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Abstract

The Satisfiability (SAT) problem asks to find a satisfying assignment to a Boolean

formula in CNF, while in its optimization version, MAXSAT, the object is to satisfy

the maximum number of clauses. Much effort has been dedicated to design efficient

solvers for these problems. In this thesis, we focus on designing algorithms for solving

MAX2SAT problem where all clauses contain at most two literals. We use graphs to

represent Boolean formulas, and consider problem instances with different structural

restrictions. We compare two exact algorithms for MAX2SAT of bounded tree width.

Based on our observations, we define a new measure, separator width, which can

be less than tree width by up to a logarithmic factor. Moreover, we also design an

approximation algorithm using the elimination ordering of variables. We show both

experimentally and theoretically that our approximation algorithm works well on a

large class of graphs, namely, d-degenerate graphs.
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Chapter 1

Introduction

The Satisfiability problem (SAT) is an important problem both in theory and in

practice. In this problem, we are asked to find a satisfying assignment to a Boolean

formula in CNF. Despite the fact that it can not be solved efficiently in the worst case

unless P = NP , many SAT solvers are shown to perform well in practice. Researchers

are investigating this phenomenon from many different aspects, but so far, there is no

clear result explaining it. In order to design a robust algorithm for SAT, it is important

to distinguish instances which can be solved efficiently from others which are not

polynomial time solvable. It is known in graph theory that structural parameters

such as, tree width, play an important role in classifying solvable instances of many

NP-complete problems. Inspired by these results, in this thesis, we explore different

structural parameters, and design algorithms for solving SAT instances using these

parameters.

This work is to a large extent motivated by a problem encountered by D-wave com-

pany that is developing a working prototype of a quantum computer. The difficulty

is that the device they are working on cannot possibly allocate real life instances,

and therefore such instances should be split into subproblem. Then each subproblem

can be solved by a quantum algorithm. However, the interface between subproblems

remain classical. Assuming the quantum device works properly, one implication of

that is every subproblem can be solved in a matter of nanoseconds, the amount of

1
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data that has to be carried between subproblems becomes a bottleneck.

Many decomposition methods can be used to split a problem into subproblems.

The tree decomposition method is one of the most standard one. In classical setting,

many NP-complete problem instances of bounded tree width can be solved efficiently

using dynamic programming algorithm. However, this algorithm doesn’t work well

in quantum setting because the amount of data that needs to be carried between

subproblems is usually exponential in terms of tree width. Therefore, when designing

algorithms, we are willing to trade the time for memory.

1.1 Overview

SAT is a well known NP-complete problem, and therefor any problem in NP can be

reduced to SAT in polynomial time. In practice, many of these NP problems are often

solved more efficiently by reducing to SAT and then using one of the existing SAT

solvers. This property makes SAT especially interesting and important to study. After

1971 when the problem was first proved to be NP-complete by Stephen Cook [14],

numerous studies were carried out in SAT and related field. In the standard version

of SAT, we are asked to find a satisfying assignment of a boolean formula. The

currently known best upper bound for SAT is up to a polynomial factor of 2n(1− 1
α

)

where α = ln(m/n) + O(ln ln m) and m, n are the number of clauses and the number

of variables in a given formula respectively. This result is obtained by a randomized

algorithm which was proposed by Dantsin and Wolpert [17] in 2005.

Although SAT is hard to solve in general, there are also special cases of SAT which

are polynomial time solvable. For example, 2SAT which is SAT with restrictions of

at most two literals in each clause is one of these polynomial solvable cases. As shown

by Aspvall, Plass & Tarjan [6] in 1979, 2SAT is satisfiable if and only if every variable

and its negation belong to different strongly connected components in the implication

graph. An implication graph of a boolean formula is a directed graph G(V, E), where

V represents the truth status of a Boolean literal, and each directed edge from vertex
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u to vertex v represents the implication ”If the literal u is true then the literal v is

also true”. Since strongly connected components of a graph can be found in linear

time, 2SAT is also solvable in linear time. However, limiting the number of literals in

each clause doesn’t necessarily make the problem easier to solve. 3SAT which has at

most three literals in each clause is known to be NP-complete.

There are also some special structural properties that makes some instances of SAT

easy to solve. For example, if the graph of the formula (implication graph without

orientations) of SAT is a tree, then the formula is always satisfiable. A satisfying

assignment can be found by recursively assigning truth values to the leave nodes of

the tree. There are also many NP-complete combinatorial problems in graph theory,

such as, Maximum Independent Subset problem, Graph coloring problem, and so on,

that are easy to solve on trees. In 1983, Robertson and Seymour [29] introduced a

structural parameter called treewidth which measures how much does a graph resem-

ble a tree structure. Later, several researchers [5], [7], [8], [15] observed independently

that some NP-complete combinatorial problems that are easy to solve on trees are

solvable in polynomial time when restricted to graphs of bounded treewidth. This is

what motivates us to investigate the bounded treewidth instances of SAT.

There are several different versions and extensions of SAT. For example, there is

the decision version of SAT which answers the question whether a given formula is

satisfiable or not; there is the counting version of SAT which counts the number of

satisfying assignments of a given formula; there is also the optimization version of

SAT which determines an assignment that satisfies the maximum number of clauses

in a given formula. In this thesis, we are focusing on the optimization version of SAT

which is also known as MAXSAT.

1.2 Basic Definitions

MAXSAT

A Boolean formula is in conjunctive normal form (CNF) if it is a conjunction of
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clauses and each clause is a disjunction of variables or their negations. A formula

is in kCNF if it is in CNF and each clause of the formula contains no more than k

variables. Let F := C1 ∧ C2 ∧ ... ∧ Cm be a Boolean CNF formula with variables

{x1, x2, ...xn}. An assignment of F is a mapping φ : V → {0, 1} where 0, 1 stand for

false and true respectively. Let S(φ, F ) denote the number of clauses in F satisfied by

φ. The maximum satisfiability problem is an optimization problem that determines

a truth assignment which satisfy the maximum number of clauses in F . If F is in

kCNF form, then the problem is known as MAXkSAT. In the MAX2SAT problem,

the boolean formula is given in 2CNF form. Instead of solving the general MAXkSAT,

we focus on solving MAX2SAT in this thesis.

Treewidth, pathwidth and partial k-tree

According to Robertson and Seymour [29], a tree decomposition of G(V, E) is a

pair (X = {Xi|i ∈ I}, T = (I, H)) with X a family of subsets of V (also known as

bags), one for each node of T , and T a tree such that

•
⋃

i∈I Xi = V .

• for all edges (v, w) ∈ E, ∃i ∈ I with v ∈ Xi and w ∈ Xi.

• for all i, j, l ∈ I: if j is on the path from i to l in T then Xi ∩Xl ⊆ Xj

In other words, a tree decomposition satisfies the following two properties:

• P1 All vertices in V and all edges in E are contained in some bags of T .

• P2 If a vertex v appears in some bags Xi and Xl then v must appear in any

bag Xj that is along the path from Xi to Xl

The graph GF (V, E) of a formula F is a graph with vertex set V := {x1, x2, ..., xn},
and edge set E := {{xi, xj}|xi, xj ∈ V and xi, xj appear in the same clause in F}.
The tree decomposition of GF (V, E) can be defined in exactly the same way as above.
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Figure 1.1: A graph and its tree decomposition

For a given tree decomposition (X, T ), the width of the decomposition, tw((X, T )),

is maxi∈I{|Xi| − 1}. The treewidth of a graph G, tw(G), is the minimum width over

all tree decompositions of G. A graph of treewidth at most k is also known as partial

k-tree.

A tree decomposition of width k is smooth [9] if and only if for any adjacent bags

Xi, Xj, we have |Xi ∩Xj| = k. It is also known that any tree decomposition can be

transformed into a smooth tree decomposition with the same width in linear time.

A path decomposition is a tree decomposition (X, T ) such that T is a path. Sim-

ilarly, the pathwidth of a graph G, pw(G), is the minimum pathwidth over all path

decompositions of G. From the definition, we know every path decomposition is also

a tree decomposition, therefore, pw(G) is at least tw(G) for any graph G.

1.3 Previous results

1.3.1 MAXSAT

As mentioned in Section 1.2, MAXkSAT is the optimization version of SAT that

determines an assignment which satisfies maximum number of clauses. MAX2SAT



CHAPTER 1. INTRODUCTION 6

which is known to be NP-hard [20] is especially interesting because 3SAT can be

reduced to it in polynomial time. Hence, if we can solve MAX2SAT more efficiently,

it is possible to improve the running time for 3SAT as well.

Exact algorithm

Some of the studies on MAX2SAT are focused on designing exact algorithms. Let

n denote the number of variables in a formula and m denote the number of clauses.

The first nontrivial upper bounded on MAX2SAT is 2n/1.261 which was proved by

Williams [34]. Later, a new upper bound of 2m/5.5 is given by Kojevnikov and Ku-

likov [24]. Very Recently, Raible and Fernau [27] refined the algorithm given by

Kojevnikov and Kulikov [24] and show an upper bound of 2m/6.2158.

Backtracking and BB (branch and bound) are the two commonly used approaches in

designing exact algorithms for solving MAX2SAT. DPLL (Davis-Putnam-Logemann-

Loveland) [18] is a backtracking based algorithm which is enhanced by the following

two rules,

• Pure literal elimination A literal is pure if and only if the formula contains

only one polarity of the literal. All clauses that contain a pure literal can be

satisfied by assigning a truth value that satisfies the pure literal.

• Unit propagation A unit clause contains a single unassigned literal. All unit

clauses can be satisfied by assign a truth value that satisfies the single literal.

The algorithm backtracks if the resulting formula contains a contradiction.

Besides these two rules, other more sophisticated techniques were introduced in later

studies to improve the performance of the DPLL algorithm.

BB is another approach used in designing algorithms for solving MAX2SAT. In BB

based algorithm, we systematically enumerate all candidate solutions and use a lower

bound function to discard subsets of infeasible candidates. A lower bound function

is the function that takes a problem instance as input and determines the threshold

such that a candidate solution is infeasible if its value is under the threshold. Studies
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of BB based algorithms are mostly focused on either improving the lower bound

function or simplifying the problem instance. By improving the lower bound, we

tighter the search space which leads to improvements of the performance. There

are trivial lower bound functions, such as the number of conflicting clauses of the

current partial assignment [12]. There are also more sophisticated ones that take the

minimum over several lower bound functions [1]. To simplify the problem instance,

we need to introduce rules that reduce the size of the formula. For example, one of

the rules defined in [32] says, if F = {x ∨ y} ∧ {x ∨ y} ∧ {x ∨ z} ∧ {x ∨ z} ∧ F ′,

then the OPT(F )=OPT(F ′)+1 where OPT(F ) is the number of unsatisfied clauses

in the optimal assignment for formula F . Using this rule, we can reduce the problem

of solving F to solving F ′.

Approximation algorithm

In an optimization problem, we are given a cost function f , and asked to find a

solution to the problem that minimize or maximize the cost function. This solution is

also know as the optimal solution. Approximation algorithms are used to find approx-

imate solutions to NP-hard optimization problems. An approximation algorithm A

to a minimization (maximization) problem has an approximation ratio β if the value

of the approximate solution A(x) to an instance x is no more (less) than β times the

optimal solution.

Approximation algorithms for MAX2SAT is another area that generates many in-

teresting results. The cost function of MAX2SAT is the number of unsatisfied clauses.

It was shown by Hastad that MAX2SAT can not be approximated within an approx-

imation ratio that is better than 21
22

in polynomial time. The current best known

approximation ratio is 0.935 which is given by an approximation algorithm designed

by Matuura and Matsui [25]. Two of the most well known approximation algorithms

for MAX2SAT are local search (LS) and GSAT.

Among many of the approximation algorithms, the LS algorithm plays a funda-

mental role. The LS heuristic uses the idea that the current solution can be improved
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by making small changes, for instance, flipping a single variable in the assignment.

LS algorithm usually starts with an random solution and keeps flipping the solution

if its value can be improved. The algorithm terminates when no improvement can be

made. For any MAXkSAT problem, it was proven by Hansen and Jaumard [21] that

a lower bound for local optimum is km
k+1

where m is the number of clauses. Since LS

stops that a local optimum, it implies that the solution of a LS algorithm satisfies

at least km
k+1

clauses. Although the idea of LS seems very simple, surprisingly, its

expected performance is much better than the km
k+1

bound.

Besides LS, GSAT is another widely used approximation algorithm for MAXSAT.

Unlike classic LS algorithms, not all flips of variables in GSAT result in improvements

of the current solution. Instead of making improvements at each step of the algorithm

and terminating when no improvement can be made, GSAT starts with an initial

assignment, and at each step, it evaluates all possible moves, selects the best move

(even if it worsens the assignment) which minimizes the cost function to avoid local

maximum. There is no natural condition that can be used for GSAT to terminate.

Instead, it usually runs for a specified number of steps (flips of variables) given by the

parameter max flip.

Another parameter which plays an important role in both LS and GSAT algorithms

is max try. It allows the algorithm to restart for certain number of times with a

different initial assignment after termination. However, this parameter is not required

for all algorithms. For example, the one-pass local search (OLS) algorithm which is

used in the experiment in Section 4.2 doesn’t need to restart. It evaluates each variable

of a given formula according to some predefined order. Each variable is considered

once and set to a truth value according to some predefined conditions.

Random formulas

Random formulas are often considered for the purpose of testing the performance of

SAT solvers. In recent years, increasing number of researches are focused on designing

good models for generating random formulas. Uniformly random formulas is one of
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the most common models. In Section 4, we use a modified uniformly random model

to generate instances for our experiments.

The uniformly random model usually take three parameters, the number of variables

n, the number of clauses m, and the number of variables per clause k. Each clause is

generated by selecting k distinct variables uniformly at random. Each variable in the

clause is negated with probability 1
2
. The process stops after generating m clauses. In

this model, all formulas with n variables and m clauses appear with equal probability.

Beside the classic uniformly random model, there are many other models for dif-

ferent experimental purposes. There are models that generate hard instances of

MAXSAT problem which can be used for testing worst case performance. Formu-

las generated by these models consist two parts: random and adversarial. While the

random part might be polynomial time solvable, the adversarial part ensures that

the formula is hard to solve with high probability. There are models that generate

random instances such that a given optimal solution is hidden in the formula. Ran-

dom instances generated by these models are useful in experimental analysis of the

distances between approximated solutions and real solutions. In the experiments in

Section 4.2, we use a model similar to the uniformly random model to generate testing

formulas.

1.3.2 Tree decomposition

Given an arbitrary graph G, it is NP-complete to determine its tree width and to

find its tree decomposition with minimum width [4]. For a given fixed k, many works

have been done on determining a tree decomposition with width at most k. It is

known that for small k = 1, 2, 3, 4, this problem is linear time solvable. For constant

k, there are algorithms that construct a tree decomposition of width at most k if it

exists. Such algorithms are usually polynomial in n, but exponential in k. We should

notice that k is not the minimum tree width of G in most cases.

Decomposition algorithm
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For a fixed constant k, the algorithm designed by Arnborg, Corneil, and Proskurowski

[4], is one of the earliest polynomial time algorithms that constructs a tree decompo-

sition of width k. In the first step of the algorithm, it determines all size k vertex

separators of a graph G which partition the graph into disjoint components. Each

separator divides the graph into several disconnected components of various sizes. In

the next step, it lists all components of all separators from the smallest in size to the

largest, then uses dynamic programming to determine the decomposable components.

Since there are approximately O(nk) size k separators, and it takes O(n2) time to de-

termine the decomposable components for each separator, the total running time of

the algorithm is O(nk+2). Although the running time of this algorithm is polynomial

in n, but for graphs with large tree width or large size, it is infeasible to construct

the tree decomposition.

A much more efficient tree decomposition algorithm was developed by Robertson

and Seymour [31] which achieves the running time of O(n2) for fixed k. Later, Bod-

laender and Kloks [11] improved the running time of the algorithm to O(n log2 n).

Reed [28] further improved the running time to O(n log n) based on his linear time

algorithm for determining approximately balanced separators. Bodlaender [9] also

designed a linear time algorithm for finding minimum-width tree decomposition for

graphs of bounded tree width. However, there is a large constant hiding in the run-

ning time of the algorithm, so the algorithm is not practical. In practice, there are

also many heuristic algorithms for finding tree decompositions [2], [26], [33].

Balanced Separator

Given an arbitrary graph with n vertices, an α-separator of the graph is a vertex

set such that the removal of the set disconnects the graph into connected components

of size no more than αn. When α is at most 1
2
, it is called balanced separator. The

problem of finding an α-separator of minimum size is NP-hard for any α < 1. Since

finding a minimum α-separator is important for improving the efficiency of many

algorithms that are based on divide and conquer techniques, many studies have been

done on designing approximation algorithms. The approximation may be in terms of
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the size of the separator, in terms of the value of α, or even both. In our case, we are

interested in finding small α-separator with some relaxation of balance requirement.

For 2
3
≤ α < 1, Feige and Mahdian [19] developed an O(2kn) randomized algorithm

for finding an α-separator of size k.

Given a fixed k, the linear time algorithm given by Reed [28], determines a 3
4
-

separator of size no more than k. As mentioned above, we can determine a tree de-

composition of a graph in O(n log n) by recursively applying this separator algorithm.

In Section 4, we also use this algorithm as a subroutine for constructing a separator

tree. This approximately balanced separator algorithm proceeds as follows. In the

first step, it finds a partition of the graph into disjoint rooted trees T = {t1, t2, ..., ts}
with roots R = {r1, r2, ..., rs}, such that s ≤ 24k and the size of connected compo-

nents of ti \ {ri} is most n
24k

. In the next step, we check all possible partitions of R

for an approximately balanced separator since if a cut set partitions R, then it also

partitions G.

Other Decomposition

Besides tree decomposition, there are many other decomposition techniques that

partition a graph according to different constraints. Similar to the notion of tree

width, different structural parameters can be defined based on these decompositions.

These structural parameters are usually used to identify classes of structures or graphs

which are algorithmically well behaved. It was shown that some NP-complete prob-

lems are fixed parameter tractable or polynomial time solvable under some of these

structural parameters. Some of the well known width measures are branch width,

clique width, Kelly width.

The notion of branch decomposition which was introduced by Robertson and Sey-

mour [30] is closely related to tree decomposition. It was shown to be effective for

solving some combinatorial optimization problems, such as, general minor contain-

ment, ring-routing problem, and the traveling salesman problem. A branch decompo-

sition of a graph G is a pair (T, v), such that T is a ternary tree with |E(G)| leaves,
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and v is a bijection from the edges of G to the leaves of T . By removing an edge e

from T , we can partition the edges of G into two sets Ae and Be. The width of e

is the number of vertices that are incident to both edges in Ae and Be. The width

of a branch decomposition is the maximum width among all edges of the decomposi-

tion. The branch width of a graph G, bw(G), is the minimum width over all branch

decompositions of G. It is known [30] that bw(G) ≤ tw(G) + 1 ≤ b3
2
bw(G)c.

Another well known width measure is clique width, cw(G), which was introduced

by Courcelle and Olariu [16]. It is known to be effective for solving problems such

as, edge domination set, graph coloring. As defined in [16], cw(G) is the minimum

integer k such that G can be constructed by means of repeated application of the

following four operations: introduce, disjoint union, relabel, and join. For any graph

with tree width k, it is clique width is at most 3 ∗ 2k−1. For any k, there is a graph

with tree width k, where its clique width is at least 2bk/2c−1 [16].

Width measure can also be defined for directed graphs. Kelly width of a digraph G,

kw(G), is the minimum width of Kelly decomposition which was introduced by Hunter

and Kreutzer [23]. Since we are not going to use the notion of kelly decomposition, so

we are not defining it here. It is known that problems such as parity game, weighted

hamiltonian cycle, can be solved efficiently on small Kelly width instances. It is also

known [23] that kw(G) ≤ tw(G) + 1.

When a new width parameter is defined, it is usually compared against tree width.

As we can observe from above, both branch width and Kelly width are within constant

factor of tree width, and clique width can be exponentially worse than tree width.

However, the separator width which is defined in Section 3 is no more than the tree

width and can differ from the tree width by a logarithm factor.



Chapter 2

Exact Algorithms

In this chapter, we investigate two different approaches in designing exact algorithms

for solving MAX2SAT instances with bounded tree width. In both approaches, we

take a tree decomposition of the formula as input. In the dynamic programming

approach, we explore the tree from bottom-up, whereas, in the divide and conquer

approach we explore the tree from top-down. We also give an algorithm that trans-

forms a path decomposition of width k into a balanced tree decomposition of width

at most 3k.

2.1 Dynamic programming

Dynamic programming is the most common approach in designing tree decompo-

sition based algorithms. Dynamic programming algorithms often take advantages of

bounded tree width to build tables for storing partial results and avoiding redundant

computations. Problems such as independent sets, dominating sets, graph coloring,

optimal subgraphs can all be solved in polynomial time for graphs with bounded tree

width. The fundamental result of [15] shows that problems that are expressible in

existential monadic second order logic are solvable by dynamic programming algo-

rithm in polynomial time on classes of bounded tree width. A MAX2SAT instance

has bounded tree width if the graph of the formula has bounded tree width. Because

the MAX2SAT problem is expressible in monadic second order logic, same concept

13
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can be used in algorithms for solving MAX2SAT problem.

Let k denote the width a tree decomposition. Since the size of each bag in the tree

decomposition is at most k + 1, we can determine all possible assignments of a bag

in O(2k+1) time. For each bag Xi in the tree decomposition, we can determine the

optimal assignment of the subtree rooted at Xi from the information of all solutions

of its left and right subtrees.

For a given tree decomposition (X,T ), let Li denote the set of all possible assign-

ments of variables in Xi and their costs on the subtree rooted at Xi. The cost of an

assignment on a subtree is determined by the minimum number of unsatisfied clauses

containing only variables from the subtree. The dynamic programing algorithm first

starts from a leaf bag Xi, and stores all possible assignments of Xi and their costs in

Li. Secondly, Li for an internal bag Xi with children Xj and Xl can be obtained by

combining each assignment of Xi, with assignments from Lj and Ll separately. The

following rule defines how to combine assignments.

Rule 2.1.1 (Combining an assignment) Let φi be an assignment in Xi. Let S be the

set of assignments φj in Lj such that φi and φj coincide on variables in Xi ∩ Xj.

Similarly, let Q be the set of assignments φl in Ll such that φi and φl coincide on

variables in Xi ∩ Xl. Let φj ∈ S be the assignment which have the minimum cost

cj,and φl ∈ Q be the assignment which have the minimum cost cl. We store φi in Li

and the cost of φi is c+ ci + cj where c is the number of unsatisfied clauses containing

only variables in Xi.

From property P2 of tree decomposition defined in Section 1.2, we know that vari-

ables in (Xj ∪Xl)\Xi can never appear in any of the unprocessed bags. Therefore, in

Li, we only need to store the assignments of variables in Xi. The algorithm terminates

when we reach the root bag Xr of (X,T ), the best assignment in Lr is the partial

assignment corresponds to the optimal assignment of (X, T ).

For a bag Xi with children Xj and Xl, the total time it takes to determine the list

Li is 2|Xi\Xj | ∗ 2|Xj | + 2|Xi\Xl| ∗ 2|Xl|. Since each bag of a tree decomposition contains
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at most k + 1 variables, in the worst case, it takes O(22(k+1)+1) time to combine all

solutions in an internal bag with its two children. We know that a tree decomposition

contains at most n bags, so the total running time of the algorithm is O(22kn). We

should also notice, when the tree decomposition is smooth, the algorithm have time

complexity O(2k+3n). Since we need to store all assignments of the child nodes,

and the list can be discarded only after their parent nodes are processed, the total

memory space used by this algorithm is O(2k+1) (and the constant factor is relatively

small). This algorithm is very efficient when k is small. However, when k is large,

a huge amount of partial solutions is carried in between each pair of adjacent bags.

Most importantly, many of the partial solutions stored in the algorithm can not be

extended to an optimal solution at all. In next section, we look at the divide and

conquer algorithm which is less efficient than dynamic programming algorithm, but

uses only linear memory space.

2.2 Divide and conquer

Instead of using a bottom-up dynamic programming algorithm, we can also use a

top-down divide and conquer algorithm to solve this problem. By assigning a truth

value to all the variables in the root bag, we can partition the formula into two inde-

pendent sub-formulas. Therefore, we can solve this problem by assigning each of the

2k possible assignments to the root bag and recursively solving the two sub-formulas.

This algorithm takes advantages of the tree like structure of the decomposition. Once

a particular assignment is given to the root, we are left with several smaller instances

of the problem which can be solved independently.

Unlike dynamic programming algorithm, at each step in the divide and conquer

algorithm, we only store the current optimal assignment. This implies that the

memory space used by the algorithm is linear. This also means when a different

assignment is given to a root bag, we will need to recompute the optimal solu-

tions of each subproblems. Although this requires a lot of recomputation, we can

still efficiently solve the problem if we can split the problem into more or less equal
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Algorithm 2.1 DCSolver(r)

Require: A tree decomposition (X,T ) with root r
Ensure: An optimal assignment φ on the subtree rooted at r
1: φ:=null
2: for All s ∈ possible assignments of Xr do
3: if r.leftChild!=null then
4: l:=DCSolver(r.leftChild);
5: end if
6: if r.rightChild!=null then
7: r:=DCSolver(r.rightChild);
8: end if
9: φ :=best(φ, s ∪ l ∪ r);

10: end for
11: return φ

sized subproblems. Let T (n) denote the total running time of this algorithm, then

T (n) = (2k+1)T (n/c) + (2k+1)T (n − n/c) + O(n) where c > 1. Since the number of

edges in a tree decomposition of width k is no more than kn, we can split the problem

and update the solution in O(n) time. It is known that [22], in linear time, we can

find a centroid bag which is a bag such that the removal of this bag gives us subtrees

of size no more half of the size of the original tree. Instead of picking the left child and

the right child of the root as roots of the new subtrees, we can pick the centroid bag as

the root at each step. Hence, we get T (n) = (2k+2)T (n/2)+O(n) = O(nk). Although

this algorithm is less efficient than dynamic programming algorithm in terms of time

complexity, it is advantage is that the memory space used by the algorithm is always

linear even for graphs with unbounded width.

2.3 Modified Divide and conquer

Recall that, in a smooth tree decomposition of width k, each pair of adjacent bags has

exactly k vertices in common. Using this property, we can improve the performance

of the divide and conquer algorithm described in Section 2.2.

Lemma 2.3.1 If the graph of a formula has a balanced smooth tree decomposition of
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width k, then the running time of Algorithm 2.1 is O(2kn) with linear memory space.

Proof In the smooth tree decomposition, by assigning a value to each variable in the

parent bag, we reduce the number of unprocessed variables in the child bag to one.

Therefore, if we apply the divide and conquer algorithm to a smooth tree decompo-

sition, then we only need to spend 2k time for the root bag. Once an assignment

to the root bag is given, there are only 2 possible choices for each of the descendant

bags. For each of the 2k possible assignments of the root bag, we only need to spend

T (n) = 2T (n/c) + 2T (n − n/c) + O(n) time to determine its corresponding optimal

assignment. In exactly the same way as Algorithm 2.1, we only store the current best

assignment at each time, so the algorithm takes only O(n) memory space. Hence, if

the smooth tree decomposition is balanced, the algorithm yields a total running time

of O(2kn) using only linear memory.

However, we should also notice that the algorithm performs badly on unbalanced

decompositions. In order to use the property that adjacent bags differ by only one

vertex, we can no longer use centroid bags to reduce the height of the tree decompo-

sition. In the worst case, when the tree decomposition is a path, the tree can have

height as large as n− k, then the over all running time is O(2n). If we can transform

a tree decomposition into a smooth and balanced tree decomposition with the same

width, then the divide and conquer algorithm can achieve the same time complexity as

the dynamic programming algorithm while using only linear memory. This motivates

us to try to balance a tree decomposition.

Given a tree decomposition of a graph, we can always transform it into a smooth

tree decomposition with the same width in linear time [9]. In the next section, we

discuss a possible technique which can be used to balance a path decomposition.

However, it is not always possible to transform a path decomposition into a balanced

smooth tree decomposition with only a small amount increase in its width. To balance

a path decomposition, we increase the size of each bag by a constant factor of 3. If two

adjacent bags in the decomposition have no vertices in common, then we need to add k

bags in between these two bags to make it smooth where k is the maximum size of these



CHAPTER 2. EXACT ALGORITHMS 18

two bags. By doing so, we destroy the balance of the decomposition. Of course, we can

rebalance the decomposition and then smooth it again. However, repeatly applying

these procedures can lead to large increases in the width of the decomposition. In this

case, we can not improve the performance of Algorithm 2.1. Hence, we decide not to

put any more efforts into extending the technique for balancing path decomposition

to the general tree decomposition.

2.4 Balancing path decomposition

As discussed in Section 2.3, the performance of the divide and conquer algorithm on

a smooth tree decomposition depends on the height and the width of a decomposition.

For a graph with bounded treewidth, its tree decomposition could be a path which

have height as large as n− k. In order to improve the performance in the worst case,

we could want to balance the path decomposition so that its height is minimal while

its width stays within a constant factor of the original decomposition.

Path decomposition which is a special case of the tree decomposition usually have

large height. In this section, we present an algorithm that balances a given path

decomposition into a balanced tree decomposition while only increases the width by

a constant factor of 3.

Let (X = {Xi|i ∈ I}, P = (I, H)) denote the path decomposition and I =

1, 2, ..., h. Without loss of generality, let’s assume that i − 1 and i + 1 are the left

and right neighbors of i in P respectively. Our algorithm can be described by the

following two steps.

• Construct a balanced tree. Let T = (I, H
′
) be a tree such that bh

2
c is the

root of the tree. For any node i in the tree, b i
2
c and i + b i

2
c are the left and

right child of i in T respectively.

• Satisfy the property P2. For all i and i + 1 in P , if i and i + 1 are not

adjacent in T , add Xi ∩ Xi+1 to Xj where j is on the path from i to i + 1 in
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Figure 2.1: Transform a path to a tree

T . Pair (X = {Xi|i ∈ I}, T = (I, H
′
)) is a balanced tree decomposition of

(X = {Xi|i ∈ I}, P = (I, H)).

From the first step, we get a partial tree decomposition (X, T ) of height log(h).

However, this partial tree decomposition may violates property P2 of the tree decom-

position as defined in Section 1.2. In the second step, we modify the bags of that

partial tree decomposition to satisfy all the constraints. Since each step takes O(n)

time, we can transform a path decomposition into a balanced tree decomposition in

linear time.

Observation 2.4.1 As shown in Figure 2.1 we can retrieve the ordering of bags in

P from T by inorder traverse. Hence, for an arbitrary internal bag i in T , i− 1 and

i + 1 are located at the rightmost leaf in the left subtree rooted at i and the leftmost

leaf in the right subtree rooted at i respectively. Starting from i, we can reach i − 1

by first picking a left child, then keep picking the right child. Similarly, we can reach

i + 1 by first picking a right child, then keep picking the left child.
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Lemma 2.4.2 Given a path decomposition (X,P ) of width k, we can transform it

into a balanced tree decomposition (X, T ) of width not exceeding 3k.

Proof To proof the lemma, we first show that each modification increases the size of

a bag by at most k, then we show that each bag can be modified at most twice.

• |Xi ∩Xi+1| ≤ k

Since the width of (X, P ) is k, we know both |Xi| and |Xi+1| are no more than

k + 1. Since Xi and Xi+1 are different bags, so their intersection is at most k.

• Xj are modified at most twice

Let l be the parent of j and let i be the parent of l in T . From the above

observation we know that j appears on either the paths from l to l + 1 and i to

i − 1 or the paths from l to l − 1 and i to i + 1. In the first case, l is the left

child of i and j is the right child of l. In the second case, l is the right child of i

and j is the left child of l. As mentioned earlier, for any bag r, the paths from r

to r− 1 and r to r +1 always pick the children on the same side except the first

one. Therefore, j can not appear on any other r to r − 1 or r to r + 1 paths.

Since for an arbitrary j, Xj can be modified at most twice in our algorithm and

each modification increases the size of Xj by at most k, (X, T ) is a balanced tree

decomposition of width no more than 3k.
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Separators

3.1 Separator Width

As shown in previous sections, in order to use the divide and conquer algorithm,

we want to separate the original problem into approximately equal sized independent

subproblems. Although all bags in a tree decomposition of the graph can be used as

separators, they are usually not optimal separators due to the repetition of vertices.

In fact, some of the properties of tree decomposition is not working in the advantage

of divide and conquer algorithm. For example, divide and conquer algorithm requires

the subproblems are independent of each other, but requiring that all edges covered by

some bags in the tree decomposition has nothing to do with the independence of the

subproblems. On the contrary, it can increase the size of the bags, hence increase the

complexity of the divide and conquer algorithm. In this section, we are going to define

a new notion of width, separator width, which is based on the size of separators in the

optimal balanced separator tree. We show that separator width of a graph doesn’t

exceed its tree width. Most importantly, unlike other width measure, separator width

of a graph can be logarithmically smaller than its tree width. Therefore, the divide

and conquer algorithm is more efficient when applying on an optimal separator tree

instead of a tree decomposition.

21
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Definition

• Balanced separator. A set S ⊂ V of a graph G(V, E) is a balanced separator

of G if and only if the removal of S partitions G into connected components of

size no more αn where n = |V | and α ≤ 1
2
. However, often a relaxed notion

of balanced separator is used. For example, in [28] a balanced separator is a

separator with α ≤ 3
4
. We use the relaxed notion. For any graph G(V, E),

a balanced separator of G always exits. If G is a clique, then the balanced

separator of G is V .

• Balanced separator tree. A balanced separator tree of graph G(V, E) is a

pair (X = {Xi|i ∈ I}, T = (I, F )) with X a family of subset of V , one for each

node of T , and T a tree such that

–
⋃

i∈I Xi = V .

– for all i, j ∈ I: Xi ∩Xj = ∅

– for all i ∈ I: Xi is a a balanced separator of the induced subgraph of G on

the set
⋃

k∈Ti
Xk where Ti is the subtree of T rooted at i.

• Width of a balanced separator tree. The width of a balanced separator

tree (X, T ) is sw((X, T )) = maxi∈I |Xi|.

• Separator width. The separator width of a graph G, sw(G) is the minimum

width over all possible balanced separator trees of G.

Given a graph G, by recursively determining the balanced separator of each com-

ponent, we can construct a balanced separator tree. As shown in Figure 3.1, each

internal node r is a balanced separator of the graph which is induced by the nodes in

the subtree rooted at r. However, such a tree of balanced separators is not unique. As

shown in Figure 3.2, for the given graph, we have two different trees of balanced sep-

arators. In later sections, we would discuss algorithms for finding a tree of balanced

separators. Depending on the algorithm, we may get trees of different width.
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Edges in the treeBags of vertices Edges in the graph

Figure 3.1: A balanced separator tree
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Figure 3.2: (1) A graph. (2), (3) Two different balanced separator trees.
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3.2 Relationship of separator width and tree width

From the definition of separator width, we know it is very similar to tree width.

However, the notion of a tree decomposition is very different from a balanced separator

tree. First of all, tree decomposition requires all edges to be covered by some bags

in the decomposition, but a balanced separator tree only covers all vertices of the

graph. Secondly, from the definition, we know that in a balanced separator tree, each

vertex in the graph belongs to a unique bag. Last, but most importantly, the height

of balanced separator tree is at more log(n), yet the height of a tree decomposition

can be as large as n.

1

4

2

7 8 9

3

65

1,2,3,
4,5,6

4,5,6,
7,8,9

(1) (2) (3)

4,5,6

1,2,3 7,8,9

Figure 3.3: (1) A graph. (2) Tree decomposition of the graph. (3) Balanced separator
tree.

Theorem 3.2.1 For an arbitrary graph G with n vertices, sw(G) ≤ tw(G), and

tw(G) can be as large as log(n)sw(g)

We prove the theorem using the following two lemmas,

Lemma 3.2.2 For any graph G of tree width k, there is a balanced separator tree of

the same width.
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Proof It is known [10] that in any graph G of tree width k, there is a balanced

separator of size at most k. Since any subgraph of G also has tree width at most

k, we can obtain a balanced separator tree by recursively picking a size k balanced

separator of each component. By definition, the width of this balanced separator tree

is k.

From Lemma 3.2.2, we know that sw(G) ≤ tw(G).

Lemma 3.2.3 There is a graph G contains a clique of size log(n)sw(G) where n is

the number of vertices in G.

We prove the lemma by constructing a separator tree of width sw(G) such that G

contains a clique of size log(n)sw(G).

Proof As shown in Figure 3.1, Let T = (I, H) be a full binary tree. We include

sw(G) vertices in each bag Xi, i ∈ I. The vertex set V of G is
⋃

i∈I Xi. To construct

the edge set E of G, we first add an edge (v, u) for all pairs of vertices v, u ∈ Xi and all

Xi, i ∈ I. The vertices in each bag form a clique in G. Then, for all pairs of bags Xi

and Xj such that j is an ancestor of i in T , we add an edge (v, u) between all vertices

v ∈ Xi and u ∈ Xj. For each root to leaf path p in T , K =
⋃

i∈p Xi is a clique in

G. The pair (X = {Xi|i ∈ I}, T = (I, F )) is a balanced separator tree of G = (V, E)

which have width sw(G), and G contains a clique K of size log(n)sw(G).

From Lemma 3.2.3, we know the tw(G) can be as large as log(n)sw(G) since the

tree width of a graph is at least the size of its largest clique. Hence, the theorem is

proved.

However, we should also notice that the size of cliques in a graph G is at most

log(n)sw(G) where n is the number of vertices in G.

Lemma 3.2.4 For any graph G, the largest clique in G is at most log(n)sw(G) where

n is the number of vertices in G.
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Proof Let p be the longest root to leaf path in a balanced separator tree. As shown in

Lemma 3.2.3,
⋃

i∈p Xi is a clique in G, and the size of this clique is at most log(n)sw(G)

since p contains at most log(n) bags and each bag is of size at most sw(G). Moreover,

for any v ∈ Xi such that Xi is not a bag on p, v cannot connect to all vertex u in all

bags Xj on p. Therefore, the largest clique in G is at most log(n)sw(G).

3.3 Hardness of determining an optimal balanced

separator tree

An optimal balanced separator tree is a separator tree with minimum width. As

discussed in Section 1.3.2, the problem of finding an exact minimum separator of a

graph is NP-complete. To find a balanced separator tree, we need to find a mini-

mum balanced separator at each stage. Therefore, we cannot determine the optimal

balanced separator tree in polynomial time.

As mentioned in Section 1.3.2, there are good approximation algorithms for finding

fixed size k balanced separators. Using the approximation algorithm described in that

section, we can recursively construct a balanced separator tree by greedily picking the

size k balanced separator returned by the approximation algorithm. However, this

greedy algorithm does not guarantee to determine a balanced separator tree of width k.

It is possible to recursively construct a graph G such that the separator decom-

position determined by the greedy algorithm can have width equal to the size of the

largest clique in G while sw(G) is much smaller. Let H(i) be a graph that contains

two parts, a size 2 clique K2 and a size i path Pi. Vertices ui, vi ∈ K2 are connected

to the end points wi, zi ∈ Pi respectively. Starting with a graph G0 = H(2), we can

obtain Gi from Gi−1 by combining Gi−1 with H(|Gi−1|). A graph Gi−1 is combined

with H(|Gi−1|) by connecting all vertices in K2 of H(|Gi−1|) with all vertices in the

clique of Gi−1. From the construction, we know Gi−1 have a unique clique which is

the union of vertices in K2 of each H(j).
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For any graph Gi, If we greedily pick {uj, vj} in K2 of each H(j) as the balanced

separator at each step, then eventually we get a balanced separator tree of width

2 since every path has a balanced tree decomposition of width 1. However, if we

greedily pick the end points {wj, zj} in Pj of each H(j) as the balanced separator at

each step, then eventually we end up with a clique of size 2i + 2. In this case, the

balanced separator tree has width 2i + 2.
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p2 is a length 4 path with end points 10,9
k is a size 6 clique

Figure 3.4: (1) A graph. (2) An optimal balanced separator tree. (3)A balanced
separator tree.

In Figure 3.4, we take G2 as an example. When k = 2, if we greedily pick {7, 8},
{9, 10}, and {11, 12} as the balanced separator at each step respectively, than even-

tually we end up with a component, K, which is a clique so that the separator width

of this balanced separator tree is the size of the clique. In this case it is 6. On the

other hand, if we pick {1, 2}, {3, 4}, and {5, 6} as the balanced separator at each step

respectively, then the balanced separator tree has separator width 2 which is optimal.

In general, the width of the separator tree determined by the greedy algorithm can

be as large as log(n)sw(G).
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Approximation Algorithm

Although the greedy algorithm does not guarantee to return an optimal solution,

we can modify the separator tree determined by the greedy algorithm to obtain a good

approximation. For a given graph G, and a constant k, let (X, T ) be the separator

tree determined by the greedy algorithm. The approximation algorithm takes T as

an input, and reshapes it in the following two steps.

• Extension. Since the separator tree returned by the greedy algorithm may

contain short paths, we need to extend T into a full binary tree of height h =

O(log(n)) by adding dummy nodes to short paths. For each dummy node i,

the corresponding set Xi is initialized to be empty. Furthermore, we push the

leaf nodes in the original tree, all the way down to one of the leaf nodes in the

extended tree.

• Propagation. In the propagation step, we first traverse the tree from bottom-

up starting at the leaf nodes. For each leaf node i, we count how many vertices

in Xi need to be propagated to its parent if we only allow to keep k + j vertices

in the current node. Let’s denote this number by ci. For each internal node i

with children a and b, ci = ca + cb − j. We look for the smallest j such that

cr = 0. Once we reach the root r, if cr 6= 0, then we need to increase j, and

repeat this process. When cr = 0, we know that we have obtain the right value

of j, so we revisit the tree from bottom-up, at each node i we propagate ci

vertices to its parent.

Figure 3.5: Approximation algorithm
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Observation 3.3.1 Let v be an arbitrary vertex in any bag Xi, propagating v to any

bag Xj such that j is an ancestor of i in T , then the resulting tree is still a separator

tree.

From Observation 3.3.1, we know that the tree we obtained after the bottom-up

propagation step is a separator tree.

Lemma 3.3.2 Let K be a clique in G, for all i such that Xi contains some vertices

in K, they all must belong to the same leaf to root path in T .

Proof Without loss of generality, assume Xi and Xj are two bags that contain some

vertices in K, and i, j belongs to different leaf to root paths in T . There is a l ∈ I

such that l is the common ancestor of i, j. By definition we know Xl separates Xi

and Xj. Hence, Xl must contain all vertices in K which contradicts the requirement

that Xl, Xi and Xj are pairwise disjoint.

Recall that in Lemma 3.2.4, we showed cliques in G can be as large as log(n)sw(G).

We also know that the balanced separator decomposition returned by the greedy

algorithm can contain such cliques in its leaf nodes. In order to reduce the size of the

clique in a leaf node, we need to spread it along a leaf to root path which increases the

size of each bag along the path by sw(G). Since each internal bag already contains

k ≥ sw(G) vertices, we know for some graphs the separator tree returned by the

approximation algorithm could have width greater than or equal to 2k. However,

we are not going to put any effort in improving the algorithm to obtain a balanced

separator tree of width at most 2k in these cases. In next subsection, we show that

improving the algorithm to obtain a balanced separator tree of width 2k doesn’t

improve the time complexity for solving our problem.

3.4 Applications

Given a balanced separator tree (X, T ) of a graph G, we can apply the divide and

conquer algorithm to solve MAX2SAT problem. Instead of taking a tree decomposi-

tion as input, we take a balanced separator tree as input. The algorithm proceeds in
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the same way as described in Section 2.2. In general, the running time T (n) of the

algorithm becomes T (n) = 2sw(G)+1T (n/2) + O(n) = O(nsw(G)).

We should also notice that in the original balanced separator tree returned by the

greedy algorithm described in previous section, each internal bag has size k for some

k, while each leaf bag has size at most log(n)k. When we apply Algorithm 2.1 on

this tree, its time complexity is O(n2k). First of all, since the size of a leaf bag is no

more than log(n)k, each of the n
2

leaf bags can be processed independently in O(nk)

time. Secondly, the running time on the internal bags of the balanced separator tree

is at most T (n) = 2kT (n/2)+O(n) = O(nk). Therefore, the total running time of the

algorithm is O(n2k). Hence, we know that the approximation algorithm described in

previous section is not useful unless it can reduce the width of a balanced separator

tree returned by the greedy algorithm to a value less than 2k.

The performance of Algorithm 2.1 can be improved when the input is a balanced

separator tree instead of the tree decomposition. Moreover, the balanced separator

decomposition is specially designed for divided and conquer algorithm, so dynamic

programming algorithm doesn’t work on this decomposition. The properties of the

tree decomposition ensure that every edge in the graph is covered in a bag. Therefore,

we can correctly calculate the number of unsatisfied clauses by summing up unsatisfied

clauses in each bag. However, in a balanced separator decomposition there is no such

restriction. In fact, many edges are not covered by any bag at all. Therefore, if we

apply dynamic programming algorithm on a balanced separator decomposition, many

unsatisfied clauses are missed by the algorithm.

Next, we compare the performance of algorithm 2.1 on a balanced separator de-

composition with the performance of dynamic programming algorithm on a smooth

tree decomposition. We consider the case when tw(G) is close to sw(G) and the case

when tw(G) is logarithmically larger than sw(G).

Dynamic programming is the most standard approach that is used in designing

algorithms for solving problem instances of bounded tree width. This implies that it
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is hard to design an algorithm that beats the time complexity of dynamic programming

algorithm. Indeed, as shown in Table 3.1, when the separator width is less than the

tree width by only a small constant c, the performance of Algorithm 2.1 on a balanced

separator tree is still worse than the performance of dynamic programming algorithm.

Table 3.1: Time and space complexity

Divide and conquer Dynamic Programming

Time complexity O(nsw(G)) = O(2log(n)k) O(2tw(G)+3n) = O(2ck+3+log(n))

Space complexity O(n) O(2tw(G)) = O((2)ck)

But still, we are happy to notice that there are also cases in which the performance

of Algorithm 2.1 is superior than dynamic programming algorithm. For a graph G

with sw(G) = k and tw(G) = log(n)k, we compare the time and space complexity

of the divide and conquer algorithm on its balanced separator decomposition with

the dynamic programming algorithm on its smooth tree decomposition. As shown

in Table 3.2, the running time of both algorithm is comparable in this case, but the

divide and conquer algorithm uses much less memory space.

Table 3.2: Time and space complexity

Divide and conquer Dynamic Programming

Time complexity O(nsw(G)) = O(nk) O(2tw(G)+3n) = O(nk+4)

Space complexity O(n) O(2tw(G)) = O(nk)

Moreover, when tw(G) ≥ log(n), dynamic programming algorithm uses much more

memory space then divided and conquer algorithm. By scarifying the performance of

the algorithm, we are able to save the memory space.



Chapter 4

Approximation Algorithm

The algorithms described in Section 2 are exact algorithms for solving MAX2SAT

problem. As we know MAX2SAT is NP-hard, there are also many interesting studies

focusing on designing efficient approximation algorithms. In this section, we use the

elimination ordering of vertices as a tool to design an approximation algorithm for

d-degenerate instances of MAX2SAT problem. We analyze the performance of our

approximation algorithm both experimentally and mathematically.

4.1 Algorithm

A graph G is d-degenerate if every subgraph of G has a vertex with degree at most d.

Alternatively, vertices of G can be arranged in an ordering π = {v1, v2, v3, ...vn} such

that for every vertex vi, vi has at most d neighbors vj with j > i. For a d-degenerate

graph, the ordering π can be determined in linear time by greedily picking vertices of

degree no more than d. For the sake of connivence, we call π an elimination ordering

of G, and d the elimination width. It was shown by Arnborg [3] that all graphs with

bounded tree width k have an elimination ordering π of width k. Moreover, the class

of tree width k graphs is not the only class of graphs with an elimination width k.

For example, planar graphs do not have a fixed tree width, but they are 5-degenerate

by Euler’s Theorem, so they have a elimination width 5.

32
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To describe the approximation algorithm, we need some terminology. Let φi de-

note a partial assignment, where variables {v1, v2, ..., vi−1} are assigned to some truth

values, and variables {vi, vi+1, ..., vn} are not assigned to any value. Let Fi denote the

formula corresponding to φi. It is obtained from F by removing all clauses contain-

ing a variable in {v1, v2, ..., vi−1} and satisfied by its value, and substituting a unit

clause vj (vj) for unsatisfied clauses containing vj (vj) such that vj ∈ {vi, vi+1, ..., vn}.
Formula Fi contains two types of clauses, namely, the unprocessed clauses and the

processed clauses. An unprocessed clause in Fi is a clause containing two variables

such that both variables belong to {vi, vi+1, ..., vn}. A processed clause in Fi is a unit

clause containing a variable in {vi, vi+1, ..., vn}. By giving a truth value to vi, we can

extend φi to a partial assignment φi+1. As shown in Figure 4.1, let Ai, Bi, Di, and Ei

denote the set of unprocessed clauses that are satisfied by the value assigned to vi, the

set of processed clauses that are satisfied by the value assigned to vi, the set of unpro-

cessed clauses that are unsatisfied by the value assigned to vi, and the set of processed

clauses that are unsatisfied by the value assigned to vi respectively. When we even-

tually extend a partial assignment to a total assignment φ, the number of unsatisfied

clauses is
∑n

i=1 |Ei|. Since
∑n

i=1 |Ei| =
∑n

i=1 |Di| −
∑n

i=1 |Bi| =
∑n

i=1(|Di| − |Bi|),
in order to maximize the number of satisfied clauses we want to minimize the total

difference of |Di| and |Bi|.

vi
Ai

Di

clauses that are not satisfied by vi
clauses that are satisfied by vi

Ei

Bi

Figure 4.1: Four sets of clauses
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Based on the above observation, we can define the following rule,

Rule 4.1.1 (Flipping condition) For a given value of vi, if |Ai| − |Ei| < |Di| − |Bi|,
then flip the value of vi

Using the flipping condition, we design our approximation algorithm in the follow-

ing way. Let’s consider the vertex in the given elimination ordering from the lowest to

the highest. At each step, take the vertex vi, and set it to be true. After determining

the sets Ai, Bi, Di, Ei, if |Ai| − |Ei| < |Di| − |Bi|, then flip the value of vi.

Algorithm 4.1 GreedySearch(F , π = {v1, v2, v3...vn})
Require: An elimination ordering π = {v1, v2, v3...vn} of variables in F
Ensure: an assignment φ of F
1: for currentV = v1 to vn do
2: φ(currentV ) = 1;
3: A:= the set of unprocessed clauses satisfied by φ(currentV );
4: B:= the set of processed clauses satisfied by φ(currentV );
5: D:= the set of unprocessed clauses unsatisfied by φ(currentV );
6: E:= the set of processed clauses unsatisfied by φ(currentV );
7: if |A| − |E| < |D| − |B| then
8: φ(currentV ) = 0;
9: end if

10: end for
11: return φ;

This algorithm is very similar to local search. But instead of setting each vertex to

the value that minimizes the number of unsatisfied clauses, we minimize the difference

between the number of unprocessed clauses that are unsatisfied and the number of

processed clauses that are satisfied. Most importantly, the vertices are not processed

arbitrarily. The elimination ordering ensures that after a vertex is considered, at more

d processed clauses are introduced.

The advantage of this algorithm is that it is time efficient. The algorithm processes

each variable only once, and for each variable it takes c time to compute the four

related numbers where c is the number of clauses incident to the vertex. In total,
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the running time of this algorithm is O(δn) where δ is the maximum degree over all

vertices.

The disadvantage of this algorithm is that it can be fooled by some specially con-

structed instances. For example, let H0 = {v1∨v2}∧{v1∨v3}∧{v1∨v4}∧{v2∨v3}∧{v2∨
v4} ∧ {v3 ∨ v4} ∧ {v4 ∨ v5}. Formula H0 has an optimal assignment φ0 = (1, 1, 1, 1, 1)

satisfies 6 out of 7 clauses. Now we can recursively construct a formula Hi from

Hi−1 by adding a variable vi+5 and clauses {vi ∨ vi+5}, {vi+1 ∨ vi+5}, {vi+2 ∨ vi+5},
{vi+3 ∨ vi+5}, and {vi+4 ∨ vi+5}. Each formula Hi contains i + 5 variables and 7 + 5i

clauses. φi = (1, 1, 1, ..., 1) is an optimal assignment of Hi which satisfies 6 + 5i

clauses. The elimination ordering πi = {v1, v2, ..., vi+4} has bounded width 5. For

i ≥ 5, the best solution returned by GreedySearch algorithm is (0, 0, 0, ....0, 1, 1, 1, 1)

which satisfies 9 + 4i out of 7 + 5i clauses.

Proposition 4.1.2 For i ≥ 5, we can construct a formula Hi with i+5 variables and

7 + 5i clauses, such that the optimal solution of the formula satisfies 6 + 5i clauses

while the best solution of GreedySearch algorithm satisfies 9 + 4i clauses.

In general, there is no known method to determine exactly how many clauses in a

formula are satisfied by an optimal assignment. So it is difficult or even impossible to

determine the exact approximation ratio of the GreedySearch algorithm. To analyze

the performance of the algorithm, we first experimentally compare its performance

with two well-known approximation algorithms. we also use a mathematical model

to determine its expected performance on random formulas.

4.2 Experimental analysis

Even though it is possible to construct instances for which GreedySearch (GS) al-

gorithm approximates badly, we still can expect a good performance of the algorithm

in a typical case. In this section, we conduct an experiment that compares the per-

formance of GS with one-pass local search (OLS) and GSAT on random instances.

We choose these two algorithm because OLS have the same time complexity as GS,
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and GSAT is one of the best approximation algorithms for solving MAX2SAT. In our

experiment, we allow GSAT to restart 10 times and flip each assignment 100n times.

The random instance generator in this experiment takes three parameters, n, m,

and d. Let n denotes the number of variables, m denotes the number of clauses, and

d denotes the elimination width. The output is a formula over n variables with m

clauses, such that the vertex ordering {1, 2, 3, 4, ...n} has elimination width at most d.

This random instance generator is based on the uniform random model described in

Section 1.3.1. Each clause Ck with variable vi and vj, j > i is considered with equal

probability. For each variable vi, we count the number of clauses Ck that is already

included in the formula, if it exceeds the threshold d, Ck is discarded. Notice, in order

to produce a formula of m clauses on n variables, we need to have the elimination

width d ≥ m
n
. In order to ensure the generator terminates in a reasonable amount of

time, we usually set d to be a value that is slightly larger than the density m
n
.

In the following table, we compare the performance of these three algorithms on

instances that generated by different parameters. The performance of an algorithm is

measured by the number of unsatisfied clauses in the best assignment determined by

the algorithm. The experimental results in the table are averages over 20 randomly

generated formulas.

Table 4.1: Performance of the three approximation algorithms

Input parameter Number of unsatisfied clauses
n m d GS OLS GSAT

100 800 10 92 151 90
100 2500 30 374 560 436
100 4000 60 547 894 755

500 3000 10 311 530 296
500 12500 30 1304 2194 1647
500 100000 300 13974 24558 22264

1000 6000 10 599 1079 598
1000 100000 150 13844 24131 21102
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From this table, we observe that GS performs better than OLS on all instance.

Its performance is comparable to GSAT on low density instances. For very sparse in-

stances, GSAT is slightly better than GS. However, in high density cases, GS produces

better approximations than GSAT. We should also notice that the time complexity

of GSAT is much larger than GS. It takes much longer time for GSAT to find a best

solution.

4.3 Mathematical model

In this section, we construct a model of GS using a system of differential equations

based on a similar analysis in [13], and show that the performance of our model does

agree with the expected performance of the algorithm. Before we start to model GS,

we need to introduce a theorem given by Wormald [35] which provides the mathe-

matical tool for analyzing GS.

As defined in [35], let’s denote discrete time random processes by (Q0, Q1, ...),

where Qi takes values in some set S. For n = 1, 2, ..., a sequence Qn of random

processes contains elements (q0(n), q1(n), ...) where each qi ∈ S. The little oh and

big Oh notation denote asymptotic for n →∞, but uniform over all other variables.

If max{x|P (X = x) 6= 0} = o(f(n)), then X = o(f(n)) always. An event occurs

almost surely if its probability in Qn is 1 − o(1). A function f(u1, ..., uj) satisfies a

Lipschitz condition on D ⊂ Rj if a constant L > 0 exists with the property that

|f(u1, ..., uj)− f(v1, ..., vj)| ≤ L

j∑
i=1

|uj − vj|

for all (u1, ..., uj) and (v1, ..., vj) in D

Theorem 4.3.1 (Wormald) Let Yi(t) be a sequence of real-valued random variables,

1 ≤ i ≤ k for some fixed k, such that for all i, all t and all n, |Yi(t)| ≤ Cn for some

constant C. Let H(t) be the history of the sequence. Let I = {(y1, ...yk) : Pr[Y (0) =

(y1n, ...ykn)} 6= 0 for some n}. Let D be some bounded connected open set contain-

ing the intersection of {(s, y1, ...yk) : s ≥ 0} with a neighborhood of {(0, y1, ..., yk) :
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(y1, ...yk) ∈ I}. Let fi : Rk+1 → R, 1 ≤ i ≤ k, and suppose that for some function

m = m(n),

(i) for all i and uniformly over all t < m,

E(Yi(t + 1)− Yi(t)|H(t)) = fi

(
t

n
,
Y0(t)

n
, ...,

Yk(t)

n

)
+ o(1), always;

(ii) for all i and uniformly over all t < m,

Pr[|Yi(t + 1)− Yi(t)| > n
1
5 |H(t)] = o(n−3), always;

(iii) for each i, the function fi is continuous and satidfies a Lipschitz condition on

D.

Then

(a) for (0, ẑ(0), ...ẑ(k)) ∈ D the system of differential equations

dzi

ds
= fi(s, z0, ...zk), 1 ≤ i ≤ k

has a unique solution in D fo zi : R → R passing through zi(0) = ẑ(i), 1 ≤ i ≤ k,

and wchich extends to points arbitrarily close to the boundary of D;

(b) almost surely

Yi(t) = zi

(
t

n

)
n + o(n),

uniformly for 0 ≤ t ≤ min{σn, m} and for each i, where zi(s) is the solution

in (a) with ẑ(i) = Yi(0)
n

, and σ = σ(n) is the supremum of those s to which the

solution can be extended.

With the theoretical foundation provided by Theorem 4.3.1., we can now start the

analysis of our algorithm. Given a random formula with n variables, the algorithm

produces values q0(n), q1(n), ... where 0, 1, ... are steps of the algorithm, and we are

going to define the values accurately. At each step of the algorithm, we can partition

all clauses into five sets, and the performance of the algorithm can be analyzed by
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monitoring the dynamics of these five sets. Let Ft denote the formula obtained at time

step t. Variables {v1, v2....vt−1} are processed variables at the current step. Likewise,

variables {vt, vt+1....vn} are unprocessed variables at the current step. At time step t,

we define the five sets as follows,

• E∅ is the set of all clauses in Ft that contain only unprocessed variables.

• E1 is the set of all clauses that contain at least one processed variable such that

its value satisfies the clause.

• E0 is the set of all clauses that contain two processed variables such that none

of their values satisfies the clause.

• E+ is the set of all clauses in Ft that contain a processed variable and a positive

unprocessed variable.

• E− is the set of all clauses in Ft that contain a processed variable and a negative

unprocessed variable.

Let e∅, e1, e0, e+, and e− denote the size of the five sets respectively, we use e to

denote the vector (e∅, e1, e0, e+, e−). Also, let mt denote the number of clauses that

contain two unprocessed variables such that one of them is vt, and denote this set of

clauses by S. The relationship between these five sets can be represented by Figure

4.2. Initially, E∅ contains all clauses, but E1, E0, E+, and E− are all empty. As the

algorithm processes, a clause in E∅ is either satisfied and goes to E1, or transformed

into unit clauses that contains only positive variables or negative variables and so goes

to E+ and E− respectively. At the same time, a clause in E+ or E− is either satisfied

and goes to E1 or unsatisfied and goes to E0. Also notice, clauses in E1 and E0 never

leave these sets. Having understood the relationships between these five set, we can

model the flow by the probability for a clause to move from one set to another. Let

E? and E# denote any two of these sets. We denote the probability for a clause to

move from E? to E# by P (E? → E#).
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E0E−

E+

E1

E∅

Figure 4.2: Flow Diagram

Before we compute P (E? → E#), we need to know what is the probability that a

variable vt is flipped. Let m10 denote the number of clauses in S such that the first

literal is positive and the second one is negative. Similarly, let m00 denote the number

of clauses in S such that both literals are negative, m11 denote the number of clauses

in S such that both literals are positive, and m10 denote the number of clauses in

S such that the first literal is negative and the second one is positive. Also, let lu0

denote the number of unit clauses that contain the negation of vt, and lu1 denote the

number of unit clauses that contain the positive form of vt. We know a variable is

fliped if m10 + m11 − lu0 < m01 + m00 − lu1.

Let F (m10, m11, lu0, m01, m00, lu1) denote the event that we get exactly m10, m11,

lu0, m01, m00 and lu1, clauses of the corresponding type at time t, then the probability

this event occurs is

P (F (m10, m11, lu0, m01, m00, lu1)) =
(

e∅
m10

)
( 1

4(n−t)
)m10

(
e∅−m10

m11

)
( 1

2(n−t)
)m11

×
(

e∅−m10−m11

m01

)
( 1

4(n−t)
)m01

×
(

e∅−m10−m11−m01

m00

)
( 1

2(n−t)
)m00

×
(

e+

lu1

)
( 1

n−t
)lu1

(
e−
lu0

)
( 1

n−t
)lu0

As n tends to infinity, the binomial distribution can be approximated by Poisson

distribution. Thus, we have
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P (F (m10, m11, lu0, m01, m00, lu1)) = ( e∅
4(n−t)

)m10( e∅−m10

2(n−t)
)m11( e∅−m10−m11

4(n−t)
)m01

×( e∅−m10−m11−m01
2(n−t)

)m00( e+

n−t
)lu1( e−

n−t
)lu0

× e
−(

e∅
4(n−t)

+
e∅−m10
2(n−t)

+
e∅−m10−m11

4(n−t)
+

e∅−m10−m11−m01

2(n−t)
+

e+
n−t +

e−
n−t )

m10!m11!m01!m00!lu1!lu0!

+O( 1
n
)

The probability that vt is flipped is

P (vt is flipped) = P (m10 + m11 − lu0 < m01 + m00 − lu1)

=
∑

m10+m11−lu0<m01+m00−lu1
m10+m11+m10+m00<d

P (F (m10, m11, lu0, m01, m00, lu1))

To determine the probability P (E∅ → E+), we need to consider the following

two cases. Firstly, vt is negative, the other variable is positive, and vt is not flipped.

Secondly, vt is positive, the other variable is also positive, and vt is flipped. The

probability of the first event is 1
4(n−t)

(1−P (vt is flipped)) and the probability of the

second event is 1
2(n−t)

P (vt is flipped). Thus

P (E∅ → E+) =
1

2(n− t)
(1− P (vt is flipped)) +

1

4(n− t)
e∅(t− 1)

Similarly, the probabilities of other directions of flow are the following,

P (E∅ → E−) =
1

4(n− t)
(1− P (vt is flipped)) +

1

2(n− t)
P (vt is flipped)

P (E∅ → E1) =
1

2(n− t)
+

1

4(n− t)

P (E+ → E1) =
1

(n− t)
(1− P (vt is flipped))

P (E− → E1) =
1

(n− t)
P (vt is flipped)
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P (E+ → E0) =
1

(n− t)
P (vt is flipped)

P (E− → E0) =
1

(n− t)
(1− P (vt is flipped))

Using above probabilities, we get,

E(e?(t)− e?(t− 1)|Ht)

=
∑

E# 6=E?

(
∑

C∈E#(t−1)

P (C ∈ E?(t)−
∑

C∈E?(t−1)

P (C ∈ E#(t))

=
∑

e# 6=e?

(e#P (E# → E?)− e?P (E? → E#)) (4.1)

From Equation 4.1, we get,

E(e∅(t)− e∅(t− 1)|Ht) = −m(t), E(m(t)) = min{ 2e∅
n−t

, d}

E(e+(t)− e+(t− 1)|Ht) = e∅(t−1)
2(n−t)

(1− P (vt is flipped))

+ e∅(t−1)
4(n−t)

P (vt is flipped)− e+(t−1)
n−t

E(e−(t)− e−(t− 1)|Ht) = e∅(t−1)
4(n−t)

(1− P (vt is flipped))

+ e∅(t−1)
2(n−t)

P (vt is flipped)− e−(t−1)
n−t

E(e1(t)− e1(t− 1)|Ht) = 3e∅(t−1)
4(n−t)

+ e+(t−1)
n−t

(1− P (vt is flipped)

+ e−(t−1)
n−t

P (vt is flipped)

E(e0(t)− e0(t− 1)|Ht) = e+(t−1)
n−t

P (vt is flipped)

+ e−(t−1)
n−t

(1− P (vt is flipped)

Finally, let’s check that the random process (e(1), e(2), e(3)...) satisfies all three

conditions of Theorem 4.2.1.
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(i) To show that E(e?(t)− e?(t− 1)|Ht) can be expressed by function

f?

(
t

n
,
e∅(t)

n
,
e0(t)

n
,
e1(t)

n
,
e+(t)

n
,
e−(t)

n

)
+ o(1),

it is suffices to normalize n and express P (vt is flipped) by function p( t
n
).

For any component e? of e, let s = t
n
, f?(s) = 1

n
e?(t), then we know 1

n−t
= 1

n(1−s)
,

and

p(s, m10, m11, lu0, m01, m00, lu1)

= (
fe∅ (s)

4
)m10(

fe∅ (s)−m10

2
)m11(

fe∅ (s)−m10−m11

4
)m01

×(
fe∅ (s)−m10−m11−m01

2
)m00( 1

1−s
)m10+m11+lu0+m01+m00+lu1

×f lu1
+ (s)f lu0

− (s)

× e
−(

f∅(s)

4 +
f∅(s)−m10

2 +
f∅(s)−m10−m11

4 +
f∅−m10−m11−m01

2 +f++f−)

1−s

m10!m11!m01!m00!lu1!lu0!

Let’s define p(s) as,

p(s) =
∑

m10+m11−lu0<m01+m00−lu1
m10+m11+m10+m00<d

p(s, m10, m11, lu0, m01, m00, lu1)

Finally, we can obtain the required system of differential equations from Equa-

tion 4.1 by substituting P (vt is flipped) by p(s).

(ii) For any component e? of e, we have |e?(t−1)−e?(t)| is no more than the number

of clauses containing vt. Since the probability that vt is contained in a clause is
2
n

, we know the probability that there are k clauses containing vt is
(

σn
k

)
( 2

n
)k.

For large enough n, we get

P (vt appears in more than n
1
5 clauses) =

n∑
k=n

1
5

(
σn

k

)
(
2

n
)k

=
n∑

k=n
1
5

σn(σn− 1)...(σn− k + 1)2k

k!nk
≤ (2σ)n

1
5 n

n
1
5 !

= o(n−3)
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(iii) Although functions defined in (i) are not well defined at s = 1, we can use a

standard method to overcome this problem. For each ε > 0, we define set D by

points with s ≤ 1− ε only. Since probability is nonnegative and bounded by 1,

we know our functions are not only continuous but also converge uniformly in

D. Therefore, it satisfies Lipschitz condition.

As shown above, our model satisfies all three conditions of Theorem 4.3.1. There-

fore, we conclude the following theorem by applying Theorem 4.3.1.

Theorem 4.3.2 For any positive σ, there is a constant c such that for a random

2-CNF F (n, σn) with elimination width d almost surely the GreedySearch algorithm

finds an assignment which satisfies cn + o(n) clauses.

In the following tables, we look at the relationship between (σ, d) and constant c

from Theorem 4.3.2. We compare the value of c given by our model with the empirical

result obtained by GS, and show indeed our model gives a good approximation of the

empirical result. The empirical result is the average over ten random formulas.

Table 4.2: Result of formulas with 100 variables

(σ, d) (6,10) (10,15) (15,20) (20,25) (25,30)

c (experiment) 5.24 8.77 12.8 17.1 21.2
c (model) 5.24 8.71 12.8 16.8 20.9

Table 4.3: Result of formulas with 1000 variables

(σ, d) (6,10) (10,15) (15,20) (20,25) (25,30)

c (experiment) 5.36 8.78 12.97 17.16 21.33
c (model) 5.24 8.65 12.74 16.78 20.92

As we shown in above tables, the values of c given by our model are comparable

to the values obtained by GS. However, they do not agree completely. The small

differences between these two values are caused by the approximation in numerical
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calculations. Limited by the current computational power, it is impossible to deter-

mine in reasonable time the exact value of probability function P (vt is flipped) for

m as small as 20. In order to find a good approximation for the function, we have to

explore many different sampling methods in different ranges. After numerous exper-

iments, we finally found a range in which the approximation is good enough to give

us a stable value of c.



Chapter 5

Conclusion

In this thesis, we first considered exact algorithms for solving MAX2SAT instances

with bounded treewidth k. We know the standard dynamic programming algorithm

has time complexity O(2k+3n) and space complexity O(2k). Since the space complex-

ity is exponential in k, the algorithm takes too much memory space when k is large.

To save memory space, we designed a divide and conquer algorithm that has time

complexity O(nk) with linear space complexity. For k > log(n), the algorithm uses

much less memory space than the dynamic programming algorithm. Moreover, we

showed that when the tree decomposition is smooth and balanced, the divide and

conquer algorithm can be modified so that it have the same time complexity as the

dynamic program algorithm while using only linear memory space. We also improved

the running time of the divide and conquer algorithm using balanced separator de-

composition. We showed that the divide and conquer algorithm works well when the

separator width of a graph is logarithmically less than its tree width. In this case,

the time complexity of the algorithm is comparable or better to the time complexity

of the dynamic programming algorithm, but uses much less memory space.

Besides exact algorithms, we also designed an approximation algorithm, GS, which

is shown to perform well on d-degenerate graphs. The class of d-degenerate graphs

contains many graph families such as planar graphs, bounded tree width graphs, and

so on. We conducted an experiment that compares the performance of GS with OLS
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and GSAT on random formulas. We also prove rigorously that the algorithm with

high probability finds an assignment which satisfies cn + o(n) clauses for a random

2-CNF formula with density σ and elimination width d. We showed experimentally

that the value of c obtained from the model agrees with the experimental results.
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