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Abstract 

Multiple-input, multiple-output (MIMO) systems allow increased capacity over single port 

antenna systems in the presence of multipath fading environments. The challenging areas 

in a MIMO system overlap between the propagation channel, the antennas and the signal 

processing. In this dissertation two aspects of MIMO theory are investigated. Firstly, the 

effect of systematic correlation on the capacity efficiency is analyzed in detail. This analysis 

has been undertaken through the introduction of a specific correlated structure, namely the 

circulant. Compared to the completely random (i.i.d.) structure, the circulant shows a clear 

capacity increase both in the theoretical Shannon limit and also in the practicable, QAM- 

included case. This fascinating behavior can be fully explained through investigation of the 

pdfs of the eigenvalues of the channel matrices. The investigation shows that the capacity 

increase arises from the more similar eigenvalues of the circulant structure. The empirical 

pdfs of the eigenvalues are presented and parameters are introduced to compare the similar- 

ity between the eigenvalues. Furthermore, the basic hypothesis of parallel channel capacity 

is clarified with respect to the water-filling of MIMO eigenchannels. Other advantages of the 

circulant structure, based on its fixed eigenvectors, have been developed. In particular, it is 

possible to reduce the degradation caused by errors in the channel estimation for circulant 

channels. While this first aspect of MIMO theory concerns the channel modeling and signal 

processing, the second aspect focuses on the important practical issue of power allocation 

between eigenchannels. The optimum power allocation is the non-linear strategy of water 

filling, but this is expensive in processing power to implement. Therefore it is of interest 

to decrease the complexity of water filling using a sub-optimum method. It is shown here 

that it is reasonable to circumvent the complexity of water filling by simply using equal 

powers. Again, this simplification is feasible because of the arrangement of the eigenvalues 

in the channel matrix. For differently dimensioned MIMO systems, there is a different power 



threshold above which we can substitute equal powers instead of water filling powers. An 

experimental rule for this power threshold has been derived. 



To My Mother 



"Science may be described as the art of systematic over-simplification." 

- KARL POPPER, 1902-1994 
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Preface 

When I began to add to my knowledge about Multi-Input Multi-Output theory, I found that 

MIMO is exactly showing the spirit of an engineering effort. Instead of trying to remove the 

interference between different signals which is not feasible, MIMO started to use this classic 

destructive factor as a possible source of information. After a while, I understood that 

there is a commonly accepted idea about MIMO systems which says the best performance 

of MIMO systems can be achieved in uncorrelated situations. This was an ideal assumption 

far away from the real world. 

Since MIMO theory views the interference as a positive factor, instead of negative factor, 

then could the same be happen to the correlation? The main part of this thesis includes 

my effort that this idea is true. Systematic correlation can be a constructive factor in the 

performance of the MIMO system. I have shown these results for a correlated structure V.Z. 

circulant structure which also introduces some other advantages. 

The fact that correlation is an inevitable phenomenon in the real world means that in- 

stead of trying to  remove it, we can put our effort into exploiting it. This thesis work is 

basically a start for that journey. 

xiii 



Chapter 1 

Introduction 

Wireless communication systems are in the center of much technical and academic research 

and development in electrical engineering. One of the primary reasons for this is the conve- 

nience of being a member of a communication network when people are mobile. Furthermore, 

this convenience has become a necessity in recent years. This necessity founds the new era 

of information networks in which everybody increasingly wants to access information. The 

result, that of increasing demand for connectivity raises practical difficulties which engineers 

try to resolve. 

Starting from a stationary transmitter and receiver, wireless communications has come 

a long way to considering Multi-Input Multi-Output (MIMO) systems as an answer to one 

of its major challenges i.e. spectrum efficiency. The nature of wireless communication in 

which there is no constrained media to send the data through (in contrast with wired com- 

munication) as well as an increasing number of users, are the motivations for seeking new 

techniques to  use the spectrum more efficiently. For a single signal sent through a wireless 

channel, there are natural phenomena such as scattering and reflection which lead to what 

is usually called fading. Also, with currently used frequencies, the sizes of buildings in the 

urban areas and their materials cause a significant attenuation causing shadowing. More- 

over, when the multiple signals share the same channel, the issue of interchannel interference 

is of a great importance such that it completely marginalizes the classic issue of noise in 

communications. 

There is always the possibility of using more spectrum to overcome each of these chal- 

lenges but according to the increasing number of spectrum users, this is no longer a feasible 
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solution. Multi-Input Multi-Output (MIMO) systems are one of the most promising an- 

swers which at least theoretically could overcome many of these issues without any need to 

use more spectrum. MIMO, which can also be directly deployed for high data rate wireless 

communications, is based on the simple idea of using multiple antennas in the receiver and 

transmitter and it has been shown that theoretically (i.e. ideal channel estimation), MIMO 

capacity increases linearly with the number of antennas. 

There are three main areas in the MIMO systems: the signal processing backbone, the 

antennas and the channel. Among them, the channel is the part where there is less con- 

trol but more importance in terms of unwanted effects on the signals. The main research 

tendencies in MIMO are working on signal processing and antenna design parts which are 

the accessible components. Our knowledge about the channel directly affects our efforts in 

the two other parts. Because of this, many of the contributions and research in the area of 

signal processing and antennas are based on the assumption of knowing the channel. In the 

traditional context of communications, by having the channel information, we usually refer 

to the receiver, which may have the channel information (for coherent detection) or may not 

(for non-coherent detection methods like differential detection). But in the wireless commu- 

nications and specially in the MIMO theory, not only the receiver but also the transmitter 

ideally needs to know the channel information. Based on this, it is very important to inves- 

tigate the channel itself. This dissertation looks into the channel and tries to extract some 

facts about the connections between the channel structure and the MIMO overall behavior. 

We will study two different channel structures and compare not only their theoretical ca- 

pacity efficiency, but also their practical ones, i.e. including digital modulation techniques. 

The models are the classic i.i.d. channel structure (or completely Gaussian structure) and 

the circulant Gaussian channel structure. The potential benefits of the general correlated 

structure will be shown. The distribution of the eigenvalues is the basic mechanism by 

which these benefits which will be reviewed in detail. We will also introduce the unique and 

important benefit of the circulant structure in terms of sensitivity to the detection noise. 

Finally, the last chapter, the investigation will also extend to the issue of non-linear 

power allocation in MIMO which is usually called water filling. The combination of math- 

ematical characteristics of water filling and the distribution of eigenvalues of the channel 

matrix is the underlying mechanism for the capacity behavior. The suboptimum method 

of equal power allocation is compared with water filling. 

Two conference papers have been presented and published from this thesis: 
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" Circulant Wired MIMO Structures", IEEE Canadian Conference on Electrical and 

Computer Engineering, May 2005. 

0 "Advantages of Circulant MIMO Structures", The IASTED International Conference 

on Antennas, Radar and Wave Propagation, July 2005. 



Chapter 2 

Background 

Multiple-Input Multiple-Output (MIMO) systems are essentially a new visualization of the 

classic problem of one channel shared by multiple users. In that classic problem, each user 

sees the others as the sources of interference and the main goal is to decrease the amount of 

interference in order to have a better signal to interference plus noise ratio (SINR = &) 

and finally, a better detection at the receiver. Many smart schemes have arisen from this 

endeavor. These schemes are in different areas of telecommunication such as coding, digital 

communication techniques (signal processing), antenna designs and beam forming. How- 

ever, the underlying problem of interference still exists due to the increasing number of users 

of mobile communications. Based on these facts, engineers began to consider the possibil- 

ity of using the interference not as a destructive factor but as a potential beneficial source 

which carries some information. The mathematical models, followed for a new generation 

of links called MIMO. The idea is to send different data streams via multiple antennas at 

the transmitter into the same channel, sounding the channel by multiple antennas at  the 

receiver and finally trying to jointly detect the different streams through signal processing. 

Though the theoretical basis of full MIMO has been built up, there are practical issues 

making it a commercially difficult scheme currently. 

Unlike wire line channels, in wireless communications the signals are exposed to scat- 

tering, diffraction and reflection due to the unconstrained media. It is possible to classify 

these disturbances as fading, shadowing and delay spread. In addition, fading can be sub- 

categorized to flat fading and frequency selective fading. Their difference basically relates 

to the channel environment. 

Before going through the above mentioned characteristics it is helpful to consider Figure 
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Figure 2.1: A Wireless Multipath Environment. 

2.1 which depicts a wireless channel in an urban area. Usually there is a base station respon- 

sible for providing service to a mobile subscriber in its area of coverage. But there are also 

different obstacles, reflectors and scatterers, which could be stationary, such as buildings, 

or in motion, such as cars and people. So, there is a multipath channel between the base 

station and the user. In other words, the signal has more than one way to get to the receiver 

and each of these ways introduces different attenuation and propagation delay. Finally the 

different versions of the desired signal add up at  the receiver. The basic challenge is that 

the channel shows time varying characteristics due to the motion which is in the nature 

of mobile communications. In this chapter, after providing some introductions about these 

basic characteristics of wireless channels, we will also overview the MIMO theory and its 

mathematical basis. 
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2.1 Fading 

In principle, fading in the received signal is caused by the variation with time of either the 

amplitude or the relative phase, or both, of one or more of the frequency components of 

the signal. Fading arises from the superposition of different replicas of the signal1. In flat 

fading, these variations are taking place simultaneously in all frequency components of the 

received signal. In frequency selective fading this is not the case. From [29] consider the 

transmitted signal generally represented as 

where sl is the complex envelope and f, is the carrier frequency. Assume that there are n 

propagation paths each of them having a time-varying propagation delay and an attenuation 

factor. Thus, the received band-pass signal is 

where an(t) is the attenuation and rn(t) is the propagation delay of the nth path. From 

(2.1) and (2.2) we will have 

.(t) = Re ( {C an (t) e-2"fcrn l t ) l  [t - i n  (t)] $ I 2 f f f c t )  . 
So, the low-pass received signal is 

Here, rl(t) is the response of the equivalent low-pass channel to the equivalent low-pass signal 

sl(t)  and therefore, the equivalent low-pass channel could be described by the time-varying 

impulse response of 

where ~ ( r ;  t )  is the response of the channel at time t to an impulse applied at the time t - r. 

To investigate the concept of fading, let us assume sl(t) = 1 i.e. only the unmodulated 

 his section has been heavily derived from [29]. 
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carrier has been sent. From (2.4) the received signal reduces to 

This means that the received signal consists of time-varying phasors with the amplitudes of 

an( t )  and the phases of &(t). Note that an(t)  is more stable than On(t) which is sensitive 

to even small motions in the medium. The randomly variant phases On(t) may lead to 

destructive addition of the phasors and result in a very small (practically zero) rl(t). On 

the other hand, these phases may cause a constructive superposition of the phasors which 

leads to a large received signal. This amplitude variations of received signal due to variant 

phases is exactly what we mean by fading. 

Since each term inside the summation in (2.6) is a random process and there are large 

number of these, q( t )  could be modeled as complex Gaussian random process from the 

central limit theorem. In that case, C(T; t)  will be a complex Gaussian random process in t 

and consequently lc(r; t)( is a Rayleigh-distributed random variable at any instant t .  This 

is usually called Rayleigh fading channel. When there are few paths or there is a strong 

line-of-sight path, (c(T; t ) (  is no longer a Rayleigh-distributed random process and can be 

modeled with the Rice (Ricean fading) or Nakagami (Nakagami fading) distributions [36]. 

Figure 2.2 shows a sample Rayleigh faded signal. Since the waves travel with a fixed speed, 

the horizontal axis could be also considered as the distance normalized by the speed of the 

receiver. This means that fading could change the SNR rapidly over distances in the order 

of wavelength. In the following section, we will briefly go through the flat and frequency 

fading channels. The more detailed description and mathematical results for fading could 

be found in [41], [4] and [36]. 

2.1.1 Flat Fading and Frequency Selective Fading Channels 

Assume R(w) to be the frequency response of the wireless channel [41]. The coherence 

bandwidth, Cc, for such a channel, is the bandwidth over which the frequency response is 

correlated more than a predefined correlation threshold. This correlation threshold does 

not have a fixed definition and is taken from e-' = 0.37 to 0.9 by different authors. Coher- 

ence bandwidth is defined usually for the channels with significant dispersion [4]. 

According to the definition of Cc, a channel is called flat fading when the bandwidth of 
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Time 

Figure 2.2: The Envelope of a Sample Faded Signal. 

the signal is much smaller than the coherence bandwidth. Otherwise, it is a frequency selec- 

tive channel. In some texts, instead of flat fading and frequency selective fading channels, 

the alternative expressions of narrowband and wideband channels are being used. 

As can be seen in Figure 2.3, in a narrowband channel, the frequency response of the 

channel is roughly constant. It  implies that all the frequency components of the signal ex- 

perience the same fading pattern, while in the wideband channel (See Figure 2.4), different 

frequency components undergo different fadings. 

A commonly used model for the Rayleigh flat fading channels is the Jakes' scenario 

[19]. On the other hand, since the inter-symbol interference is a major issue in the fre- 

quency selective channels, a different approach is needed in those channels. A proper model 

for simulation of this kind of channels is a tapped delay line where there is more control to 

reduce the effect of IS1 [9]. 
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Frequency 

Figure 2.3: Rayleigh Flat Fading or Narrowband Channel. 

2.2 Shadowing 

Different from free space communications where the distance between the transmitter and 

the receiver is the key parameter determining the signal-tenoise ratio, the existence of huge 

obstacles such as hills (in rural areas for example) and large buildings (in urban areas for 

example) causes a phenomenon called shadowing in mobile communications. 

Here, the locations at the same distance from the transmitter receive different power 

due to the different attenuations in the different paths. For example, if there was a building 

between the transmitter and one of these locations, the shadow of this building diminishes 

the average received power for that location. It is known that shadowing loss could be 

modeled well enough with the log-normal distribution [4] [36]. 

The reason for this modeling is the multipath nature of the channel, where the sum of 

different versions of the signal is available at  the receiver. We have shown that this sum, 

according to the central limit theorem, tends to feature the Gaussian distribution. On the 

other hand, in terms of powers in dB, total path loss is the sum of losses for each of these 
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Frequency 

Figure 2.4: Rayleigh Frequency Selective Fading or Wideband Channel. 

paths. This sum also converges to a Gaussian distribution as mentioned in the central limit 

theorem. So, since the average power in dB features a normal distribution, the average 

power in natural units (e.g. watts) has a log-normal distribution. 

Consider P ( r )  being the average received power at distance r from the transmitter. 

Then this power in dB, i.e. PdB(r) = 10 loglO P( r ) ,  is a Gaussian random variable. The 

parameters of this Gaussian distribution are essentially determined by the environment and 

also by the communication system, e.g. by antenna configuration. Specifically the mean 

value ( ~ ( r ) )  of this Gaussian distribution is a function of distance r .  The log-normal pdf of 

P ( r )  is 

Note that by the average power, we mean averaging over a variation of distance. This vari- 

ation could be small scale due to multipath fading or large scale (in the order of building 

sizes e.g. 20 meters) due to shadowing. 
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2.3 Delay Spread 

Due to the multipath character of the wireless channels, the different versions of the trans- 

mitted signal are received by the receiver with different delays. This phenomenon causes 

Inter-Symbol Interference (ISI) which degrades the system performance. It is clear that the 

degradation caused by delay spread in terms of IS1 significantly depends on the guard in- 

terval duration between the transmitted signals. There are different techniques to overcome 

ISI. The commonest and traditional scheme is implementation of an adaptive equalizer [29]. 

However, it is important to formulate the concept of delay as a mathematical quantity. 

To do this, assume that the impulse response of the channel is given by h(t) [41]. The power 

delay profile is 

~ ( t )  = ih(t)l2 (2.8) 

where lh(t)I2 means averaging the power of impulse response over a region around the 

receiver (This region is usually small and the reason of averaging is simply to remove the 

effect of fading). 

Based on power delay profile in (2.8), the mean delay time is defined as the first moment of 

P( t ) ,  i.e. 

In an static scenario where there is no need to averaging, (2.9) reduces to 

and the delay spread is defined as the standard deviation of the power delay profile, i.e. 

Again, for an static scenario we will have 
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Roughly speaking, delay spread in (2.12) is an average time difference between the 

first and the last versions of the signal arriving at the receiver. More applications and 

formulations in MIMO theory using delay spread can be found in [41]. 

2.4 Multi-Input Multi-Output Systems 

The basic idea of MIMO systems is using antenna arrays at least at one end of the link2. 

Figure 2.5 demonstrates this scenario. The mathematical analysis of the resultant system 

shows that MIMO features remarkable benefits. 

As shown in the previous sections, fading, shadowing and delay spread are the most 

important challenges in wireless communications. A primary solution for these problems is 

using diversity. Diversity simply means to diversify the sources of information to be able to 

overcome the noise and the interference. Although by using more bandwidth, it is possible 

to have more diversity, the high demand for bandwidth pushes the engineers to develop 

systems with more diversity in the same bandwidth. MIMO is at least theoretically such a 

system. 

In this section, after a short literature review on MIMO, we will briefly establish the 

mathematical principles of MIMO and then its information theory background showing that 

why MIMO leads to a higher capacity efficiency. Also the non-linear power allocation used 

for MIMO, i.e. water filling, will be reviewed. 

2.4.1 Literature Review 

Multi-Input Multi-Output systems, which could be viewed as an extension of smart anten- 

nas, allow increased capacity efficiency [42] [43] compared to single port antenna systems in 

the presence of multipath fading environments. In particular when a rich multipath envi- 

ronment is present, i.e. there are many reflections and scattering, MIMO systems provide 

high capacity with no increase in the bandwidth. I t  has been shown that MIMO capacity 

increases linearly with the number of antennas3 in such an environment [ll] [40].~ 

 his section has been heavily derived from (411 and [4] 

3 ~ h e n  the number of antennas in the receiver and transmitter are not equal, the capacity is proportional 
to  the smaller of the number of antennas. 

4 ~ h i s  is true when the channel estimation a t  both the transmitter and the receiver are perfect. 
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Figure 2.5: Multiple Antennas in Multipath Environment. 
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The challenging areas in a MIMO system overlap between the propagation channel, the 

antennas and the signal processing. Outstanding discussions on different aspects of MIMO 

theory can be found in [4], [13] and also [41]. 

Usually, MIMO channels are categorized as known and unknown channels. In the case 

of known channel, there is information about the channel a t  the transmitter and the trans- 

mitter could allocate weights and powers for its different antennas. This is, in fact, the ideal 

MIMO situation. 

For the unknown case, the channel is not known to the transmitter. In this case, the 

best power allocation strategy is equal power allocation. To increase the capacity efficiency 

for unknown channels, one suggestion is to use the space-time coding schemes. The analysis 

in [lo] and [ l l ]  provides the basis for the BLAST (Bell Laboratories Layered Space-Time) 

architecture and the space time codes [18] [38]. Some simulations for the performance of 

BLAST systems (i.e. error probability) could be found in [3] and [23], while the analytical 

summary is presented in [45] and [46]. 

The information theoretic approach to find the mean capacity of MIMO is another part 

of current efforts in expansion of MIMO theory (see e.g. [lo] [ll] [40] [42] and [34]. The 

last one introduces the Gaussian approximation for the MIMO capacity distribution). This 

thesis work in essence lies in this information theoretic part. 

The classic view in MIMO theory emphasizes that correlation between the antenna 

elements in realistic communication channels degrades severely the capacity efficiency of 

MIMO systems [4] and [3215. However, some measurement results show that the capacity 

degradation might not be as significant as expected [25]. Conversely, Oestges et .  al. show 

in their recent works that there are some potential benefits of channel correlation on mean 

capacity 1261 [27]. This fact is the central core of this thesis and will be discussed through 

introducing a special correlated structure. 

2.4.2 Mathematical Principles Of MIMO 

Figure 2.6 shows the multi element antenna system and its conversion to a MIMO system 

through signal processing methods which results in joint data detection at the transmitter6. 

5See also [2] [6] [21] [22] [28] [30] and [33] 

 his section has been heavily derived from [14] and [41] 
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The nature of MIMO systems is that the data is transmitted over a matrix rather than 

a vector channel. This provides considerable diversity for the receiver to detect the data. In 

fact, in an ideal M x N MIMO system, it is possible to transmit min(M, N) data streams in- 

dependently and simultaneously over figurative eigenchannels. For an N x N MIMO system, 

the high-rate data stream at the transmitter is divided into N data streams with l/N-rate 

and sent to each of the transmitting antennas at  the same time. Before broadcasting, these 

lower-rate data streams are weighted by dynamic weights. After broadcasting, these sig- 

nals will mix together due to the nature of wireless and mobile channels. At the receiver, 

similar weights are being applied to the received signal by each of N receiving antennas 

resulting the detection of l/N-rate data streams. Afterwards, putting these lower-rate data 

streams together will result in the primary high-rate data stream. The mathematical basis 

for the whole process is similar to the solution of a linear system with N equations and N 

unknowns. 

As will be shown, the weights at  the transmitter and the receiver are the eigenvectors of 

the channel matrix. Theoretically, this will cause each antenna to transmit its data stream 

over a single scalar channel (i.e. scalar channel for each transmission). However, the ex- 

tension of MIMO theory for frequency selective fading channels is also available by using 

coding and signal processing techniques ( See [5], [35] and [23] for example). 

The maximum number of independent signals which could be transmitted in a MIMO 

system is the rank of MIMO system. This rank is the number of independent equations 

could be derived from it. Also, this rank is identical to the algebraic rank of the M x N 

channel matrix H which is equal to or less than min(M, N). When the rank of a MIMO 

system is equal to min(M, N), the system is full - rank which means that without coding, 

the system can give the spectral efficiency expected from the MIMO theory. 

To review MIMO information theory, we start with the singleinput singleoutput (SISO) 

system. For a memoryless 1 x 1 (SISO) system the capacity efficiency is 

C 
- = E {log2 (I + plh12)} (bits sec-' HZ-'). 
B 

Here, E means expectation; h is the normalized complex gain of the fixed channel which 

could be also considered as a realization of a ra.ndom channel; p is the SNR at the transmitter. 

If there was more than one receiving antenna, i.e. a SIMO system, (2.14) becomes 

M 

(bits sec-' HZ-'). 
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Figure 2.6: (a) Multiple Antennas in Multipath Environment (b) MIMO Signal Processing 
(c) Equivalent MIMO Eigenchannels. 
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where M is the number of antennas at the receiver; hi is the gain for the ith receiving 

antenna. Note in (2.15) that increasing the number of receiving antennas improves the 

capacity efficiency in a logarithmic gradient. On the other hand, if we put the diversity at 

the transmitter where generally there is no information about the channel (MIS0 system), 

then the average capacity efficiency will be 

(bits sec-' HZ-'). 

where N is the number of antennas at the transmitter. While in a SIMO system, each 

receiving antenna sees the channel with the same SNR of p which leads to an array gain in 

the capacity, in MIS0 this SNR should be divided between the N transmitting antennas 

and the channel energy can no longer be combined coherently (Recall that there is only one 

receiving antenna in MIS0 systems.). 

Now, consider having diversity at the both ends of the link, i.e. a MIMO system. The 

theoretical capacity efficiency limit is [41] [4] [ll] [40] 

(bits sec-I HZ-'). 

where superscript H means transpose-conjugate; H i s  the M x N channel matrix and IM 

is the M x M identity matrix7. It has been shown that the capacity efficiency in (2.17) in- 

creases linearly with min(M, N). Compared to the logarithmic growth in (2.15) and (2.16), 

linear growth represents a considerable improvement in the capacity efficiency. 

The underlying phenomena for (2.17) is the conversion of one multipath channel to mul- 

tiple theoretically independent channels. The det operator in (2.17) essentially substitutes 

the channel matrix H with min(M, N )  channels between the transmitting and receiving 

antennas. On the other hand, properties of the log function will result in the summation 

of the capacity efficiencies of these min(M, N)  channels. This procedure will be com- 

pleted by imposing unique vectors of weights to each antenna at both ends. These unique 

weights combine each antenna to create its own eigenchannel. Finally, the multipath chan- 

nel which mixes the multiple data streams transmitted by N transmitting antennas reduces 

to min(M, N)  independent channels with no interference (theoretically) on each other. 

' ~ o t e  that the result in (2.17) is derived under the assumption of equal power uncorrelated sources. 
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It can be shown that the gain of each of these min(M, N) channels are the eigenvalues of 

G =  { H H ~  for M 5 N 

H ~ H  for N >  M 

Also, the weights applied at each transmitting and receiving antenna is the eigenvector 

associated to the eigenvalue of that antenna. According to this, we will call each of the 

min(M, N) channels an eigenchannel. 

It is clear that the performance of MIMO systems are sensitive to the distributions of 

the eigenvalues. Note that H  is a random matrix and so, the eigenvalues of G  are also 

random variables. Even the linear growth of the capacity efficiency with the number of 

antennas depends on these eigenvalues. If there are many small eigenvalues, i.e. many weak 

eigenchannels, MIMO capacity efficiency degrades severely. However, it is very unlikely to 

have many small eigenvalues in practice and so, the linear growth in many cases is achievable. 

Although (2.17) is the well known formulation for MIMO capacity, it can be rewritten 

as the function of eigenvalues of G  based on the above mentioned argument 1411 [40] 

(bits sec-' HZ-'). 
B i=l 

Here, X i  is the ith eigenvalue of G  in (2.18); m = min(M, N) and Pi is the power transmitted 

to the ith eigenchannel normalized by the noise of channel, so it may be considered as the 

SNR referred to the transmitter. Since Xi  is the gain of ith eigenchannel, PiXi is the SNR 

at  the receiver of the ith eigenchannel. In fact, (2.19) is the sum of single channel capacities 

which are in the form of Shannon formulation i.e. 

C/  - = log2(l + (SNR at Rx)) 
B 

(bits sec-' HZ-'). 

The Singular Value Decomposition or SVD builds up another aspect of the MIMO theory. 

SVD is particularly useful for different interpretations in antenna contexts. Even when H  

is rectangular, G  in (2.18) is a Hermitian matrix in general and will have m = min(M, N) 

distinct, real positive eigenvalues and the remaining will be zero. The SVD expansion of H  

itself is 

where A is a diagonal matrix of real, non-negative singular values. These singular values 

are equivalent to the square roots of the eigenvalues of G. The columns of the orthogonal 
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matrices U and V are the corresponding singular vectors. From (2.20), G can be written 

as8 

Note that V contains the eigenvectors of G. Since is the singular value of H, so 

where Vi is the ith column of V and Ui is the ith column of U. If Vi is the transmit weight 

for the i th transmitting antenna and U: is the receive weight for the ith receiving antenna, 

the received voltage for this ith eigenchannel will be 

The received power is the square of the received voltage i.e. Xi.  This is the reason why 

the gain of ith eigenchannel is Xi.  Note again that to have these results, the eigenvectors 

of G should be applied to the transmitter and the receiver in the forms of Vi and UP 
respectively. 

Finally, it is worth mentioning an important property of G i.e. 

Since Xi is the gain of the ith eigenchannel, (2.24) means that the trace of G is the total 

gain of the MIMO channel. 

All of these facts have been used in Figure 2.6. In part (a) of this figure, the real 

multipath environment with multiple antennas is depicted. In part (b), the signal processing 

of MIMO is shown. The high-rate input data stream is being fed to MIMO weights of 

transmitting antennas. These weights are the above mentioned eigenvectors. At the receiver, 

other eigenvectors are being applied to the received signal leading to the output high-rate 

data stream. In part (c), the equivalent model of part (b) is illustrated. In fact, all the MIMO 

signal processing procedures convert (a) to (c) which consists of min(M, N) independent 

eigenchannels. 
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2.4.3 Water Filling Power Allocation 

Recall that (2.17) and (2.19) has been derived under the assumption of equal power alloca- 

tion, i.e. all the eigenchannels receive equal amount of power. It can be shown that knowing 

the channel, the transmitter can share the power more wisely among the eigenchannels. The 

optimum power allocation for a MIMO system is a non-linear method which is usually called 

water filling power allocation [[12], Theorem 7.5.11. 

Figure 2.7 illustrates the water filling for a 6 x 6 MIMO system. The first step is deter- 

mining the threshold D. Note that this threshold does not have any physical meaning. D 

is a mathematical parameter used to determine the power assigned for each of the eigen- 

channels. 

After assigning D,  the inverse of the eigenvalues of the matrix G are compared with 

this threshold. If l / A i  2 D, then the gain of the ith eigenchannel is too small and this 

eigenchannel will be put away from the communication process (the two last eigenchannels 

in Figure 2.7 for example). Through this process, the weakest eigenchannels which do not 

contribute to the communications will be removed. This weakness is basically determined 

by the threshold D. The larger the D is, the more eigenchannels are kept. Note that D 

itself is dependent on the total available power P and the eigenvalues of G. 

Assume that the MIMO system is of square dimension i.e. M = N and also 

A1 2 A, _> ... 2 AN. (2.25) 

Now, consider N' eigenchannels survive the aforementioned cut-off procedure. The power 

allocated to each of these eigenchannels, Pi, is determined by the water filling rule, i.e. 

The total available power is 

Adding the terms in (2.26) results in 
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The threshold D must be determined in an iterative procedure. Finally, as can be seen in 

Figure 2.7, water filling leads to more power for the stronger eigenchannels and less for the 

weaker ones. 

If we apply the water filling powers to (2.19), it will reduce to 

C 
(bits sec-' HZ-'). (2.30) 

i=l 

(2.30) is the theoretical maximum of the capacity efficiency that could be achieved by power 

allocation in a MIMO system. 



Chapter 3 

Circulant MIMO Structure 

There are different types of correlated structures. In fact, although in mathematics and 

statistics the definition of correlation is unique; in the MIMO context where random matrices 

exist there could be different definitions for correlation. In the widest sense, by a correlated 

MIMO structure, we mean a structure in which there is some kind of dependency between 

the signals coming out. 

Two different classes of correlated MIMO structures can be distinguished: systematic 

and unsystematic. A systematic correlated structure is a structure in which the correlation 

between the signals is embedded in the channel matrix (i.e. the correlation arises from some 

random variables being repeated, alone or in linear combinations, in the channel matrix; 

even if the individual variables values are independent. So, the correlation is distinguishable 

by just looking into the channel matrix configuration without needing to investigate the 

elements themselves). In this case, the correlation is in some way fixed or predictable in 

a sense. On the other hand, an unsystematic correlated structure introduces a random 

correlation between the signals and does not obey a fixed or predefined configuration (i.e. 

no random variables are repeated; however, propagation conditions may make cause the 

random variable to become correlated.). So, for this class of correlated structures it is not 

possible to figure out the correlation just by investigating the channel matrix and we need to 
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know the elements. Circulant structures are an example of systematic correlated structures: 

and i.i.d. correlated structure, is an example of unsystematic correlated structure: 

in which hij s in both matrices are random variables, and elements in i.i.d. have correlation 

with each other. The claim of this dissertation and specifically this chapter is that some 

systematic correlated structures lead to a higher capacity efficiency. 

Furthermore, among different systematic correlated structures, the circulant structure 

introduces special advantages. First, the circulant structure is a feasible structure and can 

have a physical interpretation. Second, the circulant structure is the only structure which 

has fixed eigenvectors regardless of its elements. These two properties encouraged us to 

choose it and analyze the different aspects of circulant MIMO structures. 

At this point, it should be noted that this section addresses the capacity of a circulant 

channel and associated signal processing. It is emphasized that the feasibility of a real- 

world circulant description is separated from the capacity treatment. Nevertheless, some 

comments are offered regarding cable structures as circulant. 

3.1 Circulant Channel Matrix 

The MIMO channel matrix is the usual linear model 
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where x i s  the input to the system and y is the output and n is noise. An N x N completely 

random or i.i.d. matrix is 

Hi.i.d. = 

where hijs are complex (baseband) Gaussian random variables. On the other hand, an 

N x N circulant Gaussian matrix is 

Again all the elements are complex Gaussian random variables. From (3.3), the meaning 

of systematic correlated structure is clear. Here, regardless of the values of hij, the channel 

matrix Hci, clearly shows that there is correlation in the system. It has been shown that 

a circulant random matrix in (3.3) has the general eigenvalue solution of 

in which pk is the kth complex roots of unity, i.e. piN = 1 (See [16] for example).The 

corresponding eigenvector is 

If Heir. is a circulant structure, then G in (2.18) is also circulant. So by having a circulant 

link, the eigenvectors of G are independent of its eigenvalues, i.e. they are fixed. 

Note that in all of the results in this thesis, the elements of different random matrices 

are all complex variables consisting of independent real and imaginary parts which are zero- 

mean unit-variance real Gaussian random variables. 

It turns out to be difficult to arrange a wireless MIMO link (random i.i.d.) to closely 

approximate a circulant. However, for a wired MIMO link where there is more access to 

arranging the physical medium parameters, a circulant structure is more feasible. Some 

analysis and measurement of DSL are given by [15], [39] and [37]. It is evident that an 
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arrangement of wires (or wire pairs) shown in Figure 3.1 ideally leads to a circulant channel 

matrix. 

For a multi-tier cable, each tier could be arranged and so considered as a 'sub-MIMO' 

0 \ 
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0 
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Figure 3.1: Single-tier circulant cable. 

circulant system. It can be shown that a combination of sub-MIMO systems comprises an 

efficient MIMO system if the sub-MIMO systems are well isolated from each other. Figure 

3.2 illustrates such an isolated circulant sub-MIMO tier. 

Theoretical studies of the capacity of MIMO systems show how correlation degrades 

MIMO capacity under the assumption of certain channel models [l] and [4411. In fact, as we 

mentioned before, this is a widely accepted characteristic about the correlation in MIMO 

systems. However some measurement results show that the capacity degradation might not 

be as significant as expected [25]. Actually, Oestges et. al. [26][27] show a potential benefit 

of finite correlation. 

Generally, in wireless MIMO literature , e.g. [24], by a correlated structure we mean 

an unsystematic correlated structure. In this class, correlation exists among the antennas 

(either at  the transmitter or at  the receiver). So the columns (or rows) of H a r e  independent 

random vectors, but the elements of each column are correlated with each other and have the 

same mean and the same covariance matrix. So, it is not possible to extract the correlation 

pattern unless you have the values of the channel matrix elements, hip. For the case of 

' s ee  also [21], [30], [6] and [33] 
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multi-tier cable cross section 

sub - MIMO circulant structure wires 

Figure 3.2: Multi-tier cable with sub-MIMO circulant structures. 

Rayleigh fading, this implies 

E {hj) = 0 

and the correlation matrix is 

for j = 1,. . . , N where hj is the j th  column (or row in case the correlation happens at the 

transmitter) of H. Referred to the above definition, the circulant matrix, Hci, in (3.3) is 

not a correlated MIMO structure because its columns (and also its rows) are not indepen- 

dent random vectors. So, with the circulant Hei,, we cannot impose a general correlation 

structure in E = E {hjhi)  for j = 1,.  . . , N as with the i.i.d. channels. However, the 

circulant structures show the same potential beneficial impacts on capacity as the standard 

correlated channels. 

3.2 Capacity Advantages of Circulant Channel 

Before investigating the capacity advantages of the circulant structure, it would be insightful 

to see the general capacity behavior of an ideal i.i.d. model. Figure 3.3 demonstrates such 
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an N x N MIMO model with different number of transmitting and receiving antennas, N. 

Note that in this result water filling has been used as the optimum power allocation. 

Recall that in an ideal MIMO system, the eigenchannels are perfectly separated from 

Total SNR of eigenchannels in dB (PI+ ...+ P d  

Figure 3.3: MIMO Capacity For Different N x N i.i.d. MIMO Systems. 

each other. This means that theoretically, by sending more power at the transmitter, we will 

have higher capacity and this is an unbounded increase. In practice, however, because the 

ideal separation is not achievable, there is some power leakage between the eigenchannels. 

This power leakage will saturate the capacity efficiency bounding the capacity increased 

with the transmit power. This leakage will be specially noticeable when there is a large 

amount of power being sent through the channel. In this case, the perfect separation of 

different eigenchannels is very difficult. 

Also, note that to  plot Figure 3.3 we applied (2.30) i.e. 

C (bits sec-l HZ-'). 

i=l 
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where Pis are the normalized powers (or SNRs) found from water filling rule and Xis are 

the eigenvalues or the gain of the eigenchannels. 

The Shannon capacities for the circulant random channels can be also found from (2.30). 

Figure 3.4 demonstrates the simulation results for the two models. Like Figure 3.3, the 

ordinate is EN, Pi or total input SNR. The receiver noise is assumed here to be equal for 

all the eigenchannels. So, the ordinate can be considered as the total SNR for the parallel 

eigenchannels. The MIMO dimension for this simulation is 20 x 20. 

For small SNRs, the capacity of the completely random channel is higher than the 

Figure 3.4: The Shannon capacity of the two 20 x 20 channel types versus the summed 
SNRs of the eigenchannels referred to the transmitter. 

circulant one. For large SNRs, it is vice versa. This shows that despite the notion about 

destructive effects of correlation, it might have some advantages. Note that in Figure 3.4 

the abscissa is in logarithmic scale, so the improvement in the capacity using the circulant 

structure is considerable, for example, at  SNR=20 dB, the extra capacity efficiency is about 

10 bits/sec/Hz. From Figure 3.4, the circulant begins to perform better for an SNR above 

2 or 3 dB for 20 x 20 MIMO system. 
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This interesting behavior basically arises from the distribution of the eigenvalues of the 

random matrices. Although MIMO systems are usually considered from the space-time 

coding point of view, this chapter investigates another aspect of MIMO capacity through 

exploration of the eigenvalues and their pdfs. These investigations which establish the 

theoretical basis for the abovementioned behavior will be presented later. 

Applying digital techniques will degrade the capacities from the theoretical Shannon 

limit to  the practicable possibilities of a digital link. Figure 3.5 shows the effect of using 

QAM techniques on the single link capacity, along with the Shannon limit. As can be 

seen from this Figure, in the presence of digital techniques, the capacity does have a limit. 

While the Shannon limit increases by increasing the power, the QAM-included capacity has 

a saturation level. From this level, increasing the power will not result in a higher capacity. 

There are well-known probabilities of bit error for the uncoded QAM family ([29] and 

[31]) .  Since M-QAM is equivalent to  P PAM in the context, the PAM symbol error 

probability can be used to find the probability of symbol error. Following [29] 

P& = 2(1 

in which Pm is the probability of 

bit. (3.8) could be rewritten as 

P m = ( l -  

symbol error for the a-PAM and yb is the SNR per 

So, for a M-QAM, the probability of symbol error could be written as 

To obtain average bit error rate (BER), the usual approximation will be used 

in which Pb is the probability of a bit error. Figure 3.5 illustrates the results for the 

commonly used QAM techniques. Note that to find the capacity efficiencies from the BERs, 

the fixed block length of L = 500 is assumed. The technique here otherwise offers an 

approach to study the impact of the block length, which is not available from the information 

theoretic equation (3.14). The results are not sensitive to modest variations of this block 
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length. So, the throughput of correct symbols becomes the practicable capacity and the 

capacity efficiency is written [31] 

where BER is the bit error rate. So having BER from (3.11) and using it in (3.12), we 

are able to find the degradation caused by digital modulation techniques. The capacity of 

Figure 3.5 is actually the throughput of correct bits, and the BER is not specifically defined. 

The 7-10dB minimum capacity penalty resulting from using uncoded &AM is clear (See 

Figure 3.6). This can be reduced by standard Forward Error Correction (FEC). 

Single Channel Capacities 

Channel SNR in dB (Eigenchannel SNR or P$) 

Figure 3.5: Single channel Shannon capacity and limits using QAM versus the SNR at  the 
receiver. 

The above argument mainly belongs to the communications theory. However, the degra- 

dation caused by using &AM techniques can also be considered from information theory 
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-7 0 0 10 20 30 40 
Channel SNR in dB (Eigenchannel SNR or P)L) 

Figure 3.6: Single channel capacity penalties for QAM versus the SNR at the receiver. 

point of view. To do this we can use the mutual information, I (y ;  x), for the linear model2: 

y =  a:+ n. (3.13) 

In which y is the output, x is the input and n is the additive white Guassian noise. We 

will calculate the mutual information for the Gaussian input for different QAM methods to 

compare with each other and also to the Shannon capacity. Assuming a: = 1, the SNR is 

y = &a: = a;. The Gaussian capacity is 

The noise pdf is 

1 
Pn (n) = - exp ( - i n 2 )  . 
6 

So, the output pdf, given the input is 

 his section has been heavily derived from Professor Cavers' notes. 
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To find the mutual information for the M-QAM system, we use the fact that in terms of 

information theory, the M-QAM is equivalent to two dimensional a - P A M .  So we should 

first find the mutual information for the M-PAM. The input for M-PAM system is 

where the half level spacing, A, is determined so that the input variance is y, i.e. 

The constellation for M-PAM is defined with the input variables 

The average mutual information for M-PAM is then equal to 

Assuming Px(xk) = for k = 0,. . . M - 1, we will have 

Using (3.16), the mutual information for M-PAM is 

The integral limits are selected to approximate +CQ and -CQ. Having the mutual information 

for M-PAM, we can find the mutual information for M~-QAM by simply multiplying the 

M-PAM by a factor of 2. Also, the total amount of power used for M~-QAM is twice the 

power used for each of M-PAM systems. The result (for the total y) is shown in Figure 3.7. 
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Note that the Shannon limit is similar to the mutual information of 256-QAM for the range 

of SNRs shown in this figure. 

Suppose we choose the QAM for each eigenchannel in a standard optimum way so 

that we remain as close as possible to the Shannon limit, i.e. the most efficient digital 

technique map for our MIMO system. Table 3.1 illustrates this QAM selection. Since 

1024-QAM is very difficult to implement owing to phase noise limitations we remove it from 

our consideration. 

The capacities of the 20 x 20 link for the circulant and the completely random cases are 

shown in Figure 3.8. Again, for small SNRs, the completely random Gaussian link features 

an advantage whereas for large SNRs, the circulant structure is better. 

To investigate the underlying basis for this behavior, in the following section a broad 

Practicable Capacities For 20x20 Link 
r' . . . " "  . . "......" . ....................... 

-1 0 -5 0 5 10 15 20 25 
Total SNR of eigenchannels in dB (PI+ ...+ P,,,,) 

Figure 3.8: Practicable capacity of the two channel types for 20 x 20 systems using QAM 
and optimum constellation allocation. 

inspection of the distributions of the eigenvalues of the channel matrices is presented. Going 

through these eigenvalues shows their importance in affecting the MIMO capacity and gives 

an insight about how this effect takes place. 
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3.3 Investigation of The Empirical pdfs of The Two Models 

The results for the eigenvalues of random matrices (e.g., see [20], [17] and [8]), are for 

asymptotically large dimensions. Here, we have small matrices compared to asymptotically 

large numbers. Also, the pdfs of the sorted eigenvalues are required here. So instead of 

an analytical approach, which is quite difficult, a numerical histogram method is used to 

estimate the pdfs of the ordered eigenvalues of the circulant and completely random (i.i.d.) 

channel, for a 5 x 5 system. Note that by eigenvalues we mean the eigenvalues of the Gram 

matrix G in (2.18). 

In Figure 3.9, the pdfs of the ordered eigenvalues of the two channel types are illustrated. 

The pdfs of the smallest eigenvalues are very similar to the exponential pdf, as expected, 

while the rest of pdfs are more comparable to, and so could be modeled by, the log-normal 

pdf. 

From the pdfs of the smallest eigenvalues, it is clear that the smallest eigenchannel in 

the completely random (i.i.d.) structure is weaker than that of the circulant. This is the 

reason why, for small SNRs, the completely random structure features better capacity. The 

key factor here is the water filling power allocation cut-off feature. Note that by using water 

filling, for small SNRs, the weakest eigenchannels are omitted. So in the completely random 

(i.i.d.) case where the smallest eigenchannels are usually, i.e. in probability, smaller than 

the circulant ones, and also smaller than the water filling cut-off threshold (see [41]), the 

capacity is better. In this case, the power is allocated to the stronger eigenchannels only. In 

the circulant case, conversely, the same power is distributed between not only the stronger 

eigenchannels, but also some of the weaker ones which contribute little to the total capacity. 

While the smallest eigenvalues play the more important role for small SNRs, in the 

more practical range of SNRs, i.e. for larger SNRs, the similarity of the eigenvalues is the 

major cause in determining the MIMO capacity. To illustrate this, Figure 3.10 shows the 

mean of the ordered eigenvalues for the two channel types. It is obvious that the smallest 

eigenvalues of the completely random channel are smaller than the circulant ones and the 

largest eigenvalue of the completely random channel is larger than those of the circulant. 

The eigenvalues of the circulant channel are more similar to each other compared to the 

eigenvalues of the completely random channel. 

To clarify the effect of similar eigenvalues on the capacity, we should investigate the 

information theory aspect of MIMO theory. In fact, the familiar idea about the capacity of 
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Mean of the eigenvalues for the completely random channel 

Mean of the eigenvalues for the circulant channel 
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Figure 3.10: Mean of the eigenvalues for the two types of channels. 

information theory one in terms of the constraints. Then we will investigate the problem 

of maximum capacity efficiency for the MIMO systems with water filling showing that this 

is an interesting open problem. Note that in the investigation we assume that we can 

determine the eigenvalues of the channel in order to  find the combination of the eigenvalues 

which leads to the maximum capacity. Although this assumption is not necessarily a valid 

physical assumption (because the eigenvalues and also the random elements of the channel 

matrix are not controllable), it is necessary for the analysis. 

The basic optimization problem is 

or equivalently, 
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Since log2(x) is an increasing function when x > 1 and since 1 + Xipi 2 1 and so 

n i ( l  + Xipi) > 1 , it would be enough to maximize the argument of the log2 function in 

(3.24). So the problem now reduces to 

The first obvious constraint is on the total available power, i.e. 

Cpi=p (3.26) 
i 

in which Pi is the power (or SNR) for the ith eigenchannel and P is the total available 

power. Also, there is a series of equality constraints arising from the water filling strategy 

in the MIMO links: 

in which D is the cut-off threshold of water filling (See section 2.4.3 and also [41]) and Xi is 

the ith eigenvalue. It is important to note that D is not a fixed parameter for the different 

MIMO channels (Although it is a fixed parameter for different eigenchannels in a MIMO 

channel.). This means that having the same amount of power at  the transmitters of different 

MIMO channels, the value of D may differ from one MIMO system to another depending 

on their eigenvalues. 

Also, we can rewrite the optimization problem in (3.25) according to D: 

To remove D from (3.28) we add up the terms in (3.27) 

Note that (3.30) clearly shows how D is being determined based on the total available 

power, P, and the eigenvalues of the channel matrix in a recursive process. Using (3.30) the 
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equality constraints are 

Note that (3.26) and (3.31) comprise insufficient constraints for (3.25) to have an answer 

(we can have as large Xis as we want without violating these constraints). So, we need a 

constraint on the sum of the eigenvalues, i.e. 

for some positive constant K. Recall that the eigenvalues are the gains of the eigenchannels, 

so (3.32) means the total gain of the MIMO link is some finite constant. This is a reasonable 

assumption for the optimization problem on the capacity of MIMO systems. 

It can be shown that equal eigenvalues are always the stationary points for the opti- 

mization problem in (3.25) with constraints in (3.26), (3.31) and (3.32). To show these, we 

can use the Lagrange multiplier method. From (3.30), the optimization problem in (3.28) 

can be written as 

max D nX. 
X i  { ~ ) = ~ F { ( $ ) N { ~ i + ~ ) n ~ i } l  i 

or simply 

With the constraint in (3.32), the Lagrange function is 

where A is the Lagrange multiplier. To find the extremums of h, we should solve 

a h  
- = O  for i = 1 ,  ..., N, ax, 

N 

for i = 1 ,  ..., N. 
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This implies that, for i # j 

where R = {xi + P). It is evident that Xi = 5 is an answer to (3.39). So, equal 

eigenvalues are always the stationary point for the capacity efficiency in the MIMO system. 

However, it is very difficult to determine if they are associated with the global maximum, 

the local maximum or even the minimum. In fact, the optimization problem in (3.25) with 

constraints in (3.26), (3.31) and (3.32) does not have a unique answer because its behavior 

is not always convex. Depending on P in (3.26) and K in (3.32), the answer to (3.25) could 

be equal or non-equal eigenvalues. So, the classic optimization methods such as Lagrange 

multipliers method can not be used to find its global maximums. 

To understand this behavior, the capacity of a 2 x 2 MIMO link with these constraints 

are given in Figures 3.11 (convex) and 3.12 (concave). For Figure 3.11 

and for Figure 3.12 

In both figures, the optimization parameter ni (1 + P A )  (see (3.25)) is shown versus 

X1 and X2. It is clear that for the constraints of (3.40), converting the 2 x 2 channel to 

a single eigenchannel leads to maximum capacity (In this case the maximum takes place 

when one of the eigenvalues is equal to zero.). But for the constraints of (3.41), it is equal 
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Figure 

Figure 3.12: Capacity behavior in (3.25) according to the constraints in (3.41). 
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eigenvalues which results in maximum capacity3. 

The mathematical solution for the open problem above is difficult. However, we can 

extend our investigation in the 2 x 2 case for different amount of K (i.e. total gain of the 

MIMO channel) and P (i.e. the total available power in natural unit). Figure 3.13 shows 

the result. The area covered by the points is where the equal eigenvalues do not lead to the 

maximum capacity. In this region, the equal eigenvalue will result in either the minimum 

capacity or a local maximum (See Figure 3.14 for an example of local maximum). On 

the other hand, the region covered by the diamonds depicts the area in which the equal 

eigenvalues leads to  the maximum capacity. 

From Figure 3.13, we can derive an experimental rule for 2 x 2 MIMO system. As 

Figure 3.13: Capacity behavior according to K in (3.32) and P in (3.26). 

shown in this figure, if we have 

3 ~ h e  experimental results for 2 x 2 case show that if the combination of P in (3.26) and K in (3.32), i.e. 
PK is large enough then the equal eigenchannels is the answer to  the optimization problem. 
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Figure 3.14: An example of local maximum with equal eigenvalues for to K = 1 and P = 5. 

we could be sure that the maximum capacity can be achieved by equal eigenvalues4. From 

this experimental rule (and also clearly from Figure 3.13), it seems that in most of practical 

constraints where there are strong eigenchannels (large K and also enough total power P ) ,  

the more similar eigenvalues leads to higher capacity. So, the reason for the circulant having 

in higher capacity where all the eigenchannels are being used is now clear. 

To measure how similar the eigenvalues are, we may introduce different parameters. 

A parameter which illustrates this similarity is the ratio between the maximum and the 

minimum eigenvalues, Am,,/Ami,. The closer to one this parameter is, the larger the ca- 

pacity. Figure 3.15 shows that the difference between the eigenvalues for the completely 

random structure is much more than the circulant structure especially when the dimensions 

of the link become large. 

4 ~ t  is noteworthy that the threshold in (3.42), i.e. PK = 8 is where the equal eigenvalue capacity for 
the 2 x 2 MIMO system is equal t o  the capacity achieved by shutting down one of the eigenchannels (e.g. 
XI = 0) and putting all the power in the other one, i.e. (1 + ~ ~ 1 4 ) ~  = 1 + PK means PK = 8. 
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This trend also can be seen in the standard deviation of the eigenvalues (which is an- 

other parameter to measure the similarity between the eigenvalues). This is always smaller 

for the circulant than for the i.i.d. case suggesting that the circulant link has more similar 

eigenvalues (See Figure 3.16). However, Xm,,/Xmi, demonstrates the difference between the 

eigenvalues more clearly than the standard deviation. 

From the hypothesis, the cross over point in Figure 3.4 (and also in Figure 3.8) where 

the circulant structure begins to feature higher capacity than the i.i.d. structure, is when 

the total power is large enough to use all the eigenchannels. Before that, the water filling 

strategy discards the weakest eigenchannels for the i.i.d. structure whereas they remain for 

the circulant structure, leading to its inferior performance for small SNRs. 

As can be seen above, analysis of the pdfs of the eigenvalues gives us an understanding 

about the behavior of the MIMO system. It helps not only in reasoning the way the mean 

capacity behaves, but also in providing information about other aspects of the phenomenon. 

For example, the pdfs in Figure 3.9 show that the variances of the eigenvalues for the cir- 

culant case are larger on average than those for the completely random (i.i.d.) case. This 

means that we should expect a wider range of possible capacities around the mean behavior 

for the circulant channel. This conclusion can be confirmed by the result in Figure 3.17. 

Figure 3.17 shows the 95% percentile of the capacity efficiency. This means that 95% 

of the time, the capacity efficiency is between the upper and the lower bound. It is clear 

that these bounds are wider for the circulant case than the i.i.d. case. However, the mean 

capacity efficiency for the circulant one is higher and it is still right to say that most of the 

time, the capacity efficiency of the circulant is better than that of the i.i.d. 

Before finishing, it is worth mentioning that as far as we have examined, not only the cir- 

culant, but also some other systematic correlated structures show the same capacity benefit. 

For example, Toeplitz matrices also have a higher capacity than i.i.d. channels. However, 

their capacity is smaller than the circulant. It  has not been proved yet, but as a guess, it 

might be correct that in the sets of N x N random matrices with random elements having 

same statistics, if we have a pre-defined pattern in the elements (as we have in the circulant 

or Toeplitz), the capacity efficiency is better than that of the i.i.d. case. 
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The Ratio Between The Largest and The Smallest Eigenvalues, NxN Links 
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Figure 3.15: for the two types of N x N channels emphasizing the difference between 
the channel types. 

std of The Eigenvalues, NxN Links 

Figure 3.16: The std(Xi) for the two types of N x N channels. 
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Percentiles for 20x20 Links 
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Figure 3.17: The 95% Percentile for the two types of 20 x 20 channels. 

3.4 Signal Processing Advantages of The Circulant Channel 

Recall that to have an optimum MIMO system, the transmitter needs to know the eigenval- 

ues in order to assign the power for each of the eigenchannels according to the water filling 

strategy. However, because of the errors in the estimation of the eigenvalues, this cannot 

be achieved in practice. For the circulant MIMO system, since the eigenvectors are fixed, 

we can improve our estimation of the eigenvalues. By choosing the closest fixed eigenvector 

to the estimated eigenvector at the transmitter, we are able to estimate the eigenvalues 

and so the power for each of the eigenchannels. But water filling powers are not the only 

challenging issue in the implementation of a MIMO system, especially when there could 

be the sub-optimum strategy of equal power allocation (See Chapter 4). The other main 

drawback is the estimation of the MIMO weights at the transmitter. 

In fact, MIMO systems are very sensitive to the errors in the estimation of the eigenvec- 

tors. We explained the important role of Singular Value Decomposition (or SVD) in MIMO 

theory [41] before (See Section 2.4.2). Recall that G in (2.18) is a Hermitian matrix in 
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general and has N distinct, real positive eigenvalues and the remaining will be zero. The 

SVD expansion of H itself is 

and for G 

The received voltage for the ith eigenchannel from (2.23) is 

~i = U ~ H V ~  = U:&ui = U: u i f i  = a. 
Now consider we have error in the estimation of the channel matrix at  the transmitter. 

Denote H = H +  n where n is the estimation noise. Then instead of 

the estimation of the channel at  the transmitter is 

where ^V are the estimated weights (eigenvectors) at  the transmitter. So, Assuming that 

the estimation of the channel at  the receiver is perfect (i.e. the receiver knows Uj, the 

equivalent system will consist of the noisy estimation of the eigenvectors a t  the transmitter 

(q, the channel matrix (H) and the noiseless estimation of the eigenvectors at  the receiver 

( Uj i.e. 

Here, is no longer a diagonal matrix and does have non-zero off-diagonal elements. This 

means that there is interference (power leakage) between the eigenchannels (which are s u p  

posed to be completely isolated in the ideal case). This interference degrades the MIMO 

performance severely. To calculate the degraded (noisy) i.i.d. and circulant capacities due 

to the estimation noise, (3.43) can be used. The off-diagonal non-zero elements of may be 

considered as the interference between the eigenchannels. So, we are able to find the noisy 

capacities for the ith eigenchannel as 
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in which 

where Pi is the power assigned to the ith eigenchannel (either from the water filling strategy 

or from the equal power allocation). Ni is the noise in this eigenchannel which is assumed 

to be Ni = Si x i.e. 30 dB below the signal power. Also 

is the interference in the ith eigenchannel. 

In order to ease this sensitivity, we can exploit the fact that circulant matrices have fixed 

eigenvectors as we have seen in (3.5). Assume a 5 x 5 circulant MIMO structure. From (3.5) 

the 5 eigenvectors are fixed. Figure 3.18 depicts the 5 directions of these fixed eigenvectors 

(Note that for true demonstration we need 5 dimensions which is not possible to draw). To 

compensate degradation caused by errors in the estimation of the eigenstructure, the noisy 

estimation of each of the eigenvectors, ^V,, is being compared with these directions and the 

closest fixed eigenvector is chosen. So, the optimum estimation of the eigenvectors a t  the 

transmitter can be found. Using this estimation, the optimum estimation of the eigenvalues 

for the allocation of the water filling powers is possible. Using this strategy, Figure 3.19 

shows the results of this compensation for practical SNRs. 

As can be seen from the Figure 3.19, although in the ideal noiseless cases the capacity 

efficiency of the circulant is better, the estimation noise degrades the performance of the 

circulant more severely than that of the completely random (i.i.d.) structure. However, us- 

ing the above technique, the performance of the noisy circulant MIMO systems can improve 

considerably while there is no way to recover the i.i.d. capacity. 

It is also obvious that by increasing the dimensions of the MIMO system the improve- 

ment due to the fixed eigenvectors decreases. This is because of the increasing possibility 

of a wrong decision in picking up the correct fixed eigenvector (See Figure 3.18). 
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Imaginary 

Figure 3.18: Figurative strategy to chose the transmitter weights from the roots of unity 
based on the estimated eigenvectors. 

3.5 Further Aspects 

3.5.1 Rearranging an i.i.d. 

The fact that the circulant structures give higher capacity, encourages us to try the possi- 

bility of rearranging an i.i.d. structure to a more circulant one. We have tried to define a 

metric showing that how circulant a random matrix is and trying to rearrange it based on 

this metric. 

To define this metric, we pick up the first row of the random (i.i.d.) matrix, H, as the 

first row of the new rearranged matrix H,,, (which is supposed to be more circulant). Then 

we compare all the permutations of the elements in the second row of H with the circularly 

shifted version of its first row. Our metric is the distance between these permutations and 

the circularly shifted version of the first row. We pick up the permutation with the smallest 

distance as the second row of H,,,. We go on to other rows and through the same process 

build up the rearranged matrix. Although this method seems to be able to give us a more 



CHAPTER 3. CIRCULANT MIMO STRUCTURE 

15 16 17 18 19 20 21 22 23 24 
Total SNR of Eigenchannels in dB (PI+ P2+.. . + Pd 

Figure 3.19: Considerable improvement in capacity exploiting the fixed eigenvectors of the 
5 x 5 circulant structures. 

circulant structure, the capacity efficiency does not change from H to H,,,. This might 

be because of the fact that any rearrangement of the i.i.d. structure could be considered as 

another i.i.d. structure at  least in terms of 'mean behavior'. 

3.5.2 Figure of Merit 

It would be nice to introduce a metric for random matrices showing that how good they are 

in terms of capacity efficiency. This figure of merit should illustrate two facts. Firstly, it 

should illustrate how similar the eigenvalues of the random matrix are. Secondly, it should 

illustrate how much the total gain of the MIMO system is, using this channel matrix. 

Unfortunately there is no single value showing these two at  once, but we can use a two 

dimensional merit plane. For the first metric, both and the standard deviation of the 
mzn 

eigenvalues could be used. We chose the standard deviation due to its rather smaller value 
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(Compare Figure 3.15 and Figure 3.16). For the second metric, the trace of G in (2.18) 

which is the total gain of the MIMO system is chosen. 

For three different cases, i.i.d., circulant and Toeplitz matrices these two figures of merits 

are shown in Table 3.2 and in Figure 3.20 as well. 

Figure 3.20 essentially depicts a plane of merit. Theoretically we prefer to be in the 

I Link T h e  I Trace o f  G I Standard Deviation o f  Eiuenvalues 1 

Table 3.2: The figure of merits for 20 x 20 links. 

Toeplitz 
Circulant 

left upper region of this plane. In this region the total gain of the MIMO channel is large 

while the standard deviation of the eigenvalues is less, and these two assure us of having 

good capacity efficiency. However, note that the sensitivity of the MIMO capacity to small 

variations in standard deviation (horizontal axis) is considerably larger than its sensitivity 

to small changes in total gain (vertical axis). So, although the total gain of Toeplitz matrix 

is a bit smaller than i.i.d. one, because of its smaller standard deviation, the performance 

of Toeplitz is better than i.i.d. It is clear from the Figure and confirmed above that the 

circulant matrix enjoys better figures of merits compared to i.i.d. and Toeplitz (See Figure 

3.21). 

3.5.3 Further Work 

796.2739 
801.4081 

Currently, I am trying to solve the open problem mentioned in this chapter using com- 

putational methods. While it seems to be difficult to find a purely analytical method for 

this optimization problem, it is easier to simulate different N x N MIMO systems and find 

the maximum capacity for different K in (3.32) and P in (3.26). The investigations are 

time-taking. It seems that the behavior are similar to the behavior of 2 x 2 case, i.e. if the 

total gain of the MIMO system is K, we can find the factor, A(N), which is a function of 

N, the dimension of the N x N MIMO system. Then, having the total amount of power, 

P, at  the transmitter which satisfies 

38.6328 
37.1015 
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Figure 3.20: Figure of merits for three different types of 20 x 20 links. 
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Figure 3.21: Capacity efficiency for three different types of 20 x 20 links. 
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means that equal eigenvalues will lead to the maximum capacity. 

Another expansion of this thesis work is applying a coding scheme (space-time codes). 

This is another step toward a full MIMO system. Experimental results also could be done 

whenever equipment becomes available. Through these experiments we will be able to 

confirm our results about correlated structures. 



Chapter 4 

Equal Powers and Water Filling 

Powers 

4.1 Sub-optimum Equal Power Solution 

The water filling strategy introduced in Section 2.4.3 is one of the main and challenging 

elements of MIMO theory. The significance of water filling is even more important and 

complicated in terms of implementation. In particular, water filling requires a communica- 

tion protocol to set up the eigenchannels. 

This chapter seeks to observe how much degradation in the capacity efficiency occurs by 

simply omitting water filling. The total power allocated by the water filling is now equally 

divided between the eigenchannels. Figures 4.1 and 4.2 show the results for two channel 

types and the two power allocation strategies. 

From these figures, it is apparent that for large SNRs the degradation arising from 

equal power allocation is negligible. This is a significant but reasonable result since for large 

SNRs the differences between the water filling powers assigned to different eigenchannels 

become less, and so the capacity converges to that of the equal power allocation scheme. 

We will investigate this claim with a more quantitative approach below. Also, it is note- 

worthy that this convergence is faster for the circulant case again. In fact, the more similar 

eigenchannels of the circulant structure helps the equal power capacity to converge faster 

to water filling capacity (because the water filling powers are more similar to each other in 

the circulant case compared to the i.i.d. case.). It is apparent that these two methods of 
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Figure 4.1: The Shannon capacity of equal powers and optimum water filling powers for the 
completely random link. 

power allocation for the N x N link converge later, i.e. for larger SNRs when N is larger. 

The fact that in large dimension MIMO systems (like 20 x 20 case) we can use equal 

powers is also true when we apply digital communications techniques. Figures 4.6 and 4.7 

illustrate the practicable capacities (capacities using QAM techniques). It is clear that 

allocation of equal powers is still reasonable for most of the SNRs. Again if we compare 

the converging behavior of the two methods of power allocation, we can observe that this 

convergence is faster for the circulant case (for the same reason). From Figure 4.7 the ad- 

vantage of circulant structures without the complexities of water filling is clear especially 

for large SNRs. 

So for the 20 x 20 case, in the (total) SNR range over 5 dB, it would be sensible to 

use equal powers instead of water filling powers. Again, one of the best ways to explain 

this behavior of the capacity is to look into the eigenvalues. For this, it would be helpful 

to find the mean eigenvalues for 20 x 20 Gaussian (i.i.d.) link. These mean values from 

simulations, are depicted in Figure 4.3 and also mentioned in Table 4.1. From the Figure 

and the Table, it is clear that the eigenvalues, changing from X1,,,, % 140 to XaOmean M 0.1, 

have a considerable variance. In fact the standard deviation of the eigenvalues for this link 

(20 x 20 Gaussian link) is 40.78 which is significant in the light of discussion below. One 
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Figure 4.2: The Shannon capacity of equal powers and optimum water filling powers for the 
circulant link. 

may deduce from this large variance that since the eigenvalues are very different from each 

other (as can be seen clearly in Figure 4.3), then the eigenchannels are very different too, 

and from water filling they should receive very different amounts of power resulting in an 

optimum capacity efficiency. So the optimum capacity depends on accurately finding of 

these very dissimilar eigenchannel powers. Following this argument, the above-mentioned 

suggestion that we can neglect the water filling and simply use equal powers for different 

eigenchannels must be false. 

However, this analysis is incorrect! Recall that in the water filling strategy, the power 

is being distributed between the eigenchannels according to the inverses of the eigenvalues 

i.e. 1 / X ,  and not the eigenvalues themselves. Figure 4.4 shows these inverses. The inverses 

of the eigenvalues are more similar than the eigenvalues themselves. The inverses are in the 

approximate range of 0.01 to 10 for the 20 x 20 link and their standard deviation is ap- 

proximately 2.23. Moreover, if we neglect the largest inverse (which is being removed from 

the communications process by water filling cut-off for most of the SNRs) this standard 

deviation will reduce to 0.38. 

Both of these numbers are very small comparing to the standard deviation of the eigen- 

values themselves, which was noted above to be 40.78. This clearly shows that although 
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Mean Eigenvalues for 20x20 Gaussian Link 

Figure 4.3: The mean eigenvalues for 20 x 20 Gaussian link. 

The inverses of the mean eigenvalues for 20x20 Gaussian link 

Figure 4.4: The inverses of the mean eigenvalues for 20 x 20 Gaussian link. 
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Table 4.1: The mean eigenvalues. 

I MIMO Dimension I std of the inverse eigenvalues I D I 

Table 4.2: The standard deviations of the inverses of the eigenvalues except for the smallest 
eigenvalues (largest inverse), and the water filling cut-off threshold, D ,  from which equal 
power capacities are very similar to the water filling ones. 

the eigenvalues themselves show a large range of values, the inverses of them change in a 

smaller range and so the inverses of the eigenvalues are more similar to each other. These 

more similar values will lead to more similar powers for the different eigenchannels. So, 

in the water filling process for large dimension MIMO link (such as 10 x 10 or more), the 

amounts of power assigned to the channels are not very different from equal powers. This 

is especially true when the largest inverses (i.e. the smallest eigenvalues) are being omitted 

through cut-off. 

If we expand our investigation to N x N MIMO systems from N = 10 to N = 20, we 

will be able to find an experimental rule. This rule will tell us from which cut-off threshold, 

D ,  if we use equal powers instead of water filling powers, the capacity efficiency would be 
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reasonably similar1. To find this rule, we should first extract the standard deviation of the 

inverses of the eigenvalues (except for the smallest eigenvalue). These standard deviations 

are illustrated in Table 4.2. 

On the other hand we need to find the special water filling threshold, D ,  for our range 

of dimensions from where the Shannon limit capacities, with equal and water filling powers, 

are similar. These values of D are also shown in Table 4.2. 

Now, if we depict the Ds in Table 4.2 vs. the stds in a plot, we recognize a nearly linear 

behavior (See Figure 4.5). Least mean square analysis gives us the experimental rule for 

the desired threshold according to the standard deviation will be 

From (4.1), having the standard deviation of the inverse eigenvalues (except for the smallest 

one) we can find the approximate amount of D from where there is no need to use water 

filling. For the abovementioned range of MIMO dimensions, i.e. from 10 x 10 to 20 x 20, 

these amounts of D are associated with the total SNR of 9 to 11 dB at  the transmitter. 

1.3- 

0 1 -  

0.9- 

0.7 - 

0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 
std of the Inverse e~genvalues (except for the smallest elpenvalue) 

Figure 4.5: The linear interpolation of Ds and stds in Table 4.2. 

'By reasonably similar we mean the difference of 2 bits/sec/Hz or less in capacity efficiencies. 
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4.2 Comparison of SISO and MIMO 

It would be interesting if we compare SISO and MIMO with another approach. As seen 

before, in MIMO systems, the communication channel is being converted to multiple sepa- 

rated eigenchannels. In general, these eigenchannels have different gains. So, the strongest 

eigenchannel, i.e. the one associated with the largest eigenvalue, is of interest. 

To be able to compare the practicable capacities of our MIMO system with a SISO 

(Single-Input Single-Output) one, the practical capacity of the strongest eigenchannel is 

also depicted. To plot these single eigenchannel capacities in Figures 4.6 and 4.7, the to- 

tal amount of power distributed between the different eigenchannels in the MIMO case 

is being assigned to the strongest eigenchannel. It is clear and reasonable that for small 

SNRs, putting all of the power in the strongest channel is better than distributing this small 

amount of power between many channels, while for large SNRs the MIMO capacities are 

significantly more than the best that could be achieved by a single channel. 



CHAPTER 4. EQUAL POWERS AND WATER FILLING POWERS 

Practicable Capacities For 20x20 i.i.d. Gaussian Link 

Figure 4.6: The practicable capacity of equal powers and optimum water filling powers for 
the completely (i.i.d.) random link using QAM techniques. 

Practicable Capacities For 20x20 Circulant Gaussian Link 

Figure 4.7: The practicable capacity of equal powers and optimum water filling powers for 
the circulant random link using QAM techniques. 



Chapter 5 

Summary 

The main goal in this thesis was to investigate the different characteristics of the commu- 

nication channel through analysis of the eigenvalues of the channel matrix. In this analysis 

we covered different aspects of MIMO systems such as information theory, signal processing 

and power allocation strategy. 

Correlation within the channel matrix is often unavoidable. Of particular fascination, 

was the systematic correlation of the circulant structure. This structure has the maximum 

MIMO capacity compared to other structures considered, such as i.i.d. and Toeplitz. The 

fact that systematic correlation can increase the capacity efficiency means that instead of 

removing the correlation (which is not possible) we may be able to exploit it. The higher 

capacity of the circulant was explained by analysis of the pdfs of the eigenvalues. The basic 

hypothesis on the MIMO capacity was clarified and also different facets of this hypothesis 

were presented. Furthermore, signal processing advantages of the circulant were developed, 

again based on eigenstructure characteristics. Figures of merit from the eigenstructure were 

proposed. Systematic, correlated MIMO channels usually had better figures of merit corre- 

sponding to higher capacities compared to  that of the i.i.d. channel. 

Further to the channel modeling aspect, the power allocation issue in a MIMO system 

was investigated. Again, analysis of the eigenvalues and their inverses illustrated the possi- 

bility of avoiding water filling, which would be an advantage in full MIMO implementation. 

The research contributions of this thesis provide steps towards the feasibility of the MIMO 

systems for digital communications. 
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