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Abstract

Over the years, the growing population in British Columbia has led to escalating wait times

and overcrowding in hospital Emergency Departments (EDs), due to insufficient number

of beds in specific units of the hospitals, such as the Intensive Care Unit (ICU) or the

Medical Unit (MU). To enhance the level of access to care, a successful prediction of bed

requirements is needed. This is achieved by having an adequate model of the patient flows

to and between the different compartments of the hospital. Focusing only on the stream of

emergency patients, we developed a queueing network to model the interaction between the

ICU and the MU, which is believed to be causing a major proportion of the congestion in

the ED. Through approximate analytical methods and simulation, we determined sufficient

bed counts in each of these two units so as to guarantee certain access standards.
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Chapter 1

Introduction

Acute care is the treatment of a severe medical condition for only a short period of time

and at a crisis level. Many hospitals are acute care facilities with the goal of discharging the

patient as soon as the patient is deemed healthy and stable. The rising population in BC has

created a need to understand better how hospital resources relate to the quality of service

in acute care facilities in British Columbia. In this thesis, hospital resources are measured

in beds, a term we use to refer to the physical count of locations able to provide in-patient

services, accompanied by the necessary equipment and staff. To ensure an adequate level of

access to care, it is important to examine future bed requirements. The accurate prediction

of this count requires both the knowledge of future population demographics, which affects

the demand for acute care services, and also an understanding of how the number of avail-

able beds affects access to care.

This work is dedicated to the latter issue. More specifically, our goal is to understand

how the flow of patients to, within the different compartments of, and out of the hospital

affects access to care. This would enable us to to estimate the required number of beds

that would guarantee a certain access level. This is important, for a low hospital capacity

leads to patients in need of care being turned away, and growing waiting lists cause stress

on other hospital units. For example, when insufficient medical beds are available to meet

demand, emergency medical patients spill over into surgical beds; consequently, surgical

waiting lists increase as planned admissions are postponed. Determining bed requirements

1



CHAPTER 1. INTRODUCTION 2

is also important from the hospital management perspective, for it has direct implications

on staff allocations and operation costs. For the purposes of this project, we consider only

bed requirements for patients arriving through the emergency department; inclusion of the

elective stream of patients into the model is left as a future task. Hereafter, we will refer

to inpatients simply as patients; outpatients are not considered here, for they are not hos-

pitalized overnight, and thus do not affect bed requirements.

The focus of this project is on understanding and quantifying the blocking phenomenon

that occurs in the Intensive Care Unit when patients who need to be transferred out of this

unit to another cannot find a free bed. This congestion, in turn, causes delay in providing

beds to newly arrived critically ill patients. In the next section, we describe the hospital

units considered in this project, followed by the definition of the access measure that we use

here. Finally, we state the goal of this project and describe its relation to the past work

done at the Complex Systems Modelling Group at IRMACS.

1.1 Hospital Units

Acute care hospitals are divided into multiple compartments that may differ from one facility

to another, depending on the size and location of the hospital. To keep the model general,

we consider the following three units, which we believe can be applied to most acute care

hospitals:

• Emergency Department (ED): sometimes termed Emergency Room, this unit pro-

vides initial treatment to patients with a broad spectrum of illnesses and injuries, some

of which may be life-threatening and requiring immediate attention.

The process from patient arrival in the ED to placement in a bed can be summarized

as follows: It begins with the triage nurse, who determines the urgency of the patient’s

condition. Next, the patient is seen by an ED physician, who, after possible diagnostic

testing, determines whether or not the patient requires admission to the hospital.

In some cases, after the initial assessment and treatment, patients are discharged or

transferred to another hospital for various reasons. Otherwise, a bed is requested in the
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appropriate nursing unit (e.g., medical, surgical, or intensive care). The availability of

a bed is affected not only by the capacity of the relevant unit, but also by the admission

and scheduling policies of elective patients, particularly surgical patients who compete

for the same beds. If a bed is not available readily, the patient is kept in the ED and

is treated by a nurse. This may result in the discharge of the patient directly from the

ED if the treatment is completed before a bed becomes available. Otherwise, when a

bed is reported to be free in the required unit, the patient is transferred to the bed.

• Intensive Care Unit (ICU): is a specialized department used for intensive care

medicine. Most patients arriving to the ICU are admitted from the ED. After their

treatment, ICU patients are usually transfered to the medical unit for further care

before discharge. This transfer, however, is possible only if a bed is available in the

medical unit.

• Medical Unit (MU): is a term used in this project to refer to the rest of the hospital.

This unit is designated for patients from the ED whose severity of illness is not suffi-

ciently high to be considered for the ICU. In addition, patients from the ICU spend

some time in the MU for full recovery before their complete discharge from the hos-

pital. Finally, scheduled patients (not considered here) are taken to this unit. When

patients’ treatment is completed in the MU, they leave the hospital or are assigned a

bed in the Alternative Level of Care (ALC) unit of the MU, depending on their health

condition. The ALC, which shares beds with the MU, is essentially a waiting unit for

patients to be transferred to a residential care unit when these institutions are fully

occupied.

1.2 Access to Care

Access to care can be measured in several different manners. Traditionally, hospital bed

capacity decisions have been made based on Target Occupancy Rate (TOR) – the average

percentage of occupied beds – and the most commonly used occupancy target has been

85%. Another metric often cited in the literature is the Target Access Rate (TAR), which

measures the percentage of the time that a census count will show that the hospital contains
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at least one empty bed.

The measure that we use here for emergency patients, developed in collaboration with the

B.C. Ministry of Health Services, is the Target Time to Access (TTA), which is the targeted

percentage of times that patients receive beds within a given maximal time delay. For

example, a TTA of 80% within 6 hours implies that there are enough beds to keep the

percentage of the patients that have to wait longer than 6 hours below 20%. We will use

TTA in this project for the purpose of determining bed requirements for emergency patients.

1.3 Project Goal

This project emerged as part of my work with Complex Systems Modelling Group (CSMG)

at IRMACS, and its goal has been to study more fundamentally some of the aspects of

the queueing network that has been developed to model patient flows in B.C. acute care

hospitals.

In the first phase of the acute care modelling project at CSMG [31], most hospitals were

divided into 5 subunits: ICU, Pediatrics, Psychiatry, Surgical, and Medical. These units

were assumed to be operating independently of one another. The project addressed the

issue of access to care for emergency patients with the assumption that elective admissions

have higher priority. Although it may seem counterintuitive, it is reasonable to assume that

patients admitted through the ED have lower priority than elective admissions, since the

former group, upon finding the hospital full, are placed in the ED where they receive care,

while the latter group would probably face a cancellation if a bed is not available as sched-

uled. Given the historical admission rates through the ED, the model related TTA to the

number of beds in the hospital. For instance, for any one hospital, the model determined

the required number of beds in the pediatrics unit so that a TTA of 85% within 6 hours

was achieved. In that project, however, the process by which elective admissions could get

cancelled due to hospital overcrowding was not considered; this task was undertaken in the

second phase of the project [5]. To model the cancellation mechanism, it was assumed that

even though scheduled patients had priority over emergency patients, if they waited longer

than a certain amount, their appointments would be cancelled.
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In this project, I have attempted to study a more realistic model of the hospital, by devel-

oping a queueing network that takes into account the transfer of patients from the ICU to

other hospital units, which we collectively refer to as the Medical Unit (MU). The main issue

that arises in this setting is the possibility of the MU being full, which causes patients whose

treatment is completed in the ICU to be blocked from being transferred, and hence to have

to stay in the ICU until a bed becomes available in the MU. This effectively lengthens their

duration of stay in the ICU, and reduces the hospital efficiency, as the impact of blocking in

the ICU propagates to the ED, where some patients may be waiting to get into the ICU. The

blocking mechanism is studied in this project both numerically and also via approximate

methods. However, as both methods fail to completely encompass the overall model due

to its complexity, discrete-event simulation is used to understand how the number of beds

affect TTA for emergency patients.

Besides blocking, another queueing principle that is investigated in this project is reneging,

or the departure of units1 from the system before having completed service. In most of the

literature, reneging is due to the impatience of customers who are in the queue, and so it is

often viewed as customers leaving the queue. In this project, however, reneging is proposed

as a model both for deaths that occur in the hospital (mainly the ED and the ICU), and also

for the treatment completions that take place in the ED, which result in patients leaving

the hospital before receiving a bed. Although the underlying reason for these departures is

not impatience, they can be treated similarly. However, the point that must be emphasized

is that deaths that occur in the ICU are analogous to customers leaving the service station

while they are being served. This is not what is commonly referred to as reneging. On the

other hand, deaths in the ED or direct discharges from the ED, which is viewed as the queue

to the hospital, conform with the widely known notion of reneging. In both cases, a large

number of reneged patients indicates low quality of care, since high death rates and direct

departures from the ED often occur when the hospital is operating at or near full capacity.

The study of reneging in this project is hoped to give us an understanding of how such quan-

tities as the percentage of reneged patients are affected by the number of beds in the hospital.

1In queueing theory, the term “units” refers to customers arriving at a service station. In the hospital
model developed here, the term is used to refer to patients arriving at the ED.
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Since the ideas we use in our modelling approach lie in the domain of queueing theory, the

next chapter is devoted to the fundamentals of this subject, including notation, terminolo-

gies, and important results used in this thesis. In the following chapter, we review some

of the past work done in applying queueing models in a health care setting. We will then

give a concrete description of the queueing model that we have developed to describe the

interaction between the ED, ICU, and MU. After studying reneging in chapter 5 and tandem

queues with blocking in chapter 6, we will apply the results in chapter 7 to find an estimate

for the required number of beds in the ICU and the MU, for the purpose of achieving a

TTA of 90% within 1 hour for the ICU and 80% within 6 hours for the MU. This estimate

is then improved upon using the simulation software SimEvents in MATLAB.



Chapter 2

Fundamentals and New Results

Queueing theory is a mathematical approach in Operations Research applied to the analysis

of waiting lines. A.K. Erlang first analyzed queues in 1913 in the context of telephone

facilities. The body of knowledge that developed thereafter via further research and analysis

came to be known as Queueing Theory, and is extensively applied in industrial settings and

retail sectors. The use of queueing theory and other principles of operations management

in health care is fairly recent, with applications which can often be thought of as a balance

between

(i) minimizing costs due to occupation of resources such as beds; and

(ii) minimizing wait times of patients.

In effect, Target Time to Access is a measure that achieves this balance by incorporating

what health care officials believe is a compromise between cost and wait time minimization.

In general, the analysis of queueing systems consists of evaluating a set of performance mea-

sures, such as mean customer wait time or mean server idle time (customers and servers,

respectively, represent patients and beds in the queueing model of hospitals developed later).

Queueing systems are often analyzed by analytical methods or simulation. The latter is a

general technique of wide application able to incorporate many complexities of a model, but

its main drawback is the potentially high development and computational cost to obtain ac-

curate results. Analytical methods, on the other hand, can often produce results in relatively

7
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short time, but often require that the model satisfy a more restrictive set of assumptions

and constraints in order to make the derivation possible. When deriving analytical solutions

becomes intractable, numerical solutions of the underlying equations (see the next section)

may also be considered, but even this approach is limited in its application, because the

memory required to store the state space of queueing networks grows exponentially with

the number of service stations.

Although the results in this project are extensively based on simulation and numerical solu-

tions, better understanding of the model developed here can be obtained through analytical

investigations. However, a full study of the whole model consisting of the interactions be-

tween the ED, the ICU, and the MU is essentially impossible using analytical techniques.

Nevertheless, imposing simplifying assumptions and using approximate techniques, useful

insights can be gained. In this section, we now give a short introduction to some basics of

queueing theory, which will be used in subsequent chapters.

2.1 Rate Matrix

Let {Xn, n ≥ 0} be a Markov chain over a finite state space S = {0, 1, 2, . . . , N}. Define pij

as the probability of transition from state i to j in one step, i.e.

pij = Pr{Xn = j
∣∣Xn−1 = i},

where we assume that the chain is homogeneous so that pij is independent of n (usually n

denotes discrete points in time, in which case this is equivalent to requiring that S be the

set of states at equilibrium, assuming the equilibrium exists). The matrix P = (pij) for

i, j ∈ S is called the transition probability matrix of the Markov chain. This matrix has the

property that
∑

j∈S pij = 1, since the probability of transitioning from state i to some state

in S must be 1.

Now, let the row vector π be the equilibrium probability distribution with elements πi =

Pr{Xn = i}. This vector must remain unchanged under the application of the transition

matrix; in other words, it is defined as the eigenvector of the probability matrix associated



CHAPTER 2. FUNDAMENTALS AND NEW RESULTS 9

with the eigenvalue 1 so that

πP = π. (2.1)

Assuming the equilibrium exists, the rate matrix1 can be defined as

Q = P − I. (2.2)

Then, equation (2.1) can be written as

πQ = 0 (2.3)

where 0 is the zero vector. The normalization condition
∑

i∈S πi = 1 can be incorporated

in equation (2.3) by replacing the elements in the last column of Q with 1’s (call this new

matrix Q̃) and replacing the last element of the zero vector on the right hand side with 1

(call this new vector b). With these definitions, the equilibrium distribution π satisfies the

following equation:

πQ̃ = b. (2.4)

The rate matrix Q̃ is often quite sparse, because each state can only transition to a small

number of neighboring states. Various efficient numerical methods are available for solving

such equations. MATLAB is especially efficient at recognizing the sparse structure of the

rate matrix and hence applying specialized techniques to dramatically reduce the cost of

solving equation (2.4) when the state space is large, as is the case in our queueing network

model of the hospital. In section 6.1 we demonstrate the use of the rate matrix in obtaining

the queue length distribution of the tandem queueing system discussed with blocking.

2.2 Characteristics of Queueing Systems

Conceptually, the simplest queueing model is the single server queue illustrated in figure 2.1

(often the waiting space itself is not illustrated in the diagram, and its presence is implied,

unless otherwise stated). The system models the flow of customers as they arrive, wait in

the queue if the server is busy, receive service, and eventually leave.

1In analyzing the transient period, when states and transition probabilities are time dependent, the rate
matrix gives the rate at which the state vector π(t) changes with time via the following equation

π(t)′ = π(t)Q(t).
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server  waiting 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 departures 

Figure 2.1: The single server queue

A queueing system consists of customers who have a certain arrival pattern, and are served

at a station consisting of a number of servers with a specific service pattern. In this respect,

we can see that a basic queueing system, one that consists of a single service station, can

be described by the following characteristics:

(i) arrival pattern: This is specified by the distribution of interarrival time of customers.

An important related quantity is the mean interarrival time. The reciprocal of the

mean interarrival time is referred to as the arrival rate. A commonly used distribution

for the interarrival time of customers is the exponential distribution (see section 2.4),

which is determined by the mean alone. Though it can be otherwise, we consider only

arrivals that occur singly (not in batches).

(ii) service pattern: It is specified by the distribution of the time taken to complete

service. The reciprocal of the mean service time is referred to as the service rate. As

with the arrival pattern, the service pattern is commonly described by the exponential

distribution. We assume departures occur one by one, and not in batches.

(iii) number of servers: A number of servers may work in parallel, and an arriving unit

can choose randomly between any of the free servers. If all servers are busy, the unit

joins a queue common to all the servers.

(iv) system capacity: There might be situations in which a queueing system can only

accommodate a limited number of waiting units. In this case, if the number of waiting

customers plus those in service exceeds the system capacity, any further arrival does

not join the system and is lost.

(v) queue discipline: If a customer arrives at the system at a time when the server(s) is

(are) unavailable to provide service, he/she is forced to wait in the queue temporarily.

If there is more than one customer waiting in the queue at a time the server becomes

available, one of the customers in the queue is selected to start receiving service. The
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manner in which waiting customers are taken in for service when a new server becomes

available is referred to as the service discipline. Throughout this thesis First-Come,

First-Served (FCFS) is assumed as the service discipline.

We next introduce a notation in queueing theory that is used to describe single-station

queues in a short format.

2.3 Kendall’s Notation

A basic queueing system can often be described by a notation introduced by Kendall. Refer-

ring to the numbering used above in section 2.2, this notation takes the form (i)/(ii)/(iii)/(iv)

so that, for example, a queueing system with exponential interarrival and service time dis-

tribution, c servers, and system capacity k, is represented by M/M/c/k, where M stands

for Markovian. Unless otherwise mentioned, the service discipline is assumed to be FCFS.

Moreover, if the waiting capacity is infinite, i.e. k = ∞, the last symbol may be omitted,

so that the notation for the above example would simply become M/M/c.

2.4 The Exponential Distribution

The simplest queueing models assume that the interarrival and service times are exponen-

tially distributed, so that, for instance, if λ is the mean arrival rate, then the probability

density function (pdf) for the time between successive arrivals would be

f(t) = λe−λt. (2.5)

Equivalently, the arrivals can be said to follow the Poisson process, a collection {N(t), t ≥ 0}
of random variables, where N(t) is the number of events that have occurred up to time t,

starting from time 0. The Poisson distribution is given by

Pr{N(t) = n, t ≥ 0} =
(λt)ne−λt

n!
. (2.6)

We now state three important properties of the exponential and Poisson distributions that

we use in this thesis:
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(P1) Memoryless Property: If X is an exponentially distributed random variable, then

Pr{X ≥ x + y|X ≥ x} = Pr{X ≥ y}. (2.7)

This property has the following implication: if service times are exponentially dis-

tributed, then the probability that a customer’s service is completed at some future

time is independent of how long the customer has already been in service. It is mainly

because of this special property that the exponential distribution has been the most

widely used distribution in the analysis of queueing systems.

(P2) Additive Property: The sum of n independent Poisson processes with parameter λi,

for i = 1, 2, . . . , n, is a Poisson process with parameter λ1 + λ2 + · · ·+ λn.

(P3) Decomposition Property: Suppose that N(t) is a Poisson process with rate λ and that

each arrival is marked with probability p independent of all other arrivals. Let N1(t)

and N2(t) respectively denote the number of marked and unmarked arrivals in [0, t].

Then N1(t) and N2(t) are two independent Poisson processes with respective rates λp

and λ(1− p).

2.5 Little’s Theorem

For a queueing system at equilibrium with arrival rate λ, mean queue length L, and mean

wait time W , Little’s Theorem states

L = λW. (2.8)

The profoundness of this formula is due to the fact that it holds for virtually all queueing

systems under very general conditions. Furthermore, the same relation holds if L and W

represent the mean number of units and mean wait time in the system2 at any time point,

respectively. Although the initial insight into the truth of this relation is due to Morse [25],

it was his student Little [23] who gave the rigorous proof of the formula.

2The term “system” is used to refer to both service station and queue in combination.
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2.6 Relationship between Wait Time and Queue Length

We now derive an equation that relates the equilibrium queue length distribution of an

M/G/c queue to the equilibrium distribution of the wait time in the queue (G stands for

the general distribution); as far as we are aware, this result has not been published else-

where. To do so, we first state Burke’s Theorem and the PASTA property.

Let us first define the following quantities:

an = Pr{an arrival finds n units in the queue}

dn = Pr{a departure leaves n units in the queue}

qn = Pr{a random observer finds n units in the queue}

Then Burke’s Theorem states that for any queueing system at equilibrium in which arrivals

and departures occur one by one (no batch arrivals or departures) it must be true that

an = dn. (2.9)

On the other hand, the PASTA (Poisson Arrivals See Time Averages) property states that

in any queueing system in which the arrivals follow a Poisson process,

an = qn. (2.10)

Thus, for a queueing system at equilibrium with Poisson arrivals in which both arrivals and

departures occur individually, we must have that

dn = qn . (2.11)

Let w(t) be the probability density function (pdf) of the wait time in the queue3. Equation

(2.11) can then be used to find a formula relating the probability generating function (pgf)

of the queue distribution

P (z) =
∑

n

qnzn |z| < 1 (2.12)

3Throughout this thesis, we use wait time to refer to the time spent in the queue, not in the system. To
refer to the latter, we will specifically state wait time in the system.
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to the Laplace Transform (LT) of the wait time pdf

w∗(s) =
∫ ∞

0
e−st w(t) dt (2.13)

for an M/G/c queue with mean arrival rate λ. To do so, first note that in a queue with

FCFS service discipline, the probability that there are n units in the queue when a unit

leaves the queue (and enters the service station) is equal to the probability that n units

arrive during its wait time. This leads to the following expression:

dn =
∫ ∞

0

e−λt(λt)n

n!
w(t) dt. (2.14)

Using (2.11) the pgf of the queue length distribution can be written as:

P (z) =
∞∑

n=0

qnzn |z| < 1

=
∞∑

n=0

dnzn

=
∞∑

n=0

∫ ∞

0

e−λt(λt)n

n!
zn w(t) dt. (2.15)

Now, as stated by Widder [36, p. 446], if the Laplace transform∫ ∞

0
e−stφ(t) dt

converges absolutely at a point s = s0, then for Re{s0} < Re{s} ≤ Re{R} it must converge

uniformly, where R is an arbitrary complex number. Since P (z) is finite for all 0 < Re{z} <

1, the integral in (2.15) must be convergent. Moreover, because the integrand is non-

negative, the integral is absolutely convergent, and by the above statement, it must be

uniformly convergent. This allows us to interchange the order of integration and summation,

or more precisely, the order of the limits in

∞∑
n=0

∫ ∞

0

e−λt(λt)n

n!
zn w(t) dt = lim

N→∞
lim

y→∞

N∑
n=0

∫ y

0

e−λt(λt)n

n!
zn w(t) dt,
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so that expression (2.15) can further be simplified:

P (z) =
∫ ∞

0
w(t) e−λt

∞∑
n=0

(zλt)n

n!
dt

=
∫ ∞

0
w(t)e−(1−z)λt dt

= w∗[(1− z)λ] . (2.16)

Alternatively, defining s = (1− z)λ, we can write equation (2.16) as

w∗(s) = P (1− s/λ). (2.17)

Therefore, knowing the pgf of the queue length distribution, we can obtain the wait time

distribution by inverting the LT. Little’s Theorem can also be obtained from this expression:

W = − d

ds
w∗(s)

∣∣∣∣
s=0

=
1
λ

P ′(1) =
L

λ
. (2.18)

It should be mentioned that a result similar to equation (2.17) was derived previously for

the M/G/1 queue: Let F (z) be the pgf of the number of units in the system, and let v∗(s)

be the LT of the distribution of wait times in the system. Then, according to Gross and

Harris [16],

v∗(s) = F (1− s/λ). (2.19)

By comparison, our result (2.17) holds for the more general case of the M/G/c queue, but

only when considering the pgf of the queue length and the LT of the queue wait time. To

see why equation (2.19) cannot be applied to an M/G/c queue, note that equation (2.14)

holds only for that part of the system in which no unit that has arrived later than another

can leave earlier. For an M/G/c queueing system, this can only be guaranteed for the queue

portion of the system. Moreover, formula (2.17) cannot be applied to queueing systems with

reneging, which refers to situations in which units can leave the queue without receiving

service; for this reason, in section 5 we shall explicitly need to derive the wait time distri-

bution for the M/M/c queue with reneging, and cannot rely on the knowledge of the queue

distribution alone.
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Note also that equations (2.17) and (2.19) assume the analytical continuation of P (z) for

values of Re{z} < −1. To see this, consider the formula for inversion of LT using the Fourier

series method of evaluating the Bromwich contour integral [1]

w(t) =
2eat

π

∫ ∞

0
Re{w∗(a + iu)} cos(ut) du, (2.20)

where a is chosen such that w∗(s) has no singularities on or to the right of s = a. It is

clear that w∗(s) needs to be calculated for very large values of |s|2 = a2 + u2. In view of

equation (2.17) this implies that P (z) must be evaluated for very large negative values of

Re{z}, for which the sum
∑∞

n=0 qnzn used in defining P (z) may not be convergent. Thus

we use analytical continuation to define P (z) for Re{z} < −1. As a result, equation (2.17)

is well-defined and can be inverted.

In the absence of an analytical formula for the pdf of the queue length, such as when we

compute the probabilities numerically using the rate matrix, we can only compute P (z)

numerically from the series

P (zi) =
M∑

m=0

qmzm
i , (2.21)

where |zi| < 1 and M is the maximum value of m for which qm is computed. Without a

functional expression for P (z), inverting the LT of w∗(s) becomes more challenging. To

overcome this difficulty, we first approximate P (z) by a rational polynomial, say P̃ (z).

In our work we used the function ratpolyfit(z,P,kn,kd) implemented by Godfrey [13]

in MATLAB, which, given values of a function P (z) at points zi, finds two polynomials

N(z) and D(z) of orders kn and kd, respectively, such that the rational polynomial P̃ (z) =

N(z)/D(z) best approximates P (z) in the least squares sense, so that the error

e0 =
∑

i

∣∣P̃ (zi)− P (zi)
∣∣2 (2.22)

is minimized. The motivation behind using a rational approximation to the queue length

pgf is that the M/M/c queue has an exact rational queue length pgf (see equation (2.35)).

Let us now write the rational approximation w̃∗(s) = P̃ (1− s/λ) to w∗(s) as follows:

w̃∗(s) = c0 +
R(s)
D(s)

, (2.23)
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where R(s) is another polynomial with degree smaller than kd. We can easily find the inverse

LT of this expression to obtain the approximate wait time distribution w̃(t) as

w̃(t) = c0δ(t) +
kd∑

k=1

cke
−rkt , (2.24)

where rk is the kth pole among the kd poles of w̃∗(s), which has a residue of ck at s = rk.

Here, c0 is an approximation to the probability of not having to wait in the queue at all,

which, in the case of the M/G/c queue, is equal to the probability that not all servers

are occupied, i.e. c0 ≈ p0 + p1 + · · · + pc−1. Note that if an equilibrium is to exist, this

probability is always non-zero, i.e. c0 > 0. Hence, expression (2.23) implies that the degree

of the numerator must be equal to that of the denominator in the rational approximation

P̃ (z); in other words, we must choose kn = kd ≡ k.

For every particular problem, we choose k experimentally by starting from k = 1, and

increasing it incrementally, comparing error estimates for different values of k. It must be

mentioned that higher values of k do not necessarily yield smaller error as measured by

(2.22), for as Godfrey [13] comments in the introduction to his code:

If you overfit the data, then you will usually have pole-zero cancellations and/or poles and

zeros with a very large magnitude. If that happens, then reduce the values of kn and/or kd.

He further adds that the approximation becomes ill-conditioned with higher values of kn

and/or kd. Thus, it is preferable to confine our search to small values of k. Clearly, measuring

the error in the s-space (z = 1 − s/λ) as measured by (2.22) also gives a good indication

of the accuracy of the approximation in the t-space. This is because the inversion of the

transform w̃∗(s) is highly sensitive to the location of its poles, and as Godfrey [13] mentions,

often, if you have a good fit, you will find that your polynomials have roots where the real

function has zeros and poles.

Besides measuring the error in the s-space, we can look at the following two quantities as

means of measuring the error in the t-space:

1) free server probability, and
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2) integral of wait time distribution.

From what we already mentioned, the better the approximation, the smaller the difference

e1 =
∣∣∣∣ c−1∑

n=0

qn − c0

∣∣∣∣, (2.25)

since c0 estimates the free server probability. Furthermore, since every probability distribu-

tion must be normalized, the error

e2 =
∣∣∣∣1− ∫ ∞

0
w̃(t) dt

∣∣∣∣ (2.26)

needs to be small. Therefore, together with e0, these three error measures allow us to find

a desirable value of k. In section 6.1 we demonstrate the method outlined here to compute

wait time distribution in a tandem queueing system of finite intermediate waiting capacity.

2.7 The M/M/c Queue

We now illustrate the ideas introduced in this chapter with the use of an example. Consider

the M/M/c queue where the arrival and service rates are λ and µ, respectively. Assuming

that steady state exists, let pn be the steady state distribution of the number of units in the

system. We proceed to derive the equations involving pn by using the rate-equality principle,

which states that the rate at which a process enters a state is equal to the rate at which it

leaves that state.

Consider state 0, when there are no units in the system. The process can leave this state

only when there is an arrival, which causes the system to transition to state 1. The long-run

proportion of time the process is in state 0 is p0, and since λ is the rate of arrival, the rate at

which the process leaves state 0 to go to state 1 is λp0. Moreover, the process can enter state

0 only from state 1 through a departure or service completion. Since the proportion of time

the process is in state 1 is p1 and the rate of leaving state 1 through service completion is

µ, the rate at which the process transitions from state 1 to 0 is µp1. Using the rate-equality

principle, we get

λp0 = µp1. (2.27)
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Now consider state 0 < n < c. The process can leave state n in two ways, either through an

arrival or through a departure. The proportion of time the process is in state n is pn and the

total rate at which the process leaves state n through arrivals or departures is λpn + nµpn,

since there are n servers busy (additive property of the Poisson process). The process can

enter state n in two ways, either through arrival from state n − 1 or through a departure

from state n + 1. Thus, the rate at which the process enters state n is λpn−1 + µpn+1. By

the rate-equality principle

λpn + nµpn = λpn−1 + (n + 1)µpn+1 . (2.28)

Similarly, for the case of n ≥ c, we get

λpn + cµpn = λpn−1 + cµpn+1 . (2.29)

Repeated application of (2.28) along with (2.27) at the last step yields

λpn − (n + 1)µpn+1 = λpn−1 − nµpn

= λpn−2 − (n− 1)µpn−1

...

= λp0 − µp1

= 0.

By rearranging terms and iterating we obtain that for 0 < n ≤ c

pn =
λ/µ

n
pn−1 =

(λ/µ)2

n(n− 1)
pn−2 = · · · = (λ/µ)n

n!
p0. (2.30)

In a similar fashion, we get that for n > c

pn =
(λ/µ)n

c!cn−c
p0. (2.31)

Now for λ/(cµ) < 1, the normalization condition
∑∞

n=0 pn = 1 gives

p0 =

[
c−1∑
n=0

(λ/µ)n

n!
+

(λ/µ)c

c!(1− λ/cµ)

]−1

. (2.32)

We now proceed to compute some performance measures. The expected queue length L can

be computed as

L =
∞∑

n=c

(n− c)pn =
λpc

µ(1− ρ)2
, (2.33)



CHAPTER 2. FUNDAMENTALS AND NEW RESULTS 20

where ρ = λ/cµ is referred to as the server utilization. Applying Little’s formula, we also

obtain the expected waiting time in the queue

W =
L

λ
=

pc

µ(1− ρ)2
. (2.34)

Knowing the probability distribution, we can now directly compute the pgf of the number

in the queue

P (z) =
c−1∑
n=0

pn +
∞∑

n=c

pnzn−c = 1− pc

1− ρ
+

pc

1− ρz
, (2.35)

which allows us to find the LT of the wait time distribution as

w∗(s) = P (1− s/λ) = 1− pc

1− ρ
+

pc

1− ρ + s/cµ
. (2.36)

Inverting the transform gives

w(t) =
(

1− pc

1− ρ

)
δ(t) + cµpc e−cµ(1−ρ)t t > 0. (2.37)

Note that the coefficient of δ(t) is the probability of zero wait, or the probability that there

is a free server upon arrival. It is important to realize that computing pc in this coefficient

becomes numerically difficult when the number of servers c and the server load λ/µ are very

large, as from (2.31) it can be seen that both (λ/µ)c and c! then become extremely large,

introducing numerical errors. To address this issue Adan and Resing [2] first note that

pc

1− ρ
=

(cρ)c/c!
(1− ρ)

∑c−1
n=0(cρ)n/n! + (cρ)c/c!

=
ρB(c− 1, cρ)

1− ρ + ρB(c− 1, cρ)
,

where B(c, ρ) is Erlang’s B-formula given by

B(c, ρ) =
ρc/c!∑c−1

n=0 ρn/n! + ρc/c!
. (2.38)

Then, by dividing the numerator and denominator by
∑c−1

n=0 ρn/n!, the authors obtain the

following recursive relation for Erlang’s B-formula:

B(c, ρ) =
ρB(c− 1, ρ)

c + ρB(c− 1, ρ)
, (2.39)

which can be used to avoid division of large numbers in equation (2.37).
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Figure 2.2: Two infinite-capacity queues in tandem

2.8 Tandem M/M/c Queues

Now consider an M/M/c1 queue placed in tandem with an M/M/c2 queue, with an infinite

queue allowed in between (Fig. 2.2). Customers discharged from the first station must

proceed to the next to have their second phase of service completed. It can easily be shown

that the equilibrium distribution

pmn = Pr { m units in S1 and n units in S2 }

has the product form

pmn = p1(m) · p2(n) (2.40)

where pi(·) is the distribution of the number of units in an M/M/ci queue. This shows

that the two stations operate independently of one another; this is the typical behaviour

of queueing networks with unlimited queueing space in between. An important theorem

regarding the output process of the M/M/c queue at equilibrium states that the inter-

departure times are independently and identically distributed as an exponential random

variable with mean 1/λ, where λ is the arrival rate. It follows that if the arrival rate into

S1 is λ, then the arrival rate into S2 is also λ. The general result applicable to networks

of queues with infinite waiting capacity between each is known as the Jackson Theorem [18] .



Chapter 3

Literature Review

In the past, queueing theory has been effectively used in such areas of health care modelling

as staff scheduling, policy making (for example, determining how prioritizing certain groups

of patients affects wait times), and bed requirement analysis, which is the focus of this thesis.

It is common practice in health services to estimate the required number of beds as the

average number of daily admissions times average length of stay in days and divided by

average bed occupancy rate (average number of occupied beds during a day) [17]:

bed requirement =
average no. of daily admissions

average bed occupancy rate
× average length of stay. (3.1)

However, as de Bruin et al. mention in [8], “a model, only based on average numbers, is

not capable of describing the complexity and dynamics of the in-patient flow.” Moreover,

reported occupancy levels are generally based on the average midnight census (for billing

purposes), which results in underestimation of the bed requirements.

More recently, queueing models have provided better means of estimating the necessary

number of beds based on sound performance measures. In [28], Pike et al. use the M/G/∞
queue as a model for the casualty ward of a hospital. They show that in steady state, the

bed occupancy rate follows a Poisson distribution with mean λW , where λ denotes the daily

admission rate and W denotes the average duration of stay. Using this model, the authors

determine the required number of beds in order to guarantee that a given target percentage

22
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of arrivals receive a bed immediately.

Weiss and McClain [35] also use the M/G/∞ system to model the queue of patients needing

alternative levels of care in acute care facilities whose treatment is completed and who are

waiting to be transferred to an extended care facility (ECF). These patients are kept in the

hospital due to unavailability of beds in the ECF and reduce the hospital utilization. The

authors’ model allows managers to predict the effect of certain policy changes on appropriate

access measures. For instance, the cost-benefit trade-off of opening an additional extended

care facility within a region is compared to that of assigning a higher priority to patients

going to ECF from acute care facilities than to those coming from other sources.

Instead of using an infinite capacity queue, Worthington [37] uses an M/G/c queue with a

state-dependent arrival rate to address the long hospital-wait list problem. He experiments

with various management actions such as increasing the number of beds or decreasing mean

service times through appropriate means.

Gorunescu et al. [14] develop a queueing model for the movement of patients through a

hospital department. Performance measures, such as mean bed occupancy and the proba-

bility of rejecting an arriving patient due to hospital overcrowding, are computed. These

quantities enable hospital managers to determine the number of beds needed in order to

keep the fraction of delays under a threshold, and also to optimize the average cost per day

by balancing the costs of empty beds against those of delayed patients.

Although service times, unlike inter-arrival times, do not usually have an exponential dis-

tribution, such an assumption is often made in order to simplify the analysis greatly. For

instance, de Bruin et al. [8] use the M/M/c/c queue, referred to as the Erlang Loss model,

to investigate the emergency in-patient flow of cardiac patients in a university medical cen-

tre in order to determine the optimal bed allocation so as to keep the fraction of refused

admissions under a target limit. The authors find the relation between the size of a hospital

unit, occupancy rate, and target admission rates. A cancellation rate of 5% is often con-

sidered acceptable. However, while the target occupancy rate of 85% has become a golden

standard in health care [15], the authors note that using one target occupancy rate for
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of refused admissions at the FCA is significant and
numerous patients are turned away to other referring
hospitals.

This is unacceptable and puts a great pressure on the
required quality of care. More and more hospitals have to
account for their quality of care. An admission guarantee
for all patients entering the emergency department is one of
the main goals of the hospital. Besides this service
requirement, one has to consider the medical emergency
aspect. In case of a heart attack, the sooner someone gets to
the emergency room, the better his or her chance of not
only surviving, but also of minimizing heart damage
following the attack. This is often referred to as the ‘Golden
Hour’ [14]. This study applies a queuing model to analyze
congestion in the emergency care chain. With this model
the number of beds in the care chain is determined for
several service levels.

In Section 2 the structural model is constructed followed
by the data analysis in Section 3. Section 4 describes the
impact of fluctuations in arrivals and variation in LOS on
capacity requirements. In Section 5 the phenomenon of
blocking and the mathematical model are introduced.
Section 6 gives the results and the paper ends with the
conclusion and discussion in Section 7.

2 Structural model

The first phase of the study is the construction of a
structural model (or flowchart) of the patient flow. Such a
model describes the different patient routings in a qualita-
tive manner and defines the relations between different

hospital units. After expert meetings with cardiologists we
decided to identify two different patient flows. The primary
patient flow enters the system at the FCA and leaves the
hospital after a stay at the CCU and NC. The different
departments are defined as follows:

& First Cardiac Aid: A hospital unit intended to provide
rapid diagnosis and initiation of treatment for subjects
with acute symptoms probably due to cardiac disease
(for example chest pain, syncope, palpitations, dyspnea)

& Coronary Care Unit: A hospital unit that is specially
equipped to provide intensive care of patients with
severe acute or chronic heart disease (for example acute
coronary syndromes, arrhythmia, heart failure)

& Normal Care: A hospital unit equipped to provide non-
intensive care to a particular group of patients, in this
case patients with cardiac disease.

A secondary patient flow, originating from surrounding
hospitals, enters the CCU and returns to other hospitals
after treatment, thus bypassing the NC. These patients are
hospitalized to have immediate percutaneous (or balloon)
angioplasty (PTCA) [3]. This kind of treatment is referred
to as top-clinical care. Only certified hospitals are allowed
to perform this type of medical procedure.

The structural model with the two different patient flows
is shown in Fig. 1.

Health care processes are characterized by a great
uncertainty. A large variety of possible patient routings
can be distinguished. If we investigate the different flows
throughout the hospital in great detail the flowchart
becomes like the path of a pinball. Therefore, Fig. 1 is
not striving for completeness. Nevertheless, it is possible to
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Fig. 1 Flowchart of the emergency cardiac in-patient flow
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Figure 3.1: Flow of the emergency cardiac patients (from [8])

hospital units of different size is not reasonable, for larger hospitals can usually operate at

a higher occupancy rate than smaller ones.

After analytically estimating the required number of beds in the First Cardiac Aid (FCA)

unit of the medical centre, de Bruin et al. [8] also use numerical methods to determine

the number of beds in the Coronary Care Unit (CCU) and the Normal Care clinical ward

(NC), which are situated downstream from the FCA (Fig. 3.1). The authors had to rely

on numerical techniques at this stage, because the finite capacity of the CCU and the NC

leads to blocking in the FCA, making analytical calculations extremely difficult to carry out.

In fact, due to the complexities that arise in analyzing queueing systems with multiple

interacting service stations, the study of health care facilities has mainly been done us-

ing simulation, with analytical methods applied to the study of one hospital as a whole

(represented by a single service station) or of single hospital units, assumed to operate in-

dependently of the others. In recent years, however, approximate analytical methods have

been developed and used in studying multi-facility interactions.

For instance, Koizumi et al. [20] use a queueing network model with blocking to model the

congestion in mental health facilities in Philadelphia (Fig. 3.2). Their results point out that

a shortage of a particular type of facilities could be the main cause of the blocking, which
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Figure 1. In-flows and out-flows between Stations.

[4] are both simulation studies. El-Darzi, et al. [6] analyzed the
congestion in geriatric patient flows in a U.K. hospital system.
The model framework used in this study is similar to our men-
tal facility system, with the exception that their system has a
“tandem” structure as opposed to our “arbitrarily-linked” sys-
tem (i.e., patients can skip stations). The other two articles,
Hershey et al. [8] and Weiss and McClain [30] employ mathe-
matical approaches in analyzing a blocking problem. However,
neither of these methods could be directly applied to analyze
congestion in the mental health system in Philadelphia. Her-
shey et al. [8] dealt with blocking in the same context as this
paper, but blocking occurs only when entities enter a specific
station (Unit 1), while other stations were assumed to have in-
finite waiting space in front of the stations. The methodology
introduced by Weiss and McClain [30] may approximate the
congestion in the Philadelphia mental health system with rea-
sonable accuracy. However, their methodology does not utilize
either blocking or the single-node decomposition approach that
has advanced significantly since Hillier and Boling [9].

3. Model framework

Our system consists of three types of psychiatric institutions:
extended acute hospitals (E), residential facilities (R), and
supported housing (S). E is the most structured institution
in the system with the patients who require follow-up care
after being discharged from acute hospitals. R accommodates
those clients who require basic daily living support with full-
time monitoring, while S is the least structured institution in
the system and provides clients with a minimum daily living
support on a part-time basis. The accommodations outside the
system are categorized into two groups: acute hospitals (A)
and all other accommodations (X ). X is composed of various
accommodations for psychiatric patients ranging from housing
with family or friend houses to homeless shelters, jails, or even
living on the streets. Figure 1 illustrates the three internal
stations, two external stations, and the flows between these
stations. As seen in the figure, patients have an overall tendency
to flow from the most structured institution E , to the least
structured institution, S in the system.

In the figure, there are two dotted backflows, (i) R → A
and (ii) S → A. These flows reflect clients at R and S who ex-

perience relapse and hence flow backwards to acute hospitals.
Under the current policy, most residential (R) and supported
housing (S) clients keep their beds while temporarily receiv-
ing acute care in A, and thus effectively occupy two types of
beds in the system. Clients at residential facilities and sup-
ported housing must give up their beds only if they are away
for longer than a specified length of time (i.e., 30 days for
residential facilities and 60 days for supported housing). The
actual data shows that, among those who relapse and move
from S or R to A, only a few patients per year are forced to
give up their beds at S or R. In fact, these patients constitute
less than 0.01% of total patients who leave S or R. Thus, these
two backflows were omitted in the present study. As to the
patients who occupied two beds temporarily at (R, A) or (S,
A) and came back to their primary bed within the specified
period, the model treated these patients as if they remained at
R or S throughout the hospitalization. Since A exists outside
the system and is also considered to have an infinite number
of beds (i.e., no resource constraints), capturing the tempo-
ral backflows and associated occupancies of acute beds adds
nothing of significance to our analysis.2

Blocking at station i occurs when the patient outflow from
station i is hampered due to the full occupancy at the imme-
diate downstream station. There are two key characteristics of
this process: (i) patients remain at station i even after com-
pleting their treatment, and (ii) these patients potentially block
incoming patients to station i . Given that stations E , R and
S have only a finite number of beds (and no other waiting
space), blocking can occur at the flows E → R and R → S.
Blocking will not occur if the immediate downstream station
has an infinite capacity (either beds or other forms of waiting
space). In our model, the only station that receives incoming

2 There are few publications that analyze blocking with feedback flows. This
is partly due to inappropriateness of simple of standard Poisson-arrival as-
sumptions when feedback flows exist, as shown by Disney [5]. Another
reason could be that the model potentially faces a “deadlock flow” problem.
Deadlock refers to the situation in which entities at two or more stations
block each other, and occurs only when feedback flows are allowed in the
system. To the author’s knowledge, all existing articles make the simpli-
fying assumption that deadlock is detected and resolved automatically by
exchanging the entities between the stations. It should be noted, however,
that deadlock could potentially violate the common assumption of a service
discipline in a queuing model, “First Come First Served” [13].

Figure 3.2: Patient flow between different facilities (from [20])

results in many patients spending unnecessary extra days in intensive care facilities. Their

system consists of three types of psychiatric institutions:

(E) extended acute hospitals: designated to patients who require follow-up care after being

discharged from an acute hospital

(R) residential facilities: accommodate those clients who require basic daily living support

(S) supported housing: provides clients with a minimum daily living support

(A) acute hospitals

(X) all other: composed of various accommodations for psychiatric patients

Due to the fact that stations E, R, and S have only a finite number of beds and no other

waiting space, blocking may occur at the flows E → R and R → S. In the absence of block-

ing, this queueing network could be decomposed into individual independent institutions,

resulting in a product-form solution for the equilibrium distribution of the number of units

in each unit. To incorporate blocking into this product-form solution as an approximation,

Koizumi et al. use an effective service rate that is modified by the expected waiting time

at the upstream stations. The authors note that their approximation only holds when the

total number of beds at adjacent upstream stations is large enough to accommodate the

steady-state number of waiting patients, a condition which is only known a posteriori.

Using their approximate analytical solution, they found that the system-wide congestion is
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Fig. 6 Results of the queuing network model for OB hospital.

equations where utilization is equal to the arrival rate of pa-
tients multiplied by the average length of stay then divided
by the number of beds in the unit.

The results from the queuing network model (with 10 beds
added to PP unit from LD unit) showed that the utilization
of the APM, APNM and LD units are still lower than that
reported by the financial census data. This is because simple
queuing network flow models do not take into account bed
blocking. Bed blocking artificially increases the utilization of
the unit. The blocking portion of the bed utilization is due to
imbalance in the system, as can be seen from the utilization
of the units in Table 6. Notice that PACU has a utilization of
only 15% where as the Post Partum unit has a utilization of
89%. While a clinically chosen optimum utilization of these
units might not be equal, this extreme type of inequity leads
to bottlenecks and inefficient use of the beds in the hospital.

In order to maximize the throughput of the system or min-
imize the blocked time of the patients, it is necessary to
balance the system. The system can be balanced by either
adding new beds to the bottleneck or reallocating beds from
low utilized units to bottleneck units. A lively discussion,
including administrators of the OB hospital, ensued about
how to make that happen. It was agreed that beds in Triage,
NICU, and PACU could not be reallocated to another unit

due to their very different staffing and supply needs. Further,
it was agreed that adding new beds overall, before address-
ing the balancing issue, was not a good option. On the other
hand, beds from the Medicine/Surgery unit could be used for
Post Partum patients. Secondly, beds in APM, APNM, LD
and PP units could be reallocated. Let us consider these last
two possibilities using QNA.

The bottleneck of the system is Post Partum (PP)
with 88.84% utilization. As we add beds from the
Medicine/Surgery (MS) unit, the maximum number of de-
liveries per month that can be handled increases until the
bottleneck shifts to a different unit. Using QNA, it is seen
that this shifting takes place upon the addition of 13 beds
to Post Partum unit, after which the Ante Partum Monitored
(APM) unit becomes the bottleneck. This behavior is shown
in Figure 7. Since a unit is typically 15 beds, this offers a
solution that improves current flow, and is implementable.

For the second scenario of balancing substitutable beds
without using Triage, PACU, MS, or NICU, we can find the
optimum bed allocation by integer programming. Since the
goal is to balance the system, an objective function to mini-
mize the Mean Absolute Deviation (MAD) of the utilization
of units (ρi) in the OB hospital from the overall average uti-
lization of the system is used. Beds are redistributed keeping

Springer

Figure 3.3: Queueing network model of an obstetrics hospital (from [9])

due primarily to shortages only in the supported housing facility, which causes blocking in

the other facilities. Thus, a possible solution from the policy viewpoint is to consider an

increase in the number of beds in this specific unit.

Another queueing network model applied to a hospital setting is that of Cochran and Bharti

[9], who study a specific obstetrics hospital consisting of 8 subunits with 4 different patient

arrival streams (Fig. 3.3). The transfer of patients between the different compartments cre-

ates blocking in some of the units.

As a precursor to building their simulation model, the authors first use an approximate

analysis of the network by ignoring blocking and time dependence of the parameters. This

helps to provide quick answers to many of the management questions, in addition to guid-

ing them in validation of their simulation in special circumstances. By using discrete-event

simulation to model the full interaction of the different subunits and patient groups, the

authors then compare alternative methods of reducing blocking times and increasing the

hospital throughput. For example, after identifying the Post Partum unit as the bottleneck
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of the system, they show that by adding new beds to this unit or reallocating beds from un-

derutilized units, such as Medicine/Surgery, the maximum number of deliveries per month

can be increased; however, in the latter case, reallocating beds beyond a certain threshold

causes the bottleneck to shift to a different unit. An interesting result is that increasing

the number of beds in the bottleneck unit by 15% yields a 38% improvement in the overall

hospital throughput.

As can be seen, the application of queueing models to healthcare is growing more popular as

hospital management teams are gaining awareness of the advantages of these operational re-

search techniques in addressing such issues as determining optimal bed counts and making

policy decisions with regards to resource allocation. Research in applying queueing net-

works with blocking is rarer in the literature due to the mathematical complexities involved

in computing performance measures associated with such systems. As a result, hospitals

with interacting subunits are often studied through simulations, for they are able to incor-

porate much more detail than is affordable by analytical methods. In this thesis, we use

both approximate analytical techniques and simulation to study a simple queueing network

composed of only two service stations placed in tandem. In the next section, we discuss the

details of our model.



Chapter 4

Model Overview

Before delving into the details of the model developed in this project, it is worth reviewing

the previous model [31] that was developed by the CSMG group at IRMACS to predict the

hospital bed counts in B.C. Our current model is a step towards further understanding how

the interaction of the Intensive Care Unit with other compartments of the hospitals affects

the flow of patients. This interdependence was not considered in the previous projects of

the Acute Care group at the CSMG, as it was assumed that all the different hospital units

operate independently of one another.

4.1 Segmented Multi-Stream Model

In summary, in the first stage of the modelling of B.C. acute care hospitals by the CSMG,

three streams of patients were considered:

• emergency

• elective direct

• direct transfers from other facilities

The primary focus of the project was to find a relationship between access to care and

hospital bed counts. The access measure used in the project was a TTA of 80% within 6

hours; in other words, the goal was to find the least number of beds in each of the hospital

compartments that guaranteed that 80% of the patients arriving in the ED receive a bed in

28
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their designated unit within 6 hours.

The model separated the hospitals into multiple units, which were assumed to operate in-

dependently of each other. Each compartment was given its own queue consisting of the

three streams of patients. The emergency patients were given lower priority than the other

two patient streams. In other words, if a bed became available while patients from all three

units were waiting for that bed, then a patient from the ED was transferred to the bed only

if there were no patients in the other two streams waiting for the bed. Amongst the elective

and transferred patients, the decision was on a first-come first-served basis. While waiting,

the emergency patients received treatment in the ED queue and could possibly leave the

hospital directly; direct discharge from the ED is explained in more detail later.

In the next section, we will focus only on the stream of emergency patients, but will consider

their transfer from the ICU to one of surgical and medical units, which we have combined

into one entity, called the Medical Unit (MU).

4.2 The ED-ICU-MU Model

In this project, we look only at the stream of Emergency patients into the hospital. A

more complete model would include the elective admissions and transfers from other facil-

ities. However, our current model by itself involves the interaction of three hospital units

(Fig. 4.1), and we felt it necessary to gain complete understanding of this simpler model

before adding further complexity. The three hospital units considered in this project are

the Emergency Department, the Intensive Care Unit, and the Medical Unit. Our aim is to

understand how the flow of patients among these three units causes delays in obtaining beds.

Upon arrival in the ED, patients require a bed either in the ICU or the MU. If there is bed

available in the required unit, the arriving patient goes there without waiting in the ED.

Otherwise, the patient is kept in the ED and waits for his/her required unit. When a bed

becomes available, the earliest of such patients is transferred to the specific unit. However,

while the patient is kept in the ED, he/she is treated by nurses as necessary.
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Figure 4.1: The interaction of ED, ICU, and MU

As a result of treatment in the ED, it is in fact possible in certain circumstances that a

patient is deemed healthy enough to leave the hospital directly from the ED without requir-

ing further stay. This usually applies to patients going to the MU. There are also patients

who unfortunately die in the ED due to their long wait; those in this group most often are

waiting for an ICU bed and have a critical health condition.

In queueing theory terminology, both groups of patients can be seen as reneging units1, such

that when their reneging time2 is exceeded, they leave the queue (the ED). The event where

a patient leaves the hospital directly from the ED, whether due to treatment completion

or death, is referred to as Direct Discharge From Emergency (DDFE). A relatively large

number of DDFEs is indicative of the fact that the hospital does not have enough beds to

provide adequate access to care. Hence, it is desirable to keep the fraction of DDFEs very

low. Note that in our model the ED is viewed as the queue to either the ICU or the MU,

but one from which units (patients) may renege due to “impatience” (treatment completion

or death). It must also be mentioned that the ED is assumed to be able to provide as

many beds as necessary to treat the waiting patients. Thus, the ED can be viewed as an

an infinite-capacity waiting space in which reneging is possible.

1Reneging refers to customers becoming impatient and leaving the queue without receiving service. A
detailed treatment of an M/M/c queue with reneging is given in chapter 5.

2Reneging time is the amount of time a unit is willing to wait before leaving the system.
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While in the ICU, it is also possible that a patient may undergo a medical fatality. In such a

case, the deceased individual is transferred out of the ICU bed (and hospital), thus allowing

a patient from the ED to be transferred to the bed. We will refer to deaths in the ICU as

reneging in service. In most cases of successful treatments in the ICU, however, the patient

needs to be transferred to the MU.

This transfer to the MU is only possible if a bed is free there. In the event that a patient

cannot be transferred, she/he is kept in the ICU. In other words, such patients are keeping

the bed occupied, even though their required intensive care is completed. Note that patients

waiting in the ICU cause the hospital efficiency to lower, as they block patients in the ED

from receiving those beds. This phenomenon not only delays access to care, but it also

generates some financial loss because the blocking patients in the ICU are ready to move to

a less intensive and hence less expensive unit. Hence, controlling the congestion in this unit

is important not only from a clinical perspective, but also from a budgetary perspective for

health care policy makers.

When a bed becomes free in the MU, the doctor decides on whether to admit a patient from

the ED or the ICU into the MU, if there are patients in both units waiting for a bed. In this

project we assume that blocked ICU patients are given a higher priority for two reasons:

1. Keeping a patient in an ICU bed is more costly than placing her/him in an MU bed,

especially since this patient no longer needs intensive care.

2. By freeing ICU beds quickly, the target access of 90% within 1 hour can more easily be

achieved.

4.3 Modelling Assumptions

In almost every model there are certain assumptions that are used to simplify the modelling

process, since otherwise, in an attempt to model every detail of the real world scenario, the

model would become too complex to understand and useless for any practical purpose. Here

we list the assumptions incorporated in our model:

(1) Inter-arrival times, service times, and reneging times are all exponentially distributed.
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Moreover, reneging times are assumed to be independent of the time spent in queue.

(2) Rates of service, arrivals, and reneging, are all assumed to be constant in time. A

more realistic model would include hourly variations in the arrival rate accompanied by

overall seasonal or even day-of-week changes. On the other hand, because the lengths

of stays are of the order of days, and average treatment times usually do not vary

throughout the year, it is reasonable to assume that the service rate is constant.

(3) There is no delay in between patient transfers: if a patient leaves a bed, another waiting

patient immediately replaces him/her, with no intermediate delay. In real hospital

settings, some time is taken in cleaning and preparation for the next patient.

(4) On average, patients being transferred out of the ICU to the MU and those arriving

directly from the ED require the same amount of treatment time in the MU.

(5) Blocked ICU patients have priority over those waiting in the ED to enter the MU.

(6) The amount of time spent in any one unit of the hospital (ED, ICU, or MU) is inde-

pendent of the time spent in any other unit.

(7) The ED always has enough beds.

(8) Patients in the ED are served on the FCFS service discipline.

Furthermore, as mentioned before, we have ignored the elective direct and transferred pa-

tients in our model in this preliminary stage. A future model will incorporate all three

streams of patients (see section 7.5).



Chapter 5

M/M/c Queue with Reneging

Reneging refers to the situation in which customers waiting in line to be served become

impatient and leave the queue. In our model, the ED is viewed as the queue, and there are

two reasons for which emergency patients may leave the ED without getting a bed:

1. medical fatality

2. treatment completion

As mentioned in the previous section, only ICU patients are assumed to pass away in the

ED due to their severe condition, while treatment completions can occur for those patients

waiting for an MU bed. Also, recall that patients who are already in the ICU may die before

their treatment is completed. This latter situation is referred to as in-service reneging.

The most common reneging mechanism, which we use here, is the one in which the units’

maximum waiting times are exponentially distributed and independent of time in queue. We

also assume here that the time spent in service is independent of the time spent in queue. In

most systems, waiting in queue involves no service; however, in the hospital model consid-

ered here, patients receive treatment in the ED, and so a more realistic assumption would

be to incorporate the queueing time in the overall service time.

Here we analyze the M/M/c queue with reneging. As we shall see in chapter 6, the ICU

and the MU may be approximated by two such queues, operating independently of each

33
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Figure 5.1: Reneging from queue

other. In addition to computing the wait time distribution, we derive a formula for the

percentage of patients who renege, which can be used to obtain the mean reneging time.

This is important because from the available data, we cannot directly obtain the reneging

parameter, while the percentage of reneged units can easily be calculated.

5.1 Queue Distribution

Consider the M/M/c queue, where units in the queue may leave when their reneging time,

assumed to be exponentially distributed with parameter α, has expired. As usual, we denote

the arrival rate by λ and service rate of each of the c servers by µ.

Ancker and Gafarian [3] studied the M/M/1/N queue with exponential reneging time and

balking. They considered a balking mechanism in which an arrival finding n units in the

system leaves without joining the queue with probability n/N . They obtained an expression

for the wait time distribution of the units that join the queue and successfully receive service

without reneging. Thus, by taking the limit of the distribution as N approaches infinity, one

can obtain the result for the M/M/1 queue with reneging only. This approach is presented

in the Appendix, and the result is used as a check of the correctness of the formula obtained

in this chapter for c = 1.

Due to reneging, this system always reaches equilibrium. To see this, consider a busier

queue of type M/M/∞ with arrival rate λ and service rate µ̃ = min(α, µ). This queue has

an equilibrium for all values of λ/µ̃ > 0. It follows that the M/M/c queue with reneging

parameter α and service rate µ also has an equilibrium. Now, let pn be the equilibrium
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probability distribution of the number of units in the system. As in section 2.7, by applying

the rate-equality principle we arrive at the following set of equations:

nµpn = λpn−1 n ≤ c, (5.1)

[cµ + α(n− c)]pn = λpn−1 n > c. (5.2)

Note that when n > c, the number of units in the system is n − c so that the time until

the next departure due to reneging is exponential with rate (n − c)α. Combined with the

service rate of the c servers, the departures from the system when all servers are busy is

exponential with parameter cµ + α(n− c) leading to the second equation.

By iterating equation (5.1) we obtain

pn =
λ

nµ
pn−1 n ≤ c

=
λ2

n(n− 1)µ
pn−2

...

=
λn

n!µn
p0.

Similarly, for n > c we can solve (5.2) in an iterative manner to get

pn =
λ

cµ + (n− c)α
pn−1 n > c

...

=
λn−c∏n−c

j=1(cµ + jα)
pc

=
λn

c!µc
∏n−c

j=1(cµ + jα)
p0.

Now, rescaling the arrival and service rate by the reneging parameter via

δ = λ/α (5.3)

γ = µ/α (5.4)
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we can write the distribution of the number of units in the system as

pn =
δn

n!γn
p0 n ≤ c, (5.5)

pn =
δn

c!γc
∏n−c

j=1(cγ + j)
p0 n > c. (5.6)

The constant p0 is found by the normalization condition
∑∞

n=0 pn = 1. The queue length

distribution qn is given by

q0 =
c∑

n=0

pn =
eδ/γ

c!
Γ(c + 1, δ/γ) p0 (5.7)

qn = pn+c =
δn+c

c!γc
∏n

j=1(cγ + j)
p0 n > 0, (5.8)

where Γ(z, a) is the upper incomplete Gamma function

Γ(z, a) =
∫ ∞

a
tz−1 e−t dt,

which for integer values of z = n satisfies

Γ(n + 1, a) = n!e−a
n∑

j=0

aj

j!
.

5.2 Wait Time Distribution

Let us now define the following events

W = Waiting in queue,

A = Acquiring service.

An arriving unit has to wait in the queue if there are at least c units already in the system.

Upon simplification, we obtain the probability that a unit waits in the queue as

P (W ) =
∞∑

n=c

pn =
eδ p0

γc−1δc(γ−1)(c− 1)!
Γl(cγ, δ) , (5.9)
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where Γl(a, z) is the lower incomplete Gamma function

Γl(z, a) =
∫ a

0
tz−1e−t dt.

The lower and upper incomplete Gamma functions are related to each other through the

Gamma function:

Γ(z) = Γl(z, a) + Γ(a, z) =
∫ ∞

0
tz−1e−t dt.

We now compute P (A,W ), the probability that both events A and W occur, or in other

words, the probability that a unit waits in the queue and acquires service without reneging.

To do so, we first compute βn, the probability that an arriving unit, upon finding n ≥ c

units already in the system, receives service (βn = 1 for n < c). Note that after such a unit,

call it X, joins the queue, there are n + 1 units in the system. Let us define an event as

the departure of any unit in front of and including X (any future arrival does not affect the

waiting time of X, and so is ignored in this explanation for simplicity). The time to the next

event, whether it is service completion by one of the c units in service or reneging by one of

the n− c + 1 units in queue, is exponentially distributed with parameter cµ + (n− c + 1)α.

Thus, the probability that the next event is not the reneging of X is equal to the probability

that either one of the units in service completes service, or one of the n− c waiting units in

front of X reneges, which is [cµ + (n− c)α]/[cµ + (n− c + 1)α]. Given that this event has

occurred, there are now n units in the system, and so the probability that the next event

will not be a reneging of X is βn−1. By applying this processes repeatedly, and noting that

each of the events is independent of the ones before due to the memoryless property of the

exponential distribution, we can obtain the probability that X does not renege by iterating

and noting the cancellations from successive terms (n ≥ c):

βn =
cµ + (n− c)α

µ + (n− c + 1)α
βn−1

...

=
cµ

cµ + (n− c + 1)α
βc−1

=
cγ

cγ + n− c + 1
. (5.10)

Thus, by conditioning on the number of units already in the system at arrival, we can
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calculate the probability that a unit waits in the queue and successfully receives service:

P (A,W ) =
∞∑

n=c

pnβn

=
∞∑

n=0

δn+c

c!γc
∏n

j=1(cγ + j)
p0 ·

cγ

cγ + n + 1

=
δcp0

(c− 1)!γc−1

∞∑
n=0

δn∏n+1
j=1 (cγ + j)

= Γl(cγ + 1, δ)
δc−cγ−1eδ

(c− 1)!γc−1
p0. (5.11)

We now consider those units that join the queue and have a positive waiting time. Define

Ta = time spent in queue by a unit acquiring service (5.12)

Tq = time spent in queue by any unit that joins the queue. (5.13)

Note that Tq includes both those units that renege and those that acquire service. From

these definitions it can be seen that

P{t ≤ Ta ≤ t + dt} = P{t ≤ Tq ≤ t + dt | (A,W )}

= P{t ≤ Tq ≤ t + dt , (A,W )}/P (A,W ). (5.14)

Now, to compute the numerator on the right hand side of the above identity, consider a unit

X that upon arrival finds j units already in the queue, an event that occurs with probability

pc+j . In this case, the probability that X survives to be served is βc+j and the pdf of its

total wait time in the queue is (fj+1 ∗ fj ∗ · · · f1)(t), where fk(t) is the pdf of the time until

the next departure of any of the units in front of and including X, assuming X is the kth

unit in the queue. Every one of these departures reduces the queue size by one, so that the

pdf of the time to reach the server is the convolution of fk(t), for k = j + 1, . . . , 1. With k

units in the queue, fk(t) is exponential with parameter cµ + kα:

fk(t) = (cµ + kα)e−(cµ+kα)t

= α(cγ + k)e−(cγ+k)αt. (5.15)

To obtain the pdf ga(t) of the random variable Ta, that is, the wait time distribution of

any unit in the queue that acquires service, we need to consider all the possibilities for j,
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conditioning on the number of units in the queue upon arrival:

ga(t) =
1

P (A,W )

∞∑
j=0

pc+jβc+j(fj+1 ∗ fj ∗ · · · f1)(t). (5.16)

To compute the convolutions, we first transform the above expression. Let g∗a(s) and f∗j (s)

be the Laplace Transform (LT) of ga(t) and fj(t), respectively. We can easily find that

fk(s) =
cµ + kα

cµ + kα + s
=

cγ + k

cγ + k + s/α
. (5.17)

Then, using the fact that the LT of the convolution of two functions, fi(t) and fj(t), is given

by the product of the LTs of the individual functions, f∗i (s) and f∗j (s), we obtain

g∗a(s) =
1

P (A,W )

∞∑
j=0

pc+jβc+j

j+1∏
k=1

f∗k (s)

=
1

P (A,W )

∞∑
j=0

δc+j

c!γc
∏j

k=1(cγ + k)
p0 ·

cγ

cγ + j + 1
·

j+1∏
k=1

cγ + k

cγ + k + s/α

=
1

P (A,W )
δc

(c− 1)!γc−1
p0

∞∑
j=0

δj
j+1∏
k=1

1
cγ + k + s/α

.

Transforming the product into summation using partial fractions yields

g∗a(s) =
1

P (A,W )
δc

(c− 1)!γc−1
p0

∞∑
j=0

δj
j+1∑
k=1

(−1)k−1

(k − 1)!(j + 1− k)!
· 1
cγ + k + s/α

. (5.18)

Using the linearity of LT, we can easily invert the last expression to get

ga(s) =
1

P (A,W )
δc

(c− 1)!γc−1
p0

∞∑
j=0

δj
j+1∑
k=1

(−1)k−1

(k − 1)!(j + 1− k)!
αe−(cγ+k)αt

=
1

P (A,W )
αδc

(c− 1)!γc−1
p0e

−(cγ+1)αt
∞∑

j=0

δj
j∑

k=0

(−1)k

k!(j − k)!
(
e−αt

)k
,
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which upon using the binomial theorem yields

ga(s) =
1

P (A,W )
αδc

(c− 1)!γc−1
p0e

−(cγ+1)αt
∞∑

j=0

δj

j!

j∑
k=0

(
j

k

)(
−e−αt

)k
=

1
P (A,W )

αδc

(c− 1)!γc−1
p0e

−(cγ+1)αt
∞∑

j=0

δj

j!
(
1− e−αt

)j
=

1
P (A,W )

αδc

(c− 1)!γc−1
p0e

−(cγ+1)αt eδ(1−e−αt) . (5.19)

Using equations (5.6) and (5.11) to substitute for p0 and P (A,W ), respectively, we obtain

ga(t) =
αδcγ+1

Γl(cγ + 1, δ)
exp{−(cγ + 1)αt− δe−αt}. (5.20)

By defining the rescaled parameter γ̃ = cγ = cµ/α, expression (5.20) can be written as

ga(t) =
αδγ̃+1

Γl(γ̃ + 1, δ)
exp{−(γ̃ + 1)αt− δe−αt}. (5.21)

It can be verified that ga(t) is normalized. For the special case of c = 1, that is, an M/M/1

queue with reneging, we have [30]

ga(t) =
αδγ+1

Γl(γ + 1, δ)
exp{−(γ + 1)αt− δe−αt}, (5.22)

which is also a special case (see the Appendix) of the result of Ancker and Gafarian [3] for

the M/M/1 queue with balking and reneging. Note that the distribution for the wait time

of any unit acquiring service is given by

ha(t) = c0δ(t) + (1− c0)ga(t), (5.23)

where c0 = p0 + · · ·+ pc−1 is the free-server probability.

The mean wait time in the queue for those units acquiring service can be obtained by

computing the first moment via − d
dsg

∗
a(s)

∣∣
s=0

:

E{Wa} =
1

P (A,W )
δc

(c− 1)!γc−1
p0

∞∑
j=0

δj
j∑

k=0

(−1)k

k!(j − k)!
· α−1

(cγ + k + 1)2
,
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which upon interchanging the order of summations yields

E{Wa} =
α−1

P (A,W )
δc

(c− 1)!γc−1
p0

∞∑
k=0

(−1)k

k!(cγ + k + 1)2

∞∑
j=k

δj

(j − k)!

=
α−1

P (A,W )
δc

(c− 1)!γc−1
p0

∞∑
k=0

(−δ)k

k!(cγ + k + 1)2

∞∑
j=0

δj

j!

=
α−1

P (A,W )
δceδ

(c− 1)!γc−1
p0

∞∑
k=0

(−δ)k

k!(cγ + k + 1)2

=
δγ̃+1α−1

Γl(γ̃ + 1, δ)

∞∑
k=0

(−δ)k

k!(γ̃ + k + 1)2
. (5.24)

So far we have assumed that the reneging parameter is known in advance. However, since

the database of B.C. acute care hospitals can only provide us with the percentage of reneged

patients, we cannot directly obtain the reneging parameter. We next derive a relationship

between the reneging parameter α and the percentage of reneged patients κ which allows

us to resolve this issue.

5.3 The Reneging Parameter

Let κ be the probability that an arrival reneges. From the definition of βn, given that there

are n units in the system upon arrival, the probability that a unit reneges is given by 1−βn.

Hence, by conditioning on the number of units in the system at arrival and using equation

(5.10) we obtain

κ =
∞∑

n=c

(1− βn) pn

=
∞∑

n=c

n− c + 1
cγ + n− c + 1

pn.

Using equation (5.2) to replace pn by pn+1, we can write the previous expression as

κ =
α

λ

∞∑
n=c

(n− c + 1) pn+1,
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which can be written in terms of the mean queue length L:

κ =
α

λ

∞∑
n=0

nqn

=
α

λ
L. (5.25)

This is a nonlinear equation in α, due to the dependence of L on α. To compute L we may

use equations (5.7) and (5.8) to compute qn. However, this approach poses a challenge for

large values for c and λ, since in such cases the term 1
c!Γ(c+1, δ/γ) in q0 involves dividing two

very large numbers (using numerical software, such as MATLAB, this can result in Inf/Inf,

which returns NaN – Not a Number). To overcome this obstacle, we use an approximation

motivated by Stirling’s formula, which gives the asymptotic behaviour of n! for large values

of n:

Γ(n + 1) = n! ∼
√

2πn
(n

e

)n
. (5.26)

Starting from (5.7), using the series representation of the incomplete Gamma function and

making use of Stirling’s formula, we obtain the following approximation to q0:

q0 =
eδ/γ

c!
Γ(c + 1, δ/γ) p0

=
c∑

k=0

(δ/γ)k

k!
p0

∼
r−1∑
k=0

(δ/γ)k

k!
p0 +

c∑
k=r

(eδ/kγ)k

√
2πk

p0 , (5.27)

where r is chosen large enough that Stirling’s formula is a good approximation, but not so

large as to introduce numerical errors. A good choice would be r = 10, which gives the

relative error of
1
r!

∣∣∣∣r!−√
2πr

(r

e

)r
∣∣∣∣ = 0.0083 .

In the above formula we see that for large values of k the expressions (δ/γ)k/k! and

(eδ/kγ)k/
√

2πk are asymptotically equal. However, when δ/γ and c are large, computa-

tionally it is more accurate to calculate the second expression, which avoids division of very

large numbers. Note that since δ/γ = λ/µ, this approximation is applicable to queues with
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many servers (large c) operating under heavy load (large λ/µ).

In a similar manner, by rearranging terms and applying Stirling’s formula to c!, we obtain

an approximation to qn for n > 0 which is numerically stable:

qn =
δn+c

c!γc
∏n

j=1(cγ + j)
p0

=

(
δ
γ

)c (
δ
cγ

)n

c!
∏n

j=1

(
1 + j

cγ

) p0

∼
ec
(

δ
cγ

)n+c

√
2πc

∏n
j=1

(
1 + j

cγ

) p0. (5.28)

Note that p0 can simply be computed by enforcing the normalization condition. We then

used MATLAB’s fzero function to calculate α from equation (5.25).

5.4 Reneging in Service

Here we consider the possibility of units’ leaving the service station before their service is

completed. We assume that the in-service reneging time is exponentially distributed, with

parameter α′. This greatly simplifies the analysis, for now the length of stay in the service

station is exponential with mean W ′ = (α′ + µ)−1, and only a fraction µ/(α′ + µ) actually

complete service, while the rest renege. In other words, the probability of reneging inside

the service station is given by

κ′ = α′W ′ . (5.29)

We note that equation (5.25) can also analogously be written as

κ = αW (5.30)

using Little’s Theorem, where W denotes the mean wait time in the queue by all units,

whether they renege or not.



Chapter 6

Two Queues in Tandem

In our model of the hospital, the ICU and the MU have a finite number of beds and no

waiting space in between. In other words, a patient ready to leave the ICU would not be

able to if the MU is full. This causes blocking of the patient in the ICU. If an infinite

queue were allowed in between the two units and if the reneging process were ignored, this

queueing network would be the same as that of section 2.8, resulting in a product form

solution for the equilibrium distribution of each station, independent of the other.

Product form solutions of queueing networks are very important from a computational

standpoint, for they provide a way to decompose an otherwise very large state space into

independent subspaces. Even for a small number of service stations and a moderately small

number of servers in each, storing the whole state space and performing computations on it

becomes a daunting task at best. However, if the stations can be considered as independent,

allowing for a product form solution, we can perform the computation on the state space

of each of the individual stations independently of the others, resulting in a great reduction

in the computational complexity. Hence, much work has been devoted to approximating

non-product-form queueing networks using product-form networks.

In most studies, the individual stations are treated as independent queues but with modified

arrival or service rates. Perros [27] and Balsamo et al. [4] have collected a vast literature on

the approximation of queueing networks with blocking, but they consider only single-server

44
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stations. There are other decomposition schemes with single-server assumptions that are

not considered in these two books. Among them are the work by Boxma et al. [7], where

they approximate each single-server node by a superposition of two M/M/1/N queue dis-

tributions, each of which is valid in a specific phase (N − 1 is the maximum waiting space

for each station). The probability of being in each phase and the parameters of each of the

M/M/1/N queues are determined by solving a set of nonlinear equations in an iterative

fashion. In fact, most of the research in this area involves solving a set of nonlinear equations

for the parameters of the service stations of the decomposed network, since the blocking

phenomenon causes interaction between them.

The literature on multi-server finite capacity queueing network is more sparse. In section

6.6.2 of [6], Bose describes an algorithm, called the Maximum Entropy Method, for the

approximate decomposition of a queueing network with finite capacity service stations. The

Expansion Method is another approximation algorithm, which though originally proposed

for single-server queueing networks, was extended by Jain et al. [19] to multi-server stations.

In this method, the original network is expanded by inserting an M/M/∞ queue between

every two adjacent stations; any blocked unit is served in this intermediate node and retries

for entry into the next station after its service is completed. Both of these methods, like

the previous ones, rely on solving a set of nonlinear equations iteratively to find the desired

parameters. The power of such algorithms is best realized in networks of considerably large

size, so that the computational advantage of the iterative schemes surpasses that of numer-

ically solving the whole network.

In this project, having a network of only two stations, we focus on simpler approaches,

which do not rely on iterative schemes. In [20], Koizumi et al. present an approximation

method, which decomposes the network by computing effective service rates for the blocked

stations, and an effective arrival rate by considering the flow from neighbouring stations.

The effective service rate is obtained by incorporating the average wait time in the upstream

stations into the actual service rate of that station. In another method, by Korporaal et al.

[21], the authors use the average queue length from upstream stations to compute the mean

number of blocked servers, which when subtracted from the total number of servers, yields

the average number of available servers. Both of these methods are discussed at length
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Figure 6.1: Two queues in tandem

in section 6.2. The advantages of these methods are ease of implementation and intuitive

understanding.

The queueing system considered in this thesis is composed of only two finite capacity sta-

tions placed in tandem (Fig. 6.1). Consider the situation in which customers, after being

served at the first station (S1), must proceed to the next (S2) for further service. If all

servers are occupied in S2, these customers cannot proceed and get blocked, staying at S1

and occupying their servers. Upon completing service in S2, customers leave the system,

in which case the earliest blocked customer in S1, if any, proceeds to S2. We assume that

inter-arrival and service times are all exponential and that blocking occurs after service;

note that in certain manufacturing problems, blocking before service is used, in which if a

unit arriving at a service station finds an upstream station full, then it does not begin its

service and is blocked.

The following quantities completely specify this tandem queueing system:

• λ: arrival rate into S1

• µi: service rate in Si for i = 1, 2

• ci: number of servers in Si for i = 1, 2

Our goal is to solve for the steady-state distribution of the number of units waiting in the

queue and also for the distribution of the wait time. We first present a numerical solution

for this queueing system that is exact to machine precision, and then present approximate

analytical solutions.
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6.1 Numerical Solution

Consider the extended state space (m,n) for m = 0, 1, 2, . . . and n = 0, 1, 2, . . . , c1 + c2.

Here, the variable m denotes the number of units in the S1 subsystem, that is, those waiting

in the queue before S1 in addition to those being served in the station. The variable n

denotes the number of units in the S2 subsystem, where in this case units waiting for this

station are those that are blocked in S1. In other words, n is the sum of the number of units

being served in S2 and the number of units blocked in S1. As a result, values of n ≤ c2

represent the number of busy servers in S2, while for n > c2, all the c2 servers in S2 are

busy and n− c2 represents the number of units blocked in S1. By defining

r = min(m, c1) (6.1)

as the number of occupied (but not necessarily busy) servers in S1, we can write the state

transitions and their associated rates as follows:

Table 6.1: Transition rates of tandem queue

state transition rate condition
(m,n) → (m + 1, n) λ m ≥ 0 , n ≥ 0

(m,n) → (m− 1, n + 1) rµ1 m > 0 , n < c2

(m,n) → (m,n + 1) (r + c2 − n)µ1 m > 0 , n ≥ c2

(m,n) → (m,n− 1) nµ2 m ≥ 0 , 0 ≤ n ≤ c2

(m,n) → (m− 1, n− 1) c2µ2 m > 0 , n > c2

The transition (m,n) → (m + 1, n) is due to the arrivals into the system. The second

transition occurs when a unit completes its service in S1 and goes to S2, which is possi-

ble only when there are free servers there, i.e. n < c2. If there are no free servers in S2,

then the unit cannot leave S1 and gets blocked, and so the n parameter is incremented

to indicate an increase in the number of blocked units, while m remains the same. The

number of busy servers, excluding those which are occupied by blocked units, is given by

r − (n − c2), which accounts for the indicated rate of change. Now, if a unit departs from

S2 when there are no blocked units in S1, i.e. 0 ≤ n ≤ c2, then state (m,n) changes to

(m,n−1), which happens at rate nµ2, as there are n busy servers in S2. However, if there are

blocked units in S1, then m also decreases, as one of the blocked units moves to S2. In this
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case, although S2 still remains at full capacity, the counter n decreases by one to indicate

a decrease in the number of blocked units, leading to state transition (m,n) → (m−1, n−1).

Using these rates of change, we construct the rate matrix Q and obtain the joint stationary

distribution p̃mn (see section 2.1), from which the stationary distribution of the actual

number of units in each of the subsystems, S1 and S2, can be constructed by disregarding

the blocked-units counter embedded in the second parameter space:

pmn = p̃mn , n < c2 ,

pmc2 =
c1+c2∑

n=c2+1

p̃mn.

To obtain the distribution w(t) of the wait time in the queue (in front of S1), we use (2.17).

From pmn we can obtain the queue length distribution qj as follows:

q0 =
c1∑

m=0

c2∑
n=0

pmn, (6.2)

qj =
c2∑

n=0

pc1+j,n for j > 0, (6.3)

where we used j = max(m− c1, 0). Now, following the discussion in section 2.6, we can find

w(t) numerically. We demonstrate this using an example. Let us choose

λ = 2,

c1 = 10, c2 = 20,

µ1 = 1
3 , µ2 = 1

7 ,

from which we numerically compute the PGF P (z) =
∑∞

m=0 qjz
j using z = n∆z for

∆z = 0.01 and n = −100,−99, . . . , 99, 100. Then, by using the ratpolyfit function with

polynomial degree k = 1 for both the numerator and denominator we arrive at the rational

approximation

P̃1(z) =
0.567 z − 0.921

0.646 z − 1
. (6.4)

The error in the approximation in this case is

e0 = ||P (z)− P̃1(z)||∞ = 5.1× 10−4. (6.5)
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Using w∗(s) = P (1− s/λ), the approximate LT of the wait time distribution with k = 1 is

given by

w̃∗1(s) =
1 + 0.800 s

1 + 0.912 s
(6.6)

Now, by inverting the LT we obtain

w̃1(t) = 0.878 δ(t) + 0.134e−1.097t (6.7)

as an approximation to the pdf of the wait time distribution. The error estimate e1, obtained

by comparing the coefficient of the delta function to the probability that a unit upon arrival

at S1 finds a free server (see section 2.6), is given by

e1 =
∣∣∣∣ c1−1∑

m=0

qm − 0.878
∣∣∣∣ = 6.95× 10−4. (6.8)

In addition, the measure of how well our estimated pdf is normalized is given by

e2 =
∣∣∣∣1− ∫ ∞

0
w̃1(t) dt

∣∣∣∣ = 5.1× 10−4. (6.9)

In a similar fashion, we can obtain the wait time distributions for other polynomial degrees

k. Below we lists the expressions w̃k(t) obtained for k = 1, 2, 3, 4

k = 1 : w̃1(t) = 0.878δ(t) + 0.130e−1.075t,

k = 2 : w̃2(t) = 0.877δ(t) + 0.047e−.839t + 0.092e−1.376t,

k = 3 : w̃3(t) = 0.877δ(t) + 0.083e−1.393t + 0.040e−.930t + 0.016e−.806t,

k = 4 : w̃4(t) = 0.877δ(t) + 0.005e−1.700t + 0.090e−1.347t + 0.045e−.832t + 0.115e4.0576t.

As can be seen, for k = 4, the approximated wait time pdf grows exponentially, which is

unacceptable. In fact, the same behaviour repeats for values of k ≥ 4. This is in line with

our discussion in section 2.6 where we stated that values of k close to 1 should be chosen,

since with larger k the conditioning of the rational approximation becomes worse. Because

the error in the rational approximation translates to an error in the roots of the polyno-

mials, and since the exponents in the LT inversion are the roots of the polynomial in the

denominator, exponentially growing terms may emerge as a result of a poor approximation.
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Ignoring the k = 4 case, the error estimates corresponding to k = 2 and k = 3 are

k = 2 : e0 = 5.0× 10−6, e1 = 6.7× 10−6, e2 = 4.1× 10−2,

k = 3 : e0 = 5.3× 10−4, e1 = 3.6× 10−5, e2 = 5.3× 10−4.

Comparing these to the k = 1 case, we may conclude that both the k = 2 and k = 3 cases

give very good results. Furthermore, taking w̃3 as the best approximation, the following

relative errors indicate that all three approximations are quite similar numerically, which

may not be evident from the mathematical expressions themselves:

||w̃3 − w̃1||2
||w̃3||2

= 6.0× 10−4

||w̃3 − w̃2||2
||w̃3||2

= 1.3× 10−4

It can thus be seen that in using the method of section 2.6 for the purpose of finding the

wait time pdf from the queue length distribution of an M/G/c queue, one can start with a

k = 1 approximation, measuring the error estimates e0, e1, and e2, and repeat the process

for incrementally larger values of k until the inverted LT yields exponentially growing terms,

at which time we can stop the process and choose the best of the approximations using the

error estimates e1, e2 and e3.

6.2 Approximate Solution

In this section, we review the work by Korporaal et al. [21], where the authors use a queue-

ing network model to predict the probability that a criminal has to be sent home because

of a shortage of cells in Dutch prisons. They model the penitentiary system in the Nether-

lands, consisting of several prisons or institutions of different types connected to each other,

using a network of finite capacity queues with blocking. Each prison (service station) has

a finite number of cells (servers). We discuss their approximation method in the context of

two queues in tandem.
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In their algorithm, the two stations, Si, for i = 1, 2, are approximated by two queues of type

M(λ)/M(µi)/si/Ni, where the symbol M(·) represents a Poisson process with the argument

as the parameter. The parameters are chosen as follows: Since no unit is lost in going from

one station to the other, the inflow rate of units must be the same as the outflow at equi-

librium. Thus, the same parameter λ is chosen as the arrival rate to both stations1. In our

case, since an infinite number of patients are allowed to queue at the first station, reflecting

the nature of the ER, we have that N1 = ∞. The buffer size for the second station is set to

the number of servers in that station plus those of the previous station, since if all the server

in S1 are blocked, then there are up to c1 units waiting to enter S2 (this is analogous to

how the state space was chosen in the previous section). Thus, N2 = c1 + c2. The effective

number of servers in station Si is taken to be si to reflect the fact that some of the available

ci servers, due to blocking, cannot actually serve a customer. Thus, si at a station with

blocking is smaller than the actual number of servers ci. To incorporate this fact into their

model, the authors suggest using s1 = c1 − Q2, where Q2 is the mean queue length at S2.

The reason for this choice is that the queue for S2 is formed by the blocked units in S1, so

the mean queue length at S2 represents the mean number of blocked servers in S1. To deal

with the restriction that si must be an integer, and the fact that Q2 may have non-integer

values, it was suggested to use a linear combination of two queue distributions, one with

ds1e servers and the other with bs1c servers (as the authors do not mention, we assume that

the weights are s1−bs1c and ds1e−s1, respectively). At S2, since no blocking exists, s2 = c2.

One of the special aspects of the penitentiary system modelled in [21] is that the scheduled

term of imprisonment in a prison is diminished by the time of waiting for a transfer (waiting

time in the queue) when the prison turns out to be full at the planned time of the transfer.

So, an adjustment is made to the service rates at each station after the first, based on the

units’ waiting time in the previous station. In our model, however, we have assumed that

the service times at each station are independent of what happened before. Thus, µi are

the actual service rates at each station.

Having defined all the parameters, the approximate queue length distributions pi(n) for Si

1In this section, we ignore the inflow of external units into S2. The addition of this stream of units
corresponding to the non-ICU cases arriving to the ED is considered in chapter 7.
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can be computed from the analytical formulas for M(λ)/M(µi)/si/Ni. Note that we must

first compute p2(n), whose parameters are independent of the first station. Then by com-

puting the mean queue length Q2 we can determine the effective number of servers s1 in

the first station.

It is important to understand that the approximation in the above algorithm comes about as

a result of two main assumptions. Firstly, it is assumed that the blocking phenomenon can

be accounted for solely by decreasing the total number of servers in a station experiencing

blocking (S1). This reduction is given by the mean queue length at the downstream station

(S2), since the waiting units at S2 are viewed as the blocked ones in S1. However, since in

general the mean queue length is not integer valued, resulting in a non-integer number of

servers, it is secondly assumed that this inconsistency can be fully accounted for by taking

a linear combination of two queue distributions with integer valued server counts.

Considering the second assumption, we now suggest a modification to this method that im-

proves the approximation. Instead of taking a linear combination of two queue distributions,

we note that the quantities µ1 and c1 often occur in the form c1µ1 in analysis of queueing

system (this quantity is the maximum rate of departure that can be achieved when all c1

servers are busy). Thus, instead of modifying c1 · µ1 to s1 · µ1, which implies changing the

number of servers with the service rate fixed, we suggest the alternative c1 ·
(

s1
c1

µ1

)
; in other

words, we let the number of servers remain the same, but modify the service rate to s1
c1

µ1.

Below we make a comparison of this new approach to that of Korporaal et al. [21].

Having an exact numerical solution to this queueing system, we can compare the accuracy

of the two methods. Let p
(i)
1 and Q

(i)
1 be the distribution and the mean of the number of

units in S1 using Method i as described below:

• Method 1: numerical solution

• Method 2: approximation of Korporaal et al. using µ1 as service rate and interpolation

of two queue distributions with bs1c and ds1e servers

• Method 3: approximation using s1
c1

µ1 as the service rate and c1 servers
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Method 1 Method 2 Method 3
c2 Q

(1)
1 pb Q

(2)
1 rel. err.

∣∣p(2)
1 − p

(1)
1

∣∣
1

Q
(3)
1 rel. err.

∣∣p(3)
1 − p

(1)
1

∣∣
1

15 6.970 70.4% 79.1% 61.1% 76.4% 60.3%
16 2.492 50.9% 80.7% 39.1% 74.4% 35.9%
17 1.049 35.2% 74.3% 24.3% 66.0% 20.6%
18 0.532 23.6% 58.9% 13.3% 53.2% 11.8%
19 0.323 15.4% 41.1% 7.3% 37.7% 6.5%
20 0.231 9.7% 25.1% 4.0% 23.3% 3.5%
21 0.189 5.9% 13.6% 2.1% 12.7% 1.9%
22 0.169 3.4% 6.8% 1.1% 6.3% 1.0%
23 0.160 2.0% 3.2% 0.6% 3.0% 0.5%
24 0.156 1.1% 1.4% 0.3% 1.3% 0.2%
25 0.154 0.6% 0.6% 0.1% 0.6% 0.1%

Table 6.2: Error in tandem queue approximation using Methods 2 and 3

For the runs, we kept all the quantities except c2 constant:

λ = 2,

µ1 = 1
3 , µ2 = 1

7 ,

c1 = 10, c2 = 15, . . . , 25.

By varying the number of servers in S2 from c2 = 15 to c1 = 25 we guarantee that the tests

incorporate both the scenarios in which blocking happens rarely and also those in which

blocking is a dominant factor (for c2 < 15 the system does not have an equilibrium). The

blocking effect can be measured by the blocking probability

pb =
c1+c2∑
n=c2

p2(n) . (6.10)

We only list the values of pb computed by the numerical solution. Note that the approxima-

tions for pb are the same using method 2 or 3, as both methods treat S2 in the same way,

and only differ in computing the distribution for S1. For each value of c2, the table lists the

relative error in approximations Q(i) for i = 2, 3. In addition, we compare the accuracy in

the whole distribution using L1-norm
∣∣p(I)

1 − p
(1)
1

∣∣
1

for i = 2, 3 – this norm is appropriate

here since
∣∣p(i)

1

∣∣
1

= 1. The results from table 6.2 show that the modification of the method
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Method 1 Method 4
c2 Q

(1)
1 pb Q

(2)
1 rel. err.

∣∣p(2)
1 − p

(1)
1

∣∣
1

15 6.970 70.4% 57.1% 50.0%
16 2.492 50.9% 56.4% 35.0%
17 1.049 35.2% 49.3% 22.7%
18 0.532 23.6% 38.8% 13.9%
19 0.323 15.4% 26.5% 8.0%
20 0.231 9.7% 15.6% 4.5%
21 0.189 5.9% 7.9% 2.4%
22 0.169 3.4% 3.6% 1.3%
23 0.160 2.0% 1.5% 0.6%
24 0.156 1.1% 0.6% 0.3%
25 0.154 0.6% 0.2% 0.2%

Table 6.3: Error in tandem queue approximation using Method 4

of Korporaal et al. (Method 3) performs better than their original one (Method 2).

We now discuss another approximation algorithm due to Koizumi et al. [20], which was

briefly addressed previously. In this method, we treat S2 as before, i.e. as an M/M/c2/(c1+

c2) queue, even though the authors in their decomposition algorithm assume an infinite

queue allowed before each station; we found that the finite capacity restriction gives much

more accurate results. However, our modification, enforcing a finite queueing capacity for

S2, cannot readily be applied to a general network in which there may be multiple service

stations upstream from a given station, making it ambiguous as to how to choose the

finite capacity. The only difference from Method 2 comes in computing the distribution

of S1. Koizumi et al. suggest using c1 as the service rate, and modifying the service rate

by incorporating the waiting time in the queue for S2. Note that the units waiting in the

queue for S2 are actually those who are blocked in S1. Thus, W2, the mean waiting time in

queue for S2, is the mean blocking time in S1, and so the effective mean service time in S1

is approximated by
1
µ̃1

=
1
µ1

+ W2 . (6.11)

The quantity W2 can easily be found by computing the mean queue length before S2 from

the approximate queue distribution and applying Little’s theorem. Table 6.3 shows the

results obtained from this algorithm, using the same parameter values as before, which we
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refer to as Method 4.

Comparing these results to those of Method 3, we observe that the technique of Koizumi et

al. [20] computes better approximations to the mean queue length, but it performs worse in

computing the whole distribution for values of c2 > 16.

In the next chapter we apply the approximation techniques from this section to treat the

ICU-MU interaction for the purpose of estimating the required number of beds in each unit.



Chapter 7

Bed Estimation

In this chapter, we first describe an abstract queueing system that represents the ED-

ICU-MU network. Then, using analytical methods, we estimate the required number of

beds in the ICU and the MU that would guarantee the following two TTAs for arriving

emergency patients: 90% within 1 hour for those going to the ICU and 80% within 6

hours for those going to the MU. The analytical work also enables us to estimate some of

the unknown parameters, which are then used in the simulation to obtain more accurate

results. The discrete-event simulation precisely represents the queueing network described;

however, since searching in the two dimensional parameter space of the number of beds in

the ICU and MU is computationally very expensive using simulation, the estimates from

the analytical work are used to provide a guess for the neighbourhood of the search.

7.1 Queueing Network Model

The model queueing network consists of two stations, S1 and S2 (see Figure 7.1). There are

two classes of units in this system: for i = 1, 2 class i units are those who require service

at Si upon their arrival. If there are no servers available, the units wait in the queue, but

while waiting, any unit may renege and leave the queue if it does not receive service within

a certain time, called reneging time. In addition, any unit being served in S1 has the po-

tential to renege. If a unit successfully completes service in S1, then it attempts to go to

S2. However, if all servers are busy there, the unit becomes blocked, and occupies its server

56
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Figure 7.1: The tandem S1 − S2 queueing network

in S1 while waiting to be admitted; note that we assume that even during the period of

blocking a unit may renege from S1 and leave the system. When a server becomes available

in S2, blocked units in S1 are given priority access over class 2 units. On average, both

classes of units inside S2 are assumed to require the same amount of service, which when

completed, results in their departure from the system.

As before, we assume that interarrival times, service times, and reneging times are all

independent and exponentially distributed with constant rates. With these assumptions,

the following parameters completely specify the system characteristics:

ci : number of servers in Si

λi : mean arrival rate to Si

µi : mean service rate in Si

αi : mean reneging rate in Qi

α′1 : mean reneging rate in S1

We now make the connection between this abstract queueing network and the ED-ICU-MU

model. The ICU and the MU are represented by S1 and S2, respectively, with beds being

the servers. The emergency room is modelled as the combined queue leading to the two

stations. The queue for S1 represents the group of emergency patients in the ED waiting for

a bed in ICU, and the reneging in this queue or S1 itself corresponds to medical fatalities

in the ED or the ICU, respectively. Similarly, the queue before S2 represents the waiting



CHAPTER 7. BED ESTIMATION 58

 

  

  

        ED 

        ED 

  arrivals 

  arrivals 

deaths 

cured 

deaths 

cured    MU 

   ICU 

Figure 7.2: The network representation of the ED-ICU-MU

patients in the ED requiring a bed in the MU, and the reneging in this queue corresponds to

treatment completions in the ED. The reason blocked class 1 units are given priority access

to S2 over class 2 units is that, as mentioned previously, we assume that doctors often try

to free the ICU beds as soon as possible, both to keep the cost of the ICU bed maintenance

low and also to allow fast access to the ICU.

We now proceed to determine the values of system parameters defined earlier from the

database provided to us by the British Columbia (B.C.) Ministry of Health Services.

7.1.1 Parameter Specification

For the purpose of this project, we consider a hospital in B.C. of typical size (the name

must remain undisclosed). From the data collected over the period of a year, the following

quantities can be computed (for consistency, we use the notation and terminology used

earlier in defining the abstract queueing network, instead of referring to the ICU or the

MU):

Ni = number of units arrived at Si in a year

W ′
i = average length of stay in Si

κi = percentage of units reneged from Qi

κ′1 = percentage of units reneged in S1
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The data analysis performed by Vertesi [34] on the 2006-07 database provided us with the

following estimated values:

N1 = 792, N2 = 9979,

W ′
1 = 4.44 days, W ′

2 = 6.98 days,

κ1 = 2.39%, κ2 = 2.32%,

κ′1 = 15.8%.

Note that for a queueing network in which blocking and reneging does not occur, the av-

erage length of stay in each station is the same as the inverse of the mean service rate for

that station. However, due to blocking, the mean length of stay is larger by an amount

approximately equal to the mean blocking time. This, in effect, is the essence of the method

of Koizumi et al. [20] (Method 4) for decomposing tandem queues as discussed in chapter 6,

characterized by the use of equation (6.11) to compute the effective service time. Since the

data already provide the lengths of stays, that is the blocking time plus the treatment time,

in using Method 4, the effective service rate is simply given by the inverse of the length of

stay. However, for our simulation, the actual service rate needs to be determined. Moreover,

due to the fact that the recorded lengths of stays in the ICU include those of the patients

that died in this unit, the service rate in the ICU must be adjusted to account for this.

These issues are addressed in the next section, where we analyze S1 and S2 in isolation.

7.2 Analytical Approximation

Here we use the decomposition method described in chapter 6, along with the reneging

results of chapter 5, to obtain the approximate number of servers required in each of the

stations S1 and S2 in order to guarantee the required target access rates. In trying to use

the approximation outlined in section 6.2, we need to know c1 and c2 simultaneously, since

the approximation for S2 involves c1 + c2 and that for S1 depends on the mean queue length

of S2. Although an iterative method may be used to solve for both quantities, we settle for

a simpler, albeit slightly less accurate, approach by assuming that S2 has infinite waiting

capacity. This, in fact, is the original assumption used by Koizumi et al., which we modi-

fied in section 6.2 by enforcing S2 to be a finite capacity M/M/c2/(c1 + c2) queue, as this

modification improved the accuracy. Moreover, since we only have analytical results for the
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wait time distribution of an M/M/(·) queue, we will use the original method of Koizumi et

al., and in doing so let S2 be an M/M/c2 queue.

Once we decompose the tandem system into two separate queues, we can use equation (5.23)

to obtain the pdf h
(i)
a (t) of the wait time for any unit acquiring service. Then, from the

cumulative distribution function

Hi =
∫ Ti

0
h(i)

a (t) dt, (7.1)

the percentage of units acquiring service in Si within a given time limit Ti can be determined.

For each station Si, this quantity depends on the number of servers ci and the reneging

parameter αi, both of which are unknown a priori. However, it must be that for any chosen

ci and αi, the percentage of reneged units is equal to κi, as given by the database. In other

words, for each station there are two unknowns ci and αi that must be determined from two

constraints Hi and κi. Mathematically, this can be written as a system of two nonlinear

equations, which upon inversion yield the unknown parameters:

Hi = Hi(ci, αi), (7.2)

κi = κi(ci, αi) . (7.3)

For easier reference, we note that

H1 = 90%, H2 = 80%,

T1 = 1 hour, T2 = 6 hours,

κ1 = 2.39%, κ2 = 2.32%.

The system (7.2)–(7.3) can be solved for ci and αi by standard root-finding methods. The

approach we take is as follows: We start with an initial guess of ci, for i = 1, 2, so that an

approximate value of the queue reneging parameter αi can be obtained via equation (5.25)

using the estimated reneging probability κi. This allows us to obtain Hi(ci, αi). If this value

is lower than the target access rate Hi, then ci is increased1, and vice versa, always rounding

ci to the nearest integer. The process is repeated until both equations (7.2) and (7.3) are

best satisfied (clearly, since ci is an integer, we can only hope to get results that are close

to Hi). We now proceed to determine the parameters of the decomposed queueing system.

1Since access rate increases with the number of available beds, Hi is an increasing function of ci.
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Figure 7.3: Decomposed S1 and S2 queues

From the parameter values specified in the previous section, we estimate the external arrival

rates to each station as

λ1 =
N1

365 days
= 2.17 days−1,

λ2 =
N2

365 days
= 27.34 days−1 .

Now recall that the queue leading to S2 is composed of the new arrivals and the blocked

units in S1. The former process is Poisson with parameter λ2, while the latter, due to the

output process theorem (see section 2.8), is Poisson with parameter

λ′1 = λ1(1− κ′1) = 1.83 days−1,

since S1 is treated as an M/M/c1 queue, and only a fraction 1 − κ′1 = 84.2% of the units

arrived to S1 finish their service without reneging during service. Thus, by the additive

property of the Poisson process, the effective arrival rate to S2 is

λ′2 = λ′1 + λ2 = 29.23 days−1.

In addition, since S2 does not experience blocking or reneging, the service rate can directly
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c2 α2 6 hr access mean queue length mean wait time
10−3 hrs−1 % hrs

202 1.20 32.6 23.1 19.0
203 1.82 44.0 15.5 12.7
204 2.62 54.2 10.8 8.84
205 3.69 63.1 7.66 6.29
206 5.13 71.0 5.51 4.53
207 7.11 79.5 3.97 3.26
208 9.91 83.6 2.85 2.34
209 14.0 88.5 2.02 1.66
210 20.2 92.6 1.40 1.15
211 30.0 95.7 .943 .774
212 46.7 98.0 .606 .497

Table 7.1: Approximate performance measures for S2

be computed from the average length of stay as

µ2 =
1

W ′
2

= 0.143 days−1.

Knowing these parameters, we can now use the procedure discussed earlier to determine c2

and α2 from H2 and κ2. Table 7.1 shows the results. More specifically, it illustrates how

the percentage of units receiving a server within 6 hours varies with the number of servers.

It can be seen that the server requirement to achieve an 80% access to S2 is

c2 = 207

and the corresponding reneging rate is

α2 = 0.171 days−1.

We now turn our attention to S1. Firstly, from equation (5.29) we have that

κ′1 = α′1W
′
1 , (7.4)

from which we obtain the in-service reneging rate as

α′1 = 0.0356 days−1.
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c1 α1 1 hr access mean queue length mean wait time
10−3 hrs−1 % 10−2 hrs

10 .248 23.7 844 93.3
11 .967 53.8 222 24.6
12 2.74 73.8 78.4 8.68
13 7.68 86.7 28.0 3.09
14 25.7 94.5 8.36 .925
15 173 99.3 1.24 .137

Table 7.2: Approximate performance measures for S1

If there were no blocking in S1, we could write a similar relationship for the service rate, or

the reciprocal of the mean length of stay:

1− κ′1 = µ1W
′
1. (7.5)

However, due to blocking, the mean length of stay is given by the mean service time µ−1
1 plus

the mean duration of blocking, which can be approximated by (λ′1/λ′2)W2. This is because

W2 is the mean waiting time to enter S2, but since blocked class 1 units have priority over

class 2 units, approximately only a fraction λ′1/λ′2 of this wait time can be attributed to

blocking – this fraction is an estimate of the ratio of blocked class 1 units to all units entering

S2. Therefore, to incorporate the blocking effect, equation (7.5) needs to be modified to

1− κ′1 =
W ′

1

µ−1
1 + W2(λ′1/λ′2)

. (7.6)

From table 7.1, we find that when c2 = 207

W2 = 0.136 days,

so that solving equation (7.6) for µ1 yields

µ1 = 0.190 days−1 .

This is the actual service rate in S1, which is to be used in the simulation. However, in

using Method 4 of section 6.2, we only need the effective service rate, which has blocking

time incorporated in it. As discussed earlier, this is given by

µeff = W ′−1
1 = 0.225 days−1 .
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Using the same approach as before, we obtain c1 and α1 so that equations (7.2) and (7.3)

are best satisfied. From the results in table 7.2 we can see that the required number of

servers in S1 is

c1 = 14

and the corresponding reneging rate is

α1 = 0.616 days−1 .

An interesting observation is that the in-queue reneging rate α1 is about 17 times larger

that the in-service reneging rate α′1. In queueing theory terminology, this means that cus-

tomers who are being served have a much higher patience than those waiting in line. The

implication of this to the hospital setting is that critically ill patients who are already in

the ICU under treatment have a much higher survival tolerance compared to those who are

in ED (the patience of customers at a service station is analogous to the survival tolerance

of patients at a treatment facility). This phenomenon is known as the Golden Hour in

medicine, which refers to the period of a few minutes to several hours following a trauma

during which the possibility of death is greatest, and consequently the chances of survival

are greatest if the victims receive care within a short period of time after the accident [38].

Our results regarding the differences between in-queue and in-service reneging rates are in

agreement with this observed phenomenon.

Having estimated the reneging parameters α1, α2, and α′1, in addition to the service rate µ1,

we next use simulation to refine our estimated server requirement of c1 = 14 and c2 = 207.

7.3 Simulation

To simulate the queueing system described in the previous section, we use the SimEvents

package from MATLAB, which is an extension of the Simulink software for doing Discrete-

Event Simulation (DES). In general, DES is a method of modelling in which state variables

describing the system under study change at discrete points in time. Two main approaches

used in advancing the simulation clock are next-event time advance and fixed-increment

time advance. It is the first approach which is more commonly used in simulation software,
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including SimEvents.

In next-event time advance, the simulation clock is initialized to zero and the times of occur-

rence of future events are determined (examples of future events in our model are arrivals,

service completions, and reneging of units in queue or in service). The simulation clock is

then advanced to the first of these future events (in chronological order), at which point the

state of the system along with the list of future event times is updated to account for the

fact that an event has occurred. The simulation clock is then advanced to the time of the

next event, and the process continues until eventually some prespecified stopping condition

is satisfied. Since all state changes occur only at event times, periods in which no event

occurs are skipped over by jumping the clock from one event time to the next. On the

contrary, fixed-increment time advance does not skip over these inactive periods, resulting

in lengthened computational time [22].

Since from the analytical calculations we have an estimate of the number of required servers

in S1 and S2, namely c1 = 14 and c2 = 207, we performed the simulations for a range of

parameters close to these initial guesses. Two-year simulations were used, with the first year

ignored as the transient period. Performance measures were then computed for each patient

who arrived during the last year. For each stream of arrivals, we obtained the percentage of

units who acquire service within the required time limit (one hour for class 1 units, and 6

hours for class 2 units). Then, for each choice of c1 and c2, we ran the simulation 50 times

and averaged the results. This method of running relatively short simulations many times is

advocated by Pawlikowski [26], who states that in order to infer the population mean from a

sample of data obtained from simulation, single long simulations must be replaced by many

short ones; this is referred to as the method of independent replications and is meant to

avoid the problem of correlation between successive data points, which is magnified during

long simulation runs.

Table 7.3 shows the simulation results for various values of c1 and c2 close to the estimated

counts. From the table we can see that c1 = 14 and c2 = 208 provides access of 90.7%

to the S1 in 1 hour and 82.3% to the S2 in 6 hours. These results are in close agreement

with those obtained from the analytical approximation. The reason for this is that there
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c1 c2 % to S1 in 1 hr mean wait hrs for S1 % to S2 in 6 hrs mean wait hrs for S2

13 206 83.8 2.54 70.8 4.43
13 207 83.5 2.57 78.2 3.03
13 208 83.0 2.88 83.1 2.21
13 209 81.6 2.88 86.8 1.63
13 210 82.8 2.67 90.9 1.07
14 206 91.6 .700 69.6 4.64
14 207 90.8 .766 76.6 3.29
14 208 90.7 .800 82.3 2.31
14 209 90.3 .815 86.5 1.66
14 210 91.6 .721 91.1 1.06
15 206 96.3 .063 70.5 4.41
15 207 96.5 .062 80.3 2.73
15 208 96.9 .046 83.3 2.19
15 209 96.3 .058 87.5 1.53
15 210 96.5 .057 90.7 1.10

Table 7.3: Performance measures for S1 and S2 obtained via simulation

are sufficient beds in the MU to reduce the blocking probability to almost zero, hence the

interdependence of the two stations can effectively be ignored in this case. This fact is also

evident from table 7.3, where we observe that the variation in c2 appears to have almost

no effect on the percentage of access to S1 in 1 hour (the small variation is presumably

due to the random nature of the simulation). Similarly, the percentage of access to S2 in

6 hours appears unaffected by the variation in c1. These results were expected from the

analytical calculations, where we estimated the average blocking time for class 1 units to be

(λ′1/λ′2)W2 = 12.2 minutes, which compared to the average length of stay in S1, W ′
1 = 4.44

days, is negligible. The main reason that a significant blocking effect is not observed in our

model is that we attributed a higher priority to class 1 units; if both units had had the same

priority, then the blocking time would have been W2 = 3.26 hours, much larger than 12.2

minutes.

To obtain confidence intervals for the simulation estimates, define the random variable

Xi = % of units receiving service in S1 within 1 hour in the ith experiment.

Now, since each run of the experiments is performed using different seeds for the random
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number generators, the Xi can be viewed as independent and identically distributed random

variables. From the central limit theorem in statistics, it follows that as n increases, the

sample average of these random variables X(n) = (X1 + · · ·Xn)/n approaches the normal

distribution with mean η = E{Xi} and standard deviation σ/
√

n. Now, since the sample

variance s2 converges to the true variance σ2 as n gets large, the theorem implies that for

large values of n, the sample mean X(n) is approximately distributed as a normal random

variable with mean η and standard deviation s/
√

n. The quantity s/
√

n is referred to as

the standard error of the mean, which is defined as the standard deviation of the sample

mean estimate of a population mean.

Since in our work n = 50, and values of n > 30 are usually considered large enough for

the central limit theorem to hold, we can use the normal distribution to obtain confidence

intervals for our estimates. In particular, for c1 = 14 and c2 = 208, the simulation produced

a 90.7% access to S1 in 1 hour with standard error of 0.5%, which gives (89.7%, 91.7%)

as the 95% confidence interval. Similarly, we find (80.9%, 83.7%) as the 95% confidence

interval for the percentage of units receiving service in S2 within 6 hours. Note that since

the original values of our parameters obtained from the database have measurement errors

in them, the confidence intervals are estimates also.

7.4 Conclusion

In this project we developed a queueing network model with blocking and reneging to study

how the wait times in the ED are influenced by the number of available beds in the ICU

and the MU. The in-queue reneging phenomenon is due to patients’ death or treatment

completion in the ED, while the in-service reneging refers to deaths that occur in the ICU

when a patient is already under treatment. Since the ICU and the MU have multiple beds,

we studied the M/M/c queue with reneging and obtained a relationship between the per-

centage of reneged patients and the reneging parameter in addition to finding the wait time

distribution for the units receiving service. However, as these results could not readily be

applied to the tandem ICU-MU queueing system, we used approximate methods to decom-

pose the system into two independent multi-server queues. This approximation was then

used to obtain estimates for the required number of beds in the ICU and the MU so that
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specified targets of access were met. Subsequently, guided by the estimated bed counts,

simulation produced more refined estimates. More concretely, by requiring a TTA of 90%

within 1 hour for the ICU and 80% within 6 hours for the MU, we found that the required

number of beds is approximately 14 in the ICU and 208 in the MU for the test hospital

under consideration.

These results were based on the parameters obtained from the 2006-07 database. Thus, it

is by no means a prediction of what the future number of beds should be. This project

is part of a larger one aimed at estimating bed requirements in B.C. acute care hospitals,

given forecasted population demographics. To achieve that goal, several modifications and

additions need to be introduced into this model, which we discuss next.

7.5 Future Work

As mentioned in the Introduction, in this project we have only considered the emergency

stream of patients. There are also elective admissions and transfers from other hospitals

that need to be taken into account in order to accurately determine the required number

of beds. In addition to including these two streams of patients, the variations in the arrival

rate throughout the day or even the week need to be considered. In this project, we assumed

a constant arrival rate throughout the day, which is not a reasonable assumption, for there

are large variations in the 24-hour period. In the next phase of the project, we will use a

piecewise constant function for the arrival rate which is averaged over six four-hour periods

in a day. Moreover, we need to consider how accurate it is to assume that inter-arrival and

service times are exponentially distributed, and possibly consider more general distributions

that better fit the empirical data. Finally, we further need to investigate the policy by which

doctors decide on the priority of patients entering the MU from the ICU and the ED. As

we saw, giving priority to ICU patients in effect eliminates blocking. Suggesting this policy

to the hospital management could be a possibility. On the other hand, if this assumption

is unrealistic, a better decision process needs to be implemented to reflect more accurately

the transfer of patients from the ICU to the MU.



Appendix A

M/M/1 Queue with Reneging

Ancker and Gafarian [3] analyzed the M/M/1 queue with reneging, but with the additional

complexity that an arriving unit, upon finding n units already in the system, balks (does not

join the queue) with probability n/N , where N is the maximum number of units allowed

in the system. It can be seen that this queue is equivalent to the M/M/1 queue with

reneging only in the limit as N →∞, and so their result can be used as a check for equation

(5.22). They showed that the wait time distribution of those units who join the queue and

successfully acquire service is given by

g(N)
a (t) = λzγ(1− z)N−1e−(µ+α)t

[
1 + η(1− e−αt)

]N−2

NBz(γ + 1, N − 1)

where η = λ/Nα,

γ = µ/α,

z = η/(1 + η),

and Bz(γ, N) is the incomplete Beta function given by

Bz(γ, N) =
∫ z

0
γγ−1(1− γ)N−1 dγ .

For our purposes, we would like the behaviour without any balking constraint; in other

words, we are looking for g
(N)
a (t) in the limit N → ∞, so that there is no limit on the

maximum number of customers in the system.
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As in chapter 5 let us define δ = λ/α, so that z = δ/(N + δ). Note that limN→∞ z = 0.

The expression for g
(N)
a (t) involves the term (1− z)N−1 which in the limit of N →∞ gives

lim
N→∞

(1− z)N−1 = lim
N→∞

(1− z)−1

(
1− δ

N + δ

)N

=
δ

N + δ

(
1− δ

N

)N

= e−δ .

Similarly, since limN→∞ η = 0 we get that

lim
N→∞

[
1 + η

(
1− e−αt

)]N−2 = lim
N→∞

[
1 + η

(
1− e−αt

)]−2

[
1 +

δ
(
1− e−αt

)
N

]N

= exp
{
δ
(
1− e−αt

)}
.

Now, we compute the limiting behaviour of the incomplete Beta function. By changing the

variable of integration to x = t(N − 2) and noting that limN→∞ zN = δ we find that for

large values of N

Bz(1 + γ, N − 1) =
∫ z

0
tγ(1− t)N−2 dt

=
∫ z(N−2)

0

(
x

N − 2

)γ (
1− x

N − 2

)N−2 1
N − 2

dx

=
1

(N − 2)1+γ

∫ z(N−2)

0
xγ

(
1− x

N − 2

)N−2

dx

∼ N−(1+γ)

∫ δ

0
xγe−x dx

= N−(1+γ)Γl(γ + 1, δ) .
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This result allows us to find the following limiting behaviour as N →∞:

lim
N→∞

zγ

NBz(γ + 1, N − 1)
= lim

N→∞

(
δ

δ+N

)γ

NBz(γ + 1, N − 1)

= lim
N→∞

δγ

N1+γBz(γ + 1, N − 1)

= lim
N→∞

δγ

Γl(γ + 1, δ)
.

Putting these results together, we obtain the limiting behaviour of g
(N)
a (t) as N →∞:

lim
N→∞

g(N)
a (t) =

αδγ+1

Γl(γ + 1, δ)
exp{−(1 + γ)αt− δe−αt} .

This is the same result as equation (5.22), which was obtained from the M/M/c queue with

reneging in the special case of c = 1.
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