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Abstract

In this thesis we study self-assembly systems, in particular, we focus on the tile complexity

of shapes. Using the standard tile assembly model proposed by Rothemund and Winfree,

we give two lower bounds on the tile complexity of arbitrary shapes in terms of the radius

and diameter of the shape. Applying our results to a square yields a partial answer to a

problem of Rothemund and Winfree. We also introduce a new model of self assembly—the

step assembly model—which can significantly reduce the number of tile types needed to

assemble a given shape. For this model, we give an upper bound on the tile complexity of

arbitrary shapes and exhibit a family of shapes with constant tile complexity. Furthermore,

we relate the tile complexity of a shape in the step assembly model to the well known node

search number of its underlying spanning tree.

Keywords: self-assembly; tile systems; complexity of shapes; DNA nanotechnology
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Chapter 1

Introduction

Self-assembly is the process by which simple parts autonomously assemble into larger, more

complex objects. Self-assembly occurs in nature, for example, when atoms combine to form

molecules, and molecules combine to form crystals. It has been suggested that intricate

self-assembly schemes will ultimately be useful for circuit fabrication, nano-robotics, DNA

computing, and amorphous computing [25, 17, 9, 1]. Research is also being conducted to

self-assemble sieves to remove viruses from serum, and to nanomanufacture drug-delivery

and medical-imaging devices [7].

The standard model to study the process of self-assembly is the Tile Assembly Model

proposed by Rothemund and Winfree [18] (we will refer to this model as the standard tile

assembly model) which considers the assembly of square blocks called “tiles” and a set of

glues called “binding domains”. Each of the four sides of a tile can have a glue on it that

determines interactions with neighbouring tiles. It is assumed that there is an infinite sup-

ply of tiles of each tile type. The process of self-assembly is initiated by a single seed tile

and proceeds by attaching tiles one by one. A tile can only bind to the growing complex if

it binds strongly enough, as determined by the temperature τ .

Branched DNA molecules [21] provide a direct physical motivation for this model.

DNA double-crossover molecules, each bearing four “sticky ends” analogous to the four

sides of a tile, have been designed to self-assemble into a periodic two-dimensional lattice

[24, 14, 12, 20]. The binding interactions between double-crossover molecules may be re-

designed by changing the base sequence of their sticky ends, thus allowing arbitrary sets

1



CHAPTER 1. INTRODUCTION 2

of tiles to be investigated in the laboratory. Tiles can also be implemented using protein-

based designs, where unit-length nanorods (made of proteins) are joined at right angles at

their midpoints to form a plus sign [7]. Protein nanorod structures are, unlike DNA based

assemblies, very rigid. It is believed that this rigidity will allow them to be used for the

nanomanufacture of macroscale objects.

In this thesis we are interested in the “tile complexity” of shapes that arise from the

self-assembly process. Roughly speaking, the tile complexity of a shape is the smallest num-

ber of distinct tile types required to uniquely assemble the shape. In the remainder of this

chapter, we give a formal description of the standard tile assembly model and survey some

tile complexity results in the standard tile assembly model. We then describe several varia-

tions of the standard model that have been proposed in an effort to reduce tile complexity

and survey tile complexity results for each of these models.

In Chapter 2, we return to the standard tile assembly model and give two lower bounds

on the tile complexity of arbitrary shapes. The first bound is based on the radius of the

shape and the second bound is based on the Manhattan diameter of the shape. We use the

second result to provide partial answer to an open problem of Rothemund and Winfree [18].

They conjectured that uniquely assembling an N × N square at temperature 1 (where we

do not require a bond between every two adjacent tiles) requires at least 2N − 1 distinct

tile types. We show that this is indeed so, under the assumption that the square assembles

uniquely without any binding domain mismatches. An extended abstract of the results in

Chapter 2 appeared in [16].

In Chapter 3, we propose our own variation of the standard tile assembly model, called

the step assembly model. This model differs from the standard tile assembly model in that

a sequence of tiles sets (rather than just a single tile set) is used. We immerse a seed tile

into the first tile set, “filter out” the assembled shape from this set and place this assembled

shape into next tile set where it now acts as a seed and assembly continues. This process

is repeated until the whole sequence of tile sets have been applied. The step assembly has

the potential to significantly reduce the tile complexity of shapes. For instance, to assemble

an N × N square (where there is a bond between every two adjacent tiles) N2 distinct tile

types are required in the standard model at temperature 1, whereas in the step assembly
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model at temperature 1 only 9 tile types suffice. Using the step assembly model, we also

provide a construction which gives an upper bound on the number of tile types required to

uniquely assemble an arbitrary shape, in terms of the depth of a caterpillar decomposition

of the shape. Furthermore, we show how this depth is related to the node search number of

the underlying spanning tree. Lastly, we exhibit a large class of shapes (each shape obtained

from another shape by scaling by a factor of two belongs to this class) that has constant

tile complexity (24 tile types suffice). Furthermore, each shape scaled by a factor of two,

can be assembled using at most 14 tile types.

1.1 Definition of the Standard Tile Assembly Model

We will consider the square lattice, i.e., the graph with vertex set Z × Z and edge set

{uv : |u, v| = 1}, where |u, v| denotes the distance between u and v. The directions

D = {N,E, S,W} are used to indicate the natural directions in the lattice. Formally, they

are functions from Z×Z to Z×Z: N(x, y) = (x, y+1), E(x, y) = (x+1, y), S(x, y) = (x, y−1),

and W (x, y) = (x − 1, y). Note that E−1 = W and N−1 = S.

A tile is a square with the north, east, south, and west edges labeled from some alphabet

Σ of binding domains (glues). Formally, a tile t is a 4-tuple (tN , tE , tS , tW ) ∈ Σ4, indicating

the binding domains on the north, east, south, and west side, respectively. Note that tiles

are oriented, so a rotated version of a tile is considered to be a different tile. We will use

null to indicate the lack of a binding domain, and will assume null ∈ Σ. The special tile

empty = (null, null, null, null) represents an empty space when placed onto the grid. A

configuration on a set of tiles T is a map C : Z × Z → T . We define the vertex set of

configuration C as V (C) = {(x, y) : C(x, y) 6= empty}. A configuration C is finite if V (C)

is finite. We will refer to C(x, y) as the tile at the vertex (x, y) in C. Given a configuration

C and a set of vertices V ⊆ Z × Z, a sub-configuration of C induced by V is the map

C[V ] : Z×Z → T such that C[V ](x, y) = C(x, y) for all (x, y) ∈ V , and C[V ](x, y) = empty,

otherwise. If G is any subgraph of the lattice graph, then we sometimes abuse the notation

of C[V (G)] to simply C[G]. Given two configurations C and D, we define their union to be

the following map from Z × Z to T ∪ {∞}:
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(C ∪ D)(x, y) =







C(x, y) if D(x, y) = empty

or C(x, y) = D(x, y),

D(x, y) if C(x, y) = empty

or C(x, y) = D(x, y),

∞ otherwise.

Note that C ∪ D is a configuration whenever it is a map to T . Equivalently, C ∪ D is

not a configuration if there exists (x, y) ∈ V (C) ∩ V (D) such that C(x, y) 6= D(x, y).

A function g : Σ×Σ → N = {0, 1, 2, . . .} satisfying g(σ, σ′) = g(σ′, σ) and g(null, σ) = 0

for all σ, σ′ ∈ Σ is called a strength function. Strength functions measure the interaction

strength between binding domains. In the standard tile assembly model strength functions

are restricted to strength functions that satisfy g(σ, σ′) = 0, whenever σ 6= σ′.

Given a tile t, a configuration C, and a direction d, we denote the interaction strength

in configuration C between tile t at position (x, y) and its respective neighbouring tile by

gC
d (t, x, y) = g(td, C(d(x, y))d−1).

Note that we do not require that C(x, y) = t. In particular, if C(x, y) 6= t, then gC
d (t, x, y),

d ∈ D tells us how t would bind if it were in C. Given (x, y) ∈ Z × Z and d ∈ D, we say

that there is a bond between positions (x, y) and d(x, y) in C if gC
d (C(x, y), x, y) ≥ 1 (in the

standard tile assembly model this implies that the binding domain on the abutting sides of

the two tiles is the same).

Under the standard tile assembly model a tile system is a 5-tuple T = (Σ, T, S, g, τ),

where T is a finite set of tiles with binding domains from Σ and contains the tile empty, S is

a configuration on T called seed configuration, g is a strength function, and τ is a threshold

parameter called temperature. Unless otherwise noted, we will be working with seed con-

figurations consisting of a single tile; formally a configuration Ct, where t ∈ T , satisfying

Ct(0, 0) = t, and Ct(x, y) = empty for all (x, y) ∈ Z × Z\{(0, 0)}.

Self-assembly is now defined as a relation between configurations on T . Let C and D be
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two configurations of T , such that C = D except at position (x, y), where C(x, y) = empty,

and D(x, y) = t, for some t ∈ T\{empty}. Then we write C →T D, if

∑

d∈D

gC
d (t, x, y) ≥ τ.

This means that a tile can be added to a configuration at position (x, y), if and only if the

sum of the interaction strengths of t with its neighbours reaches or exceeds τ . The relation

→+
T

is the transitive closure of →T.

We are interested in a subclass of configurations that arise from the self-assembly process.

A tile system T and the relation →+
T

define the partially ordered set of configurations called

assemblies of T: Asmb(T) = {A : S →+
T

A}, and the set of terminal assemblies of T:

Term(T) = {A ∈ Asmb(T) : ∄B such that A →+
T

B}. A tile system uniquely produces

A if for all B ∈ Asmb(T), such that B 6= A, B →+
T

A (which implies Term(T) = {A}).
An assembly A is said to have no binding domain mismatches if for any two neighbouring

positions (x, y) and d(x, y), d ∈ D, such that A(x, y) 6= empty and A(d(x, y)) 6= empty,

we have A(x, y)d = A(d(x, y))d−1 . The uniqueness assumption on the tile system has an

interesting consequence:

Observation 1. Let T be a tile system that uniquely produces a terminal assembly U . Let

A and B be two assemblies of T, then A ∪ B is an assembly of T as well.

A shape S is a connected subgraph of the lattice induced by V (S) ⊆ Z×Z. In particular,

a shape S is an N × N square if there exists a position (x0, y0) such that (x, y) ∈ V (S) if

and only if x0 ≤ x < x0 + N and y0 ≤ y < y0 + N . We say a configuration A has shape S,

if V (A) = V (S). We say a tile system uniquely produces shape S, if the terminal assembly

of the tile system is unique and has shape S. We say an assembly A is full if for any two

neighbouring positions (x, y) and d(x, y) in V (A), where d ∈ D, there is a bond between

them in A. We say a tile system uniquely produces a full shape S, if the terminal assembly

of the tile system is unique, full, and has shape S.

Next we define the tile complexity of a shape, which is the focus of this thesis. The tile

complexity of a (full) shape S is the minimum number of distinct non-empty tiles required
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in tile system that uniquely produces the (full) shape S under the standard tile assembly

model. Later on we will consider other models of self-assembly. The tile complexity for each

of these models is defined analogously.

Given a standard tile system T = (Σ, T, Ct, sΣ, 1), and a configuration C of T , the back-

bone graph of C, G(C) = (V,E) is the subgraph of the square lattice whose vertex set is

V (C), and two vertices (x, y), (x′, y′) form an edge if and only if there is a bond between

(x, y) and (x′, y′) in C. Note that if the configuration C is also an assembly of T, then its

backbone graph is connected. If G is a subgraph of a backbone graph we say a tile t ∈ T

appears on G, if there is a vertex (x, y) ∈ V (G) such that C(x, y) = t.

A translation φ mapping (x0, y0) to (x1, y1) is a mapping from Z×Z to Z×Z such that a

point p = (x, y) is mapped to φ(p) = (x+(x1−x0), y +(y1−y0)). The composition of n ≥ 0

copies of a translation φ will be denoted as φ(n). Similarly, φ(−n) denotes the composition

of n ≥ 0 copies of the inverse translation φ−1.

1.2 Tile Complexity in the Standard Tile Assembly Model

Most tile complexity results in the standard tile assembly model are limited to squares. We

begin with some results of Rothemund and Winfree, who considered the number of distinct

tile types needed to uniquely self-assemble squares under the standard tile assembly model

at temperatures 1 and 2. Most tile complexity results, whether for the standard tile assem-

bly model or variations thereof, consider primarily temperatures 1 and 2. Experimentally,

temperature 1 conditions seem relatively easy to achieve, while temperature 2 conditions

appear to be difficult to create. Furthermore, self-assembly proceeds more slowly at tem-

perature 2. However, as we will see, assembling squares at temperature 1 requires far more

tile types than at temperature 2, and in practice only a limited number of tile types can

be created. Moreover, real self-assembly systems are believed to have temperature between

τ = 1 and τ = 2 [19].

Theorem 1. [18] The tile complexity of an N × N full square at temperature 1 is N2.
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Sketch of Proof. To show that N2 tile types suffice, construct N2 distinct tiles, one for

each position in the square, with a unique binding domain for each adjacent pair of tiles.

r

r

r

Q

Q1

p0

p1

(0, 0)

Figure 1.1: The assembly A[R] ∪ A1[Q1].

To show that N2 tiles types are required, suppose, towards a contradiction, that there

exists a tile system T such that the unique terminal assembly A is a full N × N square,

and T uses fewer than N2 distinct non-empty tile types. Then there must be two distinct

positions, p0 = (x0, y0) and p1 = (x1, y1), such that A(p0) = A(p1) = r. By swapping

coordinates if necessary, we may assume that x0 < x1. Let φ be the translation mapping

p0 to p1. Let Q be the “L” shaped (or possibly linear) path consisting only of the tiles at

(x0, y0), . . . , (x1, y0), . . . , (x1, y1) (see Figure 1.1). For every integer n, let Qn = φ(n)(Q), i.e.,

the vertex p of Q corresponds to the vertex φ(n)(p) of Qn.

Let R be the tree consisting of Q and a shortest path from (0, 0) (the position of the

seed tile) to Q. Recall that A[R] is the subconfiguration of A induced by R. Since R

contains (0, 0), A[R] ∈ Asmb(T). We will extend this assembly by forming the union

of A[R] and either A[Q1] or A[Q−1], depending on the position of the seed tile. More

precisely, choose A[Q1] if x1 > 0, and choose A[Q−1] if x1 ≤ 0. For the remainder of the

argument, suppose x1 > 0 (an analogous argument applies if x1 ≤ 0). Then A[R] ∪ A[Q1]

is a configuration of T . Moreover, since the vertex sets of R and Q1 intersect in x1, the

backbone graph of A[R]∪A[Q1] is connected. Hence A[R]∪A[Q1] ∈ Asmb(T). This can be

extended indefinitely. More precisely, let Bn =
⋃n

i=1 A[Qi]. Then, for every integer n ≥ 0,

A[R]∪Bn ∈ Asmb(T). This contradicts that T uniquely assembles an N ×N square. Thus,

the minimum number of distinct non-empty tiles required to uniquely assemble an N × N

full square is N2.
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Figure 1.2: A comb-like construction of a square at temperature 1. Thick edges indicate
sides with the null binding domain.

If we do not require the square to be full, fewer tile types suffice. In particular Rothe-

mund and Winfree in [18] gave a comb-like construction using 2N − 1 non-empty tile types

(see Figure 1.2). They conjectured that this construction is optimal, i.e. that 2N − 1 non-

empty tile types are required to uniquely assemble an N ×N square at temperature 1. We

will give a partial answer to this question in Chapter 2, where we prove this claim with the

additional assumption that the square assembles without any binding domain mismatches

(any two adjacent tiles either form a bond or else both touching sides have the binding

domain null assigned).

Theorem 1 completely answers the question of the tile complexity of squares at tempera-

ture 1. At temperature 2 the situation is markedly different. Self-assembly of full squares at

temperature 2 requires far less tile types than at temperature 1. However, while Theorem 1

is an upper and lower bound on the tile complexity that holds for all values of N , such

results do not exist for squares at temperature 2.

Theorem 2. [18] The tile complexity of an N × N full square at temperature 2 is at most

N + 4.

Sketch of Proof. Figure 1.3 shows a construction for uniquely assembling an N × N full

square using N + 4 non-empty tile types. Self-assembly starts from the seed tile labeled

“1” in the figure and initially proceeds via strength 2 interactions to form the top boundary

of the square. To continue to build the second row, tile A then attaches via its strength 2

binding domain to this boundary. This allows the remainder of the row to be assembled.
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Figure 1.3: A construction for uniquely assembling an N ×N square using N +4 non-empty
tile types. Thick sides have strength 0, thin sides have strength 1, and double-lined sides
have strength 2. Adjacent pairs of tiles in the top row share a unique binding domain.
Source: [18].

Next, the tile A attaches via its strength 2 binding domain to the tile B to start the assembly

of another row. Since with each row, tile A and tile B move one position to the left, this

assembly terminates, when tile A reaches the left boundary. A single strength 1 bond is not

sufficient for tile B to attach, thus the self-assembly process terminates.

An even better bound can be obtained by combining the above construction with a fixed

width binary counter. As the binary counter technique is common in this area, we decided

to include the sketch of the proof.

Theorem 3. [18] The tile complexity of an N × N full square at temperature 2 is at most

log⌈N⌉ + 22.

Sketch of Proof. Figure 1.4 shows a construction for uniquely assembling an N × N full

square using log⌈N⌉ + 22 non-empty tile types. Let n = log⌈N⌉, and let c = 1 + 2n−1 −
⌈(N − n)/2⌉. First an (n − 1) × (n − 1) full square is assembled using the construction in

Theorem 2. However, instead of labeling the tiles of the top row by 1, 2, . . . , n, we now label

them with the integer c − 1 in binary (using one digit for each tile). In addition, each of

these tiles has either a 0 or 1 as binding domains on their north side (both of these binding

domains have strength 1). If N − n is even, the binding domains are chosen such that they

encode the integer c in binary. If N − n is odd, the binding domains encode the integer
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Figure 1.4: A construction for uniquely assembling an N × N square using O(log N) non-
empty tile types. Thick sides have strength 0, thin sides have strength 1, and double-lined
sides have strength 2. Adjacent tiles in the seed row share a unique binding domain. Source:
[18].

c − 1 in binary. Moreover, we use special binding domains for the north side of the two

tiles corresponding to the first and last digits. This is so that the self-assembly process can

identify when the end of a row has been reached, and also to initiate assembly of a new row

via a strength 2 bond.

From the seed row of the (n − 1) × (n − 1) square, self-assembly proceeds to construct

a counter which counts from c to 2n−1 in binary, using two rows for each integer. Also, the

tiles of the diagonal are assembled, which allows the rest of the square to be filled in. If

N −n is even, the counter starts with an increment row, where the number that is encoded

into the binding domain of the previous row is incremented by one. If N − n is odd, the

counter starts with a copy row, which simply copies the integer that is encoded into the

binding domains of the previous row. For increment rows self-assembly proceeds from left

to right, whereas for copy rows it proceeds from right to left.

One can think of the counter tiles that do not correspond to first and last digits as
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taking two inputs, the binding domain exposed on the neighbouring tile of the previous

row, denoted p, and the binding domain exposed on the neighbouring tile of the same row,

denoted s, and computing an output. If s = x, indicating a copy row, then the label of the

tile as well as the binding domain on the north side is again p, and the binding domain on

the remaining side is x (we are still in a copy row). If s = c, indicating a “carry” in an

increment row, then the label of the tile as well as the binding domain on the north side

is computed as p + 1 mod 2. The binding domain on the remaining side is c, if p = 1 (we

still need to carry), or n, if p = 0 (carrying completed). Similarly, if s = n, indicating no

carrying in an increment row, the label of the tile as well as the binding domain on the

north side is p. The binding domain on the remaining side is n (still no carrying).

When the leftmost digit of the counter changes from 1 to 0, presenting a binding domain

on the north side thus far not encountered in the construction, a tile with a unique binding

domain on its north side attaches. Since this binding domain is not found on any other tile,

the self-assembly process terminates.

Rothemund and Winfree improved this bound even further. However, while the above

results apply for any value of N , the following three bounds do not hold for all values of N .

To state the results, we first need some definitions.

We say proposition P (n) holds infinitely often if and only if for every n0 ≥ 0, there ex-

ists n ≥ n0 such that P (n) holds. We now define Oi.o. (“big-O infinitely often”) as follows:

f(n) = Oi.o.(g(n)) if and only if there exists a constant c such that f(n) ≤ cg(n) infinitely

often.

We say proposition P (n) holds for almost all n if and only if

lim
x→∞

|{1 ≤ n ≤ x : P (n)}|
x

= 1.

Now define Ωa.a (“big-Ω almost always”) as follows: f(n) = Ωa.a(g(n)) if and only if there

exists a constant c > 0 such that f(n) ≥ cg(n) for almost all n.

Denote by log∗ N be the least integer n such that N ≤ 222
...2

︸ ︷︷ ︸

n times

.
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Theorem 4. [18] The tile complexity of an N×N full square at temperature 2 is Oi.o.(log
∗ N).

Sketch of Proof. The construction for this involves recursively iterating the O(log N) con-

struction above. Starting from an N ×N square constructed as in the proof of Theorem 3,

the strength 2 binding domain on the north side of the tile in the north-west corner initiates

a new fixed width binary counter. This counter counts from 0 to 2N again using two rows

for each integer. New tiles are introduced for this counter preventing the previous counter

tiles to incorporate into the new counter. This results in an (N + 2 × 2N ) × (N + 2 × 2N )

full square. For the base case of N = 2, the N × N square from the O(log N) construction

uses fewer than 22 log∗ N distinct non-empty tile types and with each iteration only 22 new

tiles are introduced. Hence, the (N + 2× 2N )× (N + 2× 2N ) full square can be assembled

using at most 22(log∗ N + 1) ≤ 22 log∗(N + 2 × 2N ) distinct non-empty tile types.

Theorem 4 says that an infinite number of squares can be made from a relatively small

number of tile types. However, Rothemund and Winfree in [18] showed that one can do

even better.

Theorem 5. [18] The tile complexity of an N×N full square at temperature 2 is Oi.o.(f(N)),

where f(N) is any non-decreasing unbounded computable function.

While the last result shows that the number of distinct tile types required to uniquely

assemble a square can be made “arbitrarily slow growing” for infinitely many squares, the

next result tells us that for most squares this is not the case.

Theorem 6. [18] The tile complexity of an N×N full square at temperature 2 is Ωa.a(
log N

log log N ).

This lower bound is matched by an upper bound of Adleman et al., who in [3] gave a

construction using O( log N
log log N ) tile types.

Theorem 7. [3] The tile complexity of an N×N full square at temperature 2 is O( log N
log log N ).

Sketch of Proof. The construction again uses a binary counter, however the seed row is

constructed differently. Observe that in the construction in the proof of Theorem 3 the

majority of the tile types are used for the seed row, while only a constant number of tile

types is used for the counter and the remainder of the square. Every tile in the seed row has
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to be distinct, and as the seed encodes a binary integer, ⌈log N⌉ − 1 tile types are required

for the seed row alone. By encoding the number in the seed row in a larger base b instead of

binary, the seed row can be shortened. However, this increases the number of tiles required

for the counter. Adleman et al. optimized the number of tile types by choosing b to be a

power of 2 such that
log N

log log N
≤ b = 2k <

2 log N

log log N
.

The number of tiles required for the seed row now is

logb N =
log N

log b
≤ log N

log log N − log log log N
= O

(
log N

log log N

)

.

While the number of tiles required for the counter is O(b) = O
(

log N
log log N

)

.

Adleman et al. [3] also showed that their bound of O( log N
log log N ) can be achieved while

simultaneously achieving optimal “time complexity”. For this, they modified their construc-

tion: first the seed row is constructed encoding a number in base b, then a base conversion

process is initiated, converting from base b to binary, and finally a binary counter is imple-

mented where tiles can be attached in parallel. However, this construction uses temperature

3. The authors asked whether the temperature can be reduced to 2. This was answered by

Cheng and Moisset de Espanes [6], who showed that the temperature can be reduced to 2

while still keeping the same asymptotic bound.

Few shapes other than squares have been considered in the literature for the standard tile

assembly model. Aggarwal et al. [4] studied the tile complexity of more general rectangles.

A rectangle R is a shape for which there exist integers N ≥ 2 and M ≥ 2 and a vertex (x0, y0)

such that vertex (x, y) ∈ R if and only if x0 ≤ x < x0 +N and y0 ≤ y < y0 +M . Recall that

for uniquely assembling an N ×N square, a special case of a rectangle, O( log N
log log N ) distinct

non-empty tile types suffice. Other rectangles however, can require significantly more tiles

types.

Theorem 8. [4] The tile complexity of a k × N rectangle is Ω(N1/k

k ).

In the same paper, Aggarwal et al. also gave an upper bound on the tile complexity of

rectangles.
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Figure 1.5: The tile set for uniquely assembling a k×mk rectangle. Unlabeled sides represent
the null binding domain, binding domains with a single line segment have strength 1, and
binding domains with a double line segment have strength 2. Source: [4].

Theorem 9. [4] The tile complexity of a full k×N rectangle at temperature 2 is O(N1/k+k).

Sketch of Proof. The proof involves the construction of a k-digit base m counter, where

m = ⌈N1/k⌉. Unlike the counter that was used in the proof of Theorem 3, each column

represents a number of the counter, with the least significant digit being in the bottom

row (labeled by C0, C1, . . . , Cm−1). Furthermore, there are no copy rows; each row is

an increment row. The basic construction, which corresponds to the tiles in Figure 1.5,

assembles a k ×mk rectangle. However, by changing the binding domains encoded into the

west side of the seed column tiles, the counter can be set to start at any number between 0

and mk − 1. Hence, by encoding the number mk −N into the binding domains of the west

side of the seed column tiles, any k × N rectangle can be assembled.

Any shape can be produced via self-assembly by simply using a distinct tile for each

vertex of the shape and a unique binding domain for every adjacent pair of tiles (recall that

a shape consists of a single connected component). However, since in practice the number of

distinct binding domains is a limiting factor, as each new binding domain requires significant
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biochemical research and experiments, we would like to know which shapes can be assem-

bled using a small number of tile types (and hence a small number of binding domains).

Soloveichik and Winfree [22] showed that the tile complexity of a shape (where the shape

is allowed to be scaled) can be bounded by the so-called Kolmogorov complexity of the shape.

To state the result we first need some definitions. Given a shape S and a positive integer

c, a c-scaling of S is the induced subgraph of the lattice, denoted by Sc, whose vertex set

is V (Sc) = {(i, j) | (⌊i/c⌋, ⌊j/c⌋) ∈ V (S)}. Observe that this “magnification” of S by a

factor of c is again a shape, i.e., it consists of a single connected component. Given two

shapes S1 and S2, we write S1
∼= S2, if for some positive integers c and d, Sc

1 can be made

identical to Sd
2 by translation. The relation ∼= is an equivalence relation. The equivalence

class containing shape S is denoted by S̃. We say that S̃ is the shape of assembly A, if

assembly A has shape S and S ∈ S̃. The tile complexity of S̃ at temperature τ , denoted by

TCτ (S̃), is the minimum number of distinct non-empty tile types required in a tile system

that uniquely produces assembly A under the standard tile assembly model at temperature

τ , where S̃ is the shape of A. Informally, the Kolmogorov complexity of a shape S is the size

of the smallest program outputting it as a list of locations. More precisely, given a universal

Turing machine U , the Kolmogorov complexity of shape S, denoted by K(S), is defined as

K(S) = min{|s| s.t. U(s) = 〈S〉}, where 〈S〉 is an explicit binary encoding of the vertices

of S. The Kolmogorov complexity of the equivalence class S̃, denoted by K(S̃), is defined

as K(S̃) = min{K(S) |S ∈ S̃}.

Theorem 10. [22] There exist constants a0, a1, b0, b1 such that for any equivalence class

of shapes S̃,

a0K(S̃) + b0 ≤ TC2(S̃) log TC2(S̃) ≤ a1K(S̃) + b1.

While previous result only applied for a particular shape, such as a square or rectangle,

Theorem 10 applies for any shape. It is interesting to note that the construction in the

proof of Theorem 10 converts each vertex of a shape S to a c× c block, where there can be

binding domain mismatches between blocks. All other results in this section did not involve

any binding domain mismatches.
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1.3 Other Models of Self-Assembly

In an attempt to reduce tile complexity, several modifications to the standard tile assembly

model have been proposed. We will mention here the flexible glue, multiple temperature,

multiple tile, and unique shape models, and also look at how tile complexity can be reduced

by temperature programming and staged assembly. We introduce our own modification to

the standard tile assembly model, the step assembly model, in Chapter 3.

The Flexible Glue Model. This model differs from the standard tile assembly model

only in that the restriction that the interaction strength between different binding domains

is zero is removed. For this model, the lower bound of Ωa.a(
log N

log log N ) does not apply.

Theorem 11. [4] In the flexible glue model, the tile complexity of assembling an N × N

square at temperature 2 is Ωa.a(
√

log N).

In [4] and [6] two constructions were given that match this lower bound.

Theorem 12. [6, 4] In the flexible glue model, the tile complexity of assembling an N ×N

square at temperature 2 is O(
√

log N).

For both constructions, the proof is based on assembling a seed block that encodes a

binary integer (using O(
√

log N) tile types) and combining this with a fixed width binary

counter (which uses only a constant number of tile types). Naturally, these constructions

utilize binding domain mismatches.

The Unique Shape Model. In this model we redefine what it means for a tile system

to uniquely produce a shape. We say a tile system T uniquely produces shape S, if for every

assembly A of T there is a terminal assembly B of T, such that A →+
T

B and B has shape

S. This differs from the standard tile assembly model in that the terminal assembly does

not have to be uniquely produced, as in the standard tile assembly model.

The Multiple Temperature Model. To define this model, we first need some more

definitions. Given a configuration C, the adjacency graph of C is the subgraph of the lattice
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induced by the vertex set of C. A configuration is said to be connected if its adjacency

graph is connected. Observe that an assembly is also a connected configuration. A cut

of a connected configuration C is an edge-cut of the adjacency graph of C. Furthermore,

for each edge ei in a cut of C, define the edge strength of ei to be the interaction strength

(as defined by the strength function) of the binding domains on the abutting sides of the

adjacent tiles at the endpoints of ei in C. The cut strength of a cut is now defined as the

sum of edge strengths over all edges in the cut.

In the multiple temperature model, the temperature parameter τ is replaced with a

sequence of temperatures {τi}k
i=1, called the temperature sequence of the tile system. A

tile system with k temperatures in its temperature sequence is called a k-temperature tile

system. In such a tile system, assembly takes place in k phases. First, tiles are added to

the seed tile as in the standard tile assembly model under temperature τ1. When no more

tiles can be attached, phase 2 starts. The temperature of the tile system now switches to

τ2. Now, tiles can be added as in the standard tile assembly model under τ2, and some tiles

can also break off, if their bonds are no longer strong enough under the new temperature

τ2. More specifically, if at any point during phase 2 there is a cut of the assembly with

cut strength less than τ2, then the portion of the assembly occurring on the side of the cut

not containing the seed tile may be removed. Once no more tiles can be added or removed,

phase 2 is complete and phase 3 starts. The temperature is set to τ3 and tiles are now

added and removed under this new temperature. This process continues until phase k is

complete. An assembly A is a terminal assembly of a k-temperature tile system T, if for

some choice of additions and removals each of the k phases finishes and A is the resulting

assembly. Furthermore, a k-temperature tile system T uniquely produces A, if the k phases

always finish regardless of the choice of additions and removals, and A is the unique terminal

assembly of T.

The Multiple Tile Model. In this model, tiles can bind to each other before being

attached to the growing assembly. More specifically, a tile set T and a temperature τ have

a corresponding set of addable supertiles W (T, τ). A supertile is a finite, connected con-

figuration. Every tile t ∈ T has an associated supertile, namely Ct (recall that Ct is the

configuration that maps (0, 0) to t and every other vertex is mapped to the empty tile).

The set W (T, τ) is defined recursively: (i) Ct ⊆ W (T, τ) for every tile t ∈ T , (ii) for any
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A,B ∈ W (T, τ), if A and B can be abutted together (without overlap) to form another

supertile A ⊕ B, such that the total interaction strength of all abutting edges of A and B

is at least τ , then A ⊕ B is also in W (T, τ). Self-assembly in the multiple tile model takes

place as in the standard tile assembly model, with the exception that instead of adding tiles

from T to the growing complex, we now add supertiles from W (T, τ).

Note that since the standard tile assembly model is a special case of each of the multiple

temperature model, and the unique shape model, the upper bound on the tile complexity of

N × N squares of O( log N
log log N ) (from Theorem 7) still applies for each of these new models.

Aggarwal et al. [4] extended the lower bound of Theorem 6 to apply to other models of

self-assembly.

Theorem 13. [4] The tile complexity of an N ×N square is Ωa.a(
log N

log log N ) for the multiple

tile model, the multiple temperature model (with constant size temperature sequence), and

the unique shape model.

Hence, for squares, the multiple tile, multiple temperature, and unique shape model do

not offer an improvement over the standard tile assembly model.

Aggarwal et al. [4] also considered more general rectangles other than squares under

various models of self-assembly.

Theorem 14. [4] The tile complexity of a k × N rectangle is O(N1/k + k) for the flexible

glue model, the multiple tile model, and the unique shape model.

Again, this is the same bound as for the standard tile assembly model. However, the

bound can be improved when considering the multiple temperature model. The idea is to

first assemble a larger rectangle under τ1 with a suitable cut of cut strength less than τ2.

Once the temperature is raised to τ2 part of the shape falls off and the desired rectangle is

produced.
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Theorem 15. [4] The tile complexity of a k × N rectangle, where k ≥ 2, is O( log N
log log N ) for

the two-temperature model.

Aggarwal et al. [4] also gave a lower bound on the tile complexity of rectangles in the

new models of self-assembly. This lower bound is an extension of Theorem 8.

Theorem 16. [4] The tile complexity of a k × N rectangle is Ω(N1/k

k ) for the flexible glue

model and the unique shape model.

In light of these results, Aggarwal et al. [4] posed several questions. Can new examples

be found showing that the new models reduce tile complexity? Are there shapes for which

the unique shape model reduces tile complexity (recall that the unique shape model did not

reduce the tile complexity of squares or thin rectangles compared to the standard model)?

Also, for the multiple temperature model, can tile complexity results be improved by using

more than two temperatures? If so, is it enough do monotonically increase the temperature

of the system or does it help to raise and lower the temperature? Furthermore, for the stan-

dard tile assembly model, the lower bound of Theorem 6 does not apply if the temperature

of the system is a large exponential function of N . In this case, is it possible to reduce the

tile complexity of N × N squares?

Two of these questions have been answered by Kao and Schweller [10], namely whether

tile complexity can be reduced by using more than two temperatures and whether it can

help to raise and lower the temperature of the system. Kao and Schweller considered re-

ducing tile complexity through “temperature programming”. This differs from the multiple

temperature model in that temperature sequences of non-constant size are allowed. Kao

and Schweller provided a construction for assembling an N ×N square in the multiple tem-

perature model using O(1) tile types and a temperature sequence of length O(log N) which

uses temperatures 4, 9, 3, and 7. The resulting square is not full and does have some binding

domain mismatches.

Theorem 17. [10] The tile complexity of an N × N square is O(1) under the multiple

temperature model.
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Figure 1.6: The tile set for the seed block. The number of line segments on the side of a tile
represents the strength of the corresponding binding domain. Thick lines indicate binding
domains of strength 9. Source: [10].

Sketch of Proof. The construction again uses a binary counter. Using a O(log N) tem-

perature sequence the seed block of the counter can be assembled using O(1) tile types.

Figure 1.6 shows the tile set used for assembling the seed block. The specific temperature

sequence used depends on the integer to be encoded into the seed block. Figure 1.7 illus-

trates the construction of a seed block that encodes the number 1010010. Self-assembly

starts at temperature 4 which ensures that a digit of 0 is encoded into the assembly. When-

ever the most recent 0 that was encoded should be replaced with a 1, the temperature of

the tile system is raised to 9. This causes the 0-tile and its neighbour to the south to fall off,

as they no longer bind strongly enough, and the 1-tile is encoded into the assembly. Next

the temperature is dropped to 3, which causes the bottom half of the last column of the

assembly to fill in. The tile X is used to control the growth of the assembly (it indicates

that the least significant digit of the string to be encoded has been reached). If self-assembly

is to continue, the temperature of the system is raised to 7. This removes the tile X and

its neighbour to the south and attaches tiles Y and a. Now the temperature is again set

to 4 and the above process is repeated to encode another digit. In general this results in

an 11 × 2m seed block, where m is the length of the encoded binary string. Once the seed
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block is completed, the temperature is dropped to 2. This allows the binary counter tiles

(and the tiles for the diagonal as well as the “blank” tiles above and below the diagonal) to

attach and complete the assembly into a square.

Kao and Schweller showed that their result is optimal, in the sense that for any tile set

T that uniquely assembles an N ×N square under temperature sequence {τi}k
i=1, for almost

all N it cannot be the case that both |T | = o( log N
log N log N ) and k = o(log N).

Kao and Schweller also provided a modified construction that is robust against certain

types of assembly errors. Note that the tile system in the proof of Theorem 17 does not

uniquely produce the desired square, if tiles bind to each other before being attached to

the growing assembly (as in the multiple tile model). For example, if in the temperature 4

phase supertiles are added and removed as in the multiple tile model, then the z1-tile can

bind with its neighbour to the south with their strength 9 binding domain. Together they

can now attach to the assembly before the 0-tile is added. This causes both the 0-tile and

the 1-tile to be able to attach and the ability of the tile system to encode a specified binary

integer is lost. Kao and Schweller showed that even if tiles bind to each other before being

attached to the growing assembly, the bound of Theorem 17 still holds.

Theorem 18. [10] The tile complexity of an N × N square is O(1) under the multiple

temperature model, where in each phase tiles are added and removed under the multiple

tile model.

These are the first constructions that assemble N ×N squares using a constant number

of tile types. Kao and Schweller asked whether it is possible to have a general shape building

tile set that can be programmed to assemble into any arbitrary shape via a temperature

sequence that encodes a description of the shape. They also asked if the tile complexity

and the length of the temperature sequence can be reduced by increasing the value of the

temperatures in the temperature sequence.

Demaine et al. [7] provided other constructions for assembling squares using a constant

number of tile types. They also gave constructions for assembling more general shapes using
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O(1) tile types. Their results are based on the staged assembly model.

The Staged Assembly Model. This model differs from the standard tile assembly

model in that tiles can be added in stages (rather than all tiles being present at the start

of the assembly process) and non-attached tiles can be filtered out after each stage. Also,

different assemblies can be built in different “bins” (using different tile sets or supertiles)

and then the contents of these bins can be mixed allowing the assemblies to be combined to

form larger assemblies. More precisely, assembly starts with any number of bins. Each bin

contains single tiles that, during the first stage, self-assemble as in the multiple tile assembly

model. For each bin, only the terminal assemblies are retained and the remaining tiles are

filtered out. In subsequent stages, any collection of operations of the following two types

can be performed: (i) add arbitrarily many copies of a new tile to an existing bin, and (ii)

pour the contents of some bin A into another bin B, mixing the contents of bin A into bin B

and keeping bin A intact. In each stage now, self-assembly proceeds as in the multiple tile

model, as we are no longer attaching only single tiles, but also supertiles. All bins at any

stage are assumed to have the same temperature τ . After each stage, only “terminally pro-

duced supertiles” are retained in their bins and other supertiles are filtered out. Intuitively,

a supertile is terminally produced, if no supertiles can be attached to it. Furthermore, at

every stage it is assumed that the terminally produced supertiles are uniquely produced,

that is, every supertile can be grown into a terminally produced supertile. Every staged tile

system has an associated “mix graph” which specifies precisely how to mix the bins when

transitioning from one stage to the next. When only a single bin and a single stage are

used, one obtains the standard tile assembly model. Demaine at al. focused on the “glue

complexity” (the number of non-null binding domains in the tile system) rather than the

tile complexity (the number of non-empty tile types). In addition, they also considered the

“stage complexity” (the number of stages) and the “bin complexity” (the number of bins).

As in the temperature programming model, also in the staged assembly model, squares

can be assembled using a constant number of tile types. However, while the construction

for the temperature programming model yielded squares with binding domain mismatches,

the following theorem applies for full squares.

Theorem 19. [7] The tile complexity of an N × N full square is O(1) under the staged
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assembly model with temperature 1.

Demaine et al. [7] showed that also more general shapes can be assembled using a small

number of tile types.

Theorem 20. [7] Any shape S can be uniquely assembled using at most 2 non-null bind-

ing domains, and at most 52 non-empty tile types under the staged assembly model with

temperature 1.

While Theorem 20 produces non-full shapes, Demaine et al. [7] showed that also full

shapes which are hole free can be produced using a constant number of tile types when

scaling by a factor of 2 is allowed.

Theorem 21. [7] Any simply connected full shape S can be uniquely assembled using a

scale factor of 2, 8 non-null binding domains, and O(1) tile types, under the staged assembly

model with temperature 1.

Based on their work, Demaine et al. [7] suggested several further research directions. Can

the assumption that all supertiles assemble to completion be relaxed? It is plausible that in

practice some supertiles may not reach their terminal state. Can staged assembly systems

detect such errors? Another direction would be to extend the model to 3 dimensions. In

practice, 3D assembly is much harder than 2D assembly. This is partly due to the fact, that

in practice 2D assembly makes use of 3 dimensions. Consider for example two supertiles

in the plane with complex borders. It may not be possible to “slide” the two supertiles

together within that plane; one supertile might have to be “lifted up” and dropped into

position. A further direction is to consider nondeterministic assembly, where tile systems

can build a large class of shapes, rather than uniquely produce a shape. Can a tile system

be designed such that certain shapes are assembled with high probability?
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Figure 1.7: The construction of a seed block encoding 1010010. Source: [10].



Chapter 2

Lower Bounds for Assemblies at

Temperature 1

In this chapter we give two lower bounds on the minimum number of tile types needed to

uniquely assemble an arbitrary shape in the standard tile assembly model at temperature

1. The first result is based on the radius of the shape, and the second result is based on

the Manhattan diameter of the shape. Applying the second result to a square provides a

partial answer to an open problem of Rothemund and Winfree. Recall that Rothemund and

Winfree conjectured that 2N − 1 distinct tile types are required to uniquely assemble an

N ×N square under the standard tile assembly model at temperature 1. Our result implies

that 2N − 1 distinct tile types are indeed required, if we assume that the square uniquely

assembles without any binding domain mismatches. Most results in this section only hold

under the assumption of no binding domain mismatches, i.e., any two adjacent non-empty

tiles either form a bond, or the abutting sides of the tiles both have the binding domain null

assigned to them. Without this assumption the tile system would be prone to errors during

a self-assembly process. For instance, consider the assembled shape in Figure 2.2(b). This

assembly contains one binding domain mismatch: between the seed tile S and tile 5. Even

though this assembly is terminal (cannot be extended), there is a chance that another copy

of tile 6 would push out and replace the seed tile which would lead to incorrectly assembling

infinitely growing assemblies. We also note that most constructions used in the literature

are without binding domain mismatches.

25
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All tile systems in this chapter are assumed to be standard tile systems. Furthermore all

tile systems use the strength function sΣ which satisfies sΣ(σ, σ) = 1 for all σ ∈ Σ\{empty}.

2.1 Lower Bound based on Graph Radius

The following Lemma is based on the argument in the proof of Theorem 1 showing that all

tiles in a full square at temperature 1 need to be distinct. While here we do not require

the assembly to be full, we do insist that there are no binding domain mismatches. Recall

that an assembly A is full, if for any two neighbouring positions (x, y) and d(x, y) in V (A),

where d ∈ D, there is a bond between them in A.

Lemma 1. Let T = (Σ, T, Ct, sΣ, 1) be a tile system that uniquely produces a finite assembly

A. Suppose there are no binding domain mismatches in A. Let P be a path in the backbone

graph of A with one endpoint at (0, 0) (the position of the seed tile). Then all tiles of A on

P are distinct.
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Figure 2.1: Forming (A[R] ∪ Bn−1) ∪ An[Qn] with a conflict at vertex zn.

Proof. We will think of P as being directed, with (0, 0) being the first vertex of P . Towards

a contradiction, suppose a tile r is repeated twice on P . Say r occurs at the two positions

p0 = (x0, y0) and p1 = (x1, y1), where p0 precedes p1 on P . Let Q be the subpath of P from

p0 to p1 (including p0 and p1). Let φ be the translation mapping p0 to p1. For every integer

n ≥ 0, let Qn = φ(n)(Q) be the translated version of the path Q, i.e., the vertex (x, y) of

Q corresponds to the vertex φ(n)(x, y) of Qn. Similarly, for every n ≥ 0, let An = φ(n)(A)
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be the translated version of configuration A so that An(φn(x, y)) = A(x, y). Let R be the

subpath of P from (0, 0) to p0. Recall that A[R] is the subconfiguration of A induced by

the vertices of R.

As in the proof of Theorem 1, we will show that, starting from the assembly corre-

sponding to R, we can “add” translated versions of Q infinitely often. More precisely, let

Bn =
⋃n

i=0 Ai[Qi]. We will show that A[R] ∪ Bn ∈ Asmb(T) for all n ≥ 0. This leads to a

contradiction, since T uniquely produces a finite assembly. To prove the claim, it suffices to

show that for all n ≥ 0, A[R]∪Bn is a configuration, its vertex set contains (0, 0) (since every

assembly starts from the seed tile), and its backbone graph is connected (since tiles can only

attach to the growing complex if they form a bond). Note that since (0, 0) ∈ V (R), (0, 0) is

in the vertex set of A[R] ∪ Bn for every n. We will prove the remaining two conditions by

induction on n.

Fist suppose n = 0. Observe that B0 = A0[Q0] = A[Q]. Since p0 is the only vertex in

V (R) ∩ V (Q), and A[R](p0) = A[Q](p0), A[R] ∪ A[Q] is again a configuration of T . The

backbone graphs of A[R] and A[Q] are connected and share a vertex, hence, also the back-

bone graph of A[R] ∪ A[Q] is connected. Thus, A[R] ∪ A[Q] ∈ Asmb(T).

Now suppose the claim also holds for some n − 1 ≥ 0. Towards a contradiction, sup-

pose A[R] ∪ Bn = (A[R] ∪ Bn−1) ∪ An[Qn] is not a configuration. Then there must exist

a vertex (x, y) on the path Qn such that (A[R] ∪ Bn−1)(x, y) = s′ 6= s = An[Qn](x, y),

where s′, s 6= empty. Let zn be the first such vertex on Qn starting from pn = φ(n)(p0) (see

Figure 2.1). Observe that zn 6= pn, since (A[R] ∪ Bn−1)(pn) = An[Qn](pn) = r. Let z̄n be

the neighbour of zn on Qn that is closer to pn, say z̄n = d(zn) for some direction d ∈ D
(d = S in Figure 2.1). Let Q̄n be the subpath of Qn from pn to z̄n. By our choice of z̄n,

(A[R]∪Bn−1)∪An[Q̄n] is a configuration of T . By the induction hypothesis, the backbone

graph of A[R] ∪ Bn−1 is connected. Since the backbone graph of An[Q̄n] is isomorphic to

a subpath of P , it is connected. Furthermore, since the vertex sets of A[R] ∪ Bn−1 and

An[Q̄n] intersect in pn, the backbone graph of (A[R] ∪ Bn−1) ∪ An[Q̄n] is connected. Thus,

(A[R]∪Bn−1)∪An[Q̄n] ∈ Asmb(T). This implies that (A[R]∪Bn−1)∪An[Q̄n] is a subcon-

figuration of the unique terminal assembly A.
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Let q be the tile at position z̄n in An[Qn]. The tile q also appears at position z̄0 =

φ(−n)(z̄n) in A[Q]. Since in A[Q] there is a bond between the adjacent positions z̄0 and

z0, the binding domain of tile q on side d−1 cannot be null. This implies that in (A[R] ∪
Bn−1) ∪ An[Q̄n] there must also be a bond between the adjacent positions z̄n and zn, as

(A[R] ∪ Bn−1) ∪ An[Q̄n] is a sub-configuration of the unique terminal assembly A which

does not have any binding domain mismatches. Thus, both the tile s and the tile s′ can

bind to q on side d−1, i.e., sd = s′d = qd−1 . Now let Q̄ = φ(−n)(Q̄n), and let C be the

configuration defined by C(z0) = s′ and C(x, y) = empty for (x, y) 6= z0. Observe that

A[R]∪A[Q̄] ∈ Asmb(T). Since s′ can bind to q on side d−1, and (A[R]∪A[Q̄])(z0) = empty,

it follows that (A[R] ∪ A[Q̄]) ∪ C ∈ Asmb(T). This contradicts the uniqueness of as-

sembly A, as A and (A[R] ∪ A[Q̄] ∪ C) differ at vertex z0. Therefore, A[R] ∪ Bn =

(A[R] ∪ Bn−1) ∪ An[Qn] must be a configuration of T . By the induction hypothesis, the

backbone graph of A[R]∪Bn−1 is connected. Since the backbone graph of An[Qn] is a trans-

lated version of path Q, it is connected. Furthermore, since the vertex sets of A[R] ∪ Bn−1

and An[Qn] intersect in pn, also the backbone graph of (A[R]∪Bn−1)∪An[Qn] is connected.

Hence (A[R] ∪ Bn−1) ∪ An[Qn] = A[R] ∪ Bn ∈ Asmb(T).

Therefore, A[R] ∪ Bn ∈ Asmb(T) for all n ≥ 0. Since every assembly of T is a subcon-

figuration of the unique terminal assembly A, A[R]∪Bn is a subconfiguration of A for every

n ≥ 0. As A is finite, this is a contradiction.
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Figure 2.2: Fewer tiles suffice if we do not require the seed tile to be an endpoint of the
path (a), or do not require that there are no binding domain mismatches (b).

Note that the conclusion of the statement of Lemma 1 is false, if we drop either the

condition that the seed tile is an endpoint of the path, or the condition that there are no

binding domain mismatches. Figure 2.2(a) shows that if we do not require the position of

the seed tile to be an endpoint of the path (while still keeping the assumption of no binding
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domain mismatches), we can uniquely assemble a path consisting of five vertices using only

four distinct tile types. Figure 2.2(b) shows that if we allow binding domain mismatches we

can uniquely assemble a path starting at the position of the seed tile and consisting of eight

vertices using only seven distinct tile types (note the mismatch between tile S and tile 5).

Lemma 1 says that in assemblies at temperature 1 all tiles on a path from the seed tile

need to be distinct (under the assumption of no binding domain mismatches). However,

there may still be tiles that are repeated in the assembly. We will use Lemma 1 to show

that assemblies at temperature 1 whose backbone graph is 2-connected require all of their

tiles to be distinct.

Corollary 1. Let T = (Σ, T, Ct, sΣ, 1) be a tile system that uniquely produces a finite

assembly A. If A has no binding domain mismatches and the backbone graph of A is 2-

connected, then all tiles of A are distinct, i.e., T contains at least |V (A)| tile types. In

particular, if A is a full assembly and its backbone graph is 2-connected then all tiles of A

are distinct.

Proof. Towards a contradiction suppose that tile r is repeated in A. Say r occurs at the

two positions p0 = (x0, y0) and p1 = (x1, y1). Let G be the backbone graph of A. Since

G is 2-connected, there exist two vertex disjoint paths P1 and P2 from p0 to p1. Without

loss of generality let P1 be the path such that a shortest path F from (0, 0) to P1 does not

contain an internal vertex of P2. Then the path consisting of F , the segment of P1 from the

intersection with F to an endpoint of P1, and P2, is a path starting at (0, 0) on which tile

r appears twice. This contradicts Lemma 1. Hence, all tiles of A are distinct.

While Lemma 1 only applies to paths starting from the position of the seed tile, it also

limits how many times a tile can be repeated on an arbitrary path in the backbone graph.

In particular, on any path in the backbone graph a tile can be repeated at most twice.

Corollary 2. Let T = (Σ, T, Ct, sΣ, 1) be a tile system that uniquely produces a finite

assembly A. Suppose there are no binding domain mismatches in A. Let P be a path in the

backbone graph of A. If a tile is repeated on P , it is repeated exactly twice on P . Moreover,
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if a tile repeats at vertices p0 and p1 on P , then the first intersection of any path in the

backbone graph starting at vertex (0, 0) with P lies strictly between p0 and p1.

Proof. Towards a contradiction suppose tile r is repeated three times on P . Let u and v

be the endpoints of P . Let F be a shortest path from (0, 0) to P , and let w be the endpoint

of F that is also on P . Then, by the pigeonhole principle, either the sub-path of P from w

to u or the subpath of P from w to v has tile r repeated twice. Thus, the path consisting of

F together with this subpath of P , is a path starting at (0, 0) on which tile r appears twice.

This contradicts Lemma 1. Hence, if a tile is repeated on P , it must be repeated exactly

twice. The proof for the second part is similar.

Corollary 3. Let T = (Σ, T, Ct, sΣ, 1) be a tile system that uniquely produces a finite

assembly A. Suppose there are no binding domain mismatches in A. Let C be a cycle in

the backbone graph of A. Then all tiles of A on C are distinct.

Proof. The argument is similar to the proof of the previous corollary. Suppose there is a

tile r that appears twice on C. Say r appears at position p0 and p1. Since the backbone

graph of A is connected, there is a path starting at (0, 0) that contains both p0 and p1. This

contradicts Lemma 1.

The eccentricity of a vertex v of a connected graph G is defined as maxu∈V (G) d(u, v),

where d(u, v) is the length of a shortest path from u to v. The radius of G is the minimum

eccentricity of the vertices of G. The radius of an assembly A, denoted by rad(A), is the

radius of the sub-graph of the lattice induced by V(A).

Theorem 22. Let T = (Σ, T, Ct, sΣ, 1) be a tile system that uniquely produces a finite

assembly A. Suppose there are no binding domain mismatches in A. Then T contains at

least rad(A) + 1 non-empty tiles.

Proof. By the definition of rad(A), there is a path P in the backbone graph of A starting

at (0, 0) whose length is at least rad(A). By Lemma 1 all tiles on P are distinct. Since there

are at least rad(A) + 1 vertices in P , there must be at least rad(A) + 1 distinct non-empty

tile types in T .
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2.2 Lower Bound based on Manhattan Diameter

Let P be a path in the backbone graph of an assembly A and assign an orientation to P .

For any vertex v on P , we denote the side on which P enters v by inP (v) and the side on

which P leaves v by outP (v). Let r be a tile that is repeated (exactly twice) on P , say r

occurs at positions p0 and p1, where p0 precedes p1 on P . We say r has a good repetition

if outP (p0) = inP (p1). Otherwise, r has a bad repetition. Note that the definition of good

repetition is independent of the orientation assigned to P . Also note that the repetition of

tile 5 in Figure 2.2(b) is a bad repetition.

Given two vertices (x, y) and (x′, y′) in Z × Z, their Manhattan distance is defined as

|x−x′|+ |y− y′|. The Manhattan diameter of an assembly A, denoted by Mdiam(A), is the

maximum Manhattan distance between any two vertices in V (A).

We prove our main result of this section in two steps. First we show that our bound

holds for paths that do not contain any bad repetitions. In the second step we show that

between any two vertices in the backbone graph we can always find such a path.

Lemma 2. Let T = (Σ, T, Ct, sΣ, 1) be a tile system that uniquely produces a finite assembly

A. Let P be a path in the backbone graph of A such that the Manhattan distance between

the endpoints of P is Mdiam(A). If P does not contain any bad repetitions, then T contains

at least Mdiam(A) + 1 non-empty tiles.

Proof. Assign an orientation to P and let a be the first and b be the last vertex of P .

Consider a direction d ∈ D. If the Manhattan distance between d(a) and b is less than the

Manhattan distance between a and b, we say that d is a forward direction. If neither d nor

d−1 satisfy this definition, we pick one of them to be a forward direction. We call an edge

uv of P (with tail u and head v) a forward edge if v = d(u) and d is a forward direction.

Otherwise, the edge uv is a backward edge. Let n1 be the number of tiles occurring exactly

once on P , and let n2 be the number of tiles that are repeated on P .

We will first show that any tile can be repeated at most twice on P . Suppose, for a

contradiction, that a tile is repeated three times on P . Say it occurs at positions p0, p1, and
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p2 (in this order). Since P does not contain any bad repetitions, outP (p0) = inP (p1) (from

the good repetition p0, p1) and outP (p1) = inP (p2) (from the good repetition p1, p2). This

implies that outP (p0) = inP (p1) 6= outP (p1) = inP (p2), making the repetition p0, p2 a bad

repetition. Clearly, this contradicts our assumption.

To complete the proof we will use a counting argument. We will first count pairs (e, v),

where v is a vertex of P that is incident with backward edge e of P . Let eb be the number

of backward edges in P . Since every backward edge is incident with exactly two vertices,

there are 2eb such pairs. On the other hand, for any repeated tile r occurring at positions

p0 and p1 (where p0 precedes p1 on P ), outP (p0) = inP (p1). This implies that there is at

least one backward edge incident with either p0 or p1. Hence, the number of (e, v) pairs

is at least n2. Combining our two counts, we see that eb ≥ n2/2. By the definition of

forward and backward edges, there are Mdiam(A) more forward edges than backward edges

in P . Thus, there are at least Mdiam(A) + n2/2 forward edges in P , and hence, at least

Mdiam(A) + n2 edges in P in total. On the other hand, the number of edges in P is one

less than the number of vertices in P . Since every tile on P appears either exactly once or

exactly twice on P , the number of vertices of P is n1 +2n2. Putting these bounds together,

we see that the number of edges of P is |P | − 1 = n1 + 2n2 − 1 ≥ Mdiam(A) + n2. This

implies that n1 + n2 ≥ Mdiam(A) + 1. Since the set of tiles occurring exactly once on

P and the set of tiles being repeated on P are disjoint subsets of T , T contains at least

n1 + n2 ≥ Mdiam(A) + 1 distinct non-empty tiles.

Note that Lemma 2 holds without the assumption of no binding domain mismatches.

To complete the proof of the main result we need one more Lemma.

Lemma 3. Let T = (Σ, T, Ct, sΣ, 1) be a tile system that uniquely produces a finite assembly

A. Suppose there are no binding domain mismatches in A. Let u and v be two vertices in

V (A). Then there is a path P in the backbone graph of A connecting u and v without any

bad repetitions.

Proof. Among all paths between u and v in the backbone graph of A, let P be a path with

the fewest number of bad repetitions. Again, we will think of P as being directed, with u

being the first vertex of P . If P does not have any bad repetitions, we are done. Hence,
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assume some tile r on P has a bad repetition. Say r occurs at positions p0 and p1, where p0

precedes p1 on P . Observe that by Corollary 2, r cannot appear anywhere else on P . We

will show that there exists another path from u to v having fewer bad repetitions than P ,

contradicting the minimality of P .

To this end, let F be a path in the backbone graph of A from (0, 0) to P . Let w be an

endpoint of F that is also on P . By Corollary 2, w is strictly between p0 and p1. Let φ be

the translation mapping p0 to p1, and let Q be the subpath of P from p0 to p1 (including

both p0 and p1). As in the proof of Lemma 1 let Q1 = φ(Q) be the translated version of

the path Q, i.e., the vertex (x, y) of Q corresponds to the vertex φ(x, y) of Q1. Similarly, let

A1 = φ(A) be the translated version of the configuration A, such that A1(φ(x, y)) = A(x, y).

Let R be the subtree of the backbone graph consisting of F and Q. Since (0, 0) ∈ V (R),

A[R] is an assembly of T.

Similarly to the proof of Lemma 1 we will first show that V (R) and V (Q1) intersect in a

vertex z1 6= p1, and that the tile in A[R] at position z1 makes a bond with its neighbouring

tile on Q.

Suppose A[R] ∪ A1[Q1] is a configuration of T , then it must also be an assembly of T ,

since R and Q1 share a vertex. If the backbone graph of A[R] ∪ A1[Q1] is a tree, then it

contains a path starting at (0, 0) on which tile r appears twice (at p1 and p2 = φ(p1)).

This contradicts Lemma 1. Thus, either the backbone graph of the assembly A[R]∪A1[Q1]

is not a tree, or A[R] ∪ A1[Q1] is not a configuration. In either case there exists a vertex

(x, y) 6= p1 such that A[R](x, y) 6= empty and A1[Q1] 6= empty. Let z1 be the first such ver-

tex on Q1 starting from p1. Let z̄1 be the neighbour of z1 on Q1 closer to p1, say z̄1 = d(z1)

for some direction d ∈ D. Let Q̄1 be the subpath of Qn from p1 to z̄1. By our choice of

z̄1, A[R] ∪ A1[Q̄1] is a configuration of T . Furthermore, since A[R] is an assembly of T,

and the vertex sets of A[R] and A1[Q̄1] intersect, also A[R] ∪ A1[Q̄1] is an assembly of T.

Hence, A[R]∪A1[Q̄1] is a subconfiguration of A, since A is the unique terminal assembly of T.

Let q be the tile at position z̄1 in A1[Q1]. The tile q also appears at position z̄0 = φ−1(z̄1)

in A[Q]. Since in A[Q] there is a bond between the adjacent positions z̄0 and z0 = φ−1(z1),

the binding domain of tile q on side d−1 cannot be null. This implies that in A[R]∪A1[Q̄1]
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there must also be a bond between the adjacent positions z̄1 and z1, as A[R] ∪ A1[Q̄1] is

a sub-configuration of the unique terminal assembly A which does not have any binding

domain mismatches.

Depending on the position of z1 we distinguish two cases:

r

r

r

t

P

Q

Q1

F z1

w p1

(0, 0)

z0

z̄0

z̄1

p0

p2

q

q } Q̄1

u

v

Figure 2.3: Intersection vertex z1 is on the path F . Then there exists a path with one
endpoint at (0, 0) on which tile r appears twice.

Case 1: z1 is on F and z1 6= w (see Figure 2.3).

Then there is a path starting at (0, 0) on which tile r appears twice; namely, the path

consisting of the subpath of F from (0, 0) to z1, the subpath of Q1 from z1 to p1, and

the path Q. This contradicts Lemma 1.

Case 2: z1 is on Q.

Here we consider subcases depending on the relative position of z1 and z0 on Q. Note

that z0 6= z1. For if z0 = z1, then φ is the identity translation, and hence, p0 = p1.

This contradicts our assumption that tile r is repeated twice.

Case 2.1: z1 precedes z0 on Q (see Figure 2.4).

Then there is a cycle (from z1 to p1 along Q and back to z1 along Q̄1) containing tile

q twice; namely positions z̄0 and z̄1. This contradicts Corollary 3.
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Figure 2.4: Intersection vertex z1 precedes z0 on Q. Then there is a path starting at (0, 0)
on which tile q appears twice.

Case 2.2 : z1 succeeds z0 on Q.

Let s1 be the first vertex on Q̄1 starting from z̄1 that is also on P , and let s̄1 be the

neighbour of s1 on Q1 closer to z1. We distinguish two more cases depending on the

position of s1.

Case 2.2.1: s1 is on the subpath of P from u to p0 (see Figure 2.5).

Let P ′ be the path obtained from P by replacing the subpath of P from s1 to z1 with

the subpath of Q1 from s1 to z1. We will also think of P ′ as being directed, with u

again being defined as the first vertex of P ′. Since A[F ]∪A[P ] and A[R]∪A1[Q̄1] are

both assemblies of T, by Observation 1, B = A[F ]∪A[P ]∪A1[Q1] is also an assembly

of T. Therefore, B is a subconfiguration of the unique terminal assembly A. Thus,

since P ′ is a subgraph of the backbone graph of B, P ′ is a also a subgraph of the

backbone graph of A.

We will show that P ′ has fewer bad repetitions than P . Removing vertices from P

cannot increase the number of bad repetitions. The only new tiles added to P ′ are

the tiles of the subpath of Q̄1 from s̄1 to z̄1 (it is possible that this subpath is empty
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Figure 2.5: Intersection vertex z1 succeeds z0 on Q and s1 lies on the subpath of P from
u to p0. Then replacing the sub-path of P from s1 to z1 (shaded) with the sub-path of Q1

from s1 to z1 (unshaded) yields a path with fewer bad repetitions than P .

if s1 = z̄1). These tiles appear on the part of P which is not included in P ′ (it is

possible that these tile appear elsewhere on P as well). Moreover, each of these tiles

is entered and left on P ′ via the same directions as the corresponding tiles on P ,

i.e., for every x on the subpath of P ′ from s̄1 to z̄1, outP
′

(x) = outP (φ−1(x)) and

inP ′

(x) = inP (φ−1(x)). Hence, any bad repetition introduced by these new tiles only

replaces a removed bad repetition involving corresponding tiles on the removed part

of P (i.e., on the subpath of P from φ−1(s̄1) to φ−1(z̄1)). Thus, P ′ does not have more

bad repetitions than P . Next we show that tile r does not have a bad repetition on

P ′. Since z0 precedes z1 on Q, p0 6= z1. Furthermore, s1 precedes p0 on P . Thus, p0

is in between s1 and z1 on P , and hence not on P ′. Therefore, tile r does not have a

bad repetition on P ′. Thus, P ′ has fewer bad repetitions than P .

Case 2.2.2: s1 is on the subpath of P from p1 to v (see Figure 2.6).

Note that it is possible that s1 = p1. Let P ′ be the path obtained from P by replacing

the subpath of P from z1 to s1 with the subpath of Q1 from z1 to s1. The only new

tiles added to P ′ are the tiles of the subpath of Q̄1 from s̄1 to z̄1. These tiles already

appear on P , in particular on its subpath Q. Note that these tiles are repeated exactly
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Figure 2.6: Intersection vertex z1 succeeds z0 on Q and s1 lies on the subpath of P from
p1 to v. Then replacing the sub-path of P from z1 to s1 (shaded) with the sub-path of Q1

from z1 to s1 (unshaded) yields a path with fewer bad repetitions than P .

twice on P ′, otherwise we would have a contradiction with Corollary 2. Each of the

tiles on the subpath of P ′ from z̄1 to s̄1 is entered and left via opposite directions as

the corresponding tiles of the subpath of P from s̄0 = φ−1(s̄1) to z̄0, i.e., for every x on

the subpath of P ′ from z̄1 to s̄1, outP
′

(x) = inP (φ−1(x)) and inP ′

(x) = outP (φ−1(x)).

Hence, these repeating tiles create good repetitions, and no new bad repetitions were

introduced on P ′. Moreover, if s1 = p1, then by the argument above, tile r now has

a good repetition on P ′. If s1 6= p1, then r is not repeated on P ′. Therefore, P ′

has fewer bad repetitions than P , contradicting the minimality of P . This proves the

lemma.

Theorem 23. Let T = (Σ, T, Ct, sΣ, 1) be a tile system that uniquely produces a finite

assembly A. Suppose there are no binding domain mismatches in A. Then T contains at

least Mdiam(A) + 1 non-empty tiles.

Proof. Let u and v be two vertices in the backbone graph of A such that their Manhattan

distance is Mdiam(A). By Lemma 3 there is a path from u to v that does not contain any

bad repetitions. Then by Lemma 2, T contains at least Mdiam(A) + 1 non-empty tiles.

Applying the Theorem 23 to an N × N square, yields the following corollary.
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Corollary 4. Let T = (Σ, T, Ct, sΣ, 1) be a tile system that uniquely produces an N × N

square A. Suppose there are no binding domain mismatches in A. Then T contains at least

2N − 1 non-empty tiles.

This is a partial answer to an open question from [18]. The authors conjectured that

2N −1 distinct tile types are required to uniquely assemble an N ×N square at temperature

1. Corollary 4 shows if we assume that a tile system uniquely produces an N × N square

without any binding domain mismatches, then 2N −1 distinct tile types are indeed required.

The second bound (Theorem 23) gives a better lower bound compared to the first bound

(Theorem 22) for an N ×N square. However, for many uniquely produced assemblies The-

orem 22 gives a better bound. For instance, for an S-shaped assembly, see Figure 2.7,

Theorem 22 gives a lower bound of 24 while Theorem 23 gives a lower bound of 23. Obvi-

ously, this difference can be made arbitrarily large by increasing the width of the shape.

Figure 2.7: An example of a shape for which Theorem 22 gives a better lower bound (24
tile types) than Theorem 23 (23 tile types).



Chapter 3

The Step Assembly Model

Here we introduce a variant of the standard tile assembly model, called the “step assembly

model”. Roughly speaking, this model differs from the standard tile assembly model, in

that we allow for several sets of tiles. We immerse a seed tile into one of the sets, “fil-

ter out” the assembled shape from this set and place this assembled shape into a different

set of tiles where it now acts as a seed and assembly continues. We do not restrict the

number of times a shape can be filtered out and placed in a new set of tiles, nor do we

restrict the number of different sets of tiles. More formally, a step tile system is a 5-tuple

Tstep = (Σ, {Ti}k
i=1, {Ct}, g, {τi}k

i=1), where {Ti}k
i=1 is a sequence of finite sets of tiles (each

set including the tile empty), Ct is the initial seed configuration (consisting of the single

tile t), g is a strength function, and {τi}k
i=1 is a sequence of temperatures. We define the

(standard) tile system at step 1 as T1 = (Σ, T1, {Ct}, g, τ1) and the (standard) tile system

at step i as Ti = (Σ, Ti, T erm(Ti−1), g, τi) for 2 ≤ i ≤ k. This allows us to view step tile

systems as a sequence of standard tile systems.

We define the set of terminal assemblies of Tstep as Term(Tstep) = Term(Tk). Given a

configuration A, we say that the step tile system Tstep uniquely produces A, if Tk uniquely

produces A. We are interested in the number of tile types used in a tile system and define

the tile complexity of Tstep as |⋃k
i=1 Ti|−1 (where we are subtracting 1 to exclude the empty

tile).

The step assembly model is similar to the staged assembly model proposed by Demaine

et al. [7]. Recall that in the staged assembly model, there are any number of bins which

39
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contain supertiles that self-assemble within the bins as in the multiple tile assembly model.

During a stage, any collection of the following two types of operations can be performed: (i)

add (arbitrarily many copies of) a new tile to an existing bin, (ii) pour one bin into another

bin, mixing the contents of the former bin into the latter bin, and keeping the former bin

intact. The key differences between our step assembly model and the staged assembly model

are that in our model growth occurs by addition of single tiles to the seed configuration,

while in [7], two assemblies are allowed to attach to form a larger assembly. Moreover, our

model uses only one bin; we do not store assemblies for later mixing. At the end of this

chapter, we will compare our results for tile complexity in the step assembly model to tile

complexity results in the staged assembly model.

3.1 Tile Complexity of Full Squares at Temperature 1

Recall that in the standard tile assembly model (where only a single set of tiles is allowed),

N2 distinct tile types are required to uniquely assemble an N×N full square at temperature

1 [18]. Using the step assembly model, far fewer tile types suffice.

Example 1. A full N × N square can be uniquely assembled using only 4 distinct non-

empty tile types if N is odd, and 9 distinct non-empty tile types if N is even, under the

step assembly model with temperature 1.

α

a

b
′β′

a
′

α′

βb

(a) Tile set S1.

α′

a
′

β′
b
′

(b) Tile set S2.

a

α

bβ

(c) Tile set S3.

Figure 3.1: The tile sets for assembling N × N squares, where N is odd.

Figure 3.1 shows the tile sets for assembling an N × N square, where N is odd. As we

are working with temperature 1, all binding domains have strength 1. The tile from S3 also
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serves as the seed tile. The tile set sequence {Ti}N−1
i=1 is defined as follows:

Ti =







S1 if i is odd,

S2 if i ≡ 2 (mod 4),

S3 if i ≡ 0 (mod 4).

We further assume that each Ti contains the empty tile. Figure 3.2 shows the terminal

assemblies for each step in the construction of a 5 × 5 square. Immersing the seed tile

in the tile set S1 causes the tiles of S1 to attach to the northern, southern, eastern, and

western boundary of the seed configuration, creating a “plus sign”. Adding the tiles of S2

to this terminal assembly causes the corners to fill in, creating a 3 × 3 square. In step

2k − 1, k ≥ 2, the tiles of S1 attach to every second tile on the northern, southern, eastern,

and western boundary of the seed square. Immersing this assembly now into the tile set

T2k causes the tile from T2k to fill in every other tile on the boundary of the new seed as-

sembly, creating a (2k+1)×(2k+1) square. Thus, TN−1 uniquely produces a N×N square.

If we want to build an N × N square, where N is even, we first assemble an (N − 1) ×
(N−1) square as above, and then use the tile sets E1, E2, and E3 as illustrated in Figure 3.3.

We first place the (N − 1) × (N − 1) square into the tile set E1. The resulting shape is

immersed into the tile set E2, and finally the resulting terminal assembly is placed into E3.

(If the binding domains exposed on the north and west side of the (N − 1)× (N − 1) square

are a, a′ and b, b′, then we make the following binding domain replacements to the tiles of

E1 and E2: α → a′, α′ → a, β → b′, and β′ → b.) Figure 3.4 shows the assembly of a 4 × 4

square.

3.2 Tile Complexity of Arbitrary Shapes at Temperature 1

In this section we give an upper bound on the tile complexity of arbitrary shapes in the step

assembly model at temperature 1. Recall that a shape S is a connected induced subgraph

of the lattice. We say a configuration A has shape S, if V (A) = V (S). We say a step tile

system Tstep uniquely produces shape S, if Tstep uniquely produces assembly A and A has

shape S. Before we can state the main result of this section, we need some more definitions.
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Figure 3.2: The terminal assemblies for each step in the construction of a 5× 5 square. The
seed configurations are indicated in grey.
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(a) Tile set E1.

α′

XY

Y

X

β′

(b) Tile set E2.

Y

X

(c) Tile set E3.

Figure 3.3: Additional tile sets for assembling an N × N square, where N is even.

A caterpillar K is a graph consisting of a single path, called the spine, and additional

vertices attached to the spine by single edges, called hairs. We refer to these additional

vertices as hairtips. Given a tree F , a caterpillar K with spine P and set of hairtips L is a

natural caterpillar if it is a subgraph of F and all vertices in L are leaves in F . Moreover,

K is maximal if it is natural and the endpoints of P are leaves of F . If v is an endpoint of

the spine P of the caterpillar K, we say that K is anchored at v. Moreover, K is a maximal

caterpillar anchored at v, if K is a natural caterpillar anchored at v and the other endpoint

of the spine (different from v) is a leaf of F .

Given a tree F , the sequence of sets of caterpillars {Li}δ
i=1 forms an m-level decomposi-

tion DF of F if it satisfies all of the following:

(mLD1) All caterpillars in
⋃δ

i=1 Li are edge disjoint, and cover all edges of F .

(mLD2) L1 consists of a single maximal caterpillar of F .

(mLD3) For every 2 ≤ i ≤ δ, caterpillars in Li are vertex disjoint.

(mLD4) For every 2 ≤ i ≤ δ, every caterpillar K in Li is a maximal caterpillar anchored at

a vertex v on the spine of some caterpillar in Li−1. We call v the anchor of K.

Note that the anchor of K is either an internal vertex of the spine of a caterpillar K ′

or the anchor of K ′, where K ′ ∈ Li−1. A vertex v has level i in DF , if i is the smallest

index such that v is a vertex of a caterpillar in Li. The depth of an m-level decomposition
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Figure 3.4: The terminal assemblies for the additional steps in the construction of a 4 × 4
square. The seed configurations are indicated in grey.
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DF = {Li}δ
i=1 is δ. The m-level depth of a tree F , denoted by mLD-depth(F ), is the smallest

δ such that F has an m-level decomposition of depth δ. The m-level depth of a shape S,

mLD-depth(S), is the minimum m-level depth of all spanning trees of S.

A vertex v is a single anchor if it is an anchor for exactly one caterpillar in DF , and v

is a double anchor if it is an anchor for exactly two caterpillars in DF . Note that if F is a

spanning tree of a shape S, then v cannot be an anchor for more than two caterpillars, since

degF (v) ≤ 4, and every anchor is an internal vertex of the spine of some caterpillar. Note

that since for every 1 < i ≤ δ caterpillars of Li are vertex disjoint, any vertex v of level j

that is a double anchor is an anchor for one caterpillar of Lj+1 and one caterpillar of Lj+2;

moreover, degF (v) = 4 and the remaining two edges incident to v belong to a caterpillar of

Lj. Note that in this case v cannot be a leaf of the caterpillar of Lj.

Theorem 24. Any shape S that has a spanning tree F of m-level depth δ can be uniquely

produced by a step tile system at temperature 1 with tile complexity at most 68δ + 8 (using

2δ + 2 non-null binding domains). Moreover, if the maximum degree of F is 3, S can be

uniquely produced by a step tile system with tile complexity at most 44δ + 8 (using 2δ + 1

non-null binding domains), and if the maximum degree of F is 2, only 14 tile types (and 2

non-null binding domains) suffice.

Proof. Let DF = {Li}δ
i=1 be an m-level decomposition of F of depth δ. In the step tile

system we are constructing, each tile set will contain only a single non-empty tile type. The

binding domains will be taken from the set Σ = {null, a1, a2, . . . , aδ+2, b1, b2, . . . , bδ}. We

define a partial function x on Σ as follows: ai = bi and bi = ai, for 1 ≤ i ≤ δ. We also define

a rank on Σ as follows: rank(ai) = i, rank(bi) = i, and rank(null) = 0. Our construction is

guided by a depth-first search ordering of the vertices of F obtained as follows. Let s0 be

an endpoint of the spine of the caterpillar in L1 (without loss of generality we assume that

s0 = (0, 0)). The sequence {sj}|S|−1
j=0 is obtained by a depth-first search on the vertices of

F starting at the vertex s0. At each branching point the depth-first search will choose the

next vertex to visit as follows: choose a non-visited neighbour that is a leaf, or, if none of

the non-visited neighbours are leaves, choose a non-visited neighbour of the highest level.
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For every vertex sj of F let tj = (tjN , tjE , tjS , tjW ) be the tile that will be placed onto sj.

The tile sets used will be the sets Tj = {tj, empty}. Next we specify the tile types tj for

j = 0, . . . , |S| − 1 in this order. Note that s1 is a neighbour of s0. Let d ∈ D be the unique

direction such that s1 = d(s0). Set t0d = a1 and t0α = null, if α 6= d.

For j > 1 and degF (sj) = 1, let sk be the neighbour of sj such that k < j. Let d be the

direction such that sk = d(sj). Set tjd = tkd−1 (this ensures that the tile tj can attach to the

neighbouring tile tk), and tjα = null, if α 6= d.

For j > 1 and degF (sj) = 2, let sk be the unique neighbour of sj such that k < j. Note

that sj+1 is also a neighbour of sj , and, because degF (sj) = 2, sk, sj, and sj+1 all belong

to the same caterpillar in some Li. Let d1, d2 be directions such that sk = d1(sj), and

sj+1 = d2(sj). Set tjd1
= tk

d−1

1

(this ensures that the tile tj can attach to its neighbouring

tile tk), tjd2
= tjd1

, and tjα = null, if α /∈ {d1, d2}.

For j > 1 and degT (sj) = 3, we distinguish two cases:

(i) sj is not an anchor:

Then sj belongs to exactly one caterpillar K in Li for some i. Note that sj+1 is a

neighbour of sj and it is a leaf. Let sk and sm be the other two neighbours of sj such

that k < j and m > j (see Figure 3.5(a)). Note that sm = sj+2 and that sj and all

its neighbours belong to the same caterpillar. Let d1, d2, d3 be directions such that

d1(sj) = sk, d2(sj) = sj+1, and d3(sj) = sm. Set tjd1
= tk

d−1

1

(this ensures that tile tj

can attach to the neighbouring tile tk), tjd2
= ai+1 (hence using a new binding domain

for hairs of K), tjd3
= tjd1

, and tjα = null, if α /∈ {d1, d2, d3}.

(ii) sj is an anchor:

Then sj must be a single anchor, since only vertices of degree four can be double

anchors. Let sj be an anchor for a caterpillar K ′ in Li+1. It follows that sj also

belongs to a caterpillar K in Li (see Figure 3.5(b)). Let sk, sm, d1, d2, and d3 be

defined as in case (i). Note that sj+1 is a neighbour of sj and its level is i + 1. Set

tjd1
= tk

d−1

1

(this ensures that tile tj can attach to the neighbouring tile tk), tjd2
= ai+1,

(as the caterpillar K ′ will use a new pair of binding domains ai+1, bi+1), tjd3
= tjd1

, and
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tjα = null, if α /∈ {d1, d2, d3}.

sj
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tjtk tm
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d1 d3

(a)

sj

sj+1

smsk

tj+1

tjtk tm
Li

Li+1
d2

d1 d3

(b)

Figure 3.5: Tiles for a vertex of degree 3. The tiles tn are indicated together with the vertices
sn of the spanning tree of S. Dashed sides of a tile indicate that another tile could attach
to that side. Dashed edges of the tree indicate how the tree might continue. The shading
represents the caterpillar of level i that the vertex sj belongs to. The relative directions are
indicated in the top right corner of each figure.

For j > 1 and degF (sj) = 4 we distinguish three cases:

(i) sj is not an anchor:

Then two of the neighbours of sj belong to the spine of some caterpillar K in Li

for some i, and the other two neighbours of sj are leaves of K. Note that sj+1 is a

neighbour of sj and it is a leaf. Let sk, sm, and sl be the neighbours of sj different

from sj+1 such that k < j, and m > l > j (see Figure 3.6(a)), such that sm is on

the spine of K. Let d1, d2, d3, d4 be directions such that d1(sj) = sk, d2(sj) = sl,

d3(sj) = sj+1, and d4(sj) = sm. Set tjd1
= tk

d−1

1

(this ensures that tile tj can attach to

the neighbouring tile tk), tjd2
= ai+1, tjd3

= ai+2 (hence using new binding domains for

the hairs incident to sj), and tjd4
= tjd1

.

(ii) sj is a single anchor:

Let sj be an anchor for a caterpillar K ′ in Li+1 for some i. It follows that sj also

belongs to a caterpillar K in Li (see Figure 3.6(b)). Let sk, sm, sl, and d1, d2, d3, d4

be defined as in case (i). Note that sj+1 is a neighbour of sj and it is a leaf of K. Set

tjd1
= tk

d−1

1

(this ensures that tile tj can attach to the neighbouring tile tk), tjd2
= ai+1,

(as the caterpillar K ′ will use a new pair of binding domains ai+1, bi+1), tjd3
= ai+2

(hence using a new binding domain for the hair incident to sj), and tjd4
= tjd1

.
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(iii) sj is a double anchor:

Let sj be an anchor for a caterpillar in Li+1 and a caterpillar in Li+2. Let sk, sm, sl,

and d1, d2, d3, d4 be defined as in case (i). Since the neighbour sj+1 of sj is visited

before the neighbour sl, sj+1 has a higher level than sl. Therefore, sj+1 has level

i + 2 and sl has level i + 1. Set tjd1
= tk

d−1

1

(this ensures that tile tj can attach to

the neighbouring tile tk), tjd2
= ai+1 (as the caterpillar in Li+1 will use a new pair of

binding domains ai+1, bi+1), tjd3
= ai+2 (as the caterpillar in Li+2 will use a new pair

of binding domains ai+2, bi+2), and tjd4
= tjd1

.

Note that we based the assignment of binding domains for every tile tj on the order in

which the neighbours of sj are visited by the search algorithm. That is, if sl and sm are two

neighbours of sj that both succeed sj in the sequence obtained from the search algorithm,

and sl is visited before sm, then the binding domain of tile tj on the side adjacent to sl has

higher rank than the binding domain of tj on the side adjacent to sm.

Let the configuration C be defined by the map C : Z×Z → {t0, t1, . . . , t|S|−1} such that

C(v) =







tj if v = sj for some sj ∈ V (F ),

empty otherwise.

Clearly, the configuration C has shape S. We will show that the step tile system Tstep =

(Σ, {tj , empty}|S|−1
j=1 , {Ct0}, sΣ, {1}|S|−1

j=1 ) uniquely produces C. To this end, let Cj = C[Vj],

where Vj = {s0, . . . , sj}, be the sub-configuration of C induced by the first j + 1 vertices

(j = 0, . . . , |S| − 1). We say that the configuration Cj is hierarchical , if all of the following

hold:

(H1) All non-null binding domains exposed on Cj have distinct ranks.

(H2) Let x1, x2, . . . , xm be all exposed non-null binding domains on Cj ordered increasingly

by their ranks. Let ti1 , ti2 , . . . , tim be the corresponding tiles in Cj. Then i1 ≤ i2 ≤
· · · ≤ im.

We will show by induction that the tile system Tj of Tstep uniquely produces Cj for each

j ≥ 1.
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Figure 3.6: Tiles for a vertex of degree 4. The tiles tn are indicated together with the vertices
sn of the spanning tree of S. Dashed sides of a tile indicate that another tile could attach
to that side. Dashed edges of the tree indicate how the tree might continue. The shading
represents the caterpillar of level i that the vertex sj belongs to. The relative directions are
indicated in the top right corner of each figure.
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By definition of the step tile system Tstep, the seed configuration is C0 = Ct0 . Since

C0 contains only one tile, condition (H2) is trivially satisfied. Since all non-null binding

domains exposed on C0 have distinct rank (as there is only one non-null binding domain,

namely a1, exposed), C0 satisfies condition (H1). Hence, C0 is hierarchical. Now we show

that for every j ≥ 1, if the set of seed configurations of Tj is {Cj−1}, and Cj−1 is hierarchi-

cal, then Tj produces the unique terminal assembly Cj, and Cj is hierarchical. The claim

will follow.

By the induction hypothesis, the set of seed configurations of Tj is {Cj−1}, i.e., Tj =

(Σ, {tj , empty}, {Cj−1}, sΣ, 1). Let the vertex sk be the neighbour of sj in the tree F such

that k < j. Since Cj−1(sj) = empty, by our construction tj can attach to Cj−1 at position sj

in step j. Since tj is the only non-empty tile in this step, it will attach at this position. Next

we show that tj cannot attach anywhere else. Let r be the rank of the binding domain via

which tiles tj and tk are attached to each other in our construction. Due to our assignment

of binding domains, r is a lowest rank of non-null binding domains on tj (there could be

two binding domains on tj with lowest rank), and r is the highest rank of exposed binding

domains on tk. By the depth-first search, either tk = tj−1 or tj−1 is a leaf of F and the

algorithm backtracked to tk, in which case the tiles tk+1, . . . , tj−1 do not have any exposed

non-null binding domains. This implies that the binding domain of highest rank exposed

on Cj−1 is on tk, since Cj−1 is hierarchical. As r is the highest rank of exposed binding do-

mains on tk, it follows that r is the highest rank of exposed binding domains on Cj−1. Since

all binding domains exposed on Cj−1 have distinct rank and r is a lowest rank of non-null

binding domains on tj , tile tj cannot attach anywhere else. Hence, Tj uniquely produces Cj.

It remains to show that Cj is hierarchical. Let X = x1, x2, . . . , xm be the exposed non-

null binding domains of Cj−1 ordered by increasing rank. In Cj, tile tj is attached to tk

via binding domain xm which is of rank r. Since Cj−1 satisfies (H1), and r is the lowest

non-null rank of the binding domains on tj, and the exposed non-null binding domains on

tj in Cj are distinct, it follows that Cj satisfies (H1). Let Y = y1, y2, . . . , yk be the exposed

non-null binding domains of Cj ordered by increasing rank. Since r is the highest rank of

all non-null binding domains exposed on Cj−1 and r is also the lowest rank of all non-null

binding domains on tile tj, in the sequence Y all non-null binding domains of tj are at the

end of the sequence. Since all the preceding elements are a subsequence of X, they satisfy
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(H2). Moreover, since all new (if any) binding domains in Y come from tile tj, Cj also

satisfies (H2). Thus, Cj is hierarchical.

Hence the step tile system Tstep uniquely produces the terminal assembly C, and there-

fore, Tstep uniquely produces shape S.

It remains to show that the tile complexity of Tstep is as required. There are four cat-

egories of tile types: tiles with exactly one, two, three, or four non-null binding domains.

For the first type there are two choices for binding domain type (ai or bi, for some i), four

choices for which side of the tile will be assigned the selected binding domain, δ + 2 choices

for the rank of ai, and δ choices for the rank of bi. Hence there are 4·(δ+2)+4·δ = 2·4·δ+8

such tiles. For tiles with exactly two non-null binding domains, both binding domains must

have the same rank, i.e. the binding domains must be ai and bi for some i. There are 4 · 3
ways of assigning these binding domains to the sides of a tile, and there are δ choices for

i. Hence, there are 4 · 3 · δ different tiles with exactly two non-null binding domains. Tiles

with exactly three non-null binding domains have binding domains ai, bi, ai+1 for some i.

There are 4 · 3 · 2 ways of assigning these binding domains to the sides of a tile. There are

δ choices for i. Thus, there are 4 · 3 · 2 · δ different tiles with exactly three non-null binding

domains. Similarly, tiles with exactly four non-null binding domains have binding domains

ai, bi, ai+1, ai+2 for some i. There are 4 ·3 ·2 ways of assigning these binding domains to the

sides of a tile. Again, there are δ choices for i. Thus, there are 4 · 3 · 2 · δ different tiles with

exactly four non-null binding domains. Therefore, the shape S can be assembled uniquely

by a tile system with tile complexity of at most 2·4·δ+8+4·3·δ+4·3·2·δ+4·3·2·δ = 68δ+8.

If the maximum degree of F is three, then the tile complexity of Tstep is at most

2 · 4 · δ + 8 + 4 · 3 · δ + 4 · 3 · 2 · δ = 44δ + 8, since there are no tiles with non-null binding

domains on all four sides used in the construction.

If the maximum degree of F is 2, then F is a path and only two non-null binding

domains are needed: a1 and b1. There are 12 tile types using both a1 and b1 (exactly

once). In addition, two tile types having only one non-null binding domain are used for the

endpoints of the path F . Thus, if the maximum degree of F is 2, the tile complexity of

Tstep is 14.
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Note that it is not necessary that m-level decompositions satisfy condition (mLD3),

however we insist on this condition in order to optimize the tile complexity. For m-level

decompositions that do not satisfy condition (mLD3), we can use a similar construction as

in the proof of Theorem 24. In this case, a vertex of degree 4 that is a double anchor could

be an anchor for two caterpillars K and K ′ that are both in Li for some i. To ensure the

tile system uniquely produces the desired shape, we cannot use binding domains ai and bi

for the spine of both K and K ′. Instead we introduce new binding domains ci and di that

we use for the spine of K and keep the binding domains ai and bi for the spine of K ′. This

implies that we need at most 136δ + 8 non-null binding domains.

3.3 Level Decompositions and Monotone Connected Node

Search Number

Level decompositions of a tree are closely related to its monotone connected node search

number. However, the definition of level decomposition is tailored to optimize the number

of tile types used. In what follows we will show that if in an m-level decomposition we do

not require caterpillars to be maximal, then this does not change the m-level depth of a

tree. Moreover, if an addition we omit condition (mLD3) from the definition, i.e., we allow

two caterpillars in the same level to share a common vertex (anchor), the “new” level depth

corresponds to the monotone connected node search number of the graph.

Given a tree F , the sequence of sets of caterpillars {Li}δ
i=1 forms a level decomposition

DF of F if it satisfies all of the following:

(LD1) All caterpillars in
⋃δ

i=1 Li are edge disjoint, and cover all edges of F .

(LD2) L1 consists of a single natural caterpillar of F .

(LD3) For every 2 ≤ i ≤ δ, caterpillars in Li are vertex disjoint.

(LD4) For every 2 ≤ i ≤ δ, every caterpillar K in Li is a natural caterpillar anchored at a

vertex v on the spine of some caterpillar in Li−1. We call v the anchor of K.

Observe that this definition differs from the definition of m-level decomposition only

that we do not require the caterpillars to be maximal in (LD2) and (LD4). As before, the
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depth of a level decomposition DF = {Li}δ
i=1 is δ. The level depth of a tree F , denoted

LD-depth(F ), is the smallest δ such that F has a level decomposition of depth δ. We will

show that these changes to the definition of level decomposition do not affect the level depth

of a tree.

Lemma 4. For any tree F , mLD-depth(F ) = LD-depth(F ).

Proof. Since any m-level decomposition of F is also a level decomposition of F , it fol-

lows that LD-depth(F ) ≤ mLD-depth(F ). On the other hand, let DF = {Li}δ
i=1, where

δ = LD-depth(F ), be a level decomposition of F with the smallest number of caterpillars.

We argue that DF is also an m-level decomposition of F .

Towards a contradiction, suppose that DF is not an m-level decomposition, i.e., either

the caterpillar in L1 is not maximal, or a caterpillar in a higher level set Li, i > 1, is not

maximal anchored at a vertex u on the spine of a caterpillar in Li−1. Let this caterpillar

be K. In both cases we can choose a vertex v of the spine of caterpillar K which is not its

anchor u and is also not a leaf in F . By (LD1) and (LD4) there is another caterpillar K ′

in Li+1 which is anchored at v. Let us modify DF as follows: First, append K ′ to K at v,

and leave the resulting caterpillar in Li. Second, remove K ′ from Li+1. Let Fu be the tree

F rooted at u, and Fu[v] be the subtree of Fu rooted at v. By (LD1) every caterpillar is

now completely either in Fu[v] or out of Fu[v]. Third, move every caterpillar in Fu[v] from

its level set Lj to Lj−1.

This modification obviously does not violate (LD1) and (LD2). Before our modification,

every caterpillar in Fu[v] except K ′ was in a level greater than i + 1. Since K and K ′ have

been concatenated and since all caterpillars in Fu[v] decreased their levels consistently, (LD3)

and (LD4) also hold. Hence, the new decomposition is a level decomposition and it is easy to

see that its depth is at most δ. This is a contradiction, since it has one less caterpillar than

DF . Hence DF is an m-level decomposition and mLD-depth(F ) ≤ LD-depth(F ). Therefore,

mLD-depth(F ) = LD-depth(F ).

As we noted in section 3.2, condition (LD3) is used only to optimize tile complexity. In

order to achieve equivalence between the level depth of a tree and its monotone connected
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node search number we omit this condition and obtain a “general level decomposition”.

Given a tree F , the sequence of sets of caterpillars {Li}δ
i=1 forms a general level decom-

position of F if it satisfies all of the conditions: (LD1), (LD2), and (LD4).

The depth of a general level decomposition {Li}δ
i=1 is again δ, the number of sets in the

decomposition. The GLD-depth of a tree F , denoted GLD-depth(F ), is the smallest δ such

that F has a general level decomposition of depth δ. The GLD-depth of a shape S is the

minimum GLD-depth of all spanning trees of S.

Node searching is a variant of graph searching which was first introduced by Kirousis

and Papadimitriou [11]. We are given a graph whose edges are all “contaminated”, and a set

of searchers. The goal is to obtain a state of the graph in which all edges are simultaneously

“clear”. In node searching, an edge becomes clear if both its endpoints are concurrently

occupied by a searcher. An edge e becomes recontaminated, if there is a path from a con-

taminated edge to e and there are no searchers on this path. In node searching there are

two basic operations, called “search steps”: (i) place a searcher on a vertex, (ii) remove a

searcher from a vertex.

A search strategy is a sequence of search steps that results in all edges of the graph being

simultaneously clear. The smallest number of searchers for which a search strategy exists

for a graph G is called the node search number ns(G) of G. A search strategy is monotone

if no recontamination ever occurs. A search strategy is connected if the set of clear edges

always induces a connected subgraph. We are interested in search strategies that are both

monotone and connected, and call the minimum number of searchers for which such a strat-

egy exists for the graph G the monotone connect node search number , denoted by mcns(G).

Edge searching is a version of graph searching where, in addition to the two search steps

allowed in node searching, searchers can slide along an edge. Moreover, an edge uv becomes

clear only when a searcher slides along the edge from endpoint u to endpoint v. The edge

search number of a graph G is simply denoted by s(G). In [5] a characterization of trees

T whose monotone connected (edge) search number, mcs(T ), is at most k is given. This

characterization is in terms of k-caterpillars, which are similar to our level-decompositions.
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Furthermore, it was shown in [5] that there is a unique obstruction for the class of trees

T such that mcs(T ) ≤ k. These results can easily be adapted to level-decompositions and

monotone connected node search. To state the result, we first need a definition.

Let B′
k be the tree obtained from the complete binary tree of depth k (the distance

from the root to the leaves) by joining each leaf li to a new vertex vi. Let D′
k be the tree

obtained by joining the three roots of three copies of B′
k−1 to a unique new vertex r (see

Figure 3.7). Furthermore, we say a graph H is a minor of a graph G, denoted H � G, if

H is isomorphic to a graph obtained from a subgraph of G by zero or more edge contractions.

r

l1 l2

v1 v2

{B
′

1

Figure 3.7: The tree D′
2.

Theorem 25. For any tree F , the following three properties are equivalent:

1. GLD-depth(F ) ≥ k;

2. D′
k−1 � F ;

3. mcns(F ) ≥ k + 1.

Proof. The proof of this theorem is analogous to the proof of Theorem 4.1 in [5]. We will

use the following lemmas which we will prove later.

Lemma 5. For any k ≥ 1, mcns(D′
k) ≥ k + 2.

Lemma 6. For any tree F , such that GLD-depth(F ) ≤ k, mcns(F ) ≤ k + 1.

Lemma 7. For any tree F , such that D′
k � F , GLD-depth(F ) ≤ k.
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The proof of Theorem 25 now follows directly from these lemmas. If GLD-depth(F ) ≥
k > k − 1, then by Lemma 7 we have D′

k−1 � F . Now suppose D′
k−1 � F . By Lemma 5

mcns(D′
k−1) ≥ k + 1, thus also mcns(F ) ≥ k + 1. Finally, if mcns(F ) ≥ k + 1 > k, then by

Lemma 6 we have GLD-depth(F ) > k − 1. Hence, GLD-depth(F ) ≥ k.

It remains to prove the lemmas.

Proof of Lemma 5. We will show that for any monotone connected node search strategy

in D′
k, there is a step in which at least k+2 searchers are required to avoid recontamination.

To this end, let T1, T2, and T3 be the three subtrees attached to the root r of D′
k. Note that

these subtrees are isomorphic to B′
k−1. Let i1 be the first step during which an edge incident

to the root r is cleared by a searcher. Without loss of generality, we may assume that T1

and T2 are still completely contaminated at step i1. Let i2 be the first step during which

and edge e incident to a leaf l of T1 or T2 is cleared by a searcher. We may assume l belongs

to T1. At this point all other leaves of T1 and all leaves of T2 are still contaminated, while

the path P from the leaf l to the root r is cleared (monotone connected search strategy).

Searchers are located at the leaf l and its neighbour n (which is also a vertex of P ), as

otherwise edge e could not have been cleared during step i2. For every other vertex x on

the path P (including r), there is a path from x to a contaminated leaf. Since these paths

are disjoint, each path needs to be guarded by a searcher. Thus, at least k + 2 searchers are

required during step i2. Hence, mcns(D′
k) ≥ k + 2.

Proof of Lemma 6. Let {Li}k
i=1 be a general level decomposition of F of depth k. Let the

path P be the spine of the caterpillar in L1. We show that there is a monotone connected

node search strategy using k + 1 searchers starting at one endpoint of P . We proceed by

induction on k.

For the base case of k = 1, F is itself a caterpillar. Clearly, there exists a monotone

connected node search strategy using 2 searchers starting at one endpoint of the spine of F .

For the induction hypothesis, suppose that for every general level decomposition {L′
i}δ

i=1 of

a tree F ′ of depth at most k − 1, there exists a monotone connected node search strategy
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starting at one endpoint of the spine of the caterpillar in L′
1, using at most δ+1 ≤ k searchers.

For the induction step, let F be a tree with a general level decomposition {Li}k
i=1 of

depth k. Let P = {v0, v1, . . . , vm} be the spine of the caterpillar in L1. For each vertex vi

denote by wi,0, wi,1, . . . , wi,di
the set of neighbours of vi that are not in P . Denote by Fvi

the tree F rooted at vi. Let Fvi [wi,j] be the subtree of Fvi rooted at wi,j. Note that the tree

Fvi [wi,j] together with the edge viwi,j , denoted Fvi [wi,j ]+ viwi,j , is a tree that has a general

level decomposition of depth at most k − 1 where vi is an endpoint of the caterpillar in the

first set of this decomposition (for example, take the general level decomposition ”induced”

by {Li}k
i=1, i.e., {Li ∩ V (Fvi [wi,j] + viwi,j)}k

i=2). We now use the following search strategy

for F : place all k + 1 searchers at v0. Every time all searchers reach a new vertex vi of P ,

leave one searcher at vi and use k searchers to perform a monotone connected node search

(starting from vi) on the subtree Fvi [wi,j] ∪ viwi,j, for every j = 0, . . . , di. Then move one

searcher to vi+1 and leave the remaining k searchers at vi to clear the edge vivi+1. Now

move the remaining searchers from vi to vi+1. This is a monotone connected node search

strategy using k + 1 searchers. Hence, mcns(F ) ≤ k + 1.

Proof of Lemma 7. We first need a definition. Given two trees F1 and F2 with roots x1

and x2, respectively, we say F1 is a x2-rooted minor of F2, denoted by F1 �x2
F2, if F1 is

a minor of F2 and vertex x1 is either x2 or the result of contracting a series of edges, some

of which contain x2 as an endpoint. As in the proof above, let Fv[w] denote the subtree of

tree Fv rooted at w, where Fv is the tree F rooted at v.

Let F be a tree, and let v be a vertex of F such that B′
k �v F . We will first show,

by induction on k, that this implies that GLD-depth(F ) ≤ k and that v is an endpoint of

the spine of the caterpillar in the first set of a level decomposition of F of depth at most

k. Then we show that for any tree F such that D′
k � F , there exists a vertex v such that

B′
k �v F .

For the base case of k = 1, it is easy to see that if B′
1 �v F , then F is a caterpillar

and GLD-depth(F ) = 1. Moreover, v is an endpoint of the spine of F . Indeed, assume

that v has children u1, u2, . . . , us in Fv. If more than one of u1, u2, . . . , us has a child, then
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B′
1 �v F . Otherwise, v can be chosen as an endpoint of a spine of F .

Now suppose the claim holds for some k − 1 ≥ 1, and there is a vertex v such that

B′
k �v F . We consider two cases. First, if B′

k−1 �v F , then by the induction hypothesis,

GLD-depth(F ) ≤ k − 1 ≤ k. Second, if B′
k−1 �v F , then let S be the set consisting of

all vertices w such that B′
k−1 �w Fv[w]. Since B′

k �v F , the vertices in S induce a path

starting at v in F . Note that for each vertex z /∈ S such that z is adjacent to a vertex w ∈ S,

B′
k−1 �z Fv [z]. Hence, by induction, GLD-depth(Fv[z]) ≤ k − 1 and z is an endpoint of a

spine of the caterpillar in the first set of a level decomposition of depth at most k − 1. Now

we can construct a general level decomposition of F as follows: The first set contains the

caterpillar with S as its spine and all neighbours of the spine that are leafs in F are hairtips.

The remaining sets of the decomposition are component-wise unions of optimal decompo-

sitions of Fv[z] (where we extend the spine of every caterpillar in a first set to include one

vertex of S), for every z /∈ S such that z has a neighbour in S. Thus, GLD-depth(F ) ≤ k,

and v is an endpoint of the spine of the caterpillar in the first set of the decomposition.

It remains to show that there exists a vertex v such that B′
k �v F . Towards a contradic-

tion, suppose that D′
k � F and for every vertex v of F , B′

k �v F . Then there exists a vertex

z with two neighbours z1 and z2, such that B′
k−1 �z1

Fz[z1] and B′
k−1 �z2

Fz [z2]. Since

B′
k �v F for every vertex v of F , this implies that either B′

k �zi Fz[zi] or B′
k �z Fzi [z]. In

either case, we get that D′
k � F , a contradiction.

Rephrasing the equivalence of properties (1) and (3) we get:

Corollary 5. For any tree F , mcns(F ) = GLD-depth(F ) + 1.

The connected node search number (where we do not insist that the search strategy is

monotone) corresponds to another famous parameter in graph theory, namely the connected

pathwidth. In [8] it is stated that the connected node search number of a graph is not always

equal to the monotone connected node search number. However, in [8] it is also claimed

that these two numbers are equal for trees, which implies that the GLD-depth of F is equal

to the connected pathwidth of F .
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3.4 Shapes with Constant Tile Complexity

In this section we exhibit a large class of shapes that have constant tile complexity under

the step assembly model. The characterization of these shapes is based on “rectangle de-

compositions”. Recall that a rectangle R is a shape for which there exist integers N ≥ 2 and

M ≥ 2 and a vertex (x0, y0) such that vertex (x, y) ∈ R if and only if x0 ≤ x < x0 + N and

y0 ≤ y < y0 + M . Given a shape S and an integer k ≥ 1, we say S has a rectangle decom-

position {Ri}m
i=1 with connectors of size k if there exist m disjoint rectangles, R1, . . . , Rm,

such that V (S) =
⋃m

i=1 V (Ri) and for each i > 1, there exists j < i such that the rectangles

Ri and Rj are joined in S by at least k edges. A selected set of k consecutive such edges

is called the connector of Ri and Rj . Note that the endvertices of this connector in Ri

(and Rj , respectively) induce a path of length k − 1 which is called an interface of Ri (Rj).

Observe that if Ri connects to l other rectangles it will have l interfaces.

R1

R2

R3

connector

interfaces of R2

connector

Figure 3.8: A rectangle decomposition of a shape with connectors of size 2. Connector edges
are depicted in bold and interface edges are depicted in grey.

Theorem 26. Under the step assembly model at temperature 1, any shape S which has a

rectangle decomposition R = {Ri}m
i=1 with connectors of size 2, can be uniquely assembled

using at most 24 non-empty tiles types.

Proof. We will show that S has a spanning tree F of maximum degree at most 3 and

level-depth at most 2. Given this spanning tree, we will obtain a tile system following the

construction in the proof of Theorem 24. Due to our choice of F , this tile system will only

use 24 non-empty tile types. Note that direct application of the result of Theorem 24 would

give a bound of 96 non-empty tile types.
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To obtain a suitable spanning tree F of S we will first show that S has a spanning

subgraph G satisfying all of the following conditions:

(i) The maximum degree of G is 3.

(ii) G contains a cycle C that consists of all connector edges and all boundary edges of

each rectangle in R which are not interface edges.

(iii) Every vertex not on the cycle C is on a “horizontal” path whose west endpoint belongs

to C.

We will show this by induction on the number of rectangles in the rectangle decomposition

R of S.

For the case when m = 1, S is itself a rectangle. Let C be the cycle consisting of all

boundary edges of S. For every vertex w on the western boundary of S except the two

corner vertices, let Pw be the path starting at w and going east with the other endpoint

being the last vertex that is not on the boundary of S (see Figure 3.9). Then the cycle C

together with all paths Pw forms a desired spanning subgraph G of S.

R1

Figure 3.9: The spanning subgraph for the case of a single rectangle.

For the induction step, let S be any shape which has a rectangle decomposition R =

{Ri}m
i=1 with connectors of size 2, for some integer m ≥ 2. Let S′ be the shape corresponding

to the rectangle decomposition {Ri}m−1
i=1 . Since R has connectors of size 2 there exist two

adjacent vertices um and vm on the boundary of Rm such that for some i < m, um is adjacent

to a vertex ui of Ri and vm is adjacent to a vertex vi of Ri. By the induction hypothesis,

since ui and vi are on the boundary of Ri, the edge uivi is present in G′. Obtain a spanning

subgraph Gm of Rm as described in the base case. Let Cm be the cycle of Gm. To obtain the

cycle C for the spanning subgraph G of S, join C ′ and Cm by adding the connector edges
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uium and vivm, and deleting the interface edges uivi and umvm (see Figure 3.10). Now C

together with the paths Pw from G′ and Gm forms a spanning subgraph G of S. Since for

every vertex v ∈ G, either degG(v) = degG′(v) or degG(v) = degGm
(v), and by the induction

hypothesis, the maximum degree of G′ and Gm is three, also the maximum degree of G is

three. By the induction hypothesis, both G′ and Gm satisfy condition (ii) for the rectangle

decompositions {Ri}m−1
i=1 and Rm, respectively. Since C contains the connector edges uium

and vivm, and all edges of C ′ and Cm except the edges uivi and umvm which are interface

edges, also G satisfies condition (ii). By our construction, every vertex of G that is not on

C is on a horizontal path P . This path is either in G′ or Gm and thus, by the induction

hypothesis, the west endpoint of P belongs to either C ′ or Cm. Since all vertices of C ′ and

Cm belong to C, the west endpoint of P also belongs to C. Hence, G satisfies condition (iii).

Rm

Ri ui vi

um vm

Figure 3.10: Extending the spanning subgraph to include Rm.

Given this spanning subgraph G of S, we obtain a spanning tree F of S by deleting

from the cycle C an edge that is on the northern boundary of S. Certainly F will still

have maximum degree three. It remains to show that F has level-depth at most 2. Let the

caterpillar K consist of the path in F that we obtained by deleting an edge from the cycle

C of G (this is the spine of K), together with any paths Pw that include only a single edge.

Let L1 = {K}. If K = F , then L1 trivially forms a level decomposition of F . Otherwise

let L2 be the set consisting of all the paths Pw that are not included in the caterpillar K.

Then all caterpillars in L1 ∪ L2 are edge-disjoint and cover all edges of F . Hence, {L1, L2}
satisfies condition (LD1). Let u and v be the endpoints of the spine of K. Since u and v are

on the northern boundary of S, they are leaves of F (any branching occurs on the western

boundary of a rectangle). Thus K is a maximal caterpillar of F , and hence {L1, L2} satis-

fies condition (LD2). By our construction, all paths Pw are vertex disjoint. Thus, {L1, L2}
satisfies condition (LD3). Every path Pw is a maximal caterpillar anchored at w, where w
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is an internal vertex of the spine of caterpillar K in L1. Hence, {L1, L2} satisfies condition

(LD4). Therefore, {L1, L2} is a level decomposition of F , and hence F has depth at most

2.

Now construct a tile system from the spanning tree F of S as described in the proof

of Theorem 24. However, due to our choice of F this tile system will use far less than the

96 tile types that Theorem 24 guarantees. Our tile system will use 4 · 3 tile types that use

both a1 and b1 (exactly once) and no other non-null binding domains. There will be six tile

types that use exactly three non-null binding domains (a1, b1, and a2) (this is because any

vertices of degree 3 are on the western boundary of a rectangle). There are two tile types

that use both a2 and b2 (exactly once) and no other non-null binding domains, because all

the paths in L2 are horizontal. For the same reason, there are only two tile types with only

one non-null binding domain which is taken from {a2, b2}. Furthermore, there will be two

more tile types corresponding to the endpoints of the spine of the caterpillar of L1 (both

of these tiles have only one non-null binding domain - either a1 or b1). Therefore, our tile

system uses only 24 non-empty tiles.

If we are allowed to scale shapes by a factor of 2, then any shape can be assembled using

a constant number of tile types.

Theorem 27. Given an arbitrary shape S, let S′ be the shape obtained by scaling S by a

factor of 2. Then S′ can be uniquely produced by a step assembly system at temperature 1

using at most 14 non-empty tile types.

Proof. Each vertex of S corresponds to a 2 × 2 rectangle in S′. These rectangles from a

rectangle decomposition of S′ with connectors of size 2. Follow the proof above to obtain a

spanning tree of S′. This spanning tree is in fact a path. Thus, Theorem 24 implies that 14

non-empty tile types and 2 non-null binding domains suffice to uniquely assemble S′.

Given that the step assembly model is similar to the staged assembly model, it is in-

teresting to compare tile complexity results under the different models. Both Theorem 27

of the step assembly model and Theorem 20 of the staged assembly model provide up-

per bounds on the tile complexity of uniquely assembling an arbitrary (non-full) shape at
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temperature 1. Both constructions use 2 non-null binding domains. Theorem 27 uses 14

distinct non-empty tile types, while Theorem 20 uses 52 tile types. However, Theorem 27

only holds for shapes that are scaled by a factor of 2. Theorem 21 does not lend itself to

comparison with our bounds in the step assembly model, as all of our constructions produce

non-full assemblies, whereas Theorem 21 applies for full assemblies. For assembling N ×N

full squares, both models achieve constant tile complexity. The step assembly model has

lower tile complexity than the staged assembly model, while the staged assembly model has

a lower glue complexity than the step assembly model. Note that the focus in the staged

assembly model was to minimize the glue complexity (rather than the tile complexity), while

in the step assembly model we kept with the traditional complexity measure and focused

on reducing tile complexity. Also note that while the two models are similar, they are not

the same. In the step assembly model, assembly proceeds (as in the standard tile assembly

model) by addition of single tiles, whereas in the staged assembly model two supertiles can

attach to each other (as in the multiple tile model). Furthermore, while in the staged assem-

bly model assembly takes place in several bins, the step assembly model only has a single bin.
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caterpillar, 43
anchored, 43
hair, 43
hairtips, 43
maximal, 43
maximal anchored, 43
natural, 43
spine, 43

configuration, 3
adjacency graph, 16
connected, 17
cut of, 17
finite, 3
hierarchical, 48
seed, 4
shape of, 5
sub-configuration, 3

union, 3
vertex set of, 3

connector, 59

D′
k, 55

depth
of a general level decomposition, 54
of a level decomposition, 53
of an m-level decomposition, 43

eccentricity, 30

flexible glue model, 16
forward edge, 31

general level decomposition, 54
GLD-depth, 54
good repetition, 31

hair, 43
hairtips, 43

inP (v), 31
interface, 59

Kolmogorov complexity, 15

level, 43
level decomposition, 52
level depth, 53
LD-depth, 53

m-level decomposition, 43
m-level depth, 45
mLD-depth, 45
Manhattan diameter, 31
Manhattan distance, 31

66



INDEX 67

monotone connected node search number, 54
multiple temperature model, 16
multiple tile model, 17
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rectangle decomposition, 59
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