approximation algorithm for problems related to the L-restricted Two-

Factor Problem is due to Bodo Manthey et al. [70]. In this paper the authors studied

a problem called the L-cycle Covering Problem, which is similar to the L-restricted Two-

Factor Problem, with the only difference being that the L-cycle Covering Problem is defined

on an undirected complete graph G with edge costs satisfying the triangle inequality. It is

mentioned in [70] that it is sufficient to assume that L is finite. If we further assume that

the greatest common divisor of the numbers in L is 1, then the approximation ratio of the

algorithm in [70] can be expressed as 4(pL + 1), where pL is the Frobenius number of L.

Given a set L of natural numbers with greatest common divisor 1, the Frobenius number is

the largest natural number that cannot be expressed as a non-negative integer combination

of the numbers in L.

In this thesis we are interested in the CCPBL. The length bound can be interpreted as

the vehicle capacity, therefore this problem can be viewed as a variant of the CVRP with

multi-vehicle. There are no approximation algorithms previously known for this problem.

In this thesis we show that a 4-approximation for the CCPBL can be achieved by applying
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a general approximation technique, called the GW-algorithm [40], designed for constrained

forest problems. Our analysis of the approximation ratio will follow after a brief sketch of

the GW-algorithm in later sections.

4.1.2 The p-constrained Cycle Covering Problem

The p-constrained Cycle Covering Problem is a variant of network design problems with

downwards monotone functions. Given an undirected graph G = (V,E) with non-negative

edge weights, and a function f : 2V → {0, 1}, a network design problem can be formulated

as the following integer program:

(IP ) Min
∑
e∈E

cexe

subject to:
∑

e∈δ(S)

xe ≥ f(S) Ø 6= S ⊂ V

xe ∈ {0, 1} e ∈ E

where δ(S) denotes the cross edges between S and V − S, ce represents the cost of an edge

e, and xe indicates whether the edge e is included in the solution.

A downwards monotone function f has the following properties: i) f(V ) = 0; ii) f(A) ≥
f(B), if A ⊆ B ⊆ V . In this chapter we consider a class of network design problems that can

be modeled as an integer program of the type (IP) with downwards monotone functions.

A simple example of such problems is the minimum spanning tree problem, where the

corresponding downwards monotone function f can be defined as f(S) = 1 if S ⊂ V and 0

otherwise. Other examples include the Location-Routing Problem and the k-Cycle Covering

Problem. We present below further details on the last two problems.

The k-Cycle Covering Problem: In this problem, we are given an integer k and an

undirected complete graph G = (V, E), where the edge costs satisfy the triangle inequality.

The k-Cycle Covering Problem is to find a cycle cover of G with the minimum total cost

where each cycle in the cycle cover contains at least k vertices. For the k-Cycle Covering

Problem, the corresponding downwards monotone function f can be defined as: f(S) = 1

if S has less than k vertices, and 0 otherwise.

The Location-Routing Problem: In this problem [65] we are given an undirected

complete graph G = (V, E) and D ⊆ V which denotes a set of depots. We assume here that

the graph edge costs satisfy the triangle inequality. A non-negative cost (called opening
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cost in the following) is associated with each depot in D. We need to select a set of depots

from D and find a cycle cover of the vertices of G (a set of disjoint simple cycles that cover

all the vertices in V ). Each cycle in the cover must contain a selected depot. The goal is to

minimize the cost of the cycle edges and the opening cost of the selected depots. Note that

the unselected depots are treated as non-depot vertices in V .

We obtain a new augmented graph G′ = (V ∪D′, E ∪ E′) from G as follows. For each

depot node u in D, we add a copy u′ of u to G′, and create two new edges from u to u′,

each with cost equal to half of the opening cost of u. We define the downwards monotone

function f for the Location-Routing Problem on G′ as: f(S) = 1 if S ⊆ V , and 0 otherwise.

With this function, every cycle in the optimal solution of (IP) on G′ must have an edge

connecting a depot vertex u to its copy u′ in D′. This corresponds to opening the depot u

in G.

In this chapter we consider adding an extra constraint (called the cardinality constraint

in this chapter) to network design problems with downwards monotone functions. This con-

straint is on the number of connected components in the optimal solution. More specifically,

given an integer p, we require that there should be at most p connected components in the

optimal solution. For example, when the cardinality constraint is imposed for the k-Cycle

Covering Problem, not only that each cycle in the cycle cover should contain at least k

vertices, but also there should be at most p cycles in the cycle cover. It is easy to see that

the new constraint has applications in vehicle routing, where only p vehicles are available to

service the customers. To ease the explanation, we abbreviate the problems with the new

cardinality constraint as the p-constrained Path/Tree/Cycle Covering Problems, which cor-

respond to the cases when each connected component in the final solution is required to be a

path/tree/cycle respectively. As no results are known for the p-constrained Path/Tree/Cycle

Covering Problems, in the following we instead introduce previously known results for the

network design problems with downwards monotone functions.

4.1.3 Three 2-approximation algorithms for network design problems with

downwards monotone functions

The Location-Routing Problem is NP-hard, as it reduces to the classical TSP when there

exists only one depot. The k-Cycle Covering Problem is polynomial time solvable for k ≤ 3,

and is NP-hard for k ≥ 4 (Imielinska et al. [47] proved for k = 4, Vornberger [86] proved

for k = 5, and Pulleyblank et al. [25] proved for k ≥ 6). There exist three 2-approximation



CHAPTER 4. VARIANTS OF THE CYCLE COVERING PROBLEM 71

algorithms for network design problems with downwards monotone functions:

GW-algorithm [40]: The proposed algorithm is a generalized approximation technique

for the constrained forest problems. The GW-algorithm can solve a large class of graph

problems. In addition to downwards monotone functions, it gives a 2(1− 1
n)-approximation

for problems which can be formulated as (IP) when f is a proper function or an uncrossable

function. More details of the GW-algorithm will be provided in Section 4.2.1 and the

Appendix.

Lightest-edge-first algorithm [41, 47]: The first approximation result on network

design problems with downwards monotone functions is due to Goemans et al. [41]. In fact

they generalized the algorithm by Imielinska et al. [47] for the k-Cycle Covering Problem,

and showed that it is a 2-approximation algorithm for network design problems with down-

wards monotone functions. In this algorithm an arbitrary minimum spanning tree F of the

graph is first selected. The edges of F are then examined in the ascending order of their edge

costs. An edge e will be deleted from F if after its removal each connected component of F

still has at least k vertices. In the sequel we refer to this algorithm as the lightest-edge-first

algorithm.

Heaviest-edge-first algorithm [42]: This algorithm is similar to the lightest-edge-

first algorithm, with the only difference being that the minimum spanning tree edges are

examined in the non-increasing order of their edge costs. In this chapter we call this algo-

rithm the heaviest-edge-first algorithm. In [64] Laszlo et al. proved that it produces results

that are generally better than those produced by the lightest-edge-first algorithm.

4.1.4 Our results

We show that a 4-approximation is possible for the CCPBL by applying the GW-algorithm.

We also generalize the algorithm in [41] and show that it is a 2-approximation for the

p-constrained Cycle Covering Problem.

The GW-algorithm is a generalized tool for approximating network design problems. It

is a powerful tool as it can solve any problem that can be formulated as (IP) with downwards

monotone functions, proper functions, or uncrossable functions, etc [42]. However, it is not

difficult to see that the GW-algorithm cannot be applied directly for the p-constrained

Path/Tree/Cycle Covering Problems. To use the GW-algorithm, firstly we need to define

the function f to formulate the problem as (IP). When defining the function f for the p-

constrained Path/Tree/Cycle Cover Problems, given a set S of vertices we need to know
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the edges incident on the vertices in S. This is due to the fact that we have to count the

number of connected components involving these vertices. However, the domain of f in

(IP) is only the power set of V . Moreover the function f needs to be pre-specified in order

to formulate the problem as (IP). Therefore the GW-algorithm cannot be applied directly

to the p-constrained Path/Tree/Cycle Covering Problems as they cannot be formulated as

(IP).

In this chapter we generalize the heaviest-edge-first algorithm and show that it is a 2-

approximation for the p-constrained Tree/Cycle Covering Problems, and a 4-approximation

for the p-constrained Path Covering Problems. In order to achieve this, we first present a

different combinatorial analysis of the approximation ratio for the heaviest-edge-first algo-

rithm. This analysis is very different from that in [42] which uses a primal-dual approxi-

mation framework. We are then able to tackle the p-constrained Path/Tree/Cycle Covering

Problems, and show a performance bound of 2 for the p-constrained Tree/Cycle Covering

Problems, and a performance bound of 4 for the p-constrained Path Covering Problem. We

assume for the p-constrained Path/Cycle Covering Problems that the graph G satisfies the

triangle inequality property.

4.2 4-Approximation algorithm for the Cycle Covering Prob-

lem with Bounded Length k

In this section we define a function f for the CPPBL and show that the GW-algorithm with

this function is a 2-approximation for this problem in general graphs. For the completeness

of this thesis, we first give a brief introduction to the GW-algorithm.

4.2.1 The GW-algorithm

Michel Goemans and David P. Williamson developed the GW-algorithm [40]. This technique

can be used to solve a large class of graph problems. Many classic algorithms, such as

Dijkstra’s algorithm for the shortest path problem, Edmond’s algorithm for the Minimum-

Cost Arborescence Problem, and the algorithms for the Minimum Spanning Tree Problem,

can be explained by this technique. The technique mainly solves network design problems,

and it particularly applies to the covering and partitioning problems, e.g. partitioning the

graph nodes into cycles, paths, or trees. It is a generalization of the idea which was firstly
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introduced by Agrawal, Klein and Ravi [1]. Our explanation of the GW-algorithm follows

closely to those in [40, 41, 42, 80].

The GW-algorithm is for network design problems that can be formulated as (IP). Let

(LP) be the relaxation of (IP), where the constraints xe ∈ {0, 1} are replaced by xe ≥ 0.

Since the GW-algorithm is a primal dual method applied to approximation algorithms, we

also list the dual of (LP) below:

(DLP ) : Max
∑

S⊂V f(S) · yS

subject to:
∑

S:e∈δ(S) yS ≤ ce e ∈ E

yS ≥ 0 Ø 6= S ⊂ V

The GW-algorithm [40] is designed originally for proper functions. A function is called

proper if it satisfies the following two properties:

1. Symmetry: f(S) = f(V − S) for all S ⊆ V ;

2. Maximality: if A and B are disjoint, then f(A) = f(B) = 0 implies f(A ∪B) = 0.

The pseudo code of the GW-algorithm for proper functions is included in Figure 7.4

in the Appendix. The GW-algorithm has two phases, namely the increasing phase and

deleting phase. The algorithm is in a sense similar to Kruskal’s algorithm for the Minimum

Spanning Tree Problem [62]. Recall that in Kruskal’s algorithm, initially each vertex forms

its own cluster. Then the shortest edge e = (u, v) between these clusters is included in the

minimum spanning tree, and the two clusters where u and v reside are merged into one

cluster. The process is repeated until n− 1 edges have been selected. One difference of the

GW-algorithm from Kruskal’s algorithm is that the sets (clusters) are not treated equally.

In the GW-algorithm, a set could be either active or inactive. Given a function f , a set S

is called active if f(S) = 1; and S is inactive if f(S) = 0. Recall that in (DLP), each set S

is associated with a dual variable yS .

The selection of an edge in the GW-algorithm is driven by the complementary slackness

conditions. The complementary slackness conditions of (LP) and (DLP) are as follows:

[primal] xe > 0 ⇒ ∑
S:e∈δ(S) yS = ce, ∀e ∈ E

[dual] yS > 0 ⇒ ∑
e∈δ(S) xe = f(S), ∀S ⊂ V



CHAPTER 4. VARIANTS OF THE CYCLE COVERING PROBLEM 74

In the GW-algorithm, an edge e would be included in the primal solution during the

increasing phase (xe > 0), only if ce =
∑

S:e∈δ(S) yS . The algorithm starts with a primal

solution of xe = 0 for ∀e ∈ E, and a dual solution of yS = 0 for ∀S ⊂ V . In the increasing

phase, edges between different sets are chosen greedily based on the current values of the

dual variables. No edges between two inactive sets will be considered, and the priority of

the selection is given to edges incident on two active sets. In the deleting phase, edges would

be removed from F (the forest produced by the algorithm in the increasing phase), as long

as the resulting forest stays feasible.

We now examine the algorithm in more detail. In the increasing phase, the algorithm

is iterative. During each iteration, it maintains a list Γ, which contains all active con-

nected components of F in the current iteration, and possibly some inactive connected

components of F . During an iteration, an inactive component of Γ might be merged with

some active connected component of F . Initially each vertex of G forms a separate com-

ponent in Γ, and its corresponding dual variable is set to be 0. In the next iteration, the

algorithm computes the maximum ε such that all the dual variables of the active compo-

nents can be simultaneously increased by ε without violating any dual constraints (called

“the minimum violation set rule” in [40]). The dual variables of the active components are

then increased by ε at the same time (“the uniform increase rule”). After this increase,

some edge e gets tight in the sense that ce =
∑

S:e∈δ(S) yS . Let e be an edge connecting two

components Ci and Cj in Γ. e is then added to F and a new component C = Ci ∪ Cj is

added to Γ replacing Ci and Cj . Since e is in F , both Ci and Cj satisfy their corresponding

primal constraints (|δ(Ci)∩F | > 1 ≥ f(Ci) and |δ(Cj)∩F | > 1 ≥ f(Cj)). However, the new

component C may now be an active component. The algorithm repeats the above iteration

until no active components exist in Γ.

A function is uncrossable if it satisfies the condition that if f(A) = f(B) = 1 for

any sets A and B, then either f(A ∪ B)=f(A ∩ B)=1 or f(A − B)=f(A − B)=1. Let

A = {v ∈ V : f({v}) = 1}. The GW-algorithm [40] for 0-1 proper functions can be modified

to obtain the same approximation ratio (2− 1
|A|) for uncrossable functions. In the modified

algorithm, the edges are removed in the reverse order that they were added to F . More

explanations and an example of a run of the GW-algorithm can be found in the Appendix.
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4.2.2 Applying the GW-algorithm for the Cycle Covering Problem with

Bounded Length k

The approximation ratio of the GW-algorithm for 0-1 proper functions and uncrossable

functions is 2 − 2
|A| , where A = {v ∈ V : f({v}) = 1}. For the CCPBL, we define the

function f as: f(S) = 1 if |S| cannot be expressed as a non-negative integer combination of

the numbers in {3, 4, · · · , k}; f(S) = 0 otherwise.

Recall that we say a natural number a is admissible to a set S if a can be expressed as a

non-negative integer combination of the numbers in S. Let Sk denote the set {3, 4, · · · , k},
then we have the following lemma.

Lemma 4.2.1. The Frobenius number is 5 for S4, and 2 for all Sk with k ≥ 5.

Proof. Firstly it is easy to see that 5 is not admissible to S4. Given a set S, consider putting

|S| identical items into d|S|/ke bins. We put k items into each of the first b|S|/kc bins, and

the rest (|S| mod k) items into the last bin. If |S| mod k ≥ 3, then we are finished as every

bin has at least three items. Therefore the only exception occurs when |S| mod k = 1 or |S|
mod k = 2. Assume |S| mod k = 1. It is easy to see that f(S) = 1 if and only if two more

items cannot be borrowed from the first b|S|/kc bins while keeping the number of items in

these bins still at least three. This can be determined by checking whether (k− 3)(b|S|/kc)
is less than 3− (|S| mod k). Therefore the above definition of the function f is equivalent

to, f(S) = 1 if |S| mod k < 3 and (k − 3)(b|S|/kc) < 3− (|S| mod k); f(S) = 0 otherwise.

The function (k − 3)(b|S|/kc) is increasing with respect to |S|, therefore when k = 4,

(k − 3)(b|S|/kc) ≥ |S| mod k holds for all |S| > 5. Thus the Frobenius number of S4 is 5.

It is also easy to verify that (k − 3)(b|S|/kc) ≥ 2 for all k ≥ 5 when |S| > k, therefore the

Frobenius number of Sk (k ≥ 5) is 2.

Note that the Frobenius number of S3 can be arbitrarily large, as S3 only contains a single

number 3. In this case the size of each cycle in the optimal solution of the CCPBL must

be exactly 3. This is a special case of the Exact Partitioning Problem in [40]. In the Exact

Partitioning Problem, for a given k we must find a set of vertex-disjoint trees/cycles/paths of

size k that cover all vertices. Goemans and Williamson et al. in [40] gave a 4(1− 1
k )(1− 1

n))-

approximation for the Exact Tree/Cycle Partitioning Problems by using the GW-algorithm.

Therefore in this chapter we only consider the case when k ≥ 4.

When k ≥ 5, it is easy to verify that the function f defined above is an uncrossable
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function. Therefore in 2(1− 1
n)-approximation we can compute a forest where the number

of vertices in each connected component is admissible to Sk with k ≥ 5. We can then obtain

a 4(1 − 1
n)-approximation for the CCPBL with k ≥ 5 by following the same strategy and

analysis for the Exact Partitioning Problem in [40].

BA

Figure 4.1: An example showing that f is not uncrossable.

In the following we focus on the CCPBL with k = 4. The function f defined above is not

a downwards monotone function, as there exist two sets A and B, where |A| = 4, |B| = 5

and A ⊆ B, f(A) = 0 but f(B) = 1. It is also not a 0-1 proper function, as for two sets A

and B, where |A| = 2, |B| = 3 and A ∩ B = ∅, f(A) 6= f(B) and f(A ∪ B) = 0. Moreover,

the example in Figure 4.1 shows that f is also not an uncrossable function. In this example,

|A| = |B| = 5 and therefore f(A) = f(B) = 1, however, as A∩B = 1, we have f(A∩B) = 1

but f(A ∪B) = 0, and f(A−B) = f(B −A) = 0.

It follows that the CCPBL with k = 4 cannot be modeled by the three types of functions

solvable by the GW-algorithm. However in Theorem 4.2.2 we show that the GW-algorithm

is a 4-approximation for this problem.

Theorem 4.2.2. The GW-algorithm can be used to give a 4-approximation for the Cycle

Covering Problem with Bounded Length with k ≥ 4.

Proof. We have shown a 4-approximation for the CCPBL when k ≥ 5. In the following we

prove that the theorem holds when k = 4.

To prove this approximation ratio, we show that in 2-approximation, the GW-algorithm

will produce a forest where the number of vertices in each connected component is admissible

to S4. We first examine the effect of increasing the dual variable yS of a component S in Γ.

Increasing yS by ε would not affect any edges inside S, on the contrary, it contributes ε to
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each edge of F ′ ∩ δ(S) (recall that F ′ is the final solution after the deleting phase), because

such edges are chosen by the GW-algorithm and they also belong to the cut of S to V − S.

So although we only increase yS by ε, the contribution of this increase to the final primal

solution is |F ′ ∩ δ(S)| · ε.
According to the uniform increase rule, the dual variables of all active components in Γ

are increased by the same amount in each iteration. We can therefore focus on a specific

iteration, and investigate the impact of increasing the dual variables on our final primal

solution. For a specific component S in Γ, yS contributes to the edges in F ′ ∩ δ(S). It

follows that, in each iteration, the increase of the final primal solution is
∑

S∈Γ ε · |F ′ ∩
δ(S)|. Since the increase of the dual solution is

∑
S∈Γ:f(S)=1 ε · f(S), we need to prove that

∑
S∈Γ:f(S)=1 |F ′ ∩ δ(S)| ≤ 2 ·∑S∈Γ f(S).

We define a hypergraph H for each iteration, where each component of Γ becomes a

vertex of H, and for a component S in Γ, the edges of F ′ ∩ δ(S) are also in H. So H can be

obtained by contracting each component to a single vertex from F ′. Because the components

of Γ are connected and pairwise disjoint, H is a tree. In Figure 7.5 in the Appendix, the

hypergraph H for each iteration can be obtained by contracting the red dashed circles. It

is easy to see that the increase of our final primal solution in one iteration can be rewritten

as
∑

v∈A ε · dv, where A is the set of vertices of H which correspond to active components

of Γ, and dv is the degree of a vertex v in H. Since the dual solution increases ε · |A| in this

iteration, to establish the approximation ratio, all we need to show is that
∑

v∈A dv ≤ 2|A|.
The approximation ratio holds if H contains at most one inactive leaf. Intuitively the

cost of active vertices with high degrees in H can be compensated by the active leaves, for

they only have degree of 1. So now the problem is to prove that at most one leaf of H is

inactive. Consider a connected component C in H. Assume the root of C and two leaves

v1 and v2 of C are inactive. Assume v1 is incident to edge e. Let C ′ be the resulting tree

after removing e and v1 from C. As each inactive component contains at least 3 vertices

of G, C ′ must have at least 6 vertices and is therefore inactive. It follows that e will be

removed in the deleting phase, which is contradictory to our assumption. Figure 4.2 shows

that the ratio 2 is also tight, as it is possible for H to have one inactive leaf. The connected

components in the current iteration are represented by large dashed circles in Figure 4.2.

Given the computed forest, we obtain a 4-approximation for the CCPBL with k ≥ 4 by

following the same strategy and analysis for the Exact Partitioning Problem in [40].
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1 1

Figure 4.2: A tight example.

4.3 Approximation algorithms for the p-constrained Path/

Tree/Cycle Covering Problems

We have argued in the introduction section that the p-constrained Path/Tree/Cycle Cover-

ing Problems cannot be formulated by (IP). Therefore the GW-algorithm cannot be used

directly to solve these problems. Recall that the p-constrained Path/Tree/Cycle Covering

Problems are obtained by adding the cardinality constraint to network design problems

with downwards monotone functions. In this section we generalize the heaviest-edge-first

algorithm and show that a similar strategy yields a 2-approximation for the p-constrained

Cycle/Tree Covering Problems, and a 4-approximation for the p-constrained Path Covering

Problem.

4.3.1 Our proposed algorithm

The input to our algorithm is an undirected graph G = (V, E) with a nonnegative edge

cost c(e) defined for every edge e ∈ E, and a constraint set C. The set C includes the

constraints of a network design problem with downwards monotone functions, and also the

constraint on the number of connected components in the optimal solution. The output of

our algorithm is a forest F ′ which satisfies all the constraints in C, and the cost of F ′ is

within twice the cost of the optimal solution. The algorithm has two stages, the same as

in the GW-algorithm, the growing stage and the deleting stage. The pseudo code of the

algorithm is listed in Figure 4.3.

This algorithm simply starts from a minimum spanning tree, examines all the edges in

the minimum spanning tree in the non-increasing order of their costs, and an edge will be
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Algorithm pCCCP(G, C)
Input: An undirected graph G = (V,E), nonnegative edge costs, a constraint set C
Output: A forest F ′ on G, with a cost no more than twice the optimum

1 Comment: the growing stage starts from an MST

2 F ←any MST of G

3

4 Comment: the deleting stage

5 F ′ ← F

6 for i=1 to |V | − 1

7 e ←the edge with the ith largest cost in F

8 if F ′ − {e} still satisfies the constraints in C then

9 F ′ ← F ′ − {e}
10 endfor

Figure 4.3: The main algorithm for the p-constrained Path/Tree/Cycle Covering Problems.
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removed if and only if its removal will not violate the constraints. The minimum span-

ning tree can be computed in time O(|E|α(|E|, |V |)) [17] where α(|E|, |V |)) is the inverse

Ackermann function.

In the following we define P to be a network design problem with a downwards monotone

function, and define P ′ to be the problem obtained by adding the cardinality constraint to P .

P and P ′ are the default problems where our analysis is developed. We say P and P ′ are the

path/tree/cycle version if the connected components in the optimal solutions are required to

be paths/trees/cycles respectively. We define F ′(P ) and F ′(P ′) to be the solutions produced

by the algorithm in Figure 4.3 for P and P ′ (tree version) respectively. Similarly we define

F ∗(P ) and F ∗(P ′) to be the optimal solutions of P and P ′ respectively. We first present a

combinatorial analysis for the performance guarantee of the above algorithm for P .

4.3.2 The structure of the solution F ′(P )

We will now show that the above algorithm is a 2-approximation for the p-constrained

Tree/Cycle Covering Problems and a 4-approximation for the p-constrained Path Covering

Problem. We define the intersection F ′(P ) ∩ F ∗(P ) as follows. The intersection F ′(P ) ∩
F ∗(P ) includes only the edges that are present in both F ′(P ) and F ∗(P ). Note that each

connected component of F ′(P )∩F ∗(P ) is a minimum spanning tree of the vertices it spans.

(a) (b)

v′

u′

Figure 4.4: The structure of F ′.

If we represent each connected component of F ′(P )∩F ∗(P ) as a super node, we obtain

a new graph G′ = (V ′, E′ ∪ E′′) as shown in Figure 4.4(a). Each vertex in V ′ is a super
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node corresponding to a connected component of F ′(P ) ∩ F ∗(P ). The solid edges are

from F ′(P ) − F ∗(P ), and they form the set E′. The dotted edges represent the edges of

F − F ′(P ), and form the set E′′. Recall that F is the starting point of the deleting phase

of our algorithm. In Figure 4.4(a) a connected component T ′ of F ′(P ) is surrounded by

a dotted circle. We define a set as active if f(S) = 1, and as inactive otherwise. Clearly

T ′ cannot have two or more disjoint inactive subtrees. Otherwise, an edge on the path

connecting two disjoint inactive subtrees can be removed without affecting the feasibility of

F ′(P ). Define a subtree Tu of T ′ as minimally inactive, if Tu is inactive and every subtree of

Tu is active. Since there can be no two disjoint inactive subtrees in T ′, a minimally inactive

subtree of T ′ (rooted at, say, r′), if there is any, can be easily computed. If T ′ is inactive, we

can re-root T ′ at r′. Therefore T ′ has the property that each of its subtrees is active. This

property implies that T ′ has at most one inactive super node, and if one such node exists, it

must be the root. We represent inactive super nodes by solid small circles in Figure 4.4(a).

In Figure 4.4(b), the vertices are the super nodes in V ′, and the dashed lines represent the

edges in F ∗(P )− F ′(P ).

4.3.3 The performance guarantee of the solution F ′(P )

According to the structure of F ′(P ) in Figure 4.4, all super nodes of a connected component

T ′ in F ′(P ), except possibly the root, are active. Each active super node must be connected

to another super node by an edge of F ∗(P ) (see Figure 4.4(b)). Let H∗(P ) be the set that

contain two copies of each edge of F ∗(P ) which connects a pair of super nodes of V ′. These

edges are the dashed edges in Figure 4.4(b). Note that all the missing edges of F ∗(P )

not present in F ′(P ) are duplicated in H∗(P ). Our method of proving the approximation

bound is to find a distinct edge e∗ in H∗(P ) for each active super node u′, except the root

super node, such that the cost of e∗ is no smaller than the cost of the edge connecting u′

to its parent in G′. If this is true, then we can claim that the approximation ratio of the

algorithm in Figure 4.3 is 2.

Here we set some notations which will be used throughout this paper. We define T ′ to

be a connected component of F ′(P ) which will be the component of study in our analysis.

For a super node u′, we denote the subtree rooted at u′ by T ′u′ . We use (u′, p(u′)) to denote

the edge from a super node u′ to its parent node p(u′) in G′. We call a super node u′

compensated by an unused edge e∗ of H∗(P ) if c(e∗) ≥ c((u′, p(u′)). We define an edge of

H∗(P ) to be of type-1 if its endpoints u′ and v′ are both in T ′. We also define an edge of
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H∗(P ) to be of type-2 if its two end points are in different connected components of F ′(P ).

An example illustrating type-1 and type-2 edges is given in Figure 4.5(a).

(a) (b)

type 2

type 1

MST edge

type 2

type 2

type 2

MST edge MST edge

MST edge
e2

e1

e2

e∗2e∗2 w′′

u′

w′

e1

e∗1
u′′

e′

u′

e∗1

w′′

w′u′′
v′

e′

p(v′)

Figure 4.5: Two types of edges.

We first describe two lemmas characterizing some relationships of the edges in G′ and

H∗.

Lemma 4.3.1. Let a type-2 edge e∗1 of H∗ be incident on a super node u′. Let T1 and T2 be

the two trees after removing an edge e′ from T ′. Assume T2 contains u′. If T1 is inactive,

then c(e∗1) ≥ c(e′).

Proof. Let e′ = (v′, p(v′)) (see Figure 4.5(a)). Assume that adding e∗1 to F creates a cycle.

Let e1 be an edge on the cycle that is deleted in the reverse deleting stage, and let e1 be

incident on w′ in T ′. If e′ is on the path from u′ to w′, then we are finished since e′ must be

on the cycle, and according to the property of the minimum spanning tree, e∗1 has a cost no

smaller than that of any edge on the cycle. Otherwise, consider the step just before e1 to be

deleted in the deleting phase. During that time e′ and e1 are both in F ′. According to the

property of downwards monotone functions, e′ is also a candidate for deletion. However,

the algorithm chooses to delete e1, thus we have c(e∗1) ≥ c(e1) ≥ c(e′). Setting e∗1 = e1 and

u′ = w′, the case when e∗1 ∈ F − F ′ can be similarly argued.

Lemma 4.3.2. Let the set S ⊆ E′′ contain the edges incident on some nodes of T ′ that

were deleted from F in the deleting phase of our algorithm. For any two edges e1 and e2

in S, max(c(e1), c(e2)) is no smaller than the cost of any edge on the path that connects e1

to e2 in T ′. Similarly, for two type-2 edges e∗1 and e∗2 of H∗, which are incident on u′ and
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u′′ of T ′ respectively, max(c(e∗1), c(e
∗
2)) is no smaller than the cost of any edge on the path

which connects u′ to u′′ in T ′.

Proof. Let e′ be an edge in T ′ on the path connecting e1 to e2 ( Figure 4.5). Without

loss of generality, assume that c(e1) ≤ c(e2). Consider the step when e2 is being considered

for deletion from F . It is obvious that both e′ and e1 are present in F , thus deleting e′

will also give us a feasible solution. In other words, e′ is also a candidate edge for deletion.

Since the algorithm deletes e2 instead of e′, according to our deleting phase, we must have

c(e2) ≥ c(e′).

We now prove the second claim. Assume that e∗1 and e∗2 are not in F . Adding e∗1 and e∗2
will create two cycles to F . Consider the following cases:

Case 1: The two cycles created by adding e∗1 and e∗2 are disjoint (Figure 4.5(a)). Let

them pass through two super nodes w′ and w′′ in T ′ respectively, and let w′ and w′′ be

incident to two edges e1 and e2 in E′′ respectively. In this case it is easy to see that e′ must

either be on the path from w′ to w′′, or on one of the cycles. The claim holds as we have

shown above that c(e′) ≤ max(c(e1), c(e2)) if e′ lies on the path from w′ to w′′.

Case 2: The two cycles pass through some common vertex w′ in T ′ (Figure 4.5(b)). In

this case it is easy to verify that e′ must belong to one of the two cycles.

Therefore the claim holds if e∗1 and e∗2 are not in F . The other cases can be similarly

argued.

If we consider the edges of H∗(P ) incident on the super nodes of T ′ only, then we may

get several connected subgraphs of F ∗(P ) (see Figure 4.4(b)). Let T ∗j be one of them.

Note that T ∗j is a connected subgraph of F ∗(P ). Define a super node u′ as extreme with

respect to T ∗j (or a set S of super nodes) if no ancestors of u′ in T ′ exist in T ∗j (or S); u′

is non-extreme otherwise. An example is given in Figure 4.6(b). In Figure 4.6(b) both u′

and v′ are extreme super nodes, but w′ is non-extreme. The following lemma shows that

all super nodes, except one extreme super node of T ∗j , can be compensated by edges of T ∗j
(i.e., edges of H∗(P )). Recall that a super node u′ is compensated if an edge e∗ of H∗(P )

is uniquely associated with u′, and c(e∗) ≥ c((u′, p(u′)).

Lemma 4.3.3. Let T ∗j be a connected subgraph of F ∗ where only the super nodes of T ′ are

involved. Only one (arbitrary) extreme super node of T ∗j cannot be compensated by the edges

of T ∗j .
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Proof. We prove this lemma by induction on the number of super nodes. The lemma is

trivially true when T ∗j contains only one super node. Assume the lemma holds for all T ∗j
with less than m super nodes. Given a T ∗j with m super nodes, we have two cases (Figure

4.6):

(a) (b)

u′1

a′

v′

u′
e

w′

u′2

Figure 4.6: Only one extreme super node cannot be compensated by edges in F ∗(P ). The
dashed edges (elements of H∗(P )) are the only edges of T ∗j .

Case 1: There exists only one extreme super node a′ in T ∗j (Figure 4.6(a)). We delete

a′ and all the edges of T ∗j incident on a′. Let T ∗j1 , T ∗j2 , · · · , T ∗jt
be the resulting connected

components of T ∗j and u′1, u′2, · · · , u′t be the extreme super nodes of such connected com-

ponents (with respect to each of them). We need to show that only a′ is not compensated

and all u′l, l = 1, 2, · · · , t are compensated. According to our assumption, all super nodes

except u′1, u′2, · · · , u′t can be compensated by the edges in T ∗j1 , T ∗j2 , · · · , T ∗jt
. Since T ∗j is

connected, each new connected component must have a different edge to a′. For a connected

component T ∗jl
(1 ≤ l ≤ t), let e′l = (a′, v′l) be such an edge. As u′l is an arbitrary extreme

super node of T ∗jl
, we can assume that u′l is v′l or an ancestor of v′l. Adding e′l to F ′(P ) will

create a cycle that includes the edge (u′l, p(u′l)), therefore u′l can be compensated by e′l.

Case 2: There exist at least two extreme super nodes, say u′ and v′, in T ∗j . The two

nodes u′ and v′ are connected in T ∗j (Figure 4.6(b)). Without loss of generality, we can

assume that on the path u′ ∼ v′ there exists an edge e∗ connecting u′ or a descendant of

u′ to v′ or to a descendant of v′. Therefore adding e∗ to F creates a cycle that includes

both (u′, p(u′)) and (v′, p(v′)). Deleting e∗ from T ∗j , we get two connected components

T ∗u′ and T ∗v′ each with fewer than m super nodes. According to our assumption, all super
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nodes of T ∗j except u′ and v′ can be compensated by edges of T ∗u′ and T ∗v′ . Furthermore,

c(e∗) ≥ c(u′, p(u′)) and c(e∗) ≥ c(v′, p(v′)). So in this case, all super nodes of T ∗j except u′

or v′ can be compensated by edges of T ∗j .

Let SC = {T ∗1 , T ∗2 , · · · , T ∗l } be any subset of the set of connected subgraphs of F ∗(P )

where only the super nodes of T ′ are involved. We say a super node a in a component of

SC is an extreme super node of SC , or a is extreme with respect to SC , if no super node in

the components of SC is an ancestor of a in T ′. Suppose that for each T ∗i (1 ≤ i ≤ l) there

exists a type-2 edge e∗i attached to it. Let E∗
C = {e∗1, e∗2, · · · , e∗l }. The following lemma can

be viewed as a generalization of Lemma 4.3.3.

Lemma 4.3.4. Only one (arbitrary) extreme super node of SC cannot be compensated by

the edges in E∗
C and the edges in the components of SC . Moreover, at least one edge of E∗

C

is not used to compensate any super node involved in SC .

Proof. We prove this lemma by induction on the number of connected components in SC .

Due to Lemma 4.3.3, it is trivially true if SC only contains one connected component.

Assume it is true for all such sets with fewer than l connected components. Consider a set SC

consisting of exactly l connected components. Without loss of generality, assume T ∗1 in SC

has an arbitrary super node a′1 which is extreme with respect to SC . Let S′C = {T ∗2 , · · · , T ∗l }.
According to our assumption, there is only one arbitrary extreme super node a′2 of S′C that

cannot be compensated, and one edge, say e∗2 of E∗
C , unused. Let e∗1 and e∗2 be incident

on u′1 and u′2, where u′1 is in T ∗1 and u′2 is in T ∗2 . Without loss of generality, assume that

c(e∗1) ≥ c(e∗2). Consider the following cases:

Case 1: T ∗1 is interleaving with a component T ∗j in S′C , in the sense that the path

segment of T ′ connecting two end points of a type-1 edge e∗ of T ∗1 contains an extreme

super node a′j in T ∗j (Figure 4.7(a)). Without loss of generality we assume that a′j is

extreme with respect to S′C . Since a′2 is assumed to be an arbitrary extreme super node,

we can assume that T ∗2 = T ∗j and a′2 = a′j . Therefore a′2 can be compensated by e∗, and for

the components in SC , only a′1 has not been compensated, and we have two type-2 edges e∗1
and e∗2 unused.

Case 2: T ∗1 is not interleaving with any components in S′C . As a′1 is extreme with

respect to SC , a′2 is either a descendant of a′1 or in a different branch from a′1. In both

cases the edge (a′2, p(a′2)) must be on the path from e∗1 to e∗2. By Lemma 4.3.2, the cost of
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(b)

T ∗j

T ∗1

(a)

T ∗j

T ∗1

a′j

Figure 4.7: T ∗1 is interleaving with T ∗j in (a), but not in (b).

(a′2, p(a′2)) is less than that of e∗1. Therefore we can use e∗2 to compensate (a′2, p(a′2)), and

for the components in SC , only a′1 has not been compensated, and we have a type-2 edge

e∗2 unused.

We are now ready to prove the performance guarantee of the algorithm in Figure 4.3

for network design problems with downwards monotone functions. The proof below is for

the tree version. The cycle and path versions will be discussed later.

Theorem 4.3.5. The cost of the forest F ′ found by the algorithm in Figure 4.3 is bounded

by twice the cost of the optimal solution F ∗ of P (tree version).

Proof. Let T ∗0 be an arbitrary connected component of F ∗. Assume the super nodes of T ∗0
are all from a connected component T ′ of F ′. Then as shown in Lemma 4.3.3, only one

extreme super node a′ cannot be compensated by the edges of T ∗0 . If T ∗0 has at least two

extreme super nodes, then according to our proof of Case 2 for Lemma 4.3.3, we can pick

an additional copy of an edge e∗ of T ∗0 to compensate a′. According to our way of rooting

T ′, if T ∗0 has only one extreme super node a′, then a′ must be the root of T ′. In this case

a′ needs not to be compensated. Thus if T ∗0 is contained entirely in T ′, then all the super

nodes in T ∗0 can be compensated by the edges in T ∗0 .

Let SC = {T ∗1 , T ∗2 , · · · , T ∗l } be a set of connected components of F ∗, and E∗
C = {e∗1, e∗2,

· · · , e∗l } be a set of edges of F ∗, where the super nodes of all the connected component of SC

are contained entirely in T ′. And each edge e∗i , 1 ≤ i ≤ l, of E∗
C is of type-2, namely it has

one end in T ∗i and the other end not in T ′. According to Lemma 4.3.4, only one (arbitrary)
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extreme super node a′ (defined with respect to all the super nodes in the components of SC)

can not be compensated by the edges of these components, and one edge of E∗
C is unused.

The theorem then holds if all the super nodes in T ′ are in the connected components of SC .

Therefore we assume that there exists a connected component T ∗0 whose super nodes are all

from T ′. The theorem also holds if T ∗0 does not contain the root r′ of T ′, as all the super

nodes in T ∗0 can be compensated by the edges in T ∗0 . In the following we assume that T ∗0
contains r′.

Case 1: T ∗0 is interleaving with a connected component of SC . By an argument similar

to Case 1 in the proof for Lemma 4.3.4, we can show that only one extreme super node

can not be compensated by edges in F ∗, and there is an edge of E∗
C remaining unused. The

theorem then holds as r′ is the only extreme super node with respect to all the super nodes

in T ′ and r′ needs not to be compensated.

Case 2: T ∗0 is not interleaving with any connected components of SC . Due to the

intersection F ′ ∩ F ∗, in this case r′ must be inactive and also the sole super node in T ∗0 .

The theorem then holds according to Lemma 4.3.2.

Thus for each super node u′ in G′, an edge in F ∗ can be found to have a larger cost than an

edge in F ′ connecting u′ to its parent in G′. In all cases, each edge in F ∗ is used at most twice,

so by doubling the missing edges in F ∗, clearly we have that cost(F ′) ≤ 2 ∗ cost(F ∗).

The following theorem states that the approximation ratio is still 2 when P is of cycle

version.

Theorem 4.3.6. The cost of the forest F ′ found by the algorithm in Figure 4.3 is at most

the cost of the optimal solution F ∗
c of P (cycle version).

Proof. For a cycle in the optimal solution, the number of edges and the number of super

nodes in the cycle are the same. For each super node u′, we try to find a distinct edge e∗ in

the optimal solution F ∗
c to compensate u′. Consider a connected subgraph C∗ of F ∗

c whose

super nodes are all from a connected component T ′ of F ′; we have the following cases:

Case 1: C∗ is a cycle. When P is of cycle version, a super node u′ may have a self-loop

edge e∗ in F ∗
c . For the k-Cycle Covering Problem, this happens when u′ corresponds to a

path with at least k vertices of G. In this case u′ together with e∗ represents a cycle in F ∗
c .

As u′ is inactive, it must be the root r′, but r′ needs not to be compensated. Therefore in

the following we assume that C∗ does not contain any self-loop edge.
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If C∗ does not contain the root, then C∗ must have two extreme super nodes u′ and v′

which are in different branches of r′, as T ′ is rooted in such a way that each branch of T ′ is

active. u′ is connected to v′ in C∗, so without loss of generality we can assume that there

exists an edge e∗ in C∗ with one end in T ′u′ and the other end in T ′v′ . If we remove e∗ from

C∗, then C∗ becomes a path. According to Lemma 4.3.3, only one extreme super node, say

u′, cannot be compensated by the edges on the path. The theorem then holds, as e∗ can be

used to compensate u′.

Case 2: C∗ is a path. In this case, we consider all the paths involving the super nodes

of T ′. Let SC = {P ∗
1 , P ∗

2 , · · · , P ∗
l } be the set of all such paths, and let E∗

C = {e∗1, e∗2, · · · , e∗l }
be a set of type-2 edges of F ∗

c , where each edge e∗i of E∗
C , 1 ≤ i ≤ l, is attached to P ∗

i . Note

that for each path P ∗
i , where 1 ≤ i ≤ l, e∗i is picked arbitrarily from the two type-2 edges

connecting P ∗
i to outside T ′. Applying Lemma 4.3.4 on S and EC , we have that only one

of the involved extreme super nodes, say a′, cannot be compensated, and we still have one

edge e∗ of E∗
C unused.

If the root is in one of the paths, then we are finished, since the root needs not to be

compensated. Otherwise, the root is in a cycle C∗
r contained entirely in T ′. The rest of the

proof follows in the same way as that in the proof of Case 1 and Case 2 for Theorem 4.3.5.

Therefore we have shown that the cost of F ′ is at most the cost of F ∗
c . Since we double

the edges in F ′ to get our final cycle solution, the approximation ratio of our algorithm for

P (cycle version) is still 2.

Theorem 4.3.5 also holds when P is of path version. By doubling the edges in F ∗(P ) we

get a cycle cover C of the underlying graph G. A path cover can be obtained after removing

an arbitrary edge from each cycle in C. Therefore we have the following theorem:

Theorem 4.3.7. The algorithm in Figure 4.3 is a 4-approximation for P (path version).

4.3.4 The performance guarantee for the p-constrained Path/Tree/Cycle

Covering Problems

We claim that the algorithm in Figure 4.3 is a 2-approximation for P ′, a p-constrained

Tree/Cycle Covering Problem. The algorithm in Figure 4.3 for P ′ will stop deleting edges

from the minimum spanning tree if the number of components in the remaining forest

involving the vertices in G is already p.
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Assume c connected components exist in F ′(P ). It is easy to see that F ′(P ′) can be

obtained from F ′(P ), by greedily adding c − p minimum spanning tree edges between the

connected components of F ′(P ). Let these c − p edges form the set S. The edges in S

represent the optimal way to reduce the number of connected components in F ′(P ) to p.

However, to prove the performance guarantee for P ′, we need to locate c−p edges in F ∗(P ′)

which have a total cost no smaller than that of the edges in S. Also note that these c − p

edges in F ∗(P ′) can be used at most once for compensating the super nodes of G′.

Our analysis utilizes the fact that in the proof of the performance guarantee for P

(tree/cycle version), if the root r′ of a connected component T ′ of F ′ is active, then there

must exist a type-2 edge e∗ incident on a super node of T ′ that is not used to compensate

any super node in T ′. In order to prove the ratio for F ′(P ′), our analysis starts from the

solution F ′(P ), and focuses on locating a set S∗ of c − p edges in F ∗(P ′) between the

connected components of F ′(P ). In the next theorem, we locate such a set S∗ and show

that the edges in S∗ are guaranteed to be used at most once to compensate some super

nodes of G′. We give the formal proof in Theorem 4.3.8.

Theorem 4.3.8. The cost of the forest F ′(P ′) found by the algorithm in Figure 4.3 for P ′

(a p-constrained Tree Covering Problem), is bounded by twice the optimum.

Proof. First note that all the above analysis for problem P (tree/cycle version) can also be

applied for F ∗(P ′), the optimal solution for P ′. This is due to the fact that the constraints

for P are also satisfied in F ∗(P ′). In the following we show the proof for P ′.

Let T ′ be a connected component of F ′(P ). If the root r′ of T ′ is active, then as in

the proof of Theorem 4.3.5, there must exist an unused type-2 edge e∗1 (with one end in

T ′) in H∗(P ′). Assume r′ is inactive. Consider the case when there exists an edge e∗ of

H∗(P ′) incident on r′. If e∗ is of type-2, then a copy of such an edge has not been used to

compensate any super node in T ′ in the analysis for F ′(P ) (tree/cycle version). Otherwise

e∗ connects r′ to another super node u′ also in T ′. But this corresponds to Case 1 in the

proof of Theorem 4.3.5, where we can also get one unused type-2 edge e∗1 in H∗(P ′) incident

on a super node of T ′.

Therefore whenever r′ is incident to an edge e∗ in F ∗(P ′), a type-2 edge of H∗(P ′) can

be used to connect T ′ to another connected component in F ′(P ). Let S1 denote the set of

roots of the connected components of F ′(P ) which are not incident to any edge in F ∗(P ′).

Let S2 denote the set of roots of the connected components of F ′(P ) which are incident to



CHAPTER 4. VARIANTS OF THE CYCLE COVERING PROBLEM 90

some edges in F ∗(P ′). Clearly in F ∗(P ′), the roots of S2 are in at most p − |S1| different

connected components. The roots of S2 are in exactly c − |S1| connected components in

F ′(P ). Therefore there must exist at least c − |S1| − (p − |S1|) = c − p type-2 edges in

F ∗(P ′), to reduce the number of connected components containing the roots of F ′(P ) to at

most p. We show in the following that at least c − p roots of S2 can be allocated distinct

type-2 edges in F ∗(P ′). These edges will form the aforementioned set S∗.

We define V ′(C) to be the set of super nodes in a component C of G′. Consider a

connected component C of F ∗(P ′) that involves m roots of S2. We claim that m − 1 or

m−2 roots in V ′(C), can be assigned distinct type-2 edges in F ∗(P ′), that are incident only

on the super nodes in V ′(C) and only used at most once to compensate some super nodes

in G′. In the latter case, there must also exist two type-2 edges e∗1 and e∗2 appearing in the

cut of V ′(C) to V ′ − V ′(C) in F ∗(P ′), that are only used once to compensate some super

nodes in G′.

In the following we assume that C contains only two active roots r1 and r2 of S2,

which are connected directly by an edge e∗ in F ∗(P ′). The general cases can be argued

similarly. Assume r1 and r2 are in two different connected components C1 and C2 of F ′(P )

respectively. According to our analysis, we have two unused type-2 edges e∗1 and e∗2, from

the cut of V ′(C1) to V ′−V ′(C1) and the cut of V ′(C2) to V ′−V ′(C2) in H∗(P ′) respectively.

The claim then holds, no matter e∗1 or e∗2 or both are incident on super nodes only in C1

and C2, or also on some super nodes not in C1 and C2. This completes the proof, as for

each connected component C of F ∗(P ′) involving m roots of S2, m−1 roots can be assigned

distinct type-2 edges of F ∗(P ′), possibly after selecting one of two type-2 edges of F ∗(P ′).

Similarly we can establish the following theorem.

Theorem 4.3.9. The algorithm in Figure 4.3 is a 2-approximation for the p-constrained

Cycle Covering Problem and a 4-approximation for the p-constrained Path Covering Prob-

lem.



Chapter 5

Multi-Depot Capacitated Vehicle

Routing

5.1 Introduction

In this chapter, we study approximation algorithms for two variants of the Vehicle Routing

Problem involving multi-vehicles and multi-depots. More specifically, we investigate approx-

imation algorithms for a model of the Multi-Depot Capacitated Vehicle Routing Problem

(called MDCVRP in this thesis) [11], and a variant of the Vehicle Routing Problem with

Time Windows (called MVSP in [52]).

5.1.1 Multi-Depot Capacitated Vehicle Routing Problem

In the MDCVRP we are given an undirected complete graph G = (V ∪ D, E), where V

and D denote a set of customers and a set of depots respectively, and E denotes the set

of weighted edges satisfying the triangle inequality. A vehicle with capacity k is located at

each depot node and can be used to serve at most k customers. It is assumed here that the

number of customer nodes |V | is no more than |D|×k. The MDCVRP is to find a minimum

cost set of tours covering all the customer nodes of V such that each tour contains at most

k customers, and a distinct depot.

A problem closely related to the MDCVRP, called the Vehicle Dispatching Problem

(VDP), is studied by Krumke et al. in [60]. The VDP is defined similarly to the MDCVRP,

with the only difference being that each vehicle will not return to its home base (depot).

91



CHAPTER 5. MULTI-DEPOT CAPACITATED VEHICLE ROUTING 92

In [60] the authors gave a (2k − 1)-approximation for the VDP in general graphs, and a

2-approximation for a special case of the VDP when the capacity k is equal to the number

of customers.

In the following we introduce some other approximation results related to the MDCVRP.

The studies in [3, 10, 15, 16] consider the case in which a single vehicle is available to service

the customers. Some other papers, e.g. [13, 49], work on the case when multiple vehicles

can be used. However, it is assumed in these papers that all the vehicles must share a same

depot. The existence of a central depot for all the vehicles is also the typical context for

the VRP. Therefore MDCVRP can be viewed as a further generalization of the CVRP.

Not many approximation results are known for the Vehicle Routing Problem with Multi-

Depots. To the best of our knowledge, the only known approximation results for problems

in this category are by Simchi et al. in [67], and Chekuri et al. in [18]. In [67], Simchi

et al. considered the MDCVRP in the following setting (called MCVRP in [67]): the

underlying graph G is defined similarly to that in the MDCVRP. The vehicle also has a

capacity of k; however, in the MCVRP when a vehicle returns to its depot after servicing

some customers, the same vehicle can start another round of servicing immediately. In

the MCVRP there are no constraints on the number of servicing rounds where a vehicle

can participate. Therefore despite the existence of multi-depots and multi-vehicles, in the

optimal solution of the MCVRP, it is possible that only one vehicle is used to service all the

customers. This setting is also deployed in [18].

The main difference between the MDCVRP and the MCVRP is that, the MDCVRP has

a “hard” capacity constraint for each depot. In fact the MDCVRP is a further generalization

of the MCVRP. We transform an instance G = (V ∪D, E) of the MCVRP to an instance

G′ = (V ∪ D′, E ∪ E′) of the MDCVRP as follows. For each depot d of D, we consider

copies of d denoted by d1, d2, · · · , d|V |). We create new zero cost edges e′ = (di, dj) for any

1 ≤ i < j ≤ |V |. All the new depots and new edges are added to D′ and E′ respectively.

It is not difficult to verify that the optimal MDCVRP solution for G′, is also the optimal

MCVRP solution for G. The MCVRP is therefore a special case of the MDCVRP, and any

algorithm that works for the MDCVRP can also be used for the MCVRP.

5.1.2 Multi-Vehicle Scheduling Problem

In the MVSP we are given an undirected complete graph G = (V,E), where each vertex ui

of V is associated with a job ju, and each edge e has a non-negative weight ce. The edge
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costs in G satisfy the triangle inequality. There are also m identical vehicles available to

service the jobs. Each job ju has its own release time r(u) and handling time h(u). A job

ju can only be serviced after its release time r(u), and the handling time h(u) represents

the time needed to finish processing ju. The objective is to find a schedule in which the

maximum completion time of the jobs, i.e. the makespan, is minimized.

The current research status on the MVSP is as follows. Nagamochi et al. introduced

the MVSP and gave a 2-approximation algorithm for the MVSP on paths in [52]. For the

MVSP in trees, Nagamochi et al. in [51] and Augustine et al. in [5] separately gave two

polynomial time approximation schemes (PTAS). In [52] it is assumed that the number of

vehicles and the number of leaves of the underlying tree are some fixed constant. In [5]

it is assumed that the number of distinct release times and the number of leaves of the

underlying tree are constant. There are no constant factor approximation algorithms in the

literature for the MVSP in trees. For general graphs, no approximation results are known.

5.1.3 Our results and solution techniques

We summarize our results as follows.

1. We design a 2-approximation algorithm for the MDCVRP in trees (Section 5.3). Using

the results in [32], we obtain an O(log n)-approximation for the MDCVRP in general

graphs. However, when the underlying graph is a path, the MDCVRP is optimally

solvable (Section 5.2).

Our algorithm can be modified to get a 3-approximation for the VDP in trees [60],

which results in a min{2k−1, O(log n)}-approximation for the VDP in general graphs.

2. We give a 6-approximation algorithm for the MDCVRP in graphs with bounded tree-

width.

3. For the MDCVRP in general graphs, we give another k-approximation algorithm, and

thereby obtain a min{k, O(log n)}-approximation for the MDCVRP in general graphs

(Section 5.6).

4. For the MVSP in trees, we design a 3-approximation algorithm and therefore obtain

O(log n)-approximation for the MVSP in general graphs. No constant factor approx-

imation algorithms are previously known for the MVSP in trees.
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Almost all of our algorithms in this chapter are based on a different way of applying

dynamic programming for approximation algorithms on the VRP in trees. The main idea of

our approximation algorithms is to use dynamic programming to indirectly decompose the

original problem P into a set of disjoint subproblems. Approximating these subproblems

separately gives us the solution for P with the desired approximation ratio.

Dynamic programming is one of the most fundamental and powerful tools for designing

efficient algorithms. However, its application in approximation algorithms for the VRP is

relatively new. The existing way of using dynamic programming on approximation algo-

rithms for the VRP, e.g. in [7, 52, 59], works as follows. Firstly a set of disjoint NP-hard

subproblems is defined for the original problem P , and an approximation algorithm A with

ratio α is designed for these subproblems. Typically these subproblems have good proper-

ties, and algorithm A can approximate them well. In this approach, dynamic programming

is used as a master algorithm to locate a set of subproblems with cost bounded by β ·OPTP ,

where OPTP denotes the optimal solution of P . During this process all the configurations

of the subproblems are tried, and algorithm A is applied to each of the configurations. The

one with the smallest cost is chosen to be the final solution. It is easy to see that this

solution is an (αβ)-approximation for the original problem P .

The above approach, used in [7, 52] relies on the fact that all the configurations of the

subproblems of P can be examined in polynomial time by dynamic programming. Therefore

it is only applicable when the underlying graph is a path (as in our algorithm for the

MDCVRP on paths), or when some ordering can be found for the underlying graph (as

in the O(log2 n)-approximation algorithm for the VRP with time windows [7], where the

dynamic programming proceeds based on an ordering of the vertices). However, for the

VRP in trees, we do not know how to deploy this method, since for a vertex u, the number

of possible configurations of the subproblems containing u is exponential in the number of

children of u.

We apply the dynamic programming technique to obtain constant factor approximation

algorithms for the MDCVRP and the MVSP in trees in the following way. Our algorithms

consist of two steps. In the first step, we use dynamic programming to decompose the

original problem P into a set of disjoint subproblems. However, as it is not possible to try

all the configurations of the subproblems by directly obtaining solutions for P , we instead

find a relaxation problem P ′ of P and locate a set S of disjoint subproblems by using dy-

namic programming in the underlying graph. In the second step we work on approximation
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algorithms for the subproblems in S. We show that a good approximation for P can be

obtained by approximating these subproblems well.

Solving relaxation problems is a general principle when designing approximation algo-

rithms. Finding appropriate relaxation problems, or equivalently computing good lower

bounds for the original problems, is crucial to the performance guarantees of these algo-

rithms. Our algorithms give two concrete ways to locate the relaxation problems for the

VRP in trees.

We define an edge e to be a gap if in the optimal solution no vehicle passes through e

to service customers. Define a gapless subproblem to be a subproblem whose underlying

subgraph contains no gaps. In the algorithm for the MDCVRP in trees, we choose P ′ in a

way such that P ′ satisfies some property inherent in the gapless subproblems of P . P ′ is

much simpler and can be solved well by using dynamic programming in the underlying tree.

More importantly, as P ′ captures the major properties or structures of P , after solving P ′

we not only find a lower bound on OPTP , but also obtain a set of subproblems with good

properties which can be used to approximate P well.

The two steps in our algorithms are highly connected. For the MVSP in trees, the

problem P ′ solved in the first step in fact comes from the approximation algorithm used in

the second step. We locate P ′ for the MVSP in the following way. For a gapless subproblem,

we design an approximation algorithm A which produces a solution with cost function C. We

treat C as a lower bound, and define P ′ to be the problem of locating a set S of subproblems

with the smallest possible bound C. It is guaranteed that when applying algorithm A on

the subproblems in S, the solution will be upper bounded by the smallest lower bound C.

The major difference of our algorithm from the existing algorithms [7, 52] is as follows.

In the existing method, the algorithm A is explicitly executed for each configuration tried

by dynamic programming. However evaluating each configuration by A in trees cannot be

done in polynomial time by using dynamic programming. We instead focus on the effect

of evaluating each gapless subproblem by A. We first derive a theoretical lower bound LB

for the solution produced by algorithm A. P ′ is then defined to be locating a set S of

subproblems with the minimum possible bound LB. P ′ therefore has the property that the

cost of the solution obtained after running algorithm A on the subproblems in S, is no more

than that of the solution after applying A on the gapless subproblems. If we assume that

A is an α-approximation for the gapless subproblems, then solving the located subproblems

by A will yield a solution with cost bounded by α · OPTP . Therefore our algorithm in
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fact indirectly turns an α-approximation algorithm for the gapless subproblems into an α-

approximation for the original MVSP instance P . We will give more details of the algorithm

in Section 5.7 of this chapter.

5.2 An optimal algorithm for the MDCVRP on paths

Figure 5.1 shows the forbidden subgraphs in the optimal solution of an instance of the

MDCVRP on paths.

(a) (b)

(c) (d)

Figure 5.1: Forbidden subgraphs in the optimal solution for the MDCVRP on a path.
Depots and customers are represented by circles with black and white fills respectively. An
arc connecting two different dots in a solution indicates that the customer is assigned to the
depot in that solution.

We have the following lemma:

Lemma 5.2.1. The subgraphs shown in Figure 5.1 are forbidden in the optimal solution

of the MDCVRP on a path.

Proof. Let the left and right depots in Figure 5.1 be d1 and d2 respectively, where d1 lies

to the left of d2. Let the customers assigned to the two depots be v1, v2, v3, · · · , vt (ordered

from left to right according to their locations on the path) where 1 ≤ t ≤ 2k. We assign

v1, v2, · · · , vk to d1, and the remaining customers to d2. It is not difficult to verify that the

new solution would not have a larger cost than that of the original solution.

As a consequence of this lemma, the only allowed subgraphs in the optimal solution are:
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(e) (f)

Figure 5.2: Allowed subgraphs in the optimal solution for the MDCVRP on a path.

Define an edge e to be a gap if in the optimal solution no vehicle crosses e to serve

customers. Define a gapless subproblem to be a subproblem whose underlying subgraph

contains no gaps. We have the following lemma for a gapless subproblem of the MDCVRP

on paths.

Lemma 5.2.2. In the optimal solution of a gapless subproblem, at most one vehicle u can

be assigned fewer than k customers. All the customers assigned to a depot other than u

must lie on one side of the depot.

Proof. In Figure 5.2(e), let the left and the right depots be d1 and d2, and the left and

the right customers be v1 and v2 respectively. If d2 is assigned fewer than k customers,

then it is easy to see that assigning v1 and v2 to d2 has a smaller cost than that of the

original solution. Therefore either the current solution is not optimal or not gapless. This

contradicts the assumption.

Given a gapless subproblem, we can figure out the optimal schedule as follows. We scan

the path segment from left to right, and put the encountered customers in a queue. When

a depot d is met, we remove k customers from the queue and assign them to d, if the queue

has k or more customers. If the number of customers in the queue is less than k, we assign

the customers to d and turn to scan the path segment from right to left. The process is

terminated when d is visited again. Depot d gets the remaining customers in the queue.

Note that due to the gapless property, only d may be assigned < k customers.

In general cases the optimal solution might contain gaps. However, we can try all the

configurations of the gaps by using dynamic programming. The method is similar to that

in [52]. Let l be the leftmost vertex of the path. In the following we assume that a and b

are two vertices on the path and a is to the left of b. Denote P (a, b) to be the path segment

from a to b. We define L∗(P (a, b)) to be the optimal cost of the subproblem defined on

P (a, b) (assume this subproblem is gapless). Let e = (u, v) be an edge on the path where u
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is to the left of v. We define L(e) to be the cost of the optimal solution of the subproblem

defined on P (l, u). We can then write the recursion as:

L(e) = mine′{L(e′) + L∗(P (v′, u))}

where the edge e = (u, v) lies to the right of e′ = (u′, v′) and u′ is to the left of v′.

In this recursion, we proceed from left to right on the path. When an edge e = (u, v)

is met, we try to form the last gapless subproblem by locating another edge e′ = (u′, v′)

which is to the left of e. We assume the subproblem on P (v′, u) is gapless and apply the

above algorithm to this subproblem. It is not difficult to see that the time complexity of

this algorithm is O(|V |3).

5.3 2-Approximation algorithm for the MDCVRP in trees

In the sequel we assume that all the customers and depots are located at the leaves of the

tree. The input tree can be transformed by creating a new node u′ for each depot/customer

u and adding a zero cost edge between u′ and u.

The following notations are used in describing the algorithm. For a vertex u, we denote

Tu to be the subtree rooted at u, and p(u) to be the parent of u. p(u) is null if u is the

root. We associate with each subtree Tu a number f(Tu) which equals k times the number

of depots minus the number of customers in Tu. We call a subtree Tu positive (negative)

if f(Tu) is positive (negative). Similarly, an edge e = (p(u), u) or a vertex u is positive

(negative) if the subtree Tu is positive (negative). Finally we denote c(e) to be the weight

of an edge e, and denote OPTP to be the optimal cost of solving a problem P .

Consider an instance of the MDCVRP where the underlying tree is of height 2 and the

number of customers is exactly k times the number of depots. We assume that the leaves

are all located at the second level of the tree (see Figure 5.3). In the figure a triangle

represents a subtree of height one, and inside a triangle, say, for subtree Tu, we show the

number f(Tu).

It is NP-hard to find the number of times each edge incident on r is traversed in the

optimal solution. The proof is similar to that in the appendix of [81] for the k-delivery TSP

in trees. The proof reduces the 3-partition problem to the MDCVRP.
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r

+29 −5 −4−5 −5 −5 −5

Figure 5.3: An instance of the MDCVRP on a tree of height 2. k = 8.

5.3.1 A new flow bound for the MDCVRP in trees

Assume that in an instance of the MDCVRP in trees, the number of customers is exactly k

times the number of depots. It is easy to see that FBe = 2d|f(Tu)
k |e is a lower bound on the

number of times the edge e = (p(u), u) needs to be traversed in the optimal solution. This

bound is called the flow bound. Similar flow bounds were used for the k-delivery TSP [15]

and the Dial-a-Ride problem [16].

One difficulty of designing approximation algorithms for the MDCVRP in trees is that,

the above flow bound is not meaningful for designing approximation algorithms for the

MDCVRP in trees when the number of customers is less than k times the number of depots.

We give an example in Figure 5.4.

u

p(u)

v

1 11

c1 c2 c3 c4

ε

ε

ε

ε ε ε ε ε ε ε εε ε ε ε

Figure 5.4: An instance of the MDCVRP. k=3.
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In Figure 5.4, depots are represented by circles with black fills and customers are

represented by circles with white fills. The edges (u, c1), (u, c2) and (u, c3) have cost 1,

and other edges have a cost of ε, for arbitrarily small ε > 0. Firstly, it is easy to see that

FBe′ = 1 for the positive edge e′ = (u, c1), but e′ is not traversed in the optimal solution.

Secondly, according to the flow bound, the edge e = (p(u), u) in Figure 5.4 should never be

traversed, as f(Tu) = 0. However, in the optimal solution we need the vehicle at depot v to

service the customers in Tc4 . Following the same structure, it is possible to create instances

where an edge e′ = (p(u′), u′) (with f(Tu′)=0) has to be traversed an unbounded number

of times in the optimal solution.

Another difficulty of designing approximation algorithms for the MDCVRP in trees,

if we want to use the existing dynamic programming method for the VRP as discussed

in Section 5.2, is to define the disjoint subproblems. We can define gapless subproblems

similarly for the MDCVRP on paths (recall that an edge e is a gap if in the optimal solution

no vehicle passes through e to service customers). However, as we discussed above, it is

not possible to try all the configurations of the gapless subproblems in trees. Moreover, the

optimal solution for a gapless subproblem can be quite complicated. We give an example

in Figure 5.5.

u

p(u)

1 1 1

c1 c2 c3

v

εε

εε

εε ε ε ε ε εε εε ε

Figure 5.5: An example of a gapless subproblem for the MDCVRP in trees. k=3.

In this example, only the edges (u, c1), (u, c2) and (u, c3) have a cost 1, and all other

edges have cost ε. It is easy to see that every edge needs to be traversed in the optimal

solution of this instance. To avoid traversing (u, c1), (u, c2) and (u, c3) twice, the depot

inside Tv needs to service the three customers in Tc3 , and the three customers inside Tv will
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be serviced by the two depots in Tc1 and Tc2 . Therefore the edge (p(u), u) is traversed due

to two reasons, one is to service some customers outside Tu by depots inside Tu, and the

other is to service some customers inside Tu by depots outside Tu. This makes it difficult to

design approximation algorithms for the MDCVRP in trees based on the flow bound.

Despite this difficulty, the optimal solution for the MDCVRP in trees still has a nice

property. Given an MDCVRP feasible solution, let g(e, x) be the number of customers

assigned to a depot x where the depot and the customers are separated by e. g(e, x) is

considered to be a flow passing through e. We say a flow g(e = (p(u), u), x) is positive, if

depot x is in Tu; otherwise we say g(e, x) is negative. We define net flow on an edge e to be

the summation of all the flows passing through e. The optimal solution of the MDCVRP

in trees satisfies the property stated in Lemma 5.3.1. In the literature of network flow

algorithms, this is called the flow conservation property.

Lemma 5.3.1 (Flow Conservation Property). In a feasible solution of an MDCVRP in-

stance in a tree, for a non-leaf vertex u, the total flow passing through the edges connecting

u to its children equals the total flow through the edge (p(u), u).

The flow conservation property is the basis of our 2-approximation algorithm for the

MDCVRP in trees. Before sketching our algorithm, we first define a new flow bound, called

the general flow bound, as follows. This bound will be used to locate the appropriate

subproblems. Each edge e = (p(u), u) of the tree is associated with a number g(e), which

represents that either g(e) net customers outside Tu need to be serviced by depots inside

Tu, or |g(e)| net customers inside Tu need to be serviced by depots outside Tu. For each

customer leaf node u, g(e = (p(u), u)) is -1. For each depot leaf node u, g(e = (p(u), u))

is ≤ k. Note that some of the depots may not be used in the solution. We call such an

assignment a flow configuration. Let GFB = 2
∑

ed|g(e)
k |e · c(e). We call GFB a general

flow bound for an MDCVRP instance P , if GFB ≤ OPTP and the corresponding flow

configuration is feasible, in the sense that under this configuration the flow conservation

property is satisfied. Note that the general flow bound is a lower bound on the optimal

cost only with respect to the whole corresponding flow configuration. Assume that for a

general flow bound GFB, an edge e is assigned net flow g(e). It is possible that 2d|g(e)
k |e is

not a lower bound on the number of traversals the vehicles would make on e in the optimal

solution. However, if the number of customers is exactly k times the number of depots,

then the flow bound and the general flow bound are equivalent. In the following we denote
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F (GFB) to be the flow configuration corresponding to a general flow bound GFB, and

denote GFB(P ) to be the smallest general flow bound of an MDCVRP instance P .

Algorithm MDCVRP trees(T )
Input: an MDCVRP instance P defined on a tree T rooted at r.
Output: a solution bounded by 2 ·OPTP .

1 GFB(P ) ← finds the smallest possible general flow bound

2 S ← subproblems after removing such edges e in T that g(e) = 0 in F (GFB(P ))

3 Solve the subproblems separately in S

Figure 5.6: Solving the MDCVRP in trees.

In our algorithm (called MDCVRP-trees) for the MDCVRP in trees, we define the

problem P ′ to be finding GFB(P ) for an MDCVRP instance P . To avoid the difficulty of

figuring out the solution of P directly, our algorithm has two steps. In the first step, we solve

P ′ optimally by dynamic programming. It is easy to see that GFB(P ) is a lower bound on

OPTP , as its corresponding flow configuration F (GFB(P )) satisfies the flow conservation

property. In the second step, we form a forest T ′ by removing the tree edges whose flow is 0

in F (GFB(P )). We then formulate the subproblems on the connected components of T ′. In

the third step, we solve these subproblems separately and obtain the final schedule. Implied

by the NP-hardness of the MDCVRP in trees, these subproblems are also NP-hard. A 2-

approximation algorithm is designed for each of the subproblems. Therefore our two-phase

algorithm is a 2-approximation for the MDCVRP in trees.

In general the subproblems generated in our algorithm can be quite different from the

gapless subproblems. For example, for the gapless subproblem in Figure 5.5, our algorithm

removes the edges (p(u), u) and (p(u), v) to form two subproblems based on the general flow

bound. One of them is defined on Tu and the other is defined on Tv. We will prove later in

Lemma 5.3.3 that the cost of solving these subproblems is bounded by at most twice the

cost of solving the gapless subproblems.

We transform a general flow bound of an MDCVRP instance P defined on a graph G to

an equivalent flow bound on another graph G′ as follows. For an edge e = (p(u), u), where

u is a depot, we create k − g(e) pseudo customers and connect each of these customers to

p(u) with a zero cost edge. Here g(e) is the net flow of e. Let the resulting graph be G′.
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It is easy to see that GFB(P ) equals the flow bound cost in G′. We in fact transform the

subproblems in G satisfying the general flow bound to subproblems in G′ satisfying the flow

bound. In this way the difficulty mentioned in the beginning of this section is avoided. We

can assume now that the subproblems being solved satisfy the flow bound.

5.3.2 Locating the subproblems for the MDCVRP in trees

The main feature of our algorithm for locating the subproblems is a table, table(u), for

each vertex u. An entry table(u)[i] (−|V | ≤ i ≤ |V |, where V is the set of customers in

G, represents the smallest possible general flow bound of the MDCVRP instance defined

on Tu, given that Tu provides services to i customers outside Tu when i is positive, or |i|
customers in Tu need services from outside Tu when i is negative. For each vertex u of G,

we initialize table(u)[0] to 0 and all other entries of table(u) to +∞. The pseudo code of

generating the tables is shown in Figure 5.7.

Algorithm MDCVRP GFB(u)

Input: an MDCVRP instance P defined on a tree Tu.

Output: a table showing lower bounds of the optimum.

1 if u is a depot then

2 for i = 1 to k do

3 table(u)[i]=2c((p(u), u))

4 endfor

5 return table(u)

6 else if u is a customer then

7 table(u)[−1]=2c((p(u), u))

8 return table(u)

9 endif

10

11 for each child v of u do
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12 table(v) = MDCVRP GFB(v)

13 tmp = a new table with each entry equal to +∞;

14 for i = −|V | to |V | do

15 for j = max(−|V |,−|V | − i) to min(|V |, |V | − i) do

16 if ((table(v)[i] + table(u)[j]) < tmp[i + j]) and

17 (table(v)[i], table(u)[j] 6= +∞) then

18 tmp[i + j] = table(v)[i] + table(u)[j]

19 endif

20 endfor

21 endfor

22 table(u) = tmp

23 endfor

24

25 for i = −|V | to |V | do

26 table(u)[i] = table(u)[i] + 2d| ik |e· c((p(u), u))

27 endfor

28 return table(u)

Figure 5.7: Locating the subproblems for the MDCVRP in trees.

The table entries are generated as follows. Firstly note that for a given vertex u and

a number i, table(u)[i] includes the cost of traversing the edge e = (p(u), u) exactly 2d| ik |e
times. This is also shown in the lines 25 to 27 in Figure 5.7. If u is a depot which will

be assigned some customers, then the edge from u to its parent has to be traversed exactly



CHAPTER 5. MULTI-DEPOT CAPACITATED VEHICLE ROUTING 105

once, so we set the entry table(u)[i] (1 ≤ i ≤ k) to 2c(e). Similarly if u is a customer, we

set the entry table(u)[−1] to 2c(e), as only u needs service from outside Tu.

For a non-leaf node u, we assume that all the tables belonging to its children have already

been computed. Let its children be c1, c2, · · · , ct (in an arbitrary order). The algorithm just

scans this list of children from left to right, and updates the entries of table(u) incrementally.

When a child v of u is encountered, we incorporate table(v) into table(u) as follows. We

first create a new table tmp with each entry setting to +∞. For two numbers i and j where

−|V | ≤ i+j ≤ |V |, we update tmp[i+j] to be table(v)[i]+ table(u)[j] if the latter is smaller.

By this update, we not only find a feasible solution that satisfies the flow conservation

property, but also compute the minimum general flow bound with respect to the subtree of

Tu that have already been considered. After processing v, the table tmp becomes the new

table table(u) for u.

The subproblems are determined as follows. Let the root of the tree be r. When the

algorithm MDCVRP GFB terminates, we find the entry table(r)[0]. We then trace by

reversing the process and find the flow configuration A corresponding to table(r)[0]. The

subproblems are defined on the connected components after removing edges with 0 net flow

in A.

5.3.3 Solving the subproblems for the MDCVRP in trees

Given the subproblems satisfying the flow bound in G′, we design a 2-approximation al-

gorithm for these subproblems. The pseudo code of the main algorithm for solving the

subproblems is listed in Figure 5.8.

Algorithm MDCVRP solve subproblem(repository, Tu)

Input: an MDCVRP instance P defined on a tree Tu.

Output: an assignment of the customers to depots.

1 Comment: the top of repository has already been assigned k1 customers

3 top depot ← repository.top()

4 if u is a depot then

5 if k1 > 0 then

6 Comment: keep top depot the top of repository
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7 top depot ← repository.pop()

8 repository.push(u)

9 repository.push(top depot)

10 else

11 repository.push(u)

12 endif

13 return

14 else if u is a customer then

15 assign u to top depot

16 if top depot has already been assigned k customers then

17 repository.pop()

18 endif

19 return

20 endif

21

22 Comment: u is an internal node

23 for each positive children c of u

24 MDCVRP solve subproblem(repository, Tc)

25 endfor

26

27 Comment: the repository has all the depots needed for the rest of Tu

28 for each negative children c of u
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29 MDCVRP solve subproblem(repository, Tc)

30 endfor

31

32 return

Figure 5.8: Solving the subproblems satisfying the flow bound for the MDCVRP in trees.

The algorithm (called MDCVRP solve subproblem in Figure 5.8) runs recursively. The

main component of the algorithm is a stack called repository which contains a set of depots

available to service the customers. The algorithm traverses the tree in a depth first order

and the stack repository is updated when a leaf (a depot or a customer) is met. When a

depot d1 is encountered, it is pushed into repository. However, if the current top depot d2

of repository has already been assigned some customers, then d2 will remain in the top and

we insert d1 just below d2 in repository. When a customer is met, we assign this customer

to the top depot of repository, and we remove the top element from repository if it has

already been assigned k customers. Therefore, in the algorithm it is always maintained that,

customers can only be assigned to the top depot in repository. We state this fact in Lemma

5.3.2. This lemma is crucial for our final analysis of the performance guarantee.

Lemma 5.3.2. At any time during a run of the algorithm MDCVRP solve subproblem in

Figure 5.8, only the top depot in the stack repository may have been assigned some (< k)

customers. All the other depots in the stack represent empty vehicles with capacity k.

When a non-leaf vertex u is being visited, the algorithm descends one level to process its

children. Since the algorithm processes all the positive children before the negative children,

during the processing of a negative child c, the repository has enough depots to serve the

customers in Tc. During the processing of a positive child, the rest of the available depots

are pushed into repository.

For a positive subtree Tu, we can interpret the number f(Tu) as the remaining capacity

of the depots in Tu after servicing the customers (including the pseudo customers) inside

Tu. Assume, when visiting a positive branch Tu with f(Tu) = t2, that the top depot in

repository has a remaining capacity of t1. When the algorithm leaves Tu, we should be able

to collect the remaining capacity t2 of Tu, and the top depot in repository should have a
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remaining capacity of (t1 + t2) mod k. Note that in order to guarantee the approximation

ratio, the top depots in repository when the vehicle enters and leaves Tu may not be the

same.

Consider the example in Figure 5.5. Our algorithm locates two subproblems, one defined

on Tu and the other on Tv. Assume the algorithm visits the positive children of u in the

order of c1 and c2. Let d1 and d2 be the depots in Tc1 and Tc2 respectively. It is not

difficult to see that just before entering Tc2 , d1 is the top depot in the stack repository and

is assigned the only customer in Tc1 . Then d2 is pushed into repository, however, d1 would

remain at the top of repository as it has a remaining capacity < k. So in this example,

instead of d1, d2 would be the depot with a remaining capacity of 3 after collecting the

remaining capacity of Tc2 . It is proved in Lemma 5.3.3, that a positive edge e (the edge

(u, c2) in this example) is traversed at most FBe + 2 times under this strategy.

We present our final analysis for the algorithm MDCVRP solve subproblem in Lemma

5.3.3.

Lemma 5.3.3. In the solution produced by the MDCVRP solve subproblem algorithm, each

edge e = (p(u), u) is traversed at most FBe + 2 times.

Proof. We can assume u is not a leaf, as otherwise e would be traversed exactly twice. We

assume the algorithm finds the routes r1, r2, · · · , rt that cross e (listed in increasing order

of the time when they were created). We claim that only during the first and last routes

the vehicle may cross e to service fewer than k customers. Consider the following cases:

Case 1: e is positive. In the algorithm, the first time that e is traversed is to process

Tu (let this time be t1). When the algorithm returns to u and traverses e from u to p(u)

for the first time (let this time be t2), all the customers inside Tu should have been assigned

to some depots, and all the remaining available depots should have been pushed into the

stack repository. From then on, the algorithm will not traverse e explicitly, but implicitly

when using the depots of Tu in repository to service customers outside Tu. It is easy to

see that during any assignment of customers to a depot in repository, the route already

established for this depot will not be affected. Therefore, the number of times e is traversed

is determined by the number of depots of Tu in repository at time t2. According to Lemma

5.3.2, only the top depot in repository at any time may be assigned customers. Assume at

time t1 the top depot d1 in repository is already assigned some, say k1, customers. According

to the algorithm, d1 will consume k − k1 customers in Tu. Therefore if k1 ≥ f(Tu) mod k,
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edge e would be traversed FBe times, and otherwise, FBe+2 times in the solution produced

by our algorithm.

Case 2: e is negative. In the algorithm, e is traversed for two purposes. Firstly, we

may use some depots outside Tu to service customers inside Tu. Secondly, there may be one

depot inside Tu which will be used to service some customers outside Tu. The last possibility

is due to the fact that our algorithm always assigns customers to the top depot of the stack

repository. Let t be the time just before Tu is entered for the first time. Then the number

of times e is traversed, is determined by the capacities of the depots in repository at time

t. According to Lemma 5.3.2, only the top depot in repository may have been assigned

customers, therefore e will be traversed exactly FBe times if the top depot in repository

has a remaining capacity of at least f(Tu) mod k and no depot in Tu is assigned customers

outside Tu, and FBe + 2 times otherwise.

Therefore we establish the following theorem:

Theorem 5.3.4. The algorithm MDCVRP trees is a 2-approximation for the MDCVRP in

trees. The running time of the algorithm is O(|V |3).

Proof. Given an instance P of the MDCVRP in trees, in the first step we compute the

GFB(P ). GFB(P ) is a lower bound on the optimum OPTP . For each subproblem induced

by GFB(P ), the algorithm MDCVRP solve subproblem will produce a solution where each

edge is traversed at most FBe + 2 times. As each edge will be traversed at least 2 times

in the subproblems, summing up the costs on each edge, the cost of the final solution is

bounded by 2OPTP .

Recall that in the vehicle dispatching problem (VDP), the vehicles service the customers

as in the MDCVRP, but the vehicles do not return to their depots after the completion of

the routes. We have

Lemma 5.3.5. There is a solution for the VDP in trees where each edge e = (p(u), u) is

traversed at most 1
2FBe + 2 times.

Proof. We apply the strategy similar to that in the algorithm in Figure 5.8 for the VDP,

except that each vehicle does not return to its depot. When a negative edge e = (p(u), u)

is traversed, if a depot does not accrue sufficient vertices after traversing e = (p(u), u) from
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p(u) to u, e has to be traversed once more from u to p(u). For each edge, this case occurs at

most once. Therefore e will be traversed at most 1
2FBe + 2 times under this strategy.

Theorem 5.3.6. There is a 3-approximation algorithm for the VDP in trees. The running

time of the algorithm is O(|V |3).

Proof. Note that 1
2FBe is a lower bound on the number of traversals the vehicle will make

on e in the optimal solution of the transformed subproblems.

5.4 Transforming the subproblems for the MDCVRP in gen-

eral graphs

It is not difficult to see that GFB(P ) of an MDCVRP instance P is equal to the optimal

solution of the following nonlinear program:

(NLP ) Min
∑
i,j

2 · c(ij)dx(ij)
k e

subject to:
∑
j

x(ij)−∑
j

x(ji) = bi ∀i ∈ V ∪D ∪ {s}

0 ≤ x(ij) ≤ u(ij) ∀i, j ∈ V ∪D ∪ {s}

We add a new vertex s to the original graph G, and connect s to each depot by an

edge with zero cost and capacity k. All other edges have infinite capacities. An integer bi

is associated with each vertex i ∈ V . For a customer vertex i, bi is set to -1. For a depot

vertex i, bi is equal to 0. For the new vertex s, we set bi to |V |.
For each edge e = (i, j) where i, j ∈ V , we denote c(ij) to be its edge cost, u(ij) to be

its capacity, and we associate it with a flow x(ij) or x(ji). Here both x(ij) and x(ji) are

positive, and x(ij) represents the flow from i to j, and x(ji) represents the flow from j to i.

(NLP) falls into the category of minimum cost network flow problems with concave fixed

charge functions. Consider the following nonlinear program:

(NLP ′) Min
∑
i,j

c(ij)h(x(ij))

subject to:
∑
j

x(ij)−∑
j

x(ji) = bi ∀i ∈ V ∪D ∪ {s}

0 ≤ x(ij) ≤ u(ij) ∀i, j ∈ V ∪D ∪ {s}
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where every edge in the graph has a capacity of k, and the function h is defined as

h(x(ij)) =

{
0 : x(ij) = 0

1 : x(ij) > 0

It is proved in [37] that (NLP’) (even the uncapacitated case) is NP-hard. Computing

the minimum general flow bound is therefore NP-hard for general graphs. In this section

we prove that given an α-approximation algorithm for computing (NLP), there is a (6 · α)-

approximation algorithm (please see Figure 5.9) for the MDCVRP in general graphs.

Algorithm MDCV RP general(G, A)
Input: An MDCVRP instance P defined on a general graph G = (V, E). An
α-approximation algorithm A for computing GFB(P ).
Output: A feasible MDCVRP solution with cost bounded by 3α ·GFB(P ).

1 S ← subproblems obtained by applying A on G

2 for each subproblem P1 in S

3 obtain P2 by applying the transformation algorithm in Figure 5.12 on P1

4 solve P2 by the algorithm in Figure 5.8

5 end for

Figure 5.9: An approximation algorithm for the MDCVRP in general graphs.

In the following we present the details of the transformation algorithm. Let P1 be a

subproblem obtained after computing GFB(P ). Let G1 be the subgraph of the original

graph G consisting of the edges with positive flows in P1. In addition we assume that the

edges in G1 are directed, e.g. for an edge e = (i, j) in G, if x(ij) > 0 in P1, then a directed

edge will be created in G1 with head i and tail j. It is easy to see that directed cycles in G1,

if there is any, can be removed without breaking the feasibility or degrading the quality of

the solution. Let i1, i2, · · · , il, i1 be such a cycle. Without loss of generality, assume the flow

x is minimum on e = (il, i1) among the flows on the edges of the cycle. We then decrease

the flow by x along the edges in the cycle. It is easy to see that the resulting solution still

satisfies the flow conservation property. As e is no longer in the solution, the cost of the

new solution is strictly less than that of the original solution.
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Therefore G1 can be assumed to be a directed acyclic graph (DAG). We show in Figure

5.10 that G1 may not be a tree.

1 1

2 2

1 1ε ε

ε εε ε εε ε

Figure 5.10: An example showing that each subproblem may not induce a tree. k = 4.

In this example the edges in the subproblem have costs of ε (a very small positive

number), 1, or 2. It is assumed here that all other edges in Figure 5.10 have costs as large

as possible without breaking the triangle inequality. It is easy to verify that the solution in

Figure 5.10 is optimal.

For a graph G′, we define GFB′(G′) to be
∑

e 2c(e)dg(e)
k e, where each edge in G′ is

associated with a flow g(e) in G′, for a given integer k. In the following we show that G1 can

be transformed into an arborescence G2, and GFB′(G2) ≤ 2 ·GFB′(G1). An arborescence

is a directed rooted tree where each edge points away from the root. We define a pseudo

cycle to be two directed simple paths P1 = u1, u2, · · · , ul−1, ul and P2 = u1, u
′
2, · · · , u′m, ul,

where m ≤ l. These two paths only share their two endpoints u1 and ul. An example of a

pseudo cycle is given in Figure 5.11(a).

An operation called canceling a pseudo cycle is used in the transformation algorithm.

Assume the pseudo cycle consists of two paths P1 and P2. Without loss of generality,

assume P1 has a total edge cost no greater than that of P2. We first locate the edges with

the minimal flow x in P2. We then cancel flow x along the edges in P2, and re-push this

flow through the edges in P1. Those edges with zero flow after this operation are removed

from the current graph.

An example of canceling a pseudo cycle is illustrated in Figure 5.11. Assume that in this

example the total cost of the edges of P1 is no greater than that of P2. In Figure 5.11(a),

edge e = (u′3, u4) has the minimum flow 3 in P2. We cancel flow x along the edges in P2, and
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Figure 5.11: A pseudo cycle example.

re-push this flow through the edges in P1. The resulting graph is shown in Figure 5.11(b).

The psuedo code of the transformation algorithm is given in Figure 5.12.

The algorithm simply detects whether a pseudo cycle exists in the current graph G2.

Such a pseudo cycle, if it exists, is then canceled by removing one or more edges from G2.

Since in each iteration at least one edge will be removed from G2, the algorithm runs in

time O((|D|+ |V |)3).
The ceiling function has the property stated in Lemma 5.4.1.

Lemma 5.4.1. Given a positive integer k, for two non-negative numbers A and B where

A ≤ B, dA
k e+ dB−A

k e ≥ dB
k e ≥ dA

k e+ dB−A
k e − 1.

We show that GFB′(G2) ≤ 2 ·GFB′(G1) in Lemma 5.4.2.

Lemma 5.4.2. Let G2 be the resulting graph after applying the algorithm in Figure 5.12

on a graph G1 where each edge is associated with a flow satisfying the constraints in (NLP).

Then GFB′(G2) ≤ 2 ·GFB′(G1).

Proof. Let an edge e get a nonzero flow f1(e) and a flow f2(e) in G1 and G2 respectively. It

is easy to see that
∑

e∈G1
c(e) · f1(e)

k ≥ ∑
e∈G1

c(e) · f2(e)
k . This is due to the fact that when

canceling a pseudo cycle C, we re-push a flow x to the path with a smaller total edge cost.

Therefore this flow incurs a smaller cost after canceling C.

Let S+ consist of all such edges e that f2(e) ≥ f1(e), and let S− consist of all such edges

e that f2(e) < f1(e). Since
∑

e∈G1
c(e) · f1(e)

k ≥ ∑
e∈G1

c(e) · f2(e)
k , we have that
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Algorithm Transform(G1)
Input: A connected graph G1 where each edge is associated with a flow satisfying the
constraints in (NLP).
Output: An arborescence G2 where each edge is associated with a flow satisfying the
constraints in (NLP), GFB′(G2) ≤ 2 ·GFB′(G1).

1 G2 ← G1

2 while exists a pseudo cycle C

3 G2 ← the resulting graph after canceling C

4 end while

5 return G2

Figure 5.12: Transform an MDCVRP subproblem to a new subproblem defined on a tree.

∑
e∈S+

c(e) · f2(e)−f1(e)
k ≤ ∑

e∈S− c(e) · f1(e)−f2(e)
k (1)

The total cost of the transformed solution is
∑

e∈S+
c(e)·(df2(e)

k e)+∑
e∈S− c(e)·(df2(e)

k e).
According to Lemma 5.4.1, this cost is at most

∑

e∈S+

c(e) · (df1(e)
k

e+ df2(e)− f1(e)
k

e) +
∑

e∈S−

c(e) · (df2(e)
k

e)

≤
∑

e∈S+

c(e) · (df1(e)
k

e+
f2(e)− f1(e)

k
+ 1) +

∑

e∈S−

c(e) · (df2(e)
k

e)

≤
∑

e∈S+

c(e) · (df1(e)
k

e+ 1) +
∑

e∈S−

c(e) · f1(e)− f2(e)
k

+
∑

e∈S−

c(e) · (df2(e)
k

e)

≤
∑

e∈S+

c(e) · (df1(e)
k

e+ 1) +
∑

e∈S−

c(e) · f1(e)− f2(e)
k

+
∑

e∈S−

c(e) · (f2(e)
k

+ 1)

≤
∑

e∈S+

c(e) · df1(e)
k

e+
∑

e∈S−

c(e) · f1(e)
k

+
∑

e∈G1

c(e)

≤ 1
2
GFB′(G1) +

∑

e∈G1

c(e),

As every edge in G1 is counted at least twice in GFB′(G1), we establish that GFB′(G2) ≤
2 ·GFB′(G1).
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Due to Lemma 5.4.2 and Theorem 5.3.4, we have

Theorem 5.4.3. If there is an α-approximation to compute (NLP), then there exists an

6α-approximation for the MDCVRP in general graphs.

Proof. Note that for each edge e, the approximation ratios are additive when transforming

the subproblems and establishing the actual schedule of the subproblems. And for the

MDCVRP, GFB is bounded by twice of the MDCVRP optimum.

5.5 6-Approximation for the MDCVRP in graphs with bounded

branch/tree-width

The algorithm in Figure 5.7 can be extended easily to compute the minimum general flow

bound in graphs with bounded branch/tree-width. In the following we first give a brief

introduction to branch decomposition and tree decomposition.

The branch decomposition of a graph G = (V, E) is a ternary tree T and a bijection

from the set of leaves of T to E. Removing an edge, say e, from T will produce two subtrees

T1 and T2 of T . T1 and T2 induce a partition of E into E1 and E2. The middle set of

e, denoted by mid(e), consists of the vertices of V which are incident to the edges in E1

and E2. The width of an edge e ∈ T , denoted by |mid(e)|, is defined to be the number

of vertices in the middle set corresponding to e. The width of a branch decomposition T

is the maximum width of all the edges in T . The branch-width of a graph G, denoted by

β(G), is the maximum width of all the branch decompositions of G. An example branch

decomposition is given in Figure 5.14. This example is from [45]. The original example

graph is given in Figure 5.13.

It is NP-hard to compute the optimal branch-width and find an optimal branch de-

composition of a graph. However, as shown in [83], a polynomial time algorithm exists to

approximate the branch-width of a graph within a factor of 3. Therefore in the following, we

assume that a branch decomposition is already given and the branch-width is some constant.

Similar to other branch decomposition based algorithms, for a given branch decompo-

sition T with branch-width β(G), our algorithm for computing GFB of G consists of two

steps. In the first step, T is transformed to a rooted binary tree T ′. This can be done by
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Figure 5.13: An example graph for branch decomposition.
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Figure 5.14: A branch decomposition of width 3 for the graph in Figure 5.13.
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selecting an edge (u, v) from T and replacing e by a root r, and two new edges (r, u) and

(r, v). In the second step, we modify the algorithm in Figure 5.7 with input T ′ to compute

GFB of G as follows. We still associate each vertex u of T with a table table(u). However,

the dimension of table(u) is equal to the width |mid(e)| of the edge e = (p(u), u). Given

an arbitrary order of the vertices in mid(e), the ith dimension of table(u) denotes the flow

balance on the ith vertex in mid(e). For each node v of T ′, let Gv denote the subgraph of

G induced by the edges corresponding to the leaves in T ′v. Let the ith dimension of table(u)

take a value bi in a particular entry of table(u). This entry of table(u) then represents the

smallest general flow bound defined on Gv, given that the ith vertex in mid(e) will receive

a flow bi from, or send a flow bi to, the vertices in G − Gv. As |V | customers exist in the

graph, the number of entries in table(u) is bounded by |V |β(G).

For a vertex u in T ′, its table will be computed after the tables of its two children have

already been built. Let its children be c1 and c2, and let e1 = (u, c1) and e2 = (u, c2).

Let nu be the target entry in table(u), when merging two entries n1 and n2 which belong

to table(c1) and table(c2) respectively. Consider a vertex v in mid(e1) and mid(e2). If v

only appears in one of the two sets, say mid(e1), then the value of the dimension in nu

corresponding to v will be equal to that in n1. If v is in both sets, two cases need to be

examined. When v is also in mid(e), the value of the dimension in nu corresponding to v

will be equal to the sum of that in n1 and n2. When v is absent in mid(e), the sum of the

values of the dimensions in n1 and n2 corresponding to v should be zero. Otherwise the flow

conservation property will be violated and there is no need to combine these two entries.

In the following we briefly introduce tree decomposition and tree-width. A tree decom-

position of a graph G = (V,E) is denoted by (T, I), where T is a tree and I = {i : Xi ⊂ V }.
A tree decomposition satisfies:

(1) ∪i∈IXi = V ,

(2) for each edge e = (u, v) ∈ E, ∃i ∈ I, s.t. u, v ∈ Xi,

(3) for all u ∈ V , {i ∈ I : u ∈ Xi} induces a connected subtree of T .

The width of a tree decomposition (T, I) is defined to be maxi∈I |Xi|−1. The tree-width

of a graph G, denoted by τ(G), is the minimum width over all tree decompositions of G. A

graph is a partial k-tree if and only if it has a tree-width k. The above dynamic program
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to compute GFB assumes constant branch-width. It is shown in Theorem 5.5.1 [82] that

branch-width and tree-width are closely related to each other.

Theorem 5.5.1 (Robertson and Seymour). Let G = (V, E) be a graph, with E 6= ∅. Then

max(β(G), 2) ≤ τ(G) + 1 ≤ max(b3
2β(G)c, 2).

As the minimum general flow bound can be optimally computed for graphs with bounded

branch/tree-width, further due to Theorem 5.4.3, we establish

Lemma 5.5.2. There is a 6-approximation for the MDCVRP in graphs with bounded

branch/tree-width.

Similarly we have the following results for the VDP:

Theorem 5.5.3. If there is an α-approximation to compute (NLP), then there exists an

4α-approximation for the VDP in general graphs.

Proof. This is due to Lemma 5.4.2 and Lemma 5.3.5.

Lemma 5.5.4. There is a 4-approximation for the VDP in graphs with bounded branch/tree-

width.

5.6 k-Approximation for the MDCVRP in general graphs

In this section we show a k-approximation algorithm for the MDCVRP in general graphs.

We define a k-factor of G as a set of edges Ek ⊆ E, such that for each depot v ∈ D, σ(v) ≤ k,

and for each customer, v ∈ V, σ(v) = 1, where σ(v) is the number of edges of Ek incident

on v. In the following we denote the cost of k-factor Ek by ‖Ek‖.
This algorithm is similar to that in [60] in the sense that the final solution is obtained

from a minimum cost k-factor of G. For the sake of completeness, we describe the algorithm

for the MDCVRP below.

Algorithm MDCV RP (k)

Step 1 Construct a minimum cost flow instance H as follows.

We first construct a complete bipartite graph H where one part contains the depots,

and the other part contains the customers. We then add a vertex s to H, and connect
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depot

customer

r

u

Figure 5.15: A k-factor obtained from an optimal solution. Solid lines represent the edges in
an optimal solution and the dashed lines represent the edges in the corresponding k-factor.

s to each depot by an edge with cost of 0 and capacity of k. We further associate a

positive integer |V | (supply) with s, and -1 (demand) with each customer in H.

Step 2 Find the minimum cost k-factor Ek.

This can be done by running minimum cost flow algorithms on H.

Step 3 For each depot r, find any tour involving r and the customers connected to r in Ek.

In the following we bound the cost of the minimum k-factor to the optimal solution

OPT . As shown in Figure 5.15, a k-factor can be obtained from the optimal solution by

connecting each depot to the vertices in the same tour with the depot. Moreover, the cost

of such a k-factor is bounded by k
2 · OPT where OPT is the cost of the optimal solution. We

show this bound as follows. Consider a tour τ in an optimal solution involving a depot r

(as in Figure 5.15). Let S be the set of edges from r to the customers in τ . We arbitrarily

pair the edges in S. According to the triangle inequality, the cost of each pair of edges is

bounded by OPT. If k is odd, we are left with an edge, e.g. the edge (u, r) in Figure 5.15.

Adding (u, r) to τ introduces two cycles. Therefore the cost of (u, r) is at most 1
2OPT. This

proves that there is a k-factor Ek whose cost is bounded by k
2 · OPT. Due to the triangle

inequality, the cost of the final solution produced by the algorithm (Step 3) is bounded

by twice of ‖Ek‖. Therefore this algorithm gives a k-approximation for the MDCVRP in

general graphs.
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5.7 3-Approximation algorithm for the MVSP in trees

In this section we show that our way of applying dynamic programming for approximation

algorithms on the VRP can be used to design a 3-approximation algorithm for the MVSP

[52] in trees. In the MVSP we are given an undirected complete graph G = (V, E), where

each vertex ui of V is associated with a job ju, and each edge e has a non-negative weight

c(e). The edge costs in G satisfy the triangle inequality. There are also m identical vehicles

available to service the jobs. Each job ju has its own release time r(u) and handling time

h(u). A job ju can only be serviced after its release time r(u), and the handling time h(u)

represents the time needed to finish processing ju. The objective is to find a schedule in

which the maximum completion time of the jobs, i.e. the makespan, is minimized.

5.7.1 Defining the problem P ′ for the MVSP in trees

We first introduce several lower bounds for a gapless subproblem of an instance of the MVSP

in trees. These lower bounds are used to design approximation algorithms for the MVSP

on paths [52]. For a gapless subproblem P1, we define two lower bounds for the makespan:

LB1(P1) = maxu∈V (P1){r(u) + h(u)}, LB2(P1,m
′) = W (P1)+H(P1)

m′

where V (P1) and E(P1) are the vertex set and edge set involved in P1 respectively, m′

represents the number of vehicles used to service the jobs in P1, and W (P1) and H(P1) are

the total edge weights of E(P1) and the total handling times of the jobs associated with the

vertices in V (P1) respectively.

We define a vehicle configuration to be any partition of the tree where each connected

component Ci in the partition is associated with a positive integer mi and
∑

i mi = m.

Given a vehicle configuration V C, let CV C(u) to be the set of connected components inside

Tu under V C. The connected components in CV C(u) contain only the vertices in Tu. Let

SV C(u) be the set of subproblems defined on the corresponding connected components

in CV C(u). We define a new bound LB(G,m) to be minV C maxP2∈SV C(r)(LB(P2,m
′) =

LB1(P2) + (2W (P2) + H(P2))/m′), where r is the root of the tree and m′ is the number

of vehicles allocated for P2 under VC. Our relaxation problem P ′ for the MVSP is just to

find the set of subproblems with the smallest possible bound LB(G,m). We first solve P ′

optimally by dynamic programming, and by doing so the original problem is decomposed

to a set S of subproblems. Since in the computation of LB(G,m) the gapless subproblems

will be considered, LB(G,m) is bounded by 3 ·OPT . In the second step we find a feasible
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schedule for the subproblems in S with a makespan of at most LB(G,m). We first justify

the second step of our algorithm in Lemma 5.7.1. Its proof is constructive.

Lemma 5.7.1. There is a feasible solution with cost bounded by 3 ·OPT for the connected

components corresponding to the smallest possible bound LB(G,m).

Proof. Consider a gapless subproblem P1 in the optimal solution of an instance of the

MVSP in trees. Assume m′ vehicles are involved in P1. In the optimal solution for P1, an

edge might be traversed by more than one vehicle. We double the tree edges and obtain

a Hamiltonian path containing all the jobs (by a depth first traversal of the tree). We

traverse the path from the root, and associate the handling times with the jobs when they

are visited for the first time. Therefore we transform P1 for the MVSP in trees to another

gapless subproblem P ′
1 of the MVSP on paths with W (P ′

1) = 2W (P1), H(P ′
1) = H(P1) and

LB1(P ′
1) = LB1(P1). Using the algorithm in [52], we obtain a schedule for P ′

1 with cost

bounded by LB1(P ′
1) + LB2(P ′

1,m
′). This schedule is also feasible for P1 and has a cost of

LB1(P1) + (2W (P1) + H(P1))/m′ = LB(P1,m
′).

The above argument can be applied on the subproblems defined on the connected com-

ponents obtained after computing LB(G,m). Since LB(G,m) is the smallest possible, the

cost of this schedule is no larger than that of after applying the same operation on the

gapless subproblems. Therefore the cost of the schedule is bounded by 3 ·OPT .

The above proof also shows how to solve the subproblems once they are located, therefore

in the following we only focus on how to locate the appropriate subproblems.

5.7.2 Locating the subproblems for the MVSP in trees

The core of our solution is an algorithm to solve the following simple feasibility decision

problem D: Given a real number λ, is LB(G,m) ≤ λ?

Solving the decision problem

We solve the feasibility problem also by dynamic programming. Given a vehicle configu-

ration VC, we denote PV C(u) to be the subproblem defined on the connected component

containing u in CV C(u), and P ′
V C(u) to be the set of subproblems defined on the connected

components not containing u in CV C(u). Recall that CV C(u) consists of all the connected

components in Tu under VC.
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To solve the decision problem, we maintain two tables, table(u) and obj(u), for an ar-

bitrary vertex u. The table obj(u) has one dimension, and an entry obj(u)[i](1 ≤ i ≤ m)

indicates that whether the bound LB(Tu, i) is at most λ for the subproblem defined on Tu

under all possible vehicle configurations. Given that the edge (p(u), u) is not traversed by

any vehicle and that in total i vehicles are used to service the jobs in Tu, we denote the bound

LB(Tu, i) to be minV C maxP2∈SV C(u)(LB(P2,m
′) = LB1(P2) + (2W (P2) + H(P2))/m′),

where m′ is the number of vehicles allocated for P2 under VC.

The other table table(u) for u has 3 dimensions. Assume the minimum value of an entry

table(u)[i1][i2][i3] of table(u) is obtained under the vehicle configuration V C. Then this

value represents 2W (PV C(u))+H(PV C(u)), given that i1 vehicles have been used to service

the jobs in PV C(u), i2 equals LB1(PV C(u)), and i3 vehicles have been used to service the

jobs in the subproblems of P ′
V C(u). In other words, given the constraints of i1, i2, and i3,

the value of the entry table(u)[i1][i2][i3] equals the minimum of 2W (PV C(u)) + H(PV C(u)),

for any vehicle configuration V C in Tu.

For each vertex u, we initialize the table entries table(u)[i1][r(u) + h(u)][0], where 0 ≤
i1 ≤ m, to h(u). Other entries of table(u) are set to +∞. Given an input of λ, our algorithm

maintains that an entry table(u)[i1][i2][i3] is not +∞ if and only if there exists a vehicle

configuration V C under which the lower bound LB of each subproblem in P ′
V C(u) is less

than or equal to λ. In the following we define LB1(G) to be maxu∈V {r(u) + h(u)}.

Algorithm MVSP decision(Tu, m, λ)

Input: an MVSP instance P defined on a tree Tu, an integer m and a real number λ.

Output: a table showing a lower bound LB(Tu,m) (at least λ).

1 if u is a leaf then

2 obj(u)[1] = r(u) + 2h(u)

3 table(u)[1][r(u) + h(u)][0] = h(u)

4 return table(u)

5 endif

6

7 for each child v of u do
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8 table(v) = MVSP decision(Tv, m, λ)

9 tmp = a new table with each entry equal to +∞

10 for i1 = 0 to m do

11 for i2 = 0 to LB1(G) do

12 for i3 = 0 to m− i1 do

13 Comment: when e = (u, v) is a cut edge

14 for j = 0 to m− i1 − i3 do

15 if table(u)[i1][i2][i3] < tmp[i1][i2][i3 + j] and

obj(v)[j] ≤ λ then

16 tmp[i1][i2][i3 + j] = table(u)[i1][i2][i3]

17 endif

18 endfor

10 Comment: when e = (u, v) is not a cut edge

20 for j1 = 0 to m− i1 − i3 do

21 for j2 = 0 to LB1(G) do

22 for j3 = 0 to m− i1 − i3 − j1 do

23 t2 = max{i2, j2}

24 if (table(u)[i1][i2][i3] + table(v)[j1][j2][j3] + 2c((u, c))) <

tmp[i1 + j1][t2][i3 + j3] then

25 tmp[i1 + j1][t2][i3 + j3] = table(u)[i1][i2][i3]+

table(v)[j1][j2][j3] + 2c((u, v))

26 endif

27 endfor
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28 endfor

29 endfor

30 endfor

31 endfor

32 endfor

33 table(u) = tmp

34 endfor

35

36 Comment: consider the case when e = (p(u), u) is a cut edge

37 for i1 = 0 to m do

38 for i2 = 0 to LB1(G) do

39 for i3 = 0 to m− i1 do

40 if (i2 + table(u)[i1][i2][i3]/i1 < obj(u)[i1 + i3]) then

41 obj(u)[i1 + i3]=i2 + table(u)[i1][i2][i3]/i1

42 endif

43 endfor

44 endfor

45 endfor

46 return table(u)

Figure 5.16: Solving the decision problem for the MVSP in trees.

The pseudo code of generating the tables is given in Figure 5.7. For a leaf u, since

there must be a vehicle to service u, and since there are no other jobs in Tu, only the entry
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table(u)[1][r(u) + h(u)][0] needs to be set to h(u) for the case when the edge (p(u), u) is

not a cut edge. The edge cost of (p(u), u) will be considered later when merging table(u)

to table(p(u)). When (p(u), u) is a cut edge, we are ready to compute the objective for Tu,

and we accordingly set the entry obj(u)[1] to r(u) + 2h(u).

When u is a non-leaf node, we proceed as in the dynamic programming algorithm for

locating subproblems for the MDCVRP in trees. We assume that all the tables belonging to

its children have already been computed. Let its children be c1, c2, · · · , ct (in an arbitrary

order). The algorithm scans this list of children from left to right, and incorporates the

tables of the children into table(u) (one at a time). The table obj(u) is updated after all its

children are considered. An entry of obj(u) is updated as follows.

obj(u)[i1 + i3]=mini2(i2 + table(u)[i1][i2][i3]/i1)

where 0 ≤ i1 ≤ m, 1 ≤ i2 ≤ LB1(G), 0 ≤ i3 ≤ m. Here LB1(G) represents the first

lower bound LB1 for all the jobs in the graph.

For an entry table(u)[i1][i2][i3], assume its value is obtained under the vehicle configura-

tion V C, then it represents 2W (PV C(u)) + H(PV C(u)). Recall that i1 denotes the number

of vehicles used in PV C(u), and i3 records the number of vehicles used in the subproblems

of P ′
V C(u). Therefore the total number of vehicles used in Tu corresponding to the entry

table(u)[i1][i2][i3] is i1 + i3. As we assume the edge e = (p(u), u) is a cut edge, and i2

represents LB1(PV C(u)), we can then find the minimum for obj(u)[ii + i3] by computing

the lower bound LB(Tu, i1 + i3) after trying all possible values of i2.

The updating of table(u) for a vertex u is crucial for solving the decision problem D.

Assume table(v) has already been computed before we start to incorporate table(v) into

table(u). Let tablev(u) be the new table for u after incorporating table(v). Every entry of

tablev(u) is initialized to +∞, and table(u) will be set to tablev(u) after processing v. We

have the following cases:

Case 1: (u, v) is a cut edge. In this case an entry of tablev(u) is updated as follows.

tablev(u)[i1][i2][i3 + j] = mini3 table(u)[i1][i2][i3], given that obj(v)[j] ≤ λ.

Here 0 ≤ i1 ≤ m, 1 ≤ i2 ≤ LB1(G), 0 ≤ i3 ≤ m, 0 ≤ j ≤ m − i1 − i2, and λ is the

input of the feasiblility decision problem. The entry tablev(u)[i1][i2][i3 + j] will be updated

if table(u)[i1][i2][i3] is smaller for all possible i3 and j.
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Note that an entry table(u)[i1][i2][i3] has a meaningful value (not +∞), if and only if

under the corresponding vehicle configuration V C, LB(P2,m
′) ≤ λ holds for every subprob-

lem P2 in P ′
V C(u). Here m′ denotes the number of vehicles allocated for P2 under VC. This

is implemented by line 15 in Figure 5.16. Recall that we are solving the feasibility decision

problem. Therefore if LB(P2,m
′) > λ for some subproblem P2 in P ′

V C(u), then we already

know that V C is not a feasible vehicle configuration and there is no need to complete the

rest of the computation for V C.

Under this case we assume that (u, v) is a cut edge and j vehicles are used to service the

jobs in Tv. Therefore for all such j that obj(v)[j] ≤ λ, we update tablev(u)[i1][i2][i3 + j] to

table(u)[i1][i2][i3] if the latter is smaller, as the third dimension of table(u) represents the

number of vehicles used in the subproblems of P ′
V C(u).

Case 2: (u, v) is not a cut edge. Under this case an entry of tablev(u) is updated as

follows.

tablev(u)[i1 + j1][t2][i3 + j3] = table(u)[i1][i2][i3] + table(c)[j1][j2][j3] + 2c((u, v))

where 0 ≤ i1 ≤ m, 1 ≤ i2, j2 ≤ LB1(G), 0 ≤ i3 ≤ m − i1, 0 ≤ j1 ≤ m − i1 − i3 and

0 ≤ j3 ≤ m− i1 − i2 − j1. Here t2 = max{i2, j2}.
Under this case we need to merge the two components Cu and Cv containing u and

v respectively under the current settings for the two entries of table(u) and table(v). We

assume that i1 + j1 vehicles will be used to service the jobs in the new component. The

new component has LB1 equal to the maximum of that of Cu and Cv, so we update the

second dimension of the new entry to be t2 = max{i2, j2}. After the merging, the connected

components not containing u and v remain unchanged, therefore we set the third dimension

to i3 + j3. Also we add 2 ∗ c(u, v) to this entry, since (u, v) now becomes part of the new

connected component containing both u and v.

Note that for both cases, we do not check whether an entry table(u)[i1][i2][i3] is feasible

or not when updating this entry. This implies that i2 + 2 ∗ table(u)[i1][i2][i3]/i1 might be

larger than λ when processing u. This is because the corresponding connected component

containing u might be merged later with a connected component containing p(u). In this

case u will be in a larger connected component associated with more, e.g. m′, vehicles. Thus

the contribution of table(u)[i1][i2][i3] to the lower bound LB of the new component becomes

table(u)[i1][i2][i3]/m′ which is strictly less than table(u)[i1][i2][i3]/i1. This entry might lead

to a feasible final solution, therefore we still need to keep it for later computation.
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The above algorithm runs in strongly polynomial time. Recall that LB1(P1) = maxu∈V (P1)

{r(u) + h(u)}, therefore for a vertex u the second dimension of table(u) takes at most |V |
distinct values. A particular entry of table(u) can be located by a binary search over these

|V | distinct values. The time complexity of this algorithm is dominated by Case 2 when

updating table(u) for each vertex u. The algorithm runs in time O(m4|V |3 log |V |).
It is not difficult to see that this algorithm can be used to solve a disguised problem D′

of D: Given a real number λ, compute the smallest possible bound LB(G,m) (at least λ)

subject to the constraint that, under the corresponding vehicle configuration VC the bound

LB(C, m′) of each connected component C, not including the root r in CV C(r), is at most

λ. Here m′ is the number of vehicles used for the customers in C. We will show in the next

subsection that a strongly polynomial time algorithm for the optimization problem P ′ can

be obtained by solving D′.

Solving the optimization problem

In this subsection we present a parametric searching algorithm (called MVSP optimization

in the following) for solving our optimization problem by taking advantage of the decision

problem D′. The parametric search technique was developed by Megiddo in [72] and [73],

and it works as follows. Let λ∗ be the optimal solution of an optimization problem P1.

Assume that for P1 we have a decision problem D1(λ) which is monotone in λ, in the sense

that we can decide whether λ < λ∗, λ = λ∗ or λ > λ∗. Assume that we have an algorithm

A for the decision problem D1(λ). To solve the optimization problem P1, Megiddo’s idea

is to run A generically. It seems somewhat strange to run an algorithm when the input

is still unknown. The core in Megiddo’s method is to maintain an open interval I where

λ∗ lies throughout the execution of the algorithm A. More specifically, I is initialized

to (−∞, +∞), and at each step of running A with unknown input, a critical value t1 is

computed and the concrete version of A is executed with parameter t1. Therefore after the

first step, the interval I is shrunk to either (−∞, t1] or [t1,+∞). When the generic version

of A is terminated, we either find λ∗ or an interval with its lower end equal to λ∗.

It is crucial to generate the critical values in the parametric search framework. These

critical values in fact discretize the problem P1 and make it possible to compute P1 optimally

in polynomial time. Intuitively the critical values, or the steps of A, represent all the tests

which the optimal solution must pass. On the other hand, if a solution passes all such tests,

then it is a candidate of the optimal solution. Note that as long as all the critical values are
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tested, the master optimization algorithm needs not necessarily to be the same as A, e.g.,

in many cases sorting all the critical values suffices for solving the optimization problem.

In the following, we describe a parametric searching algorithm for solving P ′. Recall

that P ′ is to compute the smallest possible bound LB(T, m) for a tree T and a given integer

m. We first define the discrete events, or the critical values, needed by the parametric

search method. Given a subtree Tu of T and a number 0 < m′ ≤ m, we define the critical

value at u to be the bound LB(Tu,m′) under the constraint that m′ vehicles are assigned to

service the jobs in Tu. Corresponding to this definition, our algorithm runs in the bottom

up fashion: the computation of the lower bound LB(T, m) starts from the leaves of the tree,

and the optimal value of LB for a subtree Tu will be available after all the vertices in Tu

have been processed.

The reason we choose LB(Tu,m′) (0 < m′ ≤ m) to be the critical value at a vertex u

is as follows. Let F ∗ be the optimal forest corresponding to the bound LB(T, m). Then

LB(T,m) is determined by a particular connected component C of F ∗. Assume u is the

root of C and Tu is allocated m′ vehicles in total in the optimal solution. Then we can

find the optimal solution by applying the algorithm MVSP-decision in Figure 5.16 with the

parameter LB(Tu,m′). Given the values LB(Tu,m′) for every subtree Tu of T and every

integer 0 < m′ ≤ m, it is easy to see that we can compute LB(T,m) by m · |V | applications

of the algorithm MVSP-decision in Figure 5.16.

For a leaf u of T , it is trivial to compute LB(Tu,m′) (0 < m′ ≤ m). In our algorithm,

whenever a critical value LB(Tu, m′) (u ∈ T, 0 < m′ ≤ m) is known, we propagate the test

on this value along the path from u to the root r of T . In other words, for every vertex u′

on the path from u to r, we apply algorithm MVSP-decision on Tu′ with m vehicles and

the feasibility parameter LB(Tu,m′). For an arbitrary vertex u, a critical value LB(Tu,m′)

(u ∈ T, 0 < m′ ≤ m) is computed if and only if for every vertex u′ (other than u) in Tu, the

test of LB(Tu′ ,m
′) (0 < m′ ≤ m) has been taken on Tu. It is easy to see that the optimal

solution can be computed after m|V |2 calls to the algorithm MVSP-decision. Therefore the

time complexity of the algorithm is O(m5|V |5 log |V |).
We omit the proof for the following Lemma.

Lemma 5.7.2. The algorithm MVSP optimization computes the minimum possible bound

LB(T,m). The running time of the algorithm is O(m5|V |5 log |V |).

By Lemma 5.7.1 and 5.7.2 we establish the following theorem.
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Theorem 5.7.3. The algorithm MVSP optimization can be used to obtain a 3-approximation

for the MVSP in trees.

Using the results in [32], we have

Theorem 5.7.4. There is an O(log n)-approximation for the MVSP in general graphs.
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Conclusion

Approximation algorithms are very useful when dealing with NP-hard problems. For some

problems even in the simplest form, e.g. the MDCVRP in trees, the optimal solutions

demonstrate no orderliness. However many such problems still have some nice hidden struc-

tures or properties. These properties can be utilized to design solutions which might not

be optimal but have provably bounded costs. An example is the flow conservation property

implied by the optimal solutions for the MDCVRP. This property allows us to efficiently

compute nice lower bounds for the MDCVRP in tree-like graphs. Solutions with bounded

cost can then be constructed based on these lower bounds.

In this thesis we have investigated approximation algorithms for various variants of the

CVRP. Various approximation techniques are also examined or provided for these problems.

We have proposed a come-back rule for two variants of the CVRPPD, namely the k-delivery

TSP and the Capacitated Dial-a-Ride Problem. This rule leads to the half-load strategy

which is shown to be useful for the k-delivery TSP in trees. For the BWTSP, we have

examined the application of matching and König’s theorem on approximation algorithms.

For the p-constrained Cycle Covering Problems, we have presented a combinatorial analysis

of a minimum spanning tree-based algorithm and have shown that it is effective for deal-

ing with the cardinality constraint imposed on network design problems with downwards

monotone functions. For the MDCVRP and the MVSP, we have proposed a different way

of using dynamic programming in designing approximation algorithms for the VRP. The

results obtained in this thesis are summarized in Table 6.1.

130



CHAPTER 6. CONCLUSION 131

Table 6.1: Results obtained.
Problem Previous Our results Techniques used

k-delivery TSP on paths O(n2/k) [81] optimal come-back rule
k-delivery TSP in trees 2 [68] 5

3 come-back rule
Dial-a-Ride on paths 3 [61] 2.5 come-back rule
BWTSP (4− 3

2k ) matching, König’s theorem
BWTSP(special case) (4− 15

8k ) matching, GW-algorithm
CCPBL 4(pL + 1) [70] 4 GW-algorithm
pCCCP 2 combinatorial analysis
MDCVRP on paths O(n3) time, exact dynamic programming
MDCVRP in trees 2 the general flow bound
MDCVRP partial k-trees 6 the general flow bound
MDCVRP general min{k,O(log n)}, metric embedding
VDP general 2k − 1 [60] min{2k − 1, O(log n)} metric embedding
MVSP in trees 3 dynamic programming
MVSP general O(log n) metric embedding

There is still interesting research work remaining. One direction for future research is

to find approximation algorithms for (NLP) (finding the smallest general flow bound) with

bounds better than O(log n). The known approximation techniques, e.g. the GW-algorithm

[40] and the iterative rounding algorithm [48], do not seem to apply.

Another direction for future research is to investigate the possibility of extending our

way of using dynamic programming in designing approximation algorithms for the VRP, to

improve the approximation ratios for the MVSP and the VRP with time windows (VRPTW)

in general graphs. In the VRPTW, each customer u is associated with a full time window

[ru, du], and the vehicle must arrive after time ru and before time du to service the customer.

An O(log2 n)-approximation is given in [7] for the VRPTW in undirected complete graphs.

It would be interesting to improve this approximation ratio or reduce the time complexity

of the algorithm in [7].
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Appendix

7.1 Pseudo code of the full-load algorithm

The following figure shows the full-load algorithm in [81] for the k-delivery TSP in trees.

There is no planning phase in the full-load algorithm, instead the lists L+ and L− contain

all real tree edges. Given the lists L+ and L−, in the full load deliver procedure in Figure

7.3, the vehicle picks up vertices consecutively from the positive edges of L+ until its load

is exactly k or all the pickup vertices of the positive edges are served. Then the vehicle

delivers its load to the negative edges also consecutively, until all of its load is consumed.

The pickup and delivery functions of the full-load algorithm follow much in the same way

as in the half-load algorithm, with the major difference that there’s no need to push down

the L+ list when delivering. Recall that under the full-load strategy, the vehicle continues

to pick up or deliver vertices if possible. Therefore when the vehicle decides to pick up

(deliver) some vertices from (to) an edge e = (p(u), u), we know immediately the amount

of product the vehicle should pick up (deliver) from e. This makes the full-load algorithm

much simpler to implement than the half-load algorithm.

Recall that the half-load algorithm contains two phases. In the first planning phase, the

algorithm works on the original graph and prepares pseudo edges for the second phase, where

the actual route is generated. As in the full-load algorithm, the actual route generating phase

of the half-load algorithm works recursively in a top-down fashion. However, unlike the full-

load algorithm, in the half-load algorithm positive pseudo edges for a particular positive

tree edge e = (p(u), u) can not be determined when e is firstly visited in this phase. All the

information we have about the traversals on e is only that the vehicle takes more than k
2
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Procedure full load deliver(α, L+, L−)
Input: two lists L+ and L− containing the tree edges with their loads; α denotes the
current load of the vehicle
Output: a tour satisfies the capacity constraint

1 while L+ 6= ∅ and (L− 6= ∅ or α < k) do

2 Comment: pick up the vehicle load consecutively from edges in L+

3 if L+ 6= ∅ then

4 pickup(α, L+)

5 endif

6

7 Comment: deliver the vehicle load consecutively to edges in L−

8 if L− 6= ∅ then

9 deliver(α, L−)

10 endif

11 endwhile

12

13 return

Figure 7.1: A procedure for the full-load algorithm.
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vertices during most of the traversals. Thus unless the positive pseudo edges from u to its

positive children have been built, we have no knowledge about how many traversals would

the vehicle make on this edge, and we also don’t know how much load would the vehicle

take during each traversal. Building pseudo edges and further handling of the pseudo edges

to generate the actual route are the major difference in the implementation aspect between

the full-load and the half-load algorithms.

The pseudo codes of the pickup and deliver procedures for the full-load algorithm are

listed in Figures 7.2 and 7.3 respectively.

7.2 More Explanations of the GW-algorithm

The pseudo code of the GW algorithm for proper functions is listed in Figure 7.4.

In the following, we give some examples of proper functions and the problems they solve:

1. Steiner Tree Problem: Given a set N ⊆ V of terminal nodes, find a minimum-cost

tree that connects all nodes in N .

f(S) = 1 if and only if Ø 6= S ∩N 6= N , and 0 otherwise.

2. Point-to-point Connection Problem: Given a set C = {c1, · · · , cp} of source nodes,

and a set D = {d1, · · · , dp} of destination nodes, find a minimum cost forest such that

each connected component of the forest contains the same number of source nodes

and destination nodes.

f(S) = 1 if and only if |S ∩ C| 6= |S ∩D|, and 0 otherwise.

3. T -join Problem: Given an even subset T of vertices, find a minimum-cost set of edges

that has odd degree at vertices in T and even degree at vertices not in T .

f(S) = 1 if and only if |S ∩ T | is odd, and 0 otherwise.

An example illustrating a run of the GW algorithm is given in Figure 7.5. This example

is from [19].

In this example, a minimum cost Steiner tree is needed to connect three terminal vertices

a, b and f . The underlying graph and three iterations of the GW algorithm are illustrated in

Figure 7.5. The final solution F ′ of the GW algorithm is indicated in thick lines. The active

and inactive components of Γ are represented by red and black dashed circles respectively.
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Procedure pickup(α, L′+)
Input: a list L′+ of positive tree edges; α denotes the amount of product in the vehicle
Output: a route of picking up the vertices

1 e = (p(u), u) ← the head of L′+

2 if u is a leaf then

3 pick up u and update α

4 return

5 endif

6

7 if α + n(e) ≤ k then

8 L′+ ← L′+ - {e}
9 else

10 n(e) ← n(e)− k + α

11 endif

12

13 Comment: L+ and L− contain edges from u to its children

14 full load deliver(α, L+, L−)

15

16 return

Figure 7.2: The pickup procedure for the full-load algorithm.
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Procedure deliver(α, L′−)
Input: a list L′− of negative tree edges; α denotes the amount of product in the vehicle
Output: a route of delivering the vertices

1 e = (p(u), u) ← the head of L′−

2 if u is a leaf then

3 service u and update α

4 return

5 endif

6

7 if α ≥ n(e) then

8 L′− ← L′− - {e}
9 else

10 n(e) ← n(e)− α

11 endif

12

13 Comment: L+ and L− contain positive and negative edges from u to its children

14 full load deliver(α, L+, L−)

15

16 return

Figure 7.3: The deliver procedure for the full-load algorithm.
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Algorithm GW(G, f)
Input:An undirected graph G = (V, E), edge costs ce ≥ 0, and a proper function f
Output:A forest F ′ and a value LB

1 F=Ø

2 Comment: Implicitly set yS ← 0 for all S ⊂ V

3 LB ← 0

4 Γ = {{v}|v ∈ V }
5 For each v ∈ V

6 d(v) ← 0

7 While ∃C ∈ Γ : f(C) = 1

8 Find edge e = (i, j), i ∈ Cp ∈ Γ, j ∈ Cq ∈ Γ, Cp 6= Cq that minimizes

9 ε = ce−d(i)−d(j)
f(Cp)+f(Cq)

10 F = F ∪ {e}
11 Comment: Implicitly set yC ← yC + ε · f(Cr)

12 For all v ∈ Cr ∈ Γ do d(v) = d(v) + ε · f(Cr)

13 LB ← LB + ε
∑

C∈Γ f(C)

14 Γ = (Γ− {Cp, Cq}) ∪ {Cp ∪ Cq}
15 endwhile

16

17 Comment: the deleting phase

18 F ′ ← {e ∈ F : f(N) = 1 for some connected component N of (V, F − {e})}

Figure 7.4: The GW algorithm.
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Figure 7.5: A run of the GW algorithm for an instance of the Steiner tree problem.
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The edge selected by the GW algorithm in each iteration is colored red in Figure 7.5. We

explain the second iteration of the example. At the beginning of the second iteration, the

list Γ contains the components {a, e}, {b}, {c}, {d}, {f}, {g}. Among all the components,

{a}, {a, e}, {b}, {f} are active and their dual variables have values 1, 0, 1, 1 respectively.

Other components are inactive and the values of their dual variables remain 0. Note that

although {a} is not in Γ, its dual variable would still contribute to the computation of ε

for this iteration. This is because y{a} has value 1 (set during the first iteration), and the

edge (a, b) is on the cut of {a} to V − {a}. In order to get the edge (a, b) tight, we need to

increase y{b} and y{a,e} by ce−y{a}−y{b}−y{a,e}
2 = 5−1−1−0

2 = 1.5. This edge is not chosen in

this iteration, since the edge (d, e) is already tight when y{a,e} is increased by 1. Also note

that once an active component C is removed from the list Γ, its dual variable yC would

remain unchanged starting from the next iteration. Thus the minimum violation set rule

and the uniform increase rule, together with the merging operation, ensure that the dual

solution is feasible.

Since there are exponential number of subsets, it is not feasible for the algorithm to

explicitly maintain the dual variables. Instead, the values of the dual variables are remem-

bered implicitly by the variable d(v) for each vertex v. Recall that in the algorithm, the

dual variables are referenced only when computing the minimum ε for the current iteration.

Consider an edge e = (u, v), where u and v are in two different components Cu and Cv of Γ

respectively. The algorithm needs to compute ce−
∑

S:e∈δ(S) yS to obtain the minimum ε for

the current iteration. Instead of increasing the dual variable yS by ε, the algorithm chooses

to increment the d variables of the vertices in S by ε. It is easy to see that ce − d(u)− d(v)

is equal to ce−
∑

S:e∈δ(S) yS , since for a set S such that e ∈ δ(S), either u or v must be in S.

An example is that in Figure 7.5, in the second iteration, when y{b} and y{a,e} are increased

by 1, da would be y{a}+y{a,e} = 2 since vertex a is inside {a} and {a, e}. Similarly db equals

to y{b} = 2. In order to get the edge (a, b) tight during the third iteration, y{b} and y{a,d,e}
must be increased simultaneously by cab−y{b}−y{a}−y{a,e}−y{a,d,e}

2 = cab−da−db
2 = 0.5 (note

that y{a,d,e} = 0). The difficulty of storing the dual variables is therefore circumvented.

In the reverse deleting phase, an edge is not deleted only if its deletion will cause a

connected component of the forest to be inactive. This also means that we can delete an

edge from F as long as its deletion still makes the forest feasible. In [40], the deletion phase

is implemented as follows. A component C of F is rooted at an arbitrary vertex, and in

a bottom up manner we compute the f value for each vertex; an edge joining a vertex to
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its parent is discarded if the f value of the set of vertices in its subtree is 0. However, for

some problems, the order of deleting these edges is crucial for the approximation bound.

For example, for the uncrossable functions, the edges must be deleted in the reverse order

of their selection to F .
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