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Abstract

We present a design technique for colours that lower the energy consumption of the display

device. Our approach relies on a screen space variant energy model. Guided by perceptual

principles, we present three variations of our approach for finding low energy, distinguishable,

iso-lightness colours. The first is based on a set of discrete user-named (categorical) colours,

which are ordered according to energy consumption. The second optimizes for colours

in the continuous CIELAB colour space. The third is hybrid, optimizing for colours in

select CIELAB colour subspaces that are associated with colour names. We quantitatively

compare our colours with a traditional choice of colours, demonstrating that approximately

45 percent of the display energy is saved. The colour sets are applied to 2D visualization of

nominal data and volume rendering of 3D scalar fields. A new colour blending method for

volume rendering which preserves hues further improves colour distinguishability.

Keywords: colour mapping; colour perception; display energy; volume rendering; colour

blending; image compositing; perceptual transparency; illustrative visualization

Subject terms: image processing; visualization data processing; computer graphics
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Chapter 1

Introduction

1.1 Motivation

An increasing use of electrical energy in today’s technologically-driven world is leading to

a growth in greenhouse gas emissions [29]. As the world becomes increasingly aware of its

environment, there is also a trend for IT industries to look into greener computing [44].

Green computing encourages the practice of using computing resources efficiently in such a

way as to create minimal impact on the environment. A key green objective, therefore, is

to reduce the energy consumption of using computers and their related subsystems.

The mobile device industry, one of the fastest growing in consumer electronics, is also

seeing a trend to go green. The display is one of the major power consumers in modern

computer systems, using up to 38 percent of the total system power in PCs and up to

50 percent in mobile devices [28, 37]. Thin film transistor liquid crystal displays (TFT

LCDs) currently dominate the display market. One of the main components of a TFT

LCD screen is the display backlight, which is often regarded as the primary consumer of

display energy. Previous studies show that TFT LCDs are not very energy efficient as the

electrical-to-light energy conversion has losses exceeding 80 percent [17]. Energy efficiency

especially is a priority for mobile devices because they are typically powered by batteries

and have limited energy resources. Furthermore, there is a trend for battery capacities to be

increasing at a much slower rate than the energy requirements for mobile applications [26].

Emerging display technologies such as organic light-emitting diode (OLED) displays promise

to be more energy efficient than their TFT LCD counterpart [12]. With the increased

sophistication and rising energy demands of multimedia applications, it is advantageous to

1



CHAPTER 1. INTRODUCTION 2

explore energy saving techniques for these upcoming displays.

Compute-intensive applications like volume visualization, previously feasible only on

desktop machines, are also beginning to make their way to mobile devices [27]. One of the

fundamental ways to visualizing and communicating complex information is by labeling data

using colours. For example, in volume visualization, users often use colours for tasks like

grouping and labeling of data. Furthermore, labeling different regions on a map using colour

is common in order to study and communicate weather data, census data, or a number of

other geospatial information. Previous work does not consider the energy cost of colour

for displays. Colour, however, plays an important role in energy consumption for emerging

display technologies.

Our goal is to spark awareness of energy consumption of colours for emerging displays.

Specifically, we study the effect of colour on the display energy in scientific applications like

volume visualization, to more general applications like colour labeling of maps. We present

three design techniques for colours that lower energy consumption. All three approaches

apply an optimization process to minimize energy, and they take into account different

perceptual aspects such as perceptual colour difference or categorization and naming of

colours. We also present a hue-preserving colour blending method that can be used in volume

rendering to improve colour distinguishability and further lower display energy consumption.

Our work could benefit emerging display technologies, for example, by extending the battery

life of mobile devices and lowering the energy cost of desktop machines.

1.2 Background

1.2.1 Power Management and Energy Awareness in Current and Future

Display Technologies

In modern desktop computers and mobile devices, the display subsystem is one of the major

consumers of electrical energy. For example, TFT LCDs, which dominate the current display

market, typically consume 30 to 50 percent of battery power on mobile phones [37]. Most

of that power is used by the cold cathode fluorescent lamp (CCFL) which provides the

necessary background lighting to illuminate the LCD. In the energy pathway of the LCD

display, no more than 20 percent of the electrical energy from the battery is converted to light

form in the CCFL. Furthermore, as light from the CCFL passes through diffusers, polarizers
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and colour filters in the LCD display, at least 50 percent of light energy is absorbed and

lost [17, 40]. Most previous work on TFT LCDs, therefore, reduce energy consumption by

decreasing the CCFL backlight intensity, and compensate for the reduced LCD luminance

by increasing its transmittance [38, 5, 6]. Other ways to reduce energy consumption include

varying the refresh rate of the LCD display or adopting a new pixel organization based on

colour depth [6].

The key to enabling an energy efficient display design at the hardware level is to facilitate

variable power output across individual subportions of the screen [15, 34]. Such a screen is

energy aware, or energy adaptive, because it adapts its display light output according to the

brightness intensity of the displayed image. Current main stream TFT LCD technology is

not energy-adaptive, because it relies on a single constant backlight to illuminate the whole

screen. The technological role model for our approach is a line of emerging displays that

use space-variant lighting—e.g., Sony’s OLED displays, Samsung’s 9-series “local dimming”

TVs, and even high dynamic range (HDR) displays that use space-variant background light-

ing in combination with a high-resolution TFT LCD panel [36]. This kind of HDR display

is expected to hit the market in the near future, for example, in the form of Dolby HDR

Video technology, which originated from BrightSide technologies [8].

1.2.2 Colour Maps and Human Visual Perception

Mapping scalar values to colour (facilitated via colour maps) is one of the most common

approaches to data visualization. Two types of colour maps can be distinguished: discrete

and continuous. A discrete colour map is a one-to-one mapping of discrete data values to

colour, and is often used for the visualization of nominal (categorical) data. Continuous

colour maps, on the other hand, define a continuous colour range. In our work, we assume

that an effective colour palette is provided for the visualization of nominal data, i.e., for

clearly separable elements or regions in the visualization.

Colour information arriving at the human eye is split into 3 channels: 1 achromatic and 2

chromatic [19]. The achromatic channel carries luminance information and, amongst others,

is responsible for motion detection and shape perception. In contrast, the chromatic channels

carry colour information useful for visual grouping and labeling. Since we focus on discrete

colour maps for labeling and grouping, we target colours that are constant in lightness

(i.e., iso-lightness) and only vary in colour. At this point, we make the distinction between

lightness and luminance. Lightness (typically denoted L∗) is the perceived brightness of a
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colour subject to the human perceptual system. On the other hand, luminance (denoted

L) is the corresponding measurable physical quantity (in cd/m2). Iso-lightness colours

avoid unwanted effects related to non-iso-lightness colour maps for nominal data, such as

emphasizing certain colour-mapped regions, which might be caused by different lightness,

and introducing a natural ordering according to lightness.

The design of effective colour maps is a difficult task and often requires multiple iter-

ations. In most applications, users have the freedom to manually specify their own colour

maps or choose from an existing set of predefined ones. Although using a predefined colour

map may be convenient, it may lead to faulty interpretations of the underlying data by

introducing artifacts or non-existent features. For example, the popular rainbow colour

map can be confusing, obscuring, and actively misleading [3]. There are tools to ease

the creation of effective colour maps. For example, the ColorBrewer system uses a set of

guidelines to generate a collection of colour maps for discrete data [14]. Earlier approaches

to colour map design include effective colour maps based on colour distance and colour

category [16], dynamic colour map creation for data exploration [35], and guidelines for uni-

variate colours [42]. The particular problem of specifying iso-lightness colour maps, which

are normally difficult to create without a calibrated monitor, can be addressed using a face-

based approach [22]. There are also studies in colour design techniques for users with colour

vision deficiencies [23].

All of the previous work on colour map design and colour perception neglect energy

requirements of the display. One reason for this is that older displays (CRT, LCD, etc.) use

approximately constant energy for displaying any colour. On the contrary, our work focuses

on emerging display technologies that support variable light output across the screen. Vari-

able light output then results in variable energy consumption across the screen, depending

on the intensity of the displayed image. Therefore, this paper combines existing knowledge

of perceptually motivated colour map design with new low-energy requirements.

1.3 Related Work

In a related work, Zhong and Jha study the energy characteristics of various graphical user

interface components for a TFT LCD handheld device [45]. They show that for a device

using a single backlight, energy variations can come from different colours being displayed.

They also show that user interaction with the GUI can affect energy consumption. In one
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experiment, the colour of the screen is changed from black to different colours, resulting

in different energy usage. Vallerio et al. also present design techniques for energy efficient

graphical user interfaces [39]. One of their techniques for saving energy is to modify the

GUI colour scheme.

Emerging display technology that use space variant lighting consumes less energy com-

pared to traditional displays using a single backlight. Although they are already lower in

energy consumption, further energy savings can be achieved by the use of dark colours.

There are some work on energy efficient graphical user interfaces for emerging display tech-

nology. Iyer et al. and Ranganathan et al. propose the use of dark windows to save energy

in inactive screen areas on OLED displays [18, 34]. They achieve lower energy cost by

half-dimming, full-dimming, gray scaling, or green scaling parts of the screen. However, as

Harter et al. show in a user study, not all energy efficient user interfaces are acceptable by

users [15]. There is a trade-off between screen content readability and the amount of energy

savings.

1.4 Contributions

The main contributions of this thesis are:

• We present an energy model for emerging displays that use space-variant lighting.

An energy model will allow us to quantitatively estimate and compare the energy for

displaying colours and images.

• We present 3 colour design techniques that lower the energy consumption of the display

device. In particular, we show that up to 45 percent of energy can be saved for

applications in visualization.

• We present a new colour blending model that preserves hue. Hue-preserving colour

blending can be used in volume rendering to improve colour distinguishability and

further lower display energy consumption.

Please note that all images in this thesis are designed for monitor display, not for good

reproduction in print. Therefore, the images are best viewed on screen.



Chapter 2

Screen Space Variant Energy

Model

Displays with screen space variant control of light output, such as HDR displays [36] or

OLED displays, are the basis for our model of energy estimation. Emerging display tech-

nologies make use of non-uniform backlights to vary power consumption across the screen,

thereby lowering energy cost. We model the non-uniformity of such backlighting as a set

of non-overlapping tiles covering the screen. The tiles are arranged in a rectangular grid,

and each can be imagined as an independent backlight responsible for providing adequate

lighting for the pixels within it. Although other grid layouts such as hexagonal configura-

tions for LED-driven displays or even overlapping tiles might appear in physical devices,

the qualitative results will be similar to the rectangular grid approach.

We now analyze the energy requirement within one tile. The white background lighting

is the main consumer of energy. White light is filtered through the TFT LCD panel to

produce different amounts of red, green, and blue colours. In general, the energy requirement

is proportional to the number of “on” pixels and the brightness intensity of their R, G, and

B components [18, 39]. The optimal background lighting therefore only needs to be as

large as the maximum of the linear, non-gamma-corrected R, G, or B values within the tile.

We use linear RGB (instead of gamma-corrected RGB, or sRGB) because they are a good

approximation of the actual radiative power emitted by the display [5].

Figure 2.1 illustrates our approach of calculating the optimal background lighting. We

partition the screen into a rectangular grid of w×h tiles. Within each tile i we have pixels

6



CHAPTER 2. SCREEN SPACE VARIANT ENERGY MODEL 7

Figure 2.1: The energy required to display an image (left) is calculated by taking the max-
imum of the R, G, and B values within each tile. The right image illustrates a partitioning
of the screen into 10×10 tiles, with shades of gray going from black to white representing
the maximal R, G, B portion within that tile, estimating the energy cost. c©Eurographics
Association 2009. Reproduced with kind permission of the Eurographics Association.

P with red, green, and blue values in the range of 0 to 1. The maximum colour components

from each tile are summed up and normalized, to obtain a relative measure of energy Edisplay

between 0 and 1:

Edisplay =
1

wh

wh
∑

i=1

max
P∈Tile i

(max(Pred, Pgreen, Pblue)) (2.1)

Equation 2.1 can be used to estimate the energy cost for displaying colour images, and

subsequently to optimize for energy aware colour sets. We want to point out that taking

the maximum RGB value within a tile, and then using that as energy, is only a coarse

approximation for displays with multi-panel backlights (e.g., HDR displays as modelled in

Figure 2.1). More complex methods for energy calculation can be used, but nevertheless

Equation 2.1 is a good start and at least provides a means for qualitative comparison on

real-world displays. For example, on an OLED display with separate R, G, and B primaries,

a more appropriate measure of energy might be the sum of the R, G, and B components.



Chapter 3

Energy Aware Colours

Our goal is to determine a set of iso-lightness colours that are (1) easy to distinguish and

(2) associated with low energy when displayed. We formulate this goal as the optimization

of display energy under the constraint of good perceptual distinguishability.

3.1 Discrete Optimization

Our first optimization approach is discrete: from a set of M iso-lightness and distinguishable

colours, a subset of N colours (N ≤M) is chosen so that the sum of the energies associated

with the chosen colours is the minimum of any subset of N colours. The optimization

algorithm is simple. First, the energy of each colour is computed. Second, colours are

sorted according to the energy in ascending order. Third, the first N colours are picked

from the sorted list.

The open question is how the set of M adequate input colours is chosen. We propose

to adopt named (categorical) colours because they are sufficiently distinct and they exhibit

proven perceptual benefits. For example, Kawai et al. [21] suggest that the time it takes

to distinguish multiple colours depends partly on their named colour region. In a user

study, Healey [16] confirms that the name of the colour region, or colour category, indeed

affects the performance of colour target identification. Our discrete design technique for

low energy colours makes use of this knowledge and examines colour categories and their

energy performance. We further constrain our design to iso-lightness colours, which are not

automatically guaranteed by named colours.

8



CHAPTER 3. ENERGY AWARE COLOURS 9

Hue

H
S

L
 L

ig
h
tn

e
s
s

0 60 120 180 240 300 360

1

0.5

0

Hue

C
IE

L
A

B
 L

*

0 60 120 180 240 300 360

100

50

0

Figure 3.1: Top: Fully-saturated HSL colours. Bottom: Fully-saturated HSL colours trans-
formed to match CIELAB’s measure for lightness. Some of the colours with higher lightness
values look washed-out because they are out of the monitor’s gamut. c©Eurographics Asso-
ciation 2009. Reproduced with kind permission of the Eurographics Association.

For the colour computations, we employ a perceptual colour model that has the achro-

matic and chromatic colour dimensions decoupled. This allows us to use the achromatic part

for lightness, and the chromatic part for colour category. The CIELAB colour space [11]

is a widely-used colour space designed to be perceptually uniform. It has an achromatic

axis L∗ for lightness and two chromatic axes a∗ and b∗ for red-green and yellow-blue colour

components. CIELAB is the basic colour model of this paper—despite a few shortcomings

compared with more advanced colour appearance models [11].

While CIELAB can aid in choosing iso-lightness colours, it lacks support for directly

specifying hue, making it difficult to choose specific colour tones. LCHab, which specifies

CIELAB colours using cylindrical coordinates (chroma and hue), can be used to predict

colour hues in CIELAB [11]. However, because of the lack of hue uniformity, some hue

slices in LCHab actually contain slightly varying colour hues. For example, a slice from the

blue hue plane may contain tints of purple. Therefore, as an alternative, the HSL colour

space can be applied to select hues. The only downside is that it is not perceptually uniform,

so iso-lightness colour picking in HSL is not straightforward. Our solution is to transform

the lightness axis in HSL to match the L∗ axis in CIELAB. This gives us HSLLAB, which

also has 3 axes: hue, lightness, and saturation. Hue and saturation remain the same as

in HSL, but lightness is now more perceptually uniform. Figure 3.1 shows a slice from a

fully-saturated HSL before and after the transformation.
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The number of easily distinguishable colours is small. For example, in his study of

categorical colours, Healey [16] finds that 7 distinct iso-lightness colours is the maximum

number of colours that can be displayed at one time without decreasing the performance

of quick and accurate colour identification. He provides percentages of how likely observers

will give a particular colour name to a displayed Munsell colour. Based on his findings, the

colour names with high percentages of being assigned to a Munsell colour are ranked (in

decreasing order): green, blue, orange, purple, red, yellow, aqua, pink, brown, and magenta.

We choose the 6 most highly ranked colours (green, blue, orange, purple, red, yellow) with

HSLLAB hue angles 120, 240, 30, 292, 0, and 60 degrees, respectively. Saturation is set to

maximum to facilitate good distinguishability.

Figure 3.2 shows the energy consumption of these 6 colours with respect to increasing

lightness. The energy of a colour is the maximum of its linear R, G, or B components,

as described in Chapter 2. Finally we sort the colours by increasing energy cost to obtain

the energy aware categorical colour palette in Figure 3.3. Users can pick distinguishable

iso-lightness colours with increasing energy cost by choosing colours from bottom to top.
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Figure 3.2: Plot of energy vs. lightness for the 6 categorical colours (left to right: blue, red,
purple, orange, green, yellow). c©Eurographics Association 2009. Reproduced with kind
permission of the Eurographics Association.

CIELAB L*

E

0  50 100

Figure 3.3: The 6 categorical colours with varying lightness sorted by increasing energy cost.
c©Eurographics Association 2009. Reproduced with kind permission of the Eurographics
Association.
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Figure 3.4: Representative LCHab hue angles for (clockwise) green, yellow, orange, red,
purple, and blue, shown as white lines on CIELAB iso-lightness colour slices. (a) Medium
lightness green, yellow, and orange, although low in energy, are not very distinguishable
from each other because of their relative closeness. (b) High lightness orange, red, purple,
and blue have very low perceptual difference and tend towards white. c©Eurographics
Association 2009. Reproduced with kind permission of the Eurographics Association.

While the named colours provide a reasonable choice of energy aware colours, they

are not optimal when the whole available colour space is considered. First, the hues of the

categorical colours are fixed and, therefore, the optimization cannot shift the colours around

in colour space to achieve better perceptual distinguishability or lower energy consumption

if not all M colours are needed. Second, the categorical colours are not completely evenly

distributed along the boundary of the colour gamut. Figure 3.4(a) illustrates that, for

example, the perceptual distance between blue and green is much larger than between

green and yellow. Even colour placement would lead to better distinguishability. Third,

the issue of the fixed hues is aggravated for high lightness—when colours are close to the

upper lightness limit, they tend to become less saturated (shifted towards white, due to the

restricted gamut of the monitor), as demonstrated in Figure 3.4(b).
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3.2 Continuous Optimization

In the discrete optimization of energy aware colours, we constrained ourselves to fully-

saturated colours from non-overlapping categorical colour regions. These constraints essen-

tially restricted us to a single level of saturation and a small subset of all possible hues. We

now loosen those constraints on saturation and hue, and again proceed to find sets of energy

aware, distinguishable, iso-lightness colours.

A perceptual colour space like CIELAB fits our needs for distinguishability and iso-

lightness. CIELAB is designed to be perceptually uniform, meaning that a perturbation

to a component value produces an equal magnitude of change in visual difference. The

perceived colour difference between any two colours in CIELAB can therefore be computed

by treating the L∗a∗b∗ components as points in 3D space and taking their Euclidean dis-

tance [11]. Although CIELAB is not the most advanced colour system and does not incor-

porate sophisticated colour-appearance effects, it is a well-established perceptually uniform

colour system. The following discussion is not restricted to CIELAB and could be immedi-

ately adopted for any other colour system that supports the computation of a measure of

lightness and of perceptual difference.

We formulate our goal of finding energy aware, distinguishable, iso-lightness colours as

an optimization problem with 3 input parameters: the number of colours N , the level of

lightness L∗, and a minimum perceptual colour distance d (and hence, distinguishability)

that must be enforced between every colour pair. Typically, d is provided by the user who

wants to achieve a certain separation of colours.

The goal is to minimize the maximum display energy under the constraint that colours

are at least a distance d apart from each other in CIELAB color space. Following a soft con-

straint implementation (i.e. penalizing colours that are closer than distance d), we propose

the following cost function Ecost to measure the relative energy of N colours chosen from

the iso-lightness colour slice. Let C = {C1, C2, ..., CN} be the N colours, then the cost is

Ecost(C) = Emax(C) + k
∑

Ci,Cj∈C
Ci 6=Cj

Epenalty(Ci, Cj) (3.1)

where

Emax(C) = max
1≤i≤N

(max(Ci,red, Ci,green, Ci,blue)) (3.2)
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and

Epenalty(Ci, Cj) =

{

1− 1
d
dist(Ci, Cj) if dist(Ci, Cj) < d

0 otherwise
(3.3)

Emax finds among all the colours the maximum linear R, G, or B value (recall that the

maximum RGB value is a measure of energy). The terms Ci,red, Ci,green, and Ci,blue denote

the R, G, and B components of colour Ci, respectively. The function Epenalty penalizes two

colours if they are too close, i.e. less than d apart. The perceptual distance is the Euclidean

distance in CIELAB, denoted dist(Ci, Cj). Here, a linear penalty function is used, although

nonlinear functions may work as well. The constant k determines the relative importance

Emax and Epenalty, describing the relative increase of the penalty energy with decreasing

colour distance. In our optimization, we let k be equal to the maximum allowable RGB

value, or k = 1.

Figure 3.5 illustrates the L∗ = 65 colour slice from CIELAB, and its energy heightfield.

The optimization problem can be thought of as finding N points on the surface of the energy

heightfield, such that the 3D Euclidean distance between all points is at least d, and the

maximum height among all points is minimized. From Figure 3.5, it can be expected that

green and yellow colours use less energy because they are lower in the heightfield. Figure 3.2

shows the same qualitative behavior. Moreover, the energy heightfield and its boundaries,

which correspond to the gamut of displayable colours, are quite smooth; thus, optimization

is expected to pose no particular difficulties.

The optimization process minimizes Ecost with respect to C. Since L∗ is fixed, each

Ci has two components a∗i and b∗i (from the CIELAB representation of Ci), for a total of

2N variables. With this choice of variables, the hard constraint of constant L∗ is always

guaranteed. For optimization, we apply the Nelder and Mead method [31], also known as the

downhill simplex method or amoeba method. Other optimization methods for non-linear

multi-variable functions may be used alternatively. We apply the optimization method to

minimize Ecost(a
∗
1, b

∗
1, ..., a

∗
N , b∗N ). The downhill simplex method works iteratively, starting

from an initial configuration. We randomly generate the initial configuration, making sure

that all the colours are within gamut. During optimization, colours are also checked to lie

within the gamut. If a colour moves outside the gamut, it will be projected back to the closest

point on the gamut boundary. In the illustration of Figure 3.5(a), the gamut boundary

appears as the boundary between the coloured region and checkerboard background. Finally,

to avoid finding only local minima, we run the optimization process several times with
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Figure 3.5: (a) L∗ = 65 iso-lightness slice from CIELAB. (b) An energy heightfield showing
the energy consumption of the colours; the green-yellow region tends to have lower energy.
c©Eurographics Association 2009. Reproduced with kind permission of the Eurographics
Association.

(a) (b)

Figure 3.6: (a) Optimizing for N = 7 colours, iso-lightness level of L∗ = 65, and minimum
colour distance of d = 30. (b) Optimizing for N = 7, L∗ = 45, d = 50. The top-row images
show the a∗-b∗ plane, the bottom-row shows the colour sets. c©Eurographics Association
2009. Reproduced with kind permission of the Eurographics Association.
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random initializations and keep the best solution. Figure 3.6 shows the result of optimizing

for two different input parameters. As expected, optimal colours tend to come from the

green and yellow regions, which lead to low energy consumption.

3.3 Hybrid Optimization

So far we have looked at two ways of optimizing for energy aware colours. Both approaches

have their advantages and disadvantages. In the discrete optimization, we use colour cat-

egory as a design constraint so that the resulting colours are distinguishably different in

their colour names. We restrict our optimization space to only 6 different, fully-saturated

colours. The restrictions on saturation and exact hue angles limit us to a small colour

palette (Figure 3.3). On the other hand, the continuous optimization approach allows us to

optimize over a larger continuous colour space. There are no constraints on saturation or

colour hue, allowing us to achieve a wider range of colours. However, one drawback to the

continuous optimization is that the resulting colours can be quite similar. For example, in

Figure 3.6(a), there are at least 3 greenish colours. This can be a problem especially when

we want to use colour to label data.

We present a third, hybrid approach for energy aware colours. The goal is to allow for

colour distinction (which is lacking in the continuous method) and still have the larger colour

palette that comes from optimizing over a continuous space (which is lacking in the discrete

method). We achieve this through a simple modification of the continuous optimization

method. We return to use the six colours from the discrete optimization method, and notice

that the six colour hues span a range of angles in LCHab (recall that LCHab is the cylindrical

transformation of CIELAB [11]). By visual inspection, the 6 colours are roughly bounded

between these LCHab angles: 85◦ to 105◦ (yellow), 117◦ to 153◦ (green), 47◦ to 63◦ (orange),

312◦ to 325◦ (purple), 22◦ to 32◦ (red), and 226◦ to 295◦ (blue). Figure 3.7(a) illustrates

these categorical colour subspaces on an iso-lightness slice. As in the continuous method,

we optimize with input parameters N , L∗, and d, but we introduce a new parameter S for

specifying a minimum colour saturation. For any colour, S is a percentage of the maximum

possible chroma. Without the parameter S, grayscale (0 percent saturation) “colours” may

appear in our results.

The optimization process is the same as before, except now the initial points must

be within the proper angle and saturation ranges, and only one point is assigned to any
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categorical colour region. During optimization, if colours move outside their range, a high

energy cost is assigned to the overall energy. This will prevent out-of-range colours from

being chosen. The optimization process is again run several times with random initializations

to avoid getting stuck in a local minima. Figure 3.7 shows an example of optimizing for 3

colours with constrained and unconstrained saturation. Unconstrained saturation basically

means that gray colours are allowed in the final colour set. Figure 3.8 shows another example

optimizing for 6 colours.
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(a) (b)

Figure 3.7: (a) Optimizing for N = 3 colours, iso-lightness level of L∗ = 65, minimum colour
distance of d = 50, and unconstrained saturation (i.e. gray allowed). (b) Optimizing for
N = 3, L∗ = 65, d = 50, and minimum saturation level of 50 percent (i.e. no gray).

(a) (b)

Figure 3.8: (a) Optimizing for N = 6 colours, iso-lightness level of L∗ = 45, minimum colour
distance of d = 30, and at least 30 percent saturation. (b) Optimizing for N = 6, L∗ = 45,
d = 30, and at least 85 percent saturation.



Chapter 4

Hue-Preserving Blending for

Volume Rendering

The volume-rendering integral (Equation 4.1) is commonly used to describe physical light

transport in a volume, with optical properties κ (absorption coefficient) and q (source term

describing emission) and integration from entry point into the volume, s = s0, to the exit

point toward the camera, s = D [10]:

I(D) = I0e
−

R D

s0
κ(t) dt

+

∫ D

s0

q(s)e−
R D

s
κ(t) dt ds (4.1)

The discretized version of Equation 4.1 can be solved for each ray passing through the

volume using either a front-to-back or back-to-front compositing scheme [10] (Equations 4.2

and 4.3, respectively) .

Cdst ← Cdst + (1− αdst)Csrc

αdst ← αdst + (1− αdst)αsrc

(4.2)

Cdst ← (1− αsrc)Cdst + Csrc (4.3)

In general, the emission and absorption coefficients of Equation 4.1 are unknown, and it

is up to the user to assign these optical properties through a transfer function. A transfer

function maps optical properties such as colour to abstract volume scalar data. In Figure 4.1,

we show a typical transfer function for the tooth data set and the resulting image generated

19
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Figure 4.1: (a) A transfer function assigns optical properties in the form of colour and
opacity to scalar data. (b) A rendering of the tooth data set using general raycasting, and
(c) its colour hue histogram showing the presence of extraneous hues that are not specified
in the original transfer function.

using general raycasting. Although the transfer function in Figure 4.1(a) only specifies 3

colour hues, the rendered tooth image of Figure 4.1(b) contains additional hues, as verified

by the colour hue histogram in Figure 4.1(c).

In any kind of visualization, it is desirable to have colours that are easy to distinguish and

identify. Colour is frequently used for visual grouping and labeling, which is most effective

by means of chromatic information, as opposed to luminance information [19, 43]. Colour

is also frequently employed in volume rendering to identify differently classified materials.

However, in volume rendering, traditional colour blending during the compositing stage

produces unpredictable, off-colour hues that are not specified in the transfer function. For

example, in Figure 4.1(b) we see tints of orange and purple even though the transfer function

only specifies yellow, red, and blue. In this chapter, we present a new colour blending method

that aims to preserve colour hue.

Most relevant for our work is the recent publication by Wang et al. [41]. They investigate

and provide guidelines and rules for colour design for illustrative visualization. In particular,

they describe the appropriate choice of colours for semitransparent layers: colours should

have opposite hue in order to avoid hue shift after blending. In the case of more than

two semitransparent layers, they propose further constraints on the input colours. One

of their guideline variants is to assign two colours with opposite hues for the two most

important image elements and a more neutral colour for the less important element(s).
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An alternative guideline is to change the input colours locally: they recommend reducing

the saturation of the background element in overlap regions. The (geometric) overlap is

detected by depth peeling. We adopt the very idea that hue shift should be avoided, but

guarantee hue preservation by a generic blending model that allows for arbitrary number

and configuration of input colours, rather than being restricted to only certain pairs of

opposite colours. In particular, we provide a complete computational and parameter-free

model that may be applied to any kind of compositing problem and without constraints on

the colour maps.

4.1 Design of Hue-Preserving Blending

We discuss the perceptual motivation and the design considerations for the development of

hue-preserving blending before we present the respective computational model in the next

section. Since we target perceptual transparency, our compositing approach is not subject

to any physical constraints, but can be formulated as an algebraic model. The discussion

is initially restricted to compositing two overlaid images, and it will be later extended to

compositing several images and even to continuous compositing in volume rendering. The

primary goal of the new compositing model is to support easy perception of distinct colours

for labeling, in combination with a good perception of transparent overlays.

There is strong and ample empirical evidence that image luminance has the most impact

on transparency perception. In fact, most studies have focused on investigating achromatic

configurations; see, for example [25, 2, 13, 20]. While the crucial role of the achromatic chan-

nel is undisputed for perceptual transparency, a large portion of the perception literature

indicates that chromatic information has very limited influence on transparency perception.

For example, Nakayama et al. [30] report that transparency perception is robust under a

wide range of colour configurations, both for the occluder and the occludee. Similarly, An-

derson [1] identifies achromatic contrast as the primary determinant of scission. An extreme

view would remove chromatic information completely from a transparency model. Such a

view is quite accepted for the perception of motion, where chromatic contrast apparently

plays (almost) no role; see, for example [33, 24]. However, there is also some evidence that

special configurations of chromatic contrast alone can trigger transparency perception [9].

For example, the colour of the overlay image should share hue properties with the images

underneath [4]. As a consequence of the unclear role of chromatic information, we favor
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a conservative approach to perceptual transparency by focusing on well accepted models

of luminance composition and by reducing the impact of the chromatic channels. In par-

ticular, we favour complete preservation of hue. Summarizing previous work in perceptual

psychology and psychophysics, the following observations can be made:

[O1] Perceptual research indicates that luminance is most important for the perception

of transparency.

[O2] Shape perception by shape-from-shading is based on luminance information.

[O3] The chromatic channels play a major role in visual grouping; hue is particularly

well suited for visual labeling, e.g., of nominal data.

[O4] Chromatic information and especially saturation play a minor—at least unclear—

role for transparency perception.

From these observations, we derive at the following design criteria:

[D1] Any new compositing model has to exhibit the same behavior for the luminance

channel as established compositing models. According to [O1], luminance is critical

for transparency perception, and there exist models with demonstrated effectiveness.

In addition, the achromatic channel may carry important information, such as shape-

from-shading information [O2], that should not be interfered with.

[D2] The same, constant hue should be used for each nominal data entry to facilitate

visual grouping [O3].

[D3] Artificial colour discontinuities should be avoided for continuously varying input

colours, so that artificial perceptual contours are avoided.

These design criteria guide the construction of a generalized compositing operator. Ac-

cording to Porter and Duff [32], a wide range of compositing strategies can be formulated

as the weighted sum of two colours. In particular, their approach includes alpha blend-

ing (the over operator), typically used for computing transparent overlays. We adopt the

compositing idea by Porter and Duff and add just a little modification: instead of a direct,

component-wise sum of two colours C1 and C2, a new “add” operator is proposed that meets

the above design criteria. We denote traditional addition of colours by the symbol “+” and
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the new operator by “⊕”. In this notation, the hue-preserving sum of colours is:

Cnew = C1 ⊕ C2 (4.4)

From the above design criteria, we impose the following requirements that hue-preserving

colour addition has to meet:

[R1] The same luminance behavior as in traditional summation for the achromatic case

should be achieved: the luminance (C1 ⊕ C2) should be identical to the sum of the

luminances of C1 and C2.

[R2] Hue(Cnew) ∈ {Hue(C1), Hue(C2)}. The hue of Cnew is either equal to the hue of

C1 or C2. The hue of Cnew is chosen as the hue of the dominating of the two colours

C1 and C2. The dominating colour is the one whose hue would be closest to the

blended colour in traditional colour summation.

[R3] Saturation variations are used to avoid colour discontinuities. When the dominating

colour, and thus the final hue, is to change, Cnew should go through the gray point

with vanishing saturation, so that even an abrupt change of hue does not imply a

discontinuity in chromaticity.

The requirements [R1] and [R3] correspond directly to the design criteria [D1] and [D3].

However, the design criterion [D2] cannot be implemented completely because it asks for

conflicting choices of hue: if two different nominal data entries are composited, not both of

their hues can survive. The requirement [R2] approximates [D2] by choosing the dominant

hue.

The semantics and mathematical structure of the new ⊕ operator is designed to resemble

the traditional + operator as much as possible, so that it can be used in any existing blending

algorithms, especially in compositing schemes for volume rendering. The ⊕ operator is

binary: it takes two input colours. The extension to compositing several image layers or

to many samples along viewing rays in volume rendering is possible by applying ⊕ several

times along the image compositing stack. The mechanics and mathematical definition of

the ⊕ operator are presented in the following section.
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4.2 Mechanics of Hue-Preserving Blending

This section presents the computational model of hue-preserving blending that follows the

requirements [R1]–[R3]. We aim at a generic compositing model, modifying the Porter and

Duff image compositing approach. In its original form, any Porter and Duff operator can

be written as a weighted sum of two input colours CA and CB [32]:

(αAFA)CA + (αBFB)CB (4.5)

where αA and αB are the alpha values associated with the two colours and FA and FB are

respective fractional components. The scalar values (αAFA) and (αBFB) can be interpreted

as combined weights for the two input colours. The original version of those compositing

operators assumes colours in RGB colour space. However, any other colour space related

to RGB by linear transformation may be employed, e.g. CIE XYZ. The basis of colour

computation is the tristimulus theory, which interprets colour as elements in a 3D vector

space.

Equation (4.5) contains two relevant arithmetic operations: the multiplication of a scalar

weight with a 3D colour, and the sum of 3D colours. With hue-preserving blending, multi-

plication with a scalar weight remains unchanged. The only difference is that the traditional

component-wise addition by the + operator is replaced by the new operator⊕ from Eq. (4.4).

The hue-preserving ⊕ operator is based on computations in a set of appropriate colour

representations: in hue, saturation, and brightness components that are modified separately.

As discussed before, there exist several different colour spaces with such a split, e.g., HSL,

HSV, or LCHab. We have chosen HSL because it is widely used in colour pickers, it has easy

transformation rules to and from RGB, and its lightness axis conforms more to perceived

brightness than HSV. In the following, we follow the usual practice of basing HSL directly

on sRGB. Please note that the idea of hue-preserving colour blending may be reformulated

in any other colour space that provides measures for hue, saturation, and brightness.

Figure 4.2 illustrates and compares traditional blending with hue-preserving blending.

Figure 4.2(a) sketches the geometry of blending in the hue–saturation plane—with hue as

angle and saturation as radial distance from the center. The two exemplary input colours,

teal and orange, are marked by small white circles. Depending on the relative weights

assigned to the two colours, the result of traditional blending yields a colour on the long

dashed line crossing several colour hues. The possible resulting hues are also shown in the
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Figure 4.2: (a) Traditional blending of two colours yields various colour hues (indicated by
long dashed lines). In contrast, hue-preserving colour blending mixes the two colours so
that they go through the gray point (short dotted line), avoiding any extraneous hues. (b)
Traditional alpha blending of teal and orange. (c) Hue-preserving alpha blending of teal
and orange. Note the presence or absence of the yellowish hue in both colour profiles.

colour bar in Figure 4.2(b). Our aim is to modify the traditional blending + operator so that

when two colours are blended, the resulting colour only has the same hue as either of the

original ones, as shown in Figure 4.2(c). The basic idea is to blend two colours through the

middle gray point (or the central axis, where colour saturation equals zero), as illustrated

by the dotted line in Figure 4.2(a).

In other words, hue-preserving blending can be essentially split in two pieces: blending

from one input colour C1 towards the gray axis (which keeps the hue of C1), or blending from

the other input colour C2 towards the gray axis (which keeps the hue of C2). We decide

which of the two pieces is used by examining the relative “strengths” of the two input

colours; the hue of the dominant colour determines the hue of the blended colour. The

dominant colour is computed by first blending C1 and C2 temporarily using the traditional

+ operation to produce Ctrad. Its hue, Htrad, is then compared with the hue of C1 and C2,

H1 and H2 respectively; and if Htrad is closer to H1, then C1 is dominant, otherwise C2

is dominant. The actual compositing step has to ensure that the dominant hue does not

change. This is achieved by modifying the non-dominant colour in a way that it becomes the

opposite of the dominant colour; the saturation and lightness of the non-dominant colour

stay the same. By adding opposite colours, the colour moves towards the gray point, and we

guarantee that the original hue does not change. Figure 4.3 illustrates this idea. Finally, the

lightness component of the blended colour is determined by adding the lightness components
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Figure 4.3: Blending opposite (i.e., complementary) colours in the traditional colour blend-
ing model leads to a more neutral colour and preserves either original hue. We follow the
same idea in our hue-preserving colour blending model. Given two arbitrary colours (circled
in white) that are not necessarily opposite to each other, we modify only the hue component
of one of the colours to be the opposite hue of the other colour (circled in red), then they
are added as before. Choosing which colour to modify the hue depends on a comparison
with the resulting hue from traditional blending.

of the two input colours: L1 + L2. This separate compositing of lightness implements [R1]

of Chapter 4.1.

Algorithm 1 describes our hue-preserving blending model. Note that when it comes to

colour hue comparison, we treat a gray colour as any other colour, but with zero saturation.

Therefore, gray and any other colour are considered to have the same hue. Also note that

if two input colours have the same hue, our result is identical to traditional blending.

The hue-preserving blending method described so far is non-associative. The resulting

blended colour is different whether colour samples along a ray are composited in front-to-

back or back-to-front order. One possible reason for the non-associative nature may be the

different behaviour between the front-to-back and back-to-front compositing equations (see

Equations 4.2 and 4.3). Although the source colours are the same in either direction of a

ray (but reversed), the intermediary destination colour values of front-to-back and back-to-

front blending are different, causing the final blended colour to look different. A comparison

between front-to-back and back-to-front blending is shown in the following section.
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Algorithm 1 Calculating Cnew = C1 ⊕ C2

Require: C1 and C2 are valid RGB colours
Ensure: Cnew is a valid RGB colour

Ctrad = C1 + C2

HSL1 = RGB2HSL(C1)
HSL2 = RGB2HSL(C2)
HSLtrad = RGB2HSL(Ctrad)
if H1 = H2 then

Cnew = Ctrad

else {H1 6= H2}
if Htrad closer to H1 then

H ′
1 = H1 + 180◦

C ′
2 = HSL2RGB(H ′

1, S2, L2)
Cnew = C1 + C ′

2

else {Htrad closer to H2}
H ′

2 = H2 + 180◦

C ′
1 = HSL2RGB(H ′

2, S1, L1)
Cnew = C ′

1 + C2

end if

{lightness computation}
HSLtemp = RGB2HSL(Cnew)
Cnew = HSL2RGB(Htemp, Stemp, L1 + L2)

end if
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4.3 Examples of Hue-Preserving Blending

We illustrate the effects of hue-preserving blending for several different examples of image

compositing, and compare them to traditional blending. First, we start with the simple

case of alpha blending two colours in a hue-preserving way. Two colours C1 and C2 are

alpha-blended:

Cnew = (1− α)C1 ⊕ αC2 (4.6)

Figure 4.4 compares pairs of alpha-blended colour profiles using traditional and hue-preserving

blending. The two input colours are at opposite ends of each colour profile, and alpha ranges

from 0 to 1. It is easy to see that the hue-preserving blending produces no extra hues other

than the original ones. A nice property of our method is that blending opposite colours

or blending same-hue colours yields the same result as traditional blending, as shown in

Figure 4.4(c)–Figure 4.4(e).

(a) (b) (c) (d) (e)

Figure 4.4: In each pair, traditional (left) and hue-preserving (right) alpha blending for
two colours are compared side by side. Images (a) and (b) show the typical cases where
hue-preserving blending employs colour transitions through gray to avoid extraneous hues.
Images (c) and (d) show that for blending opposite colours our method gives the same result
as traditional blending. Image (e) demonstrates blending two colours of the same hue, which
also yields the same result as traditional blending.

Next, we extend the alpha blending of only two colours to the more complex example

of blending several colours normally encountered in volume rendering. In volume rendering

applications, it is typical for users to choose a few distinct colours for visual labeling of

classified materials during data exploration (usually 1–6 material colours). However, as the

number of chosen colours exceeds 1, the colours that can result from traditional blending

cover a large and continuous range of different hues. Figure 4.5 compares the possible
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Figure 4.5: In volume rendering, many colours of various hues may be mixed. At the top, we
show the colours used in the blending. The next (middle) row shows all possible colours that
can result using traditional colour blending. The last (bottom) row illustrates those colours
that originate from hue-preserving blending. Note that the possible colours are viewed in
the HSL colour cone from above (showing hue by angle and saturation by radius), so that
the lower-lightness colours are occluded. We surround all possible fully saturated colours in
HSL colour circles to aid readers in identifying colour hues.

colours that can result from blending up to 4 colours in both the traditional (middle) and

hue-preserving (bottom) methods. The colours are displayed in their respective coordinates

in the HSL double-cone, viewed from above (i.e., looking down the HSL double cone from

where L = 1.0): the traditional approach covers a large portion of the HSL colour space as

many mixed colours are introduced, whereas the hue-preserving approach is limited to its

distinct input hues.

We now apply our blending technique to actual volume visualization of 3D scalar data

sets. Images are rendered by front-to-back raycasting with optical properties such as colour

and opacity assigned to data values via a 1D transfer function. Figure 4.6 compares tradi-

tional and hue-preserving rendering of the tooth data set seen earlier in Figure 4.1. In the

traditional blending, the 3 input colours yellow, red, and blue mix to produce tints of orange

and purple. The presence of these off-colour hues is quantitatively documented in the colour

hue histogram in Figure 4.6(b). Using the new blending method, only the original 3 colours

are present, as shown by the hue histogram in Figure 4.6(c). In this way, colour labeling is

improved at no loss of feature identification.

Figure 4.7 shows the volume rendering of a human chest data set. In Figure 4.7(a),
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we use opposite colours blue and yellow, and show that our approach produces the same

result as traditional blending. However, when the blue flesh colour moves its hue toward

cyan, the traditional blending produces an undesirable tint of green, whereas our approach

does not. This example was designed to resemble the colour choice by Wang et al. [41] in

their Figure 8. If opposite colours are chosen according to their guidelines, hue-preserving

blending is identical to traditional blending. However, we have essentially given the user the

freedom to select arbitrary colours without having to worry about generating extraneous

hues and false, mixed colours.

The smooth transition of colours through gray, as required by [R3], is demonstrated

in Figure 4.8. Here, the opacity of the brain is gradually increased (from left to right).

With increasing opacity, that inner part of the volume data set is becoming more and more

pronounced and the respective colour (red) is increasingly more dominant. The transition

from dominant exterior colour (green) and dominant interior colour goes through gray with

smooth variations of saturation.

Finally, Figure 4.9 compares the traditional and hue-preserving renderings of the seg-

mented frog data set with 5 different colour labels. This example demonstrates that hue-

preserving blending can work with a larger number of input hues. Additional comparisons

of traditional and hue-preserving blending for different data sets are shown in Figure 4.10

and Figure 4.11. Figure 4.11 (middle and right) shows that the non-associative nature of

hue-preserving blending (as described in Chapter 4.2) give different results when a volume

is rendered front-to-back or back-to-front.
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Figure 4.6: (a) Traditional (left) and hue-preserving (right) rendering of the tooth data set.
In the traditional rendering, orange colours can be seen where red and yellow mix. There
are also purple hues where red and blue mix. These extraneous hues completely disappear
in the hue-preserving rendering. The colour hue histograms for both renderings are shown
in (b) and (c). Note the three vertical lines in the hue-preserving histogram, representing
the original colour hues.

(a) (b)

Figure 4.7: (a) Traditional (left) and hue-preserving (right) rendering of a chest data set,
using opposite colours blue and yellow. Since the original colours are already opposite to
each other, the traditional method does not suffer from extraneous hues, and in fact looks
just like the hue-preserving rendering. (b) The blue hue of the flesh is offset toward cyan,
and we immediately see that traditional blending produces tints of green. This, however,
does not pose a problem for hue-preserving blending, which still maintains only cyan and
yellow.
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(a) (b)

Figure 4.8: (a) Volume rendering of a segmented frog data set with only the flesh and
brain shown. (b) We illustrate the effect of increasing the brain opacity (left to right) in
both the traditional (top) and hue-preserving (bottom) methods. The gray colours in the
hue-preserving approach indicate the smooth transitions between the two colours.

Figure 4.9: Another comparison between the traditional (left) and hue-preserving (right)
rendering of the segmented frog data set, with more features identified and colour-coded.
In traditional colour blending, the colour of the bone structure shifts into a vibrant, highly
saturated, yellow (caused by mixing with surrounding green). In addition, the boundaries
between the inner red and orange organs are unclear. In contrast, hue-preserving blending
is not subject to those colour shifts.
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Figure 4.10: Traditional (left) and hue-preserving (right) rendering of a tomato data set.

Figure 4.11: Traditional (left), hue-preserving front-to-back (middle), and hue-preserving
back-to-front (right) rendering of the bucky ball data set. The colour compositing order
affects the final blended result.



Chapter 5

Results and Discussion

Sets of discrete colours may be used in various visualization applications that aim at showing

nominal data or membership and grouping information. In this chapter, we present two

typical examples. The first example is a 2D mapping that may appear in cartography,

geospatial information systems, or other 2D data visualization. The second example is

from direct volume visualization, where discrete colours are employed to identify differently

classified materials. We intend to demonstrate that energy aware colours can be chosen for

such typical visualization applications without sacrificing perceptual distinguishability.

5.1 Energy Aware Colours for Visualization of 2D Data

Figure 5.1 shows an example of a 2D map with discrete colours. The map is taken from

ColorBrewer [14]. We have chosen ColorBrewer as a ground for comparison because Col-

orBrewer is specifically designed for creating colour mappings for 2D maps, facilitating

good visual perception. The map in Figure 5.1 uses the 4-class qualitative Dark2 colouring

scheme, which contains four near-isoluminant colours. A summary of the colours is listed

in Table 5.1. The colour details, such as average lightness, minimum colour saturation, and

minimum colour distance are used in our subsequent optimizations to find low energy colour

sets.

34
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Figure 5.1: A colour map using ColorBrewer’s 4-class qualitative Dark2 colouring
scheme [14]. c©Eurographics Association 2009. Reproduced with kind permission of the
Eurographics Association.

teal orange purple magenta

R 27 217 117 231
G 158 95 112 41
B 119 2 179 138

L∗ 58.05 55.01 50.24 52.29
a∗ -43.05 44.34 18.04 75.05
b∗ 10.97 63.67 -34.91 -6.27

saturation 0.95 0.99 0.45 0.91

Average L∗: 53.90
Minimum L∗a∗b∗ colour distance: 63.80
Maximum L∗a∗b∗ colour distance: 119.36

Table 5.1: Colour summary of ColorBrewer’s 4-class qualitative Dark2 colouring scheme.
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In our first approach using a lookup table for discrete iso-lightness colours (Chapter 3.1,

Figure 3.3), we only need to specify the lightness. We take the average CIELAB lightness

of the 4 ColorBrewer colours, L∗ = 53.90, to look up 4 energy aware colours in our discrete

optimization result. Figure 3.3 recommends picking yellow, green, orange, and purple in

that order. A summary of those colours is listed in Table 5.2. There are 4 factorial ways

to replace the old colours with the new energy aware colours, so we choose the colour

assignment that is most perceptually similar to the original. We apply the colours from the

first discrete optimization to the map to obtain Figure 5.4(b).

In our second approach (Chapter 3.2) of optimizing in the continuous CIELAB space,

we optimize for 4 colours using the input parameters N = 4, L∗ = 53.90, and d = 63.80.

This translates to finding 4 low energy colours on the iso-lightness L∗ = 53.90 CIELAB slice,

such that their minimum distance is at least d = 63.80. The minimum distance d = 63.80 is

chosen identical to the smallest CIELAB colour distance between the original 4 ColorBrewer

colours (see Table 5.1). The result of the continuous optimization is shown in Figure 5.2,

and a summary of the colours is listed in Table 5.3. The resulting colours are applied to the

map to obtain Figure 5.4(c).

In our third approach (Chapter 3.3) using hybrid optimization, we optimize for 2 different

sets of 4 colours. Depending on whether grayscale colours are preferred, there can be 2

separate colour sets. If we do not allow for grayscale colours (i.e. there is a saturation

constraint), the optimization uses the input parameters N = 4, L∗ = 53.90, d = 63.80,

and S = 0.45. The only difference if we allow for grayscale colours (i.e. unconstrained

saturation) is S = 0, which means that the minimum saturation can be as low as 0 percent.

In the optimization that does not allow for gray, we choose S = 0.45 which is identical to

the minimum saturation of the original 4 ColorBrewer colours (see Table 5.1). The results

from the optimization are shown in Figure 5.3 and a summary of the colours is listed in

Tables 5.4 and 5.5. The resulting colours are applied to the map to obtain Figures 5.4(d)

and 5.4(e).

From visual inspection, the five images of Figure 5.4 provide visual encoding and distin-

guishability on similar levels. Furthermore, Figure 5.4(c), 5.4(d), and 5.4(e) guarantees the

same CIELAB distinguishability as the original colour map from Figure 5.4(a); i.e., based on

CIELAB, these four colour maps provide the same quality of perceptual distinguishability.

Figure 5.5 documents the energy consumption of the five images of Figure 5.4. Energy

consumption is measured according to our energy model from Equation 2.1, using various
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grid sizes. The most prominent observation is the substantial energy savings achieved by

colours chosen according to our continuous optimization approach. A typical number of

tiles for practical applications is in the range of 500 to 1000; for comparison, 760 LEDs (i.e.,

tiles) are reported for the HDR display developed by Seetzen et al. [36]. On OLED displays

with one or more LEDs per pixel, a higher number of tiles can be used. The number of tiles

corresponding to 1 (on the far left of the energy plot) can be thought of as a current main

stream display using a single backlight that can be dimmed. For a practical display using 760

tiles, we save up to 44 percent in energy by using colours from the continuous optimization

versus ColorBrewer colours. In the discrete optimization case, we see an increase in energy

when the grid resolution is low (less than 288 tiles). This is due to our magenta colour

having a large RGB value. Both hybrid optimization approaches also result in lower energy

cost compared to the original colours. The hybrid method actually uses less energy when

grayscale colours are allowed. This is expected, because in an iso-lightness colour slice,

grayscale colours tend to have lower energy. In general, the energy consumption drops with

increasing number of tiles because the energy control is becoming more fine-grained.



CHAPTER 5. RESULTS AND DISCUSSION 38

green orange yellow magenta

R 0 203 134 218
G 151 101 134 0
B 0 0 0 252

L∗ 54.16 54.03 54.15 53.95
a∗ -58.28 35.84 -13.36 92.44
b∗ 56.26 62.39 60.08 -69.76

saturation 1.00 1.00 1.00 1.00

Average L∗: 54.07
Minimum L∗a∗b∗ colour distance: 44.99
Maximum L∗a∗b∗ colour distance: 196.47

Table 5.2: Colour summary from the discrete optimization for the 2D ColorBrewer map.

green brown blue purple

R 44 166 0 166
G 148 120 144 110
B 14 51 140 161

L∗ 53.75 53.79 53.85 53.84
a∗ -51.88 10.94 -32.65 30.59
b∗ 53.80 43.71 -7.13 -18.48

saturation 0.96 0.72 1.00 0.34

Average L∗: 53.81
Minimum L∗a∗b∗ colour distance: 63.63
Maximum L∗a∗b∗ colour distance: 109.67

Table 5.3: Colour summary from the continuous optimization for the 2D ColorBrewer map.
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green orange brown purple

R 0 221 142 174
G 150 85 128 102
B 0 1 82 182

L∗ 53.82 53.89 53.81 53.89
a∗ -58.00 50.43 -1.55 41.62
b∗ 55.99 63.60 26.89 -30.50

saturation 1.00 1.00 0.46 0.45

Average L∗: 53.85
Minimum L∗a∗b∗ colour distance: 63.51
Maximum L∗a∗b∗ colour distance: 131.92

Table 5.4: Colour summary from the hybrid optimization (with constrained saturation) for
the 2D ColorBrewer map.

green orange gray purple

R 80 197 130 182
G 144 104 129 95
B 1 2 120 189

L∗ 53.66 53.79 53.81 53.81
a∗ -40.74 31.84 -1.32 48.97
b∗ 56.45 61.39 5.00 -34.59

saturation 1.00 0.99 0.086 0.54

Average L∗: 53.77
Minimum L∗a∗b∗ colour distance: 64.01
Maximum L∗a∗b∗ colour distance: 127.82

Table 5.5: Colour summary from the hybrid optimization (with unconstrained saturation)
for the 2D ColorBrewer map.
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Figure 5.2: Result from the continuous optimization using input parameters N = 4, L∗ =
53.90, and d = 63.80.

Figure 5.3: (a) Result from the hybrid optimization with constrained saturation (i.e. no
gray) using input parameters N = 4, L∗ = 53.90, d = 63.80, and S = 0.45. (b) Result
from the hybrid optimization with unconstrained saturation (i.e. gray allowed) using input
parameters N = 4, L∗ = 53.90, d = 63.80, and S = 0.
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(a)

(b) (c)

(d) (e)

Figure 5.4: Visual comparison of the 2D ColorBrewer map using different energy aware
colour sets. (a) Colours from the original 4-class qualitative Dark2 scheme provided by Col-
orBrewer. Energy aware colours from (b) discrete optimization, (c) continuous optimization,
(d) hybrid optimization without gray, and (e) hybrid optimization with gray allowed. (a)—
(c) c©Eurographics Association 2009. Reproduced with kind permission of the Eurographics
Association.
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Figure 5.5: Energy comparison of the 2D ColorBrewer map using different energy aware
colour sets. On a display using 760 tiles [36], up to 44 percent of the energy is saved by
using colours from the continuous optimization.
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5.2 Energy Aware Colours for Volume Rendering

The second visualization application is from volume visualization. Figure 5.6 shows an ex-

ample of the volume rendering of a tooth dataset. The images are generated using raycasting

with post-classification via 1D transfer functions [10]. The tooth dataset has 3 distinct re-

gions: the crown, outer encasing, and interior. The 3 regions are classified by assigning

3 different colours to the respective scalar value ranges within the transfer function. We

want to choose a fair, traditional set of 3 base colours to compare our energy aware colours

against. This proves to be difficult, as there is no rule-of-thumb for picking traditional

base colours. We decide to use shades of red, green, and blue each at 75% RGB intensity

for comparison because colour pickers in typical volume-visualization software are based on

RGB and users tend to apply pure RGB colours. A summary of the traditional colour choice

is listed in Table 5.6. The average lightness of those RGB colours, L∗ = 44.50, along with

the minimum colour distance and minimum saturation will be the input parameters for our

optimizations.

In the first approach using discrete optimization, we use the lookup table (see Figure 3.3)

to choose yellow, green, and orange at L∗ = 44.50. A summary of those colours are listed

in Table 5.7. Once again, there are 3 factorial ways of assigning colours, so we try to

choose an assignment that looks closest to the original. In this case, we assign green to the

outer encasing, yellow to the interior, and orange to the crown. The result can be seen in

Figure 5.9(b).

In the second approach using continuous optimization over the continuous CIELAB

colour space, we optimize using the parameters N = 3 and L∗ = 44.50. The smallest

colour distance between the original red, green and blue colours is 137.02. This minimum

distance pushes colours to the boundaries of the iso-lightness plane, forcing undesired high

energy colours. Since our goal with the parameter d is to maintain colour distinguishability,

we estimate a better, more appropriate d by dividing the length of the gamut boundary

of the L∗ = 44.50 iso-lightness slice (see Figure 3.4(a)) by 7, the maximum number of

recommended isoluminant colours [16]. This gives us a minimum distance d = 70 for the

continuous optimization. Even though this new d is still quite large, it does not push colours

to the gamut boundaries. We can see the result of the optimization in Figure 5.7 and a

summary of those colours in Table 5.8. The colours are applied to the tooth to produce

Figure 5.9(c).
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In the third approach using hybrid optimization, we have 2 different sets of 3 colours, one

without gray (i.e. constrained saturation) and one with gray (i.e. unconstrained saturation).

For the optimization without gray, the input parameters are N = 3, L∗ = 44.50, d = 70.00,

and S = 1.00. S = 1.00 is chosen to match the minimum saturation of the traditional

colours. In this case, all 3 colours are fully saturated. For the optimization with gray, the

input parameters are N = 3, L∗ = 44.50, d = 70.00, and S = 0. The results from both

optimizations are shown in Figure 5.8 and a summary of the colours is listed in Tables 5.9

and 5.10. The colours are applied to the tooth model to produce Figures 5.9(d) and 5.9(e).

Figure 5.9 compares the volume rendered tooth using the traditional choice of colours and

energy aware colours. From visual inspection, colours appear to be similarly discernible in

Figure 5.9(a) (i.e. the original RGB choice) and Figure 5.9(c) (i.e. continuous optimization).

However, in Figures 5.9(b) (i.e. discrete optimization), 5.9(d) and 5.9(e) (i.e. hybrid

optimization), it is hard to distinguish the inner structure of the tooth. This is due to the

effects of traditional colour blending, causing colours to mix unpredictably and consequently

decrease colour distinguishability. By using the hue-preserving blending method as described

in Chapter 4, colour distinguishability for the differently classified regions is improved, as

shown in Figure 5.11.

The tooth data set is automatically rotated to simulate typical volume interaction, and

11 separate energy measurements are taken at regular intervals, then averaged. Figure 5.10

documents the average energy consumption from the volume interaction, showing an energy

saving of 45 percent using colours from the continuous optimization on a practical display

using 760 tiles. We repeat the experiments with hue-preserving blending and document the

energy consumption in Figure 5.12. Hue-preserving blended renderings tend to use even

lower energy (but not always; compare the energy of Figure 5.9(a) and Figure 5.11(a)), in

addition to improving colour distinguishability. In general, we can expect hue-preserving

blending to use no more energy than non-hue-preserving blending because hue-preserving

blending aims to preserve the original lightness, and energy monotonically increases with

respect to lightness. We can also expect hue-preserving blending to use less energy, because

colours tend to become desaturated (as colours blend toward gray), and desaturated gray

colours have the least energy in an iso-lightness slice. The energy comparison of Figure 5.9(a)

and Figure 5.11(a), however, is different than expected (the hue-preserving uses slightly

higher energy than non-hue-preserving). This is because adding lightness components in the

HSL space (i.e., L1+L2, as we do in our new blending model), may not be the most accurate
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lightness computation for blending two colours. Consequently this may lead to lightness

errors and slightly higher energy consumption. A more perceptually accurate colour model

may be used for more accurate lightness computation. Nevertheless, HSL has proven to be

easy to understand and use in practice, and we still observe energy improvements in the

other tooth comparisons.
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Figure 5.6: Volume rendering of a tooth dataset using a traditional choice of colours.
c©Eurographics Association 2009. Reproduced with kind permission of the Eurographics
Association.

green blue red

R 0 0 196
G 196 0 0
B 0 196 0

L∗ 69.09 23.61 40.79
a∗ -70.68 65.05 65.72
b∗ 68.23 -88.51 55.14

saturation 1.00 1.00 1.00

Average L∗: 44.50
Minimum L∗a∗b∗ colour distance: 137.02
Maximum L∗a∗b∗ colour distance: 207.34

Table 5.6: Colour summary of the traditional choice of colours for the tooth data set.
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green yellow orange

R 0 110 167
G 125 110 84
B 0 0 0

L∗ 45.17 44.89 45.02
a∗ -50.81 -11.59 29.89
b∗ 49.05 50.85 54.23

saturation 1.00 1.00 1.00

Average L∗: 45.03
Minimum L∗a∗b∗ colour distance: 39.26
Maximum L∗a∗b∗ colour distance: 80.87

Table 5.7: Colour summary from the discrete optimization for the tooth data set.

teal purple brown

R 0 145 145
G 120 84 96
B 107 144 0

L∗ 44.93 44.76 44.78
a∗ -31.65 34.91 13.29
b∗ -0.96 -22.60 52.55

saturation 1.00 0.44 1.00

Average L∗: 44.82
Minimum L∗a∗b∗ colour distance: 69.87
Maximum L∗a∗b∗ colour distance: 78.19

Table 5.8: Colour summary from the continuous optimization for the tooth data set.
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green yellow orange

R 0 117 191
G 122 108 61
B 68 0 0

L∗ 44.71 44.95 44.82
a∗ -42.52 -7.10 50.12
b∗ 21.56 51.19 56.27

saturation 1.00 1.00 1.00

Average L∗: 44.83
Minimum L∗a∗b∗ colour distance: 46.18
Maximum L∗a∗b∗ colour distance: 98.93

Table 5.9: Colour summary from the hybrid optimization (with constrained saturation) for
the tooth data set.

green gray orange

R 0 106 183
G 124 106 70
B 0 105 2

L∗ 44.82 44.79 44.87
a∗ -50.52 -0.18 43.35
b∗ 48.77 0.55 54.95

saturation 1.00 0.011 0.99

Average L∗: 44.83
Minimum L∗a∗b∗ colour distance: 69.68
Maximum L∗a∗b∗ colour distance: 94.07

Table 5.10: Colour summary from the hybrid optimization (with unconstrained saturation)
for the tooth data set.
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Figure 5.7: Result from the continuous optimization using input parameters N = 3, L∗ =
44.50, and d = 70.00.

Figure 5.8: (a) Result from the hybrid optimization with constrained saturation (i.e. no
gray) using input parameters N = 3, L∗ = 44.50, d = 70.00, and S = 1.00. (b) Result
from the hybrid optimization with unconstrained saturation (i.e. gray allowed) using input
parameters N = 3, L∗ = 44.50, d = 70.00, and S = 0.
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(a) (b)

(c) (d) (e)

Figure 5.9: Visual comparison of the tooth dataset using (a) traditional colours, energy
aware colours from (b) discrete optimization, (c) continuous optimization, (d) hybrid opti-
mization without gray, and (e) hybrid optimization with gray allowed. The coloured squares
represent the discrete colours used for volume classification. (a)—(c) c©Eurographics Asso-
ciation 2009. Reproduced with kind permission of the Eurographics Association.
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Figure 5.10: Energy comparison of the volume rendered tooth using different colour sets.
On a display using 760 tiles [36], up to 45 percent of the energy is saved by using colours
from the continuous optimization.
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(a) (b)

(c) (d) (e)

Figure 5.11: Visual comparison of the hue-preserving volume rendered tooth dataset using
(a) traditional colours, energy aware colours from (b) discrete optimization, (c) continuous
optimization, (d) hybrid optimization without gray, and (e) hybrid optimization with gray
allowed. The coloured squares represent the discrete colours used for volume classification.
Compare these images with those of Figure 5.9.
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Figure 5.12: Energy comparison of the hue-preserving volume rendered tooth using different
colour sets. Energy consumption tend to be lower with hue-preserving colour blending.



Chapter 6

Conclusion and Future Direction

The main goal of this thesis is to trigger awareness for the energy consumption associ-

ated with emerging colour displays. We have shown that substantial energy savings can be

achieved by changing the colour mapping in data visualization—without sacrificing good

visual perception. On a technical level, we have presented three design methods for dis-

tinguishable, iso-lightness colours with the goal of lowering the energy consumption of the

display device. Our methods are based on a screen space variant energy model, using a grid

of tiles to estimate energy consumption. The first approach is an optimization of discrete

colours based on colour category. We restrict ourselves to using a small set of colour hues,

as previous work suggest that having too many colours slows down the speed of colour

identification. The second approach optimizes over a continuous iso-lightness colour space

by minimizing a cost function that takes into account the energy of the colours and the

distances between them. The third method is a hybrid of the first two, optimizing over a

set of distinct, continuous, categorical colour ranges. All three methods address colour dis-

tinguishability and iso-lightness. We compare our colour mappings to those chosen by the

ColorBrewer system for 2D maps and to a traditional set of colours for volume rendering.

Typical energy savings are around 45 percent for these examples.

We have also presented hue-preserving blending as a modification of general Porter and

Duff image compositing. Hue-preserving colour blending improves visual labeling by colour,

even in transparent rendering. Our model is based on results from previous perception

research indicating that perceptual transparency may be treated separately for achromatic

and chromatic information. Accordingly, we have reused existing blending models for the

achromatic channel and just modified chromatic compositing. Here, the main idea is to
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identify the dominating colour whose hue survives blending; continuous colour transition

is achieved by gradually changing saturation, instead of hue. Several examples of volume-

rendered images using traditional and hue-preserving blending are compared. In some cases,

hue-preserving blending can lead to even lower display energy consumption.

There are several challenges in designing energy aware colours. The discrete optimization

approach might suffer from the problem that colours are not chosen according to percep-

tual distance. In particular, modifying luminance may lead to similar looking colours. For

example, dark shades of orange and yellow look very similar because brown is considered a

dark shade of yellow or orange alike. Therefore, additional control over perceptual distance

would be beneficial for the discrete optimization approach. In contrast, the continuous opti-

mization of colours provides explicit control over perceptual colour distance and, thus, does

not run into the above issue of the discrete approach. However, the continuous optimization

is not aware of colour names or categories. Therefore, we can end up having more than one

colour from the same category (see Figure 3.6(a) for an example with 3 greenish colours),

which might be problematic if visualization is used for visual communication that requires

naming of image regions. The third hybrid approach attempts to resolve the problems of

the first two, but as seen in energy measurements for the tooth dataset (Figure 5.10), it

can result in higher energy costs compared to the continuous optimization (because there

are additional constraints), and higher energy costs compared to the discrete optimization

(because of the minimum colour distance requirement).

There are other possible future directions of our work. A practical benefit of our hue-

preserving blending approach is that it may be readily included in any visualization system

using Porter and Duff compositing because only minimal algorithmic changes are required.

We have targeted direct volume visualization as the main application, but any kind of non-

photorealistic image overlay may benefit, too. Future research might also explore alternative

colour (appearance) models. Perceptual effects like simultaneous contrast and surround

luminance certainly have not been addressed in our work. Similarly, visual inspection of our

results ought to be followed by a full validation study, including actual power measurements

and colour naming tests, in order to assess the effectiveness of our colour designs for specific

visualization applications.

Our methods can also be used to design energy-friendly GUIs that use energy aware

colour schemes and still maintain content readability. Low energy colour GUIs can be

beneficial for battery-powered mobile devices, prolonging their battery life. Furthermore,
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we are not limited to iso-lightness colours; we only choose to use iso-lightness colours in

our work as a design constraint for our colour maps. One can imagine the use of non-

iso-lightness colours for the design of colour maps. An optimization can be performed in

a CIELAB subspace, bounded by user-specified L∗
min and L∗

max, to explore colours with

varying lightness. Finally, the long-term goal is a general method to automatically convert

arbitrary input images to images with energy aware colours.
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