

PARTIAL AGGREGATION AND QUERY PROCESSING

OF OLAP CUBES

by

Zhenshan Guo
B.E., Changchun Institute of Post and Telecommunications, 1995

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

In the
School

of
 Computing Science

© Zhenshan Guo 2009

SIMON FRASER UNIVERSITY

Spring 2009

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

 ii

APPROVAL

Name: Zhenshan Guo
Degree: Master of Science
Title of Thesis: Partial Aggregation and Query Processing of OLAP

Cubes

Examining Committee:
 Chair: Dr. Jiangchuan Liu

Assistant Professor of Computing Science

 Dr. Wo-shun Luk
Senior Supervisor
Professor of Computing Science

 Dr. Ke Wang
Supervisor
Professor of Computing Science

 Dr. Jian Pei
Internal Examiner
Associate Professor of Computing Science

Date Defended/Approved: October 17, 2008

Last revision: Spring 09

Declaration of
Partial Copyright Licence
The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the “Institutional Repository” link of the SFU Library website
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing
the content, to translate the thesis/project or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in
part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

 iii

ABSTRACT

This work presents a novel and flexible PPA (Partial Pre-Aggregation)

construction and query processing technique in OLAP (On-Line Analytical

Processing) applications - SplitCube, which greatly reduces the cube size,

shortens the cube building time and maintains an acceptable query performance

at the time. Furthermore, we devise two enhanced query processing techniques.

They can further improve the query performance or reduce cube building time

further and keep query response time at an acceptable level. The result analysis

shows more insights in cube construction and query processing procedure and

illustrates the advantages and disadvantages of each algorithm. Finally, we give

guidelines in how to choose the right algorithm in different user cases.

Keywords: PPA, OLAP, SplitCube, MQPSB, QPRQ

 iv

ACKNOWLEDGEMENTS

I am deeply indebted to my advisor and supervisor, Professor Wo-shun

Luk, for his invaluable assistance, support and guidance. Without his help, this

work would not be possible. My deep gratitude also goes to my supervisor,

Professor Ke Wang, for his encouragement and support. Special thanks to the

members of my committee to attend my defence: Professor Jiangchuan Liu and

Professor Jian Pei. Their support and patience are appreciated.

Lastly, I would like to thank my family for their understanding and endless

support, through the duration of my studies.

 v

TABLE OF CONTENTS

Approval .. ii
Abstract .. iii
Acknowledgements ... iv

Table of Contents ... v

List of Figures ... vii
List of Tables ... viii
Chapter 1: Introduction .. 1

1.1 OLAP and Pre-Aggregation .. 1
1.2 Motivation and Objectives ... 2
1.3 Main Features ... 4

1.3.1 SplitCube .. 4
1.3.2 Matrix Query ... 5
1.3.3 B-Tree and its Application in Query Processing 5

1.4 Thesis Organization .. 7

Chapter 2: Related work .. 8

2.1 Partial Pre-Aggregation .. 8
2.2 Query Processing ... 10

Chapter 3: Basic concepts and notations .. 12

3.1 OLAP Cube and Dimension Hierarchy ... 12
3.1.1 Sub-Cube ... 13
3.1.2 SplitCube .. 14

3.2 Aggregation .. 15
3.3 Address Mapping Scheme .. 17
3.4 Cell Record and B-tree Structure .. 17
3.5 Query Performance and Types of Query .. 19

Chapter 4: Splitcube ... 21

4.1 Cube Construction .. 21
4.2 Query Processing ... 26
4.3 PDS Selection ... 28

 vi

Chapter 5: Merging of Query Point Set and B-tree .. 29

Chapter 6: Query Processing with Range Queries .. 34

Chapter 7: Experimental Results .. 39

7.1 Heavy-Duty Queries ... 39
7.2 QPRQ vs. STDSC .. 43
7.3 MQPSB vs. STDSC .. 45
7.4 QPRQ vs. MQPSB .. 48

Chapter 8: Conclusions and future work ... 50

Reference List ... 52

 vii

LIST OF FIGURES

Figure 1: Dimension Hierarchies of a Dataset and the OLAP Base Cube 13

Figure 2: FPA Cube, PPA Cube, and Base Cube .. 14

Figure 3: Conversions between Coordinates and Keys 18

Figure 4: Example of B-tree Structure ... 18

Figure 5: A Sample Dataset and its Dimension Hierarchies 23

Figure 6: Merging of Query Point Set and B-tree ... 30

Figure 7: Range Query Processing in QPRQ and STDSC 35

Figure 8: Comparison between STDSC and QPRQ in Cube Construction 44

Figure 9: Comparison between STDSC and QPRQ in Query Processing 45

 viii

LIST OF TABLES

Table 1: Example of a Matrix Query .. 20

Table 2: Dimension Cardinalities in Weather Dataset 39

Table 3: Performance Data of the Full Cube ... 40

Table 4: Performance Data of STDSC ... 41

Table 5: Performance Data of QPRQ .. 41

Table 6: Performance Data of MQPSB .. 41

Table 7: Comparison between STDSC and MQPSB in Query Processing 46

 1

CHAPTER 1: INTRODUCTION

1.1 OLAP and Pre-Aggregation

OLAP (On-Line Analytical Processing) has become one of the standard

services in most commercial database systems as the analysis of huge amount

of data plays a crucial role in an organization’s decision-making process. OLAP

systems provide both construction of and access to aggregate data, which is

usually stored in a multi-dimensional database, or better known as cube.

OLAP cubes can be thought of as extension to a two-dimensional array of

a spreadsheet, and are more suited for analysis and display of large amount of

data. The power of OLAP comes from the tremendous amount of calculation on

the input dataset. For online ad-hoc requests, this means a long response time.

To reduce query response time and improve user experience, it is intuitive to

calculate the data in advance, which is called Pre-Aggregation.

There are two types of pre-aggregation in OLAP, full pre-aggregation

(FPA) and partial pre-aggregation (PPA). As indicated by their names, FPA pre-

calculates all possible data that could be requested; whereas PPA pre-creates

only part of the full cube. Obviously FPA can provide the best query performance

and user experience. However, FPA can expand the cube to hundreds of times

of the size of the original input dataset, which makes the construction and update

of the OLAP cube much longer, especially for those systems that require daily

 2

update on their input datasets. Therefore, PPA becomes the first choice of most

OLAP systems.

1.2 Motivation and Objectives

During the last decade, a big collection of research articles has focused on

cube construction, and many fast cube-building algorithms have been proposed.

However, only a small portion of them focused on PPA. This small portion of

articles is more concerned with the optimization in cube construction under a

preset storage limitation. Under such a constraint, the selection of which cells to

aggregate is the key question while construction time is usually ignored. Real

industry presents a different picture from what is assumed in literature. To begin

with, the storage is not a big issue in OLAP systems as it was before. In addition,

cube construction time becomes more important as the input datasets are getting

bigger and updates are more frequent (daily, usually). Conclusions from those

papers have become out-of-date in today’s environment.

Query processing is the most important part of an OLAP system as it

contributes most to the success of the system, but research on query processing

in OLAP system is even rarer than literature on PPA. Moreover, in past works

response time of the query for a single cell or a range of cells, which is the basic

units of a cube, is often used to measure query performance. However, such

queries are not common in real OLAP applications. Queries for a group of cells in

the form of spreadsheets, called matrix queries, are widely used in OLAP

systems and are more suitable for query performance measurement.

 3

Investigations of query processing techniques can help improve the

response of an OLAP system and deserve more attention from the literature.

Furthermore, a flexible control on the balance between cube construction

performance and query performance is needed to meet different demands on

either query response time or cube construction time. However, previous

research results are far from enough for such needs. Recent works ([LAKS03],

[SRDK02], [SRDK03], [MI06]) on OLAP focus on storage reduction of the data

cube, which will improve the cube building efficiency and query processing

efficiency.

In this thesis, we opt for a different approach, which we shall call the

SplitCube approach. By relying on novel query processing techniques, we need

not generate a whole data cube. By reducing the storage of the data cube, we

can achieve faster query processing, which in turn makes it possible to further

reduce the amount of pre-aggregation. Our goal is to devise a fast PPA

construction algorithm to provide a flexible control on PPA cube construction

performance and significantly improve query processing on a PPA, so that we

can minimize our PPA construction time while keeping query performance at an

acceptable level in an on-line environment. In this research, we describe the

designs of two PPA algorithms. Furthermore, we present three query-processing

techniques: Standard SplitCube (STDSC), Merging of Query Point Set and B-tree

(MQPSB), and Query Processing with Range Queries (QPRQ). Through a series

of comparison and analysis of the algorithms, we give an insight to the

 4

advantages and disadvantages of each algorithm and provide the quasi-optimal

solutions for different user cases.

1.3 Main Features

In our research, we first devise a fast and flexible PPA algorithm, called

SplitCube, and then provide a query-processing algorithm on SplitCube. B-tree is

chosen as our fundamental structure in storing and accessing pre-computed

data. B-tree is used as a synonym to B+ tree in this thesis. Based on the nice

features of the B-tree storage structure, we devise two enhanced query-

processing algorithms, MQPSB and QPRQ.

1.3.1 SplitCube

The basic concept of SplitCube is to divide the input dataset into a set of

smaller datasets and build each of them into an independent cube, which is

called a cubelet in this thesis. We use one or more than one dimension from the

dimension set of the input dataset to do the division. These dimensions are

called prefix dimensions. Cells with identical values on prefix dimensions are put

into the same group. Groups are then built into cubelets one by one. As all cells

in the same group have the same values on prefix dimensions, we can use those

values to build a unique identifier for each group and safely remove these

dimensions from groups. This divide-and-conquer method brings two advantages.

Firstly, building a cubelet becomes faster as each group contains fewer

dimensions and cells. This improvement distinguishes SplitCube from previous

PPA algorithms. It significantly reduces scale and requirements on system

 5

resources. Secondly, the algorithm can easily adapt to multi-core systems, where

processors may compute cubelets in parallel, without any collaboration with other

processors.

1.3.2 Matrix Query

As mentioned in section 1.2, matrix queries are very common in real

OLAP applications. Essentially a matrix query is a group of queries for single

cells in the form of spreadsheet [Wit03]. In this thesis, we use the performance

on some matrix queries to measure performance of query-processing algorithms.

This measuring method can make our experiments and conclusions more

accurate and practical for real applications.

1.3.3 B-Tree and its Application in Query Processing

In creating each cubelet, we build a B-tree with the aggregation algorithm

described in detail in [LUK01]. The B-tree is indexed on B-key, which is the

unique key generated from the values on all dimensions of a cell. Conversely, we

can get the values on all dimensions of a cell from its B-key. Cells are stored at

leaf level with its B-key and measure, which is a numerical value of interest to the

user. The B-tree structure offers us a sequential access to cells on their B-keys.

For efficiency reasons, cells with all measures being zero are not stored in a B-

tree.

Employing B-tree in both aggregate computing and retrieving introduces

some overheads on CPU and disk consumption, but the benefits it brings to

 6

query processing outweighs its cost much more. It speeds up the construction of

aggregate data and makes it possible for efficient query processing algorithms.

1.3.3.1 Merging of Query Point Set and B-tree (MQPSB)

One of our observations is that the cells between any two consecutive

cells in a B-tree should be zero-measure cells because cells with zero-

measure(s) are not stored in the B-tree. This is one place that we can improve

our query-processing algorithm. The cells involved in a query, especially in a

matrix query, are ordered by their B-key increasingly before being processed.

After we access one cell, all cells with their B-keys less than the B-key of the

‘next’ cell in the B-tree can be safely skipped because if we cannot find them in

the B-tree, their measures are zeros. This query technique greatly reduces query

response time, as most cubes are very sparse (i.e. quite a portion of cells in

those cubes contains zeros as their measures.)

1.3.3.2 Query Processing with Range Queries (QPRQ)

For a matrix query, the cells it contains can be ordered by their B-key to

form a query range. For each cell in the range, we need to do a search on the B-

tree to locate the cell first, and then retrieve the cell’s measure. Our observation

is that all or part of the cells involved in a matrix query are consecutive by their B-

keys, therefore we do not need to do the search for each of them. After

accessing the first non-zero-measure cell in the B-tree, we check the next cell to

see if it is the next one that we want to access in the matrix query. If it is, we save

 7

from skipping the search for the next cell. This observation can significantly

improve query performance in most queries.

1.4 Thesis Organization

In the following, we will review previous work in the literature in Chapter 2,

and define the problem formally in Chapter 3. In Chapter 4, 5, and 6, we discuss

the Standard SplitCube, Merging of Query Point Set and B-tree, and Query

Processing with Range Queries, respectively. Finally, we analyze our

experimental results in Chapter 7, and conclude in Chapter 8.

 8

CHAPTER 2: RELATED WORK

2.1 Partial Pre-Aggregation

From the beginning of OLAP research, the necessity of partial pre-

aggregation has been recognized. One of the first papers on partial pre-

aggregation was published in 1996 [HRU96]. A view is a suitably modified query

with a group-by clause, in which a level of each dimensional hierarchy is

represented. The optimization objective is to select a set of views that will

minimize the query processing cost while satisfying the constraint that total size

of these views must not exceed a pre-set storage allocation. Two important

assumptions are made with respect to the query processing cost: one is that a

query is identical to some view, and the other is that the cost of processing such

a query is equal to the size of view. With these assumptions, a model is built to

define an optimal solution to this optimization problem. Remarkably, a greedy

algorithm is presented which can produce a solution that is very “close” to the

optimal one. A follow-up paper [SDNR96] presents an improved greedy

algorithm, which runs much faster. Interestingly, it introduces a pre-aggregation

algorithm that can achieve more cost saving in query processing than the

“optimal” solution, for a specialized class of cubes. The idea is to partition the

cube into smaller k-dimensional sub-cubes, a.k.a. chunks, each about a size of a

page. Instead of selecting views for materialization, the system pre-computes

selective chunks. In query processing, chunks that overlap with the query are first

 9

identified. Among these chunks, those that have not been pre-computed need to

be computed on the fly. With its smaller cube size, chunks may fit into a storage

space while a materialized view may not. This chunk-based scheme is often

referred to as a MOLAP (multidimensional) system.

Other papers on partial pre-aggregation are similar in the way that they

can be compared within an optimization framework that includes things such as

query workload, the objective function and constraints. A query workload is a mix

of relational queries, or views, which are typically associated with the OLAP

application(s) in question. In [GM99], the constraint is the maintenance cost of

the pre-aggregated views. In [HCKL00], the query workload is any set of views

chosen by the user. The problem of optimizing storage size for the pre-computed

views is studied, subject to the constraint of a pre-determined query response

time. In [KR99], a scheme whereby materialized views are dynamically

computed, i.e. computed on demand, is described.

In [KMP02], it is shown that there could be potentially billions of views, in

which case many published algorithms on view selection are slow in practice.

Randomized search is proposed as a solution under the space constraint as well

as under the maintenance cost constraint.

The chunk-based pre-aggregation scheme described earlier is one of the

few schemes that are not based on view materialization. Others include

[SDKR02], [SDKR03], and [LL03]. Partial Pre-Aggregation (PPA) accounts for a

small portion of the work. Their schemes are to stop producing more group

aggregate cells when the number of the potential aggregate cells is deemed

 10

small. Interestingly the experimental results in [SDKR03] show that their pre-

aggregation scheme optimizes both pre-aggregation time and query processing

time, i.e., queries run faster when less pre-aggregation is done. There are few

detail on how this remarkable feat is possible, nor is there any explanation on the

discrepancy between apparently contradictory statements made in these two

papers. In [LL03], a scheme, which can speed up query processing time in theory

and practice, is proposed for pre-aggregation for MOLAP systems, despite the

assertions that every aggregate in MOLAP database must be pre-computed (e.g.

[PS99], [H98]). Our SplitCube approach is built on this scheme; however, we use

a way to select the subset of aggregates for pre-computation. The difference will

be discussed in detail in Section 3.1.

2.2 Query Processing

A detailed description for query processing using chunks, particularly, the

cache management thereof, can be found in [DRNS98]. It states that chunks may

be better utilized for caching purposes and more ‘fine-grained’ than views

because of its uniform size. Unfortunately, the chunk-based storage organization

is prone to poor performance when k, the number of dimensions, is large and the

cube is sparse [BR99].

A detailed query optimization scheme for ROLAP systems is described in

[ZDN98], in which selective views are materialized as relations. Queries for

processing are MDX queries, which are called matrix queries. An MDX query is

decomposed into a number of group-by sub-queries. A number of new relational

join queries are introduced that allow multiple related group-by sub-queries to

 11

share common subtasks. Algorithms are developed to choose which materialized

views (relations) are used to evaluate the set of sub-queries. Further research

results on this topic can be found in [Liang00], and [KP03].

 12

CHAPTER 3: BASIC CONCEPTS AND NOTATIONS

3.1 OLAP Cube and Dimension Hierarchy

A full OLAP cube is defined to be a k-dimensional array, where k is a

positive integer. Each dimension of a cube has Di members, 1<=i<=k, which are

possible values on the dimension and are organized as a hierarchy. The

members at the leaf level are called primary members. All other members in

higher levels of the dimension hierarchy are called group members. The

hierarchy is a tree hierarchy, where a member is assumed to have exactly one

parent except for the root, which has no parent. In particular, there is exactly one

path between a group member and any of its descendants. Primary descendants

of a group member are descendants that are primary members in the dimension

hierarchy.

For example, consider a 2-dimensional OLAP database with dimensions A

and B. Figure 1 shows the dimension hierarchies of A and B. All members that

are numbered within the interval [1, 4] are primary members, and the remaining

ones are group members. The cube contains all 7 members on each dimension.

The base cube contains all 4 primary members, but no group members, on each

dimension. The base cube of this OLAP database is also shown in Figure 1.

 13

Figure 1 Dimension Hierarchies of A and B of a Dataset and the OLAP Base Cube

A cell in the cube is identified uniquely by a k-tuple, which is composed of

its coordinates along the k dimensions. A cell is a group cell if at least one

coordinate of the cell is a group member of some dimension; otherwise, it is a

primary cell. A cell stores a single numeric value, which is the measure. It is also

valid for a cell to store multiple values as its measure. Measures of all primary

cells are input from a data source. The measure of a group cell can be calculated

according to the method to be discussed later. The calculation can take place on

demand, usually when its value is required for computation of the answer to a

query, or it can be pre-computed, i.e., before the query time. In the latter case,

the cell is called a pre-aggregated cell. A cube is fully aggregated if all group

cells in the full cube are pre-aggregated.

An alternative view of a cube is a relation, which is called the fact table. A

fact table contains all primary and group cells. The B-tree for a cube is the

physical representation of the fact table.

3.1.1 Sub-Cube

A sub-cube is a k-dimensional array, which has all primary cells and a

subset of group cells of the full cube. The base cube, as a sub-cube of the cube,

 14

is the k-dimensional array, each dimension of which has only the primary

members. This is the smallest sub-cube. Figure 2 shows the fully aggregated

cube, a PA cube, and a base cube, with dimensional hierarchies shown in Figure

1. The measures of all shaded cells in the Figure 2 are known before query time,

because either they have been pre-computed or they are raw data. In case of the

PA, as is shown in Figure 2(ii), a6 and b6 are pre-aggregated members. In other

words, this PA cube is defined by two sets of pre-aggregated members on the

two dimensions: {a6} and {b6}.

Figure 2 (i) FPA Cube, (ii) PPA Cube, and (iii) Base Cube

Clearly, each PA cube contains enough information to generate a full cube

with additional processing, because the base cube is always included.

3.1.2 SplitCube

A Cubelet is a specialized sub-cube, which is identifiable by a set of

dimensions, called prefix dimension set, or PDS. The compliment of a PDS is

called cubelet dimension set, or CDS. A cubelet has only primary members for

the PDS and all members in the CDS. For convenience, we consider the first m

 15

dimensions be included into in the PDS, where 0 < m < k. Let P1, …, and Pm be

the set of the primary members in the prefix dimensions in the PDS. Each tuple

in the Cartesian product P1 × … × Pm is called a prefix. A cubelet associated with

a prefix consists of all cells in the sub cube whose coordinates have the same

members as the prefix for all dimensions in the PDS. Since all cells in this

cubelet have the same prefix, we may simply truncate prefix from the coordinates

of these cells, so that the cubelet will now be viewed as a cube with CDS as the

dimension set. For the rest of the thesis, we view a cubelet as a (k-m)-

dimensional cube.

3.2 Aggregation

We now consider how the measure of a group cell is derived. To achieve

this we need to elaborate the relationships among cells in a cube.

A descendant of a cell, C, with coordinate (t1, …, tk) is the cell, C’, with

coordinate (t1’, …, tk’) such that each ti’ is either equal to ti or is a descendant of ti

in the ith dimension hierarchy, and at least one of them is a descendant of its

counterpart in the coordinate of C. The distance between C and C’ is defined to

be the hamming distance between them, i.e., the sum of all distances between

two corresponding members in each dimension hierarchy. In particular, C’ is an

immediate child of C if the distance between them is 1. If ti is a group member,

the immediate children of C along the dimension i are those cells who have

identical components as C except for the ith dimension. For any group member in

the coordinate of C there will be a set of immediate children of C along that

dimension.

 16

A primary descendant of a cell C on the ith dimension is one of the set of

cells whose coordinates are exactly the same as C’s coordinate except that their

coordinates on the ith dimension are primary descendants of C’s coordinate on

the ith dimension.

We define the measure of a group cell C as a distributive aggregate

function, according to ([GBLP96]), of all measures of all primary cells that are

also descendants of C. Since the definition given in [GBLP96] applies to only 2-

level hierarchies a more precise definition is required. We say an aggregation

function F is distributive if there exists another function G, such that F({S}) =

G(F{S1}, …, F{Sn}) where S is a set of scalar values and {S1, …, Sn} is a partition

of S. If F is the summation aggregation function, i.e. sum(), then this equation

holds if G is also the summation aggregation. In fact, F = G if F is the maximum()

or the minimum(). Count() is also a distributive aggregate function if we choose G

to be the summation aggregation function.

This definition of the measure of a group cell opens up an efficient way to

compute the aggregate of a cell without reference to all of its descendant primary

cells. The following theorem, Theorem 1, from [LL03] demonstrates the relation

of measures between a group cell and its descendant cells.

Theorem 1: The measure of a group cell C (t1, …, tk) is an aggregate

function of measures of all its immediate children, along any single dimension i,

as long as ti is a group member for that dimension.

For example, the measure of the cell C (a6, b7) is, by definition, the

aggregation function of measures of the following cells: (a3, b1), (a3, b2), (a3, b3),

 17

(a3, b4), (a4, b1), (a4, b2), (a4, b3), and (a4, b4). According to Theorem 1, this value

can be derived from the measures of the cells (a3, b7) and (a4, b7) as its

immediate children along the A dimension, or from the measures of the cells (a6,

b5) and (a6, b6) as its immediate children along the B dimension.

3.3 Address Mapping Scheme

All members of each dimension, say dimension i, are mapped on the 1-to-

1 basis into a range of integers {0, 1, …, Di-1}. The mapping, f, is designed such

that the integer representation of a group member is greater than the integer

representation of any of its descendant, i.e. f(m) > f(m’) if m’ is a descendant of

m. Let Di be the total number of primary and group members for dimension i. The

dimensions are so named such that Di <= Di+1 for 0<= i <= k-1. Thus, there are all

together D0*…*Dk-1 cells in the cube. The key of a k-dimensional cell with the

numeric coordinate (v0, …, vk-1) is given by the formula v0*D1*…*Dk-1 +

v1*D2*…*Dk-1 + … + vk-1, which is referred to as B-key in this thesis. Note that this

key can be converted back uniquely to the numeric coordinate. If we consider the

cube as a linear array, the address of a cell is then the offset from the top of the

linear array.

3.4 Cell Record and B-tree Structure

The key, together with the non-zero measure(s) of the cell, makes a cell

record. Such format saves a lot of space in both main-memory and disk. All cell

records with non-zero measure(s) are stored in a B-tree structure to facilitate

random and sequential accesses to the records, i.e. cells. The coordinate of a

 18

cell is associated with the coordinate of its immediate child/parent along any

dimension, and vice versa, by referring to its dimension hierarchy. The following

figure illustrates the sequence of mappings involved:

Figure 3 Conversions between Coordinates and Keys

The conversion between a cell’s coordinate and its key is unique. Given

either the coordinate or the key of a cell, we can easily compute the

coordinate/cell record of its immediate parent/children.

Lemma 1: The key of a group cell is always greater than the keys of its

immediate children cells.

In Figure 4, a possible B-tree is built from a dataset with dimension

hierarchies in Figure 1. A directed edge in the tree represents the association

between the cell and one of its immediate children. The measure of a cell can be

computed from its immediate children.

Figure 4 Example of B-tree Structure

Cell records are actually stored in a small space unit, page, in main

memory. There are pointers (memory addresses) among pages to maintain such

Cell
Coordinate

Immediate child/parent
Coordinate Key Immediate child/parent

Cell Record

 19

a tree structure. When the cell records are written to disk, it is done page by

page. Pointers among pages are converted into file position pointers so that the

connections among pages are not lost.

3.5 Query Performance and Types of Query

Testing for performance of random point query is common among most

papers on cube building. A point query is defined as the address of a cell T (q1,

…, qk) where qi, 1<=i<=k, is the coordinate of the cell in the ith dimension. Since

there is a 1-to-1 correspondence between point queries and the cell addresses,

the terms of point query and cell are used interchangeably in this thesis.

A range query is essentially a sub-cube in our context. A random range

query however does not make much sense in OLAP applications when the

ranges have already been carefully defined in the form of dimension hierarchies.

Instead, most OLAP systems implement a query language called MDX [MS03].

Here, we adopt a simplified form of MDX, the matrix query.

A matrix query is to display data contained in the fact table in the form of a

pivot table, which is made popular by many data visualization tools such as

spreadsheet packages. It consists of three components: a (point) query with at

least two group members, and two dimensions, say i and j, identified as the row

and column dimensions respectively, and qi and qj must be group members for

their respective dimensions, with immediate descendant members qi,1, …, qi,r,

and qj,1, … qj,c. The answer to the matrix query will be a table, with qi,1, … and qi,r

as labels for the row, and qj,1, … and qj,c for the column. Assuming i < j, the entry

 20

(v,w) of the table, where 1<=v<=i and 1<=w<=j, is the answer for the query (q1,

…, qi-1, qi,v, qi+1, …qj-1, qj,w, qj+1, …, qk).

For example, the query matrix for the 2D database, (a7, b7), with A as the

row dimension and B as the column dimension, consists of a matrix of point

queries (a5, b5), (a5, b6), (a6, b5) and (a6, b6).

Table 1 Example of a Matrix Query

Row\Column
labels

b5 b6

a5 (a5,b5) (a5,b6)
a6 (a6,b5) (a6,b6)

Processing of matrix query is accomplished by processing point queries

individually inside the matrix. To process the matrix query (a7, b7) in the above

example, we apply the point queries (a5,b5), (a5,b6), (a6,b5), and (a6,b6) of cubelet

SCA. For this example, we may do better. Observing that the first coordinate of

the matrix query, a7, is a group member of the dimension A with a1, a2, a3, and a4

as its primary descendants, we may simply apply the point queries (b5) and (b6)

against the cubelets associated with a1, a2, a3, and a4.

 21

CHAPTER 4: SPLITCUBE

SplitCube, the aforementioned PPA algorithm, contains two phases in

building a partial OLAP cube: dataset division and cubelet construction.

4.1 Cube Construction

In order to break the input down into a set of groups, we first choose prefix

dimensions from the dimension set of the input, and then we project the original

input on prefix dimensions. Tuples with the identical values on prefix dimensions

are put into the same group. Since all tuples within one group has the same

values on prefix dimensions, we will ignore them and only consider cubelet

dimensions. To identify each group, we use the values on prefix dimensions to

generate a unique number as the identifier of the cubelet generated from that

group.

In this thesis, we have two algorithms to build cubelets. The first one is for

constructing full cubelets, and the second one is for creating partial cubelets. We

use the disk-based aggregation algorithm in [LUK01] to build full cubelets. The

second algorithm is actually a variant of the first one. The difference lies in that

the partial cubelet construction skips the pre-aggregation on the last dimension.

Here, we present the two algorithms and give examples to show how each

algorithm works.

 22

Aggregation data for one cubelet is stored in a standard B tree. For

performance reasons, we take a page of size 4096 bytes to store a node. In non-

leaf node, the record size is the size of measure(s) plus the size of a pointer,

which is 4 bytes on a 32-bit platform. The size of a record in leaf node is the size

of B-key (8 bytes) plus the size of measure(s). In our experiment, the measure

size is 8 bytes. We choose 0.5 as our density rate for non-leaf nodes. The fan-

out is determined by formula (nodesize – nodeheadersize) * densityrate /

noderecordesize. In our case, it is (4096-8) * 0.5 / 12 = 170. Such a big fan-out

makes the number of levels less than 3 for most of B-trees (cubelets). A B-tree

with fewer levels makes the searching faster, which is desirable in our query

processing.

Full Cubelet Building Algorithm
INPUT: Input dataset for the cubelet to be built, DS; Dimension Hierarchies, DH; PDS

OUTPUT: The B-tree for that cubelet

BEGIN

Create an empty B-tree, BT based on the DH and PDS

For each tuple, t, in DS

Use theorem 1 to update all ancestor cells of t in BT

End For

Skip cells with zero measure and write them into the cube file

END

As we can see in the following partial cubelet building algorithm, the only

difference is that there is a checking on the value of the last dimension of each

cell to be updated.

Partial Cubelet Building Algorithm
INPUT: Input dataset for the cubelet to be built, DS; Dimension Hierarchies, DH; PDS

OUTPUT: The B-tree for that cubelet

 23

BEGIN

Create an empty B-tree, BT based on the DH and PDS

For each tuple, t, in DS

For each ancestor cell, c in the cell list to be updated (determined by theorem
1)

If c’s coordinate on the last dimension is a group member then

Continue

Else

Update c’s measure with t

End If

End For

Skip cells with zero measure and write them into the cube file

END
We will use the following sample dataset and dimension hierarchies to

show how each algorithm works.

Figure 5 A Sample Dataset and its Dimension Hierarchies

Suppose we choose dimension A and dimension B to be the prefix

dimensions, and we will get 6 groups from the sample dataset: a1b1{1,2}, a1b2{3},

a1b3{4,5}, a2b1{6,7}, a2b2{8}, and a2b3{9}. In each group, we use the combination

of values on prefix dimensions as the group’s ID and use record IDs to represent

records in the dataset. In real dataset, it is very likely that some groups contain

No. A B C D
1 a1 b1 c4 d3
2 a1 b1 c6 d5
3 a1 b2 c4 d6
4 a1 b3 c2 d2
5 a1 b3 c5 d3
6 a2 b1 c1 d8
7 a2 b1 c2 d7
8 a2 b2 c3 d4
9 a2 b3 c5 d6

 24

no records. After the splitting, we check if there is any group too big for our

memory capacity. If so, big groups need to be further divided into sub-groups.

Each group/sub-group can then be loaded into memory and built into a

cubelet/sub-cubelet.

We take the first group as an example to illustrate how to build a cubelet in

the two algorithms described. An empty B-tree for dimension C and dimension D

will contain the following cells:

{c1d1, …, c1d11, c2d1, …, c2d11, c3d1, …, c3d11, c4d1, …, c4d11, c5d1, …,
c5d11, c6d1, …, c6d11, c7d1, …, c7d11, c8d1, …, c8d11, c9d1, …, c9d11}

In group a1b1, we have only two tuples (primary cells), c4d3 and c6d5. So

only the following cells in the B-tree will be updated according to theorem 1, and

these cells are to be stored in the cube file.

{c4d3,c4d9,c4d11,c5d6,c5d9,c5d11,c7d3,c7d9,c7d11,c8d6,c8d9,c8d11,c9d3,c9d6,c9d9,
c9d11}

This is how STDSC builds a full cubelet. In the partial cubelet building

algorithm, the same empty B-tree is created and we take group a1b1 as an

example to show the difference. The same set of cells as above is selected and

considered to be updated. Since partial cubelet construction does not do pre-

aggregation on the last dimension, all cells with the value of last dimension being

a group member will be ignored. Thus only the following cells are updated and

stored into the cube file.

{c4d3, c5d6, c7d3, c8d6, c9d3, c9d6}

 25

The size of the cubelet built from partial cubelet building algorithm is much

smaller than the one built by the full cubelet algorithm. We list out the cells of

each cubelet built from the two algorithms as follows:

Full cubelets:
a1b1:{c4d3,c4d9,c4d11,c5d6,c5d9,c5d11,c7d3,c7d9,c7d11,c8d6,c8d9,c8d11,c9d3,c9d6,

c9d9,c9d11}

a1b2:{c4d6,c4d9,c4d11,c7d6,c7d9,c7d11,c9d6,c9d9,c9d11}

a1b3:{c2d2,c2d9,c2d11,c5d3,c5d9,c5d11,c7d2,c7d9,c7d11,c8d3,c8d9,c8d11,c9d2,c9d3,

c9d9,c9d11}

a2b1:{c1d8,c1d10,c1d11,c2d7,c2d10,c2d11,c7d7,c7d8,c7d10,c7d11,c9d7,c9d8,c9d10,c9

d11}

a2b2:{c3d4,c3d9,c3d11,c7d4,c7d9,c7d11,c9d4,c9d9,c9d11}

a2b3:{c5d6,c5d9,c5d11,c8d6,c8d9,c8d11,c9d6,c9d9,c9d11}

Partial cubelets:
a1b1: {c4d3, c5d6, c7d3, c8d6, c9d3, c9d6}

a1b2: {c4d6, c7d6, c9d6}

a1b3: {c2d2, c5d3, c7d2, c8d3, c9d2, c9d3}

a2b1: {c1d8, c2d7, c7d7, c7d8, c9d7, c9d8}

a2b2: {c3d4, c7d4, c9d4}

a2b3: {c5d6, c8d6, c9d6}

After all cubelets are created, we write the configuration information about

the cube into a separate file, including the number of prefix dimensions and

which dimensions they are, and the entry point of each cubelet in the cube file.

Before a query can be made on a cube, the configuration file of the cube must be

loaded into memory first.

 26

4.2 Query Processing

Generally, query processing in SplitCube and its variants are composed of

three steps due to the spread of aggregates into multiple individual cubelets. The

first step is to determine which cubelets are involved in the query processing.

The involved cubelets can be determined from the query, PDS, and the

dimension hierarchies. For values on prefix dimensions in the query, each of

them will be replaced by the set of its primary descendants. The elements of

Cartesian Product of all these sets form a new set, from which we generate the

identifiers of cubelets that are involved in the query using the same algorithm

mentioned in cube construction. In the second step, we take the values on

cubelet dimensions of the query to form a new query for each cubelet involved.

We use the method in previous chapter to calculate the B-key of the new query.

With the B-key, we can retrieve the measure(s) for the new query in the B-tree of

each cubelet. From the result retrieved from each cubelet, we can compute the

result for the original query in the last step.

For matrix queries, the first step is same as a single-point query. However,

in the second step, we will use the values in the query and the specified row

dimension and column dimension to form a set of point queries, called QPS,

which will be issued to each cubelet. The last step is similar to single-point query

processing. The following is the algorithm of standard SplitCube (STDSC) for

matrix queries.

The Algorithm for Matrix Queries in STDSC
INPUT: the query, orgQ; row dimension index, rowIndex; column dimension index,

columnIndex; PDS; dimension hierarchies, DH

 27

OUTPUT: The answer to the matrix query

BEGIN

Let QPS be the query point set for each cubelet, which is derived from orgQ,
rowIndex, columnIndex, PDS, and DH

Let CS be the set of cubelets involved in the matrix query, which is determined by
orgQ, PDS, and DH

Let AS be the set holding answers of point queries from each cubelet

For each cubelet, c, in CS

For each point query, q in QPS

Let a be the answer of q on c

Put a into AS

End For

End For

Calculate the answer to orgQ from AS

END

We will use the same sample dataset and dimension hierarchies to

illustrate how a matrix query is processed. Suppose our matrix query is {a3, b4,

c9, d11}, row dimension is C, and column dimension is D. The query is divided

into two parts: {a3, b4} as the PDS part, and {c9, d11} as the CDS part. The

primary descendant set for a3 and b4 are {a1, a2}, and {b1, b2}, respectively. There

are four elements in their Cartesian product, namely, a1b1, a1b2, a2b1, and a2b2,

which represent the four cubelets involved in this query. The CDS part, {c9, d11} ,

together with the row dimension and column dimension, will form a query point

set for this matrix query, {(c7,d9), (c7,d10), (c8,d9), (c8,d10)}. This query point set, as

a set of individual queries, is issued to the four cubelets respectively. Results

from the four cubelets are put together to compute the answer to the query {a3,

b4, c9, d11}.

 28

4.3 PDS Selection

PDS, as one of the most important parameters, affects the performance in

both cube construction and query processing. In generating a cube, it determines

the number of cubelets and the cube size, which are both critical factors in

generating a cube. Generally, the smaller a cube is, the faster we can build it.

From the discussion in Section 4.2, we can see that a point query is issued to

each cubelet involved. Generally, the more cubelets a cube contains, the more

cubelets are involved for the same matrix query. To improve query performance,

we need a small number of cubelets; however, we also need to pick as many

prefix dimensions as possible to reduce the cube size. Choosing dimensions with

a small number of primary members can reduce cube size and limit the number

of cubelets as well. In our experiments, this strategy succeeds in achieving good

performance in both cube construction and query processing.

 29

CHAPTER 5: MERGING OF QUERY POINT SET AND B-TREE

From Section 3.5, we know a matrix query is indeed a set of query points,

which is called QPS, i.e. Query Point Set. In each cubelet, only cells with non-

zero measures will be stored in the B-tree. Obviously, the overlap between QPS

and B-tree is the points whose values we need to derive the answer to the matrix

query. Unfortunately, despite our efforts to minimize the QPS, it is still a very

large set, which could contain hundreds or thousands of point queries. Only a

tiny fraction of them is stored in the B-tree. The standard algorithm to compute

the intersection of these two large sets of points has linear running time in terms

of the size of the QPS and the number of elements in the PA cube within the

same range as the QPS. It is linear because both the PA cube and the QPS are

sorted according to their B-key. The problem is that a linear algorithm is not good

enough, because the QPS can be very large if the PA cube contains only a few

pre-computed aggregates. It takes a long time just to generate millions of query

points.

Our solution is to avoid scanning every query contained in the QPS within

the B-tree, thus we need not generate all query points. We observe that if a

query point, as a key, cannot be found in the PA, it can be ignored. One may, as

an alternative, scan only the elements within the query range in the PA. For each

element within the range, its key may be converted into a cell address. Only one

lookup is needed to find out whether the cell address matches any query point in

 30

the QPS. This approach, by matching the potential answers with the queries, will

work well if the potential answers are fewer than the queries. However, the

condition cannot be ascertained in advanced.

We propose an effective solution for this problem, which makes use of the

random access feature to the PA. The process is illustrated in Figure 6:

Figure 6 Merging of Query Point Set and B-tree

The matching process begins with finding the answer for the first query,

say Q0 in the QPS. If the answer to Q0 is found in E0, an element in the PA cube,

the measure in E0 will be retrieved. Then next element of E0, say E1 is located. E1

will then be the element that contains the key, which is the smallest one among

all keys in the PA cube that is greater than Q0. In case that the answer to Q0

cannot be located, E1 is located as well. In either case, a query for E1, say Qi, is

created, and an attempt is made to locate Qi in the QPS. If the attempt is

successful, the measure of E1 will be retrieved as the answer for Qi. Regardless

of whether Qi is found, the next query in key sequence, Qi+1, will be located and

Qi+1 Qi Q0

E0 Ei
 Q

Find the Answer for the Query or Find the Query for the Answer

Get Next Element (in B-tree) or Get Next Query (in Q cube)

Q Cube
(Linearized)

PPA
(As a B-tree)

… … …

Query Range

 31

the search for the answer in the PA cube for a query, which is Qi+1 this time, will

begin again. This process will be repeated until the end of the range is reached.

The Algorithm for Matrix Queries in MQPSB
INPUT: the query, orgQ; row dimension index, rowIndex; column dimension index,

columnIndex; PDS; dimension hierarchies, DH

OUTPUT: The answer to the matrix query

BEGIN

Let QPS be the query point set for each cubelet, which is derived from orgQ,
rowIndex, columnIndex, PDS, and DH

Let CS be the set of cubelets involved in the matrix query, which is determined by
orgQ, PDS, and DH

Let AS be the set holding answers of point queries from each cubelet

For each cubelet, c, in CS

Let q be the first point query in QPS

Let done = FALSE

While (done is FALSE)

If an element e is found in c, with the B-key of e equals to the B-key of q
Then

Retrieve the measure of e and put it into AS

Let S be the set of all elements in c with B-keys > q

If S is empty Then

done = TRUE

Else

Let e = the element with the smallest key in S

End If

If q is found such that q = e Then

q = e

Let S be the set of all query points in QPS with keys > e

If S is empty Then

done = TURE

Else

Let q = the query point in QPS with the smallest B-key

End If

End If

Else

Let q = the query point in QPS with the smallest B-key

 32

End If

End While

End For

Calculate the answer to orgQ from AS

END

Note that the algorithm does not do exactly what is portrayed in Figure 5.

If a query is found for a given answer (as Qi is matched with Ei), the next element

to Ei is located instead of the next query Qi+1, as is the case in Figure 6. The next

query is located only in the case when no query can be found for a given answer.

This modification simplifies implementation because the retrieval of answer to a

query is part of the B-tree code. It does not hurt performance.

We use the same example as for STDSC in figure 5. Suppose our query is

{a3, b4, c9, d11}, C is the row dimension and D is the column dimension. A and B

are prefix dimensions. From example 1, we know four cubelets will be involved in

this query, (a1,b1), (a1,b2), (a2,b1), and (a2,b2). There will be 4 point queries,

{(c7,d9), (c7,d10), (c8,d9), (c8,d10)} , for each of the four cubelets. In STDSC, we will

search 4 times for 4 query points. We take the first cubelet, (a1, b1), to show how

MQPSB works. The following is how non-zero cells are stored in the cubelet

(a1,b1).

a1b1:{c4d3,c4d9,c4d11,c5d6,c5d9,c5d11,c7d3,c7d9,c7d11,c8d6,c8d9,c8d11,c9d3,c9d6,

c9d9,c9d11}

According to the algorithm, we locate the first point query (c7, d9) in

cubelet a1b1. Cell (c7, d9) is found, so we move to the next cell (c7, d11), which is

not found in {(c7, d9), (c7, d10), (c8, d9), (c8, d10)}. Then we move to the next point

 33

query with B-key bigger than (c7, d11), which is (c8, d9). Now we do a search for

(c8, d9) in a1b1. Since it is found, then we check the next cell to (c8, d9), which is

(c8, d11). As (c8, d11) cannot be found in the query point set and there is no other

point queries having their B-keys larger than (c8, d11), the query processing is

done. From the description above, we can see that we only did two searches in

cubelet a1b1 rather than four searches in STDSC.

The change in the processing of a set of point queries in MQPSB

substantially improves the algorithm’s query performance because it sharply

reduces the number of searches in cubelets.

 34

CHAPTER 6: QUERY PROCESSING WITH RANGE QUERIES

In addition to MQPSB, we now devise another improved query-processing

algorithm, Query Processing with Range Queries (QPRQ).

QPRQ takes the advantage of the nice structure of B-tree. The B-tree

employed in our research is clustered on the B-keys of cells, which are

lexicographically ordered on dimensions. If we have a set of point queries and

the B-keys of all these point queries are consecutively stored in the B-tree, then

we only need to locate the first query point in the B-tree and then keep retrieving

the measures of cells behind the first cell until we reach the last query point in the

B-tree. This would save us a lot from searching in B-tree, especially when the set

is big.

However, the query points derived from a matrix query are not always

consecutively stored in the B-tree. To take the advantage of the beautiful feature

of B-tree, we artificially create such query point set, referred to as Range Query

in this thesis. A range query is defined as a cell address (q1, …, qk), together with

a range of primary members (in consecutive order) in the kth dimension. If qk is a

primary member, then it is in essence a point query with a range of one member,

i.e. itself. Otherwise, the associated range includes the primary members that are

descendants of qk. The following figure shows the difference between STDSC

and QPRQ in processing a range query.

 35

Figure 7 Range Query Processing in QPRQ and STDSC

Our method is to adopt the partial cubelet-creating algorithm described in

chapter 4 and skip the aggregation on the last dimension in building each

cubelet, so that only cells with values on the last dimension being primary

members are stored in cubelets. Whenever there is a point query with the value

on the last dimension being a group member, we construct a range query for that

point query and calculate the answer by issuing the range query to the cubelet.

Suppose we have a point query (q1, …, qk), and qk is a group member on

the last dimension k. Based on this point query, we build a range query {(q1, …,

qkm), …, (q1, …, qkn)}, where {qkm, …, qkn} are the primary descendants of qk in

the hierarchy of dimension k. From the hierarchy structure, we can see that qkm,

…, qkn are consecutive in the hierarchy tree, so cells (q1, …, qkm), …, (q1, …, qkn)

should all be consecutively stored in the cubelet. When we calculate the answer

to (q1, …, qk) we only need to locate (q1, …, qkm) first, and then we retrieve the

measures of cells whose B-keys are bigger than that of (q1, …, qkm) in the B-tree,

until we reach the cell with its B-key larger than that of (q1, …, qkn). Finally, we

calculate the answer from those measures.

 Processing path in STDSC

Processing path in QPRQ

 36

The Algorithm for Matrix Queries in QPRQ

INPUT: the query, orgQ; row dimension index, rowIndex; column dimension index,
columnIndex; PDS; dimension hierarchies, DH

OUTPUT: The answer to the matrix query

BEGIN

Let QPS be the query point set for each cubelet, which is derived from orgQ,
rowIndex, columnIndex, PDS, and DH

Let CS be the set of cubelets involved in the matrix query, which is determined by
orgQ, PDS, and DH

Let AS be the set holding answers to point queries from each cubelet

For each cubelet, c, in CS

For each point query, q in QPS

Construct the range query, RQ for q

Let RAS be the set to hold answers to query points in RQ

Locate the cell cf in c with the B-key of cf not less than the B-key of the
first query point in RQ

While (the B-key of cf not bigger than the last query point in RQ)

Put the measure of cf into RAS

Let cf be the next cell of cf in cubelet c

End While

Calculate the answer, a for q on c from RAS

Put a into AS

End For

End For

Calculate the answer to orgQ from AS

END

You may ask why we do not pre-aggregate on the last dimension, so that

we do not have to construct the range query, which is supposedly faster than

QPRQ. That is true. However, most of the performance improvement is gained

from cublet construction and disk storage by skipping the aggregation on the last

dimension. The last dimension contains the most members among all

dimensions. Without pre-computation on it, we can build the cube with a shorter

PDS within a similar amount of time that STDSC takes to build the cube with a

 37

longer PDS. A shorter PDS means fewer cubelets involved in the same query,

which certainly will improve the performance of query processing.

To show the strength of QPRQ, we still use the same example dataset as

in Figure 5, but we will use a shorter PDS to group the dataset and build

cubelets. In this example, we only use dimension A to do the grouping. The

primary cells (input records) contained in the two groups are shown as follows:

Group a1: {1, 2, 3, 4, 5}
Group a2: {6, 7, 8, 9}

The cells created in each cubelet are presented below:

a1:{b1c4d3,b1c6d5,b1c7d3,b1c8d5,b1c9d3,b1c9d5,b2c4d6,b2c7d6,b2c9d6,b3c2d2,b3c5d3

,b3c7d2,b3c8d3,b3c9d2,b3c9d3,b4c4d3,b4c4d6,b4c6d5,b4c7d3,b4c7d6,b4c8d5,b4c9d3,

b4c9d5,b4c9d6,b5c2d2,b5c5d3,b5c7d2,b5c8d3,b5c9d2,b5c9d3,b6c2d2,b6c4d3,b6c4d6,

b6c5d3,b6c6d5,b6c7d2,b6c7d3,b6c7d6,b6c8d3,b6c8d5,b6c9d2,b6c9d3,b6c9d5,b6c9d6}

a2:{b1c1d8,b1c2d7,b1c7d7,b1c7d8,b1c9d7,b1c9d8,b2c3d4,b2c7d4,b2c9d4,b3c5d6,b3c8d6

,b3c9d6,b4c1d8,b4c2d7,b4c3d4,b4c7d4,b4c7d7,b4c7d8,b4c9d4,b4c9d7,b4c9d8,b5c5d6,

b5c8d6,b5c9d6,b6c1d8,b6c2d7,b6c3d4,b6c5d6,b6c7d4,b6c7d7,b6c7d8,b6c8d6,b6c9d4,

b6c9d6,b6c9d7,b6c9d8}

There are totally 80 non-zero cells in the cube. Recall that in the STDSC,

with PDS being {A, B}, there are totally 74 non-zero cells. Clearly, the cube

construction time and cube size should be similar. Now, let us see how QPRQ

works. We use the same matrix query as in STDSC, (a3, b4, c9, d11), and C as the

 38

row dimension and D the column dimension. Only two cubelets are involved, a1

and a2. For each of them, there will be four point queries:

{(b4,c7,d9),(b4,c7,d10),(b4,c8,d9),(b4,c8,d10)}

Here, the advantage of QPRQ is obvious. We can see that the 4 point

queries are issued to 2 cubelets, so there are totally 8 point queries in QPRQ.

Whereas in STDSC, there are 4 point queries for 4 cubelets, 16 piont queries in

total.

We take the first point query on cubelet a1 as an example to show how

QPRQ works. First of all, a range query, {(b4, c7, d1), …, (b4,c7,d6)}, is derived

from (b4,c7,d9). Since (b4,c7,d1) and (b4,c7,d2) can not be found in a1, we locate

(b4,c7,d3) in a1 and record its measure. Then we take the measure of the next cell

(b4,c7,d6) because its B-key is not bigger than the last point query in the range

query, (b4,c7,d6). After that, the B-key of the next cell, (b4, c8, d5), is checked and

we find out that it is bigger than (b4, c7, d6). Now, the range query processing for

point query (b4, c7, d9) is done. The same processing is repeated for all the point

queries in each cubelet involved.

Even for each individual point query, the range query processing is a little

slower than STDSC, which does not need extra processing. The benefit we

obtain from fewer point queries and advanced range query processing technique

outweighs the performance loss in each individual point query. We will see how

the significant the performance improvement is in QPRQ in the experimental

result analysis in the next chapter.

 39

CHAPTER 7: EXPERIMENTAL RESULTS

All the experiments presented in this thesis are conducted on a Compaq

laptop equipped with a 2.4GHz processor and 512-Mb memory. To get

measurement that is more meaningful on performance for each algorithm, we

test algorithms with heavy-duty matrix queries as discussed later.

In our experiment, most tests are done on the weather dataset, which

originally has 9 dimensions, whose cardinalities are: 2, 8, 10, 30, 101, 152, 179,

352, and 7037. All dimensional hierarchies are 2-level, i.e. the only group

members are roots of the hierarchies. We bulk the hierarchies of the last 4

dimensions by adding one more level to each dimension hierarchy. The

cardinalities of all dimensions are shown in the following table:

Table 2 Dimension Cardinalities in Weather Dataset

level\dimension 0 1 2 3 4 5 6 7 8
1 1 1 1 1 1 1 1 1 1
2 2 8 10 30 101 8 8 18 98
3 152 179 352 7037

7.1 Heavy-Duty Queries

Heavy-duty queries are defined by the heavy computation needed to

deliver the answers to them. Generally, a decision-making query retrieves a large

number of data from the cube. For this thesis, heavy-duty queries make it easier

to compare performance of different query processing strategies. In weather

dataset choosing the 5th dimension and 9th dimension as the row and column

 40

dimensions, respectively, generates the most sub-queries. However, we choose

the last two dimensions as the row dimension and column dimension in our

experiments. The reason is that the number of sub-queries generated from this

combination is around the average number of sub-queries among the 36 possible

combinations, so we use it as the representative of heavy-duty matrix queries. To

eliminate the impact on query performance caused by previous queries, we write

a large file to clear system cache before a query is issued to the cube.

Before we test our new algorithms, we first build a full cube with the

Weather dataset, against which results from new algorithms can be compared.

The cube size, cube construction time, and the query performance on the full

cube are used as a baseline to show how the novel algorithms improve in both

cube construction and query processing. In the test, STDSC and MQPSB use the

full cubelet construction algorithm and QPRQ uses the partial cubelet building

algorithm to build the cube. The following tables show the testing results on the

full cube and our new algorithms, respectively.

Table 3 Performance Data of the Full Cube

PDS
Construction

Time (s)
Size
(GB)

Number of Non-
empty Cubelets

Response
Time(s)

N/A 10041 9.03 1 157.602

 41

Table 4 Performance Data of STDSC

PDS
Construction

Time (s)
Size
(GB)

Number of Non-
empty Cubelets

Response
Time(s)

0,1,2,5 337 0.985 11668 182.893

0,1,2,4 407 1.47 4105 87.366

0,1,2,3 475 1.66 4192 80.506

0,1,5 466 1.74 2206 72.935

0,1,2 709 2.32 160 11.256

1,2,3 1017 3.36 2364 77.171

1,8 2383 4.99 45055 606.39

Table 5 Performance Data of QPRQ

PDS
Construction

Time (s)
Size
(GB)

Number of Non-
empty Cubelets

Response
Time(s)

0,1,2,(8) 448 1.58 160 22.863

0,1,(8) 630 2.45 16 1.332

1,2,(8) 627 2.48 80 6.610

1,(8) 1339 4.37 8 1.051

Table 6 Performance Data of MQPSB

PDS
Construction

Time (s)
Size
(GB)

Number of Non-
empty Cubelets

Response
Time(s)

0,1,2,5 337 0.985 11668 34.239

0,1,2,4 407 1.47 4105 23.884

0,1,2,3 475 1.66 4192 28.681

0,1,5 466 1.74 2206 25.55

0,1,2 709 2.32 160 7.98

1,2,3 1017 3.36 2364 25.14

1,8 2383 4.99 45055 254.82

 42

From Table 3 and Table 4, we can see the substantial improvement

obtained from STDSC in cube storage, cube building time, and query processing.

The PPA cube is only 10% - 50% of the size of the full cube, and STDSC takes

only 3% - 25% of the full cube’s building time. Compared with the full cube

algorithm, STDSC also shows big advantage. For the same matrix query,

STDSC is 1 - 14 times faster than the full cube algorithm. Obviously, the other

two enhanced algorithms, MQPSB and QPRQ, should perform even better than

STDSC. In the rest of this section we will focus on the advantage and

disadvantage of each algorithm, and try to discover some useful patterns in

comparing any two of them, which are helpful in choosing the right algorithm for

different user cases.

To make the comparison more accurate, one of the basic principles in our

analysis is that all the comparisons should be based on the same set of

aggregates. For example, when algorithm A and algorithm B are compared, they

should create the same set of aggregates and the same set is used for the query

processing as well.

MQPSB and STDSC both generate full cubelets, so the comparison

between them should be simply on the same PDS. They will create the same

group of cubelets and process queries on the same set of aggregates.

However, we cannot compare QPRQ with STDSC the same way as we

compare MQPSB with STDSC because QPRQ only creates partial cubelets. One

way of comparing QPRQ with STDSC would be to compare the performance

data of QPRQ with {A} as the PDS against the data of STDSC with {A, 8}. The

 43

problem with this comparison is that there are far more cubelets associated with

STDSC (i.e., 45055, when A is {1}) than that with QPRQ, (i.e, 8). Since a big

number of cubelets greatly lowers the performance in query processing, the last

dimension is usually not picked as a prefix dimension in STDSC.

7.2 QPRQ vs. STDSC

For the above reasons we decide to compare QPRQ with {A} as PDS, with

STDSC on its cluster cubes. For a cube created by QPRQ with PDS {A}, its

cluster cubes generated by STDSC are those that are created with PDS(s) {A, 0},

{A, 1}… {A, n}, where n is the last dimension. Comparing the two algorithms in

this way may not be fair to them, but it will present us more meaningful guideline

in choosing which algorithm to use in real environment.

We first compare QPRQ with STDSC in cube construction. From Figure 8,

we can see that QPRQ does not show consistent advantage over STDSC in

comparing with its cluster cubes. For example, QPRQ with PDS {0, 1, 2, (8)}

builds the cube faster than STDSC with PDS {0, 1, 2, 3}, but QPRQ with PDS {0,

1, 2, (8)} takes longer time than STDSC with PDS {0, 1, 2, 5}. Looking at the data

in Table 4 and Table 5 carefully, we find out that in both of the algorithms the

time used in building the cube really depends on the final cube size, which is

consistent with our analysis in previous sections. Thus, we cannot say which one

is better than the other in cube construction, but the difference in their cube

construction performance is not big.

 44

Figure 8 Comparison between STDSC and QPRQ in Cube Construction

0

100

200

300

400

500

{0, 1, 2, 3} {0, 1, 2, 4} {0, 1, 2, 5}

STDSC{0, 1, 2} Cluster Cubes QPRQ{0, 1, 2}

In query processing, QPRQ performs much better on each cube than

STDSC on its cluster cubes as shown in Figure 9. The performance difference is

so big that we can even ignore their performance difference in cube construction.

We can draw a conclusion here that, for every PDS we choose with STDSC we

can always replace it by QPRQ with the corresponding PDS and get a much

better query performance. For example, it is usually preferable to replace STDSC

{0, 1, 2, 3}, {0, 1, 2, 4,} or {0, 1, 2, 5} with QPRQ {0, 1, 2}. If one finds QPRQ {0,

1, 2} too slow in cube building, instead of opting for STDSC {0, 1, 2}, one should

drop the last dimension from the PDS, say QPRQ {0, 1}, which is again

preferable to either STDSC {0, 1, 2}, or {0, 1, 5}.

 45

Figure 9 Comparison between STDSC and QPRQ in Query Processing

0

50

100

150

200

{0, 1, 2, 3} {0, 1, 2, 4} {0, 1, 2, 5}

STDSC{0, 1, 2} Cluster Cubes QPRQ{0, 1, 2}

7.3 MQPSB vs. STDSC

The comparison between MQPSB and STDSC is more straightforward

than the comparison between QPRQ and STDSC. In the testing result, we can

see that MQPSB is always outperforming STDSC in query processing.

In theory, in order to fully reveal the power of MQPSB, both the query

point set and the B-tree should be large. A bigger query point set makes it

possible to skip more query points, and a bigger B-tree means a bigger save on

a skipped query point. In this thesis, a big B-tree is equivalent to a cubelet

containing a big number of points/cells. We compare the two algorithms over 4

cubes, the results are presented in Table 7:

 46

Table 7 Comparison between STDSC and MQPSB in Query Processing

PDS
MQPSB STDSC

Time (s)
of queried

points
Time (s)

of queried
points

0,1,5 25.546 35890 50.413 3375180

0,1,2 7.981 13233 9.914 244800

1,2,3 25.136 116752 51.785 3616920

1,8 254.824 83471 257.330 810990

You may be surprised not to see any significant difference in query

performance with such a huge difference in the number of queries presented

above. However, let us take a second and look at the number and it will be more

understandable.

First, query processing includes at least two types of costs: I/O cost and

calculation cost. MQPSB focuses on the saving on calculation cost, not I/O cost.

STDSC and MQPSB have the same I/O cost on the same cube because they

read in the same set of cubelets for the same matrix query. The I/O cost takes a

big portion of the whole cost in query processing, which makes the advantage of

MQPSB much less obvious. In the case of {1, 8}, the file size is lot larger than

other PDS(s). Therefore, the file I/O dominates the query processing time. The

MQPSB does essentially the same amount of I/O as the STDSC. When the

cubelet is small (meaning the B-tree is small) the MQPSB may skip some query

points, but it can rarely skip a page, because most of cubelets span only one or

two pages.

Second, the same point query costs differently on different cubelets.

Searching a number within 10,000 numbers takes much longer than search the

 47

number within 4 numbers, which means a query on a big cubelet/B-tree costs

more than the query on a small cubelet. The numbers in the table above are

counted without distinguishing between big cubelets and small cubelets. Let us

take the cube {1 8} as example, around 13,000 cubelets in the cube have only

one primary point/cell, and all 45,054 non-empty cubelets have less than 30

primary points/cells. Searching within such small cubelets/B-tree is trivial even

between searching 100,000 times and searching 1000,000 times. On the other

hand, we do not have compression on cubelets. The minimal size of a cubelet is

the size of one page in memory, which is 4 KB in our case. Therefore, a cubelet

with only one or two cells will take at least 4 KB on disk. Considering the huge

number of cubelets in cube {1, 8} the total size of the cube is over 5 GB. Our

heavy-duty query needs to access all cubelets, so the I/O cost dominates the

query processing time. That explains why the performance of MQPSB and

STDSC is so close even the number of query points issued in STDSC is almost

10 times of the number of query points in MQPSB.

One pattern we notice in the experiment is that picking the row/column

dimension of a matrix query from the PDS of the cube will effectively weaken the

advantage of MQPSB because it significantly reduces the size of query point set

issued to each cubelet. For example, if we pick dimension 4, present-weather, as

row dimension, and dimension 8, station-id, as column dimension in the heavy-

duty matrix query, the size of query point set for each cubelet in cube {0, 1, 5} will

be 101*85. However, if we choose the same row dimension and column

dimension in cube {1, 4}, the number of query points for each cubelet will be only

 48

85, which is not big enough to show the power of MQPSB. As we can expect, the

two algorithms perform almost same with the matrix query on cube {1, 4}.

In conclusion, we should use MQPSB instead of STDSC with the same

PDS and try to choose the PDS to make both query point set and cubelets/B-

trees big enough to take the advantage of merging between query point and B-

tree.

7.4 QPRQ vs. MQPSB

From the discussion above, we can see that both QPRQ and MQPSB

perform better than STDSC. We want to see how they compare with each other.

We will compare QPRQ with MQPSB the same way as we compare QPRQ with

STDSC for the similar reasons.

From the testing results, we see a similar pattern as what we see in

comparing QPRQ with STDSC. In addition, we find out, as the number of

cubelets increases, MQPSB’s query performance gets close to QPRQ very

quickly. For example, when the number of cubelets is small, like 160 from PDS

{0, 1, 2, (8)}, QPRQ is around 8 times faster than MQPSB. However, when the

number is bigger than 4000, like PDS {0, 1, 2, 4}, the performance difference is

already very small. Because of the limitation of the testing environment, we

cannot do some testing on cubes with the number of cubelets bigger than

60,000. However, the pattern we observe from the analysis of experimental result

is that QPRQ is a better choice when the number of cubelets is relatively small;

 49

and MQPSB will outperform QPRQ when the number of cubelets is large

enough.

 50

CHAPTER 8: CONCLUSIONS AND FUTURE WORK

In this thesis, we propose a SplitCube approach for partial pre-

aggregation. Compared to the full pre-aggregation, the storage footprint is

reduced by 50% - 90% with the same query performance. Based on the

framework of SplitCube, we then derive two enhanced query-processing

techniques. To test and compare the performance of each technique in both

cube construction and query processing, we design our experiment in such a

way that the comparison is based on the same standard and the same set of

aggregates. To make the results more meaningful for comparing between QPRQ

and the other two algorithms, STDSC and QPRQ, we extend the comparison

from on the same set of aggregates to within the same cluster cubes.

From the analysis of our testing results, we observe the following patterns

that are useful in choosing the right algorithm in real applications:

1. QPRQ and MQPSB should always be picked as a better choice in cube

construction and query processing.

2. In choosing between QPRQ and MQPSB, we need to take the number

of cubelets into account. If the size of the cube is huge and a big

number of cubelets is inevitable, we should consider MQPSB;

otherwise, QPRQ should perform better than MQPSB in query

processing.

 51

The focus of our research in this thesis is on the query processing

techniques. We analyze the factors in processing a query and building a cube as

well. To improve the query performance we can either refine our query

processing algorithms themselves or shorten cube construction time to make

more room for query processing like what we do in QPRQ.

In our future research, we may design some more efficient query

processing algorithms based on our findings in this thesis, i.e. combining MQPSB

together with QPRQ. Furthermore, we can carry out our experiment on an online

computation environment to get more accurate results than what is done in this

thesis in a single-user development environment. Finally yet equally important,

distributive aggregation algorithms are also a new horizon. As the multi-core

CPU is becoming more common even among desktops and laptops, algorithms

that may be easily distributed will perform much better than those that are not.

According to the SplitCube approach, cubelets in a cube are independent from

each other during cubelet construction and query processing. Once the PDS is

determined, the processing on multiple cubelets can proceed in parallel.

 52

REFERENCE LIST

[BPT97] E. Baralis, S. Parabolschi, E. Teniente, “Materialized Views Selection in
a Multidimensional Database”, in Proc. of VLDB, 1997

[BR99] K. Beyer, and R. Ramakrishnan, “Bottom-Up Computation of Sparse and
Iceberg CUBEs”, in Proc. of SIGMOD, 1999.

[DRNS98] P.M. Deshpande, K. Ramasamy, J. Naughton, A. Shukia, “Caching
Multidimensional Queries Using Chunks”, In Proc. of ACM SIGMOD,
1998.

[DRT99] A. Datta, K. Ramamritham, H. Thomas, “Curio: A Novel Solution for
Efficient Storage and Indexing in Data Warehouses”, Proc. of the 25th
VLDB Conference, Edinburgh, Scotland, 1999.

[GBLP96] J. Gray, A. Bosworth, A. Layman, H. Prahesh, “Data Cube: A
Relational Aggregation Operator Generalizing group-BY, Cross-Tabs, and
Sub-Totals”, Proc. of ICDE ’96, New Orleans, February, 1996

[GHRU97] H. Gupta, V. Harinarayan, A. Rajaraman, J. Ullman, “Index Selection
for OLAP”, In Proc. 13th ICDE, Manchester, UK, 1997

[GM99] H. Gupta, I.S. Mumick, Selection of Views to Materialize Under a
Maintenance-Time Constraint, Proc. International Conf. on Database
Theory, 1999.

[H98] J. Hellerstein, “Data Warehousing, Decision Support & OLAP”,
http://redbook.cs.berkeley.edu/lec28.html

[HCKL00] E. Hung, D. Cheung, B. Kao, Y. Liang (2000) “An optimization problem
in data cube system design”. Knowledge Discovery and Data Mining,
Lecture Notes in Artificial Intelligence 1805, 74-85.

[HRU96] V. Harinarayan, A. Rajaraman, J. Ullmna, “Implementing Data Cubes
Efficiently”, Proc. of ACM SIGMOD, 1996.

[HWL94] C. Hahn, S Warren, J. London, “Edited Synoptic Cloud Reports from
Ships and Stations over the Globe”, 1982-1991

[IBM02] IBM Product Announcement: “DB2 OLAP Server V8.1 Delivers
Relational Integration and Scalability”, April 2002

[KC02] H.-G. Kang, C.-W. Chung, “Exploting Versions for On-Line Data
Warehouse Maintenance in MOLAP Servers”, Proc. of VLDB, Hong Kong,
2002

http://redbook.cs.berkeley.edu/lec28.html

 53

[KMP02] P. Kalnis, N. Mamoulis, D. Papadias, "View Selection Using
Randomized Search", Data & Knowledge Engineering (DKE), 42(1), 89-
111, 2002

[KP03] P. Kalnis, D. Papadias, "Multi-query Optimization for On-Line Analytical
Processing", Information Systems, 28(5), 457-473, 2003.

[KR99] Y. Kotidies, N. Roussopoulos, “DynaMat: A Dynamic View Management
System for Data Warehouses”, Proc. of ACM SIGMOD, Philadelphia, PA.,
1999.

[Laks03] L. Lakshamanan, J. Pei, Y. Zhao, “QC-Trees: Efficient Summary
Structure for Semantic OLAP”, Proc. of ACM SIGMOD, San Diego, 2003.

[Lee02] Y. Lee, K. Whang, Y. Moon, I. Song, “A One-Pass Aggregation Algorithm
with the Optimal Buffer Size in Multidimensional OLAP”, Proc. of VLDB,
2002

[Liang00] W. Liang, M. E. Orlowska, J. X. Yu, “Optimizing multiple dimensional
queries simultaneously in multidimensional databases”, The VLDB
Journal, 2000

[Li03] C. Li, “A Partial Pre-Computation of Aggregates for OLAP Databases”,
M.Sc. thesis, Simon Fraser University, July, 2003.

[Luk01] W. Luk, “ADODA: A Desktop Online Data Analyzer”, Proc. of DASFAA
2001, Hong Kong, 2002.

[LL03] W. Luk, C. Li, “A Partial Pre-Aggregation Scheme for HOLAP Engines”, In
Proc. of DAWAK, Spain, 2003

[MI06] K. Morfonois, Y. Ioannidis, “CURE for Cubes: Cubing Using a ROLAP
Engine”, Proc. of VLDB, Seoul, Korea, 2006

[MS03] Microsoft SQL Server 2000 Books Online,
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/startsql/portal_7ap1.asp

[Pendse03] N. Pendse, “Datadase Explosion”, OLAP Reports,
http://www.olapreport.com/DatabaseExplosion.htm

[PS99] P. Vassiliadis, T. Sellis, “A Survey of Logical Models for OLAP
Databases”, SIGMOD Record, Vol. 28, No. 4, 1999

[Sara97] S. Srarwagi, “Indexing OLAP Data”, IEEE Bulletin of the Technical
Committee on Data Engeering, Vol. 20, No. 1, 1997.

[SDN98] A. Shukla, P. Deshpande, J. Naughton, “Materialized View Selection for
Multidimensional Datasets”, Proc. of the 24th VLDB Conf., New York, 1998

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/startsql/portal_7ap1.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/startsql/portal_7ap1.asp
http://www.olapreport.com/DatabaseExplosion.htm

 54

[SDNR96] A. Shukla, P. Deshpande, J. Naughton, K. Ramasamy, “Storage
Estimation for Multidimensional Aggregates in the Presence of
Hierarchies”, Proc. of the 22th VLDB Conf., Bombay, 1996

[SRDK02] Y. Sismanis, N. Roussopoulos, A. Deligiannakis, Y. Kotidis, “Dwarf:
Shrinking the Petacube”, Proc. of ACM SIGMOD, Madison, 2002.

[SRDK03] Y. Sismanis, N. Roussopoulos, A. Deligiannakis, Y. Kotidis,
“Hierarchical Dwarfs for the Rollup Cube”, Proc. of DOLAP, November,
2003.

[Wit03] A. Witkowski et al, Spreadsheets in RDBMS for OLAP, Proc. of ACM
SIGMOD, San Diego, 2003

[ZDN97] Y. Zhao, P.M. Deshpande, J.F. Naughton, “An Array-Based Algorithm
for Simultaneous Multidimensional Aggregates”, In Proc. of ACM
SIGMOD, Tucson, Arizona, 1997

[ZDNS98] Y. Zhao, P.M. Deshpande, J.F. Naughton, A. Shukia, “Simultaneous
Optimization and Evaluation of Multiple Dimensional Queries”, In Proc. of
ACM SIGMOD, 1998

	Approval
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	1.1 OLAP and Pre-Aggregation
	1.2 Motivation and Objectives
	1.3 Main Features
	1.3.1 SplitCube
	1.3.2 Matrix Query
	1.3.3 B-Tree and its Application in Query Processing
	1.3.3.1 Merging of Query Point Set and B-tree (MQPSB)
	1.3.3.2 Query Processing with Range Queries (QPRQ)

	1.4 Thesis Organization

	Related work
	2.1 Partial Pre-Aggregation
	2.2 Query Processing

	Basic concepts and notations
	OLAP Cube and Dimension Hierarchy
	3.1.1 Sub-Cube
	3.1.2 SplitCube

	Aggregation
	Address Mapping Scheme
	Cell Record and B-tree Structure
	Query Performance and Types of Query

	Splitcube
	Cube Construction
	Query Processing
	PDS Selection

	Merging of Query Point Set and B-tree
	Query Processing with Range Queries
	Experimental Results
	Heavy-Duty Queries
	QPRQ vs. STDSC
	MQPSB vs. STDSC
	QPRQ vs. MQPSB

	Conclusions and future work
	Reference List

