
TILING SURFACES

WITH STRAIGHT STRIPS

by

E. Joseph Kahlert

B.A.Sc, University of British Columbia, 1992

M.B.A., Nova Southeastern University, 1998

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in the School

of

Computing Science

c© E. Joseph Kahlert 2009

SIMON FRASER UNIVERSITY

Summer 2009

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

Name:

Degree:

Tit le of Thesis:

APPROVAT

E. Joserph Kahlcrt

N"Iaster of Sciern"cer

Tilirrg Surfaces With Straiglit Strips

Examining Committee: Dr'. Arthur Kirkpatrick

Chair

Dr. Richar<l (Hao) Zhang, Sr:nior Supervisor

Dr. Binav Bhattat;harva. Srllcrvisor

Dr. Shalirarrr P:rvanrleh. SFLI Exarnirxrr'

Date Approved: /7 / i .c r - Zc , ZCIea

Last revision: Spring 09

Declaration of
Partial Copyright Licence
The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the “Institutional Repository” link of the SFU Library website
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing
the content, to translate the thesis/project or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in
part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Abstract

We present an algorithm computing geodesic curves partitioning an open mesh into segments

which can be approximated using long, trimmed strips of material possessing a prescribed

width. We call this straight strip tiling of a curved surface, with applications such as the

surfacing of curved roofs. Our strips are straight since they conform to being rectangular, in

contrast to possibly highly curved strip segments studied for developable surface decomposi-

tion. Starting from a geodesic curve defined by a user-specified starting point and direction

we compute recursively neighbouring geodesics which respect the constraints and lead to

optimal material usage. Our algorithm is exact with respect to the polyhedral geometry of

the mesh and runs on a variety of surfaces with modest time complexity of O(n1.5), where

n is the mesh size. We extend the algorithm by relaxing the constraint that geodesics span

the mesh allowing application to meshes with greater undulation.

Keywords: computational geometry; geometric shape modeling; geodesic curves; straight

strip tiling; panelling; roofing

iii

To my wife Tonya and my kids Alexis, John Paul, Miranda and Aurora.

iv

“You can always become better.”

— Tiger Woods

v

Acknowledgments

I would like to thank Dr. Richard (Hao) Zhang for navigating me through the uncharted and

often tumultuous waters of this thesis project. Without his firm and guiding hand I surely

would have given up hope long ago. I would like to thank John Gudaitis of Automated

Systems Research because without his moral and financial support my studies and this

research would not have been possible. I would like to thank the members of my examining

committee, Binay Bhattacharya and Shahram Payandeh, for their time spent reviewing

and providing feedback on my work. I would also like to thank my fellow students at the

GRaphics Usability and VIsualization lab of the School of Computing Science — especially

Ramsay Dyer and Matt Olson — not only for their support and companionship but also

their contributions to this work. Finally I would like to thank my wife Tonya for her love

and support without whom I would be lost.

vi

Contents

Approval ii

Abstract iii

Dedication iv

Quotation v

Acknowledgments vi

Contents vii

List of Tables ix

List of Figures x

Preface xiii

1 Introduction 1

1.1 Overview of our approach . 1

1.2 Motivation . 3

1.3 Applications . 4

1.3.1 Roof surfacing . 4

1.3.2 Boat hulls . 5

1.3.3 Wigs . 5

1.4 Contributions . 5

vii

2 Background 8

2.1 Remeshing and strippification . 8

2.2 Semi-discrete surfaces . 8

2.3 Geodesics . 9

2.3.1 Shortest geodesics . 9

2.3.2 Straightest geodesics . 10

2.3.3 Quasi-geodesics . 10

2.4 Parameterization . 10

2.5 Geodesic flow . 12

3 Straight strip tiling algorithm 13

3.1 Source geodesic curve . 14

3.2 Constrained neighbour geodesic construction 15

3.3 Avoiding material waste . 18

3.4 Computational complexity . 19

3.5 Strip severing . 20

4 Implementation and window propagation 22

5 Results 25

5.1 Undulation . 25

5.2 Orientation . 26

5.3 Material width . 26

5.4 Limitations . 26

6 Conclusion and future work 35

A Degeneracies 36

Bibliography 38

viii

List of Tables

5.1 Numerical results of our experiments. All tests were run on a 2.60 GHz

Pentium 4 with 2 GB of RAM. Timing results are reported in seconds. 27

ix

List of Figures

1.1 Straight strip tiling of a ship hull surface. (a) User input is given as a point p

(red dot) and an orientation v, resulting in the initial geodesic passing through

p (blue curve). An intermediate processing step showing the geodesic found

in the first iteration (second blue curve) along with the upper bound curves

(in red) being used to search for the next geodesics is shown as well. (b) The

complete tiling and two resulting strip widths plotted over-top of rectangular

material pieces showing that the δ width constraint is satisfied. 2

1.2 The Southern Cross Station in Melbourne, Australia covered with straight

metal strips (photos courtesy of Alan Lam). 7

2.1 A hemisphere parameterized with ABF produces strips that when developed

are not straight. 11

2.2 A hemisphere tiled along the so called great arcs (with common poles) gives

rise to strips that when developed are straight. 11

3.1 Geodesic circles of radius δ illustrating the width constraint test for two points

(red dots) on the middle curve. The point on the right passes the test since

the circle intersects another curve on either side while the point on the left

does not. Every point on every curve must pass this test. 14

x

3.2 Given an initial source geodesic curve (bottom in blue) we form the local

boundary of our width constraint test circles (Figure 3.1) at δ (which we call

the upper bound - top in red) by extending windows (vertex-less regions -

separated by dashed lines) from the source curve and measuring distance in

the planar unfolding the window’s faces. The upper bound is made up of

straight (i.e. geodesic) and circular arc sections - with convex corners (i.e.

those turning away from the source) marked with red dots. 16

3.3 The window boundaries surrounding a saddle ((a) - where the face angle sum

> 2π) and a spherical ((b) - where the face angle sum < 2π) vertex are

shown separated by dashed lines. A vertex splits the incoming window into

two windows as well as giving rise to a third window emanating from this new

or pseudosource. For the purposes of finding straight (as opposed to shortest

path) geodesics, both saddle and spherical vertex behaviour must be defined

in this way. 17

3.4 The dashed lines delimit a ”butterfly” window (a pair of opposing angular

ranges) emanating from a convex corner point (red dot - where the upper

bound curves ”away” from the source) of the upper bound curve that contains

all candidate geodesics touching that point. 18

3.5 Given the area enclosed by one geodesic (red dashed line) in a window (de-

limited by solid red lines), the area enclosed by any other geodesic in that

window can be found by adding or subtracting the triangle between them

(pink shading) in the unfolding of the window’s faces. 19

5.1 Effects of different factors on straight strip tiling for a synthetic surface mim-

icking the roof of the Southern Cross Station (Figure 1.2). Increased surface

undulation in (b), holding ~v and δ fixed, causes the algorithm to sever tile

lines (Section 3.5). 28

5.2 On the same surface and holding δ constant, a change in the curve orientation

~v again causes severing (b) as the geodesics are forced to travel through

multiple regions of high curvature. 29

5.3 On the same surface while holding ~v unchanged, reducing the width bound δ

in (b) does not introduce severing. 30

xi

5.4 A gallery of straight strip tiling results. See Table 5.1 for run times and

material usage. 31

5.5 A gallery of straight strip tiling results. See Table 5.1 for run times and

material usage. 32

5.6 A gallery of straight strip tiling results. See Table 5.1 for run times and

material usage. 33

5.7 Run times from Table 5.1 plotted against the claimed algorithmic complexity

of O(n1.5) from Section 3.4. A reasonable correspondence exists with two

outliers, the airplane fuselage and the synthetic roof. Their deviation from

the norm is due to the large difference in the proportion of spherical vertices

on these models. Material Usage is estimated as the surface area enclosed by

neighbouring strips divided by the area of material consumed (which is the

length of the neighbouring curve multiplied by the material width). 34

xii

Preface

Shortly after I began working with Automated Systems Research — a supplier of estimating

software for roofing contractors — in January 2002, I estimated for ASR’s principal, John

Gudaitis, ”two weeks - possibly three” to re-design and re-implement the roof plane gener-

ation algorithm for their sloped roof estimation product TopView. Six years later, with the

help of my supervisor Dr. Richard Zhang, fellow student Matt Olson and existing work on

straight skeletons I was finally able to solve this deceptively challenging problem once and

for all. Thankfully, John did not hold me to my original estimate.

With this the only significant remaining geometrical problem on planar roofs now solved,

Richard and I were forced to turn our attention to curved roofs for research worthy of a

master’s thesis. Luckily John directed us to a photograph of the Southern Cross Station

(Figure 1.2) as the prime example of a complex curved roof. After showing it to my fellow

classmates in the GRaphics Usability and VIsualization lab of the School of Computing

Science it became clear that the roof panels on its surface followed an interesting path and

a thesis was born...

xiii

Chapter 1

Introduction

Anyone who has made a paper maché model knows that a curved surface can be formed

using strips of flexible material. If these paper strips are trimmed to eliminate overlap, the

result is a strip tiling . In industrial settings, whether it be for building shells, ship hulls,

timber construction or wig fabrication, the construction material is typically available in

long rectangular strips or spools. Such strips can be cut, trimmed and joined together to

approximate a surface.

In this paper, we are interested in the following straight strip tiling problem: given a

curved surface patch without holes, approximate it using an adjoining set of straight strips

satisfying a width constraint. By straight we mean that each strip must fit within a long

rectangular piece of material with a given width δ; see Figure 1.1. In other words, the

tiling strip can be obtained from the rectangular piece by cutting and trimming. Its close

conformation to the rectangle makes it “straight”. Note here that there is no constraint

on the length of the rectangles. In a practical application such as roof building, we can

imagine the above scenario for approximating a roof like the one in Figure 1.2. Needless to

say, reducing material waste is of paramount importance.

1.1 Overview of our approach

A naive solution to this problem would be polygonal meshing, tiling the input surface using

planar facets each of which is sufficiently small to fit within the material width. However,

this does not exploit the long length of the material and thus leads to more cutting and

joining than is necessary.

1

CHAPTER 1. INTRODUCTION 2

p
v

(a)
� �

(b)

Figure 1.1: Straight strip tiling of a ship hull surface. (a) User input is given as a point p (red
dot) and an orientation v, resulting in the initial geodesic passing through p (blue curve).
An intermediate processing step showing the geodesic found in the first iteration (second
blue curve) along with the upper bound curves (in red) being used to search for the next
geodesics is shown as well. (b) The complete tiling and two resulting strip widths plotted
over-top of rectangular material pieces showing that the δ width constraint is satisfied.

Planar mesh parameterization is also an option, whereby the given surface is first flat-

tened so as to minimize distortion and then straight lines in the parameter domain define

the strip boundaries which are mapped back onto the original surface. While excellent al-

gorithms for mesh parameterization exist [22], we will see in Section 2.4 that they do not

provide satisfactory solutions to respect the straightness criterion.

Consider for example the case of a hemi-spherical mesh. Conventional mesh parameteri-

zation schemes would flatten the input surface into a planar circular patch while distributing

distortion uniformly across. The resulting strips on the hemisphere, obtained using curves

corresponding to straight line boundaries in the parameter domain, when approximately

developed, will generally be “curved” in that they will not fit well within the long material

rectangles(Figure 2.1).

Recent work of Pottmann et al. [20] takes as input a set of curves on a surface to

decompose it into planar strips which together provide a good surface approximation. If

one of these curve families consist of geodesics, then this algorithm can be adapted to produce

CHAPTER 1. INTRODUCTION 3

strips with “approximately straight development”.

Making use of this work, we frame the problem we wish to solve as follows: on a given

mesh patch, find a set of non-intersecting geodesic curves separated by no more than the

prescribed material width δ (measured geodesically) from each other and from the surface

boundary so that the resulting strips, when developed, span the width of the bounded-width

rectangles as much as possible (to minimize material waste).

Finding a globally optimal solution to such a problem is beyond the scope of this thesis.

Instead, we solve a greedy version which must be initialized with a point and orientation

on the surface. Given this input provided by the user, we can launch an initial source

geodesic curve from which we can recursively find neighbouring geodesics with the properties

mentioned until the surface is covered with geodesic strips of bounded width; refer to Figure

1.1.

1.2 Motivation

It is well known that when a narrow strip of flexible (but un-stretchable) material is placed

in contact with a smooth surface, it will follow a geodesic path along that surface [19]. To

understand why this is true, consider that while geodesics are more commonly known as

shortest paths on surfaces (which is true, but only locally), their straightness property —

i.e. the fact that they curve only in the direction of the surface normal — always holds

for smooth surfaces. In other words, from the point of view of someone “standing” on the

surface, a geodesic never turns left or right — illustrating why straight strips naturally

follow geodesic paths when laid on a surface.

It is this property of the geodesic that motivates its use in this thesis. Even prior to the

publication of Pottman’s work [20] for producing strips using families of geodesic curves as

input, we were pursuing the approach of covering meshes with geodesics in order to solve

this problem. The availability of this useful work affords us the luxury of addressing the

strip tiling problem purely by focusing on covering the surface with geodesics and because

we can defer to Pottmann [20] for construction of the actual material strips to approximate

the surface.

Our geodesic-finding algorithm draws upon much recent excellent work on geodesics

for discrete surfaces [4, 14, 23]. Specifically, we make significant use mesh intervals called

“windows” which can be unfolded into the plane since they contain no vertices and over

CHAPTER 1. INTRODUCTION 4

which we can search for geodesics with desirable properties since they are straight when

unfolded. Without this wide body of previous work our solution to this problem would not

have been possible.

However, these works focus on solving the shortest path problem in order to find

geodesics. While all shortest paths are indeed geodesics, not all geodesics are shortest

paths [8]. Therefore, in order to find all of the geodesics we need to extend these algo-

rithms.

1.3 Applications

If material strips need not be straight when unrolled, or developed, into the plane or if the

surface that is to be tiled is a “special case” surface (e.g. a section of a sphere, a developable

surface, a surface of revolution, etc.) then either existing techniques (e.g. strippification)

or surface properties (e.g. symmetry) can be used to compute the lines required to tile the

surface.

However, if planar material available only in rectangular strips of bounded width must be

used to cover an arbitrary curved surface then to the best of our knowledge this algorithm

is the only method available for tiling the surface. As such, the following applications can

make significant use of this work.

1.3.1 Roof surfacing

With the exception of single layered roofs made from exotic materials like glass or fabric,

most building roofs have two distinct parts - the supporting structure and the weather

resistant surfacing. For curved roofs, which are gaining popularity in modern architecture,

both structural and surfacing construction is far more complicated than for that of planar

roofs.

The de facto standard material for surfacing commercial sloped roofs are metal roofing

panels which are abundantly available in long straight strips. And since these strips are

typically joined end to end using longitudinal slip joints that must preserve their straightness

in order to allow for thermal expansion slippage along their length, their effective length is

infinite.

As mentioned in Section 1.2 straight strips placed on curved surfaces will always follow

geodesic paths. Since finding “parallel” geodesics on a surface is far more difficult than

CHAPTER 1. INTRODUCTION 5

finding parallel lines in the plane this fact vastly complicates the strip tiling problem that

is trivial for planar roofs.

Figure 1.2 shows a large curved roof covered with these metal panels. As is evident in

Figure1.2(b), the metal strips are trimmed and placed appropriately in order to tile the

surface without gaps or overlap. Given a mesh of this surface and the material width, our

algorithm can be used to prescribe this trimming and placement.

1.3.2 Boat hulls

Some boat hulls are made from straight flexible materials like thin wooden strips. Figure1.1

shows an example of how this algorithm can be used to produce the strips necessary to form

the hull.

1.3.3 Wigs

This algorithm could also be used to create custom fitted wig foundation caps. Using this

algorithm hair available in straight strips could be trimmed and joined to custom fit anyone’s

head. Figure 5.4(a) illustrates this application.

1.4 Contributions

Our contributions in this thesis include the following. First, we adapt existing shortest path

techniques in order to be able to find straight, as opposed to shortest, geodesics. Then, we

develop techniques to satisfy more geodesic curve constraints of greater complexity from a

wider range of starting points as compared to the constraints posed by the shortest path

problem. Finally, we present a novel geodesic area calculation technique which enables us

to choose strip candidates that minimize material waste.

Our algorithm is exact with respect to the polyhedral geometry of the mesh surface and

runs on a variety of surfaces with a modest time complexity of O(n1.5), where n is the mesh

size. The required user-defined orientation typically allows us to incorporate important

properties of the surface or application-specific knowledge, e.g. symmetry, gravity, or other

considerations, into the algorithm. Finally, we show how our algorithm can be extended

by relaxing the constraint that neighbouring geodesics span the mesh. In other words, the

delimiting geodesics constructed are allowed to intersect in the interior of the input surface.

CHAPTER 1. INTRODUCTION 6

This allows straight strip tiling of a wider variety of meshes including those with greater

undulation, as we show in Section 5.

CHAPTER 1. INTRODUCTION 7

(a)

(b)

Figure 1.2: The Southern Cross Station in Melbourne, Australia covered with straight metal
strips (photos courtesy of Alan Lam).

Chapter 2

Background

In this chapter we investigate alternative approaches to solving the straight strip tiling

problem as well as techniques upon which we build in the course of developing our chosen

approach.

2.1 Remeshing and strippification

As mentioned this problem could be solved by remeshing [2] the input surface with small

enough facets. However this solution does not take advantage of the available length of the

strips and thus leads to an unnecessarily fractured result.

There are also a variety of strippification algorithms [24]. The common issue with them

is that they do not address the straightness criterion. Our effort is on finding appropriate

straight geodesic curves on an open mesh patch satisfying user and material width con-

straints.

2.2 Semi-discrete surfaces

Recent work from architectural geometry [11] uses planar quad meshes to represent freeform

structures. This work is extended by combining these quads into continuous singly curved

strips in what is known as a semi-discrete surface representation [20].

As mentioned in section 1, Pottman et. al. go on to show that if geodesic curve families

are used as input then straight strips which approximate the input surface can be produced.

In a similar work [21] the authors call for the creation of curve networks to initialize their

8

CHAPTER 2. BACKGROUND 9

semi-discrete surface optimizations which is in fact the objective of this paper. If we are

successful in finding such a family of geodesic curves then this existing body of work can be

used to approximate the input mesh with a semi-discrete surface made out of singly curved

strips that are straight when unrolled.

2.3 Geodesics

Geodesics are most well known for the fact that the shortest path between two points on

a smooth manifold is guaranteed to be geodesic [3, 5]. However, they are more rigorously

defined as curves whose curvature vector is parallel to the surface normal. There have

been many studies extending this concept of differential geodesics from smooth surfaces to

discrete geodesics on polyhedral surfaces that are represented by meshes.

2.3.1 Shortest geodesics

Shortest geodesics are defined as the locally shortest curves on a mesh [6, 14]. The most

popular method for finding these shortest geodesics on meshes has been using fast marching

to solve the Eikonal equation [10]. Using this method, distances from a source point are

propagated across the mesh face by face with the shorter distances cancelling out the longer

ones.

The other popular approach for finding shortest paths does so by exploiting their straight-

ness property. The MMP algorithm [14] originally introduced in 1987 and made practical

by Surazhsky et. al. in 2005 [23] divides the mesh into intervals — or windows — without

vertices over which geodesics exist simply as straight lines in that window’s planar unfold-

ing. By creating, propagating and merging appropriately, straight windows can be extended

from any source point to all other points on the mesh and the shortest path can simply be

selected from among those that reach the intended target.

Bommes and Kobbelt [4] extend this work to the computation of distances from general

polygonal segments on the surface rather than just single points. Liu et. al [12] warn of

degeneracies that exist in the Surazhsky algorithm.

CHAPTER 2. BACKGROUND 10

2.3.2 Straightest geodesics

Straightest geodesics are those whose left and right curve angles (the sums of the incident

angles on either side of a point on the curve on a mesh) are always equal [18]. Straightest

geodesics have application to the translation of vectors and the integration of vector fields

and are related to shortest geodesics in the following ways [18]:

• A geodesic containing no surface vertex is both shortest and straightest.

• A straightest geodesic through a spherical vertex is not locally shortest.

• There exist a family of shortest geodesics through a saddle vertex. Only one of them

is a straightest geodesic.

Saddle and spherical vertices are described fully in section 3.2.

2.3.3 Quasi-geodesics

Despite their popularity, neither of the above discrete geodesics serves our purpose because

we are interested in all straight geodesics — not just those that are the shortest or the

straightest.

Quasi-geodesics are the limit sets of smooth geodesics on polyhedral surfaces [1, 16].

They behave identicaly to shortest geodesics with the exception that there is also a family

of quasi-geodesics through a spherical vertex (which as mentioned above cannot contain

shortest geodesics [14]). It is this higher adherence with the differential version of the

geodesic that makes quasi-geodesics the most suitable for our application.

2.4 Parameterization

Mesh parameterization techniques [22, 7] also offer potential. Specifically, the straight strip

tiling problem could be solved if a parameterization could be found that preserved straight-

ness in the sense that straight lines in the parameter domain would correspond to geodesics

on the original surface (and vice versa).

Since angle preserving parameterizations minimize local angular distortion between the

original surface and the parameter domain [22, 7], they have the most potential for preserving

the “straightness” that is necessary to solve the strip covering problem. However, if we try

CHAPTER 2. BACKGROUND 11

Figure 2.1: A hemisphere parameterized with ABF produces strips that when developed
are not straight.

to parameterize a hemisphere using Angle Based Flattening (ABF - see Figure 2.1) [22] we

find that when parallel lines in the parameter domain are mapped back onto the sphere and

the resulting segments are approximately flattened, they are not straight in that they do

not fit well within material rectangles.

In fact, by looking again to the example of the hemisphere it is evident that no single

parameterization exists in the common sense for a given surface in that none preserve this

straightness over all user defined orientations. We see this by first observing that the only

geodesics that produce straight strips on a hemisphere are the so called great arcs which

must start and end at common poles if they are to avoid intersection (see Figure 2.2). For

example, if we use as our hemisphere a vertical bisection of the globe — e.g. the western

hemisphere — then lines of longitude become our valid tiling lines.

The parameterization that corresponds to this mapping is in fact the Mercator projec-

tion [13] which maps lines of longitude in the earth to vertical lines on a typical map of

the earth. Now if we use this same parameterization but choose a different set of lines

on our map (which is our parameter domain) — for example the lines of latitude — the

Figure 2.2: A hemisphere tiled along the so called great arcs (with common poles) gives rise
to strips that when developed are straight.

CHAPTER 2. BACKGROUND 12

resulting tiling lines on the globe are no longer great arcs and are not geodesic. Thus the

parameterization of a given surface not only needs to preserve straightness but needs to do

so with respect to the user defined orientation.

2.5 Geodesic flow

Another approach, that of the geodesic flow [15], also offers potential for solving the straight

strip tiling problem. A geodesic flow is a tangential vector field on a surface whereby all

resulting integral curves (i.e. curves whose tangents vectors belong to the vector field) are

geodesic. If a geodesic flow for a surface could be found then the desired strip boundaries

for any material width could be found trivially.

There has been some work on geodesic flows for discrete surfaces [17] describing the

properties of fields corresponding to geodesics that emanate from a single point on a mesh.

However, application of this theoretical technique to our problem does not appear obvious

so we have chosen not to pursue this approach here.

Chapter 3

Straight strip tiling algorithm

As mentioned in Section 1, the work of Pottmann et al. [20] allows us to concentrate

exclusively on the creation of geodesic curves rather than the construction of 2D strips from

these curves. Our goal then is to seek a family of curves on a given open patch to fulfill all

of the following:

• They must be geodesic.

• One curve respects the user-specified point and direction.

• No point on any curve should be more than the material width δ geodesic distance

away from either of its neighbouring curves. In other words, a “geodesic circle” with

radius δ centered at any point on any curve should intersect another curve or the mesh

boundary on either side; see Figure 3.1 for an illustration.

• The curves should be as far away as possible from each other so as to make the best

use of the material.

• The curves do not intersect in the interior of the mesh.

Note that there is no guarantee that all the constraints above can be satisfied for any

surface with any width bound δ. If we can find such a family of geodesic curves, then

we can pass them to the strip generation algorithm of Pottman et al. [20] to produce the

straight strips to tile the input mesh. When the input surface is sufficiently curved with a

sufficiently small δ bound, the last constraint above can be impossible to satisfy. In Section

3.5, we present an extension to our core algorithm which allows long strips to be “severed”

13

CHAPTER 3. STRAIGHT STRIP TILING ALGORITHM 14

δδ

Figure 3.1: Geodesic circles of radius δ illustrating the width constraint test for two points
(red dots) on the middle curve. The point on the right passes the test since the circle
intersects another curve on either side while the point on the left does not. Every point on
every curve must pass this test.

by allowing constructed geodesics to intersect. This way, we are able to handle surfaces

with greater undulation.

3.1 Source geodesic curve

We first create the initial curve from the user-specified surface point p and tangent vector

~v. Since our curve is to be geodesic, we can simply start at the given point and proceed

“straight” along the surface in the given direction until we reach the boundary. To do this,

we utilize the classical definition of a geodesic as a path whose osculating plane also contains

the surface normal [5]. In the discrete version, a geodesic proceeds straight over faces and

preserves incident angles when traveling over edges [18]; traveling directly over vertices will

be discussed below in Section 3.2. Using this simple rule we implement a geodesic walk that

takes as input a starting point and tangent vector and simply “walks” forward producing a

geodesic curve as output.

CHAPTER 3. STRAIGHT STRIP TILING ALGORITHM 15

3.2 Constrained neighbour geodesic construction

Given this source geodesic, we implement a method for finding a neighbouring geodesic

that satisfies the constraints mentioned above. Then we use this method recursively to find

subsequent neighbours until we reach the boundary of the mesh patch. Finally, we repeat

this recursive process on the other side of the source to find the rest of the geodesics.

We satisfy our width constraint by appealing to the work of Bommes and Kobbelt [4]

for finding geodesic distance fields from polygonal segments on meshes to find the boundary

of the region locally “swept out” by our geodesic circle of Figure 3.1 as its center travels

along the source curve. Since this resulting connected upper bound curve represents the

furthest extent of all of our geodesic circles, we can use it to simultaneously enforce the width

constraint test at all points along the source curve by simply requiring that our neighbouring

geodesic not cross this upper bound.

Moreover, since we know this upper bound is continuous (i.e. connected), the width test

is also enforced in the other direction. I.e., a test centered at any point on a neighbour curve

within the upper bound will always pass because the upper bound’s continuity guarantees

that one of our circles “swept over” that point during the construction of the upper bound

ensuring the existence of a short enough geodesic to a point on the source.

This upper bound curve is constructed by partitioning the mesh into two different types

of vertex-less regions (called windows - see Section 2.3.1) that extend perpendicularly from

the source: linear windows and vertex windows. A linear window contains an entire segment

of the source curve and in the unfolding of the window’s faces the boundary of the region

swept out by our geodesic circle is easily computed as a line segment parallel to the source.

Vertex windows are required because a geodesic directly incident upon a vertex may

continue along any ray between the two rays at an angle π from the incident ray [23]

(Figure 3.3) and still retain its geodesic properties (if this were not the case there would be

regions of the mesh unreachable by geodesics from a single source). This transition from

single geodesic ray to angular range splits the incoming window at the vertex and also gives

rise to a new window propagating radially from this new or pseudosource.

In the unfolding of vertex window faces, the extent of the geodesic circle test is simply

a circular arc. Figure 3.2 shows these linear and vertex windows (separated by dashed

lines) and illustrates how the resulting upper bound curve is simply a connected set of the

aforementioned geodesic and arc segments.

CHAPTER 3. STRAIGHT STRIP TILING ALGORITHM 16

Source
Curve

δ δ
δ

δ

Figure 3.2: Given an initial source geodesic curve (bottom in blue) we form the local bound-
ary of our width constraint test circles (Figure 3.1) at δ (which we call the upper bound -
top in red) by extending windows (vertex-less regions - separated by dashed lines) from the
source curve and measuring distance in the planar unfolding the window’s faces. The upper
bound is made up of straight (i.e. geodesic) and circular arc sections - with convex corners
(i.e. those turning away from the source) marked with red dots.

Our need to create vertex windows for both saddle (face angle sum > 2π - also known

as “hyperbolic”) and spherical (face angle sum < 2π) vertices arises from our need to use

quasi-geodesics (which in turn arises from our need to find all straight geodesics as described

in Section 2.3.3). The resulting implementation differences from previous work on finding

discrete geodesics [4, 23] are described in Chapter 4. This difference also simplifies area

calculations as described in Section 3.3.

As mentioned, in order to ensure that the width test passes at all points on the source

and the neighbour, we need only ensure that our neighbouring geodesic does not cross the

upper bound. Furthermore, we can interpret our constraint that neighbouring curves be as

far away as possible from each other to mean that at least one point on the neighbouring

geodesic must touch the upper bound. If this were not the case, we greedily claim that our

neighbour would not be far enough away from the source and thus we would not be making

the best use of material. The possibility that a neighbour not touching the upper bound

could in fact be the optimal choice seems unlikely; however, formal confirmation of this fact

is left to future work.

Armed with this knowledge that our neighbour must touch, but not cross, the upper

bound we consider the upper bound curve’s shape (Figure 3.2). In the face of (or in the

CHAPTER 3. STRAIGHT STRIP TILING ALGORITHM 17

ππ
sh
ad
ow

(a)

ππ

ov
er
la
p

(b)

Figure 3.3: The window boundaries surrounding a saddle ((a) - where the face angle sum
> 2π) and a spherical ((b) - where the face angle sum < 2π) vertex are shown separated by
dashed lines. A vertex splits the incoming window into two windows as well as giving rise
to a third window emanating from this new or pseudosource. For the purposes of finding
straight (as opposed to shortest path) geodesics, both saddle and spherical vertex behaviour
must be defined in this way.

unfolding of the faces local to) a point along the upper bound curve, we can view our point

as a point on a curve in the plane. In the plane, the only points on a curve that a line

segment (which is a geodesic unfolded) can touch but not immediately cross the curve are

where the curve curves away from the line segment. We call these points convex corners

(red dots in Figure 3.2) of the upper bound. We conclude that all valid candidate geodesics

must touch at least one convex corner of the upper bound.

We can use this fact to enumerate all potential candidate geodesics by observing that

all geodesics touching one convex corner must lie within double-sided angular ranges, or

“butterfly”s, emanating from this convex corner (see Figure 3.4). We can then enumerate

all the geodesics within these butterflies by segmenting them into vertex-less windows within

which all geodesics exist as straight lines in the window’s unfolding. Finally, in order to

satisfy the width and self-intersection constraints, we discard any of these geodesics that

cross back over the source or upper bound curves.

CHAPTER 3. STRAIGHT STRIP TILING ALGORITHM 18

Source
Curve

Figure 3.4: The dashed lines delimit a ”butterfly” window (a pair of opposing angular
ranges) emanating from a convex corner point (red dot - where the upper bound curves
”away” from the source) of the upper bound curve that contains all candidate geodesics
touching that point.

3.3 Avoiding material waste

While different applications may have unique criteria against which to judge and select the

best valid candidate neighbouring geodesics, one that is likely to have universal application

is that of material usage maximization. Specifically, among all the valid candidates in one

recursive step, we greedily select the one with the most usage - measured as the enclosed

surface area divided by the source curve length.

The enclosed area between the source and candidate curves can be easily found by

summing the areas of the enclosed faces. However, since in the unfolding of a window’s

faces all geodesics are straight lines, we can apply one such summation to all other geodesics

in the same window by simply adding or subtracting a triangle (Figure 3.5). Moreover, if

successive windows are alongside (i.e., in full contact with) one another, we can propagate

this area to the next window. Finally, we can even propagate this area calculation from

butterfly to butterfly by exploiting the fact that the last geodesic of one butterfly is actually

the first geodesic of the next.

Fortunately, since we are using quasi-geodesics (Section 2.3.3), the windows emanating

from a source point are always alongside each other. This is because quasi-geodesics travel

across spherical vertices similarly to saddle vertices in that geodesics incident upon them may

continue along any ray between the two rays at an angle π from the incident (Figure 3.3) as

CHAPTER 3. STRAIGHT STRIP TILING ALGORITHM 19

Source
Curve

Figure 3.5: Given the area enclosed by one geodesic (red dashed line) in a window (delimited
by solid red lines), the area enclosed by any other geodesic in that window can be found
by adding or subtracting the triangle between them (pink shading) in the unfolding of the
window’s faces.

opposed to the previous work on finding discrete geodesics [4, 23] in which spherical vertices

are ignored as shortest paths never travel directly over them [14]. These spherical vertex

windows (the pink overlap region in Figure 3.3 (b)) bridge the “gap” between the windows

on either side of the vertex ensuring that all windows are alongside one another. We will

see in Chapter 4 how to extend these discrete geodesic works [4, 23] to find quasi-geodesics

as opposed to shortest geodesics.

3.4 Computational complexity

In the first stage of the algorithm the initial geodesic is constructed using the geodesic walk

algorithm described in Section 3.1. To do so the algorithm must “walk” over O(F) faces

(with each face requiring constant time) for each of the O(BoundingBoxSizeδ) geodesic curves

that are to be output.

The second stage of the algorithm involves the recursive construction of a neighbouring

geodesic given a source geodesic. This stage includes the following steps:

1. Windows are extended from the source geodesic to construct the upper bound curve

(Figure 3.2). This is done by creating one window for every face crossed by the source

curve and then propagating these windows forward - splitting each one into three when

a vertex is encountered (Figure 3.3).

CHAPTER 3. STRAIGHT STRIP TILING ALGORITHM 20

2. At each convex corner (Figure 3.4) of the upper bound butterfly windows are con-

structed and searched for the geodesic enclosing the greatest area (Figure 3.5).

3. A geodesic curve is output. Since geodesics travel straight over faces only the inter-

sections with the O(E) edges need be stored. Again we expect O(BoundingBoxSizeδ)

geodesics to be output.

Thus step 1 includes construction of O(F + 2V) windows (where V is the number of

vertices) each of which propagates over O(F) faces (when summed over all strips on the

mesh). In step 2 we encounter O(V) convex corners (again summed over all strips) each

of which gives rise to O(V) windows each containing O(F) faces. Finally in step 3 the

output size is O(EBoundingBoxSizeδ). Hence the theoretical upper bound is O(n) + O(n3) +

O((F+E)BoundingBoxSize
δ) or O(n3) (where n = max(V, F,E)) as long as δ is not much smaller

than the average edge length.

Note that using the area calculation propagation method in Section 3.3 requires constant

time for each window and thus does contribute to complexity. Also note that we do not

require the O(log V) steps needed to perform the window sorting required by shortest path

algorithms [23] (see Section 4).

However on a sufficiently smooth mesh, the butterfly windows from step 2 do not overlap

appreciably which means that there should be approximately O(V) windows within all of

the butterflys over the entire mesh. Moreover, each of these windows need propagate over

only the width of the patch which should only be O(
√
F) faces on a uniform mesh that is

reasonably “square” (i.e. width and length are of the same order).

Under these assumptions our complexity becomesO(n1.5) (again where n = max(V, F,E)

and δ is large enough). It is important to note that this argument does not constitute a

rigorous “average case” complexity analysis but rather a best guess at actual expected per-

formance of our algorithm on a specific subset of the input parameters (i.e. smooth, uniform,

square meshes with a material width that is not much smaller than the average mesh edge

length).

3.5 Strip severing

The algorithm as described thus far attempts to cover an open mesh with non-intersecting

geodesics. Unfortunately, especially for surfaces with high curvature, this is not always

CHAPTER 3. STRAIGHT STRIP TILING ALGORITHM 21

possible. However if we allow these partitioning geodesics to touch each other we can

remove this limitation and extend the algorithm’s applicability to any surface on which a

valid source geodesic can be found. I.e., if a source geodesic starting from and ending on

the mesh boundary that does not intersect itself can be found then using this technique our

algorithm will succeed.

This amounts to relaxing the constraint that candidate geodesics not intersect the source

geodesic curve. In other words, candidate geodesics with one or both endpoints on the source

geodesic are now also considered. And when we select one of these segment candidates as

our greedy choice, our source curve in the next iteration will be a connected set of geodesic

segments rather than a single geodesic curve — with the corresponding upper bound curve

being simply the union of each geodesic segment’s upper bound (which should always meet

due to the fact that these geodesic segments must always join at convex angles — proof left

to future work). Figures 5.1 through 5.6 show the straight strip tiling results of using this

technique.

Chapter 4

Implementation and window

propagation

The straight strip tiling algorithm was implemented using C++ and DirectX following

closely the published works of Surazhsky et. al. [23] and Bommes and Kobbelt [4]. While

all of the interesting details of our implementation are beyond the scope of this paper,

window propagation details are the most notable differences from and additions to these

previous works.

Window propagation is the process of constructing windows (Section 3.2) starting from

a source point or line segment and preceding forward face by face. In our implementation

windows are propagated from the source curve to form the upper bound as well as from

butterfly windows (Figure 3.4) to find candidate neighbour geodesic curves.

The objective of both of these window propagations is to find all geodesics (or quasi-

geodesics — see Section 2.3.3) present. This differs from the previous work [23, 4] that

seek only the shortest path geodesics. As such, our implementation contains the following

extensions:

• As mentioned in Sections 3.2 and 3.3, instead of being ignored, spherical vertices

give rise to windows emanating from between the two rays at an angle π (in either

direction) from the incident ray (Figure 3.3(b)).

• Window merging, used to eliminate non-shortest path windows [23, 4], should not be

done as it eliminates valid geodesics.

22

CHAPTER 4. IMPLEMENTATION AND WINDOW PROPAGATION 23

• Care must be taken when backtracking (following a window back to the source) over

vertices since the simple rule of selecting the shortest path back to the source no longer

applies. Instead, any back-path between the two rays at and angle π from the incident

back-path are potentially valid. Either application dependent rules (e.g. always use

highest or lowest) or back-path tracing (i.e. leaving a ”trail of breadcrumbs” over

vertices which we did) needs to be used to choose between more than one valid back-

path.

• While in shortest path algorithms boundary vertices give rise to new pseudo-sources

to allow shortest paths to curve around edges of the mesh, during butterfly window

propagation boundary vertices should be ignored because candidate curves must be

geodesic.

• On the other hand, during source curve propagation, boundary vertices require special

processing. Since we do not propagate circular distance windows from the source

curve’s end points as do Bommes and Kobbelt [4] (because our source curve effectively

has no end points), our computed upper bound may not always reach the boundary of

the mesh. This happens when the mesh boundary proceeds “outward” from the end

of the source curve.

To resolve this problem, when a boundary vertex is encountered during window prop-

agation we unfold the boundary faces into the plane searching for the first point along

the boundary that is a distance δ from the line supporting the source geodesic. Then

we simply attach this boundary point to the end of our foreshortened upper bound

curve.

• As mentioned in Section 3.4, windows do not need to be sorted and propagated in

order of length since we are not looking for the shortest path. Instead, windows need

to be created and kept in sequential order so that a connected upper bound can be

constructed and also so that area summations can be propagated from window to

adjacent window.

• Rather than an interpolated estimate combined with triangle decimation as in Bommes

and Kobbelt [4], we need to find an exact iso-distance curve when forming our upper

bound. Fortunately since our algorithm does not actually use the much harder to

construct arc sections of this iso-distance curve (see Section 3.2 and Figure 3.2), we

CHAPTER 4. IMPLEMENTATION AND WINDOW PROPAGATION 24

replace them with lines segments making calculation of the exact iso-distance curve

easier.

Aside from these differences, windows are propagated as described in the previous works

mentioned.

Chapter 5

Results

We now present straight strip tiling results produced by the implementation of our algo-

rithm, examining different factors that influence such results and report timing as well as

limitations. We consider three factors: the width bound δ, the initial curve orientation p,

~v, and surface undulation or range of curvature.

A set of additional results are shown in Figures 5.4, 5.5 and 5.6 with the corresponding

timing and material usage statistics is provided in Table 5.1. When reporting timing, we do

not vary ~v or δ as we recall from Section 3.4 that the algorithmic complexity depends only

on the number of faces and number of (spherical) vertices in the input mesh. Figure 5.7

compares the observed run times to the average algorithmic time complexity we claim in

section 3.4.

5.1 Undulation

Surface undulation appears to have the greatest effect on tiling results, as shown in Figure

5.1. Our experiments show that while p, ~v and δ are held constant increasing the surface

undulation gives rise to a relatively abrupt transition from un-severed tilings as in (a) to

highly severed tilings as in (b). Note that while the small triangles in (b) appear large, the

width constraint is in fact satisfied as every point on the neighbouring geodesic is within a

geodesic distance δ from a point on its source.

25

CHAPTER 5. RESULTS 26

5.2 Orientation

With the surface and the width bound δ held constant, we observe that tilings are also

relatively sensitive to the initial curve orientation p, ~v. As shown in Figure 5.2, when the

same geodesics are forced to travel through multiple regions of extreme curvature they are

more subject to severing than when these extremes are “spread out” amongst the geodesics.

It is also interesting to note that even though the altered orientation is noticeable in the

top middle portions of (a) and (b), the algorithm’s severing process in (b) in effect reverts

the orientation back towards the more favourable one in (a). It is not clear whther this is

to be expected or is merely a coincidence as finding a favourable orientation was not a goal

we hoped to achieve in this version of our algorithm.

5.3 Material width

As Figure 5.3 shows, once a tiling without severances is found reducing δ does not necessarily

induce severing as might be expected. Intuitively, this independence may be due to the

expected existence of a continuum of non-intersecting geodesics between any two “parallel”

geodesics (non-intersecting geodesics no more than δ geodesic distance away from each other)

on a sufficiently smooth surface. In fact, if the two geodesics belong to the same geodesic

flow, then this is exactly the case. However, exploring the applicability of geodesic flows to

the tiling problem is left for future work.

5.4 Limitations

Since the algorithm requires an initial, finite geodesic that spans the mesh, it does not work

on closed surfaces. However, if a small hole is punched and a non-self-intersecting initial

geodesic can be found that starts and ends at the hole boundary, then the algorithm should

succeed under reasonable parameters. Also, since there is no provision in the algorithm for

joining separated upper bound curves, it does not work on surfaces that contain holes. An

effective means of handling both limitations is to first segment the given surface into open

patches with simple boundaries before tiling.

Finally, we emphasize again that creating actual planar strips from the geodesics curves

we obtain that can be joined to approximate an input surface with bounded error is a

complex optimization problem which has been the subject of recent work [20]. The planar

CHAPTER 5. RESULTS 27

Mesh Faces Time Material Usage
Skull 1,000 <1 71 %
Hood 1,000 <1 86 %
Hat 4,600 3 59 %
Taller hat 4,600 3 65 %
Face 6,100 4 66 %
Ship hull 7,800 5 79 %
Plane fuselage 9,700 15 81 %
Synthetic roof 19,600 20 75 %

Table 5.1: Numerical results of our experiments. All tests were run on a 2.60 GHz Pentium
4 with 2 GB of RAM. Timing results are reported in seconds.

(yellow) strips shown in Figure 1.1(b) are merely meant to indicate the geodesic widths (over

the input mesh) of the surface strips. While these plots primarily show that our computed

geodesics satisfy the prescribed width constraint, they are also intended to suggest how

straight strips of material may be trimmed and joined to approximate the original surface.

However it is important to note that the shapes in Figure 1.1(b) themselves cannot be joined

together to approximate the surface.

CHAPTER 5. RESULTS 28

(a)

(b)

Figure 5.1: Effects of different factors on straight strip tiling for a synthetic surface mim-
icking the roof of the Southern Cross Station (Figure 1.2). Increased surface undulation in
(b), holding ~v and δ fixed, causes the algorithm to sever tile lines (Section 3.5).

CHAPTER 5. RESULTS 29

(a)

(b)

Figure 5.2: On the same surface and holding δ constant, a change in the curve orientation
~v again causes severing (b) as the geodesics are forced to travel through multiple regions of
high curvature.

CHAPTER 5. RESULTS 30

(a)

(b)

Figure 5.3: On the same surface while holding ~v unchanged, reducing the width bound δ in
(b) does not introduce severing.

CHAPTER 5. RESULTS 31

(a) Skull of the Max Planck.

(b) A face mesh.

Figure 5.4: A gallery of straight strip tiling results. See Table 5.1 for run times and material
usage.

CHAPTER 5. RESULTS 32

(a) A cowboy hat.

(b) A “taller” hat.

Figure 5.5: A gallery of straight strip tiling results. See Table 5.1 for run times and material
usage.

CHAPTER 5. RESULTS 33

(a) An airplane fuselage.

(b) Hood of a car.

Figure 5.6: A gallery of straight strip tiling results. See Table 5.1 for run times and material
usage.

CHAPTER 5. RESULTS 34

Figure 5.7: Run times from Table 5.1 plotted against the claimed algorithmic complexity of
O(n1.5) from Section 3.4. A reasonable correspondence exists with two outliers, the airplane
fuselage and the synthetic roof. Their deviation from the norm is due to the large difference
in the proportion of spherical vertices on these models. Material Usage is estimated as
the surface area enclosed by neighbouring strips divided by the area of material consumed
(which is the length of the neighbouring curve multiplied by the material width).

Chapter 6

Conclusion and future work

To the best of our knowledge, the straight strip tiling problem tackled in this paper is new.

The algorithm proposed is only a preliminary attempt and it still leaves much work to be

done. Although the geodesic construction component of the algorithm is exact with respect

to the polyhedral geometry of the input mesh and the width bound is also respected exactly,

our material optimization is a locally greedy choice rather than a global optimization based

on a formal objective function.

The important question of when the algorithm would fail is also left unanswered. It

is conceivable that certain curvature bounds could be found to address this issue. The

question of whether there exists a “straightness-preserving” mesh parameterization scheme

and the applicability of geodesic flows to the mesh setting to solve our tiling problem are

both interesting. Finally, we would like to remove the need for user initialization, seek an

optimal general orientation for strip placements, and handle more complex mesh boundary

conditions arising from input surfaces with holes.

35

Appendix A

Degeneracies

Liu et. al [12] warn of ”degeneracies” that exist in the Surazhsky algorithm [23]. In particu-

lar, they report a number of geometric coincidences whereby window edges exactly coincide

with mesh vertices giving rise to a large decision tree. However, they point out that if

exact arithmetic is used these cases should not happen. They also report window merg-

ing degeneracies but these do not apply to us since we do not perform window merging

(Chapter 4).

r

r - ε

λ Sourceε

This raises a relevant issue regarding the

need for double-precision (i.e. 8-byte floating

point) arithmetic when performing geodesic cal-

culations. As an example, consider the trian-

gulation method described by Surazhsky [23] to

compute the window source point location from

the window end points. The figure to the right

shows a round-off error ε in one of the triangu-

lation radii r used to triangulate the source of a window of size λ. Using the equations of

the arcs, we can solve for the increase in round-off error as:

εSource
ε

>
r

λ
(A.1)

That is, the error grows according to the ratio of the window’s length to its width.

Bearing in mind that windows split at every vertex, large ratios on the order of 105 or 106

or even higher are conceivable as windows propagate across dense meshes - especially if the

36

APPENDIX A. DEGENERACIES 37

source is at an oblique angle to the window unlike in the example shown.

If losing of five or six digits of precision is problematic when using double-precision

arithmetic, it is catastrophic when using single-precision (4-byte) arithmetic - the strongly

enforced standard in many 3D modeling/rendering environments. Because of this triangula-

tion example and countless other similar examples (not the least of which is area calculation

propagation) double-precision is a must.

This example also shows that triangulation may not be the best technique when the

point to be located is relatively far away from the triangulation points. However it is not

clear how much better our choice of using Cartesian co-ordinates aligned with the window

instead of triangulation distances fares since the repeated co-ordinate transformations also

introduce significant accumulation of round-off error.

In the end, through careful use of double-precision arithmetic and by directly handling

window-on-vertex cases that are not degenerate but are in fact expected, we did not expe-

rience the rate of degeneracies reported by Liu et. al [12]. Nevertheless we did detect a

non-trivial amount of degeneracies — especially on meshes laid out on a regular grid.

Bibliography

[1] A. D. Aleksandrov. Intrinsic Geometry of Surfaces. American Mathematical Society,
January 1967.

[2] Pierre Alliez, Giuliana Ucelli, Craig Gotsman, and Marco Attene. Recent advances in
remeshing of surfaces. Research report, AIM@SHAPE Network of Excellence, 2005.

[3] Marcel Berger. A panoramic view of Riemannian geometry. 2000.

[4] David Bommes and Leif Kobbelt. Accurate computation of geodesic distance fields for
polygonal curves on triangle meshes. In VMV, pages 151–160, 2007.

[5] Manfredo P. Do Carmo. Differential Geometry of Curves and Surfaces. Prentice-Hall,
1976.

[6] E. Dijkstra. A note on two problems in connection with graphs. Numerische Mathe-
matik, 1:269–271, 1959.

[7] M. S. Floater and K. Hormann. Surface parameterization: a tutorial and survey.
Advances in Multiresolution for Geometric Modelling, pages 157–186, 2005.

[8] L. Grundig, L. Ekert, and Moncrieff E. Geodesic and semi-geodesic line algorithms for
cutting pattern generation of architectural textile structures. Proc. ASIA-PACIFIC
Conference on Shell and Spatial Structures, 1996.

[9] L. Grundig, P. Singer, D. Strbel, and Moncrieff E. High-performance cutting pattern
generation of architectural textile structures. IASS-IACM 2000, Fourth International
Colloquium on Computation of Shell And Spatial Structures, 2000.

[10] R. Kimmel and J. Sethian. Computing geodesic paths on manifolds, 1998.

[11] Yang Liu, Helmut Pottmann, Johannes Wallner, Yong-Liang Yang, and Wenping Wang.
Geometric modeling with conical meshes and developable surfaces. ACM Trans. Graph.,
25(3):681–689, 2006.

[12] Yong-Jin Liu, Qian-Yi Zhou, and Shi-Min Hu. Handling degenerate cases in exact
geodesic computation on triangle meshes. Vis. Comput., 23(9):661–668, 2007.

38

BIBLIOGRAPHY 39

[13] G. Mercator. Nova et aucta orbis terrae descriptio ad usum navigantium emendate
accomodata (New and Accurate Description of the Terrestrial Globe, Amended to Suit
the Uses of Navigation). Duisburgum Doctum, 1569.

[14] Joseph S. B. Mitchell, David M. Mount, and Christos H. Papadimitriou. The discrete
geodesic problem. SIAM J. Comput., 16(4):647–668, 1987.

[15] Gabriel P Paternain. Geodesic Flows. Birkhauser, 1999.

[16] Aleksei. V. Pogorelov. Quasi-geodesic lines on a convex surface. Mat. Sb. (N.S.),
25(67), pages 275-306, 1949. English translation: American Math Society Translation
74, 1952.

[17] Konrad Polthier and Markus Schmies. Geodesic flow on polyhedral surfaces. In Proceed-
ings of Eurographics-IEEE Symposium on Scientific Visualization 99, pages 179–188,
1999.

[18] Konrad Polthier and Markus Schmies. Straightest geodesics on polyhedral surfaces. In
SIGGRAPH ’06: ACM SIGGRAPH 2006 Courses, pages 30–38, 2006.

[19] Helmut Pottmann, A. Asperl, M. Hofer, and A. Kilian. Architectural Geometry. Bentley
Institute Press, 2007.

[20] Helmut Pottmann, Alexander Schiftner, Pengbo Bo, Heinz Schmiedhofer, Weinpeng
Wang, Niccolo Baldassini, and Johannes Wallner. Freeform surfaces from single curved
panels. ACM Trans. Graphics, 27(3), 2008. Proc. SIGGRAPH.

[21] Helmut Pottmann, Alexander Schiftner, and Johannes Wallner. Geometry of architec-
tural freeform structures. International Mathematical News (Internationale Mathema-
tische Nachrichten), 209:15–28, 2008.

[22] Alla Sheffer, Emil Praun, and Kenneth Rose. Mesh parameterization methods and
their applications. Found. Trends. Comput. Graph. Vis., 2(2):105–171, 2006.

[23] Vitaly Surazhsky, Tatiana Surazhsky, Danil Kirsanov, Steven J. Gortler, and Hugues
Hoppe. Fast exact and approximate geodesics on meshes. ACM Trans. Graph.,
24(3):553–560, 2005.

[24] Petr Vanček and Ivana Kolingerová. Technical section: Comparison of triangle strips
algorithms. Computers and Graphics, 31(1):100–118, 2007.

