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Abstract

In this thesis we propose a standardized method for extracting illumination-invariant images
and a novel approach for classifying textures. Experiments are also extended to include
object classification using the proposed methods.

The illumination-invariant image is a useful intrinsic feature latent in color image data.
Existing methods of extracting the invariant image are dependent upon the characteristics
of cameras. Here, assuming that every image consists of data in a standardized sRGB color
space, we develop a standardized method for extracting the illumination-invariant that is
independent of camera characteristics.

Texture classification is an important aspect of Computer Vision. In this work, we
greatly increase speed for texture classification while maintaining accuracy. Inspired by
past work, we propose a new method for texture classification which is extremely fast due
to the low dimensionality of our feature space.

Finally, we classify images of objects captured by varying the illumination angle.
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Chapter 1

Introduction

In this thesis we address two problems in computer vision namely Illumination-Invariant
Image Formation and Texture Classification. We propose a standardized method for ex-
tracting illumination-invariant images and a novel approach for classifying textures. We

begin with a discussion of the motivation behind addressing these problems.

1.1 Motivation for Illumination-Invariant Image Formation

The illumination-invariant image is a useful intrinsic feature latent in color image data.
Since the inception of the term “Intrinsic Image” in [3], where any given camera input
can be decomposed to its counter parts — reflectance image and illumination image as in
Figure 1.1; one of the open challenges in computer vision has been to find a way to perform
this decomposition with accuracy and intuitive sense. We want algorithms that aim to
retrieve color values from sensor responses that only depend on the surface reflectance
spectra [4], i.e. the effect of the illuminant is to be discounted. The reflectance image or
the illumination-invariant image in particular would be of much use to any vision based
machine learning algorithms, as it better represents the true object characteristics.

The illumination invariant image is formed from image data by taking the logarithm of
band-ratio chromaticity colour coordinates, and then projecting in a certain direction [14].
The input colour data is 3-dimensional RGB, and the chromaticity is effectively 2D colour.
Projecting in a 2-space direction generates a 1D, greyscale image. If the direction is chosen
with care, the resulting greyscale image is quite independent of the lighting at each pixel,

therefore forming an illumination invariant. The cleverness of the invariant is that it is
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Inpat = reflectonee S illuminotion

Figure 1.1: Intrinsic Image [3]

formed at each pixel independently, with no global image processing required.

The special direction for projection is that which is orthogonal to the direction that is
followed along, in the 2-space, as the lighting changes (within a simplified model). Since
lighting is thus removed, as a particular case shadows are also removed, or at least greatly
attenuated [15, 13].

Since in fact we are projecting onto a line through the origin in a colour 2-space, we
need not think of the result of projection as merely a 1D, greyscale image: we do have as
well, after all, a 2D coordinate position on that line, so we could state the projection answer
as a 2D chromaticity [9]. Projection removes the lighting, but this can then be partially
added back, by shifting the chromaticity projection line so as to make the chromaticity for
bright pixels match that for bright pixels in the input image. So projection does not have
to completely remove colour.

Once we indeed have an invariant image, we can go on to remove shadows by comparing
edges in the original to edges in the invariant image. Removing or blending edges where
these two edge maps disagree provides a strategy for re-integrating the edge map back into
a full-colour, shadowless RGB image [15, 21].

1.2 Motivation for a Fast Texture Classification Method

Material surface texture classification is the process of determining the category of an un-
known material from a set of known categories. This has a wide variety of use in fields
such as multimedia information retrieval. For example, many image retrieval algorithms try
to compute local variations of intensity to select the correct image containing a particular
object(s) from a given database of images. Other important applications include defect

detection in manufacturing processes, disease detection such as skin cancer, segmentation
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of satellite/aerial imagery, and document analysis. An important confounding problem is
that in real life textured surfaces occur under variations of illumination and orientation,
among other visual differences. These changes may make us perceive the same texture as
different under different conditions. Until recently, most algorithms that tried to classify
texture suffered from the effect of these variations of illumination and viewpoints.
Extracting meaningful properties from texture, and thus defining texture appropriately,
is key to getting high accuracy rates in texture classification. The current state-of-the-art
in texture classification [42] uses the definition that texture is composed of textons, the
elementary building blocks of texture. We argue and show in this thesis that the process
used for generating textons is subject to many experimental conditions and parameters and
thus many textured surfaces (specially those under varying illumination and viewing angles)
cannot be generalized by a universal set of textons. Moreover, the process is slow due to its

complexity.

1.3 Contributions

For invariant-image extraction we would like to argue that it is possible to do a good
enough job in finding the invariant image by simply assuming the input data to live in
the standardized sRGB colour space and sharpening that space. In this way, we are not
tied to finding the invariant projection for a particular camera, or using the data in a
particular image, and can develop a standardized workflow that can be applied directly to
any input image. Of course, deriving an invariant that is sensor- or image-adaptive instead,
as originally conceived [15, 13], will likely work better than a one-size-fits-all approach,
but here we show that results are indeed adequate using an approach applying the same
transform to any image — e.g., shadows are principally attenuated, no matter what the
input image.

For texture classification we try to learn the properties of texture from single images,
making use of the insights as described in [24] to re-direct the foundation elements of the
texton approach. The main argument vis-a-vis textons is that, given an image of a textured
surface, we can apprehend various properties of it by convolving it with Gaussian derivative
filters at various orientations and scale. The distributions of each of these filtered responses
to Gaussian derivatives contain enough information which will help us classify the texture.

We just have to extract this information efficiently and measure it meaningfully. The texton
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approach clusters vectors of filter responses and measures distance between histograms of
these cluster centers. In this thesis we propose a novel approach for classifying texture,
whereby we represent texture in a Weibull space. We then learn the information stored in
each training image of a particular texture class by measuring its information entropy in
this space. In the classification stage we choose for a test image its nearest neighbour in the
Weibull space, i.e. the training image which has the closest amount of information as in the
test image. The result is a much faster algorithm, somewhat similar to the texton approach
but without the same level of complexity. We perform all our experiments on the CURET
database [7], one of the most challenging databases available for texture images capturing

variations in illumination and viewpoint.

1.4 Thesis Outline

In Chapter 2 we briefly review the literature in illumination-invariant image extraction and
also in texture classification.

In Chapter 3 we propose our standardized method of illumination-invariant image extrac-
tion. In Section 3.1 we compare the strategy of sharpening XYZ data, for input nonlinear-
sRGB images, to the new approach of sharpening the sSRGB data directly, and show that
a better invariant (more invariant to lighting change) arises from the latter approach. We
extract the illumination invariant from measured, nonlinear input data for images of the
Macbeth chart across 105 different illumination environments. Applying the standardized
illumination invariant extraction scheme presented here produces images much more inde-
pendent of lighting change. And in Section 3.3 we apply the new method to the problem of
reducing or removing shadows from imagery, by generating an invariant image from input
colour images, making use of the new standardized method.

In Chapter 4 we describe our approach to texture classification, with experiments in
Section 4.6 and analysis and comparison of results with the state-of-the-art in Section 4.7.

Chapter 5 describes our experiments with object recognition using our method for ex-
tracting illumination-invariant object images without prior knowledge of camera character-
istics, and then using our fast method for texture classification to classify object images in
a low dimensional feature space.

We finish with some concluding remarks in Chapter 6.



Chapter 2

Previous Work

2.1 Background on Illumination-Invariant Image Formation

Many approaches have been proposed to find the invariant image from an input color image.
While the idea for finding the invariant is fairly simple (as described in Section 1.1), carrying
out finding the proper direction in which to project in a 2D log-chromaticity colour space is
not necessarily as straightforward. In [15], the camera itself was calibrated, in this invariant
image sense, by utilizing a set of images of a colour target, under different illuminants, to
find the best 2D direction characterizing lighting change. In [13], evidence in the image
itself was used to discover the correct direction orthogonal to the lighting change direction.
There, it was argued that such a projection direction is best described as that leading to a
minimum-entropy distribution in greyscale values.

Previously, in an approach inspiring ours sharpening in XYZ colour space was tried
recognizing that the sRGB standard [5] contains not only a mapping from nonlinear to
linearized colour values, but also a relationship from the sRGB gamut to corresponding
XYZ values via matrixing. Thus it was proposed [18] that input images could be assumed
to be in nonlinear sSRGB colour space, linearized to linear-sRGB, and then transformed to
XYZ. Then, in XYZ, the XYZ curves themselves could be sharpened. The results for shadow
removal were indeed better than simply moving removing gamma-correction. However, the
invariant direction still was found using the entropy method of [13], so a fully standardized
data independent method was not developed.

We would argue, moreover, that going from linear-sRGB to XYZ is in itself counterin-

tuitive, in that the sSRGB colour-matching functions are close to sharpened colour-matching
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Figure 2.1: sSRGB (+ curves) to XYZ (dotted curves) is a Broadening Transform

curves already [19], so that going over to XYZ curves is a kind of broadening transform, see
Figure 2.1. Following this with a further sharpening of the XYZ curves is not as direct as
simply sharpening the sSRGBs themselves, and hence that approach is what we propose here.
And, we show that the new idea, of sharpening the sSRGB data, provides better performance
for producing an illumination invariant.

Moreover, once we decide to assume that all input data consists of sSRGB values, and we
provide a sharpening transform for sRGB, we can in fact find the best projection direction
simply using synthetic data and then apply the same transform and projection once and

for all to any input image. We show that this simple strategy produces reasonable results,

within the application of shadow removal.

2.2 Background on Texture Classification

Over the past 30 years textures analysis have been widely studied and numerous methods

have been proposed for describing and classifying image texture. Texture classification
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methods were divided by [41] into four categories: statistical, structural, model-based, and
signal processing. A brief description of these approaches is provided in this section. For
detailed study we point the reader to the following surveys on texture analysis methods:
[37, 36, 41, 28].

Statistical methods aim to extract pixel-level features by deriving a set of statistics from
the local gray values. Popular methods in this category include autocorrelation functions
[26], transforms, edgeness, random field models and gray level differences [43], which have
inspired a variety of modifications later on.

The building blocks of texture are sought for by Geometrical methods. Edges are con-
sidered to be the primitive elements of texture by a large number of authors. Geometrical
methods based on edges look to detect them through Laplacian-of-Gaussian or difference-
of-Gaussian filter [32], or by mathematical morphology [34].

Model based methods are based on placement rules of texture elements which may be
detrministic or random [28]. Texture elements may be defined in terms of gray level, shape,
or homogeneity oin size and orientation. Deterministic placement rules include adjacency,
closest distance and random placement rules measure properties such as edge density and
run lengths of maximally connected texture elements.

Signal processing methods introduced the notion of spatial filters to the texture analysis
process. These filters measure frequency information and common techniques include the
use of masks that are designed for edge detection (e.g. Roberts’ and Sobel’s operators [38]).

Most of the earlier work assumed constant imaging conditions and therefore are limited
in terms of performance when such variations are added to the image. An excellent example
of a database of textures that incorporate variation in lighting and viewpoint is CURET
[7]. This is one of the most challenging and largest databases for texture. Figure 2.2 depicts
some of the challenges presented by the CURET dataset.

Originally proposed by [Julesz, 1981 [29]], [Leung and Malik, 2001 [30]] provided the
first working version of textons, “elementary particles” that constitute texture. The work
of [30] (denoted LM) produced notable classification results on the CURET dataset. In the
texton approach, filter responses are first generated by convolving each training image with
a bank of filters (48 are used in LM) that include first and second derivatives of Gaussians
at multiple scales and orientations, Laplacian of Gaussians, and Gaussians. A 2D texton is
defined as the cluster centers in the filter response space, where each (sampled) pixel has a

48-vector of responses. However, images had to be carefully registered during the learning
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Figure 2.2: Challenges in the CURET Dataset. Top Row: Texture #30 under Constant
Viewing Angle and Varying Illumination. Bottom Row: Texture #30 under Constant Illu-
mination and Varying Viewing Angle.

stage and then mapped to a 48 dimensional filter response space, effectively generating 3D
textons.

The same set of filters as LM were used by [6] (Cula and Dana, denoted “CD”), but
without the registration process and generating textons from single images, instead of image
stacks as proposed in LM.

Rotationally invariant set of Gabor-like filters were proposed by [Schmid, 2001 [40]]
(denoted “S”) that also achieved good classification performance on the CURET dataset.

To date, the state of the art in terms of classification accuracy is provided by the work
of [42]. They introduce the idea of Maximum Response Filters (MR8 and MR4) which
are a collapsed sub-set of the “Root Filter Set” (RFS). The RFS filters containing both
isotropic and anisotropic filters are similar to the LM filters, but there are 38 of these
instead of 48 (as in LM). The filter responses from the 38 filters are collapsed by keeping
the maximum response across orientations, thus reducing the number of filter responses to 8
and 4 for MR8 and MR4 respectively, for each image. This is done to extract the strongest
response across filters thus generating meaningful features even from textured images that
are at acute angles. The traditional rotationally invariant features, such as the S set, fail
to extract features from anisotropic textures [42]. Moreover, in the Maximum Response
set the dimensionality of the feature space is reduced which makes the clustering process
simpler. Finally, they propose a greedy algorithm which tries to reduce the number of
models required to represent a class of texture without affecting classification accuracy.

A different line of research, such as in [24], is concerned with other properties of textured
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surfaces. In [23], they provide the notion of a sequential fragmentation process. Here a
textured surface is perceived to be the result of an object that has been spatially fragmented.
The fragmentation process is stochastic in nature for almost all textures, especially those
present in the CURET database. They propose the Weibull distribution as suitable to
measure the distribution of such textures as a function of orientation. As a result, the
(two) Weibull parameters that characterize a probability distribution function are capable
of characterizing the spatial layout of stochastically ergodic textures. In [24] they move
on to extract properties of texture (such as regularity, coarseness) based on the Weibull
parameters. We take insight from their work and, using Weibull parameters, define our own
feature space which has a much reduced dimensionality than other texture classification
methods discussed in this section.

We compare our method’s classification accuracy and dimensionality with all four meth-
ods S, LM, MRS, and MR4 in Section 4.7.



Chapter 3

Illumination-Invariant Image

Extraction

In this chapter we derive a standardized method for extracting Illumination-Invariant images
that is independent of camera characteristics and also do not depend on input image data.
The idea in forming an illumination invariant is to post-process input image data by forming
a logarithm of a set of chromaticity coordinates, and then project the resulting 2-dimensional
data in a direction orthogonal to a special direction, characteristic of each camera, that best
describes the effect of lighting change. Lighting change is approximately simply a straight
line in the log-chromaticity domain; thus, forming a grayscale projection orthogonal to this
line generates an image which is approximately independent of the illuminant, at every
pixel. But a problem, addressed here, is that the direction in which to project is camera-
dependent and we may not have information on the camera. So here we take a simpler
approach and assume that every input image consists of data in the standardized sRGB
color space. Previously, this assumption has led to the suggestion that the built-in mapping
of sSRGB to XYZ tri-stimulus values could be used by going on to sharpen the resulting XYZ
and then seeking for an invariant. Instead, here we sharpen the sRGB directly and show
that performance is substantially improved this way. This approach leads to a standardized
sharpening matrix for any input image and a fixed projection angle as well. Results are

shown to be satisfactory, without any knowledge of camera characteristics.

10
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3.1 Sharpening XYZ versus Sharpening sRGB

3.1.1 Sharpening XYZ

The first approach to a standardized sharpening and projection scheme was to sharpen XYZ
values arising from input nonlinear-sRGB images [18]. Here we propose re-examining this
approach as going from RGB to XYZ is seemingly a broadening transform, so we sharpen
colour-patch data directly rather than sharpen the XYZ colour-matching curves — that is,
we take a maximum-prescience approach rather than a maximum-ignorance one. But what
colour data should we utilize? As a set of fairly generic inputs, suppose we simply use the 24
patches of a Macbeth ColorChecker [35], with synthetic values for tristimulus values under
Planckian lights [44]. However, here we are aiming at the idea of starting with sSRGB data;
therefore we first transform the resulting XYZ values back to linear-sRGB colour space, and
thence back to XYZ again. The thought here is that the transform from XYZ to sRGB [5]
may involve clipping to the range [0,1], and we wish to take that into account. Therefore we
generate a set of synthetic images of the Macbeth chart, formed under 9 Planckian lights
for temperatures 17=2,500°-10,500° in 1,000° intervals. We define the synthetic data in
XYZ coordinates rather than in SRGB so that we have meaning and generality for the data.
Taking the resulting XYZ triples to linear-sRGB colour space does turn out to involve some
clipping. Then we take the data back to XYZ space.

Finally, we wish to consider an invariant in a colour 2-space, and here we make use of
log-chromaticities formed as the logarithm of ratios of the XYZ to their geometric mean
[11]:

logzy, = log [{X,Y,Z}/(X-Y - 2)'/?] (3.1)

This generates 3-vector quantities but, in fact, in the log space every such 3-vector lies in
the plane orthogonal to the unit vector u = (1/v/3)(1,1,1)7; thus only two coordinates are
independent. We can rotate into that plane (cf. [9]) by forming a 2-vector x by making use
of the 2 x 3 rotation matrix U T equal to the orthogonal matrix factorizing the projector

onto the subspace perpendicular to u :

Pt =T—-uuT,
PL=UUT, Uis3x?2 (3.2)
x = UTlogx

A plot of the resulting 2D colour coordinates in Figure 3.1(a) shows that, rather than
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forming straight lines as expected, we see some curvature in the plots as lighting changes.
If we center the data by subtracting the mean x vector for each colour patch, we would like
to see as close as possible to a single straight line through the origin, for the purposes of
forming a lighting invariant: a single straight line would indicate that, in Figure 3.1(a) we
could simply project in a direction orthogonal to the direction of that line and effectively
eliminate the influence of lighting on the feature. I.e., we could generate a 1D greyscale
illumination invariant.

However, in Figure 3.1(b), for mean-subtracted data, we instead see that the data is
fairly spread out. We can discount the effect of outliers to a degree by finding the best slope
using a robust statistical method [39], but still, we find the data has a correlation coefficient
R of only 0.605 — not an excellent indicator of straight-line behaviour.

Therefore we consider sharpening the colour-patch data [12], in order to make the
illumination-invariant image formation model [14] more applicable, since the theory be-
hind the model requires quite sharp camera sensors. We thus make use of the data-based
sharpening method [12] to determine a sharpening matrix 7'; we choose the synthesized
data under the most red and the most blue lights, and find the best least-squares matrix
transforming one into the other. The sharpening matrix 7T is the set of eigenvectors of the
least-squares transform. Figure 3.1(c) shows that sharpening does indeed straighten out the
log-chromaticity plots; for mean-subtracted data in Figure 3.1(d), we now find a correlation

coefficient R=0.764, a much improved value.

3.1.2 Sharpening sRGB

The objective of this research is to determine whether sharpening sRGB values themselves
can produce a better illumination invariant than can sharpening XYZ values. Therefore
now we compare how sRGB log-chromaticities fare under lighting change — can we sharpen

analogues to eq. (3.1) constructed from linear-sRGB values and arrive at a better invariant?

Firstly, we examine how sRGB itself does in forming an invariant. We plot linear-
sRGB for the synthetic images under 9 different lights, with results shown in Figure 3.2(a).
We see that SRGB coordinates do indeed form straighter lines than do XYZ coordinates (in
Figure 3.1(a)). For mean-subtracted values, in Figure 3.2(b), we find a correlation coefficient
R=0.837, already better than sharpened XYZ notwithstanding outliers created by clipped

values. (We use a generalized logarithm [18], not a logarithm, to avoid the log of zero.)
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Figure 3.1: Log-chromaticity XYZ coordinates for Macbeth patches, as light changes. (a):
X vectors; (b): Mean-subtracted values: best (robust) direction in green, orthogonal direc-
tion in red, R=0.605. Lines joining data points are for each colour patch, as lighting changes.
(c): Sharpened XYZ; (d): Sharpened, mean-subtracted: R=0.764.
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Figure 3.2: Log-chromaticity SRGB coordinates for Macbeth patches, as light changes. (a):
x vectors; (b): Mean-subtracted values: R=0.837. (c): Sharpened sRGB; (d): Sharpened,
mean-subtracted: R=0.877.
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Data-based sharpening in this case actually makes the correlation coefficient worse: Ta-
ble 3.1 shows that applying sharpening results in R=0.630 (the mean-subtracted data is
somewhat spread out).

However, if we make use of a white-point preserving data-based sharpening [10], then R

is improved: R=0.877, the highest value found so far.

3.1.3 Optimized sRGB Sharpening Transform

The result above is encouraging, since it indicates that sharpening sSRGB does indeed pro-
duce the best illumination invariant, the result we argue for in this paper. However, while
the result is good, it could be better as shown in this section.

Sensor sharpening simply has the objective of concentrating energy in each sensor in
its associated colour band. However, here we have a specific objective: producing the
best invariant coordinate. Therefore we adopt the optimization strategy in [8], which aims
specifically at finding the best sensor transform T the minimizes the spread of the lines
plotted in a mean-subtracted log-chromaticity space. The optimization also insists on non-
negative results, after applying the colour transform T .

Applied to the sSRGB data, we find the following transform

0.9968  0.0228 0.0015
T = —0.0071  0.9933 0.0146 (3.3)
0.0103 —0.0161 0.9839

The sRGB data forms quite straight lines, now, in the transformed space, as shown in
Figure 3.3(a). For the mean-subtracted data in Figure 3.3(b), we now find the improved
correlation coefficient value: 0.920. Thus we suggest adopting the linear-sRGB colour space
transform matrix (3.3) as a standard colour transform. The direction for orthogonal projec-
tion found by a robust regression, shown in red in Figure 3.3(b), is given by the 2D vector

e - orthogonal to the lighting-change direction:
el = (0.9326, —0.3609) (3.4)

Thus, overall, we argue here that as a standardized workflow for producing an illumination

invariant image from an input colour image we proceed as follows:
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Figure 3.3: Optimized log-chromaticity sRGB coordinates.
subtracted values: R=0.920.
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Table 3.1: Correlation coefficient values R for projection of mean-subtracted log-
chromaticity, formed according to the method in columns ”Scheme”: from XYZ coordi-
nates, and from sharpened XYZ; from sRGB, from sharpened sRGB, and from white-point
preserving sharpened sRGB; and finally using an optimized tranform 7' from eq.(3.3) on
sRGB coordinates.

’ Scheme \ R ‘
XYZ 0.605
XYZ# 0.764
sRGB 0.837
sRGB# 0.630
sRGBY pp | 0.877

sRGBr_opr | 0.920 |

Transform input image nonlinear SRGB to linear-sRGB.
Transform to sharpened colour space. L.e., if linear SRGB
values are p , then p# = T p, where T is given by (3.3).
Form 2D log-chromaticity coordinates x as in eq. (3.2) for
sRGB values.
Le., form 2-vectors r via
r =logp — (1/3) 37 log pi,
x = UTr , using sharpened p # values.
1/vV2  1/V6
E.g.,use U = 1/\/§ 1/\/6
0 —2/v6
Project onto line perpendicular to lighting-change direction,
using vector e  in (3.4).
Form 2D-colour from projected point by rotating back
to a 3-vector using 3 X 2 matrix U .
Exponentiate to go back to non-log coordinates.
Move to chromaticity in an L1 norm by dividing
by (R+ G+ B).

The above algorithm generates 3D colour, but only from values projected onto the
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Figure 3.4: Log-chromaticity sSRGB coordinates for measured empirical Macbeth patches,
for 105 different lighting conditions. (a,b): Samples of images. (c): Mean-subtracted values:
R=0.775. (d): Sharpened, mean-subtracted: R=0.809.

projection line, so effectively 2D. Nonetheless, the 2D colour information can still be useful
[9].

In the next section, we apply this algorithm to empirical images of the Macbeth chart,
situated in various illumination environments, and show the efficacy of such a generic sharp-

ening plus projection scheme.

3.2 Invariant from Measured Chart Data

A set of various images that include a Macbeth chart in the scene were acquired under 105
different lighting conditions. ' Figure 3.4(a,b) shows two of these images, which we treat
as nonlinear-sRGB. Forming the mean-subtracted log-chromaticities, we find that without

any colour space transform the correlation coefficient is only R=0.775. Thuswe would not

!These images are due to Prof. Graham Finlayson and Dr. Clément Fredembach. The images are nonlin-
ear; the camera used was a Nikon D70.



CHAPTER 3. ILLUMINATION-INVARIANT IMAGE EXTRACTION 19

expect to achieve a reliable illumination invariant without transforming the colour space.
Now if we apply the algorithm given above, applying transform 7', we then achieve an
R value of R=0.809. I.e., while an optimization applied to this data would do better, the
pre-defined transform derived from synthetic data already does quite well. In Figure 3.4(d),
we show the pre-determined projection line as a solid line, and the best-fit one for the actual
data in a dashed line — the two are not far apart.
In the next section, we apply the standardized algorithm to ordinary images, with a

view to testing the efficacy with respect to shadow removal in an invariant image.

3.3 Experiments and Critical Analysis

Here we apply the standardized algorithm to a set of images acquired under a variety of illu-
mination environments. We form the 2D chromaticity, both without and then with invariant
image processing applied as described above. If the standardized approach to extraction of
an illumination invariant does indeed work, we expect shadows to be attenuated, compared
to in the original chromaticity image.

Figure 3.5(a,d,g,j,m) shows several images that contain shadows. The effect in every
case, over the cameras utilized, is to remove or at least reduce the effect of shadows. This
is shown by displaying the chromiticity images with their edge-map overlaid: edges for
shadows appear in the original Figure 3.5(b,e,h,k,n), but not in the invariant version of the
chromaticity Figure 3.5(c,f,i,l,0). This can then be used to go on to remove shadows from
images (see [17] and [21] for approaches to this task). Just as long as shadow-edges are
indeed eliminated, we can go on to remove shadows in the original RGB images.

Figure 3.6 further shows that the standardized method does in fact produce a usable
invariant. Here the 24 Macbeth patches were imaged under 14 different daylights using a
HP912 camera (Figure 3.6(a)). In Figure 3.6(b) we have the illumination-invariant formed
by calibrating the camera. For this image the average standard deviation across illuminants
for the macbeth patches is 4.42%. Figure 3.6(c) demonstrates the illumination-invariant
image formed by applying the proposed stadardized method. In this image the average
standard deviation across illuminants for the macbeth patches is 6.11%. Certainly compar-
ing to the best possible invariant (that of Figure 3.6(b) by calibrating the camera) this is

not better, but usable nevertheless.
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Figure 3.5: Input colour images (a,d,g,j,m), their chromaticity (b,e,h,k,n), and the chro-
maticity images for an extracted illumination invariant (c,f,i,l,0). Here, the Mean-Shift
algorithm has been applied to generate a cleaner image, and edge-detection overlaid — the
illumination invariant has fewer edges on shadow boundaries. Cameras used were an HP 912
and a Nikon D70.
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Figure 3.6: (a) Macbeth chart under 14 different daylights. (b) Invariant image formed
by calibrating camera. (Av. Std. Dev. across illuminants = 4.42%). (c) Invariant image

formed by applying the proposed standardized method. (Av. Std. Dev. across illuminants
= 6.11%)
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3.4 Summary

In summary to our contributions, we have proposed an algorithm, independent of camera
characteristics and image data, that extracts the invariant image from an input sRGB image.
Through various experiments we have shown that our method produces a usable invariant
and reduces the effect of illumination greatly. Such an algorithm can be utilized as a pre-
processing step to many vision algorithms, performance of which suffer due to inconsistent

illumination effects in input image data.



Chapter 4

A Fast Method for Classifying

Surface Textures

In this chapter we describe a novel approach for classifying texture under varying conditions
of illumination and viewpoint, whereby we represent texture in a Weibull space. We then
measure the information stored in each training image of a particular texture class by
measuring its information entropy in this space. In the classification stage we classify a test
image by choosing its nearest neighbour in the Weibull space, i.e. the training image which
has the closest amount of information as in the test image. The result is a much faster
algorithm which we compare with the state-of-the-art in terms of speed and accuracy. We

perform all our experiments on the CURET dataset [7].

4.1 Preprocessing Steps

Identical to [42] the following pre-processing steps are applied before going ahead with any
learning or classification.

We use the modified version of the CURET dataset which can be found in [25]. All pro-
cessing is done on the cropped regions in this dataset (see Figure 4.1) and they are converted
to grey scale and intensity-normalized to have zero mean and unit standard deviation. This
normalization gives invariance to global affine transformations in the illumination intensity.
Second, filter banks are L.; normalized, so that the responses of each filter lie roughly in the

same range. In more detail, each filter F; in the filter bank is divided by |F;|; so that the

23
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Figure 4.1: Textures in the CURET Dataset

filter has unit L; norm. This is to make the scaling for each of the filter response axes the
same [31].

To meaningfully compare filter responses of different images (through Histogramming
see Section 4.3 and Mapping to Weibull Space see Section 4.4) they are contrast normalized
so that they lie in the same range. Let |F'(x)| be the Lo norm of the filter responses at pixel

x. We normalize the filter responses by equation 4.1:

log (1 + %)

(4.1)

Finally, although proposed in [20, 31, 42], we do not contrast-normalize the image since
from our experiments it seems to enhance noise more than signal, thus affecting classification

performance. This has also been noted by [33].
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4.2 Root Filter Set (RFS)

RF'S consists of 38 filters [42], partitioned as follows: first and second derivatives of Gaussians
at 6 orientations and 3 scales making a total of 36, and 1 Gaussian and 1 Laplacian of
Gaussian filter. The Gaussian and Laplacian of Gaussian both have scale o = 10 pixels (these
filters have rotational symmetry). The bar (first derivative) and edge (second derivative)
filters both include 3 scales: (04,0) = {(1,3),(2,6),(4,12)}. These filters are oriented at 6
orientations: (0°, 30°, 60°, 90°, 120°, 150°). Sample filters and their corresponding filter

responses on a textured surface are displayed in Figure 4.2 (* denotes convolution).

Figure 4.2: Sample Filter Responses. An Example Image (1st column), * denotes Convolu-
tion, Medium Scale Gaussian First Derivative at 0° (2nd column, 1st row), Medium Scale
Gaussian Second Drivitive at 90° (2nd column, 2nd row), Rotationally Symmetric Gaussian
at Scale = 10 (2nd column, 3rd row), Corresponding Filter Responses (3rd column)
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4.3 Histogramming

After applying RFS to each training image, we obtain a set of 38 filter responses for each
image. We histogram each of these filter responses individually to speed up the process
of Weibull parameter estimation for a particular filter response (cf.[24]). Each histogram
consists of 1001 equally spaced bins according to the range of data within each filter response.
However, this property (number of bins/bin size) will be analyzed in Section 4.7 and some
interesting insights will be revealed. Figure 4.3 shows a generated histogram (in red) with

Weibull Probability Density Function (see section 4.4) fitted to it (in black)

Input image
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Figure 4.3: A Sample Input Image (top row), The Gaussian Derivative of that Image (bot-
tom row left), and Generated Histogram (in red) with Weibull Probability Density Function
fitted (in black) (bottom row right)
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4.4 Mapping to the Weibull Space

At this point we observe the nature of textured surfaces proposed in [23], and therefore move
to fit a 2-parameter Weibull distribution to each of the histograms we generated in the pre-
vious step. As suggested in [24] Weibull parameters completely characterize stochastically
ergodic textures. And [24] imply that almost all textures in the CURET dataset are of such
nature. Therefore, we map a filter response to its corresponding location in the Weibull

space. The Weibull distribution has the probability density function as in equation 4.2:
k
fla b A) = (/N e @ (4.2)

for x > 0 and f(z;k,A) =0 for x < 0 where k£ > 0 is the shape parameter and A > 0 is the

scale parameter of the distribution.

Many approaches have been proposed to estimate the parameters of such 2-parameter
Weibull distribution. We opt for the maximum likelihood estimation technique where a
likelihood function is defined and values for shape and scale are obtained by trying to
maximize this function. We utilize the standard method where the partial derivatives of the
likelihood function are taken with respect to the parameters. Setting these two equations
equal to zero we can now solve for the parameters simultaneously. The two equations for

shape and scale, respectively, are as follows (equations 4.3 and 4.4):

og\x .ZUk
SR D0 o
1/k
‘o (ank> (4.4)

As in [24], equation 4.3 (estimating shape of the distribution) is solved using the Newton-
Raphson method. The precision of the Newton-Raphson method is set to 0.01, and shape
is initialized at 0.01. We allow a maximum of 30 iterations for the solution to converge. In

practice, almost 100% of the time convergence occurs within 5 iterations (see Section 4.7).

4.5 The Final Model

We store the shape and scale parameters for each filter response for each image. This is our

model for an image; i.e. every image is represented by a 76-vector (38 values for scale and
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38 values for shape). And that is the complete, very simple model used here. Each image
in the database has 2 Weibull parameters associated with each filter response. Algorithms
such as k-Means, which compute joint statistics of filter responses, are expensive and slow
down the model generation phase and as will be shown in Section 4.7 are dependent upon
numerous experimental parameters.

In comparison, for the texton approach there are several variants however in [42], e.g. for
the MRS approach, a subset (13) of training images is selected with, for example 10* sample
pixels, from each image. Each pixel has 8 filter response values (after having reduced RFS
to MRR), so textons for a class are the k-Means clusters resulting from clustering 130,000
8-vectors, a daunting task. If we use global texton set and just 10 textons per class, then
each pixel’s 8-vector is associated to the closest texton. In the case where there are 20
possible texture categories and 10 textons per class, each texture is finally represented as a
histogram over the total 200 x 8 texton set. So in this case a training image is represented
as a 200-vector. Test images have their pixels each associated to a closest texton, and the
resulting histogram is again over 200 bins. Classification results are obtained by comparing
the histogram for the test image with all those for training images in all classes, categorizing
according to the closest histogram.

In the case when there are 40 possible texture classes, the histogram would have 400
bins, and 610 bins for the 61 class case (again using 10 textons per class). Altogether, the
texton algorithm has high complexity (a further analysis is presented in Section 4.7), whereas
our approach is relatively simple. Moreover, in the texton method, the process of getting
to these vectors is quite time consuming indeed and is subject to numerous constraints,
where as our approach is not. Further discussion and comparative analysis will follow in
Section 4.7.

In sum, our model for each class is represented by the 2 Weibull parameters for each of

38 filter responses, for 46 training images (see Section 4.6.2) within that class.

4.6 Classification Method

4.6.1 Distance in the Weibull Space

We note that the information entropy for a Weibull distribution is defined as in equation 4.5:

H:)\(l—;)+log (2)4—1 (4.5)
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where k£ > 0 is the shape parameter, A > 0 is the scale parameter of the distribution,
and ~ is the Euler-Mascheroni constant with numerical value 0.577 (to 3 decimal places) in
equation 4.5 [27].

The information entropy measurement captures the information stored in a Weibull
distribution represented by a pair of {shape, scale} parameters. Over the range of shape
and scale parameters actually determined, for modeling the 38 filter-response distributions
by using Weibull probability distribution functions, we find experimentally that the entropy
H is monotonic with Weibull pairs {shape,scale}. We found this distance measure to actually
produce more accurate classification results and therefore we adopt it here (it would indeed
seem that this particular distance metric has not been used previously and is new to this
research). Therefore, we use equation 4.5 as a distance measure between two images in our
Weibull space. lLe., for every image we have a 38-vector of entropies (one for each shape,
scale pair). Now for every test image we measure the Lo distance between its vector of
entropies and that of a training image. We classify the test image according to the class of

its nearest neighbour amongst the training images.

4.6.2 Experimental Setup

We follow the experimental setup of [42] in order to compare our results with theirs and
other previous results of texture classification (S,LM).

We perform three experiments to assess texture classification rates over 92 images for
each of 20, 40 and 61 texture classes respectively. The first experiment, where we classify
images from 20 textures, corresponds to the setup employed by [6] which is also used by
[42]. The second experiment, where 40 textures are classified, is modelled on the setup
of [30] also used by [42]. In the third experiment, we classify all 61 textures present in
the Columbia-Utrecht database which corresponds to the setup employed by [42]. The 92
images are selected as follows: for each texture in the database, there are 118 images where
the viewing angle 6, is less than 60 degrees. Out of these, only those 92 are chosen for
which a sufficiently large region could be cropped across all texture classes. The resultant
modified CURET dataset could be found at [25].

Each experiment consists of two stages: generating a model for the class, with texture
models learnt from training images, and classification of novel images.

The 92 images for each texture are partitioned into two, disjoint sets. Images in the first

(training) set are used to generate the final model for the class and classification accuracy is
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only assessed on the 46 images for each texture in the second (test) set. Both sets of images
sample the variations in illumination and viewpoint.

Each of the 46 training images per texture defines a model for that class as follows: the
image is mapped (through convolving with RFS, then histogramming, and Weibull fitting)
to its location in the Weibull space. Thus, each texture class is represented by a set of 46x76
vectors of Weibull parameters shape and scale.

An image from the test set is classified by first mapping it to the Weibull space and then
choosing its nearest neighbour in this space from the training set. The distance function
used to define closest is that based on an entropy measure, as explained in the previous
section.

In the three experiments, we form our Weibull space from 20 textures, 40 textures, and
61 textures respectively.

In the first experiment, 20 textures are chosen (see fig. 19a in [6] for a list of the novel
textures) and 20x46 = 920 novel images are classified in all. In the second experiment, the
40 textures specified in fig. 7 of [30] are chosen and a total of 40x46 = 1840 novel images
classified. Finally, in the third experiment, all 61 textures in the Columbia-Utrecht database
are classified using the same procedure.

To compare the run-time of our algorithm with that of [42] we conducted our experiments
on a Windows based system with Intel 2.2GHz processor, 2GB of RAM running Matlab
7.1. We selected a set of 480 training and test samples and ran the classification procedure
multiple times under consistent experimental environment to generate the average run times

per texture for the algorithms (see Table 4.2).

4.7 Results and Critical Analysis

The results (percentage accuracy of classifying test images) of all three experiments are
presented in Table 4.1. The first point we note from Table 4.1 is that in case of 20 texture
classes our method, achieves classification accuracy rates very close to that of S, and LM,
notwithstanding its simplicity and much faster speed (see Table 4.2). It is better than the
MR4 approach in all cases and only slightly ( 2%) worse than MR8 for the 20 class case.
However, for the case with all 61 classes in the database our method is some 5% worse
than MR8. We will come back to this point but first we present the execution times per

texture in Table 4.2.
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Table 4.1: Comparison of Classification Accuracy Percentages for Varying Number of Tex-
ture Classes

’ ‘ # of Texture Classes

Approach 20 40 61
S 96.30 | 95.27 | 94.62
LM 96.08 | 93.75 | 93.44

MR4 (200 Textons) | 94.13 | 92.07 | 90.73
MRS (200 Textons) | 97.83 | 96.41 | 96.40
MRS (610 Textons) - - 96.93
Our Weibull based | 95.98 | 92.28 | 91.52

Table 4.2: Execution Times Per Texture

’ Approach \ Model Generation \ Classification
Our Weibull based 2.7s 8 x 10~ %s
MRS (610 Textons) 26s 4 x 1073
MRS (200 Textons) 22s 1.4 x 10735

The method proposed here is almost 5 times as fast as that of [42] (the MR8 approach)
though when classifying all 61 texture classes our method does lose 5% accuracy. Of course,
when using a smaller number of texture classes (for example, 20) our accuracy is very close
to that of MR8 but our method is 10 folds faster. We analyze the dimensionality and
complexity of MRS further and compare it to ours.

Up until the point of generating filter responses to the 38 filters from RFS both our
approach and MR8 have identical complexity. Let p be the number of pixels in each filter
response.

In MRS, the authors contrast-normalize the filter responses but we do not as, from our
experiments, this step reduces the classification accuracy. The contrast-normalized filter
responses are reduced to the maximum response set in MR8. But we keep all the filter
responses. Both these steps add a complexity of O(p) to the MR8 method.

At the next step, MRS clusters the filter responses using a standard k-Means technique.
There are a number of reliability issues related to this step. In the first experiment, the
authors in MR8 (and also CD, LM) select a set of 20 classes from which they generate
their texton dictionary through k-Means clustering. This particular choice of 20 classes has
provided excellent accuracy for the CURET dataset but doubts remain. It is unreasonable

to assume that, given a novel texture that is not present in this database, textons generated
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Figure 4.4: 10 Textons generated from Felt (first row), Polyester (second row), Terry Cloth
(third row), and Rough Plastic (fourth row) by the MR8 method. Each texton is of dimen-
sion 49 x 49.

from these 20 classes will produce similar levels of accuracy on the new texture as well.
Moreover, the process of generating the textons through the use of a standard k-Means
technique is possibly problematic. A standard k-Means technique is not guaranteed to
converge in polynomial time. It has been shown by [2] that with high probability the k-
Means algorithm may converge in super-polynomial time. They also go on to prove that
the worse case complexity of k-Means on n data points is 222v7) . We have that n for the
MRS approach is 13p/N where N determines the number of sample pixels kept from each
filter response (and 13 sample images are chosen at random from each class). This would
generate 10 textons for a particular class and the process has to be repeated for all 20
texture classes and for different samples, further adding to the complexity. Given that the

clustering method is not guaranteed to converge, especially under such high dimensions,
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the ordering and initialization of the data becomes very critical. For example a simple
experiment where we re-order the initial neighbours, such as pixels from the filter response,
shows that the generation process of textons/cluster centres are adversely effected. Different
initial ordering of data points will generate different cluster centres. If the kMeans algorithm
converges to a global minimum then the initial ordering of data points has no effect. Of
course, the authors set all these parameters through empirical evidence. Figure 4.4 shows
10 textons generated from 4 different textures (felt, polyester, terry cloth, rough plastic)
from the CURET dataset.

In contradistinction to these problems, our method extracts meaningful information from
each filter response without being dependent on so many parameters. The transformation
of a filter response to the Weibull space involves histogramming the data first. This gives
rise to the question of how many bins should there be in the histogram and what should be
the size of each of them? Interestingly, in a fairly exhaustive set of experiments we found
that it does not matter what the number of bins are as long as they are above a certain
threshold (in our case this happens to be 1001). This is primarily due to the information
present in the filter responses from specific filters and the Weibull fit process (essentially
a least squares type estimate). Increasing the number of bins does not improve or reduce
classification accuracy. Even decreasing the number of bins to as low as 201 only slightly
reduces the classification accuracy (for 61 classes the accuracy drops by 0.04% only). So
our algorithm is independent of the number of bins in the histogram. This can also be
noticed from Figure 4.5. In this figure, the key thing to note is that for various number
of bins (201,1001,5001) the estimated Weibull parameters, shape and scale, are exactly
the same (shape=1.204, scale=0.025). Each histogram represents responses to a particular
filter which captures edge distributions at a particular orientation and scale. In order to
facilitate comparison of shape and scale of different distributions caused by different filters
each histogram is shifted so that it is centered on zero. Hence each histogram is peaked at
ZETo.

The second important criterion for our proposed approach is the convergence of the
Newton-Raphson method while estimating the shape parameter of the Weibull distribution.
Although we allow a maximum number of iteration of 30, in practice for 99.73% cases of
the 213,256 filter responses (61 classes, 92 images from each class, 38 filter responses for
each image) present in the dataset, the Newton-Raphson method converges in 5 iterations

or less. Compare this to the convergence problems associated with k-Means. Moreover, this
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Figure 4.5: Invariance to Number of Bins. The 1st column shows a sample Filter Response,
the 2nd column is Demonstrating the Probability Density Function (the black line) generated

from the Estimated Weibull Parameters for the Filter Response with Varying Number of
Bins

simply reiterates the point made in [24] that the textured surfaces present in CURET are
Weibull distributed.

Some other techniques are also proposed by [42] to further reduce the dimensionality of
their problem by trying to reduce the number of models representing each texture class using
a greedy algorithm. We omit further discussion about these steps primarily because it adds

to the complexity of their approach while benefiting categorization results only marginally.
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4.8 Summary

We have presented in this chapter an algorithm that models the edge distributions of a
texture surface for classification purposes. The model generated, due to its simplistic na-
ture, is very fast to compute and improves classification speed significantly with very small

reduction in accuracy compared to the state-of-the-art.



Chapter 5

Experiments on Object

Recognition

5.1 Motivation

In this chapter we extend our experiments to the domain of object recognition. We use
for purposes of our experiments object images from Amsterdam Library of Object Images
(ALOI) [22]. Particular reason for using this dataset is that it captures objects under
varying illumination angle, thus causing objects to be visible only partially from certain
camera positions.

Using the ALOI dataset we further prove the utility of illumination-invariant images by
observing that parts of objects that are normally invisible due to the position of the illumi-
nating device become visible again in such images. Figure 5.1(a),(b), and (c) demonstrates
the effect of our standardized method which reduces the effect of illumination to a great
extent without any prior knowledge about the camera or imaging conditions.

However, as Figure 5.1(d) demonstrates, the grayscale image generated by converting
the illumination-invariant image into grayscale using the following standard equation 5.1
(as in Matlab 7.1) generates a very poor image indeed in terms of capturing the features of

the original object.
I(z,y) = 0.2989 x R(x,y) 4+ 0.5870 x G(x,y) + 0.1140 x B(x,y) (5.1)

where I(z,y) is the output grayscale value at pixel location z,y. R(z,y), G(z,y) and B(z,y)

are the red, green, and blue channel values respectively at pixel location x,y. So we use

36
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Figure 5.1: Objects 32,35,36,62,92,125,200,482 from ALOL. (a) In col 1 Objects Illuminated
from the Left. (b) In col 2 Objects Illuminated from the Right. (¢) The Illumination-
invariant image obtained from image in col 2. (d) Ordinary Grayscale of the Invariant
Image. (e)Improved Grayscale of the Invariant Image.

the method proposed in [1] to generate the greyscale image from the invariant image. This
simple method based on recognizing the maximum gradient over color channels produces a
much improved greyscale image (see Figure 5.1(e)) and is very fast too.

We also note that our method of texture classification classifies textured surfaces based
on information about edge distributions at various orientations and scale. At a fixed pose,
objects which are from the same class should have similar distributions of edges, and objects
which are from different classes should be dissimilar on the same measure given that we can
observe sufficient parts of the object. Therefore, the Weibull parameters generated must be
similar for objects of the same class and dissimilar otherwise.

Figure 5.2 demonstrates this. We see that in Figure 5.2(b) the plots of the Weibull shape
parameters are very similar for the illumination-invariant image of objects within the same
class. But in Figure 5.2(c) we see that without applying the standardized method to the
object image and computing the Weibull shape parameters from the greyscale image cause

the plots to be quite different even for objects from the same class.
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Figure 5.2: Weibull Shape Parameter Plotted at 72 different Orientations for the Bar Filter
at Scale = 1. (a)row 1 has the same object with illumination from left and right respec-
tively. (b)row 2 has the Weibull Shape Parameters of the Illumination-invariant Image of
the Object in row 1. (c)row 3 has the Weibull Shape Parameters of the Greyscale Image
(nonillumination-invariant) of the Object in row 1.

5.2 Experiments and Critical Analysis

ALOI has 1000 classes of objects, each captured under various illumination angles among
other illumination conditions. Figure 5.3 and Figure 5.4 demonstrate this.

We use images from camera 1 in our experiments. Our model for each class consists of
only one of these 8 images for that class as the training image and the other 7 images are
put into the test set for each class to test the classification accuracy of our methods.

The RFS set of filters are used, filter banks are L; normalized and filter responses are not
contrast normalized. Filter responses are histogrammed into histograms with 1001 equally

spaced bins. Weibull parameters are then estimated from these histograms.
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Figure 5.3: Experimental setup for capturing the ALOI collection [22].

The training model image for a class is mapped to its location in the Weibull space.
Thus, each object class is represented by a 76 vector of Weibull parameters (38 shape and
38 scale parameters for the 38 filter responses).

An image from the test set is classified by first mapping it to the Weibull space and then
choosing its nearest neighbour in this space from the training set. The distance function
used to define closest is that based on an entropy measure, as explained in Chapter 4.6.

In each experiment we classify 1000 x 7 = 7000 images. We use L8 from camera 1 in
Figure 5.4 as our model and put the other 7 images from camera 1 in our test set.

In the first experiment, we operate in a non-illumination-invariant environment, that is
an image is converted to grayscale using equation 5.1 and all processing is done on this. In
the second experiment, we apply our standardized method to each image and operate in an
illumination-invariant environment now. However, the grayscale is still generated from the

invariant image using equation 5.1. In our third and final experiment we use the method
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Figure 5.4: Example object from ALOI viewed under 24 different illumination directions.
Each row shows the recorded view by one of the three cameras. The columns represent the
different lighting conditions used to illuminate the object [22].

proposed in [1] to generate the grayscale image from the invariant image.

Table 5.1: Classification Accuracy of Experiments on Object Recognition

’ ‘ Approach ‘
Experiments Our Weibull based
Experiment 1 (No intrinsic image with grayscale 27.65%
from equation 5.1)

Experiment 2 (Intrinsic image with grayscale 32.03%
from equation 5.1)

Experiment 3 (Intrinsic image with grayscale 42.87%
from [1])

The results are presented in Table 5.1. We observe that the use of illumination-invariant
images improve the classification accuracy of our Weibull based approach. The intrinsic
images we form make more of the object visible and thus recover more of the general shape
of the object which in turn helps our Weibull based approach in classifying with higher

accuracy.



Chapter 6

Conclusion

We have outlined a simple, standardized method to generate an illumination invariant, from
input colour images. The method is based on the idea of simply treating every input image as
inhabiting sSRGB colour space, and transforming that space. The transformation is found by
optimizing the lighting invariance for generic, synthetic data when taken to log-chromaticity
space and projected into a 1D invariant. The invariant image itself can be understood as a
2D-colour chromaticity image. Experiments show that applying the standardized invariant
extraction method generates reasonable independence to lighting, across conditions and
cameras. The approach set out here may be usefully employed in place of a more rigorous,
camera- and image-dependent method for extraction of an illumination invariant.

We have also set out a new texture categorization method that unifies the texton ap-
proach with an approach that recognizes that distributions are often well represented by the
Weibull distribution. Consequently, we can dispense with a good deal of the complexity of
the texton approach while maintaining comparable classification accuracy, notwithstanding
a substantial speedup in the algorithm. This texture recognizer can easily be incorporated
in any multimedia search and retrieval system that utilizes a texture component. The new
entropy-based similarity measure has not been suggested before for judging nearness of
distributions.

Finally we have tested the performance of our illumination-invariant images and our clas-
sification approach in the domain of object recognition and have observed that classification

performance improves through the use of illumination-invariant images.
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