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ABSTRACT 

The focus of this thesis is to develop and introduce algorithms that extend 

traditional colour reproduction from three dimensions to higher dimensions in 

order to minimize metamerism. The thesis introduces models that can accurately 

predict interactions between the primaries for non-linear output devices in 

spectral colour space. Experiments were designed and performed to aid in 

understanding how optimized the spectral characteristics of existing printer inks 

and display primaries are, and how the inks and primaries should be designed so 

that the accuracy of the reproduction is optimized.  

The time and space computational complexity of the reproduction 

algorithms grows exponentially with the number of input dimensions. The 

algorithms for finding the best combinations of inks or primaries matching a given 

input reflectance become more challenging when the inks interact with each 

other non-linearly, as is usually the case in printers. A number of different 

methods are introduced in this thesis to handle gamut mapping and the colour 

reproduction process in higher dimensions. An ink-separation algorithm is 

introduced to find the ink combination yielding a chosen gamut-mapped spectral 

reflectance.  Experiments with real inks for spectral colour reproduction  were 

performed  to compare the results of the reproduction against trichromatic colour 

reproduction on a 9-ink printer system. Finally, a new application of reflectance 

analysis in higher dimensions is introduced. 
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GLOSSARY 

∆E94 DeltaE is a measurement of distance in CIELAB94 space. A value 
of one indicates a just noticeable difference in colour. 

∆ECIECAM0

2 
Changes in CIECAM02 colour space. A value of one does not 
necessarily represent one noticeable change. 

CMYK cyan, magenta, yellow, black. In some cases, K is used to 
represent the grey axis 

CIELAB94 International Commission On Illumination L a* b* colour space. 
This is a perceptually uniform colour space, where a unit of 
distance anywhere in the space is intended to represent the same 
amount of perceptual difference 

LUT Look Up Table 

SVR Support Vector Regression 
 

XYZ Used to refer to the CIEXYZ tristimulus space, where X and Z 
represent chroma and Y represents luminance. 

TPS Thin Plate Spline Interpolation 
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CHAPTER 1: SPECTRAL REPRODUCTION  

Introduction  

In comparison to standard colour reproduction, spectral reproduction aims 

to reproduce a given reflectance spectrum rather than produce a metameric 

reflectance spectrum that simply matches a given colour. This approach attempts 

to reduce the problem that can arise in metameric colour printing or display, 

which is that the reproduced colour may match under one illuminant, but not 

match well under some other illuminant. Clearly, if the reproduced output 

reflectance matches the input reflectance, the reproduced colour will match the 

input colour under all illuminants.                                                

Spectral reproduction has application in many fields. In fine art 

reproduction, it is important to reproduce a painting in spectral space as closely 

as possible to minimize metamerism. Bastani et al. [60] ) showed that if the 

reflectances of a given set are optimized, fine art reproduction accuracy can be 

improved by as much as 30%.  

Another application is in high-end photography where professional 

photographers would like to capture their subjects as accurately as possible and 

in some cases reproduce them accurately. Soft proofing is another area where 

the end-user requires the displayed image to look as a close as possible to the 

real target under a range of illuminations.                                                                                                                                                                                                                                  
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Spectral colour reproduction becomes feasible when there is more than 

one possible primary combination to match a colour. In this paper, primaries refer 

to inks in a printer, phosphors or colour channels in a monitor or filters in a 

projector. To have a more accurate colour reproduction, a larger number of 

primaries are needed that are fairly independent from each other in their 

wavelength coverage. However, the larger the number of primaries, the higher 

the computational complexity of printing or displaying algorithms in terms of both 

time and space. In particular, standard gamut-mapping algorithms map colours 

within a 3-dimensional space and their computational complexity increases 

rapidly with dimension. For example, a gamut-mapping algorithm that relies on 

the computation of the convex hull of the measured gamut will not work for 

spectral data with, say, 11 dimensions since computing a d-dimensional convex 

hull of n points requires order O(nfloor(d/2)+1) operations.  

Survey and Proposal Layout 

The first complication in spectral reproduction is modelling the output of a 

device accurately in spectral space. The modelling becomes more complex when 

the primaries interact non-linearly such as in a printing environment. A naïve 

approach is to measure all primary combinations and store them in a database. 

This means if each ink dimension is sampled N times and there are D inks in the 

system, then there are ND primary combinations to measure. This means that in 

order to measure ramps of 255 samples along each primary axis with 8 primaries 

in the system, there are 1.8x1019 patches to measure and store, which is not 

practical. 
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 The non-linear interaction of the inks with each other and with the paper 

(medium) makes modelling the printer output an important component of the 

research. Since the complexity of the proposed algorithms grows exponentially 

with the number of inks, spectral modelling of an N-ink printer system is a 

particularly significant topic. Two possible opportunities are discussed in 

thisthesis: The first is to reduce the necessary number of patches to measure by 

considering constraints such as ink limiting (amount of the ink that a medium can 

accept). The second path considers lowering the complexity of the printer gamut 

space before applying any interpolation method.  

Spectral characteristics of the primaries and their interaction types, 

whether linear or non-linear, have the largest effect on an output device gamut 

size and the spectral reproduction accuracy of the devices. For instance, the 

optimum selection of a set of inks for a printer may have less overlap or be more 

spectrally independent of each other. The second part of this report presents 

methods for optimizing the spectral characteristics of the primaries to improve the 

spectral reproduction of a given system. It also presents how the effect on the 

output device gamut and spectral gamut space of a variation in a primary 

reflectance characteristic can be evaluated.   

Given a set of ink reflectances and a device output model, the next 

challenge is gamut mapping in spectral space. The traditional gamut mapping 

algorithms work in three dimensions (CIELAB or CIEXYZ space) and they 

typically assume that the gamut shape is convex. The complexity of calculating 

the convex hull is another challenge that grows exponentially with the 
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dimensionality of the data. Two different gamut mapping approaches are 

considered in this paper.  

To evaluate how the spectral colour reproduction can help professional 

users, an experiment is conducted to understand whether the proposed 

algorithms are feasible in real life, given the available set of inks and printer 

technology.  

The last part of this study proposes other applications of spectral colour 

analysis beside spectral colour reproduction.  
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CHAPTER 2: MATHEMATICAL PRELIMINARIES 

In this section we introduce some mathematical concepts and notation 

that will be used throughout the thesis. 

Thin Plate Spline Interpolation  

Thin Plate Spline, or TPS, is an interpolation method that finds a 

"minimally bended" smooth surface that passes through most input data points. 

The name "thin plate spline" came from the observation of bending a thin sheet 

of metal. In the physical setting, the bending of the plate is known to be 

orthogonal to the original plane structure. In order to apply this idea to the 

problem of coordinate transformation in a 2 dimensional space, the lifting of the 

plate can be interpreted as a displacement of the x or y coordinates within the 

plane. This means, two thin plate spline functions (basis) are needed to specify a 

two-dimensional coordinate transformation. The basis functions for TPS are the 

Radial basis functions [13].  

A radial basis function (RBF) is a function that its output value depends on 

the Euclidean distance from the neighbouring input points, referred to as center 

points. For TPS, a smoothness constraint is added to the fitting, where the 

smoothness constraint minimizes the derivative variation between the output 

points.  
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Xiong et al. extended the TPS model to N-Dimensions and applied it to 

illumination estimation successfully [61].  

For spectral printer modeling, TPS is used to find a set of continuous 

function that each maps between the set of inks and oneof the output 

dimensions. For instance if the output spectral reflectance of an 8-ink printer is 

measured from 380nm to 730nm with a 10 nm sampling, TPS is used to create 

36 separate functions mapping from the 8 input dimensions to each reflectance 

wavelength 380nm, 390nm, …. to 730nm, separately.   

Principal Component Analysis 

Principal Component Analysis (PCA) [10]  is a mathematical technique to 

discover correlation behaviour between a set of variables. The method uses the 

correlation information to break down the set of variables into subsets that are 

relatively independent of one another. Variables in each subset are correlated 

with one another and are largely independent of other subsets.   

PCA  is based on the orthogonal linear transformation of variables into a 

new coordinate system such that in this new coordinate system, the largest 

variance by any projection of the data falls on the first coordinate. Similarly, the 

second largest variance is on the second coordinate and so on.  

PCA is widely used in many fields including signal processing, statistics 

and computer vision.  
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Least Square and Non-Negative Least Square Method 

Least Squares regression, [11], is a mathematical method to solve 

systems that have more equations than unknowns. Least Squares regression 

finds the best-fitting curve to a given set of points by minimizing the sum of the 

squares of the offsets (residuals).  

Non-negative least squares finds the best fitting curve using the Least 

Squares method with the additional constraint that all the coefficients of the fitting 

should be non-negative. In this study the non-negative least square 

implementation from Matlab is used [92]. 

ISOMAP and Multi-Dimensional Scaling 

Multidimensional scaling (MDS) is a classical technique for mapping the 

input data to a lower dimensional space, subject to the constraint that pair-wise 

distances between data points are preserved as much as possible.  The latter is 

accomplished via minimization of a cost function. The classical technique uses 

the Euclidean distance metric.  

ISOMAP or complete isometric feature mapping is a variant of MDS that 

replaces the Euclidean distance with the geodesic distance.. For certain types of 

data, ISOMAP can be more effective in uncovering the underlying structure and 

dimensionality. Geodesic distance can be computed with a number of 

techniques, a common one being Dijkstra’s algorithm. Error! Reference source 

not found.[62] [88]. 
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Dijkstra's algorithm finds the shortest path between the vertices in a graph 

with nonnegative edge cost. This algorithm will be used to compute the geodesic 

distance between a pair of points (detailed below). The time complexity of the 

algorithm is O(N2), where N is the number of nodes (vertices) in a graph.  

Specifically, the geodesic distances represent the shortest paths along the 

curved surface of the manifold. This can be approximated by a sequence of short 

steps or “hops” between neighbouring sample points. Since the manifold is not 

known ahead of time, some heuristic should be used to define the neighbours of 

a given point. In this thesis, the neighbours of a given point are defined as those 

points whose path length to the given point are smaller than a threshold. The 

threshold may vary based on how the points in a database are placed relative to 

each other. If the threshold selected is too large then almost all the points are 

selected as neighbours of each other and the ISOMAP technique may not be 

able to map the space into an optimal low-dimensional space. On the other hand, 

too small a threshold can cause a break in the space with the result that ISOMAP 

may map the input space into multiple low-dimensional spaces.  

 In this study, a search is done to find a threshold that optimizes the 

dimensionality reduction while stillincluding all the measurements points from the 

printer gamut in a single space.  

After selecting the neighbourhood threshold, ISOMAP then applies MDS 

to the geodesic, rather than straight line, distances to find a low-dimensional 

mapping that preserves these pair-wise distances. 
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The Swiss Roll is a common example used to visualize the difference 

between geodesic and Euclidean distances. Figure 1 shows a Swiss Roll in 3 

dimensions where points A and B have a small Euclidean distance (dotted line). 

Figure 2 shows the Swiss Roll after the ISOMAP transformation into 2 

dimensions. The figure shows that the two points have a large Geodesic distance 

despite a small Euclidean distance relative to the other neighbouring points.  

 
Figure 1: Swiss Roll representation in 3 Dimensions [86]   
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Figure 2: Un-folded Swiss Roll data into 2 dimensions using ISOMAP. [86] 
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CHAPTER 3: PRINTER MODELLING 

As discussed earlier, modelling a device’s output accurately in spectral 

space is essential to enabling spectral reproduction. In electronic displays, since 

the light is added quite linearly, simple linear approaches are used to model the 

displays’ outputs [1][2][3][4]. The situation is quite different in a printer where inks 

behave in a non-linear fashion.  

In this section, some basic background on printing systems and some well 

known printer models are presented. In addition, two possible methods to 

simplify and improve the accuracy of printer modelling are proposed.  

Light and Media Interaction and the Dot Gain Phenomenon 

When light hits a surface (medium), a percentage of the light gets 

reflected and the rest is absorbed. These two percentages are referred to as the 

scattering and absorption coefficients. Figure 3 illustrates this effect. 

 
Figure 3: Primary Interactions between Light and Medium (paper) are scattering and absorption 
([75]).  
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The reflectance behaviour for a material is different. For a fluorescent 

material , the material (molecules) absorbs a photon (UV) and then emits a 

photon (visible) of lower energy (longer wavelength). The effect of fluorescent 

materials was not considered in the research reported here. 

In the printing environment, when a drop of ink is put on the medium, there 

are several physical and chemical interactions that happen which add to the 

complexity of the system. The most common way of reproducing images on a 

print is by half toning. Half toning produces different levels of grey or colours by 

small dots with maximum colour density but with varying local fractional area 

coverage, printed on a white substrate [12]. Whenever such a reproduction is 

used, an effect that is referred to as dot gain happens, which makes the actual 

image appear darker than what would have been expected from a perfect 

reproduction. There are two parts to dot gain: physical dot gain and optical dot 

gain. Physical dot gain occurs because the dots gain in physical size due to 

imperfections in the image transfer from the original to the print (Figure 4). A 

typical reason for physical dot gain is ink smearing and spreading in the printing 

process which is normally referred to as ink and media interaction. 
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Figure 4: Physical dot gain causes a drop of ink to cover a larger area that expected from a 
perfect linear production.  

Optical dot gain is the effect of a dot appearing larger than its actual size. 

Optical dot gain occurs because the half tone dots are printed on a scattering 

substrate (medium in printing systems) (Figure 5). The spread of light in the 

medium causes a shadow around the rim of the dots which, in turn, causes the 

dots to appear larger, represented as ∆aopt in Figure 5. 

 
Figure 5: Optical dot gain occurs because the halftone dots are printed on a scattering substrate. 
a0 shows the original drop size, ∆aphy is the physical dot gain and ∆aopt is the optical dot gain.  

 Figure 4  shows the dot gain curve relative to the ink density. It shows that 

the maximum dot gain occurs around 50% ink density, where there is enough 
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space left for physical dot gain and optical dot gain without interacting with 

neighbouring dots.  

 
Figure 6: Dot gain curve. Maximum dot gain occurs around 50% of area coverage, where there is 
enough space left for physical dot gain and optical dot gain without interacting with neighbouring 
dots. 

Modelling Ink and Medium interaction 

In this section, performance of the three best known approaches for 

modelling printer output are summarized and compared. 

Linear Model (Murray Davies) [15], [9], [17] 

The Murray-Davies model is based on the assumption that the reflectance 

of a half tone cell adds up linearly. This model estimates a single ink reflectance 

on a medium using the following linear equation: 

(1) 

paperRaaRR ,%100, )1( λλλ −+=  

where a is a function of dot area coverage and Rλ,100% is the spectral 

reflectance of ink at 100% dot area coverage. Rλ,paper is the reflectance of the 

white paper.  
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The Murray-Davies algorithm depends on the assumption of linear 

interaction between ink dot area coverage and the medium. As discussed earlier, 

because of some physical (dot gain) and chemical interaction between ink and 

medium, this assumption does not always hold.  

Kubelka Munk Model [15], [16] 

The Kubelka Munk model is the most popular method for modelling printer 

output. Kubelka Munk has a relatively simple equation. Its two parameters (K and 

S) represent reflectance and transmission from a surface. Kubelka and Munk 

examined the reflectance of a material having a thin layer of colorant in contact 

with the opaque surface of the material [14], [15]. Kubelka-Munk theory is based 

on the assumption that a colorant can be broken into a large number of thin 

layers with equal optical properties (Figure 7). Figure 7 shows a colorant of 

thickness X and two diffuse light fluxes I and J. The fluxes represent the overall 

light that each layer receives or passes through each layer. The idea is that once 

a colorant ink is broken into smaller layers, fluxes for each layer can be summed 

to obtain the overall flux of the colorant.  

 
Figure 7: Kubelka Munk absorption and scattering theory. 
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In this theory, as the light goes farther down the colorant layer, the 

magnitude of downward flux (J) is decreased due to absorption and scattering of 

the layers. The scattered portion of downward flux (J) will be added to upward 

flux I. Similarly a portion of upward flux I is absorbed and added to downward flux 

(J). Using differential equations, the downward and upward fluxes can be 

represented as: 

(2) 

di = -(S + K) I dx + Sj dx 

dj = -(S+K) J dx + Si dx 

where K represents the absorption coefficient and S represents the 

scattering coefficient. If P is the ratio of J to I, the above equation can be re-

written as: 

(3) 

2
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I
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IJd
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Re-arranging the above equation and applying boundary conditions 

results in: 

(4) 
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By solving the above equation for R, the famous Kubelka Munk equation 
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(5) 

)coth(
)]coth([1

,

,

XSbbRa
XSbbaR

R
g

g

λλλλλ

λλλλλ
λ +−

−−
=  

is obtained, where a equals 1+K/S and b equals (a2 -1)1/2 . To solve for the 

two unknowns (K and S) in the above equations, two equations are solved by 

measuring two ink reflectance samples.  

Measurement Requirements: the Kubelka Munk model only requires 

measurement of individual inks and the blank medium. If there are N inks in the 

system, this model requires only N+1 measurements. The model assumes that 

ink and media interactions are homogenous. This model is widely used in the 

paint industry.  

The accuracy of the model is fairly good in predicting hue; however, it has 

problems in predicting chroma of two or more inks overlapped [15].             

Neugebauer Model ([18], [20], [21], [15]) 

The monochrome Murray–Davies model was extended to work for colour 

cases and to handle multiple inks by the 1937 landmark work of H. E. J. 

Neugebauer ([18]). The Neugebauer model predicts the reflectance of multiple 

colorants by summing the products of the fractional area coverage of each 

colorant and its reflectance at full area coverage:  

(6) 

∑
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N represents the n Neugebauer primaries at maximum ink coverage. For 

instance, for a 3-colorant system, CMY, there are 8 primaries: medium, single 

separations (C, M, Y), two-colour overlap (CM, MY, CY), and three-colour 

overlap (CMY=K). ai is the area coverage of each primary. There are two 

common assumptions used when calculating the area coverage. The Demichel 

model, [19], assumes that the half tone dots are printed randomly on the 

medium. For instance, the area coverage of two inks in a 3-ink system is no more 

than the joint probability of these two inks. The equation below shows the area-

coverage calculation using the Demichel model. C represents the percentage of 

cyan ink from maximum coverage. Similarly, M and Y are defined as the 

maximum area coverage of the magenta and yellow.  

(7) 
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The second dot area coverage, Dot-on-Dot, assumes perfect dot 

placement overlap.  

Similar to the Murray-Davies model, the linear interaction assumption fails 

for the Neugebauer model because of optical and physical dot gain. In 1951, 
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Yule and Nielsen introduced a method to model nonlinear interaction of ink and 

medium [20]. They showed that the nonlinear relationship between measured 

and predicted reflectance could be well described with a power function. Based 

on their result, they introduced a modification to the Murray-Davies model as:  

(8) 
n
paperi

n
i

n RaRaR /1
,

/1
%100,
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where n is a parameter to describe the behaviour of light spreading in the 

medium. Typically, a nonlinear optimization is used to find the best Yule-Nielson 

value. By applying Yule-Nielson theory to the Neugebauer model, the Yule-

Nielson Neugebauer Model is obtained: 

(9) 

∑
=

=
N

i
i

n
i

n RaR
1

,
/1/1
λλ  

To improve on the accuracy of the Yule-Nielson Neugebauer model, the 

ink space can be measured at a higher resolution (larger number of cells). This 

extension is referred to as the Yule-Nielson Cellular Neugebauer (YNCN) Model 

[24].  

Measurement Requirement: If there are K colorants (inks) in the system 

there are 2K Neugebauer primaries and, thus, 2K measurements are needed. By 

adding a larger number samples to the system (r samples), there will be rK 
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measurements required. This model assumes a linear relationship between 

reflectance and coverage percentage in a space similar to log space. 

Challenges of Ink Modelling and Printer Characterization 

The Yule Nielson Cellular Neugebauer (YNCN) model is the most 

accurate model for characterizing the printer gamut in spectral space. However, 

as was discussed earlier, if there are K inks in the system with r samples along 

each ink dimension, there will be rK samples to be measured. This means the 

number of measurements required for this model grows exponentially as we add 

more inks or try to increase the number of samples.  

For spectral reproduction purposes, there is a need for a large number of 

inks in the system (around 9 or 12) and Tzeng et al. [26] have only extended the 

YNCN model to a 6-ink system accurately. One challenge would be to be able to 

extend this model to an N-ink printer system where N can be as large as 9 or 12 

dimensions.  

To reduce the complexity of the model, three concepts are considered in 

this paper. First, linearization of each ink before printing the training patches can 

be used to keep the Neugebauer cells in uniformly spaced locations and further 

reduce the necessary number of steps per colorant. Second, the physical 

constraints of the paper, such as the amount of ink it can reliably absorb, can be 

used to reduce the potential patches to only the patches that are physically 

possible to be printed. The third approach is based on a smarter transformation 
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of the printer gamut before interpolations are applied. This approach is a 

sophisticated version of the linearization method discussed in the first approach.  

Smarter Sampling: Uniform Sampling in Perceptual Colour Space 

In essence, the Cellular Neugebauer model is a piecewise linear model, 

and the Yule-Nielsen correction reduces nonlinearity related to dot gain, but does 

not capture all of the possible curvature caused by ink interactions, etc. One 

method to capture all the curvatures is to increase the sampling range. Using 

Taylor series expansion, we can expect that, if we increase the sampling size of 

the gamut indefinitely (distance between neighbours  0), the correlation 

between two very close neighbours (ink combinations) can be represented 

linearly.  

As discussed earlier, increasing sampling size is not practical, so another 

method can be to find a better process to capture the non-linearity between input 

ink combinations and output spectral reflectances.   

Linearization is a common transformation method used to improve 

accuracy of characterization methods for the output of electronic displays, such 

as CRT and LCD devices [1]. The intent of this method is to remove some of the 

non-linearity between input channels and output performance by linearizing input 

channels against the output performance of the desired device.  

The original design of YNCN model calculates the weights used for the 

interpolation based on variation in the input (ink density) and not what the 

variation in the input channels (ink densities) can cause in the output spectral 
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reflectance. By linearizing the input channels against the output reflectances, the 

weights for YNCN interpolation can be better adjusted so that fewer points are 

required to be used in interpolation. Raja Balasubramanian [87] introduced a 

method of linearizing the YNCN sampling to improve the modeling performance 

and reduce number of prints required.  

Physical Constraint: Ink Limiting 

Printing substrates  commonly have a certain ink limit beyond which the 

page is too saturated to print. In the inkjet realm this leads to issues such as 

cockle, bleed, dry time and gloss  non-uniformity. It is not reasonable to print and 

measure patches that violate the ink limit of the substrate medium. This 

observation can be used to significantly reduce the number of patches required 

to measure for the YNCN model. By imposing the constraint that it is not 

necessary to print or measure patches that violate the ink limit, the number of 

data points to measure for the model can be reduced by up to 97%. The 

following is a mathematical analysis of the effect of ink limiting on the number of 

training data points that can be printed without exceeding the physical ink 

limitation of the paper.  

In an inkjet printer, the maximum dispensable weight-per-unit-area Wi for 

each colorant i is defined by factors such as drop size, nozzles per inch, and 

number of passes. This value varies for each ink, and is generally between 50% 

and 100% of the overall ink limit of the medium. The "percent under limit" for 

each ink i is defined as Ui = Wi / InkLimit.  
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Given the number of colorants, k, the number of steps per colorant, n, and 

the percent under limit, Ui, the complexity subject to the ink-limit constraint can be 

computed. For simplicity, it is assumed that U = min(Ui) for all inks, which will 

error on the side of over-estimating the complexity. 

 In the case where U = 1, the printer is capable of delivering exactly the 

media ink limit with each ink individually. In two dimensions, the valid sample 

space is a triangle defined by (0,0), (n,0), (0,n) as shown in Figure 8.  

In general, the space of printable patches can be represented by a k-

simplex (hyper-simplex) defined by the origin and the points along each colorant 

axis at a distance of n. The area of such a region is [80] : 

 
Figure 8: Valid Patches for 2 inks with U=1. 

                                                                                                                                                     (10) 
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In the case where Ui is between 0.5 and 1, the valid space is a hyper-cube 

with sides of length n, and one corner removed by the ink-limit hyper-plane, as 

shown in Figure 9.  
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The volume of this region can be computed by calculating the area of the 

k-simplex formed by the ink-limit hyper-plane and subtracting the corners that are 

outside the printable hypercube, resulting in the following equation: 

                                                                                                                                                     (11) 
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Figure 9: Valid Patch Space for ½ < U < 1. 

For values of U less than 1/k, the ink-limited hyper-plane does not 

intersect the dispensable ink hyper-cube, so the complexity reverts to nk. 

Computations for 1/k < U > 1/2 are more complex, and are not generally needed 

since the colorants are generally defined with U ≥ 1/2.  

To determine how effective this constraint is on reducing the number of 

measurement points required for the YNCN model, this constraint  was 

implemented on two training sets, one on glossy photo media and the other on 

plain media. In the case of glossy media, 4 steps along the primaries on an 8-ink 
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printer required 6048 patches – a reduction of 91% over nk. On plain media, the 

same test required 2175 patches – a reduction of 97%. 

The cause for the difference in savings between glossy and plain media 

was related to a difference in the definition of the primary ink axes on those two 

media. One of the inks was not intended for use on glossy media, so its 

linearization table on glossy media was defined such that very little ink would be 

dispensed even at 100% fill. As a result, the U-value for that ink was very low 

and no clipping occurred in that dimension.  

By applying these constraints, the number of training data points is 

reduced substantially, which can cause some points in the printer gamut not to 

have all the neighbours required for interpolation. The next section discusses 

how the YNCN model can be modified to handle cases that do not have all the 

points for the interpolation.  

Handling the Missing Points (Neighbours) 

The YNCN model is based on interpolation between neighbouring 

primaries, some of which may have missing data because of the ink-limit 

constraint. This poses a challenge for the interpolation operation.  

To enable the YNCN model for N inks with missing neighbours, the 

weights for all neighbours are computed, the sum of weights for the missing 

neighbours is recorded as a "missing score" or M-score value for each 

interpolated point. The missing weights are then set to zero and the remaining 
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weights redistributed using a factor of 1/sum(weights) to re-normalize the sum 

back to 1. 

To redistribute the weights more accurately, the original Neugebauer 

model is modified so that weights are calculated based on the linearized distance 

of the neighbours in CIELAB colour space. For instance, if the variation along the 

yellow primary is smaller than the gray primary, neighbours of the gray primary 

will get a larger portion of the weights from missing neighbours.  

The second method that was considered handling the missing points was 

to extrapolate Neugebauer primaries so that the training data set is populated 

enough to cover missing neighbours for a given data set. The idea is that if the 

printer spectral gamut is extrapolated slightly, some of the missing points might 

be recovered and redistribution of interpolation weights avoided.  

The complexity of typical extrapolation algorithms grows rapidly as the 

dimensionality of the input data grows. A linear extrapolation method, applied to 

one ink at a time, was used in this investigation. For a missing neighbour, P, in 

an N ink printer system, N separate interpolations are calculated considering one 

of the N inks at a time, resulting in N separate spectral predictions. For each 

wavelength, weighted sums of the N predicted reflectances are used to calculate 

the predicted reflectance at the same wavelength for the missing neighbour.  
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Smarter Transformation and More Advanced Interpolation Method 

One of the other constraints of using the YNCN model, besides requiring a 

large number of training points, is the requirement for uniform sampling along 

each axis.  

Also, as it was discussed earlier, the Yule-Nielson factor was introduced to 

remove some of the non-linear interaction of ink and medium. Other techniques 

such as ISOMAP can be considered to better capture any nonlinearity in the ink 

and medium and thus improve the accuracy of the interpolation.  

 

 

Improving Printer Characterization using TPS interpolation based on Manifold 
Transformation 

One method considered in this study was to use a printer model based on 

Thin Plate Spline (TPS) interpolation. This model has the advantage that the 

number of training points and the computational requirements grow much more 

slowly than in the case of the YNCN model. In addition, TPS does not require 

training data to be sampled on an evenly spaced grid. 

TPS can be used to find a continuous function that maps between the set 

of inks and each of the output dimensions. For instance if the output spectral 

reflectance of an 8-ink printer is measured from 380nm to 730nm with a 10 nm 

sampling, TPS is used to create 36 separate functions mapping from N input 

dimensions (if there are N inks in the system) to each reflectance wavelength in 

10mm increments from 380nm to 730nm, 
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Many spaces appear to have a high dimensionality in a linear space, but 

actually have lower intrinsic dimensionality as the Swiss Roll example discussed 

earlier. It is possible that the lower dimensional space has a more linear 

correlation with the input values that created the space.  

One approach that is examined was to improve the printer modeling 

algorithms by transforming the output space (printer gamut) to a space that has a 

simpler correlation to the input data (ink densities). After the transformation is 

applied, TPS interpolation is used to interpolate between input ink densities and 

transformed printer gamut data points.  

The new interpolation method has the following steps: 

1. Find the geodesic distances of spectral reflectances in a printer gamut 

2. Map the printer gamut into a new space (typically of lower dimension) 

using the geodesic distances (ISOMAP Technique) 

3. Create continuous functions between input ink combinations and 

transformed gamut space 

Data Collection 

An 8-ink printer with the following inks was used to study performance of 

the model: cyan, magenta, yellow, light cyan, light magenta, black, gray, and light 

gray. The results are based on 6048 patches for training and 939 patches for 

testing. The patches were printed on glossy media with an ink limit of either 1.5 

or 2 drops of ink (depending on the ink type). 
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A GretagMacbeth Spectralino [5] was used to measure the spectrum 

reflectance of the printed patches consisting of 10nm sampling from 380nm to 

730nm. The Spectralino has an accuracy of around 0.30 ∆E94 between two 

different sets of measurements under the D50 illuminant. The printer has an 

average 0.75 ∆E94 page-to-page variation (including instrument variation). 

Implementation 

Drops of inks which are intended to fall on top of each other during the 

printing process can fall on top of each other (Dot-on-Dot), beside each other 

(dot-by-dot) or have a more random placement (Demichel). There are modeling 

methods to capture each scenario.  

In this section, both Demichel [23] and Dot-on-Dot [81] models were 

implemented. The Dot-on-Dot model assumes perfect dot placement during 

printing, whereas the Demichel equations assume a more random dot 

placement, which is more suited to ink-jet printers with a half toning process done 

to redistribute the dot placement. 

Three different methods for handling missing points in the model (missing 

neighbours) were implemented and studied. The three models are as follows: 

Distributing weights for missing neighbours with and without some linearization or 

extrapolating Neugebauer primaries to fill in missing neighbours as much as 

possible. These three approaches are referred to as Lin=0, Lin=1, Extrap=1.  

In order to find the proper Yule-Nielson correction factor, a search was 

done to find the best value. The search used starts with incrementing the Yule-
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Nielson factor and stops if the prediction accuracy is within 0.10 ∆E94 for the 

subsequent Yule-Nielsen values. 

Results 

Results: Modified YNCN (Smarter Sampling and Dealing with Missing 
Neighbours) 

Table 1 shows the accuracy of the model for both Dot-on-Dot and 

Demichel dot placement approaches. The results are shown both in ∆E94 for D50 

illumination and spectral difference calculated as Root Mean Squared (RMS) 

difference between prediction and input reflectances.  

Table 1 shows that the Demichel model is more accurate than the Dot-on-

Dot model for predicting reflectance of multi-ink systems and modeling. The data 

also shows that YNCN performance is improved by linearizing the training data 

before calculating the interpolation points. Figure 10 shows that the main error in 

the YNCN prediction comes from the data points that have too many missing 

neighbours. Table 2 also shows that correlation of the error with the missing 

neighbours when different methods are used to redistribute weights of the 

missing neighbours. The important conclusion taken from Table 1 is that a simple 

linear extrapolation of the training data point to recover as many as missing 

neighbours is more effective than redistributing the YNCN weights for the missing 

neighbours.  

 

 



 

 31 

 

 

Table 1: YNCN Performance for an 8-ink printer with missing Neighbours. Mean, Max and Std 
represent average, maximum and standard deviation of the error respectively [68] 

  ∆E94 RMS 

Demichel, YN=5.2, Lin=0 Mean 2.43 0.0072 

Max 10.92 0.048 

Std 1.49 0.0057 

Demichel, YN=5.1, Lin=1 Mean 2.31 0.0064 

Max 10.73 0.0613 

Std 1.34 0.00542 

Demichel, YN=4.1,Extrap=1 Mean 1.48 0.0047 

Max 5.12 0.0284 

Std 0.81 0.00299 

Dot-on-Dot, YN=7.5, Lin=0 Mean 8.54 0.0363 

Max 37.46 0.2848 

Std 5.42 0.0367 

Dot-on-Dot, YN=7.3, Lin=1 Mean 7.87 0.0313 

Max 29.38 0.257 

Std 5.08 0.0326 

Dot-on-Dot, YN=7.1,Extrap=1 Mean 3.00 0.00584 

Max 11.75 0.0471 

Std 1.56 0.00465 
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Figure 10: Correlation of missing neighbours and error for Extrap=1 method, R2=.38.  

Table 2: Correlation between missing score (percentage of missing neighbours) and error 
in the model (∆E94) 

Method Correlation 

No Extrapolation, No Linearization (Lin=0) 0.63 

No Extrapolation, with Linearization (Lin=1) 0.48 

Extrapolation, No Linearization (Extrap=1) 0.38 
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Result: Manifold Based Printer Model 

All the existing printer modeling algorithms including the YNCN model are 

based on different interpolation techniques. The accuracy of most interpolation 

techniques is improved if the input data has a simple correlation with output data. 

For this reason, the Yule-Nielson factor is used in the YNCN model to transform 

the spectral output to a space that has a more linear relation to the input ink 

densities.  

Figure 11 shows a dimensionality analysis of the printer spectral gamut of 

the 8-ink printer system before and after applying a Yule-Nielson value of 2 

(Note: Using a Yule-Nielson factor of 2 is effectively applying logarithmic 

transformation of base 2). Principal Component Analysis (PCA) is applied to the 

data set, and residual variance between reconstructed data from PCA basis and 

original data is plotted in the Y axis. The X axis represents the number of bases 

used to reconstruct the input data. 

The figure shows that, after applying a non-linear transformation to the 

printer gamut, the dimensionality of the gamut is reduced to almost 4 rather than 

6 dimensions.  
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Figure 11: Residual error of spectral recovery as a function of reflectance dimensions. The data is 
for spectral measurement and spectral measurement after a  logarithmic transformation.  

 

Knowing that the Yule-Nielson transformation was effective in reducing the 

dimensionality of the printer gamut, the ISOMAP transformation was used to test 

whether this transformation can be optimized and, thus, improve the printer 

modeling algorithms. Figure 12 shows that after the ISOMAP transformation is 

applied to the printer spectral gamut, the dimensionality of the system is reduced 

to 3 dimensions. The figure also shows that applying a Yule-Nielson 

transformation after ISOMAP transformation does not help with the 

dimensionality reduction.  
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Figure 12: Residual error for spectral recovery of the 8-ink printer spectral gamut after ISOMAP 
transformation. ISOMAP (LOG) shows when a Yule-Nielson of value 2 is applied to the ISOMAP 
transformed gamut data.  

 

The first important observation that can be drawn from this comparison is 

that the printer spectral gamut may not be as complex as it has been observed 

by looking at the gamut space directly. Knowing how neighbouring points that 

created the printer spectral gamut are connected to each other can be used 

towards space complexity reduction of the printer gamut. The second 

observation is that knowing which ones are the true neighbours of a point on the 

printer gamut and how they are connected to the point of interest, more accurate 

weights than those yielded by the YNCN model should be calculated for the 

printer model. 

To evaluate the accuracy of the new modeling algorithm, TPS 

interpolation was used to interpolate between ink density and output spectral 

reflectance before and after the ISOMAP transformation. Since the ISOMAP 

calculation has higher time complexity than the YNCN algorithm, the training 
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sample size was  reduced to half of the training sample size used for the YNCN 

model in order have a similar or slightly faster modeling algorithm. The samples 

were selected randomly from the ones used in the YNCN model.  

Figure 13 and Table 3 present the performance of the TPS interpolation to 

predict the spectral gamut directly and after ISOMAP transformation. The results 

are compared against the YNCN model. The data shows that applying TPS 

interpolation to predict the spectral printer gamut directly, given ink densities, has  

poor performance. The performance is slightly improved if the interpolation is 

applied after the printer gamut data has gone through a logarithmic 

transformation. This can be explained by knowing that the transformed space 

has a lower dimensionality (as presented in Figure 11).  

On the other hand, applying TPS interpolation after the ISOMAP 

transformation is as accurate as the YNCN model, when only half of the training 

data points were used for this new model.  

 

Table 3: Performance of Geodesic (ISOMAP) and Linear based modelling of the 8-ink printer 
system using TPS (Thin Plate Spline) interpolation. ISOMAP (LOG) and Spectral (LOG) 
represents TPS interpolation applied to each space after they have gone through a logarithmic 
transformation (which is similar to having the Yule-Nielson factor equal to 2).  

 RMS   ∆E94   

 Mean Max Mean Max 

YNCN 0.0047 0.0284 1.48 5.12 

Spectral 0.0097 0.1027 3.1 47 

Spectral (LOG) 0.0086 0.09 2.1 23 

ISOMAP 0.005 0.0629 1.99 6.71 

ISOMAP (LOG) 0.0049 0.068 2.1 7.2 
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Figure 13: Performance of Geodesic (ISOMAP) and Linear based modelling compared 
against the YNCN model. The vertical axis represents the average error 
calculated as the Root Mean Square difference between predicted reflectance 
and measured values.  
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CHAPTER 4: NUMBER OF PRIMARIES  

One of the main goals in spectral reproduction is to reduce metamerism 

by matching each input spectrum as closely as possible, while requiring the 

minimum number of primaries. In the printing industry, to make a good spectral 

match, the printer gamut is expanded by adjusting the chemistry of the inks, and 

especially by increasing the number of the inks used in the printer [28], [29], [30]. 

Similarly, in cameras and display technologies, it is now common to make the 

system with more than the traditional three primaries (sensors, LEDs, filters or 

phosphors) to further reduce the degree of metamerism [32], [33], [34]. The focus 

of this section is to determine a lower bound on the number of primaries needed 

to do a reasonable job in spectral printing.  

Calculating Data Set Complexity  

A simple approach to measuring the complexity of a data set is to assume 

that the number of channels needed in a system is limited and relates to the 

underlying dimensionality of the captured data in a linear space. Approaches 

such as Principal Component Analysis (PCA) and Independent Component 

Analysis (ICA) are widely used in research-related spectral data dimensionality 

where it is agreed that a small number of basis functions is adequate to 

represent a high dimensional data set accurately.  
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For instance, in studies of Munsell Colours, Eem et al. [35] proposed four, 

Maloney [36] proposed five to seven, Burns [32] suggested five to six, Parkinnen 

et al. [37] and Wang et al. [38] proposed eight, and Hadeberg et al. [39] 

recommended as many as 18 basis functions to represent the data accurately. 

Even though there are variations in their findings -- because of having different 

thresholds for measuring the similarity between the original and matched spectral 

data -- all the authors used similar techniques to analyze the complexity of a data 

set.  

Recently the focus of the research has been on proposing the number of 

needed basis functions plus their reflectance characteristics [27][30]. The 

advantage of these approaches is that the proposed basis functions have similar 

reflectance or sensitivity characteristics to physically available solutions. Using 

these methods, researchers can optimize the characteristics of the primaries in a 

system to better capture or reproduce a reflectance with a minimum number of 

primaries.  

Rotated PCA Basis 

PCA provides a method to determine the dimensionality of the spectral 

sample population [40]. PCA has been widely used in colour-related applications 

[41], [42]. The main assumption of this technique is that the set of sampled 

vectors (A) is multivariate normally distributed in the original dimensionality 

(typically 31 dimensions for spectral analysis). The linear combinations of the first 

p eigenvectors should describe the entire set of Aλ if the original was created by 

p linear basis, i.e.:  
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  (12) 

EB== ∑
=

p

i
iisample ebA

1
,, λλ  

Where eλ,I is the ith eigenvector and bi is the corresponding coefficient to 

reconstruct a sample.  

 One of the drawbacks of using techniques such as PCA is that the 

returned basis functions do not necessarily correlate to the physical 

dimensionality of the data. For instance Di-Yuan et al. [27] observed that the 

PCA basis functions representing a set of painting reflectances have negative 

values which do not correspond to the actual ink amounts (Figure 14).  

 
Figure 14: The six eigenvectors obtained from the still life painting by Di-Yuan [27]. 

One approach to overcome the negative values of the basis function is to 

develop a linear transformation of the basis functions so that the new functions 
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have all positive values. Ohta [43] proposed running a regression search method 

to find the best transformation of the PCA basis functions that reconstructs the 

spectral data set accurately and which has two main properties: all the basis 

functions have positive values and the concentration matrix should have all non-

negative entries. After the transformation is applied to the PCA basis, the bases 

are not necessarily orthogonal to one other.  

PCA Eigenvector without Sample Mean 

Di-Yuan et al. [27] proposed eigenvector reconstruction of PCA without 

removing the sample mean to find basis functions that are closer to realistic 

primary characteristics. Using PCA basis functions a spectrum can be 

reconstructed as: 

  (13) 

∑
=

+=
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i
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1
,,, λλλ  

The sample mean used in PCA is only a statistical parameter which 

specifies the average data set behaviour. The sample mean does not represent 

any physical colorant. Also, since the eigenvectors are the only clue leading to a 

set of possible colorants, the sample mean must be excluded to maintain the 

transformation relationship between eigenvectors and the set of possible 

colorants which is specified by the above equation.  
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Di-Yuan et al. ran an experiment on a data base of paintings created by 

six independent acrylic-paints. 126 samples were measured. Figure 15 shows 

the properties of the 6 paints.  

 

 
Figure 15: The six acrylic-paints used for generating the sample population. The vertical axis 
shows the K/S factor of Kubelka Munk theory, a representation of reflectance 
(absorption/scattering). 

 
 The initial six rotated eigenvectors without removing the mean are shown in Figure 15.  

Table 4 shows the accuracy of using the first 6 basis functions of PCA in 

reconstructing spectral reflectance. The data shows that the 6-basis-driven 

analysis using the described method can reproduce the intended set of data 

quite accurately.  
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Table 4: Colorimetric accuracy of the six estimated colorants for the painting database 

 DeltaE94 
Mean 0.22 
STD Deviation 0.16 
Maximum 0.92 
Minimum 0.02 

 
As shown in Figure 15, the estimated colorants are not similar to the 

measured reflectance of the 6 paints. There is also a colorant spectrum (thick 

dotted line) with various absorption bands across the visible spectrum. None of 

the predicted colorants represents a flat (neutral) spectrum either. The neutral 

colorant with an approximately flat spectrum can be approximated using a linear 

combination of the other five estimated colorants. To include the neutral colorant 

in the predicted basis, a new constraint was proposed to first estimate the neutral 

colorant using linear regression to fit the perfectly flat spectrum by the six 

eigenvectors. Then, the most significant fix eigenvectors were rotated individually 

to a non-negative representation. The curves of the new 6 reflectances are 

shown  
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Figure 16: The estimated colorants (solid lines) and the original colorants (marked as start) used 
in the painting data base. 

 

Multi-Peak Primaries [30] 

 As discussed earlier, in order to match the characteristics of predicted 

primaries to those of real primaries, a constrained search was used to guarantee 

positive reflectances or sensitivities [27][43]. 

Previous approaches worked with reasonable accuracy in lower 

dimensions. However, the modulation of the characteristics of the primaries is 

proportional to their order, i.e., additional vectors have an increasing number of 

peaks. It is preferred that, as the number of primaries increases, the algorithm 

can find the primaries that have non-negative values so  that their individual 

sensitivities  can be concentrated in distinct regions of the visible spectrum [30]. 
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For example, in a trichromatic camera, the sensors are commonly chosen to be 

red, green and blue so the peaks are almost evenly spaced in the visible 

wavelength. Finally, it is preferred that the transformed vectors should ideally 

span the same space as the original.  

Hardeberg et al. [30] proposed a search algorithm based on varimax 

rotation preferences [31] to develop a transformation that meets the above 

preferences. This transformation can be represented as a matrix transformation 

B, such that matrix B takes an initial basis to a non-negative basis. The algorithm 

searches for an orthogonal rotation to B that maximizes the preferences 

(varimax) criterion. The preference (varimax) metric is a combination of distance 

of the peaks plus width of the peaks. For instance, it can include the preference 

that the peaks of sensors in a camera system be spaced equally and have 

similar widths. The preference metric can also be more specialized. For instance, 

it can be adjusted to allow wider peaks at lower wavelengths.  

Hardeberg also emphasizes that most of the synthetic analysis that is 

done on the number of primaries and their characteristics does not consider the 

noise that exists in the real system. Adding more primaries improves 

metamerism if the system is noise free. However, if each primary has noise in 

reproducing or capturing a reflectance, more primaries means a higher noise 

level and thus lower reproduction accuracy. He created the data base by adding 

two types of noise to the modelled reflectances: 

  (14) 
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quantshot
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Nshot represents the noise in generation and reflection of light, and Nquant is 

the noise associated with quantising the simulated responses. Figure 17 

compares the effect of noise in a camera system plus the effect of imposing 

preferences on sensor characteristics. Piche and varimax are two ways of 

imposing the preference that Hardeberg considered on a data base of 1269 

Munsell reflectances.  

 

 
Figure 17: The effect of increasing the number of sensors with 12-bit quantization and 1% shot 
noise. 

Compared to synthetic noise-free systems, Hardeberg found that when 

the real physical constraints of a system are considered, many fewer sensors are 

required to get the maximum reconstruction from the system.  
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Analysis of Primary Characteristics 

In this section, a method is proposed to evaluate the extent to which 

spectral reproduction accuracy is improved as more and more primaries are 

used. The effect of primary reflectance characteristics on device output gamut 

performance in spectral space is also considered.  

Primary Selection 

One purpose of this experiment was to understand the effect of primary 

reflectance characteristics on the accuracy of spectral reproduction. This data 

can help better define what changes can be done with respect to a given set of 

primaries in order to optimize the accuracy of spectral reproduction and reduce 

metamerism in a system. Reflectance characteristics that will be discussed are 

the effects of variations in the number of primaries, percentage of overlap 

between each primary and degree of smoothness of each primary reflectance.  

To compare the performance of the available primaries in the industry 

against what can be used as an optimal set, two general sets of primary 

characteristics were used in this study. One set was based on reflectances of 

real inks, and the other set was synthetic primaries (ink or filter light reflectance 

depending on the device model used). Both synthetic and actual measurement 

data were used to make the result less dependent on a specific ink selection. 

The real ink reflectance measurements were based on actual prints of pigmented 

inks. The following 9 inks were used: orange (O), cyan (c), magenta (m), yellow 

(y), Green (Gr), violet (V) and black (K), light magenta (LM) and light cyan (LC).  
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Three types of synthetic primaries were also used. The first type of 

reflectance used was based on square-wave reflectance as shown in Figure 18 

where the edges are sharp, and thus resembles sub-sampling of the spectral 

reflectance. The 3 inks, as shown in Figure 18, cover the visible wavelengths 380 

to 730, and are non-overlapping. The 6 inks were created by subdividing each 

ink in the 3-ink model into two separate square waves. The set of 9 and 12 non-

overlapping inks were created similarly. The white of the print medium was taken 

to be the ideal white with 100% reflectance at all wavelengths. 

 
Figure 18: 3 Square wave synthetic ink reflectances covering 380 to 730 nm equally. 

The second set of primaries studied has a more gradual transition from a 

non-absorbance region to the area of reflectance absorbance. This set of 

reflectances was used to compare the effect of having a tail (gradual transition 

between the absorptive and non-absorptive regions of each primary) on the 

accuracy of spectral reproduction.  
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Two sets of primaries with tailed overlap were considered as shown in 

Figure 19 and Figure 20. One set was based on modified square-wave 

reflectances with longer tails with the other set more sinusoidal (Figure 20).  

 
Figure 19: Two primaries with non-smooth tailed endings. The reflectances of these primaries 
have a gradual transition between absorptive and non-absorptive regions. 

 

 
Figure 20: Two primaries with smooth tailed endings. The reflectances of these primaries have a 
smooth gradual transition between absorptive and non-absorptive regions.  
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Figure 21: Reflectance of real inks measured. The curves show the smooth and long tails that are 
common for real reflectances. 
  

 

Another contributing spectral reflectance characteristic of primaries 

studied was the percentage of spectral reflectance overlap. To evaluate the 

possible benefits of overlap for each type of reflectance, a set of 4 different 

reflectances in each reflectance type with 0%, 10%, 20% and 40% overlap was 

used. Figure 22 and Figure 23 compare two different sets of square-wave 

functions with different degrees of overlap.  

 
Figure 22: Square-wave reflectance functions with 0% overlap. 
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Figure 23: Square-wave reflectance functions with 20% overlap. 

Device Characteristics 

To evaluate the effect of the interactions between the primaries on the 

spectral reproduction accuracy, two types of device models were considered. 

Two device models, denoted LP (linear projector) and TK (Tzeng simple-Kubelka 

Munk), were used to predict the spectral reflectance resulting from printing or 

displaying a given primary combination. For LP, the displayed reflectance was 

assumed to be a linear combination of the primary reflectances. The equation 

below expresses how the model works: 

                               (15) 

                                 Rλ = [ΣciRλ,i] = C(1xn)Rλ(nx1)                                                       

R λ,i is the reflectance of primary i at 100% density, and ci is the area 

coverage. Rλ(nx1) represents a matrix of size nx1 of reflectances at wavelength λ.  

The LP model assumes that the primaries mix linearly in a subtractive 

colour mixing system and there is no non-linear interaction between the primaries 

[64]. The advantage of LP is that the ink separation algorithm to reproduce an 

input reflectance becomes a straightforward linear algebraic operation. In 
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addition, this model is quite similar to how output for displays (e.g., monitors and 

projectors) is modelled [1] and, because of that, the data from the LP model can 

also be used to evaluate the performance of displays using different primary 

characteristics.  

The printer model, TK, introduced by Tzeng et al. [27], [29], was used to 

mimic the real ink and media reflectance. The following equations were used to 

predict the reflectance of multi-ink printing system: 

            (16) 

Rλ = (Rλ
1/w

paper - ψλ,mixture) w                                                                                      

             ψλ, mixture  = Σci Riλ 

          ψλ = Rλ
1/w

paper - Rλ,i
1/w                                       

where w is the non-linearity weight similar to Yule-Nielsen factor [21] and 

Rλ,i is the reflectance of the ith ink as a function of wavelength.  

Evaluation Method 

To determine how the number of primaries affects the accuracy of spectral 

reproduction in terms of reproducing spectra, spectral matches for 3-, 6-, 9- and 

12-primary devices (LP and TK models) were calculated. The performance of 

these synthetic primaries was compared against real ink spectral reflectances in 

order to understand how optimized the reflectances of the existing inks are. For 

case of the reflectance of actual inks, the 3 inks considered are the most 

common 3 inks used in practice, namely, cyan, magenta, and yellow. For the 6-
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ink case, the initial 3 inks are retained, and 3 more complementary inks are 

added, namely, orange, green, and violet. light cyan, black and light magenta are 

added to these 6 for the 9-ink case.   

However, the complexity of the conventional methods for evaluating 

gamut performance of a printer grow exponentially as the dimensionality of the 

input data increases (The analysis is discussed in more detail in Chapter 4). One 

method to indirectly evaluate spectral gamut size of a printer system which 

includes a set of primaries and a printer model is to evaluate how accurately the 

printer system can reconstruct a database of input reflectances. This method 

depends on spectral gamut mapping algorithms to estimate the printer gamut 

size.   

For the LP (Linear Projector) model -- since the primaries interact linearly 

with each other -- gamut mapping becomes a simple linear projection operation. 

The equation below shows the process of deriving the closest primary 

combination to reconstruct an input reflectance:  

                                           Rλ = [ΣciRλ,i] = C(1xn)Rλ(nx1)                                                              (17)  

                                         C(1xn) = (Rλ(nx1))
-1  Rλ                                                  

However, when the primaries interact non-linearly, gamut mapping 

becomes more complicated.  
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Hierarchical Search (HS) Gamut Mapping Algorithm  

For the TK printer model -- since the primaries interact with each other 

and the media non-linearly -- the gamut mapping process cannot be done using 

a linear projector operation. There are some proposed methods to handle gamut 

mapping in spectral space that will be discussed in Chapter 4. However, most of 

these spectral gamut mapping algorithms try to improve their time or space 

complexity at the expense of accuracy.  

To understand the effect of each primary characteristic on gamut 

performance independent of the gamut mapping algorithm performance, results 

were based on a search-based mapping algorithm. This algorithm is based on 

hierarchical search in ink space where the search is done in subdivisions of ink 

combinations. Let the set of the subdivisions of ink space be M, where there is a 

spectral reflectance associated with each ink combination, mi, in M. The 

algorithm is as follows:  

1. Find the closest mi spectrum to a given input point p in spectral 

space.  

2. Create a grid of ink subdivisions around mi with smaller ink 

variation.  

3. Go back to step 1 until the grids are small enough. Then go to the 

next step. 

4. Return the spectral reflectance of mi as the closest point. 
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The main drawback of the search algorithm is that its accuracy highly 

depends on the sampling resolution of the system. Because of the exponential 

growth in the sampling as a function of the number of inks in the system, a 

modification to the search algorithm is needed for printer systems with 9 or more 

inks. The modification involves breaking the spectral wavelength range into 

segments and running the search for each segment independently. The premise 

is that if the reflectance wavelength of interest is segmented into T subsections, 

each section can be analyzed separately. To account for inks that have 

absorption sensitivity on more than one segment, the neighbouring segments 

have 30% overlap in their wavelength. For example working with spectral 

reflectances ranging from 380 to 730 wavelengths with 3 segments, the first 

segment covers 380 to 520, the second one covers 470 to 640 and the third one 

covers 590 to 730 nm in wavelengths.  

For each segment, the algorithm only considers the inks that have 

absorption sensitivity in that segment wavelength range. Applying this second 

filter reduces the number of inks that need to be considered, thus enabling the 

search method to have similar sampling rate as for printer systems with fewer 

number of inks.   

Optimizing the HS Parameters 

For the HS algorithm, there are two sets of parameters to optimize. The 

first set of parameters represents the maximum number of iterations allowed 

during the search and the number of samplings to have along each dimension.  
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The second set of parameters represents the number of segments that the 

input reflectance will be divided into and the percentage of overlap between 

neighbouring segments. The higher the number of segments, the fewer the 

number of primaries in each segment and, thus, the faster the search algorithm 

will be. However, smaller segments means more segments that the search has 

to deal with. Also, if the segments are too small (cover small range of 

wavelength) and the overlap percentage is kept the same, the accuracy of the 

model can be low. As a result, a balance needs to be made between the number 

of segments and the overlap percentage.  

The output of the HS algorithm was evaluated on an output system with 

LP primary interaction (linear interaction). Doing so enabled a comparison of HS 

performance against linear projection, as well as optimization of the parameters 

to get the lowest error from the HS search algorithm.  

 In this experiment, the first parameter, which is the number of search 

iterations, was kept constant for 3, 6, 9 and 12 ink printer systems. For 3 and 6 

ink systems, based on the comparison to the LP output model, it was enough to 

use only one segment. For 9 and 12 ink printer systems, 1, 2, 3 and 4 segments 

in spectral space with 10, 15 and 20 percent overlap for each were tested and 

the best parameter was selected. Table 5 represents the performance of the HS 

algorithm against projection method for square type inks. The table shows that 

after selecting the right search parameters, the HS search method finds results 

that are very similar to the direct linear projection method. The parameters are 

then used for HS search algorithm for TK printer model.   
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Table 5: Performance of the HS search for 3, 6, 9 and 12 ink printer systems with the LP Printer 
model. The performance was compared against the linear projection method that returns the true 
answer. Square wave inks were used in the experiment.  

Number of Inks mean deltaE max deltaE min deltaE 

3 0.263 1.09 0.14 

6 1.09 2.39 0.04 

9 1.23 2.61 1.64 

12 1.58 3.39 1.69E-01 

Evaluating Metamerism 

Root Mean Square (RMS) difference between two reflectances is one of 

the common metrics used for evaluating the similarity between two spectral 

reflectances. However, RMS (root mean square) does not necessarily represent 

the difference that may be perceived by a human observer. As an alternative 

measure, the average colour variation calculated as deltaE94 of the two spectral 

reflectances found under 11 different lights was used. The 11 illuminants used 

were from the Simon Fraser data base [65] shown in Table 6.  

 

 

 

 

 

Table 6: The 11 different illuminations used in measuring the colour variation of two similar 
reflectance spectra. This data is from Computational Vision Lab at Simon Fraser University [65].  
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11 illumination types used for delta E comparison 
Sylvania 50MR16Q (12VDC)---A basic tungsten bulb 
Sylvania 50MR16Q (12VDC) + Roscolux 3202 Full Blue filter 
Solux 3500K (12VDC)--Emulation of daylight 
Solux 3500K (12VDC)+Roscolux 3202---Emulation of daylight 
Solux 4100K (12VDC)--Emulation of daylight 
Solux 4100K (12VDC)+Roscolux 3202---Emulation of daylight 
Solux 4700K (12VDC)--Emulation of daylight 
Solux 4700K (12VDC)+Roscolux 3202---Emulation of daylight 
Sylvania Warm White Fluorescent (110VAC) 
Sylvania Cool White Fluorescent (110VAC) 
Philips Ultralume Fluorescent (110VAC) 

 

 

Scene Data Base and K Means 

To evaluate the effect of each ink on spectral gamut coverage, the scene 

reflectances from the Simon Fraser University (SFU) database were used as 

target reflectances to reproduce. There are 1350 individual reflectances in the 

database. However, time complexity of the HS ink separation method grows 

exponentially as the number of primaries used in the system increases. To speed 

up the evaluation process, the number of scene reflectances used in the 

experiment was reduced to a smaller set. In order to have the smaller reflectance 

database better represented, the original database was classified to subsets. K-

means clustering  was used to classify the original database to smaller subset 

[83]. This clustering technique includes four steps: (1) Select k initial start points 

as cluster centres; (2) Calculate each pixel's distance to the cluster centre; (3) 

recalculate each cluster's centre; (4) Repeat until converged to a stable status. 
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It was found that the SFU scene database can be classified to 80 disjoint 

classes accurately enough.  One reflectance from each cluster is used to 

represent the cluster. All the evaluations in this section are based on the 80 

selected scene reflectances. Figure 24 and Figure 25 show the complexity of the 

80 selected reflectances. The figures show that in a linear system, if the 

primaries are selected optimally, at least 4 primaries are needed to have less 

than 2 deltaE94 colour reproduction and very similar spectral reflectances. This is 

assuming that the primaries can have both positive and negative reflectances 

(which is not realizable in real printers or displays).  

 

 
Figure 24: Mean Root Mean Square residual error as the number of PCA bases increases. 
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Figure 25: Mean DeltaE94 error between reconstructed reflectance and the database reflectance 
when different numbers of PCA bases used. DetaE94 is calculated as average detalE under 11 
different illuminations provided from the SFU database.  

Results 

Primary Overlap 

In this section, the effect of having different percentages of overlap 

between the primaries is evaluated. The result is repeated for each type of 

primary reflectance. Figure 26 shows that for the square type reflectances, as the 

overlap percentage increases, the accuracy of the spectral matching will 

decrease. Figure 27 shows similar behaviour if the performance is evaluated as 

∆E94 colour difference under 11 different illuminations.  

Figure 28 looks at one reflectance matching using 6 square waves with 

0% overlap and 20% overlap. The figure shows that for square type waves, for 

which both the centre of the signal and the edges of the signal have similar 

coverage (i.e., there is no tail for the signal), having overlap on the primary 

reflectances causes a significant drop in reproduction accuracy. This is an 

indication of a drop in gamut coverage of the device.  
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Figure 26: Spectral Gamut coverage of square wave ink given 3, 6, 9 and 12 inks evaluated as 
Room Mean Square difference between the database of reflectances and the closest reflectance 
matches that fall on the gamut. The printer model is based on non-linear (TK) model. 

 

   

 
Figure 27: Spectral Gamut coverage of square wave ink given 3, 6, 9 and 12 inks evaluated as 
DeltaE94 colour difference between the database of reflectances and the closest reflectance 
matches that fall on the gamut. The error is shown as average variation under 11 different 
illuminations. The printer model is based on non-linear (TK) model. 
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Figure 28: Input reflectance and closest match using 6 ink square waves with 0 and 20 % 
overlap. The printer model is based on non-linear (TK) model. 

 

 
Figure 29: Spectral Gamut coverage of square wave ink given 3, 6, 9 and 12 inks evaluated as 
Room Mean Square difference between the database of reflectances and the closest reflectance 
matches that fall on the gamut. The printer model is based on linear (LP) model. 

 

Considering trapezoidal signals (Figure 30) which have a tail (slower drop 

in their absorption sensitivity compared to square wave), some level of overlap 

improves printer spectral gamut performance. This characteristic holds for a sine 

wave signal as well, as shown in Figure 32 and Figure 33.  
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Figure 30: Spectral Gamut coverage of trapezoidal wave ink given 3, 6, 9 and 12 inks evaluated 
as Room Mean Square (RMS) difference between the database of reflectances and the closest 
reflectance matches that fall on the gamut. The printer model is based on a non-linear (TK) 
model. 

 

 

 
Figure 31: Input reflectance and closest match using 6 ink square waves with 0 and 20 % 
overlap. The printer model is based on a non-linear (TK) model. 

 



 

 64 

 
Figure 32: Spectral Gamut coverage of sine wave ink given 3, 6, 9 and 12 inks evaluated as 
Room Mean Square (RMS) difference between the database of reflectances and the closest 
reflectance matches that fall on the gamut. The printer model is based on a non-linear (TK) 
model. 

 

 

 
Figure 33: Spectral Gamut coverage of sine wave ink given 3, 6, 9 and 12 inks evaluated as 
Room Mean Square (RMS) difference between the database of reflectances and the closest 
reflectance matches that fall on the gamut. The printer model is based on a linear (LP) model. 

 

Primary Interaction Model 

Figure 35 Compares gamut coverage of the two primary interaction 

models for square waves. Previous data showed that for the square wave 
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functions, the more the two primaries overlap the lower the gamut coverage 

becomes (Figure 26). One hypothesis can be that if the primaries have optimal 

spectral overlap percentage, then the two interaction models (linear and non-

linear) have similar gamut coverage. However, once there is more overlap 

between the primaries’ absorption sensitivity regions than what is optimal, then a 

non-linear system has better performance. A possible explanation for this is that 

when the inks have more than the optimal overlap, there are many irregularities 

(non-uniformities) between the matched reflectance and the target reflectance. 

When a non-linear system is used, some of these irregularities are smoothed out, 

which can result in a more accurate reproduction as shown in Figure 34.   

 

 
Figure 34:  Spectral match of a scene reflectance using a 3-ink system with square wave inks of 
20% overlap. The reproduction is shown for linear and non-linear systems. For linear system the 
reproduction error has RMS value of .11 and non-linear system has .065 
 

Similar behaviour is seen for the sine and trapezoid shape signals that 

have longer tails. Figure 36 and Figure 37 show that for signals with not enough 



 

 66 

overlap between the primaries, a linear model performs better. When there is 

enough overlap (e.g. 10% for trapezoid signal or 20% for sine wave), then both 

linear and non-linear models have overall similar coverage. On the other hand, 

when there is more than optimal overlap between signals, primaries with non-

linear interaction result in a better reproduction than if they had linear interaction.  

Typical inks used in the printers are a good example of primaries with long 

tails. Based on observations using synthetic inks, the expectation is that these 

inks (real inks) would have better spectral gamut coverage in a non-linear system 

than a linear system. Figure 38 confirms the expectation, where 3, 6 and 9 real 

ink reflectances were used.  

 
Figure 35: Performance of square wave primary evaluated as RMS of match between scene 
reflectance and the closest match on the system gamut. 
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Figure 36: Performance of square wave primary evaluated as RMS of match between scene 
reflectance and the closest match on the system gamut. 

 

 
Figure 37: Performance of square wave primary evaluated as average RMS of match between 
scene reflectance and the closest match on the system gamut. 
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Figure 38: Performance of real ink reflectances as average RMS of match between scene 
reflectance and the closest match on the system gamut (both linear and non-linear models are 
evaluated).  

Number of Primaries 

The focus of this study was to understand whether the spectral gamut 

coverage of the device is improved when more primaries are made available in 

an output device.. The result in this section tries to explain how many primaries 

are needed in a device to get an accurate spectral colour reproduction system 

when the reflectance or absorption characteristics of the primaries are, or are 

not, optimized for reproduction purposes.  

Figure 39 and Figure 40 show, for close to optimum square wave 

primaries, the spectral coverage of a device gamut improves noticeably as the 

number of primaries increases (whether the error is measured in RMS or 

DeltaE). On the other hand, if the overlap percentage for the same type of 

primaries is larger than what is desired (having non-optimum primaries), then the 

gamut coverage of the output device does not improve continuously as the 
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number of primaries increase (Figure 41 and Figure 42). The data shows that for 

non-optimized primaries, the gain from having a higher number of primaries 

(especially after 6 primaries) is cancelled by the noise in spectral reproduction 

from having a higher than optimized overlap amount. Similar behaviour is seen 

for output devices with linear primary interaction (Figure 43).  

 

 
Figure 39: Spectral Gamut coverage of sine wave ink at 20% overlap (the better overlap amount) 
for 3, 6, 9 and 12 inks evaluated based on mean RMS difference between the closest match on 
gamut and the goal reflectance. Mean RMS is on Y axis.  
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Figure 40: Spectral Gamut coverage of square wave ink at 0% overlap (the better overlap 
amount) for 3, 6, 9 and 12 inks evaluated based on mean RMS difference between the closest 
match on gamut and the goal reflectance. Mean RMS is on Y axis. 
 
 

 
Figure 41: Spectral Gamut coverage of sine wave ink at 40% overlap (the undesired overlap 
amount) for 3, 6, 9 and 12 inks evaluated based on mean RMS difference between the closest 
match on gamut and the goal reflectance. Mean RMS is on Y axis.  
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Figure 42: Spectral Gamut coverage of square wave ink at 20% overlap (the undesired overlap 
amount) for 3, 6, 9 and 12 inks evaluated based on mean RMS difference between the closest 
match on gamut and the goal reflectance. Mean RMS is on Y axis. 

 

 

Figure 43: Spectral Gamut coverage of square wave ink at 40% overlap for a linear system. 3, 6, 
9 and 12 inks evaluated based on mean RMS difference between the closest match on gamut 
and the goal reflectance. Mean RMS is on Y axis. 
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CHAPTER 5: SPECTRAL GAMUT MAPPING AND 
SPECTRAL INK SEPARATION 

As the number of independent primaries increases in a system, the gamut 

coverage of the system grows. On the other hand when working with data in 

higher dimensions, the likelihood of some input data falling outside of the gamut 

increases exponentially. A similar situation applies in spectral printing, meaning 

that given a medium (paper) maximum reflectance constraint, non-linear 

interaction of the inks and wide spectral sensitivity of the inks, it is almost 

guaranteed that a given input spectral reflectance falls outside of the printer 

gamut. Because of such a high probability of an input point falling outside of the 

device gamut, gamut mapping becomes the base of spectral reproduction, 

especially for non-linear devices such as printers. This is quite different from the 

traditional printing approach where a considerable portion of the data falls inside 

the gamut. Because of this, the focus of this portion of the research is on spectral 

reproduction, which includes gamut mapping and primary separation (ink 

separation), for the printers where the non-linear interaction of inks and media 

increases the complexity of the reproduction algorithms substantially.  

Another challenge with working in higher dimensions is the complexity of 

calculating the gamut. The traditional gamut mapping algorithms work in CIELAB 

or other three dimensional spaces. Most of these algorithms calculate the gamut 

boundary using methods such as convex hull [28], [45], [46], [47]. The complexity 
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of these methods grows exponentially with the number of dimensions, which 

poses another challenge to spectral reproduction.  

In this section, a review of different approaches for finding the best ink 

combination and mapping a given reflectance on the printer gamut boundary is 

presented.  

Spectral Reproduction Based on Interim Colour Space 

ICC (International Colour Consortium) Profiles describe the colour 

behaviour of a particular device by defining a mapping between the source colour 

space and a profile connection space (PCS). Typically, this PCS is based on 

either CIELAB or CIEXYZ colour space. There are two common types of 

mappings. One approach uses look-up tables where interpolation is applied for 

the data points between the cells. The other mapping is based on a series of 

parameters for transformations, e.g. a 3x3 matrix transformation.  

Several approaches have been proposed to extend the idea of ICC to 

spectral space. Mitchell et al. [48], [49] proposed a combination of projection plus 

a 6-dimensional Lookup table (LUT) PCS for a 6 ink printer. An iterative 

interpolation was used to invert the LUT. Their study [48] showed that using an 

ink-like basis improves the efficiency of the LUT compared to using orthogonal 

eigenvectors generated from PCA.  

Berns et al. proposed a new method based on using a coarse LUT to 

reduce metamerism [52]. Using this method, in each cell of the LUT there are 

multiple ink-combination candidates that have the same colour value (CIELAB) 
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under one illumination but a different colour value under the second source of 

illumination. Knowing the colour value of an ink combination for the second 

illumination, we can select an ink combination that has a good match in both 

illuminations and thus improve colour constancy.  

Following on the above research on improving colour stability across two 

illuminations, there are a couple of other approaches used to transfer spectral 

data to CIELAB colour space plus an additional 3 dimensions. Nakaya et. al. use 

sRGB colour space to represent the remaining 3 dimensions, [89][90]. Derhak 

and Rosen introduced LabPQR interim colour space [57], [58]. LabPQR is a 6-

dimensional space where the first 3 dimensions represent the gamut of a printer 

in CIELAB under a given illumination. The remaining 3 dimensions represent the 

next 3 most important dimensions of the spectral gamut after the CIELAB (or 

CIEXYZ) data is removed. The advantage of this interim space is that a hybrid of 

traditional gamut mapping and spectral gamut mapping is combined with almost 

no additional complexity in comparison to 3-dimensional gamut mapping. Given 

an input reflectance, the traditional gamut mapping algorithm can be applied in 

CIELAB space. After the mapping, each cell represents a cluster of data points 

with the same colour values (CIELAB) but different PQR values, which represent 

different spectral reflectances. It was also shown that this interim space can 

represent the spectral gamut of a 6-ink printer with very high accuracy [59].  

To evaluate the accuracy of the LABpqr method to meet spectral colour 

reproduction needs, this method was tested on five different reflectance data 

bases. The LABpqr values were calculated based on the 8-ink printer data 
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discussed in Chapter 3: Table 7 shows the round trip result of the model and the 

accuracy of the model in embedding spectral characteristics of the five 

databases. The performance was evaluated under one reference illumination 

(D65) and under 11 different illuminations as specified in Table 6.  

The data shows that the model has a small round trip error, similar to what 

was reported by Derhak et al. in [57]. This result is consistent with PCA analysis 

of the 8-ink printer, which showed that 5 bases were sufficient to represent the 

printer spectral gamut accurately (Figure 12). In this experiment, out of the five 

databases tested, two included natural reflectances (Simon Fraser University [65] 

and Leeds University [82]). The other 3 databases (Leeds, Munsell, MacBeth)  

represent printed or painted colours, which typically have lower spatial 

complexity than scene reflectances because of the ink limit of the medium and 

the number of paints or inks used in the system.  

The experiment shows that this model can be sufficient for spectral colour 

reproduction of paintings and prints but not for databases that include scene 

reflectances with higher than 6-dimensional complexity.  
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Table 7: LABpqr performance of an 8-ink printer system in reconstructing 5 different data sets. 
Leeds database represents scene reflectances provided by Leeds University [82]. Munsell 
database includes reflectances for a set of prints and paintings measured by Leeds university. 
The SFU dataset is provided by Computational Vision Lab at Simon Fraser University [65]. The 
last two databases include the MacBeth Colour Chart and some pigmented colours used by 
artists.  

 Num ∆E94   RMS ∆E2000 

 Patches mean max 
max 
Daylight mean max mean max 

max 
Daylight 

8-ink 6048 .18 2.6 .87 .002 .03 0.19 2.43 .91 
Leeds 5682 0.96 40.8 7.22 1.77 7.31 0.80 41.32 6.93 
Leeds 
MunSell 719 1.02 28.4 4.2362 1.64 6.92 0.84 41.32 5.82 
SFU 1350 0.41 21.7 4.7257 0.02 0.09 0.45 26.47 5.28 
MacBeth 
Colour 
Chart 24 0.50 7.7 1.3701 0.02 0.05 0.56 9.25 1.38 
Pigment 35 0.74 6.7 1.212 0.04 0.06 0.56 9.25 1.38 

 

There were other attempts to enable traditional gamut mapping for 

spectral reproduction by lowering the complexity of the gamut space using 

methods like PCA [56]. Bakke et al. proposed an improvement to PCA-based 

gamut mapping by defining the direction of projection to be towards the centre of 

the printer gamut in each 2D cross section of gamut created by a combination 

PCA basis and media vector. The 2D cross section is defined by 2 vectors – a 

line between the given reflectance and the gamut centre in PCA space – and a 

vector representing the spectral gray component of the medium (paper). The 

gamut boundary is found by calculating the intersection between the 2-

dimensional plane and the hyper-planes that define the gamut.  
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Spectral Ink Separation Based on Inverting a Printer Model 

As discussed earlier there are several methods proposed for modelling the 

printer output. Most of these models are based on a non-linear transformation 

and, because of that, inverting the models accurately is quite challenging. Di-

Yuan Tzeng et al. [50], [51] divided a 6-ink printer model into several 4-ink printer 

models to reduce the complexity of inverting a printer model. The assumption is 

that no more than 4 inks are put down on the same location. An iterative search 

is used to find the closest match to a given data point in each 4-ink printer model. 

Urban et al. introduced a fast method for inverting the Yule-Nielson 

cellular Neugebauer model [53][54]. The inversion model is based on a local 

search, considering one dimension (one ink) at a time. Given an input 

reflectance, this method finds the best ink density of the ith ink given the selected 

ink density of the previous inks. His study showed that even though the proposed 

search method does not guarantee finding an optimal ink combination, it finds 

one that is very close to optimal.  

Proposed Method I: Spectral Ink Separation using Non-Negative 
Least Squares 

One method to simplify gamut mapping algorithms is to assume that the 

printer gamut is convex in spectral reflectance space and thus there is no need to 

have very fine sampling of the printer gamut to capture all of the concavities.  

A fast gamut mapping method is introduced in this section that is based on 

a Non-Negative Least Square (NNLSQ) method. The Non-Negative Least 
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Square (NNLSQ) method tries to minimize the sum of the residuals using a non-

negative combination of the available data as discussed in the Chapter 1.  

Considering the gamut mapping procedure, the goal of the algorithm is to 

reproduce an input reflectance that is inside or on the gamut boundary shell and 

is closest to the input reflectance. Assuming that the gamut boundary is convex 

and relationship between close neighbours can be defined linearly, a point on or 

inside a gamut hull can be represented by a linear interpolation of the 

neighbouring gamut points. The equation below captures this relationship:  

             (18) 

ρ = Σ αiqi,    αi ≥0,      Σαi = 1 

Where ρ is the input reflectance and qi represents the set of measured 

points on or inside the gamut hull. The αi’s are weights, and the restrictions on 

the weights ensure that ρ does not lie outside the convex hull of the qi.  

For a point ρ outside a convex gamut, we can find the closest point to ρ 

lying on the convex hull of the gamut by finding αi minimizing the distance e: 

e = | ρ - Σ αiqi |2,  αi ≥0,   Σαi =1  

Finlayson et al. [67] showed that the above equation can be rewritten to 

include a weight W as an extra dimension in the input data, and that the revised 

equations can then be solved by the standard NNLSQ method. Their derivation is 

as follows.  

qi′ = [qi W]                                                                     
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e′ = | ρ - Σ αiq′i |2                                                           

Re-writing e’ yields: 

e′ = e+ W*(1 - Σ αi)                                                        

The advantage of the above equation is that it can be minimized by 

applying NNLSQ.  Choosing a large value for W emphasizes the second term in 

e′, thereby enforcing the constraint Σαi =1.  

Spectral gamut mapping means mapping a spectrum that lies outside the 

printer gamut onto a printable spectrum. For a spectrum represented as a point, 

ρ, minimizing e′ the closest point on the gamut’s surface, in other words it finds 

the closest printable spectrum. The spectrum is described as a linearly weighted 

combination of other printable spectra, spectra that are within the printer gamut.  

This proposed gamut-mapping algorithm is easy to implement and the 

computation is relatively fast considering the dimensionality of the input spectra. 

The space and time requirements of the algorithm grow with the number of input 

data points. However, as it was shown in Chapter 3:Printer Modelling, by 

sampling ink space intelligently, the number of points required to represent a 

gamut space can be reduced by as much as 97%.  

 

Preserving Colour for a Desired Illumination 

The proposed spectral gamut mapping algorithm using the NNLSQ 

method maps an input reflectance to the closest printable spectrum in spectral 

space, but there is no guarantee that this new spectrum will have the same 
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colour (for a fixed illuminant) as the original spectrum. It would be preferable to 

have a spectral gamut-mapping technique that maps an out-of-gamut spectrum 

to the closest in-gamut spectrum subject to the constraint that it preserves colour 

under a given illumination as well.  

Chau et al. [6] proposed dividing each surface reflectance into two 

components. One is the fundamental component that represents perceived 

colour under a single illumination and another is the metameric black component 

that is invisible to the normal human eye. Using this approach each surface 

reflectance, s, can be represented as: 

s = fs + bs 

where fs represents the fundamental component or basis that represents 

colour, and bs represents the metameric black of input surface reflectance. Chau 

proposes a gamut mapping algorithm that searches for a reflectance s’ that has 

the same fundamental component but may have a different metameric black.  

In this section an extension to the NNLSQ algorithm is introduced to 

include Chau’s proposed method in order to preserve perceived colour while 

finding the closest metameric black for a given input reflectance. This can be 

accomplished by modifying the NNLSQ algorithm so that the projection onto the 

gamut is in a direction perpendicular to CIEXYZ space under a given illumination. 

Doing so preserves the CIEXYZ coordinates as much as possible.  

The method works as follows. Let U represent the principal components 

basis of the x, y and z colour matching functions. If the visible spectrum is 
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sampled n times, then each x, y 

Let P be the set of spectra in the printer gamut {p1, p2, …}, then the 

following linear projection of values in P into U 

and z basis can be represented as 1xn 

dimensional matrix and U will be an nxn matrix, where first row in U captures the 

most variance in CIE XYZ colour space and the last row represents the least 

variance.  

Pu = PU  

represents the gamut in U space sorted in terms of decreasing variance in 

XYZ space. After this linear transformation, the first 3 coordinates of Pu represent 

the tristimulus values of spectra in the printer gamut. Next, weights can be 

applied to Pu so that applying the gamut-mapping algorithm described above to 

the weighted Pu yields the closest spectrum on the hull of the printer gamut that 

creates the least change in CIEXYZ space. The larger the weights are the more 

emphasize is put on preserving values in CIEXYZ dimension compared to other 

spectral residual variations.  

Evaluation of Gamut Convexity 

Many existing gamut-mapping algorithms [69], [46] and [44], including the 

LabPQR spectral gamut-mapping algorithm [57], map an out-of-gamut point onto 

the convex hull of the printer gamut. The assumption is that the gamut is convex. 

Is this assumption valid and how much accuracy is lost by assuming a convex 

printer space? 
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Algorithms such as Alpha Shape [70] can measure concavity of a space in 

a low-dimensional space (3D), but cannot be used in high-dimensional spectral 

space.  

Comparing the NNLSQ performance to an algorithm that does not depend 

on the convex assumption of the gamut can explain how much inaccuracy is 

introduced when a printer spectral gamut is assumed to be convex.  

Most mappings that do not depend on the gamut convexity assumption 

are based on a type of search method. It is proposed that the Hierarchical 

Search algorithm introduced in Chapter 3 be used.  

Experiment 

The printer model used for this experiment was based on the Tzeng (TK) 

printer model which was explained in equation 16.  

Two types of inks  were used, synthetic inks which are square wave based 

and sine wave based inks (as discussed in Chapter 2), and inks based on real 

pigmented ink reflectance measurements. Three different variations of square 

wave inks were used with 0, 10% and 20% overlap in their wavelength 

absorption sensitivity region. Similarly, for the sine wave ink, 10% and 20% 

overlaps are used.  

Four different ink numbers (3, 6, 9 and 12 inks) were used to evaluate the 

convexity of the system spectral gamut. For the real ink data, the 3 inks 

considered were cyan, magenta, and yellow. For the 6-ink case, the initial 3 inks 

were retained, and 3 more complementary inks were added, namely, orange, 
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green, and violet. light cyan, black and light magenta were added to these 6 for 

the 9-ink case. For the 12 ink case, gray and medium gray inks along with a light 

red ink were added to the system.  

Target reflectances were selected as the 80 scene reflectances sampled 

from Simon Fraser Database [65] using K-means clustering as explained in 

Chapter 3.  

For convex hull gamut mapping, the NNLSQ implementation provided by 

Matlab was used. The HS search method introduced in Chapter 3 was used to 

evaluate concavity of the printer gamut in spectral space. The HS method was 

used since the method does not depend on calculating the convex hull of the 

printer gamut.  

Results 

In the previous chapter, it was shown that as the number of primaries 

available in the system increases, the overall spectral gamut coverage increases. 

The gain in the gamut coverage varies depending on the primary reflectance 

characteristics. Figure 44 shows that using the NNLSQ method to map the out-

of-gamut reflectances onto the convex hull of the printer gamut -- similar to the 

non-convex mapping method -- the gamut coverage increases as the number of 

available primaries increases.  
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Figure 44: Gamut coverage calculated using the non-negative least square technique. The Y axis 
shows Root Mean Square (RMS) variation between mapped reflectance and the input scene 
reflectance. SQ0 represents square wave inks with 0% overlap, Sine10 represents sine wave 
inks with 10% overlap, and Realistic represents real ink reflectance measurements.  

To evaluate the concavity of a printer gamut, the variations between the 

NNLSQ gamut mapping and HS (Hierarchical Search) gamut mapping were 

compared. HS mapping is an iterative search method that does not make any 

assumption about the convexity of the gamut, whereas the NNLSQ method 

assumes a convex space. Results from the HS method were used as the closest 

point on the printer spectral gamut to a given target reflectance. Figure 45 

evaluates how different the gamut mapped reflectance using a convex gamut 

mapping based on the NNLSQ technique is from a non-convex gamut mapping. 

The first observation was that the variation, which indicates the concavity of the 

gamut, increases as the number of available inks in the system increases. 

Another observation was that square wave inks with a higher degree of overlap 

have much larger concavities in their gamuts than inks with less overlap. This is 

consistent with the observation from Chapter 3 that inks with a larger than 

optimal reflectance sensitivity overlap tend to have smaller gamut coverage. The 
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data in this section shows that most of the change in gamut is in its concavity 

rather than the coverage when the inks (more specifically square wave based 

inks) have larger overlap than what is optimal.  

Figure 46 shows the concavity results for sine wave inks with different 

overlap and compares the result against real ink measurements. It shows that 

inks with smoother reflectance characteristics (sine wave versus square wave) 

have fewer concavities in their gamuts.  

 
Figure 45: Variation between convex gamut mapping and concave gamut mapping. The concave 
gamut mapping is based on the HS iterative search algorithm and the convex gamut mapping is 
based on the non-negative least square algorithm. The variation is calculated as average RMS 
(Root Mean Square) difference between the two spectral reflectances calculated using two 
different mapping methods.  
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Figure 46: Variation between convex gamut mapping and concave gamut mapping for primaries 
with smooth variations (sine wave). The concave gamut mapping is based on the HS iterative 
search algorithm and the convex gamut mapping is based on the non-negative least square 
algorithm. The variation is calculated as the average RMS (Root Mean Square) difference 
between the two spectral reflectances calculated using the two different mapping methods.  

 

Perceptual variations between convex and concave gamut mapped 

reflectances are presented in Figure 47, which shows the variation in DeltaE94 

colour space. The variation was calculated as the average deltaE94 under 11 

different illuminations [66].  

The first observation was that the concavity assumption of the printer with 

sine wave inks has an acceptable variation (1 to 4 deltaE), knowing the gain that 

we get by using the NNLSQ technique. Knowing this, the NNLSQ algorithm can 

be used as a good candidate for gamut mapping of a non-linear device with a 

large number of primaries. The figure also shows that, despite the increase in the 

spectral difference between convex and concave gamut mapping as the number 

of inks increases, the increase is not perceptually as important. Figure 48 shows 

reflectance matches for 6 and 12 ink systems with sine wave inks of 20% 

overlap. It shows that in 12 dimensions the convex and concave gamut mapped 
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reflectances have small multiple variations that add up to a large spectral 

difference. However, multiple small variations in the spectral space are not 

perceptually as visible as a few large local variations in the spectral space.  

On the other hand, for the real ink reflectances, there is much higher 

perceptual variability when the convex gamut mapping algorithm is used, 

compared to what the printer is actually capable of (Figure 47).  

 
Figure 47: Variation between convex gamut mapping and concave gamut mapping for primaries 
with smooth variations (sine wave). The concave gamut mapping is based on the HS iterative 
search algorithm and the convex gamut mapping is based on the non-negative least square 
algorithm. The variation is calculated as average DeltaE94 difference between the two spectral 
reflectances calculated using two different mapping methods. 
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Figure 48: Reflectance characteristics of HS and NNLSQ gamut mapping for 6 and 12 ink 
systems. The inks are sine wave inks with 20% overlap.  

 

Proposed Method II: Geodesic Based Ink Separation for Spectral 
Printing 

In this section a new ink separation algorithm is introduced for printing with 

6 to 9 inks. A new spectral gamut mapping algorithm is also introduced that 

projects an input reflectance onto the manifold of the printer spectral gamut 

space. Ink separation, i.e., finding the best ink combination to reproduce a given 

reflectance, is done by applying an interpolation between printer gamut points 

neighbouring a projected point’s geodesic location. This algorithm was inspired 

by the work of McIntosh et al. [71] who  suggested interpolating over geodesic 

distances, rather than Euclidean distances, to improve an image segmentation 

algorithm. 

The technique finds the best manifold projection using the ISOMAP 

technique explained earlier. The algorithm searches for the lowest dimensionality 

that holds the spectral information accurately. This method will aid in finding a 

good ink combination given an input reflectance for 6-ink and 9-ink printer 

models. 
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Use of Thin Plate Spline Interpolation in Spectral Reproduction 

For the spectral printing process, it is proposed that TPS be used to find a 

continuous function that maps between the set of inks and each of the output 

dimensions. For instance, if the output spectral reflectance of an 8-ink printer is 

measured from 380nm to 730nm with a 10 nm sampling, TPS is used to create 

36 separate functions mapping from the 8 input dimensions to each reflectance 

wavelength. 

Geodesic Interpolation and Ink Separation 

Interpolation is a common approach to ink separation and the ink 

separation technique introduced in this section is also based on  interpolation. In 

general, an ink combination is interpolated as a weighted combination of nearby 

experimentally measured data points. The weights typically are derived based on 

the distance of the point to be interpolated from its neighbours. The distance 

metric can be defined in many different ways. For instance, the distance between 

two spectral reflectances can be measured as the Euclidean distance between 

them. In this section, an interpolation-based ink separation algorithm based on 

geodesic distances over the gamut manifold is proposed. 

Many spaces appear to have a high dimensionality in a linear space, but 

actually have lower intrinsic dimensionality. A good example is the Swiss Roll 

example discussed in Chapter 2.  

The proposed ink separation method introduced in this chapter uses the 

geodesic distances between data points. The algorithm is as follows: 
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1. Given a set of training points (reflectances of print samples), the 

geodesic distances between the input reflectance (the reflectance to be printed) 

and all training points in the gamut are calculated 

2. The geodesic distances are used in an MDS engine (Multi-

Dimensional Scaling) to calculate the point locations in a space of lower 

dimension.  

3. Thin Plate Spline interpolation is used based on the data point 

locations in the new space  

 3a. Weights for the interpolation are calculated based on the 

distance of the point from the neighbouring points in the lower dimensional 

space. 

Steps 1 and 2 are part of the standard ISOMAP algorithm [62]. ISOMAP 

makes the assumption that the Euclidean distances to points within the local 

neighbourhood of a given point, P, approximate the corresponding geodesic 

distances. The geodesic distance to a point, Q, outside the local neighbourhood 

is calculated as the sum of the distances between neighbouring points along the 

shortest path from P to Q. 

Spectral Gamut Mapping based on Manifold Projection 

In this section, a possible spectral gamut mapping algorithm based on 

manifold projection is presented. Figure 49 represents an example where gamut 

mapping in Euclidean space may not result in the closest point in the gamut. 
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However, mapping based on the geodesic location of the gamut points can result 

in a closer (true) mapped location (Figure 50).  

The proposed mapping algorithm has the following steps:  

1. Given a printer gamut space, calculate the data point’s geodesic 

location using ISOMAP 

2. Transfer the input spectral reflectance using the same 

transformation  

3. After the transformation, gamut mapping is applied in the (lower 

dimensional) transformed space 

a. The Non-Negative Least Square gamut mapping algorithm 

introduced in the previous section is used for mapping the 

transformed input reflectance onto the printer gamut 

4. The projected value in the lower dimensional space is inverted back 

to the spectral space using an interpolation method 

a. Thin Plate Spline interpolation is used for the inverse 

transformation 

 

Another advantage of applying gamut mapping based on the manifold 

projection is that the mapping can be done in a much lower dimensional space. 

Because of reduce dimensionality, the time and space complexity of the gamut 

mapping can be reduced significantly.  
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Figure 49: Example of the gamut mapping algorithm in Euclidean Space. Blue lines (Swiss roll) 
represent a device gamut and the green point represents an out of gamut point.  
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Figure 50: Gamut mapping method using ISOMAP where the projections are applied in a lower 
dimensional space.  

Evaluation Method 

Similar to the previous gamut mapping algorithm (NNLSQ), the accuracy 

of the manifold projection algorithm is evaluated by comparing the result of the 

mapping algorithm against what the Hierarchical Search (HS) mapping finds. 

Details of HS gamut mapping are explained in Chapter 3. 

Performance of the manifold projection method was evaluated by 

comparing the RMS (Root mean square) differences of the mapped reflectance 

using this technique with the HS search method results. In addition to RMS, 

average deltaE94 colour difference of the mapped reflectances using the 

proposed method and HS search method under 11 different illuminations is 

presented.  
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To evaluate the difference between the projected reflectance and the 

results from the HS search algorithm the manifold projected value needs to be 

projected back to the spectral colour space. Thin Plate Spline interpolation, which 

is defined in the previous chapter, is used for inverting the ISOMAP 

transformation.  

Time and Space Complexity 

There are several methods to calculate Geodesic distances between 

points given the distances between neighbouring points. Most commonly, 

Dijkstra’s algorithm is used to find the shortest path between each point in the 

data set [2]. If there are Mp points representing the printer gamut, and MD input 

points for ink separation, the time complexity of Dijkstra’s algorithm based on the 

Fibonacci heap algorithm is O(E + (Mp+MD)Log(Mp+MD)), where E represents the 

number of edges between the points. The number of edges varies with the data 

set characteristics and diameter of the neighbourhood around each data point. In 

practice, it takes around 2.5 seconds to calculate the geodesic distances for 

2000 points on an average computer.  

Experiments 

Printer Gamut 

To evaluate the gamut complexity of the printer, two printer gamuts were 

evaluated. The first one was based on spectral measurements of 1350 patches 

printed with an 8-ink printer. This gamut is referred to as a “realistic” printer 

gamut since the measurements were based on the real printer gamut 
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measurements. The second printer gamut was based on the synthetic printer 

model introduced by Tzeng explained in Chapter 3. The model was used to 

predict the spectral reflectance resulting from a given ink combination.  

Ink Choices 

Two sets of ink selections were used in this study. The first set was based 

on real ink measurements as discussed in previous chapters. The inks were 

orange (O), cyan (c), magenta (m), yellow (y), green (Gr), violet (V) and black 

(K), light magenta (LM) and light cyan (LC) for the 9-ink printer. Orange (O), cyan 

(c), magenta (m), yellow (y), green (Gr) and violet (V) were used for the 6-ink 

printer, and the 3-ink printer model used cyan (c), magenta (m) and yellow (y). 

The second set of inks had synthetic ink reflectances with a square wave 

shape and 0% overlap in their absorptions sensitivity region.  

Printer Spectral Gamut Intrinsic Dimensionality   

What are the intrinsic dimensionalities of the gamuts of the two printers? 

In terms of a linear model, Principal Component Analysis (PCA) provides one 

answer. However, in terms of a non-linear model, ISOMAP provides a second 

answer. If the answers differ, then it can be conclude that the printer gamuts 

bend in a way that is analogous to the Swiss Roll example. Figure 51 and Figure 

52 compare how the residual variance changes with increasing dimensionality for 

both PCA and ISOMAP. If PCA shows a higher dimensionality for the data set 

than what ISOMAP finds, then we can conclude that the underlying structure of 
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the gamut is a lower-dimensional data set. Figure 51 and Figure 52 are based on 

the realistic gamut; Figure 53 and Figure 54 are for the synthetic gamut. 

 

The analysis shows that the printer gamuts are of lower (3 or 4 versus 5 or 

6) intrinsic dimensionality than can be determined by linear PCA. In addition, the 

weights used for the interpolation based on the new proposed method are 

calculated using geodesic distances of the points in lower dimension. As a result, 

it should be possible to obtain more accurate ink separations using interpolation 

based on the distances between the ISOMAP-embedded locations of the 

reflectances. 

 

 
Figure 51: PCA residual variance for the realistic printer gamut space. The plot shows that the 
dimensionality of the 7-ink printer is around 5 dimensions. 
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Figure 52: ISOMAP residual for the realistic gamut. The data shows that the underlying 
dimensionality of the gamut is around 3. 

 

 
Figure 53: PCA residual variance for the synthetic printer gamut space. The scores show that the 
dimensionality of the 6-ink printer is around 6 or 7 dimensions. 
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Figure 54: ISOMAP residual for the synthetic gamut. The data shows that the underlying 
dimensionality of the gamut is around 3 to 4. 

Results 

To evaluate how well the ink separation technique works, the synthetic 

printer gamut was sampled uniformly in ink space, obtaining 2300 data points as 

a training data set. An additional 250 data points from inside the printer gamut 

were selected to represent the test sample. The test and training sets were 

disjoint.  

The 250 test points were processed through the ink separation algorithm. 

The predicted ink combinations were then run through the printer model to 

predict the corresponding spectral reflectances. The predicted reflectances were 

then compared to the original input reflectances.  

To evaluate the performance of the geodesic ink separation model, its 

results were compared to those obtained by doing the separation in linear space. 

Table 8 shows that there is a gain when the interpolation is based on the 

geodesic distances instead of the Euclidean distances. 
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Table 8: Ink separation evaluation based on geodesic location and linear space locations. The 
errors reported are the minimum, mean, and max ∆E94 that occur under the 11 different 
illuminations, and the RMS difference between the spectra. 

  Geodesic Linear 
Inks   RMS ∆E94 RMS ∆E94 

3 

min 0.0011 0.236 0.0078 1.204 
mean 0.034 3.068 0.0335 6.33 
max 0.134 8.2 0.0717 24.78 

6 

min 0 0.005 0 0.006 
mean 0.0089 2.843 0.0298 3.379 
max 0.0541 18.29 0.1339 20.45 

9 

min 0 0.004 0 0.014 
mean 0.0081 2.617 0.0179 3.051 
max 0.0487 14.1 0.1238 20.05 

 

 
Figure 55: Ink separation methods evaluated in ∆E94 under 11 different illuminations. The data 
above shows average ∆E94 for the 11 illuminations 

Spectral Gamut Mapping Evaluation 

Test Data 

To test the gamut mapping algorithm, the scene reflectances from the 

SFU database were used [65]. There are 1350 individual reflectances in the 
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database. Figure 56 and Figure 57 show the accuracy of the spectral 

reproduction when the proposed spectral gamut mapping algorithm is used 

compared to the hierarchical search method to map the out-of-gamut points onto 

the gamut hull. The table shows that the proposed gamut mapping algorithm is 

as accurate as, or better than, the hierarchical search algorithm.  

It is important to keep in mind that the hierarchal search algorithm has 

some inaccuracy as well which can add to the overall evaluation comparison. 

Some of the inaccuracy of the hierarchical search algorithm comes from the 

sampling resolution of each ink axis. The higher the sampling resolution, the 

more accurate the model. For these experiments, the hierarchical search had 6 

levels, and at each level the sampling resolution for each axis was 5. For 

instance, for a 3-ink system, at each search level there are 53 different ink 

combinations to choose from. Once the closest ink combination was selected 

(Pa), 53 samples were selected close to the point Pa. This process was repeated 

for 6 levels. 
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Figure 56: Comparison between ISOMAP-based gamut mapping and HS  gamut mapping for 
realistic and synthetic ink reflectances. The variation is calculated as the average RMS difference 
between the two spectral reflectances calculated using the two different mapping methods. 

  

 
Figure 57: Comparison between ISOMAP-based gamut mapping and HS gamut mapping for 
realistic and synthetic ink reflectances. The variation is calculated as average DeltaE94 difference 
between the two spectral reflectances calculated using the two different mapping methods. 

Figure 58 compares accuracy of gamut mapping based on Isomap 

technique versus NNLSQ (non-linear least square) method. Two types of inks 
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were used in the comparison: square wave inks with no overlap and real ink 

measurements. Figure 59 and Figure 60 compare performance of the two 

mapping algorithm in DeltaE94 colour space. The two figures show that NNLSQ 

gamut mapping has similar performance to the ISOMAP method. This means 

that, not much of printer gamut concavity is reduced by transforming the printer 

gamut using ISOMAP technique.  

 

 
Figure 58: Comparison between accuracy of ISOMAP-based gamut mapping and NNLSQ gamut 
mapping measured in mean RMS. Accuracy is defined as variation between how the gamut 
mapping performs compared to HS gamut mapping 
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Figure 59: Comparison between accuracy of ISOMAP-based gamut mapping and NNLSQ gamut 
mapping measured in mean DeltaE94 for square wave ink with 0% overlap. Accuracy is defined 
as variation between how the gamut mapping performs compared to HS gamut mapping 

 

 
Figure 60: Comparison between accuracy of ISOMAP-based gamut mapping and NNLSQ gamut 
mapping measured in mean DeltaE94 for real inks. Accuracy is defined as variation between how 
the gamut mapping performs compared to HS gamut mapping 
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Conclusion 

A spectral ink separation algorithm is introduced based on interpolation 

using the geodesic distances between neighbouring points. A spectral gamut 

mapping algorithm is also introduced which uses ISOMAP.  

The performance of the ink-separation model was evaluated for 3-ink, 6-

ink and 9-ink printers using a synthetic printer model. The experimental results 

show that the accuracy of interpolation, and thus of the resulting ink separation, 

improves if the calculation is done using geodesic distances.  

In addition, a new spectral gamut mapping algorithm is introduced based 

on manifold transformation of the printer gamut.  
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CHAPTER 6: EVALUATION OF SPECTRAL COLOUR 
REPRODUCTION 

Introduction 

In this section, an experiment with real inks is presented to evaluate how 

closely a sample colour can be reproduced using available real inks, and whether 

the accuracy of spectral reproduction is noticeably better than traditional tri-

chromatic colour reproduction.  

Target Samples 

Two sets of target samples were used. The first set was based on the 

MacBeth colour checker shown in Figure 61. To have a more focused evaluation 

of spectral reproduction given a limited set of inks, 3 colour tiles with similar 

reflectance characteristics were used in the experiment (as shown in Figure 61). 

Figure 62 shows the reflectance of the 3 colour patches and Table 9 represents 

the colour variation for each patch under 11 different illuminations from the 

Simon Fraser database. 
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Figure 61: The 3 colour tiles used from the MacBeth Colour Checker for spectral colour 
reproduction testing. The colour tiles used were the 5th, 8th and 13th colour tiles as indicated by 
the red mark. 
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Figure 62: Reflectance characteristics of the 3 colour patches selected from the MacBeth Colour 
checker as target reflectances for reproduction. 

 

Table 9: Average Colour variation (inconsistency) of each patch under 11 different illuminations. 
Mean DeltaE94 column represents average colour variation from target patch    

Patch Number 
Mean 

DeltaE94 

5 2.1 
8 3.2 
13 5.8 

The next set of test targets was based on real paint samples that are 

specifically hard to reproduce. For the purpose of this study, 2 yellow paint 

samples were selected with the reflectance and colour inconsistency variations 

shown in Figure 60 and Table 10.  
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Figure 63: Reflectance characteristics of the 3 yellow paint samples selected as targets. 
 
Table 10: Colour variation (inconsistency) of the 2 yellow paint patches under 11 different 
illuminations. 

Patch Number DeltaE94 

S_Y1 3.7 
S_Y2 6.6 

 
 

Experiment Setup 

A 9-ink printer with 3 different magenta inks (Figure 64), 2 red inks (Figure 

65) and 2 different yellow inks (Figure 66) plus a cyan and a black ink was setup 

to reproduce the selected target samples. The selection of the 9 inks is based on 

limited set of available inks during the experiment and also the colour range of 

the target samples. The printed patches were optimized for typical lighting 

condition found in viewing light booths as shown in Table 11.  
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Figure 64: Reflectance characteristics of the 3 different magenta inks used for the experiment. 

 

 
Figure 65: Reflectance characteristics of the 2 different red inks used for the experiment. 
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Figure 66 Reflectance characteristics of the 2 different yellow inks used for the experiment. 

 

Table 11: 4 Light sources available in the viewing light booth 

Light Sources 
Daylight D65 
Incandescent light A 
Cool White Fluorescent CWF 
Department store light - TL 84 

Implementation Details 

To evaluate spectral colour reproduction, each target colour patch was 

printed using spectral printing and traditional colour reproduction which matches 

a colour in CIELAB colour space (trichromatic matching).   

For CIELAB colour reproduction, an illumination was selected from the 

available 4 choices that had the most colour variability from the other 3. This was 

done to magnify the effect of spectral printing given the limited number of 

available inks. Because of this, the same light source was not used for the entire 

target under trichromatic (CIELAB) colour reproduction.  
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The printer modeling used for the experiment was based on the modified 

YNCN model explained in Chapter 2. To reduce the number of training patches 

needed for the application, the printer gamut was divided into two parts; one part 

focuses on the yellow part of the printer gamut and the other focuses on the blue 

region.  

For trichromatic colour reproduction, a convex-hull gamut mapping was 

implemented to map out-of-gamut points onto the printer gamut. For the ink 

separation process, the Hierarchical Search algorithm was implemented to find 

the best ink combination given the mapped input reflectance.  

Since the ISOMAP technique has a better performance than NNLSQ 

technique for gamut mapping, the gamut mapping and ink separation algorithms 

are both based on the ISOMAP technique (explained in Chapter 4).  

Results 

For the MacBeth Colour Checker samples, patches number 5 and 8 were 

matched under Cool White Florescent light. Patch number 13 was matched 

under Daylight illumination. Figure 67, Figure 68 and Figure 69 show the 

accuracy of colour reproduction under CIELAB colour space and spectral space 

for the 3 selected MacBeth colour patches.  
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Figure 67: Accuracy of reproduction of patch number 5 under 4 different illuminations using 
trichromatic matching versus spectral colour reproduction. [84] 

 

 
Figure 68: Accuracy of reproduction of patch number 13 under 4 different illuminations using 
trichromatic matching versus spectral colour reproduction. 
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Figure 69: Accuracy of reproduction of patch number 13 under 4 different illuminations using 
trichromatic matching versus spectral colour reproduction. 

  

 For the yellow patch, S_Y1, given the available two yellow inks, spectral 

reproduction could not find an ink combination that has better metamerism than 

that of trichromatic matching. 

For S_Y2, an illumination was selected as the reference lighting for the 

trichromatic matching. Figure 70 shows the accuracy of each reproduction 

process measured as DeltaE94 colour variation. The figure shows that when 

trichromatic matching is used, the selected ink combination can reproduce a 

closer result to the target patch under one illumination. However, spectral colour 

reproduction on average produced closer reproduction than trichromatic 

matching.  



 

 114 

 
Figure 70: Accuracy of reproduction of the yellow patch S_Y2 under 4 different illuminations using 
trichromatic matching versus spectral colour reproduction. The trichromatic matching was done 
under Incandescent light A illumination.  
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CHAPTER 7: SPECTRAL ANALYSIS OF BRONZING 

Introduction 

Until now the focus of this study has been on improving metamerism as 

one of the main advantages of spectral reproduction. In this section, another use 

of spectral colour reproduction, understanding and optimizing Bronzing, is 

discussed. Bronzing has recently been identified as one of the important factors 

in improving the colour reproduction process.  

Bronzing is caused by reflection of light from the ink when the printed 

image is viewed at a particular angle. Bronzing is pronounced with pigmented 

inkjet inks because the pigments do not penetrate into the ink-receiving layer of 

the print medium. Rather, the pigments form a film or layer on top of the ink-

receiving layer. One common type of bronzing is caused by interference between 

the light reflected from the top surface of the inkjet film and the light reflected 

from the interface between the inkjet film and the ink-receiving layer. This type of 

bronzing is typically observed with black-pigmented inkjet inks and varies with 

the thickness of the inkjet medium coating. Therefore, bronzing is more 

pronounced on glossy, photo-based print media than on paper-based print media 

[72].  

To reduce bronzing, different colour mappings (dot placement algorithms) 

[72] and different ink selections are used. Some works have focused on use of 

composite colours instead of primary colours [73] or adding a gloss optimizer to 
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the printer system. Currently, most methods available for measuring and 

evaluating bronzing are based on an subjective evaluation where engineers 

compare reflectance variations of prints under different viewing angles.  

The focus of this section is to show another application of spectral 

analysis aimed at improving the colour reproduction process, something that is 

not feasible using traditional tri-chromatic analysis. The proposed algorithms try 

to address the issue of detecting and measuring the bronzing defect, knowing 

that, at this time, there is no subjective metric for measuring bronzing. The 

proposed models are based on automating measurement of the bronzing. A new 

metric to evaluate this defect is also proposed.  

In the first part of this section, a new method of understanding and 

measuring bronzing is proposed based on variations in spectral reflectance of an 

ink under a range of viewing angles.  In the second part of this section, a 

modeling method is proposed to predict the reflectance of a given ink under 

certain angles. This method permits the evaluation of bronzing without the need 

to measure a print under a large range of viewing angles. This algorithm then is 

extended to model bronzing of an ink at different densities.  

Using this technology, a subjective metric to evaluate bronzing can be 

designed. The second advantage of this algorithm is that industries can quickly 

evaluate how the bronzing profile of an ink changes under different densities of 

the given ink. 
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Data Measurement 

For bronzing evaluation, a Gonio-spectrophotometer was used to measure 

spectral reflectance of a patch under different viewing angles in 2 dimensions. An 

initial calibration against a perfect diffuse white was performed. 

Based on precise control on the incident and acceptance angle by the 

computer, a Gonio Spectrophotometer measures the spectral distribution of 

every pair of illumination/detection angles individually. After calibration and 

mounting of the samples, the settings for measurement conditions are made.  

Bronzing Evaluation based on Spectral Reflectance 
Characteristics 

In this section a method for evaluating bronzing based on the spectral 

reflectance variation of a printed plot under different viewing angles (assuming 

the illumination incident angle is constant) is introduced. Figure 71 shows the 

spectral reflectance of a black ink patch at viewing angles of 10 to 15 degrees in 

steps of 0.5 degrees. The incident angle was kept constant at 20 degrees. The 

prints were made on photo paper.  

The photo paper medium has a coating that scatters light much less than 

typical paper. Since the energy reflected from a photo medium increases at its 

specular angle, where incident angle equals viewing angle, it is necessary to 

remove any artefacts that are due to shininess of the media, which do not 

represent ink and media colour variation. One proposal is to normalize the 

measurement data by the measurement of the white of the media at the same 

angle (Figure 72). The normalization process divides the spectral measurement 
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of a patch by the reflectance measurement of the same paper (medium) without 

any ink on it. For normalization, the white medium was measured at the same 

angle as the printed patch.  

 

 
Figure 71: Spectral Reflectance Variation of black ink (K1) as viewing angle changes (keeping 
incident angle constant). 
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Figure 72: Spectral reflectance variation of the black ink (K1) under different viewing angles 
normalized by reflectance of the white paper under the same angles. 

Another observation is that reflectance characteristics of inks are a 

function of the difference between the viewing and incident angles in 2 

dimensions.  Figure 73 shows this difference, which is typically referred to as 

phase angle, is highly correlated to the reflectance variation. Through the rest of 

this paper, phase angle rather than incident or viewing angle is used as the main 

parameter for evaluation reflectance variation of a target. 
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Figure 73 Reflectance of K1 ink measured at two different viewing angles. The data is plotted 
against the difference between the viewing and incident angles.  

Through a visual evaluation of plots and their normalized reflectance 

variation under different phase angles, a metric is proposed to evaluate bronzing 

based on reflectance variation characteristics of a target. The theory behind the 

metric is that the plots related to higher bronzing levels will have larger, more 

non-uniform spectral variation at different phase angles. Figure 74 shows a type 

of black ink that tends to have a large degree of bronzing at high densities and 

not much bronzing when little ink is put down.  

The proposed bronzing metric is based on variations in spectral 

reflectance of the target under different viewing angles as given in equation (19).  

  (19) 

mediaWhiteinknormalized SpectraSpectraSpectra /=  

∑
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where Range calculates the maximum value minus minimum value of the 

reflectance taken over all wavelengths.  

 

 
 

 
Figure 74: Maximum reflectance variation of an ink under two different densities when considered 
under a set of viewing angles (keeping incident angle constant). The selected set of viewing 
angles are+- 10 degrees of incident angle. 

 

Results   

In the experiments, the 5 different inks shown in Figure 75 were used. 

Some inks, such as magenta and K3, are known to have little bronzing, whereas, 

the others do show a significant level of bronzing. Since inks are known to have 

different behaviours for bronzing under different densities, two density levels 

were considered in the experiment (Low and High densities).  
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Figure 75: Spectral characteristics of the 5 inks used in the study. K1, K2 and K3 represent 3 
different types of black ink tested. C represents cyan ink and M represents magenta ink. 

Each patch was printed and measured using a Goni-Spectrophotometer at 

a 20 degree incident angle. The viewing angle was changed from 10 degrees to 

30 degrees in 0.5 degree increments. All the measurements were captured in 

spectral colour space and normalized by the white reflectance of the medium at 

the same viewing and incident angles.  

Figure 76 shows the bronzing metric calculated based on the proposed 

method. The figure shows that using the proposed metric, K1 and K2 inks have a 

large level of bronzing at different densities which agrees with what is generally 

known about the bronzing characteristics of the two inks.  
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Figure 76: Bronzing level calculated based on the proposed bronzing metric. K1, K2 and K3 
represent 3 different types of black ink tested. C represents cyan ink and M represents magenta 
ink. 

Modeling Bronze 

 In this section, the existing printer output modelling techniques are 

extended to model other quality metrics such as bronzing.  

Predicting Reflectance under Different Viewing Angles 

Figure 77 shows the reflectance variation of a given ink at the example 

wavelength of 480nm as the viewing angle changes, while the incident angle is 

held constant. The figure shows that an interpolation technique can be used to 

predict reflectances under different incident angles. The proposed method 

interpolates between measurements of reflectances under different incident 

angles in order to predict a patch’s reflectance as a function of viewing angle. 

The equation below captures the process: 
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                                                                                                                                            (20) 

,....),,( 3,2,1,, θλθλθλθλ RRRFR =  

where F represents the continuous function created using an interpolation 

method and 1,θλR represents the measured reflectance at wavelengthλ  and 

angle ѳ1. 

 
Figure 77: Variation of the black ink (K1) reflectance at 480 nm wavelength under different 
viewing angles. The incident angle was kept constant at 20 degrees.  

 Using this model to predict the reflectance variation of an ink under any 

phase angle, a process to measure bronzing with much fewer input data points 

can be created.  
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Modelling Bronze for Different Ink Densities and Phase Angles 

Printer output models such as the Yule-Nielson Cellular Neugebauer 

model or the ISOMAP based model try to predict reflectance of a printed patch 

by running an interpolation method for each of the wavelengths. In this section, 

the printer output modelling algorithms are extended to predict the reflectance 

characteristics of an ink under different phase angles for different densities.  

In the previous section, it was shown that using an interpolation method, it 

is possible to predict the reflectance of an ink under any phase angle for a given 

ink density. The problem that is addressed in this section is whether the 

interpolation can be further extended to predict the reflectance of an ink under 

any phase angle for any ink density.  

Figure 78 shows reflectance variation of a black ink at 3 different ink 

densities. It shows that, considering each phase angle for each wavelength, the 

spectral variation of an ink as density varies can be predicted.  

Based on this observation, a more sophisticated model can be created by 

combining the printer modelling algorithms introduced in Chapter 2 with an 

interpolation to predict reflectance variation of fixed ink density under different 

phase angles. This new method can enable the researcher to predict the 

bronzing amount of an ink for different ink densities.  
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Figure 78: Reflectance variation of 3 different ink densities at 480 nm wavelength.  

The equation below captures the proposed algorithm for measuring 
bronzing for different ink densities, where F is an interpolation function, ѳ is the 
phase angle, λ  wavelength, and D is the density of the ink being studied.  

  (21) 

,....),,( 3,,2,,1,,,, DDDD RRRFR θλθλθλθλ =  

What can be learned from this model?  

One of the common techniques for reducing bronzing is to adjust the ink 

separation table within the printer to optimize the ink combination, knowing that 

some inks have less bronzing at specific ink densities. For instance, consider a 

printer system that has cyan, magenta, light cyan, light magenta, yellow, light 

gray and black inks available. In this system, the medium gray ink may have the 
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lowest bronzing for having a neutral gray colour at 20 CIE L*; whereas, for darker 

regions using a composite ink, (cyan+magenta+yellow) might reduce the 

bronzing significantly.  

Knowing this information, the ink separation table can be modified to 

minimize bronzing, which is very similar to the process for reducing metamerism.  

Experiment Setup 

Two different black inks (K1 and K2) were measured. For training 

purposes, 6 different densities for each ink were printed. The printed patches 

were measured at -10,-8,-4,...10 phase angles. Figure 79 shows the reflectances 

of the two inks used in the study. The two black inks have a high level of 

bronzing.  

Five ink densities, not including the training ink densities, were used for 

the test purposes and their spectral reflectance was predicted at -10 to 10 phase 

angles with steps of 0.5 degrees. Since the reason for designing this modelling 

algorithm is to be able to predict reflectances accurately enough in order to better 

understand bronzing behaviour of the patches, the Bronzing Metric, introduced in 

the previous chapter, was used for comparison purposes. For interpolation, 

weighted Locally Linear Interpolation (LLI) was used and, for printer modelling, 

the Yule-Nielson Neugebauer model was selected.  
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Figure 79: Spectral characteristics of the 2 black inks used in this study. The measurements were 
collected using an eye-1 spectrophotometer at 2 degrees observer angle.  

Results 

 Using the proposed model, the spectral reflectance of each patch was 

predicted under 40 different phase angles (-10 degrees to 10 with increments of 

0.5 degrees). The proposed bronzing metric introduced in the previous chapter 

was used to predict the bronzing metric. The predicted bronzing metric was 

compared to a calculated bronzing metric based on real measurements in Figure 

80. Equation 19 combined with 21 was used to calculated bronzing. The figure 

shows that the modelling algorithm can be used to decide which inks, at which 

densities, have lower or higher levels of bronzing.  
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Figure 80: Performance of the bronzing model compared to real measurements. The vertical axis 
represents the bronzing metric that was proposed in the previous section. D1 to D5 show the 5 
different densities used for each ink density. D1 is lightest ink density and D5 is the highest ink 
density. K1 and K2 are the 2 black inks used. 
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CHAPTER 8: SUMMARY 

When primaries interact with each other non-linearly as in a printer 

system, modelling the system output becomes complicated. The Yule-Nielson 

Cellular Neugebauer (YNCN) model is known to have the highest accuracy in 

predicting any ink combination relative to other existing models. The drawback of 

YNCN is that it requires significantly more measurement points than other 

models. In this thesis, two models were proposed for improving the YNCN model. 

The first one takes advantage of the paper (medium) constraints, such as ink 

limiting, to reduce the necessary number of measurements substantially (by as 

much as 97%). A better, smarter sampling method based on the linearization 

curves can relax the required number of measurement points even further. The 

second proposed model is based on using a non-linear transformation, ISOMAP, 

to reduce the complexity of the output system before any interpolation is applied. 

Two conference papers are published for these proposed methods ([68], [78]).  

Finding the optimal spectral characteristics for each primary and the 

number of primaries needed for a given system is another focus of spectral 

reproduction research. Hardeberg [30] showed that in a real system, due to the 

noise associated with each primary, the accuracy of the system does not always 

improve when more primaries are added.  

The effect of different system behaviours (linear or non-linear) and the 

reflectance characteristics of the primaries on the accuracy of spectral colour 
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reproduction were evaluated. In particular, the spectral characteristics of each 

primary and the number of primaries to use were both studied. The results will be 

useful to a researcher in deciding how an existing output device (printer, 

projector, scanner or a camera) might be improved by introducing an additional 

light source or ink with specific reflectance or absorption characteristics. Another 

important finding of the study was the effect of overlap between reflectance 

characteristics and their smoothness on spectral colour reproduction accuracy. 

Two models, one linear and one non-linear, were used and a hierarchical search 

algorithm was implemented to evaluate the system. The results are published in 

NIP23 paper [76] and NIP25 [85] . 

  The next topic addressed in the thesis is that of an algorithm to 

determine the best primary combination to reproduce a given spectrum. The 

majority of the mapping algorithms in this field are based on calculating the 

convex hull of the gamut, and using the hull to determine if an input spectrum is 

out of gamut. To reduce the complexity of these algorithms when applied for 

spectral analysis, some researchers have proposed using a lower-dimensional 

space to make spectral gamut mapping more manageable. Other methods 

attempt to invert forward device models, but these tend to have high time 

complexity and low accuracy.  

Two gamut mapping and two ink separation methods are proposed in this 

thesis. The first gamut mapping algorithm proposes a new approach to calculate 

the convex hull for only the relevant portion of the gamut space. This model also 

calculates the best ink separation assuming a convex output gamut. The main 
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advantage of this algorithm is that the complexity of the algorithm grows linearly 

with the number of available points in the system, which is a great improvement 

compared to the other convex hull based approaches in which their time 

complexities grow at a polynomial rate. The results of the work are published in 

the CIC 2006 conference [77]. 

The second gamut mapping algorithm is based on mapping the gamut in a 

low-dimensional space using a non-linear transformation before any known 

gamut mappings are applied. There are two main advantages to this method. 

First, the model maps the printer spectral gamut space to a lower dimensional 

space more accurately than other linear approaches (e.g. PCA or ICA). Second, 

after the mapping the spectral gamut space has fewer concavities compared to 

linear dimensional reduction methods. 

 The second proposed ink separation method is based on multi-

dimensional interpolation from the input spectral gamut to output ink combination. 

This interpolation approach uses geodesic distances to calculate weights used in 

the interpolation instead of standard Euclidean distances [79]. 

Also, real experimental results were used to evaluate the performance of 

the proposed model against one of the conventional tri-chromatic printing 

models. The setup has a printer with 9 inks with different colours, some with 

similar hue angle: magenta1, magenta2, magenta3, Red1, Red2, yellow1, 

yellow2, cyan and black. The experiment is aimed to reproduce the colour of 

some tiles from a Macbeth Colour Checker, and some yellow painting patches as 

accurately as possible in spectral space. The forward printer model used is 
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based on a modified Yule Nielson Neugebauer model. The spectral gamut 

mapping algorithm is based on the proposed mapping after a non-linear 

transformation. The ink separation algorithm is also based on the proposed 

technique of using Geodesic distances in the interpolation process.  

In the last section of this study, we model the reflectance variation of a 

printed patch under different phase angles. A metric to evaluate bronzing is 

proposed based on the reflectance variation. The metric is based on the spectral 

reflectance variation of a patch under different phase angles. This can be a great 

advancement in measuring bronzing where there is no simple objective method 

exists at this time. Lastly, a method to predict how bronzing varies as a function 

of ink density is proposed. It combines the proposed bronzing measurement with 

existing spectral printer modelling. Knowing this model, the spectral colour 

reproduction process can be improved to consider both metamerism and 

bronzing effects.  

Detailed Contributions 

Two spectral modelling algorithms for printer output were introduced. The 

first algorithm is based on optimizing the Cellular Neugebauer Model, which 

takes advantage of ink limiting and linearization information to minimize the 

number of ink combinations to measure. A modification to the model is proposed 

to handle missing measurement points due to ink limiting. The second spectral 

modeling method is based on using the ISOMAP technique to map the printer 

gamut into a space where the primaries have less non-linear interaction between 

one other.  



 

 134 

The effects of absorption or reflectance sensitivity for each type of primary 

and the number of primaries on the accuracy of spectral colour reproduction 

were evaluated. A study was performed for output devices with both linear and 

non-linear interactions between the primaries. Four different types of synthetic 

primaries and three different overlap amounts for each primary type were used in 

the study. Finally, the effectiveness of the existing inks was compared against 

the optimized synthetic inks for spectral colour reproduction. The results from this 

study helps engineers, when designing inks, filters or other types of primaries, to 

improve the existing spectral reproduction accuracy of their output device, 

whether the device is a projector or a printer. The study also helps engineers to 

better understand the gain in spectral gamut of a device if an additional primary 

is added to the system.  

Since spectral gamut mapping is an important part of the spectral colour 

reproduction process and the mapping algorithm is more complex for non-linear 

output devices, two spectral gamut mapping algorithms were introduced for 

printers. One of the algorithms is based on calculating the convex hull for only 

regions of interest in a printer gamut. The proposed method has a time and 

space complexity that grows linearly with the number of data points representing 

the printer gamut. The algorithm is also used to evaluate the concavity of the 

printer gamut in spectral space as the number of primaries increases.  

The second spectral gamut mapping algorithm is based on gamut 

mapping in a lower dimension space as calculated using ISOMAP. The accuracy 

of the proposed gamut mapping algorithm is comparable to running an 
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exhaustive search in the printer gamut. In addition, an ink separation algorithm 

was proposed based on interpolation using Geodesic distances between gamut 

points.  Both of the proposed algorithms are flexible and can handle printer 

gamuts with different level of complexities. This is the main advantage of these 

algorithms over existing techniques such as LABpqr  where the complexity of the 

device output gamut is assumed  not to be larger than 5 or 6 dimensions.  

To evaluate the feasibility of the proposed methods using the existing 

printers and inks, an actual spectral colour reproduction was compared against 

colour reproduction in CIELAB colour space for a real 9-ink printer system. The 

results showed that, given the limited number of available inks, using spectral 

colour reproduction method, metamerism could be reduced by around 40%.  

Lastly, another application of analysis in spectral colour space was 

presented. It was shown that using spectral analysis of a printed patch, a 

bronzing metric can be defined. The metric can also be extended to assist 

engineers to minimize bronzing in colour reproduction.  

 



 

 136 

REFERENCES  

[1] R. S., Burns, “Methods for Characterizing CRT displays”, Displays, Volume 
16, Issue 4, 1996; 173-182  

 
[2] Tamura N, Tsumura N, Miyake Y. “Masking Model for Accurate Colorimetric 

Characterization of LCD”. Proc. IS&T/SID 10th Color Imaging Conference 
2002; 312-316. 

[3] D., Wyble, M., Rosen, “Color Management of DLP Projectors”, Proc. 
IS&T/SID 12th Color Imaging Conference 2004, 228-232 

[4] B.V. Funt, B. Bastani, X R. Ghaffari, “Optimal Linear RGB-to-XYZ Mapping 
for Color Display Calibration”, Proc. IS&T/SID 12th Color Imaging 
Conference 2004; 223-227 

[5] Xrite, < 
http://www.xrite.com/documents/literature/gmb/en/spectrolino_serial_5_en.pd
f >, Xrite, Spectralino SpectraScan, 2009 

[6] W. Chau, and W.B. Cowan, “Gamut Mapping Based on the Fundamental 
Components of Reflective Image Specifications”, Proceedings of 4th 
IS&T/SID Color Imaging Conference, 67-70. 

[7] Ian E. Bell, Ian Bell Consulting, Simon K. Alexander, “A Spectral Gamut-
Mapping Environment with Rendering Parameter Feedback”, Eurographics, 
2004 

[8] Arne M. Bakke, Ivar Farup, and Jon Y. Hardeberg , “Multispectral gamut 
mapping and visualization: a first attempt”, SPIE, Color Imaging X: 
Processing, Hardcopy, and Applications, Reiner Eschbach, Gabriel G. 
Marcu, Editors, 193-200, 2005 

[9] L. Yang and S.J. Miklavcie, “Theory of Light Propagation incorporating 
scattering and absorption in turbid media”, Opt. Lett., 30, 792-794, 2005 

[10] <http://www.answers.com/topic/principal-components-analysis>, Mathworld, 
Principal Component Analysis, 2009 

[11] < http://mathworld.wolfram.com/LeastSquaresFitting.html>, Mathworld, Least 
Square Fitting, 2009 

[12] <http://www.bibl.liu.se/liupubl/disp/disp97/tek492s.htm>, Dot Gain in Colour 
Halftones, 2007 

http://www.answers.com/topic/principal-components-analysis�
http://mathworld.wolfram.com/LeastSquaresFitting.html�
http://www.bibl.liu.se/liupubl/disp/disp97/tek492s.htm�


 

 137 

[13]  <http://en.wikipedia.org/wiki/Radial_basis_function>, Wikipedia, Radial Basis 
Functions, 2009 

[14]  P. Kubelka and F. Munk, “Ein beitrag zur optik der farbanstriche”, Z. Tech. 
Phys. 12, 593–601, 1931 

[15]  Di-Yuan Tzeng, “Spectral Based Color Separation Algorithm Development 
for Multiple Ink Color Reproduction”, PhD Thesis, Rochester Institute of 
Technology, 1988 

[16]  Li Yang, Ink-Paper Interaction, “A Study in Inkjet Color Reproduction”, PhD 
Thesis, Linkiping University, 2003 

[17]  Murray, A., “Monochrome Reproduction in Photoengraving”, J. Franklin Inst. 
221,721-744, 1936 

[18]  Neugebauer, H. E. J., “Die Theoretischen Grundlagen des 
Mehrfarbenbuchdrucks”, (German) Zeitschrift für Wissenshaftliche 
Photographie Photophysik und Photochemie 36:4, 73-89 (1937) [Reprinted in 
Proc. SPIE 1184: Neugebauer Memorial Seminar on Color Reproduction, 
194-202, 1989 

[19]  Demichel, M. E., Procédé 26, 17-21, 26-27, 1924 

[20]  Yule, J. A. C., “Principles of Color Reproduction”, John Wiley & Sons, Inc, 
255, 1967  

[21]  Wyble, D., Berns, RS., “A Critical Review of Spectral Models Applied to 
Binary Color Printing”, Rochester Institute of Technology, 1999 

[22]  Yule JAC, Nielsen WJ. “The penetration of light into paper and its effect on 
halftone reproduction,” Proc. TAGA, 1951 

[23]  Balasubramanian R. “A printer model for Dot-on-Dot halftone screens.”, Proc 
SPIE, Color hard copy and graphic arts IV, Vol, 2413, p. 356-364, 1995 

[24]  Heuberger KJ, Jing ZM, Persiev S. “Color transformations and lookup 
tables”. TAGA/ISCC Proc; p 863–881, 1992 

[25]  Kohler. T., Berns, RS., “Reducing metamerism and increasing gamut using 
five or more colored inks”, Proc. of IS&T Third Technical Symposium on 
Prepress, proofing and Printing, pg. 24, 1993 

[26]  Tzeng, DY., Berns, RS., “Spectral-Based Six-Color Separation Minimizing 
Metamerism”, Proc. CIC, The Eighth IS&T/SID Color Imaging Conference, 
2000 

[27]  DY. Tzeng and R. Berns, “Spectral-Based Ink Selection for Multiple-Ink 
Printing I. Colorant Estimation of Original Objects”, Proc. IS&T/SID Seventh 
Color Imaging Conference: Color Science, Systems and Applications, 
Scottsdale, pg. 106-111, 1998 

http://en.wikipedia.org/wiki/Radial_basis_function�


 

 138 

[28]  DY. Tzeng and R. Berns, “Spectral-Based Ink Selection for Multiple-Ink 
Printing II. Optimal Ink Selection”, Proc. IS&T/SID Seventh Color Imaging 
Conference: Color Science, Systems and Applications, Scottsdale, pg. 182-
187, 1999 

[29]  DY. Tzeng., “Spectral-based color Separation algorithm development for 
multiple-ink color reproduction”, Ph.D. Dissertation, Rochester Institute of 
Technology, 1999 

[30]  David Connah, Ali Alsam, Jon Hardeberg, “Multi-Spectral Imaging: How 
many sensors do we need”, Proc. IS&T/SID Twelfth Color Imaging 
Conference, pg 53-58, 2004 

[31]  H. F. Kaiser, “The varimax criterion for analytical rotation in factor analysis”, 
Psychometrika, 23, 187, 1958 

[32]  P. D. Burns, “Analysis of image noise in multispectral color acquisition,” 
Ph.D. thesis, Center for Imaging Science, Rochester Institute of Technology 
1997 

[33]  F. K¨onig andW. Praefcke, “A multispectral scanner”, in L.W. MacDonald 
and M. R. Luo, editors, Colour Imaging: Vision and Technology, John Wiley 
and Sons Ltd, pp. 129-144, 1999 

[34]  H. Sugiura, T. Kuno, N. Watanabe, N. Matoba, J. Hayashi and Y. Miyake, 
“Development of high accurate multispectral cameras”, in Proceedings of the 
International Symposium on Multispectral imaging and Color Reproduction 
for Digital Archives, Chiba University, Japan, pp. 73-80, 1999 

[35]  J. K. Eem, H. D. Shin and S. O. Park, “Reconstruction of surface spectral 
refectances using characteristic vectors of Munsell colors”, in Proceedings of 
IS&T and SID's 2nd Color Imaging Conference: Color Science, Systems and 
Applications, Scottsdale, Arizona, pp. 127–31, 1994 

[36] L. T. Maloney, “Evaluation of linear models of surface spectral reflectance 
with a small number of parameters”, Journal of the Optical Society of 
America - A, 3(10), 1673, 1986 

[37] J. Parkkinen, J. Hallikainen and T. Jaaskelainen, “Characteristic spectra of 
Munsell colors, Journal of the Optical Society of America - A, 6, 318, see 
http://cs.joensuu.fi/spectral, 1989 

[38] W. Wang, M. Hauta-Kasari and S. Toyooka, “Optimal lters-design for 
measuring colors using unsupervised neural network”, in Proceedings of the 
8th Congress of the International Colour Association, AIC Color 97, Kyoto, 
Japan, vol. I, pp. 419-422, 1997 

[39]  J. Y. Hardeberg, “On the spectral dimensionality of object colors”, in 
Proceedings of CGIV'2002, First European Conference on Colour in 
Graphics, Imaging, and Vision, Poitiers, France, pp. 480-485, 2002 



 

 139 

[40]  A. Johnson and D. W. Wichern, “Applied Multivariate Statistical Analysis”, 
3rd Ed. Prentice Hall, New York, 459-486, 1992 

[41]  J. L. Simonds, “Application of Characteristic Vector Analysis to Photographic 
and Optical Response Data”, Journal of Optical Society of America. 53, No. 
8, 968-974, 1963 

[42] D. B. Judd, D. L. MacAdam, and G. Wyszecki, “Spectral Distribution of 
Typical Daylight as a Function of Correlated Color Temperature”, Journal of 
Optical Society of America, 54, No. 8, 1031- 1040, 1964 

[43] N. Ohta, “Estimating Absorption Bands of Component Dyes by Means of 
Principal Component Analysis”, Analytical Chemistry, 45, 553-557, 1973 

[44] J. Morovic, M. Lou, "The fundamental of Gamut Mapping: A Survey", Journal 
of Imaging Science and Technology, vol. 45, no. 3, 2001 

[45]  McDonald, L.W., “Gamut Mapping in Perceptual Color Space”, Proceeding 
1st IS&T/SID Color Imaging Conference. Springfield, VA, 1993, 193-196 

[46]  R. S. Gentile, E. Walowitt and J. P. Allebach, “A comparison of techniques 
for color gamut mismatch compensation”, Journal of Imaging Technology, 
vol. 16, pp. 176-181, 1990 

[47]  E. D. Montag and M. D. Fairchild , “Gamut mapping: Evaluation of chroma 
clipping techniques for three destination gamuts.” IS&T/SID Sixth Colour 
Imaging Conference, Scottsdale, 1998, p. 57-61 

[48] Mitchell Rosen, N. Ohta, “Spectral Color Processing using an Interim 
Connection Space”, IS&T/SID Twelfth Colour Imaging Conference, 
Scottsdale, 2004, p. 187-192 

[49] Mitchell Rosen, F. Imai, X. Jiang, N. Ohta, “Spectral Reproduction from 
Scene to Hardcopy II: Image Processing”, Proceedings of SPIE, the 
International Society for Optical Engineering, 33-41, 2001 

[50]  L. Taplin, R. Berns, “Spectral Color Reproduction Based on a Six Color 
Inkjet Output System”, Proc. IS&T/SID Ninth Color Imaging Conference, 209-
213, 2001 

[51] DY. Tzeng, R. Berns, “Spectral Based Six Color Separation Minimizing 
Metamerism”, Proc. IS&T/SID Eighth Color Imaging Conference, pg 342-347, 
2000 

[52]  Y. Chen, R. Berns, L. Taplin, F. Imai, “A Multi-Ink Color Separation 
Algorithm Maximizing Color Constancy”, Proceeding of IS&T/SID Eleventh 
Color Imaging Conference, 277-281, 2003 

[53]  P. Urban, R. Grigat, “Spectral Based Color Separation Using Linear 
Regression Iteration”, Wiley Periodical, Vol. 31, No. 3, 229-238, 2006 



 

 140 

[54] P. Urban, M. Rosen, R. Berns, “Fast Spectral-Based Separation of 
Multispectral Images”, Proceeding of IS&T/SID Fifteenth Color Imaging 
Conference, 2007 

[55]  A. Bakke, Ivar Farup, J. Hardeberg, ”Multi-Spectral Gamut Mapping and 
Visualization – A first attempt”, SPIE, Color imaging X : processing, 
hardcopy, and applications, Vol 5667, 193-200, 2005 

[56] H. Haneishi and Y. Sakuda, “Representing Gamut of Spectral Reflectance by 
a Polyhedron in High Dimensional Space,” in Proceedings of the Third 
International Conference on Multispectral Color Science (MCS’01), pp. 5–8, 
2001 

[57]  M. Derhak, M. Rosen, “Spectral Colorimetry Using LabPQR – An Interim 
Connection Space”, Proceeding of IS&T/SID Twelfth Color Imaging 
Conference, 246-250, 2004 

[58]  S. Tsutsumi, M. Rosen, R. Berns, “Spectral Reproduction Using LabPQR: 
Inverting the Fractional-Area-Coverage-to-Spectra Relationship”, Proceeding 
of IS&T/SID Fourteenth Color Imaging Conference, 107-110, 2006 

[59]  S. Tsutsumi, M. Rosen, R. Berns, “Spectral Color Reproduction Using an 
Interim Connection Space-Based Lookup Table”, Proceeding of IS&T/SID 
Fifteenth Color Imaging Conference, 184-189, 2007 

[60]  B. Bastani, B. Funt, J. Dicarlo, “Spectral Reproduction – How many 
primaries are needed?”, Proceeding of NIP23, 23rd International Conference 
on Digital Printing Technologies and Digital Fabrication, Anchorage, Alaska, 
410-413, 2007 

[61]  Xiong, W., Shi, L., Funt, B., "Illumination Estimation via Thin-Plate Spline 
Interpolation", Proceeding of IS&T/SID Fifteenth Color Imaging Conference, 
2007 

[62]  J. B. Tenenbaum, V. de Silva, J. C. Langford (2000). "A global geometric 
framework for nonlinear dimensionality reduction", Science 290 (5500): 
2319-2323, 22, 2000 

[63]  G.A.F. Seber, Multivariate Observations”, Wiley, 1984 

[64]  B. Bastani, B. Cressman, B. Funt, "Calibrated Color Mapping Between LCD 
and CRT Displays: A Case Study", Color Research and Application, Volume 
30, Issue 6, Date: December 2005, Pages: 438-447 

[65]  Barnard, K. Martin, L., Funt, B.V. and Coath, A., "A Data Set for Color 
Research", Color Research and Application, vol. 27, no. 3, pp. 140-147, 
2002. (Data from: www.cs.sfu.ca/~colour ) 

[66] J. Ferguson , P. A. Staley, “Least squares piecewise cubic curve fitting”, 
Communications of the ACM, Volume 16 ,  Issue 6, 1973 



 

 141 

[67] G. Finlayson, S. Hordley and I. Tastl, "Gamut Constrained Illuminant 
Estimation”, International Journal of Computer Vision, vol. 67 , no. 1, 2006 

[68] B. Bastani, B. Cressman, M. Shaw, “Sparse Cellular Neugebauer Model for 
N-ink Printers,” Proceeding of IS&T/SID Fourth Color Imaging Conference: 
Color Science, Systems and Applications, Scottsdale, pp. 58-60, 1996 

[69] N. Katoh and M. Ito, “Applying Non-linear Compression to the Three-
dimensional Gamut Mapping”, The Journal of Imaging Science and 
Technology, vol. 44, no. 4, pp. 328-333, 1999 

[70] T. Cholewo and S. Love, “Gamut Boundary Determination Using Alpha-
Shapes,” Proceeding of IS&T/SID Seventh Color Imaging Conference: Color 
Science, Systems and Applications, Scottsdale, pp. 200-204, 1999 

[71]  C. McIntosh and G. Hamarneh “Is a Single Energy Functional Sufficient? 
Adaptive Energy Functionals and Automatic Initialization”,  In Lecture Notes 
in Computer Science, Medical Image Computing and Computer-Assisted 
Intervention (MICCAI), pp. 503-510, 2007 

[72]  Z. Ma, Y. Bi, Inventor; Hewlett-Packard Company, “Inkjet Inks Having 
Reduced Bronzing”, International Patent PCT/US2006/017315, 2005 

[73]  L. Tsang, J. Moffatt, M. Austin, Inventor; Hewlett-Packard Company, 
“Additives to eliminate bronzing of inkjet ink formulations on specialty quick-
dry inkjet photographic media”, United States Patent US 7052535, 2006 

[74]  < http://www.aviangroupusa.com/MCRL_GCMS.php> , Murakami 
GonioSpectrophotometer, 2008 

[75]  Li Yang, “Light Media Interaction in print color reproduction”, Proc. NIP22, 
22nd International Conference on Digital Printing Technologies and Digital 
Fabrication,, Tutorial, 2006 

[76] Bastani, B, Funt, B, Dicarlo, J, “Spectral Reproduction- How Many Primaries 
Are Needed?”, Proc. NIP23, 23rd International Conference on Digital Printing 
Technologies and Digital Fabrication, Alaska, p. 410-413, 2007 

[77] Bastani, B, Funt, B, “Spectral Gamut Mapping and Gamut Concavity”, 
Proceeding of IS&T/SID Fourteenth Color Imaging Conference: Color 
Science, Systems and Applications, Albuquerque, NM, p. 218-221, 2007 

[78] Bastani, B., Funt, B., “Spectral Modeling of an n-Ink Printer via Thin Plate 
Spline Interpolation”, Proc. NIP24, 24th International Conference on Digital 
Printing Technologies and Digital Fabrication, 2008 

[79] Bastani, B., Funt, B., “Geodesic Based Ink Separation for Spectral Printing”, 
Proceeding of IS&T/SID Sixteenth Color Imaging Conference: Color Science, 
Systems and Applications, 2008 



 

 142 

[80]  <http://www.mathreference.com/ca-int,simp.html>,Mathreference, The 
Volume of a Simplex, 2008 

[81] Sharma G, editor, “Digital Color Imaging Handbook”, CRC Press, Boca 
Ranton, FL, 2003 

[82] Li, X., Li, CJ, Luo, M. R., Pointer, M., Cho, M. and Kim, J., “A New Colour 
Gamut for Object Colours”, Fifth Colour Imaging Conference, pages 283-287, 
2007 

[83]  Han J, Kamber M, "Data Mining: Concepts and techniques", Chapter 8, 
pp335-485, Morgan Kaufmann, 2001 

[84]  < http://www.cis.rit.edu/mcsl/online/cie.php >, RIT Useful Color Data, 2009 

[85]  B. Bastani, B. Funt, “Spectral Gamut Characteristics Based on Number of 
Primaries and Their Characteristics”, Proc. NIP25, 25rd International 
Conference on Digital Printing Technologies and Digital Fabrication, 
Louisville, Kentucky, 410-413, 2007 

[86] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford, “A Global 
Geometric Framework for Nonlinear Dimensionality Reduction”, Science 22 
2319-2323, 200 

[87] R. Balasubramanian, “Optimization of the spectral Neugebauer model for 
printer characterization”, Journal of Electronic Imaging, Vol. 8, 156, 1999 

[88]  < http://mathworld.wolfram.com/DijkstrasAlgorithm.html>, Wolfram 
Mathworld, 2009 

[89]  F. Nakaya and N. Ohta, “Spectral encoding / decoding using LabRGB”, 
Fifteenth Colour Imaging Conference, 2007 

[90]  F. Nakaya and N. Ohta, “Applying LabRGB to Real Multi-Spectral Images”. , 
Sixteenth Colour Imaging Conference, 2008 

[91] <http://en.wikipedia.org/wiki/Thin_plate_spline>, Wikipedia, Thin Plate 
Spline, 2009 

[92]  < http://www.mathworks.com/support/tech-notes/1500/1508.html>, Matlab, 
Curve Fitting 

 

 

http://mathworld.wolfram.com/DijkstrasAlgorithm.html�
http://en.wikipedia.org/wiki/Thin_plate_spline�
http://www.mathworks.com/support/tech-notes/1500/1508.html�

	Approval
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Glossary
	Spectral Reproduction
	Introduction
	Survey and Proposal Layout

	Mathematical Preliminaries
	Thin Plate Spline Interpolation
	Principal Component Analysis
	Least Square and Non-Negative Least Square Method
	ISOMAP and Multi-Dimensional Scaling

	Printer Modelling
	Light and Media Interaction and the Dot Gain Phenomenon
	Modelling Ink and Medium interaction
	Linear Model (Murray Davies) [15], [9], [17]
	Kubelka Munk Model [15], [16]
	Neugebauer Model ([18], [20], [21], [15])

	Challenges of Ink Modelling and Printer Characterization
	Smarter Sampling: Uniform Sampling in Perceptual Colour Space
	Physical Constraint: Ink Limiting
	Handling the Missing Points (Neighbours)
	Smarter Transformation and More Advanced Interpolation Method
	Improving Printer Characterization using TPS interpolation based on Manifold Transformation


	Data Collection
	Implementation
	Results
	Results: Modified YNCN (Smarter Sampling and Dealing with Missing Neighbours)
	Result: Manifold Based Printer Model


	Number of primaries
	Calculating Data Set Complexity
	Rotated PCA Basis
	PCA Eigenvector without Sample Mean

	Multi-Peak Primaries [30]
	Analysis of Primary Characteristics
	Primary Selection
	Device Characteristics

	Evaluation Method
	Hierarchical Search (HS) Gamut Mapping Algorithm
	Optimizing the HS Parameters
	Evaluating Metamerism
	Scene Data Base and K Means

	Results
	Primary Overlap
	Primary Interaction Model
	Number of Primaries


	Spectral Gamut Mapping and Spectral Ink Separation
	Spectral Reproduction Based on Interim Colour Space
	Spectral Ink Separation Based on Inverting a Printer Model
	Proposed Method I: Spectral Ink Separation using Non-Negative Least Squares
	Preserving Colour for a Desired Illumination
	Evaluation of Gamut Convexity
	Experiment
	Results

	Proposed Method II: Geodesic Based Ink Separation for Spectral Printing
	Use of Thin Plate Spline Interpolation in Spectral Reproduction
	Geodesic Interpolation and Ink Separation
	Spectral Gamut Mapping based on Manifold Projection
	Evaluation Method
	Time and Space Complexity
	Experiments
	Printer Gamut
	Ink Choices

	Printer Spectral Gamut Intrinsic Dimensionality
	Results
	Spectral Gamut Mapping Evaluation
	Test Data


	Conclusion

	Evaluation of Spectral Colour Reproduction
	Introduction
	Target Samples
	Experiment Setup
	Implementation Details
	Results

	Spectral Analysis of Bronzing
	Introduction
	Data Measurement
	Bronzing Evaluation based on Spectral Reflectance Characteristics
	Results

	Modeling Bronze
	Predicting Reflectance under Different Viewing Angles
	Modelling Bronze for Different Ink Densities and Phase Angles
	What can be learned from this model?
	Experiment Setup
	Results


	Summary
	Detailed Contributions

	References



