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ABSTRACT 

Software development on a cluster for data-intensive applications has 

always been a challenge. However, the cost advantage over traditional shared 

memory system has driven the migration of data warehouse to cluster. We 

propose splitcube - a new approach of OLAP database computation to work on 

cluster. Splitcube ensures very effective dynamic load balancing and low 

overhead. We study different ways of splitting the input data for parallel 

processing in an attempt to heuristically optimize the cost of processing queries 

for a specific workload at a prescribed level of pre-aggregation. Our results on 

two real-life datasets reveal great performance improvement in three-fold: 1) 

Both splitcube building time and query response time experience a near-linear 

speedup up to 64 processors; 2) The idle time in all but one instance is less than 

6% of the total execution time; and 3) Splitcube achieves near-linear or better 

speedup with much larger datasets.  
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1 INTRODUCTION 

A (computer) cluster is essentially a collection of computers, which are 

connected via a high-speed local area network, e.g., Ethernet. Cluster systems 

and symmetric multiprocessor (SMP) are among the most popular hardware 

platforms for high performance computing (HPC).  Clusters are popular because 

they enjoy a 3-5 times cost/performance advantage over a symmetric 

multiprocessor (SMP) system, according to a recent industry study ([C08]). 

Architecturally, clusters scale better than SMP and are more fault tolerant. 

However, they have their own downsides in comparison to SMP: 

•  Lots of cooperating components 

•  Higher latency for sharing 

•  Software complexity 

 

Traditionally, most applications developed on this HPC platform are 

devoted to scientific computation, as it is most able to take advantage of this 

architecture.  In contrast, algorithms for data-intensive computation in general are 

inherently sequential, due to data sharing. When a task is partitioned into sub-

tasks to run in different nodes in a cluster, these sub-tasks may need to re-

synchronize and exchange data among some/all of the nodes, once in a while, 

before they can continue their execution. Consequently, it is hard to achieve 

good speedups.  
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This research focuses on one important data-intensive application: OLAP 

database computation, which includes pre-aggregation and query processing on 

OLAP databases. Our approach is quite unique in the literature on OLAP 

database computation in a multiprocessor environment. Most published papers 

on this subject are concerned with either pre-aggregation or query processing. 

Obviously, if all aggregates are pre-computed, query processing would be quite 

straightforward. We do believe in pre-aggregation, without which processing 

complex queries would take a long time. On the other hand, we are doubtful that 

there exists a cost-effective way of computing all aggregates in a cluster.  

 

Let us begin by examining the literature on pre-aggregation in a single-

CPU platform. There are basically two classes of cube building algorithms. Much 

of the earlier work is about computing cuboids, which can be characterized as 

materialized views of group-by queries. Much of the work in the literature on 

OLAP computation on a cluster, e.g., [GS97], [MK99], [NWY2001], [YJA02], 

[LU03] and [DER06], attempts to parallelize selective cube building algorithms. 

The more recent articles (e.g., [SRDK02], [LPZ03]) focus on minimizing the 

storage footprint of the data cube by removing cells in the cube that are identical. 

Elaborate storage structures are designed so that a network of pointers 

(real/symbolic) is built to link items which share the same information. These 

storage structures may not work well in a cluster, because it is hard to partition 

them and still retain much of the reduction in total storage footprint.  
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Computation of cuboids can be a sequential process. While a cuboid can 

be computed from a number of cuboids, it is best computed for one specific 

cuboid. This child-parent dependency hinders any data parallelism strategy 

which involves concurrent computation of a cuboid by multiple processors. Not 

only the parent cuboid needs to be distributed, but also the parts of the cuboid 

resulting from computation by different processors need to be merged together 

into a single child cuboid, when it can be used for computing another child cuboid 

of its own. One can avoid this dependency by adopting task parallelism, i.e., 

having only one processor computing a cuboid, as shown in [NWY2001]. The 

disadvantage of this approach is that the workload may be highly unbalanced, 

because of the uneven distribution of sizes of the cuboids. This problem may be 

partially alleviated by switching a task to a processor that is idle, but the task may 

end up in a processor without a matching parent. Finally, one may do away with 

dynamic load balancing entirely by carefully planning so that the processors will 

have roughly the same workload. This approach is advocated in [DER06], and 

produces an algorithm that achieves greater speedup than approaches that 

involve extensive data sharing. On the other hand, this approach necessitates 

careful analysis of the input dataset, and cost modelling with high accuracy, in 

order to achieve load balancing. It is remarked in [DER06] that “cost effective 

estimation … remains an important open area of research.” Finally, task 

parallelism, as opposed to data parallelism, implies replication of source data in 

each processor or shared disks. The former results in lengthy data loading time, 
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while the latter requires high shared I/O bandwidth. Moreover, each processor 

must process the entire dataset in the beginning, while processors in algorithms 

practicing data partitioning need to process only a fraction of the dataset. 

 

In this research, we take a different approach to OLAP computation, 

because we stick to a set of assumptions that are different from the norm. We 

presume that decision making queries are much more complex than just group-

by queries, firstly. For example, MDX, a popular industrial query language 

designed for spreadsheet users ([MS08]), produces matrices (or tables) as the 

answer to a query. The answer to an MDX query could come from a multitude of 

cuboids. Computing only and all cuboids does not necessarily lead to fast query 

processing for any user-defined workload that consists of query matrices. 

Secondly, we do not insist on pre-computing all aggregates. A user may not opt 

for pre-computing all aggregates because the huge size of the cube, as a result 

of data explosion [P2005]. Even if the user is willing to put up with the time 

required to build the full cube in an attempt to eliminate the need for aggregation 

during the query time, it may not always pay off due to a large increase in I/O 

time. OLAP products, such as Microsoft Analysis Services, regularly analyze the 

OLAP metadata model and heuristically determines the optimum set of 

aggregations from which all other aggregations can be derived [MS01]. Un-pre-

computed aggregates that are required by a query is computed on-the-fly. By not 

insisting on computing only cuboids, or all aggregates, we demonstrate in this 
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thesis that OLAP database computation can indeed work well with a cluster as a 

hardware platform. 

 

We propose to compute and query a splitcube, which contains only a 

subset of all aggregate cells. The splitcube consists of a number of cubelets, 

which themselves are lower dimensional cubes. Central to the idea of splitcube is 

that these cubelets may be computed in isolation once the input dataset has 

been partitioned. In this sense, data parallelism is practiced. We call the 

construction of a cubelet a task. In the absence of affinity between a proposing 

node and a task, tasks may be assigned to any processing node during the 

runtime, in order to achieve load balancing. The advantage of our approach, 

compared to other existing approaches, is that we practice both data and task 

parallelism, and manage to avoid their pitfalls. 

 

Given sufficient number of tasks, it is easy for a task dispatcher to keep all 

the processors busy all the time. On the other hand, excessively large number of 

tasks leads to proportional large overhead, and more importantly, unacceptably 

long query response time due to huge on-the-fly aggregation during query 

processing. The main focus of this research is to develop an algorithm to 

heuristically optimize the query response time by adjusting the number and size 

of the tasks. Since query response time in general is dependent on the amount of 

pre-aggregation, our goal is to find an efficient, low-cost way to partition the input 
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dataset such that an optimal, or near optimal, query response time for a given 

level of pre-aggregation is achieved. 

 

The rest of the thesis is organized as follows. In Section 2, notations and 

general concepts about OLAP systems are explained. Section 3 contains an 

introduction of splitcube. In Section 4, a scheme for building a splitcube and 

query processing is presented. The procedure to locate an optimal PDS for each 

multiplier class is explained in detail. In Section 5 we analyze the experimental 

results on two real-life data sets: the Weather dataset (enhanced), and a real-

estate dataset. Section 6 is the concluding section. 
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2 BASIC CONCEPTS 

2.1 Cube and Dimension Hierarchy 

The (full) cube is defined in this thesis to be a k-dimensional array, where 

k is a positive integer greater than zero. Each dimension of a cube has D i 

members, 1<=i<=k, which are organized as a hierarchy. The members at the leaf 

level are called primary members. All other members in a higher level of the 

dimension hierarchy are called group members. The hierarchy is a tree 

hierarchy, where a member is assumed to have exactly one parent, except for 

the root, which has no parent. In particular, there is exactly one path between a 

group member and any of its descendants.  

 

As an example, consider a 3-dimensional OLAP database. Fig. 1 shows 

dimension hierarchies of A, B and C. All members at the bottom level are primary 

members (in shade), and the remaining ones are group members.  

a4

a2 a3

a5

a1

a6

b5

b3b2 b4

b6

b1

b7

c1 c2 c3 c4 c6c5 c8c7

c9
c10

c11 c12

c14c13

c15

 

Figure 1: Dimension Hierarchies A, B and C 
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A cell in the cube has two components: the address in the cube and the 

measure. It is identified uniquely by a k-tuple, which is composed of its 

coordinates along the k dimensions. A cell is a group cell if at least one 

coordinate of the cell is a group member of some dimension; otherwise it is a 

primary cell. A cell stores a single numeric value, which is called the measure, 

although the results of this thesis are equally valid for multiple values stored in 

each cell.  Measures of all primary cells are input from a data source(s). The 

measure of a group cell may be calculated according to the method to be 

discussed in Section 2.2. If the cube includes all group cells, it is called a fully 

pre-aggregated cube, or otherwise, a partially pre-aggregated cube. The set of all 

primary cells is called a base cube. As examples, (a1, b2, c8; 4) and (a1, b5, c10; 

15) are cells of the 3-dimensional cube shown above. The former cell is a 

primary cell, and its measure is an input value; while the latter is a group cell with 

a measure to be derived from the measures of some primary cells. This measure 

may be pre-computed during the pre-aggregation phase, or computed on-the-fly 

during the query time. 

2.2 Aggregation 

We now consider how the measure of a group cell is derived. To this end, 

we need to elaborate on the relationships between cells in a cube.   

 

A descendant of a cell, T, with coordinate (t1, …, tk) is another cell,  T‟, 

with coordinate (t1‟, …, tk‟) such that each ti‟ is a descendant of ti in the ith 
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dimension hierarchy. The distance between T and T‟ is defined to be the 

Hamming distance between them, i.e., the sum of all distances between two 

corresponding members in each dimension hierarchy. In particular, T‟ is an 

immediate child of T, if the distance between them is 1. If ti is a group member, 

the immediate children of T along the dimension i are those cells which have 

identical components as T, except for the ith dimension. There are as many sets 

of immediate children of T as there are group members included in the 

coordinate of T. The root of the measure tree is one that has no parent. The 

coordinate of the root consists of roots of all respective hierarchies.  

 

Consider (a5, b7, c12) as the address of a group cell, which has in its 

coordinates a5, b7 and c12 as group members. Thus, it has a set of immediate 

children along dimension A, i.e., (a2, b7, c12) and (a3, b7, c12), a set of immediate 

children along dimension B, i.e., (a5, b5, c12) and (a5, b6, c12), and another set of 

immediate children along dimension C, i.e., (a5, b7, c7) and (a5, b7, c8). It can be 

shown that the measure of (a5, b7, c12) is the sum of measures of the set of 

immediate children along any one of the dimensions [Luk01]. 

 

We define the measure of a group cell T to be a distributive aggregate 

function, according to ([GBLP96]), of all measures of all primary cells that are 

also descendants of T. The definition of a distributive aggregate function is given 

in [GBLP96]; however, since it applies to only 2-level hierarchies, a more precise 

definition is required for this thesis. We say an aggregation function F() is a 
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distributive one, if there exists another function G, such that F({S}) = G(F{S1}, …, 

F{Sn}) where S is a set of scalar values and {S1, …, Sn} is a partition of S. If F is 

the summation aggregation function, i.e., sum(), then this equation holds if G is 

also the summation aggregation. In fact, F = G if F is the maximum(), or the 

minimum() functions. Count() is also a distributive aggregate function if we 

choose G to be the summation aggregation function. For this thesis, we use only 

the summation aggregation function, but our results are equally applicable to all 

other distributive aggregation functions. 

2.3 Physical Representation of a Cube 

A cube is often considered as a logical view of the OLAP database. A 

schema of an OLAP database consists of a fact table, and a number of 

dimension tables. The fact table contains all primary cells, i.e., cells in the base 

cube, while the dimensional tables store information about each dimension. Our 

OLAP engine keeps the dimensional tables as relations, and organizes the cells 

in the cube, including primary and group cells, into a B-tree1. In particular, an 

element in the B-tree is a cell record, which consists of the key and the 

associated measures. The key of a cell is the coordinate of the cell. In our 

implementation here, it is compressed into a 64-bit integer. The B-tree is a 

clustered one, the tuples in the leaf nodes having been sorted according to the 

descending sequence of the B-keys. 

 

                                            
1 In this thesis, the B-tree is synonymous to the B+-tree where all leaf nodes are of equal distance 

to the root nodes.  
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2.4 Aggregation Algorithm 

We consider here only the cube building algorithms that run on a single 

computer. In fact, the kind of cube subject to the algorithm is typically much 

smaller than the original cube, and with fewer dimensions involved. Thus we 

need an algorithm that does a superb job when the cube is small enough to fit 

into the memory, while it does just as well as other published cube building 

algorithms for large cubes. Besides, the end result of the algorithm is a B-tree, as 

described in Section 2.3.  For this purpose we choose the disk-based version of 

the algorithm published in [Luk01]. We do not elaborate further on the details of 

this algorithm which have been included in another manuscript [Luk08], as it is 

not central to this research. 
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3 SPLITCUBE – GENERAL CONCEPTS  

 

In this section, we introduce the general concepts of a splitcube, which 

could be considered as a partially pre-aggregated (PPA) cube. We explain the 

concepts in the context of a single-computer system. These concepts will then be 

applied to the OLAP engine on a cluster in Section 5. 

 

3.1 Prefix and Cubelet 

Central to the whole idea of splitcube is the partition of the k dimensions 

into two sets: prefix dimension set, or PDS, and cubelet dimension set, or CDS. 

For convenience, we consider the first m dimensions to form the PDS, i.e., P1,…, 

and Pm, where 0 < m < k. The prefix of a cell address is an m-tuple, which is the 

projection of its coordinates on the PDS. 

 

Given a PDS, a Splitcube is defined as a collection of all the cells in the 

cube, except those cells whose prefixes contains at least one group member of a 

prefix dimension. Thus, the cells in the splitcube may be partitioned into a 

number of sets, each of which consists of cells with the same prefix. Each such 

set is called a prefix set, which may be represented by a prefix and a cubelet. A 
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cubelet associated with a prefix is itself a (k-m)-dimensional cube. There is a 1-1 

correspondence between the cells in prefix set and those in the cubelet. Each 

cell in a cubelet has the same measure as the corresponding cell in the prefix 

set, and an address is a (k-m)-tuple which is the projection of a cell address on 

the CDS. The set of primary cells in this cubelet is the base cubelet. Thus the set 

of base cubelets is a partitioning of the base cube.  

 

The primary purpose of introducing the concept of splitcube is that 

cubelets can be constructed from their base cubelets, so that constructions of 

these cubelets can proceed in parallel. This is due to the following proposition, 

whose proof is omitted, because it follows directly from the discussion of 

aggregation in Section 2.2. 

 

Proposition 1: The cubelet associated with a prefix set of a splitcube is 

identical to the (k-m)-dimensional cube constructed from the base cubelet 

associated with the prefix set. 

3.2 Construction of a Cubelet 

Computation of a cubelet associated with a specific prefix from the base 

cube may proceed as follows:  

i. Locate the cells in the base cube, i.e., primary cells, with the same prefix. 

ii. Project these cells on the CDS and the measure, which form the base 

cubelet.   
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iii. Compute the fully aggregated (k-m)-dimensional cube with this base cubelet.  

 

Let us now consider our running example again. Assume that the base 

cube consists of the following cells, the scalar being the lone measure: (a1, b2, c1; 

3), (a3, b3, c3; 4) and (a3, b4, c2; 2). 

Consider the splitcube, SCA, where A is the sole prefix dimension in the 

PDS, and BC are the cubelet dimensions in the CDS. The splitcube has only two 

cubelets, associated with a1 and a3 respectively. Projecting the cells in the base 

cube associated with a1 on BC and the measure, we have only one cell (b2, c1; 3) 

in the base cubelet associated with a1, while the base cubelet associated with a3 

has two cells, (b3, c3; 4) and (b4, c2; 2). The cubelet generated from the base 

cubelet associated with a1 is shown in Table 1. Note that there are 12 cells in the 

cubelet, which is the product of the levels of dimension hierarchies B and C. As a 

result, this quantity is called the multiplier of the cubelet associated with the PDS 

{A}.  

Prefix Cubelet 

(a1) (b2, c1; 3), (b2, c9; 3), (b2, c13; 3), (b2, c15; 3), (b5, c1; 3), 

(b5, c9; 3), (b5, c13; 3), (b5, c15; 3),  

(b7, c1; 3), (b7, c9; 3), (b7, c13; 3), (b7, c15; 3) 

(a3) … … 

Table 1: Prefix & Cubelets with A as PDS 

As another example, the prefixes and cubelets for the splitcube, SCAB, are 

shown in Table 2. The multiplier for the PDS AB is 4, which is the number of 

levels in dimension C.  
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Prefix Cubelet 

(a1, b2) (c1; 3), (c9; 3), (c13; 3), (c15; 3)  

(a3, b3) (c3; 4), (c10; 4), (c13; 4), (c15; 4) 

(a3, b4) (c2; 2), (c9; 2), (c13; 2), (c15; 2) 

Table 2: Prefix & Cubelets with AB as PDS 

3.3 Query Types – Point Query and Query Matrix 

Testing for performance of random point query is common among most 

papers on cube building. A point query is defined as the address of a cell Q (q1, 

…, qk) where qi, 1<=i<=k, is the coordinate of the cell in the i th dimension. 

Nonetheless, there are problems if one is concerned with performance of only 

point queries. First, random point queries rarely retrieve non-empty cells, 

because most cubes are sparse. Secondly, decision making queries tend to be 

more complicated, and take a lot longer to execute. Thus good performance in 

point queries is necessary but not sufficient. Consequently, we consider another 

type of query which is more representative of the practical queries.   

A possible candidate is range query which is sometimes included in 

performance evaluation in some papers (e.g., [LPZ03]). A random range query 

does not make much sense in OLAP applications, when the ranges have already 

been carefully defined by OLAP application designers, in the form of dimension 

hierarchies. Instead, most commercial OLAP systems implement a query 

language called MDX ([MS08]). Here, we adopt a simplified form of MDX, i.e., 
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query matrix, which is designed for inter-row/column calculations on a 

spreadsheet [Wit03].  

 

A query matrix displays data contained in the cube in the form of a pivot 

table, which is made popular by many data visualization tools such as 

spreadsheet packages. It consists of three components: a (point) query Q (q1, …, 

qk) with at least two group members, and two dimensions, say i and j, identified 

as the row and column dimensions respectively. qi and qj must be group 

members for their respective dimensions, with immediate descendant members 

qi,1, …, qi,r, and qj,1, … qj,s. The answer for the query matrix, i.e., the answer 

matrix, is a table, with qi,1, … and qi,r as labels for the row, and qj,1, … and qj,s for 

the column. Assuming i < j, the entry (v,w) of the table, where 1<=v<=i and 

1<=j<=s, is the answer for the query (q1, …, qi-1, qi,v, qi+1, …qj-1, qj,w, qj+1, …, qk). 

 

In the example we see in Fig. 1, we assume a query matrix for our 3-

dimensional cube has the point query (a6, b7, c15), with A as the row dimension 

and B, the column dimension, consists of a matrix of point queries as shown 

below: 

Row\Column labels b5 b6 

a4 (a4, b5, c15) (a4, b6, c15) 

a5 (a5, b5, c15) (a5, b6, c15) 

Table 3: Query Matrix with A and B as Row and Column Dimensions 
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3.4 Processing Point Queries 

Consider the point query, (q1, …, qk), which is split into two parts: (q1, …, 

qm) and (qm+1, …, qk), where each q can be any member in the dimension. 

Processing this point query on a splitcube may proceed as follows:  

  

1. Decompose (q1, …, qm) into a number of prefixes, (p1, …, pm), where pi is 

a primary descendant of qi, 1<= i <= m.  

2. For each of these prefixes, retrieve the measure of the cell, (qm+1, …, qk) in 

the associated cubelet.  

3. Compute the answer of the query from the measures retrieved.  

 

For example, consider the splitcube SCA. A query (a6, b7, c15), is 

decomposed into three queries (a1, b7, c15), (a2, b7, c15), and (a3, b7, c15), since a6 

has 3 possible primary members, i.e., a1, a2, and a3. Since the cubelet with prefix 

a2 is non-existent, the projected query (b7, c15) is applied against the two 

associated cubelets, which retrieves two cells, (b7, c15; 7) and (b7, c15; 6). The 

answer to the query (a6, b7, c15) is computed from the measures of these two 

cells. 
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3.5 Processing Query Matrices 

Generally speaking, processing of a query matrix may proceed by 

processing point queries individually inside the matrix. To process the query 

matrix in Table 3, we apply the point queries, one at a time, to the splitcube 

SCAB(as defined in page 14). Actually, we can do better. Observe that the first 

coordinate of the query matrix, a6, is a group member of the dimension A, with a1, 

a2, a3 as its primary descendants. Similarly, the second coordinate of the query 

matrix, b7, is a group member of the dimension B, with b1, b2, b3, b4 as its primary 

descendants.  We simply apply the point queries (c15) against the cubelets 

associated with (ai, bj), 1<= i <= 3 and 1<= j <= 4. The results from individual 

cubelets are then posted to the answer matrix.  

 

This procedure may be a bit more complicated if the query matrix in Table 

3 has C, instead of B, chosen as the column dimension, which is not a dimension 

included in the PDS. The query matrix will now be:  

Row\Column labels c13 c14 

a4 (a4, b7, c13) (a4, b7, c14) 

a5 (a5, b7, c13) (a5, b7, c14) 

Table 4: Query Matrix with A and C as Row and Column Dimensions 

In this case, we need to apply two point queries, (c13) and (c14) against the 

cubelets associated with (ai, bj), 1<= i <= 3 and 1<= j <= 4. In other words, the 

number of point queries applied is doubled.  



 

 19 

 

Consider an arbitrary query matrix, (q1, …, qk) with Di and Dj as the row 

and column dimensions respectively. Furthermore, qi and qj have respectively r 

and s immediate descendant members. As before, the PDS is {D1, …, Dm}. The 

total number of point queries in the matrix is r*s. But the actual number of point 

queries posed could be much higher, because some of these point queries must 

be decomposed into a number of point queries with pre-computed answers. To 

compute the number of point queries that must be posed to compute the answer 

of a given query matrix, we need to consider the following cases:  

 

(i) Di and Dj are both included in PDS:  1 single point query against every 

cubelet. 

(ii) Only Di (Dj) is included in PDS: r (s) point queries against every cubelet. 

(iii) Neither Di nor Dj is included in PDS: r*s point queries against every 

cubelet. 

 

Other factors being equal, dimensions that are prone to detailed analysis 

should be assigned as prefix dimensions. 
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4 CONSTRUCTION AND QUERYING OF SPLITCUBES IN 

A CLUSTER  

Having described how splitcubes are built and queried, we now consider 

these processes in a distributed system, i.e., a cluster. A generic architecture of a 

cluster is shown in the following diagram, where each node is in essence a PC, 

with its own memory, and local disk drive(s). These PCs are assumed to possess 

similar processing capability and they communicate with other PCs over an 

Ethernet network. Where necessary, they may read from a shared storage, but 

the Ethernet network is the preferred communication media among the nodes 

because the communications speed over the Ethernet is 3 times faster than that 

via the shared storage.  

network

Shared Storage

Node 0 Node 2 Node nNode 1

 

Figure 2: A Cluster of PC's 

We begin with a description of how to build a splitcube in a cluster by 

distributing the work among the nodes, assuming the choice of a PDS, which is 
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followed by a description of how a query matrix may be computed over the 

cluster. The rest of this section is devoted to the search for an optimal PDS, or 

PDS‟s. 

4.1 Construction of Splitcubes 

The construction of a splitcube is a two-phase process: planning and 

executing. In the planning stage, one processor node is designated as the 

Coordinator. The Coordinator has the following responsibilities: parse the input 

dataset, which is the base cube, selection of a PDS, and partitioning of the base 

cube into a number of base cubelets associated with PDS. Once the PDS is 

chosen, the input dataset is partitioned into n subsets, where n is the number of 

prefixes associated with the PDS and the input dataset. Each subset is a base 

cubelet by itself. A task is defined as the construction of a cubelet. Associated 

with a task is a task control block, which contains the base cubelet and its 

associated metadata.  

 

For the executing phase, we adopt the approach of dynamic load 

balancing for carrying out all the tasks defined in the planning phase. Each task 

is assigned to a processor node, called worker. Here, we assume the number of 

tasks must be larger than the number of workers. The job of a worker is fairly 

simple. As it becomes idle, and it is idle initially, it sends a message to the 

Coordinator. Once a task control block is received, it constructs the cubelet, 

which is stored on the local disk. The Coordinator allocates task control blocks 
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associated with outstanding tasks to workers on the waiting list on a first-come-

first-serve basis, with no attempt to distinguish one worker from the others. On 

the other hand, we follow a load balancing strategy to determine the order by 

which the tasks are assigned. This strategy is necessary since the sizes of tasks 

may vary greatly in accordance with the sizes of the base cubelets.    

 

Some load balancing strategies are inappropriate and should be avoided. 

For example, if many small tasks are assigned within a very short time, or worse, 

consecutively, the Coordinator will be kept so busy that it cannot monitor network 

traffic successfully, resulting in packet losses. At the same time, bursts of 

network traffic will cause packet collisions, resulting in re-transmission of 

packets. As another example, large tasks should not be distributed toward the 

end of the execution phase, because the Coordinator may run out of tasks for 

distribution while some large tasks are being executed by only a few nodes. In 

the worst case, all but one Worker could be idle, waiting for one Worker which 

has just started a very large task. Consequently, the entire execution phase is 

delayed. One reasonable strategy, which we have adopted, would be to assign 

large and small tasks in an alternating fashion. 

4.2 Querying Splitcubes 

Our query processing algorithm is simple, because we depend on the raw 

power of the workers to deliver the performance. Sophistication in a query 

processing algorithm may result in certain amount of overhead. Upon receipt of 
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the query, i.e., a query matrix, the Coordinator decomposes the query into a 

number of point queries, to which the answers are readily available on the fully 

pre-aggregated cubelets. The query decomposition is done as described in 

Section 3.4. These point queries are delivered as a bundle to the relevant 

Workers. Each query, as well as its answer, is accompanied with a tag, indicating 

the row-column position of the query within the query matrix.  

 

Each worker has a simple query processor to process the point queries 

that fall within the ranges of the cubelets that are local to the worker. The query 

processor has two main functions. It ensures all queries assigned to it are posed 

to the local cubelets according to the sorted sequence of the queries. As the 

answers of the queries are returned by the local B-tree(s), the worker classifies 

these answers into groups by the tags of the associated queries, and calculates 

the sum of answers within the same group. The results are then sent back to the 

Coordinator for the final tally before returning the answer to the user. 

4.3 Optimal Choice of PDS 

The quest for an optimal choice of PDS is complicated by the fact that 

there can be more than one optimal PDS. Since we do not insist on generating 

all aggregates, there is always the trade-off between the cost to construct the 

splitcube and the query processing cost for a given query workload. Our strategy 

here is to partition the PDS‟s into a number of classes, such that PDS‟s in each 

class have similar characteristics, which lead one to believe that they incur 
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similar cost of constructing a splitcube. We then proceed to locate a PDS within 

each class that produces the lowest processing cost. Note that we are concerned 

only with the cost of building a splitcube as if there is only one processor. We 

reason that with an effective load balancing scheme, each worker is kept busy 

doing useful work. Minimizing the total work to be done translates into minimizing 

the work to be done by each worker, hence the total elapsed time in a cluster.   

 

Our optimization strategy does not explicitly take into account on the 

number of workers. As a result, when more workers are introduced, the work will 

be spread out more, consequently the shorter computation time is. It is important 

to note that based on workers‟ computational power, sufficient work should be 

given to each worker to ensure the speed-up. 

 

The principles for PDS selection are not unlike those for query 

optimization in a relational DBMS. It must be efficient, and yet avoid very bad 

choices. Consequently, we can‟t afford to evaluate each of the 2k possible PDS‟s, 

where k is the number of dimensions. We eliminate sub-optimal PDS‟s in three 

phases, so that the end result is a single PDS.  

 

Phase I: We define a quantity called MaxCubeletCount, which is equal to 

|D1|*…*|Dm|, which is the maximum of the cubelets there can be. All PDS‟s 

whose MaxCubeletCount is too large or too small are discarded. We rank all 

remaining PDS‟s in each class by their „maximum‟ query processing costs (to be 
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defined later) in ascending order, and discard all but the top 3 PDS‟s. Since the 

goal of this phase is to quickly rule out a huge chunk of PDS‟s for consideration 

in Phase II, no reference is made to the base cube (the input dataset).  

    

Phase II: For each of remaining PDS‟s, we calculate values of two 

parameters: the CubeletCount and MaxBaseCubeletSize against the base cube. 

The former is the actual number of cubelets entailed by the PDS, while the latter 

is the maximum size of all base cubelets.  PDS‟s with large MaxBaseCubeletSize 

values are removed, because they cause unbalanced task distributions. With a 

more realistic estimate of CubeletCount, we re-compute the query processing 

costs for all remaining PDS. We select PDS with the lowest query processing 

cost for each class. 

 

Phase III: Eliminate any selected PDS from Phase II, if it has a higher cost 

for building the splitcube as well as higher query processing cost than another 

selected PDS. If there are more than one class left after the elimination, the 

system or the user can choose one of them based some other criteria, e.g., the 

one with lowest cost in constructing the splitcube (i.e., the PDS with the lowest 

multiplier) or the one with lowest query processing cost.  

 

An example of how the PDS‟s are eliminated in a real-life dataset is shown 

in Section 5.2.2. 
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4.4 Multiplier Class  

Every cell in the base cubelet contributes to the creation of a number of 

new group cells in the cubelet. This number is called the Multiplier, which can be 

calculated as follows. Let {C1, …, Cj} be the CDS associated with the PDS, and li, 

1<=i<=j, is the number of levels in the hierarchy associated with the dimension 

Ci. Thus, the multiplier associated with PDS is the product of l1, …, lj. If there are 

n cells in the base cube, the maximum number of (primary and group) cells in the 

splitcube is n times the multiplier of the PDS. Thus, the multiplier is indicative of 

the work involved in constructing the splitcube. A multiplier class is the set of all 

PDS‟s with the same multiplier, and it is labeled by the value of the multiplier.  

 

In Section 3.2, we have showed that the multiplier value of PDS {A} is 12. 

The following table shows the multiplier classes of all PDS‟s.  

Multiplier Class CDS 

3 (# levels of A, or B) A [PDS {B, C}], B [PDS {A, C}] 

4 (# level of C) C [PDS {A, B}] 

9 (product of # levels of A and B) AB [PDS {C}] 

12 (product of #levels of A/B and C) BC [PDS {A}], AC [PDS {B}] 

Table 5: Multiplier Classes and PDS's 

Note that the actual number of cells in the splitcube may not fully reflect 

this multiplier effect, because some of group cells generated by different cells in 

the base cubelet may be merged because they have the same coordinates. 
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4.5 Query Processing Cost 

When we consider the query processing performance, it is important to 

include a discussion of query workload. In practice, the query workload usually 

consists of a set of query matrices which users have identified to be relevant to 

them. Therefore, it makes sense to choose a PDS so that the queries in the 

workload can be processed efficiently. In this thesis, we choose the workload of 

the most computationally intense query matrices. They have the same point 

query Q (q1, …, qk), where each q is the root of a dimension hierarchy. Thus, 

there are k*(k+1)/2 queries in our workload. We measure the query processing 

performance of a PDS in two ways: by the highest possible query processing 

cost of query matrices and the average cost over all queries within the workload. 

We choose the former as the primary measure in order to demonstrate the 

speedup of the query performance as the number of processors increases.  

 

We measure the cost of processing a given query matrix by the number of 

point queries that must be posed to the cubelets to fetch the answer of the query. 

This cost is calculated to be the product of the cost per cubelet and the actual 

number of cubelets. We have derived in Section 3.5 the cost per cubelet. The 

number of cubelets for the splitcube, which is CubeletCount, is dependent on the 

input dataset. In the absence of any reference to the input dataset, as is the case 

in the Phase I of the planning process, one may derive the „maximum‟ query cost 

by estimating MaxCubeletCount, which is the product of |D1|, |D2|, …, and |Dm|. 

Note that while the gap between MaxCubeletCount and the actual one is small 
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for PDS‟s with small multipliers, it is widened exponentially as the value of m 

increases due to data skewness. Hence we need to compute a better estimate of 

the CubeletCount for selective PDS‟s. 

4.6 Computing CubeletCount and MaxBaseCubeletSize 

The exact values of CubeletCount and MaxBaseCubeletSize, both of 

which are required for Phase II, can be derived by scanning the input dataset. If 

the input dataset is huge, two techniques are employed to speed up the 

computation of CubeletCount and MaxBaseCubeletSize of a PDS: distributed 

computation and sampling.  

 

Prior to the planning process of query processing, the input dataset is 

assumed to be stored in a compressed form in the network drive. In Phase II, the 

coordinator assigns a number of nodes as evaluators; each evaluator is to 

compute the CubeletCount and MaxBaseCubeletSize of a specific PDS. Once 

that is done, the estimates of two parameters are sent to the coordinator. Due to 

limited bandwidth of the network drive (i.e., the shared drive shown in Fig. 4), one 

should not attempt to employ a large number of evaluators (e.g., > 30) to work in 

parallel.   

 

The computation by the evaluator is a simple process. It involves reading 

from the network drive a fraction of the input dataset, and computing the values 

of the parameters based on the sample data.  For our purpose, the actual value 
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of MaxBaseCubeletSize is of importance, because PDS‟s with large 

MaxBaseCubeletSize are eliminated, whereas CubeletCount is used exclusively 

for ranking PDS’s, within the same multiplier class. Consequently, the value of 

MaxBaseCubeletSize is projected from the sample-based value. If y% of the 

dataset is actually read, then the sample-based MaxBaseCubeletSize value will 

be multiplied by a factor of 100/y. On the other hand, no adjustment is made to 

the sample-based CubeletCount value. While sophisticated statistical sampling 

techniques may yield more accurate results, we don‟t use them for this study 

because the more sophisticated techniques is almost certainly take more time. 
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5 EXPERIMENTAL EVALUATION AND ANALYSIS 

A number of important issues are addressed in this section on the 

experimental basis: 

 Scalability: As the number of processors increases, or as the size of the 

input dataset increases, how much faster will the cube building and query 

processing algorithms run?  

 Modeling (query performance): On each dataset, our optimization process 

selects a PDS for each multiplier class, which is supposed to lead to the best 

query performance, among the PDS‟s in the multiplier class. How well does 

our optimization work?  

 Modeling (multiplier class): Is the multiplier class a good indicator of the 

degree of pre-aggregation? More specifically, does the PDS we select for 

each multiplier class provide a better performance in pre-aggregation the 

PDS chosen for the class with a smaller multiplier? 

 Sampling accuracy: Firstly, is sampling necessary, i.e., what would 

happen if the theoretical values for CubeletCount and MaxBaseCubeletSize 

are used, without resorting to sampling? Secondly, how well do the estimated 

values of these parameters serve our optimization strategy? 
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The organization of the remaining section is as follows. A brief description 

of the hardware platform can be found in Section 5.1.  Then we address the 

above questions by examining the experimental data related to the Weather and 

Real Estate datasets (Section 5.2 and 5.3) respectively. 

5.1 Experimental Hardware/Software Platform 

We have implemented our algorithm on SFU's Beowulf cluster, which 

largely resembles the configuration shown in Fig. 2. Dedicated exclusively to 

research computing, especially scientific research computing, it contains 96 

nodes, each of which is a PC equipped with dual Athlon MP 2800+ processors 

(2.133 GHz), 1GB RAM, 15GB hard disk and fast Ethernet interface. The 

network connection between the nodes is 3-way channel bonded fast Ethernet, 

providing a 3 times larger bandwidth than the ordinary Ethernet. In addition, each 

PC connects to the shared storage on the Ethernet. The programs, written in 

C++, are compiled and run on the local Linux OS. Program-to-program 

communications are conducted via MPI (Message Passing Interface, Version 

2.0), which is a popular language-independent API (application programming 

interface) with defined semantics and flexible interpretations.  
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5.2 Weather Dataset (enhanced) 

5.2.1 About the dataset 

The Weather dataset ([HWL94]) is a very common one for research on 

cube building algorithm to adopt for experimental analysis. The original dataset 

has 9 dimensions and one measure; the dimensions‟ cardinalities are: 2, 8, 10, 

30, 101, 152, 179, 352, and 7037. All dimensional hierarchies are 2-level ones, 

i.e., the only group members are roots of the hierarchies. We bulk up the 

hierarchies of the last 4 dimensions by adding one more level in each dimension 

hierarchy.  The cardinalities of all dimensions are shown in the following table: 

level\dimension 1 2 3 4 5 6 7 8 9 

1 1 1 1 1 1 1 1 1 1 

2 2 8 10 30 101 8 8 18 85 

3           152 179 352 7037 

Table 6: Cardinalities by Levels in the Dimension Hierarchies in the Enhanced Weather 

Dataset 

There are about 1 million tuples in the dataset, i.e., about 1 million primary 

cells in the base cube. If all group cells were to be pre-computed, the size of 

cube would swell to 14.7 GB.  

5.2.2 Derivation of PDS 

In Phase I, we eliminate the PDS‟s whose MaxCubeletCount is less than 

64, the number of workers, or greater than 1 million, the number of cells in the 
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base cube. As a result, we are left with only 9 multiplier classes and 18 PDS‟s to 

work with in Phase II. In Phase II, we compute an estimate of each 

MaxBaseCubeletSize and CubeletCount. Detailed computation is described in 

Section 5.2.6. (In Table 7, only their actual values are shown.) With the estimate 

of CubeletCount, we now derive a more accurate estimate of QueryCost. Those 

PDS‟s whose MaxBaseCubeletSize is greater 20,000 are removed from our list. 

At the end of Phase II, only 8 PDS‟s remain, one for each multiplier class.  During 

Phase III, the PDS#160 is eliminated because both the cost of computing the 

splitcube and its query cost are greater than those of PDS#67, the choice of 

Class 216. 
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PDS

# Multiplier 

Max 

Cubelet 

Count  

Max 

Query 

Cost 

MaxBase 

Cubelet 

Size 

Cubelet 

Count Query Cost Phase II Phase III 

17 648 202 515100 464270 202 515100 deleted   

10 648 240 2060400 5633 240 2060400 selected selected 

18 648 808 2060400 100849 787 2006850 deleted   

12 432 300 2575500 32320 300 2575500 deleted   

65 432 374 3210790 17793 259 2223515 selected selected 

13 432 600 5151000 29810 597 5125245 deleted   

7 324 160 1373600 121994 160 1373600 deleted   

11 324 480 4120800 5282 480 4120800 selected selected 

19 324 1616 4120800 81888 1459 3720450 deleted   

160 288 59200 5.08E+08 1826 5204 44676340 selected deleted 

28 256 30300 46359000 21969 7009 10723770 deleted   

35 216 2560 21977600 4706 2206 18938510 deleted  

67 216 2992 25686320 4251 1971 16921035 selected selected 

69 216 3740 32107900 15483 2212 18990020 deleted  

23 162 16160 41208000 77658 4105 10467750 deleted   

15 162 4800 41208000 4680 4192 35988320 deleted  

27 162 48480 74174400 3250 22089 33796170  selected selected 

39 108 25600 2.2E+08 4111 11668 1E+08 deleted  

71 108 29920 2.57E+08 3828 11134 95585390 deleted  

53 108 323200 8.24E+08 14506 19970 50923500  selected selected 

31 81 484800 7.42E+08 3072 37909 58000770 selected  selected 

  Table 7: PDS Selection - Weather Dataset 

 

5.2.3 Pre-aggregation Performance 

We consider here the pre-aggregation performance against the number of 

processors and the multiplier classes.   
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Associated with a given PDS, let us define T(i) to be the execution time 

when the number of workers (i.e., participating processing nodes) is i, i>=1. 

Traditionally, the speedup of a parallel algorithm when i = n is defined to be the 

ratio of T(1)/T(n). If the speedup is n for n workers, the speedup is said to be 

linear. For the sake of brevity, we start with i = 8, in order to consider the 

speedup of our pre-aggregation scheme at n = 8, 16, 32, and 64.  

 

The chart in Fig. 3 shows the speedups of our scheme for each multiplier 

class. A speedup line graph for the chosen PDS in each class is the path 

connecting the 4 points, i.e., (8, T(8)/T(8)), (16, T(8)/T(16)), (32, T(8)/T(32)) and 

(64, T(8)/T(64)), where T(64) is the execution associated with the PDS. As is 

shown there, while all of the speedup line graphs for all classes are below the 

linear speedup graph, they track very closely to it, except for Class 81. 

 

Figure 3: Speedup of Pre-Aggregation Algorithm by Multiplier Class 
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If one looks into the details about cubelets associated with Class 81, it is 

not difficult to explain the sub-par performance. With the number of workers 

being 64, over 40% of the same 37K cubelets have only one cell in their base 

cubelets. This experimental finding justifies our heuristic that rules out PDS‟s 

whose CubeletCounts are likely to be large. On the other hand, one may 

conclude that our pre-aggregation scheme, coupled with the efficient cluster 

hardware, performs well even though more than 40% of cubelets are so small 

that they cannot be further sub-divided.    

The comparative performance of our pre-aggregation in terms of the 

number of workers and the multiplier class is shown in Fig. 4. Let us leave out 

performance of multiplier class 81, for the same reasons stated above. It is clear 

from the chart that the pre-aggregation time steadily decreases as the predicted 

amount of pre-aggregation, signified by the multiple class, decreases. This is true 

for when the number of workers increases from 8 to 64. In fact, the rate of 

decrease in pre-aggregation time is so consistent in each case that we could use 

the multipliers of the classes to predict the relative amounts of pre-aggregation 

time for the optimal choice of each multiplier class. For example, the ratio of pre-

aggregation times between optimal choices of multiplier class X and Y, is roughly 

equal to X/Y for any of these numbers of workers.  
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Figure 4: Execution Time of Pre-aggregation Algorithm by Multiplier Class 

The chart in Fig. 5 shows the percentage of busy time for all workers, 

which is the indicator of how well our dynamic load balancing works. Clearly, the 

workers spend little time sitting idle. This is true even for classes with high 

multiplier values, i.e., low cubelet counts. It seems that the task scheduling is not 

an issue here. 
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Figure 5: Total Processor Utilization Rate – Pre-Aggregation Process 

To conclude our discussion on pre-aggregation performance, the 3 charts 

above support a convincing argument that the pre-aggregation performance 

continue to improve as the number of workers increase, provided that the unit of 

work (cubelet) is not too small. 

5.2.4 Querying Performance 

Following the example of pre-aggregation, we consider the querying 

performance against the number of workers and the predicted querying 

performance as shown Table 7. The query is the worst-case query as defined in 

Section 4. We also show the average query performance over a class of 

computationally heavy query matrices.   
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We first consider the chart in Fig. 6, which is structured similarly to the one 

in Fig. 3. Some of the line graphs, e.g., those associated with Class 108 and 

Class 162 exhibit a trend similar to the line graph associated with Linear 

SpeedUp. On the other hand, the ones associated with Class 432 and Class 648 

start to level off as the number of workers increases past 32. In fact, the general 

trend is that the speedup for the remaining classes drops off as the multiplier 

increases, because the absolute value of the query response time in each case 

is so small, i.e., < 1.0 sec.,  that the querying overhead becomes a significant 

factor in the query response time. 

 

Figure 6: Speedup of Query Processing by Multiplier Class 

The response time of the worst-case query is shown in Fig. 7 for each 

multiplier class. The line graph labelled “predicted” is added to show how nicely it 

runs in parallel with other line graphs for different worker class. (The response 

time values of the “predicted” line graph are based on the QueryCount column of 

Table 6, adjusted proportionally for comparison purposes.) Again, it affirms that 
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our method of predicting the relative query performance of various multiplier 

classes works well, at least for this dataset. 

 

Figure 7: Query Response Time by Number of Workers – Worst Case Query 

If the query response time shown in Fig. 7 seems large, it is because we 

choose to show the performance of the worst-case query. We now briefly look at 

another measure of query performance over a group of 36 computationally 

intensive query matrices (see Section 4.5).  The average response time of these 

36 matrices is roughly 10% of that of the worst-case query matrix (Fig. 8).  



 

 41 

 

Figure 8: Query Response Time by Number of Workers – Average over Heavy-Duty 

Queries 

In fact, query response times for the four classes with high multipliers are 

very similar, regardless of the number of workers. Moreover, the average 

response times for all multiplier classes differ very little if the number of workers 

is large enough, leading to the conclusion that with this workload, and a relatively 

small dataset, the query response time „maxes out‟ at 64, or even 32 workers. 

5.2.5 Scale-up  

In order to find out how well our SplitCube approach works for a much 

larger dataset, we create two randomly generated datasets with exactly the same 

dimension hierarchies as the modified weather dataset. They have 1 million and 

10 million tuples, and are labeled 1M and 10M respectively. We focus on only 

two multiplier classes: 324 and 162. Our optimization scheme produces PDS#11 

and PDS#15 for classes 324 and 162 respectively. Note that the choice for class 
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162 is PDS#27 for the real-life dataset. It is replaced because the number of 

cubelets entailed by PDS#27 is too large for the randomly generated datasets.  

 

Figure 9: Execution Time of Pre-aggregation Algorithm for Dataset 10M 

 
We are interested in determining the speedups in execution time and 

query response time for 10M. Comparing the charts shown in Fig. 3 and Fig. 9, 

one finds that the speedup for 10M is clearly closer to linear speedup than the 

corresponding speedup for the real-life dataset. This phenomenon is due to the 

increase in average size of cubelets (> 10), which reduces the overhead, in 

relative terms. Apparently, the same is true for the speedup in query response 

time, if one compares the chart in Fig. 6 with the one below in Fig. 10. 
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Figure 10: Query Process Time by Multiplier Class 

The chart in Fig. 11 shows the scaling up of the execution time for pre-

aggregation for three datasets, the real-life, 1M and 10M. We make the following 

comparisons: 

 

Figure 11: Scale-up in Execution Time for Pre-Aggregation by Multiplier Class 

(i) 1M vs. 10M: One finds that our splitcube approach performs even 

better, in relative terms, when the size of the dataset increases by tenfold, 
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despite substantial increases in disk activity. This improvement is due to the 

effect of the economy of scale.  

(ii) Real-life vs. 1M: The execution time for the real-life dataset is 40% 

shorter, with roughly the same number of tuples in both dataset. A similar 

observation is made also in [DER06]. We attribute the difference to the effect of 

economy of scale as well. For example, in the case of Class 162, the 

MaxBaseCubeletSize for the real-life dataset is 4,680, while the same for 1M is 

only 267. 

5.2.6 Overhead Analysis 

There are two sources of overhead associated with pre-aggregation: the 

computation of CubeletCount and MaxBaseCubeletSize, and the subsequent 

partition of the base cube into a number of tasks, after the PDS has been 

chosen. They are 19 seconds and 20.1 seconds respectively. We are able to 

reduce the former by roughly 90% by polling only 10% of the Weather base cube 

(about 100,000 tuples).   

 

We ponder two questions about the overhead here. Firstly, is sampling 

absolutely necessary, i.e., what would happen if just the theoretical values for 

these parameters are used? Secondly, how effective is the sampling technique 

compared to the full scan of the input datasets?  

 



 

 45 

Let us consider first MaxBaseCubeletSize. Unlike a synthetic dataset, 

most real-life datasets, including the Weather dataset, are skewed in their 

distribution for values in some set of attributes. Without an accurate measure of 

this parameter, we may end up with very bad choices. Consider PDS #17 in 

Table 7, which has more than 45% of the base cube packed into a base cubelet, 

resulting in a likely speedup of a little more than 2, even when 64 workers are 

present to share the load. To attest to the effectiveness of sampling, we find that 

out of 109 PDS‟s tested, 71% of them whose estimated values of the parameter 

are within +/- 10% of the actual values.  The rest of them are associated with 

PDS‟s with large MaxQueryCount values, which are eliminated for consideration 

even when the sampling begins. The use of the sample-based value of the 

parameter in lieu of the actual value results in exactly the same outcome in our 

experiments.   

 

We now turn to CubeletCount. There is a standard probability formula to 

compute an estimate for this parameter [F57]. Unfortunately, the dimensions in a 

real-life multi-dimensional database are often correlated, and sometimes heavily 

correlated. Consequently, the estimate is not reliable. (Come to think of it, there 

will be no point for dimensional analysis if the dimensions are completely 

independent of each other.) How effective is the sample-based parameter? Let 

us consider the PDS‟s in the multiplier class 108 (Table 6), for example. Three 

candidate PDS‟s, #39, #71 and #53 are ranked in the same order according to 

the MaxQueryCount. The ranking according to the actual QueryCount is different, 
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i.e., #53, #71, and #39. This is largely because of the drastic reduction in 

CubeletCount for PDS #53 from the predicted one. Without any reference to the 

input dataset, PDS #39 would be chosen as the choice. Consequently, the query 

response time for the multiplier class would be 80% longer than otherwise. By 

probing only 10% of the input data set, this discrepancy is discovered, and the 

ranking is changed accordingly. Above all, the probing occurs just once to derive 

estimate for the two parameters simultaneously. 

5.3 Real Estate Dataset 

The dataset is extracted from a real-life real estate database, which 

contains attributes of residential property in San Diego, including the geographic 

location in terms of altitude and longitude. It has 6 dimensions, and 2 measures. 

The hierarchy of the last dimension is an R-Tree, which is constructed 

from the geographic locations of the properties. The details of all six dimensions 

are shown in Table 8.  
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level\dimension 1 2 3 4 5 6 

1 1 1 1 1 1 1 

2 32 4 119 4 5 2 

3  106  1103 91 47 

4     3138 933 

5      18719 

6           374950 

Table 8: Structure of Dimension Hierarchies - Real Estate Dataset 

Following similar steps outlined in Section 4.3, we derive the following table 

(Table 9), which shows that PDS# 6, 18, and 7 are selected as the choice of the 

Multiplier classes 72, 48, and 36 respectively (Phase II in Table 9).  

PDS# Multiplier 

Max 

Cubelet 

Count  

Max 

Query 

Cost 

Max 

Cubelet 

Size 

Cubelet 

Count 

Query 

Cost Phase II Phase III 

5 108 3808 76160 160090 271 5420 Deleted   

12 108 131733 21077280 35151 3716 594560 deleted   

3 72 3510 2094400 16779 830 493850 deleted   

6 72 13090 2094400 12130 1671 267360 selected deleted 

20 72 384370 49199360 545 15165 1941120 deleted   

9 54 35424 21077280 63595 2464 871080 deleted   

18 48 355300 1.35E+09 461 57568 2.19E+08 selected deleted 

7 36 418880 8377600 12089 4031 80620 selected  selected 

Table 9: Selection of PDS - Real Estate Dataset 

 
Among these three, PDS#7 is a clear winner since the other two have 

both higher cube building cost, and higher QueryCount (Phase III in Table 9).  

Just to demonstrate that our analysis does produce the actual winner, we 
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compare its performance with two other closest competitors, i.e., #3 and #6, as 

shown in Figs. 12 and 13. 

  

Figure 12: Pre-Aggregation Time by PDS 

 

Figure 13: Query Response Time by PDS 

We have done some sampling on this data set to estimate the 

CubeletCount and MaxBaseCubeletSize associated with the 8 PDS‟s listed in the 

table 9. The sampling-based estimates on MaxBaseCubeletSize are very good; 
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the least accurate one is only 9% away from the actual figure. For CubeletCount, 

the sampling-based estimates associated with PDS#3, PDS#6, and PDS#7 are: 

490, 857 and 1,577 respectively. With respect to the actual ranking, these 

estimates are consistent with the actual values of CubeletCount, which are: 830, 

1,671 and 4,031 respectively.  These findings confirm the accuracy of our 

sampling methods on another dataset. 
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6 CONCLUSION AND FUTURE WORK 

In this thesis, we present the splitcube approach for building an OLAP 

database engine for a cluster system. Our objective is to design an OLAP engine 

that provides fast response time to a query matrix. Partial pre-aggregation is 

deemed necessary to achieve this objective, as our experimental results show. 

This objective sets this research apart from other published research efforts that 

try to find an efficient way to build all cuboids on a cluster system.  

 

In a broader perspective, what we learn from conducting this research is 

that the algorithm designer of a data-intensive application to be deployed on a 

cluster system should try to minimize sharing of data among the processors and 

create a substantial number of tasks that are free to run on any processor. In 

other words, we should leverage the advantages of a cluster system, and 

minimize the negative impact on overall performance due to the inherent 

limitations of this platform. Of course, if there are too many tasks around, the 

overhead will eat up any performance gain due to parallel processing. This is 

why an optimization process is necessary to rule out any schemes that spin out 

too many tasks. On the other hand, if we cut down the size of a task, so that it 

becomes an in-memory task, there may be net performance gain.  
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Clearly, this research is a proof-of-concept work, leaving much room for 

further refinements. For example, there is an issue about the small cubelets. 

Combining small cubelets together will improve the economy of scale in cube 

building and query processing, at the expense of increased overhead. As the 

MPP technology continues to evolve, our design for our OLAP database engine 

must be adjusted continually to take advantage of the new hardware. Indeed, 

many clusters, including ours, have hybrid MPP architecture: a cluster that 

features a multi-core CPU in each node. As the number of cores in the CPU 

expands, the amount of computational power vested with each node will multiply. 

There certainly will be more memory in the node too. New partitioning schemes 

may be needed to address this shift in computational power. 
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