
SPECTRAL MESH SEGMENTATION

by

Rong Liu

M. Sc., Beijing University of Aeronautics and Astronautics, 2003

B. Sc., Beijing University of Aeronautics and Astronautics, 2000

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

in the School

of

Computing Science

c© Rong Liu 2009

SIMON FRASER UNIVERSITY

Spring 2009

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name: Rong Liu

Degree: Doctor of Philosoohv

Title of Thesis: Spectrai \, 'Iesh Segmentation

Examining Committee: Dr. Arthur Kirkpatrick

Clhair

Dr. Hao Zhang, Senior Superui,sor,

Assistant Professor, School of Computing Science

Sirnon Fraser Universitrr

Dr. Torsten N4oller, Superuisor,

Associate Professor, School of Computing Science

Simon Fraser Universitv

Dr. Ghassan Harnarneh, Supensisor,

Assistant Professor, School of Computing Science

Simon Fraser Universitv

Dr. N{irza Beg, SFL| Eramzner,

Assistant Professor, School of Engineering Science

Simon Fraser University

Dr. Karan Singh, Erternal Eraminer,

Associate Professor, Department of Computer Sci-

ence. Universitv of Toronto
I t

Date Approved: MC'1C Lrt ,
^ f I

t

Last revision: Spring 09

Declaration of
Partial Copyright Licence
The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the “Institutional Repository” link of the SFU Library website
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing
the content, to translate the thesis/project or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in
part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Abstract

Polygonal meshes are ubiquitous in geometric modeling. They are widely used in many appli-

cations, such as computer games, computer-aided design, animation, and visualization. One

of the important problems in mesh processing and analysis is segmentation, where the goal is

to partition a mesh into segments to suit the particular application at hand. In this thesis we

study structural-level mesh segmentation, which seeks to decompose a given 3D shape into

parts according to human intuition. We take the spectral approach to mesh segmentation.

In essence, we encode the domain knowledge of our problems into appropriately-defined

matrices and use their eigen-structures to derive optimal low-dimensional Euclidean embed-

dings to facilitate geometric analysis. In order to build the domain knowledge suitable for

structural-level segmentation, we develop a surface metric which captures part information

through a volumetric consideration. With such a part-aware metric, we design a spectral

clustering algorithm to extract the parts of a mesh, essentially solving a global optimization

problem approximately. The inherent complexity of this approach is reduced through sub-

sampling, where the sampling scheme we employ is based on the part-aware metric and a

practical sampling quality measure. Finally, we introduce a segmentability measure and a

salience-driven line search to compute shape parts recursively. Such a combination further

improves the autonomy and quality of our mesh segmentation algorithm.

Keywords: shape part; segmentation; spectral technique; salience

iii

To my family

iv

“Destiny is not a matter of chance,

it is a matter of choice;

it is not a thing to be waited for,

it is a thing to be achieved.”

— William Jennings Bryan

v

Acknowledgments

My deepest gratitude goes to my senior supervisor, Dr. Hao Zhang. It is he who introduced

me to this field, and taught me every single ingredient about being a good researcher, from

coming up with novel ideas all the way to writing good academic papers. Without his

help and support, I would not have reached this step. What he has taught me through his

everlasting enthusiasm and rigorous attitude in pursuing elegant solutions to challenging

problems will continue to ever guide me in my future endeavors. I would also like to extend

my sincere thanks to the Chair and my committee members, Dr. Kirkpatrick, Dr. Möller,

Dr. Hamarneh, Dr. Beg, and Dr. Singh, who have read my thesis and given me invaluable

suggestions for improving my thesis.

It is my great pleasure and honor to study in the GrUVi lab at Simon Fraser University,

where I have learned tremendously from my fellow colleagues and the time spent with them

is always enjoyable and fruitful. I can only name a few of them due to the limited space.

Andrea is such a Matlab guru and he even insists his Matlab code renders better than my

renderer programmed in C++ with OpenGL; Matt never lets me beat him easily at the

foosball table unless he is drunk; I admire Oliver so much for his unparalleled resistance to

bitterness as he never drinks regular coffee rather than espresso when we go to the café on

campus in afternoons; Ramsay is so knowledgeable and he always gives insightful answers

to my questions more than I asked for. I cherish the days I spent with all GrUVites.

I cannot thank my family enough for their unconditional support and endless love. My

parents always stand beside me; in their mind, I would probably never grow up. I got to

know my wife nineteen years ago when we were secondary school classmates. I still remember

the first time we talked to each other in vivid detail, and our little Brice is already two years

and three months old now. What a wonderful journey! All of you have defined my life and

this thesis is dedicated to you.

vi

Contents

Approval ii

Abstract iii

Dedication iv

Quotation v

Acknowledgments vi

Contents vii

List of Figures x

1 Introduction 1

1.1 Mesh Segmentation . 2

1.1.1 Problem Definition . 2

1.1.2 Geometric-level Segmentation . 4

1.1.3 Structural-level Segmentation . 4

1.1.4 Functional-level Segmentation . 5

1.2 Applications . 6

1.3 Contributions . 8

1.4 Thesis Organization . 10

2 Background and Related Work 11

2.1 Mesh Segmentation vs. Image Segmentation 11

2.2 Segmentation Techniques . 13

vii

2.2.1 Bottom-up and Top-down . 13

2.2.2 User Intervention . 17

2.3 Spectral Clustering . 18

2.3.1 Classical Examples . 19

2.3.2 Generic Paradigm . 21

3 Part-aware Metric 22

3.1 Overview . 22

3.2 Geodesic Distance . 23

3.3 Angular Distance . 24

3.4 VSI Distance . 26

3.4.1 Algorithm Overview . 28

3.4.2 Reference Point Construction . 28

3.4.3 Volumetric Shape Image (VSI) . 30

3.5 Combining Distances . 34

3.6 Experimental Results . 34

3.7 Summary . 42

4 Segmentation using Spectral Clustering 43

4.1 Overview . 43

4.2 Construction of Spectral Embedding . 44

4.2.1 Affinities . 44

4.2.2 Analogy to Kernel Principal Component Analysis 45

4.2.3 Kernel Width . 48

4.2.4 Affinity Matrix Centering . 49

4.2.5 Positive-Semidefiniteness . 53

4.2.6 Distance between Embeddings . 54

4.2.7 Further Discussions . 55

4.3 K-means Clustering . 55

4.3.1 Dimensionality Reduction . 57

4.3.2 Proxy Initialization . 57

4.3.3 Boundary Enhancement . 58

4.4 Experimental Results . 59

4.5 Summary . 65

viii

5 Sub-sampling 66

5.1 Overview . 66

5.2 Nyström Method . 67

5.3 Quality Measure . 68

5.4 Sampling Scheme . 71

5.5 Modified Segmentation Algorithm . 73

5.6 Experimental Results . 75

5.7 Summary . 81

6 Segmentation Driven by Segmentability and Salience 83

6.1 Overview . 83

6.2 Shape Segmentability . 84

6.2.1 Structure Projection . 85

6.2.2 Geometry Projection . 86

6.2.3 Contour Extraction and Pre-processing 88

6.2.4 Segmentability Analysis . 89

6.3 Face Linearization . 93

6.3.1 Derivation and Properties . 94

6.3.2 Relation to Normalized Cut . 98

6.3.3 Sample Selection . 99

6.4 Salient Cut . 101

6.4.1 Part Salience . 101

6.4.2 Salience-driven Cut Search . 102

6.4.3 Boundary Enhancement . 106

6.5 Experimental Results . 108

6.6 Summary . 116

7 Conclusion 118

7.1 Summary . 118

7.2 Future Directions . 120

A Face Sequence 123

Bibliography 126

ix

List of Figures

1.1 A triangle mesh of a hand model and its segmentations at three levels. 3

2.1 Highlights of various segmentation algorithms. 17

2.2 NJW spectral clustering algorithm. 20

2.3 Standard paradigm of spectral clustering. 21

3.1 Mesh dual graph and approximate geodesic weight between adjacent faces. . . 23

3.2 Example geodesic and angular distance fields on a dolphin model. 25

3.3 Example geodesic and angular distance fields on a snake model. 25

3.4 Visible regions of a point as it travels inside a shape. 26

3.5 Three steps to compute VSI distance. 27

3.6 Reference points computed for various models. 29

3.7 Plot of VSI differences as a point moves on the surface. 31

3.8 Two VSI distance fields on the snake model. 33

3.9 Angular distance fields vs. VSI distance fields on various models. 33

3.10 Iso-contours for four distance metrics. 36

3.11 Feature-sensitive sampling vs. part-aware sampling. 37

3.12 Spectral embeddings and registration of two Homer models. 38

3.13 Models used for shape retrieval test and their signature histograms. 40

3.14 Retrieval results using geodesic, D2, and part-aware distances. 41

4.1 Mesh segmentation based on spectral clustering. 43

4.2 Spectral embedding of mesh faces. 44

4.3 Exponential kernel functions with different kernel widths. 48

4.4 Distribution of affinity-implied points in feature space. 50

4.5 Influence of kernel width to the approximation quality for V2 and V̄1. 52

x

4.6 K-means clustering in embedding space. 56

4.7 Segmentation result with 5 parts for the enforcer model. 60

4.8 Segmentation results for the enforcer model with different numbers of segments. 61

4.9 Segmentations on Homer model and respective clusterings in the embeddings. 62

4.10 Segmentation results achieved with and without VSI distance. 63

4.11 Segmentations on a variety of different kinds of models. 64

5.1 Strong correlation between FNSC and Γ. 70

5.2 The geometric examination of 1T (A−11) in R2. 72

5.3 Farthest-point sampling scheme in max-min fashion. 73

5.4 Mesh segmentation based on spectral clustering with sub-sampling. 74

5.5 Approximation quality of eigenvectors via different sub-sampling methods. . . 76

5.6 Quality of approximate eigenvectors is influenced by the tightness of clustering. 77

5.7 Segmentations of two models via sub-sampling and the eigenvectors. 79

5.8 Segmentation results achieved with and without VSI distance. 80

5.9 Segmentation results of various models with sub-sampling. 81

6.1 Mesh segmentation driven by segmentability and salience. 84

6.2 L-projection of a foot model with branching structure. 86

6.3 Segmentability of a cheese model is better revealed in the M -projection. . . . 87

6.4 Contours obtained from the L-projection of the foot model. 89

6.5 Convexity measures of three shapes based on area and perimeter. 90

6.6 Use of MDS to enhance the performance of segmentability measure. 91

6.7 Contour segmentability analysis procedure. 93

6.8 Characteristics of a face sequence produced for a synthetic 2D shape. 96

6.9 The effectiveness of the face sequence in preserving desirable cuts. 97

6.10 Results of IBS-based sampling on 2D contours. 101

6.11 Effect of the three factors of part salience. 102

6.12 An example of salience-driven cut search. 105

6.13 Fixing local artifacts of a boundary via dilation and erosion. 107

6.14 An example of boundary smoothing based on morphology. 108

6.15 Four iterations of salience-driven cut on the bunny model. 109

6.16 Low-frequency segmentation of the dinosaur model using L-projections. . . . 110

6.17 Segmentations of the snake model using L-projections and M -projections. . . 111

xi

6.18 Segmentation results using only L-projections. 112

6.19 Segmentation results using both L-projections and M -projections. 113

6.20 Segmentabilty threshold tuning could help produce more meaningful results. . 115

6.21 The automatic cut and the best cut from the face sequence of Igea model. . . 116

xii

Chapter 1

Introduction

With the rapid advances in computer hardware and geometry acquisition devices, meshes,

as a means to represent 3D surface shapes, are becoming ubiquitous in computer graph-

ics. Accordingly, mesh processing and analysis has become an important research field. As

image segmentation is to image analysis, mesh segmentation is of primary importance to

numerous applications in mesh processing and analysis. In fact, segmentation itself has been

intensively studied as an important operation for generic data analysis. The goal of segmen-

tation is to identify from a given data set homogeneous groups with similar characteristics

to facilitate solving the problem at hand. We will see that mesh segmentation can operate

at three different conceptual levels, and the characteristics of the resulting segments at each

level are also application-dependent.

Mesh segmentation has received a great deal of attention in recent years. However,

the research work involved in this topic is still far from mature (the first survey paper by

Shamir [111] emerged in 2006), especially when the segmentation comes to extract higher

order information from a given shape. In this thesis, we work on a particular mesh seg-

mentation problem, which is to decompose a mesh shape into its constituent parts that are

intuitive to human beings.

1

CHAPTER 1. INTRODUCTION 2

1.1 Mesh Segmentation

1.1.1 Problem Definition

We work on triangle meshes in this thesis. According to the definition by Praun et al. [101],

a triangle mesh M is a pair (T ,K). T is a set of t point positions, i.e., T = {vi ∈ R3 | 1 ≤
i ≤ t}, and K is an abstract simplicial complex that contains all the topological (adjacency)

information. The complex K is a set of subsets of {1, . . . , t}. These subsets come in three

types: vertices {i}, edges {i, j}, and faces {i, j, k}, which are referred to as mesh primitives.

We denote the sets of vertices, edges, and faces of M by V, E , and F , respectively. In

Figure 1.1(a), a triangle mesh representing a hand is shown.

With MP being one of the mesh primitive sets (V, E , or F), mesh segmentation can be

viewed as an operation

MP 7→ {MP
1 ,MP

2 , ...,MP
k },

where
⋃k

i=1MP
i = MP and MP

i

⋂MP
j,j 6=i = ∅. In practice, it is common to segment

by faces since faces provide a natural watertight coverage to a mesh surface. It is worth

mentioning that typical applications would require that primitives in each subset MP
i form

a single connected region on the mesh surface. Note also that the segmentation mentioned

above is applied to the surface of a mesh. It is possible to apply segmentation to the volume

enclosed by a mesh as well. For example, the works in [79, 130] compute a set of simple

solids, i.e., solid ellipsoids, as an alternative to the original mesh volume. Although these

solids may overlap, their union approximates the mesh volume well. This is in particular

useful for applications involving geometry queries, such as collision detection. In our work,

however, we are only interested in surface segmentation.

Mesh segmentation can operate at three different conceptual levels: geometric level,

structural level, and functional level, as illustrated in Figure 1.1(b, c, d). The segments gen-

erated at the latter levels reveal higher order abstraction of shapes. The first two levels are

purely based on the geometry of an input shape, while function-level segmentation requires

prior knowledge to understand the object represented by a shape. For geometric-level and

structural-level segmentations, a similar classification is previously made by Shamir [111] as

surface-type and part-type segmentations, respectively. We discuss each segmentation level

in the following.

CHAPTER 1. INTRODUCTION 3

(a) triangle mesh of a hand model (b) geometric-level

(c) structural-level (d) functional-level

Figure 1.1: A triangle mesh of a hand model (a) and its segmentations at three levels:
geometric-level segmentation (b) with each patch being nearly planar and as compact as
possible; structural-level segmentation (c) that decomposes the shape into its constituent
parts according to human intuition; and functional-level segmentation (d) that partitions
the hand into two components — the fingers as a whole and the palm — with respect to
the anatomical property of the hand.

CHAPTER 1. INTRODUCTION 4

1.1.2 Geometric-level Segmentation

Meshes are normally given with only geometry (vertex coordinates) and connectivity (face

adjacency) information. At the geometric level, a shape is partitioned into segments that

possess certain simple surface geometric properties, such as planarity [25] and convexity [23],

or into segments that can be approximated by certain parametric surfaces, e.g. hyperbolic or

parabolic surfaces. The segments do not necessarily correspond to the shape’s constituent

parts as higher order information; they are simply connected homogeneous regions with

similar geometric properties. Geometric-level segmentation extracts the information of a

shape at the lowest level.

Figure 1.1(b) shows a geometric-level segmentation result on the hand model. As we can

see in this particular case, the segments are approximately planar patches that are compact

and the structural information of the hand is not revealed properly.

1.1.3 Structural-level Segmentation

Similar to segmentation at the geometric level, structural-level segmentation is also purely

geometry-based. However, structural-level segments reveal the structure of a given shape.

As the structure of a shape is typically characterized by its constituent parts, segmentation

at this level strives to decompose a shape into its parts. Note that our notion of parts is

generic by referring to the meaningful components of a shape that are intuitive to human

beings. Figure 1.1(c) exemplifies a segmentation on the hand model at structural level.

Compared to geometric-level segments, the five fingers and the palm, which correspond to

the intuitive parts of the hand, are obtained and the structure of the hand shape is revealed.

The concept of a part intuitive to human perception is by no means clearly defined. How

humans perceive parts and how to measure the strength (salience) of parts have long been

studied in psychology and cognition [50, 128]. Despite the absence of a clear definition for

shape parts, the geometry processing community has adopted the minima rule [51] for part

characterization:

All negative minima of the principal curvatures (along their associated lines of

curvature) form boundaries between parts.

The minima rule gives a constructive way to compute parts: mesh segmentation algorithms

may delineate parts by explicitly forming their boundaries from surface regions with nega-

tive minimum principal curvatures [69, 76]. Alternatively, algorithms can also cluster mesh

CHAPTER 1. INTRODUCTION 5

faces into groups by incorporating measures reflecting the minima rule implicitly via con-

siderations of concavity [59]. Since a part is typically convex, it is possible to extract parts

by fitting simple convex geometric primitives, e.g., ellipsoids and cylinders [119, 134], or

by computing convex volumetric regions directly [6, 61]. In addition, techniques are also

designed to find certain specific structures, such as tubular regions [43, 89].

It is worth emphasizing that when we say a part is intuitive to human perception at

the structural level, we emphasize on the intuition based only on the geometry of a shape.

Human intuition about a part could be affected by other higher order information of the

object a shape represents; such parts are at the functional level which is described next. We

are only interested in the structural-level segmentation in this thesis.

1.1.4 Functional-level Segmentation

At the structural level, it is the geometry of a shape that is recognized and the segments

produced are in accordance with the shape’s structure. Functional-level segmentation con-

siders not only a shape itself, but also the object the shape represents. Note that we draw a

clear distinction between an object and its shape. To apply function-level segmentation, an

algorithm needs to understand the functional properties of an object, which in general are

not encoded in the geometry, hence requiring prior knowledge. Segments produced at this

level reflect the functional information of objects based on a specific application context.

Figure 1.1 (d) shows one possible functional segmentation of the hand model. The

hand is divided into two segments, the five fingers as a whole and the palm. Obviously,

the segmentation result in this case follows a functional abstraction of the hand, while

the structural information of the hand shape is not respected. As another example of

functional-level segmentation, one may see the engine body and the pipes attached to it

under the hood of a car as a single intuitive part. We believe this intuition about a part, the

entire engine, has a lot to do with the notion of an engine and how the engine is contrasted

with its surroundings under the hood. For structural-level segmentation, however, we do

not demand our algorithm to understand the pipes are sub-parts of the engine; instead, it

is deemed appropriate to segment the engine into its main body and the pipes, since such a

segmentation is natural based on the engine’s shape only.

Clearly, functional-level mesh segmentation requires algorithms to understand the object

behind an input mesh. This is possible by incorporating prior knowledge using a template

or via training. Similar works for images have been studied, such as in template-based

CHAPTER 1. INTRODUCTION 6

segmentation [16, 46, 85] and image labeling [49, 136]. However, to the best of our knowledge,

such segmentation algorithms for meshes do not exist. This could be in part due to the lack of

a systematic mesh database with segmentation information, which is necessary for training.

1.2 Applications

A common application of mesh segmentation is parameterization, which in turn is useful

to many other applications [114], e.g., detail mapping, mesh editing, and remeshing. Take

texture atlas generation as an example. Since it is in general impossible to parameterize

a mesh surface onto an image plane without stretching, the problem is essentially how to

minimize the stretching of a parameterization. To this end, a mesh surface is partitioned

into approximately developable patches, which can be parameterized individually with less

stretching. Developable surfaces have zero Gaussian curvature everywhere; typical examples

include planes, cones, and cylinders. Segmentation for parameterization applications [56,

72, 107, 108, 121, 145] is at a geometric level in general.

Mesh segmentation is also commonly practiced in reverse engineering, where the goal

is to recover the parametric surfaces from a digitalized shape. This is particularly useful

for CAD models, as CAD software usually only deals with parametric surfaces. Primitive

fitting [54] is a popular strategy for this purpose. Simari and Singh [119], and Wu and

Kobbelt [134] utilize the variational approach [25] to approximate surfaces with planes,

spheres, cylinders, rolling-ball blend patches, and ellipsoids. This approach is extended

by Yan et al. [139] to incorporate general quadric surfaces. To speed up the processing,

hierarchical primitive fitting is adopted by Attene et al. [4]. Except for primitive fitting,

other techniques such as slippage [41] and curvature tensor analysis [68] are also utilized,

based on the observation that surface patches with similar slippage or curvature tend to

form a single parametric surface. Depending on the types of the fitting primitives, such

segmentations may sit at a geometric or a structural level. For example, if ellipsoids are

used, the resulting segments are likely to correspond to intuitive parts.

Animation makes use of mesh segmentation as an important auxiliary operation as

well. In order to generate a high quality deformation sequence of an articulated shape, it

is beneficial to represent the shape via its skeleton, because the skeleton can be animated

easily and the surface is then reconstructed from the deformed skeleton. Due to the strong

CHAPTER 1. INTRODUCTION 7

connection between the parts of a shape and its skeleton, quite a few skeletonization al-

gorithms [59, 76, 110] are segmentation-based. Once the parts of an articulated shape are

segmented out, skeletons can be readily constructed from these parts. Another example

where mesh segmentation comes handy is morphing [116, 148]. To enhance the quality of

morphing, both the source mesh and the target mesh are segmented into compatible parts,

and morphing is carried out between the matched pairs. Collision detection, a necessary

operation in a number of applications including gaming and physical simulation, could also

benefit from mesh segmentation. As shown in [40, 74], meaningful segments would help

build a well structured hierarchical bounding volume tree that is crucial to the efficiency of

collision detection. As the above applications usually need to have the resulting segments

reflect the structure of a shape, these segmentations are at a structural level.

Mesh coding is another area where segmentation is useful, from several aspects. From

the computational complexity perspective, partitioning a surface into segments helps reduce

the overhead in a divide-and-conquer manner. In the work by Karni and Gotsman [58], a

surface is decomposed into multiple patches and encoded separately, avoiding the eigenvalue

decomposition of an otherwise large matrix. Coding mesh patches separately is also error-

resilient and space-efficient; Yan et al. [140] show that carefully designed segmentation

algorithms are capable of producing patches suitable for efficient coding and robust against

patch corruption. To further optimize the transmission over a bandwidth-limited channel,

e.g., wireless network, mesh patches are deliberately constructed in the coding stage. During

transmission, only the patches visible to end users are transmitted or transmitted with higher

priority. The experiments in [45, 141] attest to the effectiveness of this strategy. Different

from the above works, time-dependent geometry coding is studied by Lengyel [71], in which

mesh vertices are clustered into groups with similar trajectories along the time axis so that

they can be encoded in a local coordinate system. Segmentations are all at a geometric-

level for these applications except for the last one, in which the mesh vertices with similar

trajectories often form a rigid structural part of a shape.

Last but not least, mesh segmentation also plays an important role in shape modeling and

shape recognition. One example shape modeling task is to model objects by parts. The ob-

servation herein is that objects can be classified into categories with similar part structures;

therefore similar parts can be reused to allow for efficient reconstruction of new models with

high details. In order to obtain reusable parts from shapes, both semi-automatic [39, 55] and

automatic [61] segmentation techniques are proposed. Shape recognition is a hard problem

CHAPTER 1. INTRODUCTION 8

in general. As lower geometric information, e.g., curvatures, is not sufficient to manifest

higher order semantic information about a shape, higher level information needs to be ex-

tracted to recognize the shape better. To this end, algorithms often make use of the parts of a

shape and their topological relations. Such an example is from shape retrieval [31, 110, 148],

in which the signature of a shape is calculated based on the features and the relations be-

tween its structural parts. In fact, researches in psychology and cognition [15, 50, 51] have

long shown that shape parts have a profound impact on the way human beings recognize

and understand shapes. Although related studies on this topic are primarily cast on image

data [2, 57, 62, 67, 105, 117], 3D shape representation with structural information and its

application has received much attention [1]. We believe mesh segmentation is indeed an

indispensable ingredient in this promising area and deserves long-term study.

1.3 Contributions

The difficulty of structural-level segmentation lies in the fact that the notion of parts in a

shape is not well-defined. In this thesis, we propose several ideas to address this problem.

Some of these ideas, including the part-aware metric, segmentability, and salience-driven

cut search, not only lead to quantitative measures for characterizing parts, but also suggest

constructive means to compute them. Our algorithms have been demonstrated to produce

high quality segmentation results. We elaborate our contributions as follows.

A novel metric to capture part information In order to apply spectral clustering to

mesh segmentation, we need a distance metric that is able to capture the part information

of a shape. Designing a part-aware metric on mesh surfaces is non-trivial since the parts are

yet to be found. In practice, one is supposed to utilize the metric to facilitate segmentation.

Therefore, the realization of an effective metric should be conceptually simple, at least not

more complicated than implementing a third party segmentation algorithm and using the

resulting parts to help build the metric. We design such a metric based on the characteristics

of how visible regions change for points within shapes and across part boundaries. To date,

our metric is the only one that is specifically designed to capture part information. It

is demonstrated to outperform existing metrics [30, 59, 66] that have been utilized for

mesh segmentation. Note that our part-aware metric is also useful for a variety of other

applications in geometry processing.

CHAPTER 1. INTRODUCTION 9

Application of spectral clustering to mesh segmentation We for the first time ap-

ply spectral clustering to mesh segmentation, effectively and efficiently. Spectral clustering

is a popular clustering algorithm studied in machine learning. Resorting to the part-aware

metric, we design yet another variant of spectral clustering for structural-level segmentation.

To make our algorithm effective in practice, we address several problems of spectral cluster-

ing within the context of mesh segmentation. For efficiency, we make use of sub-sampling

and the Nyström method [10] to reduce the complexity involved in pairwise distance compu-

tation and eigenvalue decomposition. We provide a geometric interpretation to the Nyström

method and reach a measure for its approximation quality. From this, practical sampling

schemes are suggested. Since our algorithm transforms the part-aware distances into an Eu-

clidean embedding and finds an approximate solution to a global optimization problem, it is

able to produce high quality segmentation results. This segmentation algorithm is efficient,

operating in a k-way partition manner, where k is the number of segments input by users.

Segmentability- and salience-driven segmentation via spectral embedding We

further improve our segmentation algorithm by enhancing its autonomy and quality. The

improved algorithm segments through recursive 2-way cuts. The current mesh piece is only

segmented when it has a sufficiently large segmentability score. The segmentability measure

is derived by spectral-embedding a mesh piece into 2D, in which its part information is

better revealed and readily quantified. Unlike the previous algorithm where users need to

specify k for each input model, the improved algorithm enjoys a higher autonomy with a

fixed segmentability threshold that is model-independent. Meanwhile, we apply salience

to enhance segmentation quality. Salience is an important concept studied in psychology

to measure the strength of a part and it is closely related to how humans perceive parts.

Although salience has been previously used for mesh segmentation, it is only used in post-

processing, probably due to the difficulty of incorporating it into the initial search for parts.

We found a solution to this by carefully arranging mesh faces into a sequence which can be

considered as derived through a 1D spectral embedding. Since the cut is only sought along

the sequence, the search space for parts is substantially reduced. As a result, we can afford to

integrate salience into the search procedure. As the face sequence preserves the meaningful

cuts and salience is exploited early on, this algorithm achieves superior segmentation quality.

CHAPTER 1. INTRODUCTION 10

1.4 Thesis Organization

The reminder of the thesis is organized into six chapters. In Chapter 2, we review mesh

segmentation techniques and spectral clustering. The part-aware metric is developed in

Chapter 3. Using this metric, we design a k-way mesh segmentation algorithm using spectral

clustering in Chapter 4. Chapter 5 studies and applies sub-sampling to this segmentation

algorithm to reduce its complexity. Next, Chapter 6 improves upon the k-way segmentation

algorithm via recursive 2-way cuts based on segmentability and salience. We conclude our

work and point out future directions in Chapter 7.

Chapter 2

Background and Related Work

This chapter presents a review of the related literature. In order to understand mesh

segmentation better, we first highlight certain differences between mesh segmentation and

image segmentation in Section 2.1. After this, we review some existing mesh segmentation

techniques in Section 2.2. Section 2.3 discusses spectral clustering briefly.

2.1 Mesh Segmentation vs. Image Segmentation

Segmentation has been studied extensively on image data. Image segmentation is of fun-

damental importance in many fields including computer vision, medical imaging, and video

coding [3]. A tremendous amount of work has been conducted in the last several decades.

A recent search in EI Compendex showed a total of 9154 records of papers with “image

segmentation” in title from the year of 1970 to 2008. Before we discuss the differences be-

tween mesh segmentation and image segmentation, we briefly discuss image segmentation

first. Interested readers are referred to the surveys in [47, 95, 99] for more details.

It is commonly practiced in computer vision to segment images along the boundaries

of the objects in a scene. Boundaries between objects are often detected in regions with

dramatic intensity changes, say by the Canny edge detector [20]. However, color images

with abundant textures and patterns easily produce many spurious edges, which do not cor-

respond to real object boundaries. To tackle this problem, statistical methods are applied to

select only salient edges and connect them into continuous boundaries [103, 133]. Another

approach to detecting meaningful boundaries is through supervised learning. Such an ex-

ample is in [84], where the authors make use of ground truth images with manually-marked

11

CHAPTER 2. BACKGROUND AND RELATED WORK 12

boundaries to train a classifier. Posterior probabilities of test image pixels on boundaries

are calculated via the trained classifier. In addition, it is also possible to segment images

via pixel grouping, where image pixels are clustered into regions directly without forming

explicit boundaries. Both the spectral technique [115] and the statistical technique [127] fall

into this category.

Image segmentation is also an indispensable step in medical image analysis. Before

anatomical structures captured in images by, e.g., computer tomography (CT) and mag-

netic resonance imaging (MRI), can be analyzed, they must be segmented out from their

surroundings. This is known as the delineation of anatomical structures. One popular

technique for this is deformable models. Boundary-based deformable models [63, 86] use a

parametric contour, which evolves on images to reduce its energy until a local minimum is

reached. As an energy functional encodes the desired properties of both the contour and

the target positions, the delineated boundary is often of higher quality. To better incorpo-

rate prior knowledge, template-based deformable models [16, 46, 85] are developed as an

alternative. Template deformable models are programmed to assume the generic shape of

the target structure, which amounts to encoding prior knowledge. Meanwhile, they are also

allowed to deform moderately to accommodate the slight differences from multiple instances

of the structure.

Mesh segmentation has certainly benefited from the research achievements of image seg-

mentation. In fact, as one of the early mesh segmentation techniques, the watershed algo-

rithm by Mangan and Whitaker [82] is extended from its counterpart in image segmentation.

Meanwhile, mesh segmentation is also a quite different topic from image segmentation; their

differences can be understood from several perspectives as follows.

In terms of the types of information contained in the data, images have intensity and

spatial information. These two types of information are different stimuli to human percep-

tion and they play different roles in deriving segmentation results. Roughly speaking, an

image segment is typically a spatially continuous region with similar intensities or patterns

(textures) [8, 96]. For mesh segmentation, however, current research is only concerned with

the shape of a mesh, i.e., a spatial information. Any other information, if any, such as color

and texture, is discarded.

One may view a 2D image as a mesh by virtually lifting its pixels vertically, where

the elevation of each pixel is determined by its intensity. However, unlike the pixels of an

image, the vertices of a mesh have irregular connectivity in general. For this reason, meshes

CHAPTER 2. BACKGROUND AND RELATED WORK 13

lack a global canonical parameterization. This may prevent certain useful techniques from

being used for meshes, such as the Fourier Transform. Essentially, meshes are 2D manifolds

embedded in 3D and their dimensionality is atypical.

Mesh segmentation is a relatively new research topic in contrast to image segmentation.

Due to their differences, techniques for image segmentation cannot be trivially extended to

mesh segmentation. So far, mesh segmentation has not seen the use of certain advanced

techniques, including supervised clustering. This is in part due to the absence of a systematic

mesh database with segmentation information for training purposes.

2.2 Segmentation Techniques

Mesh segmentation algorithms can be categorized via many criteria. In this section, we re-

view some existing algorithms based on their characteristics and how much user intervention

they require.

2.2.1 Bottom-up and Top-down

If a mesh segmentation algorithm seeks segments using global information, e.g., by comput-

ing a (approximate) solution to a global optimization problem, we call it top-down. On the

other hand, if an algorithm finds segments using only local information, e.g., via a greedy

approach, we call it bottom-up. In the bottom-up category, final segments are typically

formed by grouping smaller ones, for example, starting from individual faces. The segmen-

tation procedure is often guided by a cost function, which is minimized locally in a greedy

manner. Bottom-up approaches are usually efficient. However, they are subject to local

minima and over-segmentation. Top-down approaches address these problems by working

in the opposite direction: segments are obtained by decomposing a mesh into pieces, through

either a simultaneous k-way cut, or a sequence of cuts (typically 2-way cut) in a hierarchical

manner. Since top-down approaches optimize segmentation using more global information

than bottom-up approaches, they tend to achieve better results, but usually with a higher

computational cost.

Bottom-up and top-down only roughly characterize the properties of existing mesh seg-

mentation techniques. In the following, we further split them into seven sub-categories and

discuss their characteristics, pros, and cons briefly. Note that the categorization is neither

perfectly disjoint nor complete; we only investigate some popular techniques and try to

CHAPTER 2. BACKGROUND AND RELATED WORK 14

classify them according to their most prominent characteristics. Readers are referred to

[5, 111] for more detailed coverage.

Region growing is a bottom-up approach, in which a segment is formed by growing a

continuous surface region until the regulatory constraints fail. In sequential region grow-

ing [68, 82, 102, 146, 147, 148], the next region starts to grow after the previous one cannot

grow any more. This process iterates until the entire surface is covered. In simultaneous

region growing [55, 72, 94, 137, 144], multiple regions are seeded and grown simultaneously:

the immediate region to grow is always the one with the smallest growing cost. The asymp-

totic complexity for sequential growing is typically O(n) (n is the face count) since each mesh

face is visited only once, while simultaneous growing usually sees a complexity of O(n log n)

due to the maintenance of a global priority queue. At a higher complexity, simultaneous

growing often offers better segmentation quality because of its fine-tuned growing order

with smaller granularity. Region growing methods are fast and the framework is generic.

By applying different growing constraints, region growing methods are capable of achieving

both geometric-level and structural-level segmentations. As bottom-up approaches, how-

ever, region growing methods are susceptible to local minima.

Region merging methods [4, 40, 41, 113] start out by partitioning an entire mesh surface

into patches, each typically containing a single face initially, and recursively merge neigh-

boring patches. Similar to simultaneous region growing, the merging order is also guided by

a priority queue. As an example, Garland et al. [40] combine three error metrics to prioritize

all current possible merges, ensuring that each resulting segment is compact, nearly planar,

and has consistent face normals. It is worth mentioning one recent work [6] based on region

merging for computing convex parts, which works on volumes rather than on surfaces. The

algorithm decomposes the volume enclosed by a mesh into tetrahedra; neighboring solids

(initially consisting of a single tetrahedron) are then merged recursively. Unlike surface-

based convexity measures, the convexity measure for solids enjoys higher accuracy. The

most significant advantage of the region merging framework is its ability to create a seg-

mentation hierarchy and this is important to applications involving spatial queries. Region

merging is also bottom-up, and its small merging cardinality, usually 2 (merging only two

adjacent patches each time), may deteriorate the segmentation quality.

CHAPTER 2. BACKGROUND AND RELATED WORK 15

Variational approaches [25, 56, 59, 61, 65, 98, 116, 119, 134, 139] are probably the most

popular technique for mesh segmentation, which essentially solve the K-means clustering

problem [80] using Lloyd’s algorithm [78]. In short, Lloyd’s algorithm finds an approximation

(a local minimum) to the global optimal solution by alternating two operations, element

assignment and proxy fitting, until convergence. In the element assignment operation each

mesh face is assigned to the cluster whose proxy is closest to this face; in the proxy fitting

operation each proxy is refined to better fit, according to a chosen metric, the member faces

of its associated cluster. For example, if the goal is to partition a surface into planar patches,

a proxy should be the best fitting plane of its cluster. In practice, proxies often converge

with high rate. A variational method is top-down as all clustering elements are examined

simultaneously to optimize for a cost function. However, k, the number of desired segments

is non-trivial to infer from input data and is usually given by users.

Boundary formation [69, 75, 92] methods seek to delineate segments explicitly with

their boundaries. In contrast, techniques mentioned above all construct segments by group-

ing mesh primitives. A segment boundary is a closed contour typically formed by a sequence

of mesh edges. Such contours are either formed by connecting broken feature lines from con-

cave regions as in [69, 92] or computed as a graph cycle with minimum weight as in [75].

Boundary formation methods are top-down. As segment boundaries are formed explic-

itly, it is easier to make them clean and smooth. Due to the obliviousness to the interior

of the resulting segments, however, boundary formation approaches have only been used

for structural-level segmentation. In addition, this method is subject to featureless regions

where intuitive part boundaries are supposed to cross. Completing broken contours through

such regions is challenging.

Statistical approaches [30, 42, 64] are gaining increasing attention recently. Lai et

al. [64] model the distance between faces using random walks. Each edge of a triangle

face is associated with a probability describing how likely a random walk moves across

this edge to the neighboring face. The algorithm allows users select to (or automatically

select) several seed faces to represent the desirable parts of an input mesh. Each face

is clustered into the part of a seed face if a random walk starting from the face has the

highest probability of reaching this seed face. The whole modeling process is reduced to

solving a sparse linear system. For structural-level segmentation, the probabilities assigned

to edges are related to local concavities. The algorithm proposed by de Goes et al. [30] is

CHAPTER 2. BACKGROUND AND RELATED WORK 16

in the same vein, by modeling diffusion distance on surfaces. Golovinskiy and Funkhouser

propose a randomized approach [42]. Roughly speaking, the idea is to apply several popular

segmentation algorithms with different or random initial settings for a large number of

times. Each particular execution produces a set of boundary edges. With the results from

all executions, the algorithm computes a probability of each edge being on a part boundary.

A concrete segmentation is computed based on such probabilities. Statistical approaches,

especially the first two algorithms based on random walks and diffusion distance, are in

general top-down techniques. Also they have been empirically shown to be robust against

noise. Statistical approaches are so far only applied to structural-level segmentation.

Topology-driven approaches [7, 74, 104, 126, 135] are top-down segmentation tech-

niques, which utilize shape skeletons. Note that the skeleton herein refers to a 1D curve that

roughly lies inside a shape and reflects its structure. Shape skeletons are suggestive of shape

parts. Think of an articulated shape, such as a human being, whose skeleton can be divided

into sections at the critical points, e.g., branch points, with resulting sections correspond-

ing to the intuitive parts, i.e., torso, limbs, and head. That being said, topology-driven

approaches are in general divided into three steps: extract skeleton, identify critical points,

and associate skeleton sections with shape parts. Since the topology of the skeleton is pose-

invariant to the articulation of a shape, topology-driven approaches are invariant to poses.

However, robust skeleton extraction and critical points identification are both non-trivial.

Meanwhile, only structural-level segmentation is possible through this technique.

Symmetry-driven approaches are based on the observation that both natural and man-

made objects are usually symmetric to a certain degree [73], either globally or partially. It is

then rational to exploit symmetry information for segmentation. Simari et al. [118] propose

to partition a mesh iteratively using weighted principal component analysis to find extrinsic

reflectional symmetries. In each iteration, a subregion of the current mesh piece is extracted

and partitioned into two by a plane if the subregion is symmetric with respect to the plane.

Podolak et al. [100] introduce Planar-Reflective Symmetry Transform to compute major

local symmetric planes of a shape and such planes are used to simultaneously segment

the shape into self-symmetric parts. Different from the above two algorithms, Mitra et

al. [87] detect surface regions that are invariant up to rigid transformations and scaling.

This is achieved through a voting scheme in a transformation space. Symmetry-driven

segmentation is useful to many applications, including mesh coding, shape retrieval, and

CHAPTER 2. BACKGROUND AND RELATED WORK 17

Technique Strategies Level Pros / Cons
Region Growing B G, S efficient, generic / prone to local op-

timum
Region Merging B G, S hierarchical result / prone to local

optimum
Variational Approach T G, S better approximation to global opti-

mum / unknown number of clusters
Boundary Formation T S clean and smooth boundary / chal-

lenging to complete broken bound-
aries over featureless regions

Statistical Approach T S mathematically sound, resistant to
noise / unknown number of clusters

Topology-driven Approach T S pose-invariance / non-trivial skele-
ton extraction and critical points
identification

Symmetry-driven Approach T S informative segments / only extrin-
sic symmetry so far, not necessarily
structural parts

Figure 2.1: Highlights of various segmentation algorithms. B: bottom-up, T: top-down, G:
geometric-level, S: structural-level.

remeshing. The segments obtained by symmetry-driven approaches are typically informative

about the structure of a shape. However, depending on a shape’s symmetry structure,

such segments may not necessarily correspond to the intuitive parts of the shape as in

the structural-level segmentation. In addition, current symmetry-driven approaches handle

only extrinsic symmetries, but not intrinsic ones. For example, a bent left arm would not

be considered symmetric with respect to a straight right arm.

Figure 2.1 highlights the properties of the segmentation algorithms mentioned above.

2.2.2 User Intervention

We can also classify mesh segmentation algorithms based on the degree of user intervention.

In this thesis, we adopt three classes: automatic, semi-automatic, and manual.

In our classification, an automatic segmentation algorithm simply needs users to feed

a mesh and the segments are produced automatically. Note that we do allow automatic

algorithms to have free parameters, such as threshold values. Users can fine-tune these

parameters in order to suit different input models. We consider parameter setting as a

CHAPTER 2. BACKGROUND AND RELATED WORK 18

robustness issue, rather than an autonomy issue. We mention one special parameter, the

number of segments. The number of segments is directly related to segmentation output

and it is highly model-dependent. The variational approaches mentioned above are good ex-

amples where the number of segments is needed. Of course, it is ideal to have an automatic

algorithm perform robustly on all kinds of meshes with a fixed set of parameters. Unfortu-

nately, this is difficult, especially for the structural-level segmentation. The majority of the

available mesh segmentation algorithms, e.g., [40, 61, 76, 82, 93], are automatic.

For semi-automatic algorithms [55, 144], users are usually required to provide direct

assistance for segmentation, such as drawing sketches on a mesh to indicate desired segments.

Take the work by Ji et al. [55] for example. Users must first provide one stroke on the

background part and the other on the foreground part of a given mesh. Then a region

growing approach is executed to identify the two corresponding parts, as in an automatic

algorithm. In order to achieve better segmentation results, users may want to make the two

strokes longer and place them in parallel to the desired boundary. The algorithm developed

by Lee et al. [69] also allows for direct user assistance. Semi-automatic algorithms strike the

balance between autonomy and user assistance. They are in general capable of obtaining

higher segmentation quality than automatic algorithms.

If an algorithm requires a significant amount of segmentation information from users, we

consider it manual. For example, users may be asked to sketch the boundaries between all

desirable segments, while the algorithm only helps connect nearby broken boundary sketches

and smooth them. Conceptually, manual segmentation is more a tool than an algorithm. To

the best of our knowledge, there is not a systematic manual segmentation tool yet. However,

such a tool could be useful, especially when it comes to building a segmentation benchmark

for structural-level mesh segmentation. Generating ground-truth segmented models could

involve a large amount of strenuous and tedious work; having a handy segmentation tool

should greatly improve the efficiency.

2.3 Spectral Clustering

In this section, we briefly review spectral clustering that has inspired our work. Spectral

clustering refers to any partitioning algorithm that utilizes eigenvectors (and eigenvalues) of

an appropriately defined matrix which captures the domain knowledge. Spectral clustering

has its root in spectral graph theory [24, 35] and has seen a tremendous amount of work [9,

CHAPTER 2. BACKGROUND AND RELATED WORK 19

18, 37, 90, 97, 143] over the past decade. Spectral clustering can work either in 2-way, i.e.,

clustering data into two groups (recursively), or in k-way, i.e., clustering data into k groups

simultaneously. Interested readers are referred to a recent survey [36] for details.

2.3.1 Classical Examples

Given a set of data points Z = {zi}, |Z| = n, and an affinity matrix W ∈ Rn×n, where Wij

encodes the relation between zi and zj , clustering the data points in Z can be viewed as a

graph partitioning problem, in which Z is the set of graph nodes and Wij defines the weight

of edge (i, j). Note that in different algorithms, W may be modeled to describe either the

similarities or the dissimilarities between data: if similarity (dissimilarity) is modeled, a

larger Wij implies a more similar (dissimilar) pair of points.

Assuming that W encodes similarity information, the goal in the first example is to

partition the graph nodes into two well-separated sets Z1 and Z2 such that

Cut(Z1,Z2) =
∑

zi∈Z1, zj∈Z2

Wij

is minimized. Denote by v the membership indicator vector (v(i) = −1, if zi ∈ Z1, and

v(i) = 1, if zi ∈ Z2; note that v(i) represents the i-th entry of v), we have

Cut(Z1,Z2) =
1
4

∑

i,j

Wij(v(i) − v(j))2 =
1
2
vT (D −W)v,

where D = diag(D00, . . . , Dnn) is a diagonal matrix whose diagonals are row sums of W , i.e.,

Dii =
∑

zj∈Z Wij . By relaxing the entries in v from discrete values to continuous values,

subject to the constraint ‖v‖2 = 1, it can be shown that the minimum value of Cut(Z1,Z2)

is achieved when v is the eigenvector of D−W that corresponds to the smallest eigenvalue.

However, since D −W has the smallest eigenvalue 0 and its corresponding eigenvector is a

constant vector, v is taken as the second smallest eigenvector to avoid the trivial solution.

Due to the relaxation, the eventual clustering is Z1 = {zi|v(i) < 0}, Z2 = {zi|v(i) ≥ 0}.
This result is shown in [35]. For simplicity, we will from now on refer to an eigenvector as

large or small based on its corresponding eigenvalue, i.e., the largest eigenvector refers to

the eigenvector with the largest eigenvalue.

As the Cut measure undesirably favors small sets of isolated nodes, Normalized Cut is

proposed in [115] to deal with this problem. For Normalized Cut, the quality measure is

NCut(Z1,Z2) = Cut(Z1,Z2)
(1

V ol(Z1)
+

1
V ol(Z2)

)
,

CHAPTER 2. BACKGROUND AND RELATED WORK 20

1. Build an affinity matrix W , set its diagonals to 0, and process W ← D− 1
2 WD− 1

2 .

2. Compute the eigenvalue decomposition W = V ΛV T , where V = diag(λ1, λ2, . . . , λn)
and λ1 ≥ λ2 ≥ . . . ≥ λn, select the largest k eigenvectors from V and stack them into
the columns of matrix U , i.e. U = [V1|V2| . . . |Vk].

3. Normalize each row of U , i.e., Uij ← Uij/‖Ui.‖.
4. Considering the rows of U as the Euclidean-embeddings of Z, i.e., the i-th row is the

embedding of zi, cluster Z into k clusters.

Figure 2.2: NJW spectral clustering algorithm.

where V ol(Zi) =
∑

zj∈Zi
Djj . Djj measures the “degree” of zj and V ol(Zi) is the “volume”

of Zi. Since NCut is normalized by the volume of each cluster, the clustering result no

longer favors small clusters as Cut does. Unfortunately, computing the optimal solution

that minimizes NCut is NP-complete; therefore, the authors suggest to find an approximate

solution by computing the second smallest eigenvector of the generalized eigenvalue problem

(D −W)v = λDv,

and thresholding this eigenvector to derive the final cut.

Both spectral clustering algorithms mentioned above have clearly defined quality func-

tions to optimize for. On the other hand, some spectral clustering algorithms are only

empirically demonstrated or loosely proved to be able to discern the meaningful clustering

structures present in a given data set. Such an example is the NJW algorithm by Ng,

Jordan and Weiss [90], which runs as in Figure 2.2. The rationale behind this algorithm is

revealed by considering the ideal case, in which the inter-cluster points have zero similarities

(infinite distances). Without loss of generality, we assume that the points from the same

cluster are numbered continuously; hence the affinity matrix W is block-diagonal. If there

are k such ideal clusters, it is able to show that the embedded points (rows of U) from the

same cluster would be mapped to a single point on the unit sphere. Essentially, there are

k distinct points from k mutually orthogonal directions, which is easy to cluster. In reality

when the inter-cluster affinities are non-zero, it can be viewed that a perturbation is added

to W . It is shown that if W is still almost block diagonal and the size of each cluster and

the degree of each node do not vary much, similar properties are still expected.

CHAPTER 2. BACKGROUND AND RELATED WORK 21

1. Build an affinity matrix W , which models the relations (similarities or dissimilarities)
between each pair of data points in Z. W is subject to further processing.

2. Compute the eigenvalue decomposition W = V ΛV T , and use the eigenvalues and the
eigenvectors to obtain an Euclidean embedding of Z.

3. Cluster the embedded data points.

Figure 2.3: Standard paradigm of spectral clustering.

2.3.2 Generic Paradigm

A typical spectral clustering algorithm is comprised of three steps as shown in Figure 2.3.

The first step builds an affinity matrix W that models the relationships among the data

points in Z. The information encoded in W reflects the domain knowledge about the prob-

lem at hand. In the second step, the eigenvectors (and eigenvalues) of W are used to derive

an Euclidean embedding of Z; this embedding is typically called spectral embedding. Spec-

tral embedding per se has been studied intensively, in the context of manifold learning and

dimension reduction. Famous examples include Local Linear Embedding [106], Isomap [125],

and Laplacian Eigenmap [11]. They all share the common feature of utilizing local infor-

mation to capture curved manifolds embedded in higher dimensional ambient space. In

the last step, the actual clustering operation is applied to the embeddings. There are a

variety of ways to implement the clustering, including the popular K-means algorithm [78].

The affinities in W determine the spectral embedding, and hence influence the quality of

the clustering result. Therefore, it is crucial to compute meaningful affinities using the

domain knowledge about the problem at hand. Spectral embedding transforms the affinity

information in W into an Euclidean embedding, usually with low dimensionality, and the

subsequent clustering operation is readily implemented.

Spectral clustering techniques are diverse and a universal spectral clustering algorithm

that performs well on all kinds of data does not exist. There are several difficult questions

related to spectral clustering, such as how to choose the right kernel width for building

the affinity matrix W and how to cluster in the spectral embedding space [37, 83]. In the

subsequent chapters, we design spectral clustering algorithms suitable for the purpose of

mesh segmentation; various related problems are solved within our application context.

Chapter 3

Part-aware Metric

3.1 Overview

Since we apply spectral clustering to mesh segmentation and a crucial prerequisite for ap-

plying spectral clustering is to encode the domain knowledge of the problem at hand in an

affinity matrix, in our application, we need a metric to prescribe distances between the faces

of a given mesh. In this chapter, we only develop such a metric. How to use the metric to

define an affinity matrix for spectral clustering is left to the next chapter.

The distances between mesh faces prescribed by our metric should be suitable for

structural-level segmentation. In other words, we want distances between the faces from the

same part to be small, while distances between the faces from different parts to be large.

However, defining such a distance measure is challenging, since the concept of a “part” is

not well-defined. Moreover, the distance measure should be simple to compute yet effective

for the subsequent segmentation task; we shall not run a third party segmentation algorithm

to find the parts of a mesh first and then compute distances between the faces accordingly.

In this chapter, we derive three distance measures: geodesic, angular, and VSI distances,

in Section 3.2, Section 3.3, and Section 3.4, respectively. The VSI distance is most effective

in encoding part information, and the other two complement the VSI distance in different

scenarios. The resulting part-aware metric, described in Section 3.5, is a combination of

the three. Since our part-aware metric is of generic interest, we show its use in several

non-segmentation geometry processing applications in Section 3.6. A summary is given in

Section 3.7. In subsequent chapters, we show how the metric is used for mesh segmentation.

22

CHAPTER 3. PART-AWARE METRIC 23

3.2 Geodesic Distance

Consider two faces on a mesh surface. In general, they tend to belong to different parts if they

are geodesically far apart and vice versa. This is in accordance with the Gestalt principle

of proximity [88] about perception. Therefore, the first distance measure we employ is the

geodesic distance between faces.

Computing accurate geodesic distances [122] on surfaces is quite involved and not neces-

sary for our purpose. Instead, we make use of the dual graph of a mesh to derive approximate

geodesic distances between faces. A mesh dual graph, G̃, is constructed by representing the

faces of a mesh by nodes and connecting the nodes whose corresponding faces share a com-

mon edge. This is illustrated in Figure 3.1(a).

(a) (b)

Figure 3.1: Mesh dual graph and approximate geodesic weight between adjacent faces. In
(a), the dashed blue lines are the edges of the dual graph G̃; G̃(i, j) denotes the edge incident
to faces fi and fj . (b) shows how the weight of G̃(i, j) is computed.

G̃ stores the connectivity information of the faces. Note that for a triangle mesh without

boundary, G̃ is a graph whose nodes all have degree 3. Given an edge G̃(i, j), we denote by

pc the middle point of the common edge shared by fi and fj , and by pi and pj the centroids

of fi and fj , respectively. The weight of G̃(i, j) is defined as

weight
(
G̃(i, j)

)
= ||pi − pc||+ ||pj − pc||. (3.1)

This is shown in Figure 3.1(b).

With the edge weights defined, the geodesic distance between any two faces is approx-

imated by the shortest graph distance between their corresponding nodes in G̃. From now

CHAPTER 3. PART-AWARE METRIC 24

on, we refer to the dual graph with geodesic edge weights as G̃g.

Note that in general, geodesic distance alone does not reflect part structure robustly,

which can be seen from Figure 3.2(a). Nonetheless, geodesic distance is important in some

part-related applications (see Section 3.6). Even for mesh segmentation, it can be exploited

to improve segmentation quality. We shall see such examples in Chapter 4 and Chapter 6.

3.3 Angular Distance

Angular distance is similarly obtained through another mesh dual graph G̃a. G̃a has the

same structure with G̃g, but with different edge weights. Given two adjacent faces fi and

fj with normals ni and nj , respectively, the weight of edge G̃a(i, j) is defined as

weight
(
G̃a(i, j)

)
=

acos(ni · nj)/π if fi and fj form a concave dihedral angle,

ε if fi and fj form a convex dihedral angle.
(3.2)

We set ε = 0.001 to emphasize concave angles: the more concave a region is, the larger the

weights are. This is roughly in accordance with the minima rule (Section 1.1.3). With G̃a,

the angular distance between any two faces is their shortest graph distance in G̃a.

Figure 3.2 shows a geodesic distance field and an angular distance field on a dolphin

model. As we can see from this example, the geodesic distance fails to induce large distances

across the concave boundary regions between the body and the fins/beaks, while the angular

distance manifests large distance jumps across those regions. Note that in this thesis, we

color plot scalar fields by linearly interpolating the hue values in the HSL color space; bluish

colors indicate small field values and reddish colors indicate large field values. Since we are

not interested in the exact values of a distance field but its relative variations across a mesh

surface, we do not show color bars in such figures.

Although it reflects the parts of a shape when concave regions are present, angular

distance suffers from what we call the leakage problem. This is caused by defining edge

weights using only local surface properties. Figure 3.3 contrasts a geodesic distance field

with an angular distance field on a synthetic “snake” model to illustrate this problem. From

Figure 3.3(b), we see that although a concave region separates the left vertical part from the

horizontal part, the concave region itself does not form a closed loop between the two parts.

Therefore the shortest path between the two parts goes through the flat region to avoid the

concave region, as indicated by the magenta curve. As a result, the angular distance field

CHAPTER 3. PART-AWARE METRIC 25

(a) geodesic distance field (b) angular distance field

Figure 3.2: Example geodesic and angular distance fields on a dolphin model, where the
red sphere indicates the source face. From the angular distance field, we see large distance
jumps across the concave regions between the parts; this phenomenon is not observed from
the geodesic distance field.

(a) geodesic distance field (b) angular distance field

Figure 3.3: Example geodesic and angular distance fields on a snake model. We see that
the angular distance field is not sufficiently different from the geodesic distance field due to
the leakage problem. The red sphere indicates the source face.

CHAPTER 3. PART-AWARE METRIC 26

(a) (b) (c) (d)

Figure 3.4: Visible regions of a point (red dot) as it travels inside a shape. Comparing (a)
and (b), or (c) and (d), we see the shape of visible regions are similar when the point stays
in the same part. There is a large change in the shape of the visible region as the point
crosses the part boundary, as shown in (b) and (c).

looks almost the same with the angular distance field, failing to reflect the part structure of

the snake model.

3.4 VSI Distance

In retrospect, although separation between parts inevitably involves concavity, to capture

it one is not restricted to surface measurement. The inherent limitation of surface mea-

surement can be addressed from a more global and volumetric view for part analysis. This

leads to the realization that shape concavity can be manifested inside the shape’s volume

via occlusion or visibility considerations.

Specifically, we examine a 3D object from within its enclosed volume and measure the

visibility of the object surface from appropriately chosen reference points in the volume.

Unlike a “part”, a visible region is clearly defined. Since parts are generally convex, the

visible regions from within a part remain stable or change only gradually while moving

inside the part. In contrast, when moving across a part boundary to another part, the

visible region undergoes large change due to the concave regions separating the two parts.

Such a property is exemplified in Figure 3.4. In this section, we exploit this idea and develop

a robust part-aware distance measure based on the difference of visible regions.

CHAPTER 3. PART-AWARE METRIC 27

Figure 3.5: Three steps to compute VSI distance. In step 1, two example faces (suppose
they are adjacent), fi and fj are mapped to their reference points ri and rj . In step 2, the
visible regions at ri and rj are sampled and stored in their VSIs, Si and Sj . In step 3, Si

and Sj are used to derive the distance between fi and fj in graph G̃v.

CHAPTER 3. PART-AWARE METRIC 28

3.4.1 Algorithm Overview

Our algorithm to define VSI distance is divided into three steps, which are briefly depicted

in Figure 3.5. In the first step, we map each face on a surface to its reference point inside the

shape, from which the visible region is measured. We do not capture visible regions from

the surface, which may offer significantly different perspectives. Mapping faces to reference

points helps alleviate problems of computing visible regions from the surface due to surface

noise.

In the second step, we express the visible region of a reference point via a surface

attribute, called Volumetric Shape Image (VSI). To characterize visible regions so that their

differences can be measured effectively, merely using their volumes is insufficient. We need

a more descriptive signature. A straightforward approach is to compute the actual visible

regions and examine how much they overlap. However, a visible region, generally a complex

3D polyhedron, is expensive to compute. We instead resort to a sampling approach: from a

reference point, multiple rays are shot out; then the normalized intersection points between

the rays and the surface form the signature, VSI.

In the third step, we compute the distance between two adjacent faces by comparing

their VSIs. The distances between adjacent faces form the edge weights of another dual

graph G̃v, which is called a VSI graph and has the same connectivity with G̃g and G̃a.

Similar to geodesic and angular distances, the VSI distances between faces are the shortest

graph distances in G̃v.

We elaborate the details of the algorithm in the following sections.

3.4.2 Reference Point Construction

Due to the sensitivity of visible regions to surface noise, reference points should not be close

to the mesh surface. We have found mapping surface points onto the medial sheet to be a

good choice for reference point construction. Give a point on the surface, its corresponding

medial center is the center of the maximal sphere inside the shape and tangent to the

surface at the point. To compute the reference point ri for face fi, which is the medial

center corresponding to the centroid of fi, we adopt the simple ray-shooting technique of

Shapira et al. [112].

Given a face fi with normal ni, as shown in Figure 3.5 (step 1), we use a cone with apex

at the centroid ci of fi and center its axis along −ni. Multiple rays uniformly sampled inside

CHAPTER 3. PART-AWARE METRIC 29

Figure 3.6: Reference points, shown as blue dots, computed for various models.

the cone, including one along −ni, are cast into the shape. Denote by lj one of the rays,

and ‖lj‖ its length inside the shape. The approximate diameter of the maximal inscribed

sphere touching ci at the surface is

di = argminj{‖lj‖/ cos θj},

where θj is the angle between lj and −ni. The reference point ri is the center of that sphere

with radius di/2, namely,

ri = ci − 0.5 ∗ di ∗ ni.

If the local shape is a sphere, all the di’s are equal to its actual diameter. Due to the way

they are constructed, reference points are always inside the shape.

In practice, we set the opening angle of the cone to 80 degrees and cast 16 rays. Note

that if the opening angle is too large, some rays (those with large angles to −ni) may hit the

CHAPTER 3. PART-AWARE METRIC 30

surface immediately after being shot out, making the resulting reference points undesirably

close to the surface. We have found that our setting achieves quality results with high

efficiency. To further improve the robustness of reference points against surface noise and

possible poor tessellation quality, the reference points are subject to a Laplacian smoothing

over a neighborhood graph. The neighborhood graph connects two reference points if their

corresponding faces are adjacent on the mesh, or if the points themselves are close Euclidean

neighbors to each other. In very rare cases, a reference point may move outside the mesh

surface after the smoothing, which can be detected later on and at that time this reference

point is simply moved to its nearest neighbor that stays inside the mesh. Figure 3.6 shows

the reference points computed for four models.

It is worth emphasizing that we only compute the medial points roughly as the reference

points need not strictly reside on medial sheets. Computing rigorous medial sheets [28, 32]

of polygonal shapes is expensive and unnecessary for our purpose.

3.4.3 Volumetric Shape Image (VSI)

We sample the visible regions as seen from the reference points and quantify their differences.

From a reference point ri, we send out m rays uniformly sampled on a Gaussian sphere and

collect the intersection points, s
(j)
i ’s, between the rays and the surface. Each intersection

point is normalized with respect to its reference point, i.e., s
(j)
i ← s

(j)
i − ri. The normalized

intersection points are stored in a set Si = {s(1)
i , . . . , s

(m)
i }, called the volumetric shape

image (VSI) of ri (or of fi). A larger m leads to better approximation of visible regions by

VSIs, but at a higher complexity. We found that setting m = 100 achieves a good trade-off

between accuracy and efficiency. Figure 3.5 (step 2) shows two VSIs, Si (red) of ri and Sj

(green) of rj . To avoid cluttering in the figure, only 8 sampling rays are drawn.

Since the directions of sampling rays are fixed in a global coordinate system, two VSIs are

naturally registered. We may define the difference between two VSIs simply as: diff(Si, Sj) =
1
m

∑m
k=1‖s(k)

i − s
(k)
j ‖2, which tends to possess large values near boundary regions due to

dramatic visible region changes. Albeit meaningful, such a measure fails to accommodate

accumulated translation errors. Consider a reference point moving within a large part.

Though the slight translation between two adjacent positions generates only a small VSI-

difference, such small differences are easily accumulated up along the way. This can be

observed from the significant difference between Si and Sj , as illustrated in Figure 3.5 (step

2), despite that both ri and rj are within the same part.

CHAPTER 3. PART-AWARE METRIC 31

Figure 3.7: Plot (blue curve) of VSI differences as a point (red dot) moves along the white
curve on the surface. Visible regions at reference points (blue dots) are in green. (a)-(b):
Gradual changes of visible region and VSI (difference ≈ 0) while in the bottom part. (c)-(d):
Large change near part boundary. (e): Gradual changes while in the top part.

We have observed that the reach of a local volume along a certain direction, measured

from reference points, is in general more stable. Figure 3.5 (step 3) attests to this obser-

vation, where we see that the reach of the lower part volume along the four directions are

almost the same, though ri and rj are distant. To exploit this property, we pick the m

sampling rays in opposite directions (m/2 ray pairs). Supposing the two intersection points

of a ray pair are stored consecutively in Si, we define the difference between two VSIs as

diff(Si, Sj) =
1∑
k wk

m/2∑

k=1

wk

(
l
(k)
i − l

(k)
j

)2
, (3.3)

where l(k) = ‖s(2k−1) − s(2k)‖ is the local reach along the k-th direction. Weights wk’s

are designed to penalize outliers: since VSI is discrete, not all (l(k)
i − l

(k)
j)2 may faithfully

reflect the difference of the visible regions. To tackle this problem, we fit a Gaussian to the

distribution of such values and set

wk =

e−(dk−u)2/(2σ2) if dk < u + 2σ

0 else dk ≥ u + 2σ
, (3.4)

CHAPTER 3. PART-AWARE METRIC 32

where dk = (l(k)
i − l

(k)
j)2, u is the mean, and σ is the standard deviation. Accordingly, values

are weighted based on their frequencies. Outliers falling two deviations above the mean are

ignored. Figure 3.7 illustrates how diff(·) changes between two adjacent positions when a

point travels on the surface of a simple synthetic “T” shape.

With the edge G̃v(i, j) of graph G̃v weighted by diff(Si, Sj), VSI distances are simply

the shortest graph distances in G̃v. Two VSI distance fields on the snake model are shown

in Figure 3.8. Compared with the geodesic and angular distance fields on the same model

in Figure 3.3, VSI distance stays fairly stable within parts, and induces large jumps across

part boundaries. More comparative results on natural models are provided in Figure 3.9.

Notice how the boundary regions, either between the little finger and the palm, between

the horse’s front leg and the body, or between the dragon’s tail and the body, manifest

significant VSI distance changes. From these examples, we see that VSI distance clearly

outperforms angular distance with respect to encoding part structures.

Two practical Issues Computational-wise, the most expensive part of constructing G̃v is

the ray-surface intersection tests required by computing reference points and VSIs. Suppose

an input mesh has n faces, computing reference points and VSIs require 16n and 100n

intersection tests, respectively. To speed up the processing, we voxelize the space using an

axis-aligned grid and assign each mesh face to the voxels it intersects. In our implementation,

we fix the number of voxels to 106. According to the extent of an input mesh along each axis,

the resolution of the grid along an axis is dynamically modified proportionally. During the

ray-surface intersection test, we traverse the voxels along the ray direction for intersection

detection. When an input mesh is dense, we further speed up the processing by computing

VSIs for only a small set of reference points and interpolating for nearby ones. In our

implementation, we compute only 1% of the VSIs and the remaining ones are interpolated.

Therefore the total number of ray-surface intersection tests is 16n + 1% · 100n = 17n.

Also note that although our discussion has assumed closed meshes so far, VSIs can be

computed for open meshes as well, so long as the mesh volume is reasonably well-defined.

This is achieved by simply ignoring rays that do not intersect the surface. The hand model

in Figure 3.9 is an open mesh.

CHAPTER 3. PART-AWARE METRIC 33

Figure 3.8: Two VSI distance fields on the snake model. Red spheres indicate source faces.

(a) hand (b) horse (c) dragon

Figure 3.9: Angular distance fields (top row) vs. VSI (bottom row) distance fields on various
models. Red spheres indicate source faces.

CHAPTER 3. PART-AWARE METRIC 34

3.5 Combining Distances

The final part-aware distance we develop is a combination of the geodesic, angular, and VSI

distances. In order to derive the combined distance, we blend the three graphs, G̃g, G̃a, and

G̃v, i.e.,

G̃c =
(
α⊗ G̃g

)
⊕

(
β ⊗ G̃a

)
⊕

(
γ ⊗ G̃v

)
, (3.5)

where α+β +γ = 1 and 0 ≤ α, β, γ ≤ 1. Operator ⊗ multiplies the edge weights of a graph

by a scalar, and ⊕ blends two graphs by summing up the weights of corresponding edges.

The final part-aware metric is defined as the shortest graph distances between the nodes of

G̃c. Note that as the three graphs encode different types of information, their edge weights

must be normalized first. To this end, we linearly normalize the edge weights of each graph

to [0, 1].

For the part-aware metric, the parameters, α, β and γ, control the relative importance of

the three distances, and their setting is application-dependent. For example, in structural-

level mesh segmentation, we are primarily interested in a shape’s part structure; therefore

we should emphasize the VSI distance. For shape registration, however, the importance of

geodesic distance ought to be increased, as both the invariance to stretching (merit of VSI

distance) and the invariance to pose (merit of geodesic distance) are desired. Note that the

edge weights in G̃g are biased towards 1 after the normalization, since the majority of the

edges or the faces of a mesh typically tend to have similar sizes. However, this is not true

for the edge weights in G̃a and G̃v. For this reason, α is typically set to a small value in

order for the other two distances to take effect.

3.6 Experimental Results

Complexity Let’s first have a look at the expected asymptotic complexity of constructing

the graph G̃c. Given an input mesh M with n faces, constructing the graphs G̃g and G̃a

involves only local tests and the complexity is O(n). The dominant complexity comes

from building G̃v where intersections between rays and surface have to be computed. Let’s

assume that a space partitioning grid is used and the resolution along each dimension is

r. The expected number of voxels traversed before a ray hits a face is at most of O(r).

Our experiments show that typically only about 3% of the voxels are non-empty; so each

non-empty voxel contains about 100n/3r3 faces. As a result, each ray-surface intersection

CHAPTER 3. PART-AWARE METRIC 35

test involves a complexity of O(r + 100n/3r3) in expectation. As per Section 3.4.3, there

are 17n such tests, making the overall complexity to O
(
17rn + 1700n2/3r3). Though the

theoretical comlexity is quadratic, the constant factor 3r3 (3× 106 in our implementation)

is able to reduce the complexity effectively in practice. If an input mesh is huge, we can

increase the resolution of the grid accordingly. For example, computing VSIs for the dragon

model with 50K faces in Figure 3.6 takes about 15 seconds.

Overview of experiments Although we develop the part-aware metric for mesh seg-

mentation, the metric itself, as a general tool, can be exploited in many other applications

as well. In this section, we conduct several experiments to verify the effectiveness of the

part-aware metric for some non-segmentation applications, including sampling, registration,

and retrieval. We show how this metric is used for segmentation in subsequent chapters.

In the first experiment, our part-aware distance (with emphasis on the VSI distance) is

compared with three existing ones to show how the VSI distance helps capture part infor-

mation. The three distances are the geodesic distance, the geodesic+angular distance [59],

and the diffusion distance studied in [30]. Modeled using random walk, the diffusion dis-

tance measures the overall connectedness between points over the surface. It considers more

global information than the geodesic and angular distances, hence more sensitive to parts

in general. However, it is still purely surface-based and does not account for volumetric

information explicitly. The iso-contour plots in Figure 3.10 clearly show that only our part-

aware metric fully senses the boundary of the bottom part of the “T” shape. This is not

surprising because the VSI difference based on visible region changes is not affected by the

local flatness, as already shown in Figure 3.7.

Part-aware sampling: The max-min sampling scheme can be used for uniform sampling

on a surface. It iteratively places a sample that maximizes the minimum distance, measured

by the geodesic metric, from all previously found samples. Beyond uniform sampling, it is

often desirable to distribute samples based on certain feature criteria. In typical feature-

sensitive remeshing, more samples are placed near high curvature regions, resulting in higher

triangle density therein. This can be accomplished using max-min sampling, but with

the isophotic metric [66]. Figure 3.11(a) shows a feature-sensitive sampling on the pliers

model. When our part-aware metric is applied, the feature regions tend to correspond to

part boundaries, even if a boundary region is locally flat (different from feature-sensitive

sampling). This is shown in Figure 3.11(b). In this test, we set α = 0.01, β = 0, and

CHAPTER 3. PART-AWARE METRIC 36

(a) geodesic (b) diffusion

(c) geodesic+angular (d) part-aware

Figure 3.10: Iso-contours for four distance metrics: 10 contours sampled up to the max-
imum distance from the source (red dot). Both geodesic (a) and diffusion (b) distances
are insensitive to the perceived part boundary over the flat region indicated by the arrow.
Angular distance (c) senses concavity, but not the part boundary over the flat region. Our
part-aware metric (d) senses the whole part boundary.

CHAPTER 3. PART-AWARE METRIC 37

(a) (b)

Figure 3.11: Feature-sensitive sampling (a) vs. part-aware sampling (b), where the cyan
dots indicate the sample vertices. The sampling rate is 10%.

γ = 0.99. We emphasize the VSI distance and ignore the angular distance, so that samples

would not concentrate in concave regions.

A straightforward use of a part-aware surface tessellation is in neighborhood traversal:

a part-aware neighborhood can be traced simply by following topological distances in the

mesh graph. Also, more granularities near part boundaries enable more refined deformation

behavior over those non-rigid regions. In contrast, having large triangles which cut across

part boundaries would be undesirable in this context.

Shape registration: Shape registration or correspondence [21, 53] is another good exam-

ple where a surface metric can become useful. For such a task, bending-invariance is an

important property and it has been successfully addressed [33] by using geodesic distance,

which is insensitive to bending. However, stretch-invariance still remains challenging. In

this experiment, we investigate how our part-aware metric could potentially improve shape

registration. To this end, we consider the spectral correspondence framework [53]. Briefly,

we spectrally embed mesh vertices into a Euclidean space and the registration is established

by corresponding the embeddings using the iterative closest point algorithm [14].

Figure 3.12 shows the derived embeddings of two Homer models. To focus on stretching,

we purposely stretched the left arm and the right leg of one Homer. As stretching changes

the geodesic distance between vertices, the resulting embeddings in (b) and (e) using the

CHAPTER 3. PART-AWARE METRIC 38

(a) Homer (b) geodesic (c) part-aware

(d) stretched (e) geodesic (f) part-aware

(g) registration of (b) and (e) (h) registration of (c) and (f)

Figure 3.12: Spectral embeddings and registration of two Homer models. In the first row,
plots (b) and (c) show the embeddings of the original Homer (a) using geodesic and part-
aware distances, each of which from two viewing angles. Similarly, the second row is for the
stretched Homer (d). The coloring implies the mapping between the original mesh vertices
and their embeddings. We see that the embeddings in (c) and (f) are much more similar to
each other than those in (b) and (e) (especially for the feet), thanks to the stretch-invariance
of VSI distances. This helps the subsequent registration operation, whose results are shown
in (g) and (h).

CHAPTER 3. PART-AWARE METRIC 39

geodesic distance are quite different. In contrast, the VSI distance is more stable against

stretching. When it is combined with the geodesic distance, the embeddings in (c) and

(f) are made much more similar, facilitating the registration operation in sequel. We set

α = 0.1, γ = 0, and γ = 0.9 and note that this setting places sufficient emphasis on geodesic

distances as per the weight distribution in G̃g (see Section 3.5).

In practice, we believe that both geodesic and VSI distances should be considered si-

multaneously for registration, since the former contributes to bending-invariance, while

the latter contributes to stretch-invariance. Also, the geodesic distance imposes certain

distances between neighboring vertices and keeps them adequately spread-out in the em-

bedding. Their weights may be tuned to strike the balance between the two. It is worth

investigating how their weights can be set automatically based on the input data.

Shape retrieval: We also study the potential benefits our metric can offer for shape

retrieval. Osada et al. [91] consider using the probability distribution sampled from a shape

function as a shape descriptor. It is suggested that the D2 shape function, namely the

pairwise Euclidean distances between surface points, serves as a good candidate. Geodesic

distance shape function is investigated in [81]. Although it is invariant to bending, the

probability distribution function of geodesic distances is not sufficiently discriminative in

general. We plan to add more discriminating power to this descriptor, while preserving

sufficient bending-invariance.

In our experiment, we select ten models shown in Figure 3.13. The first five of them

(kangaroo, cat, camel, wolf, and dinopet) are animals with similar part structures, but under

different articulation and stretching. In retrieval, the ideal result should be that when using

each of these five shapes to query, the other four come on top. We consider three shape

functions: geodesic, D2, and our part-aware distances. For each sampled shape function,

we compute its histogram, which serves as the shape descriptor. During retrieval, the χ-

square distances between histograms are used to rank the matches. Figure 3.14 shows the

retrieval results using the three shape functions. We see that only our part-aware metric is

able to consistently achieve the ideal results for all the five similar shapes. Note that in the

last column, we query using the octopus simply for comparison purpose, in which the ideal

ranking is hard to judge.

We set α = 0.02, β = 0, and γ = 0.98, making γ À α to showcase our goal. From Fig-

ure 3.13, we observe that the histograms of geodesic and D2 distances stay relatively stable.

Contrastingly, the part-aware metric produces more discriminating histograms. Meanwhile,

CHAPTER 3. PART-AWARE METRIC 40

kangaroo Geodesic D2 Part−aware

cat

camel

wolf

dinopet

kitten

duck

venus

octopus

T

Figure 3.13: Models used for shape retrieval test and their signature histograms. The last
three columns show the distance histograms of each model, via geodesic, D2, and part-aware
distances, respectively.

CHAPTER 3. PART-AWARE METRIC 41

Figure 3.14: Retrieval results using geodesic, D2, and part-aware distances. In each block,
we run 6 queries and the query shapes sit in the first (shaded) row. In each column, the 4
most similar shapes are shown; the non-optimally retrieved shapes are marked by squares.

CHAPTER 3. PART-AWARE METRIC 42

due to the geodesic ingredient in the metric, bending invariance is also preserved to a cer-

tain extent; this is exemplified by the similarity among the first four histograms in the last

column. This experiment highlights an advantage of our metric: by combining geodesic

distance and VSI distance, it provides an effective compromise between bending-invariance

and discriminating capability. However, this is a rather preliminary test and it is worth

expanding the database and investigating more in this issue.

3.7 Summary

A part-aware metric, as a fundamental tool, is not only useful for mesh segmentation, but

also of general interest to a variety of geometry analysis and processing tasks. Although

isophotic [66] and diffusion [30] distances have been successfully applied to mesh segmenta-

tion, the distances themselves do not explicitly take part information into consideration.

In this chapter, we develop a part-aware surface metric specifically for encoding part

information. The metric combines three components: geodesic, angular, and VSI distances.

Our key observation is that the visible region, of a point inside the shape volume, is sensi-

tive to part boundaries. Such a property is realized into the VSI distance which effectively

captures part information, while geodesic and angular distances complement the VSI dis-

tance. We compare our metric against existing ones and also apply it to several part-related

applications, including shape registration, part-aware sampling, and shape retrieval. The

effectiveness of our metric is testified empirically. We make use of this metric for mesh

segmentation in the following chapters.

Chapter 4

Segmentation using Spectral

Clustering

4.1 Overview

Using the part-aware metric from Chapter 3, we develop a k-way mesh segmentation algo-

rithm based on spectral clustering in this chapter. Figure 4.1 gives the flow of the algorithm.

input : Mesh M, the number of segments k.
output: Sub-meshes O = {M1,M2, ...,Mk}.
begin

U ← ComputeEmbedding(M) ; /* Section 4.2 */
O =← Kmeans(M, U , k) ; /* Section 4.3 */

end

Figure 4.1: Mesh segmentation based on spectral clustering.

Given an input meshM and an intended number of segments k from a user, the algorithm

first constructs a spectral embedding U (Section 4.2) for the faces of M, using the part-

aware metric. We study our spectral embedding algorithm along with several related issues

in the light of kernel principal component analysis. With the embedding U at hand, the

classical K-means clustering algorithm is readily applied to obtain the segmentation result

(Section 4.3). Several questions associated with K-means are also addressed. Experimental

results and summary are presented in the last two sections.

43

CHAPTER 4. SEGMENTATION USING SPECTRAL CLUSTERING 44

4.2 Construction of Spectral Embedding

The spectral embedding for the faces of the input mesh M is derived from their distances

prescribed by the part-aware metric using the algorithm presented in Figure 4.2. There

are many spectral embedding algorithms and they all have their own pros and cons. Our

embedding algorithm is designed specifically for mesh segmentation, and it is analyzed in

the light of kernel principal component analysis [109]. We also address several practical

issues that are critical to the effectiveness of the algorithm.

1. Compute a distance matrix G and convert it to an affinity matrix W , where
Wij = e−Gij/2σ2

and σ is set to the square root of the average of the entries of G.

2. Compute the eigenvalue decomposition W = V ΛV T .

3. Let Λ = diag(λ1, λ2, . . . , λn) and λ1 ≥ λ2 ≥ . . . ≥ λn. Supposing λr, 1 ≤ r ≤ n, is the
smallest positive eigenvalue, set Λ′ = diag(λ2, λ3, . . . , λr), ignoring the largest
eigenvalue.

4. Set U = V[2...r]Λ′
1
2 , where V[2...r] is the sub-block of U from the second column to the

r-th column, inclusive. Then Ui· (the i-th row of U) is the embedding, denoted by
fe

i , of face fi. We denote Fe = {fe
i }.

Figure 4.2: Spectral embedding of mesh faces.

Through this algorithm, the mesh faces are embedded in Euclidean space to facilitate

the subsequent clustering operation. Clearly, W encodes the similarities between faces —

Wij is inversely (exponentially) proportional to Gij and recall that Gij is the part-aware

distance between faces fi and fj . In Section 4.2.6, we show that the distance between two

embedded faces, fe
i and fe

j , is approximately
√

2− 2e−Gij/2σ2 . This implies that if a pair

of faces have a large part-aware distance, then their distance in the embedding space is also

large. Such a property is the premise for the success of our segmentation algorithm. In the

following sections, we study the details of this spectral embedding algorithm.

4.2.1 Affinities

In Section 3.5, we have defined the part-aware distance using the combined graph G̃c: the

distance between two faces is the shortest graph distance between their corresponding nodes

CHAPTER 4. SEGMENTATION USING SPECTRAL CLUSTERING 45

in G̃c. We denote by G ∈ Rn×n the distance matrix, where n is the face count of the input

mesh M and Gij is the distance between face fi and face fj .

In order to apply spectral clustering, G is first converted to an affinity matrix W . This

is typically fulfilled via a kernel function. We choose the exponential kernel function

Wij = e−Gij/2σ2
. (4.1)

σ is called the kernel width, which we discuss how to set in Section 4.2.3. Clearly, W is

symmetric, with 0 ≤ Wij ≤ 1, and larger distances lead to smaller affinities. We may also

use the popular Gaussian kernel [44] instead of the exponential kernel. However, we notice

that in practice the exponential kernel tends to produce better segmentation results in our

setting, due to its less aggressive attenuation as distance increases.

4.2.2 Analogy to Kernel Principal Component Analysis

In this section, we review kernel principal component analysis (KPCA) [109] and point

out how the face embeddings in U (Figure 4.2) relate to KPCA. One can read only the

subsequent two paragraphs and the last paragraph of this section to understand the basic

idea without knowing the details given in between.

Given a set of points Z = {zi|zi ∈ Rg}, |Z| = n, in Euclidean space, principal compo-

nent analysis (PCA) [56] computes the eigenvectors of the corresponding covariance matrix

CZ = 1
n

∑
i(zi − z̄)(zi − z̄)T , where z̄ is the centroid of Z. Such eigenvectors define a new

coordinate system whose basis are orthogonal to each other. The leading eigenvectors are

the principal directions along which the projections of the points have the largest variations.

If the variations along the trailing eigenvectors are sufficiently small, the corresponding di-

mensions can be discarded without losing too much information of Z, effectively reducing

the dimensionality of the data.

KPCA extends PCA by running PCA in a feature space H. Conceptually, it first applies

to Z a non-linear mapping φ : Rg → H. Then PCA is carried out in H on the point set

φ(Z) = {φ(zi)|zi ∈ Z}. Since H can be considered as Rh [19], where h may be very high,

possibly infinite, the non-linear properties of the data points in Z can be “unfolded” into

linear ones. Thus algorithms that work on linear structures, e.g., PCA, can be effectively

applied to Z inH. In practice, the mapping φ is never explicitly given; instead it is implicitly

specified by the inner products of the points in φ(Z) that are encoded in a kernel matrix

K ∈ Rn×n, where Kij = k̂(zi, zj) = φ(zi) · φ(zj), where k̂(·) is a kernel function, e.g.,

CHAPTER 4. SEGMENTATION USING SPECTRAL CLUSTERING 46

a Gaussian. Then computations in H based only on inner products of the data can be

efficiently implemented in the original space by replacing inner products with the kernel

function k̂(·).
We now review how KPCA is performed. Denoting by Φ = [φ(z1)|φ(z2)|, . . . , |φ(zn)],

then the covariance matrix of φ(Z), ignoring the normalization by 1
n , is

Cφ(Z) = ΦΦT =
n∑

i=1

φ(zi)φ(zi)T . (4.2)

Note that we assume for now that φ(Z) is already centered. For the simplicity of notation,

in the following we denote φ(zi) by ϕi. As we are interested in the eigenvectors of Cφ(Z),

we write

ρmHm = Cφ(Z)Hm =
n∑

i=1

(ϕT
i Hm)ϕi, (4.3)

where ρm ≥ 0 is the m-th largest eigenvalue and Hm ∈ H \ {0} is the corresponding

eigenvector. Notice that although ϕi may have infinite dimensionality, Cφ(Z) can have at

most n positive eigenvalues as there are only n points. From this equation, we see that the

principal component Hm can be represented by a linear combination of ϕj ,

Hm =
n∑

j=1

ξ(j)ϕj , (4.4)

with ξ(j) standing for the j-th entry of the coefficient vector ξ. This is an important

observation. If we plug Hm into Equation 4.3 and left-multiply both sides by ϕT (ϕ ∈ φ(Z)),

it yields

ρm

n∑

j=1

ξ(j)(ϕ · ϕj) =
n∑

j=1

ξ(j)
(
ϕj ·

n∑

i=1

ϕi

)
(ϕ · ϕj), (4.5)

or in matrix form

ρmKξ = K2ξ. (4.6)

Since K is symmetric and positive semidefinite, Equation 4.6 is equivalent to

ρmξ = Kξ, (4.7)

from which we see that ξ is simply an eigenvector of K. Let µ1 ≥ . . . ≥ µm ≥ . . . ≥ µn ≥ 0

be the eigenvalues of K and Ξ = [Ξ1|Ξ2| . . . |Ξn] contains the corresponding eigenvectors, we

have Hm =
∑

j Ξ(j)
m ϕj from Equation 4.4. Intuitively, the entries of Ξm are the coefficients

CHAPTER 4. SEGMENTATION USING SPECTRAL CLUSTERING 47

of the linear combination of ϕj ’s that represents the m-th principal component, Hm, of

φ(Z). Therefore the projection of any point ϕi on Hm is

Hm · ϕi =
(n∑

j

Ξ(j)
m ϕj

) · ϕi =
n∑

j

Ξ(j)
m (ϕj · ϕi) =

n∑

j

Ξ(j)
m Kji = KT

·i Ξm = Ki·Ξm, (4.8)

with K·i and Ki· being the i-th column and i-th row of K, respectively. If we require Hm

to be normalized, it implies

1 = Hm ·Hm =
n∑

j

Ξ(j)
m ϕj ·

n∑

j

Ξ(j)
m ϕj =

n∑

i,j=1

Ξ(i)
m Ξ(j)

m (ϕi · ϕj) = Ξm ·KΞm = µm(Ξm · Ξm).

(4.9)

Therefore we should normalize Ξm ← Ξm/
√

µm and Equation 4.8 translates into

Hm · ϕi = Ki·Ξm/
√

µm = (µmΞm)i/
√

µm =
√

µmΞ(i)
m . (4.10)

Based on all above discussions, we are able to draw the similarity between KPCA and

spectral embedding, which has been previously noted in [13]. Assuming that the affinity

matrix W has only non-negative eigenvalues, we denote its eigenvalue decomposition by

W = V ΛV T and set U ′ = V Λ
1
2 , namely,

U ′
im =

√
λmV (i)

m . (4.11)

Notice that the right sides of Equations 4.10 and 4.11 take the same form. Therefore,

if we consider W as the kernel matrix K, for the points in H induced by W , U ′
im can

be viewed as the projection of the i-th point onto the m-th principal component. More

specifically, if we assume (a) the points in the feature space H induced by W are centered,

and (b) W is positive semidefinite (since W is symmetric, this implies that all its eigenvalues

are non-negative), the rows of U ′ are essentially the embeddings via KPCA induced by

W . Unfortunately, the above two conditions are not guaranteed for the affinity matrix W

produced in the first step of our algorithm in Figure 4.2. However, we show in Section 4.2.4

and Section 4.2.5 how our face embeddings in U (Figure 4.2) have already implicitly met

these two conditions. Let’s recapitulate the property of the embeddings in U in the following

observation:

Observation 4.1. The affinity matrix W induces n points in a high dimensional feature

space H. Ui· (the i-th row of U) are the embedded coordinates for face fi in the coordinate

system whose basis are the principal components of the induced points in H.

CHAPTER 4. SEGMENTATION USING SPECTRAL CLUSTERING 48

4.2.3 Kernel Width

The kernel width σ in Equation 4.1 plays an important role in spectral clustering. Au-

tomatically setting σ to achieve robust clustering results against all kinds of input data

is challenging and manual tuning is typically required, although automatic methods ex-

ist [37, 83]. We do not intend to solve this problem in general; instead, we simply find a

way to set σ to suit mesh segmentation in our application.

(a) enforcer model

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

Gij

W
ij

=
e
−

G
i
j
/
2
σ

2

σ = 0.15

σ = 0.69

σ = 2.62

(b) kernel functions with different σ

Figure 4.3: Exponential kernel functions with different kernel widths tested on the enforcer
model with 600 faces.

Take the model shown in Figure 4.3(a) for example. We compute the distance matrix

G for its faces. The average and maximum distances are 0.48 and 2.62, respectively. We

plot in Figure 4.3(b) three kernel functions with different kernel widths. From plot (b),

we see that if σ is too large (σ = 2.62, the maximum distance), Wij ’s are squeezed into

a narrow band near 1, sacrificing the contrast between different distances. In the extreme

case, if σ = ∞, W = 11T and all the embeddings reduce to a single point. On the other

hand, if σ is too small (σ = 0.15), Wij vanishes too quickly, making all faces far apart in

the embedding space unless they are sufficiently close on the surface. When σ = 0, W turns

into an identity matrix, in which case all the embeddings in H are equally far away from

each other.

Either too small or too large, σ produces a face embedding with undesirable distribution,

CHAPTER 4. SEGMENTATION USING SPECTRAL CLUSTERING 49

imperiling the segmentation quality. We choose to set σ based on the average distance which

provides a good clue for the right scale of σ. More specifically, we set σ to the square root

of the average distance in G. For example, the green curve (σ = 0.69) in plot (b) depicts

the kernel function when σ is set in such a way. This way, the function spans the range of

affinity values in a more meaningful manner: the changes of Gij gradually contribute less

changes to Wij as Gij increases. We have found that such a mapping works well for our

application in general.

4.2.4 Affinity Matrix Centering

In Section 4.2.2, one of our assumptions made for W is that the induced point set φ(Z)

in H is already centered. In practice, however, this assumption does not normally hold.

Note also that since the coordinates of φ(Z) are unknown, it is impossible to center them

explicitly. Fortunately, it is shown by Schölkopf et al. [109] that the centering can be

implicitly implemented by converting W to W̄ :

W̄ = (I − 1
n
11T)W (I − 1

n
11T). (4.12)

The major drawback of computing W̄ is the high computational cost when the size of W

is large. As we will see in Chapter 5, the full W is also not available for centering due

to sub-sampling, which is necessary for handling large meshes. In practice, we make the

following observation:

Observation 4.2. Provided that the kernel width σ is sufficiently large, the eigenvalues

and eigenvectors of W well approximate, with a shift, those of W̄ . Specifically, suppose

λ1 ≥ λ2 ≥ . . . are the eigenvalues of W and V1, V2, . . . are the corresponding eigenvectors;

λ̄1 ≥ λ̄2 ≥ . . . are the eigenvalues of W̄ and V̄1, V̄2, . . . are the corresponding eigenvectors,

we have λ2 ≈ λ̄1, λ3 ≈ λ̄2, . . . and V2 ≈ V̄1, V3 ≈ V̄2,

This observation enables us to avoid the centering operation; we can simply ignore the

largest eigenvector of W and use the subsequent eigenvectors. We provide an explanation

and an experiment to attest to this observation.

Since Wij = φ(zi)T φ(zj) and Wii = 1, each φ(zi) has unit length in the feature space and

Wij is simply the cosine of the angle between vectors φ(zi) and φ(zj). Geometrically, this

implies that given any vector φ(zi), ∀j 6= i, φ(zj) lies inside a cone, which is rooted at the

origin with an opening angle of 2θi and its axis along vector φ(zi), where θi is determined

CHAPTER 4. SEGMENTATION USING SPECTRAL CLUSTERING 50

Figure 4.4: Distribution of affinity-implied points in feature space.

by the smallest entry Wit of the i-th row of W . If σ is sufficiently large (see Equation 4.1),

Wit is close to 1 and, accordingly, θi is small. Such a configuration is depicted in Figure 4.4.

Each point φ(zi) is associated with a cone and the intersection of these cones gives a region,

R, in which all the points lie. In the figure, R is the shaded region enclosed by the dashed

curve. Note that the cone and the region R are enlarged for illustration purpose. If φ(Z)

were centered, the region R would have moved to the place indicated by R̄.

We show that the principal components of the points in R̄ are approximately the same

as the principal components of the points in R, only shifted by one position. Recall that

Cφ(Z) (Equation 4.2) is the covariance matrix of φ(Z). Note that now the points are not

centered yet. The largest eigenvector e1 of Cφ(Z) is the vector p that maximizes the term
∑

i ||pT φ(zi)||2. Since all φ(zi)’s have unit length and small angles between each other

(suppose σ is sufficiently large), the region R is small and the distance from any point inside

R to the origin is about 1. So, e1 is roughly a constant vector pointing from the origin

toward the centroid of R to maximize the variance, as illustrated in Figure 4.4. With the

same reasoning, R is “thin” along the direction of e1. Consequently, the space spanned by

φ(Z) is close to the null space of e1. The subsequent eigenvectors {e2, e3, . . .} of Cφ(Z),

in the null space of e1, are then a good approximation to the principal components which

CHAPTER 4. SEGMENTATION USING SPECTRAL CLUSTERING 51

characterize the intrinsic distribution of φ(Z). On the other hand, if φ(Z) is centered

(denoted by φ̄(Z)), R translates to R̄. We denote the corresponding centered covariance

matrix by Cφ̄(Z) = Φ̄Φ̄T , where Φ̄ = [φ̄(z1)|φ̄(z2)|, . . . , |φ̄(zn)], and let {ē1, ē2, . . .} be the

largest eigenvectors of Cφ̄(Z). Since φ(Z) and φ̄(Z) have the same intrinsic distribution

and are only displaced by a translation, they should have the same principal components

and variances, namely we have ē1 ≈ e2, ē2 ≈ e3 . . . and λ̄1 ≈ λ2, λ̄2 ≈ λ3 . . ., where the

approximation is exact if the space spanned by φ(Z) coincides with the null space of e1.

Finally, we show why V2, the second largest eigenvector of W , is a good approximation

of V̄1, the largest eigenvector of W̄ . The same relation between succeeding eigenvectors

can be similarly proved. Since W̄ = Φ̄T Φ̄ and Cφ̄(Z) = Φ̄Φ̄T , W̄ and Cφ̄(Z) have the same

eigenvalues and Φ̄T ē1 is the largest eigenvector of W̄ , i.e. V̄1 = Φ̄T ē1. Similarly, V2 = ΦTe2.

Therefore, we only need to show that Φ̄T ē1 ≈ ΦTe2. Let us write ψ = 1
n

∑
i φ(zi), then we

have ΦT = Φ̄T + 1ψT . It is easy to derive

ΦTe2 = (Φ̄T + 1ψT)e2

= Φ̄Te2 + 1ψTe2

≈ Φ̄T ē1 + 0

= Φ̄T ē1.

(4.13)

The approximation in Equation 4.13 is because ē1 ≈ e2 (shown above) and ψTe2 ≈ 0

(ψ ≈ e1 and e1 ⊥ e2). This concludes our explanation.

Figure 4.5 provides an experimental comparison between V2 and V̄1. The kernel matrices

W and W̄ are computed again from the enforcer model in Figure 4.3. As we can see from

the top plot, the approximation quality is high when σ is sufficiently large. From the

bottom plot, it is also observed that the slight difference between V2 and V̄1 is caused by

a small translation. This is easily explained with Equation 4.13. Since ψTe2 ≈ 0, we have

1ψTe2 ≈ ε1 (ε is close to zero), hence the translation. Be aware that a translation between

the eigenvectors of W and W̄ causes almost no damage to the embedding as the relative

positions of the embeddings are preserved.

With this being said, our algorithm can simply make σ sufficiently large and use the

eigenvectors/eigenvalues of W except for the first one to derive the spectral embedding U ,

so that the points in the feature space are implicitly centered. This is why the embedding

algorithm in Figure 4.2 ignores the first eigenvector of W . Note that however, we should not

make σ arbitrarily large; recall that in Section 4.2.3 we have opted to set σ to the square

CHAPTER 4. SEGMENTATION USING SPECTRAL CLUSTERING 52

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

σ

||
V̄

1
−

V
2
||

← σ = 0.69

0 100 200 300 400 500 600
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

index of eigenvector entries

va
lu

e
of

 e
ig

en
ve

ct
or

 e
nt

rie
s

V2

V̄1

Figure 4.5: Influence of kernel width to the approximation quality for V2 and V̄1. The
top plot shows that ||V̄1 − V2|| decreases quickly while the kernel width σ increases, where
σ = 0.69 is the square root of the average distance in G. The bottom plot shows the two
eigenvectors when σ = 0.69, where ||V̄1−V2|| = 0.15, λ̄1 = 90.27 (the first eigenvalue of W̄),
and λ2 = 88.15 (the second eigenvalue of W). We see that λ̄1 ≈ λ2 and V̄1 ≈ V2.

CHAPTER 4. SEGMENTATION USING SPECTRAL CLUSTERING 53

root of the average distance. Practically this is sufficiently large for the purpose of avoiding

centering W , which has been verified by the empirical example from Figure 4.5.

4.2.5 Positive-Semidefiniteness

In Section 4.2.2, we have also assumed that W is positive semidefinite in order for the

KPCA analogy to apply. This is because the kernel matrix K must be positive semidefinite,

which is necessary to derive Equation 4.7 and Equation 4.10. This requirement can be

explained from another perspective as well. Recall that K = ΦT Φ and Cφ(Z) = ΦΦT .

Cφ(Z) is positive semidefinite, since given any vector x ∈ H, xT Cφ(Z)x = xT ΦΦT x =

(ΦT x)T (ΦT x) = ‖ΦT x‖2 ≥ 0. In addition, it is easy to prove that K and Cφ(Z) have the

same eigenvalues1. Therefore K is positive semidefinite.

In reality, however, the W we derive is not guaranteed to be positive semidefinite. The-

oretically speaking, we can deal with this problem by converting W to Ŵ which is positive

semidefinite. Let W = V ΛV T be the eigenvalue decomposition, we can also write it as

W =
n∑

i=1

λiViV
T
i , (4.14)

where λi is the i-th largest eigenvalue and Vi is the corresponding eigenvector. Supposing

only the leading r eigenvalues, λ1, . . . , λr, are greater than 0, we set

Ŵ =
r∑

i=1

λiViV
T
i , (4.15)

which is obviously positive semidefinite. As we are essentially interested in the eigenvalues

and eigenvectors of Ŵ , we may simply take the positive eigenvalues of W and their eigen-

vectors to derive the face embeddings without constructing Ŵ explicitly. This is reflected

in the embedding algorithm in Figure 4.2.

With this approach, we need to make sure that not too much information is lost by

discarding the negative eigenvalues and eigenvectors. It is well known in numerical linear

algebra that for a symmetric matrix M with eigenvalue decomposition M =
∑n

i=1 λ̂iV̂iV̂
T
i ,

where the λ̂i’s are the eigenvalues sorted in descending order by their magnitude and V̂i’s

are the respective eigenvectors, the best rank r matrix approximating M (in the sense of

1For any eigenvalue λ and the corresponding eigenvector v of K, λ and Φv are an eigenvalue and the
corresponding eigenvector of Cφ(Z).

CHAPTER 4. SEGMENTATION USING SPECTRAL CLUSTERING 54

the Frobenius norm) is
∑r

i=1 λ̂iV̂iV̂
T
i . Comparing Equation 4.14 with Equation 4.15, we see

that if W has only a few negative eigenvalues with relatively small magnitudes, only a small

amount of information will be lost when converting W to Ŵ .

Empirically, the affinity matrix W we produce from the distance matrix G via an expo-

nential kernel is either positive semidefinite or sufficiently close to be, in the sense that the

number of negative eigenvalues of W is relatively small and their magnitudes are negligible

compared with those of positive eigenvalues. Again let’s take the enforcer model as an ex-

ample, for which W is obtained with the kernel width σ = 0.69. The eigenvalues of W are

88.15, 75.29, 37.65, 26.40, 6.73, . . . , 0, . . . ,−0.029,−0.034; the largest eigenvalue is ignored as

W is not centered (see Section 4.2.4). Only 16% of the eigenvalues are negative, which share

about 0.15% of the energy of the entire spectrum.

4.2.6 Distance between Embeddings

Let’s examine how distances between embedded faces relate to their affinities. Since Ŵ in

Equation 4.15 is strictly positive semidefinite and centering inH does not affect the distances

between embedded faces, we can compute the distance between any two embedded faces

φ(fi) and φ(fj) in H as

||φ(fi)− φ(fj)|| =
√(

φ(fi)− φ(fj)
)T (

φ(fi)− φ(fj)
)

=
√

φ(fi)T φ(fi) + φ(fj)T φ(fj)− 2φ(fi)T φ(fj)

=
√

Ŵii + Ŵjj − 2Ŵij

≈ √
Wii + Wjj − 2Wij

=
√

1 + 1− 2Wij

=
√

2− 2e−Gij/2σ2
,

(4.16)

where the approximation step is due to the fact that W is close to be positive semidefinite

as discussed in Section 4.2.5. Through this equation, we observe that the distances between

embedded faces are exponentially proportional to their distances in G, and the rank order of

distances is preserved as well. Since Ui· (Figure 4.2) is the dimensionality-reduced embedding

of φ(fi) in H via PCA and PCA embedding does not change the distances between entities,

we have

‖Ui· − Uj·‖ ≈
√

2− 2e−Gij/2σ2
. (4.17)

CHAPTER 4. SEGMENTATION USING SPECTRAL CLUSTERING 55

We also take the enforcer model to verify Equation 4.17 empirically. To this end, we

denote de
ij = ‖Ui·−Uj·‖ and dHij =

√
2− 2e−Gij/2σ2 . For any faces fi and fj , the discrepancy

between de
ij and dHij is defined as 2|de

ij − dHij |/(de
ij + dHij). Then the average discrepancy over

all pairs of faces gives a quantitative estimation about the accuracy of Equation 4.17. For

the enforcer model, the average discrepancy is only 1.23%.

4.2.7 Further Discussions

Our spectral embedding algorithm serves to transform the distances encoded in G to Eu-

clidean embeddings of mesh faces for the subsequent K-means clustering operation. The-

oretically, it is possible to run a K-means algorithm simply based on G without explicit

embeddings, for example, using the method from [59]. Nonetheless, such a method is inef-

ficient and all the entries of G have to be known. When the size of a mesh is large, even

computing the entire G itself is already not affordable. In such cases, we show (Chapter 5)

how to use only a few rows of G to derive face embeddings. With an Euclidean embedding,

K-means can be performed efficiently.

The distances between embedded faces are approximately
√

2− 2e−Gij/2σ2 . A large

Gij induces a large embedding distance and vice versa. Note that this distance relation

is monotone and non-linear. By setting the kernel width σ and using the eigenvectors

appropriately, such a distance relation is accurately enforced by our embedding algorithm. In

other words, all the distances encoded in G are consistently reconstructed in the embedding

space governed by this relation. Also, the contrast of the distances in G is well preserved

(see Section 4.2.3); this is important for achieving high quality segmentation results. On the

other hand, if we apply the metric Multi-Dimensional Scaling [27] based on G to derive face

embeddings, inferior segmentation results are shown by our experiments. This is because

G in general has relatively large negative eigenvalues, which defies the positive semidefinite

requirement in order for MDS to apply meaningfully.

4.3 K-means Clustering

So far, we have obtained the spectral embedding Fe = {fe
i }n

i=1 for the faces of the input mesh

M. The embedding coordinate for face fi is denoted by fe
i = Ui·, and the dimensionality is

at most n− 1, which is achieved when W is positive definite (note that we discard the first

eigenvalue/eigenvector). In the embedding space, the face distances reflect the part-aware

CHAPTER 4. SEGMENTATION USING SPECTRAL CLUSTERING 56

1. Assuming k ≤ r − 1, reduce the dimensionality of Fe by keeping only the first k
columns of U . Recall that r is the number of positive eigenvalues of W (Figure 4.2).

2. Initiate a proxy set P = {pi}k
i=1, where P ⊂ Fe. Each pi represents cluster Fe

i and
all pi’s are mutually farthest apart in the embedding space.

3. Element assignment : for each fe, assign it to the cluster Fe
i , where

i = argmin1≤j≤k‖fe − pj‖. Namely, a face is assigned to the closest proxy.

4. Proxy fitting : refine each proxy pi to the centroid of cluster Fe
i .

5. Repeat step 3 and step 4 until P is stable.

Figure 4.6: K-means clustering in embedding space.

distances in G. The next step is to apply K-means clustering to Fe to obtain the actual

segmentation result.

The general framework of a K-means algorithm has been briefed in Section 2.2.1 when

variational segmentation approaches are discussed. We formally describe the K-means al-

gorithm for our application in the following.

Given the face embedding Fe, we seek a clustering Θ = {Fe
i }k

i=1, where
⋃k

i=1Fe
i = Fe

and Fe
i

⋂Fe
j,j 6=i = ∅, such that the cost function

cost
(
{Fe

i }k
i=1

)
=

k∑

i=1

(∑

fe
j ∈Fe

i

‖fe
j − F̄e

i ‖
)

(4.18)

is minimized, where k is the number of segments given by a user and F̄e
i is the centroid of

cluster Fe
i . The term in the bracket on the right side of the equation measures the intra-

cluster cost. If every embedding is close to the centroid of its cluster, the cluster is tight

and the intra-cluster cost is low. Figure 4.6 demonstrates how the K-means is performed in

our algorithm. Intuitively, the algorithm finds an approximate solution (a local minimum)

to Equation 4.18 by iteratively reducing intra-cluster costs. In each iteration, a face is

assigned to its closest proxy and each proxy is refined to its cluster centroid. These two

steps alternate until all the proxies are stable, implying that a local minimum is reached.

When the K-means algorithm converges, each cluster Fe
i is tight and the distances

between the centroids of different clusters are large. Such clusters are likely to correspond

to the parts of the input mesh M.

CHAPTER 4. SEGMENTATION USING SPECTRAL CLUSTERING 57

4.3.1 Dimensionality Reduction

The initial embedding of Fe, derived as in Figure 4.2, has a dimensionality of at most n−1.

As discussed in Section 4.2.5, we may discard those dimensions whose corresponding eigen-

values are non-positive. However, the resulting dimensionality could still be high, especially

when n is large. High embedding dimensionality poses two computational bottlenecks: one

for the eigenvalue decomposition of W and the other for the K-means clustering.

We reduce the dimensionality of an embedding by dropping the trailing columns of

U . According to the analogy to KPCA, this is equivalent to the standard dimensionality

reduction via PCA, but carried out in the feature space H. In practice, the embedding

dimensionality is reduced rather aggressively — we only keep the first k columns of U .

The benefits are twofold. First, as k is typically small (less than 15 as a model usually

does not contain too many parts), we only need to compute the first k + 1 eigenvectors of

W . This can be efficiently carried out using the ARPACK [70] package, which is designed

to solve large scale eigenvalue problems with capability to compute only leading or trailing

eigenvectors. Secondly, discarding the trailing eigenvectors helps get rid of high “frequency”

information. This means that the resulting embeddings would attempt to preserve only the

distances between prominent clusters, while the distances between intra-cluster points are

ignored. This makes the K-means algorithm work more favorably to extract prominent

clusters without being distracted by intra-cluster distances.

4.3.2 Proxy Initialization

Our K-means algorithm is subject to local minima, and the clustering result has much to

do with the seed proxy set P. Although finding the global optimum for a K-means problem

is known to be NP-hard, it is possible to apply certain heuristics to improve the clustering

quality. One simple way is to run K-means with random initial proxies for multiple times

and choose the result for which Equation 4.18 is minimized. Another way is to randomly

select a subset of the original data, run K-means on the selected data, and utilize the

preliminary clustering result to initialize the proxies for the final clustering performed on

the full data.

However, both methods do not make full use of the information encoded in the embed-

ding. Since we want the resulting clusters to correspond to the mesh parts, it is natural to

pick a seed proxy from each part. As our part-aware metric imposes large distances between

CHAPTER 4. SEGMENTATION USING SPECTRAL CLUSTERING 58

parts and the distances are well preserved in the embedding space, it implies that the seed

proxies are likely to be mutually far apart. Therefore, we adopt a max-min scheme to find

such proxies. We select the first two proxies that are farthest away in the embedding space.

Then each subsequent proxy is inserted such that it maximizes the smallest distance to the

previously chosen proxies. We have found that such a scheme effectively alleviates the local

minima problem of our K-means algorithm.

4.3.3 Boundary Enhancement

Nearby faces on a mesh face should be close in the embedding space because we derive

distances in G as graph distances, which are continuous. However, faces in each cluster

output by the K-means algorithm are not guaranteed to form a single connected region

(referred to as a component in this context) on a mesh surface, although in practice they

often do. Rarely, few faces along a part boundary might be disconnected from the core

region. The boundaries between the parts could also present some local artifacts, including

jaggedness or slight deviation from the intended boundary positions. We fix such problems

in a post-processing stage.

We adopt a functional optimization framework that considers spatial coherence. This

idea is developed by Boykov et al. [17] and used for meshes [112]. Recall that Θ is the

clustering result from the K-means algorithm. It can also be considered as a labeling of

faces with respect to the converged proxies. Let’s denote the converged proxies by P ′. Our

goal is then to come up with a refined clustering/labeling Θ′ with respect to P ′ such that

the following functional is minimized:

E(Θ′) = Edata(Θ′) + µEsmooth(Θ′). (4.19)

Edata(Θ′) is designed to respect Θ, and Esmooth(Θ′), weighted by µ, is used to enhance part

boundaries.

Given a face fi, suppose it is labeled pfi in Θ′, where pfi ∈ P ′. We define function

h1(fi, pfi) = − log

(
1/d(fi, pfi)∑k

j=1

(
1/d(fi, pfj

)
)
)

,

where d(·) denotes the Euclidean distance between the embedding of a face and a proxy.

Intuitively, h1(·) ∈ (0, +∞) measures how “bad” it is if fi is clustered to pfi . Specifically, if

fi’s embedding, fe
i , is actually closest to pfi after our K-means clustering, h1(fi, pfi) would

CHAPTER 4. SEGMENTATION USING SPECTRAL CLUSTERING 59

be small and vice versa. We define Edata(Θ′) =
∑n

i=1 h1(fi, pfi
); therefore minimizing Edata

means to honor the overall result from the previous K-means clustering.

The smooth term is defined as Esmooth(Θ′) =
∑

(fi,fj)∈N h2(fi, fj , pfi , pfi), where N is

the set of pairs of adjacent faces (sharing a common edge). Esmooth(Θ′) is a measure about

part boundaries, providing h2(·) does not vanish only when pfi 6= pfj . Specifically, we define

h2(fi, fj , pfi , pfi) =

l(eij)
(
1− weight(eij)

)
pfi

6= pfj

0 pfi = pfj

,

where l(eij) is the length of the common edge eij of fi and fj , normalized by the maximum

edge length over the entire mesh surface, and weight(eij) is the mapped angular weight

(Section 3.3) of eij , defined as

weight(eij) = log
(
νG̃a(i, j) + 1

)
/ log(ν + 1). (4.20)

Via this logarithmic mapping [112], with ν controlling the mapping strength, the influences

of small angular weights are enhanced. Such a mapping helps improve the boundary qual-

ity in our experiments. Intuitively, minimizing Esmooth(Θ′) implies to favor a short part

boundary consisting of concave edges. In our application, we set µ = 0.3 and ν = 10.

Equation 4.19 is minimized approximately via a minimum graph cut problem [17]. By

subjecting Θ to such a smoothing procedure, the refined clustering Θ′ induces short bound-

aries across concave regions. Connected components are also implicitly ensured as short

boundaries are preferred; we have never encountered a part with multiple components in

our experiments.

4.4 Experimental Results

Complexity Recall that the input mesh M has n faces. Building the distance matrix

G from G̃c requires running Dijkstra’s algorithm for each node, which has a complexity of

O(n2 log n). Converting G to W requires O(n2). Since we only need a small number of

leading eigenvalues and eigenvectors, we avoid the high complexity of computing the full

eigenvalue decomposition of W , which is O(n3). Using the ARPACK package [70], the

leading eigenvectors are computed by a variant of the Lanczos process called the Implicitly

Restarted Lanczos Method. With reasonable accuracy settings suitable for our applica-

tion, such a method achieves much higher empirical efficiency than constructing G. Since

CHAPTER 4. SEGMENTATION USING SPECTRAL CLUSTERING 60

the K-means algorithm converges quickly, its complexity in practice also does not exceed

O(n2). Therefore, the overall complexity of our algorithm is O(n2 log n), dominated by the

construction of the distance matrix G.

Overview of experiments We demonstrate how the algorithm works on a simple model,

and set different numbers of segments to test how it performs. We run another two exper-

iments to show the effectiveness of the VSI-distance. Finally, our algorithm is tested on a

number of additional models.

It is worth pointing out that in all our experiments, including those in Section 5.6,

the graph G̃c is constructed using a fixed set of parameters unless stated otherwise, with

α = 0.01, β = 0.195, and γ = 0.795 (see Section 3.5) to emphasize the VSI distance.

The geodesic distance is not completely discarded, since it helps produce smoother part

boundaries and prevent undesirably large parts from being formed as well.

(a) segmentation on the mesh (b) clustering in the embedding space

Figure 4.7: Segmentation result with 5 parts for the enforcer model. In plot (b), the
embeddings are rendered using the first three dimensions, where the large spheres indicate
the mutually farthest seed proxies for the K-means clustering algorithm.

We first test our algorithm on a enforcer model with 4000 faces, which has a clear part

structure. We set k = 5. As shown in Figure 4.7 (a), intuitive parts are obtained. In

Figure 4.7 (b), the clustering result in the embedding space is given. In the embedding

CHAPTER 4. SEGMENTATION USING SPECTRAL CLUSTERING 61

(a) 3 parts (b) 9 parts (b) 13 parts

Figure 4.8: Segmentation results for the enforcer model with different numbers of segments.

space, we see that the points (gray-blue) corresponding to the body sit in the middle of the

four limb-parts; this is in accordance with the part-aware distance from the graph G̃c. The

five large brownish spheres mark the seed proxies for the K-means algorithm. They are

selected as the embeddings that are mutually farthest apart as described in Section 4.3.2.

From this example, we observe that such an initialization scheme does tend to locate proxies

from different parts, hence improving the robustness of our K-means clustering.

We also set k = 3, 9, 13 for the enforcer model and the segmentation results are shown

in Figure 4.8, which are intuitive. Although we did not perform hierarchical decomposition

explicitly, by changing the number of segments, we note that the algorithm tends to segment

in a hierarchical manner. Having such a hierarchical segmentation property is deemed as a

merit of our algorithm.

Figure 4.9 provides a comparative example as to how the distances in G̃c are reflected

in the embedding, which in turn affects the clustering result. For illustration purpose,

we consider two cases: one with the geodesic distance only and the other with our part-

aware distance. Plot (a) shows the segmentation on the mesh (from both front and back

views) and the clustering in the embedding. Since the geodesic distance does not accurately

characterize the parts, the resulting parts straddle across the intended boundaries between

the limbs and the body. Plot (b) shows the results obtained via the part-aware distance.

Clearly, we see that the parts are tighter and better clustered in the embedding space,

hence the better segmentation result on the mesh. Plot (c) illustrates how the boundary

enhancement operation (Section 4.3.3) helps fix local artifacts along the part boundaries.

CHAPTER 4. SEGMENTATION USING SPECTRAL CLUSTERING 62

(a) with geodesic distance (α = 1, β = 0, γ = 0)

(b) with part-aware distance

(c) with boundary enhancement

Figure 4.9: Segmentations on the Homer model and respective clusterings in the embeddings.
In plot (a), only the geodesic distance is used. Plot (b) shows the result when the part-aware
distance is used, and plot (c) illustrates what is achieved after enhancing the boundaries
from (b). Note that the embeddings are rendered using the first three dimensions.

CHAPTER 4. SEGMENTATION USING SPECTRAL CLUSTERING 63

(a) colibri, 5 parts (b) hand, 6 parts (c) bixo, 11 parts

Figure 4.10: Segmentation results achieved with (bottom row) and without (top row) the
VSI distance.

We demonstrate the effectiveness of the VSI distance component in G̃c through more

tests and the results are presented in Figure 4.10. In this figure, parts in the bottom row

are achieved using the pre-set weights for the three distance components, while those in the

top row are obtained ignoring the VSI distance (α = 0.01, β = 0.99, γ = 0). It is clear that

when the VSI distance is in place, the parts obtained are of superior quality.

Finally, more segmentation results are given in Figure 4.11, which includes models with

genus greater than zero (vase, kitten, and dragon), as well as models with boundaries (heart).

Clearly, the segments obtained correspond to the constituent parts of the shapes that are

intuitive to human beings; the part boundaries have high quality as well.

Note that in all the above segmentation experiments, we set the dimensionality of face

embeddings equal to k; this is discussed in Section 4.3.1. k is the only user-input parameter

for this algorithm, and it is model-dependent. All other parameters are either fixed or

CHAPTER 4. SEGMENTATION USING SPECTRAL CLUSTERING 64

(a) heart, 5 parts (b) vase, 5 parts (c) kitten, 6 parts

(d) dragon, 7 parts (e) armadillo, 7 parts (f) dino-pet, 12 parts

Figure 4.11: Segmentations on a variety of different kinds of models.

CHAPTER 4. SEGMENTATION USING SPECTRAL CLUSTERING 65

automatically determined. Some heuristics [29, 59], including the eigen-gap [90], have been

proposed to automatically infer an appropriate k. We notice that such methods are not

sufficiently robust in general. Instead, we leave this problem to users.

Due to the super-quadratic complexity involved in the current algorithm, we have so far

only been able to deal with meshes with up to a few thousand faces. For this thesis, we test

our algorithms on a Windows machine with an AMD Opteron CPU at 2.41GHz and 8GB

RAM. Running the algorithm on the vase model (5000 faces) takes about 44 seconds. When

mesh size goes up, the computation time will increase rapidly and so will the space required

to store the affinity matrix W , which is not sparse. It would be intangible to handle a mesh

with hundreds of thousands of faces. We address this problem in the next chapter.

4.5 Summary

Our work in this chapter transforms the part information in the graph G̃c to a face em-

bedding via a spectral embedding algorithm specifically designed for mesh segmentation.

Resorting to the analogy to KPCA, we justify our algorithm and address several issues im-

portant to the effectiveness of the face embedding. The final mesh segmentation result is

obtained from the embedding using the standard K-means clustering algorithm. In order to

improve its efficiency and quality, we propose methods to reduce the embedding dimension-

ality, initialize seed proxies, and enhance part boundaries. Experiments have shown that

our algorithm is able to extract parts from a shape with high quality.

However, the current algorithm is highly involved, incurring a complexity of O(n2 log n).

With such a super-quadratic complexity, the algorithm is only able to handle meshes with

up to several thousand faces. We address this issue in Chapter 5.

Chapter 5

Sub-sampling

5.1 Overview

The segmentation algorithm based on spectral clustering proposed in Chapter 4 has a high

computational cost — O(n2 log n). As it is normal to segment meshes with up to hundreds

of thousands of faces, we need to reduce its complexity for practical use.

We resort to sub-sampling for this purpose. Briefly, given an input mesh M with n

faces, we first compute a small set of sample faces Fs = {fsi | 1 ≤ si ≤ n, i = 1, . . . , l},
where l ∈ [2, n] is the sampling size. Then we construct only the corresponding rows of

the distance matrix G and the affinity matrix W . As the full W is unknown, we apply the

Nyström method to approximate the eigenvectors of W . Afterwards, the construction of

the spectral embeddings of the faces and the K-means clustering are similarly conducted.

Meanwhile, we provide a geometric interpretation for the Nyström method. This leads to

a practical quality measure for a sample set and a farthest-point sampling scheme we use

in practice. With sub-sampling, the overall complexity of the segmentation algorithm is

reduced to O(ml2) + O(l · n log n), where m = n− l.

In Section 5.2, we review the Nyström method. Its geometrical interpretation is studied

in Section 5.3, through which a quality measure of sub-sampling is derived. With such a

quality measure, a farthest-point sampling scheme is suggested in Section 5.4. In Section 5.5

we modify the original segmentation algorithm to integrate sub-sampling. Experimental

results and summary are given in the last two sections.

66

CHAPTER 5. SUB-SAMPLING 67

5.2 Nyström Method

The Nyström method is one of the best known approximation schemes for sampling and

reconstruction for kernel techniques. It originates from finding numerical solutions of con-

tinuous eigenfunction problems [10] and has been applied by Williams and Seeger [132] for

providing low-rank approximation to kernel matrices and by Fowlkes et al. [38] for image

segmentation.

Consider a partition of a data set Z, |Z| = n, into two disjoint subsets X and Y, with

|X | = l, |Y| = m, respectively. Note that n = l + m and l ¿ m in practice. Without loss of

generality, we designate the points in X as samples and write the symmetric kernel matrix

K ∈ Rn×n for Z (recall that W can be considered as a kernel matrix) in block form:

K =

[
A B

BT C

]
, (5.1)

where A ∈ Rl×l encodes the affinities between the points in X , C ∈ Rm×m encodes the

affinities between the points in Y, and B ∈ Rl×m encodes the inter-affinities between X and

Y. Let A = E∆ET be the eigenvalue decomposition of A, with the largest eigenvectors in

the leading columns of E, then the l leading eigenvectors of K can be approximated, using

the Nyström method, by

Ẽ =

[
E

BT E∆−1

]
, (5.2)

with columns of Ẽ containing the approximate eigenvectors. We see that only the sub-block

[A B] is required to compute Ẽ. The complexity involved is O(l3) + O(ml2), where the

first term is for computing the eigenvalue decomposition of A and the second term is for

computing BT E∆−1. Since l ¿ m, the complexity is essentially O(ml2).

With Ẽ, the reconstructed kernel matrix, K̃, can be computed as

K̃ = Ẽ∆ẼT =

[
A B

BT BT A−1B

]
. (5.3)

The quality of the sample set X can then be quantified by ‖K − K̃‖F . Since K̃ only

replaces block C of K with BT A−1B, this quantification is equivalent to ‖C −BT A−1B‖F ,

the Frobenius norm of the Schur complement (FNSC).

CHAPTER 5. SUB-SAMPLING 68

Note that the approximated eigenvectors in Ẽ are not normalized. Fowlkes et al. [38]

have shown how to meaningfully normalize them. However, we have found that such a

normalization works less preferably for our application.

The above discussion of the Nyström method has assumed that the sampled rows are at

the leading rows of K for the sake of simplicity of presentation. In practice, we can simply

permute the sampled rows to the leading rows. Be aware that the respective columns have to

be consistently permuted as well to keep K symmetric. After the eigenvectors are computed,

their entries are permuted back accordingly to recover the original ordering. This process

is done implicitly and it is always assumed in the future that the leading rows of K are the

sampled rows.

5.3 Quality Measure

The Nyström method only tells us how to extrapolate the eigenvectors given a subset of rows

of the kernel matrix K; it does not specify how to select the rows for better approximation

quality. FNSC is impractical for this purpose because C is unknown. In the following, we

provide a geometric interpretation for the Nyström method and suggest a function Γ for

evaluating the quality of a sample set, which is much more efficient to evaluate.

Following the discussion in Section 4.2.2, we reiterate that K implicitly defines a mapping

φ(·) that maps set Z to φ(Z) = {φ(zi)|zi ∈ Z} in a high dimensional feature space H ∈
Rh. Similarly, we have in the feature space φ(X) for the sample set X and φ(Y) for its

complementary set. Suppose Xh×l = [φ(x1)|φ(x2)| . . . |φ(xl)] contains the mapped points

of φ(X), and Y h×m and Zh×n are defined similarly. As the entries of K are the inner

products of φ(Z) in H, we have A = XT X, B = XT Y and C = Y T Y . It has been shown

in Section 5.2 that the Nyström method approximates C with BT A−1B. We now examine

the geometric properties associated with this approximation.

Proposition 5.1. BT A−1B are the inner products between the points in φ(Y) after being

orthogonally projected into Space
(
φ(X)

)
, the space spanned by the points in φ(X).

Proof. Denote by X+ the pseudo-inverse of X, i.e., X+ = (XT X)−1XT . Given any

point φ(yi) ∈ φ(Y), it is well known that φ(yi)’s orthogonal projection (also its clos-

est point) in Space
(
φ(X)

)
can be computed as φ(yi)⊥ = (XX+)φ(yi). Having Y⊥ =

[φ(y1)⊥|φ(y2)⊥| . . . |φ(ym)⊥] = (XX+)Y , we obtain the pairwise inner products of the points

CHAPTER 5. SUB-SAMPLING 69

in φ(Y) after they are orthogonally projected into Space
(
φ(X)

)
as

Y T
⊥ Y⊥ = (XX+Y)T (XX+Y)

= Y T (X+)T XT X(X+Y)

= Y T
(
(XT X)−1XT

)T
XT X(X+Y)

= Y T XX+Y

= Y T X
(
(XT X)−1XT

)
Y

= (XT Y)T (XT X)−1(XT Y)

= BT A−1B

Therefore FNSC = ‖C − BT A−1B‖F = ‖Y T Y − Y T
⊥ Y⊥‖F , and this implies that in

general the closer the points in φ(Y) are to Space
(
φ(X)

)
the smaller FNSC is. When

Space
(
φ(Y)

) ⊆ Space
(
φ(X)

)
, we have Y = Y⊥ and BT A−1B = Y T

⊥ Y⊥ = Y T Y = C,

namely, BT A−1B reconstructing C exactly. With that said, the scale of FNSC can be

reflected by the overall distances from the points in φ(Y) to Space
(
φ(X)

)
. In fact, we have

Proposition 5.2. The trace of C −BT A−1B is the sum of the squared distances from the

points in φ(Y) to Space
(
φ(X)

)
.

Proof. Given a φ(yi) ∈ φ(Y), the squared distance from φ(yi) to Space
(
φ(X)

)
is ‖φ(yi) −

φ(yi)⊥‖2
2 = ‖φ(yi)−XX+φ(yi)‖2. Then the sum of all the squared distances is

m∑

i=1

‖φ(yi)−XX+φ(yi)‖2 =
m∑

i=1

(
φ(yi)−XX+φ(yi)

)T (
φ(yi)−XX+φ(yi)

)

=
m∑

i=1

φ(yi)T (I −XX+)φ(yi)

=
m∑

i=1

φ(yi)T φ(yi)−
m∑

i=1

φ(yi)T (XX+)φ(yi)

= tr(C)− tr(Y T XX+Y)

= tr
(
C)− tr(BT A−1B

)

= tr
(
C −BT A−1B

)

where tr(·) is the matrix trace operator. The second last step is due to the fact Y T XX+Y =

BT A−1B, which is shown in the proof of Proposition 5.1.

CHAPTER 5. SUB-SAMPLING 70

−2 −1 0 1 2

−2

−1

0

1

2

y

x

(a) test point set

20 40 60 80 100 120
20

40

60

80

100

120

140

160

FNSC

Γ

ρ = 0.9895

(b) (FNSC, Γ) observations

Figure 5.1: Strong correlation between FNSC and Γ. (a): The point set with a Gaussian
distribution, where the variances along x and y axes are 0.76 and 0.54, respectively. (b):
Plot of the 100 observations to (FNSC, Γ). The correlation coefficient is ρ = 0.9895.

Via Proposition 5.1 and Proposition 5.2, we define function

Γ , tr(C)− tr(BT A−1B) (5.4)

to measure the quality of a sample set. We have shown that a small Γ would tend to lead

to a small FNSC. With Γ, we can evaluate the quality of a sample set without knowing

the entire C, which is needed when FNSC is used. Although C is not known, tr(C) can

usually be efficiently computed. In our implementation with equation 4.1, we have Wii ≡ 1,

in which case, tr(C) = m is a constant and only tr(BT A−1B) matters.

Figures 5.1 verifies the strong correlation between FNSC and Γ. In this experiment,

we generate 200 points with a Gaussian distribution, whose deviation along each axis is

randomly selected in (0, 1). The corresponding kernel matrix K is constructed using Eu-

clidean distance and an exponential kernel function. We randomly sample only 2 points and

the resulting pair (FNSC, Γ) is treated as an observation to their corresponding random

variables. We obtain 100 observations and the correlation of the two random variables is

0.9895. Clearly, FNSC and Γ are strongly correlated.

CHAPTER 5. SUB-SAMPLING 71

5.4 Sampling Scheme

Given a sampling size, our goal is to find the samples such that Γ is minimized. One

possible approach is to add samples iteratively, in a greedy manner: the next sample to

add is always the one that minimizes the current Γ. In short, the sampling scheme keeps

track of the current affinity matrices A and B. The next sample is selected as the one

such that the updated A and B would minimize Γ. Given the updated A and B, the

evaluation of Γ has a complexity of O(ml2). If carried out naively by evaluating Γ against

each data point, finding the next sample would cost O(m2l2), which is not acceptable. To

overcome this, we consider the best sampling scheme [120]. Instead of finding the next best

sample from all the remaining data points, we only try to find it among the best 1% with

probability 95%. Assuming that the columns of B are independent identically-distributed

(IID) random variables, we simply need to evaluate Γ on a random sample set of size

dlog(0.01)/log(0.95)e = 90, regardless of the data size. The overall complexity for finding

l samples with this approach would be O(90ln log n) + O(90ml3), where the first term is

for computing the geodesic distances from G̃c to update A and B. We call this approach

Γ-sampling.

Although it achieves low asymptotic complexity, the Γ-sampling scheme is still not suf-

ficiently efficient due to the large constant in its complexity, especially for a dense mesh

(n is large). In practice, we use a more efficient farthest-point sampling scheme which is

suggested by an observation made on Γ.

In order to minimize Γ, we can aim to maximize tr(BT A−1B) as tr(C) is a constant in

our case. Based on the cyclic property of matrix trace, we have

tr(BT A−1B) = tr(A−1BBT) = tr(A−1
m∑

j=1

BjB
T
j). (5.5)

With the assumption that the columns of B (Bj ’s) are random variables with IID distri-

bution, entries of
∑m

j=1 BjB
T
j tend to be similar. We have observed such a property in

practice, especially when m is large. Therefore we can rewrite
∑m

j=1 BjB
T
j ≈ κ11T , with

κ ∈ (0, m) being a fixed value, hence

tr(BT A−1B) ≈ κtr(A−111T) = κ1T (A−11). (5.6)

From Equation 5.6, we see that there are two conditions for tr(BT A−1B) to attain a large

value: (1) a large 1T (A−11), and (2) a large κ.

CHAPTER 5. SUB-SAMPLING 72

Figure 5.2: The geometric examination of 1T (A−11) in R2. Suppose A = [1, α; α, 1], 0 ≤
α ≤ 1, then the columns of A represent the coordinate basis shown as oa and ob. If we write
A−11 = [s; t], s and t can be computed geometrically by drawing lines pd and pc parallel
to axes oa and ob, respectively. In other words, s = |oc|/|oa| and t = |od|/|ob|. It is easy
to see s = |oc|/|oa| = |oe|/|ox| ≤ 1. Similarly, t = |od|/|ob| = |of |/|oy| ≤ 1. As a result,
1T (A−11) = s + t ≤ 2. As oa and ob approach ox and oy, s + t keeps increasing until 2 is
reached, at which time oa and ob turn into the canonical basis.

For condition (1), note that the vector A−11 contains the coefficients of the expansion

of 1 in the space whose basis are the columns of A, and the diagonals of A are 1 and the

off-diagonals are in the range [0, 1]. Figure 5.2 shows that, in 2D, 1T (A−11) ≤ l, where l

is the number of samples (l = 2 in this case). The equality is achieved when the columns

of A are the canonical basis. Since this can be generalized to arbitrary dimension and the

canonical basis mean that the off-diagonals of A are zeros, we should select samples such

that the affinities (distances) between them are as small (large) as possible.

Condition (2) requires κ to be large. To this end, entries of B should be large, indicating

that the distances between the sample faces and the un-sampled faces are small in average.

To satisfy condition (1), we have distributed sample faces mutually far apart on a mesh

surface. Therefore the average distances from the sample faces to the un-sampled faces tend

to converge, making condition (2) much less influential. Our experiments have also verified

CHAPTER 5. SUB-SAMPLING 73

that the first condition plays the dominant role.

In accordance with condition (1), we propose to sample faces that are mutually farthest

away using a max-min strategy as inspired by previous works, e.g., [34]. Given a distance

graph G̃c, the sampling scheme works as in Figure 5.3. Note that step 1 attempts to find

the first two samples that are globally farthest apart efficiently. We do not find the exact

solution for this since it is expensive.

1. Randomly sample a face fsp and find the face fsq that is farthest to fsp . Switch fsp

and fsq and repeat this process until both faces stabilize. Then set fs1 = fsp ,
fs2 = fsq , and Fs = {fs1 , fs2}.

2. Iteratively find the remaining samples. Specifically, select the next sample fsi as the
one that maximizes the minimum distance to the previous samples fs1 , . . . , fsi−1 .

Figure 5.3: Farthest-point sampling scheme in max-min fashion.

Since the distances between faces are the graph distances in G̃c, finding the face farthest

to a given one takes O(n log n) time. In step (2), whenever a new sample face is added,

we compute its distances to all the other faces. By maintaining the distances between

all the previous sample faces and the un-sampled faces, we can find the next sample face

in O(n) time. Since the convergence rate of step (1) is high (usually below 5 iterations),

the complexity is dominated by step (2), making the overall complexity of this sampling

algorithm O(l · n log n).

5.5 Modified Segmentation Algorithm

The modified segmentation algorithm based on spectral clustering with sub-sampling is

described in Figure 5.4. Overall it is similar to the case without sampling as described in

Section 4.2 and Section 4.3. However, it is worth mentioning the following issues.

• Given a sampling size l, the Nyström method tells how to extrapolate l eigenvectors

approximately. However, it does not specify which original eigenvectors the extrap-

olated eigenvectors correspond to. Practically our experiments have shown that the

extrapolated eigenvectors correspond to the largest original eigenvectors. Roughly,

this can be understood by thinking of the eigenvectors as frequencies of the 2D signal

CHAPTER 5. SUB-SAMPLING 74

1. Compute sample face set Fs, |Fs| = l, as in Figure 5.3.

2. Calculate a partial distance matrix G′ that contains the rows (corresponding to the
samples) of the full distance matrix G. Convert G′ to a partial affinity matrix W ′,
where W ′

ij = e−G′ij/2σ2

and σ is the square root of the average of the entries of G′.

3. Compute the l approximate eigenvectors for the affinity matrix W through W ′ with
the Nyström method as in Section 5.2 (W is considered as the kernel matrix K).
Denote by Ẽ the approximate eigenvectors and ∆ the eigenvalues of sub-block A.

4. Supposing all the eigenvalues of A are non-negative, derive the spectral embedding
Ũ = Ẽ[2...l]∆

1
2 .

5. Treat the rows of Ũ as the face embeddings, set the seed proxies as the embeddings
of the sample faces in Fs, and run the K-means algorithm.

Figure 5.4: Mesh segmentation based on spectral clustering with sub-sampling.

W [123, 124], where the largest eigenvectors correspond to low frequencies. When

sub-sampling, it is the low-frequency information that is reconstructed first. This

phenomenon is also observed by Belongie et al. [12].

• For the spectral embedding algorithm in Figure 4.2 without sampling, step (4) scales

the eigenvectors (V[2...r]) by the square root of the eigenvalues (Λ′
1
2). With sub-

sampling, since the Nyström method does not compute the eigenvalues of W , how

should we scale the approximate eigenvectors in Ẽ? It is noticed in [132] that the

eigenvalues of W are roughly n
l times of those of A. Therefore we use the eigenvalues

of A to scale the approximate eigenvectors in Ẽ; the uniform scaling factor n
l is ignored

without affecting the subsequent clustering.

• We have assumed that the eigenvalues of A are all positive. If not, we can simply

ignore the non-positive ones as described in 4.2.5. In fact, we have never encountered

such cases in our experiments. Since the eigenvalues of A and W are approximately

the same up to a scaling factor (n
l) and W always has positive leading eigenvalues

(Section 4.2.5), A’s eigenvalues are likely to be positive as well.

• In the clustering step, we could find the seed proxies as the embeddings that are

mutually farthest away (Section 4.3.2). But as the distances between the embeddings

CHAPTER 5. SUB-SAMPLING 75

mimic the distances in G̃c (Section 4.2.6) and the faces in sample set Fs are computed

from G̃c to be mutually farthest away, we can reuse this information by simply setting

the seed proxies as the embeddings of the sample faces. This makes the algorithm

more efficient.

Another issue we need to address is how to set l, the number of samples. As discussed

in Section 4.3.1, we set the dimensionality of the spectral embedding to k, the number

of segments given by a user. When sub-sampling, the number of samples determines the

number of eigenvectors in Ẽ. Therefore, we only need to set l = k + 1 in order to obtain

enough eigenvectors for embedding (note that the first approximate eigenvector is discarded

as it is close to a constant vector). Empirically, such a low sampling rate achieves high

segmentation quality while keeping the complexity low.

5.6 Experimental Results

Complexity Since our K-means algorithm has a high convergence rate, the asymptotic

complexity of the entire algorithm is dominated by the first three steps in Figure 5.4. Accord-

ing to the analysis in Section 5.2 and Section 5.4, the complexity of our spectral clustering

algorithm with sub-sampling is O(ml2) + O(l · n log n). In practice, we set l = k + 1.

Overview of experiments We have five experiments in this section. The first two

experiments test our sampling scheme with the Nyström method in general. The last three

experiments demonstrate how the segmentation algorithm with sampling works on meshes.

In our first experiment, we test the performance of the farthest-point sampling method,

by measuring the difference between approximate eigenvectors and accurate eigenvectors.

For comparison purpose, we also test the Γ-sampling scheme described in Section 5.4. To

focus on the effect of sampling only, we consider points in R3, treating each point as a mesh

face and the Euclidean distances between points as the graph distances between faces in

G̃c. We generate a total of 200 point sets and the reported result is the average of the

corresponding 200 tests. A point set is produced by a mixture of 10 Gaussian distributions.

Each Gaussian distribution has a random size between 30 and 60, with its mean at a random

point within a cube of side length 1 and deviations along each dimension randomly picked

from (0, 0.1]. Figure 5.5 shows the test results. In plots (a) and (b), we observe that the

approximation errors for both the second and the third eigenvectors decrease as the number

CHAPTER 5. SUB-SAMPLING 76

of samples increases. In fact, this is true for all other eigenvectors as well. Note that in

plot (b), the number of samples is at least 3; this is because the Nyström method cannot

extrapolate more eigenvectors than the number of samples. Plot (c) shows the average

approximation error over all available eigenvectors given a sampling size. Since a larger

sampling size is able to extrapolate more trailing eigenvectors and the trailing eigenvectors

typically have lower approximation accuracy, we see that the average approximation error

for all eigenvectors increases when more samples are used. By this experiment, it is verified

that the farthest-point sampling consistently outperforms random sampling. Although it

does not perform as well as Γ-sampling, it is more efficient and works well in our experiments.

2 4 6 8 10
0.2

0.4

0.6

0.8

1

1.2

of samples

ap
pr

ox
im

at
io

n
er

ro
r

random

farthest

Γ-

(a) for 2nd eigenvector

2 4 6 8 10
0.2

0.4

0.6

0.8

1

1.2

of samples

ap
pr

ox
im

at
io

n
er

ro
r

random

farthest

Γ-

(b) for 3rd eigenvector

2 4 6 8 10
0.2

0.4

0.6

0.8

1

of samples

ap
pr

ox
im

at
io

n
er

ro
r

random

farthest

Γ-

(c) for all eigenvectors

Figure 5.5: Approximation quality of eigenvectors via different sub-sampling methods. The
approximation error is measured as the L2 norm of the difference between the original and
the approximate eigenvectors, up to sign flips.

The approximation quality of extrapolated eigenvectors through the Nyström method

is also influenced by the tightness of clustering present in a point cloud. This phenomenon

is demonstrated in Figure 5.6. In this test, we build three point clouds in 2D shown in

the first column, and sample three points for each case. Each point cloud consists of three

Gaussian clusters centered at (0, 0), (10, 0), and (10, 10). Three levels of clustering tightness

are introduced by setting the deviations along x-axis and y-axis in each point cloud to 0.1,

1, and 3, respectively. The second (third) column shows, for the corresponding affinity

matrix W , the second (third) eigenvectors obtained with and without sub-sampling. It

is clear that if the clusters are tight and far apart from each other, the approximation

quality is high and vice versa. This is easy to explain according to Proposition 5.1 and

Proposition 5.2. For the ideal case in which the three clusters are infinitely far away and

the points within each cluster coincide with each other, based on the feature space distance

CHAPTER 5. SUB-SAMPLING 77

−4 0 4 8 12 16

−4

0

4

8

12

16

−0.2

−0.1

0

0.1

0.2

w/o sampling
w/ sampling

−0.2

−0.1

0

0.1

0.2

w/o sampling
w/ sampling

−4 0 4 8 12 16

−4

0

4

8

12

16

−0.2

−0.1

0

0.1

0.2

w/o sampling
w/ sampling

−0.2

−0.1

0

0.1

0.2

w/o sampling
w/ sampling

−5 0 5 10 15 20

−5

0

5

10

15

20

−0.2

−0.1

0

0.1

0.2

w/o sampling
w/ sampling

−0.2

−0.1

0

0.1

0.2

w/o sampling
w/ sampling

Figure 5.6: Quality of approximate eigenvectors is influenced by the tightness of clustering.
In each row, the first plot shows a point cloud with a certain degree of clustering tightness,
where the red circles indicate the three sample points chosen by our farthest-point sam-
pling. The second plot and the third plot illustrate the second and the third eigenvectors,
respectively, of the affinity matrix W derived from the corresponding point cloud, with and
without sub-sampling.

CHAPTER 5. SUB-SAMPLING 78

calculation (Equation 4.16), each cluster degenerates to a single point in the feature spaceH.

Therefore the three sample points span the entire space spanned by all the points in H; in

other words, we have Space
(
φ(X)

)
= Space

(
φ(Y)

)
. This implies Γ = 0 and the eigenvector

extrapolation is exact. On the other hand, if the clusters are loose and overlap with each

other, points will be scattered out in H. Then Space
(
φ(X)

)
would tend to occupy only a

small subspace of Space
(
φ(Y)

)
, causing large Γ and lower approximation quality in general.

With this being said, a sensitive part-aware metric, as the one described in Chapter 3, not

only contributes to a face embedding easy for the K-means algorithm to extract prominent

clusters, but also helps the sub-sampling method achieve high accuracy.

Let us now apply the spectral clustering algorithm with sub-sampling to two small

meshes used in Section 4.4, and compare the approximate eigenvectors with the accurate

ones. In Figure 5.7, the two columns show the segmentation results, the original, and the

approximated eigenvectors of the enforcer model and the armadillo model, respectively.

Compared with those in Figure 4.7(a) and Figure 4.11(e), almost the same segmentation

results are achieved with sub-sampling. For each model, we also see that the extrapolated

eigenvectors (blue) approximate the accurate ones (red) reasonably well, which is why the

segmentation quality under sub-sampling is not significantly sacrificed. Reminiscent of the

analysis for Figure 5.6, the approximation quality of eigenvectors for the enforcer model is

higher than that for the armadillo model, since the faces of the enforcer form tighter clusters

due to the larger distance changes across the part boundaries. It is worth reiterating that

we only set the sample number to k + 1 (k is the number of segments) as mentioned in

Section 5.5; if we increase the sampling rate, better approximation quality is expected. In

practice, we found that such a low sampling rate is sufficient.

Recall the comparison of the distance fields shown in Figure 3.9. Since the three meshes

are too large, we were unable to handle them in Chapter 4 before the sub-sampling is

introduced. In Figure 5.8, segmentation results on these three meshes via sub-sampling are

shown. Again, to demonstrate the effectiveness of VSI distance, we also give in the top

row the segmentation results obtained using only geodesic and angular distances (α = 0.01,

β = 0.99, and γ = 0). For example, the fingers of the hand model are better segmented

off the palm along the intuitive boundaries in the bottom row. So are the horse’s front leg

and right ear, and the dragon’s left arm and tail. These are the natural consequences of the

sudden distance changes across those regions as shown in the bottom row of Figure 3.9.

Finally, more segmentations on a variety of models are reported in Figure 5.9. Note that

CHAPTER 5. SUB-SAMPLING 79

enforcer, 5 parts armadillo, 7 parts

−0.04

−0.02

0

0.02

0.04

w/o sampling
w/ sampling

2nd eigenvectors

−0.1

−0.05

0

0.05

0.1

w/o sampling
w/ sampling

2nd eigenvectors

−0.04

−0.02

0

0.02

0.04

w/o sampling
w/ sampling

3rd eigenvectors

−0.2

−0.1

0

0.1

0.2

w/o sampling
w/ sampling

3rd eigenvectors

Figure 5.7: Segmentations of two models via sub-sampling and the eigenvectors. In each
column, both the second and the third eigenvectors obtained with (blue) and without (red)
sampling are drawn.

CHAPTER 5. SUB-SAMPLING 80

(a) hand, 7 parts (b) horse, 9 parts (c) dragon, 9 parts

Figure 5.8: Segmentation results achieved with (bottom row) and without (top row) VSI
distance.

CHAPTER 5. SUB-SAMPLING 81

(a) bone, 3 parts (b) snake, 4 parts (c) teapot, 4 parts

(d) dilo, 7 parts (e) camel, 7 parts (f) cat, 9 parts

Figure 5.9: Segmentation results of various models with sub-sampling.

both the teapot and the camel have genus greater than 0. High quality segmentation results

are achieved on all these models using a small number of samples. For the dilo model with

about 55K faces, our algorithm takes only about 4 seconds. If we subdivide the model into

220K faces, only 13 seconds are needed.

5.7 Summary

We integrate sub-sampling to the mesh segmentation algorithm described in Chapter 4.

The complexity of the new algorithm is significantly reduced from O(n2 log n) to O(ml2) +

O(l · n log n), where l is the number of samples and m = n − l. In our application, we set

l = k + 1 ¿ n, with k being the desired number of segments given by users. With such a

low sampling rate, the size of meshes that our algorithm can handle increases from several

CHAPTER 5. SUB-SAMPLING 82

thousands to hundreds of thousands.

Our sub-sampling scheme is based on the Nyström method, a popular technique for

computing approximate eigenvectors of a symmetric matrix when only a subset of its rows

are available. By examining the geometric meaning of the Nyström method, we propose a

function Γ to evaluate the sampling quality. Eventually, a farthest-point sampling scheme

is used to optimize for Γ approximately. The experiments have demonstrated that our sub-

sampling approach is able to achieve comparable segmentation results with higher efficiency.

We also notice two limitations of the current segmentation algorithms, with and with-

out sub-sampling. First, it requires users to input the number of segments k. Segmentation

quality could suffer if k is not set appropriately. Secondly, although the part-aware distance

enhances the clusters in the embedding space, prominent parts may still be missed occasion-

ally due to the limitations of the K-means clustering, especially when the desired k is large,

such as for those shown in Figure 6.18(f) and Figure 6.19(f). The algorithm proposed in

Chapter 6 improves on these issues by incorporating segmentability and salience, but with

higher computational cost.

Chapter 6

Segmentation Driven by

Segmentability and Salience

6.1 Overview

In this chapter, we improve upon the previous segmentation algorithm by introducing seg-

mentability and salience-driven cut. Rather than using a simultaneous k-way partitioning,

the improved algorithm iteratively bisects mesh parts. In each iteration, a mesh part with

the largest surface area is considered. If the mesh part has a segmentability score above a

fixed threshold, it is cut into two sub-parts, which are to be considered for further segmen-

tation; otherwise this mesh part is deemed not segmentable and becomes an output part. In

order to find the best cut, the faces of the selected mesh part are first sorted into a sequence.

Then the algorithm searches through this sequence, measures the salience at each location,

and chooses the cut that has the highest salience score. Figure 6.1 illustrates the flow of

this algorithm. Such an algorithm has the following merits:

• Segmentability provides a robust quantitative evaluation as to whether a shape con-

tains any parts. Accordingly, our algorithm can fix a segmentability threshold as the

stopping criteria for the iterative cut. Note that a single segmentability threshold

works for different models, while the number of segments used in the previous algo-

rithm is model-dependent. Thus, the improved algorithm achieves higher autonomy.

• With mesh faces sorted in a sequence, the search space for the best cut is significantly

reduced. This makes the salience-driven cut search affordable. Computed carefully,

83

CHAPTER 6. SEGMENTATION DRIVEN BY SEGMENTABILITY AND SALIENCE 84

input : Mesh M.
output: Sub-meshes O = {M1,M2, ...}.
begin

O = ∅, Q = {M} ;
η = 0.1 ;
while |Q| 6= 0 do

Mc ← the mesh piece in Q with the largest surface area ;
Q = Q− {Mc} ;
S ← Segmentability(Mc) ; /* Section 6.2 */
if S ≥ η then

% = FaceLinearization(Mc) ; /* Section 6.3 */

{M′
s,M′

s} ← SalienceCut(Mc, %) ; /* Section 6.4 */

Q = Q⋃{M′
s,M′

s} ;
else

O = O⋃{Mc} ;
end

end
end

Figure 6.1: Mesh segmentation driven by segmentability and salience.

the sequence also effectively preserves the meaningful cuts.

• By incorporating a salience measure mimicking human intuition for parts into the cut

search, the segmentation quality is enhanced.

In Section 6.2, we discuss the concept of segmentability within our context and show

how the segmentability analysis is performed. Once a mesh part passes the segmentability

test, Section 6.3 studies how to obtain an effective face sequence for the subsequent salience-

driven cut search, which is discussed in Section 6.4. Experiments are given in Section 6.5

and Section 6.6 presents the summary.

6.2 Shape Segmentability

Instead of letting users provide the number of segments for each input mesh, it is desirable

to have an algorithm that can figure out this information on its own. To fulfill this goal, we

want to tell when a mesh has any parts, or, in other words, is segmentable. A key observation

we make is that there are two primary factors that can render a shape segmentable. The

CHAPTER 6. SEGMENTATION DRIVEN BY SEGMENTABILITY AND SALIENCE 85

first one is the branching factor. That is, if a shape has branches, then it is segmentable.

We refer to the segmentability caused by branching as structure segmentability. The second

factor is due to concavity over the boundary of a part in the absence of branching, where

the induced segmentability is referred to as geometry segmentability. Do not confuse these

two terms with structural-level and geometrical-level segmentations. In our context, both

structure and geometry segmentabilities are for the structural-level segmentation.

Obtaining either the structure or the geometry segmentability information from a 3D

mesh is rather difficult and inefficient. As a solution, we project the mesh into 2D and ex-

ploit the outer contour of the 2D projection for segmentability analysis. It is not a surprise

that a significant amount of information may be lost when going from 3D to 2D. However, by

carefully manipulating the projecting procedure, we are able to preserve, and even enhance,

the part information useful for the subsequent shape analysis. In our approach, structure

and geometry segmentability information are extracted from 3D meshes separately, using

two projection operators: L and M . Note that the resulting projections are essentially 2D

spectral embeddings. In order to differentiate this operation from the spectral embedding

for K-means (Section 4.3), we call these 2D embeddings for segmentability analysis seg-

mentability projections, or simply projections. For simplicity, we refer to a projection via L

(M) as L-projection (M -projection). We study both projection operators as follows.

6.2.1 Structure Projection

Given an input mesh with n vertices, its graph Laplacian L ∈ Rn×n is defined as L = D−T ,

where Tij = 1 whenever (i, j) is an edge, otherwise Tij = 0; D is a diagonal matrix whose

diagonals are row sums of T . Hence the affinity Tij between vertices is determined only

by their connectivity. Let L = ΞΛΞT be the eigenvalue decomposition of L, where the

eigenvalues in Λ are in ascending order. It is well known that L is positive semidefinite

with the smallest eigenvalue λ1 = 0 and the corresponding eigenvector Ξ1 being a constant

vector. Since L is symmetric, its eigenvectors are orthogonal and span the entire space

Rn×n.

Suppose the rows of X ∈ Rn×3 contain the coordinates of the vertices of the input

mesh. Then X can be written as a linear combination of the eigenvectors of L (since the

eigenvectors span the entire space). Projecting X into the subspace spanned by the first k

eigenvectors of L, we obtain

X̃ = Ξ[1...k]Ξ
T
[1...k]X,

CHAPTER 6. SEGMENTATION DRIVEN BY SEGMENTABILITY AND SALIENCE 86

(a) a foot mesh (b) L-projection

Figure 6.2: L-projection (b) of a foot model (a) with branching structure. Color dots
indicate correspondence.

where Ξ[1...k] denotes the first k columns of Ξ. This projection process can also be seen as

applying an ideal low-pass filter (only allowing the leading k frequencies to “pass”) to the

mesh coordinate signal, akin to Laplacian smoothing [123]. Choosing k = 3, we obtain a

planar shape, since the first eigenvector is a constant vector.

As a result of Laplacian smoothing, high-frequency information, e.g., surface fluctua-

tions, in the original shape is removed, while low-frequency (high-level) shape characteristics,

e.g., branching, is retained and even enhanced in the 2D projection. Figure 6.2 illustrates

this property. The five toes of the foot mesh, shown in plot (a), form branches. Plot (b)

shows its 2D L-projection. As observed, the “toe branches”, as a low-frequency structure,

is extracted and enhanced in the 2D projection space.

6.2.2 Geometry Projection

Although projecting using the L operator is able to reveal the structure segmentability of

a shape, it may fail to capture geometry segmentability information since L is only defined

by mesh connectivity. Figure 6.3 depicts such a situation. We see that the original mesh

(a) is clearly segmentable due to the concavity between the handle part and the body

part. However, since there is no branching structure in place, its L-projection (b) does not

exemplify strong segmentability; this could introduce difficulty to the subsequent analysis.

To resolve this issue, we design a new Laplacian operator M . M is defined similar to L

as M = D − T , with the only exception that the entries of T herein need to take into

CHAPTER 6. SEGMENTATION DRIVEN BY SEGMENTABILITY AND SALIENCE 87

(a) a cheese mesh (b) L-projection (c) M -projection

Figure 6.3: Segmentability of a cheese model is better revealed in the M -projection.

consideration the geometric information of a mesh surface. To this end, we define for edge

e = (i, j) its corresponding entry Tij as

Tij =

(|κi|+ |κj |) · |〈e, z〉| · l if κi < 0 or κj < 0,

ε otherwise.

κi and κj , computed as in [26], are the minimal principal curvatures at vertices vi and

vj , z is the normalized average of the principal curvature directions of κi and κj , e is the

normalized direction of e, and l is the length of e divided by the average length of all edges

in this mesh. When κi ≥ 0 and κj ≥ 0, implying local convexity at e, we set Tij = ε = 0.1

to simply maintain vertex connectivity information in T . If (i, j) is not an edge, Tij = 0.

We see that if an edge is roughly aligned up with the local minimal curvature direction and

any of the end vertices of this edge has negative minimal curvature, this edge would carry a

large weight. We examine the effect of this weighting scheme on the projection as follows.

Consider any matrix Y ∈ Rn×k, it can be shown that

1
2

∑

ij

Tij ||yi − yj ||2 = tr
(
Y T (D − T)Y

)
= tr(Y T MY), (6.1)

where Y = [yT
1 |yT

2 | . . . |yT
n]T and each yi, a row vector, is seen as a k-dimensional point. Let

M = ΞΛΞT be the eigenvalue decomposition. The first (smallest) k eigenvectors of Ξ can

be denoted, in column and row vector format, by Ξ[1...k] = [ξ1|ξ2| . . . |ξk] = [uT
1 |uT

2 | . . . |uT
n]T .

It is known that when Y = Ξ[1...k], i.e., yi = ui, i = 1 . . . k, Equation 6.1 is minimized,

under the constraint that the columns of Y are of unit length. With a large weight Tij ,

CHAPTER 6. SEGMENTATION DRIVEN BY SEGMENTABILITY AND SALIENCE 88

Equation 6.1 should be minimized with small ||yi−yj ||2. Since ui and uj are the minimizers,

it induces that ||ui − uj ||2 should be small, given a large Tij .

Similar to Section 6.2.1, we obtain the projection X̃ = Ξ[1...k]ΞT
[1...k]X. It follows that

the squared distance between two embedded vertices, x̃i and x̃j (two rows of X̃), is

||x̃i − x̃j ||2 = ||(ui − uj)ΞT
[1...k]X||2 ≤ ||ui − uj ||2||ΞT

[1...k]X||2.

Given a large Tij , ||ui−uj ||2 is relatively small as reasoned above; therefore ||x̃i−x̃j ||2 should

also be relatively small, since ||ΞT
[1...k]X||2 is a constant. Thus for each pair of vertices, a

larger Tij suggests that their embeddings should be closer to each other. With the way the

weights in T are defined, mesh vertices from a concave region are to be pulled closer to

each other after the projection, helping form a constriction in the projection space between

the two parts. This is illustrated in Figure 6.3(c), where we see that the concavity between

the handle part and the body part of the cheese mesh leads to an aggressively constricted

region in the M -projection, thus a greatly enhanced segmentability. It is worth pointing

out that the concavities from the circular dents in the body part do not contribute to any

segmentability, as they are “contained” within the shape and do not influence the resulting

outer contour of the M -projection. Therefore, only the handle part, but not the dents, is

to be segmented off the body part and this is intuitive (see Figure 6.19(b)).

6.2.3 Contour Extraction and Pre-processing

Our segmentability analysis is based on the outer contour of a 2D L-projection or a M -

projection. Therefore we need to extract the contour of a projection first. This is done by

rendering in black the faces of the projected mesh against a white background and tracing

the outer boundary of the resulting binary image. In our application, we set the image

resolution to 200 × 200. As the mesh is connected, so is the rendered region. Ignoring

interior holes, which can be caused by the openings of the mesh piece, we obtain a single

continuous outer contour of the 2D projection. Since the traced contour consists of discrete

pixels and is usually jaggy, we smooth it first using truncated Fourier descriptors (FDs)[142].

Intuitively, low-frequency FDs correspond to the smooth and approximate shape of the con-

tour, while high-frequency FDs correspond to local noise on the contour. In our smoothing,

low-frequency FDs are added one by one until the reconstruction error (measured by the

overall distance between corresponding points from the reconstructed contour and the orig-

inal contour) falls below a threshold, which is set to be 0.5% of the scale of the contour.

CHAPTER 6. SEGMENTATION DRIVEN BY SEGMENTABILITY AND SALIENCE 89

(a) original contour (b) smoothed contour (c) simplified contour

Figure 6.4: Contours obtained from the L-projection of the foot model. Plot (a) shows the
original contour with 742 vertices traced from the rendered mesh. The smoothed contour
is shown in plot (b). Plot (c) is the simplified contour, with its 50 vertices drawn as small
dots for illustration purpose.

The next preprocessing step is to simplify the smoothed contour, in order to reduce the

computational cost of the subsequent operations. Many contour simplification algorithms

are available. We adopt the greedy algorithm described by Latecki and Lakämper [67].

Roughly speaking, the simplification is done by iteratively removing a contour vertex that

changes the shape of the current contour the least. In our application, we always reduce

the size of a contour down to 50 vertices. Figure 6.4 shows the contours obtained from the

L-projection in Figure 6.2(b).

From now on, we denote the smoothed and simplified contour by ζ.

6.2.4 Segmentability Analysis

Segmentability Score We relate the segmentability of a mesh to the segmentability of

the 2D shape enclosed by its corresponding ζ. For a 2D shape, its segmentability is clearly

related to its convexity/concavity: the more concave a shape is, the more segmentable it

tends to be. Denote by A(ζ) the area enclosed by a contour ζ; the perimeter and the convex

hull are denoted by P (ζ) and CH(ζ), respectively. The following convexity measures are

well-known and simple to compute:

C1(ζ) =
A(ζ)

A(CH(ζ))
, C2(ζ) =

P (CH(ζ))
P (ζ)

.

It is easy to see that C1, C2 ∈ (0, 1] and they are equal to 1 if and only if ζ is convex.

Past research has shown that neither measure provides a completely satisfactory measure

of convexity: C1 struggles with boundary defects that do not impact shape area, and C2

CHAPTER 6. SEGMENTATION DRIVEN BY SEGMENTABILITY AND SALIENCE 90

is sensitive to noise. However, they appear to complement each other [149]. Motivated by

this, we propose to use the following simple extension as our convexity measure,

C(ζ) = max{C1(ζ), C2(ζ)wcvx},

where the exponent wcvx ≥ 1 not only ensures that C ∈ (0, 1] and C = 1 if and only if ζ

is convex, but also addresses possible differences in scale between C1 and C2. Throughout

our experiments, we set wcvx = 4.

C
1
 = 0.3878

C
2
 = 0.9823

C =0.9311

C
1
 = 0.7987

C
2
 = 0.8242

C = 0.7987

C
1
 = 0.3858

C
2
 = 0.7962

C = 0.4019

Figure 6.5: Convexity measures of three shapes based on area and perimeter.

For a telling example which illustrates the advantage of our convexity measure, consider

the rough outlines of the letters I and R, shown in Figure 6.5. By C1, I is deemed to be

more concave and thus more segmentable than R; this is counter-intuitive. With the new

measure C, Cwcvx
2 would prevail over C1 for I and return a more reasonable result. The new

measure can also properly rank the convexity between the outlines of the letters I and C.

The potentially large discrepancies between C1 and C2, e.g., for I, explains our preference

of using the max operator over a convex combination. The inability of either C1 or C2 to

properly capture the convexity of a shape should not diminish the utility of the other.

Finally, with the convexity measure in place, we define the segmentability score, S(ζ),

of a contour ζ as

S(ζ) = 1− C(ζ). (6.2)

Clearly, S(ζ) ∈ [0, 1) and the larger S(ζ) is, the more segmentable ζ is.

Articulation Invariance Despite a correlation between convexity and segmentability,

they are not exactly the same concept. Naturally, the result of structural-level segmentation

should be invariant to shape articulation and this should also hold for a segmentability mea-

sure. However, the same cannot be said about convexity/concavity. The effect of bending

CHAPTER 6. SEGMENTATION DRIVEN BY SEGMENTABILITY AND SALIENCE 91

(a) C = 0.9557. (b) C = 0.9084.

(c) C = 0.7809. (d) C = 0.6275.

Figure 6.6: Use of MDS to enhance the performance of segmentability measure. The shapes
in (a) and (b) compromise the effectiveness of C. However, they can be “stretched out” via
MDS using inner distances, as shown in (c) and (d), respectively, for more intuitive results.

can compromise the performance of the convexity measure C, and hence the segmentability

measure S. The contours illustrated in Figure 6.6(a, b) give two such examples: though

the two contours are sufficiently segmentable (due to the deep concavity), their convexity

measures are in fact close to 1 (segmentability close to 0).

Our solution to this problem involves normalizing contours with respect to shape ar-

ticulation, using Multi-Dimensional Scaling (MDS) [27]. Roughly speaking, given pairwise

distances between a set of points, MDS embeds the points in Euclidean space, while pre-

serving the original distances through the new Euclidean distances as much as possible.

If there is a distance measure between contour vertices that is insensitive to bending, we

can use MDS based on this distance measure to re-embed the contour vertices, and the

resulting contours are therefore invariant to articulation. We resort to inner distances [77]

to achieve this goal. The inner distance between two vertices u and v on a contour ζ is

defined as the length of the shortest path between u and v which lies in the interior of ζ.

CHAPTER 6. SEGMENTATION DRIVEN BY SEGMENTABILITY AND SALIENCE 92

As shown in Figure 6.6 (a) and (b), the red dotted lines depict the shortest paths between

the corresponding contour vertices inside the shape. Ling and Jacob [77] first propose the

use of inner distances for the retrieval of articulated shapes and they have shown that inner

distances are insensitive to shape articulation.

A natural way to compute pairwise inner distances between n contour vertices is to

first construct a visibility graph, where the nodes are the contour vertices and each pair

of nodes are connected by an edge if and only if the line segment between them are inside

the contour. After the visibility graph is constructed, the inner distance between any two

contour vertices is simply their shortest graph distance in the visibility graph. A simple

implementation of this method has a complexity of O(n3), due to the construction of the

visibility graph. Theoretically speaking, there is an optimal O(n) scheme for finding inner

distances emanating from a vertex, leading to an overall complexity of O(n2). However,

this scheme relies on the linear-time polygon triangulation algorithm of Chazelle [22], which

is generally believed to be extremely hard to implement. We have opted to implement the

simplistic O(n3) approach since each contour ζ we need to analyze has only 50 vertices after

the contour simplification.

After the pairwise inner distances are computed, we perform MDS to embed the contour

onto a plane. The inner distances are approximated by Euclidean distances via MDS and as

such, the contour is normalized against bending. Two results of MDS via inner distances are

shown in Figure 6.6(c, d). The convexity measure C can then be applied to the normalized

contours, successfully recognizing the two shapes with high segmentability scores.

Segmentability Analysis Procedure As illustrated in Figure 6.1, supposing the mesh

pieces that have not been classified as output parts are stored in the set Q, our algorithm

always selects from Q the mesh piece Mc with the largest surface area for the current

segmentation. Figure 6.7 recapitulates the segmentability analysis on Mc, where returned

value TRUE indicates Mc is segmentable and vice versa. η (= 0.1) is the segmentability

threshold value.

To consider both structure and geometry segmentabilities, we conduct contour analysis

on ζL and ζM in order. For each contour, we also examine its normalized counterpart, ζ∗L
or ζ∗M , via MDS to achieve articulation invariance. If all the four thresholding tests fail

(FALSE returned), Mc is deemed not segmentable and becomes an output part; otherwise

Mc is to be segmented by our salience-driven cut algorithm, which we discuss next.

CHAPTER 6. SEGMENTATION DRIVEN BY SEGMENTABILITY AND SALIENCE 93

1. Compute ζL, the contour of the L-projection of Mc. If S(ζL) > η, return TRUE.

2. Compute the MDS-embedding ζ∗L of ζL via inner distances. If S(ζ∗L) > η, return
TRUE.

3. Compute ζM , the contour of the M -projection of Mc. If S(ζM) > η, return TRUE.

4. Compute the MDS-embedding ζ∗M of ζM via inner distances. If S(ζ∗M) > η, return
TRUE.

5. return FALSE.

Figure 6.7: Contour segmentability analysis procedure.

6.3 Face Linearization

Once the current mesh piece Mc is deemed segmentable, it is subject to the actual segmen-

tation. The segmentation procedure has two steps: arrange the faces of Mc in a sequence,

and search through the sequence to obtain the most salient cut. We call the first step face

linearization and discuss it in this section. The second step is discussed in Section 6.4.

Recall that we have defined the part-aware graph G̃c in Section 3.5 and the induced

graph distances have been used for the segmentation algorithm in Chapter 4. Supposing G̃c

is the corresponding part-aware graph of Mc, we want to use G̃c again to derive the face

sequence for Mc. However, we cannot construct G̃c for Mc in the same way any more. This

is because the current algorithm segments iteratively and the intermediate mesh piece Mc

is open. Since an open mesh in general does not admit a well-defined enclosed volume, the

VSI-distance component in G̃c is no longer robust. Therefore we only consider the geodesic

and angular distances and build the corresponding graph G̃′
c similarly. Although G̃′

c is no

longer equipped with VSI-distance, the face linearization and salience-driven cut are still

able to ensure high quality segmentation results.

In order to linearize the faces effectively so that the meaningful cuts are preserved in

the resulting sequence, we first need to find two sample faces which are from two different

parts of Mc. We discuss this issue in Section 6.3.3. Assuming we have already obtained G̃′
c

and the two sample faces fs and ft, the computation of the sequence per se turns out to be

fairly simple. Let’s denote by dis and dit the graph distances in G̃′
c between fi and fs, fi

CHAPTER 6. SEGMENTATION DRIVEN BY SEGMENTABILITY AND SALIENCE 94

and ft, respectively. We then define a vector ẽ, where ẽ(i) = dis − dit. By sorting ẽ,

[ẽs, %] = sort(ẽ), (6.3)

we have ẽs as the sorted vector, say in ascending order, and % as the index vector of ẽs. For

example, if ẽ(a) ≤ ẽ(b), a would proceed b in %. % is the face sequence we seek.

Although simple, the sequence % has a variety of nice features that make it suitable to be

used for our salience-driven cut search. We discuss this sequence in detail in the following.

6.3.1 Derivation and Properties

In Chapter 5, we have adopted sub-sampling and the Nyström method to compute the

approximate eigenvectors of W to reduce complexity. If we sample only two faces, the sub-

block A in Equation 5.1 reduces to [1 α; α 1], with 0 ≤ α ≤ 1 being the affinity between

sample faces fs and ft. The sub-block B can be written as

B =

[
. . . xi . . .

. . . yi . . .

]
, (6.4)

where xi (yi) is the affinity between fi and fs (ft). For the simplicity of notation, we assume

that the faces are re-indexed so that fs and ft are the first two faces and fi, 3 ≤ i ≤ n, is

an un-sampled face. Note that this does not affect the properties of %.

Following the formula in Equation 5.2, it is not hard to show that the two approximated

eigenvectors using only two samples are

Ẽ =
1
2

1 −1

1 1

.
yi+xi
1+α

yi−xi
1−α

.

. (6.5)

So the component-wise ratio of the second eigenvector (Ẽ·2) to the first eigenvector (Ẽ·1) is

e =
[
−1, 1, . . . ,

(
yi − xi

yi + xi
· 1 + α

1− α

)
, . . .

]
. (6.6)

If we consider e as a 1D embedding of the mesh faces, we have e(fs) = −1, e(ft) = 1, and

e(fi) = yi−xi

yi+xi
· 1+α

1−α . Let’s write the affinities between the faces based on their distances as

α = e−dst/2σ2
, xi = e−dis/2σ2

, and yi = e−dit/2σ2
, where dis and dit are mentioned above,

and dst is the graph distance between sample faces fs and ft. We prove two properties of e.

CHAPTER 6. SEGMENTATION DRIVEN BY SEGMENTABILITY AND SALIENCE 95

Proposition 6.1. ∀fi, e(fs) ≤ e(fi) ≤ e(ft). This means that the embeddings of the two

sample faces fs and ft are at the two ends of e.

Proof. We only prove e(fi) ≤ e(ft). e(fs) ≤ e(fi) can be proved similarly.

e(fi) ≤ e(ft) ⇔ yi − xi

yi + xi
· 1 + α

1− α
≤ 1

⇔ (yi − xi)(1 + α) ≤ (yi + xi)(1− α)

⇔ αyi − xi ≤ −αyi + xi

⇔ α ≤ xi

yi

⇔ e−dst/2σ2 ≤ e(dit−dis)/2σ2

⇔ −dst ≤ dit − dis

⇔ dis ≤ dit + dst.

Since the graph distance in G̃′
c is a metric, satisfying the triangle inequality, the last in-

equality holds. This concludes our proof.

Proposition 6.2. Sorting vectors e or ẽ produces the same face sequence.

Proof. For e, let’s denote F (fi) = yi−xi
yi+xi

· 1+α
1−α . Representing β = xi/yi, we can also write

F (β) = 1+α
1−α · (1− 2

1/β+1). Clearly F (β) is monotone and inversely proportional to β. Mean-

while, as β = e−dis/2σ2
/e−dit/2σ2

= e−(dis−dit)/2σ2
, β is monotone and inversely proportional

to (dis − dit). Therefore F is monotone and proportional to (dis − dit). This implies that

except for the two sample faces, the face sequences obtained by sorting e and ẽ are identical.

Due to the triangle inequality, it is easy to see that (dis − dit) is minimized when i = s and

maximized when i = t. As a result, the two sample faces are sitting at the two ends of ẽ.

Plus Proposition 6.1, we prove that the two sequences are the same. Note that we have

assumed that neither e nor ẽ has equal entries. If they do, we can mandate that the sorting

algorithm be stable to ensure the same sequence.

With Proposition 6.1 and Proposition 6.2, we have:

• fs and ft are always at the two ends of sequence %, and

• the sequence % from Equation 6.3 is the same with the sequence obtained by sorting

e from Equation 6.6.

CHAPTER 6. SEGMENTATION DRIVEN BY SEGMENTABILITY AND SALIENCE 96

(a) (b)

Figure 6.8: Characteristics of a face sequence produced for a synthetic 2D shape. Plot (a)
shows the shortest paths between faces fi, fj and the sample faces fs and ft, where the
arrow at the bottom indicates the rough direction of the corresponding face sequence. In
plot (b), the sequence is shown with gray-scale colors: each jump in the sequence causes
an equal shift in the color space. The meaningful cut is available in such a sequence, as
indicated by the vertical dashed line.

First, this implies that we must select two sample faces from two different parts; otherwise,

counter-intuitive results would be produced, since any cut sought from % would have to

separate the samples which are at the two ends of % into different parts. Secondly, as e is

spectral-based, % can be considered spectral-based as well.

As a concrete example, Figure 6.8 illustrates how the faces from a synthetic 2D shape

are arranged in %, given a sample pair. In this toy example, the distance we use is the inner

distance (Section 6.2.4). For faces fi and fj as configured in plot (a), it is apparent that

djs − djt < dis − dit; therefore fj is closer to fs in % than fi is to fs. The face sequence

roughly follows the order: fs → . . . → fj → . . . → fi → . . . → ft. Plot (b) color-codes the

corresponding sequence, where brighter colors indicate positions closer to fs. The migration

of the brightness attests to our analysis.

There is no doubt that arranging faces in % could potentially eliminate some meaningful

cuts. However, the cut producing the two parts from which the sample faces were selected are

most likely to be well preserved. Figure 6.9 gives an intuitive explanation. In plot (a), let’s

first presume that the two sample faces fs and ft are from the tips of the second and the third

fingers, which is what our sampling approach (Section 6.3.3) tends to do. We also assume

that the joint region between the second finger and the palm contains a single face fi. Based

on the previous analysis, we know that fs is at one end of % and, clearly, the faces between fs

and fi on the surface sit between fs and fi in %. We have shown that the position of fi in % is

CHAPTER 6. SEGMENTATION DRIVEN BY SEGMENTABILITY AND SALIENCE 97

(a) (b)

(c) (d)

Figure 6.9: The effectiveness of the face sequence in preserving desirable cuts. (a): the
shortest paths between faces in an ideal case where the second finger has a one-face joint
region with the palm. (b): color coding for the face sequence of the ideal case. (c-d): color
coding for the face sequences produced by two sample pairs in a realistic case where the joint
region is wide. The dashed lines indicate the meaningful cuts preserved in the corresponding
sequences.

CHAPTER 6. SEGMENTATION DRIVEN BY SEGMENTABILITY AND SALIENCE 98

determined by dis−dit. Since dis−dit = (dis +dij)−(dit +dij) = djs−(dit +dij) ≤ djs−djt,

where the last step is based on the triangle inequality, i.e., dit+dij ≥ djt, fj must sit between

fi and ft in %. This is true for any fj outside the second finger; therefore, a clean cut which

segments the second finger off the palm is guaranteed in %. Plot (b) shows the color coding

of %. In reality such an ideal case seldom exists and a joint region between parts is often

wide, as shown in plot (c). However, the face ordering from the ideal case can still be well

maintained in the resulting sequence from (c), thanks to the use of geodesic distance and

the continuity of our distance metric defined on surfaces. This is why a similar color coding

is observed in (c). Plot (d) shows the sequence when both sample faces are placed near the

part boundaries. It is not hard to similarly verify that the sequence from the blue triangle

side does not invade beyond the dashed line into the palm region until the entire second

finger is covered. In all these cases, the desirable cuts indicated by the dashed lines are thus

always present in the corresponding face sequences.

That being said, the face sequence % can effectively preserve meaningful cuts, provided

that the two samples are chosen from two different parts (Section 6.3.3). In our experiments,

we have found that such a sequencing technique works quite well. Since part boundaries

typically follow concave regions, the shortest path between two faces often travels through

the openings (if exist) of concave regions. In other words, concave regions essentially help

narrow down the joint regions between parts (similar to the ideal case in Figure 6.9(a)),

enhancing the effectiveness of %.

With the face sequence % of the current mesh piece Mc computed, we discuss how to

find the best cut from % to divide Mc into two parts in Section 6.4. In the next section,

we examine how % relates to Normalized Cut. This section can be safely skipped without

affecting the understanding of subsequent sections.

6.3.2 Relation to Normalized Cut

Normalized Cut [115] is probably one of the most well-known spectral clustering techniques.

In this section, we show the relationship between our face sequence % and the Normalized

Cut. As briefed in Section 2.3.1, Normalized Cut seeks the second smallest eigenvector of

the generalized eigenvalue problem

(D −W)v = λDv. (6.7)

CHAPTER 6. SEGMENTATION DRIVEN BY SEGMENTABILITY AND SALIENCE 99

Recall that D is a diagonal matrix with its diagonals being the row sums of W . Then the

entries of this second smallest eigenvector are thresholded to produce two groups: entries

with values above the threshold belong to one group and entries with values below the

threshold belong to the other group. Weiss [131] defines the normalized affinity matrix as

N = D− 1
2 WD− 1

2 , (6.8)

and it is shown that ĕ, the component-wise ratio of the second largest eigenvector to the

first largest eigenvector of N , is equal to the second smallest generalized eigenvector of

Equation 6.7. Therefore, thresholding ĕ is equivalent to applying the Normalized Cut.

In order to reduce the complexity involved in dealing with N , the Nyström method could

also be applied to N as in Section 5. Let’s denote by ê the approximate eigenvector for ĕ.

In Appendix A, we prove that sorting ê or ẽ produces the same face sequence, if only two

samples are used. Having said that, we make the observation that the face sequence % we

derive for the salience-driven cut is the same with that derived from the Normalized Cut

under our sampling configuration. From a different perspective this property speaks well for

the merit of %. Of course, such a property alone does not guarantee an effective sequence;

it is only so when the two samples are selected appropriately.

6.3.3 Sample Selection

We have assumed that the two sample faces fs and ft are from two different parts of the

mesh piece Mc, so that the face sequence % can preserve the meaningful cuts. We discuss

in this section how to find two faces from different parts robustly.

One naive solution is to find two faces which are farthest away in G̃′
c. This can be

efficiently carried out approximately through the farthest-point sampling scheme described

in Figure 5.3. The rationale behind this is that distant faces tend to reside on different

parts. However, this method easily fails in practice because the two samples can be placed

in different (deep) concave regions from a single part. Such an example is the cheese model

shown in Figure 6.3(a). Because of the deep concavities caused by the circular dents, the two

samples farthest apart are actually from two of those dents. However, the two salient parts

that we perceive are the handle part and the body part, as segmented out in Figure 6.19(b).

In Figure 6.7, we obtain a contour in each of the first four steps for segmentability

analysis. Suppose that the segmentability test passes in one of the four steps and the

corresponding contour is ζ. As ζ reveals and enhances the part structure of Mc, our

CHAPTER 6. SEGMENTATION DRIVEN BY SEGMENTABILITY AND SALIENCE 100

sampling scheme can make use of ζ to find samples from different parts of Mc robustly.

Briefly, we find two contour vertices s̃ and t̃ that are from different parts of ζ and map them

back to the surface of Mc to locate fs and ft.

Before describing the details, we first introduce the concept of integrated bending score

or IBS at a vertex along a contour with respect to the whole contour. Given a vertex p on

ζ, its IBS is defined as

Ωp =
∫

q∈ ζ−{p}

Ipq

Epq
dq,

where Epq and Ipq denote the Euclidean and inner distances (Section 6.2.4) between contour

vertices p and q, respectively. Note that Ipq

Epq
∈ [1, +∞], and it roughly describes how much

the inner path between p and q bends. Intuitively, if many inner paths emanating from p

bend significantly, Ωp tends to be large, suggesting that p is likely to be on a part separated

by concave regions along ζ. Since ζ is piece-wise linear, we compute the above integral per

line segment ij in ζ, namely, Ωp =
∑

ij∈ζ Ωp(ij).

To compute Ωp(ij), we first calculate the inner and Euclidean distances from vertex p

to vertices i and j; these are Ipi, Ipj , Epi, and Epj . We rely on a linear interpolation along

ij to estimate Ωp(ij). Let l be the length of ij, we have

Ωp(ij) =
∫ l

0

Ipi + q
l (Ipj − Ipi)

Epi + q
l (Epj − Epi)

dp.

After some algebraic derivations, we arrive at

Ωp(ij) =
dbl + (ad− bc)

(
ln(c + dl)− ln(c)

)

d2
,

where a = Ipil, b = Ipj − Ipi, c = Epil, and d = Epj −Epi.

Ideally, we would want to compute the IBS at a vertex with respect to a contour after the

smoothing but before the simplification (Section 6.2.3). Our approach is aimed at achieving

efficiency and it can introduce approximation errors of IBS from both contour simplification

and linear interpolation. However, our experiments verify that these errors are negligible

for the purpose of sampling.

The first sample s̃ is simply selected as the contour vertex which maximizes Ωp, i.e.,

s̃ = argmaxp{Ωp}. This way s̃ tends to reside on a peripheral part that is most isolated

from the core of the shape enclosed by ζ. The second sample t̃ = argmaxq{Is̃q} is selected

as the contour vertex with the largest inner distance to the first sample s̃. Figure 6.10 uses

CHAPTER 6. SEGMENTATION DRIVEN BY SEGMENTABILITY AND SALIENCE 101

s̃

t̃

(a)

s̃t̃

(b)

t̃

s̃

(c)

Figure 6.10: Results of IBS-based sampling on 2D contours: samples s̃ and t̃ are marked by
stars and diamonds. In (c), we compare our algorithm against two variations of farthest-
point sampling. The first one finds two vertices, marked by squares, which are mutually
farthest apart in terms of inner distance. The second one picks two vertices, shown as trian-
gles, which have the largest contour distance. The contour distance between two vertices is
the sum of the magnitude of negative curvatures along the contour between the two vertices.
Since each two vertices divide a contour into two sections, we consider the section giving
the smaller distance.

three increasingly harder test cases to show the advantage of our sampling scheme. IBS

utilizes global information and robust results are produced.

After s̃ and t̃ are found, they need to be mapped to two faces of Mc. To this end, we

find a mesh vertex v that is closest to s̃ in the corresponding 2D projection. Then from the

faces incident to v, we select the one whose centroid is closest to v on Mc. This is the first

sample face fs and the other sample face ft is found similarly. Through this, we locate two

faces from two different parts. It is not necessary to find sample faces that “accurately”

correspond to s̃ and t̃. Real mapping examples on meshes can be found in Figure 6.15.

6.4 Salient Cut

Finally, we are ready to discuss how to find a good cut from the face sequence %. Simply

put, our strategy is to go through %, measure the salience of the cut at each position, and

choose the cut with the maximum salience.

6.4.1 Part Salience

The concept of salience has been proposed by Hoffman and Singh [51] to measure the

strength of a part in terms of human perception. They conclude that part salience depends

CHAPTER 6. SEGMENTATION DRIVEN BY SEGMENTABILITY AND SALIENCE 102

(a) size (b) boundary strength (c) protrusiveness

Figure 6.11: Effect of the three factors of part salience. In each plot, the salience of part
M2 is higher than that of M1 because M2 is larger (a), has a more concave boundary (b),
and is more protrusive (c).

on three factors: size, boundary strength, and protrusiveness. Figure 6.11 shows the effect

of these three factors with 2D illustrations. We discuss how to measure them along with

the cut search procedure in the following.

6.4.2 Salience-driven Cut Search

Salience has been utilized previously for mesh segmentation, such as by Lee et al. [69]

and Page [93]. However, previous works only use it passively, in the sense that salience is

measured to tell whether the computed parts are good enough; if not, the parts are rejected

or post-processed somehow (e.g., merged with adjacent ones). Such a passive way of using

salience does not make the most of it for segmentation. In our application, we measure

salience along % to find the best segmentation. In this sense, our method is salience-driven.

Supposing the current mesh piece Mc has n faces, there are n − 1 locations to cut %.

Each cut location in % corresponds to a segmentation on Mc, dividing the surface into two

regions. We judge the quality of a cut by the salience of the region with smaller size; this

region is often a peripheral part that we wish to cut off the core body of Mc. For measuring

the size of a region, one may use its enclosed volume. However, as a region is typically open

and its enclosed volume is not well-defined in general, we use its surface area to measure

size. Denoting by Ms the region with smaller surface area, we define the salience of Ms as

a weighted sum of the three salience factors:

Υ(Ms) = wsΥs(Ms) + wbΥb(Ms) + wpΥp(Ms), (6.9)

where Υs(Ms), Υb(Ms),Υp(Ms) ∈ [0, 1] represent the measures for size, boundary strength,

CHAPTER 6. SEGMENTATION DRIVEN BY SEGMENTABILITY AND SALIENCE 103

and protrusiveness, respectively; 0 ≤ ws, wb, wp ≤ 1 and ws + wb + wp = 1.

The size of Ms is defined relative to the entire Mc, i.e.,

Υs(Ms) =
Area(Ms)
Area(Mc)

.

Letting ∂Ms be the set of the boundary edges between the two regions, boundary strength

Υb(Ms) is accumulated over ∂Ms,

Υb(Ms) =
1
l

∑

ei∈∂Ms

li
weight(ei)

wmax
,

where li is the length of edge ei, l =
∑

ei∈∂Ms
li, weight(ei) is the edge weight defined as

in Equation 4.20, and wmax = max({weight(ei) | ∀ei ∈ ∂Ms}). Intuitively, if a boundary

contains long edges from concave regions, then its strength is high. In order to achieve

efficiency when searching through %, we need to update the salience factors in constant time

as a face is inserted to or removed from Ms. By tracking faces and their edges during the

searching, ∂Ms, Υs(Ms), and Υb(Ms) can all be updated in constant time. Clearly, both

Υs(Ms) and Υb(Ms) are in the range [0, 1].

Following Hoffman and Singh [51], we use the surface area and the base area of Ms to

measure its protrusiveness. The base area of Ms is the area subtended by ∂Ms; we denote

it by Area(∂Ms). To update Area(∂Ms) in constant when searching through %, we follow

the strategy from [93] to approximate Area(∂Ms) and measure the protrusiveness of Ms as

Υp(Ms) = 1− Area(∂Ms)
Area(Ms)

≈ 1− 4
√

λ1λ2

Area(Ms)
.

Area(∂Ms) is approximated by 4
√

λ1λ2, where λ1 and λ2 are the largest two eigenvalues of

the covariance matrix of the mesh vertices contained in ∂Ms. This means that Area(∂Ms)

is approximated by the area of the bounding box of the boundary vertices. Good approxi-

mation is achieved when the vertices in ∂Ms are coplanar. Notice that constant time update

for Υp(Ms) is possible since both the mean and the covariance matrix of a point set can

be updated in O(1) time after the insertion or deletion of a point. Specifically, let µ and Σ

be the mean and covariance matrix of m points. When a new point p is added (deletion is

similar), the mean and covariance matrix can be updated as

µ′ =
mµ + p

m + 1
, Σ′ = Σ + ppT + mµµT − (m + 1)µ′µ′T .

CHAPTER 6. SEGMENTATION DRIVEN BY SEGMENTABILITY AND SALIENCE 104

Most of the time, Area(∂Ms) ≤ Area(Ms). When a counter case happens, we simply set

Υp(Ms) to 0, since such cases are typically caused by sufficiently flat Ms. Clearly, we have

Υp(Ms) also in the range [0, 1].

The cut search procedure starts from one end of % and visits one face at a time sequen-

tially. The salience score in Equation 6.9 is updated along the way. Once the area of Ms

becomes larger than half of the area of Mc, Ms switches to its complement region. During

the search, Ms is most likely to form a single component (a component refers to a connected

surface region) as the graph distance from G̃′
c used to derive % is continuous. To address

the problem that Ms may consist of disconnected regions, we could maintain a connected

“meta” patch, and only work on this meta patch rather than work on all the faces of Ms.

In practice, however, we found this unnecessary. This is because disconnected faces in fact

rarely emerge, and even if they do, their population is negligible. For better efficiency, we

simply treat Ms as a single component and this does not affect the segmentation quality at

all. Upon finishing searching, we select the cut that generates the largest salience score and

split Mc into two parts. We denote these two parts by M′
s and M′

s, where M′
s

⋂M′
s = ∅

and Mc = M′
s +M′

s.

Figure 6.12 gives an example salience-driven cut search on a bird model, where the two

samples are located at the tips of the two wings. Plot (a) shows the curves of the three

equally weighted salience factors and the combined salience. The size curve is like a hat

function because we always consider the smaller region when computing the salience. There

are three major peaks along the salience (red) curve, all corresponding to meaningful cuts on

the bird model as shown in plots (b-d). Since the largest salience, 0.71, is achieved at position

11116 in %, the segmentation result shown in (d) is returned. In this particular example,

the boundary strength factor plays the dominant role in determining the cut position.

Empirically, the edge boundary between M′
s and M′

s could contain certain local arti-

facts. Before the actual splitting, we therefore add a boundary enhancement step to smooth

the boundary locally, which is described in the next section. This smoothing operation is

also capable of making both M′
s and M′

s contain a single component, if they do not initially

after the cut search procedure. We have never encountered a single case in which either of

them consists of multiple components after the boundary enhancement step.

The final question about the cut search procedure is how to weight the three salience

factors in Equation 6.9. Through experimental study, we observe that the size factor should

take the least weight. Depending on whether it is the outer contour of an L-projection or

CHAPTER 6. SEGMENTATION DRIVEN BY SEGMENTABILITY AND SALIENCE 105

0 4000 8000 12000 16000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

size

(0.68, 7888) (0.71, 11116)
(0.61, 4544)

salience

cut strength

protrusiveness

(a) salience curves

(b) position 4544 (c) position 7888 (d) position 11116

Figure 6.12: An example of salience-driven cut search. In plot (a), the curves of the three
salience factors and the combined salience are shown, where the x-axis is the position in the
face sequence % and y-axis is the salience score. We identify three major peaks indicated by
the arrows; their salience scores and positions are given in the brackets. Plots (b-d) show
the three segmentations on the mesh surface with respect to the three peaks identified.

CHAPTER 6. SEGMENTATION DRIVEN BY SEGMENTABILITY AND SALIENCE 106

an M -projection that has passed the segmentability test (see Figure 6.7), either wp or wb

should be emphasized more. Specifically, if ζ is considered segmentable via an M -projection

(L-projection), it implies that the current segmentability is mainly caused by concavity

(protrusion), therefore wb (wp) should assume more weight.

6.4.3 Boundary Enhancement

The initial salient cuts found in the previous section often demonstrate high quality. Some-

times, however, local artifacts may be present along the boundary between M′
s and M′

s.

We utilize morphological operations to fix such local artifacts.

Mathematical morphology has been studied in image processing for a long time. One

is referred to [48] for more details. In our application, we are only interested in two basic

morphological operations: erosion and dilation. Let I be an integer grid, A a binary image

on I, and B a structuring element, the erosion of A by B is defined as

Aª B = {z ∈ I | Bz ⊆ A}, (6.10)

where Bz is the translation of B by a vector z, i.e., Bz = {b + z|b ∈ B}, ∀z ∈ I. Intuitively,

the erosion can be understood as the set of all grid points that the center of the structuring

element B can reach while it moves and is completely contained inside A. The dilation of

A by B is defined as

A⊕ B =
⋃

b∈B
Ab, (6.11)

where Ab = {a+b|a ∈ A}. Similarly, the dilation can be thought as the set of all grid points

that are covered by B when the center of B moves inside A. By first running dilation and

then erosion (this combination is called closing), we could fix some local boundary artifacts.

Figure 6.13 illustrates this idea. In plot (a), the boundary (red curve) between the gray

region and the white region has a local jaggedness in the middle. After a dilation by a

square as the structuring element, the new boundary is shown in plot (b). Finally in (c),

an erosion takes away the green elements in the bottom row and pushes the boundary one

square up. We see that the boundary in (c) is the same with that in (a), except that the

jaggedness in the middle is removed. Note that the four-square hole in the middle is closed

in (c) by the green squares, which is why this combination is called a closing.

After an initial cut is returned, we smooth the boundary between the two parts using a

closing operation. In our context, the structuring element is a virtual 1-ring circle and two

CHAPTER 6. SEGMENTATION DRIVEN BY SEGMENTABILITY AND SALIENCE 107

(a) original boundary (b) boundary after dilation (c) boundary after erosion

Figure 6.13: Fixing local artifacts of a boundary via dilation and erosion.

faces are considered neighbors if they share any vertex. Suppose that each face is labeled

1 or 2 to indicate its part membership. We first find the boundary faces within part 1,

namely, faces with label 1 and adjacent to any face with label 2. Let us call these faces as

part-1-boundary faces. For dilation, we temporarily mark faces from part 2 into part 1 if

these faces (e.g., the green squares in Figure 6.13(b)) are neighbors of any part-1-boundary

face. During erosion, we simply check these temporarily marked faces. For each of them, if

it has any neighbor with label 2, it is eroded back into part 2; otherwise, it stays in part 1

(e.g., the four green squares in Figure 6.13(c)).

Note that smoothing results may be different depending on the working region of a

closing operation. For Figure 6.13, we work on the gray region. It is easy to verify that if we

work on the white region: first dilate from the white region into the gray region and then

erode, the boundary would stay unchanged. Therefore, in practice we do a closing operation

from either side separately, and choose the result that causes more membership swaps. This

implies that the local artifacts along a boundary are better fixed. Also, we first smooth

with larger structuring element (3-ring circle), and then smooth with smaller structuring

element (1-ring circle). Through this, not only can relatively large local artifacts be fixed,

but a boundary is also smoothed with fine granularity. We found that this produces better

boundaries than using a single structuring element. Figure 6.14 shows how the morphology-

based smoothing enhances the boundary between the wing and the body of the bird model

(segmentation result for the entire model is shown in Figure 6.19(a)). We notice that several

local jaggedness are eliminated. Since we do not allow boundaries to cross faces, a final

boundary may not be completely smooth due to tessellation artifacts. This is a limitation

of our smoothing scheme.

CHAPTER 6. SEGMENTATION DRIVEN BY SEGMENTABILITY AND SALIENCE 108

(a) before smoothing (b) after smoothing

Figure 6.14: An example of boundary smoothing based on morphology.

6.5 Experimental Results

Complexity In each iteration, the complexity of the cut search is linear as the salience

factors can be updated in constant time at each position. The morphological operation for

boundary enhancement is also no more complex than linear. Therefore the complexity of

the whole algorithm is dominated by the operations before a face sequence is computed.

For obtaining L- or M -projections, we apply ACE [60], a multi-level method, to compute

the second and third smallest eigenvectors of L and M . Since the asymptotic complexity of

ACE is not reported by the authors, we denote it by O(Cace). The complexities associated

with contour extraction, pre-processing, and face sampling are all negligible. Computing

a sequence % in Equation 6.3 has a complexity of O(n log n). Supposing that the mesh is

eventually segmented into k parts, k − 1 iterations are needed and the entire complexity is

roughly O
(
(k − 1) · Cace

)
+ O

(
(k − 1)n log n

)
. Empirically, ACE runs efficiently, especially

for L-projections when only integers are involved in L.

Overview of experiments In this section, we first give a concrete example of our al-

gorithm in iterations. After that, we present another two examples to show the merits of

using L-projections or M -projections. Then we test our algorithm on a wide range of models

followed by discussions about the limitations of our algorithm.

In the following experiments, we fix all the free parameters unless otherwise stated

explicitly. We set η = 0.1 as the threshold value for segmentability tests and wcvx = 4 for

convexity measure C. The weights for the salience factors are: ws = 0.1, wb = 0.3, wp = 0.6,

CHAPTER 6. SEGMENTATION DRIVEN BY SEGMENTABILITY AND SALIENCE 109

(a) 1 part (b) 2 parts (c) 3 parts

(a′) L, 0.45 (b′) L, 0.35 (c′) M , 0.24

(d) 4 parts (e) 5 parts (f) L, 0.006

(d′) M , 0.28 (e′) M , 0.21 (g) M , 0.0008

Figure 6.15: Four iterations of salience-driven cut on the bunny model. The color dots
represent the sample faces fs and ft, on the mesh piece to segment. Segmentation results
are given in plots (a-e) and the corresponding projections are in plots (a′-e′). The projections
are via either L or M , as indicated, along with the final segmentability score. Plots (f) and
(g) show the projections of the left ear using L and M , both failing the segmentability test.

CHAPTER 6. SEGMENTATION DRIVEN BY SEGMENTABILITY AND SALIENCE 110

when an L-projection passes the segmentability test, or ws = 0.1, wb = 0.6, wp = 0.3 when

an M -projection passes the segmentability test.

Let’s illustrate our algorithm at work in iterations for the bunny model in Figure 6.15.

Plots (a-e) show the obtained parts in different colors. The brownish part in each plot

is the current mesh piece (Mc) to segment. Plots (a′-e′) show the 2D projections of the

corresponding current mesh pieces, i.e., (a′) is the projection of the current mesh piece in

(a). Plots (f) and (g) are the L- and M -projections of the bunny’s left ear. As neither of

them passes the segmentability test, the ear is not segmented. The final result is shown in

Figure 6.19(d).

Figure 6.16: Low-frequency segmentation of the dinosaur model using L-projections. Shown
on the right is the projection in the first iteration, where the color dots show the correspon-
dence between 2D and 3D. Note that the upper limbs of the dinosaur are “absorbed” into
the body in the first projection, but they will stand out in later iterations.

In certain cases, it is desirable to only focus on the “low-frequency” branching informa-

tion reflected by L-projections, such as the one shown in Figure 6.16. It is counter-intuitive

to segment the dinosaur model along all the concavities over its surface. If we only use

L-projection for structure segmentability detection, the segmentation stops as shown in the

figure. Note that in this test the protrusion and boundary strength salience factors, ωp and

ωb, need to be tuned to obtain such a result. On the other hand, M -projections have their

own merits too. Figure 6.17(a) shows the segmentation result using L-projection only. The

brownish part fails the segmentability test since its projection, shown in plot (b), has a low

CHAPTER 6. SEGMENTATION DRIVEN BY SEGMENTABILITY AND SALIENCE 111

(a) 3 parts (b) L-projection (c) M -projection (d) 4 parts

Figure 6.17: Segmentations of the snake model using L-projections and M -projections. The
brownish part in (a) is not segmentable via the L-projection (b). When the M -projection
(c) is considered, the part is further segmented, as shown in (d).

segmentability score. However, its M -projection enhances the bending and manifests itself

with strong segmentability, resulting in a better segmentation shown in plot (d).

An interesting question one may ask is — can we set a salience threshold as a stopping

criterion to substitute for segmentability? If so, we are able to remove the use of seg-

mentability and only resort to salience for both stopping tests and locating meaningful cuts.

In fact, we have tried this idea but the results were not robust because of the limitations of

the current salience measure. Let’s take the dinosaur model from Figure 6.16 as an example.

Due to many concavities over the surface, salience scores measured for the face sequences

are likely to be high (close to 1) and thus many spurious parts are to be produced if the

stopping criterion is tested against a salience threshold. Segmentability is more suitable

for this task as it better characterizes the two factors (see Section 6.2) that render a shape

segmentable. Instead, the salience works better to rank the cuts based on their quality.

More segmentation results are available in Figure 6.18 and Figure 6.19. In Figure 6.18,

models are segmented only through L-projections, where the goal is to show structure

segmentability at work. Note that for the children model, the skirt in green would have

been segmented by schemes relying on concavity, e.g., when our M -projection is considered;

this is due to the presence of concavities, but it does not appeal to our intuition. With our

algorithm, there is the option of focusing on structure segmentability only which may lead

to a stopping configuration that better reflects shape semantics. Note also that the trident

tines in the Neptune model are not considered segmentable as they are relatively short

compared with the whole trident, thus not segmented out as a significant “low-frequency”

structure. For the man model, however, the toes and fingers are all detected properly, as

CHAPTER 6. SEGMENTATION DRIVEN BY SEGMENTABILITY AND SALIENCE 112

(a) table, 5 parts (b) hand, 6 parts (c) claw, 9 parts

(d) Neptune, 9 parts (e) children, 16 parts (f) man, 31 parts

Figure 6.18: Segmentation results using only L-projections.

CHAPTER 6. SEGMENTATION DRIVEN BY SEGMENTABILITY AND SALIENCE 113

(a) bird, 4 parts (b) mouse, 6 parts (c) oil pump, 9 parts

(d) bunny, 13 parts (e) frog, 14 parts (f) horse, 14 parts

Figure 6.19: Segmentation results using both L-projections and M -projections.

CHAPTER 6. SEGMENTATION DRIVEN BY SEGMENTABILITY AND SALIENCE 114

they are relatively large in their own subparts. Compared with the result via the k-way

spectral clustering shown in the lower plot of Figure 5.8(a) , the segmentation on the hand

model in plot (b) has better boundaries between the fingers and the palm. This improvement

is thanks to the merits of the salience-driven cut. But the palm is not segmented off the

lower arm as the L-projection of the dark brown part does not pass the segmentability test.

Models in Figure 6.19 are segmented using both L-projections and M -projections. As a

result, salient parts caused by concavities are also segmented out. As our algorithm is top-

down, it is less likely to produce over-segmentation, which is typically caused by schemes

based on local optimization, e.g., region growing. This can be understood from the torso

of the bunny and the cheese part in the mouse model, where many local concavities exist.

In practice, we have not observed that high genus would necessarily pose a problem for our

algorithm. In Figure 6.18 and Figure 6.19, the Neptune, children, and oil pump models

all have genus greater than 0 and our algorithm works robustly on them. Timing-wise,

segmenting the frog model with about 100K faces into 14 parts takes 86 seconds, where 47

seconds are spent computing the eigenvectors using ACE for the projections.

Limitations A single segmentability threshold η may not always produce completely sat-

isfactory results. For example, for the oil pump model in Figure 6.19(c), the big green part

is not adequately segmented. Similarly, the eyes of the frog, in Figure 6.19(e), do not pass

the segmentability test either. However, by fine tuning the segmentability threshold η, our

algorithm is able to produce desirable segmentations. The test results on the frog model

and a rabbit model are given in Figure 6.20. In the first column, the original results are

shown. In the second column, we are able to achieve more meaningful results by relaxing η

appropriately. To illustrate the robustness of our sampling algorithm, we show, in the third

column, the working mesh pieces and the outer contours of their M -projections, respec-

tively. The red and green dots mark the samples on the contours and their corresponding

faces on the original mesh found by our sampling algorithm. We see that the samples are

located from different parts of each working mesh piece. Although the use of segmentability

scores has led to a better control than simply specifying a number of segments which is

model-dependent, we realize that the current segmentability measure still requires further

study for higher robustness.

The current salience measure also leaves room for improvement. The segmentation result

on the Igea model in Figure 6.21 gives such an example. Due to the bumpy hair region,

CHAPTER 6. SEGMENTATION DRIVEN BY SEGMENTABILITY AND SALIENCE 115

frog, 14 parts frog, 16 parts sampling

rabbit, 4 parts rabbit, 8 parts sampling

Figure 6.20: Segmentabilty threshold tuning could help produce more meaningful results.
The first column shows the original segmentations with the default threshold; while the
second column shows better results with relaxed threshold. In the last column, we show
the working mesh pieces, their M -projections, and the two samples marked by the red and
green dots.

CHAPTER 6. SEGMENTATION DRIVEN BY SEGMENTABILITY AND SALIENCE 116

(a) automatic cut (b) best cut existent

Figure 6.21: The automatic cut and the best cut from the face sequence of Igea model.

our algorithm produces a sub-optimal result as shown in plot (a). However, a much better

cut actually exists as shown in plot (b). This attests to the fact that the face sequence % is

effective in terms of preserving meaningful cuts; however, a fully robust algorithm able to

automatically find the most meaningful cut is still to be worked on.

6.6 Summary

We improve upon our k-way spectral segmentation algorithm through recursive 2-way cuts,

equipped with segmentability analysis and salience-driven cut search. Although there are

a few free parameters to set, a set of fixed values have enabled us to produce meaningful

parts for a variety of mesh models with different geometric properties. Our algorithm relies

on spectral embeddings and it is driven by segmentability and salience.

Defining a robust stopping criterion for structural-level mesh segmentation is challeng-

ing, as it relates to quantifying how humans perceive parts and this is non-trivial. Our

segmentability analysis copes with this difficulty, via measuring segmentability scores for

outer contours of 2D spectral embeddings (projections). In such 2D embeddings, parts of

3D shapes are revealed and enhanced for easy investigation. Assisted with inner distance and

Multi-Dimensional Scaling (also a spectral approach), our segmentability analysis achieves

robust model-independent stopping criterion.

CHAPTER 6. SEGMENTATION DRIVEN BY SEGMENTABILITY AND SALIENCE 117

Once a mesh piece is considered segmentable by the segmentability analysis, it is divided

into two parts using a salience-driven cut search. Our use of salience differs from previous

algorithms in that we exploit salience actively by incorporating it into the search for parts.

Previous algorithms are unable to do this because it is not clear how to make use of salience

in the large search space for parts. We linearize the faces of a mesh piece in a sequence to

reduce the search space significantly, while still manage to maintain the meaningful cuts in

the sequence. This is made possible by a robust sampling scheme to find two faces from

different parts of the given mesh piece and a linearization scheme with spectral properties.

Our linearization scheme is theoretically sound and its realization turns out to be simple.

Driven by segmentability and salience, this improved algorithm produces robust and

superior segmentation results.

Chapter 7

Conclusion

7.1 Summary

Mesh segmentation is an important research topic in geometry processing and analysis. It

has seen a rapid increase in published works recently. This dissertation studies structural-

level mesh segmentation via the spectral approach. Through the spectral approach, we

model our problems globally using affinity matrices and their eigenvectors and eigenvalues

are utilized to build optimal low-dimensional embeddings, in which our problem is solved

efficiently and effectively. Our algorithms are automatic and work in a top-down manner.

We recapitulate our works as follows.

As a crucial prerequisite for applying the spectral approach, we need to encode part

information into an affinity matrix. To this end, we build a surface metric (Chapter 3)

that is able to capture the part information of a shape. A part-aware metric is helpful

since the segmentation quality benefits not only from a sound segmentation scheme, but

also from an informative part characterization. The design of this metric is based on the

observation that visible regions measured from within a shape change more rapidly across

part boundaries. To the best of our knowledge, our metric is the first that can effectively

capture part information. Besides, our part-aware metric, as a general tool, is demonstrated

to be useful for a variety of other geometry processing applications, including sampling,

registration, and retrieval.

With the part-aware metric that defines distances between mesh faces, we adapt spec-

tral clustering to compute shape parts (Chapter 4). This algorithm is made effective by

addressing several questions related to spectral embedding and K-means in our context.

118

CHAPTER 7. CONCLUSION 119

Due to the algorithm’s high computational complexity which restricts its use, we resort to

sub-sampling (Chapter 5) based on the Nyström method. Through a geometric interpre-

tation of the Nyström method, we propose a practical function to measure the sampling

quality, which suggests a farthest-point sampling scheme to be employed in practice. Our

sub-sampling approach substantially reduces the complexity of the spectral clustering algo-

rithm without significantly sacrificing segmentation quality.

We further improve the autonomy and quality of our segmentation algorithm through

a segmentability measure and a salience-driven cut search procedure (Chapter 6). We

identify two factors that contribute to prominent parts of a shape, or in other words, make

a shape segmentable. Since the two factors are difficult to measure on the original mesh,

we propose spectral methods to transform the problem into the 2D domain, where the

two factors are enhanced and readily measured. This leads to a segmentability score and

we use a fixed threshold value against it to define a stopping criterion. Without letting

users provide a different number of segments for each input model, this stopping criterion is

model-independent and hence improves the autonomy of the algorithm. We also incorporate

part salience into the search for parts to enhance segmentation quality. To this end, we

arrange mesh faces into a sequence with spectral properties. Thanks to the substantially

reduced search space for parts, we are able to realize a salience-driven segmentation through

a line search, which would otherwise be too expensive to execute. Meanwhile, our sampling

scheme ensures that the desirable cuts are well preserved in the sequence. This improved

algorithm works via recursive 2-way cuts. Although this improved algorithm in general

achieves higher autonomy and segmentation quality, the first one using K-means is more

efficient as it obtains all the parts simultaneously. In addition, a user may sometimes want

to have direct control over the number of segments, for example, when models need to be

segmented into the same number of segments for correspondence analysis.

We believe that the effectiveness of a mesh segmentation algorithm can be attributed

to two factors: robust measures for the characteristics of the desired segments and a well-

designed procedure to compute such segments with the specified characteristics. In our case,

we have a part-aware metric, as well as segmentability and salience to specify the character-

istics of the parts we seek from different perspectives, and they are utilized effectively based

on spectral techniques. When designing their own algorithms, readers could consider how

to make their algorithms perform well on these two factors. As our algorithms are modular,

a reader could reuse or improve upon some components of our algorithms. For example, a

CHAPTER 7. CONCLUSION 120

user can take our spectral embedding method using the part-aware metric, but make use

of other clustering algorithms, e.g., the mean shift clustering [138], or adopt our line search

procedure with their own part measures incorporated rather than the salience measure.

The segmentation algorithms developed in this thesis have been demonstrated to work

effectively on a variety of models. When a mesh is noisy, our distance measures, especially

the angular distance, may not reflect the part structures truthfully. In such cases, we

can first apply a few iterations of Laplacian smoothing [123]. As our algorithms count on

distances between faces measured across mesh surfaces via mesh dual graphs, inferior mesh

connectivities could hinder the performance of our algorithms, especially around boundary

regions. In addition, even if two parts are only connected by a few triangle, the distances

between the faces from the two parts may be significantly reduced. Imagine two fingers

from two arms touching each other. In this case, our algorithms may produce less than

ideal segmentation results. We plan to look into this issue in the future. Other than this,

we point out another three interesting future research directions in the following.

7.2 Future Directions

Enhanced Salience Measurement The robustness of the salience measure directly af-

fects the segmentation quality of our recursive 2-way algorithm. In Figure 6.21, we have

seen that there is still room to improve upon the current salience measure. We see two

aspects for improvement. First, it is desirable to assess the three salience factors more ac-

curately. It might not be the best to use surface area for the size salience factor and average

edge concavity for the boundary strength salience factor. The protrusiveness ought to be

further refined as well; currently only a rough estimation through the bounding volume is

used. Note that an accurate salience estimation is challenging due to the efficiency con-

straint. When searching through the face sequence, salience measures have to be computed

with sub-linear complexity; otherwise quadratic complexity would be incurred, which is not

acceptable for large meshes.

Secondly, one can investigate how to utilize the three salience factors in a better way.

Figure 6.12(a) gives an example cut search procedure for a particular mesh. We suspect

that segmentation quality in general can benefit from enhancing the salience curves. For

example, one may search through the face sequence in the first round simply for obtaining

the three salience curves. The curves are then smoothed and fed to the second round for

CHAPTER 7. CONCLUSION 121

seeking the best cut. Such a strategy may help alleviate the influence of local inaccuracies.

Besides, we currently use only two sets of weights for the salience factors, one for the L-

projection and the other for the M -projection. It is worth studying the properties of the

salience curves to help fine-tune their weights accordingly. For example, if one salience curve

has a much larger variation than the other two, it may imply that the corresponding salience

factor dominates the overall part salience. Therefore, a larger weight should be given to this

salience factor. However, the implementation of such a strategy is likely to incur intensive

user studies.

Supervised Segmentation The segmentation algorithms proposed in this thesis are un-

supervised approaches: no prior information is used and the segmentation result is obtained

based on the input mesh alone. Supervised segmentation has been considered for images [49,

52, 129] and it is natural to extend it to mesh segmentation.

In order to apply supervised segmentation, test models for an algorithm should bear

similar geometric properties with the training models. For example, if an algorithm is trained

to segment articulated shapes, such as human beings and animals, the algorithm should only

be expected to work well on articulated shapes. A more interesting but challenging task

is to train an algorithm to “understand” the meaning of a part so that it can work on

generic shapes. Although it is not immediately clear to us how such a generic training can

be realized systematically, there are two places in our recursive 2-way algorithm that may

be investigated for such a generic training. One is for setting the weights for the salience

factors, and the other is for the segmentability analysis based on the outer contours of mesh

projections. For the salience weights, it is interesting to study how to build a correlation

between the characteristics of the salience curves and their ideal weights. This may be

achieved by training an algorithm with suitable salience curves and the ideal corresponding

weights set by users. For the segmentability analysis, we can manually label a sufficient

number of ground-truth contours as segmentable or not. By combining such labels with

the characteristics of the contours, we may be able to predict whether a mesh piece is

segmentable with higher accuracy.

Also, supervised techniques might help achieve the functional-level segmentation men-

tioned in Section 1.1.4. Recall that the resulting segments at the functional level reflect

certain higher order information about the object represented by a mesh. This requires an

algorithm to understand the functional properties of the object, which in general cannot

CHAPTER 7. CONCLUSION 122

be obtained only from the geometry of the input mesh. Therefore, a supervised algorithm

becomes necessary.

Segmentation Benchmark An important missing piece for the current mesh segmen-

tation research is a benchmark for evaluating segmentation results objectively. Currently,

segmentation results, especially those at the structural level, are only judged subjectively.

They are illustrated via color plots; it is the users’ responsibility to judge the segmentation

quality. A systematic and effective benchmark is hence called for.

Building such a benchmark involves a large amount of tedious manual segmentation

work on many meshes. This also has to be done by a sufficient number of users to avoid

biased input. Therefore, a handy interactive segmentation tool ought to be available to

assist users navigating on mesh surfaces and making cuts easily. It would be desirable to

have the tool automatically change the view point based on the current cut sketch and

occlusion considerations. The tool should also be able to connect broken sketches to form

continuous boundaries. Of course, functionalities including boundary smoothing and editing

are useful as well.

In addition, how to appropriately measure the difference between ground-truth bound-

aries and those produced by algorithms is intricate. Simply counting how many vertices

coincide is unlikely to work robustly, e.g., an algorithm may generate good segments but

with all boundary vertices off the ground-truth by a small shift. Another complication

emerges when hierarchy considerations come in, since it is meaningful to evaluate segmen-

tation results in a hierarchical manner.

Appendix A

Face Sequence

As in Equation 5.1, we denote the affinity matrix W = [A B; BT C]. Suppose the two

sampled rows are

[A B] =

[
1 α . . . xi . . .

α 1 . . . yi . . .

]
, (A.1)

with A = [1 α; α 1] and α being the affinity between the two sample faces. Note that as

the samples occupy the first two indices, i is in range [3, n]. With only [A B], the two

approximated eigenvectors of W via the Nyström method are given in Equation 6.5. In

Equation 6.8, the normalized affinity matrix N is defined when entire W is known. The

question is how to apply the Nyström method to compute the approximate eigenvectors of

N when only the entries in [A B] are available.

We can similarly write N = [A′ B′; B′T C ′] and the entries of the first two rows are

[A′ B′] =

1
s1

α√
s1s2

. . . xi√
s1si

. . .

α√
s2s1

1
s2

. . . yi√
s2si

. . .

 , (A.2)

where si is the sum of the i-th row of W . Let A′ = E′∆′E′T be the eigenvalue decomposition,

it is derived that

∆′ =

[
λ1 0

0 λ2

]
=

[
(Q+J)
2s1s2

0

0 (Q−J)
2s1s2

]
, (A.3)

and

E′ =

[
e11 e12

e21 e22

]
=

[
P+J

2α
√

s1s2

P−J
2α
√

s1s2

1 1

]
, (A.4)

123

APPENDIX A. FACE SEQUENCE 124

where P = s2−s1, Q = s2+s1, and J =
√

(s2 − s1)2 + 4α2s1s2. Based on the approximation

formula in Equation 5.2, the approximated eigenvectors of N are

Ẽ′ =

[
E′

B′T E′∆′−1

]
=

P+J
2α
√

s1s2

P−J
2α
√

s1s2

1 1

.
1

λ1
√

si

(
xie11√

s1
+ yie21√

s2

)
1

λ2
√

si

(
xie12√

s1
+ yie22√

s2

)

.

. (A.5)

Then the component-wise ratio of the second eigenvector to the first eigenvector is

ê =
[
P − J

P + J
, 1, . . . ,

λ1

λ2
·
(√

s2xie12 +
√

s1yie22√
s2xie11 +

√
s1yie21

)
. . .

]
. (A.6)

Note that the unknown value si is canceled out.

In Section 6.3.1, we have shown that the face sequences obtained by sorting ẽ (Equa-

tion 6.3) and e (Equation 6.6) are the same. In the following, we prove that the sequences

obtained by sorting ẽ and ê are also the same in a similar way.

Proposition A.1. ∀fi, ê(fs) ≤ ê(fi) ≤ ê(ft). This means that the embeddings of the two

sample faces fs and ft are at the two ends of ê.

Proof. Assume ê(fi) = P−J
P+J and ê(ft) = 1. We only prove ê(fs) ≤ ê(fi). ê(fi) ≤ ê(ft) can

be proved similarly.

ê(fs) ≤ ê(fi) ⇔ P − J

P + J
≤ λ1

λ2
·
(√

s2xie12 +
√

s1yie22√
s2xie11 +

√
s1yie21

)

⇔ P − J

P + J
≤ Q + J

Q− J
· (P − J)xi + 2αs1yi

(P + J)xi + 2αs1yi

⇔ . . .

⇔ (PQ + J2)xi ≤ (P + Q)(Pxi + 2αs1yi)

⇔ . . .

⇔ α ≤ yi

xi

⇔ e−dst/2σ2 ≤ e(dis−dit)/2σ2

⇔ −dst ≤ dis − dit

⇔ dit ≤ dis + dst.

APPENDIX A. FACE SEQUENCE 125

Recall that α = e−dst/2σ2
, xi = e−dis/2σ2

, and yi = e−dit/2σ2
, where d denotes the graph

distance between two faces. Since the graph distance is a metric, satisfying the triangle

inequality, the last inequality holds. This concludes our proof.

Proposition A.2. Sorting vectors ẽ or ê produces the same face sequence.

Proof. For ê, we denote F ′(fi) = λ1
λ2
·
(√

s2xie12+
√

s1yie22√
s2xie11+

√
s1yie21

)
. Representing β = xi/yi, we

can also write F ′(β) = Q+J
Q−J

(
1− 2J

(P+J)+2s1α/β

)
; note that Q, J , P , s1, and α are all

independent of β. Clearly F ′(β) is monotone and inversely proportional to β. Meanwhile,

as β = e−dis/2σ2
/e−dit/2σ2

= e−(dis−dit)/2σ2
, β is monotone and inversely (exponentially)

proportional to (dis − dit). Therefore F ′ is monotone and (exponentially) proportional to

(dis − dit). Except for the two sample faces, this ensures that the face sequences obtained

by sorting ẽ and ê are the same. With the same argument used in Proposition 6.2, the two

sample faces are sitting at the two ends of ẽ. Plus Proposition A.1, we prove that the two

sequences are the same.

With these being said, the face sequences produced by sorting ẽ, e, or ê are all the same.

Bibliography

[1] A.I.M.A.T.S.H.A.P.E. - Advanced and Innovative Models And Tools for the develop-
ment of Semantic-based systems for Handling, Acquiring, and Processing knowledge
Embedded in multidimensional digital objects. http://www.aimatshape.net/.

[2] K. Abe, C. Arcelli, T. Hisajama, and T. Ibaraki. Parts of planar shapes. Pattern
Recognition, 29(90):1703–1711, 1996.

[3] J. Ahmed, J. Bosworth, and S. T. Acton. Image segmentation techniques for object-
based coding. In Proc. Image Analysis and Interpretation, pages 41–45, 2000.

[4] M. Attene, B. Falcidieno, and M. Spagnuolo. Hierarchical segmentation based on
fitting primitives. The Visual Computer, pages 181–193, 2006.

[5] M. Attene, S. Katz, M. Mortara, G. Patane, M. Spagnuolo, and A. Tal. Mesh seg-
mentation - a comparative study. In Proc. IEEE International Conference on Shape
Modeling and Applications, pages 14–25, 2006.

[6] M. Attene, M. Mortara, M. Spagnuolo, and B. Falcidieno. Hierarchical convex ap-
proximation of 3D shapes for fast region selection. Computer Graphics Forum (Proc.
Eurographics Symposium on Geometry Processing), 27(5):1323–1333, 2008.

[7] O. K.-C. Au, C.-L. Tai, H.-K. Chu, D. Cohen-Or, and T.-Y. Lee. Skeleton extraction
by mesh contraction. ACM Transactions on Graphics, 27(3):1–10, 2008.

[8] S. P. Awate, T. Tasdizen, and R. T. Whitaker. Unsupervised texture segmentation
with nonparametric neighborhood statistics. In Proc. European Conference on Com-
puter Vision, pages 494–507, 2006.

[9] F. Bach and M. Jordan. Learning spectral clustering. Technical Report UCB/CSD-
03-1249, University of California Berkeley, June 2003.

[10] C. T. H. Baker. The Numerical Treatment of Integral Equations. Oxford: Clarendon
Press, 1977.

[11] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data
representation. Neural Computation, 15(6):1373–1396, 2003.

126

BIBLIOGRAPHY 127

[12] S. Belongie, C. Fowlkes, F. Chung, and J. Malik. Spectral partitioning with indefi-
nite kernels using the nystrm extension. In Proc. European Conference on Computer
Vision, pages 531–542, 2002.

[13] Y. Bengio, O. Delalleau, N. L. Roux, J.-F. Paiement, P. Vincent, and M. Ouimet.
Learning eigenfunctions links spectral embedding and kernel pca. Neural Computation,
16(10):2197–2219, 2004.

[14] P. J. Besl and N. D. McKay. A method for registration of 3D shapes. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 14(2):239–256, 1992.

[15] I. Biederman. Recognition-by components: a theory of human image understanding.
Psychological Review, 94:115–147, 1987.

[16] S. Bouix, P. Dimitrov, and K. Siddiqi. Physics-based skeletons. In Proc. Vision
Interface, pages 23–30, 2000.

[17] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph
cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11):1222–
1239, 2001.

[18] M. Brand and K. Huang. A unifying theorem for spectral embedding and clustering.
In Proc. 9th International Workshop on Artificial Intelligence and Statistics, 2003.

[19] C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data
Mining and Knowledge Discovery, 2(2):121–167, 1998.

[20] J. Canny. A computational approach to edge detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 8:679–698, 1986.

[21] M. Carcassoni and E. R. Hancock. Spectral correspondence for point pattern match-
ing. Pattern Recognition, 36:193–204, 2003.

[22] B. Chazelle. Triangulating a simple polygon in linear time. Discrete Computational
Geometry, 6:485–524, 1991.

[23] B. Chazelle, D. Dobkin, N. Shourhura, and A. Tal. Strategies for polyhedral sur-
face decomposition: An experimental study. Computational Geometry: Theory and
Applications, 7(4-5):327–342, 1997.

[24] F. R. K. Chung. Spectral Graph Theory (CBMS Regional Conference Series in Math-
ematics, No. 92). American Mathematical Society, 1997.

[25] D. Cohen-Steiner, P. Alliez, and M. Desbrun. Variational shape approximation. ACM
Transactions on Graphics, 23(3):905–914, 2004.

BIBLIOGRAPHY 128

[26] D. Cohen-Steiner and J.-M. Morvan. Restricted delaunay triangulations and normal
cycle. In Proc. 19th annual Symposium on Computational Geometry, pages 312–321,
2003.

[27] M. Cox and T. Cox. Multidimensional Scaling. Chapman and Hall, 1994.

[28] T. Culver, J. Keyser, and D. Manocha. Accurate computation of the medial axis of a
polyhedron. In Proc. 5th ACM symposium on Solid modeling and applications, pages
179–190, 1999.

[29] E. de Aguiar, C. Theobalt, S. Thrun, and H.-P. Seidel. Automatic Conversion of
Mesh Animations into Skeleton-based Animations. Computer Graphics Forum (Proc.
Eurographics), 27(2):389–397, 4 2008.

[30] F. de Goes, S. Goldenstein, and L. Velho. A hierarchical segmentation of articu-
lated bodies. Computer Graphics Forum (Proc. Symposium on Geometry Processing),
27(5):1349–1356, 2008.

[31] T. K. Dey, J. Giesen, and S. Goswami. Shape segmentation and matching with flow
discretization. In Proc. Workshop Algorithms Data Structures, pages 25–36, 2003.

[32] T. K. Dey and W. Zhao. Approximate medial axis as a voronoi subcomplex. In Proc.
ACM symposium on Solid modeling and applications, pages 356–366, 2002.

[33] A. Elad and R. Kimmel. On bending invariant signatures for surfaces. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 25(10):1285–1295, 2003.

[34] Y. Eldar, M. Lindenbaum, M. Porat, and Y. Y. Zeevi. The farthest point strategy for
progressive image sampling. IEEE Transactions on Image Processing, 6(9):1305–1315,
1997.

[35] M. Fiedler. Algebraic connectivity of graphs. Czech Mathematical Journal, 23:298–
305, 1973.

[36] M. Filippone, F. Camastra, F. Masulli, and S. Rovetta. A survey of kernel and spectral
methods for clustering. Pattern Recognition, 41(1):176–190, 2008.

[37] I. Fischer and J. Poland. New methods for spectral clustering. Technical Report
IDSIA-12-04, Dalle Molle Institute for Artificial Intelligence, Jun. 2004.

[38] C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral grouping using the Nyström
method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26:214–
225, 2004.

[39] T. Funkhouser, M. Kazhdan, P. Shilane, P. Min, W. Kiefer, A. Tal, S. Rusinkiewicz,
and D. Dobkin. Modeling by example. ACM Transactions on Graphics, 23(3):652–663,
2004.

BIBLIOGRAPHY 129

[40] M. Garland, A. Willmott, and P. Heckbert. Hierarchical face clustering on polygonal
surfaces. In Proc. ACM Symposium on Interactive 3D Graphics, pages 49–58, 2001.

[41] N. Gelfand and L. Guibas. Shape segmentation using local slippage analysis. In Proc.
Eurographics Symposium on Geometry Processing, pages 214–223, 2004.

[42] A. Golovinskiy and T. Funkhouser. Randomized cuts for 3D mesh analysis. ACM
Transactions on Graphics (Proc. SIGGRAPH ASIA), 27(5):1–12, 2008.

[43] S. Goswami, T. K. Dey, and C. L. Bajaj. Identifying flat and tubular regions of a shape
by unstable manifolds. In Proc. ACM Symposium on Solid and Physical Modeling,
pages 27–37, 2006.

[44] L. Grady. Random walks for image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28(11):1768–1783, 2006.

[45] W. Guan, J. Cai, J. Zheng, and C. W. Chen. Segmentation based view-dependent
3D graphics model transmission. IEEE Transactions on Multimedia, 10(5):724–734,
2008.

[46] G. Hamarneh, R. Abugharbieh, and T. McInerney. Medial profiles for modeling defor-
mation and statistical analysis of shape and their use in medical image segmentation.
International Journal of Shape Modeling, 10(2):187–209, 2004.

[47] R. M. Haralick and L. G. Shapiro. Image segmentation techniques. Computer Vision,
Graphics, Image Processing, 29:100–132, 1985.

[48] R. M. Haralick, S. Sternberg, and X. Zhuang. Image analysis using mathematical mor-
phology. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(4):532–
550, 1987.

[49] X. He, R. S. Zemel, and M. A. Carreira-Perpinan. Multiscale conditional random
fields for image labeling. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition, pages 695–702, 2004.

[50] D. D. Hoffman and W. A. Richards. Parts of recognition. Cognition, 18:65–96, 1984.

[51] D. D. Hoffman and M. Singh. Salience of visual parts. Cognition, 63:29–78, 1997.

[52] D. Hoiem, A. A. Efros, and M. Hebert. Recovering surface layout from an image.
International Journal of Computer Vision, 75(1), 2007.

[53] V. Jain, H. Zhang, and O. van Kaick. Non-rigid spectral correspondence of triangle
meshes. International Journal on Shape Modeling, 13(1):101–124, 2007.

[54] A. Jaklic, A. Leonardis, and F. Solina. Segmentation and recovery of superquadrics.
Kluwer Academic Publishers, 2000.

BIBLIOGRAPHY 130

[55] Z. Ji, L. Liu, Z. Chen, and G. Wang. Easy mesh cutting. In Proc. Eurographics,
volume 25, pages 283–291, 2006.

[56] D. Julius, V. Kraevoy, and A. Sheffer. D-charts: Quasi-developable mesh segmenta-
tion. In Computer Graphics Forum (Proc. Eurographics), volume 24, pages 581–590,
2005.

[57] F. Kanehara, S. Satoh, and T. Hamada. Shape decomposition based on erosion model.
In Proc. Physics-Based Modeling in Computer Vision, pages 128–134, 1995.

[58] Z. Karni and C. Gotsman. Spectral compression of mesh geometry. In Proc. SIG-
GRAPH, pages 279–286, 2000.

[59] S. Katz and A. Tal. Hierarchical mesh decomposition using fuzzy clustering and cuts.
ACM Transactions on Graphics, 22(3):954–961, 2003.

[60] Y. Koren. On spectral graph drawing. In Proc. International Computing and Combi-
natorics Conference, 2003.

[61] V. Kraevoy, D. Julius, and A. Sheffer. Shuffler: Modeling with interchangeable parts.
In Proc. Pacific Grahpics, 2007.

[62] S. Kumar, S. H. Ong, S. Ranganath, T. C. Ong, and F. T. Chew. A rule-based
approach for robust clump splitting. Pattern Recognition, 39(6):1088–1098, 2006.

[63] J. O. Lachaud and A. Montanvert. Deformable meshes with automated topology
changes for coarse-to-fine three-dimensional surface extraction. Journal of Medical
Image Analysis, 3(1):1–21, 1999.

[64] Y.-K. Lai, S.-M. Hu, R. R. Martin, and P. L. Rosin. Fast mesh segmentation using
random walks. In Proc. ACM Symposium on Solid and Physical Modeling, pages
183–191, 2008.

[65] Y. K. Lai, Q. Y. Zhou, S. M. Hu, and R. R. Martin. Feature sensitive mesh seg-
mentation. In Proc. ACM Symposium on Solid and Physical Modeling, pages 17–26,
2006.

[66] Y.-K. Lai, Q.-Y. Zhou, S.-M. Hu, J. Wallner, and H. Pottmann. Robust feature clas-
sification and editing. IEEE Transactions on Visualization and Computer Graphics,
13(1):34–45, 2007.

[67] L. J. Latecki and R. Lakämper. Convexity rule for shape decomposition based on
discrete contour evolution. Computer Vision and Image Understanding, 73(3):441–
454, 1999.

[68] G. Lavoué, F. Dupont, and A. Baskurt. A new CAD mesh segmentation method,
based on curvature tensor analysis. Computer-Aided Design, 37(10):975–987, 2005.

BIBLIOGRAPHY 131

[69] Y. Lee, S. Lee, A. Shamir, D. Cohen-Or, and H.-P. Seidel. Mesh scissoring with
minimal rule and part salience. Computer Aided Geometric Design, 22:444–465, 2005.

[70] R. B. Lehoucq, D. C. Sorensen, and P. Vu. ARPACK: An implementation of the
implicitly re-started Arnoldi iteration that computes some of the eigenvalues and
eigenvectors of a large sparse matrix. http://www.caam.rice.edu/software/arpack/.

[71] J. E. Lengyel. Compression of time-dependent geometry. In Proc. the 1999 symposium
on Interactive 3D graphics, pages 89–95, 1999.

[72] B. Lévy, S. Petitjean, N. Ray, and J. Maillot. Least squares conformal maps for
automatic texture atlas generation. ACM Transactions on Graphics, 21(3):362–371,
2002.

[73] M. Leyton. A Generative Theory of Shape (Lecture Notes in Computer Science, 2145).
Springer, November 2001.

[74] X. Li, T. Toon, T. Tan, and Z. Huang. Decomposing polygon meshes for interactive
applications. In Proc. Symposium on Interactive 3D Graphics, pages 35–42, 2001.

[75] J. Lien and N. Amato. Simultaneous shape decomposition and skeletonization using
approximate convex decomposition. Technical Report TR05-015, Texas A&M Univer-
sity, Dec. 2005.

[76] J.-M. Lien and N. M. Amato. Approximate convex decomposition of polyhedra. In
Proc. ACM Symposium on Solid and Physical Modeling, pages 121–131, 2007.

[77] H. Ling and D. W. Jacobs. Using the inner-distance for classification of articulated
shapes. In Proc. Computer Vision and Pattern Recognition, volume 2, pages 719–726,
2005.

[78] S. Lloyd. Least square quantization in PCM. IEEE Transaction on Information
Theory, 28(2):129–137, 1982.

[79] L. Lu, Y.-K. Choi, W. Wang, and M.-S. Kim. Variational 3D shape segmentation
for bounding volume computation. Computer Graphics Forum (Proc. Eurographics),
26:329–338, 2007.

[80] J. B. MacQueen. Some methods for classification and analysis of multivariate observa-
tions. In Proc. 5-th Berkeley Symposium on Mathematical Statistics and Probability,
pages 281–297. University of California Press, 1967.

[81] M. Mahmoudi and G. Sapiro. Three-dimensional point cloud recognition via distri-
butions of geometric distances. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–8, 2008.

BIBLIOGRAPHY 132

[82] A. P. Mangan and R. T. Whitaker. Partitioning 3D surface meshes using watershed
segmentation. IEEE Transactions on Visualization and Computer Graphics, 5(4):308–
321, 1999.

[83] L. Manor and P. Perona. Self-tuning spectral clustering. In Proc. Advances in Neural
Information Processing Systems, pages 1601–1608, 2004.

[84] D. R. Martin, C. C. Fowlkes, and J. Malik. Learning to detect natural image bound-
aries using local brightness, color, and texture cues. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 26(5):530–549, 2004.

[85] B. Micusik and A. Hanbury. Template patch driven image segmentation. In Proc.
British Machine Vision Conference, pages II:819–829, 2006.

[86] J. V. Miller, D. E. Breen, W. E. Lorensen, R. M. O’Bara, and M. J. Wozny. Geo-
metrically deformed models: a method for extracting closed geometric models form
volume data. In Proc. SIGGRAPH, pages 217–226, New York, NY, USA, 1991. ACM.

[87] N. J. Mitra, L. Guibas, and M. Pauly. Partial and approximate symmetry detection
for 3D geometry. ACM Transactions on Graphics, 25(3):560–568, 2006.

[88] P. Moore and C. Fitz. Gestalt theory and instructional design. Journal of Technical
Writing and Communication, 23(2):137–157, 1993.

[89] M. Mortara, G. Patane, M. Spagnuolo, B. Falcidieno, and J. Rossignac. Plumber: a
multi-scale decomposition of 3D shapes into tubular primitives and bodies. In Proc.
ninth ACM Symposium on Solid Modeling and Applications, pages 139–158, 2004.

[90] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: analysis and an
algorithm. In Proc. Advances in Neural Information Processing Systems, pages 857–
864, 2002.

[91] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin. Shape distributions. ACM
Transactions on Graphics, 21(4):807–832, 2002.

[92] D. Page, A. Koschan, and M. Abidi. Linking feature lines on 3D triangle meshes with
artificial potential fields. In Proc. IEEE 3rd International Symposium on 3D Data
Processing, Visualization and Transmission, pages 358–364, 2006.

[93] D. L. Page. Part decomposition of 3D surfaces. PhD thesis, University of Tennessee,
Knoxville, 2003. Major Professor-Mongi A. Abidi.

[94] D. L. Page, A. F. Koschan, and M. A. Abidi. Perception-based 3D triangle mesh
segmentation using fast marching watershed. In Proc. IEEE Conference on Computer
Vision and Pattern Recognition, pages 27–32, 2003.

[95] N. R. Pal and S. K. Pal. A review on image segmentation techniques. Pattern Recog-
nition, 26:1277–1294, 1993.

BIBLIOGRAPHY 133

[96] N. Paragios and R. Deriche. Geodesic active regions and level set methods for super-
vised texture segmentation. International Journal of Computer Vision, 46(3):223–247,
2002.

[97] P. Perona and W. Freeman. A factorization approach to grouping. In Proc. European
Conference on Computer Vision, pages 655–670, 1998.

[98] G. Peyre and L. Cohen. Surface segmentation using geodesic centroidal tesselation. In
Proc. 3D Data Processing, Visualization, and Transmission, 2nd International Sym-
posium, pages 995–1002, 2004.

[99] D. L. Pham, C. Xu, and J. L. Prince. Current methods in medical image segmentation.
Annual Review of Biomedical Engineering, 2:315–337, 2000.

[100] J. Podolak, P. Shilane, A. Golovinskiy, S. Rusinkiewicz, and T. Funkhouser. A
planar-reflective symmetry transform for 3D shapes. ACM Transactions on Graphics,
25(3):549–559, 2006.

[101] E. Praun, W. Sweldens, and P. Schröder. Consistent mesh parameterizations. In Proc.
SIGGRAPH, pages 179–184, 2001.

[102] A. Razdan and M. Bae. A hybrid approach to feature segmentation of 3-dimensional
meshes. Computer-Aided Design, 35(9):783–789, 2002.

[103] X. Ren and J. Malik. A probabilistic multi-scale model for contour completion based
on image statistics. In Proc. European Conference on Computer Vision, pages 312–
327. Springer-Verlag, 2002.

[104] D. Reniers and A. Telea. Skeleton-based hierarchical shape segmentation. In Proc.
IEEE International Conference on Shape Modeling and Applications, pages 179–188,
2007.

[105] E. Rosin. Shape partitioning by convexity. IEEE Transactions on Systems, Man and
Cybernetics, 30:202–210, 2000.

[106] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear
embedding. Science, 290(5500):2323–2326, December 2000.

[107] P. Sander, J. Snyder, S. Gortler, and H. Hoppe. Texture mapping progressive meshes.
In Proc. SIGGRAPH, pages 409–416, 2001.

[108] P. V. Sander, Z. J. Wood, S. J. Gortler, J. Snyder, and H. Hoppe. Multi-chart geometry
images. In Proc. Eurographics Symposium on Geometry Processing, pages 146–155,
2003.

[109] B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel
eigenvalue problem. Neural Computation, 10(5):1299–1319, 1998.

BIBLIOGRAPHY 134

[110] S. Shalom, L. Shapira, A. Shamir, and D. Cohen-Or. Part analogies in sets of objects.
In Proc. Eurographics Symposium on 3D Object Retrieval, pages 33–40, 2008.

[111] A. Shamir. Segmentation and shape extraction of 3D boundary meshes. In State-of-
the-Art Report, Proc. Eurographics, pages 137–149, 2006.

[112] L. Shapira, A. Shamir, and D. Cohen-Or. Consistent mesh partitioning and skeleton-
isation using the shape diameter function. Visual Computer, 24(4):249–259, 2008.

[113] A. Sheffer. Model simplification for meshing using face clustering. Computer-Aided
Design, 33:925–934, 2001.

[114] A. Sheffer, E. Praun, and K. Rose. Mesh parameterization methods and their ap-
plications. Foundations and Trends in Computer Graphics and Vision, 2(2):105–171,
2006.

[115] J. Shi and J. Malik. Normalized cuts and image segmentation. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 731–737, 1997.

[116] S. Shlafman, A. Tal, and S. Katz. Metamorphosis of polyhedral surfaces using decom-
position. Computer Graphics Forum, 21(3):219–228, 2002.

[117] K. Siddiqi and B. B. Kimia. Parts of visual form: Computational aspects. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 17(3):239–251, 1995.

[118] P. Simari, E. Kalogerakis, and K. Singh. Folding meshes: Mierarchical mesh segmen-
tation based on planar symmetry. In Proc. Eurographics Symposium on Geometry
Processing, 2006.

[119] P. D. Simari and K. Singh. Extraction and remeshing of ellipsoidal representations
from mesh data. In Proc. Graphics Interface, pages 161–168, 2005.

[120] J. Smola and B. Schölkopf. Sparse greedy matrix approximation for machine learning.
In Proc. 17th International Conference on Machine Learning, pages 911–918, 2000.

[121] O. Sorkine, D. Cohen-Or, R. Goldenthal, and D. Lischinski. Bounded-distortion piece-
wise mesh parameterization. In Proc. Conference on Visualization, pages 355–362,
2002.

[122] V. Surazhsky, T. Surazhsky, D. Kirsanov, S. J. Gortler, and H. Hoppe. Fast exact and
approximate geodesics on meshes. ACM Transactions on Graphics, 24(3):553–560,
2005.

[123] G. Taubin. A signal processing approach to fair surface design. In ACM SIGGRAPH,
pages 351–358, 1995.

[124] C. J. Taylor, D. H. Cooper, and J. Graham. Training models of shape from sets of
examples. In Proc. British Machine Vision Conference, pages 9–18, 1992.

BIBLIOGRAPHY 135

[125] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for
nonlinear dimensionality reduction. Science, 290(5500):2319–2323, December 2000.

[126] J. Tierny, J.-P. Vandeborre, and M. Daoudi. Topology driven 3D mesh hierarchi-
cal segmentation. In Proc. IEEE International Conference on Shape Modeling and
Applications, pages 215–220, 2007.

[127] Z. Tu, S. Zhu, and H. Shum. Image segmentation by data driven Markov chain Monte
Carlo. In Proc. International Conference on Computer Vision, volume 2, pages 131–
138, 2001.

[128] L. M. Vaina and S. S. Zlateva. The largest convex patches: a boundary-based method
for obtaining object parts. Biological Cybernetics, 62(3):225–236, 1990.

[129] J. Verbeek and B. Triggs. Region classification with markov field aspect models.
In Proc. IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8,
2007.

[130] R. Wang, K. Zhou, J. Snyder, X. Liu, H. Bao, Q. Peng, and B. Guo. Variational
sphere set approximation for solid objects. Visual Computer, 22(9):612–621, 2006.

[131] Y. Weiss. Segmentation using eigenvectors: a unifying view. In IEEE International
Conference on Computer Vision, pages 975–982, 1999.

[132] C. K. I. Williams and M. Seeger. Using the Nyström method to speed up kernel
machines. In Proc. Advances in Neural Information Processing Systems, pages 682–
688, 2001.

[133] L. R. Williams and D. W. Jacobs. Stochastic completion fields: a neural model of
illusory contour shape and salience. Neural Computation, 9(4):837–858, 1997.

[134] J. Wu and L. Kobbelt. Structure recovery via hybrid variational surface approxima-
tion. Computer Graphics Forum (Proc. Eurographics), 24(3):277–284, 2005.

[135] Y. Xiao, N. Werghi, and P. Siebert. A topological approach for segmenting human
body shape. In Proc. 12th International Conference on Image Analysis and Processing,
page 82, 2003.

[136] Y. Xu, , P. Duygulu, E. Saber, A. M. Tekalp, and F. T. Yarman-Vural. Object-based
image labeling through learning by example and multi-level segmentation. Pattern
Recognition, 36(6):1407–1423, 2003.

[137] H. Yamauchi, S. Gumhold, R. Zayer, and H.-P. Seidel. Mesh segmentation driven by
Gaussian curvature. Visual Computer, 21(8-10):649–658, 2005.

[138] H. Yamauchi, S. Lee, Y. Lee, Y. Ohtake, A. Belyaev, and H.-P. Seidel. Feature sensitive
mesh segmentation with mean shift. In Proc. IEEE International Conference on Shape
Modeling and Applications, pages 238–245, 2005.

BIBLIOGRAPHY 136

[139] D. Yan, Y. Liu, and W. Wang. Quadric surface extraction by variational shape ap-
proximation. In Proc. Geometric Modeling and Processing, pages 73–86, 2006.

[140] Z. Yan, S. Kumar, and C. C. J. Kuo. Mesh segmentation schemes for error resilient
coding of 3D graphic models. IEEE Transactions on Circuits and Systems for Video
Technology, 15:138–144, 2005.

[141] S. Yang, C.-S. Kim, and C. C. J. Kuo. A progressive view-dependent technique for
interactive 3D mesh transmission. IEEE Transactions on Circuits and Systems for
Video Technology, 14:1249–1264, 2004.

[142] C. Zahn and R. Roskies. Fourier descriptors for plane closed curves. IEEE Transac-
tions on Computers, 21(3):269–281, 1972.

[143] H. Zha, X. He, C. Ding, H. Simon, and M. Gu. Spectral relaxation for k-means
clustering. In Proc. Advances in Neural Information Processing Systems, pages 1057–
1064, 2001.

[144] C. Zhang, N. Zhang, C. Li, and G. Wang. Marker-controlled perception-based mesh
segmentation. In Proc. 3rd International Conference on Image and Graphics, pages
390–393, 2004.

[145] E. Zhang, K. Mischaikow, and G. Turk. Feature-based surface parameterization and
texture mapping. ACM Transactions on Graphics, 24(1):1–27, 2005.

[146] Y. Zhang, J. Paik, A. Koschan, M. Abidi, and D. Gorsich. A simple and efficient
algorithm for part decoposition of 3D triangulated models based on curvature analysis.
In Proc. International Conference on Image Processing, pages 273–276, 2002.

[147] Y. Zhou and Z. Huang. Decomposing polygon meshes by means of critical points. In
Proc. Conference on Multimedia Modeling, pages 187–195, 2004.

[148] E. Zuckerberger, A. Tal, and S. Shlafman. Polyhedral surface decomposition with
applications. Computer and Graphics, 26:733–743, 2002.

[149] J. Zunic and P. Rosin. A new convexity measure for polygons. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 26(7):923–934, 2004.

