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Abstract 

In occupational cohort studies, a group of workers is followed over time, and disease and work 

history information are collected for each individual in order to determine whether exposure 

to a particular substance is linked to differences in mortality or disease incidence rates. 

These studies are typically analysed by treating cumulative exposure as a categorical variable 

and then comparing disease or mortality rates between different exposure groups. A main 

shortfall of such analyses is a heavy dependence on the choice of these exposure categories, 

as certain choices may mask or exaggerate important features of the doseresponse curve. In 

this project, an extension to the Cox proportional hazards model is used to treat cumulative 

exposure as a continuous variable and model the doseresponse curve nonparametrically for 

a study of aluminium smelter workers conducted by the British Columbia Cancer Agency 

and compare the results to the categorical analyses. 
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Chapter 1 

Introduction 

There are many known and suspected carcinogens present in today's world. Asbestos, 

cigarette smoke, and radiation are three examples of agents that have definitively been 

shown to be linked to increased mortality and cancer occurrence [3]. A large number of 

carcinogenic relationships have been proven through studies incorporating long-term follow- 

up on large numbers of individuals; these studies are called cohort studies. By starting off 

with a sizable number of healthy individuals and tracking their exposure and disease histories 

over a prolonged period of time, cohort studies allow one to measure the effect of differential 

exposure on mortality and disease rates. It is possible to compare overall mortality or 

incidence of the cohort to some external population (usually the general population of the 

region/country in which the cohort is located), or compare different subgroups within the 

group to identify groups with higher rates of disease. These subgroups can be based on 

levels of exposure, age, job description, or many other classifications. 

Typically, the analysis of cohort studies involves grouping cumulative exposure into a 

fairly small number of categories and then using either non-parametric methods or Poisson 

regression to compare disease or mortality rates between the different groups. A possible 

downfall of these methods is that certain choices of categories may mask or overemphasize 

certain features of the dose-response relationship. Recommendations have been made to 

select exposure categories a priori in various ways in order to reduce bias, but the potential 

for missing important aspects still remains [8]. In this project, the counting process form 

of the Cox proportional hazards model will be used to model cumulative exposure as a 

continuous variable in the hope of removing the problems associated with category selection. 

In Chapter 2, cohort studies will be described, along with methods to analyze cohort 
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data. Section 2.1 will include an overview of the terminology and main design and imple- 

mentation features of cohort studies. Sections 2.2 and 2.3 will describe the two common 

methods used to analyse cohort data: non-parametric analysis and Poisson regression. Sec- 

tion 2.4 begins with an overview of Cox proportional hazards models, then describes how 

the counting-process formulation of the Cox PH model can be used to analyse exposure 

as a continuous variable, as opposed to a categorical variable as used in the two previously 

described methods. The chapter concludes with a discussion about issues specific to occupa- 

tional cohort studies and how they affect the implementation of the three analysis methods 

described. 

Chapter 3 describes the application of the three analysis methods to data collected from 

a study of workers at an alumimum smelter in British Columbia. Sections 3.1 and 3.2 give 

an overview of the goals of the study and the data used. Section 3.3 briefly summarizes 

some results for the overall cohort analysis. In Section 3.4, the data is analysed by treating 

exposure as a categorical variable and using non-parametric methods and Poisson regression 

to quantify the relationship between exposure and incidence of both bladder cancer and non- 

Hodgkins lymphoma. Section 3.5 covers the Cox proportional hazards analysis, including 

the extensive data manipulation needed to obtain the proper data format needed in order 

to use the counting process formulation. The final section in Chapter 3 is a discussion 

comparing the results of the three analysis methods. 



Chapter 2 

Methodology 

2.1 Overview of Cohort Studies 

2.1.1 Description 

Cohort studies hold a fundamental place in epidemiological research. By following 

a defined group of individuals over a long period of time, it is possible to study 

the association between a given exposure and one or more disease outcomes and 

possibly identify a causal link. Many of the studies that definitely established the 

carcinogenicity of various agents were cohort studies [3]. 
First, a cohort is defined by identifying a group of individuals. Often these individ- 

uals share some kind of experience or condition, such as employment or residence in 

the same location/region, but many other criteria can be used to assemble a suitable 

group of individuals. By following this group over an extended period of time and 

recording exposure and disease information, rates of disease incidence can be obtained, 

and relationships between exposure and incidence can be quantified by comparing the 

rates of disease outcome in exposed and unexposed groups. Incidence rates can be 

compared between subgroups of the same cohort (for example low exposure vs high 

exposure groups), or between the cohort and some reference population. 

There are two types of cohort studies, which differ in how follow-up is conducted, 

but not in analysis: In prospective cohort studies, the cohort is put together in the 

present, and then individuals are followed into the future. In retrospective cohort 

studies, historical records are used to assemble a cohort at some well-defined time 
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in the past, and then exposure information and disease occurence information are 

collected up to the present time. With prospective studies, results will not be available 

for many years, but researchers have a lot of control over the quality of follow-up 

and the type of information collected. Retrospective studies offer potentially more 

immediate results; however, one must make do with the information that is already 

available, which may not always be the exact type of data which the researcher would ' 

like. 

The basic goal of a cohort study is to compare the risk of death or cancer inci- 

dence between groups of individuals. More specifically, one can compare the disease 

risk of subgroups within the cohort (say unexposed versus exposed individuals) or 

between the cohort and some external population (usually the general population in 

the region/country where the cohort is located). This is accomplished by comparing 

the rates of the outcome of interest (death or cancer incidence) between the groups. 

Naturally, rates of death and cancer incidence vary widely with age and also with 

calendar period, so if two comparison groups differ in composition with respect to 

either or both of these two variables, their raw disease rates will most likely also be 

different, regardless of whether the exposure experience differs between the groups or 

not. In a cohort study, we are not directly interested in the effects of age or calendar 

time (although we may want to study their interaction with exposure), so measures 

must be taken to  control for these two variables. This is done by stratification and/or 

inclusion of age and calendar year as covariates in a regression model 

Further analysis of the patterns of disease risk within a cohort can be done by 

dose-response modelling: by categorizing the degree of exposure (even in a crude 

manner) one can ascertain which groups are at highest risk and assess the shape of 

the dose-response curve. For example, one can see whether there is increasing risk 

with increasing levels of exposure, and quantify the association. It is also of interest 

to assess the temporal relationship between exposure and disease. Most cancers do 

not manifest themselves until years after a person first experiences a given exposure, 

therefore it is of interest to  quantify the delay of onset. Also, increased duration of 

exposure (as opposed to the mere presence) is often associated with increased risk 

of disease, and should be studied. If may be of further interest to assess how risk 

changes after an individual is no longer exposed to a given agent. 



CHAPTER 2. METHODOLOGY 5 

2.1.2 Design and Implementation of Cohort Studies 

Although the specific circumstances and goals of each cohort study will be different, 

there are a number of fundamental issues that must be clearly resolved before the 

study can begin [3]: 

Inclusion rules for the study: From the very name of the type of study, it is 

obvious that a clear definition of the study cohort is of vital importance. Often, 

cohorts are defined by either geographic location (eg. all residents of a certain 

city at a particular time), or by occupation (eg. all individuals who worked at 

a certain factory, held a certain profession between two predetermined dates, or 

were employed at one specific date). 

Entry and exit dates: Since each individual in the cohort contributes person- 

years of observation time to the study, it is crucial to know exactly when obser- 

vation time begins and ends. The date of entry into the cohort is the first date 

that the individual is considered to be at risk. This is not necessarily the date 

-of first exposure, as many cohort studies are concerned only with individuals 

who have accumulated a specified amount of time past their first exposure. The 

date of exit for a particular individual is either the date of disease occurence 

(or death) or their his or her date of follow-up where disease/vital status was 

known. 

0 Follow-up: Since the whole purpose of a cohort study is to follow individuals 

over time and record exposure and disease information, a high quality of follow- 

up information is essential. One would like to capture as much observation time 

per person as possible, so mechanisms must be in place to reliably obtain vital 

status and/or disease information after individuals have ceased to be exposed. 

Information o n  disease: There must be unambiguous coding of disease for all in- 

cidences. A common coding for this is the International Classification of Diseases 

(ICD) . 

Exposure information: The type and detail of exposure information must ade- 

quately support the aims of the study. Begin and end dates of exposure must 
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be unambiguous, and, as much as possible, exposure information must be quan- 

tifiable and available at the individual level. 

Information on  other exposures: Quite often an exposure other than the ones 

being explicitly studied can be a confounding factor in the analysis, and in- 

formation on any known or suspected confounders should be collected if there 

are resources available to do so. This will help increase confidence that any 

dose-response found after analysis is indeed directly related to the exposure in 

question instead of being an artifact of some other unmeasured behaviour or 

exposure. A typical confounder is smoking. 

The power of the study: Since a cohort study requires a large commitment of 

resources, it is vital to know at the outset what kind of results one could expect 

to find. If the study is too small to actually detect any potential excess risk, 

there is little point in undertaking it. 

2.2 Dose-Response Modelling in an Occupational Cohort Set- 

t ing 

2.2.1 Importance of Dose-Response Modelling 

Many early retrospective cohort studies focused only on discovering the presence or 

absence of a link between exposure and mortality or cancer incidence. As new method- 

ology was developed, the focus shifted towards determining how different patterns of 

exposure led to changes in cancer risk. This led to the consideration of dose-response 

curves, which describe the change in relative risk with increasing exposure. 

Ideally, a simple form would be found for the dose-response curve, since it is 

believed that the true underlying relationship between exposure and response is indeed 

simple in nature [8]. Of course, the data a t  hand will not fit any model perfectly, so 

there will inevitably be a tradeoff between model simplicity and goodness-of-fit, no 

matter which model is eventually chosen. 
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2.2.2 Quantifying and Measuring Exposure 

In order to study how relative risk changes with increasing exposure, one must first 

decide how to quantify and measure eposure. 

L L E ~ p ~ ~ ~ r e l l  here can refer to a specific chemical, environmental, or lifestyle agent, 

or it could refer to a quantity such as "time employed" which could be regarded as 

a surrogate for some (possibly unknown) physical exposure. In either case, measure 

ments of exposure must be obtained for each individual throughout the study so that 

the association between exposure and disease can be quantified. 

Ultimately, the quality of an occupational cohort study relies heavily on the qual- 

ity of the exposure measurement techniques, so great care must be taken to obtain 

the most accurate measurements possible given the situation. In terms of collecting 

reliable exposure information, a prospective cohort study is clearly superior because 

one can decide at the outset what type of information to collect and how best to go 

about measuring and recording it, within the resources available to the researchers. 

Depending on the nature of the exposure agent, one can, for instance, attach individ- 

ual measurement devices to individuals, or measure exposures in specific work areas 

for periods of time. With a retrospective cohort study, on the other hand, one is 

limited by the type of exposure information that has already been collected. A t y p  

ical situation is to have work history records for each individual that document the 

job title, department, and physical area of workplace where the job was performed, 

as well as start and stop dates for each job. A retrospective exposure assessment is 

then needed to assign mean daily exposure levels to the different job titlelarealtime 

classifications. There are many methods available for performing such an exposure 

assessment, and advancements to these techniques have been made in recent years 

[4]. In particular, statistical modelling and extrapolation are being used instead of 

expert-based assessment where direct measurements are not available. 

There are various ways to quantify and categorize exposure for use in dose-response 

modelling. The most commonly used measures are time since first exposure, duration 

of exposure, and cumulative exposure. The choice between them can depend on the 

type of data available, the aims of the study, and the type of doseresponse that one 

hopes to detect. To analyse time since first exposure, one simply needs a single date 



CHAPTER 2. METHODOLOGY 8 

for each individual corresponding to the first time that they were exposed to the 

given agent (in addition to the data needed for mortality or incidence analysis). For 

duration of exposure, one needs to know whether the individual was exposed or not for 

every time interval considered in the study. For cumulative exposure, a quantitative 

level of exposure for each individual must be ascertained for each section of time. 

One advantage of looking at time since first exposure or duration is that there is no 

ambiguity as to  how to measure time: as long as the dates in the work history records 

are correct, it is easy to determine how long an individual has been exposed to a 

given agent, and how long ago the first exposure took place. To analyze cumulative 

exposure, more care is needed, especially in retrospective cohort studies where one 

cannot go back in time to  collect exposure measurements. One must decide on "low" 

or "high" levels of exposure, how exposure categories are going to be chosen, and what 

numeric value is going to  represent each of these categories. Also, great care must be 

taken to assign mean exposure levels for jobs or areas where no direct measurements 

exist in order to avoid potential bias. 

2.2.3 Latency 

Quite often a lag time is used, which entails calculating the cumulative exposure at 

a point which is a predetermined amount of time before the person-year in question. 

Incorporating a lag time can help to minimize bias that arises from the 'healthy 

worker effect'. This effect occurs because a worker who is accumulating exposure 

(and crossing over category boundaries) is necessarily still employed and therefore a t  

a lesser apparent risk of death. The lag can also help account for a possible latency 

period, which is the delay between exposure and death from the disease (or incidence 

of the disease). Often, various lag times are analyzed to determine the most reasonable 

latency period for the cause of death or cancer site in question. 

2.2.4 Complexity of Occupational Cohort Data 

In contrast to most counting process survival analyses, data from an occupational co- 

hort study is often very complicated. Instead of a single binary variable that changes 

once for an individual (eg. transplant/no transplant), or a repeated measurement a t  
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regular intervals (eg. blood pressure at yearly checkups), the quantity of interest is 

usually cumulative exposure, which changes continuously but is not measured contin- 

ually on an individual basis. In order to quantify exposure, a job exposure matrix is 

used. The job exposure matrix gives a mean daily exposure level for each jobltime 

period combination, and covers every job held during the study period. There are 

many issues that arise in the creation of a job exposure matrix; especially in a retro- 

spective cohort study exposure levels from the past must be assessed as accurately as 

possible. 

For each individual, the work history records can be matched to the job exposure 

matrix to obtain mean daily exposure levels for each job that was held. Multiplying 

the duration of the job by the exposure level gives the cumulative exposure received 

during that job, and these cumulative exposures can be summed to get the cumulative 

exposure of an individual at any point in time. 

A practical difficulty with occupational cohort datasets is that there are multiple 

records for each individual corresponding to each job, and while cumulative exposure 

is readily available for endpoints of each record, a dataset in this form does not 

accurately record cumulative exposure a t  the failure times in the cohort. 

2.3 Non-Parametric Analysis of Cohort Studies 

The most natural study question for a cohort is whether or not disease rates differ 

between people in groups that are differently exposed. In order to assess this, one 

must first take into account changes in disease rates that are caused by differences in 

ages and calendar time. It seems obvious that age would have a significant effect on 

an individual's instantaneous likelihood of developing cancer or dying. Calendar time 

is also important, since disease rates in the general population often fluctuate over 

time, and changes in this background rate must be accounted for. 

The simplest way to control for age and calendar time is to stratify by age and 

calendar period. After the desired age intervals and calendar periods have been cho- 

sen (typically, both are 5-year intervals), each agelcalendar period combination is 
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regarded as a stratum. Assume that there are J strata in total. For the cohort, 

observed numbers of deaths dj and total person-years of observation time nj are 

calculated for each of the strata. Then stratum-specific rates are straightforwardly 

calculated as: 

Here, the i j  are viewed as estimates of the underlying true disease rate in the 

stratum, Xj. The goal of a cohort study is to determine whether these true rates 

differ between groups (ie. between the cohort and the general population) and how 

the rates are affected by differing exposure. 

2.3.1 External comparisons 

Overall cohort 

If comparison with an external population is desired, the stratum-specific rates for 

this reference population are needed, and are calculated in the same manner as the 

cohort stratum-specific rates. The external population's death rate for stratum j will 

be denoted Xj'. 

To calculate the number of deaths that would be expected in a given stratum 

j if the cohort had the same stratum-specific rates as the reference population, the 

external rate in stratum j is multiplied by the number of person-years in the jth 

stratum of the cohort. Denoting the expected number of deaths in stratum j as E; 
we have 

The most common quantity used to compare the rate of death between a cohort 

and an external population is the standardized mortality ratio (SMR). When disease 

incidence is of interest, the corresponding quantity is the standardized incidence ratio 

(SIR), which is calculated in an identical fashion. The SMR is defined as the ratio 

between the observed deaths in the cohort and the expected number of deaths, which 

is calculated by applying the external population's rates to the cohort's age structure. 
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Letting D denote the total number of observed deaths in the cohort and E* denote 

the total expected number of deaths: 

xi=:=, 4 - - D - - D S M R  = - 
CjJ=IEj* E* 

An SMR that is greater than 1 indicates an excess of risk in the cohort; an SMR 

that is less than 1 indicates a deficit of risk. As with any statistical quantity, a 

measure of significance is required in order to test the hypothesis that the SMR is not 

equal to 1 (ie. that the risk of disease differs between the cohort and the reference 

population.) This is accomplished by assuming that under the null hypothesis the 

observed number of deaths, D has a Poisson distribution with mean and variance E*. 
P-values can be calculated using either exact tables of the Poisson distribution, or 

by various approximations which refer to normal or chi-square tables 131. Confidence 

intervals for D can also be found using either exact methods or approximations, 

analagously to the calculation of pvalues. To obtain exact or approximate confidence 

intervals for the SMR, the upper and lower endpoints of the confidence interval for D 

are simply divided by the observed deaths and multiplied by the SMR. 

The reliability of the SMR depends on the assumption that the rate ratios are 

constant across all age categories. If this assumption does not hold, the SMR can be 

severely biased, although this is rare in practice. 

Comparison of cohort subgroups 

Regardless of whether a significantly large or small SMR is found, there may still be a 

dose-response relationship if mortality rates differ among cohort subgroups. Typically, 

causes of death that are of interest a priori or those with a significantly large or small 

SMR are selected for a subgroup analysis. The simplest type of subgroup comparison 

is to determine whether disease rates are the same in different cumulative exposure 

categories or not. 

After a set of categories has been chosen, the person-years in the cohort must be 

correctly assigned to those categories. For each person-year, one needs to calculate 

which exposure category the individual would fall into if death occurred during that 

year, rather than just use the cumulative exposure for the individual at the end of 
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their observation time. Once the person-years have been assigned to the appropriate 

exposure category (and categories for any stratification variables that are being used), 

one can then calculate SMRs for each exposure category. Assume there are K exposure 

groups. Then the expected number of deaths for each category is calculated as: 

and the SMRs for each category are calculated as: 

The overall SMR can be represented as O+/E; where 0+ and E; are the total 

number of observed deaths and expected deaths in the cohort. 

In occupational cohort studies, differences in risk between exposure groups within 

the cohort are of greater interest than differences between the exposure groups and 

the external population. A large SMR may suggest that individuals in the cohort are 

receiving some sort of exposure that is increasing their risk for that particular cause 

of death. In order to demonstrate causality, however, one must show that an increase 

to a specific exposure leads to an increase in risk of death. 

Using the lowest exposed group as a baseline, relative risks ll/k can be calculated 

for the other exposure groups by calculating the ratio of SMRs of group k to group 1. 

Pairwise significance tests can be carried out by using the binomial distribution, and 

Pearson's x2 test can be used to assess the null hypothesis that none of the relative 

risks are different than 1. The test statistic for the x2 test is as follows: 

In the above formula, E; = O+(E;/E;) is the "adjusted expected value" [3] 
calculated under the hypothesis that all the SMRks  are equal. 

In order to compare differences in risk between the K exposure categories and 

the baseline (k = 1) category, the ratio of SMRks can be used. The relative risk of 

exposure group k compared to exposure group 1 is: 
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Values of $k greater than 1 denote an excess of risk in exposure group k compared 

to exposure group 1, while values less than 1 denote a deficit of risk. Obtaining p 

values and confidence intervals for the q k s  requires regarding the distribution of the 

observed deaths as Poisson. Assume, for simplicity, that we have only two exposure 

categories (k = 2). Then O1 - Poisson(O1 E,*) and O2 N Poisson(02E,'). Now denote 

O1 as 8 and set $ = 02/01. Then O2 = $8. Now we are interested in the distribution 

of O2 conditional on the sum 0+ = O1 + 0 2 .  This distribution is binomial with 
* Solving for $ we get: parameter IT = E;+$Ez . 

It can be straightforwardly shown that the maximum likelihood estimate (mle) of 

7r is .ir = 0 2 / 0 + .  Then, by substitution, the mle of $ is 

This is just the ratio of the SMRs as described above. In order to obtain confidence 

limits for $, one must find confidence limits for 7r and then transform them. Breslow 

& Day [3] give exact 100(1 - a)% CIS for 7r as: 

Here, Fa12 (ul, u2) represents the 100a/2 percentile of the F (ul, u2) distribution. 

When looking for a dose-response effect, it is not of particular interest to ascertain 

pairwise differences between the various exposure categories and the baseline. Rather, 

it is desirable to test whether there is a monotonic trend in the SMRs with increasing 

exposure. To do this, the following Poisson trend statistic with 1 degree of freedom 

can be used: 
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Here xk is a quantitative dose level representing the kth exposure category (often 

the midpoint). If no quantified exposure is available and the categories are just 

ordered, simply using xk = k would work. 

One great disadvantage of categorizing cumulative exposure for analysis is that 

the results can be very sensitive to the choice of cutpoints for the exposure variable. 

In particular, the choice of the baseline comparison group can have a large effect 

on the magnitude and pattern of the resulting relative risks. Also, the number of 

exposure categories needs to be carefully considered. Too few categories could mask 

any particularities in the pattern of dose-response; too many categories could lead to 

too many parameters and would cause problems if the data is sparse (eg. if the disease 

in question is fairly rare). Some recommended strategies for cutpoint selection are a.) 

to decide a priori on some set of cutpoints, or b.) to use quantiles of the exposure 

distribution of either subjects or healthy members of the cohort [8]. Larger datasets 

are more robust to different choices of the number and placement of cutpoints. 

2.3.2 Internal comparisons 

So far, any comparisons between cohort subgroups have been done using the SMRks 

which are dependent on external rates. We have already mentioned the possible bias 

for any individual SMRk but there is also a possible problem with the ratio of two 

SMRs: if age or strata distributions differ significantly between the two groups, the 

resulting SMR ratio could be severely biased, to the point of changing the sign of the 

effect in severe cases [3]. 

In order to compare subgroups without reliance on external data, internal stan- 

dardization can be used. This is done by combining all the exposure groups together, 

calculating the stratum-specific rates and then comparing each subgroup to this in- 

ternal standard. The stratum-specific death rates are then: 

The expected number of deaths in stratum k is then calculated as follows: 
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Internally standardized mortality ratios can be calculated by dividing the number 

of observed deaths by the number of expected deaths in each stratum, and then 

relative risks are obtained by taking the ratio of these internal SMRs analagously to  

the external comparisons. As with the adjusted expected values E,', the sum of the 

Ek is equal to the sum of observed deaths in the cohort: These expected values can be 

used in place of the E: in the formulas to carry out tests for homogeneity and trend. 

These tests are not exact and tend to be rather conservative. 

Both the external and internal comparison methods are simple to  carry out and 

are usually viewed as just a preliminary glimpse into the data that motivates further 

analysis using parametric or semiparametric methods such as those described in the 

following sections. Using modelling techniques can allow us to incorporate covariates 

into the analysis, and also better account for the effect of age or strata membership 

by estimating the coefficients associated with these variables. Furthermore, we can 

look for an adequate functional form for the dose-response curve, which will hopefully 

provide a clearer picture of the relationship between exposure and death or cancer 

risk. 

2.4 Analysis for Grouped Cohort Data 

In this project, we are particularly concerned with modelling the relationship between 

the degree of exposure and rates of cancer death or incidence. We want to be able to 

separate the effects of exposure from those of other factors such as age and calendar 

period. To this end, we assume that we have data grouped into J agelcalendar 

period strata and K exposure categories. If there are djk deaths and njk person-years 

of observation time in the jth stratum and 

death or incidence rate is denoted as: 

kth exposure category, then the observed 

The observed death counts djk are assumed to have a Poisson distribution with 

mean and variance Ajknjk and the person-years denominators are assumed to be fixed. 

The most common model that is used for dose-response analysis is the multiplica- 

tive model. The basic model equation is: 
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where Bj corresponds to stratum j and $k is the relative risk for disease for exposure 

level k compared to the lowest exposure category (k = 1). Taking the logarithmic 

transform, this model can be restated as: 

where ~j = logej and Pk = log$k. In order to be able to include other regression 

coefficients into the model, the multiplicative model can be generalized as follows: 

Here, the x j k  are pdimensional row vectors of regression variables, and the Pk 
are the corresponding coefficients. The regression variables in this model represent 

fixed covariates. Since the exposure information is now contained in the vector of 

covariates, the exposure groups can be represented in various ways, depending on 

how much quantitative information is available about the level of exposure: 

1. As a set of k- 1 dummy variables indicating membership of a particular category 

or a single variable with k values treated as a factor 

2. As a single numerical variable taking values 1 , .  . . , k, imposing an order on the 

categories and forcing a linear fit 

3. A variable that takes on values that reflect the actual level of exposure in each 

category (often the midpoint), again using a linear fit 

Since the djk are considered to have a Poisson distribution with E(djk) = njkXjk, 

we can rewrite the general multiplicative model to get a Poisson regression model: 

The logarithm of person-years njk is included as an offset term that has a known 

coefficient of 1. This means that we are only modelling the number of deaths in 
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each stratum/exposure category, ignoring the fact that if we had observed a different 

number of deaths, we would have also obtained a different number of person-years. 

For the purposes of this project, we will consider age and calendar period as two 

separate stratification variables, and use exposure category as a factor and so we 

will rewrite the above model to reflect this. Assuming that we have I age strata 

and J calendar periods, define indicator variables that take value 1 for person-years 

occurring in the stratum in question and 0 otherwise. 

We can then model the log expected number of deaths in each combination of 

exposure categorylstrata as follows: 

log E(dijk) = log n , j k  + cqage, + Pjcalendarj + xkP 

Once the model has been fit, the relative risks comparing exposure groups can be 

calculated by exponentiating the estimated regression coefficients b k  which correspond 

to the exposure categories. Similarly, the relative risks of the various strata to the 

baseline group are also obtained by exponentiating the appropriate coefficients. 

As with the analysis of SMRs, it is desirable to conduct a test for trend to  as- 

sess whether there is an increasing or decreasing rate of disease with an increase in 

exposure. This is done by fitting the model with a single continuous variable xk r e p  

resenting the level of exposure for each category. This term is then included as a 

linear term in the model fit. If the exposure categories represent intervals of some 

quantitative measurement, then one can use the midpoint of each interval as the value 

of the new covariate. If exposure is instead represented as a set of k ordered categories 

that do not have a readily available physical quantitative measure, simply using the 

category number xk = k is sufficient. The model fit is then: 

Small pvalues for the effect of x are evidence that there is indeed a trend that is 

linear in x. 
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2.5 Analysis for Continuous Cohort Data with Time-Dependent 

Covariat es 

In order to get a clearer picture of the effect of exposure without the potential hazards 

of category selection, it is desirable to model exposure as a continuous, time-dependent 

variable. This can be done using an extension of the Cox proportional hazards model. 

In this section, we will briefly introduce the Cox proportional hazards (PH) model, 

then describe the counting process formulation and explain its use in the analysis of 

occupational cohort data. 

2.5.1 Introduction to the Cox Proportional Hazard Model 

Assume we have n individuals in a study group and we are interested in how differing 

values of various covariates affects survival of these individuals. Let hi(t) denote the 

hazard function for individual i, i.e. the instantaneous probability of failure at time 

t. In the context of cohort studies, failure represents death of a particular cause or 

diagnosis of a specified cancer. For an individual i, the Cox model specifies the hazard 

as: 

Here, Xi(t) is the set of covariate values for individual i at time t. These covariates 

can be either fixed or time-dependent. The nonnegative function ho(t) is the baseline 

hazard function, and is left unspecified. P is a vector of coefficients corresponding 

to X(t). g(Xi(t), P) is some known function. A common choice for this function is 

g(Xi(t), P) = eXict)B. For two individuals with fixed covariate vectors, the ratio of 

their hazards is given by 

This shows that the hazards of the two individuals are proportional, and that a 

change in covariate values affects the hazard function in a multiplicative fashion. 
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In order to examine the likelihood function, we will use g(Xi(t), ,f3) = ex'(t)P. 

Assume that for each of the n individuals we have observed the pair (ti, &) where ti 

is either a lifetime or a censoring time and 6i is an indicator variable that takes the 

value 1 if ti is a lifetime and 0 if ti is a censoring time. Furthermore, assume that we 

have covariate information xi for each individual and time t ,  where xi is a vector of 

covariate values. Let K be the number of distinct failure times in the data set, and 

then define Rk as the risk set at time t(k), ie. the set of individuals that are alive and 

at risk just prior to failure time t(k). Then the likelihood can be written as 

The above equation is not a likelihood in the usual sense, but its use for inference on 

,f3 has been justified through its formulation as both a marginal and partial likelihood 

[5]. Score and information functions can be straightforwardly calculated, and the 

resulting estimator for ,f3 has been shown to be consistent 
- 

2.5.2 The Counting Process Formulation 

and asymptotically normal. 

In order to take into account timedependent covariates, the counting process form 

of the Cox model is used. This form is very versatile and allows for many useful 

extensions of the Cox model: multiple events per subject, left truncation, and t ime  

dependent strata and covariates [9]. 

In the standard Cox proportional hazards model described in the previous sec- 

tion, each individual has observed data consisting of the pair of variables (ti, &). 

In the counting process formulation, this data is replaced with a pair of functions 

(Ni (t) , Y, (t)) , where 

Ni(t) = number of events that are observed for individual i in the interval [0, t] 

1 if individual i is in the risk set at time t 
Y,(t) = 

0 otherwise 
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The above formulation clearly generalizes to include multiple events per individual, 

but we will restrict our interest to the case where each individual can have at most 

one event, ie. Ni (t) 5 1 for all i, t. 

The likelihood for this more general Cox proportional hazards model is very similiar 

to that for the standard model discussed in section 2.5.1: 

In order to simplify the likelihood, define the risk score for individual i as ri(P, t )  = 

exp(P%(ti)) [9]. The likelihood can now be written as: 

In the above likelihood function bi represents the number of events that occur 

at time ti, and this it is obvious that this formulation can easily accomodate tied 

lifetimes (when this occurs, bi > 1 for the value of i in question). The likelihood can 

also take into account left-truncation, which involves redefining the indicator variable 

Y,(t). Letting ui denote the value that the lifetime of individual i is known to exceed, 

define Y,(t) as follows: 

Y,  (t) = I(ui 5 t 5 ti) 

With this redefinition, the above likelihood can be used as written. 

The partial log-likelihood is: 

log (Y, (ti)ri (t )) - log C K (ti)ri (t ) 
i=l 1=1 J 

In the fixed covariate setting, the x;(t) terms are simply replaced by vectors xi 

containing the covariate values for each individual. The inclusion of time-dependent 

covariates adds a significant amount of complexity over the fixed case because it must 

be possible to calculate the values of the covariates for each individual a t  all failure 

times ti where the individual is in the risk set. In the case of a binary variable (eg. 

a variable that indicates whether or not an individual has had a certain treatment), 
this is fairly straightforward. If the covariate is continuously varying (eg. cumulative 
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exposure to a chemical agent), the calculation can be significantly more difficult. A 
method for calculating cumulative exposure at a given time for an occupational cohort 

dataset will be discussed in 2.5.3. 
Once covariate information is available for all the k risk times, the likelihood 

function can be used for parameter estimation. The maximum likelihood estimate p 
is found by solving ~ ( p )  = 0, where 

2.5.3 Counting Process Form for Occupational Cohort Data 

Use of the counting process form to accomodate time-dependent covariates is fairly 

straightforward from a data layout perspective. A typical dataset for the basic Cox 

model contains one observation per individual with survival or censoring time, status 

(censoring time or lifetime), and other variables indicating membership of various 

strata and values of covariates. The data file would typically appear as follows: 

i d  t ime v i t s t a t  x l  x2 . . . 
where i d  is an optional variable that serves as an identification variable for each 

individual, v i t s t a t  indicates vital status or disease status and time is the time to 

"failure". The variables x l ,  x2, etc. represent stratum and covariate information. 

For the generalized counting process formulation, a dataset would contain a set of 

observations for each individual, and each observation would include a begin time, an 

end time, and status, strata and covariate information as follows: 

i d  begin end v i t s t a t  x l  x2 . . . 
It is easily seen that the usual data format is just a special case of the generalized 

formulation, since the "start" time for each record is simply assumed to be 0 on 

the time scale in question. The structural difference between the two file formats 

is minimal, and both are straighforward. Unfortunately, occupational cohort data 

is rarely collected in this form, however, so an extensive data manipulation phase is 

necessary in order to be able to do a proportional hazards analysis. 

A typical cohort study dataset would have two data files. One would contain 

demographic information and fixed covariates such as information on smoking for 

each individual in the cohort. This information would typically include at least date 
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of birth, gender, date of death, date of last follow-up and dates and types of cancer 

diagnoses, as well as an id variable to  uniquely identify each individual. The other file 

would be a work history file which would contain one record for each job that each 

individual held, including starting and ending dates, and either an exposure level, or 

an identifying code that can later be used to link to a job exposure matrix (JEM) 

which gives the mean daily exposure level for each distinct job type in various time 

periods. These files are then usually run through one of several available computer 

programs that are meant to  specifically analyze cohort studies. Most of the variables 

that we would need for survival analysis are internally calculated by these programs, 

and so are not part of the data file. These include cumulative exposure, time since 

first exposure, and time-dependent stratification variables like age group and calendar 

interval, which are calculated by classifying each person-year into the appropriate 

stratum. In order to  do survival analysis, all these variables need to be explicitly 

calculated for each work history record and then formatted as required. With a large 

cohort, this can amount to signicant amount of computing power and time. 

There is a feature of the Cox proportional hazards model that can greatly simplify 

the programming, and this can be seen by examining the likelihood: one only needs 

to know covariate information a t  the k distinct failure times, and only for those 

individuals who are in that particular risk set. So each individual's complete work 

history needs to be subdivided into intervals corresponding to the k failure times. 

Once this is done, cumulative exposure can be calculated for each worker at each 

failure time, and the start and stop dates for each records can be converted to other 

time variables. 

Since an individual who stops work and then later resumes work is still considered 

a t  risk during the hiatus, these gaps must be filled in with dummy work history 

records that are assigned zero exposure. Likewise, the time between the end of an 

individual's work history and their date of last follow-up must also be accounted for 

by including another dummy work history record. 

Choice of time variable 

In an occupational cohort study, all time references in the dataset are to calendar time, 

although other time-related variables are often included as stratification variables in 
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order to match the format of available population-based rates. However, calendar 

time is not necessarily the time variable in which we are primarily interested. There 

are three choices of time variable: age, calendar time and time since first exposure. 

The time variable selected will be the basis for the estimation of the baseline hazard 

function, which is left completely unspecified in Cox proportional hazard modelling. 

Once the basic time variable has been selected, the other two time variables are typ- 

ically included as regression variables in order to control for them. Age is commonly 

selected for the basic time variable since it is known to be an important determinant 

in cancer or death rates. Time since first exposure is also a frequent choice, but care 

must be taken since cumulative exposure can be highly correlated with time since first 

exposure, and so the effect of exposure could be lost in the estimate of the baseline 

hazard function [3]. 

2.5.4 Analysis 

Once the dataset is in the correct format for the counting process form of the Cox 

proportional hazards model, there are many options available for analysis. The goal 

of all of them is to relate increases in cumulative exposure to changes in the risk of 

death or incidence of a disease. The curve that relates these two quantities is called 

the dose-response curve, and the objective is to  be able to  describe this curve as well 

as possible. 

linear Model 

The simplest analysis is to include cumulative exposure as a single, fixed, continous 

variable xi with corresponding coefficient P. This entails modelling the logarithm of 

the rate ratio as a linear function of xi, ie. 

log RR = zip 

logarithmic model 

Experience has shown that in occupational cohort studies the rate ratio increases in a 

linear fashion at lower cumulative exposure levels, but then plateaus or even decreases 
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at higher levels [8]. A linear model would clearly not capture a plateau. By modelling 

the natural logarithm of cumulative exposure, however, this plateau effect can be 

incorporated. This is called the "logarithmic" model. 

log RR = log sib 

If there are non-exposed individuals in the cohort (xi = 0), then a small constant 

k must be added to all the xi in order to avoid taking the logarithm of 0. 

Exposure as a Factor 

In order to avoid imposing a specific structure on the dose-response curve, one could 

recode cumulative exposure into K categories and model this new variable as a set of 

K - 1 dummy variables xa, . . . , XK with corresponding coefficients ,&, . . . PK. Then 

the relative risk of exposure category k could be estimated with respect to the baseline 

category by simply calculating e z k b .  While this is still a simplistic method, it could 

be used to compare results of the Cox proportional hazards model with those obtained 

from SMR analysis or Poisson regression. Naturally, modelling exposure as a factor 

suffers from the same category choice problem as SMR and Poisson analysis. 

Other Parametric Fits for Continuous Exposure 

Another common model choice is to include the square root of cumulative exposure as 

a covariate. Like the logarithmic model, this model would capture the plateau effect 

which is common among occupational cohort studies. It is also possible to incorporate 

higher-order terms to model a polynomial fit. This allow for more flexibility than the 

linear or logarithmic model while still ensuring a smooth fit. However, this fit is not 

local, so a few data points could have a major effect on the resulting model, especially 

those that fall in the upper tails of the distribution of cumulative exposure. 

Spline Fit 

A far more flexible method for revealing the form of the dose-response is to use splines 

within the Cox proportional hazards model. By fitting data locally, instead of trying 

to fit one simplistic model to the data as a whole, splines can take into account a wide 
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variety of features in the data. Splines consist of a set of knot points and a continuous 

function made up of a series of segments that can be linear or have a higher degree. 

These segments are formed by taking a linear combination of a set of polynomial basis 

functions. There are several different types of splines, determined by how the number 

and location of knot points are chosen, and on the degree of the polynomial basis. 

Cubic splines (with continuous first and second derivatives) are usually fit because 

they have been found to provide a fairly reasonable compromise between adequate fit 

and computational simplicity. 

With regression and natural splines the number of knot points is chosen in advance. 

One can either explicitly choose the knot locations, or simply select the degrees of 

freedom, which then automatically places the knots: one knot is placed at each of 

the endpoints, and the rest are equally distributed throughout the range of the data. 

So for example, if there were four knot points, there would be knots at the 33rd and 

67'' percentile of the data, as well as the two at the endpoints. For either natural or 

regression splines, the degrees of freedom (df) represent the number of basis functions 

used for the fit. The difference between the two methods lies in the number of knots 

and the treatment of the fit beyond the outer knots. Regression splines use df - 1 

knots, natural splines use df + 1 knots and also impose a linearity constraint outside 

the outer knots. 

Depending on the data a t  hand, the arbitrary choice of knot location in regression 

spline smoothing can potentially exaggerate or mask important features of the data. 

An alternative is to use smoothing splines, which optimize knot position for the given 

degrees of freedom. This way, the algorithm can allocate more knots to more "bumpy" 

sections of the data, and therefore detect jumps and dips that may be lost by simply 

placing knots a t  quantiles. 

In the context of Cox proportional hazards modelling, splines are used to estimate 

the log hazard ratio, which can be interpreted as the log relative risk. Confidence 

bands can be constructed to  assess whether changes in the log hazard ratio show a 

statistically significant departure from a straight line or not. 
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2.5.5 Model Checking 

After the Cox proportional hazards model has been fit, it is prudent to  assess whether 

the model was indeed appropriate for the data at hand. Schoenfeld residuals are par- 

ticularly useful for this purpose. If there are K distinct failure times, the Schoenfeld 

residual at the kth failure time is: 

Here, X(k) is the covariate vector for the individual failing at time t(k). The quantity 

536, tk) is a weighted average of covariate values for those individuals a t  risk just prior 

to  time tk, with ~ , ( t ) e ~ ' ( ~ ) B  as the weights. If there are tied failure times, Schoenfeld 

residuals are calculated as: 

where dNi(s) is the number of failures occurring at time s. 

When doing any sort of proportional hazards analysis, it is important to check 

that -the proportionality assumption actually holds. For fixed covariates, this means 

that for any two subjects i and j, the relative hazard between them is: 
exiD 
- 
exj P 

This relationship should be independent of the time scale, in this case age. If 
we have a fixed categorical covariate with just a few levels, this relationship can be 

visually verified by looking at the estimated log survival curves for each covariate 

group. They should appear proportional to each other. Clearly, if there are many 

levels to the covariate, or if the covariate is continuous, it is more difficult to confirm 

proportionality. It is preferable to have a statistical test that allows one to detect 

non-proportionality. One such test is called the Z:ph test. Using a selected transfor- 

mation of the time scale g(t) (typical choices for g(t) include log(t) and 1 - KM(t-),  

where K M  (t) is the Kaplan-Meier survival curve), one calculates the Pearson product- 

moment correlation between the Schoenfeld residuals and g(tk) for each covariate and 

then tests whether this correlation is equal to  zero using the a x2 test developed to 

deal with the various choices of time scale [?I. Small pvalues indicate the presence of 

non-proportionality. 
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In addition to the Z:ph test, most computer packages can also produce plots of 

scaled Schoenfeld residuals si versus the transformed time. Scaled Schoenfeld resid- 

uals are calculated by multiplying the Sk by the inverse of the estimated weighted 

variance of X at time k, 

~ ( 8 ,  t )  = 

~ ( p ,  t ) .  This variance is calculated as: 

Then the scaled Schoenfeld residuals are Si  = v-'(), tk)sk .  If proportionality 

holds, the line fitted to the plot of the si should have a slope of 0. The Z:ph plots 

in R are augmented with a smoothing spline fit of the residuals, along with a f 2 

standard error confidence band which makes it easy to visually assess the validity of 

the proportionality assumption. 
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Application to Aluminum Smelter 

Data 

3.1 Background 

In 1989, the Cancer Control Agency of British Columbia conducted a cohort study of 

workers a t  an aluminum smelter in British Columbia [6]. The main objectives of the 

study were to determine if workers a t  the plant had an excess risk of cancer incidence 

or mortality, or mortality from non-cancer causes. It  was also of interest to  study 

the relationship between exposure to  coal tar pitch volatiles (CTPV) and mortality 

or cancer incidence a t  specific sites. Data on smoking habits was also collected, since 

smoking was a potential confounder for various cancers. 

The mortality and incidence of the cohort was compared to that of the general B.C. 

population using standardized mortality ratios (SMRs) and standardized incidence 

ratios (SIRs). A significant excess in mortality from brain cancer was observed. As 

for incidence, significant excess risk of bladder cancer incidence was found, and this 

risk was found to  be significantly related to increased exposure to CTPV. There were 

also elevated rates of brain and testicular cancer, although they were not significant. 

In 2000, the British Columbia Cancer Agency undertook an update and expansion 

of the study by repeating the analysis with the now much larger cohort of workers 

that have worked a t  the smelter for a t  least three years, with the study end taken to 

be December 31, 1999. Beyond extending the incidence and mortality studies and the 
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dose-response analysis of the old study, the aims of this new study were to update 

the dataset with new personal and work history information, to update the exposure 

assessment for CTPV by using new methods of retroactive exposure assessment, and 

to include benzo[a]pyrene (BaP) in the exposure assessment. In particular, the larger 

cohort and longer study duration would hopefully allow for better quantification of 

the dose-response relationships between exposure and cancer mortality or incidence. 

3.2 Aluminum Smelter Data 

The original cohort included all workers who had worked a t  the Alcan smelter for at 

least 5 years between January 1, 1954 and October 15, 1985. Personal information was 

collected from the Alcan records and included full names, dates of birth, and gender. 

In addition, complete work histories were obtained for each individual. These included 

job title, department, start date and stop date for each job held. Active follow-up was 

conducted to locate and ascertain vital status information from any cohort members 

that were not actively employed at Alcan at the study end date. A total of 4503 

individuals were included in the cohort, and the successful trace percentage was 91.8 

%. 
The cohort for the new study consisted of all workers with a t  least three years of 

employment at the Alcan smelter between 1954 and December 31, 1999, the cutoff 

date for follow-up. There were 7007 workers enrolled in the cohort, but 15 of these 

had no listed birthdate so the final cohort consisted of 6992 individuals. Of these, 

6395 were males and 597 were females. Because of the relatively small number of 

females (with only 51 total deaths) only males will be considered in the analysis that 

follows. 

Mortality and cancer information was obtained through linkage with the National 

Mortality Database at Statistics Canada. This information consisted of date of death 

or cancer diagnosis and the corresponding International Classification of Diseases 

(ICD) code, which indicates cause of death or the cancer site. 

No active follow-up took place in this new phase of the study, but reasonable 

follow-up information was obtained by combining several pieces of information. When 

the original study was done, both the date and location of last follow-up had been 
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recorded. For the updated study, individuals were linked through the Medical Ser- 

vices Plan (MSP) registry, which provides medical insurance for residents of British 

Columbia. This linkage provided entry and exit dates to the MSP program, indicat- 

ing whether or not an individual was a resident of BC a t  the time. All non-deceased 

individuals were censored at study end (December 31, 1999) unless the individual 

a.) was known to be out of the country a t  the time of last contact, or b.) was last 

known to be employed at Alcan prior to 1985 and was not successfully linked to the 

MSP registry. Individuals in these two categories were censored a t  their last date of 

contact. 

In the original study, a job exposure matrix (JEM) was created to assess the 

effects of CTPV exposure measured as benzene soluble materials (BSM). In order 

to  construct this matrix, the study period was first broken down into 13 smaller 

intervals corresponding to union contract periods. Then employee records were used 

to determine all distinct jobs that were held at the plant. Each combination of job 

title and time interval was placed into one of four exposure categories: no exposure, 

low exposure (< 0.2 mg/m3 BSM), moderate exposure (0.2-1.0 mg/m3 BSM), and 

high exposure (> 1.0 mg/m3 BSM). 

In the years since the original study was conducted, the methodology for r e t r e  

spective exposure assessment has advanced, and this allowed the research team to not 

only extend the JEM to include the years from 1986 onward, but also to refine and 

improve exposure assessment for the job/time period combinations that were included 

in the original JEM. The original JEM was created using expert-based assessment, 

which involved a team of union and company employees who assigned job/time period 

combinations to the four exposure categories. Subsequent work has shown that this 

type of assessment can be much improved by using quantitative methods [4]. The 

new exposure assessment for the updated study included direct measurement of mean 

daily exposure levels, statistical modelling, and extrapolation to obtain quantitative 

exposure levels for jobs with no direct measurements. The resulting JEM contains 

78 distinct job identifiers (referred to as "plant" codes) and was assessed over 9 time 

intervals. Each job/time period combination was assigned to one of 7 exposure cat- 

egories: unexposed, 0.01-0.1, 0.1-0.2, 0.2-0.4, 0.41, 1-2, and > 2 mg/m3, and the 

midpoint of these categories was used to calculate individual cumulative exposure. 
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For the highest exposure category, 2.5 mg/m3 was used for calculation. The default 

level of exposure used was 0.0001 mg/m3 BSM per day. 

In addition, a new JEM was created to capture the exposure assessment for 

benzo[a]pyrene, which is thought be more indicative of cancer risk than BSM [I]. 

This JEM also lists exposure levels for 78 different job identifiers, but divides the 

study period into 13 intervals instead of 9. Like the BSM JEM, personal exposure 

measurements were used wherever possible, and modelling and extrapolation were 

used to estimate mean daily exposure levels for jobs with no direct measurements. 

Seven categories were chosen: unexposed, 0.05-0.5, 0.5-1, 1-3, 3-7, 7-14, and > 14 

pg/m3. Again, the midpoints of these intervals were used for calculations, with 18 

pg/m3 being used for the highest category. 

For the overall cohort analysis, a 3 year lag time was used in order to help control 

for the healthy worker effect. 

3.3 Overall Cohort Analysis 

3.3.1 Mortality Study 

The mortality of the cohort was compared to that of the British Columbia popula- 

tion by calculating standardized mortality ratios (SMRs). The Laboratory Center 

for Disease Control division of Health Canada provided population mortality rates, 

calculated in 5 year age groups and 5 year calendar intervals from 1950 to 1999. For 

each individual, person years at risk were calculated from their first date of hire until 

their date of last foliow-up or death. 

Expected values of deaths and SMRs were calculated using the BC rates and 

significance tests were performed. It was assumed that the number of observed deaths 

followed a Poisson distribution with mean equal to the number of expected deaths. 

P-values and 95% confidence intervals were calculated for each cause of death. 

Overall mortality for males was found to be significantly less than that for the 

general population of British Columbia (SMR=0.87). No significant excesses were 

found, but elevated rates of brain, pancreatic, stomach, and bladder cancer were 

detected. 
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3.3.2 Incidence Study 

Since population-based cancer rates for British Columbia only exist from 1970 on, 

the mortality cohort had to be suitably redefined for the incidence study. Of the 

6395 male workers included in the mortality cohort, 642 were excluded because they 

had no person-years at risk after 1969. These individuals either died or were lost to 

follow-up before 1970. The final cohort for the incidence study therefore consisted of 

5781 males. Of these, 662 were diagnosed with cancer a t  least once, 287 were lost to 

follow-up, and 4832 had no diagnosed cancer prior to death or the end of the study. 

A significant excess of bladder, pancreas and stomach cancer was found, along 

with non-significant excesses in brain, lung and mouth cancer. 

3.4 Preliminary Dose Response Analysis and Poisson Regres- 

sion 

A preliminary dose-response analysis of the ratios of SIRS was performed on seven 

cancers of interest: bladder including in-situ, lung, kidney, stomach, brain, pleura, 

and non-Hodgkins lymphoma. 

For BSM, the following cumulative exposure categories were chosen: 0-0.05, 0.05- 

2, 2-4, 4 8 ,  8-16, and 16+ BSM-years (in mg/m3-year). 0.05 BSM-years represents 

approximately one year at the default exposure level (0.0001 mg/m3 of average daily 

exposure), so workers with less than this amount of exposure can be considered un- 

exposed. 2 BSM-years is equal to  10 years of exposure at the threshold limit value 

(TLV) for BSM, which is 0.02 mg/m3 of average daily exposure. The TLV is the 

amount of exposure below which no adverse health effect is expected. The remaining 

cutpoints are equivalent to 20, 40, and 80 years of exposure at the TLV. The ratio of 

BaP to BSM (pg : mg) is roughly 10:1, so the cutpoints for BaP were directly calcu- 

lated from the BSM cutpoints, giving the exposure categories as: 0-0.5, 0.5-20, 20-40, 

40-80, and 80+ BaP-years, measured in pg/m3-years (the highest two categories were 

combined due to low numbers of observed events and person-years). Table 3.1 shows 

the age categories and calendar periods that were used as stratification variables in 

the preliminary analyses and as covariates in Poisson regresson. 
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Table 3.1: Categories used for Poisson regression 

Age Categories -71 Calendar Periods 
1970-1974 
1975-1979 
1980-1984 
1985-1989 
1990-1994 
1995-1999 

A variety of latency periods were also analysed for the cancers of interest in order 

to determine which lag time resulted in the strongest linear relationship. Poisson 

regression was conducted with 3, 5, 10, 15, and 20 year lag times. The latency period 

that showed the strongest linear trend was selected as the "optimal lag time". 

Of the cancers analyzed, bladder cancer, non-Hodgkins lymphoma and lung cancer 

were selected to perform a more detailed analysis including Cox proportional hazards. 

Only these three sites analysed with their optimal lag will be considered for the 

remainder of the project (20 years for bladder and lung cancer, 10 years for non- 

Hodgkins lymphoma). 

3.4.1 Non-Parametric Dose-Response Analysis 

Bladder Cancer Incidence 

Using British Columbia cancer rates from LCDC, the number of expected bladder 

cancer incidences Ei was calculated for each of the k exposure categories. The SIRks  

and relative risks q5k were then obtained, along with adjusted expected values E;. 
Tests for homogeneity and trend in the SIRks  were carried out. The results are 

shown in Table 3.2. 

This first analysis of the data shows a relative deficit of risk in the second exposure 

category and then an excess in the highest three categories. Despite the "dip" and 

rise in the relative risk which is clearly nonlinear, the SIR test for trend is still highly 

significant, which suggests that there is indeed an increase in risk with increased 
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Table 3.2: External Comparisons for Bladder Cancer 

BaP years 0-0.5 0.5-20 20-40 40-80 8 0 f  

o k  26 18 16 17 13 

Ez 17.23 14.71 7.09 6.93 4.01 
SIR 1.51 1.22 2.26 2.45 3.24 
95 % CI 0.99-2.21 0.73-1.93 1.29-3.67 1.43-3.93 1.73-5.55 

q k  1 .OO 0.81 1.50 1.63 2.15 
95 % CI 0.42-1.54 0.75-2.90 0.83-3.11 1.01-4.34 

E; 31.04 26.50 12.77 12.48 7.22 
Test for homog. of SIR 10.630 pvalue 0.031 
TestfortrendinSIR 9.13 pvalue 0.003 

exposure. For the trend test, the category midpoints were used as the coefficients xk. 

For the highest exposure category, 100 BaP-years was used as the coefficient, as it is 

approximately the mean of the cumulative exposures in that category. It is interesting 

to note that only the relative risk in the highest category is statistical1 different than 

1 a t  the 0.05 level, as shown by the confidence intervals. 

Next, an internal comparison of exposure categories was conducted by combining 

all exposure categories to get stratum-specific inicidence rates and calculating the 

expected incidences Ek. The results are shown in Table 3.3. The SIRks and ?Iks 

were then calculated using these expected numbers and the tests for homogeneity 

and trend were repeated. The relative risks show a similar pattern to  those obtained 

through external comparison, with a deficit in the second exposure category, and a 

linear increase in the highest three categories. Again, both the test for homogeneity 

and trend are significant, which confirms the dose-response relationship shown by the 

relative risks. 

Non-Hodgkins Lymphoma Incidence 

Just as for bladder cancer incidence, external and internal comparisons were done for 

non-Hodgkins lymphoma incidence. The results for the external comparison are in 

Table 3.4 and those for the internal comparison are in Table 3.5. Immediately one 

notices a much stronger dose-response effect than for bladder cancer, with the risk 
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Table 3.3: Internal Comparisons for Bladder Cancer 

BaP years 0-0.5 0.5-20 20-40 40-80 80+ 

Ok 26 18 16 17 13 
Ek 29.45 26.74 13.20 13.45 7.16 
SIR 0.88 0.67 1.21 1.26 1.82 
95 % CI 0.58-1.29 0.40-1.06 0.69-1.97 0.74-2.02 0.97-3.10 

4 k  1 .OO 0.76 1.37 1.43 2.06 
95 % CI 0.39-1.44 0.69-2.66 0.73-2.74 0.97-4.15 
Test for homogeneity of SIR 9.557 pvalue 0.049 
Test for trend in SIR 7.751 pvalue 0.005 

in the highest categories being about 6 times those in the baseline category. In both 

analyses, the relative risk for the 20-40 BaP-years category is higher than would be 

expected if the dose-response relationship was truly linear, but the overall trend is 

clear. 

Table 3.4: External Comparisons for Non-Hodgkins Lymphoma 

BaP years 0-0.5 0.5-20 20-40 40-80 80+ 
Ok 3 5 7 4 8 

E; 
SIR 
95 % CI 
4 k  

95 % CI 
E; 6.71 8.84 4.29 4.13 3.03 
Test for homogeneity of SIR 13.574 pvalue 0.009 
Test for trend in SIR 10.073 pvalue 0.002 

As would be expected by the reasonably monotonic increase of the S IRk  and the 

very high relative risks in the highest categories, both the tests for homogeneity and 

trend in the SIRks  have very small pvalues for both internal and external standard- 

ization. As with bladder, only the highest category has a relative risk significantly 

greater than 1, even though the magnitude of the relative risks is much greater. This 
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Table 3.5: Internal Comparisons for Non-Hodgkins Lymphoma 

BaP vears 0-0.5 0.5-20 20-40 40-80 80+ 

E k  7.19 8.62 4.09 3.95 3.14 
SIR 0.42 0.58 1.71 1.01 2.55 
95 % CI 0.09-1.22 0.19-1.35 0.69-3.52 0.28-2.59 1.10-5.02 

4k  1.00 1.39 4.10 2.43 6.11 
95 % CI 0.27-8.95 0.94-24.57 0.41-16.56 1.47-35.77 
Test for homog. of SIR 13.568 p-value 0.009 
Test for trend in SIR 10.136 p-value 0.001 

is due to the small number of cases (27), which causes the extreme width of the 

confidence intervals. 

Lung Cancer Incidence 

Tables 3.6 and 3.7 show the external and internal comparisons for lung cancer. The 

results of the two analyses are almost identical to each other, and show a strong 

linear trend with the highest exposure category having 2 times the risk of the baseline 

category. Both tests for SIR homogeneity fail to reject the null hypothesis, but the 

trend tests are both significant at  the 0.05 level. 

Table 3.6: External Comparisons for Lung Cancer 

BaP years 0-0.5 0.5-20 20-40 40-80 80+ 

ok 4 1 43 23 22 18 
E; 46.77 39.06 19.41 19.02 10.16 
SIR 0.88 1.10 1.19 1.16 1.77 
95 % CI 0.63-1.19 0.80-1.48 0.75-1.78 0.73-1.75 1.05-2.80 

4k 1.00 1.26 1.35 1.32 2.02 
95 % CI 0.80-1.98 0.77-2.31 0.75-2.29 1.09-3.60 
E; 51.15 42.71 21.23 20.80 11.11 
Test for homogeneity of SIR 6.503 pvalue 0.165 
Test for trend in SIR 5.138 pvalue 0.023 
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Table 3.7: Internal Comparisons for Lung Cancer 

BaP vears 0-0.5 0.520 20-40 40-80 80+ 
ok 41 43 23 22 18 
E k  50.98 43.23 20.85 20.79 11.15 
SIR 0.80 0.99 1.10 1.06 1.61 
95 % CI 0.58-1.09 0.72-1.34 0.70-1.66 0.66-1.60 . 0.96-2.55 
q k  1 .OO 1.24 1.37 1.32 2.01 
95 % CI 0.741.95 0.79-2.34 0.752.26 1.09-3.57 
Test for homog. of SIR 6.456 pvalue 0.168 
Test for trend in SIR 5.167 pvalue 0.023 

3.4.2 Poisson Regression 

After the preliminary non-parametric analysis, Poisson regression was used to  model 

the dose-response relationship. The same age groups and calendar periods used as 

strata for the SIR analyses were included as covariates in the models, and the exposure 

categories were kept the same. 

Let exposurek, k = 1, . . . , 5  be a series of indicator variables for the 5 exposure 

categories. Similarly, let age;, i = 1,. . . ,8  and calendarj, j = 1 , .  . . ,6  represent indi- 

cator variables for the age groups and calendar intervals respectively. Note that it is 

individual person-years, not workers, that are categorized into these groups. We now 

want to  model the log expected number of deaths in each combination of exposure 

categorylstrata as follows: 

Since the number of person-years in each stratum/exposure category combination 

is assumed t o  be known constant, lognijk is included in the model as an offset term 

with no estimated coefficient. The exponentiated cofficients that resulted from this 

model fit are the estimated relative risks, and can be easily compared t o  those obtained 

with the non-parametric analyses conducted above. 
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Bladder Cancer 

Table 3.8 shows the relative risks for the 5 exposure categories obtained from Poisson 

regression with the above model, along with 95% confidence intervals. 

Table 3.8: Poisson Regression for Bladder Cancer 

Exposure Catenorv Relative Risk 95% CI 

The estimates of relative risk obtained from Poisson regression were very similar 

to those obtained in the external comparison, although some of the values are a little 

higher. We again notice that only the coefficient for the 80+ BaP-years category is 

significantly different than 1 at the 0.05 level. 

The residual deviance for this model fit was 162.98 on 295 degrees of freedom, 

which suggests that the model may be overfitting the data. This is likely due to the 

sparseness of data within the cells. A Poisson test for trend was performed and the 

resulting pvalue was 0, further confirming the monotonic increasing trend noticed in 

the preliminary analysis. 

Non-Hodgkins Lymphoma 

With the same model and covariates as for bladder cancer, Poisson regression was 

performed for non-Hodgkins lymphoma as well. The estimated relative risks and 95% 

confidence intervals are in Table 3.9. 

The relative risks obtained were higher than those produced by the non-parametric 

analysis. We also note that the confidence intervals are extremely wide. As in the 

internal and external comparisons, the estimated relative risk for the 20-40 BaP-years 

category is much higher than that for the 40-80 BaP-years category, which suggests 

a non-linear dose-response curve. However, the small number of cases suggests that 

this may simply be an artifact of the data, rather than evidence of a truly non-linear 
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Table 3.9: Poisson Regression for Non-Hodgkins Lymphoma 

Exposure Category Relative Risk 95% CI 
0-0.5 1.00 - 
0.5-20 1.43 0.346.05 
20-40 4.58 1.16-18.01 
40-80 2.94 0.63-13.64 
80-1- 8.21 1.99-33.78 

relationship between cumulative exposure and risk of non-Hodgkins lymphoma. 

The residual deviance of this model fit was 99.13 on 384 degrees of freedom, and 

the pvalue for the Poisson test for trend was 0.00002. 

Lung Cancer 

Table 3.10 shows the relative risks and 95% confidence intervals for the Poisson re- 

gression analysis of lung cancer. 

Table 3.10: Poisson Regression for Lung Cancer 

Exposure Category Relative Risk 95% CI 
0-0.5 1 .OO - 

Here we see a very similar pattern to the non-parametric comparisons, with the 

estimated relative risks for the 20-40 and 40-80 BaP-years categories nearly identical. 

The magnitude of the relative risks are all larger than the previous estimates, but still 

only the highest exposure category has a relative risk that differs significantly from 1. 

For this model fit, the residual deviance was 223.35 on 301 degrees of freedom. 

The pvalue for the Poisson test for trend was 0. 
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3.4.3 Discussion of Prel iminary Analyses 

For all three cancer sites, the trend test shows a significant monotonic increasing trend 

in the SIRS. However, the pattern of relative risks for all three sites suggest that a 

linear fit may not be the most adequate descriptor of the dose-response relationship. 

Bladder cancer shows a category that has a deficit of risk compared to the baseline 

group, and the three analyses of lung cancer show the 20-40 and 40-80 BaP-year 

categories to have almost identical risk, which does not conform to a linear model. 

Also, all analyses of non-Hodgkins showed that the relative risk for the 20-40 BaP- 

year was as much as nearly twice that of the 40-80 BaP-year category. This suggests 

that perhaps other parametric or semi-parametric models could be useful to  better 

describe the relationship between cumulative exposure and risk. 

3.5 Cox Proportional Hazards 

3.5.1 D a t a  Manipulation 

In order to perform Cox PH modelling on the cohort data, a significant amount of 

data manipulation was necessary. In this section, the steps in the manipulation will 

briefly be described. Three data files were created, one for each cancer site. 

The original work history file had already been significantly modified in order to  do 

the preliminary analyses. Since follow-up time ends when the individual is diagnosed 

with cancer even though the person may have continued working, each individual's set 

of records needed to be truncated on their diagnosis date (if they have one). In order 

to avoid creating multiple files, indicator variables were created to  identify whether 

a record should be included in the analysis of a certain cancer, and new end date 

variables were created to  truncate records that spanned the date of diagnosis. It is 

this modified work history file that was further manipulated in order to perform Cox 

PH modelling. 

For each record in the work history file, the following additional variables needed 

to be calculated: 

a Time in days since first exposure at the beginning and end of the record 
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0 Age at beginning and end of the record (calculated as days since Jan 1, 1890) 

Birthdate of the individual (calculated as days since Jan 1, 1890) 

Calendar dates of the beginning and end of the record (as days since Jan 1, 

1890) 

In addition, extra records needed to be created to represent the time between 

the last date worked and the date of last follow-up. Obviously, no CTPV exposure 

is accrued during this time, so a dummy plant code was created to take this into 

account. The next step was to create an "event" variable to indicate whether the 

individual in question was diagnosed with cancer at the end of the time interval or 

not. At this point, the data file was imported into R, along with vectors of failure 

times (both in terms of age and time since first exposure). 

In order to assign exposure to each work history record, the job exposure matrix 

needed to be manipulated as well. The original JEM file listed average exposure 

levels for each of 78 plant codes during different intervals, with varying numbers of 

intervals covered per plant. The function suruSplit was used here to split any records 

in the JEM that covered more than one interval in order to obtain one row for every 

possible combination of time interval and plant. From this file, a 78 x 13 matrix 

was created with each row corresponding to a plant code and each column to a time 

interval. Each cell contained the mean daily exposure level for the corresponding 

plantlinterval combinations, and any empty cells were filled with zeros for ease of 

computation. 

As discussed in section 2.5.3, the likelihood for the Cox proportional hazards model 

requires one to  know the value of all covariates at each of the failure times. For this 

study, that requires the calculation of every individual's cumulative exposure at each 

of these failure times. This was accomplished in four steps: 

splitting each record that spanned a failure time into two intervals (to obtain a 

record that ends on the failure time) 

0 further splitting each of these records into "equal exposure intervals" correspond- 

ing to cells in the JEM 



CHAPTER 3. APPLICATION T O  ALUMINUM SMELTER DATA 42 

multiplying record duration by the mean daily exposure level in the appropriate 

cell in the JEM 

calculating the cumulative exposure for each individual by appropriately sum- 

ming the total exposure for each record 

The record splitting was easily accomplished using the R function survSplit from 

the survival package and using the vector of failure times as cutpoints. 

3.5.2 Time Variable 

Both commonly used time variables were considered in the analysis: age and time since 

first exposure (TSFE). Breslow and Day [3] recommend using age since it is known to 

have a highly significant effect on background cancer rates. The authors also caution 

against using TSFE since it is highly correlated with cumulative exposure, and may 

therefore obscure some of the dose-response effect. For the sake of comparison, both 

time metrics were used in the analysis, but the results were very similar, so only those 

with age as the time variable will be presented in detail here. 

Models 

For each cancer site, three simple semiparametric models were fit with cumulative 

exposure as a continuous variable: 

Linear: logRR = x;=, &alendarj + x i ( t ) j .  

Logarithmic: logRR = x!&, @jcalendarj + log(xi(t) + 1)j.  

Square root: logRR = x,6=, & a l e n d a ~ ~  + sqrt(x,(t))i .  

In the logarithmic model, 1 was added to the cumulative exposure in each record 

in order to avoid taking the logarithm of zero. Also, using 1 instead of a smaller 

constant ensured that all of the logged values were greater than 0. 

Next, cumulative exposure was categorized into the same groups as for the Pois- 

son regression analysis, and the data was analyzed with and without an adjustment 

for calendar time. The adjustment was done by calculating the calendar year for 
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each work history record and grouping the result into 5 year intervals, which were 

subsequently treated as a factor. 

For a more flexible dose-response curve, three types of smoothing models were fit: 

Polynomial fits of varying degrees 

Regression splines with knots a t  cumulative exposure interval endpoints 

Smoothing splines with varying degrees of freedom 

After all the models had been fit, Schoenfeld residuals were calculated and plotted 

to assess the validity of the proportional hazards assumption. 

3.6 Results 

3.6.1 Bladder Cancer 

First, the four simplest models were fit to  the bladder cancer data: linear, logarithmic, 

square root, and categorical. In each case, calendar interval was included as a factor 

to help adjust for changes in background cancer rates. The results are shown in 

Table 3.11. The hazard ratios are the exponentiated coefficients and represent the 

multiplicative increase in risk for an increase of one unit of the coefficient in question. 

The p values from the likelihood ratio tests are included to assess the fit of each of 

the models. 

Table 3.11: Simple Cox PH Models for Bladder 

Fit Covariate Hazard Ratio 95% CI LRT pvalue 
Linear cumexp 1.007 1.002-1.012 0.0298 
Logarithmic Log(cumexp+ 1) 1.158 1.014-1.324 0.050 
Square root Sqrt(cumexp) 1.083 1.019-1.152 0.0285 
Categorical 0-0.5 BaP-years 1.00 - 0.0532 

0.5-20 BaP-years 0.82 0.441.53 
20-40 BaP-years 1.46 0.75-2.82 
40-80 BaP-years 1.56 0.81-3.02 
80+ BaP-years 2.24 1.08-4.62 
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Figure 3.1: Bladder - Simple Models of Relative Risk as a Function of Cumulative Exposure 

Bladder - Simple Fits - Age as Time - 20 year lag 

Cumulative Expowre 

The graphs of the three continuous fits are shown in Figure 3.1. The vertical bars 

represent the point estimates and confidence intervals for the relative risks of the four 

non-zero exposure categories from the categorical fit. The linear fit appears to  be 

the closest fit to the categorical estimates, while the logarithmic and square root fits 

overestimate the relative risk for individuals in all but the highest exposure category. 

Also none of these models can account for the apparent deficit of risk in the second 

exposure category, since they are all monotone increasing functions of cumulative 

exposure. The poor fit of the logarithmic model in particular is quite evident, and is 

confirmed by the large pvalue from the likelihood ratio test. 

In order to allow a bit more flexibility in the model, a series of polynomial fits 

with varying degrees of freedom were fit to the data. Fits with 2, 3, 4, 5, and 8 

degree polynomials were computed. Since this forms a series of nested models, a 

series of likelihood ratio tests were performed to determine whether each added degree 

improved the fit. For bladder cancer, it was shown that the addition of the quadratic 

term improved the fit over the linear model, but adding more terms did not produce 

any more statistically significant improvements in fit. The quadratic polynomial is 
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Figure 3.2: Bladder - Quadratic Model of Relative Risk as a Function of Cumulative Expe  
sure 

Bladder - Quadratic Polynomial - Age as Time - 20 year lag 

shown in Figure 3.2, with vertical bars to show the point estimates and 95% CIS from 

the categorical fit for reference. With degree 2, the fit does not pick up the deficit in 

risk in the 0.5-20 BaP-years exposure category. It also seems to slightly overestimate 

the hazard ratio for the midpoints of each exposure category. It is also interesting to 

note that the confidence bands at the lower exposure levels are much narrower than 

those given by the categorical estimates. 

For comparison, the degree 8 polynomial is included in Figure 3.3. This more 

flexible curve does seem to be better match the hazard ratio estimates from the 

categorical Cox PH analysis, and the confidence bands nearly match the confidence 

intervals obtained from the categorical analysis as well. However the resulting shape 

of the dose-response curve is much more complex and after 80 BaP-years, the hazard 

ratio rises far more steeply than suggested in any of the other previous analyses. 

This is likely due to  a few observations that are having a disproportionately large 

influence on the polynomial fit and are therefore distorting the shape of the overall 

dose-response curve. 
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Figure 3.3: Bladder - Degree 8 Model of Relative Risk as a Function of Cumulative Exposure 

Bladder - Dpgree 8 Polynomial -Age as Time - 20 year lag 

Next, a regression spline was used to model the relationship between the log-hazard 

and cumulative exposure, with calendar period included as a factor. The knots were 

placed at category cutpoints, and the resulting spline, along with 95% confidence 

bands is shown in Figure 3.4. The plot reveals several of the features noticed in 

earlier analyses: a deficit of risk between 0 and 20 BaP-years and a rise in relative 

risk to over 2. The categorical point estimates and confidence intervals correspond 

well with those obtained by the regression spline fit. At about 100 BaP years, the 

graph seems to indicate a decrease of risk for those most highly exposed, which is 

due to  a small number of individuals with high cumulative exposure who were never 

diagnosed with bladder cancer. Note also the confidence bands that become extremely 

wide after 80 BSM-years due to the small number of observations in that range. 

In order to remove the somewhat arbitrary constraints on the placement of knots, 

a series of smoothing splines with different degrees of freedom was fit. 2, 3, 4, and 

6 degrees of freedom were used. None of the smoothing spline fits captured the 

risk deficit that was detected by the categorical analyses, showing instead an almost 

monotonic increasing relationship between cumulative exposure and risk. The spline 
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Figure 3.4: Bladder - Regression Spline of Relative Risk as a Function of Cumulative Ex- 
posure 

Bladder - Regression Spline -Age as time - 20 year lag 

I ,  I I I 

0 M 40 80 

Cumulative Exposure 

with 4 df is shown in Figure 3.5. 

In order to check whether the proportionality assumption actually held for this 

data, the cox.zph function in R's survival package was used. This function calculates 

tests of proportionality of hazards for each variable in the model as well as a global 

test, and the resulting object can be used to plot the Schoenfeld residuals against time. 

The resulting pvalues for all the variables were non-significant, and the pvalue for 

the overall test of non-proportionality was 0.961, which indicates no serious departure 

from the proportionality assumption. 

3.6.2 Non-Hodgkins Lymphoma 

The same three simple models that were fit to the bladder data were fit to the non- 

Hodgkins data. The estimated relative risks, along with 95% confidence intervals for 

the 4 fits are in Table 3.12. 

It is immediately apparent that the confidence intervals here are much wider than 

those for bladder cancer, which is due to the small number of cases (27, compared to 
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Figure 3.5: Bladder - Smoothing Spline of Relative Risk as a Function of Cumulative Ex- 
posure 

Bladder - Smoothing Spline - df 4 - Age as llme - 20 year lag 

Cumulative Exposure 

90 for bladder cancer). 

Figure 3.6 shows the dose-response curves for the four simple models. The linear 

and logarithmic models fit rather poorly to the categorical model relative risks, with 

the linear underestimating all 4 relative risks, and the log model overestimating the 

hazard ratios except that for the highest exposure category. The square root model 

is clearly the best of the three, judging by the graph and by the pvalues from the 

likelihood ratio tests in Table 3.12. 

The five polynomial fits all resulted in a monotone increasing dose-response curve 

which severely overestimates the relative risk of the 40-80 BaP-year category as com- 

pared to the categorical Cox PH and Poisson regression fits. As with bladder, like- 

lihood ratio tests were performed to determine whether adding higher-order terms 

lead to better fit; again, no significant improvements were found after the quadratic 

model. Figure 3.7 shows the quadratic polynomial, which fails to capture the drop in 

risk which seems to occur in the 40-80 BaP-year range. 

Next, a regression spline was used to model the relationship between the log-hazard 
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Figure 3.6: NHL - Simple Models of Relative Risk as a Function of Cumulative Exposure 

Figure 3.7: NHL - Quadratic Model of Relative Risk as a Function of Cumulative Exposure 

NHL Quadratic Polynomial -Age as Time - 10 year lag 
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Table 3.12: Simple Cox PH Models for Non-Hodgkins Lymphoma 

Fit Covariate Hazard Ratio 95% CI LRT pvalue 
Linear cum ex^ 1.001 0.994-1.008 0.0167 
Logarithmic Log(cumexp+l) 1.537 1.157-2.043 0.0066 
Square root Sqrt(cumexp) 1.189 1.072-1.319 0.0065 
Categorical 0-0.5 BaP-years 1.00 0.0279 

and cumulative exposure, with calendar period included as a factor. The knots were 

placed a t  category cutpoints, and the resulting spline, along with 95% confidence 

bands is shown in Figure 3.8. The confidence bands are noticeably wider than for the 

polynomial fits, particularly for lower levels of cumulative BaP exposure. 

The smoothing spline fits were very similar to the regression spline and polynomial 

models, except for an attenuation of risk that is shown for high levels of cumulative 

exposure. In the df=4 plot in Figure 3.9, the relative risk seems to plateau at about 

100 BaP years and then begins to  decline. This is caused by a small number of highly 

exposed individuals who were never diagnosed with NHL, just as for bladder cancer. 

This phenomenon is further discussed in Section 3.7. The zph pvalue for this spline 

was 0.998. 

3.6.3 Lung 

The results of the four simple model fits are shown in Table 3.13. Here, the relation- 

ship between cumulative exposure and relative risk seems to be non-linear, although 

the confidence intervals are wide enough to allow the possibility of a linear dose- 

response curve. The fits shown in Figure 3.10 show that all the simple models severly 

underestimate the relative risk in the highest exposure category. None of the simple 

models appear to be a particularly good fit to the nonlinear categorical hazard ratio 

estimates, but all three fitted lines are contained within the four. confidence bands. 

A series of polynomials models was fit and once again, the quadratic polynomial 
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Figure 3.8: NHL - Regression Spline of Relative Risk as a Function of Cumulative Exposure 

NHL - Regression Spline -Age as time - 10 year lag 

0 20 40 80 

Cumulative Exporum 

Figure 3.9: NHL - Smoothing Spline of Relative Risk as a Function of Cumulative Exposure 

NHL - Smoothing Spline - df 4 -Age as lime - 10 year lag 

Cumulative Exposure 
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Table 3.13: Simple Cox PH Models for Lung Cancer 

Fit Covariate Hazard Ratio 95% CI LRT pvalue 
Linear cumexp 1 .006 1.004-1.009 0.00251 
Logarithmic Log(cumexp+ 1) 1.116 1.058-1.178 0.00258 - - .  - ,  

Square root Sqrt (curnexp) 1 .063 1.034-1.093 0.00241 
Categorical 0-0.5 BaP-years 1.00 - 0.0059 

was chosen based on likelihood ratio tests, and is shown in Figure 3.11. This model 

underestimates the estimated hazard ratio in the 0.5-20 and 20-40 BaP-years cate- 

gories, and has much narrower confidence intervals than these estimates as well. 

The regression spline in Figure 3.12 captures the non-linearity of the categorical 

fit, although it slightly underestimates the relative risk in the 0.5-20 and 20-40 BaP- 

year exposure groups. Here the confidence bands are congruent with the confidence 

intervals obtained from the categorical estimates. The regression spline shows an 

attenuation of risk at about 100 BaP-years: there is a plateau a t  a relative risk of 

about 2.5, while the estimated risk in the quadratic polynomial continues to rise above 

The smoothing spline in Figure 3.13 differs from the regression spline in that it 

remains fairly flat, only beginning to rise after about 60 BaP-years. The spline is 

nearly monotonic though, which more closely correlates to  the expected shape of the 

dose-response curve. The attenuation of risk that was noticed in the regression spline 

model is present here too, plateauing at about 100 BaP-years. The pvalue for the 

zph test was 0.991. 

3.7 Discussion 

For the dose-response analysis by cumulative exposure categories, the Cox propor- 

tional hazard results were very similar to those obtained from Poisson regression. 

The largest discrepancies were observed for non-Hodgkins lymphoma, but these were 
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Figure 3.10: Lung - Simple Models of Relative Risk as a Function of Cumulative Exposure 

Lung -Simple Fits - Age as lime - 20 year lag 

Cumulative Expowre 

Figure 3.11: Lung - Quadratic Model of Relative Risk as a Function of Cumulative Exposure 

Lung Quadratic Polynomial -Age as lime - 20 year lag 

Cumulative Expowre 
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Figure 3.12: Lung - Regression Spline of Relative Risk as a Function of Cumulative Exposure 

Lung - Regression Spline - Age as time - 20 year lag 

Figure 3.13: Lung - Smoothing Spline of Relative Risk as a Function of Cumulative Exposure 

Lung - Smoothing Spline - 6 4 - 20 year lag - BaP, age a8 time 

0 20 40 80 

Cumulabve Exposure 
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likely due to the small number of cases (27) which made confidence intervals for all 

analysis methods extremely wide. A comparison of the hazard ratios for the Poisson 

and Cox proportional hazards methods is presented in Table 3.14. Five cumulative 

BaP exposure values were chosen to obtain point estimates: 0, 10, 30, 60, and 100 

BaP years. These roughly correspond to the midpoints of the cumulative exposure 

categories. For the three cancer sites of interest, the estimated hazard ratios for 

each BaP-year category compared to the baseline group are shown for the Poisson 

regression model and all seven Cox PH models that were shown earlier. 

Table 3.14: Comparison of Hazard Ratio Estimates 

Site Model Exposure Level 
0 10 30 60 100 

Bladder Poisson regression 1.00 0.84 1.53 1.65 2.36 
Cox PH - Categorical 1.00 0.82 1.46 1.56 2.24 
Cox PH - linear 1.00 1.07 1.23 1.52 2.01 
Cox PH - Square Root 1.00 1.29 1.55 1.86 2.23 
Cox PH - Log-log 1.00 1.42 1.66 1.83 1.97 
Cox PH - Quadratic 1.00 1.17 1.52 2.04 2.47 
Cox PH - Regression Spline 1.00 0.77 1.41 1.56 2.92 
Cox PH - Smoothing Spline 1.00 1.12 1.20 1.26 2.42 

NHL Poisson Regression 1.00 1.43 4.58 2.94 8.21 
Cox PH - Categorical 1.00 1.29 3.73 2.24 6.31 
Cox PH - linear 1.00 1.12 1.41 1.98 3.11 
Cox PH - Square Root 1.00 1.73 2.58 3.81 5.63 
Cox PH - Log-log 1.00 2.80 4.38 5.85 7.27 
Cox PH - Quadratic 1.00 1.36 2.30 4.18 6.41 
Cox PH - Regression Spline 1.00 1.48 3.04 4.00 7.21 
CoxPH-SmoothingSpline 1.00 1.37 2.36 4.27 6.60 

Lung Poisson regression 1.00 1.34 1.48 1.45 2.26 
Cox PH - Categorical 1.00 1.39 1.42 1.32 2.54 
Cox PH - linear 1.00 1.07 1.21 1.47 1.91 
Cox PH - Square Root 1.00 1.21 1.40 1.61 1.85 
Cox PH - Log-log 1.00 1.30 1.46 1.57 1.66 
Cox PH - Quadratic 1.00 1.07 1.23 1.49 1.91 
CoxPH-Regressionspline 1.00 1.22 1.19 1.25 2.54 
Cox PH - Smoothing Spline 1.00 1.12 1.20 1.26 2.42 
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For the Cox proportional hazards analyses with cumulative exposure as a contin- 

uous variable, square root fit seemed to be the most reasonable of the simple models 

for all three sites of interest, giving the smallest LRT pvalue for all three cancer sites. 

For bladder and lung, most of the hazard ratio estimates are similar for all models. 

There is much more variation in the estimates for non-Hodgkins lymphoma, likely 

due to the small number of cases. The estimates obtained from the logarithmic model 

differ greatly from the other models, with an estimated hazard ratio of 2.80 at 10 

BaP-years. All other models estimate the hazard ratio at this exposure level as being 

no greater than 1.73. 

The models that incorporated smoothing all captured the various features that 

had been suggested by the categorical fits, if enough degrees of freedom were used. 

This is shown in Figure 3.3, where the polynomial fit captures two "dips", or areas 

of negative slope. However, as the degrees of freedom increased, the polynomials 

and splines showed an attenuation of risk at high levels of cumulative exposure, and 

even a dramatic drop in risk for the most highly exposed individuals, which does not 

conform with any reasonable dose-response model. There are several possible reasons 

for the effect. There could be a group of individuals who are less susceptible to cancer 

(or diseases in general) for reasons not accounted for in the study; these individuals 

could accumulate very high amounts of exposure without developing the cancer in 

question or contracting some other disease which would cause them to stop working 

(and thereby no longer being exposed). There could also be a "saturation of effect" [7] 

which means that there is some threshold beyond which additional exposure carries 

no increase in risk of the cancer in question. Also, there is the possibility that some 

other unknown or unmeasured risk factor is affecting the highly exposed individuals 

differently than the less-exposed workers and is therefore altering the dose-response 

curve. Regardless of the reason, the small number of observed person-years with 

extremely high cumulative exposure are highly influential when fitting models, and 

can greatly distort the resulting dose-response curves. It is possible, of course, to refit 

the models and ignore the observations with extremely high cumulative exposure, 

but deciding on a cut-off point would be fairly arbitrary, and one could argue that it 

should not be necessary to  ignore data in order to get a "satisfactory" model fit, so 

this option was not considered in this project. 
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It was also of interest to determine, for each model, the level of cumulative BaP 

exposure that would give an estimated hazard ratio (HR) of 2. This level is often con- 

sidered when discussing matters of compensation, as a hazard ratio of 2 corresponds 

to an attributable risk of 50 %. This means that a cancer case arising a t  this level 

of cumulative exposure has a 50 % chance of having been caused by the exposure, 

rather than whatever other risk factors usually contribute to the development of the 

cancer. Table 3.15 shows the cumulative BaP levels corresponding to a hazard ratio 

of 2 for all three cancer sites and the six continuous Cox proportional hazards models. 

For bladder cancer, all models give a cumulative BaP exposure estimate of over 70 

except the quadratic model. The results for non-Hodgkins lymphoma are fairly in- 

consistent, with widely varying estimates of the cumulative BaP level giving an HR of 

2. Ignoring the linear and log fits, which seem to be an unreasonable fit for this data, 

the BaP-level giving a HR of 2 is estimated to be between 15 and 25 BaP-years. For 

lung cancer, all models give estimates that are within the highest exposure category, 

except for the log model: the estimated relative risk for this model does not rise above 

2 in the observed cumulative exposure range. 

Table 3.15: Cumulative Exposure Levels Giving a Relative Hazard of 2 

Both the Poisson regression and Cox proportional hazards models are based on 

the assumption that cumulative exposure and other factors work in a multiplicative 

manner. There are of course other possible models that may be a better fit to  the 

data, notably additive and power models [3]. A logical next step would be to write 

programs that can fit a greater variety of models to occupational cohort data with 

time-dependent covariates and then compare the various methods, perhaps through a 

simulation study. However, in order for these future steps to be feasible, some of the 

data processing issues need to be resolved in a more time-efficient matter. The sheer 

amount of programming and computing time required to prepare the data for Cox 

Site 
Bladder 
NHL 
Lung 

Model 
Linear Square Root Log Quadratic Regr. Spline Smooth. Spline 
99.28 75.10 110.05 58.01 71.29 85.14 
61.45 16.15 4.05 24.42 15.55 23.28 
107.92 128.97 NA 107.92 80.38 85.14 
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proportional hazards analysis is, a t  this point, out of proportion with the amount of 

information that is gained. 



Chapter 4 

Conclusion 

Ultimately, the goal of all the methods of analysis in the project is to gain insight 

into the dose-response relationship. The categorical methods all let the data speak for 

itself to some extent, with various constraints and adjustment for factors such as age 

and calendar time. The major downfall of these methods is that they depend heavily 

on the choice of the category cutpoints and the number of categories, so important 

features of the dose-response curve may be obscured or exaggerated. Of course, the 

true underlying dose-response relationship is unknown, so it is difficult to assess how 

well the categorical analyses are capturing the relationship. However, because a shape 

is not imposed on the dose-response curve, these methods are commonly used as 

a preliminary analysis since they are usually quick to run and may reveal striking 

features that may not be picked up if one simply jumped straight to a parametric 

analysis. 

The simple Cox proportional-hazards models impose a parametric form on the 

dose-response curve, providing interpretable parameters, an easily understandable 

functional form, and simple graphs that are monotonic. Of course, their usefulness is 

limited by how well they fit the data, as with any parametric model; if the imposed 

shape greatly differs from the observed data, any inferences made from the model 

could be misleading. 

The Cox proportional-hazards polynomial and spline methods allow for a much 

more flexible fit to the data, but there is a danger that the features they reveal are 

more an artifact of the particular data set rather than a clear picture of the underlying 
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doseresponse effect. They also require more computing time than the simple models 

to perform analysis. In addition, sparse data points in the upper end of the cumulative 

exposure range can have an exaggerated effect on the estimated curves in this area and 

can therefore distort the apparent doseresponse effect. The spline methods have the 

disadvantage of not providing interpretable parameters, making inference and testing 

more difficult. However, their flexibility does allow them to reveal interesting features 

without the risks implicit in categorizing cumulative exposure. All of the smoothing 

models essentially served to confirm the doseresponse relationships observed from the 

Poisson regression analysis. With few degrees of freedom, the resulting models were 

very similar to the simple parametric models; as the amount of smoothing increased, 

the small number of observations with very high exposure began to distort the upper 

regions of the graph, and the resulting graphs began to look less reasonable as dose- 

response models to base inference on. 

Ultimately, the most desirable outcome of an occupational cohort study is a fairly 

simple parametric model that adequately captures the relationship between exposure 

and cancer risk. Simple models are easy to interpret, and can easily be communicated 

to others in the form of parameter estimates and graphs. It is also generally believed 

that, in most cases, the "true" underlying doseresponse relationship is something 

inherently simple. Therefore the most reasonable course of action for this type of 

data seems to be to first use a categorical analysis with a priori categories (Poisson 

regression or Cox proportional hazards) as a first assessment of the data, and then 

fit a variety of simple parametric models or smoothing models with very low degrees 

of freedom. Breslow [2] advocates exploring a class of models that are reasonable 

and consistent given the data, and to avoid selecting one "best" model unless under- 

standing of the underlying process leads to a definitive choice. In this project, a wide 

variety of models have been presented and compared for one particular dataset, with 

no one model being clearly superior to the others. The collection of analyses revealed 

more about the true underlying relationship than any one model could have shown, 

and some reasonably consistent conclusions could be drawn. 
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