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Abstract

Patient motion is unavoidable during long medical imaging scan times. In particular, mo-

tion artifacts in functional and molecular brain imaging (e.g ., dynamic positron emission

tomography in dPET) are known to corrupt the data leading to inaccurate analysis and di-

agnosis. Most existing motion correction solutions either rely on attaching external markers

or on data-driven image registration algorithms. In this work, we propose a new motion

correction approach. It alleviates the need for inconvenient external markers and relaxes

the dependence on the fragile similarity metrics that are generally incapable of capturing

the complex spatio-temporal tracer dynamics in dPET. We develop a hybrid, multi-sensor

method that uses a marker-free video tracker, along with image-based registration. The bal-

ance between the two is automatically adapted to confide in the more certain measurement.

Our quantitative results demonstrate improved motion estimation and kinetic parameter

extraction when using our hybrid method.

Keywords: motion correction; registration; functional medical image; dPET; head

tracking; markerless; polaris; positron emission tomography
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Chapter 1

Introduction

The development of various medical imaging modalities has allowed radiologists a wide se-

lection of tools to create images of the human body and diagnose disease. Some of these

modalities create a one-time snapshot of the target area in either 2D or 3D, and are mainly

used to analyze the internal structure. Example modalities in this category include X-Rays,

Computed Tomography (CT), and Magnetic Resonance Imaging (MRI). Other modalities

allow physicians to assess body functions, such as the brain in normal and diseased states.

This type of modality can vary from techniques that do not create any actual images, such

as Magnetoencephalography (MEG) or Electroencephalography (EEG), to techniques that

create full 3D volumes, such as functional Magnetic Resonance Imaging (fMRI), Single Pho-

ton Emission Computed Tomography (SPECT), or Positron Emission Tomography (PET).

These functional modalities usually require a set period of time for retrieval, and, for the

modalities that create full 3D volumes, are highly susceptible to patient movement.

The aim of this thesis is to develop a new approach for tracking patient movement and

for motion correction. Our development primary focuses on PET brain images. A more

detailed overview will be given in section 1.3.

1.1 PET Overview

PET, or dynamic Positron Emission Tomography (dPET), is a type of nuclear medicine

imaging technique which involves the detection of gamma rays emitted by the radioactive

tracer, such as fluorodeoxyglucose (FDG), administered to the patient. The tracer acts as

a natural body compound and accumulates in the appropriate organ. During its normal

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: An example of a 3D PET image where coloring ranges from blue to red indicating
low to high activity.

radioactive decay, positrons are emitted and collide with electrons. The collision annihilates

both particles, producing a pair of gamma rays going off in opposite directions at roughly

180 degrees from each other. Two of the detectors within the rings surrounding the patient

pick up these two gamma rays, resulting in a known event that can be localized to within

the line joining the two detectors, commonly referred to as the Line-of-Response (LOR).

After collecting them over a predefined period, these LORs can then be used to create a

3D volume highlighting areas with events detected. Reconstruction can be done via back-

projection, or via the more preferred iterative expectation-maximization (EM) algorithm.

Figure 1.1 shows an example of a 3D PET image with a coloring ranges from blue (cold) to

red (hot), corresponding to low to high activity.

Since the tracer is undergoing radioactive decay, the amount of photons emitted varies

with time, usually high at the beginning and rapidly dropping as time progresses. The

tracer also interacts with the various tissues within the body differently and accumulates

at different speeds. Therefore, PET images are usually taken continuously at a sequence

of predefined intervals or time steps such as four 60 seconds volumes, three 120 seconds

volumes, eight 300 seconds volumes, and one 600 seconds volume totaling one hour. This

creates a series of 3D functional images, with each having different amount of activity

at different regions. The dPET analysis then usually involves measuring the time-varying
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radioactivity level of the tissue or blood at the target regions of interest (ROI). The time-vary

activity level is represented as time activity curves (TACs). Coupled with the knowledge of

the tracer behavior, it is possible to use the measured TACs to calculate kinetic parameters

describing the relationship between the tracer and tissue physiology. When this relationship

is known on a healthy patient, it can be used to identify disease affecting the function of the

body. However, this quantification process is sensitive to the patient’s head movement, which

is unavoidable, given the length of time each scan requires. Therefore, motion correction is

needed for accurate diagnoses of therapeutic drugs, or for better understanding neurological

disorders such as Parkinsons.

1.2 Motion Corruption

For a healthy subject, the head can drift up to 2mm over the course of the scan, whereas for

subjects with Parkinson’s disease, drift can go up to 13mm [15]. Most motions during the

scan are small, with 1mm-3mm translations or rotations up to 3 degrees, whereas some less

common movements, such as using a bedpan, can introduce up to 20mm permanent change

in position. In [5], Atkins and Menke found that patients’ repositioning due to nurses’

interaction could produce up to 7mm difference in position. Similar findings were observed

by Ruttimann et al . in [82], where up to 20% of the image slides contain rotations in the

sagittal plane. With current PET scanners able to achieve a spatial resolution of less than

2.5mm [17] and constantly improving, these movements can prove to be problematic. Many

medical staffs have been trying to counter these motions by using head restraints such as a

head mark. However, Green et al . in [28] demonstrated even with restraints motion cannot

be eliminated entirely.

Patient motion can corrupt kinetic modeling (KM) in multiple ways. First, it would

shift the LORs used for PET reconstruction. This causes the final PET frames to appear

blurred, with activity levels from different regions affecting one another. Some approaches

developed for this problem require markers to be attached to patients in order to measure

their movements during the scan. This type of tracking has shortcomings, which will be

discussed in Chapter 2, and is therefore not widely employed. The second effect of patient

motions is the overall shift in brain position inter-frame. Without accounting for this overall

movement, the measured TACs will be inaccurate. Techniques developed for this problem

involve aligning the frame to some reference, based on some voxel similarity measures using
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image registration. However, image registration of functional data is not without its draw-

backs. For typical fast decaying tracers (e.g . C-11), the rapid uptake early on in the scan

requires short sampling time for the initial frames. This means the first few frames suffer

from low photon counts and hence are usually very noisy. Furthermore, the spatio-temporal

changes in tracer concentration can cause complex intensity pattern changes (not only the

intensity values change but their spatial extents change between frames, too). The current

trend in medical imaging is to develop tracers that only react to a specific target region,

making it impossible to use other areas as a guide for registration. These facts render

even state of the art image registration similarity metrics (e.g . mutual information-based)

incapable of measuring the quality of the alignment.

1.3 Contribution

In this thesis, we purpose a markerless video-based framework for tracking a patient’s head

movement during PET scan, which eliminates some of the shortcoming with marker based

tracker. To accomplish this task, the work makes use of stereo vision, feature extraction,

and the Unscented Kalman Filter (UKF) [39]. The algorithm uses features directly available

on the patient’s face, captured by a set of calibrated stereo video cameras, to determine the

motion of the patient’s head. Our tracking differs from normal computer vision approaches

in that, since the patient’s head will be surrounded by the machine during the scan, video

sequences will be taken at atypical angles with limited view of the patient’s face. A mark-

erless approach also allows us to align brain images of the same patient under a long study,

where the patient can be scanned multiple times over the course of several months or years.

Features points on the patient are less likely to change position compared to the manually

attached markers, and therefore can be used to align scans from different time period.

We also explore a hybrid approach which combines the external tracker information with

the pose estimated by registration algorithm, thus bridging the two different methods used

for motion correction. We apply an algorithm which favors the tracker information early

on when the PET images have a low signal-to-noise ratio (SNR), and gradually switches

over to use the registration result when registration is able to produce accurate result due

to similarity between these frames and the reference frame. We test this approach by

comparing the final retrieved TACs and KM parameters on a set of synthetic dPET brain

images under different noise level.
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1.4 Chapters Overview

In Chapter 2, an overview of the different motion correction method is presented. Works

from both the medical imaging community and the computer vision are covered. The

markerless video tracker is purposed in Chapter 3, whereas the hybrid method is described

in Chapter 4. Chapter 5 gives an analysis of the performance of both the video tracker

and the hybrid algorithm. The thesis is concluded in Chapter 6 and some possible future

directions are mentioned.



Chapter 2

Related Work

Two classes of motion estimation and correction methods exist:

1. Extrinsic

2. Intrinsic

“Extrinsic” methods measure motion during the scan, and the correction approaches can

be further broken into four groups: Multiple Acquisition Frame (MAF), Deconvolution,

LOR rebinning, and Expectation-Maximization (EM). Most current “extrinsic” approaches

require markers to be attached to the patient. This is usually inconvenient and uncomfort-

able for the patients, and time consuming for the staff. It is also difficult to rigidly fasten

markers to the head, so they slide or slip, thus producing inaccurate motion estimates. “In-

trinsic” methods estimate motion without prior knowledge of head motion during the scan.

In this class of methods, motion correction is performed via voxel-based 3D image registra-

tion on reconstructed image volumes. As mentioned in section 1.2, these approaches rely

on functional images with low spatial resolution and low SNR, and depend on assumptions

that may not always hold true, so a change in the observed location of functional activation

can not be reliably attributed to either brain motion or change in activation.

Several people have written extensively on this subject. For example, Rahmim [76] wrote

a review article, giving an overview of motion correction for PET, with the focus on external

methods. Bannister [7] wrote a thesis covering various approaches in motion correction on

fMRI. fMRI differs slightly from PET; instead of LOR rebinning or using the EM algorithm,

fMRI has its raw image data stored in k-space which are used later for reconstruction, and

6
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motion correction can be done on the k-space data. Lerner also provided a thesis on a

similar topic in [41].

2.1 Extrinsic Method

As mentioned in the previous section, extrinsic methods measure motion during the scan,

and employ one of the four different techniques for correction. Some of these techniques

change the way the image is acquired. Some try to correct the image after reconstruction,

and some try to change the way images are reconstructed. The simpler approaches usually

make some assumptions or ignore some of the motions and are therefore usually not as

accurate as the more complete approaches, but are usually much easier to implement into

existing systems and run much faster. For example, in [24], Fulton et al . compared the

accuracy of MAF and LOR rebinning methods. A physical phantom was used and tracked

by the Polaris tracker [43]. The corrected images were compared with the motion-free

images by calculating the summed squared error. Results show that LOR rebinning is more

accurate than MAF.

2.1.1 Camera System

All extrinsic methods require a head tracking setup. Currently, systems that involve attach-

ing markers to the patient’s head proved to the most accurate. These systems either use

infrared or charge coupled device (CCD) cameras, and they also range from single camera

setup to two cameras setup. Below provides an overview of these systems.

In [68], Picard and Thompson developed a CCD camera-based surveillance system which

was capable of monitoring both the patient’s head position and movement. This system

required three light emitting diodes to be fixed on the patient’s face: on the nose, between the

eyes, between an eye and an ear. Goldstein et al .’s optical motion detector used incandescent

lights, but instead of detection via CCD cameras, their work required two electro-optical

position sensitive detectors [27]. This system has a reported accuracy of 0.07◦ and 0.2mm.

In [12], Buhler et al . used an alternate infrared system called ARTtrack 1 to track a set of

retro-reflecting spherical markers for LOR rebinning, whereas in [37], Hu et al . used a twin

CCD cameras based system, coupled with a less intrusive attachment (three round dots on

the forehead).

Similar systems can also be used for small animal PET. It differs from normal PET in
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that small animal PET has a higher spatial resolution. Also, small animals usually move

much more rapidly than normal human, so pose estimations must be highly accurate [99].

Kyme et al . [40] explored the usage of Micron Tracker model S60 in this context. The tracker

consisted of two CCD cameras tracking a set of checker-like markers. In addition to attaching

the markers to the target animal, the authors also attached a set of reference markers to the

scanner. This setup allowed the cameras to be easily recalibrated to the scanner when the

cameras needed to be moved. A root mean square (RMS) error of 0.46mm was reported.

Some researchers have explored the possibility of using a single camera. In [58], Muraishi

et al . [58] designed a new solid marker such that using a single camera is possible. This

made the system suitable for a scanner with long narrow patient port space, where a stereo

setup might be difficult. This system was further improved in [31].

By far, the most popular tracker is the commercially available system Polaris [43] by

Northern Digital Inc. This system uses a pair of infrared cameras tracking either a set of

infrared-emitting diodes in active mode, or a set of retroreflective disks or spheres in passive

mode. The manufacturer reports an accuracy of 0.35mm RMS.

Others have also researched methods for a markerless approach. In [26], Gao et al . were

developing a system for PET which used facial features, and this work is continued in [3]

and [4]. The head was first located by segmenting the input image and locating skin colored

segments. Feature detector was used to locate the two eye corners and the nose (totaling

3 landmarks), and the patient’s head pose was calculated by finding the linear and angular

relations between two sets of points from two video frames. Unfortunately, detailed results

on the tracker’s performance were not available. Gao et al . tested their feature detectors on

a sequence of 12 video frames, claiming they can locate the facial landmarks with accuracy

of 1 ± 0.64 pixels. In terms of the motion estimation accuracy, their test was still in the

preliminary stage where they were testing on a 3D model of the head showing a promise of

preserving one degree precision on rotation angle. Their work differs from our video tracker

in three ways. First, they used segmentation to locate the head while our tracker requires a

one time user interaction to identify the head region. Second, instead of using all possible

features found on the face, their work used three predefined features. Third, their work did

not use any temporal coherency and motions were only estimated by comparing with the

initial frame.



CHAPTER 2. RELATED WORK 9

2.1.2 Multiple Acquisition Frame

Multiple Acquisition Frame [69, 25, 32] is a simple technique for incorporating head tracking

into the PET framework. Purposed by Picard and Thompson in 1997, the MAF method

works by connecting the tracker to the PET scanner. When the motion tracker detects

motion above some predefined threshold, it tells the scanner to begin acquiring a new PET

frame. Each new frame triggered is associated with the head pose at the start of each frame

and is used later for alignment. Performance of MAF depends on the size of the threshold.

Setting a threshold that is too small will trigger too many low statistic frames, whereas

setting a threshold that is too high will neglect motions within frames.

2.1.3 Deconvolution

Another direction would be to deconvolve the PET image after reconstruction as a post-

processing step [53, 18, 73]. Information from the motion tracker is used to construct

the deconvolution filter [53] or to be used in an iterative algorithm [18, 73]. As with any

post-processing deconvolution method, without prior knowledge of the original motionless

image, this method tends to amplify noise and introduces new artifact into the image. The

advantage is that it does not require the detailed specification of the scanner, or alter the

reconstruction algorithm [18].

2.1.4 LOR rebinning

The LOR rebinning method [53, 23, 10, 12, 93, 99] is one of the two that tries to alter how the

images are reconstructed. It works directly on the list-mode data. In short, list-mode data

is a sequence of data containing information about all the events that occurred during the

scan. Typically, each event is stored in a 32-bit data word indicating which pair of detectors

is involved, although the actual length of the data packet and the format of the word vary

from scanner to scanner depend on the model. Every millisecond, a time tag is inserted into

the list-mode data, so with both pieces of information combined, we get a full picture of

what event occurred at what time. LOR rebinning is then a straight forward correction of

these events. The motion information collected from a marker-based tracker, such as Polaris,

is used to interpolate which pair of detectors would actually be triggered if there were no

motion. The corrected events can then be converted for reconstruction in histogram-mode,

or passed directly to the list-mode EM reconstruction algorithm. Additional care must be
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Figure 2.1: A simple 2D illustration of the problem with LOR rebinning. (1) Events that
should not have been detected when there is no motion will move outside FOV after motion
correction, and (2) events that should have been detected when there is no motion are lost.

taken to ensure the normalization factor associated with the original LOR is used, instead

of the new corrected LOR.

Two problems exist with this method: (1) detected events might move outside the

scanner field-of-view after motion correction, and (2) events that should have been detected

but are lost due to the motion cannot be recovered. These two problems are illustrated in

figure 2.1 as a simple 2D example. Most researchers opt to simply discard the events in (1),

as these events would not be there if there were no motion. However, neglecting (2) will

lead to underestimation of the amount of activity in the affected regions and also produce

artifacts. Methods have been purposed, such as [12], which involve scaling the normalization

correction factor, but they are generally computationally intense.

2.1.5 EM Algorithm Modifications

The last known method attempts to incorporate the motion data directly into the EM

algorithm used for reconstruction [71, 77, 72, 79, 78]. This approach has been applied to

either the histogram-mode EM algorithm [77] and the list-mode EM algorithm [71, 77]. For

the histogram-mode, this is incorporated using by the probability system matrix, whereas

for the list-mode, this is implemented by modeling the motion into the likelihood function.

The approaches for the two modes are similar, but list-mode has the advantage that instead

of working on discrete sinogram bins, the motion corrected coordinates can be used as a

continuous variable, and is therefore more accurate [76].
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2.2 Intrinsic Method

In contrast to extrinsic methods, intrinsic methods only use the information available on the

reconstructed image without relying on external information. Registration algorithms are

used to bring one image (the moving image) into alignment with another image (the fixed

image). This is usually done by matching regions from one image to another, such that a

specific criterion is minimized or maximized. Techniques have been developed for a wide

variety of situations, covering differences in dimension, modality, transformation, and even

differences in patient. When we align two different images, we first need to consider the

problem of interpolation. This is the case, for example, when we are aligning two images

of different modalities, two images of different scales, or when the alignment brings points

from the moving image to non-grid positions on the fixed image. As show in [33], different

interpolation methods can produce very different results. A long list of literature exists on

the topic of registration, and many people have done extensive survey and comparison on

the various algorithms [92, 49, 34, 100]. Some algorithms involve a voxel intensity metric

which they try to minimize via an optimization technique [66], while others are landmarks

based [13, 86], or surface matching, segmentation based [85, 38]. However, aside from a few

exceptions [70, 101], majority of the monomodal PET-to-PET registration articles are voxel

intensity based [49].

The most popular registration package for PET-to-PET images is Automated Image

Registration (AIR) [95, 96]. For rigid registration, AIR provides three possible cost func-

tions to optimize: ratio image uniformity (RIU), least-squared difference image (LS), and

scaled least-squared difference image (SLS). AIR minimizes one of these cost functions via

Newton-type minimization. As of the current version, AIR has been expanded to also handle

intermodality and intersubject registration.

In [54], Minoshima et al . purposed using stochastic sign change (SSC) as the metric

for registering PET images, with special focus on asymmetrical images caused by lesion.

Malandain et al . [50] described a potential minimization technique that is less sensitive to

local minima, whereas Eberl et al . [16] used the sum of the absolute pixel-by-pixel differences

(SAD) as the metric. Cross-correlation (CC) can also be used as a registration metric, as

in the case by Maintz et al . [48]. On the other hand, others have developed methods

using Mutual Information as a criterion [47, 52, 81]. Most of these techniques iteratively

locate local minima/maxima which might or might not be global. Therefore, approaches
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which always return a solution at the global optimum have been purposed [19, 64]. These

methods use Fast Fourier Transform (FFT) and differ from cross-correlation in that the

global optimum is clearly defined.

2.2.1 Registration of Image Sequence

All of the mentioned registration approaches simply register two images. However, there

is a unique feature which is specific to functional modality which is not focused on in the

above methods. Functional imaging is usually 4D in nature, creating a sequence of images

that needed to be aligned. Registering the sequence means a reference must be chosen to

which all other images are aligned. In [35], where Hoh et al . compared the performance of

registration using the SAD and SSC metric, the authors used a motionless image sequence

as the reference. Images from another sequence were then registered to the corresponding

images in the motionless sequence. A similar approach was taken by Anderson [2], only

instead of using SAD or SSC as the metric, the author calculated the CC at the edge of the

brain to decrease computation time.

A different reference was chosen by Lin et al . in [42] when they tried to evaluate different

metrics. Given an 18 frame FDOPA image sequence, the authors used the last frame, 18, as

the reference frame and registered frames 10-17 to it (ignored frames 1-9). They also tested

both the unidirectional and bidirectional approaches. Unidirectional means the standard

registration where one image is the reference. Bidirectional [94], on the other hand, means

doing two registrations, once with one image as reference, and once with the other image as

reference. In this case, the average of the two runs is computed to be the final registration

result.

In [1], Anderson registered each frame in the sequence with the previous frame. All

frames can then be aligned to the first frame by multiplying the transformation matrix.

The author noted that it is important to use a registration algorithm with no bias. If an

algorithm has a bias of 0.5mm, then after registering 25 frames, a total of 12.5mm error

would have been accumulated.

Perruchot et al . [67] did a comparison of six different reference frame: (1) a time average

volume created from attenuation corrected volumes, (2) a time average volume created

without attenuation correction, (3) a MRI image of the same patient, (4) a PET image

constructed from the MRI image, (5) the attenuation map of the patient, and (6) a variant

of (5). They showed among these 6 choices, the optimal reference frame was (2).
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Lastly, a reference image can be chosen by an expert to avoid images with high amount

of motion or low contrast, as was done by Pascau et al . in [65].

2.3 Computer Vision

Most markerless head pose estimation approaches are developed in the field of computer

vision. They are often designed for user interaction purposes instead of motion correction

in medical imaging. These methods usually assume some prior model of the object be-

ing tracked and have a clear frontal view of the target face. An extensive survey on this

subject was written by Murphy-Chutorian and Trivedi in [59]. In general, computer vision

approaches can be classified into either feature based or optical-flow based. Optical-flow

based methods try to use the observed motion vectors to determine the movement of the

modeled object [9, 8, 14]. Feature based methods involve the tracking of specific features

on the target object. For example, Azarbayejani et al . [6] used the Extended Kalman Filter

to track features such as the eyes or the mouth.

Just like in the medical community, some people have tried tracking with a single camera.

For example, in [36], Horprasert et al . used a single camera to determine head orientation

by tracking eye corners and the nose, while Ohayon and Rivlin [63] matched 2D feature

points to a sparse 3D model. However, high accuracy is usually difficult when tracking with

only one camera, so in [51], Matsumoto and Zelinsky considered using stereo vision. The

work was further extended in [61] by Newman et al . Their method required the user to

manually select up to 32 features on three different orientations of the head. Similar work

was conducted by Yang and Zhang [97], requiring a one time model acquisition of the user’s

head, and manual selection of seven landmark features. Pose estimation was calculated

by matching the model with the features. Niese et al . [62], on the other hand, used the

depth information and an assumption of skin color for tracking, and required a model of

the person’s face to be constructed via range scan.

Morency et al . [56] attempted to remove the requirement of user interaction at startup

by using a frontal face detector to locate features. This work results in a sequence of papers

[74, 57, 75] aiming at reducing drift in long video sequences. This is accomplished by storing

a set of representative frames in predefined orientations, and head pose is calculated from

the closest representative frame.

Our markerless video head tracker is developed with techniques similar to those outlined
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in this section, such as using face features for tracking [56] or using the Kalman Filter [6].

However, as mentioned, none of the above are developed for medical imaging purposes, and

the main difference is that we have an atypical view of the head with limited view of the

face. Nonetheless, it is possible to use these head tracking algorithms in place of ours and

gain better performance, depending on the algorithm’s adaptability to such a unique view.



Chapter 3

Stereo Video Tracker

We developed a method for tracking head pose that eliminates the tracker dependence on

attaching markers to the head. In particular, we use a stereo video tracking system, in which

left and right (L/R) high resolution video cameras record head movement, and computer

vision methods calculate the head’s 3D position. For 3D head pose estimation, non-collinear

pairs of corresponding head/facial feature points (in L/R images) are identified and tracked

throughout the video using feature point detection (with Scale-invariant feature transform

(SIFT) [44]) and object tracking (with the Unscented Kalman filter [39]). As the head is

mostly surrounded by the scanner gantry, pose estimation will be based on tracking facial

features as seen by looking from inferior to posterior (Figure 3.1).

3.1 Camera Calibration

As mentioned, this framework approaches the problem by using video sequences taken from

a stereo camera setup, and since the patient’s head will be surrounded by the machine

during the scan, the video sequences will be taken at atypical angles with limited view

of the patient’s face. Taking video at such angles also minimizes any inconvenience to the

patient or medical staff. The cameras are calibrated using the Bouguet’s Camera Calibration

Toolbox for Matlab [11]. The process involves taking a sequence of photos of a checkerboard

at different positions and orientations (Figure 3.2). These photos are input into the toolbox,

and for each photo, the user manually selects the four corners of the checkerboard, and

ensures the same corners are selected in both the left and right images. The Matlab code

automatically identifies all the checkers’ corners, and coupled with the real width and height

15
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Figure 3.1: Example setup of the stereo system, looking inferior to posterior. The system
can also be set further away or be mounted on the ceiling to minimize any inconvenience to
the medical staff.

of each checker, the toolbox can find the parameters that characterize the cameras.

The toolbox also provides a functionality to calculate the 3D position relative to one of

the cameras by passing two matched points from both views, a common technique called

stereo triangulation [20, 45]. This work makes use of the functionality by matching features

from the two cameras and locates unique 3D points on the patient’s face.

3.2 Feature Matching

Since not all facial features are ideal for motion estimation, the users begin the process

by selecting regions on the base L/R images, where feature points will be extracted and

matched using SIFT. SIFT will be discussed in more detail in section 3.2.1. Example regions

for features extraction might be the nose, the eyes, or the ears. Features points between the

L/R images are matched, and only those that satisfy the epipolar constraint are kept. This

guarantees the matches will produce points in 3D space via stereo triangulation. Feature

points are also extracted from each pair of subsequent L/R video frames, and matched
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(a) Left Camera (b) Right Camera

Figure 3.2: The checkerboard images used for camera calibration. The Bouguet’s Camera
Calibration Toolbox for Matlab [11] is used to automatically calibrate the cameras after
manual selecting the four corners of each checkerboard on each image.

with the features from the base images. These matches must satisfy the circular constraint

outlined in section 3.2.2.

After the preliminary step, we have a set of points St in 3D (via stereo triangulation on

the matched feature points) for each pair of L/R video frames at each time step t, with the

correspondence to the base 3D points S0 known. The second step involves finding the actual

motion of the head. For this work, we used the exponential map to represent rotation in

3D [46].

The exponential map describes rotation with a 3D vector ~w where ~w is the axis of

rotation, and ||~w|| is the rotation angle. Given ~w, the rotation matrix is given by:

R = I +
ŵ

||~w||
sin ||~w||+ ŵ2

||~w||2
(1− cos ||~w||) (3.1)

where

ŵ =


0 −w3 w2

w3 0 −w1

−w2 w1 0

 . (3.2)

The above representation gives us 3 rotation and 3 translation parameters that need to

be calculated for each frame. We know that the orientations of the head between adjacent

frames are very similar, and we take advantage of this fact by calculating the head orientation

using the UKF outlined in section 3.3.
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3.2.1 SIFT

The feature detector we use is SIFT. SIFT is a well known features detector that is capable

of finding local image features that are invariant to changes in translation, rotation, and

scale, and also partially invariant to illumination and affine changes.

SIFT achieves these by applying a difference of Gaussian function at each scale of the

image, and selecting keypoints at locations with the maximum or minimum value. Each

keypoint is assigned an orientation by computing the peak of the local gradient direction

histogram. Relative orientations are also computed for the 16×16 Gaussian weighted region

around each keypoint. These 16 × 16 orientations are divided into 4 × 4 subregions with

each subregion summarized by a 8 orientations histogram, creating the final 4× 4× 8 = 128

dimensions descriptor for each keypoint/feature.

Keypoints between two images are matched via nearest neighbor. In a video sequence

recorded from setup such as figure 3.1, we can generally find roughly 20 features matched

per frame after applying the epipolar constraint.

In this work, we use the open implementation of SIFT available from UCLA [89] for

feature extraction and matching. Descriptors are first generated on the left base image

and right base image separately, and features that are outside the user defined regions are

discarded. The remaining descriptors on the two images are matched against each other to

find the correspondence.

3.2.2 Circular Constraint

To improve the accuracy of the correspondences between the base images and another L/R

input images, we apply what we termed as the circular constraint to the matched features.

Each frame at time t undergoes the same features matching between left input image and

right input image to generate the feature sets Flt, Frt that satisfy the epipolar constraint.

Features found at each time step are also matched with the base features Fl0, Fr0 respectively.

In general, if fl0 is a base feature on the left camera that is matched to flt at time t, then

this match must be confirmed by the circular matches fl0 ↔ flt, fl0 ↔ fr0, flt ↔ frt,

and fr0 ↔ frt (see figure 3.3). Features that do not satisfy this constraint are removed

from the sets.
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Figure 3.3: The circular constraint requires features to match across the two base images
and two input images.

3.2.3 Extra Constraints

Unfortunately, even after applying the circular constraint, it is possible that the same feature

on the left and right input frame is matched to the same incorrect feature on the base frames

as shown in figure 3.4. This type of match will satisfy both the epipolar constraint and the

circular constraint, but creates a high amount of noise that will deteriorate the performance

of the UKF. In this work, we applied several additional constraints to combat this type of

noise.

The first measure involves using Random Sample Consensus (RANSAC) [21] to prune

away points that do not agree with the rest of the group. Three points are chosen at random

from St, and the least square method [87] is used to find the rigid transformation matching

these points to the corresponding points in the base set S0. The transformation is then

applied to the rest of the points in St, and the number of points which are within a fixed

distance D to their corresponding base points are counted and stored. This stored set is

considered as the set of inliers associated with this iteration of RANSAC. Since calculating

the transformation at this stage with only 3 points tends to be noisy, we empirically set D

to a relatively large tolerance of 5.5mm. The whole process is repeated 70 times, each time
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(a) Left Camera (b) Right Camera

Figure 3.4: Features matched between the base frames and a pair of input frames. Each pair
of connected points shows a feature that satisfied the epipolar constraint and the circular
constraint. In this case, there are features that get matched to the same incorrect base
features (shown with the long lines, indicating large displacement between the two matched
features).

the algorithm starts by randomly choosing 3 points. The points in the largest set of inliers

are kept as our observation. The number of iterations is chosen by assuming 50% of the

points are outliers (an overestimation). Solving for k in the following inequality

0.01 > (1− 0.53)k (3.3)

shows that 35 iterations are needed to keep the failure rate below 1%. The failure rate refers

to the chance that RANSAC is unable to find the correct set of inliers after completing all

iterations. In this work, the number of iterations is doubled to keep the failure rate even

lower. In the end, the first constraint will remove most of the incorrect matches (figure 3.5).

The algorithmic detail is shown in algorithm 3.1.

The second measure tries to remove points whose distances to other points differ greatly

to their correspondence in S0. Unlike the previous measure, the second step is used to

remove points with small amounts of error which are usually difficult to spot just by looking

at the SIFT matches, and does not depend on estimating a rough transformation. For each

point p in St we calculate its distances to the other points. Each distance is compared to

the distance calculated between the same pair of points in S0. When the difference is less

than 2mm, the distance is considered a good match. If 2/3 of p’s distances to other points
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(a) Left Camera (b) Right Camera

Figure 3.5: Final features matched for the left and right input image (bottom row is the
base frame) after using RANSAC to remove outliers.

are good matches, then p will be kept in the final calculation. In order to avoid keeping

only points in a small tight cluster, which would make finding the correct transformation

more difficult, the second constraint is only applied when the range of points τt in the final

set is over 45mm. The range τt is defined as the length of the vector formed by the points’

standard deviation in the 3 axes. Algorithm 3.2 shows the details of this second measure.

To differentiate points sets which pass the above constraint and the range test, from

points sets which do not pass the range test, an additional match quality variable γt is kept

for each set:

γt =


1 if τt > 45mm
lt
Lt
min(1,

τt
45

) if τt ≤ 45mm or lt ≤ 3
(3.4)
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Algorithm 3.1 RANSAC algorithm used to prune bad matches
for i = 1 to 70 do

draw 3 points from St at random
find the transformation from St to S0 with the 3 points
set Mi as an empty set
for each point p in St do

apply transformation to p
calculate distance of the transformed p to its correspondence in S0

if distance ≤ 5.5mm then
add p to Mi

end if
end for

end for
find largest set Mk

overwrite St with Mk

where lt is the number of points with good relative distance, and Lt = |St| is the number

of points originally found. The variable is calculated such that the match quality is higher

when the number of good matches is high, and when the point range is high. This variable

is then used in the Kalman Filter to alter the measurement noise level.

3.3 Predictive Filters

After determining the sets of matched features Flt, Frt and the corresponding 3D points set

St, the next step is to find the actual rotation and translation. The basic method is to

apply Singular Value Decomposition (SVD) to find the best rigid transformation by looking

at points in a pair of frames [87]. However, SVD does not look at information from any other

frames, and will lose the temporal coherency information where the rotation and translation

at time t should be very similar to the transformation at time t+ 1.

3.3.1 Kalman Filter

One method to take into account the temporal coherency is to use the Kalman Filter [91].

The Kalman Filter is a type of predictive filter that estimates the state xt ∈ Rn of a discrete

time controlled process described by the linear equation

xt = Axt−1 + qt−1 (3.5)
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Algorithm 3.2 Relative distance constraint
initialize Dt for storage
for each point p in St do

for each point q in St − {p} do
calculate distance between p and q
store distance in Dt(p, q)

end for
end for
do similar calculation for D0 of S0

set M as an empty set
for each point p in St do

compare p’s distances in Dt(p, ∗) with corresponding distance in D0

if 2/3 of p’s distances in Dt(p, ∗) within 2mm of those in D0 then
add p to M

end if
end for
calculate range τt of M
set lt to |M |
set Lt to |St|
set γt as in (3.4)
if lt > 3 and τt > 45mm then

overwrite St with M
end if

with the observation yt ∈ Rm, described by another linear equation

yt = Hxt + vt. (3.6)

In (3.5) and (3.6), qt−1 and vt are the process model’s noise, and the observation’s noise

respectively. Kalman filtering operates in two steps: time update and measurement update

(figure 3.6). In the time update step, the new state x̂t is estimated using only the past state

xt−1 with

x̂t = Axt−1 (3.7)

P̂t = APt−1A
T +Qt−1 (3.8)

where Pt−1 and P̂t are the error covariance of xt−1 and x̂t respectively, and Qt−1 is the

covariance of process noise qt−1. In the measurement update step, the Kalman Filter uses
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Figure 3.6: The two steps of Kalman Filtering: time update and measurement update. Each
step of the Kalman filter takes into account all past states.

the actual observation yt to correct its estimation as follows

xt = x̂t +Kt(yt −Hx̂t) (3.9)

Pt = (I −KtH)P̂t (3.10)

where Kt is called the Kalman gain and is calculated using the covariance Vt of observation

noise vt

Kt = P̂tH
T (HP̂tH

T + Vt)−1. (3.11)

For the head pose problem, the state xt should contain the rotation vector ~w and the

translation T . This creates a 6-dimensional state vector xt = {w1, w2, w3, Tx, Ty, Tz}. The

observation, on the other hand, will include all 3D points location of the matched features,

i.e., the set St as a single vector. However, the linearity assumption of the Kalman Filter

breaks down here. While we use the common assumption of constant position – the location

of the head at time t should be near that at time t− 1, thus leading to the assumption of a

linear relationship (identity) for the state transition, the relationship between the state and

observation is governed by a non-linear equation h(xt) defined as

h(xt) = Rt(xt)S0,t + Tt (3.12)

where Rt is calculated by (3.1) using the w1, w2, and w3 components of xt, and Tt is the

translation matrix from Tx, Ty, and Tz. S0,t is a set of points from S0 that actually have
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matches to the points in St. This reduced set is necessary since not all features from the

base frames will be matched at each time step.

To allow non-linear relationship in the Kalman Filter, the general approach is either to

use the Extended Kalman Filter (EKF) or the Unscented Kalman Filter (UKF). Merwe et

al . proved the UKF is a substantial improvement over other non-linear filters [88]. Moghari

and Abolmaesumi [55] showed that the UKF performed much better than the EKF for rigid-

body transformation problem. Unlike the EKF, which linearizes the non-linear relationship

using Jacobian matrices, and is only accurate to the first-order, the UKF does not require

any linearization, and is accurate to at least the second-order. Therefore, for this work, the

Unscented Kalman Filter is chosen as the predictive filter.

3.3.2 Unscented Transform

The UKF attacks the non-linear problem by trying to approximate the probability distri-

bution. This is accomplished using the Unscented Transform [39]. Given xt and Pt, the

Unscented Transform first requires the generation of a set of 2n + 1 points termed sigma

points, where n is the dimension of the variable xt. These sigma points have the properties

that their mean and covariance matrix are equal to xt and Pt. One common set of sigma

points and the associated weights are generated as follows:

x̃k,t =


xt if k = 0

xt + (
√

(n+ λ)Pt)k if k = 1, . . . , n

xt − (
√

(n+ λ)Pt)k if k = n+ 1, . . . , 2n

wm
0 =

λ

λ+ n

wc
0 =

λ

λ+ n
+ (1− α2 + β)

wm
k = wc

k =
1

2(λ+ n)
k = 1, . . . , 2n

(3.13)

where λ = α2(n + κ) − n and (
√

(n+ λ)Pt)k is the kth row or column of the matrix

square root calculated with stable methods such as Cholesky decomposition. κ, α, and β

are constants, and can be set at 0, 1e − 3, and 2 respectively as suggested in [88]. These

sigma points are then propagated with the non-linear function to generate a new set of

points:

ỹk,t = h(x̃k,t) (3.14)
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The final propagated mean and covariance are calculated as follows:

ŷt =
2n∑

k=0

wm
k ỹk,t (3.15)

Pyt =
2n∑

k=0

wc
k(ỹk,t − ŷt)(ỹk,t − ŷt)T . (3.16)

3.3.3 Additive Unscented Kalman Filter

The Unscented Kalman Filter generally requires augmenting the state vector with the noise

covariance, and generates the sigma points and applies the Unscented Transform on this new

state. However, when the process noise and measurement noise are additive, the UKF can

be simplified to work directly on the original state vector [30] with the Additive Unscented

Kalman Filter.

For the head tracking problem, the only non-linear relationship is the transition from

states to observations. In this case, the problem can be further simplified. For the time

update step, the algorithm can use the original Kalman Filter for estimating the new state

and error covariance. Since the state transition function is the identity, this gives the

following time update calculation:

x̂t = xt−1

P̂t = Pt−1 +Qt−1.
(3.17)

The set of sigma points x̃k,t is then generated using the estimated state x̂t and error co-

variance P̂t, and transformed using the non-linear equation (3.12). This gives a set of

transformed points ỹk,t and their mean ŷt. The transformed covariance is modified to in-

clude the measurement noise, with the following calculation from the Additive Unscented

Kalman Filter:

Pyt = Vt +
2n∑

k=0

wc
k(ỹk,t − ŷt)(ỹk,t − ŷt)T . (3.18)

The measurement update is completed with the following equations:

xt = x̂t +Kt(yt − ŷt) (3.19)

Pt = P̂t −KtPytK
T
t (3.20)
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where Kt = Pxt,ytP
−1
yt

is the new Kalman gain used by the UKF and Pxt,yt is given by the

following cross covariance:

Pxt,yt =
2n∑

k=0

wc
k(x̃k,t − x̂t)(ỹk,t − ŷt)T . (3.21)

3.3.4 Kalman Smoother

Since this framework is not required to run in real-time, we can get better performance by

running the UKF both forward and backward, a technique commonly known as the Kalman

smoother [90]. Generally, running the UKF backward requires a different state transition

function that relates xt to xt−1. However, since here the state transition function is the

identity, the backward UKF can be implemented in the same way as the forward UKF by

simply passing observations in reverse order. Merging the solution from the two UKF runs

requires the following calculations:

(P s
t )−1 = (P f

t )−1 + (P b
t )−1 (3.22)

xs
t = P s

t [(P b
t )−1xb

t + (P f
t )−1xf

t ] (3.23)

where xs
t , P

s
t , x

f
t , P

f
t , x

b
t , P

b
t are the state and error covariance of the Kalman smoother, the

forward UKF, and the backward UKF respectively. The initial state and error covariance for

the backward UKF are taken to be the final state and doubled error covariance outputted

from the forward UKF [22].

3.3.5 Varying Measurement Noise

As mentioned in section 3.2.3, a variable γt is kept for each points set indicating the quality

of the matches. The variable can be used to change the magnitude of the measurement

noise vt with

vt = v0 − 0.8v0γt (3.24)

where v0 is the default level of measurement noise set empirically.



Chapter 4

Hybrid Approach

All of the approaches described in chapter 2 use only one of the two available pieces of in-

formation: the value from the motion tracker, or the result from registration. In this work,

we consider the possibility of bridging this gap by building a simple hybrid method which

takes advantage of both sources (figure 4.1). We begin by considering the case when only

one motion is associated with one PET volume, and we develop a hybrid algorithm which

uses the external video tracker’s information when PET registration results seem to be poor.

The possibility arises from the fact that PET uses non-uniform time sampling to capture

the uptake of the tracer over time. This results in low SNR in the early frames when tracer

uptake is rapid, requiring short sampling time. The low SNR and the changing activity level

cause the first frame to differ greatly with the last frame in the PET image sequence. An

external tracking system, on the other hand, is not restricted by these limitations, thus mak-

ing a hybrid approach feasible. The hybrid approach also alleviates the complexity involved

with rebinning the LOR and altering the EM reconstruction algorithm, both requiring sig-

nificant knowledge of the scanner and expertise in the reconstruction framework. This fact,

combined with the usage of the markerless video tracker, make it possible to avoid the two

major obstacles hindering wide adaptation of the LOR rebinning and EM reconstruction

algorithm methods.

28
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Figure 4.1: A hybrid approach using two independent inputs to generate new result. Since
the two sources are independent, each has advantages and disadvantages over the other, and
the hybrid method attempts to combine the advantages from both source while avoid the
disadvantages.

4.1 Registration Framework

We built our registration framework using the Insight Toolkit (ITK) [98]. ITK is an open-

source cross-platform application development framework funded by the US National Li-

brary of Medicine. Implemented in C++, ITK allows for the development of segmentation

and registration software using preexisting leading-edge algorithms.

Our registration algorithm uses the VersorRigid3DTransformOptimizer from ITK to it-

eratively find the best transformation. The VersorRigid3DTransformOptimizer is a specially

built gradient decent based optimizer using versor composition to update the rotation pa-

rameters and standard vector addition to update the translation parameters. In addition, we

deployed a multi-resolution framework to improve the speed and accuracy of the algorithm.
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4.1.1 Image Similarity Metric

We have compared a few standard metrics available in ITK, such as mean square or nor-

malized correlation, and found mutual information outperforms both metrics. The main

theory behind mutual information is the concept of information measurement termed en-

tropy purposed by Claude E. Shannon in 1948 [84]. By definition, the entropy H is defined

as

H = −
n∑

i=1

pi log pi (4.1)

where n is a set of symbols with probabilities given by p1...n. In terms of medical imaging,

the entropy H(A) of an image A can be defined as

H(A) = −
n∑

i=1

p(ai) log p(ai) (4.2)

where n would be the number of bins in the image intensity histogram and p(ai) would be

the value at bin i. From this definition, the entropy H(A) is minimized when image A is a

uniform image of a single intensity. In this case, the histogram will have a single sharp peak.

When the image contains noise, the intensity values will spread around the peak smoothing

the histogram and increase the entropy.

Since registration involves two images, we need to calculate the joint entropy to measure

the combined information. The joint entropy of two images A and B is defined as

H(A,B) = −
∑

i

∑
j

p(ai, bj) log p(ai, bj) (4.3)

where in terms of medical imaging, the values for p(a, b) can be taken from the joint his-

togram of the two images. When A and B are unrelated and independent, we have

p(a, b) = p(a)p(b) (4.4)

in which case

H(A,B) = H(A) +H(B). (4.5)

However, when A and B become more similar and less independent, we have

H(A,B) < H(A) +H(B). (4.6)

This means that the joint entropy H(A,B) is minimized when the two images A and B are

exactly the same. In analogy with the entropy example, the joint histogram will become



CHAPTER 4. HYBRID APPROACH 31

sharper when the two images are similar, and become smoother when the two images are

dissimilar.

It is possible to assess the quality of a registration transformation using the joint entropy

as the metric. However, as noted in [34], this will cause the algorithm to favor maximizing

the amount of overlap in the air region and might create undesirable results. An alternative

is to include both the entropy of the overlapping region (marginal entropy) and the joint

entropy, as is done in mutual information I(A,B), defined as

I(A,B) = H(A) +H(B)−H(A,B) (4.7)

=
∑

i

∑
j

p(ai, bj) log
p(ai, bj)
p(ai)p(bj)

. (4.8)

A registration algorithm would aim to maximize I(A,B), which simultaneously maximizes

the marginal entropies H(A) and H(B), and minimizes the joint entropy H(A,B). The

version of mutual information based registration algorithm available on ITK, which we

are using in our registration framework, was developed by Mattes et al . [52]. Instead of

maximizing I(A,B), the algorithm minimizes −I(A,B).

4.1.2 Reference Volume

Given a sequence of PET images, one must decide which image or images to use as the

reference volume. After consulting with medical imaging experts, we decided to use the last

frame in the sequence as the reference frame, similar to [42]. This means the last frame

will be considered as free of motion, and the registration algorithm will be used to find the

relative transformation that transforms any other frame to this last reference frame.

4.2 Hybrid Algorithm

Much of the complexity involved in combining the two independent sources of information

comes from deciding which source is providing a more accurate result at any given time.

During our testing, we found that the ability to estimate the performance of the video

tracker is severely limited. In order to find a suitable variable to predict the performance,

we calculated the correlation ρ between our selected variable and video tracker’s error on the

training set. However, we have tested variables such as the size of rotation and translation

measured, the covariance matrix from the Kalman Filter, the number of SIFT matches,
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the difference in image intensity between the base video frame and the current frame, the

match quality variable γt from (3.4), and so forth, and most only correlate with the actual

performance of the tracker at roughly ρ = 0.2. Attempts at using techniques such as

multiple regression or canonical correlation analysis to linearly combine all these variables

into one with high correlation resulted in overfitting. Overfitting occurred mostly due to

the limited availability of actual videos of patients in the PET scanners with known ground

truth motion.

To compensate for the lack of information regarding the performance of the video tracker,

the hybrid algorithm uses a simple two step approach using information from the registra-

tion algorithm and the known time interval used to collect events for each PET volume

during the reconstruction phase. The first step decides whether the registration algorithm

is returning a trustworthy result while acknowledging the existence of the unknown video

tracker’s performance. If the registration algorithm is determined to be good, the hybrid

algorithm simply returns the registration result as its final solution. If, on the other hand,

the registration result is deemed to be not trustworthy, it is linear combined with the video

tracker’s result using a time dependent weight.

4.2.1 Final Metric Value

To determine whether the registration is performing poorly, the final mutual information

metric value returned by the registration algorithm is used. The assumption is that the final

metric value should reflect how similar two images are, and when the two images are highly

dissimilar, registration has a higher chance of having poor performance. We found that

the final metric value correlates with the actual registration performance at ρ =∼ 0.8 on

our simulated training dataset, considerably better than what we have found for the video

tracker. However, since one must consider the unknown performance of the video tracker, it

is not a good idea to simply set a threshold and use the video tracker information whenever

the final metric value is higher. Instead, the metric value is used as a probability that

determines how much chance we trust the registration result fully. Since the registration

algorithm minimizes the negative mutual information, we define rm(t) to be the final metric

value shifted up by 1, such that rm(t) = 1 when the two images (frame or volume t and

the reference) are completely independent. The probability p(t) of trusting the registration

result is then

p(t) = 1− 0.8rm(t). (4.9)
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The factor of 0.8 allows the algorithm to slightly favor the registration result as the registra-

tion framework tends to be accurate. A random number between 0 and 1 is generated, such

that the registration result is trusted when the number is lower than p(t). This acknowledges

the fact that even when the registration result is poor, the video tracker’s performance might

be worse, and even when the registration result is good, the video tracker’s performance

might be better. In practice, this random method on average produces much better result

than relying on the low correlation variables from the video. Also, since registration usually

only performs poorly on the initial PET volumes, on many later frames we have rm(t) < 0.

This means in such cases the registration results have probabilities p(t) = 1 of being trusted

(i.e., we completely trust the registration results).

4.2.2 Time Dependent Weight

If the registration performance is not fully trustworthy after examining (4.9), we move onto

the second step of the hybrid algorithm. We do not simply use the video tracker’s pose

estimate as the final head pose. Instead, the registration result is interpolated with the

result we gained from the video tracker to generate a new pose estimate. Since the reference

frame is the last frame in the PET images sequence, the registration performance will be

worst on the initial frames and most accurate at the second to last frame. This means a

time dependent weight a(t), such that it is largest at the beginning and smallest at the end,

will be optimal. With such weight, we could combine the two sources of information via

linear combination:

(1− a(t))rf (t) + a(t)vf (t) (4.10)

where rf (t) is the transformation from registration for frame t, and vf (t) is the transforma-

tion from the video tracker. This way, even if the estimation of the registration performance

was wrong from the previous step, it is still possible to recover a portion of its performance

with this weighting.

A simple definition for a(t) would be the inverse exponential function. However, such

definition would not take into account the different frame timing involved in different type

of scan. Instead, we define a(t) as

a(t) = max(0, rm(t)− λ(t)) (4.11)

where λ(t) is the ratio of time used to collect events for frame t, relative to the last frame.

For example, if we have a PET sequence where frame 1-4 used 60 seconds, frame 5-7 used 120
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Figure 4.2: Flow chart of the hybrid approach. The time weight and linear interpolation
with the video tracker’s results are only used when the registration results is not trustworthy.

seconds, frame 8-15 used 300 seconds and frame 16 used 600 seconds, then λ(1 . . . 4) = 0.1,

λ(5 . . . 7) = 0.2, λ(8 . . . 15) = 0.5 and λ(16) = 1. By including the metric value into a(t),

the hybrid algorithm also takes into account the actual registration performance instead of

blindly using the time steps. Combining this interpolation method with the first step, where

registration is trustworthy, gives us a general flow chart summarizing the hybrid approach

(figure 4.2).



Chapter 5

Experiments and Results

The purpose of this chapter is to describe the methods used to evaluate the stereo-video

head tracker and the hybrid approach.

5.1 Polaris

Since the markerless video head tracker tracks features on a real person’s face, a device

which can also simultaneously measure the head motion accurately is needed. To achieve

this, we used the Polaris tracking system mentioned briefly in section 2.1.1. The system

is set up in passive mode to track a set of retro-reflective spheres, and in order to track

the head movement, we have four spheres attached to a swimming cap style hat, which the

patient must wear. The Polaris system is therefore positioned at the back of the scanner,

monitoring the spheres at the top of the patient’s head.

The video head tracker, on the other hand, needs to monitor the patient’s face, which

is not visible from the back, and is therefore positioned at the front of the scanner. At this

position, the back of the head and the spheres will not be visible to the video tracker. An

additional step is therefore needed to calibrate the coordinates between Polaris and the video

tracker. We used a tool which is included with the Polaris system, as shown in figure 5.1. By

angling the tool to its side, the spheres will be visible to both Polaris and the video tracker.

We took snapshots of the tool at several different positions, and manually identified the

location of the spheres in each video frame. The 3D positions of the points were computed

via triangulation. After matching these points with the corresponding points from Polaris,

the transformation aligning the two coordinates was calculated via least-squares [87].

35
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Figure 5.1: The tool used for calibrating between the Polaris system and the stereo-video
head tracker. The points are manually located, and their 3D locations are matched with
that of Polaris via least-squares.

We collected a video sequence of 3245 frames of a participant lying within a PET scanner,

along with the corresponding motion measured by Polaris. The left vs. right vs. Polaris

timing is matched by using both cameras to record a short sequence of the clock used for

labeling the Polaris motion data. Since the video tracker records at 29.93 frames per second

(fps), whereas Polaris records at roughly 20fps, we resampled the motions calculated from

the video tracker to match the frame rate of Polaris. The collected sequence is divided

into 15 sets, with 5 sets used for training and the remaining 10 used for testing the hybrid

algorithm.

5.2 Datasets

Several datasets were used to either set up or test the hybrid approach. These datasets

range from synthetic, simulated to real. A synthetic dataset is one which is made to appear

like real data but does not necessary follow the steps used in creating the real data. A

simulated dataset is created by simulating all the physical properties used in creating the

real data, and therefore is usually very realistic. A real dataset is one reconstructed from

scanning a real patient with a real tracer intake.
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(a) Frame 1 (b) Frame 14 (c) Frame 27

Figure 5.2: 2D slice of frame 1, 14 and 27 of the PET-SORTEO [18F]dopa sequence. The pre-
applied noise limited the possibility of testing with this dataset, and is therefore primarily
used for training purpose.

5.2.1 PET-SORTEO

The simulated data we used is part of the publicly available PET-SORTEO dataset [80].

We chose the [18F]dopa PET volumes. Each [18F]Dopa sequence consists of 27 volumes

128× 128× 63 in size with voxel dimension 2.11168× 2.11168× 2.425mm3 (figure 5.2). The

27 time steps used are 6 × 30 seconds, 7 × 60 seconds, 5 × 120 seconds, 4 × 300 seconds,

and 5 × 600 seconds. Applying transformation to these images will introduce voxels that

were outside the volumes before the transformation. Since this dataset already includes

all major sources of noise (such as from scattered or random events) in the final images,

the new voxels are filled with a fixed intensity value which results in regions with no noise.

These empty regions will alter the performance of any registration algorithm. Therefore,

instead of using this dataset to test the performance of the hybrid algorithm, we used it as

a training dataset for measuring the correlation between the registration metric value and

registration performance, and also for setting any necessary parameters.

5.2.2 Synthetic Data

For the synthetic data, we generated a [18F]FDG-PET sequence from a segmented MRI

image. The original MRI image is 181×217×181 in dimension with voxel size 1×1×1mm3
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Figure 5.3: The TAC for different functional regions of the synthetic data. They are calcu-
lated using COMKAT to simulate a [18F]FDG sequence.

and has 99 different segmented regions. We grouped the segments into 7 functional regions:

background, skull, gray matter, white matter, cerebellum, putamen, and dura/sinus. The

dynamic of each region is simulated with real kinetic parameters from the dPET clinical

literature via the Compartment Model Kinetic Analysis Tool (COMKAT) [60] (figure 5.3).

This results in a sequence with 46 frames with time steps: 12× 10 seconds, 10× 30 seconds,

10 × 120 seconds, 10 × 300 seconds, and 4 × 600 seconds (figure 5.4). To mimic the larger

voxel size and the partial volume effect (PVE) of common PET images, each volume is

down-sampled to 2× 2× 2mm3 voxel size and blurred with a Gaussian filter.

Different levels of Gaussian noise can be added to the final images to simulate noise in

PET images. The noise applied to each frame t is scaled by a time varying factor σ(t) that

depends on the ratio of the mean activity and the time step used (similar to [83]). This

results in the highest noise level when the mean activity is high and the time step is short,

and properly mimics the low SNR in the early PET frames. As the addition of this noise

is under our full control, we can apply it after we have corrupted the volume with motion.

This makes this dataset suitable for most of our major testing.
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This synthetic dataset is simulating one of the worst case scenarios, where dura/sinus

reacts to the tracer differently compared to the other areas, as shown by the different TAC

in figure 5.3. This results in an image sequence where the first frame and the last frame are

highly dissimilar.

5.2.3 Real Data

The real data was provided by UBC-TRIUMF PET Group. It is a [11C]Raclopride 16 frames

sequence of a real patient and is relatively motion-free (figure 5.5). This dataset differs from

the other sets in that it has a much smaller voxel size of 1.21875× 1.21875× 1.21875mm3.

The dimensions are 256× 256× 207 and the time steps are 4× 60 seconds, 3× 120 seconds,

8 × 300 seconds, and 1 × 600 seconds. The volumes also differ in that they all have zero

noise in the background, making the contour of the head easily visible.

5.3 Results

The following sections summarize the tests we have done to determine the accuracy of both

the video tracker and the hybrid approach.

5.3.1 Tracker Performance

Table 5.1 summarizes the performance of the video tracker, showing the mean, standard

deviation, median, minimum and maximum of the absolute error of the six transformation

parameters when our video sequence is compared with the output from Polaris. Since

translation is applied after rotation, its parameters’ error and standard deviation would

change depends on which coordinate we defined the transformation. Therefore, we decided

to calculate the errors in PET coordinate space, to closely approximate the real performance

expected when applied to PET images. One point to note here is that, while Polaris provides

a good approximation of the ground truth, it is not the ground truth itself. As mentioned

in section 2.1.1, the manufacturer reports an accuracy of 0.35mm RMS, and its real error

would be slightly higher in real application. The hat the participant wore might also slip,

as is common in this type of marker based tracking.

In terms of actual rotation angle in the x, y and z-axis, the three rotation parameters

w1, w2 and w3 together give the errors in degrees shown in table 5.2. From these values,
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w1 w2 w3 Tx (mm) Ty (mm) Tz (mm)
Mean 0.01607 0.00989 0.01457 2.12285 1.31440 2.63992
STD 0.01307 0.00831 0.01307 1.93154 1.29183 2.87563
Median 0.01356 0.00772 0.01018 1.74218 0.95034 1.77787
Min 0.00000 0.00000 0.00001 0.00747 0.00085 0.00175
Max 0.07912 0.04557 0.07158 28.26456 10.80654 24.95331

Table 5.1: The absolute error of video tracker performance compared to Polaris.

x-axis (degree) y-axis (degree) z-axis (degree)
Mean 0.84075 0.56190 0.91909
STD 0.75639 0.47229 0.74823
Median 0.59180 0.44189 0.44189
Min 0.00003 0.00013 0.00055
Max 4.03639 2.63193 4.51491

Table 5.2: The rotation errors expressed in degrees.

the performance of our video tracker is acceptable. However, there are some video frames

where SIFT had trouble finding matching features, resulting in larger than average errors

shown in the maximum row.

5.3.2 Hybrid Approach Performance

We examined the accuracy of our hybrid approach by looking at the Target Registration

Error (TRE) and at its ability to retrieve the original TACs relative to using pure registra-

tion. TRE is simply the distance between corresponding points of the motionless volume

and the motion corrected volume [34]. We generated our synthetic dPET data under 5

trials of 8 noise levels (0,1,3,5,6,7,8,10)σ(t). Noise level 0’s volumes are already shown in

figure 5.4, and the rest are shown in figure 5.6. For each noise level, we transformed the

volumes using motions taken from the 10 test sets from section 5.1. This means each trial

of each noise level was tested under 10 different sequences of motions, giving a total of 50

sets of volumes for each noise level. At any given time, only one motion is associated with

one particular PET image, and we used the motionless version of the last PET frame as the

reference image for our registration algorithm.
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We computed the mean TRE on voxels in the dura/sinus region in selected volumes,

and average over all tests for each noise level. The dura/sinus region is a very thin layer of

membrane and blood vessels in the outer region between the skull and the brain. Figure 5.7

shows the results calculated over the first 3 frames, and over all frames. As we expected,

the video tracker’s performance was not affected by noise in PET images. This test also

showed that, by using the final metric value as a factor for determining the accuracy of the

registration framework, we can accurately determine at which point registration is becoming

less trustworthy and start preferring the video tracker’s results. This is true both in terms

of the low SNR in the early frames (figure 5.7a), and in terms of overall noise level in all

images (figure 5.7b).

We computed the TACs for different functional regions of the brain after using the hybrid

method to correct the motion corrupted images, and similarly for pure registration and pure

video tracker’s results. For each TAC, we calculated the difference between the corrected

TAC and the ground truth motionless TAC using

||
∑

t

(ht − gt)2||1/2 (5.1)

where t is the frame/volume number, ht is the activity level or image intensity calculated at

frame t after correction, and gt is the activity level measured from the ground truth motion-

less PET sequence. In other word, we treated each curve as a point in a multidimensional

space, with the number of dimensions equals to the number of PET volumes. We calculated

the difference between two TACs as the distance in this multidimensional space, with each

dimension in the unit of pmol/ml.

Figure 5.8 shows the advantage of our hybrid method for retrieving the TACs under

different ROI and noise level. For most of the regions within the brain, the hybrid method

performs better than pure registration. For regions with high activity and near the outside

surface of the brain (such as the thin dura/sinus region), the performance of the hybrid

method is not as good. One possible explanation is that since the dura/sinus is a very thin

layer, slight errors in translation cause the TAC to include the neighboring low activity

regions (e.g . background). Nonetheless, when the noise level is high, the hybrid method is

able to outperform registration in all regions.

One interesting thing to note here is that, even by using a simple technique such as

linearly combining two sources of information, we are not restricted to getting results that

is only as good as either of the two originals. One example is the gray matter region, where
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the hybrid approach is better than both pure registration and pure video tracker in all noise

levels.

We also compared the recovered Kinetic Model’s parameters by calculating the FDG

glucose metabolic rateK = K1k3/(k2+k3) [29] whereK1, k2 and k3 are recovered parameters

returned by COMKAT. These parameters describe the relationship between the tracer FDG

and the tissue in the body. For example, K1 is the transport rate from blood to extra-

vascular space. Given the TAC of a region, COMKAT uses the known characteristic of

FDG (e.g . speed of decay) to solve for Ks. Figure 5.9 summarizes these results, and this

figure is similar to figure 5.8 except there are cases where the hybrid method has the worst

performance, even though the TAC is better. This is likely to be because, in order to find

the different parameters, COMKAT begins by curve fitting to the retrieved TAC. Since

registration looks at the intensity value within an image itself, its results tend to produce

smoother TAC. The hybrid method on the other hand combines information from two

independent sources and results in curve that is rougher. A possible solution for this is to

smooth the TAC returned by the hybrid method.

On the real dataset, since the ground truth labeling is not available, we tried to calculate

the TRE on a set of evenly spaced points distributed all over the volume. However, since this

dataset has zero noise in the background, registration is able to outperform our video tracker

and hybrid algorithm even on the first frame. The reason is that with zero background noise,

the contour of the head is easily visible even on the first frame with relatively low activity.

The location of unique areas such as the nose are clearly identified, and most registration

algorithms can correctly align the images by simply aligning the zero valued background,

regardless of how much the activity level changes within the brain. In this type of images,

a video tracker which matches the quality of marker-based tracker such as Polaris would be

needed.
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(a) Segmented MRI (b) Ground Truth Labels

(c) Frame 01 (d) Frame 23 (e) Frame 46

Figure 5.4: (a) 2D slice of the segmented MRI image, (b) the 7 functional regions’ ground
truth, and (c)-(e) the generated noise-free [18F]FDG-PET volumes. The colormap is scaled
to match the minimum and maximum of each image individually to improve visibility.
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(a) Frame 1 (b) Frame 8 (c) Frame 16

Figure 5.5: 2D slice of frame 1, 8 and 16 of the [11C]Raclopride sequence. These were taken
with a real PET scanner with real patient.
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(a) Noise 01 F01 (b) Noise 01 F23 (c) Noise 01 F46 (d) Noise 03 F01 (e) Noise 03 F23 (f) Noise 03 F46

(g) Noise 05 F01 (h) Noise 05 F23 (i) Noise 05 F46 (j) Noise 06 F01 (k) Noise 06 F23 (l) Noise 06 F46

(m) Noise 07 F01 (n) Noise 07 F23 (o) Noise 07 F46 (p) Noise 08 F01 (q) Noise 08 F23 (r) Noise 08 F46

(s) Noise 10 F01 (t) Noise 10 F23 (u) Noise 10 F46

Figure 5.6: The motionless version of volume 1, 23, and 46 of noise level 1, 3, 5, 6, 7, 8, 10.
Each set of volumes for each noise level is tested under 10 different motion sequences, and
the test was repeated 5 times, each time with the noise regenerated. The colormap is scaled
to each individual image to improve visibility.
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Figure 5.7: The mean TRE (and standard deviation) over dura/sinus’ voxels under different
noise levels. The hybrid method is able to handle the low SNR in the early frames, and the
overall changes in noise level.
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(f) Dura/Sinus Region

Figure 5.8: Comparison of the mean (and standard deviation) measured TAC error over dif-
ferent noise levels in different region, by treating each TAC as a point in a multidimensional
space. The hybrid method is able to find a better TAC than registration on most regions,
especially on the higher noise level. 50 sets of 46 volumes were tested in each noise level.
The dura/sinus region is a very thin layer of membrane and blood vessels between the brain
and the skull. Its high activity at the beginning of the scan, and having a very low activity
neighbor, caused the region to be more susceptible to small errors in translation.
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Figure 5.9: Comparison of errors in the calculated FDG glucose metabolic rate. The hybrid
method is performing reasonably well in most cases, although the roughness of the TAC
calculated after corrected by hybrid method might have increased the error in K.
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Conclusions

The availability of dPET allows physicians to assess brain function, usually by measuring

time-varying tissue or blood radioactivity level at target ROI. Due to the extended period

a usual scan requires, patient motion can severely corrupt the final results. PET images

become blurred with activities from different regions overlapping one another. The usual

approaches could involve attaching markers on patients and tracking their movement, re-

stricting the patient’s movement via a specially constructed mask, or image registration.

However, all of these methods have shortcomings, such as patient discomfort, or inability

to perform motion correction when the SNR is low.

In this work, we have developed a markerless head pose tracking system for estimating

head motion of subjects while undergoing a functional medical imaging scan. The work

combines the usage of stereo vision with the SIFT features detector for tracking. Features

are first detected in each stereo image pair and their 3D locations extracted after satisfying

some predefined constraints. These 3D points are then passed as measurement to the UKF,

which returns the final transformation with respect to a set of base frames. The primary

focus here was to introduce the markerless head tracking approach rather than developing

a state of the art face tracker. Algorithms which produce even higher accuracy do exist

in computer vision, and are projected to continue to improve. An advantage of using a

markerless tracking algorithm, besides not requiring markers, is that it allows alignment

of brain images of the same patient under a long study, where the patient can be scanned

multiple times over the course of several months or years. Feature positions are less likely

to change over time, compared to the manual attachment of markers.

We also showed a possibility of bridging external tracker based PET motion correction
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with frame-to-frame based registration. We approached this by using a hybrid framework

which uses the video tracker’s information when the registration performance is poor, such

as the beginning frames in a PET sequence. These early frames have low SNR due to the

short sampling time required to capture the rapid uptake of tracer activity. In contrast, an

external tracker is not affected by these noises, and can therefore be used to improve the

registration result. The hybrid method works by assigning a probability that determines

whether the registration result is accurate. This probability is based upon the final value of

the metric being minimized by the registration framework. When registration is determined

to be inaccurate, its result is interpolated with the video tracker’s result, using a time

dependent weight.

Experimentation on a synthetic [18F]FDG-PET sequence generated from a segmented

MRI image shows that video tracker’s results can be used to improve upon registration,

especially in the high noise cases. When the image SNR is low, the algorithm is able to

detect the lowered performance of the registration framework, and use the time dependent

weight to include the video data. When the image noise is high, results show that the hybrid

method has lower TRE and TAC errors. On most PET data, roughly 20% of the volumes

suffer from the low SNR problem, and the hybrid method is therefore aimed to improve

alignment on these images. Analysis on the FDG glucose metabolic rate error shows mixed

results, possibly due to the limitation of the curve fitting needed for this calculation. A

possible solution would be to smooth the TAC prior to calculate the Kinetic parameters.

On the other hand, experiments on high resolution PET images with no background noise

show pure registration will suffice in this type of images. This does not, however, remove

the advantage of an even higher performance video tracker. When video tracking matches

the quality of registration algorithms, the hybrid method will still be useful given the fact

that resolution of PET scanners will always be increasing to the point where no human can

perceive a difference with higher resolution.

In developing the hybrid framework, we have assumed that motions only occur from

frame-to-frame, and there is no motion corruption within a single frame. To correct mo-

tions within a frame, techniques such as deconvolution, LOR-rebinning, or changes to the

EM reconstruction algorithm are needed. Some of these techniques are already proven to

produce the correct image, but are not widely adopted due to the complexity involved.

The markerless tracker can alleviate some of these difficulties, but a more straightforward

approach which does not require changing the reconstruction step might still be desirable.
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One possibility is to build upon our hybrid framework. Instead of combining the two

sources after registration, the motion information could be included in the registration al-

gorithm itself. This could be accomplished by, for example, changing the minimization

algorithm such that it simultaneously minimizes the image intensity metric, and the differ-

ence between the two sequences of motions affecting the fixed and moving image. Depending

on how the difference is calculated, this might favor matching the mean or the mode of the

transformations. Alternatively, one can develop a new deconvolution algorithm, for which

recent publications are showing signs of renewed interest.
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