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ABSTRACT 

Dense Wavelength Division Multiplexing (DWDM) technology is an 

important innovation to enable the network operators to utilize their optical 

networks efficiently. By multiplexing more wavelengths into one fiber, the data 

transmission rate of a fiber in DWDM networks is dramatically increased up to 

Terabits per second (Tbps). However, network operators are still struggling with 

the bandwidth shortage problems due to the explosion of data transmission 

demands, especially the transmission of video content. In this project, we present 

a survey of the research on cost-effective DWDM networks in terms of the 

routing and wavelength assignment (RWA) and traffic grooming problems. In 

addition, we extend a revenue focused semi-protection scheme, which uses the 

failure statistics, revenue statistics, and bandwidth statistics of VOD service to 

solve bandwidth shortage problems in DWDM ring networks. Our goal is to 

provide network operators with guidelines on the design or upgrade of their 

DWDM networks. 

 

 
Keywords: DWDM, RWA, traffic grooming, VOD, revenue focused semi-

protection, linear programming (LP), statistics. 
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1. INTRODUCTION 

Dense Wavelength Division Multiplexing (DWDM), as an evolution of the 

conventional Wavelength Division Multiplexing (WDM), enables the network 

operators to utilize their existing optical network bandwidth efficiently. By 

multiplexing more wavelengths in a fiber, the data transmission rate in a fiber can 

be increased to over 10Tbps. For example, up to 14Tbps bandwidth in a fiber 

has been achieved in the laboratory [1] and up to 160 wavelength channels per 

fiber are in operation today [2].  

On the other hand, the explosive growth of data transmission demands 

results in bandwidth shortage problems for network operators. The fast 

increasing video content service demands are the major causes, such as various 

TV programs, Video-on-Demand (VOD) services, and video conferences over 

networks. In addition, to provide reliable services, network protection schemes 

are applied, which requires extra bandwidth reserved in the event of network 

failures. Unidirectional Path Switched Ring (UPSR) and Bidirectional Line 

Switched Ring (BLSR), the two typical protections in SONET ring networks, 

require extra free bandwidth that is the same as the bandwidth of the working 

fibers. The reserved bandwidth works as a backup and enables full protection. 

Traditionally, network operators might have forecast the bandwidth growth and 

overbuilt their networks for long-term designs when they planned to set up their 

networks. However, almost all operators’ predictions have failed to catch up with 
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the fast growing speed of video content service demands. To solve this problem, 

network operators have begun to consider the possibility of short-term or long-

term upgrade plans to increase the bandwidth of their existing networks.  

Generally speaking, there are two alternative upgrade plans to meet the 

growing bandwidth requirements.  

First, network operators can choose to lay more optical cables to increase 

the total capacity. Although the price of optical cables is much cheaper than other 

transmission media (e.g., copper cables, measured by the price per unit 

bandwidth), this is still a costly option, considering all the expenses involved 

including labour and maintenance cost, conduit lease, new connection 

components, and the cable itself.  

The other plan for network operators is to apply new technologies to utilize 

their existing networks efficiently without laying down additional fibers. DWDM 

networks make this possible and have been proved to be more cost-effective 

than the first plan. The technology of DWDM efficiently utilizes the bandwidth of a 

fiber by supporting multiple wavelengths transmitted simultaneously in one fiber. 

However, in order to multiplex more wavelengths into one fiber, more powerful 

and signal-sensitive transmission modules (primarily wavelength converters and 

add/drop multiplexers (ADMs)) are required to identify any two close 

wavelengths, which incurs high additional costs. Optical ADMs (OADMs) and 

SONET ADMs (SADMs) are the two major types of multiplexers in SONET 

networks. To build cost-effective DWDM networks, the key challenge is to 

maximize the efficiency of existing equipment and fibers at minimum deployment 
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cost. The routing and wavelength assignment (RWA) problem and the traffic 

grooming problem are the two main problems that must be solved to find optimal 

solutions in DWDM networks. The objective of the RWA problem is to find the 

communication paths for given connection requests and to assign paths 

wavelengths so that the number of required wavelengths is minimized. The 

objective of the traffic grooming problem is to realize the given connection 

requests by minimizing the use of SADMs in SONET networks. We will focus on 

these two problems and illustrate more details later in our project.  

Either one of the above plans can be applied as a long-term upgrade 

design to increase the bandwidth of networks and accommodate the 

continuously growing bandwidth demand.  

Nonetheless, with or without protection, both plans mentioned above 

require a certain amount of financial investment for network upgrade and 

deployment. Network operators who cannot afford such investment in the near 

future can consider another option to maximize the utilization of their existing 

networks without adding extra cost and losing revenue from network failures: a 

revenue focused semi-protection scheme proposed and studied in this project.  

Different from other protection schemes that require more reserved bandwidth to 

protect the network connections in the event of a failure, our revenue focused 

semi-protection scheme uses any free bandwidth in the working link to protect 

the selected network connections in the failed link and focuses on minimizing the 

revenue loss. Moreover, the revenue focused semi-protection scheme incurs no 
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extra hardware upgrade cost in DWDM networks in contrast to solutions of RWA 

and traffic grooming problems.  

This project aims at solving the bandwidth shortage problem for a cost-

effective network by considering using a revenue focused semi-protection 

scheme in DWDM networks. The solution proposed in this project applies to 

SONET/DWDM ring networks. When we refer to DWDM in this project, it should 

be understood that it also refers to WDM. SONET/DWDM ring is one of the 

fundamental infrastructures in most current backbone optical networks and its 

deployment and maintenance cost is relatively low. SONET networks consist of 

one or more rings that run parallelly or independently and cross-rings that form a 

complex mesh network (see Figure 1-1).  

  

Figure 1-1: Many rings form a mesh network in a VOD network. Two dark rings run 
parallelly; the light colored ring can run independently or exchange data with 
the dark ring; the dotted ring may or may not share the routes with the other 
two rings. The optical signals of VOD programs in rings are converted to 
electronic signals and delivered to end users in Hybrid Fiber-Coax (HFC) 
networks. 
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Recent research [3] provides exciting revenue focused semi-protection 

approaches for VOD service providers who are encountering bandwidth shortage 

during the peak traffic time in point-to-point ring networks. These approaches 

take advantage of ring networks to utilize all bandwidth without having to reserve 

any bandwidth for full protection. In the event of a network failure in a link of the 

ring, the customer VOD connections to be protected are selected by their 

priorities and switched to the free bandwidth in the surviving link to minimize the 

revenue loss. The failure statistics and revenue statistics are used in [3] to assign 

priorities for VOD connections. The failure statistics represent the numbers of 

interruptions (i.e., VOD connections dropped) that customers have experienced 

due to limited bandwidth. We say that there is no interruption for customers if 

their connections are protected by the surviving link when a failure occurs in 

networks. The failure statistics are considered in [3] because they can be used to 

determine the order of priority of customers’ VOD connections. Each customer 

may tolerate up to a certain number of interruptions. The more interruptions a 

customer experiences, the more likely the customer will unsubscribe from the 

service, which leads to lost revenue. One of the approaches suggested in [3] 

proposes to save the VOD connections of those customers who have 

experienced more interruptions than the rest to avoid losing customers. An 

interesting finding from [3] is that, by properly choosing connections to be 

protected so that the customers of these protected connections will experience 

no or fewer interruptions caused by failures, a network with low reliability may 

allow more failures without losing any customers. For example, we show a case 
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later in our experiments of a network that can have four failures without any 

revenue loss even if no customer can tolerate two interruptions caused by 

failures.  

In Chapter 2, we survey research on cost-effective DWDM networks, 

focusing on the RWA and traffic grooming problems. Solving these two problems 

can help service providers minimize the use of some expensive components 

when designing and upgrading cost-effective networks. We also present a review 

of relevant heuristic algorithms and linear program models, which are basic tools 

used to design or upgrade cost-effective networks by minimizing the use of costly 

hardware devices or by maximizing network throughput. 

In Chapter 3, we use additional statistics, the bandwidth statistics, to 

extend the five semi-protection approaches proposed in [3] based on 

assumptions and circumstances that are more realistic (e.g., more classes of 

customers and different bandwidth usage). The five semi-protection approaches 

are: Optimal, Random, Revenue, Failure, and Combination approaches. The 

Optimal Approach is off-line approach because to solve the optimization problem, 

it requires complete knowledge in advance, such as the pre-determined number 

of total failures, and calculates the selection of protected network traffic before all 

failures happen. The other approaches are on-line approaches because these 

approaches selectively protect/drop the network traffic at the moment that a 

failure happens. For the only off-line approach, Optimal Approach, we propose a 

new linear programming (LP) model by adding the bandwidth statistics and 

clarifying constraint functions for all variables. Moreover, we develop a new on-
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line approach: Bandwidth Approach. Detailed algorithms to calculate the amount 

of VOD traffic to be dropped for different classes of customers and revenue loss 

rates for all the new and extended approaches are illustrated.  

In Chapter 4, we conduct a 2k factorial experimental design to analyze the 

effects of predictor variables and the full factorial design to analyze the 

performance of all the approaches. The linear programming model always yields 

global optimal performance (measured by revenue loss rate) based on complete 

knowledge in advance. In practice, Optimal Approach may not be a good choice 

since the number of failures cannot be pre-defined. Even though Combination 

Approach shows the best overall performance among the on-line approaches by 

locally minimizing the revenue loss, Bandwidth Approach proposed in this project 

outperforms the other on-line approaches in some cases. In contrast to the 

results in [3], by introducing the bandwidth statistics, our experimental results 

show that Random Approach is not the worst approach whereas Revenue 

Approach becomes the worst one. We compare our approaches with those in [3] 

and find that our approaches can achieve less revenue loss than theirs. Some 

performance results suggest that it is possible for service providers to achieve 

zero revenue loss in their networks with relatively low reliability without having to 

upgrade their networks and provide full protection.  

We summarize the findings from this project and identify possible 

directions for future work in Chapter 5.  
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2. BACKGROUND AND RELATED WORK 

In this chapter, we introduce the basic concepts involved in this project 

and investigate the literature on cost-effective DWDM networks, in particular, 

RWA and traffic grooming problems. 

2.1 Concepts and Terminology 

DWDM was developed from WDM optical networks, and uses more 

powerful and sensitive devices to space the light spectrum that is denser than 

that in WDM. As a result, more wavelengths that carry the data traffic can be 

multiplexed into a single optical fiber. DWDM has gained increasing interest in 

many applications [4, 5] because it can be used to accommodate the rapidly 

growing network bandwidth requirement, particularly in some backbone 

networks.  

2.1.1 DWDM network foundation 

To fully appreciate the importance of DWDM, it is necessary to introduce 

WDM because DWDM integrates the advantages of WDM, but utilizes the 

bandwidth of a fiber more efficiently than WDM. 

Before WDM networks, traditionally network operators provided their 

services using some other multiplexing technologies, such as Frequency Division 

Multiplexing (FDM)  and Time Division Multiplexing (TDM)  in most of their 

copper cable or wireless networks.  
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FDM, which is a signal multiplexing scheme in non-optical networks, 

combines numerous different frequencies (sub-channels) on a single composite 

channel and sends all data streams simultaneously (see Figure 2-1). For 

accurate and reliable data transfer in telephony, a 4kHz frequency bandwidth 

including 1kHz guard-band for each analog signal (sub-channel) is suggested to 

prevent signals from overlapping and causing crosstalk [6] (see Figure 2-2). FDM 

is a copper-based or wireless scheme widely used in cable TV and radio 

broadcast networks. 

 

 

Figure 2-1: A FDM system example. 

 
 
 

 

Figure 2-2: A FDM wavelength distribution. 

 
 



 

 10

TDM, as illustrated in Figure 2-3, multiplexes data streams that may have 

different transmission rates into one communication channel by assigning each 

stream one or more slots in a time window. Thus, TDM enables us to utilize the 

bandwidth of a channel more efficiently.   

 

Figure 2-3: A TDM system example. 

 

SONET (Synchronous Optical Network) and SDH (Synchronous Digital 

Hierarchy) are sets of standards for synchronous transmission in optical 

networks. SONET is the United States standard version set by American 

National Standards Institute (ANSI) and SDH is the international version 

published by the International Telecommunications Union (ITU). SONET and 

SDH networks have been proved successful for their high performance and cost 

effectiveness, and they are still under continuous development.  

OC-1 (Optical Channel level 1) is the basic transmission module for 

SONET and STM-1 (Synchronous Transport Module level 1, equivalent to OC-3 

in SONET) for SDH. OC-1 and STM-1 transmit data streams at the speed of 

51.84Mbps and 155.52Mbps respectively. The transmitter hierarchy OC-N has bit 

rate of N &51.84Mbps by multiplexing several low speed data streams (e.g. N 
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OC-1 data streams) into one using TDM technology. For example, OC-48 has a 

speed of 2488.32Mbps (or simply, 2.5Gbps). OC-192 with a speed of 10Gbps 

has already been used in some networks. OC-768 with the speed of 40Gbps is 

still in laboratory operations.  

WDM (or optical FDM) is a type of frequency division multiplexing 

technique that is very similar to the FDM technique. WDM combines some high 

frequency wavelengths (also called colors, channels, or ' ) into one fiber to 

provide high bandwidth on the order of terabits per second (Tbps) in optical 

networks. To avoid confusion with FDM that also uses frequency, we use the 

term wavelength, instead of frequency, for WDM to represent a channel in optical 

networks. For example, multiplexing 10 wavelengths in a fiber where each 

wavelength has the speed of 10Gbps, can increase the bandwidth to 100Gbps. 

In the early stages of WDM networks, around year 1985, there were only two 

wavelengths in a fiber, which was soon increased to 16 wavelengths per fiber [7]. 

According to ITU-T G.694.2, a total of 18 wavelengths are defined for Coarse 

WDM or Conventional WDM (CWDM), whereas at least 40 wavelengths can be 

multiplexed in DWDM systems according to ITU-T G.694.1. Nowadays, Tbps 

DWDM technology, which multiplexes 128 and 160 wavelengths in one fiber by 

spacing a given frequency range densely, has become common [8]. 

SONET/DWDM ring networks combine TDM and DWDM technologies to 

enable network operators to utilize their bandwidth efficiently in order to 

accommodate the rapidly growing data traffic demand. Moreover, data in 

different formats, like IP, Ethernet, ATM, can transparently transport over the 
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optical layer in the DWDM network without the overhead of data encapsulation. 

This technology development makes it feasible for network providers to deliver 

diverse types of service over their networks, such as VOD service, video 

conferencing, telecommunication, Internet, etc.    

2.1.2 Network protections on SONET/DWDM rings 

Service reliability, which is considered as part of QoS, requires service 

providers to deploy protection architectures in their networks. Traditionally, 

service providers offer various types of protection. These protection schemes can 

be categorized into three classes: full protection, best-effort protection, and no 

protection. We define a new protection scheme: revenue focused semi-protection 

scheme.  

In fully protected networks, paths with sufficient free bandwidth are set up 

as the backup and can be used to transmit data traffic if the primary path is 

interrupted. Typical fully protected architectures in SONET/DWDM rings are 

unidirectional path switched ring (UPSR) and bidirectional line switched ring 

(BLSR) [9 ]. In UPSR networks, one fiber works as the primary ring in the 

clockwise direction and the other fiber works as the protection ring with a traffic 

copy in the counter-clockwise direction. If a failure occurs in the path between 

two adjacent nodes, the nodes can switch to the protected ring to receive the 

data copy in the counter-clockwise direction.  In BLSR rings, all traffic is 

transmitted using 50% of the bandwidth of each of the two fibers that run in 

opposite directions. Once a failure occurs in one of the fibers, the traffic is 

switched to the free bandwidth in the other fiber. 
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   Best-effort protection architectures have gained interest in some 

research work [10,11]. Best-effort protection networks try to protect working 

traffic as much as possible and/or maximize the revenue by using a mix of 

carefully selected protected and unprotected schemes. Sridharan and Somani 

[11] have used integer linear programming models to achieve the minimum cost 

when a failure occurs in a network. Each link has been assigned a cost value, 

and a currently working path disrupted by a failure will be assigned a second cost 

value. The solution is to find the optimal path for rerouting with the minimum cost 

in the event of a network failure. The survivability of a network, defined as the 

capability of a network to provide continuous service in case of failures is 

discussed in [11]. Gerstel and Ramaswami [11] reviewed different protection 

schemes, such as BLSR, UPSR, and Mesh Line Protection. They then studied 

different classes of protections from fully protected to unprotected and provided 

network providers with suggestions regarding choosing the right scheme 

depending on protection requirements and traffic types (e.g., deploying 

protections in either IP layers or optical layers). The authors also considered 

equipment cost and bandwidth efficiency as two important factors in a cost-

effective design.  

Similar to best-effort protection schemes, our revenue focused semi-

protection scheme uses less bandwidth as backup than full protection schemes 

but it requires no reserved bandwidth, traffic routes, or pre-defined levels of 

protection. When failures occur in networks, traffic is selectively protected by any 



 

 14

free bandwidth in the other links to minimize the revenue loss caused by network 

failures. 

2.1.3 Cost-effective problems in SONET/DWDM rings 

With DWDM technology, SONET networks can support large bandwidth 

on a single fiber. However, the more wavelengths used, the more optical and 

electronic multiplexing equipment required, which dominates the cost of 

SONET/DWDM ring networks. Three costly components commonly used in a 

SONET/DWDM ring network are shown in Figure 2-4: wavelength converters, 

OADMs, and SADMs. 

 

Figure 2-4 : Cost-dominant components in SONET/DWDM rings. 

 

Converter: A converter receives a wavelength ('2 in Figure 2-4) and re-

transmits the data using a different wavelength ('3 in Figure 2-4). A converter 

may be used when data traffic arrives on a wavelength that has already been 

used in the fiber through which the converter sends data. Several studies [12,13] 

have shown that using optical converters may reduce wavelength usage in some 
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cases, but it is still costly compared to the number of the wavelengths saved. To 

simplify research problems in this project, we consider a point-to-point 

communication request between two nodes and data transmitted along a 

lightpath. A lightpath is an all-optical transmission path that is assigned a 

wavelength, and there is no wavelength conversion or optical-electronic-optical 

processing at intermediate nodes. 

OADM: Optical Add/Drop Multiplexers offer the ability to selectively 

add/drop a wavelength that carries only the data destined to or originating from a 

node. Incoming wavelengths that do not contain data for the node will bypass the 

OADM ('1 �	� '2 bypass node 1 in Figure 2-4). There must be at least one 

OADM at a node if there is traffic destined to or originating from this node. 

SADM:   SONET Add/Drop Multiplexers extract the low bit-rate streams 

from a multiplexed wavelength and/or add a data stream in the same wavelength 

for its destination node (see Figure 2-4). For example, a SADM drops an OC-3 

data stream from a wavelength with an OC-12 integrated data stream, and adds 

its own OC-3 data stream into the same wavelength and retransmits to its 

destination. Therefore, a SADM is needed at a node only when a wavelength 

channel carries incoming or outgoing low bit-rate streams for this node.  
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Figure 2-5: SADM usage in SONET/WDM with 4 nodes and 2 wavelengths. 

 

Figure 2-5 (a) shows a unidirectional ring example without considering 

minimizing the usage of SADMs. Suppose that the unidirectional communication 

request set is {(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)}, there are two given 

wavelengths: '1  and '2, and each wavelength can aggregate two OC-3 data 

streams denoted by solid and dotted lines. To realize all the requests without 

concern for the SADM usage, a total of eight SADMs are used in Figure 2-5 (a) 

(one OADM for each node is not shown in the figures). By properly using the 

wavelength routing and assignment scheme, we can reduce the number of 

SADMs to seven by bypassing node 2 for the wavelength '1, as shown in Figure 

2-5 (b). 

This example illustrates two of the optimization problems examined in 

current research: routing and wavelength assignment (RWA) and traffic 

grooming. 
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The RWA problem [14] is to find lightpaths for given connection requests 

and to assign wavelengths to the lightpaths to meet the distinct wavelength 

constraint and wavelength continuity constraint. The distinct wavelength 

constraint requires that all lightpaths transmitted in the same fiber must be 

assigned distinct wavelengths. The wavelength continuity constraint requires that 

there be no wavelength conversion and electronic processing at intermediate 

nodes. The objective of RWA is to realize all communication requests using a 

minimum number of wavelengths or to maximize the traffic throughput using a 

given number of wavelengths. If the routes for all requests are given in advance, 

RWA problems can be reduced to WA (wavelength assignment) problems. 

Traffic grooming in DWDM networks is a process to realize the given 

traffic requests and minimize the use of SADMs by selectively grouping low data-

rate streams into a high data-rate output. A grooming factor refers to the number 

of low data-rate streams that are multiplexed into one wavelength. For example, 

in SONET/DWDM networks, an OC-48 SADM multiplexes four OC-12 low-rate 

traffic streams into an OC-48 wavelength channel, and in this case, the grooming 

factor is 4. As ADMs dominate the cost of DWDM networks, it is very important to 

solve the traffic grooming problem in order to design cost-effective networks. 

2.2 Related Work 

To solve the RWA and traffic grooming problems, it is necessary to 

optimize the use of wavelengths and SADMs. These problems have been proved 

NP-hard [15,16,17] in mesh and ring networks. Thus, heuristic algorithms should 

be applied to achieve the best possible performance. A lot of research has been 
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conducted on different network topologies, such as rings [16,27,33,34], mesh 

networks [ 18 , 19 ,20 , 21 ], and trees [22 , 23 , 24 ] with or without considering 

wavelength conversion. Some previous work [25] on coloring problems in graph 

theory is also considered to provide solutions to RWA problems. Our review 

focuses on the research for DWDM networks without wavelength conversion. 

2.2.1 Routing and wavelength assignment 

Ramaswami and Sivarajan [18] address the RWA optimization problem 

using an integer linear program (ILP) model to maximize the number of 

connections that are successfully routed for an arbitrary mesh network with a 

given limited number of wavelengths. In addition, they derive an upper bound on 

the number of connection requirements in their linear program (LP) model, by 

relaxing the integrality constraints in ILP. An LP model in [12] considers RWA in 

ring networks without wavelength conversion. The objective of the RWA LP 

model is to minimize the number of required wavelengths. Variables are 

introduced in these models to indicate whether a certain path is selected for one 

connection and assigned one of the given wavelengths. The constraint functions 

in these models include a constraint with a given number of wavelengths, and 

distinct wavelength and wavelength continuity constraints.  

More research on static traffic requests can be found in [26,27], which 

proposed several heuristic algorithms to identify the proper lightpaths to be 

assigned wavelengths so that the number of wavelengths is minimized.  Some 

greedy heuristic algorithms are presented and evaluated in [26] for both static 

and dynamic traffic patterns with bounded and unbounded numbers of 
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wavelengths. The heuristic algorithms suggested in [26, 27] assign a given 

wavelength to each lightpath from the longest one to the shortest one in order to 

maximize the use of each wavelength. In [27], the authors give a lower bound on 

the number of wavelengths required, ( ! )*+,�- .  where N is the total number of 

nodes, to realize all connection requests between all pairs of nodes in a DWDM 

ring with two working fibers and two protection fibers.  

The authors in [28] further proved that for a fully connected ring network, 

which is a network having connections between all pairs of nodes, the lower 

bound on the number of wavelengths required is ( ! )*+- . if N is even, and 

( ! )*+,�- . if N is odd. 

A RWA algorithm for connection maximization in undirected DWDM ring 

networks with an approximation ratio 2/3 is presented in [29] and is considered to 

be an improvement of �1 � �/ �-approximation in [30] (where e is the base of the 

natural logarithm function). A  0�� -approximation algorithm is also given in [29] by 

using the Chain-and-Matching technique for directed rings. 

2.2.2 Traffic grooming 

To solve the traffic grooming problem is to minimize the use of SADMs in 

networks by multiplexing low-rate data streams into one high-rate wavelength 

channel. In [31], the authors show that minimal number of wavelengths and 

minimal number of SADMs are two objectives that cannot be achieved 

simultaneously in their cases. It has been suggested that the traffic grooming 
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problem is more important than RWA when designing cost-effective DWDM 

networks. For example, the researchers in [32,33] argue that the first-order 

optimization goal should be to minimize the use of SADMs rather than to save 

the number of wavelengths unless the wavelength limit is exceeded.  

In [33], the authors derive a lower bound on the number of SADMs used 

and an upper bound on the performance of two greedy heuristics, which are Cut-

First and Assign-First. The lower bound is described as 

 1 2 1345/67489: ! ∑ �<= % >= �  min B<=, >=C= � ,  
where <= is the total number of lightpaths departing from node k and  >= is the 

total number of lightpaths ended at node k. The lower bound is derived based on 

the ideas that each pair of source and destination nodes requires one SADM and 

the shared SADMs are bounded by min B<=, >=C.  
In [34], the authors achieve the same lower bound for the number of 

SADMs, but argue that the performance analysis of the Assign-First algorithm in 

[33] is incorrect and demonstrated so by giving a counter-example. Furthermore, 

the authors propose another three greedy heuristics: Iterative Merging, Iterative 

Matching, and Euler Cycle Decomposition.  

Similar to research on RWA problems, some ILP models have been 

proposed [35,36,37] for addressing traffic grooming problems. 

For an arbitrary graph in UPSR rings with symmetric traffic patterns, 

solutions to the k-Edge-Partitioning problem are used in [38,39,40,41] to solve 

traffic grooming problems by partitioning a traffic graph G into subgraphs with at 
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most k edges. The basic idea common to all four papers is to minimize the 

number of nodes, which may possibly decrease the number of connected 

components in each subgraph, thereby decreasing the number of ADMs used. 

Wang and Gu in [41] derive a better algorithm using an r-regular graph (all nodes 

in a graph has the same degree r) and summarize the performance results of all 

the relevant algorithms in one table (Table 1). 

Table 1: Performance result comparison between algorithms [41].  
k is the grooming factor and n is the number of nodes. 

 

 

 

 Required SADMs for even r Required SADMs for odd r Required wavelengths 

Algorithm in [38] D|F�G�|�1 % 1H �I D|F�G�|�1 % 1H �I % 	2 DF�G�H I 
Algorithm in [39] D|F�G�|�1 % 2H �I D|F�G�|�1 % 2H �I DF�G�H I 
Algorithm in [40] D|F�G�|�1 % 1H �I % J	4L D|F�G�|�1 % 1H �I % J	4L DF�G�H I 
Algorithm in [41] D|F�G�|�1 % 1H �I D|F�G�|�1 % 1H �I % � 3	2� % 1� � 1� DF�G�H I 
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3. REVENUE FOCUSED SEMI-PROTECTION MODELS 

In this chapter, we develop revenue focused semi-protection models to 

design cost-effective networks. Our goal is to minimize the revenue loss when 

providing VOD service in a DWDM ring network by overcoming bandwidth 

shortages without incurring any hardware upgrade costs. 

3.1 Semi-protected Application Scenarios 

Traditional DWDM ring networks use either non-protection or full 

protection schemes. With the fast growth of video content transmission services, 

many service providers face the problem of bandwidth shortage in their ring 

networks. Common strategies that service providers have adopted to handle the 

challenge of bandwidth shortage while minimizing the network updating cost or 

revenue loss include: i) using new techniques to increase their bandwidth, such 

as optical hardware upgrades in DWDM networks; ii) setting up additional optical 

fibers to accommodate more network traffic; iii) giving up backup routes for full 

protection and using all bandwidth as primary traffic deliverer; and iv) making no 

new investment in existing networks and disconnecting traffic randomly at the 

cost of possible revenue loss when failures occur in peak traffic time. None of the 

above strategies is optimal: all the strategies will increase either cost or revenue 

loss. Not much research has been done to improve these strategies using 

customer statistics.  
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In this chapter, we develop revenue focused semi-protection approaches 

to minimize the revenue loss by using customer statistics to determine the 

priorities of all VOD connections.  The solution achieved in this project provides 

service providers with guidelines on the design or upgrade of cost-effective 

networks. In practice, service providers have access to customer statistics from 

customer surveys and online tracking records that suggest when a customer is 

ordering or watching a VOD program. We believe that introducing the new 

bandwidth statistic will not cost much more than only using the other two 

statistics in [3]. 

Revenue statistics: Revenue statistics refer to subscription fees paid by 

customers. We categorize customers into three classes: high-revenue, 

moderate-revenue, and low-revenue customers.  

Failure statistics: A customer experiences a network interruption when a 

failure happens in a network and the VOD connection of the customer is chosen 

to be dropped. The Failure statistic is the number of VOD service interruptions 

that a customer experiences during a period of operation. Assuming that 

customers can tolerate up to a certain number of network interruptions before 

they unsubscribe from VOD programs, the more interruptions a customer 

experiences, the more likely the customer will unsubscribe. Statistics can be 

used to indicate customers’ tolerance of network interruptions; these statistics 

are proportional to customers’ expectations of network reliability. It is reasonable 

to assume that customers who pay higher subscription fees (i.e., higher revenue 

customers) hold higher expectations. Therefore, experiencing the same number 
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of interruptions, higher revenue customers are more likely to unsubscribe than 

lower revenue customers. In our project, to examine the effect of the number of 

interruptions on revenue loss, we focus on revenue loss caused by customer 

unsubscription from VOD service only after experiencing network interruptions. 

Bandwidth statistics: Bandwidth statistics are the average bandwidths of 

VOD programs required for different classes of customers. The authors [3] have 

examined two different classes of customers (high- and low-revenue customers) 

who have the same bandwidth usage. We assume that three different classes of 

customers watch three different types of VOD programs: SD (Standard 

Definition) VOD for low-revenue customers, DVD- quality VOD for moderate-

revenue customers, and HD (High Definition) VOD programs for high-revenue 

customers. On average, SD, DVD-quality, and HD VOD programs occupy 

3.75Mbps, 9.8Mbps, and 19Mbps bandwidths [42] respectively.  

Some other impact factors (which are predictor variables in our 

experimental designs) are evaluated, such as the probabilities customers are 

watching when a failure happens, the composition ratio of the three classes of 

customers, and the ranking impact factor for assigning the priorities to all 

customers. 

3.2 A Semi-protection Scheme  

Similar to [3], we develop a semi-protection scheme for simple point-to-

point DWDM ring networks (Figure 3-1). In such a DWDM ring network, the 

server node provides VOD service to a customer distribution node through the 
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two point-to-point links between the two nodes, and there is no specific backup 

route reserved to protect the network when failures occur. Our scheme applies to 

the situation when a failure occurs during the peak traffic time (e.g. the optical 

fiber is broken) and the surviving link cannot accommodate the entire traffic load. 

Consequently, some VOD connections have to be dropped, and some 

connections are protected by the free bandwidth in the surviving link. To handle 

this challenging situation, Gerstel et al. [3] proposed two semi-protection 

schemes: non-preemptive protection and victimized protection. 

 

Figure 3-1: A point-to-point DWDM ring network 

 

In non-preemptive protection, when a failure happens in one of the two 

links, a selection of connections in the broken link is saved by using the free 

bandwidth in the surviving link. All the original traffic in the surviving link is 

uninterrupted. In victimized protection, some VOD connections in the surviving 

link are assigned lower priorities than selected connections from the broken link 
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and thus become victims to be dropped in order to free bandwidth for those 

higher priority connections. Our project focuses on the victimized protection 

scheme because the victimized protection scheme yields better performance 

than the non-preemptive protection scheme in terms of minimizing revenue loss. 

The victimized protection scheme selects connections to be protected based on 

priorities assigned to all the connections in both surviving and broken links, 

whereas the non-preemptive protection scheme selects based on the priorities 

assigned to all the connections in the broken link only. 

3.2.1 Notation 

We use the following notation in our models and experiments. 

�:    Class �  customers, where � N B0, 1, 2C  represents low-revenue, 

moderate-revenue and high-revenue customers respectively in our 

simulation. 

�:      The number of interruptions a customer has experienced. 

�:     The total number of failures occurring in the operation period. 

���:   The revenue rate generated by a class � customer. 

revenue-ratio: The revenue generation ratio between the revenue rates of 

the three classes of customers, denoted  �0�: �1�: �2�. 
����:   The bandwidth required for each class � customer. 
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��:   � N  B 0, 1, … , � % 1C,  The time right before the tth failure happens in the 

operation period [ ��, ���� ], where �� represents the initial time in 

the operation period before any failure happens.  

 ��, �, ��-customers:  The group of class � customers at time �� who have 

experienced �  interruptions. We also use ���-customers to mean 

class c customer and ��, �� -customers to refer to the class c 

customers who have experienced � interruptions. 

���, �, ��:  The number of ��, �, ��-customers. 

	��, �, ��:  The traffic load caused by the ��, �, ��-customers when they are 

watching VOD programs. 

����:  The number of new ���-customers joining the VOD service during 

the period between two adjacent failures. 

����:  The traffic load caused by the new ���-customers when they are 

watching VOD programs. 

 

���, �, ��: The number of dropped ��, �, ��-customers when the tth failure 

happens. 

���, �, ��:  The amount of dropped traffic load of ��, �, ��-customers when 

the tth failure happens. 

triple-ratio: The ratio of the number of initial ���-customers in the network 

at �� ! 0,  denoted   ��0,0,0�:��1,0,0�:��2,0,0� ! ": #: $ . We also 
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assume that new customers subscribing to the service satisfy the 

same ratio. 

 ratio(c): The initial ratio of the number of ���-customers to the number of 

�� % 1� -customers, If  ��0,0,0�:��1,0,0�:��2,0,0� ! ": #: $ , then, 

��Q��0�  !  "/# , and  ��Q��1� !  #/$ . The new customers 

subscribing to the service satisfy the same ratio. 

�����:  The probability of a ���-customer watching a VOD program at the 

peak traffic time. 

��	��, ��:  The probability of a ��, �� -customer unsubscribing from the 

service if the customer is dropped at the next failure. 

���, ��:  The priority value that is assigned to a ��, �� -customer in 

Combination Approach. 

�:        The capacity of one point-to-point link in the ring. 

3.2.2 Model assumptions and statement  

Our models do not apply to failures during non-peak traffic time. We 

assume that there is no revenue loss during non-peak traffic time because all the 

traffic can be saved by the free bandwidth in the surviving link and no customers 

will experience interruptions. To simulate cases in peak traffic time, we develop 

our models by adopting some similar assumptions to those described in [3]:  

1. Initially, there is a certain number of ��� -customers at time �� , 

satisfying the triple-ratio, which is the ratio among the numbers of 
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customers in each class. All the initial traffic is evenly distributed 

between the two point-to-point links between the VOD server node and 

customer distribution node in the ring. The total amount of the initial 

traffic is equal to the bandwidth capacity of  a link, thus half of the 

bandwidth in each link is occupied by the initial traffic;  

2. When a failure happens, some connections are dropped and there 

may be customers who unsubscribe from the network. To ensure that 

the total traffic always exceeds the bandwidth in the surviving link, 

there are some new customers joining the network in the intervals 

between adjacent pairs of failures, including the intervals of S ��, �� ] 
and [ �� , ����]. The number of new customers distributed across the 

three different classes also satisfies the triple-ratio; 

3. If no failure happens during the operation period  S ��, ���� ], the total 

amount of initial traffic and the traffic caused by the new customers 

should be equal to the full capacity of the two links at the end time 

����;  
4. All the traffic caused by all the new customers during the operation 

period, which is equal to the capacity of one link, is evenly distributed 

in the intervals between adjacent pairs of failures. Based on the triple-

ratio, the bandwidth consumption of each class of customers, and the 

number of failures � during the operation period, the constant number 

of new customers joining in each failure interval during one operating 

period then can be determined. Despite our assumption, we 
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acknowledge that in reality, the number of new customers added to 

each interval between two adjacent failures may not be constant 

because the failures are not evenly distributed in real time. To get a 

sense about how randomly occurring failures may affect revenue loss, 

we also study a case that simulates three situations when varying 

numbers of new customers join in the service in each interval between 

two adjacent failures.  

At time ��, we use ���, 0,0� to denote the initial number of ���-customers 

who have never experienced any failures. �� is the time right before the tth failure, 

where  � !  1,2… , � . Therefore, during the time S ��, ����T, there are in total � 

failures. At any time  �� , each ��� -customer is watching VOD programs with 

probability �����. The initial traffic load, denoted  	��, 0,0�,  is equal to the fixed 

capacity � of one link. There is always a constant number of new customers, 

����,  joining the network and contributing the traffic load ���� during the time 

interval between adjacent failures. In order to ensure that the total number of 

customers at any time exceeds the capacity of one link, but is not greater than 

the total capacity of the two links at the end time ���� , the total initial traffic 

∑ 	��, 0,0�UVW� ! � is evenly distributed in the two links, thus �/2 for each link. The 

constant amount of traffic load  ∑ ����UVW� ! X���  generated by the new 

customers ����,  is determined by the total number of failures in an experimental 

period and will keep increasing the total traffic to 2� at the end time ���� if no 

customers leave. The number of initial ���-customers and all the new customers 
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added across the three different classes satisfy the �Q�YZ � ��Q�, and *�V,�,��*�V��,�,�� !
[�V�[�V��� ! ��Q����, � ! B0,1C. The probability of a ��, �, ��-customer unsubscribing 

from the network is ��	��, ��  after they experience � % 1  interruptions. The 

revenue loss rate then can be calculated with the revenue loss caused by all the 

leaving customers divided by the total revenue when no customer leaves. 

3.3 Off-line Approach:  Optimal Approach  

To achieve an optimal cost-effective semi-protection scheme, we extend 

the linear programming model, which was developed in [3]. Our goal is to 

minimize the total revenue loss rate at the end time ����  by calculating the 

optimal amount of dropped connections carefully selected using the customer 

statistics. Therefore, 	��, �, ��  and ���, �, �� are the variables that need to be 

determined in the model. 

Suppose a ��� -customer is watching a VOD program with probability 

 ����� , and each customer who is watching the program is occupying 

bandwidth ����. Then we have the following equation to describe the relation 

between the number of ��, �, ��-customers and the amount of traffic caused by 

these ��, �, ��-customers at any time ��. 
	��, �, �� !  ���, �, �� & ���� & �����                         � � � � �1�,  

�\ZZ � ! 0,1, 2, � ! 0,1, … , �, � !  0,1, … , � % 1, � ] � *1. 

                                            
*

1
 No any customer experiences more than � � 1 failures at time �� ,  which is the time just before 
the �th  failure happens, so � ] � throughout our project.  
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At time ��, none of the initial customers experience interruptions, and the 

total amount of their traffic is set to equal the capacity L. The new customers 

joining the network are evenly distributed in all failure intervals and the total traffic 

caused by all new customers at end time  ���� is equal to the capacity L: 

^ 	��, �, �� ! � , �\ZZ � ! 0, � ! 0                U
VW� � � � �2�, 

^ ���� ! �� % 1  ,       Q	 Z��\ ��QY�Z Q	�Z_�Y         U
VW� � � � �3�. 

      And the ratios of the numbers of initial ��� -customers satisfy the 

ratio(c): 

��0, �, ����1, �, �� ! ��Q��0�, �\ZZ � ! 0, � ! 0                     � � �  �4�, 
��1, �, ����2, �, �� ! ��Q��1�, �\ZZ � ! 0, � ! 0                       � � � �5�. 

So do the number of newly joined customers across different classes of 

customers, for each failure interval: 

��0���1� ! ��Q��0�                                                                              � � � �6�, 
��1���2� ! ��Q��1�                                                                               � � � �7�. 

The linear equations (1)--(7) calculate the initial number of customers at 

time ��, the number of new customers at each time interval  ��, and the amount 

of traffic generated by all these customers. 
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Then we have the following equations for the number of ��, �, � % 1�  -

customers, and the number of selectively dropped customers at time ��. 
���, �, � % 1� ! ���, �, �� �  ���, �, �� %  ����,�\ZZ � ! 0 � � � �8�. 

 Equation (8) shows that the number of customers who have not 

experienced any failures by time ���� equals the number of ��, 0, ��-customers 

that were not dropped at time ��  plus the number of newly joined customers 

during time S��, ����T. 
Equation (9) describes that ��, �, � % 1�-customers (where � d 0) consist 

of: 1) customers who had experienced � interruptions and were not dropped at 

time ��  and 2) customers who had experienced � � 1  interruptions and were 

dropped at time �� but will keep subscribing to the VOD service. 

���, �, � % 1� ! ���, �, �� �  ���, �, �� % e1 � ��	��, � � 1�f & ���, � � 1, ��,    
                                               �\ZZ � d 0                                             � � � �9�. 
Using equations (8) and (9), we get the following  equations describing 

traffic load: 

	��, �, � % 1� ! 	��, �, �� � ����� & ���, �, �� % ����, �\ZZ � ! 0 � � � �8�h, 
and 

         	��, �, � % 1� ! 	��, �, �� �  ����� & ���, �, �� %  
   ����� & e1 � ��	��, � � 1�f & ���, � � 1, ��,    

                                    �\ZZ � d 0                                                        � � � �9�h. 
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The next step is to determine the amount of traffic caused by each group 

of ��, �, ��-customers that we have to disconnect when the tth failure happens. We 

assume that the fixed capacity of each link is L, and then the dropped traffic that 

exceeds the capacity of one link caused by the tth failure can be calculated by: 

^ ^ ���, �, ���,�
iW�

U
VW� ! max B0,^ ^ 	��, �, �� �  �  C .  �,�

iW�
U
VW�  

Since we only model the situation during the peak traffic time when there 

is not sufficient capacity in the surviving link for all VOD connections, some of the 

connections have to be dropped if a failure occurs. Therefore, the above formula 

can be simplified: 

^ ^ ���, �, ���,�
iW�

U
VW� ! ^ ^ 	��, �, �� �  �           � � � �10�.�,�

iW�
U
VW�  

So far, we have explained all the linear equations for the linear 

programming model. Additional constraints for this model are introduced in (11)-

(12).  

���, �, �� ] 	��, �, ��                     � � � �11�. 
The constraint (11) shows that at the time when the tth failure happens, the 

amount of the dropped traffic cannot exceed the current traffic of 	��, �, �� . 

Moreover, all the variables in the model are non-negative numbers, so we have 

���, �, ��  2 0                                    � � � �12�,   
and 

	��, �, �� ! 0, �\Z	 � ! �             � � � �13�. 
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 It is true that 	��, �, �� 2 0 when  � ] �  from (11) and (12). As we have 

mentioned before, it is not possible that � d �. When � ! �, the constraint (13) 

must be specified either in the data initialization part or added as a constraint 

function in the model. This is because we need the value of  	��, �, �� to calculate 

the traffic of 	��, �, � % 1� in equations (8)’ and (9)’. If � ! � and 	��, �, �� is not 

specified to be 0, the linear program model will consider 	��, �, �� to be a variable 

and may assign it any non-zero value to optimize its performance. As a result, 

the dropped traffic ���, �, ��, when � ! �,  can also be assigned a non-zero value. 

This is not what we expect because at time ��,  just the moment before the tth 

failure happens, no customer has experienced t failures. For example, according 

to equation (9)’, the amount of traffic by ��, 2,3�-customers at time �l  can be 

calculated by  	��, 2,3� ! 	��, 2,2� �  ����� & ���, 2,2� %   ����� & e1 � ��	��, 1�f &
���, 1,2�,   and  	��, 2,2� and  ���, 2,2� should always be zero because no customers 

have experienced two interruptions at time �U. 

Finally, we introduce our objective function, maximizing the sum of total 

revenue generated by all customers at time ����. 
Maximize ^ ^ ��� & ���, �, � % 1�   � � � �14�  �

iW�
U
VW�  

Alternatively, using the total traffic left at time ����, we can formulate the 

objective function as   
Maximize ^ ^ ��� & 	��, �, � % 1����� & �����      � � � �14��

iW�
U
VW�

p. 
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We measure and compare the performance of our model with that of other 

approaches using the revenue loss rate. Therefore, we transform �14�′ to �15�. 
 Minimize �1 � ∑ ∑ 6�V�&9�V,i,����7�V�&q5�V� /∑ U&6�V�&9�V,�,��7�V�&q5�V�  �UVW�  � � � �15��iW�UVW� , 
The part ∑ U&6�V�&9�V,�,��7�V�&q5�V�  UVW�  in (15) is the total revenue generated by all 

customers at end time ����  if no customer unsubscribes during the operation 

period. This total revenue is the initial revenue at time �� times 2 because the 

total amount of the newly added traffic equals the amount of the initial traffic. 

The solution of this linear program is the best among all our revenue 

focused semi-protection approaches. However, it should be noted that this model 

is an off-line approach because the number of failures cannot be predicted in 

advance in reality. The global optimal solution may not be optimal for each time 

�� where � r � % 1, which we will illustrate in our specific case studies. 

3.4 On-line Approaches 

All the on-line approaches proposed in this project determine which VOD 

connections to save in the event a failure by assigning priorities to different 

groups of customers. Different from the LP model that determines connections to 

be dropped at the beginning of each experimental period based on a predefined 

number of failures, all the on-line approaches calculate the amount of traffic to be 

dropped each time when a failure occurs, case by case. Detailed algorithms for 

comparing the performance of all the on-line approaches are examined in the 

following sections. 
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3.4.1 Random Approach 

In Random Approach, all customers are assumed to be of the same 

priority. We randomly select the VOD connections (for example, by randomly 

selecting customer IDs from the customer database) to be dropped among 

��, �, ��-customers when a failure occurs. Because no specific statistics are used 

to assign priorities to customers, the algorithm to randomly select the protected 

customers is similar to [3].  

The amount of dropped traffic for ��, �, ��-customers is calculated using the 

following equation: 

���, �, �� ! s 9�V,i,��∑ ∑ 9�V,i,��tuvwxy+zxy { �∑ ∑ 	��, �, ���,�iW�UVW� � ��, 
where ∑ ∑ 	��, �, ���,�iW�UVW� � �  is the total amount of dropped traffic that 

exceeds the capacity, and s 9�V,i,��∑ ∑ 9�V,i,��tuvwxy+zxy { is the proportion of the traffic for each 

group of ��, ��-customers to the total amount of traffic at time ��. To simulate the 

algorithm in [3] and examine the performance of our extended approach, we use 

our algorithm to calculate revenue loss rates shown in Figure 3-2. 
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In step 1, all data is initialized, including the initial traffic at time �� and 

newly joined traffic during each interval. Step 3 calculates the current traffic for 

each group of ��, �, ��-customers at time �� using the same functions (8)’ and (9)’ 

as in the linear programming model. The total traffic |�}��) is summed up at step 

4 and is used to calculate the proportion of the traffic for ��, ��-customers to be 

dropped at step 7. We only consider the case � r � % 1 at step 5 because the 

last failure, that is, the Fth failure, happens right after time ��  and there is no 

traffic dropping at the end time ����. Step 8 specifies that the revenue loss rate, 

which expresses our later experimental results, is the ratio of the actual total 

revenue loss caused by all the customers who unsubscribed from the VOD 

service to the expected total revenue assuming there is no unsubscription during 

the experimental period. 

1) data initialization;  

2) for (t=1; t <= F+1; t++) 

3)        calculate the traffic  	��, �, �� at time ��, for each  c and f; 

4)        calculate  |�}��� ! ∑ ∑ 	��, �, ���,�iW�UVW�  at time ��; 
5)         if t < F+1 

6)                ����Z�_����Q���� ! |�}��� � �����Q�#; 

7)                ���, �, �� ! ����Z�_����Q���� � 9�V,i,���8����,  for each c and f ; 

8) Output  Z_Z	�Z Y�|| ��Z ! �∑ ∑ ∑ ���&���,�,��&��	��,������ � revenue_noleaving���!02�!0��W�  ; 

Figure 3-2: Algorithm to calculate revenue loss rate 
for Random Approach 
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3.4.2 Revenue Approach 

Revenue Approach is the first approach for which we use revenue 

statistics to minimize revenue loss. The basic idea of Revenue Approach is to 

select the VOD connections to be dropped by assigning a priority to each 

customer based on revenue statistics and then drop customers, in order of 

assigned priority (starting from the lowest priority). Once the number of dropped 

connections for ���-customers is determined at time �� , Random Approach is 

used to choose customers to be dropped according to the proportion of the 

number of ��, �, ��-customers to the number of ���-customers when the tth failure 

happens. We describe in more detail the algorithm in [3] to calculate the amount 

of protected/dropped VOD traffic and revenue loss rates for Revenue Approach 

in Figure 3-3. 

In Revenue Approach, at each time �� , |�}��� is calculated for all the 

traffic caused by ���-customers in step 5. From step 9, the traffic to be dropped 

at each time �� is calculated for ���-customers, starting from low-revenue up to 

moderate- and high-revenue customers. If the traffic to be dropped is greater 

than the number of ��� -customers, all the ��� -customers will be dropped as 

shown in step 12. Otherwise, the connections to be dropped are determined 

using Random Approach according to the ratio of the traffic to be dropped for 

��, ��-customers to the total amount of dropped traffic, as shown in step 16.   
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3.4.3 Bandwidth Approach  

After introducing the bandwidth statistic, Bandwidth Approach is used to 

maximize VOD connections to be saved by dropping connections that use more 

bandwidth first. As mentioned earlier, one of our assumptions in this project is 

that higher revenue customers use more bandwidth. Therefore, the priority 

values assigned to VOD connections in Bandwidth Approach are ranked in the 

 
1) data initialization;  

2) for ( t = 1; t <= F+1; t++) 

3)        calculate the traffic  	��, �, �� at time �� for each  c and f; 

4)        calculate  |�}��� ! ∑ ∑ 	��, �, ���,�iW�UVW�  at time ��; 
5)        calculate  |�}��� ! ∑ 	��, �, ���,�iW�  at time �� for each c; 

6)         if t  < F+1                                 // no drop for ����; 

7)               ����Z�_����Q���� ! |�}��� � �����Q�#; 

8)               temp = ����Z�_����Q����; 
9)               for ( c = 0; c <= 2; c++) 

10)                        if  |�}��� ] �Z}� 

11)                                for ( f = 0; f < t; f++) 

12)                                      ���, �, �� ! 	��, �, ��; 
13)                                      �Z}� ! �Z}� � 	��, �, ��; 
14)                        else if |�}��� d �Z}� 

15)                                  for ( f = 0; f < t; f++) 

16)                                        ���, �, �� ! �Z}� � 9�V,i,���8��V� ; 
17)                                        �Z}� ! 0; 
18) Output Z_Z	�Z Y�|| ��Z !�∑ ∑ ∑ ���&���,�,��&��	��,������ � revenue_noleaving���!02�!0��W�  

Figure 3-3: Algorithm to calculate revenue loss rate 
for Revenue Approach 
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reverse order to those in Revenue Approach. The algorithm for Bandwidth 

Approach is similar to the algorithm for Revenue Approach, which is shown in 

Figure 3-3, except that we reverse the iteration in step 9 and run it from high 

revenue to low to choose VOD connections to be dropped when a failure occurs.  

3.4.4 Failure approach 

Failure Approach determines VOD connections to be dropped using 

failure statistics. Failure statistics record the numbers of interruptions that 

customers have already experienced and can give us a sense about the 

likelihood that customers unsubscribe from network service after experiencing a 

certain number of interruptions. The more interruptions a customer experiences, 

the more likely the customer will unsubscribe from the VOD service, which, in 

turn, leads to revenue loss. Therefore, in Failure Approach, customers who have 

experienced more interruptions are assigned higher priorities and their 

connections will be saved. Within a group of ��, �, ��-customers who have the 

same priority, the connections to be dropped are determined using Random 

Approach. The algorithm to examine the performance for Failure Approach is 

shown in Figure 3-4. In step 5, instead of calculating the total traffic of ���-

customers as in Revenue Approach, we calculate the total traffic of each group of 

customers (customers who have experienced the same number of interruptions f 

are categorized into one group). Step 9 through 17 iteratively calculate the 

amount of traffic to be dropped for each group of (c, f, t)-customers at each 

time ��. 
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3.4.5 Failure/Revenue/Bandwidth Combination Approach 

Combination Approach selects VOD connections to be dropped by 

assigning values of priorities that are calculated using all three statistics: Failure, 

Revenue, and Bandwidth statistics. Customers with the lowest priorities are 

dropped first at each time �� . Priority values assigned to ��, ��-customers are 

1) data initialization;  

2) for ( t = 1; t <= F+1; t++) 

3)        calculate the traffic  	��, �, �� at time t for each � and �; 

4)        calculate  |�}��� ! ∑ ∑ 	��, �, ���,�iW�UVW�  at time ��; 
5)        calculate  |�}��� ! ∑ 	��, �, ��UVW�  at time ��, where               

f = {0,1,…t-1}; 

6)         if t  < F+1                                 // no drop at time ����; 

7)               ����Z�_����Q���� ! |�}��� � �����Q�#; 

8)               temp = ����Z�_����Q����; 
9)               for ( f = 0; f < t; f++) 

10)                        if  |�}��� ] �Z}� 

11)                                for ( c = 0; c <= 2; c++) 

12)                                      ���, �, �� ! 	��, �, ��; 
13)                                      �Z}� ! �Z}� � 	��, �, ��; 
14)                        else if |�}��� d �Z}� 

15)                                  For ( c = 0; c <= 2; c++) 

16)                                        ���, �, �� ! �Z}� � 9�V,i,���8��i� ; 
17)                                        �Z}� ! 0; 
18) Output Z_Z	�Z Y�|| ��Z !�∑ ∑ ∑ ���&���,�,��&��	��,������ � revenue_noleaving���!02�!0��W�  

Figure 3-4: Algorithm to calculate revenue loss rate 
for Failure Approach 
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expressed in terms of revenue loss per bandwidth and are calculated using the 

following equations: 

  the priority value of a ��, �� � ��|��}Z:   ���, ��
!
���
�� ��� & ��	��, ������   , Q� � 2 �h                                                                             � �I��� & ��	��, ������ % 1 & �1 � ��	��, �� & ���, � % 1��, Q� � r �h          � �II� 
The probability of customer leaving ��	��, �� monotonically increases with 

the increasing number of interruptions that a customer has experienced and 

approaches 1 when � approaches �h ( �p is a number big enough to ensure that 

for all customers, ��	��, �� ! 1, when 2 �h ).  When the probability ��	��, �� ! 1, it 

means that all customers who have experienced �’ interruptions or more will 

definitely unsubscribe from the network if they get another interruption. Also, the 

priority value ���, ��  increases monotonically with increasing values of   ��� , 

��	��, �� and 1/����. Formula I calculates the priority in terms of the revenue 

loss per bandwidth. The additional part in Formula II describes the change in 

assigned priority values caused by ��, �� -customers becoming ��, � % 1� -

customers after experiencing one more interruption; the priority value is ���, � %
1� if a ��, ��-customer does not unsubscribe, and this happens with probability 

1 � ��	��, ��. The size of this change in assigned priority values is adjusted 

using α (0 ] α ]  1), a tuneable factor in Formula II, in the following two situations:  

1) Different groups of ��, ��-customers receive the same priority value 

0, regardless of revenue and bandwidth statistics. This situation 

happens when ��	��, �� ! 0 for different groups of  ��, �� -
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customers because these ��, �� -customers can tolerate � % 1 

interruptions; 

2)  Priority values happen to be the same for different groups of ��, ��-
customers when ��	��, ��  � 0.   

Combination Approach can achieve a locally optimal solution at each time 

�� by dropping connections with the least revenue loss per bandwidth, based on 

assigned priority values. Although the factor α is used to adjust the priority values 

of different groups of ��, ��-customers that are assigned the same priority values, 

the value of α is set to be small enough so that it does not change the priority 

rankings of the other groups of ��, ��-customers that do not receive the same 

priority values. If the value of α is too big, it may change the priority rankings of 

��, ��-customers that are not assigned the same priority values, and as a result, 

Combination Approach can no longer guarantee a locally optimal solution at 

every time ��. Therefore, the value of α is set to be very small (e.g. α=0.01 in our 

later experiments) in this project. The algorithm to calculate revenue loss rates 

for Combination Approach is shown in Figure 3-5.  
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1) data initialization;  

2) calculate the priority values w(c,f) for (c,f)-customers and sort 

by increasing order of priority value. 

3) for ( t = 1; t <= F+1; t++) 

4)        calculate the traffic  	��, �, �� at time �� for each � and �; 

5)        calculate |�}��� ! ∑ ∑ 	��, �, ���,�iW�UVW�  at time ��; 
6)         if t < F+1                           // no drop for t = F+1; 

7)              ����Z�_����Q���� ! |�}��� � �����Q�#; 

8)               temp = ����Z�_����Q����; 
9)               for (i = 0; i <= j-1; i++) 

10)                        if  |�}��� ] �Z}� 

11)                                ���, �, �� ! 	��, �, ��; 
12)                                  �Z}� ! �Z}� � 	��, �, ��; 
13)                        else if |�}��� d �Z}� 

14)                                   ���, �, �� ! �Z}�; 
15)                                    �Z}� ! 0; 
16) Output Z_Z	�Z Y�|| ��Z !�∑ ∑ ∑ ���&���,�,��&��	��,������ � revenue_noleaving���!02�!0��W�  

Figure 3-5: Algorithm to calculate revenue loss rate 
for Combination Approach 
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4. EXPERIMENTS AND PERFORMANCE COMPARISON 

There are five predictor variables in our models: the number of failures in 

one experimental period (F), the probability that a ���-customer is watching a 

VOD program (�����), �Q�YZ � ��Q�, revenue-ratio between ���-customers, and 

the probability that a ��, �� -customer unsubscribes from the VOD service 

( ��	��, ��� . To obtain the maximum information from our experiments, we 

conduct a 2k factorial design and a full factorial design [43] to efficiently evaluate 

the effects of the five predictor variables and compare the performance of all our 

models. The findings from our experimental designs are informative to service 

providers. The software Lingo was used as the linear program solver for our LP 

model. Simulations for all our on-line models were coded in the C++ 

programming language; the simulations in [3] were also reproduced so that we 

can compare the performances of our approaches with those of their 

approaches. Results from the 2k factorial experiments show that the number of 

failures F and the probability ��	��, ��  are the two most important predictor 

variables for the revenue loss rate. Findings from the full factorial experiments 

suggest that the linear programming model for Optimal Approach always 

outperforms other models and in this model, revenue loss can even be minimized 

to 0 in some cases. Among all of our on-line approaches, the performance of 

Revenue Approach is always the worst. Failure and Combination approaches 

perform as well as Optimal Approach in some cases and can even reduce the 
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revenue loss to zero at times. Although Combination Approach is designed to 

identify the locally optimal solution at each time that a failure occurs, Bandwidth 

Approach can achieve better performance than Combination Approach in some 

cases. By introducing bandwidth statistics, our approaches perform better than 

the approaches in [3] in our simulations. Specific case studies are also 

conducted,  

(1) to examine the influence of α, the tuneable factor in Combination 

Approach, on customers’ priority rankings;  

(2) to determine why Optimal Approach always performs better than 

Combination Approach; 

(3) to explain why and how the variable, �����, the probability that a ���-
customer is watching a VOD program, is critical in helping to minimize 

the revenue loss to 0, even if it was not identified as a major predictor 

variable in the 2k factorial experiment; 

(4) to simulate three situations in which varying numbers of new 

customers arrive in each interval between two adjacent failures in 

order to learn how randomly occurring failures may affect revenue loss. 

4.1 Background Description for Experiments 

The experiments are designed based on the assumptions introduced in 

Section 3.2.2. We assume that the VOD service is provided in a simple point-to-

point DWDM ring network with one centralized server and one distribution node, 

as shown in Figure 3-1. The fixed capacity on each link is 10Gb. There are three 
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different types of VOD programs, standard-definition (SD) VOD, DVD-quality 

video streams and high-definition (HD) VOD programs, which, on average, use 

bandwidths of 3.75Mbps, 9.8Mbps, and 19Mbps, respectively [42]. We only study 

the cases where the capacity of the surviving link cannot accommodate all the 

traffic in peak traffic time when a failure happens. Therefore, we assume that the 

total amount of the initial traffic is 10Gb, which is evenly distributed to the two 

point-to-point links so that half of the bandwidth of each link is occupied. 

Moreover, there are always new customers joining the network to ensure that the 

total traffic always exceeds the capacity of one link. The total number of failures 

for each experimental period determines the amount of traffic caused by new 

customers at each time �� so that the total traffic at the end time ���� equals the 

full capacity of both links if no customers leave. For example, if there are 4 

failures, the traffic for newly joined customers is 10Gb/5 = 2Gb at each interval 

between two adjacent failures; and the total traffic at the end time �� is 20Gb 

without any customer unsubscriptions. Performance results are calculated as the 

percentage of revenue loss.  

4.1.1 Determination of values for predictor variables 

We are very careful about the determination of values for all the predictor 

variables because without realistic value ranges, the findings on the impact of 

each predictor variable and the performance of each approach would be of little 

value. The values for the predictor variables were determined based on our more 

realistic assumptions and we discarded some arbitrary value assumptions in [3]. 
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In Table 2, we compare our values and value ranges for the predictor variables 

with those used in [3].  

Table 2: List and comparison of values for predictor variables  
(predictor variables are labelled from A to E). 

 

The objective of our revenue focused semi-protection approaches is to 

minimize the revenue loss. The best performance we expect of our approaches 

is zero revenue loss. Therefore, we started our experiments with 1-failure cases 

and increased the number of failures �  until it was impossible to get zero 

revenue loss in any approach. This criterion was satisfied when the number of 

failures was 5. Therefore, our experiments simulate cases from 1 to 5 failures. 

Predictor Variables 
Value Ranges in This 

Project 
Value Ranges in [3] 

A: number of failures � =[1,5] � = [1,4] 

B: probability that a (c)-
customer is watching a 
VOD program 

����� = 
[{60%,60%,60%}, 
{90%,90%,90%}] 

����� = 
[{50%,100%}, 

{14.29%,100%}] 
C: triple-ratio of the 
number of  
(c)-customers 

Triple-ratio = [5:3:1, 
1:3:9] 

Ratio= [5:1, 2:1] 

D: revenue-ratio 
between (c)-customers 

Revenue-ratio = 

[2:3:4, 2:6:10] 

Revenue-ratio = 

[1:2, 1:7] 

E: probability that a  
(c, f)-customer 
unsubscribes from the 
service 

��	��, �� ! S 
�0, 0.2, 0.3, 1, 10, 0.3, 0.4, 1, 10, 0.4, 0.5, 1, 1� , �

0.5, 1, 1, 1, 10.5, 1, 1, 1, 10.5, 1, 1, 1, 1� T 

��	��, �� ! S 
�0, 1,1, 1, 10, 1,1, 1, 1� , �0.5, 1, 1, 1, 10.5, 1, 1, 1, 1� T 
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A recent survey (2007) by Nielsen Media Research showed that more 

than 50% of households are watching TV programs during the television 

watching prime time (e.g. 8pm-11pm in U.S.). Typically, the peak traffic time is 

during the prime time and the network bandwidth is probably enough to support 

full protection for all traffic during off-peak times. We only examine the situation 

that one surviving link cannot accommodate all traffic when a failure happens 

during the peak traffic time. Thus we assume that the range of ����� is from 60% 

to 90%. Only two cases were considered in [3]: in the first case, higher revenue 

customers watch the VOD programs with probability 100% and lower revenue 

customers watch with probability 50% (one day out of two); in the second case, 

higher revenue customers watch the VOD programs with probability 100% and 

lower revenue customers watch with probability 14.29% (one day per week). We 

assume that the probability for all customers watching VOD programs is the 

same during peak traffic time. Hence we assigned each customer the same 

probability ����� in our experiments and the probability is always a value in the 

range from 60% to 90%.  

In [3], the ratio of the numbers of two different classes of customers is in 

the range 5:1 to 2:1. Similar to the left end of their range: 5:1, our triple-ratios 

start at 5:3:1. To decide on the right end of the range of our triple-ratios, we 

referred to the findings of some recent surveys, which revealed that nowadays 

almost all replacement TV sets purchased are HDTV sets. We expect that in the 

near future, most customers will be watching HDTV programs and thus we set 

the right end of the range to be 1:3:9 for our experiments. Comparing the pricing 
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of current VOD services, which ranges from $4 to $13 per VOD order or from $20 

to $100 subscription fees per month, we set the range for the values of revenue-

ratios to be from 2:3:4 to 2:6:10. 

In our experiments, we enlarged the value ranges for the predictor 

variable  ��	��, ��, using a probability matrix to accommodate the possibility that 

customers may show more tolerance of network interruptions than the low 

tolerance (i.e., all customers will unsubscribe after experiencing the second 

interruption) assumed in [3]. Our values of ��	��, ��  also ensure that the 

probabilities for different (c)-customers reflect our assumption that ��	��, �� 
indicates customers’ expectations of the reliability of network services. The 

higher revenue customers may have higher expectations, and thus higher 

probabilities to unsubscribe from the service if they encounter service 

interruptions. In addition, we also studied the impact of two intermediate values,  

��	��, �� ! ��,�.�,�,�,��,�.�,�,�,��,�.0,�,�,��  and   ��	��, �� ! ��.U,�.�,�,�,��.l,�.�,�,�,��.�,�.0,�,�,�� , on the performance of our 

models in the full factorial experimental design. 

4.2 2k Experimental Design 

In order to identify the impact of the five predictor variables, a 2k 

experimental design was adopted to analyze the effects of the predictor variables 

and their interactions on revenue loss rate, using two levels of predictor variables: 

low and high. The 2k experimental design reduces the total number of 

experiments needed for further analysis and ranks the importance of each 
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predictor variable in an efficient way, based on the proportion of the total 

variation attributed to each variable. 

Following the 2k experimental design procedures[43], with H ! 5  (the 

number of predictor variables), we first set the two levels of each predictor 

variable, with the  low level indicated by the sign, -1, and the high level indicated 

by the sign, 1, as shown in Table 3. 

Table 3: Levels and signs for the 5 predictor variables. 

 

After we assigned levels and signs to the predictor variables, we 

conducted the experiments and used the experimental results from each 

approach to form a 32-equation set with 25 variables. The variables in the 32-

equation set include all possible combinations of the 5 predictor variables so that 

all interactions between these predictor variables are examined. We labelled the 

Impact Factors Low Level  

(sign: -1) 

High Level  

(sign: 1) Number Notation 

A � 1 5 

B ����� {60%,60%,60%} {90%,90%,90%} 

C �Q�YZ � ��Q� 5:3:1 1:3:9 

D  Z_Z	�Z ��Q� 2:3:4 2:6:10 

E ��	��, �� �0, 0.2, 0.3, 1, 10, 0.3, 0.4, 1, 10, 0.4, 0.5, 1, 1� �0.5, 1, 1, 1, 10.5, 1, 1, 1, 10.5, 1, 1, 1, 1� 
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5 predictor variables from A to E as shown in Table 3. Thus, the impact variable 

AB stands for the interaction between A and B, the impact variable ABE stands 

for the interaction among A, B and E, and so on. We used the software Lingo to 

solve the 32-equation set and the results, the proportion of the total variation 

explained by each impact variable, are shown in Table 4. The order of the impact 

of all the impact variables is determined by the proportion of the total variation 

accounted for by each variable. As we can see from Table 4, the effects of all the 

second order and higher interactions are negligible because the total variation 

explained by these interactions is less than 1%, much smaller than that 

accounted for by the first order and primary impact variables, which are 15.92% 

and 83.75% respectively. The primary order variables A (the number of failures) 

and E (the probability of a customer leaving), which explained more than 93% of 

the total variation at the primary order in all six approaches, are identified as two 

major predictor variables. For example, for Optimal Approach, the proportion of 

explained variation by A and E is 96.12% of the total primary variation 83.75%; 

for Bandwidth Approach, it is 93.31%. In comparison, the effects of variable B 

(the probability of a customer watching VOD), C (the triple-ratio) and D (the 

revenue-ratio) are relatively minor and thus were not considered in our full 

factorial experimental design. It is worth noting that the impact of the five 

predictor variables on revenue loss rate varies by approach. For example, 

variable E is more influential than variable A in Optimal, Failure, and Combination 

approaches, but is less important than variable A in other approaches; the 

revenue-ratio has a minor effect in Revenue Approach, but no impact at all in 



 

 54

Failure and Random approaches. At the first order, the most significant 

interaction is AE, which accounted for 88% (14% out of 15.92%), 83%, 44%, 

49%, 90%, and 85% of the total variation explained by all the 10 interaction first 

order variables in the six approaches respectively. The second most significant 

interaction is AB, which, at most, accounted for 22% of the total variation in 

Revenue Approach. Among all the approaches, the biggest variation explained 

by AE is 14%, whereas for AB, it is only 1.33%. Therefore, we only considered A 

and E as important predictor variables in our full factorial experimental design.  

Factors 
Optimal 

Approach 

Random 

Approach 

Revenue 

Approach 

Bandwidth 

Approach 

Failure 

Approach 

Comb. 

Approach 
Primary 

Effects 
83.75% 91.77% 93.09% 92.89% 86.51% 85.05% 

A 22.07% 45.10% 55.41% 56.86% 25.72% 25.75% 

B 2.45% 3.35% 3.80% 3.59% 3.78% 3.67% 

C 0.35% 0.05% 0.35% 0.18% 0.01% 0.40% 

D 0.45% 0.00% 2.07% 1.35% 0.00% 0.33% 

E 58.43% 43.27% 31.46% 30.91% 57.00% 54.90% 

First 

order 
15.92% 8.07% 6.01% 6.37% 13.17% 14.40% 

AB 0.62% 1.06% 1.33% 1.29% 1.26% 1.28% 

AC 0.06% 0.05% 0.18% 0.01% 0.01% 0.08% 

AD 0.09% 0.00% 0.84% 0.60% 0.00% 0.04% 

AE 14.00% 6.68% 2.65% 3.10% 11.79% 12.24% 

BC 0.03% 0.00% 0.02% 0.03% 0.01% 0.05% 

BD 0.01% 0.00% 0.04% 0.03% 0.00% 0.00% 

BE 0.37% 0.23% 0.02% 0.08% 0.09% 0.12% 

CD 0.14% 0.00% 0.59% 0.60% 0.00% 0.09% 

CE 0.17% 0.05% 0.07% 0.39% 0.01% 0.07% 

DE 0.43% 0.00% 0.27% 0.24% 0.00% 0.43% 
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Table 4: Importance of factors in each approach  
in terms of proportion of the total variation. 

 

To summarize, results from our 2k factorial experimental design suggest 

that among all the five predictor variables, the number of failures and the 

probability of customers unsubscribing from the VOD service are the most 

significant ones in terms of their impact on revenue loss rate. The changes in the 

Second 

order 
0.29% 0.15% 0.84% 0.72% 0.30% 0.47% 

ABC 0.01% 0.00% 0.01% 0.01% 0.01% 0.02% 

ABD 0.00% 0.00% 0.01% 0.01% 0.00% 0.00% 

ABE 0.03% 0.10% 0.44% 0.23% 0.27% 0.20% 

ACD 0.02% 0.00% 0.21% 0.27% 0.00% 0.00% 

ACE 0.00% 0.05% 0.01% 0.10% 0.01% 0.01% 

ADE 0.08% 0.00% 0.00% 0.01% 0.00% 0.08% 

BCD 0.00% 0.00% 0.03% 0.01% 0.00% 0.00% 

BCE 0.00% 0.00% 0.02% 0.00% 0.01% 0.02% 

BDE 0.01% 0.00% 0.01% 0.00% 0.00% 0.01% 

CDE 0.14% 0.00% 0.10% 0.08% 0.00% 0.13% 

Third 

order 
0.03% 0.00% 0.06% 0.00% 0.01% 0.06% 

ABCD 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 

ABCE 0.01% 0.00% 0.02% 0.00% 0.01% 0.05% 

ACDE 0.02% 0.00% 0.00% 0.00% 0.00% 0.01% 

ABDE 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 

BCDE 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Forth 

order 
0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

ABCDE 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Total 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 



 

 56

other three predictor variables, triple-ratio, revenue-ratio and the probability of a 

customer watching a VOD program, have little or no impact on revenue loss rate. 

One of the purposes of conducting 2k factorial experiments is to improve the 

efficiency of our full factorial experiments by minimizing the number of predictor 

variables and thus the number of experiments. Based on the results from the 2k 

factorial experiments, we examined the effects of the two major predictor 

variables only in the full factorial experiments: the number of failures and the 

probability of customers unsubscribing from the VOD service. 

4.3 Two-factor Full Factorial Design 

In our two-factor full factorial design, we extended the levels of the two 

major variables. For variable �, we examined five levels from 1 to 5, as opposed 

to 1 and 5 in the 2k factorial experimental designs. For variable ��	��, ��, we 

added two more levels: ��	2��, �� and  ��	3��, ��,  instead of just 

��	1��, �� and    ��	4��, ��  in the 2k factorial experimental designs. The 

increasing order of varying probabilities ��	��, �� is ��	1 ! ��,�.U,�.l,�,��,�.l,�.�,�,��,�.�,�.�,�,�� ,   ��	2 !
��,�.�,�,�,��,�.�,�,�,��,�.0,�,�,�� , ��	3 ! ��.U,�.�,�,�,��.l,�.�,�,�,��.�,�.0,�,�,��,  and   ��	4 ! ��.�,�,�,�,��.�,�,�,�,��.�,�,�,�,��. To examine the 

performance of all six approaches, the full factorial design requires 5 & 4 & 6 !
120 experiments.  

We also fixed the values of the three minor predictor variables as 

follow ����� ! �90%, 90%, 90%�, �Q�YZ � ��Q� ! 5: 3: 1,  and  Z_Z	�Z ��Q� !
2: 3: 4. Table 5 shows the performance results measured by the revenue loss rate 
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of all six approaches from the two-factor full factorial design. The impact of 

��	��, �� on revenue loss rate (%) at each level of F is depicted in Figure 4-1 to 

Figure 4-5.  

   
¢ = 1 ¢ = 2 ¢ = 3 ¢ = 4 ¢ = 5 

Optimal 

Approach 

��	1 0.00 0.00 0.00 0.56 3.16 ��	2 0.00 0.00 0.00 0.74 3.83 ��	3 5.61 10.11 13.83 16.88 19.25 ��	4 7.39 13.92 18.57 21.57 23.65 

Random 

Approach 

��	1 0.00 1.48 4.07 7.41 11.18 ��	2 0.00 3.10 8.26 14.16 19.78 ��	3 6.16 12.30 17.93 22.76 26.74 ��	4 11.25 20.27 26.86 31.49 34.75 

Revenue 

Approach 

��	1 0.00 4.20 9.62 19.24 27.43 ��	2 0.00 10.51 22.48 30.89 35.46 ��	3 6.85 17.83 29.04 36.78 41.03 ��	4 16.31 32.03 39.84 44.24 47.26 

Bandwidth 

Approach 

��	1 0.00 3.32 6.68 10.24 13.04 ��	2 0.00 5.81 10.49 13.66 16.01 ��	3 5.61 11.43 15.86 18.86 21.12 ��	4 7.39 15.05 19.54 22.34 24.55 

Failure 

Approach 

��	1 0.00 0.00 0.00 0.99 6.16 ��	2 0.00 0.00 0.00 2.07 12.91 ��	3 6.16 11.22 15.38 18.84 21.73 ��	4 11.25 19.13 24.76 28.90 31.99 

Combination 

Approach 

��	1 0.00 0.00 0.00 0.89 5.57 ��	2 0.00 0.00 0.00 1.55 9.84 ��	3 5.61 10.11 13.83 17.01 19.91 ��	4 7.39 13.92 18.74 22.32 25.01 

Table 5: Revenue loss rate (%) of all the approaches in the full factorial design. 

 

  
  



 

 58

 

Figure 4-1: Revenue loss rate (%) when F = 1. 

 
 

 

Figure 4-2: Revenue loss rate (%) when F = 2. 
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Figure 4-3: Revenue loss rate (%) when F = 3. 

 
 

 

Figure 4-4: Revenue loss rate (%) when F = 4. 
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Figure 4-5: Revenue loss rate (%) when F = 5. 

 

For � ! 1, Figure 4-1 shows that in all approaches, the impact of ��	��, �� 
on revenue loss rate follows similar trends: revenue loss rate is zero from 

��	1 to  ��	2 but increases afterwards with increasing ��	��, ��. The values of 

��	1  and  ��	2  indicate that all customers can tolerate the first interruption and 

will not unsubscribe from the service thereafter. To compare the performance of 

all the approaches, we should not rely on Figure 4-1 but focus on the results from 

the other four figures because there will be no revenue loss from 

��	1��, �� to  ��	2��, �� at the time when the first failure occurs, regardless of the 

approach used. With the number of failures �  and the probability ��	��, �� 
increasing, the revenue loss rates increase in all approaches, except in the 

following cases: revenue loss rate is zero from ��	1��, ��  to  ��	2��, ��, when 

� ! 2 or � ! 3, in Optimal, Failure and Combination approaches .  
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After introducing bandwidth statistics, we found that Random Approach is 

not the worst approach in contrast to the findings in [3]. Instead, Revenue 

Approach is always the one with the highest revenue loss rate, which can be 

explained using the concept of revenue loss per bandwidth. As we mentioned in 

Section 3.4.5, the revenue loss per bandwidth is calculated using  
6�V�&q89�V,i�7�V� . 

Based on our more realistic assumptions about the values of ���, ��	��, �� and 

���� , the higher revenue customers always have lower revenue loss per 

bandwidth than the lower revenue customers. Revenue Approach chooses the 

VOD connections to be saved by always giving priority to higher revenue 

customers, which means it actually loses more revenue in total by dropping lower 

revenue customers who have higher revenue loss per bandwidth. 

When F > 1, the performance trends of Random Approach and Bandwidth 

Approach are similar to that of Revenue Approach, which is approximately linear.  

If we simply consider their trends as linear, the slope of Bandwidth Approach is 

less steep than Random Approach and the revenue loss rate of Bandwidth 

Approach is slightly higher than that of Random Approach at ��	1. However, 

when � ! 5, the revenue loss rate of Bandwidth Approach is much less than that 

of Random Approach and is actually the least among all the off-line approaches 

at ��	4. This finding is consistent with the result from the 2k factorial design that 

in Bandwidth Approach,  ��	��, �� has less impact than in Random Approach.  

Failure and Combination approaches show similar performance trends to 

Optimal Approach. We also found that the revenue loss rate in Failure and 

Combination approaches is zero whenever the revenue loss rate is zero in 
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Optimal Approach. All three approaches have much lower revenue loss rate than 

the other approaches when  � r  5 and the probability ��	��, �� is low, such as 

��	��, �� !  ��	1  or  ��	2. This finding is understandable because both Failure 

and Combination approaches always first drop the connections of those 

customers who are less likely to unsubscribe from the service if their connections 

are dropped. Apparently, this is how Failure Approach determines the 

connections to be dropped. Combination Approach calculates priority values 

using ��	��, ��, and assigns lower priority to customers who have experienced 

fewer interruptions, especially those customers whose probability of 

unsubscribing is zero. We can also see in the five figures that there are sudden 

increases in the revenue loss rate in all three approaches when ��	��, �� 
changes from  ��	2   to  ��	3  and their performances get close to the 

performances of the other approaches. This is caused by the fact that none of 

the three approaches can benefit from customers with low probabilities to 

unsubscribe at  ��	3 and  ��	4, where there are few customers who can tolerate 

even the first interruption.  

4.4 Result Comparison with Previous Research 

We compared the performance results of our approaches with the results 

in [3] and found that our approaches achieve better performance in terms of 

minimizing the revenue loss after introducing bandwidth statistics and using more 

realistic values for predictor variables. 
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The approaches we compared are the off-line Optimal approach and the 

two best on-line approaches in [3]: Failure and Combination approaches. Gerstel 

et al. [3] consider two groups of customers only and assumed that the two groups 

use the same amount of bandwidth (but did not specify the bandwidth explicitly). 

To make it comparable, we examined two classes of customers, high revenue 

customers ((0)-customers) and low revenue customers ((1)-customers), that on 

average occupy bandwidth 3.75Mbps and 19Mbps respectively in our 

approaches, and the same bandwidth was assigned for all the approaches in [3]. 

We re-simulate their approaches using the bandwidth of 10Mbps. The actual 

amount of bandwidth usage does not affect performance results because only 

the bandwidth usage ratio was used in all approaches. Values of the other 

predictor variables used for comparison were determined as follows: the total 

number of failures F is from 1 to 5; the ratio of the number of (c)-customers is 

5:1; the revenue-ratio is 1:2; ����� = {50%, 100%} for two classes of customers; 

and  ��	��, ��  ! £�.�,�,�,�,��.�,�,�,�,�¤. In order to make it comparable to the approaches in 

[3], the values we chose are within the value ranges in [3]. 

The comparison results are shown in Figure 4-6, Figure 4-7, and Figure 

4-8. From these three figures, we can conclude that the performance can be 

improved significantly by introducing the bandwidth statistics for Optimal and 

Combination approaches (e.g. 36.21% for Optimal Approach when  � ! 5�. For 

Failure Approach, the performance of our model is almost the same as that in [3] 

because both models choose the same proportion of ��, �� �customers to be 

dropped; bandwidth statistics are not used to calculate the proportion of 
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��, �� �customers to be dropped --- the calculation is based only on failure 

statistics. 

 

 

Figure 4-6: Revenue loss rate (%) comparison of our study (dark-color)  
with [3] (light-color) for Optimal Approach. 
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Figure 4-7: Revenue loss rate (%) comparison of our study (dark-color)  
with [3] (light-color) for Combination Approach. 

 

 

Figure 4-8: Revenue loss rate (%) comparison of our study (dark-color)  
with [3] (light-color) for Failure Approach. 
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4.5 Observations 

We evaluated the impact of the five predictor variables using the 2k 

factorial experimental design and compared the performance of all six 

approaches using the full factorial experimental design. In this section, we 

summarize our observations. 

I. Results from our study suggest that the two predictor variables ---  

the number of failures F and the probability of customers 

unsubscribing from the service  ��	��, �� --- and their interactions 

have significant effects on the performance of all the approaches. 

II. Optimal Approach, as the only off-line approach, outperforms all 

the on-line approaches in all cases.  

III. Combination Approach achieves the best overall performance 

among the on-line approaches by using locally optimal solutions.  

IV. In most cases, Failure Approach performs as well as Combination 

Approach because both approaches always first drop the 

connections of those customers who are less likely to unsubscribe 

from the service if their connections are dropped.  

V. Optimal, Combination and Failure approaches can keep revenue 

loss at zero in the situations when all customers can tolerate at 

least one interruption. Whenever Optimal Approach can achieve 

zero revenue loss, so can Combination and Failure approaches. 
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VI. Our results are quite different from the findings in [3]. In our study, 

Random Approach is not the worst approach. Instead, Revenue 

Approach performs the worst because it fails to optimize the 

selection of connections to be dropped. For example, between 

(0,3,5)-customers and (2,0,5)-customers at time �� , Revenue 

Approach chooses to drop the connections of (0,3,5)-customers 

who have lower revenue contributions but higher probability to 

unsubscribe, when in fact dropping the connections of (2,0,5)-

customers leads to no revenue loss.  

VII. After adding bandwidth statistics, Bandwidth Approach proposed in 

this project can achieve the best performance of all on-line 

approaches.  

VIII. We extended the five approaches used in [3] by introducing 

bandwidth statistics. Compared with the approaches in [3], our 

approaches achieve better performance by further reducing the 

revenue loss rate by as much as 36%. 

4.6 Specific Case Studies  

4.6.1 Case 1: Impact of factor ¥ in Combination Approach 

In Section 3.4.5, we discussed that the different groups of ��, ��-customers 

may be assigned the same priorities in Combination Approach. To prevent this 

kind of situation, the tuneable factor α is used to take into account the priority of 

��, � % 1�-customers to slightly adjust the priority of ��, ��-customers; ��, � % 1�-
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customers are the ��, ��-customers whose connections are dropped by the f+1st 

interruption but they keep subscribing to the service. The side effects of α are: 

the calculation of priority values of ��, �� -customers are based on the 

consideration of the impact of future failures even when these future failures do 

not actually occur; α can radically change the priority ranking of ��, ��-customers 

in situations when ���-customers are not assigned the same priorities without the 

adjustment of α. These side effects of α may influence Combination Approach in 

such a way that it cannot achieve the locally optimal solution at each time �� 
using the order of priorities ranked by revenue loss per bandwidth. In this section, 

we analyze the effects of α on the performance of Combination Approach to 

provide guidelines on how to properly determine the value of α so that the side 

effects of α can be avoided. With increasing α, the impact of the priorities of 

��, � % 1� �customers on the priorities of ��, �� �customers is also increasing in 

Combination Approach and leads to a reordering of the priority ranks of all 

customers, which may prevent Combination Approach from achieving the least 

revenue loss per bandwidth at each time�� . We simulated this reordering of 

priority ranks by changing the value of α in two experiments, Experiment 1 and 

Experiment 2. The impact of α on the performance of Combination Approach is 

shown in Figure 4-9. The fixed values that we used for the other variables in the 

two experiments are shown in Table 6.  
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As shown in Figure 4-9, there are fluctuations in revenue loss rate as α varies in 

both Experiment 1 and Experiment 2. Each turning point in the figure indicates 

priority rank being reordered by changed α. When α is very low, for example, 

when 1 r 0.3 in Experiment 2 and 1 r 0.5 in Experiment 1, the priority values of 

��, ��-customers are mainly determined by revenue loss per bandwidth. When 

1 d 0.3 in Experiment 2 and 1 d 0.5 in Experiment 1, the priority values and thus 

the order of priority of ��, ��-customers have begun to be influenced by α, and do 

not reflect the order of priority determined solely by revenue loss per bandwidth.  

It is hard to expect a globally optimal solution from Combination Approach when 

its local solution is not optimal. However, as shown in Figure 4-9, we did see 

some improved global performance in Experiment 2. To figure out the reason for 

the improved performance, we conducted Experiment 3 and Experiment 4 to 

explain how α affects the revenue loss in Experiment 2 by reordering the priority 

rank. Different values of α were examined in the two experiments: α = 0.01 in 

Experiment 3 in order to show the priority rank without much influence of α, and α 

= 0.5 in Experiment 4 in order to show the priority rank influenced by α. Values of 

the other variables were the same as in Experiment 2. We show the priority ranks 

of the different groups of ��, ��-customers from these two experiments in Table 7 

and the dropped traffic (Mb) and the revenue loss ($) at the time each failure 

happened in Table 8. 

 As we can see from Table 8, at the time when the first failure happens, 

the same amount of traffic (1667Mb) is dropped in the two experiments, and the 

same priority rank is used to choose (c,0)-customers to be dropped, which are 
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Priority 

Rank 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

α 
=0.01  

(2,0) (1,0) (2,4) (2,3) (2,2) (2,1) (0,0) (1,4) (1,3) (1,2) (1,1) (0,4) (0,1) (0,2) (0,3) 

α = 
0.5  

(2,0) (2,4) (2,3) (2,2) (2,1) (1,0) (1,4) (1,3) (1,2) (1,1) (0,0) (0,4) (0,1) (0,2) (0,3) 

Table 7: Priority ranks for (c,f)-customers 
in Experiment 3 (α =0.01)  and Experiment 4 (α =0.05). 
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revenue 
loss 

rate in 
total 

α 

=0.01 

 

dropped traffic 

(Mb) 
1667 2583 3088 3365 3517 

25.01% 

revenue loss ($) 175 287 439 489 513 

α =0.5 

 

dropped traffic 

(Mb) 
1667 2583 2948 2616 2897 

23.91% 

revenue loss ($) 175 305 504 401 435 

Table 8: Dropped traffic and revenue loss comparison 
 between Experiment 3 (α =0.01) and Experiment 4 (α =0.05). 

 

 

(2,0), (1,0) and (0,0)-customers from low to high. At the time when the second 

failure happens, the traffic (2583Mb) is dropped in Experiment 3 in order of rank 

from the (2,0), (1,0), (2,1), (0,0), (1,1), (0,1)-customers, whereas the same 

amount of traffic is dropped in order of rank from the (2,0), (2,1), (1,0), (1,1), 

(0,0), (0,1) -customers. At this time, compared with Experiment 4 ($305), 

Experiment 3 has better performance ($287) in terms of revenue loss. However, 

according to the probability of a customer unsubscribing from the VOD service, 
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the customers who occupy more traffic load than those in Experiment 3 

unsubscribe from service in Experiment 4. Therefore, at the time when the 3rd 

failure happens, less traffic (2948Mb) needs to be dropped in Experiment 4 than 

in Experiment 3 (3088Mb). The same reason explains why less traffic (2616Mb, 

and 2897Mb) needs to be dropped in Experiment 4, which, in turn, explains why 

there is less revenue loss in Experiment 4 ($401 and $435) than in Experiment 3 

($489 and $513), at the times when the 4th and 5th failures happen. This can also 

help us to understand why at the end time �� , the total revenue loss rate is 

smaller in Experiment 4 (23.91%) than in Experiment 3 (25.01%).  

It is worth pointing out that when α = 1, equation II in Section 3.4.5 can be 

simplified to ���, �� ! 6�V�7�V� & ��	��, �� % 6�V�7�V� & e1 � ��	��, ��f ! 6�V�7�V� . Therefore, 

the priority values are constant for ��� -customers regardless of the failure 

statistics  � . In this case, Combination Approach selects connections to be 

dropped randomly. 

Based on the above observations, we recommend that the values of α 

should be small enough to avoid the unwanted side effects when Combination 

Approach is used. If we do not pay attention to the control of the value of α, 

Combination Approach will work like an off-line approach by considering the 

impact of the future failures that may not actually occur. Therefore, we use α= 

0.01 in our experiments.  
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4.6.2 Case 2: A case study to compare Optimal with Combination 

Based on results from the full factorial design, we have concluded that 

Optimal Approach achieves the best global performance among all the 

approaches whereas the performance of Combination is worse than Optimal by 

using locally optimal solutions. To explain why there is this performance 

difference between Optimal and Combination, we conducted Experiment 5 to 

show the dropped traffic (Mb) and the revenue loss ($) of the two approaches at 

each time when a failure happens. The results are shown in Table 9.  

The values of variables used in Experiment 5 are: F = 5, (c)-customer 

triple-ratio = 5:3:1, revenue-ratio = 2:3:4, ����� !  B90%, 90%, 90%C, and 

��	��, �� ! ��.�,�,�,�,��.�,�,�,�,��.�,�,�,�,��. 
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Revenue 

Loss Rate 

in Total 

Optimal 

dropped 

traffic 

(Mb) 

1667 2583 2750 2774 2930 

23.65% 

revenue 

loss ($) 
175 351 420 430 423 

Combination 

dropped 

traffic 

(Mb) 

1667 2583 3088 3365 3517 

25.01% 

revenue 

loss ($) 
175 287 439 489 513 

Table 9: Dropped traffic and revenue loss comparison when each failure happens. 

 

When the 1st failure happens, both approaches drop the same customers 

with the same amount of traffic (1667Mb), thus they both have the same revenue 
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loss ($175). When the 2nd failure happens, both approaches drop the same 

amount of traffic (2583Mb). Based on a locally optimal solution, the revenue loss 

for Combination Approach is $287, whereas Optimal, based on a globally optimal 

solution, drops different ��, �� � customers and loses more revenue ($351). 

Although Optimal Approach loses more revenue at the time when the 2nd failure 

happens, it reduces the total amount of the traffic to be dropped for the 3rd, 4th, 

and 5th failures by dropping different ��, �� � customers. Therefore, the total 

revenue loss rate for Optimal Approach (23.65%) is less than that for 

Combination Approach (25.01%) at the end time ��. 

4.6.3 Case 3: A case study on the predictor variable µ¶�·� 
Failure, Combination and Optimal approaches, as we found in the full 

factorial design, achieve better performance by dropping customers who can 

tolerate the first several interruptions or have not experienced any interruptions: 

there is no revenue loss when choosing to drop the connections of these 

customers. The value of ����� is very informative in this regard: lower ����� 
suggests that there are more customers who are not watching the VOD 

programs and thus have experienced none or fewer interruptions; when ����� is 

low enough, there are enough such customers to enable an approach (such as 

Failure, Combination and Optimal) to achieve zero revenue loss by dropping the 

connections of these customers every time that a failure occurs. Therefore, 

although only a minor effect of the predictor variable ����� on the performance of 

all approaches in the 2k factorial design was found, we closely examined the 

contribution of �����  to the zero revenue loss in Failure, Combination and 
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Optimal approaches in Experiment 5. The values of variables used in Experiment 

5 are as follows: F = {1,2,3,4,5}; (c)-customer triple-ratio = 5:3:1; revenue-ratio = 

2:3:4; pun�c, f� ! ��,�.�,�,�,��,�.�,�,�,��,�.0,�,�,��; pw�c� = {60%, 70%, 80%, 90%}. The revenue loss 

rates for the three approaches are shown in Figure 4-10, Figure 4-11, and Figure 

4-12. 

 

Figure 4-10: Performance of Optimal Approach with varying µ¶�·�. 
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Figure 4-11: Performance of Failure Approach with varying µ¶�·�. 
 
 
 

 

Figure 4-12: Performance of Combination Approach with varying µ¶�·�. 
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achieve zero revenue loss after the first several network failures, and there are 

sudden increases in revenue loss rate with increasing number of failures. More 

importantly, we can see the different influences of different values of ����� from 

high to low. When ����� is 90%, all the approaches can keep the revenue loss to 

zero for up to three failures. When ����� is 80% and 70%, all the approaches 

can keep the revenue loss to zero for up to four failures. When ����� is 60%, all 

the approaches can keep the revenue loss to zero for up to five failures. It is 

interesting to note that when ����� is 60%, the revenue loss rate can be kept at 

zero for up to 5 failures even though ��	��, ��  suggests that there will be 

customers unsubscribing from the VOD service and thus revenue loss, if the 

customers experience the second interruption. 

4.6.4 Case 4: A case study for the time when failures happen 

As mentioned in Section 3.2.2, we assume that there is a constant number 

of new customers joining in the VOD service in each interval between two 

adjacent failures, which implies that the failures are distributed evenly within the 

real time period. Acknowledging that this assumption does not closely reflect 

what happens in reality, its influence on the performance of all the approaches is 

expected to be similar and thus does not affect our comparison of the 

approaches in any significant way. To validate this expectation, we conducted 

Experiment 6 and compared the performance of all six approaches in three 

simulated situations with different failure distributions, assuming that all the new 

customers are evenly distributed across real time intervals (each real time 

interval could be a week, a month, etc.).  
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The three different failure distributions are:  

In Simulation 1, F-1 failures occur at time �� and the last failure happens 

at time ��. Therefore, before the F-1st failure no VOD connections are dropped 

because no new customers join the network at time ��. The amount of traffic, 

which is equal to 
X&����, caused by new customers joining the network between the 

F-1st failure and the Fth failure is dropped at time �� when the last failure occurs;  

In Simulation 2, the failures are evenly distributed in the operation period;  

In Simulation 3, all failures occur at time ��.  

It is important to note that in all three simulations, time ��  refers to the 

same time in real time to facilitate comparison: the amount of traffic caused by 

new customers joining the network before time ��  is the same in all three 

different scenarios. So in Case 4, two extreme simulations are examined. In 

Simulation 1, most new customers join the network after the F-1st failure but 

before the Fth failure; in Simulation 3, most new customers join before the first 

failure.  

The values of variables used in Experiment 6 are: F = 5, (c)-customer 

triple-ratio = 5:3:1, revenue-ratio = 2:3:4,  ����� !  B90%, 90%, 90%C, 
and ��	��, �� ! ��.�,�,�,�,��.�,�,�,�,��.�,�,�,�,��.  

The results from the three simulations are shown in Figure 4-13. 
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Figure 4-13: Comparison of the influence of different failure distributions. 

 

As we can see in Figure 4-13, the performances of the approaches are 

different depending on the different failure distributions, but the relative 

performances of the approaches remain the same as discussed in our previous 

experimental analysis and are not affected by different failure distributions. The 

performance is better in Simulation 1 than in Simulation 2 and 3 because when 

most failures are concentrated in the early time section of the experimental 

period, VOD connections of fewer customers need to be dropped when a failure 

occurs during that early time period; due to the fact that most new customers 

joined after the concentrated failure period in Simulation 1, there are more 

customers who have not experienced any interruptions when it comes to the few 
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revenue loss.  
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4.7 Time Cost Analysis 

The connections that have been selected to be saved must be reassigned 

a wavelength in the surviving link within a very short period so that the customers 

will not think they are interrupted. For example, a customer can tolerate a very 

short interruption that lasts for less than 1 second and will not perceive it as an 

“interruption”. Therefore, time cost must be examined and controlled quickly. 

Time cost consists of two major parts, which can be controlled within an 

acceptable range on the order of milliseconds. 

a.) The time complexity of selecting ��, �� � customers to be dropped 

is  ��� & ��. To drop connections one by one, we must scan all ��, ��-
customers (e.g. by looking at customer IDs), which leads to linear time 

cost O(N) where N is total number of customers. Normally, the number 

of customers may be up to tens of thousands in a 10Gb bandwidth 

channel. Then based on the calculation speeds of currently popular 

computers, the linear time cost is on the order of milliseconds.  

b.) The time cost of reassigning the connections that have been selected 

to be saved on a wavelength in the surviving link can be minimized in 

20 milliseconds [44], which is considered acceptable. 
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5. CONCLUSIONS AND FUTURE WORK  

In this project, we reviewed two major problems in cost-effective DWDM 

networks: routing and wavelength assignment problem and traffic grooming 

problem. Our objective is to minimize the cost either by minimizing the number of 

wavelengths or SADMs to satisfy network connection requests, or by maximizing 

the network throughput given certain wavelengths.  

To minimize the revenue loss by selectively saving VOD connections 

when a failure occurs in a DWDM network, we developed revenue focused semi-

protection approaches based on more realistic assumptions about DWDM ring 

networks than those in [3]. Three statistics are used in our approaches: revenue 

statistics, failure statistics, and bandwidth statistics. Our approaches can be 

easily modified to adapt to real applications with real statistics. Our approaches 

can also be applied to other network services that continuously occupy large 

amounts of bandwidth, such as VOIP telephony, video conference service, and 

web-based video services.  

We used 2k and full factorial experimental designs to examine the impact 

of predictor variables and the performance of our approaches. Results from 

these studies suggest that even in a network with relatively low reliability, it is 

possible to minimize the revenue loss or even reduce it to zero when failures 

happen in the network without full protection.  For example, in this study, we 

found that a network could allow up to five failures during peak traffic time without 
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any revenue loss. By introducing bandwidth statistics, our approaches perform 

better than those in [3]. Moreover, the new approach --- Bandwidth Approach --- 

proposed in this project can achieve the best performance among all of the on-

line approaches.  

In this project, we provide network operators with guidelines about how to 

minimize the cost and improve the efficiency of their DWDM networks through a 

review of current optimal solutions to RWA and traffic grooming problems. By 

determining the relative importance of the five predictor variables and the 

performance of the six semi-protection approaches, we also offer some insights 

into how to minimizing revenue loss in their VOD service.  

Future work can be done to explore semi-protection schemes for multicast 

traffic patterns in DWDM networks. Multicast traffic models enable multiple 

customers (or nodes) in a network to share common wavelengths with the same 

or different VOD content. Moreover, as shown in [45], VOD connections of 

customers who are ordering the same popular VOD program within a short time 

window can be “batched”  into one video stream to enable more customers to 

share the same wavelength in a DWDM network. How to selectively save VOD 

connections of customers in such a DWDM network with multicast traffic patterns 

when failures happen is a complicated and challenging research question. We 

expect that by properly rerouting and reassigning wavelengths, we can increase 

the level of protection of the network while at the same time minimizing revenue 

loss.  
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