

OLAP Database Computation with a Splitcube in a Cluster

by

Yongping Zhang

B.Sc., Wuhan University, 1995

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

In the
School

of
Computing Science

© Yongping Zhang 2009

SIMON FRASER UNIVERSITY

Spring 2009

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

 ii

APPROVAL

Name: Yongping Zhang

Degree: Master of Science

Title of thesis: OLAP Database Computation with a Splitcube in a
 Cluster

Examining Committee: Gábor Tardos
 Chair

Dr. Wo-Shun Luk
Professor, Computing Science
Simon Fraser University
Senior Supervisor

Dr. Ke Wang
Professor, Computing Science
Simon Fraser University
Supervisor

Dr. Jian Pei
Associate Professor, Computing Science
Simon Fraser University
Examiner

Date Approved: March 6, 2009

Last revision: Spring 09

Declaration of
Partial Copyright Licence
The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the “Institutional Repository” link of the SFU Library website
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing
the content, to translate the thesis/project or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in
part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

 iii

ABSTRACT

Software development on a cluster for data-intensive applications has

always been a challenge. However, the cost advantage over traditional shared

memory system has driven the migration of data warehouse to cluster. We

propose splitcube - a new approach of OLAP database computation to work on

cluster. Splitcube ensures very effective dynamic load balancing and low

overhead. We study different ways of splitting the input data for parallel

processing in an attempt to heuristically optimize the cost of processing queries

for a specific workload at a prescribed level of pre-aggregation. Our results on

two real-life datasets reveal great performance improvement in three-fold: 1)

Both splitcube building time and query response time experience a near-linear

speedup up to 64 processors; 2) The idle time in all but one instance is less than

6% of the total execution time; and 3) Splitcube achieves near-linear or better

speedup with much larger datasets.

 iv

ACKNOWLEDGEMENT

First and foremost, I want to thank the School of Computing Science, who

provided me with this opportunity to further my graduate studies while I‟m also

working in the School as a full time employee.

My special thanks go to my senior supervisor Wo-Shun Luk, who supplies

me with endless inspiration, creative ideas and detail oriented advice. He helped

me along every step of the way of my research and helped me finally reach the

goal.

Ke Wang, my other supervisor, has been a source of inspiration as well.

He always has a special way of looking at things that always leads to new ideas.

Jian Pei, the examiner, has an insightful view of the topic and his questions

opened my eyes to other research areas. Also, my thanks go to the Chair of my

thesis defense, Gabor Tardos, who made the defense well-organized and

efficient.

I want to thank all the staff of Computing Science, who support me with

encouragement and keep my spirit high. Val Galat and Gerdi Snyder, who guided

me through the process, I want to thank them both here.

Especially, sumo Kindersley, who kindly reviewed my thesis for its

academic writing, I appreciate her time and energy spent on my thesis. With her

help, my thesis looks ever so much better.

 v

I also want to thank Martin Siegert in IT services, who maintains the

cluster platform, for his invaluable help in working on the cluster and cleaning up

my runaway programs.

Very importantly, I want to thank my wife Yingli Wang. Without her support

and encouragement, I couldn‟t have done it at all. While I spent hours of my

spare time in debugging the program, she has always been there. And that‟s

where and how I gain strength and confidence to complete my graduate studies.

 vi

TABLE OF CONTENTS

Approval .. ii

Abstract .. iii

Acknowledgement ... iv

Table of Contents .. vi

List of Figures .. viii

List of Tables ... ix

1 Introduction .. 1

2 Basic Concepts .. 7

2.1 Cube and Dimension Hierarchy ... 7
2.2 Aggregation ... 8

2.3 Physical Representation of a Cube ... 10
2.4 Aggregation Algorithm ... 11

3 Splitcube – General Concepts .. 12

3.1 Prefix and Cubelet ... 12
3.2 Construction of a Cubelet .. 13

3.3 Query Types – Point Query and Query Matrix... 15
3.4 Processing Point Queries .. 17

3.5 Processing Query Matrices ... 18

4 Construction and Querying of Splitcubes in a Cluster 20

4.1 Construction of Splitcubes ... 21

4.2 Querying Splitcubes .. 22
4.3 Optimal Choice of PDS.. 23

4.4 Multiplier Class .. 26
4.5 Query Processing Cost.. 27

4.6 Computing CubeletCount and MaxBaseCubeletSize 28

5 Experimental Evaluation and Analysis .. 30

5.1 Experimental Hardware/Software Platform.. 31

5.2 Weather Dataset (enhanced) .. 32
5.2.1 About the dataset .. 32

5.2.2 Derivation of PDS ... 32
5.2.3 Pre-aggregation Performance ... 34

5.2.4 Querying Performance .. 38
5.2.5 Scale-up .. 41

 vii

5.2.6 Overhead Analysis .. 44
5.3 Real Estate Dataset .. 46

6 Conclusion and Future Work .. 50

Reference List ... 52

 viii

LIST OF FIGURES

Figure 1: Dimension Hierarchies A, B and C .. 7

Figure 2: A Cluster of PC's ... 20

Figure 3: Speedup of Pre-Aggregation Algorithm by Multiplier Class 35

Figure 4: Execution Time of Pre-aggregation Algorithm by Multiplier Class 37

Figure 5: Total Processor Utilization Rate – Pre-Aggregation Process 38

Figure 6: Speedup of Query Processing by Multiplier Class 39

Figure 7: Query Response Time by Number of Workers – Worst Case
Query ... 40

Figure 8: Query Response Time by Number of Workers – Average over
Heavy-Duty Queries .. 41

Figure 9: Execution Time of Pre-aggregation Algorithm for Dataset 10M 42

Figure 10: Query Process Time by Multiplier Class .. 43

Figure 11: Scale-up in Execution Time for Pre-Aggregation by Multiplier
Class ... 43

Figure 12: Pre-Aggregation Time by PDS .. 48

Figure 13: Query Response Time by PDS.. 48

 ix

LIST OF TABLES

Table 1: Prefix & Cubelets with A as PDS .. 14

Table 2: Prefix & Cubelets with AB as PDS .. 15

Table 3: Query Matrix with A and B as Row and Column Dimensions 16

Table 4: Query Matrix with A and C as Row and Column Dimensions 18

Table 5: Multiplier Classes and PDS's .. 26

Table 6: Cardinalities by Levels in the Dimension Hierarchies in the
Enhanced Weather Dataset... 32

Table 7: PDS Selection - Weather Dataset... 34

Table 8: Structure of Dimension Hierarchies - Real Estate Dataset 47

Table 9: Selection of PDS - Real Estate Dataset.. 47

 1

1 INTRODUCTION

A (computer) cluster is essentially a collection of computers, which are

connected via a high-speed local area network, e.g., Ethernet. Cluster systems

and symmetric multiprocessor (SMP) are among the most popular hardware

platforms for high performance computing (HPC). Clusters are popular because

they enjoy a 3-5 times cost/performance advantage over a symmetric

multiprocessor (SMP) system, according to a recent industry study ([C08]).

Architecturally, clusters scale better than SMP and are more fault tolerant.

However, they have their own downsides in comparison to SMP:

• Lots of cooperating components

• Higher latency for sharing

• Software complexity

Traditionally, most applications developed on this HPC platform are

devoted to scientific computation, as it is most able to take advantage of this

architecture. In contrast, algorithms for data-intensive computation in general are

inherently sequential, due to data sharing. When a task is partitioned into sub-

tasks to run in different nodes in a cluster, these sub-tasks may need to re-

synchronize and exchange data among some/all of the nodes, once in a while,

before they can continue their execution. Consequently, it is hard to achieve

good speedups.

 2

This research focuses on one important data-intensive application: OLAP

database computation, which includes pre-aggregation and query processing on

OLAP databases. Our approach is quite unique in the literature on OLAP

database computation in a multiprocessor environment. Most published papers

on this subject are concerned with either pre-aggregation or query processing.

Obviously, if all aggregates are pre-computed, query processing would be quite

straightforward. We do believe in pre-aggregation, without which processing

complex queries would take a long time. On the other hand, we are doubtful that

there exists a cost-effective way of computing all aggregates in a cluster.

Let us begin by examining the literature on pre-aggregation in a single-

CPU platform. There are basically two classes of cube building algorithms. Much

of the earlier work is about computing cuboids, which can be characterized as

materialized views of group-by queries. Much of the work in the literature on

OLAP computation on a cluster, e.g., [GS97], [MK99], [NWY2001], [YJA02],

[LU03] and [DER06], attempts to parallelize selective cube building algorithms.

The more recent articles (e.g., [SRDK02], [LPZ03]) focus on minimizing the

storage footprint of the data cube by removing cells in the cube that are identical.

Elaborate storage structures are designed so that a network of pointers

(real/symbolic) is built to link items which share the same information. These

storage structures may not work well in a cluster, because it is hard to partition

them and still retain much of the reduction in total storage footprint.

 3

Computation of cuboids can be a sequential process. While a cuboid can

be computed from a number of cuboids, it is best computed for one specific

cuboid. This child-parent dependency hinders any data parallelism strategy

which involves concurrent computation of a cuboid by multiple processors. Not

only the parent cuboid needs to be distributed, but also the parts of the cuboid

resulting from computation by different processors need to be merged together

into a single child cuboid, when it can be used for computing another child cuboid

of its own. One can avoid this dependency by adopting task parallelism, i.e.,

having only one processor computing a cuboid, as shown in [NWY2001]. The

disadvantage of this approach is that the workload may be highly unbalanced,

because of the uneven distribution of sizes of the cuboids. This problem may be

partially alleviated by switching a task to a processor that is idle, but the task may

end up in a processor without a matching parent. Finally, one may do away with

dynamic load balancing entirely by carefully planning so that the processors will

have roughly the same workload. This approach is advocated in [DER06], and

produces an algorithm that achieves greater speedup than approaches that

involve extensive data sharing. On the other hand, this approach necessitates

careful analysis of the input dataset, and cost modelling with high accuracy, in

order to achieve load balancing. It is remarked in [DER06] that “cost effective

estimation … remains an important open area of research.” Finally, task

parallelism, as opposed to data parallelism, implies replication of source data in

each processor or shared disks. The former results in lengthy data loading time,

 4

while the latter requires high shared I/O bandwidth. Moreover, each processor

must process the entire dataset in the beginning, while processors in algorithms

practicing data partitioning need to process only a fraction of the dataset.

In this research, we take a different approach to OLAP computation,

because we stick to a set of assumptions that are different from the norm. We

presume that decision making queries are much more complex than just group-

by queries, firstly. For example, MDX, a popular industrial query language

designed for spreadsheet users ([MS08]), produces matrices (or tables) as the

answer to a query. The answer to an MDX query could come from a multitude of

cuboids. Computing only and all cuboids does not necessarily lead to fast query

processing for any user-defined workload that consists of query matrices.

Secondly, we do not insist on pre-computing all aggregates. A user may not opt

for pre-computing all aggregates because the huge size of the cube, as a result

of data explosion [P2005]. Even if the user is willing to put up with the time

required to build the full cube in an attempt to eliminate the need for aggregation

during the query time, it may not always pay off due to a large increase in I/O

time. OLAP products, such as Microsoft Analysis Services, regularly analyze the

OLAP metadata model and heuristically determines the optimum set of

aggregations from which all other aggregations can be derived [MS01]. Un-pre-

computed aggregates that are required by a query is computed on-the-fly. By not

insisting on computing only cuboids, or all aggregates, we demonstrate in this

 5

thesis that OLAP database computation can indeed work well with a cluster as a

hardware platform.

We propose to compute and query a splitcube, which contains only a

subset of all aggregate cells. The splitcube consists of a number of cubelets,

which themselves are lower dimensional cubes. Central to the idea of splitcube is

that these cubelets may be computed in isolation once the input dataset has

been partitioned. In this sense, data parallelism is practiced. We call the

construction of a cubelet a task. In the absence of affinity between a proposing

node and a task, tasks may be assigned to any processing node during the

runtime, in order to achieve load balancing. The advantage of our approach,

compared to other existing approaches, is that we practice both data and task

parallelism, and manage to avoid their pitfalls.

Given sufficient number of tasks, it is easy for a task dispatcher to keep all

the processors busy all the time. On the other hand, excessively large number of

tasks leads to proportional large overhead, and more importantly, unacceptably

long query response time due to huge on-the-fly aggregation during query

processing. The main focus of this research is to develop an algorithm to

heuristically optimize the query response time by adjusting the number and size

of the tasks. Since query response time in general is dependent on the amount of

pre-aggregation, our goal is to find an efficient, low-cost way to partition the input

 6

dataset such that an optimal, or near optimal, query response time for a given

level of pre-aggregation is achieved.

The rest of the thesis is organized as follows. In Section 2, notations and

general concepts about OLAP systems are explained. Section 3 contains an

introduction of splitcube. In Section 4, a scheme for building a splitcube and

query processing is presented. The procedure to locate an optimal PDS for each

multiplier class is explained in detail. In Section 5 we analyze the experimental

results on two real-life data sets: the Weather dataset (enhanced), and a real-

estate dataset. Section 6 is the concluding section.

 7

2 BASIC CONCEPTS

2.1 Cube and Dimension Hierarchy

The (full) cube is defined in this thesis to be a k-dimensional array, where

k is a positive integer greater than zero. Each dimension of a cube has D i

members, 1<=i<=k, which are organized as a hierarchy. The members at the leaf

level are called primary members. All other members in a higher level of the

dimension hierarchy are called group members. The hierarchy is a tree

hierarchy, where a member is assumed to have exactly one parent, except for

the root, which has no parent. In particular, there is exactly one path between a

group member and any of its descendants.

As an example, consider a 3-dimensional OLAP database. Fig. 1 shows

dimension hierarchies of A, B and C. All members at the bottom level are primary

members (in shade), and the remaining ones are group members.

a4

a2 a3

a5

a1

a6

b5

b3b2 b4

b6

b1

b7

c1 c2 c3 c4 c6c5 c8c7

c9
c10

c11 c12

c14c13

c15

Figure 1: Dimension Hierarchies A, B and C

 8

A cell in the cube has two components: the address in the cube and the

measure. It is identified uniquely by a k-tuple, which is composed of its

coordinates along the k dimensions. A cell is a group cell if at least one

coordinate of the cell is a group member of some dimension; otherwise it is a

primary cell. A cell stores a single numeric value, which is called the measure,

although the results of this thesis are equally valid for multiple values stored in

each cell. Measures of all primary cells are input from a data source(s). The

measure of a group cell may be calculated according to the method to be

discussed in Section 2.2. If the cube includes all group cells, it is called a fully

pre-aggregated cube, or otherwise, a partially pre-aggregated cube. The set of all

primary cells is called a base cube. As examples, (a1, b2, c8; 4) and (a1, b5, c10;

15) are cells of the 3-dimensional cube shown above. The former cell is a

primary cell, and its measure is an input value; while the latter is a group cell with

a measure to be derived from the measures of some primary cells. This measure

may be pre-computed during the pre-aggregation phase, or computed on-the-fly

during the query time.

2.2 Aggregation

We now consider how the measure of a group cell is derived. To this end,

we need to elaborate on the relationships between cells in a cube.

A descendant of a cell, T, with coordinate (t1, …, tk) is another cell, T‟,

with coordinate (t1‟, …, tk‟) such that each ti‟ is a descendant of ti in the ith

 9

dimension hierarchy. The distance between T and T‟ is defined to be the

Hamming distance between them, i.e., the sum of all distances between two

corresponding members in each dimension hierarchy. In particular, T‟ is an

immediate child of T, if the distance between them is 1. If ti is a group member,

the immediate children of T along the dimension i are those cells which have

identical components as T, except for the ith dimension. There are as many sets

of immediate children of T as there are group members included in the

coordinate of T. The root of the measure tree is one that has no parent. The

coordinate of the root consists of roots of all respective hierarchies.

Consider (a5, b7, c12) as the address of a group cell, which has in its

coordinates a5, b7 and c12 as group members. Thus, it has a set of immediate

children along dimension A, i.e., (a2, b7, c12) and (a3, b7, c12), a set of immediate

children along dimension B, i.e., (a5, b5, c12) and (a5, b6, c12), and another set of

immediate children along dimension C, i.e., (a5, b7, c7) and (a5, b7, c8). It can be

shown that the measure of (a5, b7, c12) is the sum of measures of the set of

immediate children along any one of the dimensions [Luk01].

We define the measure of a group cell T to be a distributive aggregate

function, according to ([GBLP96]), of all measures of all primary cells that are

also descendants of T. The definition of a distributive aggregate function is given

in [GBLP96]; however, since it applies to only 2-level hierarchies, a more precise

definition is required for this thesis. We say an aggregation function F() is a

 10

distributive one, if there exists another function G, such that F({S}) = G(F{S1}, …,

F{Sn}) where S is a set of scalar values and {S1, …, Sn} is a partition of S. If F is

the summation aggregation function, i.e., sum(), then this equation holds if G is

also the summation aggregation. In fact, F = G if F is the maximum(), or the

minimum() functions. Count() is also a distributive aggregate function if we

choose G to be the summation aggregation function. For this thesis, we use only

the summation aggregation function, but our results are equally applicable to all

other distributive aggregation functions.

2.3 Physical Representation of a Cube

A cube is often considered as a logical view of the OLAP database. A

schema of an OLAP database consists of a fact table, and a number of

dimension tables. The fact table contains all primary cells, i.e., cells in the base

cube, while the dimensional tables store information about each dimension. Our

OLAP engine keeps the dimensional tables as relations, and organizes the cells

in the cube, including primary and group cells, into a B-tree1. In particular, an

element in the B-tree is a cell record, which consists of the key and the

associated measures. The key of a cell is the coordinate of the cell. In our

implementation here, it is compressed into a 64-bit integer. The B-tree is a

clustered one, the tuples in the leaf nodes having been sorted according to the

descending sequence of the B-keys.

1 In this thesis, the B-tree is synonymous to the B+-tree where all leaf nodes are of equal distance

to the root nodes.

 11

2.4 Aggregation Algorithm

We consider here only the cube building algorithms that run on a single

computer. In fact, the kind of cube subject to the algorithm is typically much

smaller than the original cube, and with fewer dimensions involved. Thus we

need an algorithm that does a superb job when the cube is small enough to fit

into the memory, while it does just as well as other published cube building

algorithms for large cubes. Besides, the end result of the algorithm is a B-tree, as

described in Section 2.3. For this purpose we choose the disk-based version of

the algorithm published in [Luk01]. We do not elaborate further on the details of

this algorithm which have been included in another manuscript [Luk08], as it is

not central to this research.

 12

3 SPLITCUBE – GENERAL CONCEPTS

In this section, we introduce the general concepts of a splitcube, which

could be considered as a partially pre-aggregated (PPA) cube. We explain the

concepts in the context of a single-computer system. These concepts will then be

applied to the OLAP engine on a cluster in Section 5.

3.1 Prefix and Cubelet

Central to the whole idea of splitcube is the partition of the k dimensions

into two sets: prefix dimension set, or PDS, and cubelet dimension set, or CDS.

For convenience, we consider the first m dimensions to form the PDS, i.e., P1,…,

and Pm, where 0 < m < k. The prefix of a cell address is an m-tuple, which is the

projection of its coordinates on the PDS.

Given a PDS, a Splitcube is defined as a collection of all the cells in the

cube, except those cells whose prefixes contains at least one group member of a

prefix dimension. Thus, the cells in the splitcube may be partitioned into a

number of sets, each of which consists of cells with the same prefix. Each such

set is called a prefix set, which may be represented by a prefix and a cubelet. A

 13

cubelet associated with a prefix is itself a (k-m)-dimensional cube. There is a 1-1

correspondence between the cells in prefix set and those in the cubelet. Each

cell in a cubelet has the same measure as the corresponding cell in the prefix

set, and an address is a (k-m)-tuple which is the projection of a cell address on

the CDS. The set of primary cells in this cubelet is the base cubelet. Thus the set

of base cubelets is a partitioning of the base cube.

The primary purpose of introducing the concept of splitcube is that

cubelets can be constructed from their base cubelets, so that constructions of

these cubelets can proceed in parallel. This is due to the following proposition,

whose proof is omitted, because it follows directly from the discussion of

aggregation in Section 2.2.

Proposition 1: The cubelet associated with a prefix set of a splitcube is

identical to the (k-m)-dimensional cube constructed from the base cubelet

associated with the prefix set.

3.2 Construction of a Cubelet

Computation of a cubelet associated with a specific prefix from the base

cube may proceed as follows:

i. Locate the cells in the base cube, i.e., primary cells, with the same prefix.

ii. Project these cells on the CDS and the measure, which form the base

cubelet.

 14

iii. Compute the fully aggregated (k-m)-dimensional cube with this base cubelet.

Let us now consider our running example again. Assume that the base

cube consists of the following cells, the scalar being the lone measure: (a1, b2, c1;

3), (a3, b3, c3; 4) and (a3, b4, c2; 2).

Consider the splitcube, SCA, where A is the sole prefix dimension in the

PDS, and BC are the cubelet dimensions in the CDS. The splitcube has only two

cubelets, associated with a1 and a3 respectively. Projecting the cells in the base

cube associated with a1 on BC and the measure, we have only one cell (b2, c1; 3)

in the base cubelet associated with a1, while the base cubelet associated with a3

has two cells, (b3, c3; 4) and (b4, c2; 2). The cubelet generated from the base

cubelet associated with a1 is shown in Table 1. Note that there are 12 cells in the

cubelet, which is the product of the levels of dimension hierarchies B and C. As a

result, this quantity is called the multiplier of the cubelet associated with the PDS

{A}.

Prefix Cubelet

(a1) (b2, c1; 3), (b2, c9; 3), (b2, c13; 3), (b2, c15; 3), (b5, c1; 3),

(b5, c9; 3), (b5, c13; 3), (b5, c15; 3),

(b7, c1; 3), (b7, c9; 3), (b7, c13; 3), (b7, c15; 3)

(a3) … …

Table 1: Prefix & Cubelets with A as PDS

As another example, the prefixes and cubelets for the splitcube, SCAB, are

shown in Table 2. The multiplier for the PDS AB is 4, which is the number of

levels in dimension C.

 15

Prefix Cubelet

(a1, b2) (c1; 3), (c9; 3), (c13; 3), (c15; 3)

(a3, b3) (c3; 4), (c10; 4), (c13; 4), (c15; 4)

(a3, b4) (c2; 2), (c9; 2), (c13; 2), (c15; 2)

Table 2: Prefix & Cubelets with AB as PDS

3.3 Query Types – Point Query and Query Matrix

Testing for performance of random point query is common among most

papers on cube building. A point query is defined as the address of a cell Q (q1,

…, qk) where qi, 1<=i<=k, is the coordinate of the cell in the i th dimension.

Nonetheless, there are problems if one is concerned with performance of only

point queries. First, random point queries rarely retrieve non-empty cells,

because most cubes are sparse. Secondly, decision making queries tend to be

more complicated, and take a lot longer to execute. Thus good performance in

point queries is necessary but not sufficient. Consequently, we consider another

type of query which is more representative of the practical queries.

A possible candidate is range query which is sometimes included in

performance evaluation in some papers (e.g., [LPZ03]). A random range query

does not make much sense in OLAP applications, when the ranges have already

been carefully defined by OLAP application designers, in the form of dimension

hierarchies. Instead, most commercial OLAP systems implement a query

language called MDX ([MS08]). Here, we adopt a simplified form of MDX, i.e.,

 16

query matrix, which is designed for inter-row/column calculations on a

spreadsheet [Wit03].

A query matrix displays data contained in the cube in the form of a pivot

table, which is made popular by many data visualization tools such as

spreadsheet packages. It consists of three components: a (point) query Q (q1, …,

qk) with at least two group members, and two dimensions, say i and j, identified

as the row and column dimensions respectively. qi and qj must be group

members for their respective dimensions, with immediate descendant members

qi,1, …, qi,r, and qj,1, … qj,s. The answer for the query matrix, i.e., the answer

matrix, is a table, with qi,1, … and qi,r as labels for the row, and qj,1, … and qj,s for

the column. Assuming i < j, the entry (v,w) of the table, where 1<=v<=i and

1<=j<=s, is the answer for the query (q1, …, qi-1, qi,v, qi+1, …qj-1, qj,w, qj+1, …, qk).

In the example we see in Fig. 1, we assume a query matrix for our 3-

dimensional cube has the point query (a6, b7, c15), with A as the row dimension

and B, the column dimension, consists of a matrix of point queries as shown

below:

Row\Column labels b5 b6

a4 (a4, b5, c15) (a4, b6, c15)

a5 (a5, b5, c15) (a5, b6, c15)

Table 3: Query Matrix with A and B as Row and Column Dimensions

 17

3.4 Processing Point Queries

Consider the point query, (q1, …, qk), which is split into two parts: (q1, …,

qm) and (qm+1, …, qk), where each q can be any member in the dimension.

Processing this point query on a splitcube may proceed as follows:

1. Decompose (q1, …, qm) into a number of prefixes, (p1, …, pm), where pi is

a primary descendant of qi, 1<= i <= m.

2. For each of these prefixes, retrieve the measure of the cell, (qm+1, …, qk) in

the associated cubelet.

3. Compute the answer of the query from the measures retrieved.

For example, consider the splitcube SCA. A query (a6, b7, c15), is

decomposed into three queries (a1, b7, c15), (a2, b7, c15), and (a3, b7, c15), since a6

has 3 possible primary members, i.e., a1, a2, and a3. Since the cubelet with prefix

a2 is non-existent, the projected query (b7, c15) is applied against the two

associated cubelets, which retrieves two cells, (b7, c15; 7) and (b7, c15; 6). The

answer to the query (a6, b7, c15) is computed from the measures of these two

cells.

 18

3.5 Processing Query Matrices

Generally speaking, processing of a query matrix may proceed by

processing point queries individually inside the matrix. To process the query

matrix in Table 3, we apply the point queries, one at a time, to the splitcube

SCAB(as defined in page 14). Actually, we can do better. Observe that the first

coordinate of the query matrix, a6, is a group member of the dimension A, with a1,

a2, a3 as its primary descendants. Similarly, the second coordinate of the query

matrix, b7, is a group member of the dimension B, with b1, b2, b3, b4 as its primary

descendants. We simply apply the point queries (c15) against the cubelets

associated with (ai, bj), 1<= i <= 3 and 1<= j <= 4. The results from individual

cubelets are then posted to the answer matrix.

This procedure may be a bit more complicated if the query matrix in Table

3 has C, instead of B, chosen as the column dimension, which is not a dimension

included in the PDS. The query matrix will now be:

Row\Column labels c13 c14

a4 (a4, b7, c13) (a4, b7, c14)

a5 (a5, b7, c13) (a5, b7, c14)

Table 4: Query Matrix with A and C as Row and Column Dimensions

In this case, we need to apply two point queries, (c13) and (c14) against the

cubelets associated with (ai, bj), 1<= i <= 3 and 1<= j <= 4. In other words, the

number of point queries applied is doubled.

 19

Consider an arbitrary query matrix, (q1, …, qk) with Di and Dj as the row

and column dimensions respectively. Furthermore, qi and qj have respectively r

and s immediate descendant members. As before, the PDS is {D1, …, Dm}. The

total number of point queries in the matrix is r*s. But the actual number of point

queries posed could be much higher, because some of these point queries must

be decomposed into a number of point queries with pre-computed answers. To

compute the number of point queries that must be posed to compute the answer

of a given query matrix, we need to consider the following cases:

(i) Di and Dj are both included in PDS: 1 single point query against every

cubelet.

(ii) Only Di (Dj) is included in PDS: r (s) point queries against every cubelet.

(iii) Neither Di nor Dj is included in PDS: r*s point queries against every

cubelet.

Other factors being equal, dimensions that are prone to detailed analysis

should be assigned as prefix dimensions.

 20

4 CONSTRUCTION AND QUERYING OF SPLITCUBES IN

A CLUSTER

Having described how splitcubes are built and queried, we now consider

these processes in a distributed system, i.e., a cluster. A generic architecture of a

cluster is shown in the following diagram, where each node is in essence a PC,

with its own memory, and local disk drive(s). These PCs are assumed to possess

similar processing capability and they communicate with other PCs over an

Ethernet network. Where necessary, they may read from a shared storage, but

the Ethernet network is the preferred communication media among the nodes

because the communications speed over the Ethernet is 3 times faster than that

via the shared storage.

network

Shared Storage

Node 0 Node 2 Node nNode 1

Figure 2: A Cluster of PC's

We begin with a description of how to build a splitcube in a cluster by

distributing the work among the nodes, assuming the choice of a PDS, which is

 21

followed by a description of how a query matrix may be computed over the

cluster. The rest of this section is devoted to the search for an optimal PDS, or

PDS‟s.

4.1 Construction of Splitcubes

The construction of a splitcube is a two-phase process: planning and

executing. In the planning stage, one processor node is designated as the

Coordinator. The Coordinator has the following responsibilities: parse the input

dataset, which is the base cube, selection of a PDS, and partitioning of the base

cube into a number of base cubelets associated with PDS. Once the PDS is

chosen, the input dataset is partitioned into n subsets, where n is the number of

prefixes associated with the PDS and the input dataset. Each subset is a base

cubelet by itself. A task is defined as the construction of a cubelet. Associated

with a task is a task control block, which contains the base cubelet and its

associated metadata.

For the executing phase, we adopt the approach of dynamic load

balancing for carrying out all the tasks defined in the planning phase. Each task

is assigned to a processor node, called worker. Here, we assume the number of

tasks must be larger than the number of workers. The job of a worker is fairly

simple. As it becomes idle, and it is idle initially, it sends a message to the

Coordinator. Once a task control block is received, it constructs the cubelet,

which is stored on the local disk. The Coordinator allocates task control blocks

 22

associated with outstanding tasks to workers on the waiting list on a first-come-

first-serve basis, with no attempt to distinguish one worker from the others. On

the other hand, we follow a load balancing strategy to determine the order by

which the tasks are assigned. This strategy is necessary since the sizes of tasks

may vary greatly in accordance with the sizes of the base cubelets.

Some load balancing strategies are inappropriate and should be avoided.

For example, if many small tasks are assigned within a very short time, or worse,

consecutively, the Coordinator will be kept so busy that it cannot monitor network

traffic successfully, resulting in packet losses. At the same time, bursts of

network traffic will cause packet collisions, resulting in re-transmission of

packets. As another example, large tasks should not be distributed toward the

end of the execution phase, because the Coordinator may run out of tasks for

distribution while some large tasks are being executed by only a few nodes. In

the worst case, all but one Worker could be idle, waiting for one Worker which

has just started a very large task. Consequently, the entire execution phase is

delayed. One reasonable strategy, which we have adopted, would be to assign

large and small tasks in an alternating fashion.

4.2 Querying Splitcubes

Our query processing algorithm is simple, because we depend on the raw

power of the workers to deliver the performance. Sophistication in a query

processing algorithm may result in certain amount of overhead. Upon receipt of

 23

the query, i.e., a query matrix, the Coordinator decomposes the query into a

number of point queries, to which the answers are readily available on the fully

pre-aggregated cubelets. The query decomposition is done as described in

Section 3.4. These point queries are delivered as a bundle to the relevant

Workers. Each query, as well as its answer, is accompanied with a tag, indicating

the row-column position of the query within the query matrix.

Each worker has a simple query processor to process the point queries

that fall within the ranges of the cubelets that are local to the worker. The query

processor has two main functions. It ensures all queries assigned to it are posed

to the local cubelets according to the sorted sequence of the queries. As the

answers of the queries are returned by the local B-tree(s), the worker classifies

these answers into groups by the tags of the associated queries, and calculates

the sum of answers within the same group. The results are then sent back to the

Coordinator for the final tally before returning the answer to the user.

4.3 Optimal Choice of PDS

The quest for an optimal choice of PDS is complicated by the fact that

there can be more than one optimal PDS. Since we do not insist on generating

all aggregates, there is always the trade-off between the cost to construct the

splitcube and the query processing cost for a given query workload. Our strategy

here is to partition the PDS‟s into a number of classes, such that PDS‟s in each

class have similar characteristics, which lead one to believe that they incur

 24

similar cost of constructing a splitcube. We then proceed to locate a PDS within

each class that produces the lowest processing cost. Note that we are concerned

only with the cost of building a splitcube as if there is only one processor. We

reason that with an effective load balancing scheme, each worker is kept busy

doing useful work. Minimizing the total work to be done translates into minimizing

the work to be done by each worker, hence the total elapsed time in a cluster.

Our optimization strategy does not explicitly take into account on the

number of workers. As a result, when more workers are introduced, the work will

be spread out more, consequently the shorter computation time is. It is important

to note that based on workers‟ computational power, sufficient work should be

given to each worker to ensure the speed-up.

The principles for PDS selection are not unlike those for query

optimization in a relational DBMS. It must be efficient, and yet avoid very bad

choices. Consequently, we can‟t afford to evaluate each of the 2k possible PDS‟s,

where k is the number of dimensions. We eliminate sub-optimal PDS‟s in three

phases, so that the end result is a single PDS.

Phase I: We define a quantity called MaxCubeletCount, which is equal to

|D1|*…*|Dm|, which is the maximum of the cubelets there can be. All PDS‟s

whose MaxCubeletCount is too large or too small are discarded. We rank all

remaining PDS‟s in each class by their „maximum‟ query processing costs (to be

 25

defined later) in ascending order, and discard all but the top 3 PDS‟s. Since the

goal of this phase is to quickly rule out a huge chunk of PDS‟s for consideration

in Phase II, no reference is made to the base cube (the input dataset).

Phase II: For each of remaining PDS‟s, we calculate values of two

parameters: the CubeletCount and MaxBaseCubeletSize against the base cube.

The former is the actual number of cubelets entailed by the PDS, while the latter

is the maximum size of all base cubelets. PDS‟s with large MaxBaseCubeletSize

values are removed, because they cause unbalanced task distributions. With a

more realistic estimate of CubeletCount, we re-compute the query processing

costs for all remaining PDS. We select PDS with the lowest query processing

cost for each class.

Phase III: Eliminate any selected PDS from Phase II, if it has a higher cost

for building the splitcube as well as higher query processing cost than another

selected PDS. If there are more than one class left after the elimination, the

system or the user can choose one of them based some other criteria, e.g., the

one with lowest cost in constructing the splitcube (i.e., the PDS with the lowest

multiplier) or the one with lowest query processing cost.

An example of how the PDS‟s are eliminated in a real-life dataset is shown

in Section 5.2.2.

 26

4.4 Multiplier Class

Every cell in the base cubelet contributes to the creation of a number of

new group cells in the cubelet. This number is called the Multiplier, which can be

calculated as follows. Let {C1, …, Cj} be the CDS associated with the PDS, and li,

1<=i<=j, is the number of levels in the hierarchy associated with the dimension

Ci. Thus, the multiplier associated with PDS is the product of l1, …, lj. If there are

n cells in the base cube, the maximum number of (primary and group) cells in the

splitcube is n times the multiplier of the PDS. Thus, the multiplier is indicative of

the work involved in constructing the splitcube. A multiplier class is the set of all

PDS‟s with the same multiplier, and it is labeled by the value of the multiplier.

In Section 3.2, we have showed that the multiplier value of PDS {A} is 12.

The following table shows the multiplier classes of all PDS‟s.

Multiplier Class CDS

3 (# levels of A, or B) A [PDS {B, C}], B [PDS {A, C}]

4 (# level of C) C [PDS {A, B}]

9 (product of # levels of A and B) AB [PDS {C}]

12 (product of #levels of A/B and C) BC [PDS {A}], AC [PDS {B}]

Table 5: Multiplier Classes and PDS's

Note that the actual number of cells in the splitcube may not fully reflect

this multiplier effect, because some of group cells generated by different cells in

the base cubelet may be merged because they have the same coordinates.

 27

4.5 Query Processing Cost

When we consider the query processing performance, it is important to

include a discussion of query workload. In practice, the query workload usually

consists of a set of query matrices which users have identified to be relevant to

them. Therefore, it makes sense to choose a PDS so that the queries in the

workload can be processed efficiently. In this thesis, we choose the workload of

the most computationally intense query matrices. They have the same point

query Q (q1, …, qk), where each q is the root of a dimension hierarchy. Thus,

there are k*(k+1)/2 queries in our workload. We measure the query processing

performance of a PDS in two ways: by the highest possible query processing

cost of query matrices and the average cost over all queries within the workload.

We choose the former as the primary measure in order to demonstrate the

speedup of the query performance as the number of processors increases.

We measure the cost of processing a given query matrix by the number of

point queries that must be posed to the cubelets to fetch the answer of the query.

This cost is calculated to be the product of the cost per cubelet and the actual

number of cubelets. We have derived in Section 3.5 the cost per cubelet. The

number of cubelets for the splitcube, which is CubeletCount, is dependent on the

input dataset. In the absence of any reference to the input dataset, as is the case

in the Phase I of the planning process, one may derive the „maximum‟ query cost

by estimating MaxCubeletCount, which is the product of |D1|, |D2|, …, and |Dm|.

Note that while the gap between MaxCubeletCount and the actual one is small

 28

for PDS‟s with small multipliers, it is widened exponentially as the value of m

increases due to data skewness. Hence we need to compute a better estimate of

the CubeletCount for selective PDS‟s.

4.6 Computing CubeletCount and MaxBaseCubeletSize

The exact values of CubeletCount and MaxBaseCubeletSize, both of

which are required for Phase II, can be derived by scanning the input dataset. If

the input dataset is huge, two techniques are employed to speed up the

computation of CubeletCount and MaxBaseCubeletSize of a PDS: distributed

computation and sampling.

Prior to the planning process of query processing, the input dataset is

assumed to be stored in a compressed form in the network drive. In Phase II, the

coordinator assigns a number of nodes as evaluators; each evaluator is to

compute the CubeletCount and MaxBaseCubeletSize of a specific PDS. Once

that is done, the estimates of two parameters are sent to the coordinator. Due to

limited bandwidth of the network drive (i.e., the shared drive shown in Fig. 4), one

should not attempt to employ a large number of evaluators (e.g., > 30) to work in

parallel.

The computation by the evaluator is a simple process. It involves reading

from the network drive a fraction of the input dataset, and computing the values

of the parameters based on the sample data. For our purpose, the actual value

 29

of MaxBaseCubeletSize is of importance, because PDS‟s with large

MaxBaseCubeletSize are eliminated, whereas CubeletCount is used exclusively

for ranking PDS’s, within the same multiplier class. Consequently, the value of

MaxBaseCubeletSize is projected from the sample-based value. If y% of the

dataset is actually read, then the sample-based MaxBaseCubeletSize value will

be multiplied by a factor of 100/y. On the other hand, no adjustment is made to

the sample-based CubeletCount value. While sophisticated statistical sampling

techniques may yield more accurate results, we don‟t use them for this study

because the more sophisticated techniques is almost certainly take more time.

 30

5 EXPERIMENTAL EVALUATION AND ANALYSIS

A number of important issues are addressed in this section on the

experimental basis:

 Scalability: As the number of processors increases, or as the size of the

input dataset increases, how much faster will the cube building and query

processing algorithms run?

 Modeling (query performance): On each dataset, our optimization process

selects a PDS for each multiplier class, which is supposed to lead to the best

query performance, among the PDS‟s in the multiplier class. How well does

our optimization work?

 Modeling (multiplier class): Is the multiplier class a good indicator of the

degree of pre-aggregation? More specifically, does the PDS we select for

each multiplier class provide a better performance in pre-aggregation the

PDS chosen for the class with a smaller multiplier?

 Sampling accuracy: Firstly, is sampling necessary, i.e., what would

happen if the theoretical values for CubeletCount and MaxBaseCubeletSize

are used, without resorting to sampling? Secondly, how well do the estimated

values of these parameters serve our optimization strategy?

 31

The organization of the remaining section is as follows. A brief description

of the hardware platform can be found in Section 5.1. Then we address the

above questions by examining the experimental data related to the Weather and

Real Estate datasets (Section 5.2 and 5.3) respectively.

5.1 Experimental Hardware/Software Platform

We have implemented our algorithm on SFU's Beowulf cluster, which

largely resembles the configuration shown in Fig. 2. Dedicated exclusively to

research computing, especially scientific research computing, it contains 96

nodes, each of which is a PC equipped with dual Athlon MP 2800+ processors

(2.133 GHz), 1GB RAM, 15GB hard disk and fast Ethernet interface. The

network connection between the nodes is 3-way channel bonded fast Ethernet,

providing a 3 times larger bandwidth than the ordinary Ethernet. In addition, each

PC connects to the shared storage on the Ethernet. The programs, written in

C++, are compiled and run on the local Linux OS. Program-to-program

communications are conducted via MPI (Message Passing Interface, Version

2.0), which is a popular language-independent API (application programming

interface) with defined semantics and flexible interpretations.

 32

5.2 Weather Dataset (enhanced)

5.2.1 About the dataset

The Weather dataset ([HWL94]) is a very common one for research on

cube building algorithm to adopt for experimental analysis. The original dataset

has 9 dimensions and one measure; the dimensions‟ cardinalities are: 2, 8, 10,

30, 101, 152, 179, 352, and 7037. All dimensional hierarchies are 2-level ones,

i.e., the only group members are roots of the hierarchies. We bulk up the

hierarchies of the last 4 dimensions by adding one more level in each dimension

hierarchy. The cardinalities of all dimensions are shown in the following table:

level\dimension 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1

2 2 8 10 30 101 8 8 18 85

3 152 179 352 7037

Table 6: Cardinalities by Levels in the Dimension Hierarchies in the Enhanced Weather

Dataset

There are about 1 million tuples in the dataset, i.e., about 1 million primary

cells in the base cube. If all group cells were to be pre-computed, the size of

cube would swell to 14.7 GB.

5.2.2 Derivation of PDS

In Phase I, we eliminate the PDS‟s whose MaxCubeletCount is less than

64, the number of workers, or greater than 1 million, the number of cells in the

 33

base cube. As a result, we are left with only 9 multiplier classes and 18 PDS‟s to

work with in Phase II. In Phase II, we compute an estimate of each

MaxBaseCubeletSize and CubeletCount. Detailed computation is described in

Section 5.2.6. (In Table 7, only their actual values are shown.) With the estimate

of CubeletCount, we now derive a more accurate estimate of QueryCost. Those

PDS‟s whose MaxBaseCubeletSize is greater 20,000 are removed from our list.

At the end of Phase II, only 8 PDS‟s remain, one for each multiplier class. During

Phase III, the PDS#160 is eliminated because both the cost of computing the

splitcube and its query cost are greater than those of PDS#67, the choice of

Class 216.

 34

PDS

Multiplier

Max

Cubelet

Count

Max

Query

Cost

MaxBase

Cubelet

Size

Cubelet

Count Query Cost Phase II Phase III

17 648 202 515100 464270 202 515100 deleted

10 648 240 2060400 5633 240 2060400 selected selected

18 648 808 2060400 100849 787 2006850 deleted

12 432 300 2575500 32320 300 2575500 deleted

65 432 374 3210790 17793 259 2223515 selected selected

13 432 600 5151000 29810 597 5125245 deleted

7 324 160 1373600 121994 160 1373600 deleted

11 324 480 4120800 5282 480 4120800 selected selected

19 324 1616 4120800 81888 1459 3720450 deleted

160 288 59200 5.08E+08 1826 5204 44676340 selected deleted

28 256 30300 46359000 21969 7009 10723770 deleted

35 216 2560 21977600 4706 2206 18938510 deleted

67 216 2992 25686320 4251 1971 16921035 selected selected

69 216 3740 32107900 15483 2212 18990020 deleted

23 162 16160 41208000 77658 4105 10467750 deleted

15 162 4800 41208000 4680 4192 35988320 deleted

27 162 48480 74174400 3250 22089 33796170 selected selected

39 108 25600 2.2E+08 4111 11668 1E+08 deleted

71 108 29920 2.57E+08 3828 11134 95585390 deleted

53 108 323200 8.24E+08 14506 19970 50923500 selected selected

31 81 484800 7.42E+08 3072 37909 58000770 selected selected

 Table 7: PDS Selection - Weather Dataset

5.2.3 Pre-aggregation Performance

We consider here the pre-aggregation performance against the number of

processors and the multiplier classes.

 35

Associated with a given PDS, let us define T(i) to be the execution time

when the number of workers (i.e., participating processing nodes) is i, i>=1.

Traditionally, the speedup of a parallel algorithm when i = n is defined to be the

ratio of T(1)/T(n). If the speedup is n for n workers, the speedup is said to be

linear. For the sake of brevity, we start with i = 8, in order to consider the

speedup of our pre-aggregation scheme at n = 8, 16, 32, and 64.

The chart in Fig. 3 shows the speedups of our scheme for each multiplier

class. A speedup line graph for the chosen PDS in each class is the path

connecting the 4 points, i.e., (8, T(8)/T(8)), (16, T(8)/T(16)), (32, T(8)/T(32)) and

(64, T(8)/T(64)), where T(64) is the execution associated with the PDS. As is

shown there, while all of the speedup line graphs for all classes are below the

linear speedup graph, they track very closely to it, except for Class 81.

Figure 3: Speedup of Pre-Aggregation Algorithm by Multiplier Class

 36

If one looks into the details about cubelets associated with Class 81, it is

not difficult to explain the sub-par performance. With the number of workers

being 64, over 40% of the same 37K cubelets have only one cell in their base

cubelets. This experimental finding justifies our heuristic that rules out PDS‟s

whose CubeletCounts are likely to be large. On the other hand, one may

conclude that our pre-aggregation scheme, coupled with the efficient cluster

hardware, performs well even though more than 40% of cubelets are so small

that they cannot be further sub-divided.

The comparative performance of our pre-aggregation in terms of the

number of workers and the multiplier class is shown in Fig. 4. Let us leave out

performance of multiplier class 81, for the same reasons stated above. It is clear

from the chart that the pre-aggregation time steadily decreases as the predicted

amount of pre-aggregation, signified by the multiple class, decreases. This is true

for when the number of workers increases from 8 to 64. In fact, the rate of

decrease in pre-aggregation time is so consistent in each case that we could use

the multipliers of the classes to predict the relative amounts of pre-aggregation

time for the optimal choice of each multiplier class. For example, the ratio of pre-

aggregation times between optimal choices of multiplier class X and Y, is roughly

equal to X/Y for any of these numbers of workers.

 37

Figure 4: Execution Time of Pre-aggregation Algorithm by Multiplier Class

The chart in Fig. 5 shows the percentage of busy time for all workers,

which is the indicator of how well our dynamic load balancing works. Clearly, the

workers spend little time sitting idle. This is true even for classes with high

multiplier values, i.e., low cubelet counts. It seems that the task scheduling is not

an issue here.

 38

Figure 5: Total Processor Utilization Rate – Pre-Aggregation Process

To conclude our discussion on pre-aggregation performance, the 3 charts

above support a convincing argument that the pre-aggregation performance

continue to improve as the number of workers increase, provided that the unit of

work (cubelet) is not too small.

5.2.4 Querying Performance

Following the example of pre-aggregation, we consider the querying

performance against the number of workers and the predicted querying

performance as shown Table 7. The query is the worst-case query as defined in

Section 4. We also show the average query performance over a class of

computationally heavy query matrices.

 39

We first consider the chart in Fig. 6, which is structured similarly to the one

in Fig. 3. Some of the line graphs, e.g., those associated with Class 108 and

Class 162 exhibit a trend similar to the line graph associated with Linear

SpeedUp. On the other hand, the ones associated with Class 432 and Class 648

start to level off as the number of workers increases past 32. In fact, the general

trend is that the speedup for the remaining classes drops off as the multiplier

increases, because the absolute value of the query response time in each case

is so small, i.e., < 1.0 sec., that the querying overhead becomes a significant

factor in the query response time.

Figure 6: Speedup of Query Processing by Multiplier Class

The response time of the worst-case query is shown in Fig. 7 for each

multiplier class. The line graph labelled “predicted” is added to show how nicely it

runs in parallel with other line graphs for different worker class. (The response

time values of the “predicted” line graph are based on the QueryCount column of

Table 6, adjusted proportionally for comparison purposes.) Again, it affirms that

 40

our method of predicting the relative query performance of various multiplier

classes works well, at least for this dataset.

Figure 7: Query Response Time by Number of Workers – Worst Case Query

If the query response time shown in Fig. 7 seems large, it is because we

choose to show the performance of the worst-case query. We now briefly look at

another measure of query performance over a group of 36 computationally

intensive query matrices (see Section 4.5). The average response time of these

36 matrices is roughly 10% of that of the worst-case query matrix (Fig. 8).

 41

Figure 8: Query Response Time by Number of Workers – Average over Heavy-Duty

Queries

In fact, query response times for the four classes with high multipliers are

very similar, regardless of the number of workers. Moreover, the average

response times for all multiplier classes differ very little if the number of workers

is large enough, leading to the conclusion that with this workload, and a relatively

small dataset, the query response time „maxes out‟ at 64, or even 32 workers.

5.2.5 Scale-up

In order to find out how well our SplitCube approach works for a much

larger dataset, we create two randomly generated datasets with exactly the same

dimension hierarchies as the modified weather dataset. They have 1 million and

10 million tuples, and are labeled 1M and 10M respectively. We focus on only

two multiplier classes: 324 and 162. Our optimization scheme produces PDS#11

and PDS#15 for classes 324 and 162 respectively. Note that the choice for class

 42

162 is PDS#27 for the real-life dataset. It is replaced because the number of

cubelets entailed by PDS#27 is too large for the randomly generated datasets.

Figure 9: Execution Time of Pre-aggregation Algorithm for Dataset 10M

We are interested in determining the speedups in execution time and

query response time for 10M. Comparing the charts shown in Fig. 3 and Fig. 9,

one finds that the speedup for 10M is clearly closer to linear speedup than the

corresponding speedup for the real-life dataset. This phenomenon is due to the

increase in average size of cubelets (> 10), which reduces the overhead, in

relative terms. Apparently, the same is true for the speedup in query response

time, if one compares the chart in Fig. 6 with the one below in Fig. 10.

 43

Figure 10: Query Process Time by Multiplier Class

The chart in Fig. 11 shows the scaling up of the execution time for pre-

aggregation for three datasets, the real-life, 1M and 10M. We make the following

comparisons:

Figure 11: Scale-up in Execution Time for Pre-Aggregation by Multiplier Class

(i) 1M vs. 10M: One finds that our splitcube approach performs even

better, in relative terms, when the size of the dataset increases by tenfold,

 44

despite substantial increases in disk activity. This improvement is due to the

effect of the economy of scale.

(ii) Real-life vs. 1M: The execution time for the real-life dataset is 40%

shorter, with roughly the same number of tuples in both dataset. A similar

observation is made also in [DER06]. We attribute the difference to the effect of

economy of scale as well. For example, in the case of Class 162, the

MaxBaseCubeletSize for the real-life dataset is 4,680, while the same for 1M is

only 267.

5.2.6 Overhead Analysis

There are two sources of overhead associated with pre-aggregation: the

computation of CubeletCount and MaxBaseCubeletSize, and the subsequent

partition of the base cube into a number of tasks, after the PDS has been

chosen. They are 19 seconds and 20.1 seconds respectively. We are able to

reduce the former by roughly 90% by polling only 10% of the Weather base cube

(about 100,000 tuples).

We ponder two questions about the overhead here. Firstly, is sampling

absolutely necessary, i.e., what would happen if just the theoretical values for

these parameters are used? Secondly, how effective is the sampling technique

compared to the full scan of the input datasets?

 45

Let us consider first MaxBaseCubeletSize. Unlike a synthetic dataset,

most real-life datasets, including the Weather dataset, are skewed in their

distribution for values in some set of attributes. Without an accurate measure of

this parameter, we may end up with very bad choices. Consider PDS #17 in

Table 7, which has more than 45% of the base cube packed into a base cubelet,

resulting in a likely speedup of a little more than 2, even when 64 workers are

present to share the load. To attest to the effectiveness of sampling, we find that

out of 109 PDS‟s tested, 71% of them whose estimated values of the parameter

are within +/- 10% of the actual values. The rest of them are associated with

PDS‟s with large MaxQueryCount values, which are eliminated for consideration

even when the sampling begins. The use of the sample-based value of the

parameter in lieu of the actual value results in exactly the same outcome in our

experiments.

We now turn to CubeletCount. There is a standard probability formula to

compute an estimate for this parameter [F57]. Unfortunately, the dimensions in a

real-life multi-dimensional database are often correlated, and sometimes heavily

correlated. Consequently, the estimate is not reliable. (Come to think of it, there

will be no point for dimensional analysis if the dimensions are completely

independent of each other.) How effective is the sample-based parameter? Let

us consider the PDS‟s in the multiplier class 108 (Table 6), for example. Three

candidate PDS‟s, #39, #71 and #53 are ranked in the same order according to

the MaxQueryCount. The ranking according to the actual QueryCount is different,

 46

i.e., #53, #71, and #39. This is largely because of the drastic reduction in

CubeletCount for PDS #53 from the predicted one. Without any reference to the

input dataset, PDS #39 would be chosen as the choice. Consequently, the query

response time for the multiplier class would be 80% longer than otherwise. By

probing only 10% of the input data set, this discrepancy is discovered, and the

ranking is changed accordingly. Above all, the probing occurs just once to derive

estimate for the two parameters simultaneously.

5.3 Real Estate Dataset

The dataset is extracted from a real-life real estate database, which

contains attributes of residential property in San Diego, including the geographic

location in terms of altitude and longitude. It has 6 dimensions, and 2 measures.

The hierarchy of the last dimension is an R-Tree, which is constructed

from the geographic locations of the properties. The details of all six dimensions

are shown in Table 8.

 47

level\dimension 1 2 3 4 5 6

1 1 1 1 1 1 1

2 32 4 119 4 5 2

3 106 1103 91 47

4 3138 933

5 18719

6 374950

Table 8: Structure of Dimension Hierarchies - Real Estate Dataset

Following similar steps outlined in Section 4.3, we derive the following table

(Table 9), which shows that PDS# 6, 18, and 7 are selected as the choice of the

Multiplier classes 72, 48, and 36 respectively (Phase II in Table 9).

PDS# Multiplier

Max

Cubelet

Count

Max

Query

Cost

Max

Cubelet

Size

Cubelet

Count

Query

Cost Phase II Phase III

5 108 3808 76160 160090 271 5420 Deleted

12 108 131733 21077280 35151 3716 594560 deleted

3 72 3510 2094400 16779 830 493850 deleted

6 72 13090 2094400 12130 1671 267360 selected deleted

20 72 384370 49199360 545 15165 1941120 deleted

9 54 35424 21077280 63595 2464 871080 deleted

18 48 355300 1.35E+09 461 57568 2.19E+08 selected deleted

7 36 418880 8377600 12089 4031 80620 selected selected

Table 9: Selection of PDS - Real Estate Dataset

Among these three, PDS#7 is a clear winner since the other two have

both higher cube building cost, and higher QueryCount (Phase III in Table 9).

Just to demonstrate that our analysis does produce the actual winner, we

 48

compare its performance with two other closest competitors, i.e., #3 and #6, as

shown in Figs. 12 and 13.

Figure 12: Pre-Aggregation Time by PDS

Figure 13: Query Response Time by PDS

We have done some sampling on this data set to estimate the

CubeletCount and MaxBaseCubeletSize associated with the 8 PDS‟s listed in the

table 9. The sampling-based estimates on MaxBaseCubeletSize are very good;

 49

the least accurate one is only 9% away from the actual figure. For CubeletCount,

the sampling-based estimates associated with PDS#3, PDS#6, and PDS#7 are:

490, 857 and 1,577 respectively. With respect to the actual ranking, these

estimates are consistent with the actual values of CubeletCount, which are: 830,

1,671 and 4,031 respectively. These findings confirm the accuracy of our

sampling methods on another dataset.

 50

6 CONCLUSION AND FUTURE WORK

In this thesis, we present the splitcube approach for building an OLAP

database engine for a cluster system. Our objective is to design an OLAP engine

that provides fast response time to a query matrix. Partial pre-aggregation is

deemed necessary to achieve this objective, as our experimental results show.

This objective sets this research apart from other published research efforts that

try to find an efficient way to build all cuboids on a cluster system.

In a broader perspective, what we learn from conducting this research is

that the algorithm designer of a data-intensive application to be deployed on a

cluster system should try to minimize sharing of data among the processors and

create a substantial number of tasks that are free to run on any processor. In

other words, we should leverage the advantages of a cluster system, and

minimize the negative impact on overall performance due to the inherent

limitations of this platform. Of course, if there are too many tasks around, the

overhead will eat up any performance gain due to parallel processing. This is

why an optimization process is necessary to rule out any schemes that spin out

too many tasks. On the other hand, if we cut down the size of a task, so that it

becomes an in-memory task, there may be net performance gain.

 51

Clearly, this research is a proof-of-concept work, leaving much room for

further refinements. For example, there is an issue about the small cubelets.

Combining small cubelets together will improve the economy of scale in cube

building and query processing, at the expense of increased overhead. As the

MPP technology continues to evolve, our design for our OLAP database engine

must be adjusted continually to take advantage of the new hardware. Indeed,

many clusters, including ours, have hybrid MPP architecture: a cluster that

features a multi-core CPU in each node. As the number of cores in the CPU

expands, the amount of computational power vested with each node will multiply.

There certainly will be more memory in the node too. New partitioning schemes

may be needed to address this shift in computational power.

 52

REFERENCE LIST

[Akin02] M. Akinde, M. Böhlen, T. Johnson, L. Laskhmanan, D. Srivastava,
“Efficient OLAP query processing in distributed data warehouses”,
Information Systems, 2002.

[Alm08] R. Almeida, J. Vieira, M. Vieira, H. Madeira, J. Bernardino, “Efficient
Data Distribution for DWS”, 10th Int. Conf. DAWAK, Turin, Italy, 2008

[BDH03] L. A. Barroso, J. Dean, and U. Holzle, “Web search for a planet: The
Google cluster architecture”, IEEE Micro, vol. 23, no. 2, Mar.-Apr. 2003

[C08] C. Cole, “High-Confidence Clustering with Intel Cluster Ready”, Open
Source Grid & Cluster Conference, 2008

[DER06] F. Dehne, T. Eavis, A. Rau-Chaplin, “The cgmCube Project: Optimizing
Parallel Data Cube Generation for ROLAP”, Distributed and Parallel
Databases, An International Journal, 19 (2006), pp. 29-62.

[F57] W. Feller, “An Introduction to Probability Theory and Its Applications”, John
Wiley and Sons, 1957.

[Furt05] C. Furtado, A. Lima, E. Pacitti, P. Valduriez, M. Mattoso, “Physical and
Virtual Partitioning in OLAP Database Clusters”, Proc. 17th Int. Sym. On
Computer Architecture and High Performance Computing, 2005

[GBLP96] J. Gray, A. Bosworth, A. Layman, H. Prahesh, “Data Cube: A
Relational Aggregation Operator Generalizing group-BY, Cross-Tabs, and
Sub-Totals”, Proc. of ICDE ‟96, New Orleans, February, 1996

 53

[GS97] S. Goil, A. Choudhary, “High Performance OLAP and Data Mining on
Parallel Computers”, Data Mining and Knowledge Discovery, 1 (1997), pp.
391-417

[HWL94] C. Hahn, S. Warren, and J. London. Cloud reports
http://cdiac.esd.ornl.gov/cdiac/ndps/ndp026b.html

 [JVYA05] R. Jin, K. Vaidyanathan, G. Yang, G. Agrawal, “Communication and
Memory Optimal Parallel Data Cube Construction”, IEEE Transactions on
Parallel and Distributed Systems, Vol. 16, Issue 12, December 2005

[LL03] W. Luk, C. Li, “A Partial Pre-Aggregation Scheme for HOLAP Engines”, In
Proc. of DAWAK, Spain, 2003

[LPZ03] L. Lakshamanan, J. Pei, Y. Zhao, “QC-Trees: Efficient Summary
Structure for Semantic OLAP”, Proc. of ACM SIGMOD, San Diego, 2003.

[Lu03] H. Lu, J. Yu, L. Feng, Z. Li, “Fully Dynamic Partitioning: Handling Data
Skew in Parallel Data Cube Computation”, Distributed and Parallel
Databases, An International Journal, 13 (2003), pp. 181-202.

[Luk01] W. Luk, “ADODA: A Desktop Online Data Analyzer”, Proc. of DASFAA
2001, Hong Kong, 2001.

[Luk08] W. Luk, “A B-tree Based Scheme for OLAP Aggregation and Query
Processing”, submitted for publication.

[MK99] S. Muto and M. Kitsuregawa, “A Dynamic Load Balancing Strategy for
Parallel Datacube”, DOLAP 99, Kansas City, Mo.

[MKIK07] K. Morfonois, S. Konakas, Y. Ioannidis, N. Kotsis, “ROLAP
Implementations of Data Cubes”, ACM Computing Surveys, Volume 39, No.
4, 2007

 54

[MS01] Microsoft Corp. “MS SQL Server 7.0 OLAP Services”,
http://www.microsoft.com/technet/prodtechnol/sql/70/maintain/olap.mspx,
July, 2001

[MS08] Microsoft Corp. “Multidimensional Expressions (MDX) Reference”, SQL
Server 2008 Books Online, August 2008.

[N07] S. Norall, “Introducing 'data warehouse appliances”
http://www.infostor.com/article_display/introducing-data-warehouse-
appliances/293088/s-articles/s-infostor/s-top-news/s-1.html, 2007.

[NWY2001] R. Ng, A. Wagner, Y. Yin, “Iceberg-cube computation with PC
clusters”, Proc. Of SIGMOD, 2001.

[P2005] Pendse, N., “Database Explosion”,
http://www.olapreport.com/DatabaseExplosion.htm, Feb. 2005.

[RS97] K. Ross, S. Srivastava, “Fast Computation of Sparse Datacubes”, Proc.
Of VLDB, 1997

[SMR00] T. Stöhr, H. Märtens, E. Rahm, “Multi-Dimensional Database Allocation
for Parallel DataWarehouses”, Proc. Of VLDB, Egypt, 2000.

[SRDK02] Y. Sismanis, N. Roussopoulos, A. Deligiannakis, Y. Kotidis, “Dwarf:
Shrinking the Petacube”, Proc. of ACM SIGMOD, Madison, 2002.

[Wit03] A. Witkowski, S. Bellamkonda, T. Bozkaya, G. Dorman, N. Folkert, A.
Gupta, L.

Shen, S. Subramanian, “Spreadsheets in RDBMS for OLAP”, Proc. of ACM
SIGMOD, San Diego, 2003.

[YC00] C. Yu, C. Chang, “The state of the Art in Distributed Query Processing”,
ACM Computing Surveys, Vol. 32 , No. 4, 2000

http://www.microsoft.com/technet/prodtechnol/sql/70/maintain/olap.mspx
http://www.infostor.com/article_display/introducing-data-warehouse-appliances/293088/s-articles/s-infostor/s-top-news/s-1.html
http://www.infostor.com/article_display/introducing-data-warehouse-appliances/293088/s-articles/s-infostor/s-top-news/s-1.html
http://www.olapreport.com/DatabaseExplosion.htm

 55

[YJA02] G. Yang, R. Jin, G. Agrawal, “Implementing Data Cube Construction
Using a Cluster Middleware, Algorithms, Implementation Experience, and
Performance Evaluation”, Proc. Of the 2nd International Symposium on
cluster Computing and the Grid, 2002.

