
A DOMAIN AWARE GRAMMAR FOR PARSING

REQUIREMENTS INTO TYPED FOL

by

Amin Sharifi

B.Eng., Shiraz University, Department of Computer Engineering, 2004

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in the School

of

Computing Science

c© Amin Sharifi 2009

SIMON FRASER UNIVERSITY

Summer 2009

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

Last revision: Spring 09

Declaration of
Partial Copyright Licence
The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the “Institutional Repository” link of the SFU Library website
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing
the content, to translate the thesis/project or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in
part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Abstract

To document software and business requirements, it is desirable to use natural language text

which can be processed by computer (as is done e.g. by RavenFlow software). We argue that

requirements and their application domain model (including ontology) are interdependent,

and that by using the domain model we can parse and semantically analyze the requirements

more effectively. To this end we develop a type system for application domain entities that

includes multiple inheritance, as well as specializable and negated types. We integrate it

into the HPSG grammar formalism and extend the Minimal Recursion Semantics by adding

new predications and constraints. We show how, by informing the parser with criteria to

reject sentences on the basis of type mismatch, our system can less ambiguously translate

natural language sentences into a Domain-Typed First Order Logic format, through pruning

some semantically incorrect options within the search space.

iii

To my parents with love

and to my teachers with gratitude.

iv

Acknowledgments

I offer my deepest appreciation to my senior supervisor Professor Veronica Dahl whose

unlimited support and guidance made this research possible. I am absolutely grateful to

know her. She is not only excellent in science and creativity but also excellent in character

and a very caring mentor whose energy and happiness is truly inspiring.

I would like to thank Professor Robert F. Hadley whose support, patience and feedback

played a major role in the completion of this dissertation. Discussions with Professor Hadley

have always given me new insights on the topic.

Special thanks to Mr. Reto Ferri, who has been supporting me for many years, whom

I have always appreciated for his attention to details and his intellectually overwhelming

software design skills. I thank Mr. Ferri for accepting to travel to Canada from Europe to

be present at my thesis defense.

I would like to thank Dr. Ann Copestake for answering my question about MRS by email,

and Dr. Norbert E. Fuchs and Dr. Rolf Schwitter for answering my email and referring me

to useful resources.

I thank Professor Fred Popowich who accepted to examine my thesis and provided useful

feedback and Professor Ramesh Krishnamurti who accepted to chair the defense in short

notice.

And last but not least, I thank my family whose endless care, support and patience

helped me during the years that I have been far away.

v

Contents

Approval ii

Abstract iii

Dedication iv

Acknowledgments v

Contents vi

List of Tables xii

List of Figures xiii

List of Programs xv

1 Introduction 1

1.1 Requirements . 2

1.2 Use Cases: A Standard Way of Documenting Functional Requirements 2

1.3 Business Process Modeling . 4

1.4 Requirements and Domain Models . 5

1.5 Advocating the Use of Semi-automated Software to Maintain Requirements . 6

1.6 Focus and Organization of the Thesis . 8

Part I: The Type System 10

2 Types 11

2.1 Introduction . 11

vi

2.2 Types in Previous Theories of Grammar and Semantics 14

2.2.1 General Organization of the Knowledge of Syntax 14

2.2.2 Categorial Grammars and Typed Lambda Calculus 15

2.2.3 λ-Calculus with Subtyping . 22

2.2.4 Semantic Selection Restrictions and Types 24

2.3 The Need for a Specialization Shifting Operator 27

2.3.1 A Problem with Pronouns . 28

2.3.2 The Solution : Introducing Specializable Types 29

2.3.3 Other Possible Applications of Specializable Types 30

2.4 Incomplete Types : An Implementation of Specializable Types through Uni-

fication . 33

2.4.1 Hierarchical Representation of Types 33

2.4.2 Using Prolog Lists to Represent Types 36

2.4.3 Incomplete Types and Satisfying Type Restrictions with (SPECIAL) 36

2.5 Multiple Inheritance . 38

2.5.1 Multiple Inheritance and Logical Terms for Encoding Hierarchies . . . 41

2.6 Conclusion . 42

3 Our Type System 44

3.1 Basic Types in our Type System . 45

3.2 Most General Specializable Answers . 55

3.3 Checking ⊑ for All Unnegated Types and Special Cases of Negated Types . . 56

3.3.1 Subtype Checking Problem . 58

3.3.2 Subtype Checking Theorems, Unnegated Types 60

3.3.3 Subtype Checking Theorems for Special Cases of Negated Types . . . 62

3.4 Extended Subtype Checking Algorithm . 70

3.4.1 Checking Subtype Formulas Among Natural Types 73

3.4.2 The General Case . 77

3.5 Type Restriction Satisfaction through Subtype Checking 78

3.6 Conclusion . 79

Part II: The Grammar 80

vii

4 Introduction to HPSG 82

4.1 Background . 82

4.1.1 Features . 83

4.1.2 How Features Can Help . 83

4.2 Key Characteristics of HPSG . 86

4.2.1 Use of Typed Feature Structures . 86

4.2.2 Constraint Based . 88

4.2.3 Sign Based . 88

4.2.4 Importance of the Notion of Heads . 89

4.2.5 Surface Oriented . 89

4.2.6 Strongly Lexicalist . 90

4.3 General Format of Phrase Structure Rules in this Thesis 90

4.4 Satisfaction of an Extended Phrase Structure Rule 91

4.5 Phrase Structure Trees . 92

4.6 The Type Hierarchy of Grammar Entities . 92

4.7 Conclusion . 95

5 Syntactic Features and their Rules and Principles 96

5.1 The Head Feature . 96

5.1.1 The Agreement Feature . 97

5.1.2 The FORM Feature . 99

5.1.3 The PRED Feature . 100

5.1.4 Verb Specific Features . 102

5.1.5 Nominal Specific Features . 102

5.1.6 Determiner Specific Feature : COUNT 103

5.1.7 The Head Feature Principle . 104

5.2 Valence Features : How Expressions can Combine Together 105

5.2.1 Specifiers . 105

5.2.2 Complements . 112

5.2.3 The Valence Principle . 116

5.2.4 The Sentence . 116

5.2.5 Modification . 117

5.3 Coordination . 124

viii

5.3.1 Coordination of Sentences . 124

5.3.2 Coordination of Countable Noun Phrases 124

5.4 Argument Structure : ARG-ST Feature . 125

5.5 Copulas and Auxiliary Verbs . 126

5.6 Gaps : The Missing Phrasal Constituents . 131

5.6.1 Relative Clauses . 135

5.6.2 Wh-Questions . 137

5.7 Conclusion . 140

6 Semantic Features and their Rules and Principles 142

6.1 Simple Semantic Features . 143

6.1.1 Semantic Mode . 143

6.1.2 Semantic Index . 144

6.2 Semantic Restrictions . 145

6.2.1 Elementary Predications . 145

6.2.2 The Value of RESTR Feature . 147

6.3 The TYPE Feature . 149

6.4 Semantics of Simple Singular Nominals . 150

6.4.1 Semantics of Proper Nouns . 152

6.4.2 Semantics of Singular Pronouns . 153

6.5 Semantic Principles and Constraints . 155

6.5.1 Minimal Recursion Semantics General Constraints 157

6.6 Semantics of Singular Countable Noun Phrases 162

6.6.1 Singular Quantification and Count Nouns 163

6.6.2 Semantic Analysis of Singular Possessives 175

6.7 Semantic Analysis of Modification . 180

6.7.1 Adjectives . 180

6.7.2 Adverbs . 182

6.7.3 Prepositional Modifiers . 187

6.8 Semantics of Subordinate Conjunctions . 188

6.8.1 Relative Clauses . 188

6.8.2 The Conditional Statement . 191

6.9 Semantics of Coordinate Conjunction . 200

ix

6.9.1 Coordinated Sentences . 200

6.9.2 Semantics of Coordinated Count Nouns with Multiple Inheritance . . 204

6.10 Semantics of Copulas and Auxiliary Verbs . 207

6.10.1 Semantics of Negation . 209

6.11 Semantics of Wh-Questions . 211

6.12 Converting Scope Resolved Predications to TFOL 213

6.13 Conclusion . 215

7 Type Restrictions and Guards 216

7.1 Type Restrictions of Arguments as Guards 216

7.2 Type Restrictions of Copulas and Auxiliary Verbs 220

7.2.1 Subject Sharing and Guards . 221

7.3 Type Restrictions of Modifiers . 223

7.3.1 Predicative Modifiers and Subject Sharing 225

7.4 Type Restrictions of Gaps . 226

7.5 Guards for Relativizers . 227

7.5.1 Human Relativizers . 228

7.5.2 Non-human Relativizers . 229

7.5.3 Neutral Relativizers . 230

7.6 A Note on Coordination Rules . 231

7.7 Effective Use of Guards with Antecedent Resolution 232

7.8 Conclusion . 233

Part III: Implementation and Application 234

8 Implementation and Application 235

8.1 Implementation of the Grammar and the Parser 236

8.1.1 Brief Syntax of ProFIT . 237

8.1.2 The Parser and CHRG′ . 238

8.1.3 Scope Resolution . 241

8.2 The User Interface . 241

8.2.1 Automatic Antecedent Resolution . 243

8.2.2 Manual Antecedent Resolution . 243

8.2.3 Manual Choice among Multiple Readings 244

x

8.2.4 Handling New Lexical Entries . 244

8.3 Application . 248

8.3.1 A Sample of Structural Change and Affected Use Case Identification . 249

8.3.2 Relevance of Narrow Scope Variable Binding Condition to Semantic

Analysis of Use Cases . 253

8.3.3 Tense Predications and Use Cases . 255

8.4 Conclusion . 255

9 Conclusions and Future Work 256

9.1 Conclusion . 256

9.2 Contributions . 258

9.3 A Limitation . 259

9.4 Future Work . 260

A General Subtype Checking Algorithm 261

B Proof of Theorems 266

C Feature Types and their Permissible Values 295

Bibliography 300

Index 306

xi

List of Tables

3.1 Theorems of Subtype Checking . 59

5.1 Permissible feature values of FORM for verbs 100

6.1 Semantic Modes . 143

8.1 Operation signatures of the study permit example 251

8.2 The modified operation signatures of the Study Permit example 252

C.1 Feature Types and Permissible Values . 295

xii

List of Figures

2.1 An example class hierarchy . 12

2.2 A simple classification of syntactic categories 14

2.3 dog is now in the type hierarchy . 31

2.4 Our example type hierarchy . 34

2.5 Using incomplete types with pronouns . 37

2.6 A typical type hierarchy for a bookstore . 39

2.7 bookstore DAG shaped type hierarchy with multiple inheritance 40

2.8 dancer and writer . 40

2.9 dancer and writer combined to form a new type that inherits from both . . . 41

3.1 An example class hierarchy . 58

3.2 A simple C++ example for multiple inheritance, with its type hierarchy in

our formalism. 76

4.1 Our grammar’s feature structure type hierarchy 93

4.2 Our grammar’s semantic feature structure type hierarchy 94

5.1 Agreement type hierarchy . 98

8.1 General outline of the system implementation 235

8.2 The implementation of the HSR rule with CHRG′ and ProFIT 240

8.3 The main window of the user interface . 242

8.4 Automatic antecedent resolution . 243

8.5 Manual antecedent resolution . 244

8.6 Manual choice of the intended reading among multiple interpretations 245

8.7 Asking the transitivity of a new verb . 246

xiii

8.8 Asking the details of a new verb . 246

8.9 Encountering a new noun . 247

8.10 Asking the details of a new noun . 248

8.11 Initial domain type hierarchy of the study permit example 250

8.12 The modified domain type hierarchy of the study permit example 252

xiv

List of Programs

3.1 Finding the most general common subtypes of t1, t2 62

3.2 Enumerating common subtypes of t1, t2 that are not a subtype of σ 65

3.3 Finding all of the most general subtypes of µ that are disjoint with σ. 67

3.4 Reaching a most general natural subtype of µ that is disjoint with σ 68

3.5 Interactive natural type detection algorithm 72

3.6 Simple algorithm to check if two natural types are disjoint. 73

3.7 Interactive partition algorithm . 74

3.8 Subtype checking over natural types, version I 75

3.9 Subtype checking over natural types, version II 77

7.1 The snh function to calculate the specializable non-human subtype 229

A.1 The general algorithm of subtype checking . 261

xv

Chapter 1

Introduction

In this thesis we develop a grammar, a parser and a program that extracts semantics from

controlled natural language text, through parsing it with reference to an evolving ontology.

By the adjective “evolving” we mean that the natural language text might add new knowl-

edge to the ontology. The semantics of the text can be stored in a knowledge-base for future

querying or reasoning. This has been of interest in the Natural Language Processing com-

munity for long. We blend it with the requirements sub-discipline of software engineering

and business analysis [44] to create a desirable application in industry. We would like our

program to parse requirement texts (system behavior and business process descriptions in

terms of use cases) and extract their semantics in some suitable formal representation.1

Extracting semantics from natural language text has been a very challenging task in

Natural Language Processing. Although it is very easy to write small sized parsers and

semantic extractors for processing simple and toy sentences, it is really hard to write a

program for parsing and analyzing sentences of a real world application. Applications of

the system developed in this thesis must be undertaken with caution.

Disclaimer:

The grammar, parser, antecedent resolution and FOL conversion methods as described in

this thesis with the provided implementation are research results and should not be directly

used without expert supervision in a real application. Neither the student nor the university

provide any form of warranty on the theory and implementation provided here.

1Although this is the desired application, for the development of the grammar we use very simple English
sentences throughout the thesis, for ease of exposition of the grammar concepts.

1

CHAPTER 1. INTRODUCTION 2

1.1 Requirements

The development of medium to large sized software systems begins with a requirement phase,

through which an understanding is sought by the software team, led by a business/system

analyst2, about what the client wants from the desired software. This phase typically needs

several meetings in which the client explains to the software team what exactly she/he wants

from the software3, and which results in statements describing the desired behavior of the

software system as agreed by both the client and the software team. These statements

constitute what we call the software requirements of that specific project. The success of

a project is defined in terms of the satisfaction of all of the requirements requested by the

client.

In this thesis we are only interested in parsing functional requirements, and business

rules. Functional requirements also known as behavioral requirements describe the behavior

of a system, its capabilities and features. They comprise a significant portion of the require-

ments. They are so important that requirements are usually categorized as functional or

non-functional.4 Functional requirements do not state the details of “how” the system is

going to perform a task, but rather state “what” tasks it must be able to perform. Business

rules, according to [44]: describe “a policy, guideline, standard, or regulation upon which the

business operates.” “A business rule is a statement that defines or constrains some aspect

of the business.” Reference to business rules in the requirements of an upcoming software

system is necessary if the software is going to be used by a business to achieve some of its

business goals.

1.2 Use Cases: A Standard Way of Documenting Functional

Requirements

An excellent way to document functional requirements is by use cases [16, 49]. A use case is

a natural language text that describes a story about how the upcoming system can be used.

It involves the interactions between users and the upcoming system (or the components of

2By software team we refer to business/system analysts, software architect, and software developers. See
page 82 of Larman [49].

3See for example page 76 of Larman [49].
4Other requirements include usability requirements, reliability requirements, performance requirements,

supportability requirements. For details please refer to [39].

CHAPTER 1. INTRODUCTION 3

the system in lower levels).

Users of the system that interact with it through a use case to accomplish some goals

are called the stakeholders of that use case.

An actor in a use case is anyone or anything with behavior (with regards to the use

case), i.e., someone or something that interacts with another entity in the use case.

A scenario in a use case is a sequence of steps described in natural language that specifies

the order of the events and interactions that happen in that use case. There is a main

scenario in which no unexpected thing occurs and all operations succeed. This scenario is

called the main success scenario. Alternate scenarios are usually necessary to describe how

the system responds when an error happens.

The conditions that must hold in order for a use case to be applicable are called the

preconditions of that use case. And the conditions that must hold when the use case

terminates are called postconditions.

There are different formats to write a use case depending on the level of detail needed,

namely brief, casual and fully dressed. Without going into details of these formats5, we

emphasize that natural language is used to write use cases.

Example 1.1 Here is an example of a simplified use case6 describing the main success

scenario of using an ATM machine in casual format.

Preconditions:

The ATM machine shows the welcome message.

Main Success Scenario:

1. A customer enters her/his banking card into the card slot of the ATM machine.

2. The ATM machine asks the customer to enter her/his PIN number.

3. The customer enters the PIN number.

4. The ATM machine verifies the PIN number.

5. The ATM machine shows the customer’s account balance on its screen.

6. The customer presses the OK button.

7. The ATM machine returns the banking card.

8. The customer pulls the card out of the slot.

9. The ATM machine shows the welcome screen.

5The interested reader can refer to [16, 49].
6We have omitted the details including alternate scenarios and the post condition.

CHAPTER 1. INTRODUCTION 4

Of course, a good choice is to store these documents electronically. So the use of editor

software for writing these documents is trivial. This would ease the collaboration among the

client and the members of the software team, as documents can be electronically shared7.

We will use this as one component of an argument we provide in the following sections to

justify the use of software that is also able to perform some syntactic and semantic analysis

on the documents. An example that is already available in industry to manage use cases is

the RavenFlow8 software [64].

1.3 Business Process Modeling

Use cases can be used to document the operation and processes of an organization, where

they are called business use cases [16]. A business use case describes the interactions between

the people and departments in the organization. They could refer to the existing design

of the business or its future design. The act of identifying and documenting the processes

within an organization, by use cases for example, is called business process modeling. The

resulting use cases, describe the functional requirements of an organization rather a software

system.

The following shows a simplified business use case for the Citizenship and Immigration

Canada describing the process of issuing a study permit for an international student.

Preconditions:

A university in Canada admitted an international student.

The student received the admission letter from the university.

Main Success Scenario:

1. The student obtains an IMM1294 application form and fills it.

2. She/he attaches the admission letter to the application form.

3. She/he submits the application form to a visa office.

4. The visa office verifies the admission letter.

5. It9 records the application form.

7For example, by using a version control software over a network.
8See http://www.ravenflow.com
9The antecedent of this pronoun is grammatically ambiguous, however with semantic analysis we are able

to determine that the correct antecedent is the visa office. However one should note that resolving pronoun
references automatically is a fallible process, as a general rule, and human supervision is required on the

CHAPTER 1. INTRODUCTION 5

6. It issues a study permit for the student.

7. It sends the permit to the student.

If all of the business processes are modeled with use cases that are parsed and seman-

tically analyzed, it would be easier to improve the processes, modify the organization and

etc. Because we would be able to identify the dependent processes that need to be modified

as a result of a modification in another part of the business. Also, we can check the con-

sistency and the completeness of the business processes by semi-automated tools to ensure,

to some extent10, that the organization’s design does not have flaws.

1.4 Requirements and Domain Models

As part of gathering requirements, it is necessary to model the domain of the system, which

results in a domain model . Any important entity of the system or its usage is represented

by a domain object or a conceptual class. The domain model contains these classes with

their relations. A domain model can be thought of as containing an ontology that describes

the domain.

From one direction we observe that the domain model is the product of analyzing and

understanding the requirements in natural language. For example an early approach pro-

posed by Abbott [1] identifies the noun phrases in the requirements and proposes them

as the possible conceptual classes of the domain. A human being can then prune away

rudimentary and unnecessary classes from the proposed candidates.

From the other direction, it can be thought that the requirements refer to and depend

on an upcoming domain model, if the supported behavior of each entity is specified in

the domain model. From this perspective, if a domain model with supported behaviors is

available (even a partial one), then some sentences cannot be accepted as valid requirements.

These sentences are the ones that expect an unsupported behavior from an entity. Like the

sentence the table talks or the university issues a study permit for the student. We say these

sentences contain type mismatches, that is an expression with an inappropriate domain type

is used, such as table or university respectively for the mentioned sentences.

As another example, the following sentence for our ATM use case example is invalid

automatic results.
10This is due to the fact that analyzing natural language and extracting semantics is a very challenging

task, so eventually supervision by human experts is imperative.

CHAPTER 1. INTRODUCTION 6

with reference to the domain of ATMs and customers. The reason is, in this domain, the

customer is not able verify the authenticity of a banking card, i.e., the behavior is not sup-

ported by an entity of type customer.

10. The customer verifies the authenticity of the banking card.

So, the domain model with supported behavior of entities and the requirements are

interdependent. We assume the domain model contains the supported behavior of the

entities it describes in the rest of the thesis.11

1.5 Advocating the Use of Semi-automated Software to Main-

tain Requirements

While the maintenance of use cases by software is the default choice for ease of sharing

and editing, it might be also promising to have a semi-automated tool (such as RavenFlow

[64]) that is able to syntactically and to some extent semantically analyze the requirements.

Using such a tool could reduce the semantic mistakes in requirements.

On the other hand since requirements must be precise and unambiguous, it could be

desirable to have a tool translate the requirements into a formal representation which is exact

and unambiguous. This formal representation can be automatically used to do consistency

and completeness checks and to answer queries about the system [34, 68].

We speculate that this can be achieved to some extent by a parser, analyzer that trans-

lates a portion of English into a variant of the First Order Logic. Since a complete analysis

of syntactic and semantic analysis of natural language is still an open problem, we have

to restrict the language coverage to only a portion that is well understood. A controlled

language is such a portion of the whole language for which precise grammar rules exist.

One of the most prominent work in controlled English that is also motivated by the

potential application in parsing requirements is the work by Fuchs et al. [34, 35, 33],

specially the Attempto project where they develop a parser from controlled English into

Discourse Representation Structures [46]. In Attempto a large number of DCG rules are

11This might seem contrary to the Unified Process definition of the domain model [49], in which behaviors
are not specified. The supported behavior of entities are implicit in that context. However, in this thesis
for the purposes of semantic analysis we need to explicitly specify these behaviors. In the Unified Process
framework, the behaviors are explicitly specified in the design model after the domain model is explored.

CHAPTER 1. INTRODUCTION 7

applied to model a fragment of English. This number as of 2008 is more than 220. This

amount of rules makes the maintenance of the system a bit difficult and also makes it very

dependent to the choice of language, in this case English. In this thesis we apply Head-

driven Phrase Structure Grammar (HPSG) that dramatically reduces the number of rules

and obtains a higher degree of language independence. So, in our system one can switch to

another language by just using a different lexicon (with lexical rules).

Another limitation of Attempto is the restricted form of English that is used. For

example the interpretation of a sentence with multiple quantifiers is fixed according to the

order in which the quantifiers appear. The system that we develop in this thesis is more

flexible by allowing all the interpretations be produced and the appropriate one be chosen

by the user. Of course, later heuristics can be employed to prioritize interpretations.

Among other important controlled languages are the Semantics of Business Vocabulary

and Business Rules (SBVR) Structured English [59, 10, 50], and I1CE-V1 [72] which is

based on SBVR Structured English and the Discourse Representation Theory approach of

Attempto.

All of these instances of controlled languages for the purpose of documenting business

or software requirements show the desire to document requirements in a standard way that

is processable by computers.

Doubtless, using a controlled language for requirements is indeed a limiting factor of

the real world usage of a system that maintains and analyzes requirements. However there

is evidence such as the use of controlled language in Boeing [76] that suggests the use of

controlled language in industry is useful.

Since there is an interdependence between the domain ontology and the requirements, we

propose to develop a a type system12 for the domain entities and use it in the grammar and

parser. Using such a type system can prevent the parsing of some of the natural language

sentences with type mismatches. Also it will help resolve anaphora by choosing antecedents

that are compatible with their referents with respect to the ontology and the supported

behavior of the entities.

12A type system is a set of rules that assigns types to expressions, and avoids certain combinations of
expressions according to their types. In programming language community the expressions are pieces of
computer code but here they are natural language expressions.

CHAPTER 1. INTRODUCTION 8

1.6 Focus and Organization of the Thesis

The main contribution of this thesis is the development of a type system for application

domain entities, as opposed to for just grammar entities as was the focus in most previous

work. We formalize our type system as an extension of typed λ-calculus, to include multiple

inheritance, specializable and negated types. We integrate it into a popular grammar for-

malism - HPSG - and show how, by informing the parser with criteria to reject sentences on

the basis of type mismatch, it can translate natural language sentences into a Domain-Typed

First Order Logic with less ambiguity, resulting from pruning of semantically incorrect op-

tions within the search space. We also provide a brief example, in chapter 8 of an interesting

potential application: parsing requirements.

The thesis is broken down to 3 parts. In the first part we focus on the type system. In

chapter 2 we study some of the existing type systems that are in use in grammar formalisms,

all of which focus on the grammar entities rather than the application domain entities. We

specify the desirable features of a type system for the application domain, including multiple

inheritance, specializable and negated types. In chapter 3 we elaborate on the type system

and present its characteristics by providing the relevant theorems, and we implement the

type system.

In part 2 of the thesis, we set the goal of integrating the type system we developed in the

previous chapters to the HPSG formalism. In chapter 4 we present a brief introduction to the

HPSG formalism. In chapter 5 we study the syntactic properties of the grammar. In chapter

6 we study the semantic component, where we also add new contributions like additional

capability for analyzing the discourse by discourse predications, and various variable binding

conditions that facilitate conversion of the semantics to a variant of First Order Logic. In

chapter 7 we specifically describe how the type system of part 1 can be integrated to the

HPSG grammar that we developed in chapters 4, 5, and 6.

In part 3 of the thesis we discuss how we have implemented the grammar and the parser,

and we demonstrate how the user interface of our system can be used. We finally show an

example of a potential application of the system in parsing use cases.

Chapter 9 provides our conclusion, and highlights our contributions and discusses future

work.

CHAPTER 1. INTRODUCTION 9

Note:

Although we intend to use the grammar for parsing requirements, for ease of exposition and

more understandable examples, most of the sample sentences that we provide throughout

the thesis are very simple and not from an actual use case. A solid use case example that

is processable by our system is provided in chapter 8.

Part I:

The Type System

In this part of the thesis we discuss the importance of types and study how they have been

used in grammar. We propose a new type system that can be used for the domain entities of

a grammar’s application domain. We argue how this type system can be used to reduce the

number of readings of natural language sentences by eliminating those readings that lead

to type mismatches. We extend the subtype relationship from simple types to complex,

specializable, and negated types. We then implement this type system.

10

Chapter 2

Types

2.1 Introduction

Human beings have the capability of abstracting the surrounding world in terms of separable,

and distinguishable forms called objects.1 The normal human brain among its many known

and unknown functions is a classifier of objects, i.e., it can identify and/or learn the common

properties of objects and group them in classes, e.g., a class of substance called water, a class

of objects called birds, a class of substances food, and etc.2 Objects can be either physical

entities or conceptual abstractions. Some examples of conceptual classes include a class of

conceptual objects called jokes, a class consisting of all instances of happiness, and so on.

So classes are used to describe a set of objects that share some common behavior or

attributes. For example this thesis is an object belonging to the class book.

Definition 2.2 Instance Relation

If an object x belongs to a class σ we say x is an instance of σ, and denote it by x : σ

For any object x and class σ,

x : σ ⇐⇒ x is an instance of σ

Furthermore there is an organization of classes in our knowledge of the world. A class

1We do not claim this ability is exclusive to human beings, for example, a pigeon might also see the world
around it in form of objects, but that, we do not speculate on.

2We mentioned ‘normal human brain’ because there is evidence that damage to certain areas of brain
can cause object classification and recognition problems in some accident survivors. Also there are a very
few number of patients not involved in any accident who are unable to recognize objects. This condition is
known as agnosia in human neuropsychology.

11

CHAPTER 2. TYPES 12

can be a subclass of another. For example bird is a subclass of animal, and elephant is a

subclass of mammal, etc. Figure 2.1 exemplifies in a graphical way. Each edge represents a

subclass relation between two classes. The class that the edge goes out from is a subclass

of the class that the edge goes into. The subclass relationships in a domain are called the

taxonomy or the class hierarchy or the type hierarchy of the domain.

conceptual

all

physical

joke happiness projectanimal

bird

elephant

mammal reptile

human beluga

Figure 2.1: An example class hierarchy

In this thesis we use the terms types and classes interchangeably. So a subtype is the

same as subclass in this thesis.3

Definition 2.3 Subclass (Subtype) Relation : ⊑

The subclass relation models the natural language is-a relation. That is for classes σ and τ

we have σ is a subclass of τ if and only if any instance of σ is an instance of τ too.

Example 2.4 Here we show how to represent this class and instance information:

A beluga is a mammal. A human is a mammal. An elephant is a mammal. A mammal is

an animal. Tiqa4 is a beluga.

3We should note that in some Object Oriented Languages type is slightly different from class. A class is
referred to by an object type, whereas a type can be a non-object type, i.e., a primitive type (e.g., integer
type for integer numbers, boolean type for True, False values, or character type for character symbols). The
distinction between primitive and object types however is for technical and historical reasons and here there
is no need to retain it in our formulation as our level of representation is more abstract than any specific
programming language.

4Tiqa is the name of a beluga whale that was born in Vancouver Aquarium on June 10, 2008

CHAPTER 2. TYPES 13

beluga ⊑ mammal

human ⊑ mammal

elephant ⊑ mammal

mammal ⊑ animal

T iqa : beluga

The concepts of objects and classes are so natural and basic that they can be found in

almost all natural language sentences. If a sentence is a combination of a subject and a

predicate, then at least the subject of the sentence refers to some object or some class of

objects.

In the early 60s, a few decades after the first computer programming languages emerged,

the importance of the idea of objects and classes was recognized by researchers in the pro-

gramming language design community and SIMULA I, the first Object Oriented Program-

ming (OOP) language, was created by Ole-Johan Dahl and Kristen Nygaard. The main

goals in the design of this language included system description (for system analysis) and

system prescription (for implementing the system)[22, 21]. SIMULA I (together with C) was

the basis of a very important OOP programming language: C++ [70], and C++ was the

basis of the next generation of OOP languages such as Java and C#.

Business and system analysts also heavily use the concept of objects and classes (no

wonder why SIMULA I had the facilitation of system analysis as one of its objectives). Since

it is our goal to use our requirement analyzer system in business/system analysis, we should

pay special attention to classes and objects in the parser of our requirement analyzer system.

To this end we sometimes draw analogies or contrasts between natural language concepts

and programming language concepts.

This chapter is organized as follows. In section 2.2 we give an introduction to how type

theory and types have been used in linguistics and Natural Language Processing, and in

particular, how a type system can help disambiguate a syntactically ambiguous sentence.

Then in section 2.3 we introduce specializable types and show how they can be used in

semantics. In section 2.4 we present the work of Dahl [23, 24] about incomplete types

that could be thought of as an implementation of specializable types with Prolog. Then

in section 2.5 we introduce the notion of multiple inheritance and show briefly how it can

be handled in extensions of incomplete types [31, 51]. We discuss the limitations of these

schemes, and set the stage ready for the next chapter, in which we introduce our type system

CHAPTER 2. TYPES 14

that efficiently deals with both specializable types and multiple inheritance.

2.2 Types in Previous Theories of Grammar and Semantics

In what follows we present three approaches to types and type hierarchies that have been

used in theories of grammar. Then we discuss how types can be used for disambiguation.

The term ‘category’ sometimes is used for what we refer to as ‘type’.

2.2.1 General Organization of the Knowledge of Syntax

Grammarians have for a long time used the notion of syntactic categories, ones like verbs,

nouns, adjectives, etc to organize their knowledge about the distribution and the role of the

expressions that belong to each of these categories. Each category represents a group of

words or phrases (which are valid combinations of words according to grammar rules), that

have some common roles and distribution restrictions in grammatical sentences. If these

categories are applied to words they are called parts of speech or lexical categories. On

the other hand if they are applied to phrases they are called phrasal categories. A simple

classification of syntactic categories is shown in figure 2.2.

verb

syntactic category

determiner noun adjective

intransitive verb transitive verb

Figure 2.2: A simple classification of syntactic categories

This classification of expressions is used in a context free grammar (CFG) to form rules

that combine words and phrases to build more complex phrases or eventually sentences. We

shall use symbols D, A, N, IV, TV for determiner, adjective, noun, intransitive verb, and

transitive verb categories respectively. NP is used for a noun phrase, VP for a verb phrase,

and AP for an adjective phrase. Some CFG rules might look like:

S → NP VP

VP → IV

CHAPTER 2. TYPES 15

VP → TV NP

NP → D N

NP → D A N

These categories can be thought of as types, and diagrams like figure 2.2 are in fact type

hierarchies for the domain of objects that are parts of speech in grammar.

Besides the use of type hierarchies in CFG, more recent theories of grammar, especially

Head Phrase Structure Grammars (HPSG) heavily use an extensive type hierarchy for the

organization of feature structures. An HPSG type hierarchy is similar, basically to a type

hierarchy that organizes verbs, nouns, adjectives, determiners (as above). We shall see them

in more detail in chapter 4.

2.2.2 Categorial Grammars and Typed Lambda Calculus

Categories (or types) in categorial grammars can be either syntactic or semantic. A semantic

type is assigned to every syntactic category, to ensure that the syntactic category directly

carries its meaning functionality [13] (We assume that there is a mapping from syntactic

types to semantic types). In the lexicon, every lexical item is assigned to a syntactic category

(type), and a meaning which is a λ-term of a type equal to the semantic type associated with

the syntactic category of the lexical item. Phrases carry syntactic categories and meanings

that are the result of the combining constituent syntactic categories and meanings. A

phrase’s meaning is a λ-term that is compatible with the semantic type associated with the

syntactic category of that phrase. In what follows we briefly introduce these ideas.

Simply Typed λ-Calculus

Terms of a simply typed λ-calculus are called λ-terms. These terms are used for the semantic

component of a categorial grammar. To this end they should enable us to denote relations

between individuals (objects) as well as individuals. In particular, relations can hold or not

hold among certain individuals, thus they have a truth value in {True, False}. Predicates

and in general formulas of a first order logic language can be used to form λ-terms. Ind

is defined to be the type of individuals and Bool is defined to be the type of propositions

CHAPTER 2. TYPES 16

(that can be either True, or False)5. Ind and Bool are included in the set of basic types6.

From basic types more complex types are built using the following definition. The fact that

λ-terms in natural language semantics can refer in their simplest forms to individuals or

truth values justifies the choice of Ind and Bool as the basic types. We denote the set of

basic types by BasTyp.

Definition 2.5 λ-types

• Every basic type is a λ-type.

• If σ and τ are λ-types, then σ → τ is also a λ-type, which is the type of a function

that takes an argument of type σ and returns a value of type τ .

The set of types constructed this way is denoted by Typ.

Note that we define → to be right associative, i.e., σ → (γ → τ) can be abbreviated to

σ → γ → τ .

Definition 2.6 λ-Calculus Vocabulary7

A vocabulary of a λ-calculus language consists of

• a set of basic types BasTyp, by which a set of λ-types Typ is obtained using defini-

tion 2.5

• a collection of special symbols of argument place holders which we denote usually by

symbols a1, a2, ..., each associated to a λ-type (we sometimes use the notation aτ
i to

explicitly show the type (in this case τ) of the argument place)

• an infinite set Var of variable symbols, such as x, y, z, x1, ... disjoint from argument

place holders, where each variable is associated to a λ-type (we sometimes use the

notation xτ to explicitly show the type (in this case τ) of the variable)

5Here we use a notation similar to that of Carpenter [13]. Montague [55] uses e for individuals and t for
truth values.

6Some authors like Gunter [40] use the term ‘ground types’ instead of ‘basic types’, and use ‘higher types’
to refer to types that are built from ground types using definition 2.5

7What we present in this definition is not used in Carpenter [13], but we believe the use of a λ-vocabulary
helps us provide a more precise and formal definition of λ-terms and their relation to natural language
semantics.

CHAPTER 2. TYPES 17

• for each natural number n ≥ 0, a set of basic n-ary functions denoted by BasFuncn,

of the form: f τ (aσ1
1 , ..., aσn

n) where f is a function symbol, each ai is an argument place

holder of type σi, and τ is the type of the return value of the function f .

Note: A functions of arity zero is called a constant.

Definition 2.7 λ-terms

• (i) every variable xτ is a λ-term of type τ

• (ii) for every f τ (aσ1
1 , ..., aσn

n) ∈ BasFuncn,

f is a λ-term of type σ1 → ...→ σn → τ .

• (iii) if α is a λ-term of type σ → τ and β is a λ-term of type σ then (α(β)) is a λ-term

of type τ . (application rule)

• (iv) if α is a λ-term of type τ and if x is a variable of type σ then λx.α is a λ-term of

type σ → τ . (abstraction rule)

Remark 2.8 If a basic function PBool(xInd
1 , ..., xInd

n) is a member of BasFuncn of a λ-

calculus, then P (x1, ..., xn) can actually be thought of as a first order logic (FOL) n-ary

predicate symbol. Note that formulas in FOL are in fact functions from individuals to truth

values. We can use this remark to convert the usual FOL semantics of a natural language

expression to its λ-calculus counterpart.

Definition 2.9 Free and Bound Variables

The set Free(α) of free variables occurring in the λ-term α is defined recursively by:

• Free(x) = {x} if x ∈ Var

• Free(f) = ∅ if f ∈ BasFuncn, for some n ∈ N

• Free(α(β)) = Free(α) ∪ Free(β)

• Free(λx.α) = Free(α)− {x}

A variable is said to be bound in a λ-term if it is not free.

Definition 2.10 Simple Substitution

For any λ-terms α, y, and any variable x,

α.[x 7→ y] is a λ-term that is resulted from replacing any occurrence of y with x in α.

CHAPTER 2. TYPES 18

Definition 2.11 Reduction Rules

λ-terms can be transformed to simpler but logically equivalent terms. A transformation

of this kind is called a reduction. Reductions are possible through the following reduction

rules:

• (α-reduction) : λx.α⇒ λy.(α.[x 7→ y])

if y is not a free variable in α and none of the free variables of y become bound

when y is substituted for x in α.

• (β-reduction) : (λx.α)(β)⇒ α.[x 7→ β]

if none of the free variables of β become bound when β is substituted for x in α.

• (η-reduction) : λx.(α(x))⇒ α

if x is not a free variable of α.

Example 2.12 Suppose our vocabulary’s BasFunc0, BasFunc2 are respectively

{johnInd, maryInd}

{likesBool(aInd
1 , aInd

2)}.

The first argument of likes has the role of the person (or the object) being liked, and

the second argument has the role of the person who likes what is referred to by the first

argument.

By applications of part (ii) of definition 2.7 we obtain that the following are λ-terms:

john,

mary,

likes

respectively of the following types:

Ind

Ind

Ind→ Ind→ Bool

By applications of (iii) in definition 2.7, we obtain that:

(likes(mary))

is a λ-term of type Ind→ Bool.

CHAPTER 2. TYPES 19

This could represent that mary is liked. However, who likes her is underspecified.

By application of the same rule we obtain that:

((likes(mary))(john))

is a λ-term of type Bool. This could be used to represent the semantics of the natural

language sentence:

John likes Mary.

The Category System

Here by a category we are refer to a syntactic category, as we discussed about in section 2.2.1.

Like λ-calculus we start from a set BasCat of basic categories. Basic categories are usually

chosen NP (for noun phrase), N (for noun), S (for sentence).

Definition 2.13 Categories

The set Cat of categories is built from the set of basic categories using the following rules:

• (i) Every basic category A is a member of Cat

• (ii) If A, B ∈ Cat, then (A/B), (B\A) ∈ Cat

A/B is the syntactical category of a natural language expression that can be combined

from the right with another expression of syntactic category B to produce a phrase of

syntactic category A. For example NP/N is the category of determiners, meaning that a

determiner can be combined with a noun to its right to form a noun phrase. Similarly,

NP\S is the category of intransitive verbs, as they could combine with a noun phrase from

the left to produce a sentence.

As said before, we assume each syntactic category has a direct relation to its semantic

functionality, specifically, the λ-type of the meanings its expressions can carry. So every

category is associated to a λ-type. This association is the responsibility of what is called

type assignment function. Here we define the type assignment in two stages. In the first

stage, every basic category is associated to a proper type by the grammarian, and in the

second stage, the types of complex categories (those that are built by the application of (ii)

in definition 2.13) are defined.

CHAPTER 2. TYPES 20

Definition 2.14 Basic Type Assignment

The basic type assignment is a function bta : BasCat 7→ Typ, that should be provided in

the grammar.

One possible basic type assignment can be:

bta(NP) = Ind

bta(N) = Ind→ Bool

bta(S) = Bool

Definition 2.15 Type Assignment

The type assignment is a function ta : Cat 7→ Typ, that is defined this way:

• ta(X) = bta(X) if X ∈ BasCat.

• ta(A/B) = ta(B\A) = ta(B)→ ta(A)

The Categorial Lexicon

The categorial lexicon is the first place where the all this information about basic expressions

of a language comes together:

• orthographic information (the way the basic expression is written)

• the syntactic category that the basic expression belongs to

• the meaning of the basic expression (a λ-term)

Basic expressions are the simplest expressions for which the above information is pro-

vided, and from which more complex expressions can be built using the rules that we will

see later in this section.

Definition 2.16 Categorial Lexical Entries

A lexical entry of a categorial lexicon is a tuple < e, A, α >, where e is a basic expression,

A is the syntactic category that the expression belongs to, and α is the meaning that is

associated to the expression. The meaning must be a λ-term of type ta(A).

Here we use the following notation to express the fact that the above tuple is in the lexicon.

This comes handy when we use the grammar to parse phrases, and to determine their

meaning.

Lexicon⇒ e ≡ (α, A)

CHAPTER 2. TYPES 21

Generally we use e ≡ (α, A)8 to denote that e is an expression of syntactic category A

with meaning α. In the next definitions we show how phrases (complex expressions) can be

built from other expressions.

Now we state the two most important grammar rules of a categorial grammar, namely

forward application and backward application, known as application schemes.

Definition 2.17 Application Schemes

Forward application : e1 ≡ (α, A/B), e2 ≡ (β, B)⇒ e1 ⊕ e2 ≡ (α(β), A)

Backward application : e2 ≡ (β, B), e1 ≡ (α, B\A)⇒ e2 ⊕ e1 ≡ (α(β), A)

where ⊕ is the concatenation operation.

Definition 2.18 Phrases

If an expression of the grammar is not in the lexicon, but can be built from grammar rules,

then it is called a phrase.

Using the information in the lexicon and the application schemes we can parse complex

phrases in a bottom-up fashion. As a phrase is constructed using application schemes, the

meanings of the constituents are combined to form the meaning of the phrase, this is referred

to as semantic compositionality .

Example 2.19 Suppose the lexicon contains these items:

< “john”, NP, john >

< “mary”, NP, mary >

< “likes”, (NP\S)/NP, λxλy.likes(x, y) >

then we will have:

Lexicon⇒ “mary” ≡ (mary, NP) (∗1)

Lexicon⇒ “likes” ≡ (λxλy.likes(x, y), (NP\S)/NP) (∗2)

forward application : (∗1), (∗2)⇒

“likes mary” ≡ ((λxλy.likes(x, y)(mary)), NP\S) (∗3)

8This is somewhat different from the notation that Carpenter [13] employs, in which the orthographical
information of the expression, what we denoted by e, is omitted after the first application of a rule that
produces a phrase. However, we should mention that Carpenter brings the expression e, with the meaning
and syntactic category together in phrase structures. We use ≡ instead of : because we already use : for
instance relation.

CHAPTER 2. TYPES 22

β-reduction : (∗3)⇒ “likes mary” ≡ (λy.likes(mary, y), NP\S) (∗4)

Lexicon⇒ “john” ≡ (john, NP) (∗5)

backward application : (∗5), (∗4)⇒

“john likes mary” ≡ ((λy.likes(mary, y)(john)), S) (∗6)

β-reduction : (∗6)⇒ “john likes mary” ≡ (likes(mary, john), S) (∗7)

A Limitation of CG with Simply Typed λ-Calculus

Categorial grammar (CG) provides a subtle connection between syntax and semantics and

provides a comprehensive type system for semantic and syntactic categories. However, the

type system was not originally designed to deal with the type hierarchies that exist among

individuals. In other words no elaborate type system is provided for Ind, the individuals.

It is claimed in [13]9 that the type system used in CG can be extended to a sophisticated

type system employing inheritance-based polymorphism. Next we will very briefly study

one possible such type system.

2.2.3 λ-Calculus with Subtyping

By polymorphism we mean that a λ-term can be of multiple types. Inheritance-based poly-

morphism is the polymorphism that results from type hierarchies in the type system. This

happens if there is a type hierarchy below the type Ind.

Example 2.20 Back to the type hierarchy provided in figure 2.1, if for example tiqa is a

beluga, then at the same time she is a mammal, and an animal. The relevant information

is:

animal ⊑ Ind

mammal ⊑ animal

beluga ⊑ mammal

T iqa : beluga

Now if the intransitive verb breathes is defined to be a basic function of the form:

breathesBool(amammal
1)

then breathes will be a λ-term of type: mammal→ Bool. But this leaves us in a situation

9Although a specific type system is not suggested.

CHAPTER 2. TYPES 23

where the following two terms cannot combine together to form the phrase “Tiqa breathes”.

tiqa : beluga

λx.breathes(x) : mammal→ Bool

The reason for this is that the application rule (item (iii) of definition 2.7) expects the

same type for the expected argument of the function (mammal), and the actual argument

(beluga).

To solve the problem shown above, together with other problems, some additional axioms

are provided in extensions of λ-calculus [54, 43, 42, 58, 62, 26]. Some of the important ones

are shown below.

Subtype Axioms

τ ⊑ τ : (REFL)

(σ ⊑ τ) ∧ (τ ⊑ ζ)⇒ σ ⊑ ζ : (TRANS)

(τ ′
1 ⊑ τ1) ∧ (τ2 ⊑ τ ′

2)⇒ τ1 → τ2 ⊑ τ ′
1 → τ ′

2 : (ARROW)

(x : σ) ∧ (σ ⊑ τ)⇒ x : τ : (SUB)

Applying the axiom (SUB) on example 2.20 allows us to infer that

tiqa : mammal

which then allows the application rule to derive:

(λx.breathes(x)(tiqa))

that using β-reduction simplifies to:

breathes(tiqa)

An application of (SUB) is called a subtype coercion, which is one case of the more

general type coercion [63].

Definition 2.21 Type Coercion, and Type Shifting Operators

Pustejovsky [63] defines type coercion to be a semantic operation that converts an argument

to the type which is expected by a function, where it would otherwise result in a type error.

This conversion is not arbitrary and is according to an available set of shifting operators. A

type shifting operator takes an instance x : τ1 and outputs x : τ2. Type shifting operators

CHAPTER 2. TYPES 24

are all type axioms.10

In programming languages, axiom (SUB) is used when a function (or procedure) re-

quiring an argument of some type τ is applied to an argument of a type σ lower in the

type hierarchy but in the same branch as τ , to temporarily change its type to τ . In object

oriented programming languages, an application of (SUB) to an object, is called up-casting .

If (SUB) is applied to a variable of a simple type, for example to an integer number when

a function expecting a real number is applied to it, it is called coercion.11

2.2.4 Semantic Selection Restrictions and Types

Katz and Fodor in their influential paper [47]12 about the characteristics of an acceptable

semantic framework of natural language show how the constituents of a natural language

phrase impose semantic requirements on each other. These requirements are called semantic

selection restrictions. For some expressions to combine and form a semantically valid phrase,

it is necessary that the restrictions that each expression impose on the rest be satisfied.

As far as the semantics is concerned (and not pragmatics), it is the interaction of these

restrictions that determine whether a semantic reading of a syntactically well-formed phrase

is acceptable or not. A syntactically well-formed phrase with no plausible semantic reading

is said to be ‘odd’ or ‘peculiar’, ... or as we call it here, ‘semantically invalid’.

According to Katz and Postal [48], “... each reading in the dictionary entry for a lexical

item must contain a selection restriction, i.e., a formally expressed necessary and sufficient

condition for that reading to combine with others”.13

Pustejovsky [63] elaborates on the notion of semantic selection restrictions by developing

a semantic type system which employs type coercions, and types that are used in the

argument structure of lexical items. His work goes further by applying event structures,

qualia structures and lexical inheritance structures whose exploration is beyond the scope

of this thesis.

10Later we will see there are some type axioms like (NEG) that do not only output x : τ2, but also output
formulas like ¬(x : τ3).

11Coercion is not specific to object oriented programming languages, it is used in the compilers of non-OOP
languages like FORTRAN, Pascal, and C.

12For a critical analysis of the theory of Katz and Fodor the interested reader can refer to the second
chapter of [73].

13For a more recent discussion on semantic selection restriction the interested reader can refer to section
4.2.6 of [27].

CHAPTER 2. TYPES 25

Although the notion of semantic selection restrictions is not new and has been applied

for decades, a satisfactory type system suited for bridging the linguistics and the applica-

tion domain model has not yet been proposed. On one side we have domain entity type

hierarchies, with the subtype relation and the need of multiple inheritance as we will see in

section 2.5, where every entity is associated with a domain type. And on the other side we

have the noun phrases that should carry their semantics in the grammar, while the exact

domain type of the entity that a pronoun is referring to is not known beforehand. The type

system that we develop in this thesis will bridge the gap between the grammar and the

application. In what follows we will provide some introductory examples and define type

restrictions that can be used for detecting a type mismatch or for disambiguation.

Example 2.22 Consider the sentence:

(1) * The paint is silent.

Native English speakers immediately find the sentence odd. One can justify this pe-

culiarity by saying that the adjective silent is normally used to modify noun phrases that

represent objects in the world that are in some well-known way associable with sound. The

association can be the capability of generating sound (like the silent man), or the capability

of containing other objects generating sound (like the silent room), or the capability of co-

occurring (or being synchronized) with sound (like a silent film, or a silent night). However,

paint is not in any usual setting associable with sound, so the use of the adjective silent is

inappropriate with the noun phrase paint.

On the other hand this sentence is acceptable by native English speakers:

(2) The paint is wet.

The reason is that adjective wet in common settings modifies a noun phrase that refers

to a physical object, which is associable with wetness.

An ambiguous word or phrase14 is one that has multiple semantic readings or senses.

Ambiguity of phrases may root from the ambiguity in the words that build the phrase

(there are other types of ambiguity). If a word has multiple senses, then each sense has

its own semantic selection restrictions on other expressions in the containing phrase. Now

14As we later see in chapter 5, a sentence is a saturated verb phrase.

CHAPTER 2. TYPES 26

if such a word is used in a syntactically well-formed phrase, then the selection restrictions

of each of the senses of that word on other expressions in the phrase and vice versa, helps

the interpreter choose the proper sense(s) of that word in the phrase, and thus reduce the

number of acceptable readings of the phrase. So, the semantic selection restrictions of the

words may help us disambiguate the phrase.15

Example 2.23 The verb support has at least two senses. One sense, s1, is related to the

relative physical situation of some physical objects as used in (3a). Another sense, s2, is

related to some human objects who agree with the objectives of some project as used in

(3b).16

(3) a. The blue block supports the pyramid.

b. A democrat supports the stem cell research.

Suppose the semantic selection restrictions of the senses s1, and s2 are given in (4), and

(5) respectively.

(4) the subject and the object of the verb must be physical objects.

(5) the subject of the verb must be a human or a group of humans, and the object of the

verb must be a project.

Since stem cell research is not a physical object, (4) is not satisfied and hence meaning

s1 cannot be chosen for sentence (3b). On the other hand, since the blue block is not a

human or a group of humans (5) is not satisfied and meaning s2 cannot be used for (3a).

Type Restrictions

Some of the semantic selection restrictions can be defined in terms of the expected type

of noun phrases that participate in a phrase with reference to a type hierarchy. We call

such semantic selection restrictions, type restrictions. Using the class hierarchy of figure 2.1

restriction (4) is obviously saying that the noun phrases in subject and object positions

must refer to objects of type physical. And restriction (5) is saying that the noun phrase

15Sometimes this is not enough, as in : “I love Georgia”, where “Georgia” could be either a place or a
person.

16A very similar example exists in Winograd [75] about disambiguation.

CHAPTER 2. TYPES 27

occupying the subject position must refer to an object of type human and the noun phrase

occupying the object position must refer to an object of type project.

Definition 2.24 Type Restrictions17

A type restriction of a sense s of a phrase can be represented by a set TRs of ordered

pairs (role, type), where role is the grammatical role (such as subject, object, complement,

modified nominal, ...) of an expression ξ in the phrase, and type is the expected type of the

object that ξ refers to. Basically the type restriction of an expression restricts the type of

the arguments of that expression.

Example 2.25 Type restrictions of the senses s1 and s2 in example 2.23 are:

TRs1 = {(subj, physical), (obj, physical)}

TRs2 = {(subj, human), (obj, project)}

Definition 2.26 Type Restriction Satisfaction (Version I)18

A type restriction TR of a sense for an expression is satisfied in a phrase if and only if for

every pair (role, type) ∈ TR, the expression ξ that assumes the grammatical role role in the

phrase, refers to an object of type τ where we have either:

• τ = type

• there is a shifting operator that shifts ξ : τ to ξ : type

Using the knowledge of type hierarchies and selection restrictions in a phrase to disam-

biguate it is what Pustejovsky [63] calls sortally constrained disambiguation. However one

should note that satisfying a type restriction might involve applying type shifting operators

to the types of noun phrases to convert them to the types that the restriction expects. In

the next section we will see that subtype coercion (SUB) is not the only semantic type

shifting operator that we need in natural language.

2.3 The Need for a Specialization Shifting Operator

In section 2.3.1 we describe a problem with the types that we associate with pronouns in the

lexicon and we see that the type axioms so far are not sufficient to address it. The incomplete

17It is noteworthy that a concept similar to what we called type restrictions is used in the SHADOW
system [41].

18We will revise this definition in chapter 3

CHAPTER 2. TYPES 28

types proposed by Dahl [23] provides a solution to this problem using the unification facility

of logic programming languages such as Prolog. Before we investigate incomplete types,

we present in section 2.3.2 an abstract solution to the problem by introducing specializable

types with a new type shifting operator (SPECIAL). This helps us fit incomplete types

into the type theory we have developed so far. In section 2.3.3 we present two other possible

applications of specializable types. Then in section 2.4 we investigate how unification can

act as a specializing shifting operator that can handle (SPECIAL).

2.3.1 A Problem with Pronouns

Suppose we add a new type dancer to our type hierarchy under the type human:

(6) dancer ⊑ human

Also suppose that we do not distinguish between female and male humans for simplicity.

Now consider the pronoun she. We should assign a semantic type to this pronoun, and the

only proper type in the type hierarchy is human:

(7) she : human

Suppose the verb dance has only one sense with the type restriction:

(8) TRdance = {(subj, dancer)}

that is the subject of the verb dance must be a noun phrase that refers to an object of type

dancer. So for sentence (9) to be semantically valid it is necessary that the type restriction

of the verb dance in the sentence be satisfied.

(9) she dances.

Since she refers to an object of type human, the satisfaction of TRdance requires that either

human = dancer which is not the case, or there should be a type shifting operator that

outputs she : dancer. The only type shifting operator that we have so far is (SUB) that

shifts the type of an object some levels higher in the type hierarchy. However, dancer is

lower in our type hierarchy than human. So with (SUB) as our only type shifting operator,

sentence (9) is not recognized as valid.

The problem is with assumption (7). The fact is that she not only can refer to an object

of type human but also it can refer to an object of a type that is anywhere below human in

the type hierarchy. I.e.,

CHAPTER 2. TYPES 29

(10) she : τ , where τ ⊑ human

This will lead to multiple type declarations for she, including:

(11) a. she : human

b. she : dancer

and it will be possible for dance to choose type declaration (11b) to satisfy its type

restriction.

However, this requires that we have multiple lexical items for she each with a different

type. Note that the number of type declarations that we need would be the number of

subtypes that human has in the type hierarchy because of (10). This is equal to the number

of nodes that the subtree rooted by human has in the type hierarchy. This number can

be large in a type hierarchy of a real natural language application. Also this problem is

shared not only by she but also by any pronoun (and we will shortly see it is shared by some

other nouns too). This means our lexicon will have a lot of entries for the same words with

only different semantic types. This will pose a problem with the efficiency of the parser

implementation.

Also this method does not obey modularity of the design principles, that is every time

a new type is added to the type hierarchy below a node in the subtree rooted by human,

we have to add a new lexical item for she and all pronouns referring to humans with their

semantic type equal to the new type.

2.3.2 The Solution : Introducing Specializable Types

An alternative to declaring multiple entries for a word in the lexicon to handle the kind of

problem described in the previous section, is to expand the set of basic types by introducing

a type in form of a function spec(.)19 that takes an input type and outputs a type that is

a specializable type below the input type. A specializable type below a root type τ denoted

by spec(τ) is a type that can be specialized or shifted to a subtype of τ when required by

the type shifting operator (SPECIAL) given below:

19The formal definition of this function is provided in chapter 3, definition 3.15, where we define special-
izable types on top of natural types. There we provide another type axiom that accompanies specializable
types.

CHAPTER 2. TYPES 30

∀τ ∈ BasTyp ∀σ ∈ BasTyp ∀x. x : spec(τ) ∧ (σ ⊑ τ)⇒ x : σ : (SPECIAL)

Using this, we can declare the type of an object that she refers to, to be a specializable type

under human, that is:

(12) she : spec(human)

and the sentence she dances can now be recognized as semantically valid, because the type

restriction of the verb dance can now be satisfied using a type coercion with operator

(SPECIAL) that shifts human to dancer.

In Object Oriented Programming languages applying (SPECIAL) to an object of a

higher type in the type hierarchy to cast it as an object of a lower type in the hierarchy

is called down-casting . However the use of this operator is not automated in compilers of

languages such as C++, Java, and C#, and down-casting must be strictly forced by the

programmer. Often usage of down-casting in programming is not encouraged.

2.3.3 Other Possible Applications of Specializable Types

Besides their usefulness in dealing with pronouns, specializable types can be helpful in other

situations too. Here we present two more cases, general classes, and proper nouns. These

applications however might not be very intuitive, and care must be taken before using them.

General Classes

We define a general class to be a class whose instances are instances of one of its subclasses.

For example, the type animal is a general class, because every animal instance should be a

mammal, or a bird, or a fish, etc. In other words we don’t have an object that is classified

as an animal but does not belong to any subclass of animal.20

There is a connection between what we here call a general class and what in Object Ori-

ented Programming languages is called an abstract class. In Object Oriented Programming

languages, a class A is said to be an abstract class if any instance of type A is an instance

of a subtype of A. That is A has no direct instance.

20Later in chapter 3 we see that an example of a general class is a type which is partitioned into its
subtypes.

CHAPTER 2. TYPES 31

Despite this similarity, there is a difference. What we present below allows a general

class to be arbitrarily shifted to a lower type in the type hierarchy. This is not allowed in

modern OOP languages such as C++, Java, and C#, unless the programmer forces it by an

explicit down-casting operator. The use of general classes arbitrarily might not be the best

option if the grammar is going to be used in requirement analysis. However, it is needed

for some cases. For example if we would like sentences like (13) to be acceptable. Or if we

need queries like (14) to be analyzable.

(13) The animal barks.

(14) Does an animal bark?

Suppose our type hierarchy below mammal now contains the type dog as shown in fig-

ure 2.3. Also suppose that our lexicon now contains the verb barks with the type restriction:

(15) TRbarks = {(subj, dog)}

bird

animal

elephant

mammal reptile

human beluga dog

Figure 2.3: dog is now in the type hierarchy

Every noun phrase must be associated with a type in our grammar. Animal used as a

word refers to any object that is an instance of type animal. One possible choice of type for

animal could be:

(16) animal : animal

But with this declaration, sentence (13) cannot be recognized as semantically valid,

because the type restriction of the verb barks requires the subject to refer to an object of type

CHAPTER 2. TYPES 32

dog. One might argue that this sentence is legitimately ruled out, because not all animals

bark, and the verb bark is not suitable for the subject the animal. Ruling out such cases can

be desirable in software requirements, because sentences in software requirements should be

as precise as possible, and a sentence like (13) could have the implicit interpretation that

barking is a valid behavior of all animals.

However with the presence of dog in the type hierarchy, sentence (13) can have a possible

semantic reading that the animal refers to a dog that barks. To allow for this semantic

reading we can declare the word animal to refer to an object of a specializable type below

animal, that is:

(17) animal : spec(animal)

Note that by definition any instance of a general class is an instance of one of its sub-

classes. So the definition above make sense, as it binds the object that animal refers to, to

a subtype of animal in the type hierarchy.

This will satisfy the type restriction of the verb bark.

Proper Nouns with Incomplete Type Information

In requirement specification we should try to provide all details about a name (a proper

noun) that is used in the requirement. However in natural language it is acceptable that

the type information of an object that is referred to by a proper noun is gathered gradually

in steps. For example sentence (18a) gives some visual and/or physical information about

Mary, and in sentence (18b) more information about the type of that person is provided,

that is Mary is a dancer.

(18) a. This is Mary.

b. Mary dances.

An important issue with proper nouns is how they should be defined in the lexicon,

more specifically what type should be assigned to them. For some proper nouns like Mary

we know that they refer to a human object, but exactly what subclass of human Mary

belongs to could be unknown at the time we define the lexicon for some applications. If our

knowledge about what exact object the proper noun refers to at the time of its definition in

the lexicon is incomplete, then we can use specializable types. For example we can declare:

CHAPTER 2. TYPES 33

(19) mary : spec(human)

and with this declaration, the type restriction of the verb dance in sentence (18b) will be

satisfied after an application of (SPECIAL).

2.4 Incomplete Types : An Implementation of Specializable

Types through Unification

Dahl [23] proposed the hierarchical representation of types using first order logic terms in

Prolog, and unification between the hierarchical representations to check their agreement.

Type agreement was used to check what in this chapter we have called the ‘type restrictions’

of expressions. The work in [23] addresses the encoding of a taxonomy that has a tree shaped

hierarchy. This method was extended by Mellish in [51, 53] where it is possible to encode

some more general taxonomies that are no longer tree shaped, but are in the form of graphs,

or more specifically, directed acyclic graphs (DAGs). These DAG shaped hierarchies21 allow

types that have more than one parent in the hierarchy. This is called multiple inheritance,

which we will discuss in subsection 2.5. We discuss a little about these and other extensions

in subsection 2.5.1.

This section is organized as follows. First, in subsection 2.4.1 we show how FOL (and

Prolog) terms can be used to form a hierarchical representation of types, and how unification

can be used to check their agreement. In subsection 2.4.2 we mention how Prolog lists can be

used for hierarchical type representations. Then in subsection 2.4.3 we show how incomplete

types can be used to deal with (SPECIAL) in satisfying type restrictions, and we discuss

whether (SUB) can also be handled by incomplete types.

2.4.1 Hierarchical Representation of Types

Hierarchical representations of types are terms in a first order logic. The vocabulary of the

first order logic consists of:

• nil as a constant symbol

21We still call these DAGs, type hierarchies, as done in [31] too, because the concept of being lower, or
higher among types, still exists in DAGs. If a type is lower in rank than another, it is a descendant and a
subtype of that type.

CHAPTER 2. TYPES 34

• every node label in the type hierarchy as a constant symbol

• & as a binary infix function symbol, which is left-associative

• an infinite number of variable symbols beginning with an uppercase letter, e.g., X, Y, Z, V, ...

For our type hierarchy shown in figure 2.4 the following constant symbols are used for

each node:

all, physical, animal, bird, mammal, elephant, ...

conceptual

all

physical

joke happiness projectanimal

bird

elephant

mammal reptile

human beluga dog

Figure 2.4: Our example type hierarchy

The infix left-associative function symbol & is used to connect the nodes in the path

from the top to node τ to form an FOL expression that is the hierarchical representation of

type τ . We call such expressions, path expressions22. For example in the type hierarchy of

figure 2.4,

animal→ physical→ all

is a path, which corresponds to the path expression:

((nil & animal) & physical) & all.

22This is what we call them in this section to define the hierarchical representation formally, the term
‘path expressions’ is not used in the original work.

CHAPTER 2. TYPES 35

In the following definition path expressions are defined more formally.

Definition 2.27 Path Expressions

• nil & n is a path expression for the trivial path from node n to n.

• V & n is a path expression of any path from node n downwards in the hierarchy to

an underspecified node (which could be n itself)

• if Pn is the path expression of a path π from node n downwards in the hierarchy, and

m is the parent of n in the hierarchy, then Pn & m is the path expression for the

concatenation of the path from node m to node n and π.

Definition 2.28 Hierarchical Representation of Type τ

The hierarchical representation of type τ is the path expression of the path from the top

node all downwards to the node τ .

For example the hierarchical representation for type mammal is:

(((nil & mammal) & animal) & physical) & all

=

nil & mammal & animal & physical & all

Definition 2.29 Hierarchical Representation of a Specializable Type below τ1

The hierarchical representation of type spec(τ1) is the path expression of a path from the

top node all to an underspecified node in the hierarchy through the node τ1, which is equal

to:

(V & τ1) & τ2 & ... & τn

where V is a variable not used anywhere else, and τi+1 is the parent node of τi in the

hierarchy, and τn = all.

Type agreement is checked through unification. Informally, two terms unify if they are

exactly equal, or if they contain variables that can be instantiated in such a way that the

resulting terms are equal [9]. If the unification succeeds the variable instantiations will

persist.

For example, the following two terms unify:

CHAPTER 2. TYPES 36

(20) a. nil & mammal & animal & physical & all

b. V & animal & physical & all

because variable V can be instantiated to nil & mammal that makes both terms equal.

But the following terms cannot unify:

(21) a. V & animal & physical & all

b. nil & project & conceptual & all

because no matter what value is assigned to variable V in (21a) the resulting term cannot

be equal to (21b).

2.4.2 Using Prolog Lists to Represent Types

The notation used in Dahl [23] is easily convertible to Prolog lists. A list in Prolog is a term

that represents a sequence of terms. A list can be decomposed into a head element, which

is the first element in the sequence and a tail list, which is the remainder of the sequence

after the first element is removed. A list in Prolog can be specified by listing the elements

between square brackets. For example the list of the first three natural numbers is:

(22) [0, 1, 2]

In Prolog there is a special symbol ‘|’ that can be used in the bracketed notation of the

list to separate the head from the tail. [H|T] is a list with head H and tail T. Function

symbol ‘.’ is actually the function & with inverted order of arguments and [] is nil in Dahl

[23]. The bracketed notation is used in Dahl [24]. For example

(23) V & mammal & animal & physical & all

is equivalent to

(24) [all, physical, animal, mammal | V]

2.4.3 Incomplete Types and Satisfying Type Restrictions with (SPECIAL)

Now if we go back to the problem we posed in subsection 2.3.1, with the formula dancer ⊑

human incorporated into our type hierarchy as shown in figure 2.5, then using incomplete

types the type restriction of the verb dance, and the lexicon declaration of the pronoun she

can be given by:

CHAPTER 2. TYPES 37

conceptual

all

physical

joke happiness projectanimal

bird

elephant

mammal reptile

human beluga

dancer

Figure 2.5: Using incomplete types with pronouns

(25) TRdance = {(subj, [all, physical, animal, mammal, human, dancer | X])}

(26) she : [all, physical, animal, mammal, human | V]

Then the unification operator binds V to [dancer | X], and the type restriction of dance

will be satisfied with no further hassle. Actually unification acts as (SPECIAL) silently

and automatically.

On the other hand (SUB) still needs to be processed as the element of the incomplete

list cannot be removed to make the corresponding type more general.

Revisiting example 2.20 but this time with incomplete types, we can write the type

restriction of the verb breathes as:

(27) TRbreathes = {(subj, [all, physical, animal, mammal | X])}

If we declare tiqa in the lexicon by:

(28) tiqa : [all, physical, animal, mammal, beluga | V]

then the type restriction of the verb breathes is satisfied with the binding:

CHAPTER 2. TYPES 38

(29) X = [beluga | V]

and the sentence tiqa breathes can be recognized.

However, this method does not formally fit into the framework that we have been de-

veloping so far. In the next chapter we see how we can benefit from some features of

incomplete types while completely being in a formal framework that can be directly applied

to λ−calculus and HPSG-like grammars to allow domain specific type hierarchies.

2.5 Multiple Inheritance

Multiple inheritance is a term used for types that have multiple parents in the type hierarchy.

A type that inherits from more than one super-type, is a composite type that combines the

semantic behavior and characteristics of its super-types. Single inheritance on the other

hand is a term that used for a type that only has one parent in the type hierarchy. In

Object Oriented Programming languages, specially after a powerful OOP language, C++,

came into existence with the possibility to define classes that could inherit from multiple

base classes, there was a long debate till the mid 90’s about the benefits and problems of

multiple inheritance. Singh [69] outlines some of the discussions around multiple inheritance.

As a result newer OOP languages like Java and C# make more careful use of multiple

inheritance [28, 71]. They allow multiple inheritance only at the interface level . An interface

is a type in newer OOP languages that only declares the supported behaviors without any

implementation. In other words an interface is a protocol of how an object of that type can

interact with other objects.23.

The idea of multiple inheritance in some cases is so natural that some researchers have

tried to model it in languages that do not easily allow it (like Java, and C#). An elegant

example is the work presented in Mössenböck [56]. By using taxonomies that use multiple

inheritance information can be represented in a more natural, efficient, and compact way.

One should note that if multiple inheritance is used, the type hierarchy diagrams will

not be tree shaped any more. The type diagram will be a directed acyclic graph (DAG). We

will still call the taxonomy a type hierarchy, because the notion of being lower or higher in

rank still exists, because in DAGs there are no cycles and the rank ordering is maintained.

If a type is lower in rank than another it is a subtype of that type. If from the context it

23For more information about interfaces see [28].

CHAPTER 2. TYPES 39

is not clear whether the hierarchy is tree shaped or DAG shaped, we will mention exactly

which kind it is.

Example 2.30 An Example : The University Bookstore

Here we describe the need for multiple inheritance by using a hypothetical software project in

which a software team is assigned with a task of modeling the business process of a university

bookstore. The entities of interest in such a project are usually customers, students, text

books, amount of money, and so on. One possible type hierarchy for these entities is shown

in figure 2.6.

human

all

textbook

student customeramount of money

number

price

Figure 2.6: A typical type hierarchy for a bookstore

One business rule of this bookstore applied when the customer is paying for the items

she/he purchased is:

(30) If the customer is a student, then the customer pays %90 of the total price.

This implicitly means that some students can be customers too. Such students are

instances of a new type that is a subtype of both student, and customer. This type is

denoted by student*customer and is shown in the type hierarchy of figure 2.7.

Notation 2.31 Asterisk Operator for Multiple Inheritance

We generally use the asterisk operator ‘*’ for combining two types to create a type that is

a subtype of both. We will later define this operator formally in definition 3.7.

Example 2.32 Another Example : Dancer and Writer

Suppose in the type hierarchy the node human has two children dancer and writer as shown

in figure 2.8.

CHAPTER 2. TYPES 40

human

all

textbook

student customeramount of money

number

price student * customer

Figure 2.7: bookstore DAG shaped type hierarchy with multiple inheritance

human

all

dancer writer

Figure 2.8: dancer and writer

CHAPTER 2. TYPES 41

Now if the following sentence is presented to the parser, then the type that is associated

to Jane must be dancer * writer.

(31) Jane is a dancer and a writer.

The resulting DAG shaped type hierarchy is shown in figure 2.9.

human

all

dancer writer

dancer * writer

Figure 2.9: dancer and writer combined to form a new type that inherits from both

2.5.1 Multiple Inheritance and Logical Terms for Encoding Hierarchies

Although the method in [23] is only designed to work with tree shaped hierarchies, ex-

tensions such as [51] that are based on [23] can work with special cases of DAG shaped

hierarchies. The characterization of those hierarchies for which some working encodings

exist is provided in [53, 52]. Basically all taxonomies that are lower semi-lattices24 can be

encoded. Andrew Fall in his thesis [31] extensively studied the encodings of taxonomies

including some extensions of [23] for efficient subtype checks, meet, and join operations25.

A later work by Erbach [29], which is based on [51, 53, 5, 4, 7] applies another extension

that allows the power of multiple inheritance in Prolog. The framework is called multi-

dimensional multiple inheritance. This method is at the heart of ProFIT26 (Prolog with

24Hierarchies with the properties of a lower semi-lattices are those for which the most general common
subtype (see definition 3.42) is unique for every two types.

25A meet operation is finding the most general common subtype of a set of types (see definition 3.42), join
is the operation of finding the most specific common super type. The idea of a join is antisymmetric to a
meet.

26We use ProFIT for our grammar implementation as will be shown in the next chapters.

CHAPTER 2. TYPES 42

Features Inheritance and Templates) [30]. Other related works are Aı̈t-Kaci’s LOGIN [2],

and LIFE [3].

In frameworks such as [51], each type t is associated with a first order logic term using

a mapping τ(t) that is the type encoding. This encoding must have this characteristic that

for two types t1, t2 , t1 ⊑ t2 if and only if τ(t1), τ(t2) can be unified and the unification

does not bind any variables in τ(t1). This sort of unification is called subsumption. If such

an encoding exists, then the encoding of type t1 ∗ t2 can be calculated by unifying t1, t2.

For example, the DAG shaped type hierarchy of figure 2.9, can be encoded by the

following mapping, where denotes an arbitrary free variable:

τ(all) = f()

τ(human) = f(human(,))

τ(dancer) = f(human(dancer,))

τ(writer) = f(human(, writer))

τ(dancer ∗ writer) = f(human(dancer, writer))

Limitations of Term Encoding

Although if such encodings exist they will help us efficiently deal with multiple inheritance

and subtype checking, as Fall [31] mentions, finding these encodings might be a difficult

task. Moreover, an update to the taxonomy might require recomputation of the entire, or

a significant part of the encoding. The method applied in [29, 30], requires the complete

knowledge of the disjoint types at the beginning to compute the encoding.

There is also a minor problem with specializable types if term encodings are used. Vari-

ables are an integral part of the encoding, and they cannot be exclusively used for special-

izable types. To allow specializable types, we need to inform the subsumption checker to

allow instantiations of variables that are present in the encoding of a specializable type.

2.6 Conclusion

In this chapter we discussed types in grammars. We proposed some desirable features of

a type system to be used for the application domain of a grammar. The most important

contribution of this chapter was the idea of specializable types that was inspired by the

incomplete types proposed by Dahl [23, 24].

CHAPTER 2. TYPES 43

In the next chapter we layout a type system that benefits the exclusive usage of variables

for specializable types and handles multiple inheritance naturally, which does not need a

computation of an encoding. This type system has the power to deal with some special cases

of negated types as we will see in the next chapter. Negated combined with specializable

types have not been explored in previous works. However for negated types to be manageable

we need the taxonomy to conform to some natural conditions that we will see in the next

chapter. The type system we develop in the next chapter will be used in our grammar

through the rest of this thesis.

Chapter 3

Our Type System

In definition 2.2 we provided a definition of instances of a class (or type), here we define a

set of all objects that are instances of a type:

Definition 3.1 Instance Set

The set of all instances of a type σ is denoted by Iσ and contains all objects x such that x

is an instance of σ. In other words:

Iσ = {x | x : σ}

Using instance sets, the subtype relation that we defined in definition 2.3 can be ex-

pressed by:

Corollary 3.2 Subtype Relation and Instance Sets

For any two types σ, τ ,

σ ⊑ τ ⇐⇒ Iσ ⊆ Iτ

Using definition 3.1, and corollary 3.2 the subtype axiom (SUB) can be easily proved,

and hence need not be treated as an axiom anymore.

Definition 3.3 Type Equality

Two types are equal if they have the same instance sets. In other words for any two types

σ and τ : σ = τ ⇐⇒ Iσ = Iτ

Definition 3.4 The Bottom Type : ⊥

The bottom type denoted by ⊥ is a type with empty instance set, i.e., I⊥ = ∅

44

CHAPTER 3. OUR TYPE SYSTEM 45

3.1 Basic Types in our Type System

In definition 2.6 we used a set of basic types BasTyp, but we did not discuss their nature

in detail. In this section we break down the basic types into simple, composite, specializable,

and negated types. The union of these will make up our well-formed basic types that can

be used in the λ-calculus that we developed so far. The main purpose of elaborating on

this type system is not for the λ-calculus terms to represent the meaning of an utterance

like done in CG (although this can be done), but rather here we will use the type system

to implement the type restrictions (given in definition 2.24) in our HPSG grammar of the

next chapter.

Definition 3.5 Simple Types

Formally the set SimTyp is a finite set of types whose instance sets are neither empty nor

expressible using set theory operators on other instance sets. We treat the top type all as

a simple type.

Definition 3.6 Disjoint Types

Two types σ and τ are said to be disjoint if and only if Iσ ∩ Iτ = ∅ and we denote it by

σ ‖ τ . If τ, σ are not disjoint we write σ ∦ τ .

Definition 3.7 Composite Types

The purpose of composite types is to model multiple inheritance. Formally the set ComTyp

of well-formed composite types is defined recursively by:

σ ∈ SimTyp ∧ τ ∈ SimTyp ∧ σ ∦ τ ⇒ σ ∗ τ ∈ ComTyp

σ ∈ SimTyp ∧ τ ∈ ComTyp ∧ σ ∦ τ ⇒ σ ∗ τ ∈ ComTyp ∧ τ ∗ σ ∈ ComTyp

σ ∈ ComTyp ∧ τ ∈ ComTyp ∧ σ ∦ τ ⇒ σ ∗ τ ∈ ComTyp

A composite type σ ∗ τ is a maximal type which is a subtype of both σ and τ , that is, it

contains any object that belongs to both σ and τ , i.e.,

Iσ∗τ = Iσ ∩ Iτ

If σ and τ are disjoint then σ ∗ τ is not defined.

Theorem 3.8 Subtype Composition

If σ ⊑ τ then σ ∗ τ = σ.

CHAPTER 3. OUR TYPE SYSTEM 46

Proof: Since σ ⊑ τ by corollary 3.2 we get:

Iσ ⊆ Iτ

by applying rules of set theory we have:

Iσ ∩ Iτ = Iσ

By the definition above we have Iσ∗τ = Iσ ∩ Iτ = Iσ

so:

Iσ∗τ = Iσ

And by applying definition 3.3 we get:

σ ∗ τ = σ �

Theorem 3.9 Composition Subtype

σ ∗ τ ⊑ σ and σ ∗ τ ⊑ τ

Proof: By definition 3.7 we have Iσ∗τ = Iσ ∩ Iτ and by set theory results we know:

Iσ ∩ Iτ ⊆ Iσ and Iσ ∩ Iτ ⊆ Iτ

By applying corollary 3.2 we get:

σ ∗ τ ⊑ σ and σ ∗ τ ⊑ τ �

Notation 3.10 Natural Types

It will help us if we can refer to the set of simple types and composite types using one

symbol, so we define the set of natural types to be:

NatTyp = SimTyp ∪ComTyp

Note that the bottom type ⊥ is not included in either SimTyp or ComTyp and hence is

not a natural type.

Definition 3.11 Direct Subtype Relation <d

The direct subtype relation, denoted by <d, is an irreflexive relation that must be provided

by the user of the grammar, that specifies for each natural type τ , what natural type is its

immediate super type or subtype. This relation must not be transitive, and more strongly

it must be an intransitive relation, that is:

∀τ, σ, ω ∈ NatTyp .τ <d σ ∧ σ <d ω =⇒ τ <d/ ω

However, the transitive closure of <d union the identity relation (=) must respect the

inclusion of the natural instance sets, that is:

∀τ, σ ∈ NatTyp . Iτ ⊆ Iσ ⇐⇒ τ ⊑∗
d σ

, where ⊑d is <d ∪ =, and ⊑∗
d is the transitive closure of ⊑d

CHAPTER 3. OUR TYPE SYSTEM 47

Combining the above statement with corollary 3.2 we get:

∀τ, σ ∈ NatTyp . τ ⊑ σ ⇐⇒ τ ⊑∗
d σ

which means subtype relation ⊑ over natural types is actually equal to the transitive closure

of direct subtype relation ⊑d.

Remark 3.12 Obvious Immediate Super-types of Composite Types

Every composite type τ ∗σ, has at least two immediate super types, namely τ and σ. These

two immediate super-types need not be explicitly given by the user because their presence

is immediately obvious (by theorem 3.9).

Definition 3.13 Natural Type Hierarchy

A natural type hierarchy diagram is a directed acyclic graph (DAG) rooted by the top type

all, in which edges are a graphical representation of the direct subtype relation (<d). In a

complete type hierarchy diagram, every natural type is associated with a node.

In a real application the complete natural type hierarchy is huge, as every combination

of non-disjoint types are composed by multiple inheritance. If there are n simple types, the

number of nodes in a complete natural type hierarchy is in the order of O(2n), because in the

worst case 2n possible compositions of the simple types can exist. In the implementation of

our type system, it is not needed that the complete type hierarchy be stored in memory. The

space should be enough to store the non-obvious portion of the direct subtype relation <d,

the list of simple types SimTyp, and the information about the disjoint types, and partitions

(which will be defined in definition 3.35). Moreover, the information about disjoint types

and partitions can be asked from the user when it is needed. Unlike the term encoding

methods (such as [51, 52, 53, 29, 30]) this information is not needed at the beginning.

Additional nodes and edges are added to the DAG type hierarchy in the system just when

they are required. But the complete hierarchy is totally present in the theory that we are

developing and every theorem that follows is aware of its presence.

In what follows we may use the term ‘type hierarchy’ instead of ‘natural type hierarchy’ for

brevity.

Theorem 3.14 For any natural types τ, σ, τ1:

(τ1 ⊑ τ ∧ τ1 ⊑ σ)⇐⇒ τ ∗ σ is a well-formed natural type and τ1 ⊑ τ ∗ σ

Proof:

⇐) Assume τ1 ⊑ τ ∗ σ

CHAPTER 3. OUR TYPE SYSTEM 48

Using theorem 3.9 we have:

τ ∗ σ ⊑ σ and τ ∗ σ ⊑ τ

So we have:

τ1 ⊑ τ ∗ σ and τ ∗ σ ⊑ τ

By transitivity of ⊑ we get:

τ1 ⊑ τ

Similarly we get:

τ1 ⊑ σ 2

⇒) Assume: τ1 ⊑ τ ∧ τ1 ⊑ σ

Using corollary 3.2 we get:

Iτ1 ⊆ Iτ ∧ Iτ1 ⊆ Iσ

For an arbitrary object x if x ∈ Iτ1 then by the definition of subsets in set theory and

the statement above we get:

x ∈ Iτ ∧ x ∈ Iσ

By definition of intersection in set theory we get:

x ∈ Iτ ∩ Iσ

This means τ , and σ are not disjoint, and by definition of composite types (definition 3.7)

τ ∗ σ is a well-formed composite type and we also have:

x ∈ Iτ∗σ

So far we proved ∀x . x ∈ Iτ1 ⇒ x ∈ Iτ∗σ

Using the definition of subsets we get:

Iτ1 ⊆ Iτ∗σ

By corollary 3.2 we get:

τ1 ⊑ τ ∗ σ 2

�

Definition 3.15 Specializable Types

If σ is a natural type, then for every i ∈ N, speci(σ) is a specializable type below σ whose

instance set is non-empty with these axioms (the second one is redundant, and can in fact

be derived):

∀τ, σ ∈ NatTyp . ∀i ∈ N . ∀x. x : speci(τ) ∧ (σ ⊑ τ)⇒ x : σ : (SPECIAL)

∀τ ∈ NatTyp . ∀i ∈ N . speci(τ) ⊑ τ : (SPECSUB)

CHAPTER 3. OUR TYPE SYSTEM 49

speci(τ) is an underspecified type. Although one can declare (or assume) that an object

is an instance of a specializable type (for example the pronoun she can be declared in the

lexicon to be an instance of speci(human)) the complete instance set of a specializable type

cannot be determined. Another important note is that there may be an infinite number

of specializable types under a single type due to the use of a natural number subscript in

specializable types.1 The set of all specializable types is denoted by SpecTyp.

Now we define an infix operator of types that can build expressions that can represent

either fully-specified or underspecified traversals of the type hierarchy downwards. The

expressions built from this function are like path expressions that we presented in defini-

tion 2.27 but in a reverse order and we allow jumps, that is, we do not have to list every

node in the path. For this reason we call this operator the jump operator . Underspeci-

fied expressions make use of variables. We suppose all variables are chosen from the set

{V0, V1, V2, V3, ...}. So every variable has a subscript. Even if the subscript is not shown in

a formula, it implicitly exists.

Definition 3.16 Jump Operator : y, and Jump Expressions

y is an infix right associative operator that is used to build jump expressions and is defined

this way:

• if σ and τ are natural types such that τ ⊑ σ then σ y τ is a well-formed jump

expression headed by σ, and we have σ y τ = τ

• if σ is a natural type and Vi is a variable then σ y Vi is a well formed jump expression

headed by σ, and we have σ y Vi = speci(σ)

• if ξ is a well formed jump expression headed by τ and σ is a natural type such

that τ ⊑ σ then σ y ξ is a well-formed jump expression headed by σ, and we have

σ y ξ = ξ

The set of all well-formed jump expressions is denoted by JumpExp

Example 3.17 Using the type hierarchy of figure 2.4 the following are well-formed jump

expressions:

1The axiom (SPECIAL) is in fact a shifting operator that shifts speci(τ) to σ. More rigorously this
axiom should be only applicable if the type speci(τ) has not already been shifted. As soon as it is shifted,
it will be equal to the type it is shifted to. From the technical point of view, any reference to an entry with
a specializable type from the lexicon should be followed by updating the specializable type subscript to a
new natural number that has not been used in the system before to avoid unwanted type equalities among
different occurrences of the same pronoun.

CHAPTER 3. OUR TYPE SYSTEM 50

expression headed by

all y physical y animal y bird all

all y animal y bird all

animal y mammal y beluga animal

animal y beluga animal

conceptual y joke y V conceptual

human y V human

Remark 3.18 Note that headedness of jump expressions is a pure syntactic property. As

a result there can be two jump expressions that represent the same type (and hence equal)

while they have different heads. For example all y bird and animal y bird both represent

the type bird and we have all y bird = animal y bird = bird, but the head of the first

expression is all and the head of the second one is animal. It is like arithmetic expressions

such as 1 + 2 and 3 that are equal (represent the same number) but have different syntactic

properties, that is, the first one is a function applied on two constants, and the second one

is a constant.

Remark 3.19 Note that different variables can be chosen to end a jump expression. This

is compatible with the fact that two specializable types under a specific type need not be

equal, and that there could be infinite specializable types under a type. The subscripts

used for specializable types are the variable indices used to form the corresponding jump

expressions. If two jump expressions which represent specializable types under a specific

type end with the same variable, they are equal.

Remark 3.20 Jump expressions are types themselves, because for every case in defini-

tion 3.16, the expression is equal to a natural type, or a specializable type or a shorter

jump expression, which will eventually reduce to either a natural type or a specializable

type. Equality among different jump expressions form an equivalence relation on Jump-

Exp. And since every jump expression equals to either a natural type or a specializable

type, we can claim that the union of all equivalence classes induced by every natural type

together with every specializable type is exactly the set JumpExp. That is,

(1) JumpExp =
⋃

a∈NatTyp

[a] ∪
⋃

a∈SpecTyp

[a]

Also we have:

CHAPTER 3. OUR TYPE SYSTEM 51

SpecTyp ⊆ JumpExp

Definition 3.21 Semantics of Jump Expressions

If there is no variable in a jump expression then by definition 3.16 the expression is equal

to the natural type at the rightmost position. But if the expression contains a variable then

by definition 3.16 this variable must be at the rightmost position of the expression, and the

expression will be equal to: τ y V , where V is the last operand and τ is the second last

operand in the jump expression written without parentheses.

τ y V is an expression that contains a free variable. The semantics of an expression

with a free variable depends on the context where it appears.

If this expression is presented to a satisfiability checker then the free variable is implicitly

bound by an existential quantifier, and the satisfiability checker must ensure the existence of

values y ∈ NatTyp∪ JumpExp for V such that the formula resulting from substituting y

for V is well-formed and true. If y ∈ NatTyp, y is called a natural answer . The satisfiability

checker should output the answers if required. Sometimes it is possible for the satisfiability

checker to find more general answers y ∈ JumpExp. In that case y is called a specializable

answer . Specializable answers are favored because the number of outputs is reduced while

the same information is carried.

If the expression with the free variable is used in a standalone formula (other than a

formula with satisfiability semantics) then the free variable is implicitly bound by a universal

quantifier with the range of values such as y with the restriction that y ∈ NatTyp ∪

JumpExp and that the formula resulting from substituting y for V is well-formed.

Remark 3.22 Unless specified otherwise in the context, we simply use answer instead of

natural answer for brevity.

As a special case of the above definition we present a definition of satisfiability of pred-

icates with jump expressions.

Definition 3.23 Satisfiability of Predicates with Jump Expression Arguments

For any binary predicate symbol R, and for any jump expression τ y V and for any σ:

(τ y V) R σ is satisfiable ⇐⇒ ∃τ0 ∈ NatTyp such that (τ0 ⊑ τ) ∧ (τ0 R (σ.[τ0/V])) ,

where σ.[τ0/V] is the result of substituting τ0 for V wherever it occurs in σ.

CHAPTER 3. OUR TYPE SYSTEM 52

Note that for τ0 R (σ.[τ0/V]) in the right hand side of the above equation to be true (or

satisfiable if it contains free variables other than V) it is required that it be a well-formed

formula, and as a result any sub-expressions should be well-formed too.

Also note that the order of the arguments of R is arbitrary, and it can be reversed in

both side of the biconditional.

Theorem 3.24 For any two natural types τ , σ:

If (τ y V) ⊑ σ is satisfiable then τ and σ are not disjoint.

Proof: Based on definition 3.23 there should be a natural type τ0 such that τ0 ⊑ τ∧τ0 ⊑ σ.

Now because τ0 6= ⊥ we have Iτ0 6= ∅, so there is an object x such that x ∈ τ0. And by

applying (SUB) we have:

x : τ0 ∧ τ0 ⊑ τ ⇒ x : τ

x : τ0 ∧ τ0 ⊑ σ ⇒ x : σ

That is, there is an object x that belongs to both types τ and σ, so Iτ ∩ Iσ 6= ∅ and hence

σ and τ are not disjoint. �

Notation 3.25 Unnegated Types:

It helps us later if we can refer to natural types and jump expressions together. Thus we

define:

UNegTyp = NatTyp ∪ JumpExp

Definition 3.26 Negated Types

For any natural types σ and τ , where σ ⊑/ τ , and any free variable V :

• σ − τ is a well-formed negated type, and it accompanies the following axiom:

x : σ − τ ⇐⇒ x : σ ∧ ¬(x : τ) : (NEG)

and we have:

Iσ−τ = Iσ − Iτ = Iσ ∩ I ′τ 6= ∅ , where I ′τ is the complement set of Iτ

• σ y V − τ is a well-formed negated type, whose semantics is governed by the se-

mantics of jump expressions, and is accompanied by the following (redundant) axiom:

∀δ ∈ NatTyp . ∀x. x : σ y V − τ ∧ (δ ⊑ σ) ∧ (δ ⊑/ τ)

⇒ x : δ − τ : (SPECNEG)

CHAPTER 3. OUR TYPE SYSTEM 53

The set of all negated types is denoted by NegTyp.

Any negated type must be different from the bottom type ⊥.

Note: Since the type axioms use the first order logic negation connective, for complete-

ness we need to consider the contrapositive of every type axiom as another type axiom.

Theorem 3.27 For any natural types τ, σ such that τ ⊑/ σ we have:

τ − σ ⊑ τ

Proof: First we observe that τ − σ is a well-formed negated type because τ ⊑/ σ. From

the definition we have:

Iτ−σ = Iτ − Iσ

But from set theory results the right hand side of the above equation is a subset of Iτ so we

have:

Iτ−σ ⊆ Iτ

And from corollary 3.2 we obtain:

τ − σ ⊑ τ

�

Example 3.28 A legitimate use of negated types is for the pronouns that cannot refer to

humans. For example the pronoun it can be defined in the lexicon by:

it : all y V − human

And if the lexicon contains the verbs bark and talks with the type restriction TRbarks =

{(subj, dog)} and TRtalks = {(subj, human)} then sentence (2) should be recognized as

semantically valid, while sentence (3) should be recognized as semantically invalid.

(2) It barks.

(3) * It talks.

However we do not yet have the necessary theoretical means to prove this, one main

reason is that type restrictions (see definition 2.24) need to be updated to use axiom (NEG)

that not only outputs a type statement like x : τ but also outputs a type statement like

¬(x : τ).

Definition 3.29 Type Restriction Satisfaction (Version II)

A type restriction TR of a sense for an expression is satisfied in a phrase if and only if for

CHAPTER 3. OUR TYPE SYSTEM 54

every pair (role, type) ∈ TR, the expression ξ that assumes the grammatical role role in the

phrase, refers to an object of type τ where an instantiation type′ of type exists2 such that

we have either:

• τ = type′

• – there is a type axiom that outputs ξ : type′ , and

– there is no type axiom that outputs ¬(ξ : type′)

Using the above definition and applying it on sentence (2), we have:

(4) it : all y V − human

Since dog ⊑ all and dog ⊑/ human we can apply (SPECNEG) by setting δ = dog and

derive:

(5) it : dog − human

and an application of axiom (NEG) outputs:

(6) a. it : dog , which is required by the verb barks, and

b. ¬(it : human)

And there is no type axiom that outputs ¬(it : dog) so the type restriction of the verb barks

is satisfied and the sentence is recognized as a semantically valid sentence.

On the other hand the pronoun it is also used in sentence (3), and in (6b) we obtained

that ¬(it : human) which contradicts the restriction of the verb talks. So sentence (3) is

recognized as semantically invalid.

Definition 3.30 Basic Types in our Type System

The set of basic types denoted by BasType is the union of simple, composite, jump and

negated types that is:

BasTyp = SimTyp∪ComTyp∪JumpExp∪NegTyp. This could result in an infinite

number of basic types due to possibly an infinite number of specializable types in JumpExp.

2if type does not have any free variables type′ = type.

CHAPTER 3. OUR TYPE SYSTEM 55

3.2 Most General Specializable Answers

As the type checking algorithm that we will introduce in section 3.5 heavily relies on a

satisfiability checker over subtype formulas3 that is developed in section 3.4, we are interested

in finding values for variables in jump expressions that satisfy the subtype relations. Such

values are called answers. There might be multiple answers for a variable. Sometimes it

is possible to find a specializable type that can be specialized to every answer and to no

type that is not an answer. We call such answers the most general specializable answers. If

they exist, they encompass all possible answers and reduce the number of outputs of our

satisfiability checker. This will result in less computational effort by our parser, because

each answer often associates with a possible reading of a phrase, and less readings for each

phrase will result less possible combinations of readings for building larger phrases. First

we clarify what we mean by the generality of types. Next we formally define most general

specializable answers. Then in the next section we provide theorems that enable us to verify

a subtype relation for almost all basic types.

Definition 3.31 Generality of Types

For two types σ and τ we say σ is more general than τ if and only if τ < σ. Likewise we

say σ is less general than τ if and only if σ < τ .

Definition 3.32 The Most General Specializable Answer

For any binary relation R and any natural type τ and any type σ, the most general answer

of V satisfying (τ y V) R σ is ω y V ′ for a fresh variable4 V ′ if and only if:

(7) ω ∈ NatTyp

(8) ∀τ0 ∈ NatTyp . (τ0 ⊑ τ ∧ τ0 R (σ.[τ0/V]))⇐⇒ τ0 ⊑ ω

where σ.[τ0/V] is the result of substituting τ0 for V if it occurs in σ.

3Hoang et al. in [43] call a similar problem the Satisfiability of Subtype Inequalities (SSI), where several
subtype formulas are simultaneously being checked for satisfiability. Here, if there are several formulas
to be satisfied, we check just one formula at a time, and unify the variables in the rest of the formulas
to their corresponding answers in the formula just checked. The system provided in [43], however, lacks
the (SPECIAL) axiom because this axiom does not seem to be helpful for OOP programming languages
which is their target. (SPECIAL) corresponds to down-casting in OOP, which in popular languages is not
automatic, and the programmer must force it when required.

4By a fresh variable we mean it has not been previously used in any other formula. This is needed to
avoid variable clashes between independent formulas. Not using fresh variables in places where we require
in this thesis can result in inconsistency and circular terms.

CHAPTER 3. OUR TYPE SYSTEM 56

This means any answer to (τ y V) R σ will be equal to ω y V ′ if V ′ is instantiated to an

appropriate natural type. This requires any answer to be less general than or equal to ω

and any subtype of ω to be an answer.

Corollary 3.33 If ω y V ′ is the most general specializable answer of V satisfying (τ y

V) R σ then:

(9) ω ⊑ τ

(10) ω R (σ.[ω/V])

This is obtained by plugging the value ω for τ0 in (8).

Remark 3.34 Note that the most general specializable answer might not exist for some

cases. For example if human has some strict subtypes in the type hierarchy and the input

of the satisfiability checker is the following subtype relation:

human ⊑ human y V

then the only answer for V is human (which is non-specializable).

3.3 Checking ⊑ for All Unnegated Types and Special Cases

of Negated Types

In applications where only a given type might be affected by negation (as the type human

in this thesis) there is a condition whose truth enables us to find an efficient algorithm of

subtype checking for negated types as well as unnegated types. For example it suffices in

the HPSG grammar of this thesis, which we develop in the next chapters that the negations

operate only with the type human. That is, every negated type, which we will use in the

grammar is either τ − human or τ y Vi − human, for some natural type τ . For expressing

this condition we need some definitions first.

Definition 3.35 Partitions

For any natural type τ with subtypes τ1, τ2, ..., τn we say τ is partitioned into n types

τ1, τ2, ..., τn if and only if,

Iτ = Iτ1 ∪ Iτ2 ∪ ... ∪ Iτn , and

τi ‖ τj for any 1 ≤ i < j ≤ n

that is τ1, τ2, ..., τn are disjoint and their instances make up the all of the instances of τ .

CHAPTER 3. OUR TYPE SYSTEM 57

Each one of τ1, τ2, ..., τn are called partitions of τ . We denote this partitioning by :

τ = (τ1 | τ2 | ... | τn)

Remark 3.36 Partitions and General Classes

If τ is partitioned into (τ1 | τ2 | ... | τn) then according to the definition above every instance

of τ must be an instance of exactly one of its subtypes τ1, ..., τn. This fits the description of

the general classes that we provided in the previous chapter.

Definition 3.37 Triangular Types

A natural type σ is called a triangular type if and only if, for every other natural type τ one

of the following 3 conditions is true:

τ ⊑ σ , that is, τ is a subtype of σ

σ < τ , that is, σ is a strict subtype of τ

τ ‖ σ , that is, τ and σ are disjoint

Now we can express the triangularity condition.

Triangularity Condition:

Suppose the only type that appears on the right hand side of the negation operator (−) is

σ. The triangularity condition holds in a type hierarchy if and only if σ and all of its super

types are triangular types.

So, it is important that in the type hierarchy of the application, human with all of its

super types be triangular types. This is natural, because being triangular simply means

that the types at that level and above are all in non-overlapping partitions. This is true for

example in the type hierarchy of figure 3.1. We do not have any type that overlaps with

and is not contained in nor contained by physical. That is, any type is either a subtype

or super type of physical or it is disjoint with it. Same naturally holds for any parent of

human.

Note that we do not pose any restriction on the types that are below human. For

example the hierarchy shown in figure 3.1 can be extended below human, or below any

type that is disjoint with human to suit the application’s domain. Note that no multiple

inheritance is allowed with parents among different partitions of a partitioned type. This

would contradict that the partitions must be disjoint. This condition is similar to what is

described as multi-dimensional inheritance by Erbach in [29].

CHAPTER 3. OUR TYPE SYSTEM 58

conceptual

all

physical

joke happiness projectanimal

bird

elephant

mammal reptile

human beluga

Figure 3.1: An example class hierarchy

With this restriction in mind, we introduce the subtype checking problem below, and

in the following subsections we provide theorems about different cases associated with this

problem.

3.3.1 Subtype Checking Problem

A subtype check is the problem of finding the truth value of a given input formula A ⊑ B

if it does not contain any variables, or is the problem of satisfying A ⊑ B if it contains

variables (specializable types) by finding the answers.

The solution to a subtype check depends on the nature of the types A, and B. A can

be:

• a natural type

• a specializable type

• a negated but not specializable type

• a negated and specializable type

Same possibilities hold for B. There will be 4 × 4 = 16 possibilities. Moreover, there are

additional cases if A, and B are both specializable, either negated or unnegated. There are

CHAPTER 3. OUR TYPE SYSTEM 59

2× 2 = 4 cases where both A, and B are specializable. Each of these 4 cases breaks down

into two further cases:

• i) Variables in the jump expressions associated with A, and B are equal

• ii) Variables in the jump expressions associated with A, and B are different

So the total number of possibilities becomes:

16− 4 + 4× 2 = 20

Table 3.1: Theorems of Subtype Checking

A B
Row Left hand side of ⊑ Right hand side of ⊑ Theorem

1 Natural Natural none (⊑∗
d)

2 A′ y V Natural Theorem 3.38

3 Natural B′ y V Theorem 3.40

4 A′ y V B′ y V Theorem 3.45

5 A′ y V B′ y X Theorem 3.47

6 A′ − σ Natural Theorem 3.50

7 Natural B′ − σ Theorem 3.51

8 A′ − σ B′ − σ Theorem 3.52

9 A′ y V − σ Natural Theorem 3.53

10 A′ − σ B′ y V Theorem 3.54

11 A′ y V − σ B′ y V Theorem 3.55

12 A′ y V − σ B′ y X Theorem 3.58

13 Natural B′ y V − σ Theorem 3.59

14 A′ y V B′ − σ Theorem 3.60

15 A′ y V B′ y V − σ Theorem 3.64

16 A′ y V B′ y X − σ Theorem 3.67

17 A′ y V − σ B′ − σ Theorem 3.68

18 A′ − σ B′ y V − σ Theorem 3.69

19 A′ y V − σ B′ y V − σ Theorem 3.70

20 A′ y V − σ B′ y X − σ Theorem 3.72

Each of these 20 cases needs a slightly different treatment. We provide a theorem that

deals with the case for each one. The proofs are provided in appendix B. These theorems

enable us to decide whether A ⊑ B holds or if it is satisfiable and if so what its answers

CHAPTER 3. OUR TYPE SYSTEM 60

are. These possibilities together with the theorems that deal with them are enumerated in

table 3.1.

3.3.2 Subtype Checking Theorems, Unnegated Types

Here we provide the theorems that deal with unnegated types in a subtype checking problem,

together with some useful remarks in between. The proofs are provided in appendix B.

Theorem 3.38 Specializable Types on the Left Hand Side of ⊑

For any two natural types τ, σ:

• (a) If τ y V ⊑ σ is satisfiable then τ ∦ σ and the most general specializable answer

of V is τ ∗ σ y V ′, for a fresh free variable V ′.

• (b) If τ ∦ σ then τ y V ⊑ σ is satisfiable and the most general answer of V is

τ ∗ σ y V ′, for a fresh free variable V ′.

Remark 3.39 We make this assumption that we do not need answers to the variables

of specializable types on the right hand side of ⊑ as outputs of our subtype satisfiability

checker. The satisfiability checker must just ensure that an answer for the variable on the

right hand side of ⊑ exists, and the input subtype equation is satisfiable. However we need

the answers to the variables used on the left hand side of ⊑ and the satisfiability checker

must find them.

Theorem 3.40 Specializable Types on the Right Hand Side of ⊑

For any two natural types τ, σ:

τ ⊑ σ y V is satisfiable ⇐⇒ τ ⊑ σ

Definition 3.41 Common Subtype

A common subtype of two natural types τ and ω is a natural type µ such that µ ⊑ τ and

µ ⊑ ω.

Definition 3.42 The Most General Common Subtype (greatest lower bound, meet)

A most general common subtype of two natural types τ and ω is µ, a common subtype of τ

and ω such that no strict super-type of µ is also a common subtype of τ and ω. In literature

this is also called a greatest lower bound of τ and ω. A set that contains all of the greatest

lower bound of τ, ω is denoted by τ ⊓ ω.

CHAPTER 3. OUR TYPE SYSTEM 61

Theorem 3.43 The most general common subtype of two natural types τ and σ is τ ∗ σ if

they are not disjoint, and does not exist if they are disjoint

Proof:

• Case i) τ and σ are not disjoint.

First note that by theorem 3.9 we have τ ∗ σ ⊑ τ and τ ∗ σ ⊑ σ, that is, τ ∗ σ is a

common subtype of τ and σ. Next by theorem 3.14 any common subtype of τ and σ

is a subtype of τ ∗σ. So τ ∗σ is the most general common subtype of τ and σ, because

first, it is a common subtype of τ and σ, and second any other common subtype of τ

and σ is as well a subtype of τ ∗ σ. 2

• Case ii) τ and σ are disjoint.

We prove the theorem in this case by contradiction. Suppose ω is a common subtype

of τ and σ. Then by our definition of common subtype it is implied that ω is a natural

type, and hence is not equal to the bottom type. So its instance set is non-empty.

Suppose x ∈ Iω.

Also by the corollary 3.2 we have Iω ⊆ Iτ and Iω ⊆ Iσ.

Then we must have:

x ∈ Iτ and x ∈ Iσ

This means x ∈ Iτ ∩ Iσ that is, τ and σ are not disjoint, which is a contradiction. 2

�

Algorithm 3.44 The above theorem enables us to easily find the most general common

subtype of two arbitrary natural types t1, and t2. We first ensure that these types are not

disjoint. Then the result is simply t1 ∗ t2. There are two special cases that we can simplify

t1 ∗ t2 to either t1, or t2. These special cases are respectively for cases when we have:

(11) a. t1 ⊑ t2

b. t2 ⊑ t1

A simple algorithm to do all of this is provided in the program 3.1.

Theorem 3.45 Specializable Types on Both Sides of ⊑ (case 1)

For any two natural types τ , ω and any free variable V :

CHAPTER 3. OUR TYPE SYSTEM 62

function most general common subtype(t1:natural, t2:natural) : a natural type, or nil

/* any non-recursive call clears the visited types automatically */

begin

/* we will define disjoint(a, b) later */

if disjoint(t1, t2) then return nil

/* we will see later that ⊑∗

d is computed by subtype natural */

else if t1 ⊑
∗

d t2 then return t1
else if t2 ⊑

∗

d t1 then return t2
else return t1 ∗ t2
end if

end

Program 3.1: Finding the most general common subtypes of t1, t2

• a) Any answer to V satisfying τ y V ⊑ ω y V is a subtype of the most general

common subtype of τ and ω.

• b) Any subtype of the most general common subtype of τ and ω is an answer to V

satisfying τ y V ⊑ ω y V .

Remark 3.46 If the most general common subtype µ of τ , ω exists, then we are able to

provide the most general specializable answer to V satisfying τ y V ⊑ ω y V . This answer

is: µ y Vh, for a fresh variable Vh, with an appropriate index h that was not used as a

variable index, or as a subscript in a specializable type before.

Theorem 3.47 Specializable Types on Both Sides of ⊑ (case 2)

For any two natural types τ , ω and any two free variable V , X:

• a) For any answer (v1, x1) to (V , X) satisfying τ y V ⊑ ω y X, v1 is an answer to

V satisfying τ y V ⊑ ω.

• b) Any answer v1 to V satisfying τ y V ⊑ ω contributes to an answer (v1, ω) to

(V, X) satisfying τ y V ⊑ ω y X.

3.3.3 Subtype Checking Theorems for Special Cases of Negated Types

In this section we provide some theorems that enable us to decide about the satisfiability of

subtype relations that involve a negated type argument.

CHAPTER 3. OUR TYPE SYSTEM 63

Theorem 3.48 Negated Non-Specializable Types on the Left Hand Side of ⊑ (=⇒ direc-

tion)

For any two natural types τ, ω, and any natural type σ such that any natural super type

of σ is triangular we have:

τ − σ ⊑ ω =⇒ τ ⊑/ σ ∧ (τ = (ω | σ) ∨ τ ⊑ ω)

Theorem 3.49 Negated Non-Specializable Types on the Left Hand Side of ⊑ (⇐= direc-

tion)

For any two natural types τ, ω, and any natural type σ such that any natural super type

of σ is triangular we have:

τ − σ ⊑ ω ⇐= τ ⊑/ σ ∧ (τ = (ω | σ) ∨ τ ⊑ ω)

Theorem 3.50 Negated Non-Specializable Types on the Left Hand Side of ⊑ (both

directions)

For any two natural types τ, ω, and any natural type σ such that any natural super type

of σ is triangular we have:

τ − σ ⊑ ω ⇐⇒ τ ⊑/ σ ∧ (τ = (ω | σ) ∨ τ ⊑ ω)

Theorem 3.51 Negated Non-Specializable Types on the Right Hand Side of ⊑

For any natural types τ, ω and and any natural type σ such that any natural super type of

σ is triangular we have:

τ ⊑ ω − σ ⇐⇒ ω ⊑/ σ ∧ τ ⊑ ω ∧ τ ‖ σ

Theorem 3.52 Negated Non-Specializable Types on Both Sides of ⊑

For any two natural types τ, ω, and any natural type σ whose any natural super is triangular

we have:

τ − σ ⊑ ω − σ ⇐⇒ τ ⊑/ σ ∧ ω ⊑/ σ ∧ (τ = (ω | σ) ∨ τ ⊑ ω)

In the following theorems we seek ways to reduce answers to negated specializable types

in subtype satisfiability problem to simpler cases.

Theorem 3.53 Negated Specializable Types on the Left Hand Side of ⊑

For any two natural types τ, ω, and any natural type σ such that any natural super type

of σ is triangular we have:

Any answer to τ y V − σ ⊑ ω is either

an answer to the equation V = (ω | σ) that is also a natural subtype of τ

CHAPTER 3. OUR TYPE SYSTEM 64

or

an answer to τ y V ⊑ ω that is not a subtype of σ

and vice versa.

Theorem 3.54 Negated Non-Specializable Types on the Left Hand Side of ⊑ and Special-

izable Types on the Right Hand Side of ⊑

For any two natural types τ, ω, and any natural type σ such that any natural super type

of σ is triangular we have:

τ − σ ⊑ ω y V is satisfiable if and only if τ − σ ⊑ ω holds.

Theorem 3.55 Negated Specializable Types on the Left Hand Side of ⊑ and Specializable

Types on the Right Hand Side of ⊑ (case 1)

For any two natural types τ, ω, and any natural type σ such that any natural super type

of σ is triangular we have:

• Any answer to V satisfying τ y V − σ ⊑ ω y V is a common subtype of τ and ω

that is not a subtype of σ

• Any common subtype of τ and ω that is not a subtype of σ is an answer to V satisfying

τ y V − σ ⊑ ω y V

Algorithm 3.56 Here we present an algorithm to find the most general subtypes of t1,

t2, (if possible specializable types) that are not a subtype of σ. t1, t1 and σ are natural,

and additionally σ and any of its parents are triangular. This algorithm will be used in

remark 3.57 and remark 3.71. We begin by finding the most general common subtypes of

t1, and t2, and from there run a depth first search algorithm. This algorithm is provided

in program 3.2. The assumption that σ is a triangular type ensures that exactly one of

the three cases investigated by the if statement in check subtypes(.,.) holds, and the

algorithm covers all possible cases.

Remark 3.57 Using theorem 3.55 we are able to reduce the problem of finding the answers

to V satisfying τ y V − σ ⊑ ω y V , to the problem of finding the common subtypes of τ ,

and ω that are not a subtype of σ. And these values can be found by a call to:

most general common subtypes not contained by(τ, ω, σ).

CHAPTER 3. OUR TYPE SYSTEM 65

function most general common subtypes not contained by(

t1 : natural, t2 : natural, σ : triangular)

: a set of natural types or jump expressions

begin

t← most general common subtype(t1, t2)

if t = nil then return ∅

return check subtypes(t, σ)

end

function check subtypes(t, σ) : a set of natural types or jump expressions

begin

/* If t ⊑ σ then every subtype of t is also */

/* a subtype of σ and no answer from this sub-DAG of */

/* the type hierarchy can be found */

/* We will see later that ⊑∗

d is computed by subtype natural */

if t ⊑∗

d σ then return ∅

/* If t and σ are disjoint then no subtype of t */

/* can be a subtype of σ, that is, every subtype of t */

/* is an answer, so we are able to output a specializable */

/* answer that covers this sub-DAG of the hierarchy */

/* (we will define disjoint(a, b) later) */

if disjoint(t, σ) then

return {t y Vt}

/* Otherwise t is an answer and we continue by checking all */

/* immediate subtypes of t */

/* The test in the following if always passes, because σ is triangular */

if σ <
∗

d t then

A← {t}

for each immediate subtype t′ of t do

A← A ∪ check subtypes(t′, σ)

end for

return A

end

Program 3.2: Enumerating common subtypes of t1, t2 that are not a subtype of σ

CHAPTER 3. OUR TYPE SYSTEM 66

Theorem 3.58 Negated Specializable Types on the Left Hand Side of ⊑ and Specializable

Types on the Right Hand Side of ⊑ (case 2)

For any two natural types τ, ω, and any natural type σ such that any natural super type

of σ is triangular we have:

• i) For any answer (v1, ω1) to τ y V −σ ⊑ ω y X, v1 is an answer to τ y V −σ ⊑ ω

• ii) For any answer v1 to τ y V − σ ⊑ ω, (v1, ω) is an answer to τ y V − σ ⊑ ω y X

Theorem 3.59 Negated Specializable Types on the Right Hand Side of ⊑

For any two natural types τ, ω, and any natural type σ such that any natural super type

of σ is triangular we have:

• i) If τ ⊑ ω y V − σ is satisfiable then τ ‖ σ and any answer to τ ⊑ ω y V − σ is also

an answer to τ ⊑ ω y V

• ii) If τ ‖ σ, then any answer to τ ⊑ ω y V is also an answer to τ ⊑ ω y V − σ

Theorem 3.60 Negated Non-Specializable Types on the Right Hand Side of ⊑ and Spe-

cializable Types on the Left Hand Side of ⊑

For any two natural types τ, ω, and any natural type σ such that any natural super type

of σ is triangular we have:

• i) If τ y V ⊑ ω − σ is satisfiable then any answer to τ y V ⊑ ω − σ is an answer to

τ y V ⊑ ω that is disjoint with σ

• ii) Any answer to τ y V ⊑ ω that is disjoint with σ is also an answer to τ y V ⊑ ω−σ

Theorem 3.61 If A type µ is disjoint with a type σ, then any subtype of µ is also disjoint

with σ.

Algorithm 3.62 We present an algorithm to find all of the most general natural subtypes

µi of a natural type µ that are disjoint with another natural type σ This algorithm will be

used in remark 3.63. We can use depth first search from µ and for each node visited check

if the type associated with that node is disjoint with σ or not, if so, the depth first search

at that branch terminates. The algorithm is shown in program 3.3.

CHAPTER 3. OUR TYPE SYSTEM 67

function most general disjoint subtypes(µ:natural, σ:natural) : set of natural types

/* any non-recursive call clears the visited types automatically */

begin

if µ is already visited then return ∅ else mark µ as visited end if

/* we will define disjoint(a, b) later */

if disjoint(µ, σ) then return {µ}

A← ∅

/* for all children c of µ in the type hierarchy do */

for all c such that c <d µ do

A← A ∪ most general disjoint subtypes(c, σ)

end for

return A

end

Program 3.3: Finding all of the most general subtypes of µ that are disjoint with σ.

Remark 3.63 Using theorem 3.60 we can reduce the problem of finding the answers of

τ y V ⊑ ω − σ, to the problem of finding the answers to τ y V ⊑ ω that are disjoint with

σ. According to theorem 3.38, τ y V ⊑ ω has a most general specializable answer that we

here refer to as µ y X. There is no guarantee that µ is disjoint with σ. But we can find

all n most general natural subtypes µi of µ that are disjoint with σ, for 1 ≤ i ≤ n, using

algorithm 3.62.

According to theorem 3.61 for all 1 ≤ i ≤ n any subtype µ′ of µi is also disjoint with σ,

and by theorem 3.60 µ′ is an answer to V satisfying τ y V ⊑ ω − σ.

On the other hand for any answer v to V satisfying τ y V ⊑ ω−σ, theorem 3.60 ensures

that v is disjoint with σ, and an answer to V satisfying τ y V ⊑ ω, which by theorem 3.38

has a most general specializable answer µ y X. According to the definition of most general

specializable answers (definition 3.32), this needs v to be a subtype of µ. Now we run the

algorithm shown in program 3.4.

When the loop ends, t is a most general natural subtype of µ that is disjoint with σ,

which is also a super-type (not necessarily a strict one) of v. This means t must be equal

to some µi, and because t is a super-type of v we can claim that v ⊑ µi.

So any answer to V satisfying τ y V ⊑ ω−σ is a subtype of some µi, for 1 ≤ i ≤ n, and

vice versa. This enables us to provide n most general specializable answers to V satisfying

τ y V ⊑ ω − σ. These answers are of the form for each 1 ≤ i ≤ n:

µi y Vh+i, for a fresh variable Vh+i, with an appropriate index h that is chosen such that

CHAPTER 3. OUR TYPE SYSTEM 68

t← v

while t 6= µ do

/* since t is a natural subtype of µ, a parent of t in the type hierarchy, */

/* which we name p, must be a subtype of µ */

/* (not necessarily a strict subtype) */

p← a parent of t that is a subtype of µ

if p is disjoint with σ then

t← p

end if

end while

Program 3.4: Reaching a most general natural subtype of µ that is disjoint with σ

h + i was not used as a variable index, or as a subscript in a specializable type before.

Theorem 3.64 Negated Specializable Types on the Right Hand Side of ⊑ and Specializable

Types on the Left Hand Side of ⊑ (case 1)

For any two natural types τ, ω, and any natural type σ such that any natural super type

of σ is triangular we have:

• i) Any answer to τ y V ⊑ ω y V −σ is a common subtype of τ , and ω that is disjoint

with σ.

• ii) Any common subtype of τ , and ω that is disjoint with σ is an answer to τ y V ⊑

ω y V − σ

Remark 3.65 The above theorem reduces the problem of finding the answers to τ y V ⊑

ω y V − σ to the problem of finding the common subtypes of τ, ω that are disjoint with

σ. By theorem 3.43, we know that any common subtype of τ, ω is a subtype of the most

general common subtype. So we first check if the most general common subtype of τ, ω

exists, if not, no answer to τ y V ⊑ ω y V − σ can be found. Otherwise the most general

common subtype of τ , ω is µ = τ ∗ ω, which is calculated by algorithm 3.44.

Next we find all n most general natural subtypes µi ⊑ µ that are disjoint with σ (by

using algorithm 3.62) for 1 ≤ i ≤ n. Then according to theorem 3.64 any subtype v of any

of µi is an answer to τ y V ⊑ ω y V − σ.

On the other hand there is no answer v to τ y V ⊑ ω y V − σ that is not a subtype of

some µi, because theorem 3.64 requires v to be a common subtype of τ, ω that is disjoint

with σ, and by running the algorithm presented in remark 3.63 we are able to prove that v

is a subtype of a µi.

CHAPTER 3. OUR TYPE SYSTEM 69

This enables us to find n specializable answers to τ y V ⊑ ω y V − σ that cover any

possible answer. These answers are of the form:

µi y Vh+i, for a fresh variable Vh+i, with an appropriate index h that is chosen such that

h + i was not used as a variable index, or as a subscript in a specializable type before.

Lemma 3.66 For any two natural types ω, σ, and any natural subtype ω1 ⊑ ω such that

ω1 ⊑/ σ we have:

ω1 − σ ⊑ ω − σ

Theorem 3.67 Negated Specializable Types on the Right Hand Side of ⊑ and Specializable

Types on the Left Hand Side of ⊑ (case 2)

For any two natural types τ, ω, and any natural type σ such that any natural super type

of σ is triangular we have:

• i) For any answer (v1, ω1) to τ y V ⊑ ω y X −σ, v1 is an answer to τ y V ⊑ ω−σ

• ii) Any answer v1 to τ y V ⊑ ω − σ, contributes to an answer (v1, ω) to τ y V ⊑

ω y X − σ

Theorem 3.68 Negated Specializable Types on the Left Hand Side of ⊑ and Negated

Non-Specializable Types on the Right Hand Side of ⊑

For any two natural types τ, ω, and any natural type σ such that any natural super

type of σ is triangular, and that ω ⊑/ σ we have:

Any answer to τ y V − σ ⊑ ω − σ is an answer to τ y V − σ ⊑ ω and vice versa.

Theorem 3.69 Negated Non-Specializable Types on the Left Hand Side of ⊑ and Negated

Specializable Types on the Right Hand Side of ⊑

For any two natural types τ, ω, and any natural type σ such that any natural super

type of σ is triangular, and that τ ⊑/ σ and ω ⊑/ σ we have:

τ − σ ⊑ ω y V − σ is satisfiable if and only if τ − σ ⊑ ω − σ holds.

Theorem 3.70 Negated Specializable Types on the Both Sides of ⊑ (case 1)

For any two natural types τ, ω, and any natural type σ such that any natural super

type of σ is triangular, and a variable V we have:

• a) Any answer to V satisfying τ y V − σ ⊑ ω y V − σ is a common subtype of τ ,

and ω that is not a subtype of σ.

CHAPTER 3. OUR TYPE SYSTEM 70

• b) Any common subtype of τ , and ω that is not a subtype of σ is an answer to V

satisfying τ y V − σ ⊑ ω y V − σ.

Remark 3.71 Using theorem 3.70 we are able to reduce the problem of finding the an-

swers to V satisfying τ y V − σ ⊑ ω y V − σ, to finding the common subtypes of

τ , and ω that are not a subtype of σ. And these values can be found by a call to

most general common subtypes not contained by(τ, ω, σ).

Theorem 3.72 Negated Specializable Types on the Both Sides of ⊑ (case 2)

For any two natural types τ, ω, and any natural type σ such that τ ⊑/ σ, ω ⊑/ σ, and

any natural super type of σ is triangular, and two variables V , X we have:

• a) For any answer (v1, x1) to (V , X) satisfying τ y V − σ ⊑ ω y X − σ v1 is an

answer to V satisfying τ y V − σ ⊑ ω − σ

• b) Any answer v1 to V satisfying τ y V −σ ⊑ ω−σ contributes to an answer (v1, ω)

to (V , X) satisfying τ y V − σ ⊑ ω y X − σ

3.4 Extended Subtype Checking Algorithm

Now with the theory we developed about types, we are able to provide an algorithm that

checks whether or not a subtype formula holds or is satisfiable. The information the algo-

rithm needs is the following:

• set of simple types SimTyp

• set of well-formed natural types NatTyp

• direct subtype relation <d

• the information about the partitions that exist among the natural types, represented

by a set P that contains all the partitions. That is:

P = {(τ, {τ1, ..., τn}) | n ∈ N ∧

τ ∈ NatTyp ∧ ∀1 ≤ i ≤ n.τi,∈ NatTyp ∧

τ = (τ1 | ... | τn)}

CHAPTER 3. OUR TYPE SYSTEM 71

The domain and the range of <d are equal to NatTyp. And one can find whether or not

two natural types are disjoint by checking if their composition is in NatTyp. However, as

noted in the definition of natural type hierarchies (definition 3.13), the complete <d relation

can be huge, because it takes a space that is in O(2n), where n is the number of simple

types.

An alternative is to keep the partial but necessary information of <d, by removing

the obvious subtypes or super-types of composite types (as shown by theorem 3.9), and

removing all the composite types that do not have a non-obvious immediate super-type or

subtype, and accompany this partial information of <d with the the necessary information

of NatTyp. We use <d! to denote the non-obvious direct subtype relationship.

An important note is that the information of NatTyp and P can be provided to the

system gradually, and only if they are required, by making the system an interactive one.

That is, the exact sets are not needed at the very beginning. Whenever a query to these sets

is issued by the type checking algorithm, the system can see if it has enough information

to respond to the query, and if the information it has is not enough, a question to the user

can be issued to get the necessary information, which is then integrated to data base of the

system, so that same questions are not issued repeatedly.

We begin by providing an interactive algorithm to check whether a given type is natural.

We make this observation that if t1 ∗ t2 ∗ ... ∗ tn is natural, then any composition of a subset

of t1, ..., tn is also a natural type (which is the super type of the original one). An efficient

way of representing this is to keep the maximal set of simple types whose composition

makes a natural type, and in a dual fashion keep the minimal set of simple types whose

compositions is the bottom type. These maximal (minimal) sets are members of the larger

set Nat+ (Nat−).

A naive algorithm using this idea is provided in program 3.5. The set of positive example

of natural types is initially equal to:
⋃

s∈SimTyp

{{s}}.

In this algorithm we use a special subtype operator ⊑′ for sets. This operator checks

that each member of its right hand side operand is a natural super-type of a member in its

left hand side operand, that is:

A ⊑′ B ⇔ ∀b ∈ B; ∃a ∈ A; a = b ∨ a <d b

Using this operator in the algorithm avoids the unnecessary user interrogation when a

CHAPTER 3. OUR TYPE SYSTEM 72

function is natural(t : type) : boolean

side effects include updates to Nat+, Nat−.

begin

if t = t1 − t2 then return false

if t = t1 y V and V is a free variable then return false

if t = t1 ∗ t2 ∗ ... ∗ tn (with ti ∈ SimTyp) then

S ← {t1, t2, ..., tn}

remove any ti that is a natural super-type of some tj in S, where i 6= j

for every Maxi ∈ Nat+ do

if S ⊆Maxi then return true

if Maxi ⊑′ S then return true

end for

for every Mini ∈ Nat− do

if Mini ⊆ S then return false

if S ⊑′ Mini then return false

end for

/* The information stored in the system is not enough to answer this query */

/* User is asked to answer whether t is a natural type */

print "is " + t + " a natural type?"

answer ← get user input

if answer is yes then

Nat+ ← Nat+ ∪ {S}

for every Maxi ∈ Nat+ do

if Maxi ⊂ S then

remove Maxi from Nat+

end if

end for

return true

else

Nat− ← Nat− ∪ {S}

for every Mini ∈ Nat− do

if S ⊂Mini then

remove Mini from Nat−

end if

end for

return false

end if

end if

return false

end

Program 3.5: Interactive natural type detection algorithm

CHAPTER 3. OUR TYPE SYSTEM 73

portion of S is a set whose elements are all subtypes of a minimal negative example in

Nat−. In other words, if the composition of the types in Mini is not a natural type, then

the composition of a set of types containing subtypes of every type in Mini is not a natural

type either.

Also in a dual fashion, if every element of S is a natural super-type of some member of

a maximal positive example Maxi then the composition of the elements in S will result a

natural type.

This algorithm can be improved by dealing with the special cases of triangular types,

specifically human. That is, if human ∈ S, then the composition of elements of S is a

natural type if and only of every element of S is a natural super-type or subtype of human.

This will result in less unnecessary interactions with the user.

This algorithm requires subtype checking among natural types which will be discusses

in the next subsection.

Now we can provide an algorithm that checks whether two types are disjoint or not. The

algorithm is shown in program 3.6.

function disjoint(t1 : natural, t2 : natural) : boolean

begin

if is natural(t1 ∗ t2) then return false

return true

end

Program 3.6: Simple algorithm to check if two natural types are disjoint.

The set P can be broken down in a similar way to P+, and P−. The information in

Nat+, and Nat− can also help answer a query about partitions, because for some types

to form a partition it is necessary that they are disjoint. The interactive algorithm about

partitions is shown in program 3.7.

3.4.1 Checking Subtype Formulas Among Natural Types

Note that natural types are present in a complete type hierarchy diagram, and according to

the definition of direct subtypes (definition 3.11) we know that the subset relation⊑ over nat-

ural types is equal to the transitive closure of⊑d. The complete relation⊑d can be calculated

by adding the obvious subtype relation to <d!. The obvious portion is the following relation:

CHAPTER 3. OUR TYPE SYSTEM 74

function is partition(t : natural or a variable, t1, ..., tn : natural) : boolean

side effects include updates to t, P+, P−, Nat−.

begin

/* The following call instantiates t upon success if it is a variable */

if (t, {t1, ... tn}) ∈ P+ return true

if (t, {t1, ... tn}) ∈ P− return false

for all N ∈ Nat+ do

if |{t1, ... tn} ∩N | > 1 then

P− ← P− ∪ {(t, {t1, ... tn})}

return false

end for

/* The information stored in the system is not enough to answer this query */

/* User is asked to answer whether t, tis make a partition or not */

print "is it true that " + t = (t1|...|tn) + "?"

answer ← get user input

if answer is yes then

if t is a variable then

print "enter the type for t", t← get user input

end if

P+ ← P+ ∪ {(t, {t1, ... tn})}

for every 1 ≤ i < j ≤ n do

Nat− ← Nat− ∪ {{ti, tj}}

for every Mini ∈ Nat− do

if {ti, tj} ⊂Mini then

remove Mini from Nat−

end if

end for

end for

return true

if answer is no then

P− ← P− ∪ {(t, {t1, ... tn})}

return false

end

Program 3.7: Interactive partition algorithm

CHAPTER 3. OUR TYPE SYSTEM 75

function subtype natural(τ, σ) : boolean

/* any non-recursive call clears the visited types automatically */

begin

if τ is already visited then return false else mark τ as visited end if

if τ ⊑d σ then return true

for all τ ′ 6= τ such that τ ⊑d τ ′ do

if subtype natural(τ ′, σ) = true then

return true

end if

end for

return false

end

Program 3.8: Subtype checking over natural types, version I

Obvious = {(x1 ∗ ...∗xn, y1 ∗ ...∗ym) | x1 ∗ ...∗xn ∈ NatTyp ∧ {y1, ..., ym} ⊆ {x1, ..., xn}}

So:

⊑d = Obvious ∪ <d!

A naive algorithm that follows the transitive edges of the direct subtype relation is

presented in program 3.8. Note that this algorithm basically performs a DFS on the complete

type hierarchy, and its time complexity is in O(22n), where n is the number of simple types.

This complexity is pretty bad, and with an observation that we see in what follows we are

able to improve it from exponential to polynomial in terms of the size of the inputs. The

complexity of the better algorithm will be O(n2 + m), where m = |<d! | is the number

of edges of the non-obvious portion of the natural type hierarchy, which is the size of the

subtype information that is needed to be provided by the user.

An Observation on the Immediate Super-types of a Composite Type

Theorem 3.73 A composite type x1 ∗ x2 ∗ ... ∗ xn cannot have any immediate super-type

other than x1, x2, ..., xn.

Proof: By contradiction suppose that x1 ∗ x2 ∗ ... ∗ xn also has an immediate super-type

y which is not equal to any xi. Then by theorem 3.14 x1 ∗ y is a well-formed natural type

and we have:

x1 ∗ x2 ∗ ... ∗ xn ⊑ x1 ∗ y

CHAPTER 3. OUR TYPE SYSTEM 76

Since by theorem 3.9 we have x1∗y ⊑ y, x1∗y is a less general super-type of x1∗x2∗...∗xn than

y. And this contradicts the assumption that y is an immediate super-type of x1 ∗x2 ∗ ...∗xn.

�

Example 3.74 An example in C++ and its corresponding type hierarchy in our formalism

is shown in figure 3.2. The composite type itself as we use it in our formulation is not an

explicit type in OOP languages.

class X1 {
/* some stuff */

}
class X2 {
/* some other stuff */

}
class X : public X1, public X2 {
/* some more stuff */

}

X1

X1 ∗X2

X

X2

Figure 3.2: A simple C++ example for multiple inheritance, with its type hierarchy in our
formalism.

By theorem 3.73, we know there is no composite type x1 ∗ ... ∗ xn participating at the

left hand side of <d!, because the only direct super types are x1, ..., xn which are obvious

super-types that are not included in <d!. And the pairs in Obvious have as their second

component only simple types.

With this observation, we can provide a more efficient algorithm for subtype natural

that operates on <d! instead of ⊑d. This algorithm5 is shown in program 3.9.

The time complexity of the new algorithm is in O(n2 +m) where m = |<d!| is the size of

the direct subtype information that should be provided by the user, and n is the number of

simple types. The argument is as follows. First note that the algorithm is recursive only in

terms of its first argument. We say the algorithm visits z if a call to the algorithm is made

with z as the first argument. Also note that the algorithm is a DFS on a graph including

the edges in <d! plus the of edges in the graph of Obvious′, where Obvious′ ⊆ Obvious, and

the pairs in Obvious′ are restricted to have as their first component the composite types

5In this algorithm we suppose no two xi, and xj can be found such that xi ⊑ xj . The same condition
applies for yi’s. To remove this limitation several more recursive calls must be added that for simplicity we
do not discuss. Our implementation, however, works generally for all cases with no such limitation.

CHAPTER 3. OUR TYPE SYSTEM 77

function subtype natural(τ, σ) : boolean

/* any non-recursive call clears the visited types automatically */

begin

if τ = σ then return true

if τ is already visited then return false else mark τ as visited end if

/* see footnote 5 */

let x1 ∗ ... ∗ xp ← τ

let y1 ∗ ... ∗ ym ← σ

if {y1, ..., ym} ⊆ {x1, ..., xp} then return true

if p > 1 then

for all 1 ≤ i ≤ p do

if subtype natural(xi, σ) = true then

return true

end for

end if

for all τ ′ such that τ <d! τ ′ do

if subtype natural(τ ′, σ) = true then

return true

end for

return false

end

Program 3.9: Subtype checking over natural types, version II

that have a simple type child, plus a pair for the composite type τ for the first call to the

algorithm (if it is a composite type). The reason for this choice of Obvious′ is that the

algorithm will not visit any other composite type along its search. All the composite types

visited are the first composite type presented to the algorithm as the first argument plus the

composite types that are parents of some simple type. The number of composite types used

as a parent of a simple type in the type hierarchy cannot be more than the number of simple

types itself. So the graph of Obvious′ cannot contain more than 2× n + 1 nodes, which is

in O(n). The number of edges of this graph is in O(n2). So the total number of edges that

are traversed by the algorithm is in O(n2) + O(|<d!|), which will be the complexity of the

DFS algorithm.

3.4.2 The General Case

Based on theorems 3.38 - 3.72 for different cases of a subtype checking problem we can define

a recursive algorithm to determine the truth value or satisfiability of a subtype formula

CHAPTER 3. OUR TYPE SYSTEM 78

A ⊑ B.

The algorithm is provided in appendix A. It is a function with the signature:

function subtype(A : BasTyp, B : BasTyp) : set of answers

We assume all negated types use triangular types whose parents are also triangular. The

return value of the function is the nil set if the formula does not hold or is not satisfiable.

If the formula holds or is satisfiable and no variables occur in A, then the return value is an

empty set. If a variable occurs in A, and the formula is satisfiable, then the return value is

the set of answers (specializable or not).

3.5 Type Restriction Satisfaction through Subtype Checking

Now that we have an algorithm to determine whether A ⊑ B for all basic types A, B (with

the restrictions of triangular types in negated types), we can redefine the satisfaction of type

restrictions by the following definition.

Definition 3.75 Type Restriction Satisfaction (Version III)

A type restriction TR of a sense for an expression is satisfied in a phrase if and only if for

every pair (role, type) ∈ TR, the expression ξ that assumes the grammatical role role in

the phrase, refers to an object of type τ , where the following formula holds or is satisfiable

from a consistent set of suppositions:

(12) τ ⊑ type

Next we prove that versions II, and III of type restrictions are equivalent.

Theorem 3.76 Equivalence of Type Restriction Versions II, III

Proof:

• Suppose that type restriction satisfaction version II holds, that is, we are able to infer

ξ : type′ from ξ : τ , where type′ is an instantiation of type. Since the type axioms do

not rely on the internal structure of ξ but only on its type, ξ can be replaced by an

arbitrary symbol x, and we can derive x : type′ using the same type axioms and the

same procedure used to derive ξ : type′. By the definition of instance sets we get:

Iτ ⊆ Itype′

which is equivalent to:

CHAPTER 3. OUR TYPE SYSTEM 79

τ ⊑ type′

which means τ ⊑ type holds (if it contains no variables) or is satisfiable (if it has a

variable), because type′ is just an instantiation of type. On the other hand version

II requires that ¬(ξ : type′) not be derivable. This means there is no contradiction

in place, or otherwise everything could be derived. So type restriction satisfaction

version III holds. 2

• Suppose that type restriction satisfaction version III holds, that is, τ ⊑ type holds or

is satisfiable, with no contradictions in place.

This means for an instantiation type′ of type we have:

τ ⊑ type′

And by (SUB) from ξ : τ we can derive ξ : type′

This means ¬(ξ : type′) cannot be derived, or otherwise we would have a contradiction

in the system which is contrary to the supposition. So type restriction satisfaction

version II holds. 2

�

3.6 Conclusion

Our contribution in this chapter is a comprehensive type system that includes multiple

inheritance, negated types and specializable types. A detailed theory was laid out and we

studied how the notion of type restrictions as defined in the previous chapter can be defined

in terms of the type system we developed.

In the next part of the thesis we introduce the HPSG formalism and will eventually

combine this type system with it.

Part II:

The Grammar

In this part of the thesis we combine the type theory of chapter 3 with the HPSG formalism.

In doing so, however, we keep in mind the two distinct type systems in play. One is the

type system for the grammatical categories that are well-developed in terms of the logic of

typed feature structures (see for example Carpenter [12]). This type system provides a type

theory for grammar entities, such as sentences, verbs, nouns, adjectives, and etc. Another is

the type theory that describes the semantic domain of the grammar application. The types

in this system refer to the types of the domain entities.

domain entities

g
ra

m
m

a
r

e
n
ti
ti
e
s

•verb

•noun

•adj

..
.

•

human

•

student

•

customer

•

student*customer ...

Area of interest in the type system of Ch.3

The two dimensional type system for the integrated grammar.

As a result we see the type system of an integrated grammar in two non-conflicting

dimensions, as depicted in the figure above. The first dimension is the grammar entity

dimension, the other is the domain entity dimension. An example of the domain type

hierarchy is shown on the next page. This hierarchy is taken from the second chapter. For

an example of the grammar entity type hierarchy see figure 4.1 in section 4.6.

80

CHAPTER 3. OUR TYPE SYSTEM 81

human

all

textbook

student customeramount of money

number

price student * customer

The bookstore domain entity type hierarchy

These dimensions can be observed in categorial grammar in a smaller scale. λ-types

are the types that govern the semantics, including the domain entity types which have

been represented solely by Ind in simple existing theories. What we did in chapter 3 can be

thought of as extending the type hierarchy below Ind by providing the necessary theoretical

means. The grammar entity dimension in the categorial grammar is the category system,

that included categories like S, N, NP/N, NP\S, and etc.

The organization of the chapters in this part is as follows. First in chapter 4 we present

an introduction to the important concepts of HPSG with some background. We present

the grammar entity type hierarchy for our grammar, with very brief discussion of what our

contributions and modifications are. Then in chapter 5 we go through the syntactic features

of our grammar with the grammar rules and principles that govern syntax, together with

some examples. Next in chapter 6 we go through the semantic features of our grammar

with some modifications to the grammar rules and some additional grammar principles to

incorporate the semantics. Finally in chapter 7 we discuss how type restrictions can be

encoded in our grammar.

Chapter 4

Introduction to HPSG

4.1 Background

The grammar that we develop in this and the next chapters is based on Sag et al. “Syntac-

tic Theory : a formal introduction” [67] which describes a theory of grammar that is most

closely related to the Head-driven Phrase Structure Grammar (HPSG) formalism. HPSG

[61, 60] mainly evolved from Generalized Phrase Structure Grammar (GPSG) [37, 38] and

is also influenced by ideas from categorial grammar (CG), which we looked into very briefly

in chapter 2, arc pair grammar (APG) [45], lexical-functional grammar (LFG) [25], seman-

tics, and also computer science (ideas from data type theory, knowledge representation,

unification-based formalisms).

GPSG is an extension of CFG that overcomes some shortcomings of CFG by at least

providing complex categories and meta rules [38]. In GPSG, grammatical categories are not

taken to be simple monadic labels (such as V, N, VP, NP), but have internal structures

in the form of features. Metarules capture some generalizations among grammar rules.

A metarule can be thought of as a rule that operates on other grammar rules instead of

grammar categories. Features are heavily used in HPSG, however metarules are not. In fact

some GPSG metarules can be encoded via HPSG lexical rules (for an example see page

174 of [61]) that we see later. Another idea used in GPSG is the immediate dominance

(ID) rules and linear precedence (LP) rules. ID rules roughly specify which phrases can

appear as daughters of the mother phrase that is licensed by that rule. LP rules specify

constraints about the order of daughters. These ideas are preserved in HPSG but in this

thesis we do not use them, because our grammar is based on [67] and ID/LP rules are not

82

CHAPTER 4. INTRODUCTION TO HPSG 83

used there either. We only use phrase structure rules that specify daughters with their order

simultaneously, as in CFG rules.

4.1.1 Features

Features in GPSG are pairs of attribute names and attribute values that are usually rep-

resented by Attribute Value Matrices (AVMs). An AVM for a structure with n features

looks like a n × 2 matrix as shown in (1), where each row corresponds to a feature. The

first column is for the feature name, and the second column is used for the feature value.

Rows and columns could be missing in case the value for the corresponding features is not

specified.

(1)

FEATURE1 value1

FEATURE2 value2

...

FEATUREn valuen

A structure like above that comprises a set of features is called a feature structure.

Features in GPSG have a range of permissible values. These values however are atomic, in

the sense that they are not feature structures themselves (feature structures are not nested).

A complex scheme that allowed nested feature structures was proposed in [38], however it

was dismissed in later GPSG work [37]. Nested feature structures are heavily used in HPSG.

We should mention that the use of complex categories in linguistics is not specific to GPSG,

however, the importance of complex categories was not fully recognized in some linguistic

circles until the emergence of GPSG [11]. Although, complex categories in the form of logic

grammar symbols have been used in logic programming since the late 70’s [17].

4.1.2 How Features Can Help

An example [67, 18] of how features can be helpful is the subject-verb agreement phenomenon

in English combined with the transitivity of the verbs. A very simple CFG grammar of

English is provided in (2a) - (2d). This grammar combines a subject with a verb phrase to

build a sentence. A verb phrase can be built from an intransitive (IV), transitive (TV) or

di-transitive verbs (DTV) with different number of objects.

(2) a. S → NP VP

CHAPTER 4. INTRODUCTION TO HPSG 84

b. VP → IV

c. VP → TV NP

d. VP → DTV NP NP

In present tense English sentences with third-person subjects, the verb must agree with

its subject in number (plurality, or singularity)1. For example the sentence (3a) is not

acceptable, whereas (3b) is acceptable. At the same time (3c) is acceptable but (3d) is not.

(3) a. * John write.

b. John writes.

c. The students write.

d. * The students writes.

This cannot be handled by the simple CFG rules of (2a) - (2d) alone, because they

license all of the above sentences. In technical terms, these rules over-generate. To solve

this problem, one can break down the categories VP, and NP to smaller categories in which

the number is specified. These categories can be named VP-SG for singular verb phrases,

VP-PL for plural verb phrases, NP-SG for singular noun phrases, and NP-PL for plural

noun phrases. However, this requires the categories IV, TV, and DTV to be refined too.

The new categories will be IV-SG, IV-PL, TV-SG, TV-PL, DTV-SG, and DTV-PL. Using

these new categories the grammar can be revised to (4a) - (4h).

(4) a. S → NP-SG VP-SG

b. S → NP-PL VP-PL

c. VP-SG → IV-SG

d. VP-PL → IV-PL

e. VP-SG → TV-SG NP

1This agreement is not specific to present tense as we will see later. However for the sake of this example
it suffices to focus on the present tense.

CHAPTER 4. INTRODUCTION TO HPSG 85

f. VP-PL → TV-PL NP

g. VP-SG → DTV-SG NP NP

h. VP-PL → DTV-PL NP NP

This effectively doubles the number of rules in the grammar. The problem is that a

generalization is being missed, which is the number of the verb and its subject must agree

without the need of actually specifying the number. The situation gets more tedious when

new rules are added and new linguistic phenomena are considered. To avoid this problem,

we can think of VP, and NP as complex categories with a feature NUMBER (NUM) that

can take values from {SG, PL}. Then the grammar would become:

(5) a. S → NP[NUM num] VP[NUM num]

b. VP[NUM num] → IV[NUM num]

c. VP[NUM num] → TV[NUM num] NP

d. VP[NUM num] → DTV[NUM num] NP NP

As we see above, the value of NUM feature (num) is repeated for each rule. As we

mentioned earlier, HPSG allows nested features, and the repetition of nested features in

rules and structures can become cumbersome. To avoid the repetition of the shared values

in AVMs tags are used. A tag is a numbered box that appears in place of the shared value

(as in (6a) - (6c) below), or right before the shared value (with no spaces) in at least one

occurrence of the value if the value must be shown (as in (6d) below). Tags with equal

numbers represent the same values (this corresponds to same-name variables in a clause of

logic programs).

(6) a. S → NP
[

NUM 1

]

VP
[

NUM 1

]

b. VP
[

NUM 1

]

→ IV
[

NUM 1

]

c. VP
[

NUM 1

]

→ TV
[

NUM 1

]

NP

d. VP
[

NUM 1 num
]

→ DTV
[

NUM 1

]

NP NP

Later we see that with more advanced features, and more general grammar principles the

number of rules for intransitive, transitive and di-transitive verbs can be further reduced.

CHAPTER 4. INTRODUCTION TO HPSG 86

4.2 Key Characteristics of HPSG

4.2.1 Use of Typed Feature Structures

Every feature structure in HPSG is labeled with a type. This label is shown at the top of

the AVM representing it, as shown in (7).

(7)

type

FEATURE1 value1

FEATURE2 value2

...

FEATUREn valuen

Similar to the notion of appropriateness in Carpenter’s logic of typed feature structures

[12], each feature structure type must declare which features are introduced by it. Also each

feature needs to be associated with a type, such that the values appropriate for that feature

can be restricted if necessary. These types form a type hierarchy. Every feature defined by

a type τ is inherited by all subtypes of τ in the type hierarchy. Each type may introduce

a set of constraints on the values that some of its features can take. These constraints are

inherited by all subtypes of the original type introducing them. A type in the hierarchy can

be associated with atomic values (atomic feature structures), e.g., sg, pl, or 1 , 2 , 3 .

Distinction of Feature Structure Descriptions and Feature Structures

Unless an AVM of type τ specifies all features introduced or inherited by the leaf type τ

in the type hierarchy, it is a feature structure description rather than a feature structure.

Feature structure descriptions are different from feature structures as formulated by Sag

et al. in [67]: “A description may be partial in not specifying values for every feature,

in specifying only part of the (complex) value of a feature, in failing to specify a type, or

in specifying nothing at all”. However a feature structure is complete, that is, it specifies

values for every feature appropriate for its type. From this aspect, it is a total function from

features appropriate for its type to appropriate values.

A rigorous definition of feature structure description and feature structures together with

feature structure description satisfaction by a feature structure is given in [67]. Roughly, a

feature structure FS satisfies a feature structure description d of type τ , iff:

CHAPTER 4. INTRODUCTION TO HPSG 87

◦ FS is of type τ ′, where τ ′ is a most specific subtype of τ , i.e., τ ′ is a leaf in the type

hierarchy that lies in the sub-DAG rooted by τ .

◦ FS provides a value V for each feature F of type σ introduced or inherited by τ ′ (and

no other feature), such that V is a feature structure or an atomic value of type σ, and

compatible with the value of F in d (if specified).

◦ FS obeys any constraint that the grammar associates with τ ′ or any of its super-types.

A feature structure description describes a set of feature structures, more specifically

those feature structures that satisfy that description. Finally a feature structure description

that describes the empty set is invalid [18]. An invalid feature structure description is

denoted by ⊥ (same as the bottom type).

Definition 4.1 Conjunction (Unification) of Two Feature Structure Descriptions

Conjunction or unification of two feature structure descriptions d1, d2 results in a feature

structure description d that describes a set of feature structures that is the intersection of

the set of feature structures described by d1, and d2 [18]. Conjunction of d1, and d2 is

denoted by d1d2 (no spaces in between) or d1 & d2. 2

Example 4.2 Suppose X, and Y below are feature structure descriptions.

X =
[

NUM sg
]

Y =
[

PER 3
]

Then the unification of X, and Y will result in:

XY = X & Y =

PER 3

NUM sg

But the following unification fails, as the result is the invalid feature structure description,

because the values of the feature PER are inconsistent in the descriptions.

Y

PER 1

NUM sg

= ⊥

2The conjunction (unification) operator is denoted by ⊔ by Carpenter in [12], ⊓ is used by Copestake in
[18], and & is used by Sag et al. in [67], and by Erbach in the ProFIT language.

CHAPTER 4. INTRODUCTION TO HPSG 88

4.2.2 Constraint Based

HPSG is a constraint based formalism, in the sense that well-formed phrases are licensed

on the basis of satisfaction of a set of constraints on the constituents of the phrase. These

constraints are expressed by a set of grammar rules, a set of grammar principles and the

constraints posed by feature structure descriptions of the phrasal constituents. Note that

feature structure descriptions are actually constraints on the features and feature values in

feature structures that satisfy them. We will introduce rules and principles in the following

sections. Logical term unification has been a typical method of solving and satisfying these

constraints. For this reason HPSG is also called a unification-based approach in some texts,

but Sag et al. [67] mention this could be misleading, as unification is just a method of

satisfying the constraints, and it is the constraints themselves that are important.

4.2.3 Sign Based

HPSG is a system of signs. A sign in HPSG is considered to be a structured complex

of phonological, syntactic, and semantic information [67, 61]. In this thesis we use lists

of English orthographies for phonological forms for the sake of simplicity, as done also in

[61, 67, 18]. A sign can be represented by the following feature structure description:

(8)

sign

ORTH

SYN

SEM

Values of the features ORTH, SYN, and SEM correspond to the orthography, syntax

and semantics of the sign respectively.

With this definition of a sign, words, phrases and lexical entries can all be thought of

as signs.3 Words and phrases can be thought of as feature structures of types word, phrase

respectively. However the level of generalization can go further. There are a family of words

that are closely related to each other in phonology, syntax and semantics, such as the group

of words shown in (9):

3Note that our treatment of lexical entries in categorial grammar as defined in definition 2.15 matches
the notion of signs in HPSG.

CHAPTER 4. INTRODUCTION TO HPSG 89

(9) love, loving, loves, loved, ...

In linguistics the basic information about these words is gathered in structures called

lexemes. Lexical rules transform lexemes into words or other intermediate lexemes, with

some modification to the phonology, syntax and the semantics. In HPSG lexemes are also

signs, and lexical entries can be thought of as lexemes. A lexeme is a feature structure

description of type lexeme. By using lexemes and lexical rules in HPSG (and in any other

theory of natural language) a great amount of generalization is achieved and the size of the

lexicon is effectively reduced.

4.2.4 Importance of the Notion of Heads

The grammar rules and principles of HPSG often refer to the notion of heads. By using

heads in rules and principles we are able to achieve significant generalizations. Here is an

informal definition of a head in a phrase.

Definition 4.3 Heads

The head of a phrase is its obligatory constituent. For example, in a noun phrase, noun is

the head, in a verb phrase, verb is the head. From a semantic point of view, a headed phrase4

describes a kind of what its head describes [6]. For example the noun phrase sharp pencil

describes a kind of pencil, the verb phrase walking to school describes a kind of walking, and

so on.

Heads determine some syntactic and semantic properties of their mother phrases, and

some of their sisters, as we see later in this chapter. Factoring what the mother phrase and

its head daughter have in common enables us to reduce the number of grammar rules by a

large amount. The idea of heads is not specific to HPSG. GPSG used it [37], however in

HPSG this idea is more emphasized.

4.2.5 Surface Oriented

Like CFG, the HPSG grammar provides structures that are in a simple correspondence with

the string of words in a sentence (or phrase). The decision whether or not a sentence is

grammatically valid is easily derivable from the feature structures of each word comprising

it.

4Not all phrases are headed. As an example, a coordinated noun phrase is headless.

CHAPTER 4. INTRODUCTION TO HPSG 90

4.2.6 Strongly Lexicalist

HPSG is said to be strongly lexicalist since it needs a lot of syntactical and semantical

information to be encoded in lexical entries. This makes a sizable lexicon but dramatically

reduces the number of grammar rules needed.

4.3 General Format of Phrase Structure Rules in this Thesis

A phrase structure rule, is a rule that specifies how a phrase can be built from smaller con-

stituents. CFG rules are examples of phrase structure rules. In HPSG however, instead of

monadic category labels, we use complex categories that are feature structure descriptions.

These extended rules can look like 6a - 6d. But note that categories like S, NP, VP are

feature structure descriptions for the complex grammar categories that we investigate in

detail in the following sections. As a convention, if X is a category, and [FD] is a feature

structure description, then X[FD] is a complex category and the feature structure descrip-

tion that results from conjoining (unifying) the feature structure description of X, and [FD]

(see definition 4.1).

With these notes and conventions the format of an extended phrase structure (PS) rule

is one of the following, depending on whether it is a headed rule or not:

(10) Phrase → Daughter1 Daughter2 ... Daughtern

(11) Phrase → Daughter1 ... HDaughterh ... Daughtern

where Phrase is the feature structure description and the complex grammar category of the

mother phrase, and Daughteri is the feature structure description and the complex grammar

category of the i’th daughter constituent of the phrase. This rule as it is specifies the order

of daughters in the mother phrase to be the same as the order they appear on the right

hand side of →.5

If the rule is not headed (that is the mother phrase is not a headed phrase), format (10)

is used, but if it is headed format (11) is used. A bold H is placed right before the head

5If the daughters are separated by commas, the rule will become an ID (immediate dominance) rule, which
puts no constraint whatsoever on the order of daughters. To complement ID rules, LP (linear precedence)
rules are needed that put constraints on the daughters of any phrase, but we do not use ID and LP rules in
this thesis.

CHAPTER 4. INTRODUCTION TO HPSG 91

daughter. Note that there is only one head in a headed phrase and headed rule. As we will

see later, the mother phrase shares some important features with its head daughter. Also

the head daughter can specify some feature values of its sisters.

An HPSG rule can have a variable number of daughters on the right hand side of →.

Sometimes it is the head daughter which determines the number of its sisters.

4.4 Satisfaction of an Extended Phrase Structure Rule

In this subsection we abstractly provide the formal definitions of word structure and phrase

structure licensing. Examples are given in the next sections using real grammar rules.

Definition 4.4 Well-formed Phrase Structure Licensing

A grammar rule ρ = Phrase → Daughter1 ... Daughtern, headed or not headed, is said

to license a well-formed phrase structure Φ0, if and only if there are feature structures

Φ0, Φ1, ..., Φn such that:

• for each i > 0, Φi is a well-formed phrase structure that is licensed by a grammar

rule or is a well-formed word structure that is licensed by a sequence of lexical rules.

• for every i > 0, Φi satisfies Daughteri and every constraint that is associated with

its feature structure type.

• Φ0 satisfies Phrase and every constraint that is associated with its feature structure

type.

• Φ0, Φ1, ... Φn respect all grammar principles applied on ρ.

In this case it is also said that Φ0, Φ1, ... Φn satisfy ρ (and all grammar principles).

This defines a well-formed phrase structure recursively, however the base case of the recur-

sion which relies on the notion of lexical rules and well-formed word structures is still not

presented. This is defined next.

Definition 4.5 Well-formed Word Structure Licensing

A sequence of lexical rules ρ0, ..., ρm license a well-formed word structure Φ if there is a

lexical entry lex-entry = lex0 in the lexicon, and a list of lexemes lex1, ..., lexm, and a

feature structure description W of type word such that:

ρ0 derives lex1 from lex0

ρ1 derives lex2 from lex1

CHAPTER 4. INTRODUCTION TO HPSG 92

...

ρm derives W from lexm

and

Φ is a feature structure that satisfies W.

4.5 Phrase Structure Trees

For any given rule ρ = Phrase → Daughter1 ... Daughtern, headed or not headed, if Φ0 is

a phrase structure licensed by ρ, and each Φi is either a phrase structure or a word structure

licensed by the grammar, then the tree with the root Φ0, and the daughters Φ1, ..., Φn is

called a phrase structure tree licensed by the rule ρ =. For every 1 ≤ i ≤ n, the ith daughter

can itself be a phrase structure tree rooted by Φi.

However, for any subtree in the phrase structure tree, the bottom level must be the

string of words that correspond to the parent word structure or phrase structures, like the

following phrase structure tree:

Φ0

Φ1

mary

Φ2

loves john

4.6 The Type Hierarchy of Grammar Entities

Before we start looking at the grammar constraints, rules, and principles, in this section

we present the type hierarchy that we use for our grammar, and list the features and their

appropriate types for each grammar entity. The type hierarchy is shown in figures 4.1, and

4.2. Features introduced by each type are shown in AVMs below the type. In appendix C

we have provided a table that lists each feature structure type with its features and the

permissible values for each feature.

Our contributions or modifications are underlined. Our most important contributions

are:

• TYPE semantic feature in sem-cat, which provides a type from BasTyp for the object

that the expression refers to (which is Bool for verb phrases, and a domain entity type

C
H

A
P

T
E

R
4
.

IN
T

R
O

D
U

C
T

IO
N

T
O

H
P

S
G

93

feat-struct

sign

ORTH

SYN

SEM

expression

phrase word

lex-sign
[

ARG-ST

ARG-ST-GUARDS

]

lexeme

syn-cat

HEAD

VAL

GAP

GAP-GUARDS

STOP-GAP

val-cat

SPR

SPR-GUARDS

COMPS

COMPS-GUARDS

MOD

pos
[

FORM, PRED
]

prep
agr-pos
[

AGR
]

verb

AUX

INV

GAP-TYPE

noun

CASE

PRO

TYPE-DEF

det
[

COUNT
]

adj adv adv-pol qword conj

co-conj

nom-co-conj
[

CONJ-TYPE
] pred-co-conj

sub-conj

mod-elem

MODIFIED

AFTER

MOD-GUARD

sem-cat

MODE

INDEX

TYPE

RESTR

. . .

predication

agr-cat
[

PER

NUM

]

3sing
[

GEND
] non-3sing

1sing non-1sing

2sing plural

F
igu

re
4.1:

O
u

r
gram

m
ar’s

featu
re

stru
ctu

re
ty

p
e

h
ierarch

y

CHAPTER 4. INTRODUCTION TO HPSG 94

sem-cat

sem-det
[

QRESTR

QSCOPE

]
sem-nom-co-conj

[

COMPONENT1

COMPONENT2

]
sem-pred-co-conj

[

COMPONENT1

COMPONENT2

]

Figure 4.2: Our grammar’s semantic feature structure type hierarchy

for noun phrases6).

• SPR-GUARDS, COMPS-GUARDS of val-cat, and GAP-GUARDS of syn-cat, and

MOD-GUARD of mod-elem which provide a way to encode type restrictions (see

definition 3.76) of senses of expressions.

• TYPE-DEF boolean feature of noun that specifies if a noun phrase is introducing a

new type (a domain entity type) for the domain model.

Non-major additions to the grammar of [67] are:

◦ qword, which is a grammar entity type we associate to question words such as who,

what that pose a question about the missing subject or a complement of the sentence

that follows them.

◦ sub-conj, and co-conj subcategories of conj for subordinate conjunctions, and coordi-

nate conjunctions respectively.

◦ And breaking down the coordinate conjunctions into two categories: nominal coor-

dinate conjunctions (represented by nom-co-conj type) and predicative coordinate

conjunctions (represented by pred-co-conj type). Later in chapter 6 we see that nomi-

nal coordinate conjunctions can be used for specifying multiple inheritance in natural

language.

The type hierarchy of lexemes, and constructions that are present in [67] are not con-

sidered in this thesis. Also for the purpose of conciseness the analysis of passive constructs,

6For other kinds of phrases this feature is not used in our analysis, although this can be extended in
future works.

CHAPTER 4. INTRODUCTION TO HPSG 95

dummies and idioms, infinitival complements are not covered in this thesis. Thus the rel-

evant features needed for these analyses are omitted from the feature structures that we

study here.

Here are some notation conventions for showing feature structure descriptions, useful for

the next chapters.

Notation 4.6 We use +, and − for the boolean values True, and False respectively.

Notation 4.7 If all features appropriate for a feature structure type τ are unspecified in a

given feature structure description FD of that type then instead of using an AVM containing

only τ to represent the feature structure description FD we can use τ without the brackets.

For example, we can use word instead of
[

word
]

.

Notation 4.8 If the type of a feature structure description is clear from the context, or if

the feature structure description is used as a feature value whose appropriate type does not

have any subtypes in the type hierarchy (i.e., it is a leaf type), then it is not necessary to

mention the type as the first row of the AVM representing that feature structure description.

Notation 4.9 If we want to refer to a feature that is deeply embedded in a feature structure

description, and there is no confusion in the naming of the features, it is not necessary to

draw AVMs for each outer feature structure description that contains the specific feature

we are looking for. For example the feature structure description:
[

SYN
[

HEAD verb
]]

can be abbreviated to the following feature structure description.
[

HEAD verb
]

4.7 Conclusion

In this chapter we provided a brief introduction to the HPSG formalism, and iterated its

most important characteristics. We presented the grammar entity type hierarchy and the

feature structure types of the grammar that we develop in this thesis. In the next chapter

we present the syntax for this grammar.

Chapter 5

Syntactic Features and their Rules

and Principles

We begin our journey into the features, rules and principles by exploring syntactic features

with the rules and principles that govern them. Syntactic features are embedded in the SYN

feature value of the sign type. For now we concentrate on the expression subtype of the

sign. An expression is either a word or a phrase. As shown in table C.1 the value of SYN is

of type syn-cat. A very important feature of this type is HEAD. We start by studying this

feature in some detail.

5.1 The Head Feature

The value of the head feature feature tells us about the part of speech that the expression,

which is embedding it corresponds to. To represent the part of speech, we use a typed feature

structure (description) of type part-of-speech or pos for short. verb, noun, determiner (det),

conjunction (conj), adjective (adj), adverb (adv), and preposition (prep) are all subtypes

of pos. Here we refer to nouns, noun phrases, and pronouns by the nominal subtype of

part-of-speech. Later we see there are features that specify which one is exactly the case for

a given sign.

Example 5.10 If the value of the HEAD feature embedded in the SYN feature of an ex-

pression is of type noun, then that expression is a noun or a noun phrase, like the following

feature structure description that describes the noun Mary.

96

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 97

(12)

word

ORTH [mary]

SYN
[

HEAD noun
]

The following is the feature structure description of the verb dances.

(13)

word

ORTH [dances]

SYN
[

HEAD verb
]

Besides a simple part-of-speech information, the HEAD feature provides other useful

information using embedded features. The additional information could be relevant to only

certain parts of speech. For example, recall that we use noun for both nouns (together

with noun phrases) and pronouns. So we need a means of distinguishing between the two.

This is achieved by the boolean PRO feature that is introduced by noun. If the value is +

then the sign refers to a pronoun, and otherwise it refers to a noun or a noun phrase. This

feature is only appropriate for nouns. As another example note that agreement in English

is only relevant to verbs, nouns, and determiners. For this reason pos has a special subtype

agr-pos that carries the agreement information in the AGR feature. And verb, noun, and

det are all subtypes of agr-pos, so that all inherit the AGR feature. Using subtyping in

the type hierarchy enables us to provide certain features to only those grammar entities for

which those features are meaningful. So for example, the feature structure (description)

of a conjunction does not have the AGR feature, neither the PRO feature. This not only

makes our grammar more concise but also makes it more precise and avoids some mistakes

and misuses of some features that are not appropriate in some contexts.

5.1.1 The Agreement Feature

The value of this feature must be of type agr-cat according to table C.1. This value must

provide the information about the person (PER), and number (NUM) of the grammar entity.

agr-cat is subtyped appropriately according to the agreement in English language. The type

hierarchy rooted by agr-cat is shown in figure 5.1.

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 98

agr-cat
[

PER

NUM

]

3sing
[

GEND
] non-3Sing

1sing non-1sing

2sing plural

Figure 5.1: Agreement type hierarchy

For third person singular, the gender is also important in English. That is why GENDER

(or GEND for short) is introduced by 3sing . The possible values of this feature are feminine

(fem), masculine (masc), and neutral (neut). However, GENDER is not relevant to any

other combination of person and number. Again, by using subtyping we are able to avoid

providing irrelevant information in our grammar entities.

Example 5.11 The following shows the feature structure description of Mary, with agree-

ment information.

(14)

word

ORTH [mary]

SYN

HEAD

noun

AGR

3sing

GEND fem

PRO −

For verbs, the agreement information is in fact the expected agreement information of

its subject. Later we see that the subject of a verb is treated as its specifier . We will define

specifiers in section 5.2.1. There we pose a grammar principle that unifies the agreement

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 99

feature of the head expression with its specifier. For now, it suffices to say that the agreement

feature of a verb must be unified with the agreement feature of its subject.

Example 5.12 Here is the feature structure description of dances, with agreement infor-

mation.

(15)

word

ORTH [dances]

SYN

HEAD

verb

AGR 3sing

Note that the GENDER feature for the verb dance is unspecified, because it does not

matter for this verb whether the subject is a female, a male or a (grammatically) neutral

entity.

5.1.2 The FORM Feature

The interpretation of the FORM feature depends on which part of speech it is used in. Its

main usage is for verbs and prepositions. For all other parts of speech, the only value that

FORM can take, is chosen as an atomic value, which is used only for that part of speech.

This value is nform for noun, aform for adj, avform for adv, cform for conj, and so on.

For prepositions, the value of FORM is simply an atomic value that is chosen to be

the orthography of that proposition. Using this, we will be able to refer to prepositional

phrases that begin with a certain preposition, and not others. Such a situation is useful,

for example, if we want to restrict the form of a prepositional phrase that can follow a

prepositional transitive verb like borrow to only begin with from. So sentence (16a) is

acceptable whereas (16b) is not.

(16) a. Can I borrow some money from you?

b. * I borrowed a book to John

Since the FORM feature of a prepositional phrase is used quite often in HPSG grammars,

it is more convenient to abbreviate PP[FORM xyz] to PP[xyz].

For verbs, the value of the FORM feature represents the verb form. The permissible

values of this feature with their corresponding verb form and an example are given in

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 100

Table 5.1: Permissible feature values of FORM for verbs

FORM verb form example

base bare uninflected form (bare infinitive) You may go.

fin finite : simple present or past tenses He listens to music.

prp present participle Chris is climbing the mountain.

psp past participle Have you seen Chris?

pass passive This email was written by him.

table 5.1. Note that we do not study passive constructs in this thesis, the interested reader

can refer to [67].

Later we see how the FORM feature can be used in the coordination rule to force the

coordinating constituents to be of the same part of speech.

5.1.3 The PRED Feature

The PRED feature is accessible for all parts of speech. This feature specifies whether the

corresponding part of speech can follow the auxiliary verb be to form a predicate that can

in turn combine with a subject to build a sentence. In the following we show some examples

of how some subtypes of pos can be in predicative use, which is specified by PRED + in

the HEAD feature.

In (17) we have shown an adj in predicative use. unsatisfied with John is an adjective

phrase that can follow be to convey the meaning that the subject (Mary) is not happy

with the entity that is referred to by the complement of the adjective phrase (John). The

feature structure description of unsatisfied with John in shown in (18). Note that the type

of the feature structure description is phrase instead of word. Also there is no agreement

information, that is the feature AGR is absent, because adj is not a subtype of agr-pos.

(17) Mary is unsatisfied with John.

(18)

phrase

ORTH [unsatisfied, with, john]

SYN

HEAD

adj

PRED +

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 101

Not all adjectives are PRED +. An example is lone that cannot follow be. The only

acceptable use of lone is before a noun, as shown in (19b).

(19) a. * Mary is lone.

b. Mary is the lone survivor of the accident.

A prepositional phrase can also be in predicative mode, as shown in (20). The feature

structure description of on the roof is shown in (21). Note that as we discussed in the

previous subsection, the value of the FORM feature is the same as the orthography of the

head preposition, which is on.

(20) The cat is on the roof.

(21)

phrase

ORTH [on, the, roof]

SYN

HEAD

prep

FORM on

PRED +

Not all prepositions are in predicative mode. In fact the same preposition can have

both predicative and non-predicative modes. The non-predicative mode of a preposition is

argument marking . The argument marking mode of a preposition has the implication that

the preposition does not add any meaning to the sentence, rather it provides a syntactic

indicator about where the objects (or the complements) of a constituent (like a verb) are

located. Two examples of argument marking prepositions are given in (22a, 23a).

In (22a), Joe is the object of the prepositional intransitive verb rely. Joe is marked

by the argument-marking preposition on. Note that in (20) on was used as a predicative

preposition. The feature structure description of on Joe is shown in (22b).

(22) a. We relied on Joe.

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 102

b.

phrase

ORTH [on, joe]

SYN

HEAD

prep

FORM on

PRED −

(23) a. You talked to Jack.

b.

phrase

ORTH [to, jack]

SYN

HEAD

prep

FORM to

PRED −

The preposition to, however, is hard to use as a predicative one. The only reasonable

occurrence of to after the verb be is when combined with a base form of a verb to form an

infinitive, as in (24). However, for the purposes of conciseness we do not study the use of

to in such cases.

(24) This letter is to inform you of the recent changes in the regulations.

5.1.4 Verb Specific Features

Since verb is a subtype of agr-pos, and pos, it inherits all the features declared by agr-pos

and pos, which are FORM, PRED, AGR. Besides these, verb introduces some new features

including the boolean feature AUX, which is + for auxiliary verbs, and − for all other verbs,

and the boolean feature INV, which is + for inverted auxiliary verbs, for questions, and −

for normal verbs. An inverted verb requires its subject to follow it rather than precede it.

We will have more to say about INV in section 5.5, where we discuss auxiliary verbs and

questions.

5.1.5 Nominal Specific Features

We have already discussed the boolean PRO feature, which distinguishes between a pronoun

and a noun. The new feature is CASE which ranges over nom (for nominative), and acc

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 103

(for accusative). If a nominal is CASE nom it means it is the subject of a sentence. If the

value of the CASE feature is acc, it means the nominal is not the subject of any sentence,

and that it is an object or a complement of a verb or some other constituent. This feature is

needed in English because some pronoun forms are acceptable in certain positions only. For

example in (25a), the personal pronoun He is used as a subject, with a nominative CASE.

But he cannot be used as in (25b), where it is an object, because in English he cannot

accept the object role. The feature structure description of he is shown in (26).

(25) a. He loves Mary.

b. * Mary loves he.

(26)

word

ORTH [he]

SYN

HEAD

noun

AGR

3sing

GEND masc

CASE nom

PRO +

5.1.6 Determiner Specific Feature : COUNT

The only syntactic feature that det introduces is COUNT, which indicates whether that

determiner is appropriate to be used for a countable noun or not. For example many is

only appropriate for countable nouns, as used with books in (27a). It cannot be used with

a mass noun like water as in (27b).

(27) a. I have not read many books.

b. * I do not drink many water.

The feature structure description of many is presented in (28). First, note that the

agreement feature value is plural, which means many must be used only with plural nouns.

Second, the value of COUNT is +, which indicates this determiner is only usable with

countable nouns. It is the responsibility of a noun to specify which kind of determiner it

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 104

requires. This is done through the SPECIFIER (SPR for short) feature, which we will study

in section 5.2.

(28)

word

ORTH [many]

SYN

HEAD

det

AGR plural

COUNT +

5.1.7 The Head Feature Principle

In this section we are going to introduce the first principle of our grammar, namely, Head

Feature Principle or HFP for short. As mentioned in definition 4.3, a headed phrase describes

a kind of what its head describes. This implies that the mother phrase and its head daughter

share their part of speech (pos). In fact, the head features are chosen carefully so that the

mother phrase HEAD feature is the same as its head daughter HEAD feature. In a phrase

structure tree of headed phrases, the HEAD feature value is percolated up from the head

daughters to their mothers. This is known as the Head Feature Principle:

(29) Head Feature Principle (HFP):

In any headed phrase, the value of the HEAD feature of the mother phrase and the

value of the HEAD feature of its head daughter are the same.

As a result of this principle, for example, the following feature structure descriptions of

orange, and the juicy orange share the same HEAD feature.

(30) a.

word

ORTH [orange]

SYN

HEAD

noun

AGR

3sing

GEND neut

PRO −

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 105

b.

phrase

ORTH [the, juicy, orange]

SYN

HEAD

noun

AGR

3sing

GEND neut

PRO −

Although the two feature structure description share a lot of similarity, more specified

versions reveal differences in syntactic features other than HEAD. These features specify if

the corresponding expression can combine with other expressions, and if so how. This is the

topic of the next section.

5.2 Valence Features : How Expressions can Combine To-

gether

The second feature of syn-cat that we are going to study is VAL (for valence1). The value

of this feature must be of type val-cat, which has three standard fields: SPR (for specifier),

COMPS (for complements), and MOD (for modifier).

5.2.1 Specifiers

In a headed phrase, a specifier is an expression that precedes the head. In other terms,

the specifier is a daughter of a headed phrase that comes before the head daughter. In the

formulation of [67] there cannot be more than one specifier in a headed phrase, as it is not

needed. However a headed phrase might have no specifier. The SPR feature of an expression

is the list of specifiers of a phrase headed by that expression. The number of elements of

this list is either 0, or 1. If there is no element in SPR list, no specifier is necessary. If the

list contains one expression, then that expression will serve as the sole specifier.

Specifiers generally fall into two main categories: determiners of common nouns, and

subjects of verbs. There is a third category that is needed for the analysis of possessive

1This name is borrowed from chemistry where valence is the capacity of an atom to combine with other
atoms in a molecule.

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 106

’s as done in [61], which we will describe in this section. In short, ’s has a noun specifier

that has the owner role in the possessive construct. We will discuss each category after we

present our first HPSG grammar rule, the Head Specifier Rule that enables us to combine

a specifier and a head.

With the notion of specifiers being defined, we are now able to present the Head Specifier

Rule. We will later modify this rule in chapter 7) to allow for the type restrictions to be

processed before a phrase can be formed by using it.

(31) Head Specifier Rule (HSR), Version I:2

phrase

VAL

[

SPR
〈 〉]

→ 1 H

HEAD
[

PRED −
]

VAL

[

SPR
〈

1

〉]

To avoid licensing of some invalid verb phrases, like he eating, we posit a constraint that

if the head is verbal, then its form must be fin (for finite).

Notice the use of tags in the rule. The internal structure of the expression tagged by 1 is

totally unspecified. We only know that this expression, when considered in the application

of this rule, both comes before the head, and appears as the only element of the SPR list of

the head. If the feature structure description of the element in the SPR list of a candidate

head expression and the candidate specifier expression are not exactly the same, then these

two feature structure descriptions must be unified before HSR can be applied.

Determiner and Noun Co-occurrence Restrictions

As mentioned in section 5.1.6, it is the responsibility of a noun to specify what kind of

determiner it requires, if any. The SPR feature of noun can accomplish this, by having a

partially specified feature structure description of a determiner that is appropriate for that

noun. For example, a feature structure description of books is shown in (32).

2This rule is a bit different from HSR that is presented in [67] in that we deliberately do not require
the COMPS list to be empty, and that we require the head to be PRED −. The reason for this additional
constraint will be studied in section 5.5. COMPS feature is introduced in section 5.2.2.

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 107

(32)

word

ORTH [books]

SYN

HEAD

noun

AGR plural

PRO −

VAL

SPR

〈

word

SYN

HEAD

det

AGR plural

COUNT +

VAL
[

SPR 〈〉
]

〉

The only element of the SPR list matches with the feature structure description of many

that we provided in (28). The combination of many and books is achieved by the Head

Specifier Rule. By using this rule, the feature structure descriptions (28), and (32) can be

combined to form the phrase many books. This is shown by the phrase structure tree in

(33).

(33)

phrase

ORTH [many, books]

SYN

HEAD

noun

AGR plural

PRO −

VAL
[

SPR 〈〉
]

1

word

ORTH [many]

SYN

HEAD

det

AGR plural

COUNT +

VAL
[

SPR 〈〉
]

many

word

ORTH [books]

SYN

HEAD

noun

AGR plural

PRO −

VAL

[

SPR
〈

1

〉]

books

Count and Mass Nouns

One difference between the feature structure description of count and mass nouns in the

lexicon is the description of the specifier in their SPR list. The feature structure description

of a mass noun can have a det specifier, whose COUNT feature must be −. On the other

hand, the feature structure description of a count noun has a det specifier with the value of

COUNT being only +.

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 108

For example, the feature structure description of a mass noun, water, is shown in (34).

We have placed the specifier element in parentheses to denote that the determiner is optional

for water, as in (35a). In (35b), water is used with a determiner.

(34)

word

ORTH [water]

SYN

HEAD

noun

AGR 3sing

PRO −

VAL

SPR

〈

(

word

SYN

HEAD

det

AGR 3sing

COUNT −

VAL
[

SPR 〈〉
]

)

〉

(35) a. Water boils at 100 degrees Celsius.

b. I do not drink much water before going to the movies.

Note that the determiner many cannot combine with the mass noun water, because

the feature structure description of the specifier element in water is inconsistent with the

feature structure description of many. The reason for this inconsistency is the mismatching

COUNT values.

However the determiner much with the feature structure description shown in (36) can

be combined with water as shown in the phrase structure tree of (37).

(36)

word

ORTH [much]

SYN

HEAD

det

AGR 3sing

COUNT −

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 109

(37)

phrase

ORTH [much, water]

SYN

HEAD

noun

AGR 3sing

PRO −

VAL
[

SPR 〈〉
]

1

word

ORTH [much]

SYN

HEAD

det

AGR 3sing

COUNT −

VAL
[

SPR 〈〉
]

much

word

ORTH [water]

SYN

HEAD

noun

AGR 3sing

PRO −

VAL

[

SPR
〈

1

〉]

water

So from a syntactic point of view the major differences between a count noun and a

mass noun are:

• If the SPR list of a mass noun is non-empty it should contain a det with COUNT −,

whereas the SPR list of a count noun should contain a det with COUNT +.

• No non-3sing form of a mass noun should be present in the lexicon. Later we see this

means there should be no lexical rule that changes the agreement feature of a mass

noun from 3sing to any leaf subtype of non-3sing.

Specifier Head Agreement Constraint (SHAC)

Note that in all phrase structure trees above that are licensed by HSR, the AGR feature

of the determiner and the head noun match. The same restriction applies for subjects

and verbs. We can generalize this co-occurrence restriction by a constraint that is called

Specifier Head Agreement Constraint (SHAC) that is associated with any feature structure

description of nouns and verbs:

(38) Specifier Head Agreement Constraint (SHAC)

Any feature structure description of type verb or noun with a non-empty SPR list,

(implicitly) bears the following constraint:

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 110

SYN

HEAD
[

AGR 1

]

VAL

[

SPR

〈[

AGR 1

]〉
]

Subject and Verb Co-occurrence Restrictions

The SPR feature of a verb must contain a single expression, a noun (possibly a noun

phrase), that serves as the subject of that verb. For example, (39) shows the feature

structure description of the verb breathes. The SPR list contains an NP[CASE nom]. NP is

an abbreviation we use for the most general feature structure description of a noun phrase.

The internal structure of NP is shown in (40).3 By NP[CASE nom] we are referring to a

NP feature structure description whose CASE feature (embedded in HEAD which in turn

is inside SYN) is nom (for nominative).

(39)

word

ORTH [breathes]

SYN

HEAD

verb

FORM fin

PRED −

AGR 3sing

AUX −

INV −

VAL

SPR

〈

NP
[

CASE nom
]〉

COMPS 〈〉

MOD 〈〉

(40)

NP =

expression

SYN

HEAD noun

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

In (41) we have shown a feature structure description of the word Tiqa. This feature

structure description can be unified with the NP in the SPR list of breathes. Note that the

AGR features also match. So HSR can license the phrase Tiqa breathes, as shown by the

phrase structure tree in (42).

3Features COMPS and MOD are studied later in this chapter.

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 111

(41)

word

ORTH [tiqa]

SYN

HEAD

noun

AGR

3sing

GEND fem

PRO −

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

(42)

phrase

ORTH [tiqa, breathes]

SYN

HEAD

verb

FORM fin

PRED −

AGR

3sing

GEND fem

AUX −

INV −

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

1

word

ORTH [tiqa]

SYN

HEAD

noun

AGR

3sing

GEND fem

PRO −

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

Tiqa

word

ORTH [breathes]

SYN

HEAD

verb

FORM fin

PRED −

AGR

3sing

GEND fem

AUX −

INV −

VAL

SPR
〈

1

〉

COMPS 〈〉

MOD 〈〉

breathes

Syntactic Analysis of ’s Possessives as Heads

The analysis we provide here is due to Sag, et al. in [61]. Here we focus on the syntax

and in the next chapter we complete the analysis by providing the semantic counterpart.

In their analysis, a noun phrase like Mary’s book can be thought of as a combination of a

determiner phrase and a noun. The determiner phrase is Mary’s that can act in place of a

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 112

determiner in any noun phrase. However the treatment of Mary’s as a determiner phrase

requires to have a special rule for combining a noun phrase with the possessive marker ’s,

or it requires Mary’s to be a headed phrase. In their approach, they have chosen the second

choice, and they treat ’s as a head with a non-empty SPR list. The SPR list contains the

3sing NP that plays the role of the owner. This noun phrase cannot be a pronoun, that is

why the PRO feature has the value −. In case of the phrase Mary’s, Mary is the owner,

and the specifier of the head ’s. In this approach no extra grammar rule is required, and

Mary’s will be licensed by HSR, as shown in (43).

(43)

phrase

ORTH [mary, ’s]

SYN

HEAD det

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

1

word

ORTH [mary]

SYN

HEAD

noun

AGR

3sing

GEND fem

PRO −

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

Mary

word

ORTH [’s]

SYN

HEAD det

VAL

SPR

〈

1 NP

AGR 3sing

PRO −

〉

MOD 〈〉

’s

5.2.2 Complements

A complement in a headed phrase is a constituent that follows the head. For example a

book is the complement of the verb phrase reads a book in (44).

(44) He reads a book.

A headed phrase can have multiple complements, as in (45), where him is the first

complement, and a joke is the second complement.

(45) I told him a joke.

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 113

The feature structure descriptions of the complements in a headed phrase in the order

they should appear, are provided in the COMPS feature of val-cat. As an example, (46)

shows a feature structure description of the verb reads. By NP[CASE acc] we mean that

the value of the CASE feature embedded in the NP must be acc (for accusative). In English

there is no difference between the nominative form and the accusative form of common

nouns or proper nouns, however for pronouns the forms differ.

(46)

word

ORTH [reads]

SYN

HEAD

verb

FORM fin

PRED −

AGR 3sing

AUX −

INV −

VAL

SPR

〈

NP
[

CASE nom
]〉

COMPS

〈

NP
[

CASE acc
]〉

MOD 〈〉

In (47) a feature structure description of the verb told is shown. Note that the COMPS

list contains 2 NPs, the first one is the direct object and the second one is the indirect

object.

(47)

word

ORTH [told]

SYN

HEAD

verb

FORM fin

PRED −

AUX −

INV −

VAL

SPR

〈

NP
[

CASE nom
]〉

COMPS

〈

NP
[

CASE acc
]

, NP
[

CASE acc
]〉

MOD 〈〉

Now we need a rule that combines a head with its complements. This rule is the Head

Complement Rule (or HCR for short). HCR is an example of an HPSG rule that has

a variable number of daughters. The number of non-head daughters is identical to the

number of elements in the COMPS feature of the head daughter. We will modify this rule

later in (6) to incorporate type restrictions.

(48) Head Complement Rule (HCR), Version I:

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 114

phrase

VAL

[

COMPS
〈 〉]

→ H

[

VAL

[

COMPS
〈

1 , ..., n

〉]
]

1 ... n

Suppose feature structure descriptions of he, him, and a joke are shown in (49.a), (49.b),

and (50) respectively. Then by using HCR the verb phrase told him a joke can be licensed,

as shown in (51).

(49) a.

word

ORTH [he]

SYN

HEAD

noun

AGR

3sing

GEND masc

CASE nom

PRO +

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

b.

word

ORTH [him]

SYN

HEAD

noun

AGR

3sing

GEND masc

CASE acc

PRO +

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

(50)

phrase

ORTH [a, joke]

SYN

HEAD

noun

AGR

3sing

GEND neut

PRO −

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

C
H

A
P

T
E

R
5
.

S
Y

N
T
A

C
T

IC
F
E

A
T

U
R

E
S

A
N

D
T

H
E

IR
R

U
L
E

S
A

N
D

P
R

IN
C

IP
L
E

S
115

(51)

phrase

ORTH [told, him, a, joke]

SYN

HEAD

verb

FORM fin

PRED −

AUX −

INV −

VAL

SPR
〈

1

〉

COMPS 〈〉

MOD 〈〉

word

ORTH [told]

SYN

HEAD

verb

FORM fin

PRED −

AUX −

INV −

VAL

SPR
〈

1

〉

COMPS
〈

2 , 3

〉

MOD 〈〉

told

2

word

ORTH [him]

SYN

HEAD

noun

AGR

3sing

GEND masc

CASE acc

PRO +

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

him

phrase

ORTH [a, joke]

SYN

HEAD

noun

AGR

3sing

GEND neut

PRO −

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

a joke

Y
et,

n
ote

th
at

th
e

in
valid

v
erb

p
h

rase
sh

ow
n

in
(52)

can
n

ot
b

e
licen

sed
b
y

H
C

R
,

b
e-

cau
se

th
e

C
A

S
E

featu
re

of
h
e

is
n

om
,

w
h

ich
is

in
con

sisten
t

w
ith

w
h

at
is

req
u

ired
b
y

th
e

com
p

lem
en

ts
of

to
ld

.

(52)
*

told
h

e
a

jok
e.

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 116

5.2.3 The Valence Principle

In (51) the SPR element of the mother verb phrase is identical to the SPR element of the

head verb. This is due to another HPSG principle known as the Valence Principle.

(53) The Valence Principle:

In any headed phrase, the valence features of the mother are identical to the valence

features of the head daughter, unless the rule that licenses the phrase specifies other-

wise.

5.2.4 The Sentence

In HPSG a sentence is just a verb phrase whose valence features SPR, and COMPS all

empty lists. It is said that a sentence is a saturated verb phrase, meaning that it has

no more capacity of combining with the required constituents. For example the feature

structure description of Tiqa breathes in (42) shows that both the SPR and COMPS features

of the mother verb phrase are empty. Thus it is recognized as a sentence. The sentence is

sometimes called as the initial symbol of the grammar.

We abbreviate sentence by S, whose internal structure is shown in (54). The abbreviation

of a COMPS saturated verb phrase comes handy sometimes, and we use VP for such a verb

phrase. The internal structure of VP is shown in (55).

(54)

S =

expression

SYN

HEAD verb

VAL

SPR 〈〉

COMPS 〈〉

(55)

VP =

expression

SYN

HEAD verb

VAL

SPR
〈

X
〉

COMPS 〈〉

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 117

A sentence can sometimes be missing some constituents known as gaps (the topic of

section 5.6). To show that the sentence is complete we need to specify the GAP feature as

the empty list too. This is denoted by:

S[GAP 〈〉]

5.2.5 Modification

A modifier is an expression that modifies another expression. Modifiers in this thesis fall

into the following categories:

• adjectives that modify a nominal (defined below)

• adverbs that modify a verb phrase

• prepositional modifiers, like on the street that modify a noun phrase or a verb phrase

• subordinate conjunctions, like if, that, or which that modify a verb phrase by providing

a condition, or a noun phrase by providing additional information

All of these expressions share one characteristic, that is, they have a non-empty list as

the value of their MOD feature (which is embedded in valence features). Any expression

that is not a modifier must have an empty MOD list.

For a modifier, the MOD list has only one element, which is of type mod-elem. This

type has three features, the first one, MODIFIED, is the feature structure description of

the expression that it modifies. The second is a boolean feature AFTER, which specifies

whether the modifier comes after or before the expression it modifies. The last feature is

used to encode type restrictions that we study in the next chapter.

A modifier that comes after the modified expression is called a post-head modifier, like

unsatisfied with her student in (56).

(56) The professor unsatisfied with her student left the office.

A modifier that comes before the expression it modifies is called a pre-head modifier, like

red in (57).

(57) John gave the red rose to Mary.

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 118

The Head Modifier Rule (HMR)

The Head Modifier Rule is the HPSG grammar rule which combines a head with a modifier

that modifies it. We have two Head Modifier Rules, one for pre-head modifiers, and the

other for post-head modifiers. We will later modify these rules in (17), and (18) of chapter

7 to allow for the type restrictions to be processed before a phrase is licensed by them.

(58) Head Modifier Rule (HMR), Pre-Head, Version I:

[

phrase
]

→

VAL

COMPS 〈〉

MOD

〈

mod-elem

MODIFIED 1

AFTER −

〉

H 1

[

VAL
[

COMPS 〈〉
]]

(59) Head Modifier Rule (HMR), Post-Head, Version I:

[

phrase
]

→ H 1

[

VAL
[

COMPS 〈〉
]]

VAL

COMPS 〈〉

MOD

〈

mod-elem

MODIFIED 1

AFTER +

〉

Adjectives

The feature structure description of an adjective has a HEAD value of type adj, with a

non-empty MOD list that contains a nominal which we abbreviate by NOM. A nominal is

a noun or a noun phrase that has a non-empty SPR list. The feature structure description

of NOM is shown in (60). X represents an unknown expression.

(60)

NOM =

expression

SYN

HEAD noun

VAL

SPR
〈

X
〉

COMPS 〈〉

MOD 〈〉

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 119

As an example of a pre-head adjective, consider the adjective red with the feature struc-

ture description shown in (61). The reason why the SPR list of red contains an NP is

revealed in our semantic analysis of the copular and auxiliary verbs, where we discuss sub-

ject sharing .

Note that the PRED feature is +, which means red can follow the verb be. Although

the SPR list of red is non-empty, HSR cannot directly combine red with a noun phrase

described by the sole element of SPR list. The reason is that HSR requires the head to be

non-predicative, i.e., its PRED feature must be −.

(61)

word

ORTH [red]

SYN

HEAD

adj

PRED +

VAL

SPR
〈

NP
〉

COMPS 〈〉

MOD

〈

mod-elem

MODIFIED NOM

AFTER −

〉

The feature structure description of book shown in (62) matches with the description of

NOM we provided in (60). So by applying the pre-head Head Modifier Rule the nominal

phrase red book can be licensed as shown by the phrase structure tree in (63).

(62)

word

ORTH [book]

SYN

HEAD

noun

AGR 3sing

PRO −

VAL

SPR

〈

word

SYN

HEAD

det

AGR 3sing

COUNT +

VAL
[

SPR 〈〉
]

〉

Note that in (63), the value of the HEAD feature of the mother phrase, red book, and its

head daughter, book, are identical as a result of the Head Feature Principle. The value of

their valence features (VAL) of both expressions are also the same, as a result of the Valence

Principle.

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 120

(63)

word

ORTH [red, book]

SYN

HEAD 2

noun

AGR 3sing

PRO −

VAL 3

SPR

〈

word

SYN

HEAD

det

AGR 3sing

COUNT +

VAL
[

SPR 〈〉
]

〉

COMPS 〈〉

MOD 〈〉

word

ORTH [red]

SYN

HEAD

adj

PRED +

VAL

SPR
〈

NP
〉

COMPS 〈〉

MOD

〈

mod-elem

MODIFIED 1 NOM

AFTER −

〉

red

1

word

ORTH [book]

SYN

HEAD 2

VAL 3

book

Adverbs

An adverb modifies the verb of a sentence. In the analysis we present here, an adverb

can come before or after the sentence.4 The feature structure description of an adverb has

a HEAD of type adv, and it has a non-empty MOD list with only one element of type

mod-elem, whose value of MODIFIED feature is an S. For example the feature structure

description of today is shown in (64).

4In an alternative analysis an adverb modifies a verb phrase, and can come before or after the verb phrase.
However in both analyses it depends on the adverb itself if it can come before the verb or after it or both.
For example the sentence Tiqa today breathes might seem odd for native English speakers.

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 121

(64)

word

ORTH [today]

SYN

HEAD

adv

PRED −

VAL

SPR 〈〉

COMPS 〈〉

MOD

〈

mod-elem

MODIFIED S

〉

The sentence Tiqa breathes, which is shown as the mother phrase in (42), can be com-

bined with today using HMR to form the bigger sentence, Tiqa breathes today. This is shown

by the phrase structure tree in (65).

(65)

phrase

ORTH [tiqa, breathes, today]

SYN

HEAD 1

VAL 2

3

phrase

ORTH [tiqa, breathes]

SYN

HEAD 1

verb

FORM fin

PRED −

AGR

3sing

GEND fem

AUX −

INV −

VAL 2

SPR 〈〉

COMPS 〈〉

MOD 〈〉

Tiqa breathes

word

ORTH [today]

SYN

HEAD

adv

PRED −

VAL

SPR 〈〉

COMPS 〈〉

MOD

〈

mod-elem

MODIFIED 3

AFTER +

〉

today

Prepositional Modifiers

Prepositions in their predicative mode can modify a nominal (NOM) or a sentence (S). They

must come after the expression they modify, and they have a NP complement. For an exam-

ple, consider the sentence (66). Back in section 5.1.3 we mentioned that some prepositions

can serve in a predicative mode. Here we discuss how they can serve as modifiers.

(66) The cat walks on the roof.

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 122

The feature structure description of the predicative on is shown in (67). Note that the

MOD list has a mod-elem with the MODIFIED feature being a sentence (S), or a nominal

(NOM).5 Again like the adjective red, it has a non-empty SPR list, which we will discuss in

section 5.5, and HSR cannot apply with on as a head, because the predicative on has its

PRED feature set to +.

(67)

word

ORTH [on]

SYN

HEAD

prep

FORM on

PRED +

VAL

SPR
〈

NP
〉

COMPS
〈

NP
〉

MOD

〈

mod-elem

MODIFIED S | NOM

AFTER +

〉

This preposition can combine with a NP to the right, by an application of the Head

Complement Rule, and the resulting phrase structure can follow the sentence The cat walks

to modify it by an application of the Head Modifier Rule (Post-head).

As expressed in the MODIFIED feature, this prepositional modifier can modify a nominal

as well, like the sentence (68), where on the roof modifies the nominal cat.

(68) The cat on the roof is staring at you.

Subordinate Conjunctions

What we present in this section is enough to analyze the syntactic characteristics of subor-

dinate conjunctions (represented by sconj subtype of pos) like, when, after, before, and if.

Later in the next chapter we see how the their semantic properties can be handled. The

analysis of all of the subordinate conjunctions are done in the same fashion. For the impor-

tance of conditional sentences in software requirement texts, we focus on the subordinate

conjunction if.

The structure of the conditional sentence that we analyze is shown in (69). Note that

then, can be simply replaced by a comma to analyze another similar structure.

(69) if < condition > then
︸ ︷︷ ︸

modifier

< statement >
︸ ︷︷ ︸

modified

5We have used | to denote disjunction.

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 123

In our analysis, we treat if both as a head and a modifier in a single feature structure

description:

• A head that takes two complements, the first is a sentence (that plays the role of the

condition in the conditional statement), and the second one is the preposition then.

• A modifier that comes before the sentence it modifies.

The feature structure description of if suitable for this analysis is shown in (70).

(70)

word

ORTH [if]

SYN

HEAD sconj

VAL

SPR 〈〉

COMPS
〈

S, PP[then]
〉

MOD

〈

mod-elem

MODIFIED S

AFTER −

〉

Since the valence features of if, specify both a modifier role, and a head role with some

complements, it is the collaboration of two grammar rules, namely, HCR, and HMR that

licenses a conditional statement like (71).

(71) If you go to school then you can learn a new language.

However, an invalid sentence like (72) cannot be licensed by the unwanted collaboration

of HCR, and HMR. The reason is that any application of HCR precedes the application of

HMR, because HMR requires the COMPS list of the modifier to be the empty list.

(72) * If you go to school you can learn a new language then.

A complementary analysis of if treats it as a post head modifier that modifies a sentence:

(73) < statement >
︸ ︷︷ ︸

modified

if < condition >
︸ ︷︷ ︸

modifier

The feature structure description of if with this analysis is presented in (74).

(74)

word

ORTH [if]

SYN

HEAD sconj

VAL

SPR 〈〉

COMPS
〈

S
〉

MOD

〈

mod-elem

MODIFIED S

AFTER +

〉

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 124

We will have more to say about conditional statements from a semantic viewpoint, in

the next chapter.

5.3 Coordination

A coordinative conjunction (represented by the cconj subtype of pos) is a conjunction that

combines two or more expressions that belong to the same part-of-speech, and have identical

valence features6.

To deal with coordination, we have to posit new grammar rules. These rule are headless,

as all constituents of a coordinated phrase have parallel roles and importance.

In this thesis we only study coordinated sentences and a special form of coordinated

noun phrases.

5.3.1 Coordination of Sentences

As mentioned in section 5.2.4 a sentence is a saturated verb phrase, i.e., a verb phrase with

empty SPR and COMPS lists. Sentences can be coordinated by conjunctions like and, and

or.

We should prevent the combination of an inverted (INV +) sentence (for questions)

with a non-inverted (INV −) sentence, so in the rule below the value of the INV feature

is required to be identical for the coordinated sentences. The GAP feature is the topic of

section 5.6, but using it here simply means that the sentences must not miss any of their

subconstituents.7

(75) Coordination Rule for Sentences Version I:

S

INV 1

GAP 〈〉

→ S

INV 1

GAP 〈〉

[

HEAD cconj
]

S

INV 1

GAP 〈〉

5.3.2 Coordination of Countable Noun Phrases

In this subsection we analyze a kind of coordination using the conjunction and between

countable nouns N1, and N2 that semantically forms another countable noun that is a kind

6This excludes the guards as we will see in chapter 7
7In this thesis we do not study the coordination of expressions that are incomplete or gappy.

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 125

of N1, and N2, which is specially useful for multiple inheritance.8

(76) Coordination Rule for Noun Phrases (com3sg) Version I:

phrase

SYN

HEAD 0

noun

AGR 3sing

PRO −

TYPE DEF +

VAL

SPR
〈

1

〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

→

SYN

HEAD 0

VAL

SPR
〈

1

〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

ORTH [and]

HEAD

nom-co-conj

CONJ TYPE com3sg

SYN

HEAD 0

VAL

SPR
〈

1

〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

To form a coordinated noun phrase of this kind, we need each constituent to be a third

person singular and a countable noun. The feature TYPE DEF is used here with the value

+, to insist that the constituents must represent a type, and their coordination forms a

noun that carries a type that is resulted from multiple inheritance. We will revise this rule

in chapter 6 to provide semantics.

5.4 Argument Structure : ARG-ST Feature

Now that we have studied the standard valence features, and shown how they can be used

to analyze several syntactic structures, we are ready to discuss the ARG-ST feature. This

feature is introduced by the lex-sign type, from which word, and lexeme inherit. This feature

provides a bridge between the syntax and the semantics of a word or a lexeme. Also using

it makes the presentation of some feature structure descriptions more concise.

ARG-ST is a feature whose value is a list resulted from the concatenation of the SPR

list with the COMPS list. Elements of this list are called the arguments of the word or lex-

eme. Specially, we later see that for verb phrases and predicative expressions, the semantic

objects referred to by the elements of ARG-ST are actually the arguments of the semantic

8There is another form of coordination between noun phrases that semantically builds a collection. How-
ever we do not analyze the collective and plural nouns in this thesis, for conciseness and unnecessary com-
plications.

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 126

predication introduced by that verb phrase or predicative phrase. By a predication we mean

simple and basic FOL like predicates that are used to describe the semantics of expressions.

Formally for any feature structure description of a word or a lexeme we have:

(77) Argument Realization Principle (ARP):

ARG-ST = SPR ⊕ COMPS ⊕ GAP

where ⊕ denotes the concatenation operator. GAP which is a list of expressions is the topic

of section 5.6. For simple phrases that do not miss any of their constituents it is the empty

list. In this thesis we suppose that the lexical entries, have their GAP feature empty.9

5.5 Copulas and Auxiliary Verbs

Copulas or copular or linking verbs are those verbs like be, seem, feel, that link a subject

to an adjective, a noun phrase or another predicative expression. The PRED feature in pos

specifies if the corresponding expression can serve as a predicate after a copular verb.

Auxiliary verbs fall into two categories:

• modals, like can, could, will, would, may, might, shall, should, ... that add a meaning

of possibility, willingness, permission, or obligation to the verb they attach to.

• helping verbs, like be, have, and do that add an extra meaning of continuation, com-

pletion, and emphasis to the verb they attach to.

In this section we analyze all these verbs under the same umbrella, as they have signif-

icant similarities. The difference is mostly in the semantics, where different meanings are

added. These analyses use the notion of subject raising [66]. Note that all of the verbs in the

categories above can be thought of as main verbs of the clause that have a VP or predicative

complement. Subject raising basically has the effect that the subject of the copula or the

auxiliary verb is syntactically and semantically the same as the subject of the embedded

VP or the predicative complement. This effect is called subject sharing in [67].

The only copular verb that we study here is be. The analysis of be provided in [67]

covers both its copular and auxiliary case (for progressive verb forms) simultaneously. So

9However, as we see in section 5.6, there are lexical rules that create gappy words, which have non-empty
GAP features.

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 127

for simplicity we call this verb an auxiliary verb too (even in its copular mode), and as in

[67] we will set its AUX feature to +.

The auxiliary verbs are subject to Negation, Inversion, Contraction and Ellipsis (NICE).

In this thesis we cover only negation and inversion. Sag et al. in [67] provide hierarchies

of lexemes working with lexical rules to deal with these phenomena. However, here for the

purpose of conciseness we try to avoid referring to the hierarchies of lexemes and lexical

rules. So we provide constraints that must be respected for the auxiliary verbs in each of

these modes10:

• Non-Negated and Non-Inverted (NN-NI) Version I:

The feature structure description of a word that is associated with a non-negated and

non-inverted auxiliary verb must be unifiable with:

(78)

SYN

HEAD

verb

AUX +

INV −

VAL

[

SPR
〈

1

〉]

ARG-ST

〈

1 NP ,

SYN

VAL

SPR
〈

1

〉

COMPS 〈〉

〉

• Non-Negated and Inverted (NN-I) Version I:

The feature structure description of a word that is associated with a non-negated but

inverted auxiliary verb must be unifiable with:

(79)

SYN

HEAD

verb

AUX +

INV +

VAL
[

SPR 〈〉
]

ARG-ST

〈

1 NP ,

SYN

VAL

SPR
〈

1

〉

COMPS 〈〉

〉

• Negated and Non-Inverted (N-NI) Version I:

The feature structure description of a word that is associated with a negated but

non-inverted auxiliary verb must be unifiable with:

10We will revise these constraints in section 6.10.1 of chapter 6 to incorporate the semantics of negation,
and once again in chapter 7 to enable type restrictions.

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 128

(80)

SYN

HEAD

verb

AUX +

INV −

VAL

[

SPR
〈

1

〉]

ARG-ST

〈

1 NP ,

word

ORTH [not]

SYN
[

HEAD adv-pol
]

,

SYN

VAL

SPR
〈

1

〉

COMPS 〈〉

〉

• Negated and Inverted (N-I) Version I:

The feature structure description of a word that is associated with a negated and

inverted auxiliary verb must be unifiable with:

(81)

SYN

HEAD

verb

AUX +

INV +

VAL
[

SPR 〈〉
]

ARG-ST

〈

1 NP ,

word

ORTH [not]

SYN
[

HEAD adv-pol
]

,

SYN

VAL

SPR
〈

1

〉

COMPS 〈〉

〉

Now we are able to provide the lexical entry for the verb be as shown in (82).

(82)

lexeme

ORTH [be]

ARG-ST

〈

NP,

[

SYN

[

HEAD
[

PRED +
]]

]〉

There must be enough lexical rules to transform lexemes such as the one above to

fully inflected verb forms that contain the inflected phonology (orthography here) with the

agreement information, and the appropriate FORM feature. The end result is a word that

must respect all the above constraints related to auxiliary verbs.

For example for first person plural the following feature structure description must be

derivable from the lexeme shown in (82).

(83)

word

ORTH [are]

SYN

HEAD

verb

FORM fin

PRED −

AGR plural

AUX +

INV −

VAL

[

SPR
〈

1

〉]

ARG-ST

〈

1 NP ,

SYN

HEAD
[

PRED +
]

VAL

SPR
〈

1

〉

COMPS 〈〉

〉

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 129

Suppose that the feature structure descriptions of happy, and singing are provided in

(84) and (85) respectively.

(84)

word

ORTH [happy]

SYN

HEAD

adj

PRED +

VAL

SPR
〈

NP
〉

COMPS 〈〉

MOD

〈

mod-elem

MODIFIED NOM

AFTER −

〉

(85)

word

ORTH [singing]

SYN

HEAD

verb

FORM prp

PRED +

VAL

SPR
〈

NP
〉

COMPS 〈〉

MOD 〈〉

Now using the Head Complement Rule, the verb are can be combined with each of the

two words happy, and singing, as shown by the phrase structure trees of (86) and (87)

(86)

phrase

ORTH [are, happy]

SYN

HEAD 0

VAL

SPR
〈

2

〉

COMPS 〈〉

MOD 〈〉

word

ORTH [are]

SYN 0

HEAD

verb

FORM fin

PRED −

AGR plural

AUX +

INV −

VAL

SPR
〈

2

〉

COMPS
〈

1

〉

MOD 〈〉

are

1

word

ORTH [happy]

SYN

HEAD

adj

PRED +

VAL

SPR
〈

2

〉

COMPS 〈〉

MOD

〈

mod-elem

MODIFIED NOM

AFTER −

〉

happy

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 130

(87)

phrase

ORTH [are, singing]

SYN

HEAD 0

VAL

SPR
〈

2

〉

COMPS 〈〉

MOD 〈〉

word

ORTH [are]

SYN 0

HEAD

verb

FORM fin

PRED −

AGR plural

AUX +

INV −

VAL

SPR
〈

2

〉

COMPS
〈

1

〉

MOD 〈〉

are

1

word

ORTH [walking]

SYN

HEAD

verb

FORM prp

PRED +

AGR plural

AUX −

INV −

VAL

SPR
〈

2

〉

COMPS 〈〉

MOD 〈〉

singing

Then these two verb phrases can combine with we by an application of the Head Specifier

Rule to form the sentences (88a) and (88b). This shows how the analyses of copular and

helping verb uses of be can be simultaneously achieved.

(88) a. We are happy.

b. We are singing.

We have not yet discussed why the adjectives must have a non-empty SPR list. Note

that this specifier is unified with the specifier of the auxiliary verb in (86). It is said that the

adjective happy shares its subject with the copular verb be. The reason for this is discussed

in our semantic analysis of copular and auxiliary verbs in chapter 6, section 6.10.

For negation, as seen in N-NI (80) and N-I (81) constraints, we have introduced an adv-

pol part of speech, that sits between the subject and the complement of the auxiliary verb.

This will enable HCR to license negated verb phrases such as:

(89) a. am not tired.

b. Am I not happy?

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 131

Note that (89b) does not require an application of HSR, because the SPR list is empty.

However (89a) needs to be combined with a subject by HSR to form a sentence like (90).

(90) I am not tired.

The inversion constraints NN-I (79), and N-I (81) force the subject to come after the

auxiliary verb by making the SPR list empty. However, since the ARG-ST is intact, the

subject will have to appear as the first element of COMPS to keep the constraint (77)

satisfied. Then applications of HCR will license sentences like (89b) or (91).

(91) Am I happy?

The analyses of other auxiliary verbs are very similar, the only difference lies in their

lexical entries. For example the lexical entry of can, and have are provided in (92) and (93),

without the semantic features.

(92)

lexeme

ORTH [can]

SYN

[

HEAD
[

FORM fin
]]

ARG-ST

〈

NP,

SYN

HEAD

verb

FORM base

〉

(93)

lexeme

ORTH [have]

ARG-ST

〈

NP,

SYN

HEAD

verb

FORM psp

〉

5.6 Gaps : The Missing Phrasal Constituents

Words that we have studied thus far have specified specifiers and complements, and the

saturated (i.e., complete) phrases that can be built from them had to contain all elements

that were initially in SPR and COMPS lists. However, in some cases such as relative clauses

or wh-questions it is possible that one argument is missing from a phrase and that some

of its syntactic and semantic characteristics are passed to another constituent that comes

before the phrase, as in sentences (94a), (94b). To show the missing constituent we have

used .

(94) a. I liked the book which you gave me .

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 132

b. Whom did you sell my ticket to ?

In sentence (94a), you gave me is a verb phrase that is missing its indirect object

by itself. This verb phrase is attached to a main clause, I liked the book, by the relativizer

which. book in the main clause plays the syntactic and semantic role of the missing indirect

object in the relative clause.

In (94b), did you sell my ticket to is a question that is again missing an indirect

object. Whom that came before the question completes the question by providing the

missing object.

A local subtree in a phrase structure tree is defined to be a mother node with its daugh-

ters. The rules and principles that we have studied thus far only constrained the feature

structure descriptions of the nodes in a local subtree. In other words, co-occurrence re-

strictions operated on local subtrees. However, in a sentence like (94a) there are two local

subtrees, and the syntactic and semantic restrictions that are posed on the missing expres-

sion by the phrase which misses it should be met by the expression in the other phrase that

contains the element that takes the role of the missing expression. This means co-occurrence

restrictions are not local for these kind of sentences.

Since multiple local subtrees are involved, and the restrictions are needed to be posed

on expressions that could appear far from each other in a sentence, the analysis of such

co-occurrence restrictions is called long distance dependencies.

The existence of phrases like you gave me in natural language requires that we allow

their licensing on the condition that the missing expression be filled in later. This is where

features GAP and STOP-GAP introduced by syn-cat come handy.

The GAP feature represents the missing constituents, or gaps as we call them. As

we mentioned in section 5.4, the lexical entries must specify their GAP as empty. But

we assume there are lexical rules that can fill this feature while respecting the Argument

Realization Principle at the same time, by removing some elements of SPR or COMPS and

adding them to GAP. In this thesis we have introduced a feature GAP-TYPE (or GAP-T

for short) for the verb to specify whether the corresponding word after the introduction of

gaps by the mentioned lexical rules is missing a subject argument or not. Permissible values

of this feature are gsubj, gnosubj, where gsubj indicates that the word has an element in

its GAP feature that was removed from SPR (and is hence a subject).

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 133

The STOP-GAP feature is empty for all expressions that cannot act as heads. For an

expression that can act as a head with a gappy argument, it can contain the feature structure

description of an expression that fills in the gap of one of its sisters.

Assumption 5.13

In this thesis we suppose that a word cannot have more than one gap.

The following feature structures can be derived from the lexicon for the verb gave:

(95)

word

ORTH [gave]

SYN

HEAD

verb

FORM fin

PRED −

AUX −

INV −

GAP-T gnosubj

VAL

SPR
〈

NP[CASE nom]
〉

COMPS
〈

NP1[CASE acc], NP2[CASE acc]
〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

(96)

word

ORTH [gave]

SYN

HEAD

verb

FORM fin

PRED −

AUX −

INV −

GAP-T gsubj

VAL

SPR 〈〉

COMPS
〈

NP1[CASE acc], NP2[CASE acc]
〉

MOD 〈〉

GAP
〈

NP[CASE nom]
〉

STOP-GAP 〈〉

(97)

word

ORTH [gave]

SYN

HEAD

verb

FORM fin

PRED −

AUX −

INV −

GAP-T gnosubj

VAL

SPR
〈

NP[CASE nom]
〉

COMPS
〈

NP2[CASE acc]
〉

MOD 〈〉

GAP
〈

NP1[CASE acc]
〉

STOP-GAP 〈〉

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 134

(98)

word

ORTH [gave]

SYN

HEAD

verb

FORM fin

PRED −

AUX −

INV −

GAP-T gnosubj

VAL

SPR
〈

NP[CASE nom]
〉

COMPS
〈

NP1[CASE acc]
〉

MOD 〈〉

GAP
〈

NP2[CASE acc]
〉

STOP-GAP 〈〉

The phrase you gave me in (94a) is licensed by applications of HCR and HSR on

the word structure of (98).

So we have virtually dealt with the values of GAP and STOP-GAP for words. STOP-

GAP is the empty list for phrases, because STOP-GAP already served its purpose when

the phrase was formed. For the value of GAP inside phrases we need to introduce a new

grammar principle.

(99) The GAP Principle

In any phrase, the value of the GAP feature of the mother phrase is equal to the

following, where n is the number of daughters, and Gi is the value of the GAP feature

of the ith daughter, and SG is the value of the STOP-GAP feature of the head daughter

if the phrase is headed, or the empty list if the phrase is headless.

G1 ⊕ ... ⊕ Gn ⊖ SG

The ⊖ operation is the list subtraction. The result of this operation is the same as A if

the elements of B do not occur in A. The result of A ⊖ B may be not unique, for example

[NP1, NP2] ⊖ [NP] can be any of the following depending on the internal structure of NP,

NP1, and NP2.

◦ [NP1, NP2]

◦ [NP2]

◦ [NP1]

In this thesis we only analyze two cases of long distance dependencies, namely, relative

clauses, and wh-questions. Next we see how the gappy phrase you gave me can be used

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 135

in complete sentences as a relative clause or in wh-questions.11

5.6.1 Relative Clauses

A relative clause is the one that comes after nominals (NOMs) to identify them (defining

relative clauses) or after nouns to give more information about them (non-defining). In this

thesis we only study the defining relative clauses. A relative clause starts by a relativizer ,

which is either a wh-word or that, and followed by a gappy sentence. The whole relative

clause acts as a modifier for the nominal that precedes it.

A relativizer is a kind of subordinate conjunction, which we talked briefly about at the

end of section 5.2.5. So, in our analysis we treat relativizers as both heads (with gappy

sentence complements) and as modifiers12.

(100) NOM
︸ ︷︷ ︸

modified

< relativizer > < gappy sentence >
︸ ︷︷ ︸

modifier

As an example, the feature structure description of the relativizer which13 if presented

in (101).

(101)

word

ORTH [which]

SYN

HEAD sconj

VAL

SPR 〈〉

COMPS

〈

SYN

HEAD

verb

INV −

VAL

SPR 〈〉

COMPS 〈〉

GAP

〈

1 NP
[

AGR 2

]〉

〉

MOD

〈

mod-elem

MODIFIED NOM
[

AGR 2

]

AFTER +

〉

GAP 〈〉

STOP-GAP
〈

1

〉

11The full analysis of long distance dependencies requires at least one additional rule, the Head Filler Rule,
but in this thesis we do not need it.

12Recall that if is a head and a modifier at the same time.
13Note that which can be used as a question word too, but that requires a different analysis, and an

additional lexical entry.

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 136

Now we discuss how which can combine with the gappy sentence you gave me to

form a relative clause. The phrase structure of you gave me that is obtained from (98)

after an application of HCR followed by an application of HSR is shown in (102).

(102)

word

ORTH [you, gave, me]

SYN

HEAD

verb

FORM fin

PRED −

AUX −

INV −

GAP-T gnosubj

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

GAP
〈

NP2[CASE acc]
〉

STOP-GAP 〈〉

The above feature structure description can be unified with the only COMPS element

of which, so HCR licenses the phrase structure tree shown in (106). Note that the GAP

feature of the mother phrase is empty as a result of the GAP principle, and the presence of

an element in the head’s STOP-GAP list which matches the complement’s GAP element.

Since there are no more GAPs in the mother phrase, and that it is a subordinate con-

junction with a non-empty MOD list, it acts as a normal modifier, which can be combined

with a NOM like book by the Head Modifier Rule to form the nominal phrase shown in

(103).

(103) book which you gave me

Later this nominal can be combined with the determiner the by the Head Specifier Rule

to form the following noun phrase.

(104) the book which you gave me

And this can in turn be combined with i like by the Head Complement Rule to form

the complete sentence below.

(105) I like the book which you gave me.

(106)

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 137

phrase

ORTH [which, you, gave, me]

SYN

HEAD sconj

VAL

SPR 〈〉

COMPS 〈〉

MOD

〈

mod-elem

MODIFIED NOM
[

AGR 2

]

AFTER +

〉

GAP 〈〉

STOP-GAP 〈〉

word

ORTH [which]

SYN

HEAD sconj

VAL

SPR 〈〉

COMPS

〈

SYN

HEAD

verb

INV −

VAL

SPR 〈〉

COMPS 〈〉

GAP
〈

1

〉

〉

MOD

〈

mod-elem

MODIFIED NOM
[

AGR 2

]

AFTER +

〉

GAP 〈〉

STOP-GAP
〈

1

〉

which

word

ORTH [you, gave, me]

SYN

HEAD

verb

FORM fin

PRED −

AUX −

INV −

GAP-T gnosubj

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

GAP

〈

1 NP

AGR 2

CASE acc

〉

STOP-GAP 〈〉

you gave me

5.6.2 Wh-Questions

For some semantic reasons, we would like to treat wh question words like What, Who,

Whom as heads. These reasons include that the presence of these words at the beginning

of a sentence turns the whole sentence into a question, which is a significant change in the

semantic mode of the utterance. For syntactic purposes this also helps formulate a simple

analysis of the wh questions.

We introduce a new grammar category qword which is a subtype of part-of-speech (pos)

in our grammar type hierarchy. Any wh-question word needs a gappy sentence as its com-

plement. A question word like Who that questions about the subject, requires a gappy

sentence whose GAP-TYPE is gsubj, meaning that the sentence must be missing its sub-

ject. A question word like Whom that questions about an object, requires its complement

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 138

to have gnosubj as its GAP-TYPE value. If Who is questioning the object, then its comple-

ment must be similar to that of Whom. Words like Who and, What that can pose a question

on either subject or object of a sentence need different lexical entries for each sense.

As an example, we have shown the feature structure description of the question word

Who in (107), where it is questioning the subject. Note the restriction on the complement

sentence that requires it not to be inverted (INV −).

(107)

word

ORTH [who]

SYN

HEAD qword

VAL

SPR 〈〉

COMPS

〈

S

SYN

HEAD

INV −

GAP-TYPE gsubj

GAP
〈

1 NP
〉

〉

MOD 〈〉

GAP 〈〉

STOP-GAP
〈

1

〉

As noted above in English it is acceptable that Who be used to question an object. In

that case a new lexical entry for Who is needed with its GAP-TYPE feature set to gnosubj.

Then it will be necessary for the complement sentence to be inverted. A feature structure

description of Who in this sense is provided in (108).

(108)

word

ORTH [who]

SYN

HEAD qword

VAL

SPR 〈〉

COMPS

〈

S

SYN

HEAD

INV +

GAP-TYPE gnosubj

GAP
〈

1 NP
〉

〉

MOD 〈〉

GAP 〈〉

STOP-GAP
〈

1

〉

Since the only means to produce inverted verb phrases is through the auxiliary verbs

with their constraints, NN-I, N-I provided in (79), (81), it is necessary that the phrase

contains an auxiliary verb too.

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 139

(109)

lexeme

ORTH [do]

SYN

[

HEAD
[

FORM fin
]]

ARG-ST

〈

NP,

SYN

HEAD

verb

FORM base

AUX −

〉

Consider the feature structure description of the auxiliary verb do in (109). Then by

applying the NN-I constraint we obtain the following feature structure description of do.

(110)

word

ORTH [do]

SYN

HEAD

verb

FORM fin

AUX +

INV +

VAL

SPR 〈〉

COMPS

〈

1 NP,

SYN

HEAD

verb

FORM base

AUX −

VAL

SPR
〈

1

〉

COMPS 〈〉

〉

Then you can serve as the first complement of the inverted do, and love can serve

as its second complement. By an application of the Head Complement Rule the following

gappy verb phrase can be licensed.

(111) do you love .

The gap in (111) is not a subject gap, and the value of GAP-T (short for GAP-TYPE)

of this phrase is gnosubj. Note that we do not have a mechanism to pass the gap type of the

non-head daughters to the mother. Although this can be easily done by pairing the elements

of GAP with a gsubj or gnosubj value, it is not needed. The reason is that wh-questions

with auxiliary verbs are followed by sentences that are missing some complement, whereas

the subject is present. In other words, if an auxiliary verb has a verb phrase complement

with a gap, that gap cannot be in the subject position, or otherwise the auxiliary verb would

not be needed, and in fact should not be present at all. So the GAP-T of the auxiliary must

be gnosubj, which is the default value for this feature.

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 140

(112)

phrase

ORTH [do, you, love]

SYN

HEAD

verb

FORM fin

PRED −

AGR 2sing

AUX +

INV +

GAP-T nosubj

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

GAP

〈

1 NP
[

CASE acc
]〉

STOP-GAP 〈〉

The phrase structure of the gappy inverted sentence (111) is shown in (112). This can

serve as the complement of Who shown in (108). And the Head Complement Rule can

license the following question with the phrase structure tree shown in (114).

(113) Who do you love ?

5.7 Conclusion

In this chapter we explored the syntactic features of our grammar, and presented the gram-

mar rules and principles that operate on syntax. The natural language structures we demon-

strated in this chapter serve to specify the syntactic coverage of our grammar. In the next

chapter we will provide a semantic framework for our grammar that will enable us to do

some semantic analysis.

CHAPTER 5. SYNTACTIC FEATURES AND THEIR RULES AND PRINCIPLES 141

(114)

phrase

ORTH [who, do, you, love]

SYN

HEAD qword

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

word

ORTH [who]

SYN

HEAD qword

VAL

SPR 〈〉

COMPS

〈

S

SYN

HEAD

[

INV +

GAP-T gnosubj

]

GAP
〈

1 NP
〉

〉

MOD 〈〉

GAP 〈〉

STOP-GAP
〈

1

〉

Who

phrase

ORTH [do, you, love]

SYN

HEAD

verb

FORM fin

PRED −

AGR 2sing

AUX +

INV +

GAP-T nosubj

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

GAP

〈

1 NP
[

CASE acc
]〉

STOP-GAP 〈〉

do you love

Chapter 6

Semantic Features and their Rules

and Principles

The meaning, or semantics, of a linguistic utterance has a literal component which plays a

significant role towards the total meaning, and a pragmatic component which often affects

it also, involving the context and the implicit or explicit goals of those involved in the

conversation.

In all that follows, we equate the semantics of an utterance with its literal component.

This is in accordance with our objective: in a “formal” specification language, we must avoid

non-relevant context, pragmatic issues, stylistic resources such as metaphor, etc., so that the

meaning obtained from a formal specification (i.e., the result of its semantic analysis) is the

literal meaning of the sentences that comprise it. This representation can later be used for

human-assisted disambiguation and for reasoning and consistency checks for requirement

specification and verification purposes.

We also adopt the compositionality hypothesis: we assume that a sentence’s literal

meaning can be constructed from the meaning of its parts. To construct it, we develop a

framework based on Sag et al. [67], and we show how to incorporate semantics into the

HPSG grammar presented in the previous chapter. For conciseness, we omit a discussion of

the semantics of plural nouns, however an analysis very similar to chapter 8 of Carpenter

[13] can be easily incorporated to our grammar.

Although pragmatics could be exempt from the “formal” specification aspect of software

development, it should be considered in the general tasks of software design, development

142

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 143

and documentation. Stylistic resources such as metaphor, analogy and examples could also

help in documentations for human readers, by providing some preparation and assistance

for understanding the formal specifications. However, we do not consider pragmatics in this

thesis.1

6.1 Simple Semantic Features

HPSG like Categorial Grammar treats semantics in parallel with syntax. For this reason,

every sign has a feature SEM of type sem-cat as shown in (1). This feature contains the

semantics of the sign. As can be seen in the hierarchy presented in figure 4.1, sem-cat has 4

features, 3 of which are standard HPSG features (MODE, INDEX, RESTR), and a TYPE

feature that we introduced to the grammar to represent the domain entity type of a sign.

Next we study the standard features. We will study the TYPE feature in section 6.3.

(1) a.

sign

ORTH

SYN

SEM sem-cat

b.

sem-cat

MODE
{

prop, ques, dir, ref, ana, none
}

INDEX index

RESTR list of predication

TYPE BasTyp

6.1.1 Semantic Mode

MODE short for meaning of the sign with this semantic mode

prop proposition a proposition, for non-inverted (partial or complete) sentences

ques question a question, for inverted (partial or complete) sentences

dir directive a directive, for imperative (partial or complete) sentences

ref referential referring to a domain entity individual, for noun phrases

ana anaphoric referring to a domain entity individual, for reflexive pronouns

none — additional meaning for another constituent or no meaning

Table 6.1: Semantic Modes

The first semantic feature is MODE, whose values range within {prop, ques, dir, ref,

ana, none}. Table 6.1 provides a short description of each. In this thesis we do not cover

1See chapter 6 of Bjørner [8] for a discussion on pragmatics.

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 144

imperative sentences and reflexive pronouns, so feature values ‘dir’, and ‘ana’ will not be

used in our grammar.

[MODE prop], and [MODE ques] are usually used for verbs, verb phrases and sentences.

In this thesis we use [MODE prop] also for predicative coordinate conjunctions that join two

verb phrases or sentences, because the end result of the conjunction is a complex proposition.

[MODE ref] is always used with pronouns, nouns and noun phrases, indicating that the

expression’s meaning is a reference to an individual from the application domain.

[MODE none] is used with all modifiers, and the grammar categories with no significant

meaning contribution (such as argument marking prepositions). The meaning embedded in

modifiers is copied to the phrase containing them by the semantic compositionality principle

that we study later in this chapter.

6.1.2 Semantic Index

An index is a label of an individual, or a situation. We use natural numbers or lower case

letters for indices. An individual is simply an entity in the domain of grammar application.

It could be a person, an object or a group of people or objects, or a variable referring to

them in certain constructs (like quantification). A situation is simply an event about some

state holding or some action happening in the universe.

In feature structure descriptions, we use individual as a type of index that is used to

refer to individuals. We also use situation as a type of index that is used to refer to an

event. So an index, is either an individual or a situation, as shown in the type hierarchy

below.

index

individual situation

Following [67], if we use lower case letters as indices, then we use i, j, k, ... for individuals

and s, u, w, s1, s2, ... for situations.

As we see later in section 6.5, it must be possible for indices to be unified if necessary.

In Prolog variables can be used to represent indices, and this automatically allows for the

unification of indices.

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 145

6.2 Semantic Restrictions

Now that we are able to refer to individuals or situations by index values, we need to

specify the restrictions between them in the meanings that are carried by words or phrases.

Along with the lines of Minimal Recursion Semantics (MRS) [19, 20]2 these restrictions

are specified in terms of elementary predications or EPs. We will introduce the important

concepts that are closely related to MRS through the rest of this chapter, as we give some

semantic principles and examples along the way.

6.2.1 Elementary Predications

A very important assumption in MRS is that the linguistic semantics of an expression is

expressible in terms of some atomic building blocks of meaning. These building blocks are

called elementary predications or EPs. Each elementary predication conveys a very basic

(atomic) meaning, and it can be underspecified by pointing to situations or individuals that

are not accessible from the word or phrase that carries the predication as part of its meaning.

These predications can combine to form complex meanings by the semantic compositionality

principle that we see later in this chapter.

A predication3 is basically a relation between some arguments. The feature structure

description of a predication has at least 3 features. The first feature is RELN (short for

RELATION) whose value is the relation name, or the predicate symbol. The second feature

is SIT (short for SITUATION) whose value is a situation index. It labels its containing

predication, so that it can be referred from other predications or from the semantics of

a sign (by using the INDEX feature). We call the value of this feature the label of the

predication that contains it.

We should mention that it is possible for several predications to have the same label. In

such a case, all of those predications are referred to at once whenever their SIT value is used.

In fact, we see later that the value of SIT is the scope in which the predicate that is labeled

with it resides in. The third feature is the first argument of the relation. More features

are added if the relation requires more arguments. The value of the argument features are

usually indices. The argument features are given mnemonic names suitable for the role that

2The notation used in [19, 20] are a little different from [67]. Here we follow the notation used in [67].
3We use predication instead of elementary predication when it is clear that we are referring to elementary

predications.

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 146

the argument plays in the relation.

For example, (2) shows a predication for the relation likes(s, i, j).4 The situation

argument, s, basically acts as a label for the predication, so that it can be referred from

other predications or directly from the INDEX feature of a sign. This predication has the

meaning that s is a situation where the individual i likes the individual j. This meaning is

underspecified in that we do not have enough information about the individuals i, and j.

(2)

predication

RELN like

SIT s

LIKER i

LIKED j

Different Kinds of Elementary Predications

In this thesis we break down the predications into four categories:

• Ordinary predications, such as like, used for verbs and modifiers. They convey the

meaning that some status holds among individuals or situations (events).

• Tense predications such as time present, time past, time future, etc. that are

used to add the tense information for verbs. We have chosen to use one argument,

EVENT for these predications. They convey that the situation which is specified by

their EVENT argument has happened in the past, is happening now, or is going to

happen in the future, etc..

• Discourse predications, which access or modify the information that is collected so far

in the discourse. This will be covered in sections 6.4, 6.6.

• Quantification predications, of which we only consider quantification predications over

singular noun phrases.5 This will be the topic of section 6.6.1.

• Outscope predications, these are used to express structural constraints on the seman-

tics, useful for translating the predications to a Predicate Calculus (PC) representation

4This has an extra situation argument in comparison with the λ-term λjλi.likes(i, j).
5Quantification over sets requires a representation language that goes beyond First Order Logic, as a set

can be thought of as a unary relation, and quantification over relations is impossible in First Order Logic.

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 147

such as Typed First Order Logic (TFOL). We will see examples of these predications

in section 6.8.2.6

6.2.2 The Value of RESTR Feature

(3)

word

ORTH [likes]

SYN

HEAD

verb

FORM fin

PRED −

AGR
[

3sing
]

AUX −

INV −

VAL

SPR
〈

NPi[CASE nom]
〉

COMPS
〈

NPj [CASE acc]
〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE prop

INDEX s

RESTR

〈

predication

RELN like

SIT s1

LIKER i

LIKED j

,

predication

RELN time present

SIT s

EVENT s1

〉

A list of predications is used as a value of the RESTR (RESTRICTION) semantic feature

of sem-cat type to complete the meaning of an expression or a lexeme (besides the semantic

features MODE, and INDEX). This list of elementary predications describes the semantics

(the literal meaning) of the corresponding sign in a flat representation.

For example the predication shown above in (2), together with a tense predication can

be used to specify the meaning of the verb likes as in (3). We will describe how this conveys

the meaning of the verb in what follows.

The reader has probably noticed that we have used index subscripts for the SPR and

COMPS list elements in (3). This notation is explained below.

Notation 6.1 If a subscript i is used for a grammar category corresponding to an expres-

sion, then i is treated as the semantic index, i.e., the value of the INDEX feature of the

feature structure description of that expression. In general we have:

6In the MRS literature such as [20, 19] these constraints are also called handle constraints and are
maintained in a feature different from RESTR, that is HCONS. In this thesis we keep all of these predications
in the RESTR feature.

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 148

(4) Xi = X

[

SEM
[

INDEX i
]]

For example:

(5) NPi = NP

[

SEM
[

INDEX i
]]

The semantic index of a nominal expression (pronoun, noun, noun phrase) refers to the

individual that the expression represents. So by using NPi as the specifier of the verb (the

subject of the verb) likes, and by using i again as the value of the argument LIKER in the

semantic restrictions, we imply that the specifier of the verb plays the role of its subject or

in this case the role LIKER.

Similarly we used NPj as the only complement of the verb, and used j again as the value

of the feature LIKED in the semantic restriction. This implies that the complement of the

verb has the object role, or in this case, the individual that is being LIKED.

The meaning of the verb likes is conveyed through the two predications with relation

names like, and time present. The semantic index (value of INDEX) of the feature struc-

ture description of likes has the value s, which is the value of the SIT argument of the tense

predication. The tense predication has an EVENT argument that has the value s1, which

is the value of the SIT argument of the like predication. The meaning comprises of two

situations. One is the state s1 of liking from i towards j, and the other is the situation s

that asserts the state s1 is happening at the present time. Simply, it means that i likes j at

the present time.

The meaning of these predications can be given in a predicate calculus (PC for short)

representation. The PC representation of:

(6)

〈

predication

RELN like

SIT s1

LIKER i

LIKED j

,

predication

RELN time present

SIT s

EVENT s1

〉

can be given by the formula:

(7) like(s1, i, j) ∧ time present(s, s1)

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 149

(8) Tense Predication Constraint:

In this thesis the tense predication always wraps a tense-less verb predication. We

pose a constraint on the EVENT argument of the tense predication so that it cannot

be shared by any predication other than the tense predication that embeds it. We call

this the tense predication constraint .

We can rewrite the above formula in a different notation, where the value of the EVENT

argument of the tense predication is replaced by the PC representation of the predication

it refers to.

(9) time present(s, like(s1, i, j))

Later in section 6.12 we see how a list of predications that correspond to a list of well-

formed natural language sentences can be converted to a predicate calculus representation

very similar to FOL.

Finally the semantic mode (value of MODE) is ‘prop’ meaning that the verb likes is going

to be used in a sentence that makes a simple assertion or proposition. This is compatible

with the arrangement of SPR and COMPS, and the INV feature value, that is, the verb

is not inverted, the subject in the SPR comes before the verb, which is followed by the

object in the COMPS list. So the order of the constituents is compatible with a sentence in

propositional usage.

6.3 The TYPE Feature

This is a new semantic feature that we have introduced to the sem-cat type. The value of

the TYPE feature for a nominal expression ξ is the domain entity type that the individual

that is referred by ξ belongs to. The value of this feature is application specific, and must be

defined in the lexicon for the nominal lexical entries for the specific application7, although

it might be possible to extract a basic lexicon which is common for several applications. To

incorporate as much knowledge as possible we wish this type to be the most specific one

that we are aware of at the time of defining the lexicon.

For example if Mary in an application domain is declared to be a student, where student

is a subtype of human, then the feature structure description of the lexical entry of the

7For verbal lexical entries the value is Bool, and for all other non-nominal entries the value is the top
element of the type hierarchy, i.e, all.

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 150

proper noun Mary for that application must specify the value of TYPE as student as shown

below.

(10)

ORTH [mary]

SYN ...

SEM

MODE ref

INDEX i

TYPE student

RESTR ...

As another example we consider the personal pronoun she. The feature structure de-

scription of its lexical entry must specify the value of TYPE as ‘female-humanyX’ as shown

in (11), following our argument of using specializable types for pronouns in section 2.3.2.

(11)

ORTH [she]

SYN ...

SEM

MODE ref

INDEX i

TYPE female humanyX

RESTR ...

In the next chapter we will see how we can restrict the applicability of our grammar

rules, namely, HSR, HCR, HMR, and Coordination rules with respect to the TYPE feature

of the constituents.

6.4 Semantics of Simple Singular Nominals

In our study of simple singular nominals in this section we are going to introduce the first

three discourse predications we are using in this thesis. By simple singular nominals we

mean one word singular noun phrases that do not need a determiner. These include proper

nouns like Mary, and singular pronouns like she. The semantics of nominals in general

adds a new individual to the discourse context, or it refers to an individual already in the

discourse context.

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 151

Definition 6.2 Discourse Context8

The discourse context or DC for short in the set of structures that contain some information

about the individuals in the context. For any individual in the context, this information

must at least contain:

• the index used to refer to the individual

• the grammatical agreement information of the individual

• the semantic type of the individual

An elementary discourse predication with the relation name instantiate can encapsulate

the above information for an individual. The feature structure description of this predication

is shown in (12).

(12)

predication

RELN instantiate

SIT situation

SYN AGR agr-cat

SEM TYPE BasTyp

INST individual

The elementary discourse predication dc obj add adds a new individual to the dis-

course context. It should be coupled with a supplementary instantiate predication that

provides the information about this new individual. The feature structure description of

this predication is shown in (13).

(13)

predication

RELN dc obj add

SIT situation

OBJ individual

INSTPRED situation

8The discourse context accompanied by the list of predications that refer to it to some extent resembles to
the Discourse Representation Structure (DRS) [46] of that expression. However the discussion of discourse
representation theory is beyond the scope of this thesis.

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 152

The value of the INSTPRED feature is the situation label of the instantiate predication

that provides the discourse information about the new individual. This value must not be

shared with any other predication except for the quantification predications as the value of

QRESTR as we see later in this chapter. The value of OBJ feature is the index value of the

individual being added to the context. This value must be identical to the INST feature

value of the matching instantiate predication. We will see an example of dc obj add and

instantiate shortly in section 6.4.1

Another elementary discourse predication that we use in our analysis of the semantics of

singular nouns is dc obj get. Like dc obj add it should be coupled with an instantiate

predication. It has the effect of searching the discourse context for an individual whose in-

formation matches the information provided by the supplementary instantiate predication.

The feature structure description of this predication is shown in (14).

(14)

predication

RELN dc obj get

SIT situation

OBJ individual

INSTPRED situation

The value of the INSTPRED feature is the situation label of the coupled instantiate

predication. The value of the OBJ feature is the index that is used to refer to the individual

that is summoned from the context.

Next we study how these predications can be used to analyze the semantics of simple

nominal expressions.

6.4.1 Semantics of Proper Nouns

A proper noun is usually a single word that refers to a named individual. Some examples of

proper nouns are Mary, John, King Edward. The semantics of proper nouns comprises three

predications. The first two are coupled discourse predications that add the individual to

the discourse context, and the second one is the name predication that specifies the name

of the individual. For example the feature structure description of the proper noun Mary is

given in (15). We have omitted the syntactic features for keeping it relevant to semantics.

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 153

(15)

word

ORTH [mary]

SYN ...

SEM

MODE ref

TYPE student

INDEX i

RESTR

〈

predication

RELN dc obj add

SIT s

OBJ i

INSTPRED s1

,

predication

RELN instantiate

SIT s1

SYN AGR

3sing

GEND fem

SEM TYPE student

INST i

,

predication

RELN name

SIT s

NAME mary

NAMED i

〉

In the above feature structure description, i, s, and s1 are all different indices. And a

new occurrence of Mary will use a potentially different set of indices. It depends on the

application to decide whether two occurrences of Mary actually refer to the same individual

or not. Here we assume they do refer to the same individual. For enforcing this assumption

we will run a post parse procedure that unifies the indices of the individuals with the same

name. This post process can be easily eliminated to suit the application.

6.4.2 Semantics of Singular Pronouns

Unlike proper nouns that introduce new individuals to the discourse context, pronouns refer

to individuals already in the context. We call an individual that is in the discourse context,

a context individual. For a context individual to serve as an antecedent of a pronoun, it

is necessary that its relevant information (agreement and type) matches the corresponding

information of the individual that the pronoun refers to. A pronoun needs to declare the

requirements of a context individual, and this is done by a dc obj get predication that

is coupled with an instantiate predication that contains the necessary information. For

example, the semantics of the pronoun it is shown in (16).

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 154

(16)

word

ORTH [it]

SYN ...

SEM

MODE ref

TYPE allyX-human

INDEX i

RESTR

〈

predication

RELN dc obj get

SIT s

OBJ i

INSTPRED s1

,

predication

RELN instantiate

SIT s1

SYN AGR

3sing

GEND neut

SEM TYPE allyX-human

INST i

〉

The value of the INDEX feature is the same as the value of OBJ and INST features of

dc obj get and instantiate respectively. This ensures that the pronoun refers to the same

individual that is found in the context that matches the criteria provided by the instantiate

predicate.

As another example, the feature structure description of the pronoun he is given in

(17). Note that the RESTR feature contains an additional semantic restriction that the

individual that the pronoun refers to must not be in conversation with the speaker at the

time of utterance.

(17)

word

ORTH [he]

SYN ...

SEM

MODE ref

TYPE male humanyX

INDEX i

RESTR

〈

predication

RELN dc obj get

SIT s

OBJ i

INSTPRED s1

,

predication

RELN instantiate

SIT s1

SYN AGR

3sing

GEND masc

SEM TYPE male humanyX

INST i

〉

After the sentence is parsed, we should resolve the antecedents of pronouns. The se-

mantic features we chose for the grammar enables to do the antecedent resolution by only

referring to the semantic features of the parsed phrases. The necessary syntactic information

are encoded as the SYN AGR feature of the instantiate predication.

We can think of antecedent resolution as the resolution of dc obj get predications, or

in other terms finding the context individuals that match their required criteria.

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 155

If multiple context individuals matching the required criteria can be found, then the

corresponding sentence is ambiguous9, and a context individual should be chosen as the

antecedent of the pronoun manually by the user or with the help of a heuristic or probabilistic

algorithm10.

Some implicit requirements are in play in the process of antecedent resolution or generally

in semantic analysis. One such requirement is that the semantics of a sentence (or a phrase)

after antecedent resolution must be consistent with the relevant axioms of the application.

Checking this consistency might be a hard task, and we might need some model builders or

theorem provers to prove consistency or discover the inconsistency of the semantic analysis

of a phrase respectively.

6.5 Semantic Principles and Constraints

Up to this point we have only discussed the semantics of single words. To be able to discuss

the semantics of phrases we need to present two semantic principles that specify how the

semantics of a phrase can be built from the semantics of its constituents. In the formulation

of [67] there are two semantic principles, namely, semantic compositionality principle and

semantic inheritance principle, given below.

(18) Semantic Compositionality Principle:

The value of the RESTR feature of any phrase structure PS is equal to the concate-

nation of the values of the RESTR features of the daughters of PS.

(19) Semantic Inheritance Principle:

The values of MODE, INDEX, TYPE and any other semantic feature except RESTR

for any phrase structure PS that is licensed by a headed rule are equal to the values

of the corresponding features of the head daughter of PS.

As an example of how these principles work we analyze the semantics of the simple

sentence Chris walks. The phrase structure tree of this sentence is shown in (20).

As can be seen, the value of the MODE, INDEX, and TYPE features of the mother

phrase are equal to those of the head daughter which in case is the word structure of the

verb walks.

9Sentences can be ambiguous for other reasons too, but that is not the topic of this section.
10We do not study heuristic and probabilistic algorithms for anaphora resolution in this thesis.

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 156

(20)

phrase

ORTH [chris, walks]

SYN

HEAD

verb

FORM fin

PRED −

AGR

[

3sing

GEND masc

]

AUX −

INV −

GAP-T nosubj

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE prop

TYPE Bool

INDEX w

RESTR

〈

2

predication

RELN dc obj add

SIT u

OBJ i

INSTPRED u1

, 3

predication

RELN instantiate

SIT u1

SYN AGR

[

3sing

GEND masc

]

SEM TYPE male human

INST i

, 4

predication

RELN name

SIT u

NAME chris

NAMED i

,

5

predication

RELN walk

SIT w1

WALKER i

, 6

predication

RELN time present

SIT w

EVENT w1

〉

1

word

ORTH [chris]

SYN

HEAD

noun

PRED −

AGR

[

3sing

GEND masc

]

CASE nom

PRO −

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE ref

TYPE male human

INDEX i

RESTR
〈

2 , 3 , 4

〉

chris

word

ORTH [walks]

SYN

HEAD

verb

FORM fin

PRED −

AGR
[

3sing
]

AUX −

INV −

GAP-T nosubj

VAL

SPR
〈

1 NPi

〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE prop

TYPE Bool

INDEX w

RESTR
〈

5 , 6

〉

walks

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 157

Moreover, the value of the RESTR feature of the mother phrase is equal to the concate-

nation of daughters’ RESTR value, as a result of the semantic compositionality principle.

Thus, the RESTR value of the sentence Chris walks has two parts. The first part introduces

the individual i who is named Chris in the situation u, and the second part asserts that

the individual i walks at the present time in the situation w. Situations u, and w are not

unified by the rules and principles we studied so far. However, we would like to somehow

express that the two situations are the same. This can be done by some constraints that we

present below.

6.5.1 Minimal Recursion Semantics General Constraints

The basis of the constraints we present in this section is [20], and [67]. Discourse analysis

is discussed in neither [20] nor [67], so we use some constraints that are tailored to fit the

presence of discourse predications.

As we have already seen, discourse predications introduce individuals with their respec-

tive index into the context of the discourse. To present the semantics of an utterance in

a predicate calculus representation such as FOL, we need to covert the flat representation

of the RESTR feature to a tree representation. This tree will correspond to a Predicate

Calculus (PC)11 formula. For this formula to be well-formed we need certain restrictions.

One important restriction is that an individual that is introduced by means of discourse

predications will not be referred from a scope (formula subtree) where it is not defined.

Conditions like this are called variable binding conditions. In this subsection we introduce

the General Variable Binding Condition, and define the notion of a scope resolved list of

predications. In our formulation, there are specific variable binding conditions for quantifiers

and modifier predications that we introduce in sections 6.6.1 and 6.7.2 and 6.8.2.

The list of predications in the RESTR feature of expressions can be thought of as basic

sub-formulas that will participate in the final PC formula representation of the expression’s

semantics. The situation values can be thought of as the labels of the sub-trees of the PC

formula. In this respect, SIT values refer to scopes. All predications with the same SIT

value are inside the same scope.

Definition 6.3 Scopal Features

A scopal feature is a feature other than SIT whose value is of type situation.

11Such as typed first order logic.

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 158

Definition 6.4 Immediate Outscope Relation:

A scope s immediately outscopes another scope u, denoted by s <i u if and only if u is the

value of a scopal feature in a predication labeled by s. In this case we say s is the parent of

u.

Definition 6.5 Outscope Relation:

A scope s outscopes a scope u, denoted by s ≤ u, if and only if s = u or there is a sequence

s1, ..., sn, possibly empty such that we have:

s <i s1 <i ... <i sn <i u

We use the notation s < u to indicate s ≤ u but s 6= u. If s < u then s is an outer scope of

u, and u is an inner scope of s.

(21) General Variable Binding Condition:12

Any index of an individual that is used in a predication with label s (and hence

immediately inside scope s) must be bound by all discourse predications dc obj add,

or dc obj get labeled t that introduce the individual i to the discourse context, such

that t ≤ s. In other words, the variable must be introduced by discourse predications

immediately in the same scope or in an outer scope.

The reason that we have stated all discourse predications that introduce the individual i

is that a dc obj get predication can retrieve an individual from the discourse context that

was previously introduced to the discourse by another discourse predication.

Definition 6.6 Graph Representation of the Immediate Outscope Relation:

In the graph representation of the relation <i every scope is associated with a node. For all

scopes s, u if s <i u there is a corresponding directed edge from s to u in the graph.

Definition 6.7 Scope-resolved Predications:

A list of predications is said to be scope-resolved if the values of SIT and scopal features

of the predications are equated in such a way that every scopal feature is set to the label

of some predication, and the graph representation of the immediate outscope relation <i

forms a tree, with exactly one root, and all scopal constraints including variable binding

conditions and the constraints introduced by outscope predications13 are satisfied.

12We will introduce specific variable binding conditions in sections 6.6.1, 6.7.2, and 6.8.2.
13We see examples of these predications in section 6.7.2.

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 159

Example 6.8 Consider the predication list representation of the sentence Chris walks in

(20), which is repeated in (22).

(22)

〈

predication

RELN dc obj add

SIT u

OBJ i

INSTPRED u1

,

predication

RELN instantiate

SIT u1

SYN AGR

3sing

GEND masc

SEM TYPE male human

INST i

,

predication

RELN name

SIT u

NAME chris

NAMED i

,

predication

RELN walk

SIT w1

WALKER i

,

predication

RELN time present

SIT w

EVENT w1

〉

Since u1 is used as the value of a scopal argument of the predication with label u then we

have:

(23) u <i u1

Also, since i is the index of an individual used in scope w, but introduced by the discourse

predication with label u by the variable binding condition we must have:

(24) u ≤ w

The graph representation of the immediate outscope relation with this information is

shown in (25). The solid edges are the immediate outscope pairs. The outscope constraint

u ≤ w is shown by a dashed edge. The dashed edge is not part of the immediate outscope

relation. In this status, the immediate outscope graph is not a single rooted tree.

(25)
u

u1

w

w1

To make this graph a single rooted tree we must equate w to either u or u1. However,

in our definition of the discourse predication dc obj add we mentioned that the label of

the instantiate predicate (u1 in this case) cannot be shared by any predication (other than

the quantifier predications). So the only option to make this graph complete is to equate u

and w. This will yield a single rooted tree for scopes shown in (26) that satisfy all scopal

constraints.

The resulting scope resolved list of predications is shown in (27).

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 160

(26)
u = w

u1 w1

(27)

〈

predication

RELN dc obj add

SIT w

OBJ i

INSTPRED u1

,

predication

RELN instantiate

SIT u1

SYN AGR

3sing

GEND masc

SEM TYPE male human

INST i

,

predication

RELN name

SIT w

NAME chris

NAMED i

,

predication

RELN walk

SIT w1

WALKER i

,

predication

RELN time present

SIT w

EVENT w1

〉

As for a Predicate Calculus (PC) representation of the semantics, we should mention

that since we use types, we need a version of Typed First Order Logic (TFOL) rather than

First Order Logic. In this thesis, we use a version of TFOL that requires every individual

to be associated with a type.

The instantiate predication translates to an instance relation formula, where the indi-

vidual used as the value of INST feature is asserted to be of the type that is used as the

value of SEM TYPE feature. For example, the instantiate predication of (27) is trans-

lated to formula (28). Note that we used a subscript for ‘:’ to represent the SIT label of

the predication. We need the scopal information later to convert larger list of predications

to TFOL.

(28) i :u1 male human

Other discourse predications do not make their way directly into the resulting FOL

formula, however they have some side effects. dc obj add treats the index value of its

OBJ feature as a unique identifier that is introduced by this discourse predication. On the

other hand, dc obj get retrieves an identifier that was previously created for an individ-

ual matching the instantiate requirements that is coupled with it, and the index value

of its OBJ feature is unified with the identifier just retrieved. Note that several identifiers

matching the coupled instantiate requirement of dc obj get can be found, then the cor-

responding phrase is ambiguous. In such a case we need user’s assistance to choose the right

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 161

individual from the available individuals in the context, or we require her/him to paraphrase

the sentence to avoid ambiguity.

Note that this does not mean that our theory is only capable of handling unambiguous

sentences. The semantic representation for ambiguous sentences is perfectly fine. It is for

the application of documenting and processing software and business requirements that we

would like the user to be aware of the ambiguity and to choose the right antecedent or

to rephrase the sentence to make the semantic representation and in turn the software or

business requirements unambiguous.

Other predications will translate to simple atomic predicates that share their symbol with

the predication’s relation name (the value of RELN feature), and have a label argument that

holds the SIT value of the predication and a list of other arguments that correspond to the

arguments of the predication.

The predicate calculus representation of the predications that share their SIT value is

equal to the conjunction of the PC representation of each of the predications. So the TFOL

representation of the flat predications of this example becomes:

(29) i :u1 male human , name(w, i, chris) ∧ time present(w, walk(w1, i))

Since we have two scope labels in the list of predications, we have ended up with two

subformulas. One with the root label u1, and the other with root label w. To resolve issues

like this, we can unify scope labels α that are not used in any sub-formula as a non-label

argument to their parents parent(α) in the immediate outscope relation tree. We perform

the unification from top to bottom of the outscope tree. For the tree shown in (26) it means

we should unify u1 and w. So now we can conjoin the two formulas in (29) to derive the

following single formula:

(30) i :wmale human ∧ name(w, i, chris) ∧ time present(w, walk(w1, i))

The meaning is that w is the situation where an individual i whose name is chris walks

at the present time.

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 162

6.6 Semantics of Singular Countable Noun Phrases

A singular noun phrase with a count noun constituent is a combination of a determiner and

a count noun in its singular form.14 The general purpose of determiners is to help identify

or quantify the individual that they refer to. In this respect they have a strong relation to

the discourse context.

Quantifiers like some, every, any, all provide a means of quantification which is directly

expressible in FOL. They also make the individual that they precede known to the context.

They do so by adding the individual to the discourse context.

Articles a/an have a very similar semantics to quantifiers. In fact in this thesis we treat

a/an as existential quantifiers. The noun that comes after these articles was previously

unknown to the hearer, and these articles make them known. The article the on the other

hand refers to an individual that is known to the hearer and hence must be already in the

discourse context.

Possessives like his, her, its, my both retrieve an individual from the context (the owner)

and add an individual (the object owned) to the context.

In all of the above cases of determiners we see that there is an intimate connection

between determiners and the discourse predications dc obj add, and dc obj get. At least

one of these predications will participate in the semantics of any singular countable noun

phrase. For this similarity of determiners and other reasons we treat all determiners in the

same category that we call generalized quantifiers. All generalized quantifiers act upon an

individual that satisfies some restriction, and a scope that contains the semantics of the

phrase that refers to the quantified individual.15

For this reason we have a subcategory of sem-cat for dealing specifically with the se-

mantics of determiners (or generalized quantifiers). This category is sem-det and has two

scopal features QRESTR and QSCOPE16, as shown in figure 4.2, which we repeat in (31).

14In this thesis we refrain ourselves from discussing the semantics of mass nouns as this is a very vast topic
which is beyond the scope of this thesis. For count nouns we focus on the semantics of singular nouns, which
is the topic of this section.

15Some examples of generalized quantifiers in HPSG are a/an, some, the, much, most, many, Since the
target of our grammar in this thesis is parsing software requirements, we avoid using intrinsically ambiguous
determiners such as much, most, many. Later in this section we will study the analysis of some, and the as
generalized quantifiers.

16The quantifier predications have two features with the same names that carry the same values.

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 163

(31)

sem-det

QRESTR situation

QSCOPE situation

6.6.1 Singular Quantification and Count Nouns

Simple Logical Quantifiers

We know from the ordinary First Order Logics (FOL) that there are two quantifiers, namely

the existential quantifier and the universal quantifier. These are the first two generalized

quantifiers that we study in this thesis.

In FOL, quantified formulas have one of the following forms:

(32) ∀x P (x)

(33) ∃x P (x)

where P (x) is another FOL formula that refers to x. With this notation the quantified

variable x is unrestricted unless the restrictions are applied within the formula P (x). If the

FOL language is expressive enough to allow the use of sets, variable x can be restricted at

the beginning of the quantified formula using the following forms.

(34) ∀x ∈ S; P (x)

(35) ∃x ∈ S; P (x)

where S is the set that x ranges over. The above formulas can be rewritten in longer but

equivalent forms shown below.

(36) ∀x (x ∈ S ⇒ P (x))

(37) ∃x (x ∈ S ∧ P (x))

In natural language the quantified individual is always restricted by the noun that follows

it. The quantifier every, for example, is always followed by a count noun that serves as the

restriction of the individual that is quantified, such as person in every person, or book in

every book.

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 164

If we consider the quantified noun phrase every book, and if we suppose that the set of

all books is denoted by Books, then the semantics of this noun phrase can be presented

by the partial formula shown in (38). The box in the formula represents the scope of the

quantifier, or simply the scope of the variable x.

(38) ∀x ∈ Book; ...
︸ ︷︷ ︸

scope of x

A deeper contemplation reveals that every count noun in fact refers to a type. For

example, the count noun book refers to the type book. Then, quantifiers can be thought

to introduce an individual within the range of the instance set of some type. This type

is carried by the semantics of the noun that follows the quantifier. For example the noun

phrase every book can be converted to a partial semantic representation presented in (39),

together with a dc obj add discourse predication that adds the individual to the discourse

context. The dc obj add predication must be coupled with an instantiate predication to

serve as the restriction of the quantifier. The instantiate predication must be carried by

the semantics of the count noun that follows the quantifier.

(39) ∀x ∈ Ibook; ...
︸ ︷︷ ︸

scope of x

This formula is equivalent to:

(40) ∀x : book; ...
︸ ︷︷ ︸

scope of x

With this analysis, the feature structure description of the natural language quantifier

every is presented in (41)17. We have used a special predication all that contains the

information about the quantified individual (which is the value of the BOUND VAR feature),

and the quantifier restriction (which is the scopal value of the QRESTR feature), and the

quantifier’s scope (which is the scopal value of the QSCOPE feature).

17In this thesis we do not use handle constraints or outscope constraints for the QRESTR feature of
quantifier predications. These are needed to analyze quantified nouns with COMPS feature values containing
another noun phrase. An example where these constraints are needed the analysis of the sentence Every
nephew of some famous politician runs. A thorough discussion of these constraints is provided in [20].

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 165

(41)

word

ORTH [every]

SYN

HEAD

det

AGR
[

3sing
]

COUNT +

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE none

INDEX i

QRESTR r

QSCOPE scope

RESTR

〈

predication

RELN all

SIT s

BOUND VAR i

QRESTR r

QSCOPE scope

,

predication

RELN dc obj add

SIT s

OBJ i

INSTPRED r

〉

The TFOL equivalent sub-formula of the all predication has four arguments:

(42) all(s, i, r, scope)

This is equivalent to:

(43) ∀s i :r
︸ ︷︷ ︸

some type

;
︸ ︷︷ ︸

scope

The type that is missing in (43) should be provided by an instantiate predication that

is part of the semantic restrictions of the count noun that follows the quantifier. We will

shortly see how this combination is done in this section.

In the scope resolution we present in this thesis, there are specific constraints for the

scopal features of a quantifier predication:

(44) Quantifier Restriction Constraint:

The SIT label of the instantiate predication that is used as the value of the QRESTR

feature of a quantifier predication cannot be equated to any other situation value in

the scope resolution process.

(45) Quantifier Scope Constraint:

The value of the QSCOPE feature of any quantifier predication cannot be identical to

the value of any other scopal feature.

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 166

There is a special variable binding condition that is only related to quantifiers:

(46) Quantifier Variable Binding Condition:

If i is the index of a quantified individual with the quantifier predication whose QS-

COPE feature value equals to s, then for any predication that references i with label

t we must have s ≤ t.

The analysis of existential quantifiers such as a/an, some are very similar. As an exam-

ple, the feature structure description of the natural language quantifier some is provided in

(47).

(47)

word

ORTH [some]

SYN

HEAD

det

AGR
[

3sing
]

COUNT +

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE none

INDEX i

QRESTR r

QSCOPE scope

RESTR

〈

predication

RELN exists

SIT s

BOUND VAR i

QRESTR r

QSCOPE scope

,

predication

RELN dc obj add

SIT s

OBJ i

INSTPRED r

〉

Semantics of the

The determiner the is treated as a generalized quantifier, which refers to an object from

the discourse context. Unlike logical quantifiers every, and exists that add an object to

the discourse context, the quantifier the has a semantics that retrieves an object from the

discourse context. The feature structure of the is shown in (48).

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 167

(48)

word

ORTH [the]

SYN

HEAD det

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE none

TYPE all

INDEX j0

QRESTR r

QSCOPE scope

RESTR

〈

predication

RELN dc obj get

SIT s0

OBJ j0

INSTPRED s1

〉

When this quantifier is combined with a noun by HSR, an object compatible with the

noun is retrieved from the discourse context by the dc obj get predication. The information

needed to determine the compatibility is provided by the instantiate predication that must

be included in the semantics of the noun. Next we will study the semantics of count nouns,

and later we will see how this works with the quantifier the.

Semantics of Count Nouns

In this thesis we assume that every count noun serves as the restriction of the general

quantifier that precedes it, by providing the type that the quantified individual ranges over

its instance set. We do not study nouns that have a non-empty COMPS list.18 With this

assumption and restriction, the feature structure description of book is given in (49).

18The analysis of such nouns requires the use of handle constraints, or outscope constraints, where the
QRESTR value of the determiner in SPR list (restr) is not identical to the SIT of the instantiate predication
(restr′). Rather a constraint is placed that restr ≤ restr′. A complete discussion is provided in [20].

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 168

(49)

word

ORTH [book]

SYN

HEAD

noun

AGR

3sing

GEND neut

PRO −

TYPE DEF +

VAL

SPR

〈

expression

SYN

HEAD

det

COUNT +

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

SEM

sem-det

INDEX j

QRESTR restr

〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE ref

TYPE book

INDEX j

RESTR

〈

predication

RELN instantiate

SIT restr

SYN AGR 3sing

SEM TYPE book

INST j

〉

This is the pattern we use for every count noun. In other words, the feature structure

description of a count noun derived from the lexicon must be unifiable with the feature

structure description we presented in (50).

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 169

(50)

word

SYN

HEAD

noun

AGR 3sing

PRO −

TYPE DEF +

VAL

SPR

〈

expression

SYN

HEAD

det

COUNT +

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

SEM

sem-det

INDEX j

QRESTR restr

〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE ref

TYPE σ

INDEX j

RESTR

〈

predication

RELN instantiate

SIT restr

SYN AGR 3sing

SEM TYPE σ

INST j

〉

The first thing to discuss about is the TYPE DEF feature that has the value +. This

means that the count noun is actually carrying (or defining) a type. We use this feature in

section 6.9.2 to form coordinated countable nouns that carry (or define) a composite type.

Note that the semantic INDEX of the determiner that is required in the SPR list is

deliberately equated to the semantic INDEX of the count noun. Also the value of the QRE-

STR feature of the determiner is identical to the value of the SIT feature of the instantiate

predicate used in the semantic restrictions of the count noun. These deliberate equated

features enable the grammar to parse the noun phrase every book as shown in (51).

By the Semantic Compositionality Principle the value of RESTR of the mother phrase

in (51) is the concatenation of the RESTR values of its daughters. Also by the Semantic

Inheritance Principle the values of MODE, INDEX and TYPE of the mother phrase are

identical to those of the head daughter (which is book in this case).

Note that the instantiate simultaneously plays two roles. In the first role it is used as

the restriction of the quantifier in the noun phrase (only SEM TYPE and INST features

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 170

are used). In the second role it is coupled with the discourse predication dc obj add and

provides information about the new individual that is added to the discourse context.

(51)

phrase

ORTH [every, book]

SYN

HEAD

noun

AGR

3sing

GEND neut

PRO −

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE ref

TYPE book

INDEX i

RESTR

〈

1

predication

RELN all

SIT s

BOUND VAR i

QRESTR restr

QSCOPE scope

, 2

predication

RELN dc obj add

SIT s

OBJ i

INSTPRED restr

, 3

predication

RELN instantiate

SIT restr

SYN AGR 3sing

SEM TYPE book

INST i

〉

4

word

ORTH [every]

SYN

HEAD

det

AGR

3sing

GEND neut

COUNT +

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

INDEX i

QRESTR restr

QSCOPE scope

RESTR
〈

1 , 2

〉

every

word

ORTH [book]

SYN

HEAD

noun

PRED −

AGR

3sing

GEND neut

PRO −

VAL

SPR
〈

4

〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE ref

TYPE book

INDEX i

RESTR
〈

3

〉

book

As another example we will consider the phrase the book, which is provided in the phrase

structure tree (52). Note that the dc obj get predication from the semantics of the is

automatically paired with the instantiate predication of the count noun. The instantiate

predication contains the syntactic agreement and the semantic type of the object that should

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 171

be retrieved from the discourse context by the dc obj get predication.

(52)

phrase

ORTH [the, book]

SYN

HEAD

noun

AGR

3sing

GEND neut

PRO −

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE ref

TYPE book

INDEX i

RESTR

〈

1

predication

RELN dc obj get

SIT s

OBJ i

INSTPRED restr

, 2

predication

RELN instantiate

SIT restr

SYN AGR 3sing

SEM TYPE book

INST i

〉

3

word

ORTH [the]

SYN

HEAD

det

AGR

3sing

GEND neut

COUNT +

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

INDEX i

QRESTR restr

QSCOPE scope

RESTR
〈

1

〉

the

word

ORTH [book]

SYN

HEAD

noun

PRED −

AGR

3sing

GEND neut

PRO −

VAL

SPR
〈

3

〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE ref

TYPE book

INDEX i

RESTR
〈

2

〉

book

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 172

(53) Every man smiles.

(54)

phrase

ORTH [every, man, smiles]

SYN

HEAD

verb

FORM fin

AGR

3sing

GEND masc

AUX −

INV −

GAP-T nosubj

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE prop

TYPE Bool

INDEX s2

RESTR

〈

1

predication

RELN all

SIT s1

BOUND VAR i

QRESTR restr

QSCOPE scope

, 2

predication

RELN dc obj add

SIT s1

OBJ i

INSTPRED restr

, 3

predication

RELN instantiate

SIT restr

SYN AGR

3sing

GEND masc

SEM TYPE male human

INST i

,

4

predication

RELN smile

SIT s3

SMILER i

, 5

predication

RELN time present

SIT s2

EVENT s3

〉

6

phrase

ORTH [every, man]

SYN

HEAD

noun

AGR

3sing

GEND masc

CASE nom

PRO −

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE ref

TYPE male human

INDEX i

RESTR
〈

1 , 2 , 3

〉

[every, man]

word

ORTH [smiles]

SYN

HEAD

verb

FORM fin

AGR 3sing

AUX −

INV −

GAP-T nosubj

VAL

SPR
〈

6

〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE prop

TYPE Bool

INDEX s2

RESTR
〈

4 , 5

〉

smiles

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 173

As an example of a complete sentence that uses quantification consider the sentence

(53) with the corresponding phrase structure tree shown in (54). The phrase is licensed by

the Head Specifier Rule, and as can bee seen by the Semantic Compositionality Principle

mother’s RESTR list is identical to the concatenation of each daughter’s RESTR list.

The scope of the quantifier, which is the value of QSCOPE feature of the all predication

is left underspecified. This is deliberately always the case for any quantifier in the MRS

representation. The reason is that if multiple quantifiers are present in a sentence, quantifiers

can be introduced in the semantic representation in different orders, as pointed out by

Montague [55] in the example a woman loves every man. However, the Quantifier Variable

Binding Condition applies on the value of this feature.

With the scope of the quantifiers underspecified, it is left for the scope resolution al-

gorithm to resolve the scopes of the quantifiers (and other scopes). When there are more

than one quantifier there will be more than one scope-resolved MRS representation of the

sentence.

The scope resolution algorithm must equate scopes such that the immediate outscope

relation graph becomes a tree with only one root (see definition 6.7).

In the semantic restriction list of mother phrase in (54) corresponding to the sentence

(53), the only scopes without parents (see definition 6.4) are s1, and s2. Moreover scope

must be equated to the label of some predication.

Candidates for the value of scope are s1, s2, restr, and s3. According to the Tense

Predication Constraint s3 cannot be shared by other predications. If scope is set to s1

then s1 immediately outscopes itself and the graph representation will contain a loop, and

hence it cannot be a tree. On the other hand, resrt is the value of the QRESTR feature of

the quantification predication all predication, and by the Quantifier Restriction Constraint,

it can only be shared by the SIT value of the instantiate predication combining with the

quantifier.

Thus, the only possible value of scope is s2. With the identity scope = s2, the graph

representation of the immediate outscope relation for this example is given in (55).

(55)
s1

restr

s2 = scope

s3

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 174

The individual i introduced by the dc obj add predication with scope s1 is used as an

argument of the smile predication with scope s2. So by the variable binding condition we

must have:

(56) s1 ≤ s2

Also, since i is the index of a quantified individual with a quantifier with QSCOPE value

being scope, and i is referenced from a predication with label s2 then by the Quantifier

Variable Binding Condition we must have:

(57) scope ≤ s2

Both of these conditions are satisfied for the tree shown in (55). The TFOL translation of

the scope-resolved representation above is:

(58) ∀s1 i :restr male human ; time present(s2, smile(s3, i))

Note that we have used s1 as the subscript for the quantifier to label its situation. We

used restr as a subscript of the instance relation to label its scope too.

The meaning of this formula is that s1 is the situation where all men participated in the

event s2 by smiling and that the event s2 is at the present time.19

It is however unusual to have situations in a TFOL formula. It might be desirable to

convert the above formula to:

(59) ∀i : male human ; time present(smile(i))

or even a simpler and more familiar TFOL formula if we do not need the tense information:

(60) ∀i : male human; smile(i)

In section 6.12 we describe a general procedure to convert a list of scope-resolved predications

to TFOL formulas with options to remove the situation arguments and remove the tense

predicates.

19As mentioned at the beginning of this chapter situations can simply be thought of as being references
to events.

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 175

6.6.2 Semantic Analysis of Singular Possessives

Possessives like his, her, its, ... in English are treated as determiners. As we discussed in

chapter 5 the possessive ’s can also be treated as a determiner (in fact a determiner phrase).

In this section we study the semantics of these possessives. However for simplicity we assume

that the owner or the owned object is a singular noun or noun phrase. Also for brevity we

do not discuss the semantics of possessive pronouns like mine, yours, ... Although these

analyses are very similar and very simple indeed.

(61)

word

ORTH [his]

SYN

HEAD

det

AGR 3sing

COUNT +

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE none

TYPE all

INDEX i

QRESTR restr

QSCOPE scope

RESTR

〈

predication

RELN dc obj get

SIT s1

OBJ owner

INSTPRED rowner

,

predication

RELN instantiate

SIT rowner

SYN AGR

3sing

GEND masc

SEM TYPE male human

INST owner

,

predication

RELN exists

SIT s1

BOUND VAR i

QRESTR restr

QSCOPE scope

,

predication

RELN dc obj add

SIT s1

OBJ i

INSTPRED restr

,

predication

RELN poss

SIT scope

POSSESSOR owner

POSSESSED i

〉

Singular Possessive Pronouns

In what follows we analyze the semantics of the possessive pronoun his. Analyses of other

possessive pronouns like her, its are very similar.

his acts as a determiner that refers to two individuals. The first individual has the

owner role and should be a male individual present in the discourse context. The second

individual is the owned object which is introduced by this determiner and is existentially

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 176

quantified and added to the discourse context. The feature structure description of his is

shown in (61).

As can be seen the semantic TYPE of the possessive is set to all, since we assumed for

all categories other than verbs and nouns the value of this feature is all, and the semantic

types of such expressions are not used in the thesis (other than trivially as we see later in

our explanation of guards).

The first predication is a dc obj get that is used to retrieve the male human with the

owner role from the discourse context. It is paired with the second predication, which is an

instantiate predication that provides the agreement and semantic type information of the

owner. The third predication is an existential quantification over the owned object. The

fourth predication in the semantics of his is another discourse predication that adds the

individual that is owned to the discourse context. Note that the restr value of this discourse

predication is the same as the restriction value of the quantifier, and is also identical to

the QRESTR feature of the determiner. The value of this feature will be unified with

the SIT value of the instantiate predication of the count noun that follows the possessive

pronoun. This is achieved as a result of the common feature structure description of count

nouns provided in (50). The fifth predication is the poss predication which expresses that

something belongs to someone or another thing. It has two non-scopal arguments, first the

the POSSESSOR, which is the owner, and second is the POSSESSED which is the object

that is owned. The individual owned is referred by index i that is identical to the semantic

index of the determiner. When combined by HSR with a noun, this index will be unified

with the semantic INDEX of the noun. The reason for this is the way we define count

nouns as shown in (50). So the noun will play the role of the individual being owned. This

predication is within the scope of the existential quantifier, because its SIT value is identical

to the QSCOPE value of the quantifier.

This possessive pronoun can be combined with a count noun such as car by the Head

Specifier Rule, which produces the phrase structure tree shown in (62). The TFOL trans-

lation of the semantics of this phrase is given in (63).

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 177

(62)

phrase

ORTH [his, car]

SYN

HEAD

noun

AGR

[

3sing

GEND neut

]

PRO −

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE ref

TYPE car

INDEX i

RESTR

〈

1

predication

RELN dc obj get

SIT s1

OBJ owner

INSTPRED rowner

, 2

predication

RELN instantiate

SIT rowner

SYN AGR

[

3sing

GEND masc

]

SEM TYPE male human

INST owner

, 3

predication

RELN exists

SIT s1

BOUND VAR i

QRESTR restr

QSCOPE scope

,

4

predication

RELN dc obj add

SIT s1

OBJ i

INSTPRED restr

, 5

predication

RELN poss

SIT scope

POSSESSOR owner

POSSESSED i

, 6

predication

RELN instantiate

SIT restr

SYN AGR

[

3sing

GEND neut

]

SEM TYPE car

INST i

〉

8

word

ORTH [his]

SYN

HEAD

det

AGR

[

3sing

GEND neut

]

COUNT +

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE none

TYPE all

INDEX i

QRESTR restr

QSCOPE scope

RESTR

〈
1 , 2 , 3 ,

4 , 5

〉

his

word

ORTH [car]

SYN

HEAD

noun

PRED −

AGR

[

3sing

GEND neut

]

PRO −

VAL

SPR
〈

7

〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE ref

TYPE car

INDEX i

RESTR
〈

6

〉

car

(63) owner :s1 male human ∧ ∃s1 i :restr car ; poss(scope, owner, i)

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 178

The Possessive ’s

The syntactic analysis of the possessive ’s was presented in section 5.2.1. The analysis is

very similar to the analysis of the possessive pronouns except that the individual that takes

the owner role is underspecified. The feature structure description of ’s is shown in (64).

Note that the NP in the SPR list has an owner subscript. This means that the semantic

INDEX of this NP is owner. This index is used again in the poss predication as the value

of the feature POSSESSOR. This is an example of semantic role assignment .

(64)

word

ORTH [’s]

SYN

HEAD det

VAL

SPR

〈

NPowner

AGR 3sing

PRO −

〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE none

TYPE all

INDEX owned

QRESTR restr

QSCOPE scope

RESTR

〈

predication

RELN exists

SIT s

BOUND VAR owned

QRESTR restr

QSCOPE scope

,

predication

RELN dc obj add

SIT s

OBJ owned

INSTPRED restr

,

predication

RELN poss

SIT scope

POSSESSOR owner

POSSESSED owned

〉

The possessive ’s can be combined with a noun phrase such as Mary by the Head

Specifier Rule. The phrase structure tree of the phrase Mary’s is shown in (65). Note that

by the Semantic Inheritance Principle the values of the features MODE, TYPE, INDEX,

QRESTR, and QSCOPE of the mother phrase are identical to those of the head daughter.

This ensures that the determiner phrase formed by this rule also has the determiner specific

features QRESTR, and QSCOPE with appropriate values.

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 179

(65)

phrase

ORTH [mary, ’s]

SYN

HEAD det

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE none

TYPE all

INDEX owned

QRESTR restr

QSCOPE scope

RESTR

〈

1

predication

RELN dc obj add

SIT s1

OBJ owner

INSTPRED r1

, 2

predication

RELN instantiate

SIT r1

SYN AGR

3sing

GEND fem

SEM TYPE female human

INST owner

, 3

predication

RELN name

SIT s1

NAME mary

NAMED owner

,

4

predication

RELN exists

SIT s2

BOUND VAR owned

QRESTR restr

QSCOPE scope

, 5

predication

RELN dc obj add

SIT s2

OBJ owned

INSTPRED restr

, 6

predication

RELN poss

SIT scope

POSSESSOR owner

POSSESSED owned

〉

7

word

ORTH [mary]

SYN

HEAD

noun

AGR

3sing

GEND fem

PRO −

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE ref

TYPE female human

INDEX owner

RESTR
〈

1 , 2 , 3

〉

mary

word

ORTH [’s]

SYN

HEAD det

VAL

SPR
〈

7

〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE none

TYPE all

INDEX owned

QRESTR restr

QSCOPE scope

RESTR
〈

4 , 5 , 6

〉

’s

After combination with the owner NP, this determiner phrase acts very similar to a

usual possessive determiner like his that we already discussed. The semantic INDEX of

the owned individual is set to the semantic INDEX of the determiner, and by the way we

defined count nouns in (50) this INDEX is unified with the semantic INDEX of the noun.

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 180

This way the individual that is referred by the noun, which follows the possessive, takes the

role of the owned individual.

6.7 Semantic Analysis of Modification

Modifiers basically add an extra predication to the semantics of the phrase they participate

in. This predication has at least an argument that takes the index of the individual or the

situation that is being modified. The relation name of the predication specifies what the

modification is. Extra arguments might be present that relate the modified individual or

situation to other individuals or situations. We call this predication the modifier predication.

As seen in our first encounter with modification in chapter 5, section 5.2.5, modifiers

fall into these groups: adjectives, adverbs, prepositional modifiers and subordinate conjunc-

tions. In the subsections that follow we study each of the first three briefly. Subordinate

conjunctions are discussed separately in the next section.

6.7.1 Adjectives

An adjective syntactically modifies a nominal, what we denoted by NOM in chapter 5, and

semantically modifies an individual. As an example let’s consider the adjective red. The

feature structure description of this adjective was presented in chapter 5 in (61). We show

the feature structure description of red containing the semantic features in (66).

Note that the NOM in the MOD list is subscripted with i, and i is used again in the

predication red as the value of the SUBJECT feature. By this, we have assigned the role

of the modified individual to the individual that the NOM in the MOD list refers to. Again

this is an example of semantic role assignment . We have done the same co-indexation for

the NP in the SPR list. The reason will be discussed in section 6.10.

This adjective can be combined with a noun like book by the Head Modifier Rule. The

phrase structure tree of the resulting phrase is shown in (67).

The semantics of this phrase is still incomplete, as the instantiate predication is not yet

paired with a discourse predication. For this pairing to happen, this nominal phrase needs

to be combined with a determiner. Without the determiner, the semantic restrictions of the

phrase red book does not have enough information to be translated to TFOL. However the

partial formulas that will participate in the complete TFOL formula are:

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 181

(66)

word

ORTH [red]

SYN

HEAD

[

adj

PRED +

]

VAL

SPR
〈

NPi

〉

COMPS 〈〉

MOD

〈

mod-elem

MODIFIED NOMi

AFTER −

〉

SEM

MODE none

TYPE all

INDEX s

RESTR

〈

predication

RELN red

SIT s

SUBJECT i

〉

(67)

word

ORTH [red, book]

SYN ...

SEM

MODE ref

TYPE book

INDEX i

RESTR

〈

4

predication

RELN red

SIT s

SUBJECT i

, 5

predication

RELN instantiate

SIT s0

SYN AGR

[

3sing

GEND neut

]

SEM TYPE book

INST i

〉

word

ORTH [red]

SYN

HEAD

[

adj

PRED +

]

VAL

SPR
〈

NPi

〉

COMPS 〈〉

MOD

〈

mod-elem

MODIFIED 1 NOMi

AFTER −

〉

SEM

MODE none

TYPE all

INDEX s

RESTR
〈

4

〉

red

1

word

ORTH [book]

SYN ...

SEM

MODE ref

TYPE book

INDEX i

RESTR
〈

5

〉

book

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 182

(68) a. i :s0 book

b. red(s, i)

We do not discuss in detail how this can be combined with a determiner, because the

analysis is the same as the analysis of singular count nouns and quantification that we

already discussed in section 6.6. The only difference is the presence of the additional modifier

predication red.

We will finish the semantic analysis of adjectives in section 6.10, where we discuss how

the meaning of copular verb phrases followed by adjectives is analyzed.

6.7.2 Adverbs

Adverbs in our formulation have two predications. The first one is the modification predi-

cation that takes a scopal argument, that specifies the scope that the adverb modifies. The

second predication is a special outscope predication used to provide a structural constrain

on the scopes.20.

(69)

word

ORTH [slowly]

SYN

HEAD

adv

PRED −

VAL

SPR 〈〉

COMPS 〈〉

MOD

〈

mod-elem

MODIFIED St0

〉

SEM

MODE none

TYPE all

INDEX s

RESTR

〈

predication

RELN slowly

SIT s

EVENT t

,

predication

RELN outscope

OUTER t

INNER t0

,

〉

outscope predications do not have a SIT value, as they do not participate directly in

the final semantic representation of the phrase. They just provide structural constraints.

These structural constraints need to be satisfied for any scope-resolved list of predications.

20In [20, 19] qeq constraints are used instead of outscope constraints, although it is hypothesized in [20]
that in a grammar which perfectly obeyed the constraints on composition, it should be unnecessary to use
qeq conditions rather than simple outscopes. Also in [19, 20] these constraints are maintained in a different
HCONS feature. Here we treat these constraints as special kind of predications that are stored in the RESTR
feature together with the rest of predications.

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 183

The feature structure description of the adverb slowly, as an example, with semantic

features is given in (69). The modifier predication slowly takes a scopal argument for its

EVENT feature.

As can be seen, this value is co-indexed with the value of the OUTER feature of the

outscope predication, and the value of the INNER feature is co-indexed with the semantic

INDEX of the sentence in the MOD list. So the modification predication asserts that the

situation that is expressed by the sentence has happened or is happening the way that the

modifier predication implies, which in this case is slowly.21

Definition 6.9 Scopal Predications:

A scopal predication is a predication that takes arguments of type situation that are or must

be equated to the label of other predications. Basically a scopal predication is a predication

with scopal features.

In this thesis we introduce a special group of scopal predications, narrow scopal pred-

ications, which we use for adverbs and prepositional modifiers that modify a verb. The

modification predication of an adverb is a narrow scopal predication that is bound to the

following variable binding condition:

(70) Narrow Scope Variable Binding Condition:

If an individual index i is referred from a scope s which is the label of a narrow

scopal predication , then i must be bound by a discourse predication dc obj add, or

dc obj get labeled w, such that w ≤ s.

The above definition uses the notion of the reference of an individual from a predication.

Although this can be understood by intuition we provide a formal definition below.

Definition 6.10 Reference to Individuals from Scopes:

For an individual index i:

• If i is used as the feature value of a predication P with label s then i is referred from

the scope s.

21The reason that an outscope is used rather than just unifying t with t0 is that there can be several
adverbs in a sentence, and by the HFP, the sentence licensed by the HMR has the same semantic INDEX
as its verb, and without the outscope predication we would have two modification predications that have
the same EVENT feature values, which avoids the outscope graph to be resolved to a rooted tree.

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 184

• If i is referred from the scope s, which is the value of a scopal feature of a narrow

scopal predication P with label t, then i is referred from the scope t.

• If i is referred from the s, which is the value of the INNER feature of an outscope

predication with OUTER feature value t, then i is referred from the scope t.

• If the OBJ value i of a dc obj get predication is resolved to an individual in the

discourse context with index j, then i = j effectively, and a scope s refers to i if and

only if S refers to j.

The last item above indicates that for calculating individual references it is first nec-

essary to resolve the references made by dc obj get predication to the discourse context.

The reason is simply that we have used dc obj get for pronouns, and the article the that

acts like a pronoun after being combined with a noun. Both of these structures have an

antecedent, i.e., another individual in the context that is semantically the same as the in-

dividuals that these structures represent. So any reference made to an individual that a

pronoun or a noun phrase starting with the represents is as well a reference to an individual

that its antecedent represents.

We will now show why the new Narrow Scope Variable Binding Condition is necessary

to analyze a sentence such as:

(71) Tiqa breathes slowly

This sentence is licensed by the post Head Modifier Rule in the phrase structure tree shown

in (72).

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 185

(72)

phrase

ORTH [tiqa, breathes, slowly]

SYN ...

SEM

MODE prop

TYPE Bool

INDEX t

RESTR

〈

1

predication

RELN dc obj add

SIT w

OBJ i

INSTPRED u

, 2

predication

RELN instantiate

SIT u

SYN AGR

3sing

GEND fem

SEM TYPE beluga

INST i

, 3

predication

RELN name

SIT w

NAME tiqa

NAMED i

,

4

predication

RELN breathe

SIT t1

BREATHER i

, 5

predication

RELN time present

SIT t0

EVENT t1

, 6

predication

RELN slowly

SIT s

EVENT t

,

7

predication

RELN outscope

OUTER t

INNER t0

〉

8

phrase

ORTH [tiga, breathes]

SYN ...

SEM

MODE prop

TYPE Bool

INDEX t0

RESTR

〈
1 , 2 , 3 ,

4 , 5

〉

[tiga, breathes]

word

ORTH [slowly]

SYN

VAL

MOD

〈

mod-elem

MODIFIED 8 St0

〉

SEM

MODE none

TYPE all

INDEX s

RESTR
〈

6 , 7

〉

slowly

Without the narrow scope variable binding condition the graph representation of the

outscope relation is shown in (73). The solid edges represent immediate outscope relations,

whereas dotted edges represent outscope relations (not necessarily immediate).

(73)

s

w

t t0

t1u

To satisfy a constraint expressed by a dotted edge, we need to equate scopes in such

a way that the dotted edge falls on a path (possibly a trivial path of length zero) of solid

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 186

edges with the same direction. In other words, there must be a path of solid edges starting

from the start node of the dotted edge and ending with the end node of the dotted edge.

With these constraints only, a possible scope resolution could result by equating t, and

w, resulting in the single rooted tree of (74).

(74)

s t = w = t0

t1u

Then the resulting TFOL sub-formulas will be22:

(75) i :u beluga , name(t, i, tiqa) ∧ time present(t, breathe(t1, i)) ∧ slowly(s, t)

But the meaning of this formula is that not only the event of breathing at the current time,

but also the event of naming happens slowly. Widening the scope of the slowly predication

to include the name predication is not meaningful and not desirable.

This is where the Narrow Scope Variable Binding Condition comes into play. Note that

i is an index that is referred from the narrow scopal predication slowly. So by the Narrow

Scope Variable Binding Condition i must be introduced by a discourse predication (in this

case dc obj add) with label w such that w ≤ s.

We denote this new constraint by the thicker dashed edge in the graph representation

of the outscope relation, shown in (76).

(76)

s

w

t t0

t1u

With this new constraint it is impossible to equate w and t, while keeping the graph a

tree. So the unwanted reading of (75) cannot be generated.

The only possible scope-resolved tree is resulted by equating s, and w, which we have

shown in (77).

22The two sub-formulas can be combined by the procedure described at the end of example 6.8. We present
the general algorithm in section 6.12.

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 187

(77)

s = w t = t0

t1u

This will result in the TFOL sub-formulas shown below.

(78) i :u beluga , name(s, i, tiqa) ∧ time present(t, breathe(t1, i)) ∧ slowly(s, t)

The meaning is correctly captured in this formula that informs about a situation s that

asserts an individual named tiqa is involved in a situation t of breathing at the current time,

and t is occurring slowly in the situation s.

6.7.3 Prepositional Modifiers

Prepositional modifiers are prepositional phrases with predicative prepositions. By pred-

icative preposition we mean a preposition that contributes to the semantics of the phrase

in contrast to argument marking prepositions, which only mark an argument of another

constituent without any contributions to the semantics.

An example of an argument marking preposition is to in the following sentence. to is

used to mark the second object of the di-transitive verb gave.

(79) I gave the red rose to Mary.

An example of a predicative preposition is on in the following sentence. The semantic

contribution is expressed by a narrow scopal modifier predication that relates the situation

of walking to the physical situation of being on the roof.

(80) The cat walks on the roof.

Prepositional modifiers can modify nominals too, as in sentence (81).

(81) The black cat on the roof is jumping on you.

As the name implies, predicative prepositions must have their PRED feature set to +,

which means they can appear after the verb be, like the sentence below.

(82) The cat is on the roof.

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 188

When used after the verb be, or when a nominal is modified, the feature structure

description of the prepositional modifier looks like an adjective. So like adjectives, the SPR

list is non-empty and contains a NP with the semantic INDEX equal to the individual that

is being modified.

The feature structure description of the predicative preposition on as a nominal modifier

is presented in (83). For the sentence modifier case, we need to add an additional outscope

predication like adverbs. The modifier predication will count as a narrow scopal predication.

(83)

word

ORTH [on]

SYN

HEAD

prep

FORM on

PRED +

VAL

SPR
〈

NPi

〉

COMPS

〈

NPj

[

CASE acc
]〉

MOD

〈

mod-elem

MODIFIED NOMi

AFTER +

〉

SEM

MODE none

INDEX s

TYPE all

RESTR

〈

predication

RELN on

SIT s

TOP i

BOTTOM j

〉

The non-empty SPR list is only used when the prepositional phrase is used as a predicate

of the copular verb be by subject sharing . This is explained in section 6.10.

6.8 Semantics of Subordinate Conjunctions

In chapter 5 we studied the syntax of two subordinate structures, namely the conditional

statement with if, and the relative clauses. We discuss the semantics of these structures in

what follows.

6.8.1 Relative Clauses

As we mentioned in section 5.6.1, a defining relative clause is a gappy sentence introduced

by a wh-word or that that modifies a nominal that precedes it.

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 189

(84) NOM
︸ ︷︷ ︸

modified

< relativizer > < gappy sentence >
︸ ︷︷ ︸

modifier

In the syntactic analysis of section 5.6.1 we treated the relativizer as the head that is

combined with a gappy sentence specified in its complement list COMPS. The saturated

phrase with a relativizer head then acts as a modifier that modifies a nominal specified in

the relativizer’s MOD list. This was captured by the feature structure description of (101)

we presented in chapter 5.

A simple semantic analysis of the relative clause is that the gap in the relative clause

refers to exactly the same individual as the nominal that precedes it. This co-indexation is

done in the feature structure description shown in (85).

(85)

word

ORTH [which]

SYN

HEAD sconj

VAL

SPR 〈〉

COMPS

〈

St

INV −

GAP

〈

1 NPi

[

AGR 2

]〉

〉

MOD

〈

mod-elem

MODIFIED NOMi

[

AGR 2

]

AFTER +

〉

GAP 〈〉

STOP-GAP
〈

1

〉

SEM

MODE none

INDEX t

TYPE Bool

RESTR 〈〉

Note that the semantic mode is propositional, because the relative clause simply asserts

the semantics of the sentence it contains applied on the nominal that precedes it. For the

same reason the type is Bool. The semantic INDEX of the relativizer is the same as the

semantic INDEX of the complement sentence.

The RESRT feature is the empty list. The reason is that when the relativizer is combined

with the gappy sentence by the Head Complement Rule, the semantics of the gappy sentence

is absorbed in the RESTR feature of the resulting phrase by the Semantic Compositionality

Principle, and this semantic alone is enough as the semantics contribution of the relative

clause.

As an example the phrase structure tree of the nominal phrase dog which barks is pre-

sented in (86). This tree is licensed by the Head Modifier Rule. The resulting phrase can

be combined with a determiner such as the, a, etc. to form a complete noun phrase.

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 190

(86)

phrase

ORTH [dog, which, barks]

SYN

HEAD

noun

AGR 3sing

PRO −

VAL

SPR
〈

2 Di

〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE ref

TYPE dog

INDEX i

RESTR

〈

3

predication

RELN instantiate

SIT u

SYN AGR 3sing

SEM TYPE dog

INST i

, 5

predication

RELN bark

SIT s1

BARKER i

, 6

predication

RELN time present

SIT s

EVENT s1

〉

7

word

ORTH [dog]

SYN

HEAD

noun

AGR 3sing

PRO −

VAL

SPR
〈

2

〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE ref

TYPE dog

INDEX i

RESTR
〈

3

〉

dog

phrase

ORTH [which, barks]

SYN

HEAD sconj

VAL

SPR 〈〉

COMPS 〈〉

MOD

〈

mod-elem

MODIFIED 7

AFTER +

〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE none

TYPE Bool

INDEX i

RESTR
〈

5 , 6

〉

[which, barks]

Note that the mother phrase of the above phrase structure tree carries predications with

two situation indices, namely, u and s. When the phrase is combined with a determiner

by the Head Specifier Rule, at least another predication is added to the semantics with a

situation index such as t, where t immediately outscopes u, and must also outscope s by

the General Variable Binding Condition. It is then up to the scope resolution algorithm

to equate s to some other scope in order to make the immediate outscope relation graph

a singly rooted tree. The steps are already discussed in our analysis of singular countable

noun phrases presented in section 6.4.

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 191

6.8.2 The Conditional Statement

The syntactic analysis we provided in chapter 5 section 5.2.5 treated if as a subordinate

conjunction (sconj) with two complements, as shown below. The first complement is a

sentence that serves as the condition of the conditional statement, which we subscripted by

t in (87) to denote its semantic INDEX. The second complement is a preposition then with

no semantic significance. A phrase that is formed by the Head Complement Rule with the

head if can then act as a modifier of another sentence that follows it. We subscripted this

sentence by s. This sentence serves as the consequent of the conditional statement.

(87) if < condition >t then
︸ ︷︷ ︸

modifier

< statement >s
︸ ︷︷ ︸

modified

The semantic contribution of the subordinate conjunction if is a scopal modification

predication if that takes two scopal features t, and s.

The feature structure description of if with semantic features is provided in (89). The

TFOL representation of if is given by (88). The meaning is that w is a situation in which

situation s holds provided that situation t holds as well.

(88) if(w, t, s)

(89)

word

ORTH [if]

SYN

HEAD sconj

VAL

SPR 〈〉

COMPS
〈

St0
, P[then]

〉

MOD

〈

mod-elem

MODIFIED Ss0

AFTER −

〉

SEM

MODE none

INDEX w

TYPE Bool

RESTR

〈

predication

RELN if

SIT w

COND t

CONS s

,

predication

RELN outscope

OUTER t

INNER t0

,

predication

RELN outscope

OUTER s

INNER s0

〉

Like adverbs we have used outscope predications in the semantic restrictions of the

word if.23

23The reason that outscope is used rather than just unifying t with t0 and unifying s with s0 is that
there can be adverbs in the condition or consequence sentences, and by the HFP, the sentence licensed by

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 192

In chapter 5 we discussed that an alternative analysis of if treats it as a pre-head

modifier:

(90) < statement >s
︸ ︷︷ ︸

modified

if < condition >t
︸ ︷︷ ︸

modifier

The feature structure description of if corresponding to this analysis is given in (91).

(91)

word

ORTH [if]

SYN

HEAD sconj

VAL

SPR 〈〉

COMPS
〈

St0

〉

MOD

〈

mod-elem

MODIFIED Ss0

AFTER +

〉

SEM

MODE none

INDEX w

TYPE Bool

RESTR

〈

predication

RELN if

SIT w

COND t

CONS s

,

predication

RELN outscope

OUTER t

INNER t0

,

predication

RELN outscope

OUTER s

INNER s0

〉

We provide two example sentences (92), and (93) that use if. In the second sentence, we

subscripted every man and he with the same index i to denote that they refer to the same

individual.

(92) If every bird flies then I run.

(93) Every mani sings if hei eats a cookie.

For the first sentence a narrow scope of the universal quantifier every is more natural,

whereas the second sentence requires a wide scope of the quantifier, and the scope of the

existential quantifier a could be either wide or narrow. The choice of wide or narrow scopes

for quantifiers could be suggested by heuristics but using heuristics is not the topic of this

thesis.

The first sentence can be parsed to form a phrase structure shown in (94).

the HMR has the same semantic INDEX as its verb, and without the outscope predication we would have
two predications that have the same scopal feature values, which avoids the outscope graph to be resolved
to a tree. This is pretty similar to the explanation we provided for adverbs in footnote 21.

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 193

(94)

phrase

ORTH [if, every, bird, flies, then, i, run]

SYN ...

SEM

MODE prop

TYPE Bool

INDEX s

RESTR

〈

2

predication

RELN if

SIT s0

COND s1

CONS s

,

predication

RELN outscope

OUTER s1

INNER s11

, 4

predication

RELN outscope

OUTER s

INNER ss

,

3

predication

RELN all

SIT t

BOUND VAR i

QRESTR t0

QSCOPE t1

, 4

predication

RELN dc obj add

SIT t

OBJ i

INSTPRED t0

, 5

predication

RELN instantiate

SIT t0

SYN AGR 3sing

SEM TYPE bird

INST i

,

6

predication

RELN fly

SIT s111

FLYER i

, 7

predication

RELN time present

SIT s11

EVENT s111

, 8

predication

RELN dc obj get

SIT u

OBJ j

INSTPRED u0

,

9

predication

RELN instantiate

SIT u0

SYN AGR 1sing

SEM TYPE human

INST j

, 10

predication

RELN speaker

SIT u

INST j

, 11

predication

RELN run

SIT ss1

RUNNER j

,

12

predication

RELN time present

SIT ss

EVENT ss1

〉

The graph representation of the outscope relation is shown in the diagram (95). The

dashed edge from t1 to s11 is the effect of the Quantifier Variable Binding Condition, whereas

the dashed edge from t to s11 is the result of the General Variable Binding Condition. Dashed

edges from s1 to s11 and from s to ss are induced by the outscope predications. Finally

the dashed edge from u to ss is for the General Variable Binding Condition.

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 194

(95)

t

t0 t1

s0

s1 s

s11

s111

ss

ss1

u

u0

Scopes t1, s1, s need to be equated to other scopes, because they are not the label of

any predication in the above list of predications. To satisfy the outscope constraint from u

to ss, u also needs to be equated to some other scope. One possible resolution (that as we

see generates the wrong TFOL representation) will result from:

(96) t1 = s11, t = s1, s = ss = u

Which results in the following immediate outscope relation tree:

(97)

t0

s0

t = s1
s = ss = u

s11 = t1 s111 u0 ss1

The following TFOL sub-formulas can be generated using the predications after equating

the scopes as indicated in the scope-resolved tree of (97):

(98) if(s0, t, s), all(t, i, t0, t1), i :t0 bird, time present(t1, (fly(s111, i))

, j :u0 human, speaker(s, j) ∧ time present(s, run(ss1, j))

And, like the process we discussed at the end of example 6.8 we can unify u0 with s.

To form a TFOL formula structure we can replace situation values with the conjunction

of the sub-formulas with the same label. This will result in the following formula. For better

clarity we have placed the label as the subscript of sub-formulas.

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 195

(99) ifs0(∀t i :t0 bird ; time present(t1, f lys111(i)),

j :s human ∧ speakers(j) ∧ time presents(runss1(j)))

Now that the situation values have served their purpose in forming the structure of

the formula, we can ignore them. Also we can use the familiar arrow notation for the if

predicate. This gives us:

(100) (∀ i : bird ; time present(fly(i)))⇒ j : human∧ speaker(j) ∧ time present(run(j)))

A less acceptable interpretation results from the original outscope relation graph of

diagram (95) by equating:

(101) t1 = s0, s1 = s11, s = ss, u = ss

This yields the following immediate outscope relation tree:

(102)
t

t0
s0 = t1

s1 = s11

s111

s = ss = u

ss1u0

This gives us:

(103) ∀ (i : bird) ; time present((fly(i))⇒ j : human ∧ speaker(j) ∧ time present(run(j)))

But this means that if an arbitrary bird flies then the speaker runs. If such interpretations

are undesirable, heuristics can be used to eliminate or de-prioritize them. However we do

not discuss heuristics in this thesis.

Next consider the sentence (93) that we repeat below. There are two quantifiers in the

sentence whose order is rather arbitrary. The scope of the existential quantifier could be

either inside the conditional, or outside of it.

(104) Every mani sings if hei eats a cookie.

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 196

This sentence can be parsed to form the phrase structure shown in (105). We need to unify

i and j if the antecedent of the pronoun he is every man.

(105)

phrase

ORTH [every, man, sings, if, he, eats, a, cookie]

SYN

HEAD

verb

FORM fin

PRED −

AGR

3sing

GEND masc

AUX −

INV −

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE prop

TYPE Bool

INDEX ss

RESTR

〈

2

predication

RELN all

SIT t

BOUND VAR i

QRESTR t0

QSCOPE t1

, 3

predication

RELN dc obj add

SIT t

OBJ i

INSTPRED t0

, 4

predication

RELN instantiate

SIT t0

SYN AGR

3sing

GEND masc

SEM TYPE male human

INST i

,

5

predication

RELN sing

SIT ss1

SINGER i

SONG l

, 6

predication

RELN time present

SIT ss

EVENT ss1

, 7

predication

RELN if

SIT s0

COND s1

CONS s

, 8

predication

RELN outscope

SIT s0

OUTER s1

INNER s11

,

9

predication

RELN outscope

SIT s0

OUTER s

INNER ss

, 10

predication

RELN dc obj get

SIT u

OBJ j

INSTPRED u0

, 11

predication

RELN instantiate

SIT u0

SYN AGR

3sing

GEND masc

SEM TYPE male humanyX

INST j

,

12

predication

RELN eat

SIT s111

EATER j

EATEN k

, 13

predication

RELN time present

SIT s11

EVENT s111

, 14

predication

RELN exists

SIT w

BOUND VAR k

QRESTR w0

QSCOPE w1

,

15

predication

RELN dc obj add

SIT w

OBJ k

INSTPRED w0

, 16

predication

RELN instantiate

SIT w0

SYN AGR

3sing

GEND neut

SEM TYPE cookie

INST k

〉

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 197

The corresponding outscope relation graph is shown below.

(106)
t

t0

t1

w

w0w1

s0

s1
s

s11

s111

ss

ss1

u

u0

The gray dashed edge from u to s11 is the result of the identity i = j so by the general

variable binding condition s11 must also be in the scope of the dc obj get predication

labeled with u.

Removing the dashed edges that can be derived by the transitivity of the outscope

relation yields the following graph.

(107)
t

t0

t1

w

w0w1

s0

s1
s

s11 ss

u

u0

s111 ss1

We have both s0 and t1 as the common ancestors of s11 and ss. Since the final graph

must be a singly rooted tree, we cannot have a node with two edges entering. This means

that either t1 is an ancestor of s0 or vice versa. The latter cannot be the case because s0

has two solid edges coming out that lead to two paths two either s11 or ss when combined

with the paths from the descendant t1 to those nodes. So t1 must be an ancestor of s0.

Then s = ss to satisfy s ≤ ss, because no path of solid edges can be formed from s to ss

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 198

if they are not the same. u is just the label of the instance relation the re-introduced the

individual referred by the pronoun he. It can be equivalently equated to t or t1. We equate

it to t. So far, this will result the graph shown in (108).

(108)
t = u

t0

w

w0w1

s0 = t1

s1

s = ss
s11

u0

s111 ss1

In this sentence we have two quantifiers, namely, the universal quantifier that acts upon

man and an existential quantifier that acts upon cookie. The underspecified scopes of these

quantifiers will lead to multiple readings of the phrase.

For the first possible reading, we can have:

(109) w1 = t, s1 = s11

Which results in the following scope resolved tree:

(110)

t = u = w1

t0

w

w0

s0 = t1

s1 = s11 s = ss

u0

s111 ss1

The corresponding TFOL formula will be:

(111) ∃k : cookie ; ∀i : male human ; time present(eat(i, k))⇒ time present(sing(i))

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 199

The second possible reading can result from:

(112) s1 = w, w1 = s11

With the corresponding immediate outscope tree below:

(113)
t = u

t0

w0

s0 = t1

s1 = w
s = ss

ss1
s11 = w1

s111

u0

The TFOL formula for this tree will be:

(114) ∀i : male human ; (∃k : cookie ; time present(eat(i, k)))⇒ time present(sing(i))

This is indeed equivalent to:

(115) ∀i : male human ; ∀k : cookie ; (time present(eat(i, k))⇒ time present(sing(i)))

We have shown two possible scope resolutions of the graph shown in (106). Another

scope resolution is possible that we do not show here, in which the scope of the existential

quantifier is outside the conditional but within the scope of the universal quantifier that

gives us the following formula.

(116) ∀i : male human ; ∃k : cookie; (time present(eat(i, k)))⇒ time present(sing(i))

A Restriction and an Adjustment

We have presented two analysis of if with the same semantic restrictions and features. One

analysis treated if as a post-head modifier and the other treated it as a pre-head modifier.

There is actually is subtle difference between the semantics of the two. However, with our

definition of the features and feature structure type hierarchy this cannot be established by

only the semantic features of the corresponding feature structure descriptions of if. Consider

the two sentences below.

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 200

(117) # If every mani eats a cookie then hei sings.

(118) If a mani runs then hei breathes faster.

Some native English speakers might find the sentence (117) a little bit odd if the pronoun

he refers to the the same individual that is intended by the quantifier every man.

On the other hand sentence (118) is perfectly natural but it could very well mean that

every man breathes fast if he runs.

To restrict a sentence like (117) to be meaningful and to add an extra possible meaning

for the sentence (118) we propose the following two restrictions:

(119) Universal Conditional Restriction:

If a universal quantifier predication with label s appears after an if predication with

label t in the semantic restriction of a syntactically well-formed parsed phrase, the

outscope relation must not include s ≤ t

(120) Existential Condition Adjustment:

If an existential quantifier predication with label s appears after an if predication

with label t in the semantic restriction of a syntactically well-formed parsed phrase,

and the outscope relation includes t < s then an additional interpretation should be

considered where the existential quantifier is replaced by a universal one.

6.9 Semantics of Coordinate Conjunction

We discussed the syntax of the coordinate structures in chapter 5. In this section we provide

the semantic counterpart.

6.9.1 Coordinated Sentences

Two sentences can be coordinated using conjunctions such as and (or). The semantic

contribution of the conjunction is an and (or) scopal predication, with two outscope

predications. The feature structure description of and used to combine sentences is presented

in (121).

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 201

(121)

word

ORTH [and]

SYN

HEAD pred-co-conj

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

SEM

sem-pred-co-conj

MODE none

INDEX w

TYPE Bool

COMPONENT1 s1

COMPONENT2 s2

RESTR

〈

predication

RELN and

SIT w

COMPONENT1 t1

COMPONENT2 t2

,

predication

RELN outscope

OUTER t1

INNER s1

,

predication

RELN outscope

OUTER t2

INNER s2

〉

We already provided the coordination rules in section 5.3.1 of chapter 5. We just need

to add the semantics, which is done in the rule below:

(122) Coordination Rule for Sentences Final Version:

S

SYN

HEAD
[

INV 1

]

GAP 〈〉

SEM
[

INDEX w

]

→

S

SYN

HEAD
[

INV 1

]

GAP 〈〉

SEM
[

INDEX s1

]

ORTH [and]

HEAD pred-co-conj

SEM

sem-pred-co-conj

INDEX w

COMPONENT1 s1

COMPONENT2 s2

S

SYN

HEAD
[

INV 1

]

GAP 〈〉

SEM
[

INDEX s2

]

The scope resolution process of and is very similar to if, because both are logical con-

nectives. So we do not go through the details. Rather we present the phrase structure tree

of the sentence below, and provide its TFOL representation after scope resolution.

(123) Chris sings and Mary dances.

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 202

(124)

1

phrase

ORTH [chris, sings, and, mary, dances]

SYN

HEAD

verb

FORM fin

AUX −

GAP-T nosubj

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE prop

TYPE Bool

INDEX w

RESTR

〈

2

predication

RELN and

SIT w

COMPONENT1 t1

COMPONENT2 t2

, 3

predication

RELN outscope

OUTER t1

INNER s1

, 4

predication

RELN outscope

OUTER t2

INNER s2

,

5

predication

RELN dc obj add

SIT u

OBJ i

INSTPRED u1

, 6

predication

RELN instantiate

SIT u1

SYN AGR

3sing

GEND masc

SEM TYPE male human

INST i

, 7

predication

RELN name

SIT u

NAME chris

NAMED i

,

8

predication

RELN sing

SIT s11

SINGER i

SONG k

, 9

predication

RELN time present

SIT s1

EVENT s11

, 10

predication

RELN dc obj add

SIT x

OBJ j

INSTPRED x1

,

11

predication

RELN instantiate

SIT x1

SYN AGR

3sing

GEND fem

SEM TYPE female human

INST j

, 12

predication

RELN name

SIT x

NAME mary

NAMED j

, 13

predication

RELN dance

SIT s22

DANCER j

,

14

predication

RELN time present

SIT s2

EVENT s22

〉

C
H

A
P

T
E

R
6
.

S
E

M
A

N
T

IC
F
E

A
T

U
R

E
S

A
N

D
T

H
E

IR
R

U
L
E

S
A

N
D

P
R

IN
C

IP
L
E

S
203

(125)
1

15

phrase

ORTH [chris, sings]

SYN

HEAD

verb

FORM fin

PRED −

AGR

[

3sing

GEND masc

]

AUX −

INV −

GAP-T nosubj

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE prop

TYPE Bool

INDEX s1

RESTR

〈
5 , 6 , 7 ,

8 , 9

〉

[chris, sings]

16

word

ORTH [and]

SYN

HEAD pred-co-cconj

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE prop

INDEX w

COMPONENT1 t1

COMPONENT2 t2

RESTR
〈

2 , 3 , 4

〉

and

17

phrase

ORTH [mary, dances]

SYN

HEAD

verb

FORM fin

PRED −

AGR

[

3sing

GEND fem

]

AUX −

INV −

GAP-T nosubj

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE prop

TYPE Bool

INDEX s2

RESTR

〈
10 , 11 , 12 ,

13 , 14

〉

[mary, dances]

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 204

The TFOL representation of the semantics of this sentence (without situation labels)

will be:

(126) (i : male human ∧ name(i, chris) ∧ time present(sing(i, k))) ∧

(j : female human ∧ name(j, mary) ∧ time present(dance(j)))

where k refers to the song that is being sung, which is underspecified. Underspecified

individuals can be thought of as being implicitly existentially quantified.

6.9.2 Semantics of Coordinated Count Nouns with Multiple Inheritance

Two singular countable noun phrases can be conjoined by the connective and to form a

coordinated countable noun phrase. As noted in section 6.6, countable nouns in fact refer

to types in the domain type hierarchy. So, a coordinated countable noun phrase can be

thought to refer to a type, which is constructed by the type composition operator that we

discussed about in chapter 2 and 3. The resulting type will be a type that inherits from the

two constituent types.

(127) Coordination Rule for Noun Phrases (com3sg):

If τ, σ ∈ NatTyp and τ ∦ σ:

phrase

SYN

HEAD 0

noun

AGR 3sing

PRO −

TYPE DEF +

VAL

SPR
〈

1

〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

SEM

INDEX i

TYPE τ ∗ σ

→

SYN

HEAD 0

VAL

SPR
〈

1

〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

SEM

INDEX i

TYPE τ

ORTH [and]

HEAD

nom-co-conj

CONJ TYPE com3sg

SEM

sem-nom-co-conj

INDEX w

RESTR 〈〉

SYN

HEAD 0

VAL

SPR
〈

1

〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

SEM

INDEX j

TYPE σ

The coordination rule to construct types with multiple inheritance is provided in (127).

This rule only combines 3rd person singular countable nouns that is why we have named it

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 205

com3sg. We need to make sure that the constituents are carrying types, i.e., they are count

nouns. This is done by checking the TYPE DEF feature, which must have the value +.

The feature structure description of and is shown in the above rule. No semantic re-

striction is contributed by this connective in this usage.

The count nouns participating in the above rule need to share their determiner. Deter-

miners share their semantic INDEX with the nominals that follow them. As a result the

indices of the two count nouns are unified automatically.

With this coordination rule we can parse the countable noun phrase below. The phrase

structure tree of this phrase is shown in (130).

(128) singer and dancer

(129)

1

phrase

ORTH [singer, and, dancer]

SYN

HEAD

noun

AGR 3sing

PRO −

TYPE DEF +

VAL

SPR
〈

2 D
〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE ref

TYPE singer*dancer

INDEX i

RESTR

〈

4

predication

RELN instantiate

SIT s

SYN AGR 3sing

SEM TYPE singer

INST i

, 5

predication

RELN sing

SIT s

SINGER i

SONG k

, 6

predication

RELN instantiate

SIT s

SYN AGR 3sing

SEM TYPE dancer

INST i

,

7

predication

RELN dance

SIT s

DANCER i

〉

C
H

A
P

T
E

R
6
.

S
E

M
A

N
T

IC
F
E

A
T

U
R

E
S

A
N

D
T

H
E

IR
R

U
L
E

S
A

N
D

P
R

IN
C

IP
L
E

S
206

(130)
1

8

word

ORTH [singer]

SYN

HEAD

noun

PRED −

AGR 3sing

PRO −

TYPE DEF +

VAL

SPR
〈

2

〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE ref

TYPE singer

INDEX i

RESTR
〈

4 , 5

〉

singer

9

word

ORTH [and]

SYN

HEAD

[

nom-co-conj

CTYPE com3sg

]

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE ref

INDEX i

RESTR 〈〉

and

10

word

ORTH [dancer]

SYN

HEAD

noun

PRED −

AGR 3sing

PRO −

TYPE DEF +

VAL

SPR
〈

2

〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE ref

TYPE dancer

INDEX i

RESTR
〈

6 , 7

〉

dancer

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 207

6.10 Semantics of Copulas and Auxiliary Verbs

Semantics of copular and auxiliary verbs is very straightforward in that there is little or no

semantic contribution at all. For example the feature structure description of the lexical

entry of the copular verb be is provided below.

(131)

lexeme

ORTH [be]

ARG-ST

〈

NP,

SYN

[

HEAD
[

PRED +
]]

SEM
[

INDEX s

]

〉

SEM

MODE prop

INDEX s

RESTR 〈〉

This lexical entry is subject to the auxiliary verb constraints NN-NI, N-NI, NN-I, N-I

that we provided in chapter 5. With this taken into account, we are now able to see the

reason why we have chosen to provide a non-empty list of specifiers for adjectives. As a result

of the auxiliary verb constraints above, an auxiliary or a copular verb shares its SPR with

its complement. We call this subject sharing . Adjectives have a modification predication

with the SUBJECT role identical to the semantic index of the only element of the SPR list.

With the semantics of be above, this enables the grammar to pass the subject of the verb

be to the specifier element of the adjective which is then assigned the role of the individual

that is being modified. So a sentence like (132) can be parsed.

(132) Mary is happy.

(133)

word

ORTH [is]

SYN

HEAD

verb

FORM fin

PRED −

AGR 3sing

AUX +

INV −

VAL

[

SPR
〈

1

〉]

ARG-ST

〈

1 NPi ,

SYN

HEAD
[

PRED +
]

VAL

SPR
〈

1

〉

COMPS 〈〉

〉

SEM

MODE prop

INDEX s

RESTR

〈

predication

RELN time present

SIT t

EVENT s

〉

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 208

The feature structure description of is is presented in (133). We should note that tense

predications can be added in the process of transforming a lexical entry of a verb into a

word.

The feature structure description of happy is shown below.

(134)

word

ORTH [happy]

SYN

HEAD

adj

PRED +

VAL

SPR
〈

NPi

〉

COMPS 〈〉

MOD

〈

mod-elem

MODIFIED NOMi

AFTER −

〉

SEM

MODE none

TYPE all

INDEX s

RESTR

〈

predication

RELN happy

SIT s

SUBJECT i

〉

Now is and happy can be combined together by the Head Complement Rule to form the

phrase structure shown in (135). As can be seen the subject of the verb is now has the same

index as the individual that is assigned with the subject role in the happy predication.

This will easily combine with Mary by the Head Specifier Rule to form a complete sentence.

(135)

word

ORTH [is, happy]

SYN

HEAD

verb

FORM fin

PRED −

AGR 3sing

AUX +

INV −

VAL

[

SPR
〈

1 NPi

〉]

ARG-ST
〈

1 NPi

〉

SEM

MODE prop

INDEX s

RESTR

〈

predication

RELN time present

SIT t

EVENT s

,

predication

RELN happy

SIT s

SUBJECT i

〉

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 209

6.10.1 Semantics of Negation

We studied the syntactic properties of negation using the N-NI, and N-I constraints on the

auxiliary verbs in chapter 5. We need to add semantics to these constraints. First, the

feature structure description of the word not is presented in (136). The word not carries

the negation semantics with its predications and bring it to the phrase it participates in.

In this thesis we treat the not predication, as a narrow scopal predication. The effect is

that all the negation acts like an adverb and negates only the verb. Thus all quantifiers are

outside the negated scope.

(136)

word

ORTH [not]

SYN
[

HEAD adv-pol
]

SEM

MODE prop

INDEX s

RESTR

〈

predication

RELN not

SIT s

NEGATED PRED s1

,

predication

RELN outscope

OUTER s1

INNER s2

〉

However, using negation as a narrow scopal predication is just a choice in this thesis that

reduces the number of readings of a sentence.24 The user of the grammar must be informed

about this choice. As far as the theory is concerned, there is no need to treat not as a

narrow scopal predication, in which case the negation could affect the quantifiers present

in the sentence. Heuristics can be used to eliminate or prioritize the readings in case of

multiple quantifiers and negations in a sentence, however we do not study these heuristics

in this thesis.

The modified N-NI and N-I constraints are:

• Negated and Non-Inverted (N-NI) Version II:

The feature structure description of a word that is associated with a negated but

non-inverted auxiliary verb must be unifiable with:

24This choice is consistent with the choice of advpol category for not in [67] as a special kind of adverb
and the treatment of adverb predications as narrow scopal predications in this thesis.

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 210

(137)

SYN

HEAD

verb

AUX +

INV −

VAL

[

SPR
〈

1

〉]

SEM

INDEX s

MODE prop

ARG-ST

〈

1 NP ,

word

ORTH [not]

SYN
[

HEAD adv-pol
]

SEM

MODE prop

INDEX s

RESTR

〈

predication

RELN not

SIT s

NEGATED PRED s1

,

predication

RELN outscope

OUTER s1

INNER s2

〉

,

SYN

VAL

SPR
〈

1

〉

COMPS 〈〉

〉

• Negated and Inverted (N-I) Version II:

The feature structure description of a word that is associated with a negated and

inverted auxiliary verb must be unifiable with:

(138)

SYN

HEAD

verb

AUX +

INV +

VAL
[

SPR 〈〉
]

SEM

INDEX s

MODE ques

ARG-ST

〈

1 NP ,

word

ORTH [not]

SYN
[

HEAD adv-pol
]

SEM

MODE prop

INDEX s

RESTR

〈

predication

RELN not

SIT s

NEGATED PRED s1

,

predication

RELN outscope

OUTER s1

INNER s2

〉

,

SYN

VAL

SPR
〈

1

〉

COMPS 〈〉

〉

Using the lexical entry for not, and the new N-NI constraint on the copular verb be we

can parse the following sentence. The resulting phrase structure is shown in (140).

(139) Mary is not sad.

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 211

(140)

1

phrase

ORTH [mary, is, not, sad]

SYN

HEAD

verb

FORM fin

PRED −

AGR

3sing

GEND fem

AUX +

INV −

GAP-T nosubj

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE prop

TYPE Bool

INDEX s0

RESTR

〈

2

predication

RELN dc obj add

SIT s1

OBJ j0

INSTPRED s2

, 3

predication

RELN instantiate

SIT s2

SYN AGR

3sing

GEND fem

SEM TYPE female human

INST j0

LOCATION (1,2)

, 4

predication

RELN name

SIT s1

NAME mary

NAMED j0

,

5

predication

RELN time present

SIT s3

EVENT s4

, 6

predication

RELN not

SIT s0

NEGATED PRED s5

, 7

predication

RELN outscope

SIT s6

OUTER s5

INNER s4

,

8

predication

RELN sad

SIT s4

SUBJECT j0

〉

A final note on the auxiliary and copular verbs is that the constraints NN-NI and N-NI

must set the semantic mode of the verb to ‘prop’ and the constraints NN-I and N-I that

apply on the inverted auxiliary verbs need to set the semantic mode of the verb to ‘ques’.

The reason is simply that inverted sentences are questions rather than propositions.

6.11 Semantics of Wh-Questions

Question words like Who and What contribute to the semantics by adding a special predica-

tion whose duty is to find an individual that matches the sentence that follow the question

words. We call this new predication find. We treat it as a quantifier predication that needs

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 212

to be paired with an instantiate predication. This instantiate predication adds type in-

formation for the individual that is sought. For Who the type needs to be human, whereas

for What it needs to be all y X − human. An outscope predication is also provided

to ensure that the outscope resolution algorithm makes correct choices. For example, the

feature structure description of the question word Who is given in (141).

(141)

word

ORTH [who]

SYN

HEAD qword

VAL

SPR 〈〉

COMPS

〈

Su

SYN

HEAD

INV −

GAP-TYPE gsubj

GAP
〈

1 NPi

〉

〉

MOD 〈〉

GAP 〈〉

STOP-GAP
〈

1

〉

SEM

MODE ques

INDEX s

TYPE Bool

RESTR

〈

predication

RELN find

SIT s

BOUND VAR i

QRESTR s0

QSCOPE t

,

predication

RELN instantiate

SIT s0

SEM TYPE human

INST i

,

predication

RELN outscope

OUTER s

INNER u

〉

(142) Who is not sad?

(143)

1

phrase

ORTH [who, is, not, sad]

SYN

HEAD qword

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE ques

TYPE Bool

INDEX t

RESTR

〈

2

predication

RELN find

SIT t

BOUND VAR i

QRESTR t0

QSCOPE scope

,

predication

RELN instantiate

SIT t0

SEM TYPE human

INST i

,

predication

RELN outscope

OUTER t

INNER u

,

predication

RELN time present

SIT u′

EVENT u′

1

,

predication

RELN not

SIT u

NEGATED PRED u′

,

predication

RELN sad

SIT u′

1

SUBJECT i

〉

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 213

With this description of Who we can parse the sentence (142). The phrase structure of

the resulting phrase is given in (143).

This can be easily converted to TFOL formula below, after removing the situation labels

(we have also removed the tense predication). We use the notation ∃? for this new quantifier.

(144) ∃?(i : human) ; ¬sad(i)

6.12 Converting Scope Resolved Predications to TFOL

We have described in some in examples through this chapter how to convert a list of scope-

resolved predications to a Typed First Order Logic (TFOL) formula. In this section we

present a general procedure to convert arbitrary scope-resolved list of predications to a

simple TFOL formula.

This procedure can convert the list of predications of a well-formed sentence or a list of

well-formed sentences.

We break the procedure down to six different phases. In all the phases we maintain a

bag B of TFOL sub-formulas.

All the references to the discourse context by the dc obj get must already be resolved

and the indices that refer to the same individual must be unified.

1. In the first phase, we equate the situation indices not used as arguments of tense

or modification predications to their parent indices (from top to bottom of the tree

representation of the immediate outscope relation).

2. In the second phase, we remove the dc obj get, and dc obj add predications.

3. In the third phase, we group all the predications with the same SIT value together.

We label each group with the common SIT value of its predications.

4. In the fourth phase we process the predications in each group. We mark a predication

after being processed. For every group with label x we do the following:

(a) For every unmarked predication other than the tense and scopal predications:

i. we create a TFOL sub-formula with exactly the same arguments as the pred-

ication with the same relation name. For instantiate predication we do not

need to include the syntactic agreement argument (SYN AGR feature).

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 214

ii. we mark the predication as processed.

(b) We make a conjunction of the sub-formulas created in the previous step.

(c) For the tense predication in the group, we create a tense sub-formula with the

predicate symbol same as the relation name of the tense predication with two

arguments.

(d) We set x the first argument of the tense sub-formula, we also label this sub-

formula with x.

(e) We set the conjunction generated in step b as the second argument of the tense

sub-formula, and we add the resulting sub-fomula to the bag B, and we mark the

tense predication as marked.

5. In the fifth phase, we repeat the following steps until there is no unmarked predication

in the list.

(a) We find an unmarked scopal predication PR(s, s1, ..., sn, j1, ..., jm) with SIT value

s and scopal feature values s1, ..., sn, and individual features j1, ..., jm such that

there is no unmarked predication with SIT value si for 1 ≤ i ≤ n

(b) We create a sub-formula P with the same number of arguments as PR. We set

s as its first argument. For each scopal feature si, we find a conjunction sub-

formula Ci labeled si from the bag B. We then set Ci as the (i + 1)’th argument

of P, and remove Ci from the bag B. The individual arguments appear in P with

the same values and order.

(c) If there is a sub-formula Cs with the same label s in the bag B, then we remove

it from the bag and conjoin it with P.

(d) We label the sub-formula P by s and add it to B, and mark the predication

PR(s, s1, ..., sn, j1, ..., jm) as processed.

6. In the sixth phase we conjoin all the sub-formulas in the bag B. The result is the

TFOL representation of the whole list of predications.

We can replace tense sub-formulas with their second arguments if we do not need the

tense information. As well, we can remove the situation arguments, if we wish to have no

situation argument in the final formula.

CHAPTER 6. SEMANTIC FEATURES AND THEIR RULES AND PRINCIPLES 215

6.13 Conclusion

In this chapter we introduced the semantic features of expressions. We presented the se-

mantic principles and constraints, variable binding conditions, that were closely related to

MRS. And finally we gave an algorithm how to derive a TFOL formula representing the

semantics of a well-formed sentence, or a list of sentences. Although we have used types in

the feature TYPE, we have not yet shown how this information can be used in the grammar

to reduce undesired ambiguity. We will do so by introducing guards for the HPSG grammar.

This is covered in the next chapter.

Our contributions in this chapter were:

• incorporation of discourse analysis by introducing discourse predications.

• several binding conditions and constraints that are necessary to construct the correct

structure of the predicate calculus formula that carries the semantics of the parsed

sentence:

– Quantifier Restriction Constraint, Quantifier Scope Constraint, Quantifier Vari-

able Binding Condition to deal with the structuring of the formulas with quan-

tifier.

– Narrow Scope Variable Binding Condition that was introduced to handle the

structure of the formulas with scopal modifier predicates correctly.

Chapter 7

Type Restrictions and Guards

In this chapter we introduce and use features in our HPSG type hierarchy that enable us to

incorporate the type restrictions to the grammar. By using type restrictions, the grammar

will not parse some semantically ill formed phrases, which results in less complexity and

ambiguity.

Type restrictions are implemented by using guards in the grammar. A guard is a con-

dition that must hold for an expression to combine with another. In section 7.1 we provide

guards for specifiers and complements of a syntactic head. Section 7.3 introduces guards

for modifiers. And in section 7.4 we study how guards can be used to state the restrictions

of the missing elements or gaps in a phrase. Then in section 7.5 we study how guards

can be used to control the formation of nominal phrases1 with relative clauses. Finally in

section 7.7 we show how type restrictions effect the process of antecedent resolution in a

discourse.

7.1 Type Restrictions of Arguments as Guards

In chapter 2 we introduced the idea of type restrictions as means for ensuring the appropri-

ateness of the semantic type of an expression for the role it plays in the larger phrase. For

example the semantic type of the noun Mary is appropriate for the subject of the verb walk

in sentence (1a) below, whereas the type of the noun book is inappropriate for the same

verb in sentence (1b).

1A nominal phrase is a noun phrase that is missing its specifier, such as book that I gave you.

216

CHAPTER 7. TYPE RESTRICTIONS AND GUARDS 217

(1) a. Mary walks.

b. * The book walks.

We formulated the type restrictions of an expression as a set of ordered pairs of roles

and types2, for each syntactic role that the expression assigns to each of its constituent

expressions. For example in (1a) Mary is an argument of the verb walks (and a constituent

of the verb phrase) to which the role of subject is assigned.

In the terminology of HPSG, arguments of an expression ξ are those constituent expres-

sions that are listed in the SPR list together with the COMPS list of the feature structure

description of the expression ξ.3

We can encode the type restrictions together with other extra restrictions of the ar-

guments of an expression in lists that are parallel to SPR and COMPS. We name these

lists SPR GUARDS and COMPS GUARDS. The size of these lists are exactly the same as

the size of SPR and COMPS. Each element in SPR or COMPS is in correspondence to an

element in SPR GUARDS or COMPS GUARDS respectively, and contains a list of guards.

Each guard is a boolean expression that must hold for an expression to be accepted as an

argument.

The SPR GUARDS and COMPS GUARDS features are declared by the feature struc-

ture type syn-cat, as shown in table C.1 of chapter 4.

The first guard that we study in this chapter is the type guard . The type guard must be

the first element of the list of guards for any constituent expression (including arguments).

It ensures that an expression is of the specific type <expected type>, before taking part in

a larger phrase. Type guards are of the form:

(2) : <expected type>

To use and check the guards before a phrase is formed by combining a head to its

arguments, we need to refine the Head Specifier Rule and the Head Complement Rule.

Notation 7.1 In our new rules, we need to refer to the first element of a list (head) and

the rest of its elements (tail). For this purpose we use the notation 〈H|T 〉, where H is the

first element or the head of the list, and T is the rest of the elements or the tail of the list.

2We refer to domain types rather than grammar entity types.
3The reader might remember from chapter 5 that for words and lexemes there is a special feature ARG-ST

(for argument structure) that contains the list of arguments.

CHAPTER 7. TYPE RESTRICTIONS AND GUARDS 218

(3) Head Specifier Rule (HSR), Final Version:

phrase

VAL

SPR
〈 〉

SPR GUARDS
〈 〉

→ 1

[

SEM
[

TYPE τ
]]

H

HEAD
[

PRED −
]

VAL

SPR
〈

1

〉

SPR GUARDS

〈〈

:σ |Tail
〉〉

where τ ⊑ σ, and all the guards in Tail are satisfied.

This modification is made possible by the result that we got from theorem 3.76 of chapter

3, where the satisfaction of type restrictions is expressed using the subtype relation.

The feature structure description of the verb walks can then have its SPR GUARD

feature set to an appropriate value like 〈〈: human〉〉 as shown in (4).

(4)

word

ORTH [walks]

SYN

HEAD

verb

FORM fin

PRED −

AGR 3sing

AUX −

INV −

GAP-T nosubj

VAL

SPR
〈

NPi

〉

SPR GUARDS

〈〈

:human
〉〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE prop

TYPE Bool

INDEX t

RESTR

〈

predication

RELN walk

SIT t

WALKER i

,

predication

RELN time present

SIT s

EVENT t

〉

Then the modified HSR rule does not license the bizarre sentence (1b), because:

(5) book ⊑/ human

CHAPTER 7. TYPE RESTRICTIONS AND GUARDS 219

Likewise we can check the type of an expression before it combines with a head as a

complement. For this we need to revise the Head Complement Rule. The new rule combines

a head with n complements, and checks all the guards simultaneously.

(6) Head Complement Rule (HCR), Final Version:

phrase

VAL

COMPS
〈 〉

COMPS GUARDS
〈 〉

→ H

VAL

COMPS
〈

1 , ..., n

〉

COMPS GUARDS

〈〈

:σ1|Tail1

〉

,...,
〈

:σn|Tailn

〉〉

1 ... n

, where i =

[

SEM
[

TYPE τi

]]

, and τi ⊑ σi, and all the guards in Taili are satisfied,

for 1 ≤ i ≤ n

Now the feature structure description of the verb paints, for example, can be adjusted

to accommodate complement guards as shown in (7).

(7)

word

ORTH [paints]

SYN

HEAD

verb

FORM fin

PRED −

AGR 3sing

AUX −

INV −

GAP-T nosubj

VAL

SPR
〈

NPi

〉

SPR GUARDS

〈〈

:human
〉〉

COMPS
〈

NPj

〉

COMPS GUARDS

〈〈

:physical
〉〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE prop

TYPE Bool

INDEX t

RESTR

〈

predication

RELN paint

SIT t

PAINTER i

PAINTED j

,

predication

RELN time present

SIT s

EVENT t

〉

CHAPTER 7. TYPE RESTRICTIONS AND GUARDS 220

With this lexical entry for the verb paints, HCR cannot license the verb phrase paints a

joke in the sentence below.

(8) * He paints a joke.

The reason is that the type restrictions of the complement of the verb is not satisfied:

(9) joke ⊑/ physical

In section 5.4 we introduced the feature ARG-ST that contains all the arguments of a

syntactic head. The value of the ARG-ST list is the concatenation of the lists SPR and

COMPS. In this section we introduced guards for each argument in the SPR and COMPS

list. So, it makes sense to have a parallel feature ARG-ST-GUARDS that contains the

guards for all of the arguments in the ARG-ST list.

The ARG-ST-GUARDS feature is declared by the lex-sign feature structure type. Its

value is the result of concatenating the SPR GUARDS and COMPS GUARDS. By using

this feature we can efficiently describe the constraints on auxiliary verbs with type restric-

tions in section 7.2.

(10) ARG-ST-GUARDS = SPR GUARDS ⊕ COMPS GUARDS

We have not yet described why we have a list of guards for each argument rather than

just one guard. Later in section 7.5 we will see a list of guards is necessary for the lexical

entries of relativizers.

7.2 Type Restrictions of Copulas and Auxiliary Verbs

In section 5.5 of chapter 5 we provided an analysis of copulas and auxiliary verbs with four

constraints, namely, NN-NI, NN-I, N-NI, N-I constraints. These constraints focused on the

ARG-ST that made it possible to easily state that an argument is moved from SPR to

COMPS in an inverted sentence. As before, we include copulas in the auxiliary verbs in our

analysis, and we refer to both groups by the term auxiliary verb.

In inverted sentences, we need to move the corresponding guards of the moved subject

to the COMPS GUARDS list. With the use of ARG-ST-GUARDS, this is very simple.

We need to modify the auxiliary verb constraints such that they use ARG-ST-GUARDS to

enable the proper evaluation of guards.

CHAPTER 7. TYPE RESTRICTIONS AND GUARDS 221

Before we present the modified constraints, we need to discuss about the subject sharing

in auxiliary verbs and introduce a new guard no comps head.

7.2.1 Subject Sharing and Guards

As we discussed in section 5.5, the subject of the embedded VP or predicative complement

of auxiliary verbs is the same as the subject of the auxiliary verb, in a mechanism called

subject sharing [67].

So, it makes perfect sense that the guards of the subject of the VP or predicative

complement be shared with the auxiliary verb as well. That is, not only the subject of the

complement, but also its guards are shared by the auxiliary verb.

Subject sharing makes the subject of the auxiliary verb dependent on its complement.

In other words, before the complement is combined with an auxiliary verb, we do not have

enough information about the syntactic and semantic restrictions of its subject. Thus we

prefer a precedence of HCR over HSR with auxiliary verbs.

This can be easily done by the use of a special guard: no comps head that we place in

the SPR GUARDS of the auxiliary verbs. This guard checks whether the COMPS list of

the syntactic head of the current rule is empty or not. It passes only if the COMPS list is

empty. So it makes sure no complements are left to be combined with the head.

With the presence of this new guard in the SPR GUARD list of auxiliary verbs, HSR

can only combine subjects with auxiliary verbs if their complement has already been added

by HCR. So all the information necessary, including the type restrictions of the subject of

the auxiliary verb, is known.

• Non-Negated and Non-Inverted (NN-NI) Final Version:

The feature structure description of a word that is associated with a non-negated and

non-inverted auxiliary verb must be unifiable with:

(11)

SYN

HEAD

verb

AUX +

INV −

VAL

[

SPR
〈

1

〉]

ARG-ST

〈

1 NP ,

SYN

VAL

SPR
〈

1

〉

SPR GUARDS 2

COMPS 〈〉

〉

ARG-ST-GUARDS

〈

2 ⊕
〈

no comps head
〉

,
〈

:all
〉〉

CHAPTER 7. TYPE RESTRICTIONS AND GUARDS 222

• Non-Negated and Inverted (NN-I) Final Version:

The feature structure description of a word that is associated with a non-negated but

inverted auxiliary verb must be unifiable with:

(12)

SYN

HEAD

verb

AUX +

INV +

VAL
[

SPR 〈〉
]

ARG-ST

〈

1 NP ,

SYN

VAL

SPR
〈

1

〉

SPR GUARDS 2

COMPS 〈〉

〉

ARG-ST-GUARDS

〈

2 ,
〈

:all
〉〉

• Negated and Non-Inverted (N-NI) Final Version:

The feature structure description of a word that is associated with a negated but

non-inverted auxiliary verb must be unifiable with:

(13)

SYN

HEAD

verb

AUX +

INV −

VAL

[

SPR
〈

1

〉]

SEM
[

INDEX s

]

ARG-ST

〈

1 NP ,

word

ORTH [not]

SYN
[

HEAD adv-pol
]

SEM

MODE prop

INDEX s

RESTR

〈

predication

RELN not

SIT s

NEGATED PRED s1

,

predication

RELN outscope

OUTER s1

INNER s2

〉

,

SYN

VAL

SPR
〈

1

〉

COMPS 〈〉

〉

ARG-ST-GUARDS

〈

2 ⊕
〈

no comps head
〉

,
〈

:all
〉

,
〈

:all
〉〉

• Negated and Inverted (N-I) Final Version:

The feature structure description of a word that is associated with a negated and

inverted auxiliary verb must be unifiable with:

CHAPTER 7. TYPE RESTRICTIONS AND GUARDS 223

(14)

SYN

HEAD

verb

AUX +

INV +

VAL
[

SPR 〈〉
]

SEM
[

INDEX s

]

ARG-ST

〈

1 NP ,

word

ORTH [not]

SYN
[

HEAD adv-pol
]

SEM

MODE prop

INDEX s

RESTR

〈

predication

RELN not

SIT s

NEGATED PRED s1

,

predication

RELN outscope

OUTER s1

INNER s2

〉

,

SYN

VAL

SPR
〈

1

〉

COMPS 〈〉

〉

ARG-ST-GUARDS

〈

2 ,
〈

:all
〉

,
〈

:all
〉〉

7.3 Type Restrictions of Modifiers

In the first section of this chapter we described type restrictions of two kinds of arguments,

namely, specifiers and complements. These are located in the valence feature of expressions.

We limited the expressions that can combine with a head by HSR and HCR. There is one

valence feature remaining which is MOD for modifiers, and there is one rule left that can

combine a head with a modifier, which is HMR that we need to restrict in order to avoid

the formation of semantically ill expressions like below.

(15) a. * a tall joke

b. * a happy television

The reason for the invalidity of the above expressions is that the adjectives used are not

proper for the nominals that follow them. Or to turn the focus on the modifiers (which is

the focus of HMR), the nominals are not appropriate for the modifiers. That is, tall requires

a nominal of type physical and happy requires a nominal of type animal for example.

For the lexical entries of modifiers, MOD is a non-empty list that contains the feature

structure description of the modified expression. We can easily include the type restriction

of the modified expression by using the MOD-GUARD feature of mod-elem. This feature

contains the guards that restrict the combination of the modifier with a modified expression.

CHAPTER 7. TYPE RESTRICTIONS AND GUARDS 224

The first element of the guard list must specify the expected type of the modified expression,

like the guard lists of SPR and COMPS. As an example the feature structure description of

the adjective tall is given below.

(16)

word

ORTH [tall]

SYN

HEAD

adj

PRED +

VAL

SPR
〈

NPi

〉

SPR GUARDS
〈

1

〉

COMPS 〈〉

MOD

〈

mod-elem

MODIFIED NOMi

AFTER −

MOD-GUARD 1

〈

:physical
〉

〉

GAP 〈〉

STOP-GAP 〈〉

SEM

MODE none

TYPE all

INDEX s

RESTR

〈

predication

RELN tall

SIT s

SUBJECT i

〉

The reason that the SPR GUARDS is non-empty and contains the same list as MOD-

GUARD is related to subject sharing if the modifier is preceded by a copular verb. We will

discuss more about this shortly.

We need to modify the Head Modifier Rule such that it checks the guards before the

phrase can be formed:

(17) Head Modifier Rule (HMR), Pre-Head, Final Version:

[

phrase
]

→

COMPS 〈〉

MOD

〈

mod-elem

MODIFIED 1

AFTER −

MOD-GUARD
〈

: σ | Tail
〉

〉

H 1

SYN
[

COMPS 〈〉
]

SEM
[

TYPE τ
]

where τ ⊑ σ, and all the guards in Tail are satisfied.

(18) Head Modifier Rule (HMR), Post-Head, Final Version:

CHAPTER 7. TYPE RESTRICTIONS AND GUARDS 225

[

phrase
]

→ H 1

SYN
[

COMPS 〈〉
]

SEM
[

TYPE τ
]

COMPS 〈〉

MOD

〈

mod-elem

MODIFIED 1

AFTER +

MOD-GUARD
〈

: σ | Tail
〉

〉

where τ ⊑ σ, and all the guards in Tail are satisfied.

These new rules do not license an invalid phrase like tall joke, however a valid phrase

like tall building is licensed.

7.3.1 Predicative Modifiers and Subject Sharing

The guards for the specifier of predicative modifiers is the same as MOD-GUARD (as can

be seen in (16)). This is for the predicative use of modifiers in which they can appear after

the copular verbs such as be. As mentioned in section 6.10 the SPR element of adjectives

(and other predicative modifiers, such as prepositional modifiers) can be shared by the

auxiliary or copular verbs in subject sharing . And in section 7.2 we shared the subject

guards of the auxiliary verb complements with the subject guards of the auxiliary verbs. So

we need to pass the modified guards of the modifier to the subject guards of the auxiliary

verb if it precedes the modifier. This can be easily done by setting the specifier guards

of the modifiers equal to their modified guards list. Note however that SPR GUARDS is

a list of list of guards, whereas MOD-GUARD is list of guards. So the SPR GUARDS of

predicative modifiers is a list that contains another list which is exactly the same as the

value of the MOD-GUARD feature.

For example the guard list 〈:physical〉 of the adjective tall , as shown in (16), is passed

to the SPR-GUARDS of the verb is in the verb phrase (19a). This will prevent the sentence

(19b) from being parsed, whereas the sentence (19c) is parsed.

(19) a. is tall

b. * The joke is tall.

c. The building is tall.

CHAPTER 7. TYPE RESTRICTIONS AND GUARDS 226

7.4 Type Restrictions of Gaps

As we described in section 5.6, there should be lexical rules in place that remove an argu-

ment from SPR, or COMPS list and put it in the GAP list. This was necessary to parse

phrases that missed a constituent. As we mentioned in the first section the size of SPR and

SPR GUARDS must be the same. So is true for the size of COMPS and COMPS GUARDS.

It is therefore natural to also remove the guards corresponding to the SPR or COMPS list

that is being removed.

To complete the semantic analysis of long distance dependencies we avoid losing the

type restriction information (and other corresponding guards) we place the guards in the

GAP GUARDS list. GAP GUARDS feature is declared by the syn-cat feature structure

type, where the GAP feature is also declared. The size of the GAP GUARD list is exactly

the same as the size of the GAP list. GAP GUARDS feature contains the guards of the

gaps that are present in the GAP list.

(20)

word

ORTH [painted]

SYN

HEAD

verb

FORM fin

PRED −

AUX −

INV −

GAP-T nosubj

VAL

SPR
〈

NPi

〉

SPR GUARDS

〈〈

:human
〉〉

COMPS 〈〉

COMPS GUARDS 〈〉

MOD 〈〉

GAP
〈

NPj

〉

GAP GUARDS

〈〈

:physical
〉〉

STOP-GAP 〈〉

SEM

MODE prop

TYPE Bool

INDEX t

RESTR

〈

predication

RELN paint

SIT t

PAINTER i

PAINTED j

,

predication

RELN time past

SIT s

EVENT t

〉

For example, the feature structure description of the verb painted that misses its com-

plement (object) is shown in (20). The information in the GAP GUARDS list can be used

to avoid parsing a phrase like (21).

CHAPTER 7. TYPE RESTRICTIONS AND GUARDS 227

(21) * the joke which I painted

The reason is that GAP GUARDS contains the list 〈: physical〉 that means the missing

element is a physical object. So the semantic role of the missing element cannot be assigned

to the nominal joke because there is a type mismatch, i.e., joke ⊑/ physical.

7.5 Guards for Relativizers

Relativizers are modifiers with gappy sentence complements. So their analysis of guards

relies on our discussion of modifiers and gaps in the last two sections.

There are three important types in a nominal phrase with a relativizer. The first type is

the type τ of the individual i that the nominal represents. The second is the type that the

relativizer expects for the nominal it modifies (σ). And the third is the type of the missing

constituent of the gappy complement sentence of the relativizer (ω). As an example see the

nominal phrase below for example:

(22) student
︸ ︷︷ ︸

i:τ

who
︸ ︷︷ ︸

σ=human
︸ ︷︷ ︸

ω

passed the course

The nominal plays two roles, first as the modified expression of the relativizer, which

requires:

(23) τ ⊑ σ

, and second as the missing constituent of the gappy sentence, so the type restriction of the

gap applies to the nominal:

(24) τ ⊑ ω

Relativizers fall into three groups with respect to what they modify, namely:

• a human, such as who, whom.

• a non-human object or animal, such as which.

• both a human or non-human object, such as that.

With the groups we outlined above, σ can be only chosen from the set:

(25) {human, all y X − human, all}

We will study the type restrictions of each group separately in the following sections.

CHAPTER 7. TYPE RESTRICTIONS AND GUARDS 228

7.5.1 Human Relativizers

In this case, σ = human. Since we assumed in section 3.3 that human with all of its super

types are triangular types, any arbitrary set is either disjoint, or a subtype or a super-type

of human. As (23), and (24) indicate, ω cannot be disjoint with σ, and it must be true that

either σ ⊑ ω or ω ⊑ σ.

If we assume least(σ, ω) is the least general type among σ and ω, then (23), and (24)

can be condensed to:

(26) τ ⊑ least(σ, ω)

least(a, b) is also a guard that ensures that either a ⊑ b or b ⊑ a. Otherwise it should fail.

The feature structure description of who with type restrictions can be presented in the

lexicon as follows:

(27)

word

ORTH [who]

SYN

HEAD sconj

VAL

SPR 〈〉

COMPS

〈

St

INV −

GAP

〈

1 NPi

[

AGR 2

]〉

GAP-GUARDS

〈〈

:ω|Tail

〉〉

〉

COMPS GUARDS

〈〈

:Bool, least(human, ω) = ρ

〉〉

MOD

〈

mod-elem

MODIFIED NOMi

[

AGR 2

]

AFTER +

MOD-GUARD
〈

:ρ|Tail

〉

〉

GAP 〈〉

STOP-GAP
〈

1

〉

SEM

MODE none

TYPE Bool

INDEX t

RESTR 〈〉

The complement guard list of who is a list with two elements. The first element is

necessarily the type of the complement, which is Bool as the complement is a sentence.

The second guard calculates the least general type among human and ω, and the result is

saved in ρ. Later, ρ is used as the modified guard of the modifier. Other guards of the gap

are also included in the guard list of the modified element, because the modified expression

plays the same role as the gap, so all the remaining guards corresponding to the gap must

also be satisfied by the modified expression.

CHAPTER 7. TYPE RESTRICTIONS AND GUARDS 229

The fact that HMR requires an empty list of complements for the modifier guarantees

that the complement sentence is combined first with who by HCR and ρ is known as a

result, before using who as a modifier.

Using this lexical entry, the grammar can parse a phrase like (28a) or (28b) but not a

phrase like (28c).

(28) a. student who is on the roof.

b. student who passed the course.

c. * car who I painted.

7.5.2 Non-human Relativizers

In this case we have σ = all y X − human. Restrictions (23), and (24) can be re-written

as:

(29) τ ⊑ all y X − human

(30) τ ⊑ ω

Let us define a function snh(ω) for calculating the specializable subtype of ω that is

disjoint from human by:

function snh(ω:BasTyp) : BasTyp

/* Y, Y ′ are free variables not used anywhere else */

begin

if is natural(ω) then return ω y Y − human

else if ω = ω′ − human, for a natural ω′ then return ω′ y Y − human

else if ω = ω′ y Y or ω = ω′ y Y − human then return ω′ y Y ′ − human

end if

end

Program 7.1: The snh function to calculate the specializable non-human subtype

Theorem 7.2 Restrictions (29) and (30) are equivalent to:

(31) τ ⊑ snh(ω)

CHAPTER 7. TYPE RESTRICTIONS AND GUARDS 230

(The proof of this theorem is provided in appendix B.)

It can be observed that if ω ⊑ human, the return value of snh(ω) cannot be specialized

to a non-bottom type. So we would like this function to act as a guard too, and fail if

ω ⊑ human.

Then the feature structure description of which with type restrictions can be defined in

the lexicon by:

(32)

word

ORTH [which]

SYN

HEAD sconj

VAL

SPR 〈〉

COMPS

〈

St

INV −

GAP

〈

1 NPi

[

AGR 2

]〉

GAP-GUARDS

〈〈

:ω|Tail

〉〉

〉

COMPS GUARDS

〈〈

:Bool, snh(ω) = ρ

〉〉

MOD

〈

mod-elem

MODIFIED NOMi

[

AGR 2

]

AFTER +

MOD-GUARD
〈

:ρ|Tail

〉

〉

GAP 〈〉

STOP-GAP
〈

1

〉

SEM

MODE none

TYPE Bool

INDEX t

RESTR 〈〉

Using this lexical entry the grammar can license phrases like (33a), and (33b) but not

semantically ill phrases like (33c), and (33d).

(33) a. car which is on the street

b. car which you painted

c. * car which speaks to me

d. * student which speaks to me

7.5.3 Neutral Relativizers

A neutral relativizer like that can modify both a human or a non-human individual. The

analysis of this relativizer is the easiest. We should simply have τ ⊑ ω and no other

restriction is needed. The feature structure description of that is given below.

CHAPTER 7. TYPE RESTRICTIONS AND GUARDS 231

(34)

word

ORTH [that]

SYN

HEAD sconj

VAL

SPR 〈〉

COMPS

〈

St

INV −

GAP

〈

1 NPi

[

AGR 2

]〉

GAP-GUARDS

〈〈

:ω|Tail

〉〉

〉

COMPS GUARDS

〈〈

:Bool

〉〉

MOD

〈

mod-elem

MODIFIED NOMi

[

AGR 2

]

AFTER +

MOD-GUARD
〈

:ω|Tail

〉

〉

GAP 〈〉

STOP-GAP
〈

1

〉

SEM

MODE none

TYPE Bool

INDEX t

RESTR 〈〉

This will license the phrase (35a), but the phrase (35b) cannot be parsed.

(35) a. student that speaks to me

b. * car that speaks to me

7.6 A Note on Coordination Rules

In this thesis we only studied the coordination of sentences and countable noun phrases.

Sentences do not have any arguments, so the SPR GUARD, and COMPS GUARDS for

sentences are empty. Moreover, sentences cannot be used as modifiers. So sentences do

not have any guards, and the coordination rule of sentences does not need to say anything

about type restrictions. The countable nouns that we studied in this thesis do not have

any complements. However, they have a non-empty SPR list that contains a determiner.

We have used meaningful types only for nouns and sentences. For all other parts of speech,

including determiners the type has been simply all. So the countable nouns should have a

non-empty SPR GUARD list that is simply equal to <<: all >>. And the coordination

rule for countable noun phrases does not need any change either.4

4If coordination is used on constituents with arguments or on modifiers, the guards for the mother phrase
must be the result of the combination of the guards of the coordinated constituents. However for the purposes
of conciseness we do not study such cases in this thesis.

CHAPTER 7. TYPE RESTRICTIONS AND GUARDS 232

7.7 Effective Use of Guards with Antecedent Resolution

Using type restrictions in parsing standalone sentences reduces the number of interpretations

by rejecting semantically ill ones. In this section we show how type restrictions can be used

with multiple sentences in a discourse with the process of antecedent resolution.

The fact that we have used specializable types for pronouns reduces the problem of

checking a type restriction involving a pronoun to a satisfiability problem with a variable. If

the restriction is satisfied the value of the answer to the variable is carried by the semantics

of the pronoun in the entire discourse, as a result of the unification of the variable to its

answer. This is particularly helpful in antecedent resolution. Consider the sentences below

for example.

(36) a. I heard a song in a car.

b. It was red.

The semantic restriction of the sentence (36a) introduces two context individuals to the

discourse context (DC):

DC =
〈

a song, a car
〉

=
〈

predication

RELN instantiate

SIT s1

SYN AGR

3sing

GEND neut

SEM TYPE song

INST i

,

predication

RELN instantiate

SIT s2

SYN AGR

3sing

GEND neut

SEM TYPE car

INST j

〉

The semantic restriction of the second sentence is:

〈

predication

RELN dc obj get

SIT t

OBJ k

INSTPRED t1

,

predication

RELN instantiate

SIT t1

SYN AGR

3sing

GEND neut

SEM TYPE τ yY-human

INST k

,

predication

RELN time past

SIT t′

,

predication

RELN red

SIT t′

SUBJECT k

〉

, where τ is an answer to:

(37) all y X − human ⊑ physical

So τ is a most general subtype of physical that is disjoint with human. Possible values

of τ include inanimate, beluga, dog, bird.

CHAPTER 7. TYPE RESTRICTIONS AND GUARDS 233

For any of the possible values of τ , the dc obj get predication cannot retrieve i from

the discourse context for k, because the requirements of the instantiate predications for i

and k are incompatible.

In other words, if the pronoun it refers to a song, then its expected type is song, so we

must have:

(38) τ y Y − human ⊑ song

which is not satisfiable for any possible value of τ . In fact the two types are disjoint.

So the only choice for the antecedent of the pronoun it will be a car, which requires

(39) τ y Y − human ⊑ car

which is satisfiable for τ = inanimate.

Thus the number of the candidate interpretations of the second sentence (and the whole

discourse) is reduced from two to one, by rejecting the implausible interpretation that the

song was red.

In general, a pronoun with the semantic type ω can be resolved to an antecedent of type

σ, if the following restriction holds or is satisfiable.

(40) ω ⊑ σ

7.8 Conclusion

Our contribution in this chapter was the incorporation of the type restrictions into the

HPSG formalism. Using the type restrictions will enable us to reduce the undesired am-

biguity by restricting the licensing of the phrases by the modified HSR, HCR, and HMR.

The ambiguity is also reduced in the process of antecedent resolution where the possible

referents of pronouns are restricted by the appropriateness of the types of pronouns and

their candidate referents.

In the next chapter we will discuss how this grammar can be implemented, by using

Prolog on top of ProFIT and some ideas from CHRG.

Part III:

Implementation and Application

In the final part of this thesis we discuss the implementation of the system, and show how

the user interface of our system can be used. We present a simple example to show how the

system can be applied.

234

Chapter 8

Implementation and Application

In this chapter we describe how we have implemented the grammar and a system that uses

this grammar to parse simple software specifications.

Figure 8.1: General outline of the system implementation

Our system consists of:

• the type system that we developed in chapters 2, and 3

235

CHAPTER 8. IMPLEMENTATION AND APPLICATION 236

• a User Interface (UI) to get user input

• a subsystem to maintain the current discourse context and the TFOL representation

of the sentences already processed.

• the grammar and a parser to parse the sentences entered by the user

• an antecedent resolution subsystem, that communicates with the user through a user

interface in case manual disambiguation is needed

• a subsystem to convert the flat predication representation to TFOL representation,

which contains a scope resolution mechanism.

We chose to use the Prolog language [15] as the main language of our system. In

section 8.1 we describe the reason for this choice.

We have already provided pseudo code for our type system in chapter 3, the implemen-

tation is just a conversion of the pseudo code to a concrete language, in this case, Prolog.

For the user interface we chose to use Java to avoid dependencies over UI packages in

Prolog that are not as standard as Java.

Maintaining the current discourse context and the TFOL formulas so far is very straight-

forward by using Prolog dynamic predicates.

Antecedent resolution is also straightforward, and involves a few calls to the type system

to perform subtype checking. In case the user feedback is needed the UI is used to let the

user choose the proper antecedent.

In section 1 we describe the implementation of the grammar and the parser. Then in

section 2 we describe the user interface of our system. Finally in section 3, we propose some

potential applications for our system.

8.1 Implementation of the Grammar and the Parser

As mentioned in chapter 4, HPSG is a unification based or constraint based formalism. So

we prefer a language that facilitates the use of unification and constraints. For this reason

we chose Prolog language as the base to implement the grammar. We used SWI Prolog [74]

for being freely available, its efficiency, and its large collection of libraries.

HPSG heavily uses feature structures, and for this we used the ProFIT implementation

[30] that was used as part of the ATTEMPTO project [35, 33].

CHAPTER 8. IMPLEMENTATION AND APPLICATION 237

8.1.1 Brief Syntax of ProFIT

In ProFIT, type labels in feature structure (descriptions) are specified by a ‘<’ prefix.

Feature names and feature values are separated by a ‘!’ operator, and the conjunction or

unification operator is ‘&’.

As an example consider the syntactic segment of the word feature structure description1

of the determiner a below.

(1)

word

ORTH [a]

SYN

HEAD

det

AGR 3sing

COUNT +

VAL

SPR 〈〉

COMPS 〈〉

MOD 〈〉

GAP 〈〉

STOP-GAP 〈〉

This feature structure description can be represented in ProFIT by the following struc-

ture.

<word &

orth![a] &

syn!(

head!(

<det &

agr!@a3sing &

count!<plus

) &

val!(

spr![] &

comps![] &

mod![]

) &

gap![] &

stop_gap![]

)

1We use feature structure description here because the value of the GEND feature in 3sing is underspec-
ified.

CHAPTER 8. IMPLEMENTATION AND APPLICATION 238

@a3sing is a template in ProFIT that we use for 3sing. A template is simply an abbre-

viation of another structure, which should be defined earlier. For example a3sing is defined

by the following ProFIT statement, where t3sing is the type that we use for 3sing.2

a3sing := <t3sing & per!3 & num!<sg .

Consistent to the style introduced by [30], the values of the boolean type (+, −) are

defined as types themselves, that is, plus and minus are defined as two distinct subtypes

of the type bool. Similarly sg and pl for singular and plural respectively, are defined as

two subtypes of the num enum type. In general if the values of a type are specifically from

a known range of enumerated items, each of the items is defined as a subtype.

Describing the complete syntax of the ProFIT language is not our goal in this section

and is in fact outside the scope of the thesis. The interested reader can refer to [30] for more

information.

8.1.2 The Parser and CHRG′

The implementation of ATTEMPTO uses a top-down parser. However, we used a bottom

up implementation to parse all the sub-phrases in parallel and to provide all the alternative

interpretations. Also we had a goal of not distancing from a constraint based parser imple-

mentation, Constraint Handling Rules Grammar (CHRG) [14] that is implemented on top

of Constraint Handling Rules (CHR) [32].

At first we wanted to use CHRG combined with ProFIT directly, however we encountered

a limitation as a result of the dependency of CHRG on CHR. The problem is with the

underspecification in lexical entries and licensed phrases and efficiency.

For efficiency we have decided to use feature structure descriptions for words and phrases

rather than word or phrase structures. For example, the CASE feature of a proper noun

like John is left underspecified. This reduces the memory needed to store the information of

this name to half. Otherwise we would have to provide lexical entries with two distinguished

CASE values or lexical rules to create two modified copies of a proper noun lexical entry,

one with CASE acc, and the other with CASE nom.

On the other hand, we would like an underspecified structure to be unifiable with a more

specific version of the structure. To use the built-in Prolog unification mechanism, we need

2Identifiers (including type names, and template names) in ProFIT cannot start with a digit.

CHAPTER 8. IMPLEMENTATION AND APPLICATION 239

to model underspecification by free variables that carry implicit universal quantifiers with

them.

If grammar rules are to be modeled by CHR rules, as done in CHRG, then word feature

structure descriptions and phrase feature structure descriptions need to be modeled by

constraints in the constraint store. However, free variables in the constraints of the CHR

constraint store do not have the universally quantified semantics. That is we cannot enjoy

the built-in unification mechanism of Prolog at the same time as the constraint handling

mechanism of CHR with the efficiency that is gained by underspecification in the lexicon.

As an example of this problem, consider the following sentence and let us focus on the

Head Specifier Rule (HSR). The feature structure description of the the verb walks, requires

a CASE nom specifier. By the HSR the CASE value of the specifier of walks and the proper

noun John need to be unified, which is impossible in CHR, and hence in CHRG.

(2) John walks.

The same kind of problem happens with the underspecified GEND value of the 3sing

agreement features. If CHRG is to be used then each lexical entry (or the lexical rules

that operate on them) must provide specific gender values for the feature GEND. This will

double the amount of the memory needed to handle words and phrases. When combined

with CASE feature and other features that are usually underspecified this creates a big

burden in terms of the amount of memory needed.

For this reason we have implemented a new CHR implementation that we call CHR′

based solely on Prolog, and a new CHRG that we call CHRG′ on top of CHR′. Other than

allowing the underspecified constraints, CHRG′ is semantically a subset of CHRG that only

provides the propagation operator (::>), which suffices to implement a bottom up grammar.

To avoid an extra mechanism to enforce grammar principles we apply all the principle

to each rule, which makes the rule longer than its HPSG version. For example the HSR rule

in our implementation is provided by the piece of code shown in figure 8.2.

Tags are implemented by free Prolog variables. These variables are unified with the

expression that follow them after the ‘&’ operator, and can be reused elsewhere in the same

statement.

exp is a CHRG′ constraint, with arity 4. This constraint is used to represent the feature

structure (description) of an expression with some extra information, namely, the name of

the rule that licensed it, its children in the phrase structure tree, and the list of words

CHAPTER 8. IMPLEMENTATION AND APPLICATION 240

exp(TAG1 & orth!EntryList1 & sem!(type!TYPE1 & restr!RESTR1) &

syn!(gap!GAP1 & gap_guards!GAP1_Guards), _, _, _),

exp(HEAD & orth!EntryList2 & syn!(head!(TAG2 & pred!<minus) &

sem!(SEM1 & type!TYPE2 & restr!RESTR2 & mode!MODE & index!INDEX) &

val!(spr![TAG1] & spr_guards![SprGuards] &

comps!COMPS & comps_guards!CompsGuards &

mod!MOD)

& gap!GAP2 & gap_guards!GAP2_Guards & stop_gap![]) & , _, _, _)

::>

and_list([

compatible_form(TAG2),

validateGuards(HEAD, TYPE1, SprGuards),

copy_sem(SEM1, SEM2, RESTR),

append(GAP1, GAP2, GAP0),

append(GAP1_Guards, GAP2_Guards, GAP_Guards0),

list_subtraction(GAP0, GAP_Guards0, [], GAP, GAP_Guards),

append(EntryList1, EntryList2, EntryList),

append(RESTR1, RESTR2, RESTR)

])

|

exp(<phrase & orth!EntryList & syn!(head!TAG2 & val!(

spr![] & spr_guards![] & comps!COMPS & comps_guards!CompsGuards & mod!MOD)

& gap!GAP & gap_guards!GAP_Guards & stop_gap![]) & sem!SEM2

, head_specifier_rule, [TAG1, HEAD], [EntryList1, EntryList2]).

Figure 8.2: The implementation of the HSR rule with CHRG′ and ProFIT

CHAPTER 8. IMPLEMENTATION AND APPLICATION 241

corresponding to each child. The feature structure is the first argument of exp. The second

argument is a Prolog atom that is the name of the grammar rule that licensed the expression.

The third argument is the list of subconstituent expressions (child expressions). And finally

the fourth argument is the list of list of words for each child expression.

Like CHRG we have used the ‘|’ operator to separate the guard with the output con-

straint. A guard in CHRG is a Prolog expression that must evaluate to true before the rule

can be applied.

The important duties of the guard of the above CHRG′ rule are maintaining the list of

semantic restrictions (predications), ensuring the semantic compositionality principle, ver-

ifying the specifier guards, realizing the gap principle, and maintaining the list of words

for the mother phrase. The compatible form predicate ensures that the head is finite for

verbs. And copy sem(SEM1, SEM2, RESTR) predicate just copies the semantic feature struc-

ture description SEM1 into SEM2 while leaving the semantic restriction feature of the copy

an open variable RESTR, which is later filled by the last append predicate that implements

the semantic compositionality principle.

8.1.3 Scope Resolution

In our implementation we have used a simple backtracking solution that given an outscope

relation graph with the binding conditions and constraints, tries all possible combinations

of sub-trees to build the final formula tree. Although this approach works fine for small

sentences and suits well for academic purposes, it may not scale well to longer sentences.

Very efficient scope resolution algorithms are developed by Niehren et al. [57], Fuchss et

al. [36], which can be adjusted and replace the current scope resolution algorithm to gain

more efficiency.

8.2 The User Interface

The main window of the user interface is partitioned into two main panels. The left hand

side panel shows the English specifications that are entered by the user and are parsed or

being parsed. Some information are provided with smaller font between each word. This

information includes:

CHAPTER 8. IMPLEMENTATION AND APPLICATION 242

• The location of the word in the whole text, which is a natural number starting with

one.

• The constant symbol that is associated with the context object that the word repre-

sents, if the word is a noun or a pronoun.

The words in this section are capable of being highlighted and responding to clicks, which

as we will see later are helpful for antecedent resolution, or informing the user about an

error.

The panel in the right contains the TFOL formulas that are translated from the English

specifications. Each formula in the right is associated with the equivalent English sentence

in the left with the same order.

The bottom section of the main window contains a text field to enter a new English

sentence, and a button that the user should click in order for the typed sentence to be

parsed. If the parse is successful the result will be added to the two specification panels.

Figure 8.3 shows the main window of the user interface with the parse result of the

sentence chris walks.

Figure 8.3: The main window of the user interface

CHAPTER 8. IMPLEMENTATION AND APPLICATION 243

8.2.1 Automatic Antecedent Resolution

The system is able to resolve antecedents automatically if the correct antecedent can be

inferred from the type restrictions of the verbs and the types of the nouns involved. For

example suppose teach is a verb that is defined only for professors. And Veronica is defined

in the lexicon to be an individual of type professor, and Cindy is an individual of type

human. Suppose the input English sentences to the system are:

(3) a. Chris walks.

b. Veronica talks.

c. Cindy sings.

d. She teaches NLP.

Without considering types, the antecedent of the pronoun She could refer to both Veron-

ica or Cindy. But type restrictions will narrow the choice of the antecedent to only Veronica.

This is correctly handled in our system, as shown in figure 8.4.

Figure 8.4: Automatic antecedent resolution

8.2.2 Manual Antecedent Resolution

If type restrictions cannot single out an antecedent for a reference, then the referent and

the candidate antecedents are shown in the English specification panel in bold font, and the

user is asked to click on the appropriate antecedent. This happens with the following input

sentences, where the antecedent of the possessive pronoun her cannot be automatically

determined:

CHAPTER 8. IMPLEMENTATION AND APPLICATION 244

(4) a. Veronica walks.

b. Cindy drives her car.

The user interface looks like what is shown in figure 8.5. The candidate antecedents

are bold and underlined, while the referent is just bold. The user must click on one of the

candidates for the parse to continue.

Figure 8.5: Manual antecedent resolution

8.2.3 Manual Choice among Multiple Readings

It is possible that an English sentence has more than one readings even after antecedent

resolution. Multiple readings could be due to different orderings of quantifiers, or different

structuring of the translated TFOL formulas. In such cases, all the possible TFOL readings

of the sentence are presented to the user, and the user should select the intended reading.

An example is the following sentence, that has multiple TFOL readings due to quantifiers

and different formula structuring. The user interface of this situation is shown in figure 8.6.

(5) Every man sings if he eats a cookie.

In our system we simplify the output formulas by converting them to a canonical form

and remove the duplicate interpretations.

8.2.4 Handling New Lexical Entries

The system is capable of adding new lexical entries to its lexicon. This can happen if a word

that is not defined in the lexicon is encountered in a sentence. We have only implemented

CHAPTER 8. IMPLEMENTATION AND APPLICATION 245

Figure 8.6: Manual choice of the intended reading among multiple interpretations

the addition of new verbs and new nouns. However, addition of other parts of speech is

indeed easy.

Upon encountering an unknown word, the system asks the user if it is a verb or a

noun. For verbs, the user is asked to choose the specific type of the verb among Strictly

Intransitive, Prepositional Intransitive, Strictly Transitive, Ditransitive and Prepositional

Transitive. This is shown in figure 8.7 for the following sentence, where the verb smiles has

not been defined before.

(6) Chris smiles.

Then the user is asked to fill the details of the base form of the new verb in the form

shown in figure 8.8. The user can enter the predications associated with the base form of the

verb. Up to 3 predications are supported in the current implementation of the user interface,

however there is no theoretical neither practical limit for this. For every predications, we

have a maximum of 3 arguments with their roles. User should specify the argument type

by selecting one of “None”, “Individual”, “Situation” options. If “Individual” is selected,

the argument will be an individual index. If “Situation” is selected, the argument will be

a situation index. “None” should be selected for a value that is not an index, or for a role

that is not used.

After filling the required information, a new lexical entry is added, and all forms of the

CHAPTER 8. IMPLEMENTATION AND APPLICATION 246

Figure 8.7: Asking the transitivity of a new verb

Figure 8.8: Asking the details of a new verb

CHAPTER 8. IMPLEMENTATION AND APPLICATION 247

verb become known to the system.

If a new noun is encountered, the user is asked to specify if the noun is a proper noun

or a count noun.3 Figures 8.9 and 8.10 show the detection of the new noun course and

acquisition of its lexical definition.

Figure 8.9: Encountering a new noun

As said in previous chapters, a count noun carries a reference to a domain type. The

user interface asks the user to specify if this type is a new type or an alias of a type already

existing in the domain type hierarchy. This is achieved by the “Is an alias” check box. If

this box is checked, it means the count noun refers to an existing type. This type should be

entered in the “(Super) Type” text field. If the count noun introduces a new type into the

domain type hierarchy, then this field specifies its immediate super-type. The instantiate

and discourse predications are automatically added. If extra and special predications are

needed for a noun, they can be entered in the dialog box shown in figure 8.10. “Semantic

Index” and “Situation” input fields are only relevant in case additional predications should

be entered. “Semantic Index” is the individual index used to refer to the context object

3Mass nouns are not considered in this thesis, as their analysis is very demanding and outside the scope
of this thesis.

CHAPTER 8. IMPLEMENTATION AND APPLICATION 248

Figure 8.10: Asking the details of a new noun

introduced by the count noun, and “Situation” is the situation index that refers to the event

of its presence.

8.3 Application

The grammar and parser and the interactive user interface that we developed can be used

to enter Controlled English specifications in a sense that has been also used in Attempto

project [35, 33]. The advantages of our system could be summarized as:

• Our system uses a dynamic ontology that can be enhanced when entering specifica-

tions.

• It is more difficult to enter an invalid specification as a result of type restrictions. In

other words, our system is more mistake resistant.

• The use of domain types results in less candidates for antecedent resolution. Thus

choosing an interpretation of a sentence is more automatic and preciser than the

Attempto project.

CHAPTER 8. IMPLEMENTATION AND APPLICATION 249

One potential application of our system is parsing use cases. Use cases describe the

behavior of a system when it interacts with the outer world. The system can be as small as

a vending machine or as large as a whole organization. Since the format of use cases is plain

text with simple grammar, it could be possible to use a Controlled Language (e.g., based

on the grammar we developed in this thesis) with a parser (e.g. the parser we developed in

this thesis) to parse and process the use cases.

Since we have incorporated semantics into our grammar, each sentence that is parsed

by our system carries a meaningful semantics. Combined with reasoning resources (e.g.,

theorem provers and model builders that we have not considered in this thesis) we will have a

stronger system for maintaining use cases, that detects inconsistencies (by theorem provers)

or completeness (by model builders). This architecture is similar to the one proposed by

Schwitter et al. in [68], however our system has the advantage of using a type system.

In use cases, verbs usually indicate operations that are performed by some entities (actors

in the use case terminology). In our grammar each verb has a type restriction, which

specifies the acceptable types of the verbs arguments. In other words type restrictions of

verbs determine the types of the entities that are involved in the corresponding operation.

The presence of this strong typing in the controlled language results in preciser use cases

by rejecting some invalid use cases that contain some type mismatches. Next we will see

how this can help maintaining use cases and process re-engineering.

8.3.1 A Sample of Structural Change and Affected Use Case Identifica-

tion

Example 8.1 Suppose the system under discussion or SuD (which is the system for which

we are writing a use case) is part of Citizenship and Immigration Canada, where a hypothet-

ical change of the organization occurs. We consider a use case that describes the business

process of issuing a study permit for an international student. The change of organization is

first done on the domain model, and we see that with our type system the affected use case

can be identified, because it cannot be parsed any longer. This will automatically identify

the affected use cases, that also need to be modified.

The partial current status of the organization is given by the domain type hierarchy

shown in figure 8.11, and the following use case. The facts here are adjusted and simplified

for ease of illustration.

CHAPTER 8. IMPLEMENTATION AND APPLICATION 250

physical

all

human

student worker foreign permanent_resident citizen

document

form admission_letter permit

study_permit work_permitaplication_form

IMM1294_aplication_form IMM1295_aplication_form

office

visa_office

Figure 8.11: Initial domain type hierarchy of the study permit example

Since each student falls exactly in one of foreign, permanent resident, citizen, we can

consider the domain type of the word student as a general (abstract) type.4 That is:

student : spec(student)

Same goes for a worker:

worker : spec(worker)

The adjective foreign can be defined in the lexicon with the type restriction:

{(modified, foreign)}

With this type restriction, the type of the phrase foreign student will be:

spec(student ∗ foreign)

This demonstrates how a modifier can add information to the type of the general (abstract)

modified expression.

In the following use case the phrases admission letter, application form, visa office are

defined as multi word lexical entries, because we have not discussed nouns (such as visa in

visa office) that can act as modifiers. These noun modifiers can be declared in the lexicon

with non-empty MOD and MOD-GUARD features. The analysis would be very similar to

adjectives. Moreover letter, form, and office can be defined as general classes, i.e., with

4See section 2.3.3.

CHAPTER 8. IMPLEMENTATION AND APPLICATION 251

specializable types in the lexicon.

Preconditions:

A university in Canada admitted a foreign student.

The student received an admission letter from the university.

Main Success Scenario:

1. The student obtains an IMM1294 application form and She/he fills it.

2. She/he attaches the admission letter to the application form.

3. She/he submits the application form to a visa office.

4. The visa office verifies the admission letter.

5. It records the application form.

6. It issues a study permit for the student.

7. It sends the permit to the student.

The type restrictions of the verbs, i.e. suitable argument types of operations in the use

case are as follows. These can be thought of as operation signatures of the domain. Some

entries of the following table is from common sense.

Table 8.1: Operation signatures

Operation Subject Type Object 1 Type Object 2 Type

admit university student

receive human document

obtain human document

fill human form

attach human document (to) document

submit foreign student IMM1294 application form (to) visa office

submit foreign worker IMM1295 application form (to) visa office

verify office document

record office document

issue visa office study permit (for) foreign student

issue visa office work permit (for) foreign worker

send office document (to) human

Now suppose for expediting the process of applications the visa office decides to have

two separate units with different addresses, namely a study permit unit and a work permit

CHAPTER 8. IMPLEMENTATION AND APPLICATION 252

unit. According to the new rules, students should submit their application to the study

permit unit and workers should submit their application to the work permit unit. This will

result in the following changes in the operation signature.

Table 8.2: The modified operation signatures of the Study Permit ex-

ample

Operation Subject Type Object 1 Type Object 2 Type

submit foreign student IMM1294 application form (to) study permit unit

submit foreign worker IMM1295 application form (to) work permit unit

issue study permit unit study permit (for) foreign student

issue work permit unit work permit (for) foreign worker

The new domain type hierarchy is shown in figure 8.12. The additional domain facts

are:

Every visa office has a study permit unit.

Every visa office has a work permit unit.

physical

all

human

student worker foreign permanent_resident citizen

document

form admission_letter permit

study_permit work_permitaplication_form

IMM1294_aplication_form IMM1295_aplication_form

office

visa_office

study_permit_unit work_permit_unit

Figure 8.12: The modified domain type hierarchy of the study permit example

With this change that has affected the type restrictions in our system, the previous use

case cannot be parsed anymore. This is in correspondence with the fact that with the new

regulations a student cannot submit a study permit application (IMM1294) simply to a visa

office. Instead she/he should submit the application to the study permit unit.

CHAPTER 8. IMPLEMENTATION AND APPLICATION 253

So the use cases that are maintained by our interactive parser/analyzer, are not just

arbitrary pieces pf plain text but are sensitive to the domain model (ontology).

This is in analogous to a change in the design of a piece of software code that could

initially result in some compilation errors through the rest of the code. The errors actually

point out to the affected areas of the source code that need to be fixed. This is useful

because the system automatically points out to the parts that need to be adapted to the

new design.

By using the type-aware parser we not only reject some invalid use cases at the time of

entry, but also we are able to detect the use cases that need to be modified as a result of

some change in the domain model of a system. The main success scenario of our example

should be then modified to:

Main Success Scenario:

1. The student obtains an IMM1294 application form and fills it.

2. She/he attaches the admission letter to the application form.

3. She/he submits the application form to a study permit unit.

4. The study permit unit verifies the admission letter.

5. It records the application form.

6. It issues a study permit for the student.

7. It sends the permit to the student.

This is just an example of a document that is sensitive to an ontology (domain model).

Applications of such documents are not limited to use cases. They can be used for other

purposes such as software documentation, inline source code documentation, or user man-

uals of products. Using such domain model sensitive documents ensures that the whole

documentation maintains its integrity with regards to an ontology.

8.3.2 Relevance of Narrow Scope Variable Binding Condition to Semantic

Analysis of Use Cases

In our framework the Narrow Scope Variable Binding Condition is necessary for extracting

the semantics of any natural language sentence that has an adverb or a prepositional modifier

that modifies a verb phrase or a sentence. The reason is illustrated in the example of

analyzing sentence (71) of chapter 6. Since use cases are written in natural language, use of

adverbs or prepositional phrases modifying verbs or sentences is inevitable. So the controlled

CHAPTER 8. IMPLEMENTATION AND APPLICATION 254

language that is chosen for documenting the use cases should cover adverbs and prepositional

modifiers. For example, consider this simple use case of an automated Call Center System

(CCS) of a bank.

Example 8.2 The system under discussion is an automated call center system that re-

ceives phone calls from the customers of a bank named TbBank and forwards the calls to

the appropriate personnel.

Main Success Scenario:

1. A customer calls TbBank during office hours.

2. CCS receives the call.

3. CCS plays a recorded message that asks the customer to enter a staff member extension

number.

4. The customer enters an extension number with the phone’s keypad.

5. CCS forwards the call to a staff member with that extension number.

6. A conversation between the staff member and the customer starts.

7. CCS ends the call after the conversation is over.

The first sentence of this use case uses a prepositional modifier during office hours. The

lexical entry for the preposition during is presented below.

(7)

word

ORTH [during]

SYN

HEAD prep

VAL

SPR 〈〉

COMPS
〈

NPu

〉

COMPS GUARDS

〈〈

:time period
〉〉

MOD

〈

MODIFIED St

AFTER +

MOD-GUARD Bool

〉

SEM

INDEX s

RESTR

〈

predication

RELN during

SIT s

EVENT1 t′

EVENT2 u′

,

predication

RELN outscope

OUTER t′

INNER t

,

predication

RELN outscope

OUTER u′

INNER u

,

〉

The predication during is a scopal modification predication that we declare as a narrow

scopal predication. With this declaration, the only possible TFOL semantic representation

of the first sentence of the use case will be:

CHAPTER 8. IMPLEMENTATION AND APPLICATION 255

(8) c1 : bank ∧ name(TbBank, c1)

∧ ∃c2 : customer ; during(time present(call(c2, c1)), office hours)

The predication during is translated to a TFOL predicate symbol during with two

arguments. The first argument in this example is the event of calling, and the second

argument is the event of office hours.

Without the Narrow Scope Variable Binding Condition the sentence could be parsed to

the extra erroneous reading:

(9) ∃c2 : customer ; during(

c1 : bank ∧ name(TbBank, c1) ∧ time present(call(c2, c1)), office hours)

This erroneous reading implies that the naming of the bank also occurs during the office

hours which is wrong and not implied by the natural language sentence. In this instance,

the error happens even if the outscope predications from the definition are removed.

8.3.3 Tense Predications and Use Cases

Each sentence in a use case has a step number. A use case comprises of a series of steps.

Time can be thought of as the ordering of these steps. In this light, tense predications can

be adjusted to refer to the steps in use cases. For example time present could mean “at the

current step in the use case”, and time past could mean “at a previous step in this use case

or at the time of the entry to the current use case (refers to the precondition)”. Although

very important, we cannot cover this topic in this thesis. It will remain as a future work.

8.4 Conclusion

In this chapter we described how we have implemented our interactive parser and how its

user interface can be used. We also provided some potential application of our parser in the

area of domain modeling. Our contributions in this chapter were:

• The CHRG′ language for implementing unification based typed feature structure gram-

mars.

• Development of a user interface capable of interacting with the user by click sensitive

text used in manual antecedent resolution. The user interface supports entering new

lexical items.

Chapter 9

Conclusions and Future Work

9.1 Conclusion

In the first part of this thesis we advocated the use of a strong type system for the application

domain of a grammar. We noted requirement texts specifically use cases as a special kinds

of text that are remarkably dependent on a domain model or ontology. We discussed how

a type system can enhance the accuracy of parsing sentences by reducing ambiguity and

rejecting sentences with type mismatches. Thus we promoted the use of a grammar that is

domain type aware for parsing such texts.

We first explored some of the existing grammars that apply a type system and discussed

their limitations. We then developed a type system that could be seen as an extension of the

typed lambda calculus. We used our notion of type restrictions as a method of expressing

semantic selection restrictions. We demonstrated how the type system with the concept

of type restrictions for each lexical entry can reduce ambiguity in parsing and in semantic

analysis of English sentences.

We designed our type system in such a way that it is capable of handling multiple

inheritance efficiently, without the need of type encoding (encodings such as described by

Fall in [31]). We called the types that inherit from multiple parents in the type hierarchy

composite types. Composite types together with simple atomic types comprise the set of

natural types. As part of the type system, we introduced the specializable types inspired by

the incomplete types introduced by Dahl [23] and negated types, and showed how they can

be useful to map the domain type of pronouns and general (abstract) nouns. We extended

the concept of subtypes to these extended types.

256

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 257

We then elaborated on the details of the type system and studied its characteristics by

several theorems. We provided a high level implementation of the type system in pseudo-

code with efficient algorithms that reduced the subtype checking among composite, special-

izable, and negated types to subtype checking among simple types.

Along the way we proposed alternative but equivalent views of type restrictions. In the

final view, satisfaction of type restrictions is proven equivalent to subtype checking among

the actual types of the arguments of an expression and the expected type of its arguments.

In the second part of the thesis we set out for combining the developed type system

with HPSG grammar formalism based on Sag et al. [67]. In doing so we first introduced

the HPSG framework, and introduced its internal type system for dealing with grammar

entities. Then we described the syntax part of the grammar. Finally we explained the

semantic component of the grammar.

In the semantic component we had several contributions, such as the incorporation of

discourse analysis by introducing discourse predications, and several binding conditions and

constraints that are necessary to construct the correct structure of the predicate calculus

formula that carries the semantics of the parsed sentence. These constraints and bind-

ing conditions were namely, Quantifier Restriction Constraint, Quantifier Scope Constraint,

Quantifier Variable Binding Condition, Narrow Scope Variable Binding Condition. Nar-

row binding condition was introduced to handle the structure of the formulas with scopal

modifier predicates correctly.

We then showed how the type system can be integrated to the grammar by using new

features TYPE, SPR GUARDS, COMPS GUARDS, MOD GUARD. This is incorporated

to the grammar that was developed in the two previous chapters. We briefly showed how

the grammar integrated with the type system can be used for antecedent resolution.

In the third part of the thesis, we discussed how we implemented the grammar and the

parser. We described how we implemented our bottom-up parser by a variant of CHRG

[14] that we call CHRG′. We showed why the original CHRG cannot be used. Then

demonstrated with a few examples how the user interface of our program can be used. We

showed that our system is able to capture new lexical entry definitions such as new verbs

and new nouns. We also argued that the system can be applied to parsing requirement texts

or use cases by an example.

We believe our approach can be used in programs such as RavenFlow [64] that maintain

requirements, to enhance its capabilities to parse and analyze requirements. For example

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 258

in [65], on page 19 the user is cautioned to beware of situations where the antecedent of

a syntactically ambiguous pronoun could be construed automatically by their system as

referring to a wrong antecedent. This error is due to RavenFlow ’s heuristics, which map

pronouns to the nearest noun (matching their case, gender and number), are insufficient,

because types are ignored. Using a domain type aware grammar like the one we developed

in this thesis can alleviate these problems.

An example is the following piece of requirement where the pronoun he is automatically

and incorrectly interpreted as referring to no analysis by the RavenFlow software:

“If the ECO manager determines that no analysis is needed, then he enters the ECOR

on the weekly Change Review Board agenda. Otherwise, the ECO manager sends the

incomplete ECOR to the lead engineer.”1

If our type system is used, then such wrong interpretations would be automatically

rejected.

9.2 Contributions

Our main contributions can be summarized by:

• An efficient application-domain type system, capable of dealing with multiple inheri-

tance, specializable and negated types at the same time, with the ability of modifying

the type hierarchy on the fly with no significant cost.

• Implementing the notion of type restrictions with our type system.

• Incorporating discourse predications to deal with the discourse.

• Discovering necessary constraints and binding conditions to allow structurally correct

predicate calculus formulas.

• Integrating the type system to the HPSG framework with the modified MRS.

• Applying the grammar with the domain type system for better antecedent resolution.

1Taken from RavenFlow Requirements Writing Guide [65].

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 259

9.3 A Limitation

For anaphora resolution, our system finds the candidate antecedents by matching syntactic

feature agreement and type compatibility. This works fine for referents and antecedents

that are not modified by an adjective or a relative clause. However, with the presence of

such modifiers further semantic analysis is needed to rule out some of the antecedents.

Consider the following discourse as an example:

(1) a. A red car is on a street.

b. A blue car is on the street.

c. The red car is speeding.

Our system suggests the blue car introduced by sentence (1b) (as well as the red car in-

troduced by sentence (1a)) as a candidate antecedent of the red car in sentence (1c). This

is due to the limitation that our system does not analyze adjectives in finding the right

antecedent.

A similar situation happens with relative clauses as shown in the following example,

where it is needed to analyze the relative clauses for ruling out the wrong antecedents.

(2) a. A red car is on a street.

b. A blue car is on the street.

c. The car which is red is speeding.

This task in general requires automated reasoning as the sentences grow in complexity.

For example consider the following scenario:

(3) a. Chris speaks only English.

b. John knows only the French language.

c. Mary is speaking to John and John is speaking to Mary.

d. John understands what Mary says.

e. The person who is not speaking French is jealous.

Our system suggests Chris, John and Mary as candidates of the person who is not speaking

French, although John and Mary should have been ruled out.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 260

9.4 Future Work

An interesting future direction of research would be to apply a reasoning component for

use in a complete requirement analysis system. This reasoning component could be inte-

grated to anaphora resolution mechanism to alleviate the limitation that we discussed in

the previous section. Also, the reasoning component can be integrated with the scope reso-

lution subsystem to weed out semantically duplicate formulas with different tree structures,

and also to answer queries, and to check the consistency and completeness of the entered

specifications.

Another good research direction would be to study on the correspondence of the seman-

tics of tense predications and the steps in use cases.

Among the possible applications of our system, a very interesting one is ontology-

sensitive source code documentations, or user manuals of different products.

Another possible extension is to develop rich user interfaces for entering and maintaining

the specifications. For example we have not implemented the modification of the specifi-

cations that are already entered. This would be certainly necessary in a real application.

A related future work is to develop verbalizers for TFOL specifications. With this feature

it would be possible for the user to modify the TFOL specifications and have the updated

English specifications as a result of the verbalizer automatically.

Along with the lines of the user interface, it is very desirable to have a look-ahead parser

like the one proposed and implemented by Schwitter et al. [68] to help the user enter English

sentences more easily into the system by informing her/him what kind of word (i.e., part

part of speech) is expected to be typed next. This will alleviate the need of training to learn

the details of the controlled language that is described by the grammar.

Appendix A

General Subtype Checking

Algorithm

We assume all negated types use triangular types whose parents are also triangular. V and

X are free and different variables. We assume the jump expressions in A, B are reduced

to their simplest form. The return value of the function is the nil set if the formula does

not hold or is not satisfiable. If the formula holds or is satisfiable and no variables occur

in A, then the return value is an empty set. If a variable occurs in A, and the formula is

satisfiable, then the return value is the set of answers (specializable or not).

Program A.1: The general algorithm of subtype checking

function subtype(A : BasTyp, B : BasTyp) : set of answers

begin

if is natural(A) and is natural(B) then

return subtype natural(A, B)

/* By theorem 3.38 */

if A = τ y V and is natural(B) and B = σ then

if not disjoint(τ, σ) then

return {τ ∗ σ y Vh}

else

return nil

end if

261

APPENDIX A. GENERAL SUBTYPE CHECKING ALGORITHM 262

end if

/* By theorem 3.40 */

if is natural(A) and A = τ and B = σ y V then

return subtype(τ, σ)

end if

/* By theorem 3.45 and remark 3.46 */

if A = τ y V and B = σ y V then

µ← most general common subtype(τ, σ)

if µ 6= nil then

return {µ y Vh}

else

return nil

end if

end if

/* By theorem 3.47 */

if A = τ y V and B = ω y X then

return subtype(A, ω)

end if

/* By theorem 3.50 */

if A = τ − σ and is natural(τ) and is natural(B) and B = ω then

if subtype(τ, σ) then

return nil

return is partition(τ, ω, σ) or subtype(τ, ω)

end if

/* By theorem 3.51 */

if is natural(A) and A = τ, and B = ω − σ and is natural(ω) then

if subtype(ω, σ) then

return nil

return disjoint(τ, σ) and subtype(τ, ω)

end if

/* By theorem 3.52 */

if A = τ − σ and B = ω − σ and is natural(τ) and is natural(ω) then

if subtype(ω, σ) or subtype(τ, σ) then

APPENDIX A. GENERAL SUBTYPE CHECKING ALGORITHM 263

return nil

return is partition(τ, ω, σ) or subtype(τ, ω)

end if

/* By theorem 3.53 */

if A = τ y V − σ and is natural(B) and B = ω then

Result← ∅

if is partition(p, ω, σ) then

if subtype(p, τ) then

Result← Result ∪ {p}

end if

end if

/* By theorem 3.38 the output of the following */

/* recursive call is a singleton */

{µ y X} ← subtype(τ y V , ω)

M ← most general common subtypes not contained by(µ, µ, σ)

Result← Result ∪M

n = |Result|

if n > 0 then

return Result

else

return nil

end if

/* By theorem 3.54 */

if A = τ − σ and B = ω y V and is natural(τ) then

return subtype(τ − σ, ω)

end if

/* By theorem 3.55 and remark 3.57 */

if A = τ y V − σ and B = ω y V then

return most general common subtypes not contained by(τ, ω σ)

end if

/* By theorem 3.58 */

if A = τ y V − σ and B = ω y X then

return subtype(A, ω)

APPENDIX A. GENERAL SUBTYPE CHECKING ALGORITHM 264

end if

/* By theorem 3.59 */

if is natural(A) and A = τ and B = ω y V − σ then

if disjoint(τ, σ) then

return subtype(A, ω y V)

else

return nil

end if

end if

/* By theorem 3.60 and remark 3.63 */

if A = τ y V and B = ω − σ and is natural(ω) then

/* By theorem 3.38 the output of the following */

/* recursive call is a singleton */

{µ y X} ← subtype(A, ω)

M ← most general disjoint subtypes(µ, σ)

n = |M |

if n > 0 then

Result← ∅

for each µi ∈M do

Result← Result ∪ {µi y Vh+i}

end for

return Result

else

return nil

end if

end if

/* By theorem 3.64 and remark 3.65*/

if A = τ y V and B = ω y V − σ then

Result← ∅

µ← most general common subtype(τ, ω)

if µ 6= nil then

N ← most general disjoint subtypes(µ, σ)

for each µi ∈ N do

APPENDIX A. GENERAL SUBTYPE CHECKING ALGORITHM 265

Result← Result ∪ {µi y Vh+i}

end for

end if

if |Result| > 0 then

return Result

else

return nil

end if

/* By theorem 3.67 */

if A = τ y V and B = ω y X − σ then

return subtype(A, ω − σ)

end if

/* By theorem 3.68 */

if A = τ y V − σ and B = ω − σ and is natural(ω) then

if subtype(ω, σ) then

return nil

return subtype(A, ω)

end if

/* By theorem 3.69 */

if A = τ − σ and B = ω y V − σ and is natural(τ) then

return subtype(A, ω − σ)

end if

/* By theorem 3.70 and remark 3.71 */

if A = τ y V − σ and B = ω y V − σ then

return most general common subtypes not contained by(τ, ω, σ)

end if

/* By theorem 3.72 */

if A = τ y V − σ and B = ω y X − σ then

return subtype(A, ω − σ)

end if

/* This should not happen:*/

print "Warning : an unknown case encountered!"; return nil

end

Appendix B

Proof of Theorems

Proof of Theorem 3.38:

• (a) By applying theorem 3.24 τ ∦ σ is proved. For the second conjunct we observe

that if we set ω = τ ∗ σ and R = ⊑ in definition 3.32, then the first condition of

being the most general specializable answer (statement (7) of chapter 3) is trivially

true. The second condition (statement (8) of chapter 3) can be re-written as:

(1) ∀τ0 ∈ NatTyp . (τ0 ⊑ τ ∧ τ0 ⊑ σ)⇐⇒ τ0 ⊑ τ ∗ σ

which holds because of theorem 3.14. Thus both conditions hold and by definition 3.32

τ ∗ σ is the most general answer of V and the proof of (a) is complete. 2

• (b) First we observe that since τ and σ are not disjoint, by definition of composite

types (definition 3.7), τ ∗ σ is a well-formed composite type. Next we prove that

(2) τ y V ⊑ σ

is satisfiable by showing that τ ∗ σ is an answer for V . If we replace τ ∗ σ for V in (2)

we get:

(3) τ y (τ ∗ σ) ⊑ σ

The left hand side of ⊑ in the above statement is equal to τ ∗ σ by definition of

jump expressions (definition 3.16). So the truth value of (3) is equal to the following

statement:

266

APPENDIX B. PROOF OF THEOREMS 267

(4) (τ ∗ σ) ⊑ σ

which holds by theorem 3.9. So (4) and consequently (3) are true, and (2) is satisfiable.

Now part (a) is applicable and the value of most general answer will be equal to what

is needed. 2

Proof of Theorem 3.40:

• ⇒) Suppose τ ⊑ σ y V is satisfiable, then by definition 3.23 there should be a natural

type ω such that

(5) ω ⊑ σ

(6) τ ⊑ σ y ω

By definition of jump expressions (definition 3.16), σ y ω = ω and (6) becomes:

(7) τ ⊑ ω

By applying the transitivity of ⊑ on (5) and (7) we get:

τ ⊑ ω ⊑ σ

Hence:

τ ⊑ σ 2

• ⇐) Suppose τ ⊑ σ, then V can be set to σ and

(8) τ ⊑ σ y V

becomes:

τ ⊑ σ y σ, which is equal to:

τ ⊑ σ, which is true by the supposition.

So, σ is an answer to (8) and thus (8) is satisfiable. 2

Proof of Theorem 3.45:

• a) Suppose v1 is an answer to V satisfying τ y V ⊑ ω y V , then we have:

τ y v1 ⊑ ω y v1

APPENDIX B. PROOF OF THEOREMS 268

This requires:

v1 ⊑ τ

v1 ⊑ ω

This means v1 is a common subtype of τ , ω, and hence is a subtype of the most general

common subtype of τ and ω. 2

• b) Suppose µ is the most general subtype of τ , ω, and that v1 is an arbitrary subtype

of µ, then we have:

v1 ⊑ µ

So,

v1 ⊑ τ

v1 ⊑ ω

Hence the following jump expressions are well-formed according to the definition of

jump expressions (definition 3.16), and they are both equal to v1:

τ y v1

ω y v1

So, we can write:

τ y v1 ⊑ ω y v1

This means that v1 is an answer to V satisfying τ y V ⊑ ω y V 2

Proof of Theorem 3.47:

• a) Suppose (v1, x1) is an answer to (V , X) satisfying τ y V ⊑ ω y X, then we have:

(9) τ y v1 ⊑ ω y x1

According to the definition of jump expressions (definition 3.16) we have:

(10) x1 ⊑ ω

(11) ω y x1 = x1

So we can substitute x1 for ω y x1 in (9) and we get:

(12) τ y v1 ⊑ x1

Now by the transitivity of ⊑ and applying it on (12), (10) we get:

APPENDIX B. PROOF OF THEOREMS 269

(13) τ y v1 ⊑ ω

This means that v1 is an answer to V satisfying τ y V ⊑ ω 2

• b) Suppose v1 is an answer to V satisfying τ y V ⊑ ω this means:

(14) τ y v1 ⊑ ω

According to the definition of jump expressions (definition 3.16) we can write:

ω y ω = ω, and we can re-write (14) as:

(15) τ y v1 ⊑ ω y ω

And this means that (v1, ω) is an answer to (V , X) satisfying τ y V ⊑ ω y X 2

Proof of Theorem 3.48:

Suppose τ − σ ⊑ ω (assumption =⇒)

Immediately according to definition 3.26 for τ − σ to be a well-formed type expression it is

required that:

(16) τ ⊑/ σ

Since σ is triangular by the hypotheses of the theorem we are left with the following cases

due to definition 3.37:

(17) τ ⊑ σ

(18) σ < τ

(19) τ ‖ σ

But (17) cannot be the case because it contradicts with (16).

Suppose (19) is the case, that is, τ and σ are disjoint. Then any instance x of τ is not

an instance of σ and hence is an instance of τ − σ, so τ ⊑ τ − σ, but on the other hand any

instance of τ − σ must also be an instance of τ , that is, τ − σ ⊑ τ , and we have:

τ − σ = τ

so the assumption =⇒ can be re-written as:

τ ⊑ ω

APPENDIX B. PROOF OF THEOREMS 270

which is one disjunct in the proposition that we want to prove, and so the theorem is proved

in this case.

So the only remaining case is (18), that is : σ < τ , this means that τ is a natural super

type of σ and by the hypotheses of this theorem it is required that τ is a triangular type.

This means for the natural type ω we have the following cases by definition 3.37:

(18.1) ω ⊑ τ

(18.2) τ < ω

(18.3) ω ‖ τ

− (18.3) cannot be the case. The reason is that according to definition 3.26, Iτ−σ 6= ∅,

so there is an element x : τ−σ, which by the assumption (=⇒) and an application of (SUB)

we must also have x : ω, but x : τ − σ requires that x : τ , so x is an instance of both τ and

ω and so these two types cannot be disjoint.

− If (18.2) is the case, then the proposition of the theorem is trivially proved.

− If (18.1) is the case, we break down the cases of the triangular type σ against ω, and

we will have:

(18.1.1) ω ⊑ σ

(18.1.2) σ < ω

(18.1.3) ω ‖ σ

−− Assume (18.1.1), then:

Iτ−σ 6= ∅ (by definition 3.26 of negated types)

⇒ there is an instance x : τ − σ

⇒ x : τ ∧ ¬(x : σ) (by applying (NEG))

⇒ x : ω (by assumption (=⇒)).

⇒ x : σ (by applying (SUB) on the assumption (18.1.1) : ω ⊑ σ)

And we have a contradiction because x is an instance of σ while at the same time it is not

an instance of σ. So this case is not possible.

APPENDIX B. PROOF OF THEOREMS 271

−− Assume (18.1.2), that is, σ < ω, then by combining the assumption (=⇒) with

assumption (18.1) we get:

τ − σ ⊑ ω ⊑ τ

Now if an arbitrary instance x of τ is not an instance of ω then we have:

(20) x : τ ∧ ¬(x : ω)

then x cannot be an instance of σ because by assumption (18.1.2), if that was the case then

by applying (SUB) x would be an instance of ω too, which is contradictory to (20), so:

¬(x : σ)

and since x was assumed to be an arbitrary instance of τ , and what we derived above, by

the definition of negated types we have:

x : τ − σ

and by assumption (=⇒) and applying (SUB):

x : ω

which is again contradictory to (20).

So every instance of τ is an instance of ω and thus:

τ ⊑ ω

which is one disjunct of the proposition of this theorem, and the theorem is proved in this

case.

Note that in this case we have τ = ω, because of what we proved above and the assumption

(18.1)

−− The only remaining sub-case is (18.1.3) in which we have the following assumptions:

assumption (=⇒) : τ − σ ⊑ ω

assumption (18) : σ < τ

assumption (18.1) : ω ⊑ τ

assumption (18.1.3) : ω ‖ σ

For this sub-case we will prove here that τ can be partitioned into σ and ω, which is one

disjubct of the proposition of this theorem. Both σ and ω are disjoint subtypes of τ by the

above assumptions. So according to definition 3.35, we only need to prove:

Iτ = Iσ ∪ Iσ

APPENDIX B. PROOF OF THEOREMS 272

which can be broken down into two parts:

(part i) Iσ ∪ Iω ⊆ Iτ

(part ii) Iτ ⊆ Iσ ∪ Iω

The first part is true because σ and ω are subtypes of τ and by corollary 3.2 we have

Iσ ⊆ Iτ and Iω ⊆ Iτ so the union Iσ ∪ Iω must also be a subset of Iτ by set theory results.

For the second part, suppose x is an arbitrary instance of τ then we have either:

(21) x : σ

(22) ¬(x : σ)

If (21) is the case, then x ∈ Iσ and by set theory results also x ∈ Iσ ∪ Iω.

If (22) is the case, then by the definition of negated types x : τ − σ, because x was

assumed an arbitrary instance of τ , and by (22) x is not an instance of σ.

then by assumption (=⇒) we have:

x : ω

⇒ x ∈ Iω

⇒ x ∈ Iσ ∪ Iω (by set theory results)

So in both cases (21) and (22) we proved that the arbitrary member x of Iτ is also a

member of Iσ ∪ Iω. So we have:

Iτ ⊆ Iσ ∪ Iω

And Iτ = Iσ ∪ Iσ by combining the two parts (i) and (ii) above.

So the proof that τ can be partitioned into σ and ω is now complete. That is:

τ = (ω | σ)

which is one disjunct in the proposition that we need to prove.

So for all cases, at least one disjunct of the proposition is true, and the theorem is proved.

Proof of Theorem 3.49:

Case 1) Suppose τ ⊑ ω, then we have:

APPENDIX B. PROOF OF THEOREMS 273

(23) Iτ ⊆ Iω

But according to theorem 3.27, τ − σ ⊑ τ and by applying corollary 3.2 we get:

(24) Iτ−σ ⊆ Iτ

Now by combining (23) and (24) and the transitivity of ⊆ we get:

Iτ−σ ⊆ Iω

And by corollary 3.2 we get:

τ − σ ⊑ ω

And the theorem is proved in this case.

Case 2) Suppose τ = (ω | σ), then for an arbitrary instance x of τ − σ we have:

x : τ − σ

⇒ x : τ ∧ ¬(x : σ)

Now since τ is partitioned into σ and ω and every instance of τ is either an instance of σ

(which is not the case for x here) or an instance of ω:

⇒ x : ω So we proved every arbitrary instance of τ − σ is also an instance of ω that is:

τ − σ ⊑ ω

And the theorem is proved in this case too.

Proof of Theorem 3.50:

By combining theorems 3.48 and 3.49.

Proof of Theorem 3.51:

• =⇒) Suppose τ ⊑ ω − σ, this means any instance of τ is an instance of ω − σ which

by definition 3.26 of negated types must be an instance of ω but not an instance of σ.

When separated clearly, we have:

any instance of τ is an instance of ω that is, τ ⊑ ω

any instance of τ is not an instance of σ so there is no common instance between

these two types, that is, τ ‖ σ.

The first conjunct in the proposition immediately follows because of the well-formedness

of ω − σ. 2

APPENDIX B. PROOF OF THEOREMS 274

• ⇐=) Suppose ω ⊑/ σ ∧ τ ⊑ ω ∧ τ ‖ σ, then any arbitrary instance x of τ we have:

x : τ

then by the τ ⊑ ω part of assumption (⇐=) and an application of (SUB) we get:

(25) x : ω

also by the τ ‖ σ part of assumption (⇐=) we know that there is no common instance

of τ and σ, so:

(26) ¬(x : τ)

Now since ω ⊑/ σ, ω − σ is a well-formed type and by combining (25) and (26) and

applying the definition 3.26 of negated types we get:

x : ω − σ

So any arbitrary instance of τ is an instance of ω − σ, that is:

τ ⊑ ω − σ 2

Proof of Theorem 3.52:

• =⇒) Suppose τ − σ ⊑ ω − σ:

Because of the well-formedness requirement of τ − σ and ω − σ we immediately get:

τ ⊑/ σ ∧ ω ⊑/ σ

We also know that ω − σ ⊑ ω by theorem 3.27, so we have:

τ − σ ⊑ ω − σ ⊑ ω

and by the transitivity of ⊑ we get:

τ − σ ⊑ ω

Now theorem 3.48 can apply and we get:

τ = (ω | σ) ∨ τ ⊑ ω 2

• ⇐=) Suppose τ ⊑/ σ ∧ ω ⊑/ σ ∧ (τ = (ω | σ) ∨ τ ⊑ ω), by applying theorem 3.49

we get:

(27) τ − σ ⊑ ω

Assumption (⇐=) requires either of the following to be true:

(28) τ = (ω | σ)

APPENDIX B. PROOF OF THEOREMS 275

(29) τ ⊑ ω

- Assume (28) is the case, that is, τ = (ω | σ), then by definition 3.35 of partitions,

it is required that ω and σ are disjoint. So by the definition 3.6 of disjoint types we

know that the instance sets of ω and σ are disjoint. Hence by set theory results we

get:

Iω − Iσ = Iω

And using corollary 3.2 we get:

ω − σ = ω

So in (27), we can replace ω by ω − σ and we get:

τ − σ ⊑ ω − σ

And in this case the theorem is prove.

- Now assume (28) is the case, that is, τ ⊑ ω, then by corollary 3.2 we get:

Iτ ⊆ Iω

Now for any arbitrary instance of τ − σ we have:

x : τ − σ

So,

(30) ⇒ x : τ ∧ ¬(x : σ) (by applying (NEG))

⇒ x : τ

⇒ x : ω (by applying (SUB) on τ < ω)

And (30) ⇒ ¬(x : σ)

By combining the above two statements and the definition of instance sets we get:

⇒ x ∈ Iω ∧ x /∈ Iσ

⇒ x ∈ Iω − Iσ (by set theory results)

⇒ x ∈ Iω−σ (by definition of negated types)

⇒ x : ω − σ (by definition of instance sets)

That is, any arbitrary instance of τ − σ is also an instance of ω − σ, so:

τ − σ ⊑ ω − σ 2

Proof of Theorem 3.53:

• i) Suppose v1 is an answer to τ y V −σ ⊑ ω, that is, v1 should satisfy it. So we have:

APPENDIX B. PROOF OF THEOREMS 276

(31) τ y v1 − σ ⊑ ω

but according to definition of jump expressions (definition 3.16) we get:

(32) v1 ∈ NatTyp

(33) v1 ⊑ τ

(34) τ y v1 = v1

Using (34) we can substitute v1 for τ y v1 in (31) which yields:

v1 − σ ⊑ ω

By well-formedness of the above formula we get:

(35) v1 ⊑/ σ

Now by applying theorem 3.48 we obtain:

v1 = (ω | σ) ∨ v1 ⊑ ω

– If the first case is true, then obviously v1 is an answer to V = (ω | σ), and by (32)

and (33), this answer is also a natural subtype of τ , and the proposition holds

for this case. 2

– If the second case is true, then τ y v1 ⊑ ω is also true, because τ y v1 = v1.

This means v1 is an answer to τ y V ⊑ ω, and because of (35) this answer is

not a subtype of σ and the proposition holds for this case as well. 2

• ii) Suppose v1 is either an answer to the equation V = (ω | σ) that is also a natural

subtype of τ or an answer to τ y V ⊑ ω which is not a subtype of σ. We break down

the disjunction into two cases:

– Suppose v1 is an answer to V = (ω | σ) that is a natural subtype of τ , then:

(36) v1 = (ω | σ)

(37) v1 ⊑ τ

Note that it is impossible for v to be a subtype of σ, otherwise the partition

requires that ω be the bottom type, which contradicts the assumption that it is

a natural type. By applying theorem 3.49 on (36) we obtain:

APPENDIX B. PROOF OF THEOREMS 277

(38) v1 − σ ⊑ ω

By definition of jump expressions and (37) τ y v1 is a well-formed jump expres-

sion equal to v1 and by substituting τ y v1 for v1 in (38) we get:

(39) τ y v1 − σ ⊑ ω

So v1 is an answer to τ y V − σ ⊑ ω 2

– Suppose v1 is an answer to τ y V ⊑ ω, which is not a subtype of σ, then we

have:

τ y v1 ⊑ ω

Since τ y v1 = v1 we get:

v1 ⊑ ω

Since v1 ⊑/ σ theorem 3.49 can apply and we obtain:

v1 − σ ⊑ ω

By the equality τ y v1 = v1 we get:

τ y v1 − σ ⊑ ω

So v1 is an answer to τ y V − σ ⊑ ω 2

Proof of Theorem 3.54:

• i) Suppose τ −σ ⊑ ω y V is satisfiable, then there should exist a natural type v1 such

that:

(40) v1 ⊑ ω

(41) τ − σ ⊑ ω y v1

Since ω y v1 = v1 we get:

(42) τ − σ ⊑ v1

By the transitivity of ⊑ and (42), (40) we will have:

τ − σ ⊑ ω 2

• ii) Suppose τ − σ ⊑ ω holds, then there exists a natural type v1 = ω, which trivially

respect v1 ⊑ ω for which we have:

τ − σ ⊑ v1

APPENDIX B. PROOF OF THEOREMS 278

Since ω y v1 = v1 we get:

τ − σ ⊑ ω y v1

So τ − σ ⊑ ω y V is satisfiable. 2

Proof of Theorem 3.55:

• i) Suppose v1 is an answer to V satisfying τ y V − σ ⊑ ω y V then we have:

τ y v1 − σ ⊑ ω y v1

which by the definition of jump expressions (definition 3.16) is equivalent to:

(43) v1 − σ ⊑ v1

and requires:

v1 ⊑ τ

v1 ⊑ ω

The above requirements indicate that v1 is a common subtype of τ and ω.

Since (43) holds, it should be a well-formed formula, and every one of its sub-expressions

must also be well-formed. In particular, v1 − σ must be well-formed, which by the

definition of negated types (definition 3.26 it is required that:

v1 ⊑/ σ 2

• ii) Suppose v1 is a common subtype of τ and ω which is not a subtype of σ. Then we

have:

And by the transitivity of ⊑ we get:

(44) v1 ⊑ τ

(45) v1 ⊑ ω

(46) v1 ⊑/ σ

By using (44) , (45) and the definition of jump expressions (definition 3.16) we obtain

that the following jump expressions are well-formed, and are both equal to v1:

(47) τ y v1

(48) ω y v1

APPENDIX B. PROOF OF THEOREMS 279

Now since we have v1 ⊑/ σ (46) theorem 3.27 applies and we obtain:

(49) v1 − σ ⊑ v1

And by using (47), (48) and substituting τ y v1 for the v1 on the left side of (49) and

substituting ω y v1 for the v1 on the right side of (49) we get:

τ y v1 − σ ⊑ ω y v1

So v1 is an answer to τ y V − σ ⊑ ω y V 2

Proof of Theorem 3.58:

• i) Suppose (v1, ω1) is an answer to τ y V − σ ⊑ ω y X, that is:

τ y v1 − σ ⊑ ω y ω1

Since ω y ω1 = ω1, and ω1 is required to be a subtype of ω for ω y ω1 to be a

well-formed expression, we get:

τ y v1 − σ ⊑ ω1 ⊑ ω

And by the transitivity of ⊑ we obtain:

τ y v1 − σ ⊑ ω

So v1 is an answer to τ y V − σ ⊑ ω 2

• ii) Suppose v1 is an answer to τ y V − σ ⊑ ω, then we have:

τ y v1 − σ ⊑ ω

Since ω ⊑ ω, ω y ω is a well-formed jump expression equal to ω, we can substitute

ω y ω for ω in the above formula which yields:

τ y v1 − σ ⊑ ω y ω

That is, (v1, ω) is an answer to τ y V − σ ⊑ ω y X 2

Proof of Theorem 3.59:

• i) Suppose τ ⊑ ω y V − σ is satisfiable then for a natural type v1 we have:

v1 ⊑ ω

τ ⊑ ω y v1 − σ

But according to the definition of jump expressions (definition 3.16) ω y v1 = v1 and

we get:

APPENDIX B. PROOF OF THEOREMS 280

τ ⊑ v1 − σ

Now by applying theorem 3.51 we obtain:

(50) τ ‖ σ

(51) τ ⊑ v1

Since ω y v1 = v1 we can substitute ω y v1 for v1 in the last formula and we get:

τ ⊑ ω y v1

This indicates that v1 is also an answer to τ ⊑ ω y V

Together with what we derived in (50) it proves the proposition. 2

• ii) Suppose τ ‖ σ, and that v1 is an answer to τ ⊑ ω y V then we get:

(52) v1 ⊑ ω

(53) τ ⊑ ω y v1

Since ω y v1 = v1, we get:

(54) τ ⊑ v1

Note that it is impossible that v1 ⊑ σ because in that case every subtype of ω, including

τ must also be a subtype of σ, but according to the supposition, τ ‖ σ. So,

v1 ⊑/ σ

Applying theorem 3.51 on (54) and the supposition of (ii) that τ ‖ σ we obtain:

(55) τ ⊑ v1 − σ

Since ω y v1 = v1 we can substitute ω y v1 for v1 in (55) which yields:

(56) τ ⊑ ω y v1 − σ

This means that v1 is also an answer to τ ⊑ ω y V − σ 2

Proof of Theorem 3.60:

• i) Suppose τ y V ⊑ ω − σ is satisfiable and v1 is one of its answers, then:

τ y v1 ⊑ ω − σ

APPENDIX B. PROOF OF THEOREMS 281

Since τ y v1 = v1 we get:

v1 ⊑ ω − σ

By applying theorem 3.51 we get:

(57) v1 ‖ σ

(58) v1 ⊑ ω

Again since τ y v1 = v1, the last formula can be re-written as:

τ y v1 ⊑ ω

That is, v1 is also an answer to τ y V ⊑ ω

And by (57) this answer is disjoint with σ. 2

• ii) Suppose v1 is an answer to τ y V ⊑ ω that is disjoint with σ, then we have:

(59) v1 ‖ σ

(60) τ y v1 ⊑ ω

Since τ y v1 = v1, the last formula can be written as:

(61) v1 ⊑ ω

By applying theorem 3.51 on (59) and (61) we get:

(62) v1 ⊑ ω − σ

Again since τ y v1 = v1 we can derive:

(63) τ y v1 ⊑ ω − σ

That is, v1 is also an answer to τ y V ⊑ ω − σ 2

Proof of Theorem 3.61:

By contradiction: Suppose µ0 ⊑ µ is not disjoint with σ, that is, there is an instance x : µ0 ,

which is also an instance of σ. But by axiom (SUB), x is also an instance of µ, and we have

an object that is both an instance of µ and σ, so µ, σ are not disjoint, which contradicts the

supposition of the theorem.

APPENDIX B. PROOF OF THEOREMS 282

Proof of Theorem 3.64:

• i) Suppose v1 is an answer to τ y V ⊑ ω y V − σ, then we have:

τ y v1 ⊑ ω y v1 − σ

This requires v1 to be a subtype of both τ and ω for τ y v1, and ω y v1 to be

well-formed.

Since τ y v1 = ω y v1 = v1 we get:

v1 ⊑ v1 − σ

By applying theorem 3.51 we get:

v1 ⊑ v1, which trivially holds, and

v1 ‖ σ

This proves that v1 is a common subtype of τ and ω that is disjoint with σ 2

• ii) Suppose v1 is a common subtype of τ and ω that is disjoint with σ then we have:

v1 ⊑ v1, which is trivially true, and

v1 ‖ σ

And by applying theorem 3.51 we derive:

v1 ⊑ v1 − σ

Since v1 is a subtype of τ and ω, according to definition of jump expressions (definition

3.16), the expressions τ y v1, ω y v1 are well-formed and are equal to v1, and we

can re-write the above formula as:

τ y v1 ⊑ ω y v1 − σ

That is, v1 is an answer to τ y V ⊑ ω y V − σ 2

Proof of Lemma 3.66:

According to corollary 3.2 it is enough to prove:

Iω1−σ ⊆ Iω−σ

For an arbitrary object x ∈ Iω1−σ we have:

x ∈ Iω1 ∩ I ′σ

=⇒ x ∈ Iω1 ∧ x /∈ Iσ

=⇒ x ∈ Iω1 ∧ x /∈ Iσ

Since ω1 ⊑ ω we have Iω1 ⊆ Iω, and we can derive:

=⇒ x ∈ Iω ∧ x /∈ Iσ (by definition of subsets in set theory, and their application on x)

APPENDIX B. PROOF OF THEOREMS 283

=⇒ x ∈ Iω ∩ I ′σ (from set theory results)

=⇒ x ∈ Iω−σ (by the definition of negated types)

So, any arbitrary member x of Iω1−σ, is also a member of Iω−σ

And by the definition of subsets in set theory we get:

Iω1−σ ⊆ Iω−σ

Proof of Theorem 3.67:

• i) Suppose (v1, ω1) is an answer to τ y V ⊑ ω y X − σ, then we have:

(64) τ y v1 ⊑ ω y ω1 − σ

By the definition of jump expressions we have ω y ω1 = ω1 and by substituting ω1

for ω y ω1 in (64) we get:

(65) τ y v1 ⊑ ω1 − σ

By lemma 3.66 we have:

(66) ω1 − σ ⊑ ω − σ

By the transitivity of ⊑ and (65) and (66) we derive:

(67) τ y v1 ⊑ ω − σ

That is, v1 is an answer to τ y V ⊑ ω − σ 2

• ii) Suppose v1 is an answer to τ y V ⊑ ω − σ, then we have:

τ y v1 ⊑ ω − σ

Since ω y ω = ω we can substitute ω y ω for ω in the above formula and we get:

τ y v1 ⊑ ω y ω − σ

This means that (v1, ω) is an answer to τ y V ⊑ ω y X − σ 2

Proof of Theorem 3.68:

• i) Suppose v1 is an answer to τ y V − σ ⊑ ω − σ then we have:

(68) τ y v1 − σ ⊑ ω − σ

APPENDIX B. PROOF OF THEOREMS 284

By theorem 3.27 we have:

(69) ω − σ ⊑ ω

By the transitivity of ⊑ and applying it on (68) and (69) we derive:

(70) τ y v1 − σ ⊑ ω

That is, v1 is an answer to τ y V − σ ⊑ ω 2

• ii) Suppose v1 is an answer to τ y V − σ ⊑ ω, that is:

(71) τ y v1 − σ ⊑ ω

Since τ y v1 = v1 according to the definition of jump expressions (definition 3.16),

we can substitute v1 for τ y v1 in (71) and we get:

(72) v1 − σ ⊑ ω

Now for an arbitrary object x suppose x ∈ Iv1−σ then we have:

(73) x : v1 − σ

By applying (NEG) we get:

(74) x : v1 ∧ ¬(x : σ)

So.

(75) ¬(x : σ)

By applying (SUB) on (72) we get:

(76) x : ω

Now by applying (NEG) on (76) and (75) we get:

(77) x : ω − σ

That is:

(78) x ∈ Iω−σ

APPENDIX B. PROOF OF THEOREMS 285

So any arbitrary instance of Iv1−σ is also an instance of Iω−σ and by set theory results

we get:

(79) Iv1−σ ⊆ Iω−σ

And by corollary 3.2 we get:

(80) v1 − σ ⊑ ω − σ

Since τ y v1 = v1 according to the definition of jump expressions (definition 3.16).

we can substitute τ y v1 for v1 in (80) and we get:

(81) τ y v1 − σ ⊑ ω − σ

That is, v1 is also an answer to τ y V − σ ⊑ ω − σ 2

Proof of Theorem 3.69:

• i) Suppose τ − σ ⊑ ω y V − σ is satisfiable then for a natural type v1 we have:

(82) v1 ⊑ ω

(83) τ − σ ⊑ ω y v1 − σ

Since by the definition of jump expressions (definition3.16) we have ω y v1 = v1 we

can substitute v1 for ω y v1 in the above formula which yields:

(84) τ − σ ⊑ v1 − σ

The well-formedness of the above formula (for the jump expression v1 − σ) requires

that:

(85) v1 ⊑/ σ

Now by applying lemma 3.66 on (82) and (85) we get:

(86) v1 − σ ⊑ ω − σ

By the transitivity of ⊑ and (84) and (86) we derive:

τ − σ ⊑ ω − σ 2

APPENDIX B. PROOF OF THEOREMS 286

• ii) Suppose τ − σ ⊑ ω − σ holds.

By the definition of jump expressions (definition 3.16) we have ω y ω = ω and we

can substitute ω y ω for ω in the above formula and we get:

τ − σ ⊑ ω y ω − σ

This means there is a an answer v1 = ω for V satisfying:

τ − σ ⊑ ω y V − σ

That is, τ − σ ⊑ ω y V − σ is satisfiable. 2

Proof of Theorem 3.70:

• a) Suppose v1 is an answer to V satisfying τ y V − σ ⊑ ω y V − σ, then we have:

(87) τ y v1 − σ ⊑ ω y v1 − σ

which must be a well-formed formula, and thus contain well-formed (sub)expressions.

So τ y v1, and ω y v1 must be well-formed and according to the definition of jump

expressions (definition 3.16) this requires:

(88) v1 ⊑ τ

(89) v1 ⊑ ω

What remains to be proved is that v1 ⊑/ σ. But again according to the definition of

jump expressions τ y v1 = v1, and ω y v1 = v1, and it is valid to substitute v1, v1

for τ y v1, ω y v1 in (87), which yields:

(90) v1 − σ ⊑ v1 − σ

Again, since the above formula and any of its sub-expressions must be well-formed,

we can claim that v1 − σ is well-formed, and according to the definition of negated

types (definition 3.26) it is required that:

(91) v1 ⊑/ σ

Now (88), (89) prove that v1 is a common subtype of τ , ω, and (91) states that v1 is

not a subtype of σ 2

APPENDIX B. PROOF OF THEOREMS 287

• b) Suppose v1 is a common subtype of τ , ω which is not a subtype of σ, then by the

definition of negated types (definition 3.26), v1 − σ is well-formed, and since ⊑ is a

reflexive relation we can claim:

(92) v1 − σ ⊑ v1 − σ

Now since v1 is a subtype of τ , and ω, then according to the definition of jump

expressions (definition 3.16), τ y v1, and ω y v1 are well-formed jump expressions

which are both equal to v1, so we can substitute τ y v1 for the v1 on the left hand

side of ⊑ in (92, and also substitute ω y v1 for the v1 on the right hand side of ⊑ in

the same formula, preserving its truth. This yields:

(93) τ y v1 − σ ⊑ ω y v1 − σ

And this means that v1 is an answer to V satisfying:

τ y V − σ ⊑ ω y V − σ 2

Proof of Theorem 3.72:

• a) Suppose (v1, x1) is an answer to (V , X) satisfying τ y V − σ ⊑ ω y X − σ then

we have:

(94) τ y v1 − σ ⊑ ω y x1 − σ

According to the definition of jump expressions (definition 3.16) for the above formula

to be a well-formed one, it is required that ω y x1 be well-formed and that requires:

(95) x1 ⊑ ω

And ω y x1 is equal to x1, and the subexpression ω y x1 − σ in (94) is equal to

x1−σ. So we can substitute x1−σ for ω y x1−σ in (94) and this yields the following

formula, preserving its validity:

(96) τ y v1 − σ ⊑ x1 − σ

According to the definition of negated types (definition 3.26) the well-formedness of

x1 − σ requires:

(97) x1 ⊑/ σ

APPENDIX B. PROOF OF THEOREMS 288

The assumption of the theorem already contains:

(98) ω ⊑/ σ

Now by applying theorem 3.52 on (95), (97), (98) we obtain:

(99) x1 − σ ⊑ ω − σ

By applying the transitivity of ⊑ on (96), (99) we get:

(100) τ y v1 − σ ⊑ ω − σ

So, v1 is an answer to V satisfying τ y V − σ ⊑ ω − σ 2

• b) Suppose v1 is an answer to V satisfying τ y V − σ ⊑ ω − σ, then we have:

(101) τ y v1 − σ ⊑ ω − σ

Since by the definition of jump expressions (definition 3.16) we have ω y ω = ω we

can substitute ω y ω for ω in (101) and we get:

(102) τ y v1 − σ ⊑ ω y ω − σ

So, (v1, ω) is an answer to (V , X) satisfying τ y V − σ ⊑ ω y X − σ 2

Proof of Theorem 7.2:

We prove the theorem by the following 4 lemmas that refer to these formulas:

(103) τ ⊑ all y X − human

(104) τ ⊑ ω

(105) τ ⊑ snh(ω)

Each lemma covers a possible case for τ . I.e., τ can be natural, negated but not special-

izable, specializable but not negated, and negated and specializable.

Lemma B.1 For a natural type τ , the requirements (103) and (104) are equivalent to (105).

Proof: For a natural τ :

APPENDIX B. PROOF OF THEOREMS 289

• ⇒ Suppose (103) and (104) hold we need to prove: τ ⊑ snh(ω)

(103) implies that there is a natural type x such that τ ⊑ x − human. Then by

theorem 3.51 we get:

(106) x ⊑/ human

(107) τ ⊑ x

(108) τ ‖ human

– Assume ω is natural, then snh(ω) = ω y Y − human, for a free variable Y . We

need to prove: τ ⊑ ω y Y − human

If we apply theorem 3.14 to (104) and (107) we get:

(109) τ ⊑ x ∗ ω

On the other hand if x ∗ ω ⊑ human, we will have:

(110) τ ⊑ x ∗ ω ⊑ human⇒ τ ⊑ human⇒ τ ∦ human

, which is a contradiction. So:

(111) x ∗ ω ⊑/ human

And by theorem 3.51 we get:

(112) τ ⊑ x ∗ ω − human

, which means τ ⊑ snh(ω) = ω y Y − human has at least the answer x ∗ ω and

hence is satisfiable. 2

– Assume ω = ω′ − human, for a natural ω′ then snh(ω) = ω′ y Y − human, for

a free variable Y . We must prove τ ⊑ ω′ y Y ′ − human

(104) states that τ ⊑ ω′ − human. By theorem 3.51 this implies:

(113) τ ⊑ ω′

Then by substituting ω′ for ω and using the above statement instead of (104) in

the proof of the previous case up to (112) we derive:

(114) τ ⊑ x ∗ ω′ − human

, which means τ ⊑ ω′ y Y ′−human is satisfiable with an answer equal to x ∗ω′

2

APPENDIX B. PROOF OF THEOREMS 290

– Assume ω = ω′ y Y for a free variable Y , then snh(ω) = ω′ y Y ′ − human for

a free variable Y ′. We need to prove τ ⊑ ω′ y Y ′ − human

(104) holds and is equivalent to τ ⊑ ω′ y Y , which must be satisfiable. Supose

y is one of its answers, then we have:

(115) τ ⊑ ω′ y y

, which requires:

(116) y ⊑ ω′

and is equivalent to:

(117) τ ⊑ y

Applying the theorem 3.14 to the above result and (107) we get:

(118) τ ⊑ x ∗ y

Since (108) requires that τ be disjoint from human, x ∗ t cannot be a subtype of

human and we have:

(119) x ∗ y ⊑/ human

And by theorem 3.51 we obtain

(120) τ ⊑ x ∗ y − human

Since x ∗ y ⊑ ω′ we can rewrite the above statement as:

(121) τ ⊑ ω′ y x ∗ y − human

, which means that τ ⊑ snh(ω) = ω′ y Y ′−human has at least the answer x ∗ y

and hence is satisfiable. 2

– Assume ω = ω′ y Y − human, then snh(ω) = ω′ y Y ′ − human for a free

variable Y ′. We need to prove τ ⊑ ω′ y Y ′ − human

By (108) we already know that τ and human are disjoint. By theorem 3.59

τ ⊑ ω′ y Y − human is equivalent to τ ⊑ ω′ y Y . So all the statements for the

previous case still apply, and the proof is exactly the same. 2

• ⇐ Suppose τ ⊑ snh(ω) we need to prove that (103) and (104) hold.

– Assume ω is natural. Then snh(ω) = ω y Y − human, and:

τ ⊑ snh(ω) = ω y Y − human is satisfiable. Suppose it has an answer x. Then

we have:

APPENDIX B. PROOF OF THEOREMS 291

(122) τ ⊑ ω y x− human

, which requires:

(123) x ⊑ ω

and is equivalent to:

(124) τ ⊑ x− human

This means that x is an answer to τ ⊑ all y X−human, and hence (103) holds.

So theorem 3.51 obtains the results (106), (107), (108). By combining (107) and

(123) and the transitivity of ⊑ we get:

(125) τ ⊑ ω

, which proves (104). 2

– Assume ω = ω′ − human, for a natural ω′ then snh(ω) = ω′ y Y − human, for

a free variable Y , and τ ⊑ snh(ω) = ω′ y Y − human is satisfiable. Suppose it

has an answer x. Then by a proof very similar to the previous case and replacing

ω′ for ω, (103) is proved, and we can derive

(126) τ ⊑ ω′

Then by theorem 3.51 we obtain:

(127) τ ⊑ ω′ − human = ω

, which proves (104). 2

– Assume ω = ω′ y Y for a free variable Y , then snh(ω) = ω′ y Y ′ − human for

a free variable Y ′ and we have:

τ ⊑ snh(ω) = ω′ y Y ′ − human is satisfiable. Suppose x is one of its answers,

then:

(128) τ ⊑ ω′ y x− human

, which requires:

(129) x ⊑ ω′

and is equivalent to:

(130) τ ⊑ x− human

This means that x is an answer to τ ⊑ all y X−human, and hence (103) holds.

So theorem 3.51 obtains the results (106), (107), (108). By combining (107) and

(129) and the transitivity of ⊑ we get:

APPENDIX B. PROOF OF THEOREMS 292

(131) τ ⊑ ω′

, which implies τ ⊑ ω′ y Y has a trivial answer ω′ and thus is satisfiable, and

this proves (104). 2

– Assume ω = ω′ y Y − human for a free variable Y , then

snh(ω) = ω′ y Y ′ − human for a free variable Y ′, which is the same value for

the previous case. The proof is the same as the previous case till the statement

τ ⊑ ω′ y Y is derived. There is only one additional step needed afterwards.

Since by the result (107) that is obtained in the proof we know that x and human

are disjoint and by theorem 3.59 τ ⊑ ω′ y Y (that is proved) is equivalent to

τ ⊑ ω′ y Y − human. So (104) holds in this case too. 2

�

Lemma B.2 For a specializable type τ = τ ′ y V , the requirements (103) and (104) are

equivalent to (105).

Proof: For a specializable τ = τ ′ y V :

The equations (103), (104), (105) hold if and only if there is a natural subtype of τ ′, τ1 for

V that satisfies (103), (104), (105). So the proof is similar to the above after replacing τ

with τ1.

�

Lemma B.3 For a negated τ which is equal to τ ′ − human for a natural type τ ′, the

requirements (103) and (104) are equivalent to (105).

Proof: For a negated τ which is equal to τ ′ − human for a natural type τ ′:

In this case, the well-formed-ness of τ ′ − human requires that:

(132) τ ′ ⊑/ human

And (103) trivially holds by the choice of X = τ ′. So we need to only prove:

(133) τ = τ ′ − human ⊑ ω ⇔ τ ⊑ snh(ω)

We break down the theorem to the cases we have for ω in snh(ω).

APPENDIX B. PROOF OF THEOREMS 293

• Assume ω is natural. So, snh(ω) = ω y Y − human, and we have:

τ ′ − human ⊑ ω

⇐⇒ τ ′ = (ω | human) ∨ τ ′ ⊑ ω (by theorem 3.50)

If τ ′ ⊑ ω then ω ⊑/ human, because its negation would imply τ ′ ⊑ human, which

is a contradiction to (132). If τ ′ = (ω | human) then ω and human are disjoint and

necessarily ω ⊑/ human. So:

⇐⇒ τ ′ = (ω | human) ∨ τ ′ ⊑ ω and ω ⊑/ human

⇐⇒ τ ′ − human ⊑ ω − human (by theorem 3.52)

⇐⇒ τ ′ − human ⊑ ω y Y − human (by theorem 3.69)

⇐⇒ τ ⊑ snh(ω) 2

• Assume ω = ω′−human for a natural type ω′. Then snh(ω) = ω′ y Y −human and

the well-formed-ness of ω requires:

(134) ω′ ⊑/ human

We have:

τ ′ − human ⊑ ω

⇐⇒ τ ′ − human ⊑ ω′ − human

⇐⇒ τ ′ − human ⊑ ω′ y Y − human (by theorem 3.69)

⇐⇒ τ ⊑ snh(ω)

• Assume ω = ω′ y Y for a free variable Y , then snh(ω) = ω′ y Y ′ − human, for a

free Y ′. The well-formed-ness of ω requires that:

(135) ω′ ⊑ ω

We have:

τ ′ − human ⊑ ω

⇐⇒ τ ′ − human ⊑ ω′ y Y

⇐⇒ τ ′ − human ⊑ ω′ y y (supposing y is an answer)

⇐⇒ τ ′ − human ⊑ y ∧ y ⊑ ω′

⇐⇒ τ ′ = (y | human) ∨ τ ′ ⊑ y (by theorem 3.50) and y ⊑ ω′

If τ ′ ⊑ y then y ⊑/ human, because it would imply τ ′ ⊑ human, which is a contra-

diction to (132). If τ ′ = (y | human) then y and human are disjoint and necessarily

y ⊑/ human. So:

APPENDIX B. PROOF OF THEOREMS 294

⇐⇒ τ ′ = (y | human) ∨ τ ′ ⊑ y (by theorem 3.50) and y ⊑ ω′ and y ⊑/ human

⇐⇒ τ ′ − human ⊑ y − human (by theorem 3.52) and y ⊑ ω′

⇐⇒ τ ′ − human ⊑ ω′ y Y ′ − human (supposing y is an answer)

⇐⇒ τ ⊑ snh(ω) 2

• Assume ω = ω′ y Y −human for a free variable Y , then snh(ω) = ω′ y Y ′−human,

for a free Y ′. The well-formed-ness of ω requires that:

(136) ω′ ⊑ ω

We have:

τ ′ − human ⊑ ω

⇐⇒ τ ′ − human ⊑ ω′ y Y − human

⇐⇒ τ ′ − human ⊑ ω′ y y − human (supposing y is an answer)

⇐⇒ τ ′ − human ⊑ y ∧ y ⊑ ω′ ∧ y ⊑/ human

⇐⇒ τ ′ = (y | human) ∨ τ ′ ⊑ y (by theorem 3.50) and y ⊑ ω′ and y ⊑/ human

⇐⇒ τ ′ − human ⊑ y − human (by theorem 3.52) and y ⊑ ω′

⇐⇒ τ ′ − human ⊑ ω′ y Y ′ − human (supposing y is an answer)

⇐⇒ τ ⊑ snh(ω) 2

�

Lemma B.4 For a negated and specializable τ which is equal to τ ′ y V − human for a

natural type τ ′, and a free variable V , the requirements (103) and (104) are equivalent to

(105).

Proof: For a negated and specializable τ which is equal to τ ′ y V − human for a

natural type τ ′, and a free variable V :

The equations (103), (104), (105) hold if and only if there is a natural subtype of τ ′, τ1 for

V such that τ1 ⊑/ human that satisfies (103), (104), (105). So the proof is similar to the

above after replacing τ with τ1.

�

Appendix C

Feature Types and their

Permissible Values

In table C.1, for each feature structure type we have shown an AVM with the features

introduced by that type, however, instead of values, we provided permissible value types or

a set of permissible values for that feature. If the set of permissible values is a singleton,

the only element is shown rather than the set. Permissible value types are italicized, except

for BasTyp which is the type that we brought from chapters two and three to allow for

domain specific type hierarchies for domain entities (rather than grammar entities whose

type hierarchy is provided in figure 4.1). Our contributions or modifications are underlined.

The reader will probably notice that in table C.1 some subtypes repeat a feature of their

super-type. In that case, a new feature is not introduced, but rather a constraint is imposed

on its admissible values. For example the only acceptable value for the feature NUM of a

feature structure of type 2sing is 2.

Table C.1: Feature Types and Permissible Values

Type Features with their Types or Permissible Values Direct Super-type

sign

ORTH list of string

SYN syn-cat

SEM sem-cat

feat-struct

295

APPENDIX C. FEATURE TYPES AND THEIR PERMISSIBLE VALUES 296

Table C.1: Feature Types and Permissible Values (cont.)

Type Features with their Types or Permissible Values Direct Super-type

expression sign

lex-sign

ARG-ST list of expression

ARG-ST-GUARDS list of list of guards

 sign

word lex-sign

lexeme lex-sign

syn-cat

HEAD pos

VAL val-cat

GAP list of expression

GAP-GUARDS list of list of guards

STOP-GAP list of expression

feat-struct

sem-cat

MODE
{

prop, ques, dir, ref, ana, none
}

INDEX index

TYPE BasTyp

RESTR list of predication

feat-struct

sem-det

QRESTR situation

QSCOPE situation

 sem-cat

sem-nom-co-conj

COMPONENT1 individual

COMPONENT2 individual

 sem-cat

sem-pred-co-conj

COMPONENT1 situation

COMPONENT2 situation

 sem-cat

APPENDIX C. FEATURE TYPES AND THEIR PERMISSIBLE VALUES 297

Table C.1: Feature Types and Permissible Values (cont.)

Type Features with their Types or Permissible Values Direct Super-type

val-cat

SPR list of expression

SPR-GUARDS list of list of guards

COMPS list of expression

COMPS-GUARDS list of list of guards

MOD list of mod-elem

feat-struct

mod-elem

MODIFIED expression

AFTER
{

+, −
}

MOD-GUARD list of guards

feat-struct

pos

FORM

fin, base, prp, psp,

nform, aform, ...

PRED
{

+, −
}

feat-struct

adj pos

adv pos

adv-pol pos

qword pos

prep pos

agr-pos
[

AGR agr-cat
]

pos

verb

AUX
{

+, −
}

INV
{

+, −
}

GAP-TYPE
{

gsubj, gnosubj
}

agr-pos

APPENDIX C. FEATURE TYPES AND THEIR PERMISSIBLE VALUES 298

Table C.1: Feature Types and Permissible Values (cont.)

Type Features with their Types or Permissible Values Direct Super-type

noun

CASE
{

nom, acc
}

PRO
{

+, −
}

TYPE-DEF
{

+, −
}

agr-pos

det
[

COUNT
{

+, −
}]

agr-pos

conj pos

co-conj conj

nom-co-conj
[

CONJ-TYPE
{

minpl, com3sg, proxim
}]

co-conj

pred-co-conj co-conj

sub-conj conj

agr-cat

PER
{

1, 2, 3
}

NUM
{

sg, pl
}

 feat-struct

3sing

PER 3

NUM sg

GEND
{

fem, masc, neut
}

agr-cat

non-3sing agr-cat

1sing

PER 1

NUM sg

 non-3sing

non-1sing non-3sing

APPENDIX C. FEATURE TYPES AND THEIR PERMISSIBLE VALUES 299

Table C.1: Feature Types and Permissible Values (cont.)

Type Features with their Types or Permissible Values Direct Super-type

2sing

PER 2

NUM sg

 non-1sing

plural
[

NUM pl
]

non-1sing

Bibliography

[1] Russell J. Abbott. Program design by informal english descriptions. Commun. ACM,
26(11):882–894, 1983.

[2] Hassan Aı̈t-Kaci and Roger Nasr. Login: A logic programming language with built-in
inheritance. J. Log. Program., 3(3):185–215, 1986.

[3] Hassan Aı̈t-Kaci and Andreas Podelski. Towards a meaning of LIFE. J. Log. Program.,
16(3):195–234, 1993.

[4] Hiyan Alshawi, editor. The Core Language Engine (ACL-MIT Series in Natural Lan-
guage Processing). The MIT Press, May 1992.

[5] Hiyan Alshawi, Doug Arnold, Rolf Backofen, David Carter, Jeremy Lindop, Klaus
Netter, Junichi Tsujii, and Hans Uszkoreit. Eurotra 6/1: Rule formalism and virtual
machine design study. final report. Technical report, SRI International, Cambridge,,
1991.

[6] Paul Bennett. A Course in Generalized Phrase Structure Grammar. UCL Press, Uni-
versity College London, Gower Street, London, WC1E 6BT, 1995.

[7] BIM-SEMA. ALEP System Documentation: The ALEP Linguistic Subsystem, Version
1.0. Commission of the European Communities, March 1993.

[8] Dines Bjørner. Software Engineering 2, Specification of Systems and Languages.
Springer-Verlag Berlin Heidelberg, New York, 2006.

[9] Patrick Blackburn, Johan Bos, and Kristina Striegnitz. Learn Prolog Now! College
Publications (15 Jun 2006), 2006.

[10] Peter Bollen. SBVR: A Fact-Oriented OMG Standard. In Robert Meersman, Zahir
Tari, and Pilar Herrero, editors, OTM Workshops, volume 5333 of Lecture Notes in
Computer Science, pages 718–727. Springer, 2008.

[11] Robert D. Borsley. Modern Phrase Structure Grammar. Blackwell Publishers Ltd, 108
Cowley Road, Oxford, OX4 1JF, UK, 1996.

300

BIBLIOGRAPHY 301

[12] Bob Carpenter. The logic of typed feature structures. Cambridge University Press, New
York, NY, USA, 1992.

[13] Bob Carpenter. Type-Logical Semantics. The MIT Press, 1998.

[14] Henning Christiansen. CHR Grammars. TPLP, 5(4-5):467–501, 2005.

[15] William F. Clocksin and Chris S. Mellish. Programming in Prolog: Using the ISO
Standard. Springer, 2003.

[16] Alistair Cockburn. Writing Effective Use Cases. Addison-Wesley Professional, 2000.

[17] Alain Colmerauer. Metamorphosis grammars. In Natural Language Communication
with Computers, pages 133–189, London, UK, 1978. Springer-Verlag.

[18] Ann Copestake. Implementing Typed Feature Structure Grammars. CSLI Publications,
Stanford, 2002.

[19] Ann Copestake, Dan Flickinger, Rob Malouf, Susanne Riehemann, and Ivan A. Sag.
Translation using minimal recursion semantics. In In Proceedings of the Sixth Inter-
national Conference on Theoretical and Methodological Issues in Machine Translation,
1995.

[20] Ann Copestake, Dan Flickinger, Carl Pollard, and Ivan A. Sag. Minimal recursion
semantics: An introduction. Research on Language and Computation, 3(4):281–332,
December 2005.

[21] Ole-Johan Dahl and Kristen Nygaard. How Object-Oriented Programming started.
Available online at http://heim.ifi.uio.no/~kristen/FORSKNINGSDOK_MAPPE/F_

OO_start.html.

[22] Ole-Johan Dahl and Kristen Nygaard. Simula: an ALGOL-based simulation language.
Commun. ACM, 9(9):671–678, 1966.

[23] Veronica Dahl. On database systems development through logic. ACM Trans. Database
Syst., 7(1):102–123, 1982.

[24] Veronica Dahl. Incomplete types for logic databases. Applied Mathematics Letters,
4(3):25–28, 1991.

[25] Mary Dalrymple. Lexical Functional Grammar (Syntax and Semantics, Volume 34).
2001.

[26] Roberto Di Cosmo, François Pottier, and Didier Rémy. Subtyping recursive types
modulo associative commutative products. In Seventh International Conference on
Typed Lambda Calculi and Applications (TLCA’05), volume 3461 of Lecture Notes in
Computer Science, pages 179–193, Nara, Japan, April 2005. Springer Verlag.

BIBLIOGRAPHY 302

[27] Simon C. Dik. The Theory of Functional Grammar, Part 1: The Structure of the
Clause, second, revised edition. Mouton de Gruyter, Berlin. Newyork, 1997.

[28] Bruce Eckel. Thinking in Java. Prentice Hall, 3rd edition, 2003.

[29] Gregor Erbach. Multi-dimensional inheritance. In H. Trost, editor, Proceedings of
KONVENS ’94, pages 102 – 111. Springer, 1994.

[30] Gregor Erbach. ProFIT: Prolog with Features, Inheritance and Templates. In Proceed-
ings of the seventh conference on European chapter of the Association for Computa-
tional Linguistics, pages 180–187, San Francisco, CA, USA, 1995. Morgan Kaufmann
Publishers Inc.

[31] Andrew Fall. Reasoning with Taxonomies. PhD thesis, Simon Fraser University, 1996.

[32] Thom W. Frühwirth. Theory and Practice of Constraint Handling Rules. J. Log.
Program., 37(1-3):95–138, 1998.

[33] Norbert E. Fuchs, Kaarel Kaljurand, and Tobias Kuhn. Attempto Controlled English
for Knowledge Representation. In Cristina Baroglio, Piero A. Bonatti, Jan Ma luszyński,
Massimo Marchiori, Axel Polleres, and Sebastian Schaffert, editors, Reasoning Web,
Fourth International Summer School 2008, number 5224 in Lecture Notes in Computer
Science, pages 104–124. Springer, 2008.

[34] Norbert E. Fuchs and Rolf Schwitter. Specifying logic programs in controlled natural
language. Technical report, 1995.

[35] Norbert E. Fuchs and Rolf Schwitter. Attempto Controlled English (ACE). CoRR,
cmp-lg/9603003, 1996. informal publication.

[36] Ruth Fuchss, Alexander Koller, Joachim Niehren, and Stefan Thater. Minimal recursion
semantics as dominance constraints: Translation, evaluation, and analysis. In 42th
Meeting of the Association for Computational Linguistics, pages 247–254, July 2004.

[37] Gerald Gazdar, Ewan Klein, Geoffrey K. Pullum, and Ivan A. Sag. Generalized Phrase
Structure Grammar. Basil Blackwell, Oxford; Harvard University Press, Cambridge,
Massachusetts, 1985.

[38] Gerald Gazdar and Geoffrey K. Pullum. Generalized Phrase Structure Grammars : A
Theoretical Synopsis. Indiana University Linguistics Club, Bloomington, 1982.

[39] Robert B. Grady. Practical software metrics for project management and process im-
provement. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1992.

[40] Carl A. Gunter. Semantics of Programming Languages, Structures and Techniques.
The MIT Press, 1992.

BIBLIOGRAPHY 303

[41] Robert F. Hadley. A natural language query system for a prolog database. Master’s
thesis, Simon Fraser University, 1983.

[42] Fritz Henglein. Syntactic Properties of Polymorphic Subtyping. TOPPS Technical
Report (D-report series) D-293, DIKU, University of Copenhagen, Universitetsparken
1, DK-2100 Copenhagen, Denmark, May 1996.

[43] My Hoang and John C. Mitchell. Lower bounds on type inference with subtypes. In
POPL ’95: Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 176–185, New York, NY, USA, 1995. ACM.

[44] International Institute of Business Analysis. Guide to the Business Analysis
Body of Knowledge, draft material for review and feedback, release 1.6 draft.
Available online at http://www.theiiba.org/Content/NavigationMenu/Learning/

BodyofKnowledge/Version16/BOKV1_6.pdf, 2006.

[45] David Johanson and Paul Postal. Arc Pair Grammar. 1980.

[46] Hans Kamp and Uwe Reyle. From Discourse to Logic. Kluwer Academic Publishers,
Dordrecht, 1993.

[47] Jerrold J. Katz and Jerry A. Fodor. The Structure of a Semantic Theory. Language,
39:170–210, 1963.

[48] Jerrold J. Katz and Paul M. Postal. An Integrated Theory of Linguistic Descriptions.
The MIT Press, Cambridge, Massachusetts, 1964.

[49] Craig Larman. Applying UML and Patterns: An Introduction to Object-Oriented Anal-
ysis and Design and Iterative Development (3rd Edition). Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2004.

[50] Mark H. Linehan. Sbvr use cases. In RuleML ’08: Proceedings of the International
Symposium on Rule Representation, Interchange and Reasoning on the Web, pages
182–196, Berlin, Heidelberg, 2008. Springer-Verlag.

[51] Chris. S. Mellish. Implementing systemic classification by unification. Comput. Lin-
guist., 14(1):40–51, 1988.

[52] Chris. S. Mellish. Graph-encodable description spaces. Technical Report ESPRIT
Basic Research Action DYANA Deliverable R3.2.B, DIKU, University of Copenhagen,
University of Edinburgh, Scotland, 1991.

[53] Chris S. Mellish. Term-encodable description spaces. In D. R. Brough, editor, Logic
Programming - New Frontiers, pages 189–207. Intellect, Oxford, 1992.

[54] John C. Mitchell. Coercion and type inference. In POPL ’84: Proceedings of the 11th
ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pages
175–185, New York, NY, USA, 1984. ACM.

BIBLIOGRAPHY 304

[55] Richard Montague. The Proper Treatment of Quantification in Ordinary English. In
Richmond Thomason, editor, Formal Philosophy: Selected Papers of Richard Montague,
pages 247–270. Yale University Press, New Haven, CT, 1973.

[56] Hanspeter Mössenböck. Twin – A Design Pattern for Modeling Multiple Inheritance.
In Dines Bjørner, Manfred Broy, and Alexandre V. Zamulin, editors, Ershov Memo-
rial Conference, volume 1755 of Lecture Notes in Computer Science, pages 358–369.
Springer, 1999.

[57] Joachim Niehren and Stefan Thater. Bridging the gap between underspecification
formalisms: Minimal recursion semantics as dominance constraints. In 41st Meeting of
the Association of Computational Linguistics, pages 367–374, July 2003.

[58] Johan Nordlander. Polymorphic subtyping in O’Haskell. In APPSEM Workshop on
Subtyping and Dependent Types in Programming, 2000.

[59] Object Management Group. Semantics of Business Vocabulary and Business Rules
(SBVR), v1.0, 2008.

[60] Carl Pollard and Ivan A. Sag. Information-Based Syntax and Semantics: Vol. 1: Funda-
mentals. CSLI Lecture Notes no. 13. Center for the Study of Language and Information
(distributed by the University of Chicago Press), Stanford, 1987.

[61] Carl Pollard and Ivan A. Sag. Head-driven phrase structure grammar. University of
Chicago Press, Chicago & London, 1994.

[62] François Pottier. Simplifying subtyping constraints: a theory. Information & Compu-
tation, 170(2):153–183, November 2001.

[63] James Pustejovsky. The Generative Lexicon. MIT Press, 1998.

[64] Ravenflow Inc. RAVEN-Professional 5.1 User Guide. Available online at http://www.
Ravenflow.com, 2009.

[65] Ravenflow Inc. Requirements-Writing Guide. Available online at http://www.

Ravenflow.com, 2009.

[66] John R. Ross. Auxiliaries as main verbs. In W. Todd, editor, Studies in Philosophical
Linguistics 1. Great Expectations Press, Evanston, Ill, 1969.

[67] Ivan A. Sag, Thomas Wasow, and Emily Bender. Syntactic Theory: A Formal Intro-
duction. Center for the Study of Language and Information, Stanford, 2nd edition,
2003. ISBN: 1-57586-399-5.

[68] Rolf Shwitter, Anna Ljungberg, and David Hood. ECOLE: A Look-ahead Editor for
a Controlled Language. In EAMT-CLAW03, Controlled Translation, Joint Conference
combining the 8th International Workshop of the European Association for Machine

BIBLIOGRAPHY 305

Translation and the 4th Controlled Language Application Workshop, May 15–17,, pages
141–150, Ireland, May 2003. Dublin City University.

[69] Ghan Bir Singh. Single versus multiple inheritance in Object Oriented Programming.
SIGPLAN OOPS Mess., 6(1):30–39, 1995.

[70] Bjarne Stroustrup. The Design and Evolution of C++. ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, 1994.

[71] Bill Venners. Multiple Inheritance and Interfaces, A Conversation with Scott Meyers,
Part I. Available online at http://www.artima.com/intv/abcs.html, 2002.

[72] Gerd Wagner, Sergey Lukuchev, Norbert E. Fuchs, and Silvie Spreeuwenberg. First-
Version Controlled English Rule Language. Available online at http://rewerse.net/
deliverables/m12/i1-d2.pdf, 2005.

[73] Uriel Weinreich. Explorations in Semantic Theory. Mouton, The Hague, Paris, 1972.

[74] Jan Wielemaker. SWI-Prolog 5.6.60 Reference Manual. Available online at http:

//gollem.science.uva.nl/SWI-Prolog/Manual/, 2008.

[75] Terry Winograd. Procedures as a Representation for Data in a Computer Program for
Understanding Natural Language. PhD thesis, Massachusetts Institute of Technology,
1971.

[76] Richard H. Wojcik, Philip Harrison, and John Bremer. Using bracketed parses to
evaluate a grammar checking application. In Proceedings of the 31st annual meeting on
Association for Computational Linguistics, pages 38–45, Morristown, NJ, USA, 1993.
Association for Computational Linguistics.

Index

λ-calculus vocabulary, 16
λ-term, 15, 17
λ-type, 16
dc obj add, 151
dc obj get, 152
instantiate, 151
’s possessive, 111, 178
qword, 137, 211
the, 166
wh-questions, 137, 211
3sing, 98

abstract class, 30
acc, 102
actor, 3
adjective, 118, 180
adverb, 120, 182
AGR, 97
agreement, 97
alternate scenarios, 3
ambiguous, 25
answers, 55
antecedent resolution, 154
application schemes, 21
ARG-ST, 125
argument marking preposition, 101
argument structure, 125
arguments, 125
Attempto, 6
AUX, 102
auxiliary verbs, 126, 207

basic expression, 20
basic type assignment, 20
basic types, 16

behavioral requirements, 2
bound, 17
business rules, 2
business use cases, 4

categorial lexicon, 20
category, 19
class, 11
class hierarchy, 12
coercion, 24
complement, 112
complex categories, 82
composite type, 38, 45
COMPS, 112
conceptual class, 5
conditional statement, 122, 191
controlled language, 6
coordination, 124, 200, 231
Coordination Rule, 124, 125, 231
copula, 126, 207
count noun, 107

determiner phrase, 111
disambiguate, 26
discourse context, 151
discourse predication, 146, 151, 152
domain entities, 80
domain model, 5
domain object, 5
down-casting, 30

elementary predications, 145
EP, 145

feature structure, 83
feature structure description, 86

306

INDEX 307

features, 82
fem, 98
FORM, 99
free variables, 17
fresh variable, 55
functional requirements, 2

gaps, 131
GENDER, 98
general class, 30, 250
generalized quantifiers, 162
grammar entities, 80
grammar principles, 88
grammar rules, 88
greatest lower bound, 60
ground types, 16
guard, 216, 217

handle constraints, 147
HCR, 113, 219
head, 89
Head Complement Rule, 113, 219
Head Modifier Rule, 118, 224
Head Specifier Rule, 106, 218
helping verbs, 126
hierarchical representation, 35
higher types, 16
HMR, 118, 224
HSR, 106, 218

if, 123, 191
individual, 144
inheritance-based polymorphism, 22
initial symbol, 116
instance set, 44
interface level, 38
INV, 102
is-a, 12

jump expressions, 49
jump operator, 49

lexemes, 89
lexical categories, 14

lexical entries, 20
lexical rules, 89
license, 91
linking verbs, 126
long distance dependencies, 132, 226

main success scenario, 3
masc, 98
mass noun, 107
meta rules, 82
Minimal Recursion Semantics, 157
modals, 126
modification, 117, 180
modifier, 117, 180
modifier predication, 180
MRS, 157
multiple inheritance, 38

Narrow Scope Variable Binding Condition,
183, 253

natural answers, 51
natural type, 46
natural type hierarchy diagram, 47
neut, 98
nom, 102
number, 84

object
conceptual, 11
physical, 11

ontology, 5
over-generation, 84

partitions of, 57
parts of speech, 14
path expressions, 34
phrasal categories, 14
phrase structure, 91
phrase structure tree, 92
phrases in categorial grammars, 21
polymorphism, 22
postconditions, 3
preconditions, 3
PRED, 100

INDEX 308

predicate calculus, 148
predication, 126
predication label, 145
predicative preposition, 101, 187
prepositional modifiers, 121, 187
protocol, 38

Quantifier Restriction Constraint, 165
Quantifier Scope Constraint, 165
Quantifier Variable Binding Condition, 166

relative clauses, 135, 188
relativizer, 132, 135
role assignment, 178, 180

satisfiability, 51
SBVR, 7
scenario, 3
scopal feature, 157
scopal predications, 183
scope, 157
scope resolved, 157
selection restriction, 24
semantic compositionality, 21, 155
Semantic Compositionality Principle, 155
Semantic Inheritance Principle, 155
semantic role assignment, 180
semantic selection restrictions, 24
senses, 25
sentence, 116
SHAC, 109
shifting operators, 23
sign, 88
simple type, 45
single inheritance, 38
situation, 144
software requirements, 2
sortally constrained disambiguation, 27
specializable answers, 51
specializable type, 29
specialize, 29
specifier, 98, 105
Specifier Head Agreement Constraint, 109
SPR, 105

stakeholders, 3
subclass, 12
subject raising, 126
subject sharing, 119, 126, 188, 207, 221, 224,

225
subject-verb agreement, 83
subordinate conjunctions, 122, 188
subsumption, 42
subtype check, 58, 261
subtype coercion, 23
system analysis, 13
system under discussion, SuD, 249

tag, 85
taxonomy, 12
Tense Predication Constraint, 149
the most general specializable answers, 55
triangular type, 57
triangularity condition, 57
type assignment, 20
type assignment function, 19
type coercion, 23
type guard, 217
type hierarchy, 12
type mismatch, 5
type restriction satisfaction, 27, 53, 78
type restrictions, 26, 27
type shifting operator, 23
type system, 7
types, 11

underspecified type, 49
up-casting, 24
use case, 2, 249

Valence Principle, 116
variable binding conditions, 157

word structure, 91

