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ABSTRACT 

This work presents a novel and flexible PPA (Partial Pre-Aggregation) 

construction and query processing technique in OLAP (On-Line Analytical 

Processing) applications - SplitCube, which greatly reduces the cube size, 

shortens the cube building time and maintains an acceptable query performance 

at the time. Furthermore, we devise two enhanced query processing techniques. 

They can further improve the query performance or reduce cube building time 

further and keep query response time at an acceptable level. The result analysis 

shows more insights in cube construction and query processing procedure and 

illustrates the advantages and disadvantages of each algorithm. Finally, we give 

guidelines in how to choose the right algorithm in different user cases. 
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CHAPTER 1: INTRODUCTION 

1.1 OLAP and Pre-Aggregation 

OLAP (On-Line Analytical Processing) has become one of the standard 

services in most commercial database systems as the analysis of huge amount 

of data plays a crucial role in an organization’s decision-making process. OLAP 

systems provide both construction of and access to aggregate data, which is 

usually stored in a multi-dimensional database, or better known as cube.  

OLAP cubes can be thought of as extension to a two-dimensional array of 

a spreadsheet, and are more suited for analysis and display of large amount of 

data. The power of OLAP comes from the tremendous amount of calculation on 

the input dataset. For online ad-hoc requests, this means a long response time. 

To reduce query response time and improve user experience, it is intuitive to 

calculate the data in advance, which is called Pre-Aggregation.  

There are two types of pre-aggregation in OLAP, full pre-aggregation 

(FPA) and partial pre-aggregation (PPA). As indicated by their names, FPA pre-

calculates all possible data that could be requested; whereas PPA pre-creates 

only part of the full cube. Obviously FPA can provide the best query performance 

and user experience. However, FPA can expand the cube to hundreds of times 

of the size of the original input dataset, which makes the construction and update 

of the OLAP cube much longer, especially for those systems that require daily 
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update on their input datasets. Therefore, PPA becomes the first choice of most 

OLAP systems.  

1.2 Motivation and Objectives 

During the last decade, a big collection of research articles has focused on 

cube construction, and many fast cube-building algorithms have been proposed. 

However, only a small portion of them focused on PPA. This small portion of 

articles is more concerned with the optimization in cube construction under a 

preset storage limitation. Under such a constraint, the selection of which cells to 

aggregate is the key question while construction time is usually ignored. Real 

industry presents a different picture from what is assumed in literature. To begin 

with, the storage is not a big issue in OLAP systems as it was before. In addition, 

cube construction time becomes more important as the input datasets are getting 

bigger and updates are more frequent (daily, usually). Conclusions from those 

papers have become out-of-date in today’s environment.  

Query processing is the most important part of an OLAP system as it 

contributes most to the success of the system, but research on query processing 

in OLAP system is even rarer than literature on PPA. Moreover, in past works 

response time of the query for a single cell or a range of cells, which is the basic 

units of a cube, is often used to measure query performance. However, such 

queries are not common in real OLAP applications. Queries for a group of cells in 

the form of spreadsheets, called matrix queries, are widely used in OLAP 

systems and are more suitable for query performance measurement. 
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Investigations of query processing techniques can help improve the 

response of an OLAP system and deserve more attention from the literature. 

Furthermore, a flexible control on the balance between cube construction 

performance and query performance is needed to meet different demands on 

either query response time or cube construction time. However, previous 

research results are far from enough for such needs. Recent works ([LAKS03], 

[SRDK02], [SRDK03], [MI06]) on OLAP focus on storage reduction of the data 

cube, which will improve the cube building efficiency and query processing 

efficiency.   

In this thesis, we opt for a different approach, which we shall call the 

SplitCube approach. By relying on novel query processing techniques, we need 

not generate a whole data cube. By reducing the storage of the data cube, we 

can achieve faster query processing, which in turn makes it possible to further 

reduce the amount of pre-aggregation. Our goal is to devise a fast PPA 

construction algorithm to provide a flexible control on PPA cube construction 

performance and significantly improve query processing on a PPA, so that we 

can minimize our PPA construction time while keeping query performance at an 

acceptable level in an on-line environment. In this research, we describe the 

designs of two PPA algorithms. Furthermore, we present three query-processing 

techniques: Standard SplitCube (STDSC), Merging of Query Point Set and B-tree 

(MQPSB), and Query Processing with Range Queries (QPRQ). Through a series 

of comparison and analysis of the algorithms, we give an insight to the 
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advantages and disadvantages of each algorithm and provide the quasi-optimal 

solutions for different user cases. 

1.3 Main Features 

In our research, we first devise a fast and flexible PPA algorithm, called 

SplitCube, and then provide a query-processing algorithm on SplitCube. B-tree is 

chosen as our fundamental structure in storing and accessing pre-computed 

data. B-tree is used as a synonym to B+ tree in this thesis. Based on the nice 

features of the B-tree storage structure, we devise two enhanced query-

processing algorithms, MQPSB and QPRQ. 

1.3.1 SplitCube 

The basic concept of SplitCube is to divide the input dataset into a set of 

smaller datasets and build each of them into an independent cube, which is 

called a cubelet in this thesis. We use one or more than one dimension from the 

dimension set of the input dataset to do the division. These dimensions are 

called prefix dimensions. Cells with identical values on prefix dimensions are put 

into the same group. Groups are then built into cubelets one by one. As all cells 

in the same group have the same values on prefix dimensions, we can use those 

values to build a unique identifier for each group and safely remove these 

dimensions from groups. This divide-and-conquer method brings two advantages. 

Firstly, building a cubelet becomes faster as each group contains fewer 

dimensions and cells. This improvement distinguishes SplitCube from previous 

PPA algorithms. It significantly reduces scale and requirements on system 
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resources. Secondly, the algorithm can easily adapt to multi-core systems, where 

processors may compute cubelets in parallel, without any collaboration with other 

processors. 

1.3.2 Matrix Query 

As mentioned in section 1.2, matrix queries are very common in real 

OLAP applications. Essentially a matrix query is a group of queries for single 

cells in the form of spreadsheet [Wit03]. In this thesis, we use the performance 

on some matrix queries to measure performance of query-processing algorithms. 

This measuring method can make our experiments and conclusions more 

accurate and practical for real applications. 

1.3.3 B-Tree and its Application in Query Processing 

In creating each cubelet, we build a B-tree with the aggregation algorithm 

described in detail in [LUK01]. The B-tree is indexed on B-key, which is the 

unique key generated from the values on all dimensions of a cell. Conversely, we 

can get the values on all dimensions of a cell from its B-key. Cells are stored at 

leaf level with its B-key and measure, which is a numerical value of interest to the 

user. The B-tree structure offers us a sequential access to cells on their B-keys. 

For efficiency reasons, cells with all measures being zero are not stored in a B-

tree.  

Employing B-tree in both aggregate computing and retrieving introduces 

some overheads on CPU and disk consumption, but the benefits it brings to 
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query processing outweighs its cost much more. It speeds up the construction of 

aggregate data and makes it possible for efficient query processing algorithms. 

1.3.3.1 Merging of Query Point Set and B-tree (MQPSB) 

One of our observations is that the cells between any two consecutive 

cells in a B-tree should be zero-measure cells because cells with zero-

measure(s) are not stored in the B-tree. This is one place that we can improve 

our query-processing algorithm. The cells involved in a query, especially in a 

matrix query, are ordered by their B-key increasingly before being processed. 

After we access one cell, all cells with their B-keys less than the B-key of the 

‘next’ cell in the B-tree can be safely skipped because if we cannot find them in 

the B-tree, their measures are zeros. This query technique greatly reduces query 

response time, as most cubes are very sparse (i.e. quite a portion of cells in 

those cubes contains zeros as their measures.) 

1.3.3.2 Query Processing with Range Queries (QPRQ) 

For a matrix query, the cells it contains can be ordered by their B-key to 

form a query range. For each cell in the range, we need to do a search on the B-

tree to locate the cell first, and then retrieve the cell’s measure. Our observation 

is that all or part of the cells involved in a matrix query are consecutive by their B-

keys, therefore we do not need to do the search for each of them. After 

accessing the first non-zero-measure cell in the B-tree, we check the next cell to 

see if it is the next one that we want to access in the matrix query. If it is, we save 
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from skipping the search for the next cell. This observation can significantly 

improve query performance in most queries. 

1.4 Thesis Organization 

In the following, we will review previous work in the literature in Chapter 2, 

and define the problem formally in Chapter 3. In Chapter 4, 5, and 6, we discuss 

the Standard SplitCube, Merging of Query Point Set and B-tree, and Query 

Processing with Range Queries, respectively. Finally, we analyze our 

experimental results in Chapter 7, and conclude in Chapter 8. 
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CHAPTER 2: RELATED WORK 

2.1 Partial Pre-Aggregation 

From the beginning of OLAP research, the necessity of partial pre-

aggregation has been recognized. One of the first papers on partial pre-

aggregation was published in 1996 [HRU96]. A view is a suitably modified query 

with a group-by clause, in which a level of each dimensional hierarchy is 

represented. The optimization objective is to select a set of views that will 

minimize the query processing cost while satisfying the constraint that total size 

of these views must not exceed a pre-set storage allocation. Two important 

assumptions are made with respect to the query processing cost: one is that a 

query is identical to some view, and the other is that the cost of processing such 

a query is equal to the size of view. With these assumptions, a model is built to 

define an optimal solution to this optimization problem. Remarkably, a greedy 

algorithm is presented which can produce a solution that is very “close” to the 

optimal one. A follow-up paper [SDNR96] presents an improved greedy 

algorithm, which runs much faster. Interestingly, it introduces a pre-aggregation 

algorithm that can achieve more cost saving in query processing than the 

“optimal” solution, for a specialized class of cubes. The idea is to partition the 

cube into smaller k-dimensional sub-cubes, a.k.a. chunks, each about a size of a 

page. Instead of selecting views for materialization, the system pre-computes 

selective chunks. In query processing, chunks that overlap with the query are first 
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identified. Among these chunks, those that have not been pre-computed need to 

be computed on the fly. With its smaller cube size, chunks may fit into a storage 

space while a materialized view may not. This chunk-based scheme is often 

referred to as a MOLAP (multidimensional) system.  

Other papers on partial pre-aggregation are similar in the way that they 

can be compared within an optimization framework that includes things such as 

query workload, the objective function and constraints. A query workload is a mix 

of relational queries, or views, which are typically associated with the OLAP 

application(s) in question. In [GM99], the constraint is the maintenance cost of 

the pre-aggregated views. In [HCKL00], the query workload is any set of views 

chosen by the user. The problem of optimizing storage size for the pre-computed 

views is studied, subject to the constraint of a pre-determined query response 

time. In [KR99], a scheme whereby materialized views are dynamically 

computed, i.e. computed on demand, is described.   

In [KMP02], it is shown that there could be potentially billions of views, in 

which case many published algorithms on view selection are slow in practice. 

Randomized search is proposed as a solution under the space constraint as well 

as under the maintenance cost constraint.   

The chunk-based pre-aggregation scheme described earlier is one of the 

few schemes that are not based on view materialization. Others include 

[SDKR02], [SDKR03], and [LL03]. Partial Pre-Aggregation (PPA) accounts for a 

small portion of the work. Their schemes are to stop producing more group 

aggregate cells when the number of the potential aggregate cells is deemed 
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small. Interestingly the experimental results in [SDKR03] show that their pre-

aggregation scheme optimizes both pre-aggregation time and query processing 

time, i.e., queries run faster when less pre-aggregation is done. There are few 

detail on how this remarkable feat is possible, nor is there any explanation on the 

discrepancy between apparently contradictory statements made in these two 

papers. In [LL03], a scheme, which can speed up query processing time in theory 

and practice, is proposed for pre-aggregation for MOLAP systems, despite the 

assertions that every aggregate in MOLAP database must be pre-computed (e.g. 

[PS99], [H98]). Our SplitCube approach is built on this scheme; however, we use 

a way to select the subset of aggregates for pre-computation. The difference will 

be discussed in detail in Section 3.1. 

2.2 Query Processing 

A detailed description for query processing using chunks, particularly, the 

cache management thereof, can be found in [DRNS98]. It states that chunks may 

be better utilized for caching purposes and more ‘fine-grained’ than views 

because of its uniform size. Unfortunately, the chunk-based storage organization 

is prone to poor performance when k, the number of dimensions, is large and the 

cube is sparse [BR99].  

A detailed query optimization scheme for ROLAP systems is described in 

[ZDN98], in which selective views are materialized as relations. Queries for 

processing are MDX queries, which are called matrix queries. An MDX query is 

decomposed into a number of group-by sub-queries. A number of new relational 

join queries are introduced that allow multiple related group-by sub-queries to 
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share common subtasks. Algorithms are developed to choose which materialized 

views (relations) are used to evaluate the set of sub-queries. Further research 

results on this topic can be found in [Liang00], and [KP03]. 
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CHAPTER 3: BASIC CONCEPTS AND NOTATIONS 

3.1 OLAP Cube and Dimension Hierarchy 

A full OLAP cube is defined to be a k-dimensional array, where k is a 

positive integer. Each dimension of a cube has Di members, 1<=i<=k, which are 

possible values on the dimension and are organized as a hierarchy. The 

members at the leaf level are called primary members. All other members in 

higher levels of the dimension hierarchy are called group members. The 

hierarchy is a tree hierarchy, where a member is assumed to have exactly one 

parent except for the root, which has no parent. In particular, there is exactly one 

path between a group member and any of its descendants. Primary descendants 

of a group member are descendants that are primary members in the dimension 

hierarchy.  

For example, consider a 2-dimensional OLAP database with dimensions A 

and B. Figure 1 shows the dimension hierarchies of A and B. All members that 

are numbered within the interval [1, 4] are primary members, and the remaining 

ones are group members. The cube contains all 7 members on each dimension. 

The base cube contains all 4 primary members, but no group members, on each 

dimension. The base cube of this OLAP database is also shown in Figure 1. 
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Figure 1 Dimension Hierarchies of A and B of a Dataset and the OLAP Base Cube 

 

A cell in the cube is identified uniquely by a k-tuple, which is composed of 

its coordinates along the k dimensions. A cell is a group cell if at least one 

coordinate of the cell is a group member of some dimension; otherwise, it is a 

primary cell. A cell stores a single numeric value, which is the measure. It is also 

valid for a cell to store multiple values as its measure. Measures of all primary 

cells are input from a data source. The measure of a group cell can be calculated 

according to the method to be discussed later. The calculation can take place on 

demand, usually when its value is required for computation of the answer to a 

query, or it can be pre-computed, i.e., before the query time. In the latter case, 

the cell is called a pre-aggregated cell. A cube is fully aggregated if all group 

cells in the full cube are pre-aggregated.  

An alternative view of a cube is a relation, which is called the fact table. A 

fact table contains all primary and group cells. The B-tree for a cube is the 

physical representation of the fact table. 

3.1.1 Sub-Cube 

A sub-cube is a k-dimensional array, which has all primary cells and a 

subset of group cells of the full cube. The base cube, as a sub-cube of the cube, 



 

 14 

is the k-dimensional array, each dimension of which has only the primary 

members. This is the smallest sub-cube. Figure 2 shows the fully aggregated 

cube, a PA cube, and a base cube, with dimensional hierarchies shown in Figure 

1. The measures of all shaded cells in the Figure 2 are known before query time, 

because either they have been pre-computed or they are raw data. In case of the 

PA, as is shown in Figure 2(ii), a6 and b6 are pre-aggregated members. In other 

words, this PA cube is defined by two sets of pre-aggregated members on the 

two dimensions: {a6} and {b6}. 

Figure 2 (i) FPA Cube, (ii) PPA Cube, and (iii) Base Cube 

 

Clearly, each PA cube contains enough information to generate a full cube 

with additional processing, because the base cube is always included. 

3.1.2 SplitCube 

A Cubelet is a specialized sub-cube, which is identifiable by a set of 

dimensions, called prefix dimension set, or PDS. The compliment of a PDS is 

called cubelet dimension set, or CDS. A cubelet has only primary members for 

the PDS and all members in the CDS. For convenience, we consider the first m 
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dimensions be included into in the PDS, where 0 < m < k. Let P1, …, and Pm be 

the set of the primary members in the prefix dimensions in the PDS. Each tuple 

in the Cartesian product P1 × … × Pm is called a prefix. A cubelet associated with 

a prefix consists of all cells in the sub cube whose coordinates have the same 

members as the prefix for all dimensions in the PDS. Since all cells in this 

cubelet have the same prefix, we may simply truncate prefix from the coordinates 

of these cells, so that the cubelet will now be viewed as a cube with CDS as the 

dimension set. For the rest of the thesis, we view a cubelet as a (k-m)-

dimensional cube. 

3.2 Aggregation 

We now consider how the measure of a group cell is derived. To achieve 

this we need to elaborate the relationships among cells in a cube.  

A descendant of a cell, C, with coordinate (t1, …, tk) is the cell, C’, with 

coordinate (t1’, …, tk’) such that each ti’ is either equal to ti or is a descendant of ti 

in the ith dimension hierarchy, and at least one of them is a descendant of its 

counterpart in the coordinate of C. The distance between C and C’ is defined to 

be the hamming distance between them, i.e., the sum of all distances between 

two corresponding members in each dimension hierarchy. In particular, C’ is an 

immediate child of C if the distance between them is 1. If ti is a group member, 

the immediate children of C along the dimension i are those cells who have 

identical components as C except for the ith dimension. For any group member in 

the coordinate of C there will be a set of immediate children of C along that 

dimension. 
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A primary descendant of a cell C on the ith dimension is one of the set of 

cells whose coordinates are exactly the same as C’s coordinate except that their 

coordinates on the ith dimension are primary descendants of C’s coordinate on 

the ith dimension. 

We define the measure of a group cell C as a distributive aggregate 

function, according to ([GBLP96]), of all measures of all primary cells that are 

also descendants of C. Since the definition given in [GBLP96] applies to only 2-

level hierarchies a more precise definition is required. We say an aggregation 

function F is distributive if there exists another function G, such that F({S}) = 

G(F{S1}, …, F{Sn}) where S is a set of scalar values and {S1, …, Sn} is a partition 

of S. If F is the summation aggregation function, i.e. sum(), then this equation 

holds if G is also the summation aggregation. In fact, F = G if F is the maximum() 

or the minimum(). Count() is also a distributive aggregate function if we choose G 

to be the summation aggregation function.  

This definition of the measure of a group cell opens up an efficient way to 

compute the aggregate of a cell without reference to all of its descendant primary 

cells. The following theorem, Theorem 1, from [LL03] demonstrates the relation 

of measures between a group cell and its descendant cells. 

Theorem 1: The measure of a group cell C (t1, …, tk) is an aggregate 

function of measures of all its immediate children, along any single dimension i, 

as long as ti is a group member for that dimension.   

For example, the measure of the cell C (a6, b7) is, by definition, the 

aggregation function of measures of the following cells: (a3, b1), (a3, b2), (a3, b3), 
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(a3, b4), (a4, b1), (a4, b2), (a4, b3), and (a4, b4). According to Theorem 1, this value 

can be derived from the measures of the cells (a3, b7) and (a4, b7) as its 

immediate children along the A dimension, or from the measures of the cells (a6, 

b5) and (a6, b6) as its immediate children along the B dimension.  

3.3 Address Mapping Scheme 

All members of each dimension, say dimension i, are mapped on the 1-to-

1 basis into a range of integers {0, 1, …, Di-1}. The mapping, f, is designed such 

that the integer representation of a group member is greater than the integer 

representation of any of its descendant, i.e. f(m) > f(m’) if m’ is a descendant of 

m. Let Di be the total number of primary and group members for dimension i. The 

dimensions are so named such that Di <= Di+1 for 0<= i <= k-1. Thus, there are all 

together D0*…*Dk-1 cells in the cube. The key of a k-dimensional cell with the 

numeric coordinate (v0, …, vk-1) is given by the formula v0*D1*…*Dk-1 + 

v1*D2*…*Dk-1 + … + vk-1, which is referred to as B-key in this thesis. Note that this 

key can be converted back uniquely to the numeric coordinate. If we consider the 

cube as a linear array, the address of a cell is then the offset from the top of the 

linear array.   

3.4 Cell Record and B-tree Structure 

The key, together with the non-zero measure(s) of the cell, makes a cell 

record. Such format saves a lot of space in both main-memory and disk. All cell 

records with non-zero measure(s) are stored in a B-tree structure to facilitate 

random and sequential accesses to the records, i.e. cells. The coordinate of a 
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cell is associated with the coordinate of its immediate child/parent along any 

dimension, and vice versa, by referring to its dimension hierarchy. The following 

figure illustrates the sequence of mappings involved: 

Figure 3 Conversions between Coordinates and Keys 

 
 

The conversion between a cell’s coordinate and its key is unique. Given 

either the coordinate or the key of a cell, we can easily compute the 

coordinate/cell record of its immediate parent/children. 

Lemma 1: The key of a group cell is always greater than the keys of its 

immediate children cells. 

In Figure 4, a possible B-tree is built from a dataset with dimension 

hierarchies in Figure 1. A directed edge in the tree represents the association 

between the cell and one of its immediate children. The measure of a cell can be 

computed from its immediate children.  

Figure 4 Example of B-tree Structure 

 
Cell records are actually stored in a small space unit, page, in main 

memory. There are pointers (memory addresses) among pages to maintain such 

Cell  
Coordinate 

Immediate child/parent 
Coordinate Key Immediate child/parent 

Cell Record 
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a tree structure. When the cell records are written to disk, it is done page by 

page. Pointers among pages are converted into file position pointers so that the 

connections among pages are not lost. 

3.5 Query Performance and Types of Query 

Testing for performance of random point query is common among most 

papers on cube building. A point query is defined as the address of a cell T (q1, 

…, qk) where qi, 1<=i<=k, is the coordinate of the cell in the ith dimension. Since 

there is a 1-to-1 correspondence between point queries and the cell addresses, 

the terms of point query and cell are used interchangeably in this thesis. 

A range query is essentially a sub-cube in our context. A random range 

query however does not make much sense in OLAP applications when the 

ranges have already been carefully defined in the form of dimension hierarchies. 

Instead, most OLAP systems implement a query language called MDX [MS03]. 

Here, we adopt a simplified form of MDX, the matrix query. 

A matrix query is to display data contained in the fact table in the form of a 

pivot table, which is made popular by many data visualization tools such as 

spreadsheet packages. It consists of three components: a (point) query with at 

least two group members, and two dimensions, say i and j, identified as the row 

and column dimensions respectively, and qi and qj must be group members for 

their respective dimensions, with immediate descendant members qi,1, …, qi,r, 

and qj,1, … qj,c. The answer to the matrix query will be a table, with qi,1, … and qi,r 

as labels for the row, and qj,1, … and qj,c for the column. Assuming i < j, the entry 
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(v,w) of the table, where 1<=v<=i and 1<=w<=j, is the answer for the query (q1, 

…, qi-1, qi,v, qi+1, …qj-1, qj,w, qj+1, …, qk).  

For example, the query matrix for the 2D database, (a7, b7), with A as the 

row dimension and B as the column dimension, consists of a matrix of point 

queries (a5, b5), (a5, b6), (a6, b5) and (a6, b6).  

Table 1 Example of a Matrix Query 

Row\Column 
labels 

b5 b6 

a5 (a5,b5) (a5,b6) 
a6 (a6,b5) (a6,b6) 

Processing of matrix query is accomplished by processing point queries 

individually inside the matrix. To process the matrix query (a7, b7) in the above 

example, we apply the point queries (a5,b5), (a5,b6), (a6,b5), and (a6,b6) of cubelet 

SCA. For this example, we may do better. Observing that the first coordinate of 

the matrix query, a7, is a group member of the dimension A with a1, a2, a3, and a4 

as its primary descendants, we may simply apply the point queries (b5) and (b6) 

against the cubelets associated with a1, a2, a3, and a4. 
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CHAPTER 4: SPLITCUBE  

SplitCube, the aforementioned PPA algorithm, contains two phases in 

building a partial OLAP cube: dataset division and cubelet construction.  

4.1 Cube Construction 

In order to break the input down into a set of groups, we first choose prefix 

dimensions from the dimension set of the input, and then we project the original 

input on prefix dimensions. Tuples with the identical values on prefix dimensions 

are put into the same group. Since all tuples within one group has the same 

values on prefix dimensions, we will ignore them and only consider cubelet 

dimensions. To identify each group, we use the values on prefix dimensions to 

generate a unique number as the identifier of the cubelet generated from that 

group. 

In this thesis, we have two algorithms to build cubelets. The first one is for 

constructing full cubelets, and the second one is for creating partial cubelets. We 

use the disk-based aggregation algorithm in [LUK01] to build full cubelets. The 

second algorithm is actually a variant of the first one. The difference lies in that 

the partial cubelet construction skips the pre-aggregation on the last dimension. 

Here, we present the two algorithms and give examples to show how each 

algorithm works. 
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Aggregation data for one cubelet is stored in a standard B tree. For 

performance reasons, we take a page of size 4096 bytes to store a node. In non-

leaf node, the record size is the size of measure(s) plus the size of a pointer, 

which is 4 bytes on a 32-bit platform. The size of a record in leaf node is the size 

of B-key (8 bytes) plus the size of measure(s). In our experiment, the measure 

size is 8 bytes. We choose 0.5 as our density rate for non-leaf nodes. The fan-

out is determined by formula (nodesize – nodeheadersize) * densityrate / 

noderecordesize. In our case, it is (4096-8) * 0.5 / 12 = 170. Such a big fan-out 

makes the number of levels less than 3 for most of B-trees (cubelets). A B-tree 

with fewer levels makes the searching faster, which is desirable in our query 

processing.  

Full Cubelet Building Algorithm 
INPUT: Input dataset for the cubelet to be built, DS; Dimension Hierarchies, DH; PDS 

OUTPUT: The B-tree for that cubelet 

BEGIN 

Create an empty B-tree, BT based on the DH and PDS 

For each tuple, t, in DS 

Use theorem 1 to update all ancestor cells of t in BT 

End For 

Skip cells with zero measure and write them into the cube file 

END 
 
As we can see in the following partial cubelet building algorithm, the only 

difference is that there is a checking on the value of the last dimension of each 

cell to be updated. 

Partial Cubelet Building Algorithm 
INPUT: Input dataset for the cubelet to be built, DS; Dimension Hierarchies, DH; PDS 

OUTPUT: The B-tree for that cubelet 
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BEGIN 

Create an empty B-tree, BT based on the DH and PDS 

For each tuple, t, in DS 

For each ancestor cell, c in the cell list to be updated (determined by theorem 
1) 

If c’s coordinate on the last dimension is a group member then 

Continue 

Else 

Update c’s measure with t 

End If 

End For 

Skip cells with zero measure and write them into the cube file 

END 
We will use the following sample dataset and dimension hierarchies to 

show how each algorithm works. 

Figure 5 A Sample Dataset and its Dimension Hierarchies 

 
Suppose we choose dimension A and dimension B to be the prefix 

dimensions, and we will get 6 groups from the sample dataset: a1b1{1,2}, a1b2{3}, 

a1b3{4,5}, a2b1{6,7}, a2b2{8}, and a2b3{9}. In each group, we use the combination 

of values on prefix dimensions as the group’s ID and use record IDs to represent 

records in the dataset. In real dataset, it is very likely that some groups contain 

No. A B C D 
1 a1 b1 c4 d3 
2 a1 b1 c6 d5 
3 a1 b2 c4 d6 
4 a1 b3 c2 d2 
5 a1 b3 c5 d3 
6 a2 b1 c1 d8 
7 a2 b1 c2 d7 
8 a2 b2 c3 d4 
9 a2 b3 c5 d6 
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no records. After the splitting, we check if there is any group too big for our 

memory capacity. If so, big groups need to be further divided into sub-groups. 

Each group/sub-group can then be loaded into memory and built into a 

cubelet/sub-cubelet. 

We take the first group as an example to illustrate how to build a cubelet in 

the two algorithms described. An empty B-tree for dimension C and dimension D 

will contain the following cells:  

{c1d1, …, c1d11, c2d1, …, c2d11, c3d1, …, c3d11, c4d1, …, c4d11, c5d1, …, 
c5d11, c6d1, …, c6d11, c7d1, …, c7d11, c8d1, …, c8d11, c9d1, …, c9d11} 

 
In group a1b1, we have only two tuples (primary cells), c4d3 and c6d5. So 

only the following cells in the B-tree will be updated according to theorem 1, and 

these cells are to be stored in the cube file.  

{c4d3,c4d9,c4d11,c5d6,c5d9,c5d11,c7d3,c7d9,c7d11,c8d6,c8d9,c8d11,c9d3,c9d6,c9d9,
c9d11} 

 
This is how STDSC builds a full cubelet. In the partial cubelet building 

algorithm, the same empty B-tree is created and we take group a1b1 as an 

example to show the difference. The same set of cells as above is selected and 

considered to be updated. Since partial cubelet construction does not do pre-

aggregation on the last dimension, all cells with the value of last dimension being 

a group member will be ignored. Thus only the following cells are updated and 

stored into the cube file. 

{c4d3, c5d6, c7d3, c8d6, c9d3, c9d6} 
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The size of the cubelet built from partial cubelet building algorithm is much 

smaller than the one built by the full cubelet algorithm. We list out the cells of 

each cubelet built from the two algorithms as follows: 

Full cubelets: 
a1b1:{c4d3,c4d9,c4d11,c5d6,c5d9,c5d11,c7d3,c7d9,c7d11,c8d6,c8d9,c8d11,c9d3,c9d6,

c9d9,c9d11} 

a1b2:{c4d6,c4d9,c4d11,c7d6,c7d9,c7d11,c9d6,c9d9,c9d11} 

a1b3:{c2d2,c2d9,c2d11,c5d3,c5d9,c5d11,c7d2,c7d9,c7d11,c8d3,c8d9,c8d11,c9d2,c9d3,

c9d9,c9d11} 

a2b1:{c1d8,c1d10,c1d11,c2d7,c2d10,c2d11,c7d7,c7d8,c7d10,c7d11,c9d7,c9d8,c9d10,c9

d11} 

a2b2:{c3d4,c3d9,c3d11,c7d4,c7d9,c7d11,c9d4,c9d9,c9d11} 

a2b3:{c5d6,c5d9,c5d11,c8d6,c8d9,c8d11,c9d6,c9d9,c9d11} 

 

Partial cubelets: 
a1b1: {c4d3, c5d6, c7d3, c8d6, c9d3, c9d6} 

a1b2: {c4d6, c7d6, c9d6} 

a1b3: {c2d2, c5d3, c7d2, c8d3, c9d2, c9d3} 

a2b1: {c1d8, c2d7, c7d7, c7d8, c9d7, c9d8} 

a2b2: {c3d4, c7d4, c9d4} 

a2b3: {c5d6, c8d6, c9d6} 

 
After all cubelets are created, we write the configuration information about 

the cube into a separate file, including the number of prefix dimensions and 

which dimensions they are, and the entry point of each cubelet in the cube file. 

Before a query can be made on a cube, the configuration file of the cube must be 

loaded into memory first. 
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4.2 Query Processing 

Generally, query processing in SplitCube and its variants are composed of 

three steps due to the spread of aggregates into multiple individual cubelets. The 

first step is to determine which cubelets are involved in the query processing. 

The involved cubelets can be determined from the query, PDS, and the 

dimension hierarchies. For values on prefix dimensions in the query, each of 

them will be replaced by the set of its primary descendants. The elements of 

Cartesian Product of all these sets form a new set, from which we generate the 

identifiers of cubelets that are involved in the query using the same algorithm 

mentioned in cube construction. In the second step, we take the values on 

cubelet dimensions of the query to form a new query for each cubelet involved. 

We use the method in previous chapter to calculate the B-key of the new query. 

With the B-key, we can retrieve the measure(s) for the new query in the B-tree of 

each cubelet. From the result retrieved from each cubelet, we can compute the 

result for the original query in the last step.  

For matrix queries, the first step is same as a single-point query. However, 

in the second step, we will use the values in the query and the specified row 

dimension and column dimension to form a set of point queries, called QPS, 

which will be issued to each cubelet. The last step is similar to single-point query 

processing. The following is the algorithm of standard SplitCube (STDSC) for 

matrix queries. 

The Algorithm for Matrix Queries in STDSC 
INPUT: the query, orgQ; row dimension index, rowIndex; column dimension index, 

columnIndex; PDS; dimension hierarchies, DH 
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OUTPUT: The answer to the matrix query 

BEGIN 

Let QPS be the query point set for each cubelet, which is derived from orgQ, 
rowIndex, columnIndex, PDS, and DH 

Let CS be the set of cubelets involved in the matrix query, which is determined by 
orgQ, PDS, and DH 

Let AS be the set holding answers of point queries from each cubelet 

For each cubelet, c, in CS 

For each point query, q in QPS 

Let a be the answer of q on c 

Put a into AS 

End For 

End For 

Calculate the answer to orgQ from AS 

END 

We will use the same sample dataset and dimension hierarchies to 

illustrate how a matrix query is processed. Suppose our matrix query is {a3, b4, 

c9, d11}, row dimension is C, and column dimension is D. The query is divided 

into two parts: {a3, b4} as the PDS part, and {c9, d11} as the CDS part. The 

primary descendant set for a3 and b4 are {a1, a2}, and {b1, b2}, respectively. There 

are four elements in their Cartesian product, namely, a1b1, a1b2, a2b1, and a2b2, 

which represent the four cubelets involved in this query. The CDS part, {c9, d11} , 

together with the row dimension and column dimension, will form a query point 

set for this matrix query, {(c7,d9), (c7,d10), (c8,d9), (c8,d10)}. This query point set, as 

a set of individual queries, is issued to the four cubelets respectively. Results 

from the four cubelets are put together to compute the answer to the query {a3, 

b4, c9, d11}. 



 

 28 

4.3 PDS Selection 

PDS, as one of the most important parameters, affects the performance in 

both cube construction and query processing. In generating a cube, it determines 

the number of cubelets and the cube size, which are both critical factors in 

generating a cube. Generally, the smaller a cube is, the faster we can build it. 

From the discussion in Section 4.2, we can see that a point query is issued to 

each cubelet involved. Generally, the more cubelets a cube contains, the more 

cubelets are involved for the same matrix query. To improve query performance, 

we need a small number of cubelets; however, we also need to pick as many 

prefix dimensions as possible to reduce the cube size. Choosing dimensions with 

a small number of primary members can reduce cube size and limit the number 

of cubelets as well. In our experiments, this strategy succeeds in achieving good 

performance in both cube construction and query processing. 
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CHAPTER 5: MERGING OF QUERY POINT SET AND B-TREE 

From Section 3.5, we know a matrix query is indeed a set of query points, 

which is called QPS, i.e. Query Point Set. In each cubelet, only cells with non-

zero measures will be stored in the B-tree. Obviously, the overlap between QPS 

and B-tree is the points whose values we need to derive the answer to the matrix 

query. Unfortunately, despite our efforts to minimize the QPS, it is still a very 

large set, which could contain hundreds or thousands of point queries. Only a 

tiny fraction of them is stored in the B-tree. The standard algorithm to compute 

the intersection of these two large sets of points has linear running time in terms 

of the size of the QPS and the number of elements in the PA cube within the 

same range as the QPS. It is linear because both the PA cube and the QPS are 

sorted according to their B-key. The problem is that a linear algorithm is not good 

enough, because the QPS can be very large if the PA cube contains only a few 

pre-computed aggregates. It takes a long time just to generate millions of query 

points.   

Our solution is to avoid scanning every query contained in the QPS within 

the B-tree, thus we need not generate all query points. We observe that if a 

query point, as a key, cannot be found in the PA, it can be ignored. One may, as 

an alternative, scan only the elements within the query range in the PA. For each 

element within the range, its key may be converted into a cell address. Only one 

lookup is needed to find out whether the cell address matches any query point in 



 

 30 

the QPS. This approach, by matching the potential answers with the queries, will 

work well if the potential answers are fewer than the queries. However, the 

condition cannot be ascertained in advanced.  

We propose an effective solution for this problem, which makes use of the 

random access feature to the PA. The process is illustrated in Figure 6: 

Figure 6 Merging of Query Point Set and B-tree 

 

 

 

 

 

 

The matching process begins with finding the answer for the first query, 

say Q0 in the QPS.  If the answer to Q0 is found in E0, an element in the PA cube, 

the measure in E0 will be retrieved. Then next element of E0, say E1 is located. E1 

will then be the element that contains the key, which is the smallest one among 

all keys in the PA cube that is greater than Q0. In case that the answer to Q0 

cannot be located, E1 is located as well. In either case, a query for E1, say Qi, is 

created, and an attempt is made to locate Qi in the QPS. If the attempt is 

successful, the measure of E1 will be retrieved as the answer for Qi. Regardless 

of whether Qi is found, the next query in key sequence, Qi+1, will be located and 

Qi+1 Qi  Q0 

E0 Ei
 Q  

Find the Answer for the Query or Find the Query for the Answer 

Get Next Element (in B-tree) or Get Next Query (in Q cube) 

Q Cube 
(Linearized) 

PPA 
(As a B-tree) 

… … … 

Query Range 



 

 31 

the search for the answer in the PA cube for a query, which is Qi+1 this time, will 

begin again. This process will be repeated until the end of the range is reached.  

The Algorithm for Matrix Queries in MQPSB 
INPUT: the query, orgQ; row dimension index, rowIndex; column dimension index, 

columnIndex; PDS; dimension hierarchies, DH 

OUTPUT: The answer to the matrix query 

BEGIN 

Let QPS be the query point set for each cubelet, which is derived from orgQ, 
rowIndex, columnIndex, PDS, and DH 

Let CS be the set of cubelets involved in the matrix query, which is determined by 
orgQ, PDS, and DH 

Let AS be the set holding answers of point queries from each cubelet 

For each cubelet, c, in CS 

Let q be the first point query in QPS 

Let done = FALSE 

While (done is FALSE) 

If an element e is found in c, with the B-key of e equals to the B-key of q 
Then 

Retrieve the measure of e and put it into AS 

Let S be the set of all elements in c with B-keys > q 

If S is empty Then 

done = TRUE 

Else 

Let e = the element with the smallest key in S 

End If 

If q is found such that q = e Then 

q = e 

Let S be the set of all query points in QPS with keys > e 

If S is empty Then 

done = TURE 

Else 

Let q = the query point in QPS with the smallest B-key 

End If 

End If 

Else 

Let q = the query point in QPS with the smallest B-key 
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End If 

End While 

End For 

Calculate the answer to orgQ from AS 

END 

 
Note that the algorithm does not do exactly what is portrayed in Figure 5. 

If a query is found for a given answer (as Qi is matched with Ei), the next element 

to Ei is located instead of the next query Qi+1, as is the case in Figure 6. The next 

query is located only in the case when no query can be found for a given answer. 

This modification simplifies implementation because the retrieval of answer to a 

query is part of the B-tree code. It does not hurt performance.  

We use the same example as for STDSC in figure 5. Suppose our query is 

{a3, b4, c9, d11}, C is the row dimension and D is the column dimension. A and B 

are prefix dimensions. From example 1, we know four cubelets will be involved in 

this query, (a1,b1), (a1,b2), (a2,b1), and (a2,b2). There will be 4 point queries, 

{(c7,d9), (c7,d10), (c8,d9), (c8,d10)} , for each of the four cubelets. In STDSC, we will 

search 4 times for 4 query points. We take the first cubelet, (a1, b1), to show how 

MQPSB works. The following is how non-zero cells are stored in the cubelet 

(a1,b1). 

a1b1:{c4d3,c4d9,c4d11,c5d6,c5d9,c5d11,c7d3,c7d9,c7d11,c8d6,c8d9,c8d11,c9d3,c9d6,

c9d9,c9d11} 

According to the algorithm, we locate the first point query (c7, d9) in 

cubelet a1b1. Cell (c7, d9) is found, so we move to the next cell (c7, d11), which is 

not found in {(c7, d9), (c7, d10), (c8, d9), (c8, d10)}. Then we move to the next point 
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query with B-key bigger than (c7, d11), which is (c8, d9). Now we do a search for 

(c8, d9) in a1b1. Since it is found, then we check the next cell to (c8, d9), which is 

(c8, d11). As (c8, d11) cannot be found in the query point set and there is no other 

point queries having their B-keys larger than (c8, d11), the query processing is 

done. From the description above, we can see that we only did two searches in 

cubelet a1b1 rather than four searches in STDSC.  

The change in the processing of a set of point queries in MQPSB 

substantially improves the algorithm’s query performance because it sharply 

reduces the number of searches in cubelets. 
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CHAPTER 6: QUERY PROCESSING WITH RANGE QUERIES 

In addition to MQPSB, we now devise another improved query-processing 

algorithm, Query Processing with Range Queries (QPRQ). 

QPRQ takes the advantage of the nice structure of B-tree. The B-tree 

employed in our research is clustered on the B-keys of cells, which are 

lexicographically ordered on dimensions. If we have a set of point queries and 

the B-keys of all these point queries are consecutively stored in the B-tree, then 

we only need to locate the first query point in the B-tree and then keep retrieving 

the measures of cells behind the first cell until we reach the last query point in the 

B-tree. This would save us a lot from searching in B-tree, especially when the set 

is big.  

However, the query points derived from a matrix query are not always 

consecutively stored in the B-tree. To take the advantage of the beautiful feature 

of B-tree, we artificially create such query point set, referred to as Range Query 

in this thesis. A range query is defined as a cell address (q1, …, qk), together with 

a range of primary members (in consecutive order) in the kth dimension. If qk is a 

primary member, then it is in essence a point query with a range of one member, 

i.e. itself. Otherwise, the associated range includes the primary members that are 

descendants of qk. The following figure shows the difference between STDSC 

and QPRQ in processing a range query. 
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Figure 7 Range Query Processing in QPRQ and STDSC 

 
Our method is to adopt the partial cubelet-creating algorithm described in 

chapter 4 and skip the aggregation on the last dimension in building each 

cubelet, so that only cells with values on the last dimension being primary 

members are stored in cubelets. Whenever there is a point query with the value 

on the last dimension being a group member, we construct a range query for that 

point query and calculate the answer by issuing the range query to the cubelet.  

Suppose we have a point query (q1, …, qk), and qk is a group member on 

the last dimension k. Based on this point query, we build a range query {(q1, …, 

qkm), …, (q1, …, qkn)}, where {qkm, …, qkn} are the primary descendants of qk in 

the hierarchy of dimension k. From the hierarchy structure, we can see that qkm, 

…, qkn are consecutive in the hierarchy tree, so cells (q1, …, qkm), …, (q1, …, qkn) 

should all be consecutively stored in the cubelet. When we calculate the answer 

to (q1, …, qk) we only need to locate (q1, …, qkm) first, and then we retrieve the 

measures of cells whose B-keys are bigger than that of (q1, …, qkm) in the B-tree, 

until we reach the cell with its B-key larger than that of (q1, …, qkn). Finally, we 

calculate the answer from those measures. 

 Processing path in STDSC  

Processing path in QPRQ 
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The Algorithm for Matrix Queries in QPRQ  

INPUT: the query, orgQ; row dimension index, rowIndex; column dimension index, 
columnIndex; PDS; dimension hierarchies, DH 

OUTPUT: The answer to the matrix query 

BEGIN 

Let QPS be the query point set for each cubelet, which is derived from orgQ, 
rowIndex, columnIndex, PDS, and DH 

Let CS be the set of cubelets involved in the matrix query, which is determined by 
orgQ, PDS, and DH 

Let AS be the set holding answers to point queries from each cubelet 

For each cubelet, c, in CS 

For each point query, q in QPS 

Construct the range query, RQ for q 

Let RAS be the set to hold answers to query points in RQ 

Locate the cell cf in c with the B-key of cf not less than the B-key of the 
first query point in RQ 

While (the B-key of cf not bigger than the last query point in RQ) 

Put the measure of cf into RAS 

Let cf be the next cell of cf in cubelet c 

End While 

Calculate the answer, a for q on c from RAS 

Put a into AS 

End For 

End For 

Calculate the answer to orgQ from AS 

END 

 
You may ask why we do not pre-aggregate on the last dimension, so that 

we do not have to construct the range query, which is supposedly faster than 

QPRQ. That is true. However, most of the performance improvement is gained 

from cublet construction and disk storage by skipping the aggregation on the last 

dimension. The last dimension contains the most members among all 

dimensions. Without pre-computation on it, we can build the cube with a shorter 

PDS within a similar amount of time that STDSC takes to build the cube with a 
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longer PDS. A shorter PDS means fewer cubelets involved in the same query, 

which certainly will improve the performance of query processing. 

To show the strength of QPRQ, we still use the same example dataset as 

in Figure 5, but we will use a shorter PDS to group the dataset and build 

cubelets. In this example, we only use dimension A to do the grouping. The 

primary cells (input records) contained in the two groups are shown as follows: 

Group a1: {1, 2, 3, 4, 5} 
Group a2: {6, 7, 8, 9} 

The cells created in each cubelet are presented below: 

a1:{b1c4d3,b1c6d5,b1c7d3,b1c8d5,b1c9d3,b1c9d5,b2c4d6,b2c7d6,b2c9d6,b3c2d2,b3c5d3

,b3c7d2,b3c8d3,b3c9d2,b3c9d3,b4c4d3,b4c4d6,b4c6d5,b4c7d3,b4c7d6,b4c8d5,b4c9d3,

b4c9d5,b4c9d6,b5c2d2,b5c5d3,b5c7d2,b5c8d3,b5c9d2,b5c9d3,b6c2d2,b6c4d3,b6c4d6,

b6c5d3,b6c6d5,b6c7d2,b6c7d3,b6c7d6,b6c8d3,b6c8d5,b6c9d2,b6c9d3,b6c9d5,b6c9d6} 

a2:{b1c1d8,b1c2d7,b1c7d7,b1c7d8,b1c9d7,b1c9d8,b2c3d4,b2c7d4,b2c9d4,b3c5d6,b3c8d6

,b3c9d6,b4c1d8,b4c2d7,b4c3d4,b4c7d4,b4c7d7,b4c7d8,b4c9d4,b4c9d7,b4c9d8,b5c5d6,

b5c8d6,b5c9d6,b6c1d8,b6c2d7,b6c3d4,b6c5d6,b6c7d4,b6c7d7,b6c7d8,b6c8d6,b6c9d4,

b6c9d6,b6c9d7,b6c9d8} 

There are totally 80 non-zero cells in the cube. Recall that in the STDSC, 

with PDS being {A, B}, there are totally 74 non-zero cells. Clearly, the cube 

construction time and cube size should be similar. Now, let us see how QPRQ 

works. We use the same matrix query as in STDSC, (a3, b4, c9, d11), and C as the 
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row dimension and D the column dimension. Only two cubelets are involved, a1 

and a2. For each of them, there will be four point queries:  

{(b4,c7,d9),(b4,c7,d10),(b4,c8,d9),(b4,c8,d10)}  

Here, the advantage of QPRQ is obvious. We can see that the 4 point 

queries are issued to 2 cubelets, so there are totally 8 point queries in QPRQ. 

Whereas in STDSC, there are 4 point queries for 4 cubelets, 16 piont queries in 

total. 

We take the first point query on cubelet a1 as an example to show how 

QPRQ works. First of all, a range query, {(b4, c7, d1), …, (b4,c7,d6)}, is derived 

from (b4,c7,d9). Since (b4,c7,d1) and (b4,c7,d2) can not be found in a1, we locate 

(b4,c7,d3) in a1 and record its measure. Then we take the measure of the next cell 

(b4,c7,d6) because its B-key is not bigger than the last point query in the range 

query, (b4,c7,d6). After that, the B-key of the next cell, (b4, c8, d5), is checked and 

we find out that it is bigger than (b4, c7, d6). Now, the range query processing for 

point query (b4, c7, d9) is done. The same processing is repeated for all the point 

queries in each cubelet involved. 

Even for each individual point query, the range query processing is a little 

slower than STDSC, which does not need extra processing. The benefit we 

obtain from fewer point queries and advanced range query processing technique 

outweighs the performance loss in each individual point query. We will see how 

the significant the performance improvement is in QPRQ in the experimental 

result analysis in the next chapter. 
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CHAPTER 7: EXPERIMENTAL RESULTS 

All the experiments presented in this thesis are conducted on a Compaq 

laptop equipped with a 2.4GHz processor and 512-Mb memory. To get 

measurement that is more meaningful on performance for each algorithm, we 

test algorithms with heavy-duty matrix queries as discussed later. 

In our experiment, most tests are done on the weather dataset, which 

originally has 9 dimensions, whose cardinalities are: 2, 8, 10, 30, 101, 152, 179, 

352, and 7037. All dimensional hierarchies are 2-level, i.e. the only group 

members are roots of the hierarchies. We bulk the hierarchies of the last 4 

dimensions by adding one more level to each dimension hierarchy. The 

cardinalities of all dimensions are shown in the following table: 

Table 2 Dimension Cardinalities in Weather Dataset 

level\dimension 0 1 2 3 4 5 6 7 8 
1 1 1 1 1 1 1 1 1 1 
2 2 8 10 30 101 8 8 18 98 
3      152 179 352 7037 

7.1 Heavy-Duty Queries 

Heavy-duty queries are defined by the heavy computation needed to 

deliver the answers to them. Generally, a decision-making query retrieves a large 

number of data from the cube. For this thesis, heavy-duty queries make it easier 

to compare performance of different query processing strategies.  In weather 

dataset choosing the 5th dimension and 9th dimension as the row and column 
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dimensions, respectively, generates the most sub-queries. However, we choose 

the last two dimensions as the row dimension and column dimension in our 

experiments. The reason is that the number of sub-queries generated from this 

combination is around the average number of sub-queries among the 36 possible 

combinations, so we use it as the representative of heavy-duty matrix queries. To 

eliminate the impact on query performance caused by previous queries, we write 

a large file to clear system cache before a query is issued to the cube.  

Before we test our new algorithms, we first build a full cube with the 

Weather dataset, against which results from new algorithms can be compared. 

The cube size, cube construction time, and the query performance on the full 

cube are used as a baseline to show how the novel algorithms improve in both 

cube construction and query processing. In the test, STDSC and MQPSB use the 

full cubelet construction algorithm and QPRQ uses the partial cubelet building 

algorithm to build the cube. The following tables show the testing results on the 

full cube and our new algorithms, respectively. 

Table 3 Performance Data of the Full Cube 

PDS 
Construction 

Time (s) 
Size 
(GB) 

Number of Non-
empty Cubelets 

Response 
Time(s) 

N/A 10041 9.03 1 157.602 
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Table 4 Performance Data of STDSC 

PDS 
Construction 

Time (s) 
Size 
(GB) 

Number of Non-
empty Cubelets 

Response 
Time(s) 

0,1,2,5 337 0.985 11668 182.893 

0,1,2,4 407 1.47 4105 87.366 

0,1,2,3 475 1.66 4192 80.506 

0,1,5 466 1.74 2206 72.935 

0,1,2 709 2.32 160 11.256 

1,2,3 1017 3.36 2364 77.171 

1,8 2383 4.99 45055 606.39 

Table 5 Performance Data of QPRQ 

PDS 
Construction 

Time (s) 
Size 
(GB) 

Number of Non-
empty Cubelets 

Response 
Time(s) 

0,1,2,(8) 448 1.58 160 22.863 

0,1,(8) 630 2.45 16 1.332 

1,2,(8) 627 2.48 80 6.610 

1,(8) 1339 4.37 8 1.051 

Table 6 Performance Data of MQPSB 

PDS 
Construction 

Time (s) 
Size 
(GB) 

Number of Non-
empty Cubelets 

Response 
Time(s) 

0,1,2,5 337 0.985 11668 34.239 

0,1,2,4 407 1.47 4105 23.884 

0,1,2,3 475 1.66 4192 28.681 

0,1,5 466 1.74 2206 25.55 

0,1,2 709 2.32 160 7.98 

1,2,3 1017 3.36 2364 25.14 

1,8 2383 4.99 45055 254.82 
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From Table 3 and Table 4, we can see the substantial improvement 

obtained from STDSC in cube storage, cube building time, and query processing. 

The PPA cube is only 10% - 50% of the size of the full cube, and STDSC takes 

only 3% - 25% of the full cube’s building time. Compared with the full cube 

algorithm, STDSC also shows big advantage. For the same matrix query, 

STDSC is 1 - 14 times faster than the full cube algorithm. Obviously, the other 

two enhanced algorithms, MQPSB and QPRQ, should perform even better than 

STDSC. In the rest of this section we will focus on the advantage and 

disadvantage of each algorithm, and try to discover some useful patterns in 

comparing any two of them, which are helpful in choosing the right algorithm for 

different user cases. 

To make the comparison more accurate, one of the basic principles in our 

analysis is that all the comparisons should be based on the same set of 

aggregates. For example, when algorithm A and algorithm B are compared, they 

should create the same set of aggregates and the same set is used for the query 

processing as well. 

MQPSB and STDSC both generate full cubelets, so the comparison 

between them should be simply on the same PDS. They will create the same 

group of cubelets and process queries on the same set of aggregates.  

However, we cannot compare QPRQ with STDSC the same way as we 

compare MQPSB with STDSC because QPRQ only creates partial cubelets. One 

way of comparing QPRQ with STDSC would be to compare the performance 

data of QPRQ with {A} as the PDS against the data of STDSC with {A, 8}. The 
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problem with this comparison is that there are far more cubelets associated with 

STDSC (i.e., 45055, when A is {1}) than that with QPRQ, (i.e, 8). Since a big 

number of cubelets greatly lowers the performance in query processing, the last 

dimension is usually not picked as a prefix dimension in STDSC. 

7.2 QPRQ vs. STDSC 

For the above reasons we decide to compare QPRQ with {A} as PDS, with 

STDSC on its cluster cubes. For a cube created by QPRQ with PDS {A}, its 

cluster cubes generated by STDSC are those that are created with PDS(s) {A, 0}, 

{A, 1}… {A, n}, where n is the last dimension. Comparing the two algorithms in 

this way may not be fair to them, but it will present us more meaningful guideline 

in choosing which algorithm to use in real environment. 

We first compare QPRQ with STDSC in cube construction. From Figure 8, 

we can see that QPRQ does not show consistent advantage over STDSC in 

comparing with its cluster cubes. For example, QPRQ with PDS {0, 1, 2, (8)} 

builds the cube faster than STDSC with PDS {0, 1, 2, 3}, but QPRQ with PDS {0, 

1, 2, (8)} takes longer time than STDSC with PDS {0, 1, 2, 5}. Looking at the data 

in Table 4 and Table 5 carefully, we find out that in both of the algorithms the 

time used in building the cube really depends on the final cube size, which is 

consistent with our analysis in previous sections. Thus, we cannot say which one 

is better than the other in cube construction, but the difference in their cube 

construction performance is not big. 
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Figure 8 Comparison between STDSC and QPRQ in Cube Construction 
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In query processing, QPRQ performs much better on each cube than 

STDSC on its cluster cubes as shown in Figure 9. The performance difference is 

so big that we can even ignore their performance difference in cube construction. 

We can draw a conclusion here that, for every PDS we choose with STDSC we 

can always replace it by QPRQ with the corresponding PDS and get a much 

better query performance. For example, it is usually preferable to replace STDSC 

{0, 1, 2, 3}, {0, 1, 2, 4,} or {0, 1, 2, 5} with QPRQ {0, 1, 2}. If one finds QPRQ {0, 

1, 2} too slow in cube building, instead of opting for STDSC {0, 1, 2}, one should 

drop the last dimension from the PDS, say QPRQ {0, 1}, which is again 

preferable to either STDSC {0, 1, 2}, or {0, 1, 5}. 
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Figure 9 Comparison between STDSC and QPRQ in Query Processing 
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7.3 MQPSB vs. STDSC 

The comparison between MQPSB and STDSC is more straightforward 

than the comparison between QPRQ and STDSC. In the testing result, we can 

see that MQPSB is always outperforming STDSC in query processing.  

In theory, in order to fully reveal the power of MQPSB, both the query 

point set and the B-tree should be large. A bigger query point set makes it 

possible to skip more query points, and a bigger B-tree means a bigger save on 

a skipped query point. In this thesis, a big B-tree is equivalent to a cubelet 

containing a big number of points/cells. We compare the two algorithms over 4 

cubes, the results are presented in Table 7: 
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Table 7 Comparison between STDSC and MQPSB in Query Processing 

PDS 
MQPSB STDSC 

Time (s) 
# of queried 

points 
Time (s) 

# of queried 
points 

0,1,5 25.546 35890 50.413 3375180 

0,1,2 7.981 13233 9.914 244800 

1,2,3 25.136 116752 51.785 3616920 

1,8 254.824 83471 257.330 810990 

You may be surprised not to see any significant difference in query 

performance with such a huge difference in the number of queries presented 

above. However, let us take a second and look at the number and it will be more 

understandable. 

First, query processing includes at least two types of costs: I/O cost and 

calculation cost. MQPSB focuses on the saving on calculation cost, not I/O cost. 

STDSC and MQPSB have the same I/O cost on the same cube because they 

read in the same set of cubelets for the same matrix query. The I/O cost takes a 

big portion of the whole cost in query processing, which makes the advantage of 

MQPSB much less obvious. In the case of {1, 8}, the file size is lot larger than 

other PDS(s). Therefore, the file I/O dominates the query processing time. The 

MQPSB does essentially the same amount of I/O as the STDSC. When the 

cubelet is small (meaning the B-tree is small) the MQPSB may skip some query 

points, but it can rarely skip a page, because most of cubelets span only one or 

two pages. 

Second, the same point query costs differently on different cubelets. 

Searching a number within 10,000 numbers takes much longer than search the 
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number within 4 numbers, which means a query on a big cubelet/B-tree costs 

more than the query on a small cubelet. The numbers in the table above are 

counted without distinguishing between big cubelets and small cubelets. Let us 

take the cube {1 8} as example, around 13,000 cubelets in the cube have only 

one primary point/cell, and all 45,054 non-empty cubelets have less than 30 

primary points/cells. Searching within such small cubelets/B-tree is trivial even 

between searching 100,000 times and searching 1000,000 times. On the other 

hand, we do not have compression on cubelets. The minimal size of a cubelet is 

the size of one page in memory, which is 4 KB in our case. Therefore, a cubelet 

with only one or two cells will take at least 4 KB on disk. Considering the huge 

number of cubelets in cube {1, 8} the total size of the cube is over 5 GB. Our 

heavy-duty query needs to access all cubelets, so the I/O cost dominates the 

query processing time. That explains why the performance of MQPSB and 

STDSC is so close even the number of query points issued in STDSC is almost 

10 times of the number of query points in MQPSB. 

One pattern we notice in the experiment is that picking the row/column 

dimension of a matrix query from the PDS of the cube will effectively weaken the 

advantage of MQPSB because it significantly reduces the size of query point set 

issued to each cubelet. For example, if we pick dimension 4, present-weather, as 

row dimension, and dimension 8, station-id, as column dimension in the heavy-

duty matrix query, the size of query point set for each cubelet in cube {0, 1, 5} will 

be 101*85. However, if we choose the same row dimension and column 

dimension in cube {1, 4}, the number of query points for each cubelet will be only 
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85, which is not big enough to show the power of MQPSB. As we can expect, the 

two algorithms perform almost same with the matrix query on cube {1, 4}. 

In conclusion, we should use MQPSB instead of STDSC with the same 

PDS and try to choose the PDS to make both query point set and cubelets/B-

trees big enough to take the advantage of merging between query point and B-

tree. 

7.4 QPRQ vs. MQPSB 

From the discussion above, we can see that both QPRQ and MQPSB 

perform better than STDSC. We want to see how they compare with each other. 

We will compare QPRQ with MQPSB the same way as we compare QPRQ with 

STDSC for the similar reasons. 

From the testing results, we see a similar pattern as what we see in 

comparing QPRQ with STDSC. In addition, we find out, as the number of 

cubelets increases, MQPSB’s query performance gets close to QPRQ very 

quickly. For example, when the number of cubelets is small, like 160 from PDS 

{0, 1, 2, (8)}, QPRQ is around 8 times faster than MQPSB. However, when the 

number is bigger than 4000, like PDS {0, 1, 2, 4}, the performance difference is 

already very small. Because of the limitation of the testing environment, we 

cannot do some testing on cubes with the number of cubelets bigger than 

60,000. However, the pattern we observe from the analysis of experimental result 

is that QPRQ is a better choice when the number of cubelets is relatively small; 
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and MQPSB will outperform QPRQ when the number of cubelets is large 

enough. 
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CHAPTER 8: CONCLUSIONS AND FUTURE WORK 

In this thesis, we propose a SplitCube approach for partial pre-

aggregation. Compared to the full pre-aggregation, the storage footprint is 

reduced by 50% - 90% with the same query performance. Based on the 

framework of SplitCube, we then derive two enhanced query-processing 

techniques. To test and compare the performance of each technique in both 

cube construction and query processing, we design our experiment in such a 

way that the comparison is based on the same standard and the same set of 

aggregates. To make the results more meaningful for comparing between QPRQ 

and the other two algorithms, STDSC and QPRQ, we extend the comparison 

from on the same set of aggregates to within the same cluster cubes. 

From the analysis of our testing results, we observe the following patterns 

that are useful in choosing the right algorithm in real applications: 

1. QPRQ and MQPSB should always be picked as a better choice in cube 

construction and query processing. 

2. In choosing between QPRQ and MQPSB, we need to take the number 

of cubelets into account. If the size of the cube is huge and a big 

number of cubelets is inevitable, we should consider MQPSB; 

otherwise, QPRQ should perform better than MQPSB in query 

processing. 
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The focus of our research in this thesis is on the query processing 

techniques. We analyze the factors in processing a query and building a cube as 

well. To improve the query performance we can either refine our query 

processing algorithms themselves or shorten cube construction time to make 

more room for query processing like what we do in QPRQ.  

In our future research, we may design some more efficient query 

processing algorithms based on our findings in this thesis, i.e. combining MQPSB 

together with QPRQ. Furthermore, we can carry out our experiment on an online 

computation environment to get more accurate results than what is done in this 

thesis in a single-user development environment. Finally yet equally important, 

distributive aggregation algorithms are also a new horizon. As the multi-core 

CPU is becoming more common even among desktops and laptops, algorithms 

that may be easily distributed will perform much better than those that are not. 

According to the SplitCube approach, cubelets in a cube are independent from 

each other during cubelet construction and query processing. Once the PDS is 

determined, the processing on multiple cubelets can proceed in parallel. 
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