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Abstract

Circular data refers to data recorded as points on a circle, either denoting directions, or

times when the circle acts as a clock. The von Mises distribution is frequently used to

analyze circular data sets with a clear peak. When two clear peaks appear on the circle, a

mixture of two von Mises distributions is often used to analyze the data. Parameter esti-

mates are produced by using maximum likelihood estimation, and Watson’s U2 is used to

test the fit. Two data sets will be discussed in this project: times of Sudden Infant Death

Syndrome (SIDS) occurrences and times of Fatal Crash accidents.

Keywords: maximum likelihood estimation, Watson’s U2.
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Chapter 1

Introduction

Circular data arise in biology, geography, medicine, astronomy, and many other areas.

Each observation of circular data can be shown as a point P on a unit circle with centre

O, and its direction OP is measured using its angle in degrees or radians. There are many

examples of circular data, for instance, the angles taken by birds released away from home,

or the direction of the wind. The circle is also widely used as a 24-hour clock or one year

calendar. For example, the times of cars going through a particular crossing can be

recorded as circular observations within a 24-hour period. Incidents of disease occurring

within one year is also an example of circular data.

The von Mises distribution is used to analyze circular data where there appears to be

a peak in the data. However, in some cases, one single von Mises distribution cannot fit

the data well. In Figure 1.0.1, the plot shows that there are two modes on the circle. One

is around π
6 radians, and the other is around 5π

6 . For this kind of situation, a mixture of

two von Mises distributions is a better choice.

Maximum likelihood estimation (MLE) is a standard method to estimate parameters.

When the sample size is large, the method of maximum likelihood gives good estimators

with minimum variance.

The method of moments is also used to estimate parameters of a distribution. One

advantage of the method of moments is that estimators can be found easily and quickly for

most distributions. However, for some cases, estimators calculated using the method of

moments may not lie inside the parameter space. In this paper, we will estimate

parameters of a mixture of two von Mises distributions by MLE, and then compare these

estimators with the method of moment estimators.

1
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Figure 1.0.1: Data from a mixture of two von Mises distributions



Chapter 2

The von Mises Distribution

In this chapter, we will focus on modeling circular data using a single von Mises

distribution. An introduction of the von Mises distribution and its probability density

function will be given in Section 2.1. In Section 2.2, we will discuss how to use the method

of maximum likelihood to find estimators of the von Mises distribution, and the estimates

of the method of moments will be discussed in Section 2.3. An example and a comparison

of these two main methods will be given in Section 2.6.

2.1 The von Mises Distribution

Suppose that we have a unit circle with origin O, and Pi, i = 1, · · · , n are points on the

circle. The unit vector OPi gives a direction, with angular co-ordinate θi.

The probability density function of the von Mises distribution is:

f(θ, µ, κ) =
1

2πI0(κ)
exp{κ cos(θ − µ)}, 0 ≤ θ ≤ 2π, 0 ≤ κ, 0 ≤ µ ≤ 2π,

where I0(κ) is the modified Bessel function of order zero and the first kind, and given by:

I0(κ) =
1

2π

∫ 2π

θ=0
exp{κ cos(θ)}dθ.

The Bessel function I0(κ) can be also expressed as:

I0(κ) =
∞∑
r=0

1
r!2

(
κ

2
)2r.

3
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The distribution is clustered and symmetric around µ, which is the measure of mean

direction. Parameter κ is a measure of concentration, and 1
κ is analogous to the variance.

When κ = 0, the von Mises distribution becomes the uniform distribution. It goes to the

point distribution concentrated in the direction µ when κ goes to positive infinity.

Figure 2.1.1: Probability density functions of von Mises distributions

Figure 2.1.1 shows how the density function changes when the concentration parameter

κ is changing.
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2.2 Maximum Likelihood Estimation

Let θ1, · · · , θn be independent identically distributed random variables following the von

Mises distribution with mean direction µ and concentration parameter κ. The likelihood

function will be:

L(µ, κ) =
n∏
i=1

f(θi, µ, κ). (2.2.1)

The log-likelihood function becomes:

logL = −n log I0(κ)− n log 2π + κ
n∑
i=1

cos(θi − µ). (2.2.2)

Taking the first derivative with respect to µ and κ , we obtain:

∂ logL
∂µ

= κ

n∑
i=1

sin(θi − µ), (2.2.3)

and
∂ logL
∂κ

= −nA(κ) +
n∑
i=1

cos(θi − µ), (2.2.4)

where A(κ) is the ratio of I1(κ) to I0(κ), and I1(κ) is the modified Bessel function of the

first kind and order one, and I1(κ) is the first derivative of I0(κ) with respect to κ.

These must be set equal to zero to obtain ML estimates. Term κ
∑n

i=1 sin(θi − µ̂) is

equal to zero only when µ̂ equals to θR, where θR is the direction of the resultant; the

length of resultant R and θR are the solutions of:∑n
i=1 cos θi = R cos θR, and

∑n
i=1 sin θi = R sin θR.

Therefore, the maximum likelihood estimator µ̂ of µ is θR.

Hogg and Craig (1965, pp.229-230) show that R and θR are jointly complete sufficient

statistics for µ and κ. Furthermore, if κ is given, then the minimal sufficient statistics for

µ are R cos θR and R sin θR.

In equation 2.2.4,
∑n

i=1 cos(θi − µ) = R cos(θR − µ). Therefore, if the right hand side

of equation 2.2.4 is set to be zero, we obtain:

−nA(κ̂) +R cos(θR − µ̂) = 0. (2.2.5)
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This implies:

A(κ̂) = R̄, (2.2.6)

where R̄ = R/n.

Therefore, the maximum likelihood estimator κ̂ of κ is equal to A−1(R̄). However, the

solution of equation 2.2.6 can only be solved numerically. Fisher (1993, p.88) has given a

numerical solution for κ̂ as following:

κ̂ = 2R̄+ R̄2 + 5
6R̄

5, if R < 0.53;

κ̂ = −0.4 + 1.39R̄+ 0.43
1−R̄ , if 053 ≤ R < 0.85;

κ̂ = 1
R̄3−4R̄2+3R̄

, if R ≥ 0.85.

For sample size n smaller than or equal to 15, based on the results above, Fisher gave

another numerical estimator of κ, calling it κ̂∗.

κ̂∗ = max(κ̂− 2(nκ̂)−1, 0) if κ̂ < 2,

κ̂∗ = (n− 1)3κ̂/(n3 + n) if κ̂ ≥ 2.

2.3 Method of Moments

The method of moments is as follows. If θ is a random variable following the von Mises

distribution with mean direction µ and concentration parameter κ, expectations of θ and

θ2 cannot be solved analytically. Instead, expectations of cos θ and sin θ are used.

Formulas for E(cos θ) and E(sin θ) are:

E(cos θ) = A(κ) cosµ, and E(sin θ) = A(κ) sinµ.

Estimators of E(cos θ) and E(sin θ) are 1
n

∑n
i=1 cos θi and 1

n

∑n
i=1 sin θi. Let

C̄ = 1
n

∑n
i=1 cos θi, and S̄ = 1

n

∑n
i=1 sin θi, by the method of moments, the estimators of µ

and κ are the solutions of:

C̄ = A(κ) cosµ, and S̄ = A(κ) sinµ.

These equations are equivalent to the equations given by the method of maximum

likelihood.
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2.4 Asymptotic Properties

Cox and Hinkley (1974) have shown that the maximum likelihood estimators κ̂ and µ̂ of κ

and µ have the asymptotic distribution:
√
n(µ̂− µ, κ̂− κ) ∼ N(0, I−1),

where I denotes the Fisher information matrix:

I =

[
κA(κ) 0

0 1−A(κ)2 −A(κ)/κ

]
.

This states that for large sample size, the maximum likelihood estimator κ̂ and µ̂ itself are

approximately normally distributed with:

E(µ̂) = µ, and V ar(µ̂) = 1/nκA(κ).

E(κ̂) = κ, and V ar(κ̂) = 1
n[1−A(κ)2−A(κ)/κ]

.

Moreover, κ̂ and µ̂ are approximately independent for large n.

2.5 Goodness of Fit Test

A goodness of fit test describes how well a statistical model can fit a set of observations.

There are several ways to test the fit. EDF (empirical distribution function) statistics,

which are statistics measuring the difference between the empirical distribution function

Fn(θ) and the cumulative distribution function F (θ), are some of the most common ways

to test the fit (Stephens,1986). In this project, we test the fit using Watson’s U2 statistic,

which is designed for the circle because its value does not depend on the origin of θ.

In general, let θ1....θn be a random sample drawn from some population. Suppose that

we want to test the null hypothesis

H0 : θ1....θn are from some distribution with the cumulative distribution function F (θ) .

Watson’s U2 is calculated as follows:

1. For each observation θi, calculate its cumulative distribution function F (θi), let

Zi = F (θi). For any unknown parameters, replace them by their maximum

likelihood estimates.

2. Sort Zi into ascending order to obtain Z(i), the order statistics.
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3. Obtain U2 statistics from:

U2 = W 2 − n(Z̄ − 0.5)2

where Z̄ = 1
n

∑n
i=1 Zi and W 2 =

∑n
i=1{Z(i) − 2i−1

2n }
2 + 1

12n .

If the hypothesis is that F (θ) is the uniform distribution, the corresponding p-value

can be found from the table in Stephens (1970). If the null hypothesis is that F (θ) is the

von Mises distribution, Lockhart and Stephens (1985) give a table of significance points of

the asymptotic distribution of U2 for different values of κ.

If we are testing the fit for other distributions with unknown parameters, for example,

a mixture of two von Mises distributions, the p-value can be calculated as follows:

1. Obtain the maximum likelihood estimates for unknown parameters and calculate U2

as described above, let this value be U2
0 .

2. Generate NBoot bootstrap samples from the distribution specified by F (θ), using the

maximum likelihood estimates from the original sample as parameters.

3. For each bootstrap sample, re-estimate the parameters and obtain U2, called U2
j ,

where j = 1, ...NBoot.

4. Let NG be the number of U2
j greater than U2

0 , and

p-value≈ NG
NBoot

.

2.6 Example

In this example, ants were placed individually into an arena, and an illuminated black

target was placed at 180 degrees. The ants tend to move towards the target, and the

orientations of ants were recorded. This data set was given by Fisher (1993, p.243), and

are a random sample of size 100 taken from a larger data set (Jander, 1957, Figure 18A).

The data are shown in Table 2.6.1. When we make calculations, the data are transformed

from degrees to radians.

In Figure 2.6.1, the plot of the ants data is shown, and the density is estimated using a

program in R. This is shown in Figure 2.6.2. On the plots, there is one clear mode shown

around π. Therefore, we try to fit these data using a single von Mises distribution.
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Table 2.6.1: Ants data (in degrees)
330 290 60 200 200 180 280 220 190 180
180 160 280 180 170 190 180 140 150 150
160 200 190 250 180 30 200 180 200 350
200 180 120 200 210 130 30 210 200 230
180 160 210 190 180 230 50 150 210 180
190 210 220 200 60 260 110 180 220 170
10 220 180 210 170 90 160 180 170 200
160 180 120 150 300 190 220 160 70 190
110 270 180 200 180 140 360 150 160 170
140 40 300 80 210 200 170 200 210 190

Table 2.6.2 shows the estimators of µ and κ obtained from maximum likelihood

estimates and the method of moments. Figure 2.6.3 gives the fitted density using the

estimated parameters calculated from these two methods against the original density

estimate.

Table 2.6.2: Parameter estimates and U2 for the ants data
µ̂ κ̂ U2

MLE / Method of Moments 3.087 1.558 0.459
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Figure 2.6.1: Plot of ants data

Figure 2.6.2: Non-parametric density estimation of ants data
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Chapter 3

A Mixture of Two von Mises

Distributions

In Chapter 2, we have discussed how to fit the data with a single von Mises distribution.

For some circular data, instead of one mode, two modes are observed. In this situation,

fitting the data with a mixture of two von Mises distributions could be a better choice. In

Section 3.1, the probability density function of a mixture of two von Mises distributions

will be introduced. Estimators of parameters will be discussed from Section 3.2 to Section

3.5.

3.1 Mixture of Two von Mises Distributions

Suppose that a circular random variable θ is from a mixture of two von Mises

distributions; then its probability density function is:

Pf1(θ) + (1− P )f2(θ), 0<P<1, 0<θ<2π, (3.1.1)

where

fj(θ) =
1

2πI0(κj)
exp (κj cos(θ − µj)), j = 1, 2. (3.1.2)

Let θ1...θn be a sample of independently identically distributed random variables from a

mixture of two von Mises distributions; an example of data and the probability density

12
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function is shown in Figure 3.1.1. In this example, 200 observations are generated from

3.1.1 with parameters µ1 = 1π
6 , µ2 = 5π

6 ,κ1 = 3,κ2 = 7, and P = 2
3 .

Figure 3.1.1: Plot of 200 observations generated from a mixture of two von Mises distribu-
tions

3.2 Maximum Likelihood Estimates

For the above sample, the likelihood function is:

L =
n∏
i=1

[Pf1(θi) + (1− P )f2(θi)], (3.2.1)

where fi(θ) is defined in Section 3.1. The log-likelihood function is:

l =
n∑
i=1

log[Pf1(θi) + (1− P )f2(θi)]. (3.2.2)

By taking the partial derivatives with respect to each of five parameters, i.e, the score

functions, and then setting these functions equal to zero, the maximum likelihood

estimators can be found. They are the solutions of the following five equations:

n∑
i=1

1
Pf1(θi) + (1− P )f2(θi)

[f1(θi)− f2(θi)] = 0,
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n∑
i=1

Pf1(θi)
Pf1(θi) + (1− P )f2(θi)

κ1 sin(θi − µ1) = 0,

n∑
i=1

(1− P )f2(θi)
Pf1(θi) + (1− P )f2(θi)

κ2 sin(θi − µ2) = 0,

n∑
i=1

Pf1(θi)
Pf1(θi) + (1− P )f2(θi)

[cos(θi − µ1)−A(κ1)] = 0,

n∑
i=1

(1− P )f2(θi)
Pf1(θi) + (1− P )f2(θi)

[cos(θi − µ2)−A(κ2)] = 0.

Even though the maximum likelihood equations can be obtained easily, the estimators

can not be found analytically. However, the numerical solutions of estimates can be found

by some computer languages.

When we are solving the maximum likelihood equations numerically, there is a risk

that the estimate of µ1 or µ2 may be equal to one of the observations.

Suppose one of the observations is equal to µ̂1, without loss of generality, we call it θ1.

The likelihood function L∗ becomes:

L∗ = { P̂

2πI0(κ̂1)
exp(κ̂1) + (1− P̂ ) exp[κ̂2(θ̂1 − µ̂2)]}

n∏
i=2

{P̂ f1(θi) + (1− P )f2(θi)}. (3.2.3)

Let E1 = { P̂
2πI0(κ̂1) exp(κ̂1) + (1− P̂ ) exp(κ̂2(θ̂1 − µ̂2))} be the first part of L∗, and let

E2 =
∏n
i=2{P̂ f1(θi) + (1− P̂ )f2(θi)} be the second part of L∗.

Note that
∏n
i=2 f2(θi) is a likelihood function from the second von Mises distribution,

and there exists a positive number C , which is independent of κ̂1 , such that

C<
∏n
i=2 f2(θi). So, C∗ = (1− P̂ )C is smaller than E2 , and C∗ is independent of κ̂1.

The Bessel function I0(κ̂1) is approximately equal to exp(κ̂1)√
κ̂1

when κ̂1 is large. This

implies E1 is approximately equal to P̂
2π

√
κ̂1 when κ̂1 is large, and the likelihood function

L∗ = E1 ∗ E2 is greater than C∗ P̂2π
√
κ̂1 . The likelihood function becomes unbounded with

increasing values of κ̂1.

In Section 3.6 and Chapter 4, all the maximum likelihood estimates are obtained

numerically using the R program, and comparisons of the maximum likelihood estimates

and the method of moments estimates will be given in these sections.
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3.3 Method of Moments Estimators

In general mixture model cases, the method of moments is not easily applicable; selecting

an appropriate set of moments to estimate five parameters is a problem. For two von

Mises mixture, the first two cosine and sine moments are used, but there is no way to

construct the fifth equation in a symmetrical manner. However, the method of moments

estimators can be found analytically for the special case of κ1 = κ2 and µ1 = µ2 + π

(detailed information will be given in Section 3.4).

Spurr and Koutbeiy (1991) described five methods to estimate parameters from a

mixture of two von Mises distributions including MLE (their method 1). Their method 2

was based on the method of moments. The first four equations were chosen by using the

first two sine and cosine moments (equation 3.3.1 and 3.3.2) below, and the derivative of

the log likelihood with respect to P was chosen as the fifth equation 3.3.3. Estimates were

obtained numerically by minimizing the sum of squares of residuals of these five equations.

Their minimum should be zero since we have five unknown parameters and five equations.

P
Ij(κ1)
I0(κ1)

cos(jµ1) + (1− P )
Ij(κ2)
I0(κ2)

cos(jµ2) =
1
n

n∑
i=1

cos(jθi), j = 1, 2; (3.3.1)

P
Ij(κ1)
I0(κ1)

sin(jµ1) + (1− P )
Ij(κ2)
I0(κ2)

sin(jµ2) =
1
n

n∑
i=1

sin(jθi), j = 1, 2; (3.3.2)

n∑
i=1

{ 1
2πI0(κ1)

exp[κ1 cos(θi − µ1)]− 1
2πI0(κ2)

exp[κ2 cos(θi − µ2)]} 1
f(θi)

= 0, (3.3.3)

where Ij(κ) is the modified Bessel function of the first kind and of the jth order, and

Ij(κ) = 1
π

∫ π
0 cos(jθ) exp(κ cos θ)dθ.

Their method 3 is similar to method 2. Instead of using five equations, six equations,

which are the first three sine and cosine moments, were used (equation 3.3.4 and 3.3.5):

P
Ij(κ1)
I0(κ1)

cos(jµ1) + (1− P )
Ij(κ2)
I0(κ2)

cos(jµ2) =
1
n

n∑
i=1

cos(jθi), j = 1, 2, 3; (3.3.4)

P
Ij(κ1)
I0(κ1)

sin(jµ1) + (1− P )
Ij(κ2)
I0(κ2)

sin(jµ2) =
1
n

n∑
i=1

sin(jθi), j = 1, 2, 3. (3.3.5)
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3.4 Discussion of Special Case

Suppose we have θ1...θn independently identically distributed from a mixture of two von

Mises distributions with κ1 = κ2 = κ and µ1 = µ2 + π. The probability density function is:

fs(θ) =
P

2πI0(κ)
exp{κ cos(θ − µ1)}+

1− P
2πI0(κ)

exp{−κ cos(θ − µ1)}. (3.4.1)

If we let θ∗ = θ ( mod π ), equation 3.4.1 can be reduced to

f∗s (θ∗) =
1

2πI0(κ)
exp{κ cos(θ∗ − µ1)}, 0<θ∗<π. (3.4.2)

From equation 3.4.2, the random variable θ∗ does not depend on parameter P .

Mardia (1972, page 128) showed that the moments estimators µ̂1, κ̂ of µ and κ are the

solutions of the following two equations:

n∑
i=1

sin 2(θ∗i − µ̂1) = 0, (3.4.3)

1
n

n∑
i=1

cos 2(θ∗i − µ̂1) =
I2(κ̂)
I0(κ̂)

. (3.4.4)

Mardia also gave the moments estimator P̂ of P , which is the solution of

(2P̂ − 1)A(κ̂) =
1
n

n∑
i=1

cos 2(θ∗i − µ̂1) = C̄ cos µ̂1 + S̄ sin µ̂1, (3.4.5)

where C̄ and S̄ are defined in Section 2.3.

The MLE can not be solved analytically even for the special case κ1 = κ2 = κ and

µ1 = µ2 + π. Using a combination of the gradient method and the Newton-Raphson

method, the maximum likelihood estimates were obtained by Jones and James (1969).

3.5 Other Methods of Estimation

Spurr and Koutbeiy (1991) described five methods to estimate parameters from a mixture

of two von Mises distributions, and we have seen three of them in Section 3.4. Their

method 4 minimized the sum of square distances between the empirical characteristic

function and the characteristic function of the model, which minimized
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∑∞
t=1 |Φ(t)− Φ̃n(t)|2,

where Φ̃n(t) = 1
n

∑n
j=1 exp (itθj) is the empirical characteristic function, and Φ(t) is the

characteristic function:

Φ(t) = P [cos(tµ1) + i sin(tµ1)] It(κ1)
I0(κ1) + (1− P )[cos(tµ2) + i sin(tµ2)] It(κ2)

I0(κ2) .

Their method 5 based on the Cramér-von Mises statistics W 2 (introduced in Section

2.5), which minimized
∑n

j=1[F (θ(j))− j−0.5
n ]2, where θ(j) is the jth order statistic of the

sample.

3.6 Examples

Example 1

Let us first consider the special case when κ1 = κ2 = κ and µ1 = µ2 + π.

In this example, we will use Gould’s turtle data given by Stephens (1969). In Table

3.6.1, orientations of 76 turtles after treatment are listed. It is observed that there are two

modes and they are roughly 180 degrees apart. There is one big mode around 60 degrees

and a small mode around 240 degrees.

Table 3.6.1: Orientations of 76 turtles after treatment (in degrees)
8 30 48 58 65 83 95 118 223 251
9 34 48 58 68 88 96 138 226 257
13 38 48 61 70 88 98 153 237 268
13 38 48 63 73 88 100 153 238 285
14 40 50 64 78 90 103 155 243 319
18 44 53 64 78 92 106 204 244 343
22 45 56 64 78 92 113 215 250 350
27 47 57 65 83 93

The estimates from the method of maximum likelihood and the method of moments

estimates (MME) for this example are shown in Table 3.6.2. In this example, estimates

obtained from both methods are quite close. Watson’s U2 for MLE is equal to 0.0195, and

equal to 0.0558 by MME. The corresponding p-values are greater than 0.5 for both

methods.
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Table 3.6.2: Parameter estimates for turtle data ( µ̂ in degrees)
P̂ µ̂ κ̂ U2

MLE 0.81 63.1 3.0 0.019
MME 0.85 62.4 3.6 0.056

Example 2

In example two, we will consider a mixture of two von Mises distributions in the general

case. We generate 200 observations from a mixture of two von Mises distributions, and the

parameters and their estimates are shown in Table 3.6.3.

Table 3.6.3: The maximum likelihood estimates (MLE) and the method of moments esti-
mates (MME)

Parameters P µ1 µ2 κ1 κ2

True value 0.67 0.52 2.62 3 7
MLE 0.63 0.60 2.68 2.84 6.77
MME 0.65 0.63 2.69 2.77 8.98

In Table 3.6.3, the method of moments estimates are obtained by minimizing the sum

of squares of residuals from six equations, which are constructed by using the first three

moments, i.e. we minimize S2
1 + S2

2 , where:

S1 =
3∑
t=1

[P
I1(κ1)
I0(κ1)

cos(tµ1) + (1− P )
I1κ2

I0(κ2)
cos(tµ2)− 1

n

n∑
i=1

cos(tθi)]2, (3.6.1)

S2 =
3∑
t=1

[P
I1(κ1)
I0(κ1)

sin(tµ1) + (1− P )
I1(κ2)
I0(κ2)

sin(tµ2)− 1
n

n∑
i=1

sin(tθi)]2. (3.6.2)

In Table 3.6.3, both the maximum likelihood method and the method of moments give

estimates close to true values.

For the maximum likelihood method, Watson’s U2 = 0.0263. We simulate 5000

bootstrap samples with sample size n = 200. Then, 1593 out of 5000 give values greater
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than 0.0263. Under the hypothesis that sample is from a mixture of two von Mises

distributions, we obtain p-value= 1593/5000 = 0.3186. With type one error chosen as 0.05,

we fail to reject the hypothesis. For the method of moments, Watson’s U2 = 0.0271, and

p-value= 1808/5000 = 0.3616. Therefore, we fail to reject the hypothesis here too. Both of

these two methods give good estimates fitting the data well. The density estimation and

fitted density functions for both the maximum likelihood method and the method of

moments are shown in Figure 3.6.1.

Figure 3.6.1: Non-parametric density estimation and fitted densities for Example 2

Table 3.6.4 and Table 3.6.5 show the mean, variance, and the third central moment of

the estimates for both of the method of moments and the method of maximum likelihood.

From these two tables, the variances for P̂ and µ̂’s are similar; however, for the method of

moments, the variances of κ̂’s are much larger than that from the method of maximum

likelihood. Therefore, maximum likelihood method gives more accurate estimates.
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Table 3.6.4: Means, variances and third moments for MLE
MLE Mean Variance Third Moment
P̂ 0.63 0.0016 3.85E-06
µ̂1 0.60 0.0048 3.49E-05
µ̂2 2.68 0.0034 -3.38E-05
κ̂1 2.94 0.2153 0.0646
κ̂2 7.17 3.26 14.09

Table 3.6.5: Means, variances and third moments for MME
MLE Mean Variance Third Moment
P̂ 0.65 0.0018 1.09E-06
µ̂1 0.63 0.0060 0.0001
µ̂2 2.69 0.0031 -2.96E-05
κ̂1 2.87 0.2561 0.0690
κ̂2 10.89 48.23 1188.49
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Example 3

In this example, we will generate a sample with two modes but not from a mixture of two

von Mises distributions.

If we try to fit this sample with a mixture of two von Mises distributions, the

maximum likelihood estimates are shown in Table 3.6.6.

Table 3.6.6: Maximum likelihood estimates for Example 3
Parameters P µ1 µ2 κ1 κ2

MLE 0.27 0.40 1.72 15.39 0.76

Watson’s U2 = 0.0667 in this example. We simulate 5000 bootstrap samples using the

estimates above, and calculate Watson’s U2 for each. In these 5000 U2 values, only six

have values greater than 0.0667. Therefore p-value= 8/5000 = 0.0016. With type one error

0.05, we reject the hypothesis. The density estimate and the fitted density are shown in

Figure 3.6.2.
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Figure 3.6.2: Non-parametric density estimation and fitted density for Example 3



Chapter 4

SIDS Data and Traffic Crash Data

Analysis

In this chapter, we will analyze two data sets by fitting the data to the von Mises

distribution and a mixture of two von Mises distributions. We will analyze Mooney’s SIDS

(Sudden infant death syndrome) data in Section 4.1; and in Section 4.2, we will discuss

traffic crash data in the United States.

4.1 SIDS

4.1.1 Introduction

Sudden infant death syndrome (SIDS) is a syndrome marked by sudden and unexplained

death of an apparently healthy infant aged one month to one year. The term cot death is

often used in the United Kingdom, Australia and New Zealand, while crib death is

sometimes used in North America. Mooney, Helms, and Jollife (2003), referred to as MHJ

in the future, have collected SIDS data for the UK from 1983 to 1998. In their study, they

pointed out that, for some years, there seems to be more than one mode for SIDS data,

and a mixture of von Mises distributions should be fitted. The data set records the

number of infant death cases by month, and it is shown in Table 4.1.1.

For the SIDS data, we map the time in one year from zero to 2π in radians, and give

every month an equal length on the circle. Since the SIDS data given by MHJ are

grouped, we vary it by adding random numbers on each cell. The way we add randomness

23
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Table 4.1.1: Number of SIDS cases in UK
Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total
1983 159 196 147 117 133 71 70 67 94 119 160 190 1523
1984 177 181 191 103 83 94 67 45 83 132 115 150 1421
1985 163 150 132 146 100 79 77 54 92 128 190 193 1504
1986 183 202 173 149 141 89 84 76 97 134 168 222 1718
1987 203 180 181 127 108 120 85 84 88 147 167 242 1732
1988 212 194 175 134 136 102 101 99 114 158 165 188 1778
1989 184 143 180 112 118 76 77 82 99 131 163 161 1526
1990 174 140 141 127 91 87 73 68 104 92 111 163 1371
1991 115 154 133 103 104 81 65 52 70 68 75 91 1111
1992 61 60 45 54 50 43 43 36 37 53 60 42 584
1993 66 53 48 46 46 34 29 35 44 59 43 50 553
1994 65 54 36 38 45 51 35 31 49 45 28 50 527
1995 38 44 57 35 36 39 40 29 35 37 33 49 472
1996 53 49 66 29 38 36 47 28 36 29 40 52 503
1997 48 36 53 47 36 33 40 28 42 36 45 48 492
1998 40 28 25 25 29 32 25 20 26 40 42 63 395

is by generating an amount (equal to the count) of numbers for each month from the

uniform distribution. For example, in January 1996, we generate 53 independent identical

random variables from the uniform distribution from 0 to π
6 ; and in February 1996, we

generate 49 uniform random variables from π
6 to π

3 .

4.1.2 Model Selection

There are two common ways to select models. One way is to start with the simplest model

and gradually adopt more complex models if there is significant evidence that the simpler

model could not be fitted well. The other way is to start with a complex model and

gradually adopt a simpler model.

In this project, we start with the simplest model. Firstly, we test if the data are from

the uniform distribution. If the goodness of fit test showed that there was significant

evidence that the uniform distribution could not be fitted, we try to fit the von Mises

distribution; otherwise, we would stop. If the von Mises distribution could not be fitted,

we try to fit a mixture of two von Mises distributions. Figure 4.1.1 shows detailed

information of how we do the model selection.
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Two remarks should be given here. First of all, if the uniform distribution failed to be

rejected, the von Mises distribution or a mixture of two von Mises distributions should

also fail to be rejected since the von Mises distribution will become the uniform

distribution when κ equals zero. Secondly, we will not fit a mixture of the uniform

distribution and the von Mises distribution since it is a special case of a mixture of two

von Mises distributions when either κ1 = 0 or κ2 = 0.

Figure 4.1.1: Model selection procedure



CHAPTER 4. SIDS DATA AND TRAFFIC CRASH DATA ANALYSIS 26

4.1.3 Example from 1996

In this section, we take the SIDS data from 1996 as an example.

In 1996, there were 503 sudden infant death syndrome observations in the UK. The

plot of randomly replaced data and their density estimation are shown in Figure 4.1.2.

Figure 4.1.2: Plot of SIDS data from 1996

We firstly test uniformity. Under the hypothesis that the data are from the uniform

distribution, Watson’s U2 = 0.395. The corresponding p-value, obtained from Stephens’s

table (1970), is smaller than 0.001. Therefore, the hypothesis is rejected.

We then try to fit the von Mises distribution, and the results are shown in Table 4.1.2.

Table 4.1.2: SIDS data from 1996 by the von Mises distribution
µ κ U2 AIC

MLE 0.763 0.230 0.0608 1839.751

The maximum likelihood estimates for µ is equal to 0.763, and equals 0.230 for κ.

Watson’s U2 = 0.0608 under the hypothesis that the data are from the von Mises
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distribution, and the corresponding p-value obtained from the table given by Lockhart and

Stephens (1985), is between 0.05 to 0.10. From Figure 4.1.2, there seems to be no clear

peak around 0.763. Considering all the results, we reject the single von Mises distribution.

Now, we try to fit a mixture of two von Mises distributions. The results are shown in

Table 4.1.3.

Table 4.1.3: SIDS data from 1996 by a mixture of two von Mises distributions
P̂ µ̂1 µ̂2 κ̂1 κ̂2 AIC

MLE 0.926 0.522 3.259 0.384 7.436 1838.367

The MLE results show that about 93% of the data are from the first von Mises

distribution with a peak around 30 days, and this peak is quite flat since its corresponding

κ is very small (equal to 0.384). About 7% of the data are from the other von Mises

distribution with a peak around 180 days.

Watson’s U2 = 0.0315 for the mixture model, and we simulate 5000 bootstrap samples.

More than 800 out of 5000 give U2 values greater than 0.0315. We obtain p-value greater

than 0.15. The null hypothesis fails to be rejected. In other words, a mixture of two von

Mises distribution is an acceptable model for the data.

Akaike information criterion (AIC) is calculated as follows: AIC = 2Np − 2 log(L),

where Np is the number of parameters. Several statistical models can be ranked according

to their AIC for a given data set. The one having the lowest AIC is the best. For the

single von Mises model, we obtained an AIC value equal to 1839.751, and equal to

1838.367 for mixture model. The mixture model has a slightly smaller AIC. However, the

goodness of fit test shows the mixture model is better than the single von Mises.

Table 4.1.4: Normalized SIDS data from 1996 by a mixture of two von Mises distributions
Parameters P µ1 µ2 κ1 κ2

MLE 0.944 0.538 3.268 0.360 21.726

If we normalize the days by using 31 days in January and 29 days in February and so

on in 1996, the new estimates for the five parameters are shown in Table 4.1.4. All the
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Figure 4.1.3: SIDS data, 1996; fitted density function against non-parametric density esti-
mation

estimates of the five parameters except κ2 are close to those given as above, when the

months were divided into π/6 segments equally around the circle.

4.1.4 Analysis of SIDS Data: Summary

In this section, we analyze the full SIDS data set from 1983 to 1991, and separately, from

1992 to 1998. This is because there is a huge change for the SIDS monthly counts in 1992.

We combine the monthly counts of years before 1992 together, and also for the counts of

years after 1992.

We try to fit the data of each year to the uniform distribution. Under the hypothesis

that our observations are from the uniform distribution, we obtain significantly large

Watson’s U2 for all years. The hypothesis is rejected for the type one error chosen as 0.05.

We next fit the data using the von Mises distribution, and the results are shown in Table

4.1.5.
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Table 4.1.5: Results of SIDS data by fitting the von Mises distribution
Year µ̂ κ̂ U2 p-value Reject H0

1983 0.35 0.45 0.341 <0.05 Yes
1984 0.49 0.51 0.103 <0.05 Yes
1985 0.15 0.45 0.690 <0.05 Yes
1986 0.41 0.45 0.478 <0.05 Yes
1987 0.26 0.45 0.405 <0.05 Yes
1988 0.28 0.35 0.031 >0.1 No
1989 0.27 0.39 0.068 <0.05 Yes
1990 0.43 0.39 0.026 >0.1 No
1991 1.01 0.42 0.121 <0.05 Yes
1992 0.50 0.16 0.073 <0.05 Yes
1993 0.20 0.24 0.084 <0.05 Yes
1994 0.51 0.15 0.211 <0.05 Yes
1995 0.92 0.15 0.049 >0.1 No
1996 0.76 0.23 0.061 (0.05, 0.1) Further Discussion
1997 0.51 0.18 0.076 <0.05 Yes
1998 5.92 0.35 0.383 <0.05 Yes
Before 1992 0.38 0.40 0.620 <0.05 Yes
After 1992 (include) 0.34 0.17 0.057 (0.05, 0.1) Further Discussion

Based on the goodness of fit test, we obtain a reasonably small Watson’s U2 under the

hypothesis that the data are from the von Mises distribution in years 1988, 1990, and

1995. We fail to reject the von Mises distribution in these years. For 1996 and the mixture

of data after 1992, we obtain a p-value between 0.05 and 0.1. The von Mises distribution

may not give a good fit. We will also fit a mixture of two von Mises distributions for these

two data sets and hope to see better results. The p-values for all the other years are small,

and the hypothesis are rejected at α = 0.05.

Table 4.1.6 shows the estimates of parameters and the p-value when we fit a mixture

of two von Mises distributions. The p-value is calculated by the same process in Section

2.5 with 5000 bootstraps.

Regarding the data of years which have rejected the von Mises distribution, only the

data of 1989 and the combination of data before 1992 reject a mixture of two von Mises

distribution with α =0.05. For all other years, a mixture of two von Mises distributions

give good fits. For most years where a mixture of two von Mises distributions fits well,



CHAPTER 4. SIDS DATA AND TRAFFIC CRASH DATA ANALYSIS 30

Table 4.1.6: Results of SIDS data by fitting a mixture of two von Mises distributions
Year P̂ µ̂1 µ̂2 κ̂1 κ̂2 p-value Reject H0

1983 0.96 0.20 2.30 0.51 19.41 0.17 No
1984 0.96 0.64 5.11 0.54 27.24 0.08 Further Discussion
1985 0.56 1.59 5.70 0.68 1.52 0.38 No
1986 0.83 0.99 5.76 0.43 2.02 0.34 No
1987 0.87 0.71 5.85 0.36 2.72 0.20 No
1989 0.36 1.41 5.77 0.86 0.59 0.01 Yes
1991 0.98 1.04 4.50 0.47 9.95 0.21 No
1992 0.95 1.03 5.10 0.20 8.20 0.76 No
1993 0.94 0.63 4.84 0.30 11.28 0.42 No
1994 0.12 0.26 3.06 7.53 0.13 0.35 No
1996 0.93 0.52 3.26 0.38 7.44 0.18 No
1997 0.94 1.22 5.90 0.15 8.26 0.23 No
1998 0.46 2.72 5.89 0.76 1.56 0.83 No
Before 1992 0.75 1.06 5.68 0.45 1.15 0.02 Yes
After 1992(include) 0.97 0.25 3.13 0.24 8.54 0.29 No

there is one peak around 1 to 1.5 (February to March), and the other peak around 5.5 to 6

(November to December). Final comment: the SIDS data is a time series, and might be

analyzed using time series methods. The advantage using a circle is that peaks may occur

at different times in different years, and this may not be recognized by standard time

series analysis. Also, the calendar year could be broken at say, June or July, in order to

determine the peaks, because these months are far from the peaks.

4.2 Traffic Crash Data Analysis

In this section, we will analyze the traffic crash data in the United States in 2007. The

data are obtained from the Fatality Analysis Reporting System Encyclopedia webpage

(FARS Encyclopedia, 2008). The database records the traffic crash information of each

state in the US from 1994 to 2007, and the crash time are accurate to seconds. In this

project, we will choose some fatal crash data from three states in the US in 2007, namely

Washington, New York, and the District of Columbia.

We map each crash time in 24-hour periods onto a unit circle from 0 to 2π. Every 15

degrees on the circle denotes 1 hour in real time. Midnight (12:00 a.m.) is mapped to 0 on
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the circle.

4.2.1 Fatal Crash Data Analysis: Washington State

In Washington State, 528 fatal crashes (after deleting missing or incomplete data) are

recorded in 2007, and the distribution of observations and their density estimation are

shown in Figure 4.2.1.

There are two peaks in this data set: a smaller one around π
6 , and a larger one around

3π
2 . We will fit a mixture of two von Mises distributions for this data set.

Table 4.2.1: MLE for fatal crash data, Washington State
Parameters P µ1 µ2 κ1 κ2

MLE 0.044 0.54 4.70 134.66 0.48

Table 4.2.1 shows the estimates of fitting the data using a mixture of two von Mises

distributions, and there is one mode at 0.54, which is about 2:00 a.m.. The proportion of

the first von Mises distribution is small, only 4.4%. The variation for the first mode is

small since the estimate of κ is large, namely 134.66. Therefore, the standard deviation for

the first mode is about (κ̂)−0.5 = 0.086, which is about 20 minutes. The second mode is at

4.70 (about 6:00 p.m.). The proportion of the second mode is large (95.6%). The variation

of the second mode is large too since κ2 is very small.

Goodness of fit testing gives Watson’s U2 = 0.0278. We simulate 5000 bootstrap

samples using the estimates in Table 4.2.1 and calculate Watson’s U2 for each. There are

more than 2000 U2 values from bootstrap samples greater than 0.0278. Therefore, our

p-value is greater than 0.4. A mixture of two von Mises distributions does give a good fit

for this data set.
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Figure 4.2.1: Fatal crash data of Washington State in 2007; data plot

Figure 4.2.2: Fatal crash data of Washington State in 2007; fitted densities



CHAPTER 4. SIDS DATA AND TRAFFIC CRASH DATA ANALYSIS 33

4.2.2 Fatal Crash Data Analysis: District of Columbia

For the fatal crash data set of the District of Columbia in 2007, there are only 36

observations. The data distribution is shown in Figure 4.2.3, and there is one clear peak

around 7π
4 (9:00 p.m.).

Figure 4.2.3: Fatal crash data of the District of Columbia in 2007; data plot

The estimates of parameters are shown in Table 4.2.2 when we fit a mixture of two von

Mises distributions. MLE of µ1 equals to 1.29 (about 5:00 a.m.) and MLE of µ2 equals to

5.24 (about 8:00 p.m.).

Table 4.2.2: MLE for fatal crash data, District of Columbia
Parameters P µ1 µ2 κ1 κ2

MLE 0.56 1.29 5.24 0.62 3.68

The test result gives Watson’s U2 = 0.0184, and the p-value is greater than 0.5.
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Figure 4.2.4: Fatal crash data of District of Columbia in 2007; fitted densities

4.2.3 Fatal Crash Data Analysis: New York State

Now we come to the fatal crash data set of New York State in 2007. After deleting missing

values and incomplete records, there are 1236 observations in this data set. Their density

estimation is given in Figure 4.2.5. There is only one clear peak, which appeared around
5π
4 (3:00 p.m.). We firstly fit a single von Mises distribution.

Table 4.2.3: MLE for fatal crash data, New York State
µ̂ κ̂ U2

Values 4.61 0.26 0.056

Table 4.2.3 shows that if a single von Mises distribution is fitted, the mode is at 4.61

(about 5:30 p.m.). Watson’s U2 = 0.0561, and the corresponding p-value is about 0.09. It

fails to reject the hypothesis with type one error chosen as 0.05.
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Figure 4.2.5: Fatal crash data of New York State in 2007; data plot
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Figure 4.2.6: Fatal crash data of New York State in 2007; fitted densities
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Computational Details

5.1 Initial Values

In this project, all the computations are done by the R program. We obtain the maximum

likelihood estimates by minimizing the negative log likelihood function and by using the

in-built function “nlminb” in R. Initial values are required when we call the function

“nlminb”. Usually, if observations do come from a mixture of two von Mises distributions

with two clear modes, the same estimates will be obtained even though we start at

different initial values. However, if there are not two clear modes or there are more than

one local maximum for the likelihood function, different initial values may give different

results. In this project, all the initial values for κ’s are chosen as 4, and 1
2 for P . For the

initial values of µ, we choose the values where the peak(s) roughly are located by looking

at the plots of data or the density estimation plots.

Table 5.1.1 shows the results of maximum likelihood estimates starting with different

initial values of µ, using the data in Example 2 in Chapter 3. All the different initial

values give almost the same results (there are slight differences if we keep more than 5

decimal digits, and the differences may be caused by computational error).

For some data sets, the estimates do not converge to the same values if we pick

different initial values. There are two main cases. In the first case, the estimates may go

outside the parameter space for some initial values. In the second case, different initial

values may give more than one result, and all these results are inside the parameter space.

In other words, there are more than one local maxima for the likelihood function. We can

treat the first case as a kind of error, and it can be easily checked. The second case cannot

37
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Table 5.1.1: Comparing different initial values (Example 2 in Chapter 3)
Initial Values P̂ µ̂1 µ̂2 κ̂1 κ̂2

κ1 = κ2 = 4, P = 0.5
µ1 = π/6, µ2 = 5π/6 0.630178 0.596674 2.679197 2.838340 6.765724
µ1 = π/6, µ2 = π/3 0.630178 0.596674 2.679197 2.838341 6.765737
µ1 = π/6, µ2 = π 0.630178 0.596674 2.679197 2.838340 6.765724
µ1 = π/6, µ2 = 3π/2 0.630178 0.596674 2.679197 2.838341 6.765737
µ1 = π/2, µ2 = π 0.630178 0.596674 2.679197 2.838340 6.765724
µ1 = π/2, µ2 = 3π/2 0.630178 0.596674 2.679197 2.838341 6.765737
µ1 = π, µ2 = 3π/2 0.630178 0.596674 2.679197 2.838340 6.765724
µ1 = 3π/2, µ2 = 7π/4 0.630178 0.596674 2.679197 2.838341 6.765737

be checked easily, and we cannot guarantee that there is a unique local maxima for the

likelihood function for a new data set.

Table 5.1.2 shows an example of different initial values giving different results. This

example is based on the SIDS data from 1984. There are at least two local maxima of the

likelihood function for this data set. In Chapter 4, we choose the second one

(µ1 = 0.64, µ2 = 5.11) to fit the data because it has a larger likelihood function and

smaller Watson’s U2.

Table 5.1.2: Comparing different initial values (SIDS data, 1984)
Initial Values
κ1 = κ2 = 4, P = 0.5 P̂ µ̂1 µ̂2 κ̂1 κ̂2 Log Likelihood U2

µ1 = π/3, µ2 = π 0.98 0.45 2.96 0.54 15.63 -2523 0.0985
µ1 = π/3, µ2 = 7π/4 0.96 0.64 5.11 0.54 27.24 -2518 0.0491

5.2 Large κ

For some data sets, when a mixture of two von Mises distributions is fitted, one κ estimate

will be large; this κ belongs to the von Mises distribution with the smaller proportion.

Figure 5.2.1 shows the distribution of fatal crash data of Washington State in 2007

that was discussed in Chapter 4. For this data set, we can see that there is one large peak
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around 3π
2 , and about 96% of the data are from this von Mises distribution. There is

another cluster of observations around π
6 . This cluster is small (only about 30

observations) but dense. Therefore, we will obtain a large κ for the second peak. When a

mixture of two von Mises distributions is fitted, a large κ will often appear with small

proportion for one of the two von Mises distributions.

Moreover, if we obtain a large estimate of one κ, the likelihood function will not

change much when the large κ increases. Figure 5.2.2 shows the relationship of κ1 and the

likelihood function of fatal crash data of Washington State in 2007.

Figure 5.2.1: Fatal crash data of Washington State in 2007; data plot
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Figure 5.2.2: Relationship between κ1 and likelihood function, Washington State data, 2007



CHAPTER 5. COMPUTATIONAL DETAILS 41

5.3 Properties of Estimates

Table 5.3.1 shows the means, variances, and the third moments of the estimates from the

data set of Example 2 in Chapter 3. The means, variances, and the third moments are

calculated numerically from 5000 simulation samples. With the first three moments, we

can fit the approximate distribution of a parameter in the form a+ bχ2
P , and solve for a, b,

and P .

Table 5.3.1: Sample estimate and three moments of simulated samples. (Example 2 in
Chapter 3)

Parameter Estimate Mean Variance Third Moment
P 0.63 0.63 0.0016 3.85E-06
µ1 0.60 0.60 0.0048 3.49E-05
µ2 2.68 2.68 0.0034 -3.38E-05
κ1 2.84 2.94 0.2153 0.0646
κ2 6.77 7.17 3.26 14.09

From Table 5.3.1, the sample means of 5000 simulated samples are close to the original

estimates; the variances and the third moments of the simulated estimates are small

except for κ2, the one from the von Mises distribution with smaller proportion.

Table 5.3.2 shows the moments for the fatal crash data of Washington State in 2007.

Table 5.3.2: Sample estimate and three moments of simulated samples, fatal crash data of
Washington State in 2007

Parameter Estimate Mean Variance Third Moment
P 0.044 0.049 0.0003 7.99E-06
µ1 0.54 0.54 0.0021 0.0005
µ2 4.70 4.68 0.0204 0.0003
κ1 134.66 166.70 10868.70 1086297.14
κ2 0.48 0.49 0.0051 0.0001

Table 5.3.2 also shows that the variances and the third moments of the estimates of P ,

µ1, µ2, and κ2 are reasonably small. The variation of κ1 is quite large, while the

proportion of first von Mises distribution is small.
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Conclusions

In Chapter 3, we have discussed how to fit a mixture of two von Mises distributions. The

maximum likelihood estimates of the five parameters can be found only numerically. The

method of moments estimators can be found analytically only under the assumption that

the two µ’s are opposite and the two κ’s are equal. When we are finding the maximum

likelihood estimates, if any observation is equal to either of the µ̂’s, the likelihood function

will go to infinity. However, this risk will become trivial if we keep enough digits during

calculation.

For most data sets with distinct peaks, different initial values will converge to the

same estimates. However, for some data sets, different initial values may give different

estimates since there is more than one local maxima for the likelihood function. In this

project, if more than one maximum is found, we will pick the one giving a larger likelihood

function or smaller Watson’s U2.

The estimates of P and µ’s are usually accurate, and the variances and the third

moments of these estimates are usually small. However, the variances of κ’s can be large

sometimes, especially for the κ from the von Mises distribution with a small proportion.

For the SIDS data, we first fit a single von Mises distribution and test the fit using

Watson’s U2. If the single von Mises is rejected at the 5% level, we try to fit a mixture of

two von Mises distributions, and test the fit again. Mooney, Helms, and Jollife attempted

to fit the double von Mises distribution because they thought a second pick may exist;

however, they ran into numerical problems. The data for some of the years can be fitted

using a single von Mises distribution, but the data for most years should be fitted using a

mixture of two von Mises distributions. There are also a few years that cannot be fitted

42
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using either model; for example, the data for 1989. For the fatal crash data set, we

selected three states to discuss: Washington, New York, and the District of Columbia. A

mixture of two von Mises distributions can be fitted for the data of Washington State and

the District of Columbia. For New York State, a single von Mises model is enough.

The purpose of this project was to show how a mixture can be fitted using continuous

data. The motivation was provided by several papers analyzing SIDS data and a report on

U.S. crash data.
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