
THE INTEGER CHEBYSHEV PROBLEM:

COMPUTATIONAL EXPLORATIONS

by

Alan Meichsner

M.Sc. Mathematics, Simon Fraser University, 2001

B.Sc. Mathematical Sciences, Okanagan University College, 1998

a thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

in the Department

of

Mathematics

c© Alan Meichsner 2009

SIMON FRASER UNIVERSITY

Spring 2009

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

Name:

Degree:

T i t le o f thes is :

Examining Commit tee: Dr. Tom Archibald

Ch:rir

Dr'. Peter Borrvein. Senior Supervisor

Dr. Petr Lisonek. Superr, ' isor

Dr. Stephen Choi. Supervisor

Dl. \rahicl Datrb:rghi:rn. Internal Exanrirrer

Dr. Chris Snlr'th. Extern:rl Exanrincr'.

University of Edinbulgh. Scotlancl

APPROVAL

Alan \Ierichsner

Doctor of Pli i losophy

fhe hiteger Chebyshev Problcm: cornputational explorations

Date Approved: M a r c h 3 0 , 2 O O 9

Last revision: Spring 09

Declaration of
Partial Copyright Licence
The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the “Institutional Repository” link of the SFU Library website
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing
the content, to translate the thesis/project or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in
part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Abstract

The integer Chebyshev problem deals with finding polynomials of degree at most n with

integer coefficients having minimal supremum norm on a domain D and then analyzing

the nth root behavior of the supremum norm of these polynomials as n tends to infinity.

The limiting value of the nth root of the supremum norms is called the integer Chebyshev

constant for D and the polynomials are called nth integer Chebyshev polynomials on D. The

problem has a long history on the intervals [0, 1] and [0, 1/4], and although the structure of

such polynomials is not well understood, it is known that certain critical polynomials must

be factors of relatively high multiplicity. Progress is made here by extending the method of

Wu to include all known critical polynomials on these intervals which results in an increase

in the best known lower bounds for the degree to which many of these critical polynomials

must divide an nth integer Chebyshev polynomial. For the unrestricted case on [0, 1], this

results in an increase for all known critical polynomials. On the interval [0, 1/4], it results

in an increase for all known nonlinear critical polynomials. Towards finding nth integer

Chebyshev polynomials, each stage of the method of Habsieger and Salvy is improved and

nth integer Chebyshev polynomials for the unit interval are given for all n less than or equal

to 145. As a final result in the single variable case, the upper bound on the integer Chebyshev

constant of the unit interval is decreased to 1/2.36482727. The move to the bivariate case

on the unit square is then made in two ways and the basic results, which include existence

of the limits, initial bounds on the integer Chebyshev constants, symmetry conditions, and

the method of computation are extended. For the computation of nth integer Chebyshev

polynomials on the unit square, a new application of the integer relation algorithm PSLQ

is used to take advantage of symmetry.

iii

In memory of my father, Paul Franz Meichsner.

iv

Contents

Approval ii

Abstract iii

Dedication iv

Contents v

List of Tables viii

List of Figures ix

1 The Integer Chebyshev Problem 1

1.1 Introduction . 1

1.2 The Integer Chebyshev Problem . 4

1.2.1 The Gelfond-Schnirelman approach to the Prime Number Theorem . . 5

1.2.2 The main tools of the single variable case 6

1.2.3 Bounds on Ω[a, b] . 7

1.2.4 Symmetry conditions and the intervals [−1, 1], [0, 1], and [0, 1/4] . . . 13

1.2.5 Critical polynomials and statements of structure 15

1.2.6 An extension of Wu’s method to all known critical polynomials on [0, 1] 20

1.2.7 An easy extension to the interval [0, 1/4] 29

1.3 The computation of Integer Chebyshev polynomials on the unit interval . . . 30

1.3.1 The methods of Habsieger, Salvy, and Wu 32

1.3.2 An improved method . 36

1.3.3 The results of the improved method 40

v

1.4 The search for candidate critical polynomials 41

1.4.1 The Schur-Siegel-Smyth trace problem 45

1.4.2 Fixed points of the function u(x) and the Gorshkov-Wirsing polynomials 47

1.4.3 An improved upper bound on Ω[0, 1] 49

2 Integer Relation Algorithms 51

2.1 The LLL algorithm . 56

2.1.1 Finding integer relations with LLL . 57

2.2 The PSLQ algorithm . 60

2.2.1 A bound on the relation found by PSLQ 64

2.2.2 Termination of the algorithm . 66

2.3 The HJLS algorithm . 72

2.3.1 The relation between HJLS and PSLQ 75

2.4 Practical implementations of the PSLQ algorithm 83

2.4.1 The basic algorithm . 83

2.4.2 Periodic reductions and the multi-pair algorithm 85

2.4.3 A multi-level implementation . 87

2.4.4 A selection of timings for the various algorithms 89

2.5 Simultaneous integer relations . 90

3 The Bivariate Case on the Unit Square 94

3.1 Existence of T[a, b]×[c, d] and M[a, b]×[c, d] 96

3.2 Initial bounds on T[0, 1]×[0, 1] and M[0, 1]×[0, 1] 97

3.3 Symmetry conditions on [0, 1]×[0, 1] . 99

3.4 Computing bivariate nth integer Chebyshev polynomials 100

3.4.1 The total degree case . 100

3.4.2 The maximum degree case . 105

A Integer Chebyshev Polynomials (Maple Code) 109

A.1 The single variable case on [0, 1] . 109

A.2 The total degree case on [0, 1]×[0, 1] . 123

A.3 The maximum degree case on [0, 1]×[0, 1] . 128

vi

B Integer Relation Algorithms (Maple Code) 133

B.1 The LLL algorithm . 133

B.2 The HJLS algorithm with full reductions . 134

B.3 The basic PSLQ algorithm . 136

B.4 The PSLQ algorithm with periodic full reductions 138

B.5 The PSLQ algorithm for simultaneous integer relations 139

B.6 A multi-level implementation of PSLQ . 142

Bibliography 156

vii

List of Tables

1.1 Integer Chebyshev polynomials for the interval [0, 1] (n = 0 to 76) 42

1.2 Integer Chebyshev polynomials for the interval [0, 1] (n = 77 to 154) 43

1.3 Integer Chebyshev polynomials for the interval [0, 1] (n = 155 to 230) 44

2.1 Selected timings for the various integer relation algorithms 90

3.1 Total degree bivariate integer Chebyshev polynomials for the region [0, 1]×[0, 1]104

viii

List of Figures

2.1 Pseudocode implementation of the LLL algorithm 58

2.2 Pseudocode implementation of the PSLQ algorithm 62

2.3 Pseudocode implementation of the HJLS algorithm 73

2.4 Pseudocode implementation of the HJLS algorithm with full reductions . . . 79

2.5 Pseudocode implementation of the basic PSLQ algorithm 84

2.6 Pseudocode implementation of the PSLQ algorithm with periodic full reductions 86

2.7 Pseudocode implementation of the PSLQ algorithm for simultaneous integer

relations . 92

ix

Chapter 1

The Integer Chebyshev Problem

1.1 Introduction

For any nonnegative integer n, the standard Chebyshev polynomials on [−1, 1] and their

transformations to other intervals give rise, upon normalization, to the class of monic poly-

nomials of degree n with minimal supremum norm.

Definition 1.1 For each integer n ≥ 0, let Tn(x) = cos(n arccos(x)) with the restriction

that x ∈ [−1, 1]. We call Tn(x) the nth Chebyshev polynomial.

Using the notation ‖p(x)‖
[a,b]

for the supremum norm of the polynomial p(x) on the

interval [a, b], it is easily seen that ‖Tn(x)‖
[−1,1]

equals 1, |Tn(x)| = 1 at n + 1 points in the

interval [−1, 1], and that for n ≥ 1, Tn(x) has exactly n simple zeros.

Lemma 1.1 For n ≥ 1, the nth Chebyshev polynomial Tn(x) takes the value 0 at the n

points

xk = cos
((

2k + 1
2n

)
π

)
, k = 0, 1, . . . , n− 1

and assumes its absolute extrema at the n + 1 points

x′k = cos
(

kπ

n

)
, k = 0, 1, . . . , n

with Tn(x′k) = (−1)k.

Proof: If Tn(x) = cos(n arccos(x)) = 0 then n arccos(x) = kπ + π/2 for some k ∈ Z and so

x = cos
((

2k + 1
2n

)
π

)
, k = 0, 1, . . . , n− 1

1

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 2

as (2k + 1)π/2n must lie in the interval [0, π].

For the second part, if T ′n(x) = n sin(n arccos(x))/
√

1− x2 = 0 then n arccos(x) = kπ or

x = cos (kπ/n) , k = 0, 1, . . . , n.

As Tn(x′k) = cos(n arccos(cos(kπ/n))) = cos(kπ) = (−1)k, we are done.

¤

To show that we can extend the definition of Tn(x) to all values of x, and that the

resulting functions are in fact polynomials, we make the substitution θ = arccos(x).

Tn(θ) = cos(nθ) for θ ∈ [0, π]

Tn+1(θ) = cos((n + 1)θ) = cos(nθ) cos(θ)− sin(nθ) sin(θ)

Tn−1(θ) = cos((n− 1)θ) = cos(nθ) cos(θ) + sin(nθ) sin(θ)

This gives

Tn+1(θ) = 2 cos(nθ) cos(θ)− Tn−1(θ) = 2 cos(θ)Tn(θ)− Tn−1(θ)

and so upon returning to the variable x, we get

Tn+1(x) = 2xTn(x)− Tn−1(x) for each integer n ≥ 1.

Now as T0(x) = cos(0 arccos(x)) = 1 and T1(x) = cos(1 arccos(x)) = x we have the following

iterative definition for the Chebyshev polynomials which allows us to extend the domain

from [−1, 1] to R.

Definition 1.2 The Chebyshev polynomials can be defined iteratively as follows.

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x)

From this second definition it is clear that Tn(x) is a polynomial of degree n with leading

coefficient 2n−1 when n ≥ 1. If we divide Tn(x) by its leading coefficient, then the resulting

polynomial can be shown to be the monic polynomial of degree n with minimal supremum

norm on the interval [−1, 1].

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 3

Theorem 1.1 Let T̃n(x) = 1

2
n−1 Tn(x) and let P̃n be the set of all monic polynomials of

degree n with coefficients in R. Then for n ≥ 1

1
2n−1 =

∥∥∥T̃n(x)
∥∥∥

[−1,1]

≤ ‖p̃(x)‖
[−1,1]

for any p̃(x) ∈ P̃n.

Proof: By way of contradiction, suppose p̃(x) ∈ P̃n and ‖p̃(x)‖
[−1,1]

< 1/2n−1. Let the

polynomial q(x) = T̃n(x)− p̃(x). As both T̃n(x) and p̃(x) are monic polynomials of degree

n, q(x) is a polynomial of degree at most n − 1. Let the (n + 1) points x′k be as in

Lemma 1.1 so that T̃n(x′k) = (−1)k/2n−1. Then as |p̃(x′k)| < 1/2n−1, q(x′k) 6= 0. In fact

q(x′k) < 0 when k is odd and q(x′k) > 0 when k is even. Now since q(x) is continuous, the

Intermediate Value Theorem ensures q(x) has a zero somewhere in the interval (x′k, x
′
k+1)

for each k = 0, 1, . . . , n − 1. As q(x) has n zeros and is of degree less than or equal to

n − 1 it follows that q(x) is the zero polynomial. This implies that p̃(x) = T̃n(x). As

‖p̃(x)‖
[−1,1]

<
∥∥∥T̃n(x)

∥∥∥
[−1,1]

we have a contradiction.

¤

With a little more work one can show that if p̃(x) ∈ P̃n and ‖p̃(x)‖
[−1,1]

=
∥∥∥T̃n(x)

∥∥∥
[−1,1]

then

p̃(x) = T̃n(x). In this case, if T̃n(x)− p̃(x) = 0 at one of the points x′k for 1 ≤ k ≤ n−1, then

we may lose a point of intersection, but we gain a point where q(x) has a double zero. This

enables us to still claim q(x) has n zeros when we count multiplicities and show q(x) = 0.

The above properties can be used to show that for an arbitrary interval [a, b]

Pn(x) = 2
(

b− a

4

)n

Tn

(
2x− a− b

b− a

)

is the monic polynomial of degree n with minimal sup norm. As Pn(x) =
(

b−a
2

)n 1
2n−1 Tn(u)

where u = (2x− a− b)/(b− a) and x ∈ [a, b] implies that u ∈ [−1, 1], we see that

‖Pn(x)‖
[a,b]

=
(

b− a

2

)n ∥∥∥T̃n(u)
∥∥∥

[−1,1]

=
(

b− a

2

)n 1
2n−1

= 2
(

b− a

4

)n

.

Any other monic polynomial r(x) of degree n can be written in the form
(

b− a

2

)n

(un + cn−1u
n−1 + · · ·+ c0) =

(
b− a

2

)n

r̃(u) where u =
2x− a− b

b− a
.

Now if ‖r(x)‖
[a,b]

< ‖Pn(x)‖
[a,b]

then this would imply that ‖r̃(u)‖
[−1,1]

<
∥∥∥T̃n(u)

∥∥∥
[−1,1]

which

cannot happen. We have arrived at the following result.

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 4

Theorem 1.2 Let P̃n be the set of all monic polynomials of degree n with coefficients in R.

Then

min
p(x)∈ ePn

‖p(x)‖
[a,b]

= 2
(

b− a

4

)n

.

1.2 The Integer Chebyshev Problem

The problem becomes much harder if we restrict ourselves to considering only polynomials

of degree n with integer coefficients. This gives rise to the Integer Chebyshev Problem, or

the problem of minimal Diophantic deviation from zero.

Definition 1.3 Let Zn[x] be the set of polynomials of degree at most n with integer coeffi-

cients. For n > 0, define Ωn[a, b] as

Ωn[a, b] =
(

min
p∈Zn[x]\{0}

‖p(x)‖
[a,b]

)1/n

and let

Ω[a, b] = lim
n→∞Ωn[a, b].

We call Ω[a, b] the integer transfinite diameter or integer Chebyshev constant for the interval

[a, b]. Any polynomial p(x) ∈ Zn[x] that satisfies (‖p(x)‖
[a,b]

)1/n = Ωn[a, b] is called an nth

integer Chebyshev polynomial on [a, b].

Since an nth integer Chebyshev polynomial on [0, 1] must be of degree n for n ≥ 2 and

an nth integer Chebyshev polynomial on [0, 1/4] must be of degree n for any n, the term

integer Chebyshev polynomial of degree n is also used when working on these intervals.

Markov’s inequality [26] bounding the mth derivative of a polynomial p of degree n with

real coefficients can be used to show the minimum value is achieved in the definition of

Ωn[a, b]. Since

∥∥∥p(m)(x)
∥∥∥

[a,b]

≤ 2m

(b− a)m

n2(n2 − 12)(n2 − 22) · · · (n2 − (m− 1)2)
(2m− 1)!!

‖p(x)‖
[a,b]

where (2m − 1)!! = 1 · 3 · 5 · · · (2m − 1), there are only finitely many polynomials with

integer coefficients of supremum norm less than or equal to a given constant k on [a, b].

If p(x) ∈ Zn[x] and ‖p(x)‖
[a,b]

≤ k, then applying the inequality to the nth derivative of

p(x) gives a finite number of choices for the coefficient of xn. For each of these possibilities,

Markov’s inequality again shows there are only a finite number of choices for the coefficient

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 5

of xn−1. Continuing in this fashion, we arrive at the fact that only finitely many polynomials

in Zn[x] have supremum norm less than k on [a, b].

The existence of the limit Ω[0, 1] is shown in [25] and the method is easily modified

to show the existence of Ω[a, b] as follows. Given any positive integers n and N , let p(x)

be an nth integer Chebyshev polynomial for the interval [a, b] and write N = nq + r with

0 ≤ r < n using the division algorithm. Then p(x)qxr is a polynomial in ZN [x] and so

ΩN [a, b]N ≤ ‖p(x)qxr‖
[a,b]

≤ ‖p(x)‖q

[a,b]
‖x‖r

[a,b]
≤ Ωn[a, b]qntr = Ωn[a, b]N−rtr

where t = max
(
‖x‖

[a,b]
, Ωn[a, b]

)
. Since t/Ωn[a, b] ≥ 1, this gives

ΩN [a, b] ≤ Ωn[a, b]1−r/N tr/N = Ωn[a, b]
(

t

Ωn[a, b]

)r/N

≤ Ωn[a, b]
(

t

Ωn[a, b]

)n/N

.

It follows that lim supN→∞ΩN [a, b] ≤ Ωn[a, b]. On the other hand, as n can be chosen so

that Ωn[a, b] is arbitrarily close to the limit inferior of the sequence {ΩN [a, b]}, we must

have that lim sup ΩN [a, b] ≤ lim inf ΩN [a, b] and so Ω[a, b] = limn→∞Ωn[a, b] exists.

1.2.1 The Gelfond-Schnirelman approach to the Prime Number Theorem

One of the initial reasons for studying integer Chebyshev polynomials was due to their

connection to the Prime Number Theorem. Ferguson [17, pg 143] attributes this to I. G.

Schnirelman and A. O. Gelfond. If we let I =
∫ 1

0
p2(x)dx where p(x) ∈ Zn[x] \ {0} and

define dn as dn = lcm{1, 2, . . . , n}, then the degree of p2(x) is at most 2n so I d2n+1 must be

a positive integer. Additionally, for any prime q dividing d2n+1, q must be less than 2n + 1

and the power of q dividing d2n+1 is
⌊
logq(2n + 1)

⌋ ≤ ln(2n + 1)/ ln(q). This gives us the

following inequality:

1 ≤ I d2n+1 ≤ I
∏

q≤2n+1
q prime

q

�
ln (2n+1)

ln q

�

.

Taking the natural logarithm of the outermost quantities yields

0 ≤ ln(I) +
∑

q≤2n+1
q prime

ln(2n + 1)
ln q

ln q = ln(I) + ln(2n + 1)π(2n + 1).

If we now note that I =
∫ 1

0
p2(x)dx ≤ ∥∥p2(x)

∥∥
[0,1]

, we see

ln(I) ≤ 2n ln
(∥∥(

p2(x)
)∥∥1/2n

[0,1]

)

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 6

or

2n ln


 1

‖p(x)‖1/n

[0,1]


 ≤ − ln(I) ≤ ln(2n + 1)π(2n + 1).

Letting p(x) be chosen so that ‖p(x)‖1/n

[0,1]
= Ωn[0, 1] gives

ln
1

Ω[0, 1] + ε
≤ ln

1
Ωn[0, 1]

≤ ln (2n + 1)π(2n + 1)
2n

for any ε > 0 provided n is large enough and so

ln
1

Ω[0, 1]
≤ lim inf

ln(n)π(n)
n

.

If we could show that Ω[0, 1] = 1/e, this would lead to an alternate proof of the lower bound

required in the Prime Number Theorem. Unfortunately, this is not the case as will be shown

in Section 1.2.3.

1.2.2 The main tools of the single variable case

The following lemmas are the basis for a large proportion of known results in the single

variable case. The first is an easy consequence of having two expressions for the resultant

of two polynomials [20], and the second follows directly from the work done in Section 1.2.

Lemma 1.2 Suppose pn(x) ∈ Zn[x] is of degree n and qk(x) = akx
k + · · ·+ a0 ∈ Zk[x] has

k roots in [a, b]. If pn(x) and qk(x) do not have common factors, then
(
‖pn(x)‖

[a,b]

)1/n
≥ |ak|−1/k .

Proof: Let β1, β2, . . . , βk be the roots of qk(x). Then the resultant of pn(x) and qk(x) is

given by the expression an
kpn(β1)pn(β2) · · · pn(βk) which is not zero since pn(x) and qk(x) do

not have common factors. As the resultant is also given by the determinant of the Sylvester

matrix of pn(x) and qk(x), which is an integer in this case since both polynomials have

integer coefficients,

1 ≤ |ak|n |pn(β1)pn(β2) · · · pn(βk)| .
Since each βi ∈ [a, b], |pn(βi)| ≤ ‖pn(x)‖

[a,b]
and so

1 ≤ |ak|n
(
‖pn(x)‖

[a,b]

)k
.

The result now follows.

¤

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 7

Lemma 1.3 For any polynomial p(x) with integer coefficients, Ω[a, b] ≤ ‖p(x)‖1/n

[a,b]
where n

is the degree of p(x).

Proof: Let n be the degree of the polynomial p(x). As in the proof of the existence of

Ω[a, b] given in Section 1.2, Ω[a, b] = lim supN→∞ΩN [a, b] ≤ Ωn[a, b] ≤ ‖p(x)‖1/n

[a,b]
.

¤

1.2.3 Bounds on Ω[a, b]

From Theorem 1.2, it is clear that any nonconstant polynomial with integer coefficients must

have supremum norm at least 2
(

b−a
4

)n
. Since 1 ∈ Zn[x] for all n, the Integer Chebyshev

Problem is solvable when b− a ≥ 4. In this case 1 is an nth integer Chebyshev polynomial

for the interval for any n and so Ω[a, b] = 1. For intervals of length less than 4, an early

result of Fekete [6] ensures that for any integer n, there exists a polynomial pn(x) of degree

n with integer coefficients for which ‖pn(x)‖
[a,b]

< 2(n + 1)((b − a)/4)n/2. This gives the

following bounds on Ω[a, b] when [a, b] is an interval of length less than 4.

b− a

4
≤ Ω[a, b] ≤

√
b− a

4
when b− a < 4.

Lower bounds on Ω[0, 1]

The case when [a, b] = [0, 1] has been extensively studied and the above lower bound of 1/4

has been improved multiple times. The initial improvement comes from the Prime Number

Theorem and Section 1.2.1. Since ln (1/Ω[0, 1]) ≤ limn→∞ π(n) ln(n)/n = 1, Ω[0, 1] ≥ 1/e.

The next set of improvements comes from studying irreducible polynomials with integer

coefficients having all their roots in the interval [0, 1]. We begin by looking at the scaled,

translated Chebyshev polynomials from Section 1.1. When b− a = 4, the polynomials

Pn(x) = 2
(

b− a

4

)n

Tn

(
2x− a− b

b− a

)

have integer coefficients. This follows from the definition of the Chebyshev polynomials

Tn(x). Since b− a = 4, b + a is an even integer and so Pn(x) = 2Tn

(
2x−(b+a)

4

)
= 2Tn

(
x−k

2

)

for some integer k. The definition of T0(x) and T1(x) now give P0(x) = 2T0

(
x−k

2

)
= 2 and

P1(x) = 2T1

(
x−k

2

)
= x− k which have integer coefficients. As

Pn+1(x) = 2Tn+1

(
x− k

2

)
= 2

(
2

(
x− k

2

)
Tn

(
x− k

2

)
+ Tn−1

(
x− k

2

))
,

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 8

Pn(x) must have integer coefficients for any nonnegative integer n. The polynomials Pn(x)

can be used to generate a sequence of irreducible polynomials with integer coefficients having

all roots in [0, 1].

On the interval [0, 4], the polynomials Pn(x) reduce to Pn(x) = 2Tn ((x/2)− 1) which

oscillate between −2 and 2 a total of n times on [0, 4] and can be generated by the following

iteration.

P0(x) = 2

P1(x) = x− 2

Pn+1(x) = (x− 2)Pn(x)− Pn−1(x)

From these defining equations, we can see that the Pn(x) are monic polynomials for n ≥ 1,

are of degree n, and have constant term equal to (−1)n2. If we scale these polynomials

by a factor of 2 and then shift them up or down by one unit, the resulting polynomials

2Pn(x)− (−1)n still have n roots in the interval [0, 4]. Defining rn(x) by

rn(x) = xn

(
2Pn

(
1
x

)
− (−1)n

)

gives a sequence of irreducible polynomials with integer coefficients with the property that

each rn(x) is of degree n and has n positive roots. The fact that the rn(x) do not factor

over Q follows from Eisenstein’s condition for irreducibility [19] since the leading coefficient

of rn(x) is (−1)n3, the coefficients of xm are divisible by 2 for m < n, and the constant term

2 is not divisible by 4. It follows that the polynomials rn(x − 1) must also be irreducible

and so must the polynomials

sn(x) = xnrn

(
1
x
− 1

)
= (1− x)n

(
4Tn

(
3x− 2

2(1− x)

)
− (−1)n

)
.

This last transformation gives a sequence of irreducible polynomials with integer coefficients

where each sn(x) is of degree n and has all of its roots in [0, 1] and provides us with a concrete

family of polynomials illustrating the following.

Lemma 1.4 For any nonnegative integer n, there exists an irreducible polynomial of degree

n with integer coefficients having all its roots in [0, 1].

The leading coefficients of the sn(x) can be found by looking at the constant terms of

the polynomials

xnsn(1/x) = (x− 1)n

(
4Tn

(
3− 2x

2(x− 1)

)
− (−1)n

)
.

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 9

Evaluating these last polynomials at x = 0 and letting an denote the leading coefficient

of sn(x) leads to an = (−1)n4tn − 1 where tn = Tn(−3/2). Since t0 = 1, t1 = −3/2, and

tn+1 = −(3tn + tn−1) for n ≥ 1, to solve for the tn we note that
[

tn+1

tn

]
=

[
−3 −1

1 0

][
tn

tn−1

]
=

[
−3 −1

1 0

]n [
t1

t0

]
.

Diagonalizing the 2×2 matrix using its eigenvalues and eigenvectors so that the powers can

be easily found, and then looking at the last row of the resulting equation gives

tn =
(−1)n(3 +

√
5)n

2n+1
+

(−3 +
√

5)n

2n+1

and so

an = 2

(
3 +

√
5

2

)n

+ 2

(
3−√5

2

)n

− 1.

Since (3−√5)/2 < 1,

lim
n→∞ a1/n

n =
3 +

√
5

2
.

We are now in a position to improve the lower bound on Ω[0, 1]. Any polynomial p(x) of

degree n in Z[x] is divisible by at most a finite number of the polynomials sk(x) and so for

all but finitely many k, Lemma 1.2 gives
(
‖pn(x)‖

[0,1]

)1/n
≥ |ak|−1/k .

Taking the limit as k tends to infinity shows that
(
‖pn(x)‖

[0,1]

)1/n
≥ 2

3 +
√

5

so we must have Ω[0, 1] ≥ 2/(3+
√

5) > 1/2.618034. Montgomery [25] and Chudnovksky [9]

both conjecture that if Fk denotes the set of polynomials with integer coefficients of degree

k that are irreducible over Q and have all their roots in [0, 1], and if we define s as

s = lim sup
k→∞

(
sup

qk∈Fk

|ak|−1/k

)

where ak denotes the leading coefficient of qk, then s = Ω[0, 1]. Repeating the above

argument with the limit superior in place of the limit gives Ω[0, 1] ≥ s. Currently, the best

lower bound for s comes from the Gorshkov-Wirsing polynomials.

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 10

Definition 1.4 The Gorshkov-Wirsing polynomials are defined iteratively as follows.

q0(x) = 2x− 1

q1(x) = 5x2 − 5x + 1

qn+1(x) = qn(x)2 + qn(x)qn−1(x)2 − qn−1(x)4

The Gorshkov-Wirsing polynomial qk(x) is an irreducible polynomial of degree 2k, has all

its roots in [0, 1], and satisfies the relation

qk(x) = (−1 + 3x− 3x2)2
k−1

qk−1(u(x))

for k ≥ 1 where u(x) is the rational function

u(x) =
q0(x)2 − q1(x)
2q0(x)2 − q1(x)

=
x(1− x)

1− 3x(1− x)
.

Full details are given in [25] where it is also shown that if a2k denotes the leading coefficient

of qk(x), then

a
1/2k

2k = 2
k−1∏

j=0

(
1 +

1
c2
j

)1/2j+1

where c0 = 2 and ck+1 = ck + 1/ck. Since each cj ≥ 2, the terms a
1/2k

2k form a bounded

increasing sequence and so must converge to a limit which we will call s0. A simple compu-

tation gives 2.376841706263926188 . . . as the value of s0. Montgomery attributes the proof

that the Gorshkov-Wirsing polynomials are irreducible over Q to Wirsing. Armed with

these results, it is now an easy matter to improve the lower bound on Ω[0, 1]. If pn(x) is an

nth integer Chebyshev polynomial, then at most a finite number of the Gorshkov-Wirsing

polynomials can divide pn(x). For any Gorshkov-Wirsing polynomial qk(x) that has no

common roots with pn(x), Lemma 1.2 gives

1

a
1/2k

2k

≤
(
‖pn‖

[a,b]

)1/n
.

Since the terms a
−1/2k

2k are all greater than 1/s0, this gives

Ω[0, 1] = lim
n→∞

(
‖pn‖

[a,b]

)1/n
≥ 1

s0
=

1
2.376841706263926188 . . .

.

If the value of s = 1/s0, then the conjecture of Montgomery and Chudnovsky is incorrect

since Borwein and Erdelyi [8] show that Ω[0, 1] > (1/s0) + ε for some ε > 0. This is done

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 11

by first showing that an nth integer Chebyshev polynomial must be divisble by xk where

k/n > 0.26 if n is large enough (see Section 1.2.5) and then constructing a sequence of

polynomials {Rk(x)} where each Rk(x) is of degree 2k, has all its roots in [0, 1], and has

leading coefficient a2k satisfying limk→∞ a
1/2k

2k = s0. Claiming that each Rk(x) has a positive

proportion of its roots in [0, δ] for any δ ∈ (0, 1) provided k is large enough, they then use a

result of Saff and Varga [28] which implies that if pn(x) = xk(n)pn−k(n)(x) and θ < k(n)/n

for sufficiently large n, then

lim sup
n→∞




∥∥∥∥∥
pn(x)

‖pn(x)‖
[0,1]

∥∥∥∥∥
[0,θ2]




1/n

< 1.

Using θ2 = 1/16 < 0.262 and letting pn(x) be an nth integer Chebyshev polynomial where

n is sufficiently large, c ∈ (0, 1) is chosen so that
(
‖pn(x)‖

[0,θ2]

)1/n
< c

(
‖pn(x)‖

[0,1]

)1/n
.

The proof of Lemma 1.2 is modified for the polynomials pn(x) and Rk(x) by replacing the

the terms |pn(βi)| with cn ‖pn(x)‖
[0,1]

for all roots βi in [0, θ2]. Letting k tend to infinity

then gives 1/s0 ≤ cη ‖p(x)‖1/n

[0,1]
where η is a lower bound on the proportion of roots of Rk(x)

in [0, θ2] and the result follows by letting n tend to infinity. The lower bound is further

improved to 1/2.3736 ≤ Ω[0, 1] by Pritsker [27] using methods of weighted potential theory.

Upper bounds on Ω[0, 1]

Lemma 1.3 shows that for any polynomial p(x) ∈ Z[x], Ω[0, 1] ≤
(
‖p(x)‖

[0,1]

)1/n
. Using

this inequality, we can obtain bounds on Ω[0, 1] by computational methods. The following

example, intially found by Borwein and Erdelyi [8], illustrates this point. Let

c0(x) = x

c1(x) = 1− x

c2(x) = 2x− 1

c3(x) = 5x2 − 5x + 1

c4(x) = 13x3 − 19x2 + 8x− 1

c5(x) = 13x3 − 20x2 + 9x− 1

c6(x) = 29x4 − 58x3 + 40x2 − 11x + 1

c7(x) = 31x4 − 61x3 + 41x2 − 11x + 1

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 12

c8(x) = 31x4 − 63x3 + 44x2 − 12x + 1

c9(x) = 941x8 − 3764x7 + 6349x6 − 5873x5 + 3243x4 − 1089x3 + 216x2 − 23x + 1

and let

p210(x) = c0(x)67 · c1(x)67 · c2(x)24 · c3(x)9 · c4(x) · c5(x) · c6(x)3 · c7(x) · c8(x) · c9(x).

It is a simple calculus exercise to find the maximum value obtained by |p210(x)| on the

interval [0, 1] and is best done with the aid of a computer algebra package such as Maple.

Doing so reveals that ‖p210‖
[0,1]

= 0.8074175067967268 . . .× 10−78 and so

Ω[0, 1] ≤
(
‖p210(x)‖

[0,1]

)1/210
=

1
2.3543496486 . . .

.

It will be shown in Section 1.3.3 that p210(x) is in fact an integer Chebyshev polynomial of

degree 210 on the interval [0, 1].

The upper bound given above can be improved upon by means of the simplex algorithm.

Given a set of polynomials {pi}, we can consider polynomials of the form
∏

pαi
i . Since the

goal is to choose integer values for the αi that minimize the supremum norm of this product

on the interval [0, 1], we first take the logarithm of the absolute value of the above product

and evaluate it at multiple points xj ∈ [0, 1] to give inequalities of the form

∑ αi

2
log

(
pi(xj)2

)
< c.

The simplex algorithm is then used to minimize c under the above system of constraints

together with
∑

αi = 1 and αi ≥ 0 for each αi. The resulting αi are then multiplied by

a large power of 10 and rounded to give a new polynomial
∏

pβi
i of very large degree N .

The Nth root of the supremum norm of this new polynomial then gives an upper bound

on Ω[0, 1]. This is a reasonable way to search for a polynomial of large degree with small

supremum norm since Markov’s inequality on the rth derivative of a polynomial f(x) , which

is stated in Section 1.2, gives
∥∥∥f (r)(x)

∥∥∥
[a,b]

≤ (2n2)r ‖f(x)‖
[a,b]

or (∥∥∥f (r)(x)
∥∥∥

[a,b]

)1/n

≤
(√

2n
)2r/n (

‖f(x)‖
[a,b]

)1/n
.

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 13

If qk(x) is a polynomial as in Lemma 1.2, (‖f(x)‖
[0,1]

)1/n < |ak|−1/k, and n is sufficiently

large in relation to r, then (
∥∥f (r)(x)

∥∥
[0,1]

)1/n will also be smaller than |ak|−1/k. If this is the

case, then qk(x) must also divide the first r derivatives of f(x), or qk(x)r+1 divides f(x).

This method was used by Borwein and Erdelyi [8] to show Ω[0, 1] ≤ 1/2.3605, by Hab-

sieger and Salvy [21] to show Ω[0, 1] ≤ 1/2.3613, by Wu [33] to show Ω[0, 1] ≤ 1/2.3631,

and will be used again in Section 1.4.3 to show Ω[0, 1] ≤ 1/2.36482727. The difficult part is

in finding a good set of polynomials {pi}.

1.2.4 Symmetry conditions and the intervals [−1, 1], [0, 1], and [0, 1/4]

By using polynomials that satisfy certain symmetry properties, it can be shown that

Ω[−1, 1]2 = Ω[0, 1] = Ω[0, 1/4]1/2.

The easier case of Ω[−1, 1]2 = Ω[0, 1] is handled first.

Given an integer Chebyshev polynomial pn(x) of degree n for the interval [0, 1], the

polynomial pn(x2) is an integer Chebyshev polynomial of degree 2n for the interval [−1, 1].

To see this, note that
∥∥pn(x2)

∥∥
[−1,1]

= ‖pn(x)‖
[0,1]

and so ‖q2n(x)‖1/n

[−1,1]
≤ ‖pn(x)‖1/n

[0,1]
for at

least one polynomial q2n(x) of degree at most 2n. This gives

Ω2n[−1, 1]2 ≤ Ωn[0, 1].

On the other hand, suppose q2n(x) is an integer Chebyshev polynomial of degree 2n for the

interval [−1, 1]. Considering the even part e(x) of q2n(x), which is a nonzero polynomial of

degree 2n with integer coefficients, gives

‖e(x)‖
[−1,1]

=
∥∥∥∥
q2n(x) + q2n(−x)

2

∥∥∥∥
[−1,1]

≤ 1
2
‖q2n(x)‖

[−1,1]
+

1
2
‖q2n(x)‖

[−1,1]
= ‖q2n(x)‖

[−1,1]
.

Since q2n(x) is an integer Chebyshev polynomial of degree 2n for the interval [−1, 1], the

above inequality must in fact be an equality and so e(x) is also an integer Chebyshev

polynomial of degree 2n for the interval [−1, 1]. Since e(x) has only even powers of x, on

the interval [0, 1] the function e(
√

x) is a polynomial of degree n with integer coefficients so

Ωn[0, 1] ≤ ∥∥e(
√

x)
∥∥1/n

[0,1]
= ‖e(x)‖1/n

[−1,1]
= Ω2n[−1, 1]2.

Since Ωn[0, 1] = Ω2n[−1, 1]2, this justifies the statement that the above polynomial pn(x2)

is an integer Chebyshev polynomial of degree 2n for the interval [−1, 1]. Furthermore, if we

take the limit as n tends to infinity, this gives Ω[0, 1] = Ω[−1, 1]2.

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 14

To show Ω[0, 1]2 = Ω[0, 1/4], we again use symmetric polynomials, but now we consider

polynomials with symmetry around x = 1/2. If pn(x) is an integer Chebyshev polynomial

of degree n for the interval [0, 1/4], then pn(x(1−x)) is an integer Chebyshev polynomial of

degree 2n for the interval [0, 1]. To see this we note that ‖pn(x)‖
[0,1/4]

= ‖pn(x(1− x))‖
[0,1]

and so

Ωn[0, 1/4] ≥ Ω2n[0, 1]2.

To reverse the inequality, we need the following result which can be found in [21].

Lemma 1.5 Let Ek = {p(x) ∈ Zk[x] : p(1− x) = (−1)kp(x)}. For any nonnegative integer

k, we have

E2k = Zk[x(1− x)] and E2k+1 = (1− 2x)Zk[x(1− x)].

Proof: Showing that E2k = Zk[x(1− x)] is easily accomplished using induction. The case

when k = 0 holds since E0 = Z0[x(1 − x)] = Z. Now suppose the statement holds for

some nonnegative integer k − 1 and p(x) is a polynomial in the set E2k. If we consider the

polynomial q(x) = p(x) − p(0), then q(0) = 0 and since p(x) ∈ E2k, q(1) also equals 0 so

q(x) is divisible by x(1−x). Since p(x) ∈ E2k, q(x)/(x(1−x)) = q(1−x)/((1−x)x) and so

by the inductive hypothesis, q(x) = x(1−x)r(x(1−x)) for some polynomial r(x) ∈ Zk−1[x].

It now follows that p(x) = x(1− x)r(x(1− x)) + p(0) ∈ Zk[x(1− x)].

To show that E2k+1 = (1 − 2x)Zk[x(1 − x)], suppose p(x) ∈ E2k+1. Then 1 − 2x

divides p(x) since p(1/2) = −p(1/2) = 0. Applying the earlier result to the function

p(x)/(1− 2x) ∈ E2k gives p(x) = (1− 2x)r(x(1− x)) for some function r(x) ∈ Zk[x].

¤

We are now in a position to reverse the last inequality above. Suppose q(x) is an integer

Chebyshev polynomial of degree m for the interval [0, 1] and define the polynomials Q1(x)

and Q2(x) as follows.

Q1(x) = xq(x) + (−1)m(1− x)q(1− x)

Q2(x) = (1− x)q(x) + (−1)mxq(1− x)

Then Q1(x) and Q2(x) are both polynomials with integer coefficients of degree at most m

and satisfy the property that Qi(x) = (−1)mQi(1 − x). Furthermore, at least one of the

Qi(x) must be nonzero because

xQ1(x)− (1− x)Q2(x) = (2x− 1)q(x) 6= 0.

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 15

Let Q0(x) be a nonzero Qi(x). Then Q0(x) must be an integer Chebyshev polynomial of

degree m for the interval [0, 1] since q(x) is a polynomial with minimal supremum norm on

[0, 1] and for any x ∈ [0, 1],

|Q0(x)| ≤ x ‖q(x)‖
[0,1]

+ (1− x) ‖q(x)‖
[0,1]

= ‖q(x)‖
[0,1]

.

If m = 2n + 1 is odd, then Q0(x) ∈ E2n+1 and so Q0(x) = (2x − 1)p(x(1 − x)) for some

p(x) ∈ Zn[x]. If m = 2n is even, then Q0(x) ∈ E2n so Q0(x) = p(x(1 − x)) for some

polynomial p(x) ∈ Zn[x]. In this last case, since ‖Q0(x)‖
[0,1]

= ‖p(x)‖
[0,1/4]

,

Ω2n[0, 1]2 ≥ Ωn[0, 1/4].

Since Ωn[0, 1/4] = Ω2n[0, 1]2, this justifies the statement that if pn(x) is an integer Chebyshev

polynomial of degree n for the interval [0, 1/4], then pn(x(1 − x)) is an integer Chebyshev

polynomial of degree 2n for the interval [0, 1]. Again, if we let n tend to infinity, we see that

Ω[0, 1] = Ω[−1, 1]2.

The fact that there must exist a symmetric nth integer Chebyshev polynomial on [0, 1]

for any n, and that this symmetric polynomial must be of the form p(x(1 − x)) when n

is even and of the form (1 − 2x)p(x(1 − x)) when n is odd will prove to be very useful in

Section 1.3 where the problems of finding integer Chebyshev polynomials and the value of

Ωn[0, 1] are considered.

1.2.5 Critical polynomials and statements of structure

From Lemma 1.2, if ci(x) = akx
k + · · · + a0 ∈ Zk[x] has all its roots in [0, 1] and if

Ω[0, 1] < |ak|−1/k, then ci(x) must divide an nth integer Chebyshev polynomial provided n

is sufficiently large. Irreducible polynomials of this form are called critical polynomials for

the interval [0, 1]. As indicated earlier, Markov’s inequality can be used to show that critical

polynomials for the interval [0, 1] must be factors of an nth integer Chebyshev polynomial

with relatively high multiplicity. By applying Stirling’s formula, or even just weaker bounds

on the size of n!, we can give lower bounds on the multiplicity of these factors. We begin

by noting that (2r− 1)!!, the product of the first r odd integers, can be written as (2r)!
2rr! and

that n2(n2− 12)(n2− 22) · · · (n2− (r− 1)2) = n
n+r

(n+r)!
(n−r)! where r is an integer between 1 and

n− 1. To justify this last statement note that for any integer n ≥ 2, if r=1 then both sides

simplify to n2. If the statement holds for some integer n ≥ 2 and an integer r between 1

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 16

and n− 2, then it also hold for n and r + 1 since

n

n + (r + 1)
(n + (r + 1))!
(n− (r + 1))!

=
n + r

n + (r + 1)
(n + (r + 1))(n− r)

(
n

n + r

(n + r)!
(n− r)!

)

=
(
n2 − r2

) (
n2(n2 − 12)(n2 − 22) · · · (n2 − (r − 1)2)

)
.

Markov’s inequality applied to the function p
(r)
n (x)/r! on the interval [0, 1] now gives

∥∥∥∥∥
p
(r)
n (x)
r!

∥∥∥∥∥
[0,1]

≤ 2r n2(n2 − 12)(n2 − 22) · · · (n2 − (r − 1)2)
(2r − 1)!!

∥∥∥∥
pn(x)

r!

∥∥∥∥
[0,1]

= 4r n

n + r

(n + r)!
(n− r)!(2r)!

‖pn(x)‖
[0,1]

.

Using the fact [12] that

2nn+ 1
2 e−n <

(
2e

3

)3/2

nn+ 1
2 e−n < n! < enn+ 1

2 e−n < 3nn+ 1
2 e−n

allows us to say
∥∥∥∥∥
p
(r)
n (x)
r!

∥∥∥∥∥
[0,1]

≤ 4r n

n + r

3(n + r)n+re−(n+r)

2(n− r)n−re−(n−r)2(2r)2re−2r

√
n + r

(n− r)2r
‖pn(x)‖

[0,1]

=

√
9n2

32r(n2 − r2)
(n + r)n+r

(n− r)n−rr2r
‖pn(x)‖

[0,1]

<
(n + r)n+r

(n− r)n−rr2r
‖pn(x)‖

[0,1]
for 1 ≤ r ≤ n− 1.

If pn(x) is a polynomial with integer coefficients of degree n, then p
(r)
n (x)/r! is a polynomial

of degree n−r with integer coefficients and so to apply Lemma 1.2 with the above inequality,

we need to take the (n−r)th root of p
(r)
n (x)/r!. Doing so and making the substitution r = λn

leads to



∥∥∥∥∥
p
(r)
n (x)
r!

∥∥∥∥∥
[0,1]




1
n−r

<

(
(n + r)n+r

(n− r)n−rr2r
‖pn(x)‖

[0,1]

) 1
n

n
n−r

=
(

(1 + λ)1+λ

(1− λ)1−λλ2λ

(
‖pn(x)‖

[0,1]

)1/n
) 1

1−λ

where 1/n ≤ λ ≤ (n− 1)/n.

For sufficiently large n, if pn(x) is an integer Chebyshev polynomial on the interval

[0, 1], then pn(x) must be of degree n and
(
‖pn(x)‖

[0,1]

)1/n
≤ 1/2.36482727 so given a

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 17

critical polynomial ci(x) = akx
k + ak−1x

k−1 + · · ·+ a1x + a0 of degree k, if we can find a λi

so that
(1 + λ)1+λ

(1− λ)1−λλ2λ

1
2.36482727

<

(
1
|ak|

) 1−λ
k

for all positive λ ≤ λi, then Lemma 1.2 will allow us to say ci(x) divides the derivatives

p
(r)
n (x) for all positive integers r less than or equal to bλinc. Since ci is a critical polynomial

for the interval [0, 1], it must also divide pn(x) and so ci(x) divides p
(r)
n (x) for all integers

r between 0 and bλinc. If pn(x) is an integer Chebyshev polynomial for the interval [0, 1],

and if n is sufficiently large, then (ci(x))bλinc+1 divides pn(x). Applying this result to the

critical polynomials listed in Section 1.2.3 gives the following result.

Theorem 1.3 Let pn(x) be a polynomial of degree n with integer coefficients. If pn(x) is

an integer Chebyshev polynomial for the interval [0, 1] of sufficiently large degree, then pn(x)

satisfies the inequality
(
‖pn(x)‖

[0,1]

)1/n
≤ 1/2.36482727 and

pn(x) = (x(1− x))λ1n (2x− 1)λ2n(5x2 − 5x + 1)λ3n

·(29x4 − 58x3 + 40x2 − 11x + 1)λ4n

· ((13x3 − 19x2 + 8x− 1)(13x3 − 20x2 + 9x− 1)
)λ5n

· ((31x4 − 61x3 + 41x2 − 11x + 1)(31x4 − 63x3 + 44x2 − 12x + 1)
)λ6n

·(941x8− 3764x7+ 6349x6− 5873x5+ 3243x4− 1089x3+ 216x2− 23x + 1)λ7n

·q(x)

where λ1 > 0.148071, λ2 > 0.017919, λ3 > 0.004698, λ4 > 0.001307, λ5 > 0.000333,

λ6 > 0.000114, λ7 > 0.000275, and q(x) is a polynomial with integer coefficients.

This is essentially the method used by Aparicio in [5] where it is shown that if pn(x) is an

nth integer Chebyshev polynomial for the interval [0, 1] and n is sufficiently large, then

pn(x) = (x(1− x))λ1n (2x− 1)λ2n(5x2 − 5x + 1)λ3nq(x)

where λ1 ≥ 0.1456 , λ2 ≥ 0.0166, and λ3 ≥ 0.0037.

These bounds can be improved when p(x) is a symmetric integer Chebyshev polynomial

of even degree for the interval [0, 1]. In this case, p(x) = r(x(1 − x)) for some integer

Chebyshev polynomial r(x) of degree n/2 for the interval [0, 1/4] and Ω[0, 1/4] = Ω[0, 1]2 ≤
(1/2.36482727)2. Since the above argument extends without change to the interval [0, 1/4],

we have the following result.

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 18

Theorem 1.4 Let rn(x) be a polynomial of degree n with integer coefficients. If rn(x) is an

integer Chebyshev polynomial for the interval [0, 1/4] of sufficiently large degree, then rn(x)

satisfies the inequality
(
‖rn(x)‖

[0,1/4]

)1/n
≤ 1/5.592408 and

rn(x) = xµ1n(4x− 1)µ2n(5x− 1)µ3n

·(29x2 − 11x + 1)µ4n(169x3 − 94x2 + 17x− 1)µ5n

·(961x4 − 712x3 + 194x2 − 23x + 1)µ6n

·(941x4 − 703x3 + 193x2 − 23x + 1)µ7nq(x)

where µ1 > 0.583649, µ2 > 0.051069, µ3 > 0.012157, µ4 > 0.003198, µ5 > 0.000784,

µ6 > 0.000263, µ7 > 0.000645, and q(x) is a polynomial with integer coefficients.

When pn(x) is a symmetric integer Chebyshev polynomial of even degree for the interval

[0, 1], this last result gives λ1 > 0.291824, λ2 > 0.051069, λ3 > 0.006078, λ4 > 0.001599,

λ5 > 0.000392, λ6 > 0.000131, λ7 > 0.000322.

The bounds on the λi in the nonsymmetric case can be improved by starting with a spe-

cific sequence of Muntz-Legendre polynomials as opposed to starting with Markov’s inequal-

ity. In most cases, this will either match or improve the bounds found above in the symmetric

case. This was done first by Borwein and Erdelyi [8] to improve the bound on λ1. Applying

the Gram-Schmidt orthogonalization process to the polynomials xn, xn−1, xn−2, . . . , xk with

k ≤ n and the inner product 〈f(x), g(x)〉 =
∫ 1
0 f(x)g(x)dx leads to the basis

Li(x) =
n∑

j=i

ci,jx
j =

n∑

j=i

(−1)n−j

(
n + 1 + j

n− i

)(
n− i

n− j

)
xj where k ≤ i ≤ n [33].

Since the Li(x) have norm equal to 1/
√

2i + 1 and form an orthogonal basis for the space

of functions of the form
∑n

i=k aix
i, if xkqn−k(x) =

∑n
i=k λiLi(x) where qn−k(x) ∈ Zn−k[x],

then λk = qn−k(0)/ck,k and we must have

|qn−k(0)|
|ck,k|

√
2k + 1

=

√〈
qn−k(0)

ck,k
Lk(x),

qn−k(0)
ck,k

Lk(x)
〉
≤

√
〈xkqn−k(x), xkqn−k(x)〉 .

As the 2-norm is less than or equal to the supremum norm, if qn−k(0) 6= 0, we must therefore

have

1 ≤ |qn−k(0)| ≤
√

2k + 1 |ck,k|
∥∥∥xkqn−k(x)

∥∥∥
[0,1]

.

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 19

Given that

|ck,k| =
(

n + 1 + k

n− k

)(
n− k

n− k

)
=

n + k + 1
2k + 1

(
n + k

n− k

)

and

((n− k) + 2k)n+k ≥
(

n + k

n− k

)
(n− k)n−k(2k)2k,

this leads to

|qn−k(0)| ≤ n + k + 1√
2k + 1

(n + k)n+k

(n− k)n−k(2k)2k

∥∥∥xkqn−k(x)
∥∥∥

[0,1]

.

Upon taking the nth root and making the substitution k = λn we obtain the inequality

1 ≤
(

n + k + 1√
2k + 1

)1/n (1 + λ)1+λ

(1− λ)1−λ(2λ)2λ

(∥∥∥xkqn−k(x)
∥∥∥

[0,1]

)1/n

.

By considering the Nth power of xkqn−k(x), repeating the above argument, and letting N

tend to infinity [18] we see that we can drop the ((n+k +1)/
√

2k + 1)1/n term since we will

still have λ = (Nk/Nn) = k/n,
(∥∥(xkqn−k(x))N

∥∥
[0,1]

)1/nN
=

(∥∥xkqn−k(x)
∥∥

[0,1]

)1/n
, and

limN→∞((nN + kN + 1)/
√

2kN + 1)1/nN = 1. If qn−k(x) 6= 0, then
(∥∥∥xkqn−k(x)

∥∥∥
[0,1]

)−1/n

≤ (1 + λ)1+λ

(1− λ)1−λ(2λ)2λ
.

Borwein and Erdelyi use this to show that if n is sufficiently large and

pn(x) = (x(1− x))λ1n (2x− 1)λ2n(5x2 − 5x + 1)λ3nq(x)

is an nth integer Chebyshev polynomial, then 2.36 ≤
(
‖pn(x)‖

[0,1]

)−1/n
and so λ1 ≥ 0.26.

By starting with a slightly improved bound of Ω[0, 1] ≤ 1/2.3611 and modifying the above

procedure to work with polynomials other than x, Flamming, Rhin, and Smyth [18] show

λ1 ≥ 0.26415, λ2 ≥ 0.02196, λ3 ≥ 0.00528, λ4 ≥ 0.00106, λ5 ≥ 0.00023, λ6 ≥ 0.00002, and

λ7 ≥ 0.00013. Previously, these were the best known bounds on λi for 4 ≤ i ≤ 7.

A better way to generalize the work of Borwein and Erdelyi is to use what Wu [33]

calls generalized Muntz-Legendre polynomials which are constructed by using the inner

product 〈f(x), g(x)〉 =
∫ 1
0 f(x)g(x)dx and applying the Gram-Schmidt orthogonalization

process to the ordered polynomials xnF (x), xn−1F (x), . . . , xkF (x). Wu gives a detailed

proof that if F (x) = (1 − x)q, then an orthogonal basis for the space of functions spanned

by xn(1− x)q, xn−1(1− x)q, . . . , xk(1− x)q is given by

Wi(x) =
n∑

j=i

(−1)n−j

(
n + 2q + j + 1

n− i + 2q

)(
n− i

n− j

)
xj(1− x)q for k ≤ i ≤ n

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 20

and the norm of each Wi(x) is

〈Wi(x),Wi(x)〉1/2 =

√(
n + i + 2q + 1

n− i + 2q

) (
(2i + 1)

(
n + i + 1

n− i

))−1

.

The case q = 0 gives the Muntz-Legendre polynomials Li(x) of Borwein and Erdelyi. Using

the bound Ω[0, 1] ≤ 1/2.363149, Wu applied the polynomials Wi(x) to show λ1 ≥ 0.2907

and that if p(x) is of even degree and symmetric on the interval [0, 1], then λ1 ≥ 0.2976

and λ2 ≥ 0.09662. The method, and its extension to the other known critical polynomials

follows below.

1.2.6 An extension of Wu’s method to all known critical polynomials

on [0, 1]

Let c(x) = cdx
d + cd−1x

d−1 + . . . + c1x + c0 be a critical polynomial other than x for the

interval [0, 1], let α be a root of c(x), and set F (x) = (1 − x
α)q in the definition of Wu’s

generalized Muntz-Legendre polynomials with inner product 〈f(x), g(x)〉 =
∫ α
0 f(x)g(x)dx.

Then an orthogonal basis for the space of functions generated by xi(1− x
α)q where k ≤ i ≤ n

is given by

Mα,i(x) = Wi(x/α) =
n∑

j=i

(−1)n−j

(
n + 2q + j + 1

n− i + 2q

)(
n− i

n− j

)
xj

αj

(
1− x

α

)q
for k ≤ i ≤ n.

The orthogonality of the Wi(x) can be used to show the Mα,i(x) are orthogonal to each

other as

〈Mα,i(x),Mα,j(x)〉 =
∫ α

0
Mα,i(x)Mα,j(x)dx

=
∫ α

0
Wi(x/α)Wj(x/α)dx

= α

∫ 1

0
Wi(y)Wj(y)dy

=





α
(
n+i+2q+1

n−i+2q

) (
(2i + 1)

(
n+i+1

n−i

))−1
i = j

0 i 6= j.

If Q(x) = xkc(x)qp(x) = akx
k
(
1− x

α

)q + . . . + anxn
(
1− x

α

)q =
∑n

i=k µiMα,i(x) ∈ Zn+q[x]

and x does not divide p(x), then ak is a nonzero integer because the constant term of p(x)

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 21

is a nonzero integer and the constant term of c(x)/(1− x/α) is c0. This means

|µk| =
∣∣∣∣∣

akα
k

(
n+2q+k+1

n+2q−k

)
∣∣∣∣∣ ≥

αk

(
n+2q+k+1

n+2q−k

) .

Since
∫ α
0 Q(x)2dx ≤ α ‖Q‖2

[0,α]
≤ α ‖Q‖2

[0,1]
,

√
α ‖Q‖

[0,1]
≥ 〈Q(x), Q(x)〉1/2 ≥ 〈µkMα,k(x), µkMα,k(x)〉1/2

=

√
µ2

kα

(
n + k + 2q + 1

n− k + 2q

)(
(2k + 1)

(
n + k + 1

n− k

))−1

.

Substituting the above bound for |µk| and rearranging yields

1 ≤

√
(2k + 1)

(
n+k+2q+1

n−k+2q

)(
n+k+1

n−k

)

αk
‖Q(x)‖

[0,1]
.

At this point, we have an inequality that no longer depends on the polynomials Mα,i(x).

Since we wish to look at the nth root of polynomials of degree n, it is no longer advantageous

to have the degree of Q(x) equal to n + q. Instead, we can view Q(x) as a polynomial of

degree n and substitute n − q for n in the above inequality. This leads to the following

statement.

If Q(x) = xkc(x)qp(x) ∈ Zn[x] where c(x) is a critical polynomial for the interval [0, 1],

and if x does not divide p(x), then

1 ≤

√
(2k + 1)

(
n+k+q+1

n−k+q

)(
n−q+k+1

n−q−k

)

αk
‖Q(x)‖

[0,1]

=

√
(n + k + q + 1)(n− q + k + 1)

2k + 1

(
n + k + q

n− k + q

)(
n− q + k

n− q − k

)‖Q(x)‖
[0,1]

αk
.

Using the facts that

((n− k + q) + 2k)n+k+q ≥
(

n + k + q

n− k + q

)
(n− k + q)n−k+q(2k)2k

and

((n− k − q) + 2k)n+k−q ≥
(

n + k − q

n− k − q

)
(n− k − q)n−k−q(2k)2k

gives the following.

1 ≤
√

(n+k+q+1)(n−q+k+1)
2k + 1

√
(n+k+q)n+k+q(n+k−q)n+k−q

(n−k+q)n−k+q(n−k−q)n−k−q(2k)4k

‖Q(x)‖
[0,1]

αk

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 22

Taking nth roots and making the substitutions β = k/n and γ = q/n leads to

1 ≤
(

(n+k+q+1)(n−q+k+1)
2k + 1

)1/2n
√

(1+β+γ)1+β+γ(1+β−γ)1+β−γ

(1−β+γ)1−β+γ(1−β−γ)1−β−γ(2β)4β

‖Q(x)‖1/n

[0,1]

αβ
.

As in the previous case with the Muntz-Legendre Polynomials, if we consider powers of

Q(x), say Q(x)N , then the ratios β = kN/(nN) and γ = qN/(nN) do not change and

the value
∥∥Q(x)N

∥∥1/(nN)

[0,1]
= ‖Q(x)‖1/n

[0,1]
remains the same. Since the limit as N tends to

infinity of
(
(nN+kN+qN+1)(nN−qN+kN+1)(2kN + 1)−1

)1/(2nN) is 1, repeating the

above derivation with Q(x)N and letting N →∞ gives the result we are after.

Lemma 1.6 Let Q(x) = xkc(x)qp(x) be a polynomial of degree n with integer coefficients

for which x does not divide p(x). If γ = q/n, β = k/n, and c(x) is a critical polynomial for

the interval [0, 1] with c(x) 6= x, then

1 ≤
√

(1+β+γ)1+β+γ(1+β−γ)1+β−γ

(1−β+γ)1−β+γ(1−β−γ)1−β−γ(2β)4β

‖Q(x)‖1/n

[0,1]

αβ

where α is a root of c(x).

Given that we know a certain power of c(x) must divide Q(x), the least nonnegative value

of β for which the above inequality holds gives a lower bound on the value of k.

In the other direction, if we know a certain power of x divides Q(x), the above argument

can be modified to find a lower bound on the degree to which c(x) must also divide Q(x).

On the interval [0, α] where α is a root of c(x), consider the polynomials Nα,i(x) defined by

Nα,i(x) = αqMα,i(α− x)

= αq
n∑

j=i

(−1)n−j

(
n + 2q + j + 1

n− i + 2q

)(
n− i

n− j

)
(α− x)j

αj

(
1− (α− x)

α

)q

=
n∑

j=i

(−1)n−j

(
n + 2q + j + 1

n− i + 2q

)(
n− i

n− j

)
xq

(
1− x

α

)j
for k ≤ i ≤ n

with inner product 〈f(x), g(x)〉 =
∫ α
0 f(x)g(x)dx. The polynomials Nα,i(x) form an orthog-

onal basis for the space of functions generated by xq(1− x
α)i where k ≤ i ≤ n since

〈Nα,i(x), Nα,j(x)〉 = 〈αqMα,i(α− x), αqMα,j(α− x)〉
= α2q

∫ α

0
Mα,i(α− x)Mα,j(α− x)dx

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 23

= α2q

∫ α

0
Mα,i(y)Mα,j(y)dy

=





α2q+1
(
n+i+2q+1

n−i+2q

) (
(2i + 1)

(
n+i+1

n−i

))−1
i = j

0 i 6= j.

To proceed, if Q(x) = xqc(x)kp(x) = akx
q
(
1− x

α

)k+· · ·+anxq
(
1− x

α

)n =
∑n

i=k ηiNα,i(x)

is a polynomial in Zn+q[x], we need to find a lower bound on |ηk|. We need to look at the

coefficients of (1− x
α)0 in the expansions of c(x)/(1− x

α) and p(x) as linear combinations of

powers of (1− x
α). If p(α) 6= 0, then since c(x) is irreducible, the resultant of c(x) and p(x)

must be a nonzero integer. If the set of roots of c(x) is represented by {αi}d
i=1, then

∣∣∣∣∣c
n−kd
d

d∏

i=1

p(αi)

∣∣∣∣∣ ≥ 1

and so for at least one value of i, we must have |p(αi)| ≥ |cd|k−
n
d . Expressing p(x) in the

form p(x) = p̃0 + p̃1(1− x
α) + · · ·+ p̃n−kd(1− x

α)n−kd allows us to see that if α is the root αi

referred to above, then

|p̃0| = |p(α)| ≥ |cd|k−
n
d .

Similarly, if c(x)/(1 − x
α) = −cdα

∏
αi 6=α (x− αi) = c̃0 + c̃1(1 − x

α) + · · · + c̃d−1(1 − x
α)d−1,

then

|c̃0| = |cdα|
∏

αi 6=α

|α− αi|

where the empty product is taken to be 1 in the case when c(x) is linear and d = 1. If

Q(x) = xqc(x)kp(x) =
∑n

i=k ηiNα,i(x), then

|ηk| =
∣∣c̃k

0 p̃0

∣∣
(
n+2q+k+1

n+2q−k

) ≥

∣∣∣c2k−n
d

d αk
∣∣∣∏

αi 6=α |α− αi|k
(
n+2q+k+1

n+2q−k

) .

As in the previous case, since
∫ α
0 Q(x)2dx ≤ α ‖Q‖2

[0,α]
≤ α ‖Q‖2

[0,1]
,

√
α ‖Q‖

[0,1]
≥ 〈Q(x), Q(x)〉1/2 ≥ 〈ηkNα,k(x), ηkNα,k(x)〉1/2

=

√
η2

kα
2q+1

(
n + k + 2q + 1

n− k + 2q

)(
(2k + 1)

(
n + k + 1

n− k

))−1

.

Substituting the above bound for ηk and rearranging now yields

1 ≤
√

(2k + 1)
(

n + k + 2q + 1
n− k + 2q

)(
n + k + 1

n− k

) |cd|
n
d
−2k ‖Q(x)‖

[0,1]

αk+q
∏

αi 6=α |α− αi|k
.

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 24

As in the previous case, we have the result needed from the polynomials Nα,i(x) and it is

no longer advantageous to view Q(x) as a polynomial of degree n + q. Substituting n − q

for n so that we can view Q(x) as a polynomial of degree n. If Q(x) = xqc(x)kp(x) ∈ Zn[x]

where c(x) is a critical polynomial for the interval [0, 1], and if p(α) 6= 0, then

1 ≤
√

(2k + 1)
(

n + k + q + 1
n− k + q

)(
n− q + k + 1

n− q − k

) |cd|
n−q

d
−2k ‖Q(x)‖

[0,1]

αk+q
∏

αi 6=α |α− αi|k

=

√
(n + k + q + 1)(n− q + k + 1)

2k + 1

√(
n + k + q

n− k + q

)(
n− q + k

n− q − k

) |cd|
n−q

d
−2k ‖Q(x)‖

[0,1]

αk+q
∏

αi 6=α |α− αi|k
.

This final inequality is dealt with in the same way as before. Using the inequalities that

arise from the binomial theorem, taking nth roots, making the substitutions β = k/n and

γ = q/n, and then considering the limit as N tends to infinity after applying the above

result to Q(x)N leads to the following lemma.

Lemma 1.7 Let Q(x) = xqc(x)kp(x) be a polynomial of degree n with integer coefficients

for which c(x) does not divide p(x). If γ = q/n, β = k/n, and c(x) is a critical polynomial

for the interval [0, 1] of degree d with leading coefficient cd and c(x) 6= x, then

1 ≤
√

(1+β+γ)1+β+γ(1+β−γ)1+β−γ

(1−β+γ)1−β+γ(1−β−γ)1−β−γ(2β)4β

|cd|
1−γ

d
−2β

∣∣∣∏αi 6=α(α− αi)
∣∣∣
β

αβ+γ

‖Q(x)‖1/n

[0,1]

for at least one root α of c(x).

Given that we know a certain power of x must divide Q(x), for each root αi of c(x) we can

find smallest nonnegative value of β for which the above inequality holds. The minimum

value of β found across the αi’s gives a lower bound on the value of k.

When c(x) = 1 − x, Lemmas 1.6 and 1.7 can be combined to give an interval in which

both the exponents of x and 1 − x must lie. Writing Q(x) in form Q(x) = xa(1 − x)bp̃(x)

where neither x nor 1−x divide p̃(x) and letting k = min(a, b) leads to one of the following

situations. If k = a, then Q(x) = xk(1 − x)kp(x) where x does not divide p(x) and so

Lemma 1.6 leads to

0 ≤
√

(1 + 2β)1+2β

(1− 2β)1−2β

‖Q(x)‖1/n

[0,1]

(2β)2β
− 1.

If k = b then Q(x) = xk(1−x)kp(x) where 1−x does not divide p(x) in which case Lemma 1.7

leads to the same inequality. Considering the right hand side of the inequality as a function

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 25

of β, we see the sign of the derivative is determined by the sign of ln((1/(4β2)) − 1). The

right hand side is an increasing function of β for 0 < β < 1/
√

8 and a decreasing function

of β for 1/
√

8 < β < 1/2. For any value of ‖Q(x)‖1/n

[0,1]
that lies in the allowable interval for

Ω[0, 1] we will have equality at two points in (0, 1/2) and the inequality will be satisfied for

all β between these two values. In particular, if ‖Qn(x)‖1/n

[0,1]
≤ 1/2.36482727, the inequality

fails to be satisfied when β ≤ 0.291824 or when β ≥ 0.411773.

When c(x) = 2x− 1, Lemma 1.7 can be used to show that if Q(x) = xq(2x− 1)kp(x) is

a polynomial of degree n with integer coefficients and 2x− 1 does not divide p(x), then the

inequality

1 ≤
√

(1+β+γ)1+β+γ(1+β−γ)1+β−γ

(1−β+γ)1−β+γ(1−β−γ)1−β−γ(2β)4β
21−β ‖Q(x)‖1/n

[0,1]

must be satisfied where γ = q/n and β = k/n. Using 1/2.36482727 in place of ‖Qn(x)‖1/n

[0,1]

and 0.291824 in place of γ leads to β > 0.022613. By viewing the right hand side of this

inequality as the function f(γ, β), we can use the gradient of f(γ, β) to show that the

implicitly defined curve f(γ, β) = 1 gives β as an increasing function of γ in a neighborhood

of the point (γ, β) = (0.291824, 0.022613). Even though we would like to find a lower bound

for β when γ is some value greater than or equal to d0.291824ne /n, using γ = 0.291824

gives a smaller value and so still gives a valid lower bound. Similarly, since replacing the

value 1/2.36482727 with the smaller value ‖Qn(x)‖1/n

[0,1]
results in an increased lower bound,

these substitutions for γ and ‖Qn(x)‖1/n

[0,1]
lead to a valid lower bound on β.

Theorem 1.5 Let Qn(x) be a polynomial of degree n with integer coefficients. If Qn(x)

is an integer Chebyshev polynomial for the interval [0, 1] of sufficiently large degree, then

Qn(x) satisfies the inequality
(
‖Qn(x)‖

[0,1]

)1/n
≤ 1/2.36482727 and

Qn(x) = (x(1− x))λ1n (2x− 1)λ2np(x)

where 0.291824 < λ1 < 0.411773, 0.022613 < λ2, and p(x) is a polynomial with integer

coefficients.

For any other known critical polynomial c(x), Lemma 1.7 can also be used to determine a

lower bound on the degree to which c(x) must divide an nth integer Chebyshev polynomial.

However, since we must use the minimum value taken over the set of all roots of c(x),

and since Lemma 1.7 tends to return relatively weak bounds when α is close to zero, it is

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 26

worthwhile to construct another inequality by considering the interval [α, 1]. It is important

to keep in mind that we are working with the root α of c(x) for which p(α) ≥ |cd|k−
n
d .

On the interval [α, 1], we consider the polynomials Ñα,i(x) defined as

Ñα,i(x) = N1−α,i(1− x)

=
n∑

j=i

(−1)n−j

(
n + 2q + j + 1

n− i + 2q

)(
n− i

n− j

)
(1− x)q

(
1− 1− x

1− α

)j

=
n∑

j=i

(−1)n−j

(
n + 2q + j + 1

n− i + 2q

)(
n− i

n− j

)(−α

1− α

)j

(1− x)q
(
1− x

α

)j

where k ≤ i ≤ n. Under the inner product 〈f(x), g(x)〉 =
∫ 1
α f(x)g(x)dx, the Ñα,i(x)

form an an orthogonal basis for the space of functions generated by (1− x)q(1− x
α)i where

k ≤ i ≤ n since
〈
Ñα,i(x), Ñα,j(x)

〉
= 〈N1−α,i(1− x), N1−α,j(1− x)〉

=
∫ 1

α
N1−α,i(1− x)N1−α,j(1− x)dx

=
∫ 1−α

0
N1−α,i(y)N1−α,j(y)dy

=





(1− α)2q+1
(
n+i+2q+1

n−i+2q

) (
(2i + 1)

(
n+i+1

n−i

))−1
i = j

0 i 6= j.

In the same fashion as before, we would like to express Q(x) = xqc(x)kp(x) in the form

Q(x) = ak(1−x)q
(
1− x

α

)k + · · ·+an(1−x)q
(
1− x

α

)n =
∑n

i=k ηiÑα,i(x). If xq divides Q(x)

were q/n ≤ 0.291824, then Lemma 1.7 can be used to show (1−x)q also divides Q(x). Given

that Q(x) = xqc(x)kp(x) ∈ Zn+q[x] where c(x) is a critical polynomial for the interval [0, 1]

other than x or 1−x, we may rewrite Q(x) as Q(x) = (1−x)qc(x)k (xqp̃(x)). As before, we

need to look at the coefficients of
(
1− x

α

)0 in the expansions of c(x)/
(
1− x

α

)
and xqp̃(x) as

linear combinations of powers of
(
1− x

α

)
. Expressing xqp̃(x) in the form

xqp̃(x) = p̃0 + p̃1

(
1− x

α

)
+ · · ·+ p̃n−kd

(
1− x

α

)n−kd
,

we see that if p(α) ≥ |cd|k−
n
d , then

p̃0 = αqp̃(α) = (α/(1− α))qp(α) ≥ (α/(1− α))q |cd|k−
n
d

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 27

and in exactly the same fashion as before, if

c(x)/
(
1− x

α

)
= −cdα

∏

αi 6=α

(x− αi) = c̃0 + c̃1

(
1− x

α

)
+ · · ·+ c̃d−1

(
1− x

α

)d−1
,

then

|c̃0| = |cdα|
∏

αi 6=α

|α− αi|

where the empty product is taken to be 1 in the case when c(x) is linear and d = 1. If

Q(x) =
∑n

i=k ηiÑα,i(x), then

|ηk| =
∣∣c̃k

0 p̃0

∣∣
(
n+2q+k+1

n+2q−k

) (
α

1−α

)k
≥ |cd|2k−n

d
∏

αi 6=α |α− αi|k αq

(
n+2q+k+1

n+2q−k

)
(1− α)q−k

.

In a similar fashion as before, the fact that
∫ 1
α Q(x)2dx ≤ (1− α) ‖Q‖2

[α,1]
≤ (1− α) ‖Q‖2

[0,1]

leads to
√

1− α ‖Q‖
[0,1]

≥ 〈Q(x), Q(x)〉1/2 ≥
〈
ηkÑα,k(x), ηkÑα,k(x)

〉1/2

= |ηk|

√√√√(1− α)2q+1
(
n+k+2q+1

n−k+2q

)

(2k + 1)
(
n+k+1

n−k

) .

Substituting the above bound for ηk and rearranging now yields

1 ≤
√

(2k + 1)
(

n + k + 2q + 1
n− k + 2q

)(
n + k + 1

n− k

) |cd|
n
d
−2k ‖Q(x)‖

[0,1]

αq(1− α)k
∏

αi 6=α |α− αi|k
.

The only difference to the previous case at this step is that we now have an αq(1 − α)k in

the denominator as opposed to an αq+k term. Applying the same procedure, this difference

carries through giving an αγ(1 − α)β term as opposed to an αγ+β term in the final result.

Since we know p(α) ≥ |cd|k−
n
d must be satisfied for at least one root α of c(x), this last

result can be combined with Lemma 1.7 to give a lower bound on β = k/n.

Lemma 1.8 Let Q(x) = xqc(x)kp(x) be a polynomial of degree n with integer coefficients

for which c(x) does not divide p(x) and let γ = q/n. If c(x) is a critical polynomial for the

interval [0, 1] of degree d with leading coefficient cd and c(x) is not equal to x or 1− x, then

for at least one root α of c(x) we must have β = k/n ≥ max(β1, β2) where β1 is the smallest

positive value for which the inequality

1 ≤
√

(1+β1+γ)1+β1+γ(1+β1−γ)1+β1−γ

(1−β1+γ)1−β1+γ(1−β1−γ)1−β1−γ(2β1)4β1

|cd|
1−γ

d
−2β1

∣∣∣∏αi 6=α(α− αi)
∣∣∣
β1

αγ+β1

‖Q(x)‖1/n

[0,1]

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 28

holds and β2 is the smallest positive value for which the inequality

1 ≤
√

(1+β2+γ)1+β2+γ(1+β2−γ)1+β2−γ

(1−β2+γ)1−β2+γ(1−β2−γ)1−β2−γ(2β2)4β2

|cd|
1−γ

d
−2β2

∣∣∣∏αi 6=α(α− αi)
∣∣∣
β2

αγ(1− α)β2

‖Q(x)‖1/n

[0,1]

holds.

Even though we do not know which root α of c(x) must be used, if we take the minimal

value of β given over the set of all roots of c(x), this will give a lower bound on k/n. Any

upper bound on ‖Q(x)‖1/n

[0,1]
can be used during the computations since decreasing this value

has the effect of increasing the resulting bound on β, but since the inequality p(α) ≥ |cd|k−
n
d

is dependent on the value of q, the same value of γ = q/n must be used throughout the

calculations.

For the known nonlinear critical polynomials that are symmetric on the interval [0, 1], the

optimal value of γ to use is γ = 0. For the two pairs of non symmetric critical polynomials

we can improve the bound slightly by using a marginally larger value of γ. For all roots

of the polynomial c5(x) = 13x3 − 20x2 + 9x − 1, we find that β > 0.000415 whenever

γ ∈ [0.00052, 0.00053]. For sufficiently large n, there will exist an allowable q that puts

γ in this interval and so the exponent k on c5(x) must be greater than 0.000415n. If the

above lemma is used to show Q(x) = c5(x)kp(x), then it can also be used to show that

Q(1 − x) = c5(x)kq(x) and so Q(x) = c4(x)kq̃(x) since c4(x) = 13x3 − 19x2 + 8x − 1 =

−c5(1 − x). The same bound holds for both polynomials in this nonsymmetric pair. A

similar statement can be made for the pair c7(x) = 31x4 − 61x3 + 41x2 − 11x + 1 and

c8(x) = 31x4 − 63x3 + 44x2 − 12x + 1. Combining the results with those from Theorem 1.5

leads to the following.

Theorem 1.6 Let Q(x) be a polynomial of degree n with integer coefficients. If Q(x) is an

integer Chebyshev polynomial for the interval [0, 1] of sufficiently large degree, then Q(x)

satisfies the inequality ‖Q(x)‖1/n

[0,1]
≤ 1/2.36482727 and

Q(x) = (x(1− x))λ1n (2x− 1)λ2n(5x2 − 5x + 1)λ3n

·(29x4 − 58x3 + 40x2 − 11x + 1)λ4n

· ((13x3 − 19x2 + 8x− 1)(13x3 − 20x2 + 9x− 1)
)λ5n

· ((31x4 − 61x3 + 41x2 − 11x + 1)(31x4 − 63x3 + 44x2 − 12x + 1)
)λ6n

·(941x8 − 3764x7 + 6349x6 − 5873x5 + 3243x4 − 1089x3 + 216x2 − 23x + 1)λ7n

·p(x)

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 29

where 0.411773 > λ1 > 0.291824, λ2 > 0.022613, λ3 > 0.006518, λ4 > 0.001749, λ5 >

0.000415, λ6 > 0.000140, λ7 > 0.000351, and p(x) is a polynomial with integer coefficients.

These are the best known bounds on the λi for the unrestricted case on the unit interval.

1.2.7 An easy extension to the interval [0, 1/4]

It is worth noting that if c(x) is a critical polynomial for [0, 1/4] and α is a root of c(x), then

the arguments of the previous section can be repeated with ‖Q‖
[0,α]

≤ ‖Q‖
[0,1/4]

in place

of ‖Q‖
[0,α]

≤ ‖Q‖
[0,1]

. This leads to equivalent statements to Lemmas 1.6 and 1.7 with all

references to the interval [0, 1] replaced with [0, 1/4]. As done by Wu [33], this allows us to

set up an iterative process to find lower bounds on the degree to which x and 1− 4x must

divide an nth integer Chebyshev polynomial for the interval [0, 1/4]. Beginning with an

exponent of zero for 1− 4x, the equivalent statement to Lemma 1.6 gives a lower bound on

the exponent of x which in turn can be used with the equivalent statement to Lemma 1.7

to give a lower bound on the exponent of 1− 4x. This new lower bound on the exponent of

1− 4x can then be used to increase the lower bound on the exponent of x and the process

can be repeated until the lower bounds stabilize.

For the other critical polynomials, this iterative process does not lead to optimal values

for the lower bounds on the degrees to which they must divide an nth integer Chebyshev

polynomial for the interval [0, 1/4]. For the polynomial 1−5x, it was found to be best to use

as large a value as possible for the exponent of x in the equivalent statement to Lemma 1.7.

For the nonlinear critical polynomials, the best value to use for the exponent of x is zero.

Initial attempts to work on the interval [α, 1/4] with the polynomials

Ñ4α,i(4x) =
n∑

j=i

(−1)n−j

(
n + 2q + j + 1

n− i + 2q

)(
n− i

n− j

)(−4α

1− 4α

)j

(1− 4x)q
(
1− x

α

)j

did not improve the results.

Theorem 1.7 Let Q(x) be a polynomial of degree n with integer coefficients. If Q(x) is an

integer Chebyshev polynomial for the interval [0, 1/4] of sufficiently large degree, then Q(x)

satisfies the inequality ‖Q(x)‖1/n

[0,1/4]
≤ 1/5.592408 and

Q(x) = xµ1n(4x− 1)µ2n(5x− 1)µ3n

·(29x2 − 11x + 1)µ4n(169x3 − 94x2 + 17x− 1)µ5n

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 30

·(961x4 − 712x3 + 194x2 − 23x + 1)µ6n

·(941x4 − 703x3 + 193x2 − 23x + 1)µ7nq(x)

where µ1 > 0.598219, µ2 > 0.098017, µ3 > 0.016556, µ4 > 0.004035, µ5 > 0.000954,

µ6 > 0.000325, µ7 > 0.000828, and q(x) is a polynomial with integer coefficients.

These are the best known bounds on the µi for i ≥ 4. For the linear critical polynomials,

the best bounds are due to Pritsker [27].

Converting these results to the interval [0, 1] by sending x to x(1−x) shows that if Q(x)

is a polynomial of even degree and is symmetric around x = 1/2, then the λi in Theorem 1.5

can be improved to λ1 > 0.299109, λ2 > 0.098017, λ3 > 0.008278, λ4 > 0.002017, λ5 >

0.000477, λ6 > 0.000162, and λ7 > 0.000414. Using methods of weighted potential theory,

Pritsker has shown that in the even symmetric case, 0.34 ≥ λ1 ≥ 0.31, 0.14 ≥ λ2 ≥ 0.11,

and 0.057 ≥ λ3 ≥ 0.035.

1.3 The computation of Integer Chebyshev polynomials on

the unit interval

The process of finding an nth integer Chebyshev polynomial for the interval [0, 1] has been

described as complicated, even for polynomials of low degree [8]. Although we can reduce

the number of polynomials that must be considered to a finite set for any n, the size of

this set grows very quickly with the degree and it is hard to keep the problem tractable.

The underlying idea behind the process is shared by all the current methods and breaks

down into the following three steps. Begin by finding a good upper bound on Ωn[0, 1], then

attempt to find necessary factors, and finally do an exhaustive search for the remaining

terms. The difference between the methods is in how each of these steps is implemented.

An example of an nth integer Chebyshev polynomial is given by Montgomery in [25]

for each n from 1 to 5, and this is extended to the case n = 6 by Borwein and Erdelyi

in [8]. The authors of [8] gave a list of open problems of which the following three referred

specifically to the interval [0, 1].

Q1. Find a reasonable algorithm for exactly computing integer Chebyshev polynomials on

[0, 1] that would work up to, say, degree 200.

Q3. Do the integer Chebyshev polynomials on [0, 1] have all their zeros in [0, 1]?

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 31

Q6. Are all the irreducible factors of the integer Chebyshev polynomials on [0, 1] forced to

be factors as in Lemma 1.2? That is, are all irreducible factors q of the form

q(x) = akx
k + ak−1x

k−1 + · · ·+ a0,

with all their zeros in [0, 1], and with

|ak|1/k < Ω[0, 1]−1?

A partial response to the first problem was given by Habsieger and Salvy in [21] where they

improved the basic procedure. This allowed them to find symmetric integer Chebyshev

polynomials up to degree 75. The 70th integer Chebyshev polynomial for the interval [0, 1]

found by them gives a negative answer to the last two questions since it has an irreducible

factor with complex roots (see Table 1.1). The second step of their method was improved

slightly by Wu [33] who attempted to extend the list out to degree 100. Unfortunately, the

polynomial he gives of degree 80 is not an integer Chebyshev polynomial for the interval

[0, 1]. The correct symmetric polynomial gives a second counterexample to the last two

questions above as it also has a factor with complex roots. By examining the list of factors

of known integer Chebyshev polynomials given in Section 1.3.3, one can see that even factors

with all real roots don’t necessarily satisfy problem Q6 as given above.

It is worthwhile to illustrate the three basic steps in the first nontrivial case which occurs

when n = 4. For the first step, we note that the polynomial x2(1−x)2 gives the upper bound

Ω4[0, 1] ≤ 1/16. This is sufficient to force two necessary factors. If p(x) is a polynomial

of degree at most 4 for which ‖p(x)‖
[0,1]

≤ 1/16, then |p(0)| and |p(1)| must be integers of

magnitude less than 1/16 and so p(0) = p(1) = 0. Both x and 1 − x must divide p(x).

Letting p(x) = x(1 − x)(ax2 + bx + c) ∈ Z4[x], we move on to the final stage. Noting

that 24 |p(1/2)| ≤ 24(1/16) leads to |a + 2b + 4c| ≤ 1. Similarly, by considering the points

x = 1/4 and x = 3/4, we get the inequalities |a + 4b + 16c| ≤ 5 and |9a + 12b + 16c| ≤ 5.

A little algebraic manipulation, together with the fact that an integer linear combination of

a, b, and c must be an integer, gives the following constraints.

−2 ≤ c ≤ 2, − 3− 6c ≤ b ≤ 3− 6c, − 1− 2b− 4c ≤ a ≤ 1− 2b− 4c

Checking the supremum norm of the resulting polynomial on the interval [0, 1] for all al-

lowable combinations of a, b, and c shows that up to sign, there are three distinct nth

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 32

integer Chebyshev polynomials for n = 4. They are x2(1 − x)2, x(1 − x)(2x − 1)2, and

x(1 − x)(5x2 − 5x + 1). The only known degrees for which there are more than one nth

integer Chebyshev polynomial on unit interval are n = 1 and n = 4.

Even from this small example, it is clear that the final stage becomes the bottleneck

in the method when the degree of the unknown factor is too large. For this reason, it is

important and worthwhile spending the time to find both a good upper bound on Ωn[0, 1]

and as many necessary factors as possible.

1.3.1 The methods of Habsieger, Salvy, and Wu

Habsieger and Salvy were the first to make significant progress in the computation of integer

Chebyshev polynomials on the unit interval. This was done by improving the method for

finding repeated divisors, using symmetry conditions to halve the degree of the unknown

factor, and incorporating the simplex algorithm into the final stage in order to trim the

space to be searched. Although the use of symmetry means one can no longer claim to have

found all nth integer Chebyshev polynomials, it still allows one to find an example of such a

polynomial as well as the value Ωn[0, 1]. The question as to whether nth integer Chebyshev

polynomials on the unit interval are eventually unique for sufficiently large n is still open.

The method of Habsieger and Salvy [21] begins with the computation of

cn = min
0<k<n

‖pk(x)pn−k(x)‖
[0,1]

where pi(x) is an ith integer Chebyshev polynomial on the interval [0, 1]. The value cn is

then used as an upper bound on ‖pn(x)‖
[0,1]

. Since integer Chebyshev polynomials on the

unit interval tend to have many repeated factors and the introduction of a new unknown

factor is relatively rare, this is a reasonable method to obtain a decent upper bound. In

many cases, one actually finds a polynomial of minimal supremum norm of degree n, but

this is not known until the end of the final stage.

The second step is iterative and is done on the interval [0, 1/4]. As shown in Section 1.2.4,

there must exist an nth integer Chebyshev polynomial of the form pn(x) = G(x(1−x)) when

n is even, and one of the form pn(x) = (1−2x)G(x(1−x)) when n is odd. By setting F (x) = 1

when n is even and F (x) = 1−2x when n is odd, we can write pn(x) = F (x)G(x(1−x)) and

then attempt to find factors of G(x). Each time we find a new required divisor, F (x) and

G(x) are updated so that F (x) always represents the known divisors and G(x) represents

the unknown factor.

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 33

The initial value of the exponent of x can quickly be found by using the inequality of

Borwein and Erdelyi from Section 1.2.5. If pn(x) = xk
(
(1− x)kqn−2k(x)

)
where qn−2k(0) 6=

0, then

1 ≤ |qn−k(0)| ≤
√

2k + 1
(

n + k + 1
n− k

)
cn

where cn is the bound on ‖pn(x)‖
[0,1]

found above. Using the smallest nonnegative integer

k for which this holds, we set F (x) equal to (x(1− x))kF (x).

To work on the interval [0, 1/4], we note that |F (x)G(x(1− x))| ≤ cn on [0, 1] is equiv-

alent to

|F (u(x))G(x)| ≤ cn on [0, 1/4] where u(x) =
1−√1− 4x

2
provided F (x) = ±F (1 − x). For each critical polynomial, or pair of critical polynomials

in Theorem 1.6 that does not yet divide F (x), we can check to see if the corresponding

polynomial d(x) on [0, 1/4] divides G(x) by bounding its resultant with G(x). For each root

αi of d(x), the fact that

|G(αi)| ≤ cn

|F (u(αi))|
is used to compute a bound on the magnitude of the resultant of d(x) and G(x). If this

bound is less than one, we set F (x) equal to F (x)c(x). Using Markov’s bound on the

magnitude of the mth derivative as given in Section 1.2, this can be extended to find

multiple factors. However, this typically only gives a few additional factors of the linear

polynomials d(x) = 4x− 1 and 5x− 1.

The main technique used by Habsieger and Salvy to increase the exponent of a critical

polynomial already dividing F (x) is based on Lagrange interpolation. Given the g + 1

distinct points x0, x1, . . . , xg where g is the degree of G(x), we may write

G(x) =
g∑

i=0

G(xi)
∏

i6=j

x− xj

xi − xj
.

Since |G(xi)| ≤ cn/ |F (u(xi))|, for each root αk of d(x) we have the inequality

|G(αk)| ≤
g∑

i=0

cn

|F (u(xi))|
∏

i6=j

∣∣∣∣
αk − xj

xi − xj

∣∣∣∣ .

For each root αk of d(x), a set of {xi} that minimize this upper bound on |G(αk)| is chosen

in an attempt to show

|am|g |G(α1)| |G(α2)| · · · |G(αm)| < 1

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 34

where m and am are the degree and leading coefficient of d(x). Since the resultant of G(x)

and d(x) must be an integer, each time it is shown to be less than one in magnitude we know

d(x) divides G(x). It should be pointed out that although one would like to find values of

{xi} that give an absolute minimum for the above upper bound on |G(αk)|, this becomes

computationally prohibitive as the number of distinct factors of F (x) increases, even for

modest sizes of g. Luckily, a few iterations of any decent optimizing scheme appear to

produce adequate results. This procedure is carried out for each of the critical polynomials

d(x) in Theorem 1.7. Each time the resultant of G(x) with one of the polynomials d(x) is

shown to be zero, F (x) is updated by setting it equal to F (x)c(x) where c(x) is the critical

polynomial or pair of critical polynomials on [0, 1] corresponding to the polynomial d(x)

and the process is restarted. This continues until no more required factors can be found.

For the final stage of the algorithm, an exhaustive search is done to determine the

coefficients of the unknown factor G(x) = agx
g + ag−1x

g−1 + · · · + a1x + a0. The fact

that |G(x)| ≤ cn/ |F (u(x))| for any x ∈ [0, 1/4] is used once again, but here the purpose

is to set up a system of linear inequalities. By evaluating cn/F (u(x)) at sufficiently many

points in the interval [0, 1/4], a convex polytope can be constructed that contains the point

(a0, a1, . . . , ag) corresponding to G(x). To find this point, we treat the ai as variables

and find all points with integer coordinates that are not in the exterior of the bounding

polytope. For each such point, the corresponding polynomial G(x) is constructed and we

compute ‖F (u(x))G(x)‖
[0,1]

. Any polynomial G(x) that gives a minimal supremum norm is

one we are looking for.

The method used to find the integer coordinate points makes use of the simplex algo-

rithm. Initially, the simplex algorithm is used to find the maximum and minimum value of

each ai on the bounding polytope. These extreme coordinate values define a polyrectangle

and if the number of integer coordinate points contained within it is not too large, each

is checked to see if it lies within the bounding polytope. For larger polyrectangles, the

coordinate with minimal variation is chosen and the method is applied recursively to each

of its allowable values. Habsieger and Salvy mention that it appears to be better to work

on the interval [4,∞) and compute the coefficients of the reciprocal polynomial of G(x) in

the basis 1, (x − 4), (x − 4)(x − 5), . . . instead of the coefficients of G(x) itself. Using this

method allowed them to find nth integer Chebyshev polynomials for all n from 0 to 75. For

the final step, the largest degree in the unknown factor G(x) they were able to handle was

degree 12.

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 35

Wu’s contribution

Wu’s main contribution [32] [33] to the initial method comes in the form of an improvement

in the second step. By incorporating the ideas from the section on generalized Muntz-

Legendre polynomials, Wu manages to find additional factors of the linear critical polyno-

mials on [0, 1/4]. The first and third steps are also modified slightly.

As with Habsieger and Salvy, Wu begins with the computation of

cn = min
0<k<n

‖pk(x)pn−k(x)‖
[0,1]

where pi(x) is an ith integer Chebyshev polynomial on the interval [0, 1] and writes pn(x) as

F (x)G(x(1 − x)) where F (x) represents the known factors and G(x(1 − x)) represents the

unknown portion of pn(x). In an effort to reduce this bound, Wu considers the polynomials

F (x), F (x)(x(1−x)), F (x)(x(1−x))2, . . . , F (x)(x(1−x))g where g is the degree of G(x), and

then constructs the lattice generated by the vectors whose components are the coefficients

of these polynomials. Using the LLL algorithm, a new basis for the space of integer linear

combinations of these polynomials can be constructed. In the event that any of the new basis

vectors has supremum norm less than cn on the unit interval, the value of cn is updated.

These polynomials are also used in the final step when performing the exhaustive search

for G(x). Since each of the new basis polynomials is of the form F (x)Bi(x(1 − x)) and

F (x)G(x(1 − x)) can be written as an integer linear combination of these, we note that

G(x) = a0B0(x) + a1B1(x) + · · · + agBg(x). This allows for the method of Habsieger and

Salvy to be used in order to determine the coefficients ai.

The main improvement in Wu’s method comes from applying the ideas used in the

section on generalized Muntz-Legendre polynomials in order to increase the exponents of

the linear polynomials x, 4x− 1 and 5x− 1 while working on the interval [0, 1/4]. Working

from left to right and applying the Gram-Schmidt orthogonalization process to the functions

(ax+b)gF (u(x)), (ax+b)g−1F (u(x)), . . . , (ax+b)0F (u(x)) with inner product 〈f(x), g(x)〉 =∫ 1/4
0 f(x)g(x)dx results in the orthogonal functions Lg(x), Lg−1(x) . . . , L0(x) and allows

for the expression

pn(u(x)) = F (u(x))G(x) =
g∑

i=0

ai(ax + b)iF (u(x)) =
g∑

i=0

λiLi(x).

Noting that G(x) =
∑g

i=0 ai(ax + b)i shows that a0 = G(−b/a) and so aga0 ∈ Z. Fur-

thermore, since the coefficient of the (ax + b)0F (u(x)) term in L0(x) is 1, λ0 = a0. The

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 36

orthogonality of the functions Li(x) and the fact that pn(u(x)) ≤ cn on [0, 1/4] now gives

cn

2
≥

√∫ 1/4

0
pn(u(x))pn(u(x))dx =

√√√√
g∑

i=0

λ2
i ‖Li(x)‖2

2,[0,1/4] ≥ |λ0| ‖L0(x)‖2,[0,1/4]

or

|aga0| ≤ |ag| cn

2‖L0(x)‖2,[0,1/4]
.

If the right hand side of this last inequality is less than 1, then a0 = 0 and ax + b divides

G(x). Transferring this factor to F (u(x)), relabelling L1(x),. . . ,Lg(x) as L0(x),. . . ,Lg−1(x),

and decreasing g by 1 allows for the process to be repeated with a minimal amount of work

until no additonal factors of ax + b are found.

These modifications to the method of Habsieger and Salvy allowed Wu to extend the

list of known symmetric integer Chebyshev polynomials for the interval [0, 1] out to degree

100. Unfortunately, there is an error in the case n = 80. Wu gives the polynomial

(x(1− x))27(1− 2x)10(5x2 − 5x + 1)4(29x4 − 58x3 + 40x2 − 11x + 1)2

but the correct symmetric 80th integer Chebyshev polynomial on the unit interval is

(x(1− x))26(1− 2x)10(5x2 − 5x + 1)3(29x4 − 58x3 + 40x2 − 11x + 1)

·(821x8 − 3284x7 + 5555x6 − 5171x5 + 2886x4 − 985x3 + 200x2 − 22x + 1).

It is unclear as to exactly where Wu’s error was made, but the comment made in [32] about

numerical inaccuracies in the pivoting procedure suggests that inexact arithmetic was used.

1.3.2 An improved method

The method of finding an nth integer Chebyshev polynomial can be improved significantly

by introducing the simplex algorithm in the second step and basing the final search on the

resultants of the unknown factor with many linear polynomials having their roots in the

interval [0, 1/4]. The process begins in the same way as the method of Habsieger and Salvy.

Starting with the upper bound on ‖pn(x)‖
[0,1]

of

cn = min
0<k<n

‖pk(x)pn−k(x)‖
[0,1]

where pi(x) is an ith integer Chebyshev polynomial on the interval [0, 1], the inequality of

Borwein and Erdelyi from Section 1.2.5 is used to find the initial exponent k for x(1 − x).

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 37

Setting F (x) = (x(1− x))k when n is even and F (x) = (x(1− x))k(1− 2x) when n is odd,

pn(x) is then written as pn(x) = F (x)G(x(1−x)) and we move to the interval [0, 1/4] in an

attempt to find additional factors of G(x). For each critical polynomial d(x) in Theorem 1.7

and for the polynomial 6x−1, let m, bm, and {αi}m
i=1 be the degree, leading coefficient, and

roots of d(x). If F (u(αi)) 6= 0, then |G(αi)| ≤ cn/ |F (u(αi))| and so the resultant of G(x)

and d(x) can be bounded by the inequality

|resx(G(x), d(x))| =
∣∣∣∣∣b

g
m

m∏

i=1

G(αi)

∣∣∣∣∣ ≤ |bm|g cm
n

m∏

i=1

1
|F (u(αi))| .

It is when d(x(1−x)) divides F (x) that the process differs from that of Habsieger and Salvy.

In this case, when αi is rational, the simplex algorithm is used to bound |G(αi)| directly.

Writing G(x) = agx
g+ag−1x

g−1+· · ·+a1x+a0 and using the fact that |G(x)| ≤ cn/ |F (u(x))|
for all x ∈ [0, 1/4] at which F (u(x)) 6= 0, we can evaluate the right hand side at sufficiently

many points in [0, 1/4] in order to construct a convex polytope which contains all allowable

points (a0, a1, . . . , ag). Finding the maximum and minimum values of the linear objective

function bg
mG(αi) under the above constraints then gives bounds on the resultant. Due to

observed numerical instabilities in the simplex algorithm, exact rational arithmetic was used

with an iterative process in order to select the points xi ∈ [0, 1/4]. Starting with sufficiently

many equally spaced points so that the feasible set was bounded, the simplex algorithm was

used to find a point ã = (ã0, ã1, . . . , ãg) in the feasible set at which bg
mG(αi) was maximized.

The number of equally spaced points {xi} was then doubled and those xi giving rise to a

hyperplane either containing ã or removing ã from the feasible set were used during the next

iteration. In order to avoid questions of numerical stability, when the αi are not rational

the simplex algorithm was used to find bounds on the values of G(wi/vi) where wi/vi is a

continued fraction convergent of αi. The wi/vi and bounds on |G(wi, vi)| were then used

with the method of Lagrange interpolation of Habsieger and Salvy in an attempt to show

that the resultant of G(x) and d(x) must be zero. The method of Wu was not used as it

provided no additional factors.

To improve the final step of the process, the search was based on the resultants of G(x)

with g +1 linear polynomials y = vix−wi having roots in [0, 1/4]. Letting ri = vg
i G(wi/vi),

the system of equations
{
ri = vg

i

∑g
k=0 ak(wi/vi)k

}g+1

i=1
can be used to express the coefficients

of G(x) in terms of the integers ri. Although we do not know the values of the ri which

correspond to the desired polynomial beforehand, we can reduce the number of possible

combinations to consider to a finite set and then run through this set in order to find the

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 38

combination giving rise to a polynomial F (x)G(x(1−x)) of minimal supremum norm on the

interval [0, 1]. To reduce the size of the set of allowable combinations, we first bound the ri

with the expression |vg
i G(wi/vi)| ≤ vg

i cn/ |F (u(wi/vi))| when F (u(wi/vi)) 6= 0, and by the

use of the simplex algorithm as above when F (u(wi/vi)) = 0. The important thing to note

in order to further reduce the size of this set is that the coefficients ak of G(x), which are

integers, are given as rational linear combinations of the ri. This allows us to set up a system

of congruences that the ri must satisfy. Rather than using the Chinese Remainder theorem,

the following method was used to solve the system of congruences. Not only is it simple

and easy to implement, but it also allows for a very convenient and compact description for

the set of solutions.

Writing the rational linear combination of the ri corresponding to each aj as

1
mj

g+1∑

i=1

tj,iri = aj

where the mj and tj,i are integers gives rise to the g + 1 congruence relations

g+1∑

i=1

tj,iri ≡ 0 (mod mj).

Letting M = lcm(m1,m2, . . . , mg+1) gives the equivalent form

g+1∑

i=1

M

mj
tj,iri ≡ 0 (mod M)

which can be written as

S r =




s1,1 s1,2 s1,3 · · · s1,g+1

s2,1 s2,2
...

s3,1
. . .

...
...

. . .
...

sg+1,1 · · · · · · · · · sg+1,g+1







r1

r2

...

...

rg+1




=




0

0
...
...

0




(mod M)

where sj,i = (M/mj)tj,i. Note that interchanging rows of S or replacing row k with row

k plus an integer multiple of row l for any l 6= k does not change the set of solutions.

This allows for a form of Gaussian elimination to be applied to the matrix S using the

Euclidean algorithm. After the elimination step, back substitution using the resulting sim-

plified congruences and the initial bounds on the ri allows one to step through all allowable

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 39

combinations of the ri in an orderly fashion. In the author’s implementation, the elimination

step was arranged so that the back substitution resulted in considering the ri in the order

r1, r2, . . . , rg+1. Each choice of r1 through ri−1 then resulted in a congruence of the form

ãri ≡ b̃ (mod m̃i)

which was easily handled. As in the method of Habsieger and Salvy, the simplex algorithm

can be used to further reduce the bounds on ri when r1, r2, . . . , ri−1 are fixed. In the event

that ri = 0, it was found that for g ≥ 11, it was worthwhile to consider the subcase where

F (x) is multiplied by the factor vix(1− x)− wi, the degree of G(x) is decreased by 1, and

the values of rk for 1 ≤ k < i are updated appropriately. As a final time saving technique,

since multiplying a polynomial by −1 does not change the value of its supremum norm on

an interval, we can restrict our search to combinations of the ri for which the first nonzero

ri is negative.

With the full procedure in hand, one can now improve the first step as well. By adding

suspected divisors to the known divisors at the end of the second stage, one can execute the

final step in an attempt to reduce the bound cn. After completion, the suspected factors

added without justification must be removed. If the bound on Ωn[0, 1] was reduced, one

returns to the second step with an improved value for cn in an attempt to find more necessary

factors. If the bound was not decreased, one simply continues on to the third step.

These improvements to the general method allow for significantly better results. Hab-

sieger and Salvy managed to find nth integer Chebyshev polynomials on [0, 1] for all n up to

and including n = 75 and could only handle cases where the degree of the unknown factor

was at most equal to 12. With the new method, the maximum degree of the unknown factor

after termination of the second step was 7 for n ≤ 75, and an unknown of degree greater

than 12 was not encountered in the final stage until n = 127. The new method of finding

the unknown factor G(x) is significantly better as well. It handled all cases where the degree

of G(x) was less than or equal to 14, handled many cases where the degree of G(x) equaled

15, and even managed to handle a few degree 16 cases. This allowed for the computation of

Ωn[0, 1] and the discovery of a corresponding nth integer Chebyshev polynomials on [0, 1]

for all n ≤ 145, and for all but 27 of the cases where n ≤ 230.

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 40

1.3.3 The results of the improved method

The results of the new method for finding nth integer Chebyshev polynomials on [0, 1] are

presented in Tables 1.1, 1.2, and 1.3. The following polynomials are the factors referred to

in the tables.

h1(x) = x(1− x)

h2(x) = 2x− 1

h3(x) = 5x2 − 5x + 1

h4(x) = 6x2 − 6x + 1

h5(x) = 29x4 − 58x3 + 40x2 − 11x + 1

h6(x) = 33x4 − 66x3 + 45x2 − 12x + 1

h7(x) = 34x4 − 68x3 + 46x2 − 12x + 1

h8(x) = (7x2 − 6x + 1)(7x2 − 8x + 2)

h9(x) = 161x6 − 483x5 + 575x4 − 345x3 + 109x2 − 17x + 1

h10(x) = (13x3 − 19x2 + 8x− 1)(13x3 − 20x2 + 9x− 1)

h11(x) = 181x6 − 543x5 + 644x4 − 383x3 + 119x2 − 18x + 1

h12(x) = 193x6 − 579x5 + 683x4 − 401x3 + 122x2 − 18x + 1

h13(x) = 821x8 − 3284x7 + 5555x6 − 5171x5 + 2886x4 − 985x3 + 200x2 − 22x + 1

h14(x) = 941x8 − 3764x7 + 6349x6 − 5873x5 + 3243x4 − 1089x3 + 216x2 − 23x + 1

h15(x) = (31x4 − 61x3 + 41x2 − 11x + 1)(31x4 − 63x3 + 44x2 − 12x + 1)

h16(x) = 4921x10 − 24605x9 + 53804x8 − 67586x7 + 53866x6 − 28388x5 + 9995x4

−2317x3 + 338x2 − 28x + 1

h17(x) = 31169x12 − 187014x11 + 502099x10 − 796200x9 + 828936x8 − 595698x7

+302334x6 − 108945x5 + 27600x4 − 4783x3 + 537x2 − 35x + 1

h18(x) = 43609x12 − 261654x11 + 704777x10 − 1125390x9 + 1184854x8 − 865270x7

+448776x6 − 166327x5 + 43659x4 − 7905x3 + 936x2 − 65x + 2

h19(x) = 161429x14 − 1130003x13 + 3599830x12 − 6908941x11 + 8913112x10

−8165339x9 + 5470288x8 − 2718775x7 + 1005970x6 − 275399x5 + 54846x4

−7697x3 + 719x2 − 40x + 1

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 41

h20(x) = 161813x14 − 1132691x13 + 3608246x12 − 6924493x11 + 8931952x10

−8181043x9 + 5479474x8 − 2722543x7 + 1007031x6 − 275594x5 + 54867x4

−7698x3 + 719x2 − 40x + 1

h21(x) = 161929x14 − 1133503x13 + 3610755x12 − 6928991x11 + 8937122x10

−8185014x9 + 5481532x8 − 2723251x7 + 1007185x6 − 275613x5 + 54868x4

−7698x3 + 719x2 − 40x + 1

h22(x) = 887981x16 − 7103848x15 + 26189139x14 − 59006633x13 + 90856296x12

−101276631x11 + 84454852x10 − 53688009x9 + 26265936x8 − 9911593x7

+2872148x6 − 631701x5 + 103263x4 − 12115x3 + 961x2 − 46x + 1

h23(x) = 907201x16 − 7257608x15 + 26750188x14 − 60243176x13 + 92693614x12

−103221560x11 + 85965780x10 − 54562008x9 + 26643715x8 − 10032840x7

+2900545x6 − 636399x5 + 103781x4 − 12149x3 + 962x2 − 46x + 1

1.4 The search for candidate critical polynomials

The technique referred to in Section 1.2.3 to reduce the upper bound on Ω[0, 1] relies on

having a good set of polynomials to work with. What is classified as a good polynomial

here is one that is likely to be a divisor of an nth integer Chebyshev polynomial on [0, 1]

for sufficiently large n. The factors hi(x) from the previous section, being factors of integer

Chebyshev polynomials on the unit interval for at least some n are such polynomials. Three

other sources of such polynomials are the Schur-Siegel-Smyth trace problem, the function

u(x) related to the Gorshkov-Wirsing polynomials, and factors of polynomials with small

supremum norm found in the previous section that are not nth integer Chebyshev polyno-

mials for the unit interval. Of this last type, the following polynomials do not show up in

the next two subsections.

r1(x) = 30689x12 − 184134x11 + 494483x10 − 784520x9 + 817442x8 − 588122x7

+298951x6 − 107936x5 + 27408x4 − 4762x3 + 536x2 − 35x + 1

r2(x) = 179213x14 − 1254491x13 + 3994456x12 − 7658353x11 + 9863413x10

−9014198x9 + 6019243x8 − 2978749x7 + 1096048x6 − 297935x5

+58801x4 − 8158x3 + 751x2 − 41x + 1

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 42

Table 1.1: Integer Chebyshev polynomials for the interval [0, 1] (n = 0 to 76)
n Ωn[0, 1]−1 Polynomial(s)

0 – 1
1 1 1, x, 1− x, 2x− 1
2 2 h1

3 2.18224727 h1h2

4 2 h2
1, h1h

2
2, h1h3

5 2.23606797 h2
1h2

6 2.18224727 h2
1h

2
2

7 2.22372632 h3
1h2

8 2.22782986 h3
1h

2
2

9 2.29702748 h3
1h2h3

10 2.23606797 h4
1h

2
2

11 2.25009568 h4
1h2h3

12 2.27856669 h4
1h

2
2h3

13 2.24573490 h4
1h2h

2
3

14 2.31766354 h5
1h

2
2h3

15 2.26211527 h5
1h

3
2h3

16 2.28609047 h6
1h

2
2h3

17 2.29584896 h6
1h

3
2h3

18 2.29702748 h6
1h

2
2h

2
3

19 2.31639873 h7
1h

3
2h3

20 2.29070109 h6
1h

2
2h3h5

21 2.29422160 h8
1h

3
2h3

22 2.29855818 h8
1h

4
2h3

23 2.31301167 h8
1h

3
2h

2
3

24 2.31149862 h9
1h

4
2h3

25 2.32754248 h8
1h

3
2h3h5

26 2.30208977 h9
1h

4
2h

2
3

27 2.32440612 h9
1h

3
2h3h5

28 2.31766354 h10
1 h4

2h
2
3

29 2.30626874 h11
1 h5

2h3

30 2.31610249 h10
1 h4

2h3h5

31 2.30666526 h11
1 h5

2h
2
3

32 2.31918334 h11
1 h4

2h3h5

33 2.31794438 h12
1 h5

2h
2
3

34 2.33071440 h11
1 h4

2h
2
3h5

35 2.31371757 h11
1 h5

2h3h4h5

36 2.31862425 h12
1 h4

2h
2
3h5

37 2.32370076 h12
1 h5

2h
2
3h5

38 2.31639873 h14
1 h6

2h
2
3

n Ωn[0, 1]−1 Polynomial

39 2.33704596 h13
1 h5

2h
2
3h5

40 2.31744217 h13
1 h6

2h
2
3h5

41 2.33149140 h14
1 h5

2h
2
3h5

42 2.32573112 h14
1 h6

2h32h5

43 2.32794984 h14
1 h5

2h
3
3h5

44 2.32932654 h15
1 h6

2h
2
3h5

45 2.31596596 h15
1 h7

2h
2
3h5

46 2.33234040 h16
1 h6

2h
2
3h5

47 2.32349270 h15
1 h5

2h
2
3h

2
5

48 2.33770356 h16
1 h6

2h
3
3h5

49 2.32967805 h16
1 h7

2h
2
3h4h5

50 2.32754248 h16
1 h6

2h
2
3h

2
5

51 2.33340214 h17
1 h7

2h
3
3h5

52 2.33142077 h17
1 h8

2h
2
3h4h5

53 2.33829879 h18
1 h7

2h
3
3h5

54 2.32603479 h18
1 h8

2h
3
3h5

55 2.33247963 h19
1 h7

2h
3
3h5

56 2.32968376 h19
1 h8

2h
3
3h5

57 2.33130232 h19
1 h7

2h
4
3h5

58 2.33290562 h20
1 h8

2h
3
3h5

59 2.33220983 h19
1 h7

2h
3
3h

2
5

60 2.33574336 h21
1 h8

2h
3
3h5

61 2.33096907 h20
1 h7

2h
3
3h

2
5

62 2.33692684 h21
1 h8

2h
4
3h5

63 2.33105072 h20
1 h7

2h
3
3h5h10

64 2.33433366 h21
1 h8

2h
3
3h

2
5

65 2.33465253 h22
1 h9

2h
4
3h5

66 2.33716820 h22
1 h10

2 h3
3h4h5

67 2.33779974 h23
1 h9

2h
4
3h5

68 2.33222376 h23
1 h10

2 h3
3h4h5

69 2.33309478 h22
1 h9

2h
3
3h5h10

70 2.33216994 h22
1 h8

2h
2
3h5h16

71 2.33324154 h24
1 h11

2 h3
3h4h5

72 2.33942227 h23
1 h8

2h
4
3h5h10

73 2.33945780 h24
1 h9

2h
4
3h

2
5

74 2.33658654 h23
1 h8

2h
4
3h5h15

75 2.33666483 h24
1 h9

2h
4
3h5h10

76 2.33815431 h24
1 h10

2 h4
3h4h5h6

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 43

Table 1.2: Integer Chebyshev polynomials for the interval [0, 1] (n = 77 to 154)
n Ωn[0, 1]−1 Polynomial

77 2.33683660 h25
1 h9

2h
3
3h5h14

78 2.33704596 h26
1 h10

2 h4
3h

2
5

79 2.34098055 h26
1 h9

2h
3
3h5h14

80 2.33896527 h26
1 h10

2 h3
3h5h13

81 2.33860591 h26
1 h9

2h
5
3h5h10

82 2.33908234 h27
1 h12

2 h3
3h4h

2
5

83 2.33703405 h27
1 h11

2 h4
3h5h10

84 2.33578895 h27
1 h10

2 h5
3h5h10

85 2.34066658 h26
1 h9

2h
3
3h5h10h14

86 2.34034898 h28
1 h10

2 h5
3h5h10

87 2.34203352 h27
1 h9

2h
3
3h5h10h14

88 2.34009517 h29
1 h10

2 h4
3h5h14

89 2.34159749 h29
1 h11

2 h5
3h5h10

90 2.34215408 h28
1 h10

2 h3
3h5h10h14

91 2.33789130 h30
1 h13

2 h4
3h4h

2
5

92 2.34027671 h30
1 h12

2 h3
3h4h5h14

93 2.34124790 h30
1 h13

2 h5
3h4h5h6

94 2.34344270 h29
1 h10

2 h4
3h5h10h14

95 2.34002364 h31
1 h11

2 h3
3h5h18

96 2.34339293 h32
1 h14

2 h4
3h4h

2
5

97 2.34027461 h31
1 h11

2 h4
3h

2
5h14

98 2.34205718 h32
1 h12

2 h6
3h5h10

99 2.34250303 h32
1 h13

2 h6
3h4h5h6

100 2.34163023 h34
1 h12

2 h4
3h5h14

101 2.34525665 h32
1 h11

2 h4
3h5h10h14

102 2.34570028 h33
1 h12

2 h5
3h

2
5h10

103 2.34332934 h32
1 h11

2 h5
3h5h10h14

104 2.34245745 h34
1 h12

2 h5
3h

2
5h10

105 2.34317801 h34
1 h13

2 h5
3h

2
5h10

106 2.34321049 h34
1 h12

2 h4
3h5h10h14

107 2.34273972 h35
1 h13

2 h5
3h

2
5h10

108 2.34392465 h34
1 h12

2 h5
3h5h20

109 2.34122988 h37
1 h13

2 h5
3h5h14

110 2.34487956 h37
1 h16

2 h5
3h4h

2
5

111 2.34410344 h36
1 h13

2 h6
3h

2
5h10

112 2.34602159 h35
1 h12

2 h4
3h

2
5h10h14

113 2.34567385 h37
1 h13

2 h6
3h

2
5h10

114 2.34294116 h37
1 h14

2 h4
3h4h

2
5h14

115 2.34786857 h36
1 h13

2 h4
3h

2
5h10h14

n Ωn[0, 1]−1 Polynomial

116 2.34795393 h38
1 h14

2 h6
3h

2
5h10

117 2.34500490 h38
1 h13

2 h5
3h5h10h14

118 2.34577006 h37
1 h14

2 h4
3h

2
5h10h14

119 2.34477067 h39
1 h15

2 h6
3h

2
5h10

120 2.34423737 h38
1 h14

2 h4
3h4h

2
5h10h11

121 2.34448487 h40
1 h15

2 h6
3h

2
5h10

122 2.34378508 h39
1 h14

2 h4
3h

2
5h19

123 2.34439044 h39
1 h13

2 h5
3h

2
5h12h14

124 2.34960324 h39
1 h14

2 h5
3h

2
5h10h14

125 2.34786626 h41
1 h15

2 h7
3h

2
5h10

126 2.35016259 h40
1 h14

2 h5
3h

2
5h10h14

127 2.34551883 h40
1 h15

2 h5
3h

2
5h10h14

128 2.34611715 h40
1 h16

2 h5
3h4h

2
5h17

129 2.34905859 h42
1 h15

2 h6
3h

3
5h10

130 2.34719016 h43
1 h16

2 h7
3h

2
5h10

131 2.34938969 h42
1 h15

2 h5
3h

2
5h10h14

132 2.34708501 h43
1 h16

2 h6
3h

3
5h10

133 2.34785751 h42
1 h15

2 h6
3h

2
5h10h14

134 2.34628359 h43
1 h16

2 h5
3h4h

2
5h10h11

135 2.34773453 h43
1 h15

2 h6
3h

2
5h10h14

136 2.34711093 h44
1 h16

2 h5
3h

2
5h10h14

137 2.34802942 h43
1 h15

2 h5
3h

3
5h10h14

138 2.34709892 h44
1 h16

2 h6
3h

2
5h10h14

139 2.34543668 h46
1 h17

2 h8
3h

2
5h10

140 2.35086471 h44
1 h16

2 h5
3h

3
5h10h14

141 2.34703414 h46
1 h17

2 h7
3h

3
5h10

142 2.34870654 h45
1 h16

2 h5
3h

3
5h10h14

143 2.34960986 h47
1 h17

2 h7
3h

3
5h10

144 2.34803496 h46
1 h18

2 h6
3h4h

2
5h9h10

145 2.34788883 h46
1 h17

2 h5
3h

3
5h10h14

146 ≥ 2.346298
147 ≥ 2.348766
148 2.34928812 h46

1 h16
2 h5

3h
2
5h10h14h15

149 ≥ 2.348586
150 2.34889729 h47

1 h16
2 h5

3h
2
5h10h14h15

151 2.35089600 h48
1 h17

2 h6
3h

3
5h10h14

152 ≥ 2.348660
153 ≥ 2.350315
154 ≥ 2.350246

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 44

Table 1.3: Integer Chebyshev polynomials for the interval [0, 1] (n = 155 to 230)
n Ωn[0, 1]−1 Polynomial

155 ≥ 2.347764
156 2.35167936 h50

1 h18
2 h6

3h
3
5h10h14

157 2.35298690 h49
1 h17

2 h6
3h

2
5h10h14h15

158 ≥ 2.350933
159 ≥ 2.349342
160 2.35262727 h50

1 h18
2 h6

3h
2
5h10h14h15

161 ≥ 2.349767
162 2.35494623 h51

1 h18
2 h6

3h
2
5h10h14h15

163 2.35176777 h51
1 h19

2 h6
3h

2
5h10h14h15

164 2.35129166 h52
1 h18

2 h6
3h

2
5h10h14h15

165 2.35263602 h52
1 h19

2 h6
3h

2
5h10h14h15

166 2.35122436 h52
1 h18

2 h7
3h

2
5h10h14h15

167 2.35230229 h53
1 h19

2 h6
3h

2
5h10h14h15

168 2.35100107 h53
1 h22

2 h6
3h4h

2
5h7h10h14

169 2.35305597 h53
1 h19

2 h7
3h

2
5h10h14h15

170 2.35259616 h54
1 h22

2 h6
3h4h

2
5h7h10h14

171 2.35236551 h54
1 h19

2 h7
3h

2
5h10h14h15

172 2.35218622 h54
1 h20

2 h7
3h

2
5h10h14h15

173 ≥ 2.350620
174 2.35380903 h55

1 h20
2 h7

3h
2
5h10h14h15

175 ≥ 2.350605
176 2.35200375 h56

1 h20
2 h7

3h
2
5h10h14h15

177 ≥ 2.350977
178 2.35333824 h56

1 h20
2 h8

3h
2
5h10h14h15

179 2.35188343 h57
1 h21

2 h7
3h

2
5h10h14h15

180 ≥ 2.350799
181 2.35246637 h57

1 h21
2 h8

3h
2
5h10h14h15

182 2.35247684 h57
1 h20

2 h7
3h

3
5h10h14h15

183 2.35298504 h58
1 h21

2 h8
3h

2
5h10h14h15

184 ≥ 2.350104
185 2.35167425 h58

1 h21
2 h7

3h
3
5h10h14h15

186 ≥ 2.351068
187 2.35319807 h59

1 h21
2 h7

3h
3
5h10h14h15

188 2.35208180 h60
1 h22

2 h8
3h

2
5h10h14h15

189 2.35333286 h60
1 h21

2 h7
3h

3
5h10h14h15

190 2.35280474 h59
1 h20

2 h7
3h

2
5h10h14h23

191 ≥ 2.352230
192 2.35296330 h61

1 h24
2 h7

3h4h
3
5h7h10h14

n Ωn[0, 1]−1 Polynomial

193 2.35154999 h61
1 h23

2 h7
3h4h

3
5h9h10h14

194 ≥ 2.351954
195 2.35216904 h62

1 h25
2 h7

3h4h
3
5h7h10h14

196 2.35592087 h62
1 h22

2 h8
3h

3
5h10h14h15

197 2.35438234 h62
1 h23

2 h7
3h4h

3
5h10h14h15

198 ≥ 2.352664
199 2.35325444 h63

1 h23
2 h8

3h
3
5h10h14h15

200 ≥ 2.352393
201 2.35358771 h64

1 h23
2 h8

3h
3
5h10h14h15

202 ≥ 2.352159
203 2.35391172 h65

1 h23
2 h8

3h
3
5h10h14h15

204 2.35467398 h65
1 h26

2 h8
3h4h

3
5h7h10h14

205 2.35445302 h65
1 h23

2 h9
3h

3
5h10h14h15

206 2.35362212 h66
1 h26

2 h8
3h4h

3
5h7h10h14

207 ≥ 2.352999
208 2.35346196 h66

1 h24
2 h9

3h
3
5h10h14h15

209 2.35557985 h67
1 h27

2 h8
3h4h

3
5h7h10h14

210 2.35434964 h67
1 h24

2 h9
3h

3
5h10h14h15

211 2.35354763 h68
1 h27

2 h8
3h4h

3
5h7h10h14

212 2.35370011 h68
1 h24

2 h9
3h

3
5h10h14h15

213 ≥ 2.353051
214 2.35411349 h68

1 h26
2 h8

3h4h
3
5h10h14h15

215 ≥ 2.352712
216 2.35401353 h69

1 h26
2 h10

3 h4h
3
5h6h10h14

217 2.35397104 h69
1 h27

2 h8
3h4h

3
5h10h14h15

218 2.35423461 h70
1 h28

2 h9
3h4h

3
5h7h10h14

219 2.35439365 h70
1 h25

2 h10
3 h3

5h10h14h15

220 2.35450391 h69
1 h24

2 h8
3h

3
5h10h14h22

221 2.35480670 h71
1 h25

2 h8
3h

3
5h8h10h14h15

222 ≥ 2.353061
223 2.35353721 h72

1 h29
2 h9

3h4h
3
5h7h10h14

224 ≥ 2.352907
225 2.35456816 h71

1 h25
2 h9

3h
3
5h10h14h21

226 2.35462498 h72
1 h28

2 h9
3h4h

3
5h10h14h15

227 2.35559409 h72
1 h25

2 h9
3h

3
5h10h14h21

228 2.35358328 h72
1 h26

2 h9
3h

3
5h10h14h21

229 ≥ 2.35396
230 2.35487542 h73

1 h26
2 h9

3h
3
5h10h14h21

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 45

r3(x) = 890381x16 − 7123048x15 + 26258899x14 − 59158953x13 + 91079142x12

−101507147x11 + 84628171x10 − 53783834x9 + 26304860x8 − 9923055x7

+2874524x6 − 632029x5 + 103290x4 − 12116x3 + 961x2 − 46x + 1

r4(x) = 5287361x18 − 47586249x17 + 199139568x16 − 514494900x15 + 918909397x14

−1203880783x13 + 1198032039x12 − 925178633x11 + 561591777x10

−269728267x9 + 102663046x8 − 30867601x7 + 7271422x6 − 1322862x5

+181649x4 − 18155x3 + 1243x2 − 52x + 1

1.4.1 The Schur-Siegel-Smyth trace problem

The mean trace of an algebraic integer α of degree d is

tr(α) =
1
d

d∑

i=1

αi

where {αi}d
i=1 represents the set of conjugates of α. If we define T as

T = {tr(α) : α is a totally positive agebraic integer} ,

then it is an open question as to whether 2 is the smallest limit point of this set. Recent

attacks on this problem come in the form of showing that for all but finitely many totally

positive algebraic integers α, tr(α) > 2−δ for some δ > 0 and use the method of Smyth [29].

If it can be shown that x − a log(|q(x)|) ≥ b for all x > 0 where q(x) is a polynomial with

integer coefficients and a > 0, then for a totally positive algebraic integer α of degree d with

conjugates {αi}d
i=1 and minimal polynomial p(x),

1
d

(
d∑

i=1

αi − a log(|q(αi)|)
)

= tr(α)− a

d
log(|resultant(p(x), q(x))|) ≥ b.

If q(α) 6= 0, then the resultant in this last expression is a nonzero integer which leads to

tr(α) ≥ b for all totally positive algebraic integers except those with minimal polynomial

dividing q(x). By constructing q(x) from polynomials qi(x) with small mean trace and

selecting rational ai in an attempt to maximize the minimum value of x− ai log(|qi(x)|) on

x > 0, one can try to increase the value of b. An account of recent results can be found

in [1], which also contains Serre’s proof that this method cannot increase the constant b

beyond the value 1.898302. The interest here lies in the polynomials qi(x) used to construct

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 46

q(x). Since a totally positive algebraic integer α has all positive roots, if qi(x) is the minimal

polynomial of α and is of degree d, then

si(x) = (x(1− x))dqi

(
1− 4x(1− x)

x(1− x)

)

is a polynomial of degree 2d with all roots in the interval [0, 1] satisfying the symmetry

condition si(x) = si(1− x). Since the lead coefficients tend not to be large after the trans-

formation for polynomials of small mean trace, this gives an alternate source of polynomials

to use when attempting to reduce the upper bound on Ω[0, 1]. The following polynomials

qi(x) from the Schur-Siegel-Smyth trace problem gave rise to additional polynomials si(x)

that were found to be useful. With the exception of the last polynomial q28(x), they are all

minimal polynomials of totally positive algebraic integers.

q1(x) = x3 − 6x2 + 9x− 3

q2(x) = x4 − 8x3 + 16x2 − 9x + 1

q3(x) = x5 − 9x4 + 26x3 − 29x2 + 11x− 1

q4(x) = x5 − 9x4 + 27x3 − 31x2 + 12x− 1

q5(x) = x5 − 9x4 + 27x3 − 32x2 + 13x− 1

q6(x) = x6 − 11x5 + 42x4 − 68x3 + 46x2 − 12x + 1

q7(x) = x6 − 11x5 + 42x4 − 68x3 + 47x2 − 13x + 1

q8(x) = x6 − 11x5 + 43x4 − 72x3 + 51x2 − 14x + 1

q9(x) = x7 − 13x6 + 61x5 − 131x4 + 136x3 − 66x2 + 14x− 1

q10(x) = x7 − 13x6 + 61x5 − 133x4 + 142x3 − 71x2 + 15x− 1

q11(x) = x7 − 13x6 + 62x5 − 135x4 + 140x3 − 67x2 + 14x− 1

q12(x) = x7 − 13x6 + 62x5 − 136x4 + 144x3 − 71x2 + 15x− 1

q13(x) = x7 − 13x6 + 62x5 − 137x4 + 146x3 − 72x2 + 15x− 1

q14(x) = x7 − 13x6 + 62x5 − 137x4 + 147x3 − 73x2 + 15x− 1

q15(x) = x7 − 13x6 + 62x5 − 137x4 + 148x3 − 75x2 + 16x− 1

q16(x) = x7 − 13x6 + 62x5 − 138x4 + 150x3 − 76x2 + 16x− 1

q17(x) = x7 − 13x6 + 63x5 − 143x4 + 157x3 − 78x2 + 16x− 1

q18(x) = x7 − 13x6 + 63x5 − 143x4 + 158x3 − 80x2 + 16x− 1

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 47

q19(x) = x7 − 13x6 + 63x5 − 143x4 + 159x3 − 82x2 + 17x− 1

q20(x) = x7 − 13x6 + 63x5 − 144x4 + 160x3 − 80x2 + 16x− 1

q21(x) = x8 − 15x7 + 83x6 − 220x5 + 303x4 − 220x3 + 83x2 − 15x + 1

q22(x) = x8 − 15x7 + 84x6 − 228x5 + 323x4 − 240x3 + 91x2 − 16x + 1

q23(x) = x8 − 15x7 + 85x6 − 233x5 + 333x4 − 250x3 + 96x2 − 17x + 1

q24(x) = x8 − 15x7 + 86x6 − 241x5 + 353x4 − 270x3 + 104x2 − 18x + 1

q25(x) = x10 − 18x9 + 134x8 − 538x7 + 1273x6 − 1822x5 + 1560x4

−766x3 + 200x2 − 24x + 1

q26(x) = x10 − 18x9 + 135x8 − 549x7 + 1320x6 − 1920x5 + 1662x4

−813x3 + 206x2 − 24x + 1

q27(x) = x12 − 22x11 + 204x10 − 1050x9 + 3322x8 − 6752x7 + 8944x6

−7677x5 + 4177x4 − 1388x3 + 265x2 − 26x + 1

q28(x) = x6 − 10x5 + 35x4 − 52x3 + 33x2 − 9x + 1

1.4.2 Fixed points of the function u(x) and the Gorshkov-Wirsing poly-

nomials

As mentioned in Section 1.2.3, the Gorshkov-Wirsing polynomials are defined iteratively as

q0(x) = 2x− 1

q1(x) = 5x2 − 5x + 1

qn+1(x) = q2
n(x) + qn(x)q2

n−1(x)− q4
n−1(x)

and satisfy the relationship qk+1(x) = (−1 + 3x− 3x2)2
k
qk(u(x)) where u(x) is the rational

function

u(x) =
q2
0(x)− q1(x)

2q2
0(x)− q1(x)

=
x(1− x)

1− 3x(1− x)
.

The Gorshkov-Wirsing polynomials qk(x) for k ≤ 5 are useful in reducing the upper bound

on Ω[0, 1]. Additionally, since u(x) increases from 0 to 1 on [0, 1/2], decreases form 1 to 0

on [1/2, 1], and satisfies the property u(x) = u(1 − x), if gi(x) is a symmetric polynomial

of degree d with all roots in the interval [0, 1] then so is ti(x) = (3x2 − 3x + 1)dgi(u(x)).

Applying this to the polynomials of the previous sections resulted in finding the polynomial

t1(x) = (3x2 − 3x + 1)14s9(u(x))

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 48

which also proved to be useful.

As a further source of polynomials, we can consider the fixed points of u(x). If we let

u1(x) = u(x) and define u(n+1)(x) by

u(n+1)(x) = u(un(x)) =
un(x)(1− un(x))

1− 3un(x)(1− un(x))
,

then an easy induction [25] shows

u(n)(x) =
q2
n−1(x)− qn(x)

2q2
n−1(x)− qn(x)

for n ≥ 1.

The key to the induction is to note that
(
q2
n−1(x)− qn(x)

)
q2
n−1(x) = q2

n(x)− qn+1(x). Now,

since u(x) increases from 0 to 1 on [0, 1/2], and decreases from 1 to 0 on [1/2, 1], u(x) maps

the interval [0, 1] onto itself twice, and un(x) maps the unit interval onto itself 2n times.

This gives 2n points of intersection between the curves y = un(x) and y = x and accounts

for 2n zeros of the function un(x)− x in the interval [0, 1]. As the numerator

mn(x) = (q2
n−1(x)− qn(x))− x(2q2

n−1(x)− qn(x))

of un(x) − x is of degree 2n + 1 and is divisible by x2, at least for n ≤ 13, mn(x) has a

double zero at x = 0, and 2n−1 simple zeros in the interval (0, 1). The irreducible factors of

mn(x) provide a source of irreducible polynomials with integer coefficients having all their

roots in the interval [0, 1]. For 1 ≤ n ≤ 5, the irreducible factors are x, 3x− 2, 7x2− 8x+2,

13x3 − 19x2 + 8x− 1, 31x4 − 61x3 + 41x2 − 11x + 1, and

v1(x) = 414157x15 − 3082633x14 + 10506317x13 − 21730488x12 + 30475127x11

−30666643x10 + 22852753x9 − 12829629x8 + 5465583x7 − 1765190x6

+428258x5 − 76576x4 + 9759x3 − 836x2 + 43x− 1.

Noting that four of these polynomials are factors of the symmetric pairs h1(x), h8(x), h10(x),

and h15(x) leads to the consideration of the polynomials (3x−1)(3x−2) and v1(x)v1(1−x).

The polynomial v1(x)v1(1− x) proved to be useful in reducing the upper bound for Ω[0, 1].

As a side note, it is worth mentioning that if we take the irreducible factors v(x) of

mn(x) for larger values of n and consider the polynomials (x + 1)dv(1/(x + 1)) where d

is the degree of v(x), we get the minimal polynomials of totally positive algebraic integers

with trace equal to 2d−k for values of k as large as 6. This may be worthy of further study.

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 49

The first few terms of these polynomials are presented below.

x15 − 28x14 + 339x13 − . . . (n = 5, 2d− 2)

x24 − 46x23 + 964x22 − . . . (n = 6, 2d− 2)

x30 − 58x29 + 1559x28 − . . . (n = 6, 2d− 2)

x63 − 123x62 + 7290x61 − . . . (n = 7, 2d− 3)

x112 − 221x111 + 23910x110 − . . . (n = 8, 2d− 3)

x252 − 501x251 + 124296x250 − . . . (n = 9, 2d− 3)

x480 − 956x479 + 454648x478 − . . . (n = 10, 2d− 4)

x510 − 1016x509 + 513652x508 − . . . (n = 10, 2d− 4)

x1023 − 2041x1022 + 2077818x1021 − . . . (n = 11, 2d− 5)

x1980 − 3956x1979 + 7815176x1978 − . . . (n = 12, 2d− 4)

x2040 − 4076x2039 + 8296782x2038 − . . . (n = 12, 2d− 4)

x4095 − 8184x4094 + 33468579x4093 − . . . (n = 13, 2d− 6)

1.4.3 An improved upper bound on Ω[0, 1]

To improve the upper bound on Ω[0, 1], the standard method referred to in Section 1.2.3

was used. Given a set of polynomials {pi(x)}, we can consider polynomials of the form
∏

pi(x)mi and attempt to find values for the mi that minimize the supremum norm of this

product on the interval [0, 1]. This is done by taking the natural logarithm of the absolute

value of the above product and evaluating it at multiple points xj ∈ [0, 1] which leads to

the system of constraints {∑ mi

2
ln

(
pi(xj)2

)
< c

}

where ec is an upper bound on ‖∏ pi(x)mi‖
[0,1]

. Adding the additional constraints
∑

mi = 1

and mi ≥ 0 for each mi, the simplex algorithm can then be used to minimize c. Multiplying

the returned values mi by a large power of 10 and rounding to the nearest integer results in

a polynomial Q(x) of very large degree with relatively small supremum norm on [0, 1]. The

initial result can be improved upon by adding additional control points xj ∈ [0, 1] at which

Q(x) attains local extrema larger than the value of c returned by the simplex algorithm,

and then repeating the procedure.

CHAPTER 1. THE INTEGER CHEBYSHEV PROBLEM 50

Applying this procedure with the polynomials hi(x), qi(x), ri(x), si(x), ti(x), and vi(x)

from the preceding sections resulted in the polynomial

Q(x) = h1(x)3136689596h2(x)1117706483h3(x)378371211h4(x)16801958h5(x)131164392

·h6(x)8943338h7(x)1574854h8(x)1117548h10(x)33466589h12(x)1377045h14(x)31611818

·h15(x)17250649h16(x)1733381h17(x)3054552h21(x)2793536h22(x)1603001q5(x)269851

·r1(x)288868r339997
2 r3(x)434242r4(x)653128s1(x)1994437s2(x)9371s3(x)4232059

·s4(x)1798114s5(x)271961s6(x)1366536s7(x)1099530s8(x)93315s9(x)1035078

·s10(x)1368043s11(x)248638s12(x)648325s14(x)5099012s15(x)647549s16(x)993218

·s17(x)2195681s18(x)66269s19(x)289394s20(x)2545157s21(x)4432963s22(x)110295

·s23(x)1525872s24(x)915404s25(x)423575s26(x)386416s27(x)1317066s28(x)174142

·t1(x)126275 (v1(x)v1(1− x))340742

of degree 10000000027 for which ‖Q(x)‖1/10000000027

[0,1]
= (2.36482727 . . .)−1. By Lemma 1.3,

this gives the best known upper bound on Ω[0, 1] of

Ω[0, 1] ≤ 1
2.36482727

.

It should be pointed out that finding ‖Q(x)‖
[0,1]

is not as daunting of a task as it may

initially appear. To find the extreme values of a polynomial of the form
∏

pi(x)mi on [0, 1]

that is divisible by x(1 − x), we need only evaluate exp (
∑

mi ln(pi(x))) at the roots of
∑((∏

i 6=j pj(x)
)

mip
′
i(x)

)
that lie in the interior of the interval [0, 1].

Chapter 2

Integer Relation Algorithms

To take advantage of symmetry conditions when extending the method used to compute

integer Chebyshev polynomials to the bivariate case, it is useful to have a method for

constructing a basis for the lattice of all simultaneous integer relations satisfied by a given

set of input vectors. The method used to construct this basis is an extension of a standard

integer relation algorithm, three of which are presented in this chapter. The presentation

of these standard integer relation algorithms follows the author’s earlier work [24].

Definition 2.1 An integer relation is said to exist between the numbers x1, x2, . . . , xn if

there exist integers a1, a2, . . . , an, not all zero, such that
∑n

i=1 aixi = 0. For the vector

x = [x1, x2, . . . , xn]T , a nonzero vector a ∈ Zn is an integer relation for x if a · x = 0.

Definition 2.2 The lattice L spanned by the n linearly independent vectors b1,b2, . . . ,bn

is the set of vectors L = {∑n
i=1 ribi : ri ∈ Z, i = 1, 2, . . . , n}. The vectors bi are said to

form a basis for L.

The following fact is useful to keep in mind when working with lattices. It lets us know that

each successive set of vectors we consider form a basis for the original lattice.

Theorem 2.1 If b1,b2, . . . ,bn form a basis for the lattice L, then the vectors b′1,b′2, . . . ,b′n
form a basis for L if and only if there exists an n×n invertible matrix A with integer coef-

ficients and determinant ±1 such that B ′ = BA where B = [b1,b2, · · · ,bn] (the matrix for

which the ith column is the vector bi) and B ′ = [b′1,b′2, · · · ,b′n].

Proof:(⇒) Suppose b1,b2, . . . ,bn and b′1,b′2, . . . ,b′n both form a basis for L. Then as

each b′i ∈ L, each b′i can be expressed as an integer combination of the bi’s. It follows that

51

CHAPTER 2. INTEGER RELATION ALGORITHMS 52

B ′ = BA for some n× n matrix A with integer entries. Similarly, as each bi ∈ L, B = B ′C

for some n×n matrix C with integer entries. As B = B ′C = BAC and B ′ = BA = B ′CA,

AC = CA = I . We see that B ′ = BA for some invertible matrix A with integer entries and

determinant ±1.

(⇐) Suppose b1,b2, . . . ,bn form a basis for L and A is an invertible n×n matrix with

integer entries and determinant ±1 such that B ′ = BA. Clearly, each column vector b′i of

B ′ can be written as an integer combination of the bi’s. Now as A is invertible, has integer

entries and determinant ±1, we see by the formula A−1 = 1
det(A)adj(A) that A−1 also has

integer entries and determinant ±1. Thus we see B = B ′A−1 and so each bi can be written

as an integer combination of the b′i’s. The vectors b′i also form a basis for the lattice L.

¤

Integer Relation Algorithms have also been called Multidimensional Continued Fraction

Algorithms and Generalized Euclidean Algorithms. As one can show that applying the

Continued Fraction Algorithm to the value r0/r1 is equivalent to running the Extended

Euclidean Algorithm on the real numbers r0 and r1, and as both can be used to determine

either a shortest integer relation for the vector x = [r0, r1] or a lower bound on the norm of

any possible integer relation for x, this suggests that these names are appropriate. In fact,

the following method for showing that these two algorithms are equivalent and how they

can be used to find a lower bound on the norm of any possible integer relation for x also

suggests how we should proceed in developing integer relation algorithms for n ≥ 3. Details

of both algorithms are presented briefly for the sake of notation.

The Extended Euclidean Algorithm is applied to the values r0 and r1 as follows. Begin

by setting s0 = 1, t0 = 0, s1 = 0, t1 = 1 and then repeat the following process starting with

k=1:

1. Set Qk = brk−1/rkc so that rk−1 = Qkrk + rk+1 where 0 ≤ rk+1 < rk

2. Set sk+1 = sk−1 −Qksk and tk+1 = tk−1 −Qktk.

At each stage we have

rk = skr0 + tkr1.

This obviously holds for k = 0 and k = 1 and so by induction, as

rk = rk−2 −Qk−1rk−1 = (sk−2r0 + tk−2r1)−Qk−1(sk−1r0 + tk−1r1)

CHAPTER 2. INTEGER RELATION ALGORITHMS 53

= (sk−2 −Qk−1sk−1)r0 + (tk−2 −Qk−1tk−1)r1 = skr0 + tkr1,

it holds for all k. As rk < 1
2rk−2 for k ≥ 3, either this algorithm terminates with

rk = skr0 + tkr1 = 0 or it constructs an infinite sequence of pairs (sk, tk) such that skr0+tkr1

decreases monotonically to zero.

The Continued fraction algorithm is applied to the value r0/r1 in the following manner.

Begin by setting α1 = r0/r1, a1 = br0/r1c, p0 = 0, q0 = 1, p1 = 1, q1 = 0 and then repeat

the following process beginning with k = 2:

1. Set αk = 1
α

k−1
−a

k−1
and ak = bαkc.

2. Set pk = akpk−1 + pk−2 and qk = akqk−1 + qk−2.

The nth convergent of the continued fraction is pn+2/qn+2. Note that this is different from

what is usually given, the difference in the subscripts has been introduced to simplify what

follows. Either this algorithm terminates with αk ∈ Z, in which case r0/r1 = pk/qk, or this

algorithm constructs an infinite sequence of convergents that converge to r0/r1.

To show the equivalence of the Euclidean and Continued Fraction algorithms, we consider

the lines Rx = R[r0, r1]T and x⊥ = R[r1,−r0]T . The task is to construct a sequence of bases

for the lattice Z2 that converge to x⊥ by examining the projections of these basis vectors

onto Rx. Starting with the standard basis for Z2, we let b(1)
1 = [1, 0]T and b(1)

2 = [0, 1]T . If

we set B (1) = [b(1)
1 ,b(1)

2], the matrix with column vectors b(1)
1 and b(1)

2 , then

B (1) =

[
1 0

0 1

]
=

[
s0 s1

t0 t1

]

and

A =
(
B (1)

)−1
=

[
1 0

0 1

]
=

[
p1 q1

p0 q0

]
.

The following properties hold for k = 1:

1. αk = rk−1/rk and so Qk = ak

2. b(k)
1 = [sk−1, tk−1]T and b(k)

2 = [sk, tk]T are the column vectors of B (k)

3. (a(k)
1)T = [pk, qk] and (a(k)

2)T = [pk−1, qk−1] are the row vectors of A(k) =
(
B (k)

)−1

CHAPTER 2. INTEGER RELATION ALGORITHMS 54

Now suppose these three conditions hold for some k. Then b(k)
1 = [sk−1, tk−1]T and b(k)

2 =

[sk, tk]T and so as rm = smr0 + tmr1, their projections onto Rx have norms equal to

1√
r2
0 + r2

1

rk−1 and
1√

r2
0 + r2

1

rk.

As our goal is to construct a sequence of bases for Z2 that converge to x⊥, we set b(k+1)
1 = b(k)

2

and b(k+1)
2 = b(k)

1 −Qkb
(k)
2 . As rk+1 = rk−1 −Qkrk, this results in a new basis for Z2 with

projections onto Rx having norms equal to

1√
r2
0 + r2

1

rk and
1√

r2
0 + r2

1

rk+1.

To maintain B (k+1) = [b(k+1)
1 ,b(k+1)

2] with each iteration, we must update the matrices B (k)

and A(k) =
(
B (k)

)−1
as follows:

B (k+1) =

[
sk−1 sk

tk−1 tk

][
0 1

1 −Qk

]
=

[
sk sk+1

tk tk+1

]

A(k+1) =
(
B (k+1)

)−1
=

[
ak 1

1 0

][
pk qk

pk−1 qk−1

]
=

[
pk+1 qk+1

pk qk

]
.

As rk+1 = (rk−1/rk − Qk)rk = rk/αk+1, we also have αk+1 = rk/rk+1 and so by induction

the above three conditions hold for all k. By forcing the vectors b(k)
i to converge to x⊥ in this

fashion, the relation between the values pk and qk from the Continued Fraction algorithm

and the values sk and tk from the Extended Euclidean algorithm becomes clear.

Now for each k, [sk, tk]T is orthogonal to [pk, qk]T and so pk/qk = −tk/sk. As it is easily

shown that 1 = gcd(pk, qk) = gcd(sk, tk) by showing both pkqk+1−pk+1qk and sktk+1−sk+1tk

equal ±1, it follows that either pk = tk and qk = −sk or pk = −tk and qk = sk. This, coupled

with the fact that αk = rk−1/rk and Qk = ak for all k shows that each step of the Extended

Euclidean Algorithm coincides with each step of the Continued Fraction Algorithm. The

two algorithms are equivalent.

Viewed in this fashion, if rk 6= 0 then it is straightforward to give a lower bound on the

size of any possible integer relation for x. As a(k)
1 = [pk, qk]T and rk = skr0 + tkr1,

∥∥∥proj
x⊥

a(k)
1

∥∥∥ =

∣∣∣∣∣
pkr1 − qkr0√

r2
0 + r2

1

∣∣∣∣∣ =

∣∣∣∣∣
±(tkr1 + skr0)√

r2
0 + r2

1

∣∣∣∣∣ =
|rk|√
r2
0 + r2

1

6= 0.

CHAPTER 2. INTEGER RELATION ALGORITHMS 55

Now if m is an integer relation for x, then m lies in x⊥ and so it follows that
∣∣∣a(k)

1 ·m
∣∣∣ =∥∥∥proj

x⊥
a(k)

1

∥∥∥ ‖m‖ is a nonzero integer. It follows that if rk 6= 0, then

‖m‖ ≥ 1∥∥∥proj
x⊥

a(k)
1

∥∥∥
=

√
r2
0 + r2

1

|rk| .

In the event that rk = 0, [sk, tk]T is an integer relation for x and so r0/r1 = −tk/sk =

pk/qk ∈ Q. Since any other integer relation [u, v] must also satisfy −v/u = r0/r1 and

1 = gcd(sk, tk) = gcd(pk, qk), we see that in this case we have found a smallest possible

integer relation for x.

Although the Euclidean and continued fraction algorithms solve the problem of finding

integer relations for the vector [x1, x2, . . . , xn] when n = 2, until recently there were no

known polynomial time algorithms that solved the problem for n ≥ 3. A breakthrough

was made in 1977 with Ferguson and Forcade’s Generalized Euclidean Algorithm [13][14],

a recursive algorithm that was guaranteed to find an integer relation when one existed.

Following this, a number of non-recursive algorithms were developed, among which are the

PSLQ algorithm, the HJLS algorithm, and a method based on the LLL algorithm that shall

be covered in this chapter. Following their presentations, it will be shown that the HJLS

algorithm can be viewed as a special case of the later PSLQ algorithm with the parameter

γ =
√

2, both of which stem from extending the ideas presented earlier.

The above method of showing the equivalence of the Euclidean and Continued Frac-

tion algorithms and how to apply them to finding integer relations between the values

x1, x2, . . . , xn for n = 2 indicates how to proceed for n ≥ 3. Given the vector x =

[x1, x2, . . . , xn]T , we would like to let b(k)
1 ,b(k)

2 , . . . ,b(k)
n be a basis for Zn and then with

each successive iteration, choose a new basis in such a way that an upper bound on the

values
∥∥∥proj

x
b(k)

i

∥∥∥ decreases. However, as it is currently not known how to select a new

basis in such a way that guarantees finding a small integer relation when one exists by

looking only at the values
∥∥∥proj

x
b(k)

i

∥∥∥, we must do something different. Noting that the

bound on the size of a smallest possible integer relation in the case n = 2 came from looking

at the projection of the vectors [pk, qk]T onto x⊥ gives the correct course of action. We will

construct a sequence of bases {(a(k)
1 ,a(k)

2 , . . . ,a(k)
n)} for the lattice Zn which converge to the

line Rx by examining their projections onto x⊥. We will let B (k) = [b(k)
1 ,b(k)

2 , . . . ,b(k)
n],

A(k) =
(
B (k)

)−1
, and let a(k)

1 ,a(k)
2 , . . . ,a(k)

n be the column vectors of (A(k))T . By choosing

a new basis a(k)
1 ,a(k)

2 , . . . ,a(k)
n for Zn in such a way that the projections of the a(k)

i onto x⊥

CHAPTER 2. INTEGER RELATION ALGORITHMS 56

tend to zero, we shall indirectly force the vectors b(k)
i to converge to x⊥ and raise a lower

bound on the norm of any possible integer relation for x. If x has integer relations, then this

bound can only be made so large before one of the b(k)
i lies in x⊥ and an integer relation

is found. This is the general idea behind both the PSLQ and HJLS algorithms that are

presented later.

2.1 The LLL algorithm

It is often desirable to find a basis for a lattice L that is in some sense reduced. The obvious

choice for a reduced basis b1,b2, . . . ,bn is to let bi be the shortest vector in L that is

independent of the vectors b1,b2, . . . ,bi−1. Although Gaussian reduction finds such a basis

for n = 2 [10, pg. 23] and a method due to Vallée [31] finds such a basis for n = 3, currently

there is no known algorithm that will construct such a basis in a reasonable amount of time

for n > 3. The following alternate definition of a reduced basis, due to Lenstra, Lenstra and

Lovász [23], is useful as there is an algorithm (LLL) for finding such a reduced basis.

Definition 2.3 Let b1,b2, . . . ,bn be a basis for the lattice L and let b∗i = bi−
∑i−1

j=1 µi,jb∗j
where µi,j = (bi ·b∗j)/‖b∗j‖2 (This is the Gram-Schmidt orthogonalization process). We call

the vectors b1,b2, . . . ,bn LLL reduced if

1. |µi,j | ≤ 1/2 for 1 ≤ j < i ≤ n

2. ‖b∗i + µi,i−1b∗i−1‖2 ≥ 3/4‖b∗i−1‖2 for 1 < i ≤ n

Condition 1 states that the vectors bi must be close to orthogonal. Condition 2, along with

1, allows us to bound the values ‖bj‖ in terms of the norms of the shortest vectors in the

lattice L.

Theorem 2.2 Suppose b1,b2, . . . ,bn form an LLL reduced basis for a lattice L. Then for

every nonzero vector x ∈ L, we have ‖b1‖ ≤ 2(n−1)/2‖x‖. In particular, ‖b1‖ is no larger

than 2(n−1)/2 times as large as the norm of a shortest nonzero vector in L.

Proof: As the vectors b∗i and b∗i−1 are orthogonal, condition 2 tells us that

(b∗i + µi,i−1b∗i−1) · (b∗i + µi,i−1b∗i−1) = ‖b∗i ‖2 + |µi,i−1|2 ‖b∗i−1‖2 ≥ 3/4‖b∗i−1‖2.

By condition 1, this implies ‖b∗i ‖2 ≥ 1/2‖b∗i−1‖2 and so by induction

‖b∗i ‖2 ≥ 1
2i−j

‖b∗j‖2.

CHAPTER 2. INTEGER RELATION ALGORITHMS 57

Now for any nonzero vector x ∈ L, we can write x as x =
∑k

i=1 aibi with 1 ≤ k ≤ n, ak 6= 0,

and each ai ∈ Z. Replacing bi with bi = b∗i +
∑i−1

j=1 µi,jb∗j allows us to write x =
∑k

i=1 sib∗i
with each si ∈ R and sk = ak ∈ Z. This gives

‖x‖2 =
∑k

i=1 |si|2 ‖b∗i ‖2 ≥ |ak|2 ‖b∗k‖2 ≥ ‖b∗k‖2

≥ ‖b∗1‖221−k ≥ ‖b∗1‖221−n = ‖b1‖221−n

or equivalently,

‖b1‖ ≤ 2(n−1)/2‖x‖ for any x ∈ L.

¤

As shown in [23], one can prove that for an LLL reduced basis b1,b2, . . . ,bn and for any

set of t linearly independent vectors x1,x2, . . . ,xt ∈ L, we have the inequality ‖bj‖ ≤
2(n−1)/2 max(‖x1‖, ‖x2‖, . . . , ‖xt‖) for 1 ≤ j ≤ t. The details of the algorithm used to

construct an LLL reduced basis from an arbitrary basis for L are presented in Figure 2.1.

Referring to Figure 2.1 we see that the body of the main loop first ensures condition 1 in

the definition of an LLL reduced basis is satisfied for the vectors b1,b2, . . . ,bk and then

checks to see if condition 2 holds. Note that at the beginning of the main loop, the vectors

b1,b2, . . . ,bk−1 form an LLL reduced basis for the lattice that they span. For proof of

termination and improvements on the basic algorithm one is referred to [23] and [10].

2.1.1 Finding integer relations with LLL

One use of the LLL algorithm is to find small integer relations between a set of nonzero values

x1, x2, . . . , xn. To use the LLL algorithm to find an integer relation for x = [x1, x2, . . . , xn],

define the (n+1)×n matrix B as

B =




1 0 · · · 0 0

0 1
...

...
. . .

...
... 1 0

0 0 · · · 0 1

Nx1 Nx2 · · · · · · Nxn




where N is a large number

CHAPTER 2. INTEGER RELATION ALGORITHMS 58

The LLL Algorithm
This algorithm takes an arbitrary basis b1,b2, . . . ,bn for the lattice L as input and uses it
to construct an LLL reduced basis.

Step 1 Initialization
Let b1,b2, . . . ,bn be a basis for L.
for i to n do

set b∗i := bi −
∑i−1

j=1 µi,jb∗j
calculate ‖b∗i ‖2 and µj,i for i + 1 ≤ j ≤ n (µj,i := (bj · b∗i)/‖b∗i ‖2)

end do
set k := 2

Step 2 Main Loop
Repeat

for j from (k − 1) downto 1 do
q := bµk,je (nearest integer)
bk := bk − qbj

for i to j do µk,i := µk,i − qµj,i end do
end do
If ‖b∗k‖2 ≥ (3/4− µ2

k,k−1)‖b∗k−1‖2

then set k := k + 1
else interchange bk and bk−1.

Update b∗k, b∗k−1, ‖b∗k‖2, ‖b∗k−1‖2 and the µi,j ’s as follows:
set b∗k−1

′ := b∗k + µk,k−1b∗k−1

‖b∗k−1
′‖2 := ‖b∗k‖2 + (µk,k−1)2‖b∗k−1‖2

m := µk,k−1‖b∗k−1‖2/‖b∗k−1
′‖2

b∗k
′ := b∗k −mb∗k−1

′ = ‖b∗k‖2
‖b∗k−1

′‖2 b
∗
k−1 −mb∗k

‖b∗k ′‖2 := ‖b∗k‖4
‖b∗k−1

′‖4 ‖b∗k−1‖2 + m2‖b∗k‖2 = ‖b∗k‖2‖b∗k−1‖2/‖b∗k−1
′‖2

interchange µk,i with µk−1,i for 1 ≤ i ≤ k − 2
for i from k + 1 to n do

t := µi,k, µi,k := µi,k−1 − µk,k−1µi,k, µi,k−1 := t + mµi,k

end do
set µk,k−1 := m
set b∗k := b∗k

′, ‖b∗k‖2 := ‖b∗k ′‖2, b∗k−1 := b∗k−1
′, ‖b∗k−1‖2 := ‖b∗k−1

′‖2.
set k := max(2, k − 1)

end if
until k = n + 1

At this point, the vectors b1,b2, . . . ,bn form an LLL reduced basis for the lattice L.

Figure 2.1: Pseudocode implementation of the LLL algorithm

CHAPTER 2. INTEGER RELATION ALGORITHMS 59

and let b1,b2, . . . ,bn be the column vectors of B . If we now consider the vectors in the

lattice L spanned by b1,b2, . . . ,bn we see they are of the form

m′ =
n∑

i=1

mibi =

[
m1,m2, . . . , mn, N

n∑

i=1

mixi

]T

.

We may view the last term in m′, N
∑

mixi, as a penalty term. If the vector m =

[m1,m2, . . . , mn] is an integer relation for x then this term will be zero. However, if m

is not an integer relation for x then this term will be large provided N is large enough. The

penalty for not being an integer relation depends on the choice of N . If N is taken large

enough and m is a short integer relation for x, then m′ will be one of the shortest vectors

in L. With this in mind, to find an integer relation for x we choose a suitably large value

of N and run the LLL algorithm on the vectors b1,b2, . . . ,bn. The first vector, b′1, in the

returned basis will be one of the smallest vectors in L. (Note that b′1 is not necessarily the

shortest vector in the returned basis. We may also wish to consider the other b′i as well).

From b′1 we can pick off the coefficients of the suspected integer relation m for x. It is

important to realize that m may not be an integer relation for x. This method can fail to

return a valid relation for one of two reasons, the first being that x has no integer relations,

and the second being that N was not large enough.

Lemma 2.1 Suppose there are integer relations for x = [x1, x2, . . . , xn]T . Then the method

presented above will find one provided N is large enough.

Proof: Let M be the norm of a smallest integer relation for x and consider the finite set

of vectors
{
y ∈ Zn : ‖y‖ < 2n/2M, (y · x) 6= 0

}
. From this nonempty set, choose a vector

y with the property that |y · x| = |∑ yixi| is minimal. For this y, choose N so that

N |∑ yixi| > 2n/2M . Now for any m′ ∈ L, if
∑n

i=1 mixi 6= 0 then ‖m′‖ > 2n/2M . If

m = [m1,m2, . . . ,mn]T is not an integer relation for x, then the norm of the vector m′ =

[m1,m2, . . . , mn, N
∑

mixi]T is greater than 2((n+1)−1)/2 times as large as the norm of a

shortest nonzero vector in L and hence cannot be the first vector in an LLL reduced basis

by Theorem 2.2.

¤

Although this shows that an integer relation will be found if one exists and N is large

enough, we do not know beforehand how large N must be.

CHAPTER 2. INTEGER RELATION ALGORITHMS 60

2.2 The PSLQ algorithm

Following the Generalized Euclidean Algorithm[13], Ferguson developed a sequence of non-

recursive integer relation algorithms [15][3][16], each an improvement on the previous ones.

In this section we cover the latest incarnation of these, a simplified statement of the PSLQ

algorithm. Although the general outline of [16] is followed, additional motivation for each

step of the algorithm is presented and a greater emphasis is placed on x⊥. This gives a bet-

ter picture of how the steps fit together and allows for a clearer statement of the proofs of

Theorem 2.3 and Lemma 2.2. The proof of termination given in [16] has also been extended

to cover the case when x has no integer relations of norm less than some constant T .

As before, suppose we wish to find a small integer relation between the nonzero values

x1, x2, . . . , xn. Rather than using the method of the previous section, based upon the LLL

algorithm, we instead consider the ideas laid out at the end of the introduction to this

chapter.

Let x = [x1, x2, . . . , xn]T and suppose we have a set of n linearly independent vectors

a1,a2, . . . ,an ∈ Zn such that the projection of each ai onto x⊥ is small (we say each vector

ai is close to x). If we define A to be the matrix such that the ith row of A is aT
i , then A

is invertible. Let B = A−1 and let bj be the jth column vector of B . Now as (ai · bj) = 0

for i 6= j and each ai is close to x, we would expect that each bj lies close to x⊥. The idea

behind the PSLQ algorithm is to start with the standard basis for the lattice Zn and with

each iteration, construct a new basis a1,a2, . . . ,an for Zn in which the ai are closer to x. In

doing so, we hope to force the vectors bj closer to x⊥. We will see that as an upper bound

on the values
∥∥∥proj

x⊥
ai

∥∥∥ decreases, a lower bound on the size of any possible integer relation

for x increases. Throughout the PSLQ algorithm we work with the following matrices:

A: An n×n invertible matrix. The column vectors ai of AT form a basis for Zn.

H : An n×(n−1) matrix with column vectors hj that form an orthonormal basis for x⊥.

H ′: The matrix AH . Each entry h′i,j in H ′ is the inner product of ai with hj . Note that

the projection of ai onto x⊥ is
∑n−1

j=1 (ai ·hj)hj . Each time we begin the main iteration

of the algorithm, H ′ will be lower trapezoidal (see Definition 2.4) and we will have∣∣∣h′i,j
∣∣∣ ≤ 1/2

∣∣∣h′j,j
∣∣∣ for 1 ≤ i < j. This will give

∥∥∥proj
x⊥

ai

∥∥∥
2
≤ 1/4

i−1∑

j=1

∣∣h′j,j
∣∣2 +

∣∣h′i,i
∣∣2 ≤

i∑

j=1

∣∣h′j,j
∣∣2 .

CHAPTER 2. INTEGER RELATION ALGORITHMS 61

By reducing the
∣∣∣h′i,i

∣∣∣, we will reduce an upper bound on
∥∥∥proj

x⊥
ai

∥∥∥ for each i.

B : B = A−1. The column vectors bj of B will be forced closer to x⊥ by forcing the vectors

ai closer to x.

Definition 2.4 The m×n matrix C is said to be lower trapezoidal if m > n and each entry

ci,j of C equals zero if j > i.

Although forcing the vectors ai closer to x is not sufficient to guarantee one of the bj

will eventually lie in x⊥, termination of the algorithm and a bound on the size of the relation

found will follow with some work from Theorem 2.3. From this theorem, we will see that

reducing the values
∣∣∣h′i,i

∣∣∣ also increases a lower bound on the norm of the smallest possible

integer relation for x.

Theorem 2.3 Let A be an invertible n×n matrix with integer coefficients, x a vector in

Rn, and H an n×(n−1) matrix with column vectors that form an orthonormal basis for x⊥.

If H ′ = AH is lower trapezoidal with each diagonal h′i,i 6= 0 then

1

max
∣∣∣h′i,i

∣∣∣
≤ ‖m‖ for any integer relation m of x.

Proof: For any integer relation m, HH Tm = m as HH T is the projection matrix onto x⊥.

Thus Am = H ′(H Tm). Let aT
i be the ith row vector of A, hT

i be the ith row vector of H T ,

and h′j,j the jth diagonal element of H ′. As A is invertible, Am 6= 0. Let j be the least

integer such that aT
j m 6= 0. Then aT

k m = 0 for 1 ≤ k < j and so by recursion and the fact

that H ′ is lower trapezoidal with nonzero diagonal elements, hT
k m = 0 for 1 ≤ k < j and

aT
j m = h′j,j(h

T
j m). As aT

j m is a nonzero integer,

1 ≤ ∣∣h′j,j
∣∣ ∣∣hT

j m
∣∣ ≤ ∣∣h′j,j

∣∣ ‖m‖.

The last inequality comes from the fact that the norm of the projection of m onto the unit

vector hj cannot be larger than the norm of m. The result now follows.

¤

The details of the PSLQ algorithm are presented in Figure 2.2. Although one can implement

the algorithm in such a way that requires only the matrices B and H ′, the matrices A and H

CHAPTER 2. INTEGER RELATION ALGORITHMS 62

The PSLQ Algorithm
This algorithm takes a vector xT = [x1, x2, . . . , xn] and a constant T ≥ 1 as input. It either
returns an integer relation for x along with a lower bound on the norm of the shortest
integer relation or it returns a lower bound (≥ T) on the norm of any possible relation for
x.

Step 1: Initialization
Fix the constant γ so γ >

√
4/3.

Let A = B = I , aT
i the ith row of A, bj the jth column of B .

Let H and H ′ be the n×(n−1) lower trapezoidal matrices with entries

h′i,j = hi,j =





0 1 ≤ i < j ≤ n− 1
si+1/si 1 ≤ i = j ≤ n− 1

−xixj/sjsj+1 1 ≤ j < i ≤ n
where s2

j =
n∑

k=j

x2
k

Let h′i be the ith row vector of H ′ and let hi be the ith column vector of H .

Step 2: Size Reduce H ′

For i from 2 to n do, for j from i− 1 downto 1 do
set t = bh′i,j/h′j,je
replace ai with ai − taj , bj with bj + tbi, and h′i with h′i − th′j

end do, end do.

Step 3: The Main Iteration
Choose r so that γi

∣∣∣h′i,i
∣∣∣ is maximal when i = r.

Repeat the following until either 1
max|h′i,i| ≥ T or both h′n,n−1 = 0 and r = n− 1:

1. Let α = h′r,r, β = h′r+1,r, and λ = h′r+1,r+1. Then interchange rows aT
r and aT

r+1

of A, columns br and br+1 of B , and rows h′r and h′r+1 of H ′.
2. If r = n− 1 then H ′ is still lower trapezoidal. In this case the value of |hn−1,n−1|

was reduced by at least a factor of 2.
If r < n − 1 then H ′ is no longer trapezoidal. Remedy this by modifying the
basis for x⊥. Rotate hr and hr+1 in the plane they define so that the projection
of ar onto hr+1 is 0. This is done by replacing H by HQ and H ′ by H ′Q where
Q is the (n− 1)×(n− 1) unitary matrix defined as follows:

Set Q = In−1 and let δ =
√

β2 + λ2.
Then set qr,r = β/δ, qr+1,r = λ/δ, qr,r+1 = −λ/δ, and qr+1,r+1 = β/δ.

In addition to setting h′r,r+1 to 0, this sets h′r,r = δ and h′r+1,r+1 = −αλ/δ.
3. Size reduce H ′ as in Step 2.

4. Choose r so that γi
∣∣∣h′i,i

∣∣∣ is maximal as above.

Step 4: Return 1/max
∣∣∣h′i,i

∣∣∣ as a lower bound on the norm of any integer relation for x.
If r = n− 1 and h′n,n−1 = 0 then return bn−1 as an integer relation for x.

Figure 2.2: Pseudocode implementation of the PSLQ algorithm

CHAPTER 2. INTEGER RELATION ALGORITHMS 63

are included as they make it easier to follow the reasoning behind the various steps. While

the version presented here is valid only for real vectors x, it can easily be extended to work

with complex vectors as well [16].

Note that in step 1, partial sums of squares of the xi are used to construct the matrix

H . It can be seen that the column vectors hi of H form an orthonormal basis for x⊥ by

considering (x · hi) and (hi · hj) for 1 ≤ i, j ≤ n− 1. By examining the definitions of the hi

and si in step 1 of the algorithm we see the following.

For 1 ≤ i ≤ n− 1

(x · hi) = xihi,i +
n∑

k=i+1

xkhk,i = xi
si+1

si
+

n∑

k=i+1

xk
−xkxi

sisi+1

=
xisi+1

si
− xi

sisi+1

n∑

k=i+1

x2
k =

xisi+1

si
− xis

2
i+1

sisi+1
= 0.

For 1 ≤ i < j ≤ n− 1

(hi · hj) = hj,ihj,j +
n∑

k=j+1

hk,ihk,j =
−xjxi

sisi+1

sj+1

sj
+

n∑

k=j+1

−xkxi

sisi+1

−xkxj

sjsj+1

=
−xixjsj+1

sisi+1sj
+

xixj

sisi+1sjsj+1

n∑

k=j+1

x2
k =

−xixjsj+1

sisi+1sj
+

xixjs
2
j+1

sisi+1sjsj+1
= 0.

For 1 ≤ i ≤ n− 1

(hi · hi) = h2
i,i +

n∑

k=i+1

h2
k,i =

(
si+1

si

)2

+
n∑

k=i+1

(−xkxi

sisi+1

)2

=
s2
i+1

s2
i

+
x2

i

s2
i s

2
i+1

n∑

k=i+1

x2
k =

s2
i − x2

i

s2
i

+
x2

i

s2
i s

2
i+1

s2
i+1 = 1.

The matrix H we start with has the desired property, its columns form an orthonormal

basis for x⊥.

At the beginning of step 1 of the algorithm we set the constant γ >
√

4/3. This requires

an explanation. As stated above, if we reduce the values
∣∣∣h′i,i

∣∣∣ for each i, then we reduce an

upper bound on the values
∥∥∥proj

x⊥
ai

∥∥∥ and increase a lower bound on the size of the smallest

possible norm for any integer relation of x. Now as r is chosen so that γr
∣∣h′r,r

∣∣ is as large

as possible, if r < n− 1 then
∣∣h′r+1,r+1

∣∣ ≤ 1
γ

∣∣h′r,r
∣∣. In this case we let α = h′r,r, β = h′r+1,r,

CHAPTER 2. INTEGER RELATION ALGORITHMS 64

λ = h′r+1,r+1, and set δ =
√

β2 + λ2. We then replace h′r,r with δ. From the reduction of

H ′ we have that
∣∣h′r+1,r

∣∣ ≤ 1
2

∣∣h′r,r
∣∣ which then gives

δ =
√

β2 + λ2 <

√
α2

4
+

α2

γ2
= |α|

√
1
4

+
1
γ2

. (2.1)

Thus
∣∣h′r,r

∣∣ is reduced as long as
√

1
4 + 1

γ2 < 1 or γ >
√

4/3. Although this also increases∣∣h′r+1,r+1

∣∣ (as h′r+1,r+1 is replaced with −αλ/δ and
∣∣h′r,rh′r+1,r+1

∣∣ = |δ · αλ/δ| = |αλ| remains

unchanged, we see that
∣∣h′r+1,r+1

∣∣ increases), this is not a significant problem. At each step

we are forcing the larger diagonal elements of H ′ towards h′n−1,n−1 where their size can be

reduced by at least a factor of 2 when r = n− 1.

Even though we strive to reduce the diagonal entries of H ′, none will ever equal zero.

From the fact that h′i,i 6= 0 initially for any i, and as h′r,r and h′r+1,r+1 are replaced with

nonzero values when r < n−1, the only way a value h′i,i may become zero is if we interchange

rows h′n−1 and h′n of H ′ when hn,n−1 = 0. However, as we would exit the algorithm before

this interchange occurred, the diagonal elements of H ′ are always nonzero. We need not

concern ourselves about divisions by zero when computing bh′i,j/h′j,je during the reductions

of H ′.

Now, in the event that the algorithm terminates with hn,n−1 = 0, the column vector

bn−1 of B is an integer relation for x. To see this, recall that xT H = 0,BA = I ,AH = H ′

and h′n−1,n−1 6= 0. This gives 0 = xT BH ′ = [xT Bh′1,x
T Bh′2, . . . ,x

T Bh′n−1] where h′i
is the ith column vector of H ′. As the only nonzero entry in h′n−1 is h′n−1,n−1, we have

0 = xTbn−1hn−1,n−1 which yields xTbn−1 = 0. The (n−1)th column vector of B is an

integer relation for x.

2.2.1 A bound on the relation found by PSLQ

We have just shown that if the PSLQ algorithm terminates with h′n,n−1 = 0, then the

column vector bn−1 of B is an integer relation for x. Since we are looking for a small

integer relation, we would like to show that the relation found is not much larger than the

smallest possible integer relation for x. To do this, we need the following lemma.

Lemma 2.2 If the PSLQ algorithm terminates with h′n,n−1 equaling zero, then the norm of

bn−1, the integer relation found, is

‖bn−1‖ = 1/
∣∣h′n−1,n−1

∣∣

CHAPTER 2. INTEGER RELATION ALGORITHMS 65

Proof: Let e1, e2, . . . , en be the standard orthonormal basis for Rn and e′1, e
′
2, . . . , e

′
n−1 be

the standard orthonormal basis for Rn−1. As bn−1 is an integer relation for the vector x,

(HH T)bn−1 = bn−1. Using the facts that AH = H ′ and bn−1 is the (n−1)th column of

B = A−1 we see that

H ′H Tbn−1 = AHH Tbn−1 = Abn−1 = en−1 = [0, 0, . . . , 1, 0]T

or

H Tbn−1 = (H ′)†en−1

where (H ′)† is the left inverse of H ′. We know H ′ has a left inverse because the row vectors

of the lower trapezoidal matrix H ′ span Rn−1. However, as the only nonzero element in the

last column of H ′ is h′n−1,n−1, the (n−1)th column of the (n−1)×n matrix (H ′)† must be

equal to 1
h′n−1,n−1

e′n−1 = [0, 0, . . . , 0, 1
h′n−1,n−1

]T . The linear combination of the rows of H ′

required to construct e′Ti cannot use the (n−1)th row of H ′ when i 6= n− 1 and must have

a multiple of 1
h′n−1,n−1

times the (n−1)th row when i = n− 1. It follows that

‖H Tbn−1‖ = ‖H ′†en−1‖ = ‖[0, 0, . . . , 0,
1

h′n−1,n−1

]T ‖ =
1∣∣∣h′n−1,n−1

∣∣∣
.

Now, as bn−1 lies in x⊥ and the rows of H T form an orthonormal basis for x⊥, we see that

‖H Tbn−1‖ = ‖bn−1‖ which gives the result we are after:

‖bn−1‖ =
1∣∣∣h′n−1,n−1

∣∣∣
.

¤

Armed with this lemma it becomes a simple matter to find a bound on the size of an integer

relation found by the PSLQ algorithm.

Theorem 2.4 Let M be the norm of the smallest integer relation for x. If the PSLQ

algorithm terminates because h′n,n−1 = 0 and r = n− 1, then

‖bn−1‖ ≤ γn−2M.

Proof: By Lemma 2.2, we know that ‖bn−1‖ = 1

|h′n−1,n−1| . As r = n − 1, we have

γn−1
∣∣h′n−1,n−1

∣∣ ≥ γi
∣∣∣h′i,i

∣∣∣ for 1 ≤ i ≤ n − 1. From Theorem 2.3, as none of the diago-

nal elements of H ′ are zero, M ≥ 1

|h′j,j| for some j and so

Mγn−1 ≥ γn−1

∣∣∣h′j,j
∣∣∣
≥ γj

∣∣∣h′n−1,n−1

∣∣∣
≥ γ∣∣∣h′n−1,n−1

∣∣∣
= γ‖bn−1‖

CHAPTER 2. INTEGER RELATION ALGORITHMS 66

or

‖bn−1‖ ≤ γn−2M.

¤

We cannot guarantee the PSLQ algorithm will return a smallest integer relation for x.

However, if we have max
∣∣∣h′i,i

∣∣∣ =
∣∣h′n−1,n−1

∣∣ upon termination, then we have found an

integer relation for x of smallest possible norm. It should be noted that if we stop the

algorithm when h′n,n−1 = 0 but before r = n − 1, then the above bound does not apply.

Although bn−1 will still be an integer relation for x with norm equal to 1/
∣∣h′n−1,n−1

∣∣, this

norm may not be as small as we can make it. If we continue until r = n− 1, then we may

increase the value |hn−1,n−1| (it will not decrease) and hence decrease the norm of bn−1.

2.2.2 Termination of the algorithm

We first consider the case when the vector x has integer relations. In this case, termination

of the algorithm rests upon the result of Theorem 2.3 and the method used to reduce the

diagonal elements of H ′. To begin, define τ so that

1
τ

=
√

1
4

+
1
γ2

.

In step 1 of the algorithm, γ was chosen so that γ >
√

4/3 and thus we see that τ > 1. To

show that the algorithm terminates we show that Π(k), a function of the diagonal elements

of H ′, is bounded and increases with each iteration.

Definition 2.5 Let h′i,i(k) be the ith diagonal element of H ′ at the end of the kth iteration

for k ≥ 1 and let h′i,i(0) be the ith diagonal element of H ′ at the beginning of the first

iteration. Let γ be as chosen in step 1 and let M be the norm of a smallest integer relation

for the n dimensional vector x. Then define Π(k) to be

Π(k) =
n−1∏

i=1

[min(γn−1M,
1∣∣∣h′i,i(k)

∣∣∣
)]n−i.

The following lemma shows that the function Π(k) is bounded.

Lemma 2.3 At the end of the kth iteration (k ≥ 0), the following inequalities are satisfied.

1 ≤ Π(k) ≤ (γn−1M)(
n
2)

CHAPTER 2. INTEGER RELATION ALGORITHMS 67

Proof: From step 1 of the algorithm we see that

∣∣h′i,i(0)
∣∣ =

∣∣∣∣
si+1

si

∣∣∣∣ < 1 for 1 ≤ i ≤ n− 1.

Now suppose that at the beginning of the kth iteration
∣∣∣h′i,i(k)

∣∣∣ ≤ 1 for each i. Then if

r = n − 1 only
∣∣h′n−1,n−1(k)

∣∣ changes and is reduced by at least a factor of 2. If r < n − 1

then only
∣∣h′r,r(k)

∣∣ and
∣∣h′r+1,r+1(k)

∣∣ change. As was shown previously in equation (2.1),∣∣h′r,r(k)
∣∣ is replaced with the smaller value |δ| and

∣∣h′r+1,r+1(k)
∣∣ is replaced with

∣∣αλ
δ

∣∣ <

|α| =
∣∣h′r,r(k)

∣∣ ≤ 1. Thus
∣∣∣h′i,i(k + 1)

∣∣∣ ≤ 1 for 1 ≤ i ≤ n − 1. We see that for each i and

k ≥ 0,
∣∣∣h′i,i(k)

∣∣∣ ≤ 1. As both γ and M are larger than 1 it follows that for any k ≥ 0,

min(γn−1M, 1

|h′i,i(k)|) ≥ 1 for 1 ≤ i ≤ n− 1. This establishes one of the desired inequalities,

1 ≤ Π(k) for each k ≥ 0.

For the second inequality, note that

γn−1M ≥ min(γn−1M,
1∣∣∣h′i,i(k)

∣∣∣
)

and so

Π(k) ≤
n−1∏

i=1

(
γn−1M

)n−i =
(
γn−1M

)Pn−1
i=1 i

.

As
∑n−1

i=1 i = n(n−1)
2 =

(
n
2

)
we have the required result.

¤

Before showing that Π(k) increases by at least a factor of τ with each iteration, we need

the following lemma.

Lemma 2.4 Suppose the positive constants a, b and t satisfy the following inequalities:

a ≥ b, a ≥ t, and 1 ≥ t.

Then
min(a, 1)min(b, t)
min(a, t)min(b, 1)

≥ 1.

Proof: The proof is a simple verification. If one lists off all 24 possible orderings of a, b, 1,

and t and then crosses off those orderings where it is possible to have a < b, a < t, or 1 < t,

CHAPTER 2. INTEGER RELATION ALGORITHMS 68

then only the following 5 orderings remain:

a ≥ b ≥ 1 ≥ t

a ≥ 1 ≥ b ≥ t

a ≥ 1 ≥ t ≥ b

1 ≥ a ≥ b ≥ t

1 ≥ a ≥ t ≥ b.

With these remaining orderings one easily checks that the desired inequality holds.

¤

Lemma 2.5 For any k ≥ 0, Π(k + 1) ≥ τΠ(k).

Proof: We will show that the quotient Π(k + 1)/Π(k) is greater than or equal to τ . When

r < n− 1, the following 2× 2 submatrix of H ′

[
h′r,r(k) 0

h′r+1,r(k) h′r+1,r+1(k)

]
=

[
α 0

β λ

]
becomes

[
δ 0

αβ/δ −αλ/δ

]

where δ =
√

β2 + λ2. All other diagonal elements of H ′ remain unchanged. It follows that

in this case
Π(k + 1)

Π(k)
=

min(γn−1M, 1
|δ|)

n−r ·min(γn−1M,
∣∣ δ
αλ

∣∣)n−r−1

min(γn−1M, 1
|α|)

n−r ·min(γn−1M, 1
|λ|)

n−r−1
.

If we make the substitutions a = γn−1M |δ| and b = γn−1M |λ|, then we have

Π(k + 1)
Π(k)

=
min(a, 1)

min(a,
∣∣ δ
α

∣∣)

(
min(a, 1)

min(a,
∣∣ δ
α

∣∣)
min(b,

∣∣ δ
α

∣∣)
min(b, 1)

)n−r−1

.

Now as δ =
√

β2 + λ2 ≥ |λ|, a ≥ b and as γ >
√

4/3, equation (2.1) shows that |δ/α| < 1.

By Theorem 2.3 and the choice of r we also have that M ≥ 1/
∣∣∣h′j,j

∣∣∣ for some j and γr |α| ≥
γi

∣∣∣h′i,i
∣∣∣ for 1 ≤ i ≤ n− 1. As γ > 1 this implies that

Mγn−1 ≥ γr

∣∣∣h′j,j
∣∣∣
≥ γj

|α| ≥
γ

|α| ≥
1
|α| (2.2)

or equivalently that

a = Mγn−1δ ≥ δ

|α| .

CHAPTER 2. INTEGER RELATION ALGORITHMS 69

As the conditions of Lemma 2.4 are satisfied, we see that

Π(k + 1)
Π(k)

≥ min(a, 1)
min(a,

∣∣ δ
α

∣∣) .

If a ≥ 1, then since |β| ≤ |α| /2 and |α| ≥ γ |λ| by choice of r,

min(a, 1)
min(a,

∣∣ δ
α

∣∣) =
∣∣∣α
δ

∣∣∣ ≥ |α|√
α2

4 + α2

γ2

=
1√

1
4 + 1

γ2

= τ.

Otherwise we have 1 > a ≥ |δ/α| and so

min(a, 1)
min(a,

∣∣ δ
α

∣∣) = Mγn−1 |α| ≥ γ

from equation (2.2) above. From the definition of τ we see that 1/τ2 > 1/γ2 or that γ > τ .

Thus if r < n− 1 then

Π(k + 1) ≥ τΠ(k).

If r = n− 1 then the only diagonal of H ′ that changes is
∣∣h′n−1,n−1

∣∣ = |α|. In this case we

have
∣∣h′n−1,n−1(k + 1)

∣∣ ≤ |α| /2 and so

Π(k + 1)
Π(k)

≥
min(γn−1M, 1

|α|/2)

min(γn−1M, 1
|α|)

=
min(γn−1M |α| , 2)
min(γn−1M |α| , 1)

.

Again, from equation (2.2) we have γn−1M |α| ≥ γ ≥ 1. Now as 1/τ2 = 1/4 + 1/γ2 > 1/4,

2 > τ and so if γn−1M |α| ≥ 2 then

Π(k + 1)
Π(k)

= 2 > τ.

On the other hand, if 2 > γn−1M |α| ≥ 1 we have

Π(k + 1)
Π(k)

= γn−1M |α| ≥ γ > τ.

If r = n− 1 we also have

Π(k + 1) ≥ τΠ(k).

¤

We are now in a position to give bounds on both the number of iterations required to find

an integer relation for x and the number of exact arithmetic operations required to find this

relation.

CHAPTER 2. INTEGER RELATION ALGORITHMS 70

Theorem 2.5 If the vector x has integer relations, then the PSLQ algorithm will find one

in less than (
n

2

)
log(γn−1M)

log τ

iterations where M is the norm of a shortest relation for x, γ is as chosen in step 1 of the

algorithm, and τ > 1 is defined by 1/τ2 = 1/4 + 1/γ2.

Proof: Suppose we have completed k iterations of the algorithm and have not yet found

an integer relation for x. Then from Lemma 2.5 we see that

Π(k) ≥ τΠ(k − 1) ≥ · · · ≥ τkΠ(0),

and so Lemma 2.3 gives (
γn−1M

)(n
2) > Π(k) ≥ τk.

Now as τ > 1 we have (
n
2

)
log(γn−1M)

log τ
> k.

¤

Corollary 2.1 If x has integer relations then the PSLQ algorithm can be made to find one

using

O
(
n4 + n3 log M

)

exact arithmetic operations.

Proof: The above theorem shows that the PSLQ algorithm will find an integer relation,

if one exists, in less than n2+n
2

((n−1) log γ+log M)
log τ or O

(
n3 + n2 log M

)
iterations. Examining

the algorithm we see that parts 1, 2, and 4 of the main iteration can be completed using

O(n) exact arithmetic operations and part 3, the size reduction of H ′, requires O(n3). Thus

the algorithm as given requires O(n6 + n5 log M) exact arithmetic operations. However, if

we examine the proof of Lemma 2.5 we see that the full reduction of the matrix H ′ is not

necessary. All that is required for this proof to go through is that
∣∣∣h′i+1,i

∣∣∣ ≤ 1/2
∣∣∣h′i,i

∣∣∣ for

1 ≤ i ≤ n − 1. If we make this change to the algorithm then part 3 can be completed in

O(n) exact arithmetic operations as well. Thus if x has integer relations then the PSLQ

algorithm can be made to find one in O(n4 + n3 log M) exact arithmetic operations.

¤

CHAPTER 2. INTEGER RELATION ALGORITHMS 71

Although we can modify part 3 of the main iteration so that it requires only O(n) exact

arithmetic operations, this was not done as our final goal is to implement the PSLQ al-

gorithm using inexact arithmetic. If we do not do a full reduction of the matrix H ′, but

instead only do a partial reduction then the algorithm becomes unstable. More is said on

this matter when we discuss the HJLS algorithm and its relation to PSLQ.

The proof of termination of the algorithm when x has no integer relations of norm less

than T is very similar and requires only cosmetic changes. In this case we define a new

function Π∗(k) as

Π∗(K) =
n−1∏

i=1

[min(γn−1T,
1∣∣∣h′i,i(k)

∣∣∣
)]n−1.

Exactly as in Lemma 2.3 we have that

1 ≤ Π∗(k) ≤ (γn−1T)(
n
2).

Now rather than using Theorem 2.3 in Lemma 2.5, we instead use the fact that if the

algorithm has not terminated after the kth iteration, then there is at least one j such that
∣∣∣∣∣

1
h′j,j

∣∣∣∣∣ < T.

If we redefine a and b so that

a = γn−1Tδ and b = γn−1T |λ|

then equation (2.2) becomes

Tγn−1 ≥ γr

∣∣∣h′j,j
∣∣∣
≥ γj

|α| ≥
γ

|α| ≥
1
|α|

or equivalently,

a = Tγn−1δ ≥ δ

|α| .

Everything carries through as before. We see that

Π∗(k + 1) ≥ τΠ∗(k).

The results of this section are summarized in the following theorem.

CHAPTER 2. INTEGER RELATION ALGORITHMS 72

Theorem 2.6 Let µ = min(M,T) where T is the bound passed to the PSLQ algorithm

and M is the norm of a smallest integer relation for x (if x has no integer relations then

M = ∞). Then the PSLQ algorithm will terminate in less than

(
n

2

)
log

(
γn−1µ

)

log τ

iterations. Upon termination, the algorithm will either return an integer relation for x of

norm no larger than γn−2M or return a lower bound ≥ T on the norm of any integer relation

for x.

The fact that the PSLQ algorithm can return a lower bound on the size of an integer

relation for x is very useful. For instance, Bailey and Plouffe use this to show that if Euler’s

constant satisfies an integer polynomial of degree 50 or less, then the Euclidean norm of the

coefficients must exceed 7 × 1017 [4]. This is an advantage that the PSLQ algorithm has

over LLL.

2.3 The HJLS algorithm

Initially given the preferable name of The Small Integer Relation Algorithm, HJLS is an

integer relation algorithm developed by Hastad, Just, Lagarias, and Schnorr [22]. As with

the PSLQ algorithm, it is based on work stemming from Ferguson and Forcade’s Generalized

Euclidean Algorithm [13]. The idea behind HJLS is again to construct a sequence of bases

for the lattice Zn in such a way that a lower bound on the size of any possible integer relation

for x = [x1, x2, . . . , xn]T increases. Following the initial paper, we present the details of the

algorithm in Figure 2.3 and give a brief proof of the algorithm’s correctness. The proof of

termination and a bound on the number of iterations required is essentially the same as

that given for the PSLQ algorithm and will be omitted.

Theorem 2.7 The HJLS algorithm correctly returns either an integer relation for x or the

value 2k as a lower bound on the norm of any possible relation. If an integer relation is

found, it is no more than
√

2
n−2

times as large as the smallest possible relation for x.

Proof: Suppose the HJLS algorithm terminates with ‖a∗n‖ 6= 0. This implies that ‖a∗i ‖ = 0

for some i < n and so the vectors x = a0,a1, . . . ,an−1 form a linearly dependent set. As

the vectors a1,a2, . . . ,an−1 are linearly independent, we see that x ∈ span(a1,a2, . . . ,an−1)

CHAPTER 2. INTEGER RELATION ALGORITHMS 73

The HJLS Algorithm
This algorithm takes a vector x = [x1, x2, . . . , xn]T and a constant k as input. It either
returns an integer relation for x or shows that x has no integer relations of norm less than
2k.

Step 1 Initialization
Set A = B = In.
Let aT

i be the ith row vector of A and bi be the ith column vector of B .
Set a∗0 = x and a∗i = ai −

∑i−1
j=0 µi,ja∗j for i = 1, . . . , n

where µi,j =

{
ai·a∗j
‖a∗j‖2 ‖a∗j‖ 6= 0

0 ‖a∗j‖ = 0
The vectors a∗1,a

∗
2, . . . ,a

∗
n span x⊥.

If ‖a∗n‖ = 0 then return bn as an integer relation for x.

Step 2
Repeat

Choose the value r that maximizes 2r‖a∗r‖2 for 1 ≤ r ≤ n.
Partial Reduction: (Ensure |µr+1,r| ≤ 1/2)

Set ar+1 = ar+1 − dµr+1,rcar.
Set br+1 = br+1 + dµr+1,rcbr to maintain B = A−1.
Update the values µr+1,i, 1 ≤ i ≤ r

Exchange and Update:
Exchange rows aT

r and aT
r+1 of A.

Exchange columns br and br+1 of B .
Update a∗r, ‖a∗r‖,a∗r+1, ‖a∗r+1‖, µr+1,r,
and the values µi,r and µi,r+1 for r + 2 ≤ i ≤ n.

Until ‖a∗n‖ 6= 0 or ‖a∗i ‖ ≤ 2−k for all i with 1 ≤ i ≤ n.

If ‖a∗n‖ 6= 0 then return bn as an integer relation for x. Otherwise return 2k as a lower
bound on the norm of any possible integer relation for x.

Figure 2.3: Pseudocode implementation of the HJLS algorithm

CHAPTER 2. INTEGER RELATION ALGORITHMS 74

and so bn lies in x⊥ as bn is orthogonal to each ai for 1 ≤ i ≤ n − 1. In the event that

‖a∗n‖ 6= 0, HJLS correctly returns an integer relation for x.

If HJLS terminates with ‖a∗n‖ = 0, then ‖a∗i ‖ ≤ 2−k for each i. Now if m is an integer

relation for x, then m ∈ x⊥ = span(a∗1,a
∗
2, . . . ,a

∗
n−1) and so m · a∗i 6= 0 for at least one i

with 1 ≤ i ≤ n− 1. Choose the smallest i such that m · a∗i 6= 0. Then m · a∗i = m · ai ∈ Z
and so as ‖m‖‖a∗i ‖ ≥ |m · a∗i | ≥ 1, we have ‖m‖ ≥ 1/‖a∗i ‖. Thus the norm of any integer

relation for x must be greater than 1/max ‖a∗i ‖ ≥ 2k.

For the last portion of the proof, suppose that bn is an integer relation found by the HJLS

algorithm. Then as above, both a∗n and bn are orthogonal to the vectors x,a1, . . . ,an−1 and

so a∗n = cbn for some constant c. It follows that ‖bn‖‖a∗n‖ = |bn · a∗n| = |bn · an| = 1 or

‖bn‖ = 1/‖a∗n‖. Now in the event that a∗n 6= 0 initially, ‖bn‖ = 1 and so bn is a smallest

integer relation for x. If a∗n = 0 initially, then let a(k)
1 , . . . ,a(k)

n , a∗(k)
1 , . . . ,a∗(k)

n be the

vectors a1, . . . ,an, a∗1, . . . ,a
∗
n at the beginning of the final iteration, let a(k+1)

1 , . . . ,a(k+1)
n ,

a∗(k+1)
1 , . . . ,a∗(k+1)

n be the vectors a1, . . . ,an, a∗1, . . . ,a
∗
n at the end of the final iteration, and

let m be any integer relation for x. We know that ‖m‖ ≥ 1/max ‖a∗(k)
i ‖ and that for the

final iteration when a relation is found, r = n−1. With this choice of r, the partial reduction

step sets a(k+1)
n = a(k)

n−1 and a(k+1)
n−1 = a(k)

n + dµ(k)
n,n−1ca(k)

n−1. As this results in a∗(k+1)
n 6= 0 and

x,a∗(k+1)
1 , . . . ,a∗(k+1)

n−2 do not change, we have that a∗(k+1)
n−1 = 0 and so a∗(k+1)

n = a∗(k)
n−1. Now

by choice of r, 2‖a∗(k)
i ‖2 ≤ 2i‖a∗(k)

i ‖2 ≤ 2n−1‖a∗(k)
n−1‖2 and so

‖a∗(k)
i ‖2 ≤ 2n−2‖a∗(k)

n−1‖2 = 2n−2‖a∗(k+1)
n ‖2 = 2n−2 1

‖bn‖2
for 1 ≤ i ≤ n.

As ‖m‖ ≥ 1/max ‖a∗(k)
i ‖ we have the desired result, ‖bn‖ ≤

√
2

n−2‖m‖. A relation found

by the HJLS algorithm is no more than
√

2
n−2

times as large as the smallest integer relation

for x.

¤

Note that there is nothing special that requires having a power of 2 for the lower bound

found by HJLS. This lower bound on the norm of any possible integer relation for x is only

a consequence of the termination condition which can be modified.

As in the proof of termination for the PSLQ algorithm, the HJLS algorithm will termi-

nate provided we always have |µr+1,r| ≤ 1/2 before exchanging ar and ar+1. Due to this

fact, the authors claim that having |µi,j | ≤ 1/2 for all i > j is unnecessary in the real number

model of computation and so implement their algorithm with only a partial reduction done

CHAPTER 2. INTEGER RELATION ALGORITHMS 75

at each step. This is unfortunate as it leads to numerical instability in the algorithm when

implemented with inexact arithmetic operations. As they explain that the objective of their

algorithm is to construct a sequence of bases for the lattice Zn that converge strongly to the

line Rx (the sequence of vectors {ai} converges strongly to the line Rx if
∥∥∥proj

x⊥
ai

∥∥∥ → 0),

it is fair to say that if we implement HJLS with full reductions, which actually forces the

projections of the basis vectors to tend to zero, then we simply have another implementa-

tion of the HJLS algorithm. The authors of PSLQ must agree with this as to get the better

bound on the number of iterations required, they work with an implementation of PSLQ

that only performs a partial reduction at each step and still call it the PSLQ algorithm.

2.3.1 The relation between HJLS and PSLQ

In [16], the authors claim that HJLS is not a special case of the later PSLQ algorithm with

γ =
√

2. To support their claim they give two examples where the performance of PSLQ

and HJLS differ. If we consider the algebraic number α = 31/4 − 21/4, then the vector

[1, 0, 0, 0,−3860, 0, 0, 0,−666, 0, 0, 0,−20, 0, 0, 0, 1]T

is an integer relation for the vector

[1, α, α2, α3, α4, α5, α6, α7, α8, α9, α10, α11, α12, α13, α14, α15, α16]T

as the minimal polynomial for α is x16−20x12−666x8−3860x4 +1. They state that PSLQ,

with γ =
√

2, finds this relation with a working precision of 85 decimal digits while HJLS

requires more than 10,000. As further evidence, they consider finding an integer relation for

the vector [11, 27, 31]T , a case when exact arithmetic can easily be used. Here, they show

that for PSLQ with γ =
√

2, the successive iterations k = 0, 1, 2, 3, 4 yield the five A−1

matrices 


1 0 0

0 1 0

0 −1 1


 ,




1 0 0

3 8 1

−3 −7 −1


 ,



−2 1 0

2 3 1

−1 −3 −1


 ,




3 −2 0

1 2 1

−2 −1 −1


 ,



−1 −8 −2

5 9 2

−4 −5 −1


 .

CHAPTER 2. INTEGER RELATION ALGORITHMS 76

The first two columns of the last matrix are integer relations for [11, 27, 31]T . The HJLS

algorithm requires 6 iterations for which iterations k = 0, 1, 2, 3, 4, 5, 6 produce the seven

A−1 matrices



1 0 0

0 1 0

0 0 1


 ,




1 0 0

0 0 1

0 1 −1


 ,




0 1 0

0 0 1

1 0 −1


 ,




1 −2 0

0 0 1

0 1 −1


 ,




1 0 −2

0 1 2

0 −1 −1


 ,




0 1 −2

1 3 2

−1 −3 −1


 ,




0 −2 −1

1 2 5

−1 −1 −4


 .

With exact arithmetic, the PSLQ algorithm constructs two relations after only 4 iterations

while the HJLS algorithm constructs only one and requires 6 iterations. As this appears to

show that the PSLQ and HJLS algorithms behave differently, both in the case when inexact

arithmetic is used and when exact arithmetic is used, the authors of [16] claim HJLS and

PSLQ are different. They suggest that the difference may be due to the fact that PSLQ uses

an orthogonal decomposition based on QR factorization while HJLS uses a decomposition

which follows the classical method of Gram-Schmidt. This is not the case. The differences

observed here are due to the partial reduction rather than full reduction done in the given

implementation of HJLS. We shall show that HJLS with full reductions is equivalent to

PSLQ with γ =
√

2 and then comment on these examples.

Following shortly, we will give the details for implementing HJLS with a full reduction

at the end of each iteration, ensuring |µi,j | ≤ 1/2 for all i > j, j = 1, . . . ,n−1. With the

intent of making it easier to show the two algorithms are equivalent, we make the reasonable

assumption that no component of x equals zero and at each stage we normalize the vectors

a∗1,a
∗
2, . . . ,a

∗
n−1. The vectors hi = a∗i /‖a∗i ‖ for 1≤ i≤n−1 form an orthonormal basis for

x⊥ at the beginning of each iteration as none of the a∗i are 0 for 1≤ i≤n−1 until the end

of the final iteration when a∗n−1 = 0. Let H be the n× n matrix such that the ith column

vector of H is hi for 1≤ i≤n−1 and the nth column of H is the zero vector. Then let M

be the lower triangular matrix AH where aT
i is the ith row vector of A. For each entry mi,j

of M ,

mi,j = (ai · hj) =

{
(ai · a∗j/‖a∗j‖) 1 ≤ j ≤ n− 1

0 j = n

CHAPTER 2. INTEGER RELATION ALGORITHMS 77

and so

µi,j =

{
mi,j/‖a∗j‖ 1 ≤ j ≤ n− 1

mi,j j = n.

As mi,i = ‖a∗i ‖ and ‖a∗n‖ = 0, selecting a value of r that maximizes 2r‖a∗j‖2 for 1≤ i≤n is

equivalent to selecting an r that maximizes (
√

2)rmi,i for 1≤ i≤n−1 and ensuring |µi,j | ≤ 1/2

is equivalent to ensuring |mi,j/mj,j | ≤ 1/2. Now with this choice of r, after exchanging ar

with ar+1 we need to update hr, hr+1 and the values mi,j to maintain hi = a∗i /‖a∗i ‖ for

1≤ i≤n−1 and mi,j = (ai · hj).

First, suppose r < n−1. Let a(k)
i , a∗(k)

i , h(k)
i , µ

(k)
i,j , and m

(k)
i,j equal ai, a∗i , hi, µi,j , and

mi,j at the beginning of the kth iteration and let a superscript (k′) denote the variable after

interchanging ar with ar+1. Define α, β, λ and δ as follows:

α = ‖a∗(k)
r ‖ = m(k)

r,r , β =
(a(k)

r+1 · a∗(k)
r)

‖a∗(k)
r ‖

= µ
(k)
r+1,r‖a∗(k)

r ‖ = m
(k)
r+1,r,

λ = ‖a∗(k)
r+1‖ = m

(k)
r+1,r+1, and δ =

√
β2 + λ2.

After exchanging ar with ar+1, a(k′)
r = a(k)

r+1 and a(k′)
r+1 = a(k)

r . This gives

a∗(k
′)

r = a∗(k)
r+1 + µ

(k)
r+1,ra

∗(k)
r

‖a∗(k′)r ‖ =
√
‖a∗(k)

r+1‖2 + (m(k)
r+1,r/‖a∗(k)

r ‖)2‖a∗(k)
r ‖2 =

√
λ2 + β2 = δ

h(k′)
r =

a∗(k
′)

r

δ
=

h∗(k)
r+1‖a∗(k)

r+1‖+ µ
(k)
r+1,rh

(k)
r ‖a∗(k)

r ‖
δ

=
λh(k)

r+1

δ
+

βh(k)
r

δ

and

a∗(k
′)

r+1 = a∗(k)
r − (a(k′)

r+1 · a∗(k
′)

r)

‖a∗(k′)r ‖2
a∗(k

′)
r

= a∗(k)
r − (a(k)

r · (a∗(k)
r+1 + µ

(k)
r+1,ra

∗(k)
r))

‖a∗(k)
r+1‖2 + (µ(k)

r+1,r)2‖a∗(k)
r ‖2

(a∗(k)
r+1 + µ

(k)
r+1,ra

∗(k)
r)

=
a∗(k)

r ‖a∗(k)
r+1‖2 − µ

(k)
r+1,r‖a∗(k)

r ‖2a∗(k)
r+1

‖a∗(k)
r+1‖2 + (µ(k)

r+1,r)2‖a∗(k)
r ‖2

=
h(k)

r αλ2 − βαλh(k)
r+1

δ2
=

αλ

δ

(λh(k)
r − βh(k)

r+1)
δ

‖a∗(k′)r+1 ‖ =
αλ

δ

h(k′)
r+1 =

λh(k)
r

δ
− βh(k)

r+1

δ
.

CHAPTER 2. INTEGER RELATION ALGORITHMS 78

If we define the n× n matrix S so that

si,j =





1 i = j 6= r or r + 1

β/δ i = j = r

−β/δ i = j = r + 1

λ/δ i = r + 1, j = r and i = r, j = r + 1

0 otherwise

then H (k)S=
[
h(k)

1 , . . . ,h(k)
r−1,

(
β

δ
h(k)

r +
λ

δ
h(k)

r+1

)
,

(
λ

δ
h(k)

r − β

δ
h(k)

r+1

)
,h(k)

r+2, . . . ,h
(k)
n−1,0

]

=
[
h(k′)

1 , . . . ,h(k′)
r−1,h

(k′)
r ,h(k′)

r+1,h
(k′)
r+2, . . . ,h

(k′)
n−1,0

]
= H (k′).

As H (k′) = H (k)S and A(k′) = EA(k) where E is the n × n elementary matrix that inter-

changes rows r and r + 1, M (k′) = A(k′)H (k′) = EM (k)S .

Interchanging rows r and r + 1 of M and then multiplying on the right by S and

multiplying H on the right by S correctly updates the matrices M and H , maintaining both

h(k′)
i =

{
a∗(k

′)
i /‖a∗(k′)i ‖ for 1 ≤ i ≤ n− 1

0 for i = n

and

m
(k′)
i,j = (a(k′)

i · h(k′)
j) for 1 ≤ i, j ≤ n.

Following this, we apply a full reduction to the matrix M to maintain |µi,j | = |mi,j/mj,j | ≤
1/2. This reduces M in the same manner used to reduce the matrix H ′ in the PSLQ

algorithm and does not change the vectors a∗(k
′)

i . At the start of the (k+1)st iteration,

h(k+1)
i = h(k′)

i for each i.

In the event that r = n − 1, then either a∗(k
′)

n−1 = 0 or a∗(k
′)

n−1 6= 0. If a∗(k
′)

n−1 is not 0,

then this reduces to the previous case. However, if a∗(k
′)

n−1 is 0 then we no longer have

h(k′)
n−1 = a∗(k

′)
n−1 /‖a∗(k′)n−1 ‖. Although this is of little consequence as the algorithm will terminate

after this iteration, we can avoid this situation altogether by modifying the termination

condition. As a∗(k
′)

n−1 = a∗(k)
n +µ

(k)
n,n−1a

∗(k)
n−1, in order for a∗(k

′)
n−1 to equal zero we must have had

µ
(k)
n,n−1 = 0, or equivalently, m

(k)
n,n−1 = 0. Rather than waiting for a∗n 6= 0 we can save a single

iteration by terminating when mn,n−1 = 0 and r = n − 1. With this modified termination

condition, at the beginning and end of each iteration hi = a∗i /‖a∗i ‖ for 1 ≤ i ≤ n − 1,

CHAPTER 2. INTEGER RELATION ALGORITHMS 79

The HJLS algorithm with full reductions
This algorithm takes a vector x = [x1, x2, . . . , xn]T and a constant T as input. It either
returns an integer relation for x along with a lower bound on the norm of a shortest integer
relation or shows x has no integer relations of norm less than T .

Step 1 Initialization
Set A = B = H = In.
Let ai be the ith column vector of AT and bi be the ith column vector of B .
Set h0 = x/‖x‖, entry hn,n of H to 0, and let hi be the ith row vector of H T .
For j from 1 to n− 1 do (Gram-Schmidt)

set hj = hj −
∑j−1

k=0(hj · hk)hk

set hj = hj/‖hj‖
end do.
Set M = AH = H as A = In.
Let mi be the ith row vector of M and mi,j the (i, j)th entry of M .

Step 2 Size Reduction of M
For i from 2 to n do, for j from i− 1 to 1 do

set t = bmi,j/mj,je
replace ai with ai − taj , bj with bj + tbi, and mj with mi − tmj

end do, end do.

Step 3: The Main Iteration
Choose r so that

√
2

i
mi,i is maximal when i = r.

Repeat the following until either 1/max(mi,i)≥T or both mn,n−1 =0 and r=n−1.

1. Let α = mr,r, β = mr+1,r, λ = mr+1,r+1, δ =
√

β2 + λ2 and S = In−1.
Set sr,r = β/δ, sr+1,r = λ/δ, sr,r+1 = λ/δ, and sr+1,r+1 = −β/δ.

2. Interchange rows aT
r and aT

r+1 of A, columns br and br+1 of B , and rows mr and
mr+1 of M .

3. Replace H with HS and M with MS .

4. Size reduce M as in Step 2.

5. Choose r so that
√

2
i
mi,i is maximal as above.

Step 4: Return 1/max(mi,i) as a lower bound on the norm of any integer relation for x.
If mn,n−1 = 0 then return bn−1 as an integer relation for x.

Figure 2.4: Pseudocode implementation of the HJLS algorithm with full reductions

CHAPTER 2. INTEGER RELATION ALGORITHMS 80

hn = 0, and mi,j = (ai · hj) = µi,j‖a∗i ‖. It follows that the HJLS algorithm with full

reductions is equivalent to the algorithm presented in Figure 2.4. When implemented using

inexact arithmetic, some care must be taken when checking for the condition mn,n−1 = 0.

As mn,n−1 = (an · hn−1), we will claim mn,n−1 = 0 if (an
‖an‖ ·

hn−1

‖hn−1‖) = mn,n−1/‖an‖ < ε

where the value ε depends on the level of precision being used.

Comparing this algorithm to the PSLQ algorithm in Figure 2.2 with γ =
√

2, one sees

many similarities. In particular we have the following:

Theorem 2.8 For each iteration, the matrix A from the HJLS algorithm with full reduc-

tions and the matrix A from the PSLQ algorithm are the same and up to sign, the column

vectors of the matrix H from PSLQ are the same as the first n − 1 column vectors of the

matrix H from HJLS.

Proof: Let a(H,k)
i (a(P,k)

i) denote the ith column vector of the matrix AT from the HJLS

(PSLQ) algorithm at the beginning of the kth iteration, and let h(H,k)
j (h(P,k)

j) denote the

jth column vector of the matrix H from the HJLS (PSLQ) algorithm at the beginning of

the kth iteration. Let a superscript of k = 0 denote the vector at the end of the step 1.

Initially, both algorithms set A = In and so a(H,0)
i = a(P,0)

i for 1 ≤ i ≤ n. Now by

construction, h(P,0)
n−1 is orthogonal to the vectors x,a(P,0)

1 , . . . ,a(P,0)
n−2 and h(H,0)

n−1 is orthogonal

to the vectors x,a(H,0)
1 , . . . ,a(H,0)

n−2 . As each a(H,0)
i = a(P,0)

i and the vectors x,a(H,0)
1 , . . . ,a(H,0)

n−2

are linearly independent, we see that h(P,0)
n−1 is a scalar multiple of h(H,0)

n−1 . As both are

unit vectors and initially the diagonal elements of H in both PSLQ and HJLS are positive,

h(P,0)
n−1 = h(H,0)

n−1 . Similarly, as the vector h(H,0)
n−2 is orthogonal to x,a(H,0)

1 , . . . ,a(H,0)
n−3 , and h(H,0)

n−1

and the vector h(P,0)
n−2 is orthogonal to x,a(P,0)

1 , . . . ,a(P,0)
n−3 , and h(P,0)

n−1 we have h(H,0)
n−2 = h(P,0)

n−2 .

Continuing in this fashion, we see that h(H,0)
i = h(P,0)

i for 1 ≤ i ≤ n− 1.

As H ′=AH in PSLQ, M=AH in HJLS, and as the reduction in step 2 is the same in

both algorithms, when we enter the main iteration for the first time we have a(H,1)
i = a(P,1)

i

for 1 ≤ i ≤ n and h(H,1)
i = h(P,1)

i for 1 ≤ i ≤ n− 1.

Now suppose for some k ≥ 1, a(H,k)
i = a(P,k)

i for 1 ≤ i ≤ n and h(H,k)
i = ±h(P,k)

i for

1 ≤ i ≤ n − 1. Then in both algorithms, the same value is chosen for r. First, suppose

r < n− 1. Let α(H,k), β(H,k), λ(H,k), and δ(H,k) be the values assigned to α, β λ, and δ in the

HJLS algorithm and let α(P,k), β(P,k), λ(P,k), and δ(P,k) be the values assigned to α, β λ, and

δ in the PSLQ algorithm. One of the four conditions holds:

1. h(H,k)
r = h(P,k)

r , α(H,k) = α(P,k), β(H,k) = β(P,k),

CHAPTER 2. INTEGER RELATION ALGORITHMS 81

h(H,k)
r+1 = h(P,k)

r+1 , λ(H,k) = λ(P,k), δ(H,k) = δ(P,k)

2. h(H,k)
r = h(P,k)

r , α(H,k) = α(P,k), β(H,k) = β(P,k),

h(H,k)
r+1 = −h(P,k)

r+1 , λ(H,k) = −λ(P,k), δ(H,k) = δ(P,k)

3. h(H,k)
r = −h(P,k)

r , α(H,k) = −α(P,k), β(H,k) = −β(P,k),

h(H,k)
r+1 = h(P,k)

r+1 , λ(H,k) = λ(P,k), δ(H,k) = δ(P,k)

4. h(H,k)
r = −h(P,k)

r , α(H,k) = −α(P,k), β(H,k) = −β(P,k),

h(H,k)
r+1 = −h(P,k)

r+1 , λ(H,k) = −λ(P,k), δ(H,k) = δ(P,k).

After exchanging a(P,k)
r and a(P,k)

r+1 , the PSLQ algorithm updates the vectors h(P,k+1)
r and

h(P,k+1)
r+1 as follows:

h(P,k+1)
r =

β(P,k)

δ(P,k)
h(P,k+1)

r +
λ(P,k)

δ(P,k)
h(P,k+1)

r+1 ,

h(P,k+1)
r+1 =

−λ(P,k)

δ(P,k)
h(P,k+1)

r +
β(P,k)

δ(P,k)
h(P,k+1)

r+1 .

After exchanging a(H,k)
r and a(H,k)

r+1 , the HJLS algorithm updates the vectors h(H,k+1)
r and

h(H,k+1)
r+1 as follows:

h(H,k+1)
r =

β(H,k)

δ(H,k)
h(H,k+1)

r +
λ(H,k)

δ(H,k)
h(H,k+1)

r+1 ,

h(H,k+1)
r+1 =

λ(H,k)

δ(H,k)
h(H,k+1)

r +
−β(H,k)

δ(H,k)
h(H,k+1)

r+1 .

One easily checks that in all 4 cases, h(H,k+1)
r = h(P,k+1)

r and h(H,k+1)
r+1 = ±h(H,k+1)

r+1 . As the

other basis vectors for x⊥ do not change, h(H,k+1)
i = ±h(P,k+1)

i for 1 ≤ i ≤ n− 1. Now upon

entering the reduction stage, which is the same in both algorithms, the column vectors of

the matrix H ′ = AH in the PSLQ algorithm are the same, up to sign, as the first n − 1

column vectors of M = AH in the HJLS algorithm. It follows that bmi,j/mj,jc = bh′i,j/h′j,jc
at each step of the reduction and so a(H,k+1)

i = a(P,k+1)
i for 1 ≤ i ≤ n.

If r = n − 1, then the PSLQ algorithm does not change its H matrix and so h(P,k)
i =

h(P,k+1)
i for 1 ≤ i ≤ n− 1. However, the HJLS algorithm updates h(H,k+1)

n−1 and h(H,k+1)
n as

above. In this situation, λ(H,k) = 0 and δ(H,k) =
∣∣β(H,k)

∣∣ and so

h(H,k+1)
n−1 =

β(H,k)

∣∣β(H,k)
∣∣h

(H,k)
n−1 = ±h(H,k)

n−1 = ±h(P,k)
n−1 = ±h(P,k+1)

n−1 .

We again have h(H,k+1)
i = ±h(P,k+1)

i for 1 ≤ i ≤ n− 1 and so as above, the Reduction step

maintains a(H,k+1)
i = a(P,k+1)

i for 1 ≤ i ≤ n.

CHAPTER 2. INTEGER RELATION ALGORITHMS 82

¤

As B = A−1 in both algorithms and as M=AH in HJLS and H ′=AH in PSLQ, we see there

is a direct relation between the matrices A, B , M , and H from HJLS and the matrices A,

B , H ′, and H from PSLQ. At each iteration, both algorithms have the same (up to sign)

orthonormal basis for x⊥, the same basis for the lattice Zn, and both update these bases in

an identical fashion with the intent of making the basis vectors for Zn converge to x. Each

step of one algorithm corresponds exactly with each step of the other. The PSLQ algorithm

with γ =
√

2 is equivalent to the HJLS algorithm with full reductions.

If we apply the HJLS algorithm with full reductions to the two examples given at the

beginning of this section, we get the following results:

For α = 31/4 − 21/4, the HJLS algorithm successfully recovers the integer relation

[1, 0, 0, 0,−3860, 0, 0, 0,−666, 0, 0, 0,−20, 0, 0, 0, 1]T

for the vector

[1, α, α2, α3, α4, α5, α6, α7, α8, α9, α10, α11, α12, α13, α14, α15, α16]T

using less than 85 digits of precision which is consistent with the results from the PSLQ

algorithm.

For the vector x = [11, 27, 31]T , the HJLS algorithm requires 5 iterations to find the integer

relation [−1, 5,−4]T . Iterations k = 0, 1, 2, 3, 4 and 5 produce the six B = A−1 matrices



1 0 0

0 1 0

0 −1 1


 ,




1 0 0

3 8 1

−3 −7 −1


 ,



−2 1 0

2 3 1

−1 −3 −1


 ,




3 −2 0

1 2 1

−2 −1 −1


 ,



−1 −8 −2

5 9 2

−4 −5 −1


 ,



−6 −1 −2

−1 5 2

3 −4 −1


 .

Note that the first five matrices are identical to those given by the PSLQ algorithm. The

extra matrix is due to the fact that the authors of PSLQ have modified their termination

condition so that the algorithm terminates as soon as one of the column vectors of B = A−1

is an integer relation for x. Although doing this may save a few iterations and still return an

integer relation, it causes us to lose the ability to say that the norm of the recovered relation

CHAPTER 2. INTEGER RELATION ALGORITHMS 83

is no more than γn−2 times as large as the norm of a smallest possible integer relation for

x. For instance, in this example, the integer relation [−8, 9,−5]T has a norm equal to
√

170

which is greater than
√

2
√

42 where
√

42 is the norm of [−1, 5,−4]T . In this example, the

shorter relation is also recovered but we have no guarantee in the general case that this will

happen.

2.4 Practical implementations of the PSLQ algorithm

Given a set of values x′1, x
′
2, . . . , x

′
n in symbolic form, it is often far too costly to find an

integer relation using exact arithmetic operations. Instead, we would like to let the values

x1, x2, . . . , xn be good rational approximations of x′1, x
′
2, . . . , x

′
n and attempt to find an

integer relation for x = [x1, x2, . . . , xn]T using inexact arithmetic. As stated in [2], a simple

information theory argument gives a lower bound on the number of digits of precision that

must be used. If we wish to recover a relation a ∈ Zn with coefficients of at most d digits

in size, then the coordinates of x must be given to at least nd digits. Although this simple

lower bound is often too low, the PSLQ algorithm usually recovers a given relation using

only about 15% more digits than this bound suggests are necessary. Now in the event that

we do recover a suspected relation a ∈ Zn using inexact arithmetic, there is no guarantee

that it is a true integer relation for x′. If the values x′1, x
′
2, . . . , x

′
n are computed to twice

the precision and a still appears to be an integer relation, then this gives us strong reason

to believe that it is. While this cannot prove that a is an integer relation for x′, it suggests

that it may be worthwhile to search for a rigorous proof to show that it is.

In what follows, a selection of implementations for PSLQ using inexact arithmetic are

presented. In light of the previous section, everything that is said here can also be applied

to the HJLS algorithm.

2.4.1 The basic algorithm

We begin with the basic implementation of the PSLQ algorithm, similar to that given in [16],

[4], and [2]. The details are presented in Figure 2.5. Note that the only significant differences

between this implementation and the statement of the algorithm given in Figure 2.2 are

that here the matrices A and H have been omitted and the termination condition has been

modified. Rather than waiting until r = n−1 and h′n,n−1 = 0, termination occurs as soon as

x ·bj = 0 for some column vector bj of B . Although any returned relations tend to be small

CHAPTER 2. INTEGER RELATION ALGORITHMS 84

The Basic PSLQ Algorithm
This algorithm takes a vector xT = [x1, x2, . . . , xn] and a constant T ≥ 1 as input. It either
returns a suspected integer relation for x or a lower bound (≥ T) on the norm of any possible
relation for x.

Step 1: Initialization
Fix the constant γ so that γ >

√
4/3.

Let B = I and let bj the jth column vector of B .
Let h′i be the ith row vector of H ′ where the entries of H ′ are defined as follows:

h′i,j =





0 1 ≤ i < j ≤ n− 1
si+1/si 1 ≤ i = j ≤ n− 1

−xixj/sjsj+1 1 ≤ j < i ≤ n
where s2

j =
n∑

k=j

x2
k

Set y = x/‖x‖ and let yi be the ith component of y.

Step 2: Size Reduce H ′

For i from 2 to n do, for j from i− 1 downto 1 do
set t = bh′i,j/h′j,je
replace bj with bj + tbi, h′i with h′i − th′j , and yj with yj + tyi

end do, end do.

Step 3: The Main Iteration
Repeat the following until either 1

max|h′i,i| ≥ T or min yj

‖bj‖ < ε:

1. Choose r so that γi
∣∣∣h′i,i

∣∣∣ is maximal when i = r. Then interchange columns br

and br+1 of B , rows h′r and h′r+1 of H ′, and entries yr and yr+1 of y.

2. If r < n− 1 then
set α = h′r+1,r, β = h′r,r, γ = h′r,r+1, and δ =

√
β2 + λ2

for i from r to n do
set t = h′i,r, h′i,r = β

δ h′i,r + λ
δ h′i,r+1, and h′i,r+1 = −λ

δ t + β
δ h′i,r+1

end do.

3. Size reduce H ′

For i from r+1 to n do, for j from min(i− 1, r + 1) downto 1 do
set t = bh′i,j/h′j,je
replace bj with bj + tbi, h′i with h′i − th′j and yj with yj + tyi

end do, end do.

Step 4: If min yj

‖bj‖ < ε then return the corresponding bj as an integer relation for x,

otherwise return 1
max|h′i,i| as a lower bound on the norm of any relation for x.

Figure 2.5: Pseudocode implementation of the basic PSLQ algorithm

CHAPTER 2. INTEGER RELATION ALGORITHMS 85

in practice, this modified termination condition causes us to lose the ability to claim that

they have norm no larger than γn−2M where M is the norm of a smallest integer relation

for x.

Again, some care must be taken when checking to see if x · bj = 0. We shall claim

x · bj = 0 when x
‖x‖ ·

bj

‖bj‖ < ε where ε depends on the level of precision being used. If we

look only at the values yj = bj · x
‖x‖ then we may miss a relation. If ‖bj‖ is large enough,

then bj · x
‖x‖ may be larger than the given value of ε. As it is undesirable to require the

calculation of the values ‖bj‖ for 1 ≤ j ≤ n with each iteration, it is noted that in practice

the values yj tend to stay within a few orders of magnitude of each other and gradually

decrease until one of the bj is an integer relation for x. As one would expect, when bj ·x = 0

the corresponding value yj suddenly decreases. Rather than checking all the values yj/‖bj‖
to see if one is less than ε, we can select the value j such that yj is minimal and look only

at the corresponding value of yj/‖bj‖.

2.4.2 Periodic reductions and the multi-pair algorithm

For a first improvement to the basic algorithm, we note that the full reductions of the

matrix H ′ are the bottle neck. As the standard HJLS algorithm shows, we cannot omit

the full reductions altogether as this causes severe numerical instability. We can, however,

perform them periodically and still achieve good results. Rather than fully reducing the

matrix H ′ at each step, we will perform a full reduction only when r = n − 1. If r <

n − 1 then we will perform a partial reduction prior to exchanging hr and hr+1 to ensure

that
∣∣h′r+1,r

∣∣ ≤ ∣∣h′r,r
∣∣ /2. The details of the PSLQ algorithm with periodic reductions are

presented in Figure 2.6.

On a similar note, but with an eye towards a parallel implementation, Bailey and Broad-

hurst have introduced a variant of PSLQ which they call the Multi-Pair algorithm [2]. The

idea behind this variant is to first select a number of disjoint pairs (ri, ri + 1) and then

perform the normal operations of PSLQ on each pair with r = ri. One can easily do this

in such a way that the operations from one pair do not affect the operations of another

as the pairs are disjoint. In addition, they have also reordered the steps in which the full

reduction of the matrix H ′ are performed. Even though it has been designed for a parallel

implementation, when run on a single processor the Multi-Pair algorithm offers an improve-

ment to the basic algorithm. However, in this case it amounts to little more than the PSLQ

algorithm with periodic reductions and a poor selection procedure. The selection procedure

CHAPTER 2. INTEGER RELATION ALGORITHMS 86

The PSLQ Algorithm with Periodic Reductions
This algorithm takes a vector xT = [x1, x2, . . . , xn] and a constant T ≥ 1 as input. It either
returns a suspected integer relation for x or a lower bound (≥ T) on the norm of any possible
relation for x.

Step 1: Initialization (see Figure 2.5)

Step 2: Size Reduce H ′ (see Figure 2.5)

Step 3: The Main Iteration
Repeat the following until either 1

max|h′i,i| ≥ T or min yj

‖bj‖ < ε:

1. Set doFullReduction=false.
While doFullReduction=false do

Choose r so that γi
∣∣∣h′i,i

∣∣∣ is maximal when i = r.
Set t = bh′r+1,r/h′r,re
and let br = br + tbr+1, h′r+1 = h′r+1 − th′r, and yr = yr + tyr+1.
Interchange columns br and br+1 of B , rows h′r and h′r+1 of H ′,
and entries yr and yr+1 of y.
If r < n− 1 then

set α = h′r+1,r, β = h′r,r, γ = h′r,r+1, and δ =
√

β2 + λ2

for i from r to n do
set t = h′i,r, h′i,r = β

δ h′i,r + λ
δ h′i,r+1,

and let h′i,r+1 = −λ
δ t + β

δ h′i,r+1

end do
else

doFullReduction=true
end if

end do.

2. Size reduce H ′ as in Step 2 above.

Step 4: If min yj

‖bj‖ < ε then return the corresponding bj as an integer relation for x,

otherwise return 1
max|h′i,i| as a lower bound on the norm of any relation for x.

Figure 2.6: Pseudocode implementation of the PSLQ algorithm with periodic full reductions

CHAPTER 2. INTEGER RELATION ALGORITHMS 87

used in the algorithm is as follows:

1. Sort the entries of the (n-1)-long vector
{

γi
∣∣∣h′i,i

∣∣∣
}

in decreasing order, producing the

sort indices.

2. Beginning at the sort index r1 corresponding to the largest γi
∣∣∣h′i,i

∣∣∣, select pairs of

indices (ri, ri + 1), where ri is the sort index. If at any step either ri or ri + 1 has

already been selected, pass to the next index in the list. Continue until either the

maximum number of pairs desired has been selected, or the list is exhausted.

It has been reported that for certain problems, the Multi-Pair algorithm falls into a cycle.

Examining the selection criterion, we see that although we pass to the next index in the list

if either ri or ri + 1 has already been selected, we do allow pairs (ri, ri + 1) where ri + 1 has

already been passed over. We allow pairs (ri, ri + 1) where
∣∣h′ri,ri

∣∣ ≤ γ
∣∣h′ri+1,ri+1

∣∣. If we

restrict ourselves to pairs where either ri = n− 1 or
∣∣h′ri,ri

∣∣ > γ
∣∣h′ri+1,ri+1

∣∣ then we cannot

fall into a cycle. This can be shown by considering the product P =
∏n−1

i=1

∣∣∣h′i,i
∣∣∣
n−i

.

First, consider the pair (ri, ri + 1) where ri < n − 1. Let α = h′ri,ri
, β = h′ri+1,ri

,

λ = h′ri+1,ri+1, and let δ =
√

β2 + λ2. Then as β2 ≤ α2/4, λ2 < α2/γ2, and 1/γ2 < 3/4 we

have

|δ|n−ri |αλ/δ|n−ri−1

|α|n−ri |λ|n−ri−1 =
|δ|
|α| =

√
β2 + λ2

|α| <

√
α2/4 + α2/γ2

|α| =
√

1/4 + 1/γ2 < 1.

As the algorithm replaces h′ri,ri
= α and h′ri+1,ri+1 = λ with the values δ and −αλ/δ, at

the end of the iteration the term
∣∣h′ri,ri

∣∣n−ri
∣∣h′ri+1,ri+1

∣∣n−ri−1 in the product P has been

decreased. In the case when ri = n− 1, the algorithm simply exchanges rows h′n and h′n−1

of H ′, resulting in a decrease of the value
∣∣h′n−1,n−1

∣∣ by at least a factor of 2. Here, the

term
∣∣h′n−1,n−1

∣∣ of the product P decreases as well.

This shows that P =
∏n−1

i=1 |h′i|n−i decreases with each iteration of the multi-pair algo-

rithm provided we add the restriction
∣∣h′ri,ri

∣∣ > γ
∣∣h′ri+1,ri+1

∣∣ to the selection procedure. As

the product P strictly decreases with each iteration, we cannot fall into a cycle.

2.4.3 A multi-level implementation

Although using periodic full reductions can reduce the time required to execute the PSLQ

algorithm, run times can still be excessively long for large problems. As a further improve-

ment we consider a multi-level implementation [2], an implementation in which the majority

CHAPTER 2. INTEGER RELATION ALGORITHMS 88

of the calculations are done using low precision arithmetic. Even though this introduces a

significant amount of additional overhead, it drastically reduces the time spent within the

main iteration and results in an overall saving.

To apply such a scheme, we first perform the usual initialization and reduction steps to

produce the full precision versions of B , H ′, and y. We then let H ′ be the double precision

equivalent of H ′/ max
∣∣∣h′i,j

∣∣∣, y be the double precision equivalent of y/ min |yi| and repeat

the following until either a suspected relation is found or the desired bound on the norm of

any possible integer relation is achieved:

1. Using only double precision arithmetic, set both A and B equal to I , size reduce H ′

as in Figure 2.5, and repeat the main iteration of PSLQ with periodic full reductions

on the matrices B , H ′, A, and the vector y. Note that to maintain A = (B)−1, when

we interchange columns br and br+1 of B , we must interchange rows aT
r and aT

r+1 of

A and when we set bj = bj + tbi we must set ai = ai − taj .

Stop when either min |yi| < ε, or max |ai,j | > µ. A good choice for µ is 1012 and

a good choice for ε is the maximum of 10−12 and the factor one must multiply the

minimum |yi| value from the previous level of precision by in order for it to be less

than the previous level’s ε. The reason for requiring a bound on the integral entries

of A is that if they become too large, then they can no longer be accurately stored.

2. Returning to full precision arithmetic, let B = BB , H ′ = AH ′, and y = xB . Then let

y be the double precision equivalent of y/ min |yi| and let H ′ be the double precision

equivalent of H ′/max
∣∣∣h′i,j

∣∣∣. Using double precision, perform an LQ factorization of

the matrix H ′ and set H ′ equal to L.

When computing with double precision arithmetic, it is important to keep backup copies of

the matrices A and B . If at any stage the integer entries of either one of these matrices can

no longer be stored accurately, both must be reset to their previous state before returning

to the higher level of precision. After updating as in step 2 and size reducing H ′, a single

run through the main iteration of iteration of PSLQ should be applied before returning to

the lower level of precision.

It is of interest to note that the code is in some sense self-correcting. Even if some errors

are introduced within the double precision loop, causing incorrect choices of t and r, we may

recover from this. As long as the matrices A and B have integral entries and LQ factorization

of AH ′ produces a matrix L for which the maximum diagonal entry has decreased, then we

CHAPTER 2. INTEGER RELATION ALGORITHMS 89

have increased a lower bound on the norm of any possible integer relation for x and have

everything we need to proceed. Even with small errors at the double precision level, we may

still move forward and recover an integer relation or an appropriate lower bound.

This two-level scheme extends to a multi-level scheme with intermediate levels of pre-

cision in an easy fashion. To drop down one level of precision, define the lower precision

versions of H ′ and y as above, set the lower precision version of x equal to the initial lower

precision version of y, and set the lower level versions of A and B equal to I . Then drop

down to the lower level of precision, size reduce H ′ and continue as though it was the top-

most level. When the stopping condition of step 1 is satisfied, but with values of ε and µ

that more appropriately reflect the current level of precision, return to the previous level of

precision and update as in step 2. The only difference being that if we are returning to an

intermediate level of precision, we must also update the current matrix A by multiplying it

on the left by the lower precision level’s version of A.

The author’s implementation of a multi-level scheme for real valued vectors x is the de-

fault version of PSLQ currently found in the computer algebra package Maple. The author’s

multi-level version for both complex and real valued vectors appears in Appendix B.6 and

is set to appear in a future release of Maple.

2.4.4 A selection of timings for the various algorithms

To give a brief idea of the relative efficiency of the algorithms considered, we present a

small selection of timings. The three algebraic numbers α1 = 31/4 − 21/4, α2 = 31/5 + 21/6

and α3 = −31/7 + 21/7 were considered. Since these are algebraic numbers of degree 16,

30, and 49, there exist integer relations for the vectors xi = [1, αi, α
2
i , . . . , α

ni
i]T where

n1 = 16, n2 = 30 and n3 = 49. Both the time and number of digits required to recover these

relations are presented in Table 2.1. These were found by first incrementing the number of

digits by 50 until the correct relation was found, and then successively reducing the number

of digits in decrements of 5 until an incorrect relation was returned. The time and number

of digits used in the last correct run appear in the table. All algorithms were implemented

in Maple 12 and run on a machine with an AMD Athlon 64 3200+ processor (2.0 GHz)

running a 32 bit version of windows XP.

CHAPTER 2. INTEGER RELATION ALGORITHMS 90

α1 = 31/4 − 21/4 α2 = 31/5 + 21/6 α3 = −31/7 + 21/7

Algorithm Digits Time Digits Time Digits Time
LLL

The Basic Algorithm 60 2.3 s 425 118.8 s 430 441.3 s
HJLS

With full reductions 80 4.3 s 245 156.4 s 585 2586.2 s
PSLQ (γ =

√
2)

The Basic Algorithm 80 2.6 s 245 88.8 s 590 1391.6 s
Periodic Full Reductions 80 1.2 s 245 25.1 s 590 269.3 s
Multi-level scheme 80 0.4 s 240 10.1 s 580 104.3 s

PSLQ (γ =
√

4/3)
The Basic Algorithm 70 3.1 s 205 85.7 s 480 1110.0 s
Periodic Full Reductions 70 1.3 s 210 26.0 s 480 246.0 s
Multi-level scheme 70 0.4 s 200 9.2 s 470 81.6 s

Table 2.1: Selected timings for the various integer relation algorithms

2.5 Simultaneous integer relations

The final implementation of an integer relation algorithm to be considered is the simultane-

ous relations algorithm. Initially presented in [22] by the authors of HJLS, it is recast here

within the framework of PSLQ. This is the procedure that will be used to take advantage

of symmetry conditions when extending the method for computing nth integer Chebyshev

polynomials on [0, 1] to the bivariate case on [0, 1]×[0, 1].

Definition 2.6 The vector b is said to be a simultaneous integer relation for the set of

vectors {xi}t
i=1 if b · xi = 0 for 1 ≤ i ≤ t.

To find a simultaneous integer relation for the vectors {xi ∈ Rn}t
i=1, we first construct an

orthonormal basis {hi}m
i=1 for the space of vectors that are orthogonal to each xj . This is

done in such a way so that if we form the matrix H with column vectors hi, then H is

an n×(n−m) lower trapezoidal matrix (a reordering of the components of the xi may be

required, see Figure 2.7 for details). Setting A = B = I and H ′=AH , we then size reduce

H ′ and run through the main iteration of the PSLQ algorithm to reduce the size of the

projections of the column vectors of AT onto the span of {hi}m
i=1. The only real difference

here is that instead of interchanging rows r and r +1 of H ′ when r = n−m, we interchange

rows r and j of H ′ where j > r is chosen so that
∣∣∣h′j,n−m

∣∣∣ is maximal. Rows r and j of A

and columns r and j of B must be interchanged as well. If after size reducing the entries

CHAPTER 2. INTEGER RELATION ALGORITHMS 91

of H ′ we have
∣∣∣h′k,n−m

∣∣∣ = 0 for n −m < k ≤ n, then the (n −m)th column vector bn−m

of B is a simultaneous integer relation for the vectors {xi}t
i=1. The justification of this last

statement follows in the same fashion as the equivalent statement for the standard PSLQ

algorithm. For any xj ∈ {xi}t
i=1, the vector xj is orthogonal to each column vector of H

and so 0 = xT
j H = xT

j BAH = xT
j BH ′. Since the only nonzero entry in the (n − m)th

column of H ′ is h′n−m,n−m, we have xT
j bn−mh′n−m,n−m = 0 which reduces to xT

j bn−m = 0.

To find multiple simultaneous integer relations, when they exist, we can continue the

process started above. After the kth relation is found, interchange rows (n−m−k +1) and

(n− k + 1) of H ′, rows (n−m− k + 1) and (n− k + 1) of A, and columns (n−m− k + 1)

and (n−k +1) of B . Then continue through the main loop of the PSLQ algorithm with the

intent of reducing the size of the projections of the first n−k column vectors of AT onto the

span of {hi}m
i=1. During the iteration, when choosing r so that γr|h′r,r| is maximal we add

the restriction 1 ≤ r ≤ n−m− k. When r = n−m− k, we choose j with r + 1 ≤ j ≤ n− k

so |h′j,r| is maximal and interchange rows r and j of H ′, rows r and j of A, and columns r

and j of B . We then size reduce only the first n− k rows of H ′ so as not to change the final

k columns of B which are the previously found simultaneous integer relations for the xi. In

the event that h′j,n−m−k = 0 for n−m− k + 1 ≤ j ≤ n− k, the column vector bn−m−k of

B is an simultaneous integer relation for the vectors {xi}t
i=1.

The justification of this last statement follows in the same fashion as the above statement

for the first simultaneous integer relation. For any xj ∈ {xi}t
i=1, the vector xj is orthogonal

to each column vector of H and so 0 = xT
j H = xT

j BAH = xT
j BH ′. Since the only possible

nonzero entries in the (n − m − k)th column of H ′ are h′n−m−k,n−m−k and h′l,n−m−k for

n− k + 1 ≤ l ≤ n, we have

xT
j bn−m−kh

′
n−m−k,n−m−k +

n∑

l=n−k+1

xT
j blh

′
l,n−m−k = 0.

For n − k + 1 ≤ l ≤ n, the vectors bl are the previously found simultaneous integer re-

lations for the vectors {xi}t
i=1 and so the above equation reduces to xT

j bn−m = 0 since

h′n−m−k,n−m−k 6= 0.

For a practical implementation of the algorithm, we run the procedure until m + k = n,

deeming the values h′i,j to be zero when their magnitudes are less than some ε chosen based

on the level of precision, and then return the last k column vectors of B as suspected

simultaneous integer relations. When used as a subprocedure in the method for finding

CHAPTER 2. INTEGER RELATION ALGORITHMS 92

The PSLQ Algorithm for Simultaneous Integer Relations
This algorithm takes the vectors {xT

i = [xi,1, xi,2, . . . , xi,n]}t
i=1 as input. It returns suspected

simultaneous integer relations for the {xi}t
i=1.

Step 1: Initialization
1. Apply the Gram-Schmidt orthonormalization process to the vectors x1,. . . ,xt to

find an orthonormal basis u1,. . . ,um for the span of {x1, . . . ,xt}. If m = t there
are no simultaneous integer relations.

2. Construct an orthonormal basis for the space of vectors orthogonal to x1,. . . ,xt.
Let n be the number of components in x1 and let {ei}n

i=1 be the standard basis
for Rn where the jth component of ei is 0 if i 6= j and 1 if i = j. Set i = j = 0
and repeat the following until j + m = n.
Set i = i + 1 and remove the component of ei lying in the span of
{u1, . . . ,um,h1, . . . ,hj−1}. If the resulting vector w is zero, return to the top of
the loop. Otherwise, set hj = w. By construction, the first j − 1 components
of hj will equal zero. If the jth component of hj is zero, choose k so that the
kth component of hj is nonzero and interchange jth and kth components of all
current vectors (keep track of the required interchanges). Set j = j + 1.

3. Set B = I and let H ′ be the n× (n−m) lower trapezoidal matrix with column
vectors hi. Initially, A = B = I and H ′ = AH = H . Let h′i be the ith row
vector of H ′ and size reduce H ′ as in step 2 of the basic PSLQ algorithm (but
change the phrase “for j from i− 1” to “for j from min(i− 1, n−m)”. Finally,
set N = m and let γ = 2/

√
3.

Step 2: The Main Iteration
While N < n do

While max(|hn−N+1,n−N | , . . . , |hn−N+m,n−N |) > 0 do
Select r with 1 ≤ r ≤ n−N so that γi|h′i,i| is maximal when i = r.
If r < n−N , interchange columns br and br+1 of B and rows h′r and h′r+1

of H ′. Then update H ′ as in step 3, part 2 of the basic PSLQ algorithm.
If r = n−N , choose j with r + 1 ≤ j ≤ r + m so |h′j,r| is maximal.

Then interchange columns br and bj of B and rows h′r and h′j of H ′ and size
reduce the first n−(N−m) rows of H ′ as in step 3, part 3 of the basic PSLQ
algorithm but let i run from r+1 to n−N+m and let j run from l downto 1
where l = r + 1 unless i = r + 1 or r = n−N in which case l = r.

end do.
Column bn−N is an integer relation for all input vectors xi. Interchange columns
bn−N and bn−N+m of B and rows h′n−N and h′n−N+m of H ′. Set N = N + 1.

end do.
Step 3: Return the last n−m column vectors of B , resorting the components to account

for any interchanges made in step 2.

Figure 2.7: Pseudocode implementation of the PSLQ algorithm for simultaneous integer
relations

CHAPTER 2. INTEGER RELATION ALGORITHMS 93

bivariate polynomials with integer coefficients of minimal supremum norm on [0, 1]×[0, 1],

the input vectors {xi}t
i=1 will have rational components. This allows for exact arithmetic

to be used to verify that the returned vectors {bi}n
i=m+1 are in fact simultaneous integer

relations for the vectors {xi}t
i=1 and that the vectors {bi}n

i=m+1

⋃ {xi}t
i=1 span Rn. Once

we have verified that these vectors span Rn, we can claim that any simultaneous integer

relation r for the vectors {xi}t
i=1 can be expressed in the form r =

∑n
i=m+1 eibi. Now by

Theorem 2.1, since the column vectors of B form a basis for the lattice Zn, we can also

express r in the form r =
∑n

i=1 dibi where the di are integers. Since the vectors {bi}n
i=m+1

are linearly independent, if both of these expressions hold we must have di = 0 for i ≤ m.

If we verify the above two properties, we can claim that the vectors {bi}n
i=m+1 form a basis

for the lattice of all simultaneous integer relations to the vectors {xi}t
i=1.

Chapter 3

The Bivariate Case on the Unit

Square

The extension of the integer Chebyshev problem to the bivariate case is a relatively unex-

plored problem. Just as there are many ways to extend the study of monic polynomials of

minimal deviation from zero on an interval to a region in the plane [7], the extension of the

integer Chebyshev problem can be done in many ways. Here the focus is on the extension

to rectangular regions in the plane with special attention given to the unit square. Two

such extensions, which differ in the way one measures the degree of a bivariate polynomial,

are considered.

Definition 3.1 The total degree of the monomial xiyj is defined as i+j and the total degree

of the polynomial p(x, y) is the maximum of the total degrees of its monomial parts with

nonzero coefficients. Let Zn,total[x, y] be the set of polynomials of total degree at most n with

integer coefficients. For n > 0, define Tn[a, b]×[c, d] as

Tn[a, b]×[c, d] =
(

min
p∈Zn,total[x,y]\{0}

‖p(x, y)‖
[a,b]×[c,d]

)1/n

and let

T[a, b]×[c, d] = lim
n→∞Tn[a, b]×[c, d].

We call T[a, b]×[c, d] the total degree integer Chebyshev constant for the region [a, b]×[c, d].

Any polynomial p(x, y) ∈ Zn,total[x, y] that satisfies (‖p(x, y)‖
[a,b]×[c,d]

)1/n = Tn[a, b]×[c, d] is

called a total degree nth integer Chebyshev polynomial on [a, b]×[c, d].

94

CHAPTER 3. THE BIVARIATE CASE ON THE UNIT SQUARE 95

Definition 3.2 The maximum degree of the monomial xiyj is defined as the maximum of

i and j and the maximum degree of the polynomial p(x, y) is the largest maximum degree of

its monomial parts with nonzero coefficients. Let Zn,max[x, y] be the set of polynomials of

maximum degree at most n with integer coefficients. For n > 0, define Mn[a, b]×[c, d] as

Mn[a, b]×[c, d] =
(

min
p∈Zn,max[x,y]\{0}

‖p(x, y)‖
[a,b]×[c,d]

)1/n

and let

M[a, b]×[c, d] = lim
n→∞Mn[a, b]×[c, d].

We call M[a, b]×[c, d] the maximum degree integer Chebyshev constant for the region [a, b]×
[c, d]. Any polynomial p(x, y) ∈ Zn,max[x, y] that satisfies (‖p(x, y)‖

[a,b]×[c,d]
)1/n = Mn[a, b]×

[c, d] is called a maximum degree nth integer Chebyshev polynomial on [a, b]×[c, d].

The use of the minimum function in place of the infimum in the definitions of Tn[a, b]×[c, d]

and Mn[a, b]× [c, d] can be justified using bivariate polynomial interpolation. Although

the question as to whether or not the bivariate polynomial interpolation problem has a

unique solution for an arbitrarily distributed set of nodes is nontrivial, a unique solution

can be ensured by an appropriate choice of nodes [30]. One such configuration of points

when interpolating with a bivariate polynomial of total degree at most n is the triangular

array left when removing the grid points (xi, yj) with i + j ≥ n + 3 from the rectangular

grid {(xi, yj)}n+1
i,j=1 with x1 < x2 < . . . < xn+1 and y1 < y2 < . . . < yn+1. Since a bivariate

polynomial of total degree at most n can be recovered from its values at such a set of

points, this can be used to show there are only finitely many p(x, y) ∈ Zn,total[x, y] with

‖p(x, y)‖
[a,b]×[c,d]

≤ k for any constant k. If (xi, yj) = (q/r, s/t) ∈ [a, b]× [c, d] is a rational

point, u = lcm(r, t), and p(x, y) satisfies the desired conditions, then unp(xi, yj) is an integer

of norm less than unk and so the set of allowable values of p(xi, yj) is finite. Choosing

rational values for all the xi and yj gives the result since each polynomial p(x, y) satisfying

the required conditions corresponds to one of the finitely many allowable combinations of

values at the (xi, yj). Noting that a bivariate polynomial of maximum degree n is a bivariate

polynomial of total degree at most 2n gives the desired result for the maximum degree case.

CHAPTER 3. THE BIVARIATE CASE ON THE UNIT SQUARE 96

3.1 Existence of T[a, b]×[c, d] and M[a, b]×[c, d]

The existence of the limits in the definitions of T[a, b]×[c, d] and M[a, b]×[c, d] are shown in

the same way as the existence of the limit in the definition of Ω[a, b] from Section 1.2. The

total degree case is considered first.

Given any positive integers n and N , let pn(x, y) be a total degree nth integer Chebyshev

polynomial for the region [a, b]×[c, d] and write N = nq+r with 0 ≤ r < n using the division

algorithm. Then p(x, y)qxr is a polynomial in ZN,total[x, y] and so

(TN [a, b]×[c, d])N ≤ ‖p(x, y)qxr‖
[a,b]×[c,d]

≤ ‖p(x, y)‖q

[a,b]×[c,d]
‖x‖r

[a,b]×[c,d]

≤ (Tn[a, b]×[c, d])qn tr = (Tn[a, b]×[c, d])N−r tr

where t = max
(
‖x‖

[a,b]×[c,d]
, Tn[a, b]×[c, d]

)
. Since t/Tn[a, b]×[c, d] ≥ 1, this gives

TN [a, b]×[c, d] ≤ (Tn[a, b]×[c, d])1−r/N tr/N = Tn[a, b]×[c, d]
(

t

Tn[a, b]×[c, d]

)r/N

≤ Tn[a, b]×[c, d]
(

t

Tn[a, b]×[c, d]

)n/N

.

It follows that lim supN→∞TN [a, b]× [c, d] ≤ Tn[a, b]× [c, d]. On the other hand, as n can

be chosen so that Tn[a, b]× [c, d] is arbitrarily close to the limit inferior of the sequence

{TN [a, b]×[c, d]}, we must have that lim sup TN [a, b]×[c, d] ≤ lim inf TN [a, b]×[c, d] and so

T[a, b]×[c, d] = limN→∞TN [a, b]×[c, d] exists.

For the maximum degree case, only superficial changes are required. Given any positive

integers n and N , let pn(x, y) be a maximum degree nth integer Chebyshev polynomial for

the region [a, b]×[c, d] and write N = nq+r using the division algorithm. Then p(x, y)q(xy)r

is a polynomial in ZN,max[x, y] and so the above argument gives

MN [a, b]×[c, d] ≤ Mn[a, b]×[c, d]
(

t

Mn[a, b]×[c, d]

)n/N

where t = max
(
‖xy‖

[a,b]×[c,d]
,Mn[a, b]×[c, d]

)
. As in the total degree case, this leads to

lim supN→∞MN [a, b]×[c, d] ≤ Mn[a, b]×[c, d] and the existence of limN→∞MN [a, b]×[c, d] .

CHAPTER 3. THE BIVARIATE CASE ON THE UNIT SQUARE 97

3.2 Initial bounds on T[0, 1]×[0, 1] and M[0, 1]×[0, 1]

The method of Gelfond and Schnirelman which led to the initial bound on Ω[0, 1] can be

extended to the bivariate case. For the total degree case, let

I =
∫ 1

0

∫ 1

0
p2(x, y)dxdy where p(x, y) ∈ Zn,total[x, y] \ {0}

and define dn as dn = lcm{1, 2, . . . , n}. For a monomial xiyj of total degree at most 2n, one

of i and j must be less than or equal to n and so dn+1d2n+1

∫ 1
0

∫ 1
0 xiyjdxdy ∈ Z. Applying

this result to I shows I dn+1d2n+1 is a positive integer. Additionally, for any prime q dividing

dn, q must be less than n and the power of q dividing dn is
⌊
logq(n)

⌋ ≤ ln(n)/ ln(q). This

gives us the following inequality:

1 ≤ I dn+1d2n+1 ≤ I
∏

q≤n+1
q prime

q

�
ln (n+1)

ln q

� ∏

q≤2n+1
q prime

q

�
ln (2n+1)

ln q

�

.

Taking the natural logarithm of the outermost quantities yields

0 ≤ ln(I)+
∑

q≤n+1
q prime

ln(n+1)+
∑

q≤2n+1
q prime

ln(2n+1) = ln(I)+ln(n+1)π(n+1)+ln(2n+1)π(2n+1).

If we now note that I =
∫ 1
0

∫ 1
0 p2(x, y)dxdy ≤ ∥∥p2(x, y)

∥∥
[0,1]×[0,1]

, we see

ln(I) ≤ 2n ln
(∥∥(

p2(x, y)
)∥∥1/2n

[0,1]×[0,1]

)

or

−
(

1
2

ln(n + 1)π(n + 1)
n

+
ln (2n + 1)π(2n + 1)

2n

)
≤ ln(I)

2n
≤ ln

(
‖p(x, y)‖1/n

[0,1]×[0,1]

)
.

Choosing p(x, y) so that ‖p(x, y)‖1/n

[0,1]×[0,1]
= Tn[0, 1]×[0, 1] and exponentiating gives

exp
(
−1

2
ln(n + 1)π(n + 1)

n
− ln (2n + 1)π(2n + 1)

2n

)
≤ Tn[0, 1]×[0, 1].

Finally, letting n tend to infinity and applying the prime number theorem gives the result

we are after,

e−3/2 ≤ T[0, 1]×[0, 1].

CHAPTER 3. THE BIVARIATE CASE ON THE UNIT SQUARE 98

For the maximum degree case, applying the same argument to

d2n+1d2n+1

∫ 1

0

∫ 1

0
p2(x, y)dxdy where p(x, y) ∈ Zn,max[x, y] \ {0}

leads to

e−2 ≤ M[0, 1]×[0, 1].

Easy upper bounds on T[0, 1]×[0, 1] and M[0, 1]×[0, 1] follow from the work of Section 3.1

where it is shown these limits exist. For any polynomials p(x, y) ∈ Zn,total[x, y] \ {0} and

q(x, y) ∈ Zn,max[x, y] \ {0},

T[0, 1]×[0, 1] = lim sup
N→∞

TN [a, b]×[c, d] ≤ Tn[a, b]×[c, d] ≤ ‖p(x, y)‖1/n

[0,1]×[0,1]

and

M[0, 1]×[0, 1] = lim sup
N→∞

MN [a, b]×[c, d] ≤ Mn[a, b]×[c, d] ≤ ‖q(x, y)‖1/n

[0,1]×[0,1]
.

These results are summed up in the following theorem.

Theorem 3.1 For any nonzero polynomials p(x, y)∈Zn,total[x, y] and q(x, y)∈Zn,max[x, y],

e−3/2 ≤ T[0, 1]×[0, 1] ≤ ‖p(x, y)‖1/n

[0,1]×[0,1]

and

e−2 ≤ M[0, 1]×[0, 1] ≤ ‖q(x, y)‖1/n

[0,1]×[0,1]
.

An initial upper bound on M[0, 1]× [0, 1] follows from the work in the single variable

case. For any polynomial p(x) of degree n, p(x)p(y) is a polynomial of maximum degree n

and so if we choose p(x) to be an nth integer Chebyshev polynomial on [0, 1],

Mn[0, 1]×[0, 1] ≤ ‖p(x)p(y)‖
[0,1]×[0,1]

= ‖p(x)‖
[0,1]

‖p(y)‖
[0,1]

= Ωn[0, 1]2.

Taking the limit as n tends to infinity gives

M[0, 1]×[0, 1] ≤ Ω[0, 1]2 ≤ (1/2.36482727)2.

It would be nice if one could show that one of x − y and 1 − x − y does not divide a

maximum degree nth integer Chebyshev polynomial on [0, 1]×[0, 1] for sufficiently large n.

In this case, if pn(x, y) were such a polynomial then one of the polynomials pn(x, x) and

pn(x, 1− x) would be a nonzero polynomial in Z2n[x] with supremum norm on the interval

[0, 1] at most (Mn[0, 1]×[0, 1])n. This would imply that Ω2n[0, 1]2n ≤ (Mn[0, 1]×[0, 1])n for

sufficiently large n, or Ω[0, 1]2 ≤ M[0, 1]×[0, 1].

CHAPTER 3. THE BIVARIATE CASE ON THE UNIT SQUARE 99

3.3 Symmetry conditions on [0, 1]×[0, 1]

The following theorems on symmetry are very useful when computing bivariate integer

Chebyshev polynomials. The first, in conjunction with the PSLQ algorithm, allows for a

reduction in the dimension of the search space in the total degree case and the second allows

us to work on the region [0, 1/4]×[0, 1/4] when considering the maximum degree case.

Theorem 3.2 For any nonnegative integer n, there is a total degree nth integer Chebyshev

polynomial for the region [0, 1]×[0, 1] satisfying the condition Q(x, y) = (−1)nQ(1−x, 1−y).

Proof: Let p(x, y) be a total degree nth integer Chebyshev polynomial for the region

[0, 1]×[0, 1] and define the polynomials Q1(x, y) and Q2(x, y) as follows.

Q1(x, y) = xp(x, y) + (−1)n(1− x)p(1− x, 1− y)

Q2(x, y) = (1− x)p(x, y) + (−1)nxp(1− x, 1− y)

By considering what happens to a monomial xiyj of total degree n, one sees that Q1(x, y)

and Q2(x, y) are polynomials of total degree at most n and since

xQ1(x, y)− (1− x)Q2(x, y) = (2x− 1)p(x, y) 6= 0,

at least one of Q1(x, y) and Q2(x, y) is not the zero polynomial. If we let Q0(x, y) be a

nonzero Qi(x, y), then for any (x0, y0) ∈ [0, 1]×[0, 1],

|Q0(x0, y0)| ≤ |x0| ‖p(x, y)‖
[0,1]×[0,1]

+ |1− x0| ‖p(x, y)‖
[0,1]×[0,1]

= ‖p(x, y)‖
[0,1]×[0,1]

.

As p(x, y) is a total degree nth integer Chebyshev polynomial for the region [0, 1]×[0, 1], we

must have equality for at least one point (x0, y0) ∈ [0, 1]×[0, 1] which gives

‖Q0(x, y)‖
[0,1]×[0,1]

= ‖p(x, y)‖
[0,1]×[0,1]

.

Finally, by construction the polynomial Q0(x, y) satisfies Q0(x, y) = (−1)nQ0(1− x, 1− y)

and so satisfies all the required conditions.

¤

Theorem 3.3 For any nonnegative integer n, there is a maximum degree nth integer Cheby-

shev polynomial for the region [0, 1]×[0, 1] satisfying the conditions Q(x, y) = (−1)nQ(1−x, y)

and Q(x, y) = (−1)nQ(x, 1− y).

CHAPTER 3. THE BIVARIATE CASE ON THE UNIT SQUARE 100

Proof: Let p(x, y) be a maximum degree nth integer Chebyshev polynomial for the region

[0, 1]×[0, 1] and define the polynomials Q1(x, y) and Q2(x, y) as follows.

Q1(x, y) = xp(x, y) + (−1)n(1− x)p(1− x, y)

Q2(x, y) = (1− x)p(x, y) + (−1)nxp(1− x, y)

By considering what happens to the monomial xnyj of maximum degree n, one sees that

Q1(x, y) and Q2(x, y) are polynomials of maximum degree at most n. Repeating the ar-

gument in the proof of Theorem 3.2 gives a nonzero polynomials Q0(x, y) satisfying the

properties

‖Q0(x, y)‖
[0,1]×[0,1]

= ‖p(x, y)‖
[0,1]×[0,1]

and Q0(x, y) = (−1)nQ0(1− x, y).

Defining the polynomials Q̃1(x, y) and Q̃2(x, y) as

Q̃1(x, y) = yQ0(x, y) + (−1)n(1− y)Q0(x, 1− y)

and

Q̃2(x, y) = (1− y)Q0(x, y) + (−1)nyQ0(x, 1− y),

and repeating the argument a final time gives a maximum degree nth integer Chebyshev

polynomial for the region [0, 1]×[0, 1] satisfying the conditions Q̃0(x, y) = (−1)nQ̃0(1−x, y)

and Q̃0(x, y) = (−1)nQ̃0(x, 1− y).

¤

3.4 Computing bivariate nth integer Chebyshev polynomials

The method used to compute nth integer Chebyshev polynomials on the interval [0, 1] carries

forward to the bivariate case with relatively few modifications. The largest challenges are

the loss of the condition used in the single variable case to test for necessary divisors and

the inability to reduce the problem to one on [0, 1/4]×[0, 1/4] in the total degree case.

3.4.1 The total degree case

The process of finding total degree nth integer Chebyshev polynomials on [0, 1]×[0, 1] begins

in the same fashion as the process on the interval [0, 1]. Starting with the upper bound on

CHAPTER 3. THE BIVARIATE CASE ON THE UNIT SQUARE 101

‖pn(x, y)‖
[0,1]×[0,1]

of

‖pn(x, y)‖
[0,1]×[0,1]

≤ cn = min
0<k<n

‖pk(x, y)pn−k(x, y)‖
[0,1]×[0,1]

where pi(x, y) is a total degree ith integer Chebyshev polynomial on the region [0, 1]×[0, 1],

we move on to the step of finding necessary factors. Although the process used in the single

variable case does not carry forward, if cn < Ωn[0, 1] then

xy(1− x)(1− y)(x− y)(1− x− y) divides pn(x, y).

For if cn < Ωn[0, 1], then pn(0, y) = 0, pn(1, y) = 0, pn(x, 0) = 0, pn(x, 1) = 0, pn(x, x) = 0,

and pn(x, 1− x) = 0 since they are all single variable polynomials of degree at most n with

supremum norm less than Ωn[0, 1] on the interval [0, 1]. This gives an infinite number of

points of intersection between the curve pn(x, y) = 0 and each of the curves x = 0, 1−x = 0,

y = 0, 1 − y = 0, x − y = 0, and 1 − x − y = 0. Since the linear polynomials x, 1 − x, y,

1 − y, x − y, and 1 − x − y are all irreducible, they must all divide pn(x, y). We are just

applying a weak form of Bezout’s theorem [11], if the polynomials f(x, y) and g(x, y) have no

common factors, then number of points of intersection of V(f(x, y)) = {(x, y) : f(x, y) = 0}
and V(g(x, y)) = {(x, y) : g(x, y) = 0} is finite.

To take advantage of the fact that there must be a total degree nth integer Chebyshev

polynomial for the region [0, 1]×[0, 1] satisfying the condition pn(x, y) = (−1)npn(1−x, 1−y),

the version of PSLQ given in Section 2.5 is used. If pn(x, y) = F (x, y)G(x, y) where F (x, y)

represents the known divisors of pn(x, y) and G(x, y) =
∑

ai,jx
iyj represents the unknown

factor of total degree g, the symmetry condition gives

F (x, y)
∑

ai,jx
iyj = (−1)nF (1− x, 1− y)

∑
ai,j(1− x)i(1− y)j

or

∑
ai,jdi,j(x, y) =

∑
ai,j

(
F (x, y)xiyj − (−1)nF (1− x, 1− y)(1− x)i(1− y)j

)
= 0.

For any point (x, y), the coefficients ai,j of G(x, y) give an integer relation between the values

di,j(x, y). Letting a = [a0,0, a1,0, a0,1, . . . , a1,g−1, a0,g] be the vector with components equal

to the coefficients of G(x, y), we can select rational points (xk, yk) and construct vectors

vk = [d0,0(xk, yk), d1,0(xk, yk), d0,1(xk, yk), . . . , d1,g−1(xk, yk), d0,g(xk, yk)]

CHAPTER 3. THE BIVARIATE CASE ON THE UNIT SQUARE 102

with the property that a · vk = 0. This allows us to use the version of the PSLQ algorithm

for finding simultaneous integer relations. After verifying that the returned vectors {bl}m
l=1

form a basis for the lattice of all simultaneous integer relations to the vectors {vk}, we

can express a in the form a =
∑m

l=1 elbl where the el are integers. Using the basis vectors

bl = 〈bl,0,0, bl,1,0, bl,0,1, . . . , bl,1,g−1, bl,0,g〉 to construct the polynomials bl(x, y) =
∑

bl,i,jx
iyj ,

we can then express the polynomial G(x, y) in the form

G(x, y) =
m∑

l=1

elbl(x, y) for some integers el.

If each polynomial bl(x, y) satisfies the condition bl(x, y) = (−1)nbl(1 − x, 1 − y), then the

polynomials {bl(x, y)}m
l=1 form a basis for the lattice of bivariate polynomials with integer

coefficients of total degree at most n satisfying the condition f(x, y) = (−1)nf(1−x, 1− y).

If one of the polynomials bl(x, y) does not satisfy this symmetry condition, then the process

should be redone with a larger selection of points (xk, yk) in order to further reduce the size

of m.

Having expressed G(x, y) as an integer linear combination of the polynomials bl(x, y),

the next step is to select m rational points (si/ti, ui/vi) ∈ [0, 1]×[0, 1] and let

ri = lcm (ti, vi)
g G

(
si

ti
,
ui

vi

)
∈ Z.

The points (si/ti, ui/vi) must be chosen so the linear system of equations
{

ri = lcm (ti, vi)
g

m∑

l=1

el bl

(
si

ti
,
ui

vi

)}m

i=1

can be used to express the integers el as rational linear combinations of the integers ri.

Although we do not know the values of the el or ri that give rise to G(x, y), we can reduce

the number of possibilities to a finite set. For n ≤ 12, this resulted in a set of manageable

size from which the desired combination could be selected. To reduce the possible choices

for combinations of the ri, we first bound the ri using the inequality

|ri| =
∣∣∣∣lcm (ti, vi)

g G

(
si

ti
,
ui

vi

)∣∣∣∣ ≤
∣∣∣∣∣∣
lcm (ti, vi)

g cn

F
(

si
ti

, ui
vi

)
∣∣∣∣∣∣

when F (si/ti, ui/vi) 6= 0, and by the use of the simplex algorithm as in Section 1.3.2 when

F (si/ti, ui/vi) = 0. As in the single variable case, the expressions for the el as rational

CHAPTER 3. THE BIVARIATE CASE ON THE UNIT SQUARE 103

linear combinations of the ri let us set up a system of congruences that the ri must satisfy.

Stepping through the permissable combinations of the ri and constructing the corresponding

polynomials
∑m

l=1 elbl(x, y) then allows us to find a nonzero polynomial G(x, y) for which

‖F (x, y)G(x, y)‖
[0,1]×[0,1]

is minimal. The results are presented in Table 3.1. It is worth

noting that the symmetry conditions were only used for degrees 11 and 12. For degrees 1

through 10 the table gives a complete list, up to simple transformations, of total degree nth

integer Chebyshev polyonomials for the region [0, 1]×[0, 1].

From examining the polynomials in Table 3.1, one might be tempted to conjecture that

for odd n > 3, there must exist a total degree nth integer Chebyshev polynomial for the

region [0, 1]× [0, 1] satisfying the conditions pn(x, y) = −pn(1 − x, 1 − y) and pn(x, y) =

−pn(y, x), and that for even n, there must exist one satisfying the conditions pn(x, y) =

pn(1− x, y) and pn(x, y) = pn(x, 1− y). This is not the case. Within the class of bivariate

polynomials with integer coefficients of degree at most 13 satisfying the conditions q(x, y) =

−q(1− x, 1− y) and q(x, y) = −q(y, x), the polynomial

q13(x, y) = xy(1− x)(1− y)(x− y)3(1− x− y)2

·(2x2 + 2xy + y2 − 3x− 2y + 1)(x2 + 2xy + 2y2 − 2x− 3y + 1)

has minimal supremum norm on the region [0, 1]×[0, 1]. However,

‖q13(x, y)‖
[0,1]×[0,1]

= 0.00000555534 . . . > 0.00000504648 . . . = ‖p̃13(x, y)‖
[0,1]×[0,1]

where p̃13(x, y) is the polynomial

p̃13(x, y) = xy(1− x)(1− y)(x− y)2(1− x− y)(x2 − 2xy + 2y2 − y)

·(x2 + 2xy + 2y2 − 2x− 3y + 1)(2x2 + 2xy + y2 − 3x− 2y + 1).

Within the class of bivariate polynomials with integer coefficients of degree at most 14

satisfying the conditions w(x, y) = w(1− x, y) and w(x, y) = w(x, 1− y), the polynomial

w14(x, y) = xy(1− x)(1− y)(x− y)2(1− x− y)2

·(4x6−2x4y2−2x2y4+4y6− 12x5+2x4y+4x3y2+4x2y3+2xy4−12y5

+13x4−4x3y−5x2y2−4xy3+13y4− 6x3+3x2y+3xy2−6y3+ x2−xy+y2)

has minimal supremum norm on the region [0, 1]×[0, 1]. However, in this case we have

‖w14(x, y)‖
[0,1]×[0,1]

= 0.00000160932 . . . > 0.00000153842 . . . = ‖p̃14(x, y)‖
[0,1]×[0,1]

CHAPTER 3. THE BIVARIATE CASE ON THE UNIT SQUARE 104

Table 3.1: Total degree bivariate integer Chebyshev polynomials for the region [0, 1]×[0, 1]
n Tn[0, 1]×[0, 1]−1 Polynomial(s)

1 1 1, x, 2x− 1, x− y

2 2 x(1− x), (1− x− y)(x− y)

3 2.182247 x(1− x)(2x− 1)

4 2 x(1− x)(2x− 1)2, x2(1− x)2, x(1− x)(5x2 − 5x + 1),
xy(1− y)(1− x),
(x− 1 + y)2(x− y)2,
x(1− x)(1− x− y)(x− y),
x(1− x)(x2 − x− 2y2 + 2y),
x(1− x)(4x2 − 4x + y2 − y + 1),
(x− y)(1− x− y)(x2 + y2 − x− y),
(x− y)(1− x− y)(4x2 + 4y2 − 4x− 4y + 1),
(x2 − 2xy + 2y2 − y)(x2 + 2xy + 2y2 − 2x− 3y + 1),
x4−x2y2+y4−2x3+x2y+xy2−2y3+x2−xy+y2,
x4−3x2y2+y4−2x3+3x2y+3xy2−2y3+x2−3xy+y2,
5x4−x2y2+y4−10x3+x2y+xy2−2y3+6x2−xy+y2−x,
5x4−2x2y2+y4−10x3+2x2y+2xy2−2y3+6x2−2xy+y2−x

5 2.236067 x2(2x− 1)(1− x)2,
xy(1− x)(1− y)(x− y),
x(1− x)(2x− 1)(x− y)(1− x− y)

6 2.519842 xy(1− x)(1− y)(x− y)(1− x− y)

7 2.499906 xy(1− x)(1− y)(x− y)(1− x− y)2

8 2.539176 xy(1− x)(1− y)(x− y)2(1− x− y)2

9 2.502077 xy(1− x)(1− y)(x− y)3(1− x− y)2

10 2.584427 xy(1− x)(1− y)(x− y)2(1− x− y)2(3x2 − 3x + 1− 3y + 3y2)

11 2.547609 xy(1− x)(1− y)(x− y)(1− x− y)2

·(x2 − 2xy − y + 2y2)(2x2 − x− 2xy + y2)

12 2.557357 xy(1− x)(1− y)(x− y)3(1− x− y)3(3x2 − 3x + 1− 3y + 3y2)

CHAPTER 3. THE BIVARIATE CASE ON THE UNIT SQUARE 105

where

p̃14(x, y) = xy(1− x)(1− y)(x− y)2(1− x− y)4(x2−2xy+2y2−y)(2x2−2xy+y2−x)

is a polynomial of minimal supremum norm on [0, 1]× [0, 1] within the class of bivariate

polynomials of degree at most 14 with integer coefficients satisfying the symmetry conditions

z(x, y) = z(1− x, 1− y) and z(x, y) = z(y, x).

3.4.2 The maximum degree case

Although the process used in the total degree case extends to the maximum degree case,

it is more advantageous to use Theorem 3.3 directly and reduce the problem to one on the

region [0, 1/4]×[0, 1/4]. To do this, we first consider the case when n is even. Let pn(x, y) be

a maximum degree nth integer Chebyshev polynomial for the region [0, 1]×[0, 1] satisfying

the symmetry conditions pn(x, y) = pn(1 − x, y) and pn(x, y) = pn(x, 1 − y). Viewing

pn(x, y) as a polynomial in Z[y][x] and writing pn(x, y) =
∑n

k=0 gk(y)xk where each gk(y)

is a polynomial of degree at most n, we can isolate the polynomials gk(y) by evaluating the

kth partial derivative of pn(x, y) with respect to x at x = 0. Since pn(x, y) = pn(x, 1− y),

gk(y) =
1
k!

[
∂k

∂xk
pn(x, y)

]

x=0

=
1
k!

[
∂k

∂xk
pn(x, 1− y)

]

x=0

= gk(1− y).

By Lemma 1.5, the coefficients gk(y) of xk must be of the form gk(y) = g̃k (y(1− y)) for

some polynomial g̃(v) ∈ Zn/2[v] and so we may rewrite pn(x, y) in the form pn(x, y) =

p̃n(x, v) =
∑n

k=0 g̃k(v)xk where v = y(1 − y). Repeating the argument, if we view p̃n(x, v)

as a polynomial in Z[x][v], we can write p̃n(x, v) in the form p̃n(x, v) =
∑n/2

k=0 hk(x)vk where

each polynomial hk(x) is of degree at most n and isolate hk(x) by evaluating the partial

derivatives of p̃n(x, v) with respect to v at v = 0. Now, since pn(x, y) satisfies the condition

pn(x, y) = pn(1− x, y), we also have p̃n(x, v) = p̃n(1− x, v) and so

hk(x) =
1
k!

[
∂k

∂vk
p̃n(x, v)

]

v=0

=
1
k!

[
∂k

∂vk
pn(1− x, v)

]

v=0

= hk(1− x).

By Lemma 1.5, hk(x) = h̃k (x(1− x)) for some h̃k(u) ∈ Zn/2[u] which gives the final form

we are after,

pn(x, y) =
n/2∑

k=0

h̃k (x(1− x)) (y(1− y))k = qn/2 (x(1− x), y(1− y))

CHAPTER 3. THE BIVARIATE CASE ON THE UNIT SQUARE 106

for some polynomial qn/2(u, v) with integer coefficients of maximum degree at most n/2.

When n is odd, the first half of the argument gives pn(x, y) = (1−2y)
∑n

k=0 g̃k(y(1−y))xk

where each polynomial g̃k(v) is of maximum degree at most (n− 1)/2. Applying the second

half of the argument to
∑n

k=0 g̃k(y(1− y))xk then gives

pn(x, y) = (1− 2y)


(1− 2x)

(n−1)/2∑

k=0

h̃k(x(1− x))(y(1− y))k




for some h̃k(u) ∈ Z(n−1)/2[u]. We have the following result.

Theorem 3.4 There exists a maximum degree nth integer Chebyshev polynomial for the

region [0, 1]×[0, 1] of the form

pn(x, y) = qn/2 (x(1− x), y(1− y))

where qn/2(u, v) ∈ Z[u, v] is of maximum degree at most n/2 when n is even, and of the

form

pn(x, y) = (1− 2y)(1− 2x)q(n−1)/2 (x(1− x), y(1− y))

where q(n−1)/2(u, v) ∈ Z[u, v] of maximum degree at most (n− 1)/2 when n is odd.

The method used to find a maximum degree nth integer Chebyshev polynomial pn(x, y)

for the region [0, 1]×[0, 1] follows the usual three step process and begins with choosing an

upper bound cn for ‖pn(x, y)‖
[0,1]×[0,1]

. The bound

‖pn(x, y)‖
[0,1]×[0,1]

≤ cn = (Ωn[0, 1])2

is a reasonable choice since it is the best we can do by taking polynomials of the form

f(x)f(y) where f(x) is a polynomial with integer coefficients of degree at most n.

The second step of finding necessary factors begins in a similar fashion to the total

degree case. For n ≥ 2 the polynomials pn(x, 0), pn(x, 1), pn(0, y), and pn(1, y) are all single

variable polynomials of degree at most n with supremum norm on [0, 1] less than Ωn[0, 1]

and so must all be the zero polynomial. Since this gives an infinite number of points of

intersection between the curve pn(x, y) = 0 and each of the curves x = 0, x = 1, y = 0 and

y = 1, it must be the case that x(1− x)y(1− y) divides pn(x, y) for n ≥ 2. However, unlike

the total degree case, it is sometimes possible to show there are additional factors of x(1−x)

and y(1− y). Using Theorem 3.4 to write pn(x, y) in the form F (x, y)G (x(1− x), y(1− y))

CHAPTER 3. THE BIVARIATE CASE ON THE UNIT SQUARE 107

where F (x, y) represents the known factors of pn(x, y) and G (x(1− x), y(1− y)) represents

the unknown portion, we can attempt to show the polynomial G(x, y) is divisible by xy.

If we let g be the maximum degree of G(x, y), let G̃(x) = G(x, 0) =
∑g

i=0 aix
i, and set

w(x) =
(
1−√1− 4x

)
/2, then tgG̃(s/t) ∈ Z for any s/t ∈ Q and

|F (w(x), w(y))G(x, y)| ≤ cn for any (x, y) ∈ [0, 1/4]×[0, 1/4].

This allows for the simplex algorithm to be applied using exact arithmetic as in Section 1.3.2.

If we can show that tgG̃(s/t) ∈ (−1, 1), then G̃(s/t) must be zero. The goal is to show

the degree g polynomial G̃(x) has g + 1 zeros in the interval [0, 1/4] and so must be the

zero polynomial. If successful, then the curves G(x, y) = 0 and y = 0 have an infinite

number of points of intersection and so we can claim that y divides G(x, y). With no

additional work, this also shows that x divides G(x, y) since at each stage we maintain the

equality F (x, y) = F (y, x). Each time we find an additional factor x(1 − x)y(1 − y) of

G (x(1− x), y(1− y)), it is transferred to F (x, y) and the process is restarted. When no

additional factors are found, we move to the third and final step of the procedure.

In order to perform an exhaustive search for the unknown factor G(x, y), we select

(g + 1)2 rational points (si/ti, ui/vi) ∈ [0, 1/4]×[0, 1/4] and let

ri = (tivi)
g G

(
si

ti
,
ui

vi

)
∈ Z.

The points (si/ti, ui/vi) must be chosen so the linear system of equations





ri = (tivi)
g

∑

i+j≤g
i≥0,j≥0

ai,j

(
si

ti

)i(ui

vi

)j





(g+1)2

i=1

can be used to express the integers ai,j as rational linear combinations of the integers

ri. Although we do not know the values of the ri, we can reduce the number of possible

combinations to a finite set and then search through this set in order to find the combination

giving rise to the coefficients of G(x, y). To reduce the possible choices for combinations of

the ri, we first bound the ri using the inequality

|ri| =
∣∣∣∣lcm (ti, vi)

g G

(
si

ti
,
ui

vi

)∣∣∣∣ ≤
∣∣∣∣∣∣

(tivi)
g cn

F
(
w

(
si
ti

)
, w

(
ui
vi

))
∣∣∣∣∣∣

CHAPTER 3. THE BIVARIATE CASE ON THE UNIT SQUARE 108

when F (w(si/ti), w(ui/vi)) 6= 0, and by the use of the simplex algorithm as in Section 1.3.2

when F (w(si/ti), w(ui/vi)) = 0. As in the single variable case, the expressions for the ai,j

as rational linear combinations of the ri let us set up a system of congruences that the ri

must satisfy. Stepping through the permissable combinations of the ri and constructing the

corresponding polynomials
∑

ai,jx
iyj then allows us to find a nonzero polynomial G(x, y)

for which ‖F (x, y)G(x(1− x), y(1− y))‖
[0,1]×[0,1]

is minimal.

This method allowed for the discovery of maximum degree nth integer Chebyshev poly-

nomials on the region [0, 1]×[0, 1] for all n ≤ 19. In all cases, Mn[0, 1]×[0, 1] = (Ωn[0, 1])2

and the polynomials fn(x)fn(y) where fn(x) is an nth integer Chebyshev polynomial for

the interval [0, 1] were found to be maximum degree nth integer Chebyshev polynomials

of the region [0, 1]×[0, 1]. It is interesting to note that for degree 4, there were additional

maximum degree nth integer Chebyshev polynomials for the unit square that were not of

the form f(x)f(y) for any polynomial f(x).

Appendix A

Integer Chebyshev Polynomials

(Maple Code)

A.1 The single variable case on [0, 1]

The following is a Maple implementation of the code outlined in Section 1.3.2 for finding

symmetric nth integer Chebyshev polynomials on the interval [0, 1]. It is intended to be

run with the command intCheb(startpoly,n,c); where startpoly is either 1 or a known

symmetric factor, n is the degree, and c is an upper bound on Ωn[0, 1].

intCheb := proc(startpoly, n, c)
local F, LCM, Lower, N, SimpTable, Upper, approxresbound, b1, b2, b3, changed, congs,

eps, i, ind, innerTable, linpolyinfo,linpolys, newlowup, pass, polyroots, polys,
r, rbs, resIs0, resbound, sols, steps, u;

Digits := max(20, n);
polys := [x*(1 - x), (2*x - 1)^2, 5*x^2 - 5*x + 1,

6*x^2 - 6*x + 1, 29*x^4 - 58*x^3 + 40*x^2 - 11*x + 1,
(13*x^3 - 20*x^2 + 9*x - 1)*(13*x^3 - 19*x^2 + 8*x - 1),
(31*x^4 - 63*x^3 + 44*x^2 - 12*x + 1)*(31*x^4 - 61*x^3 + 41*x^2 - 11*x + 1),
941*x^8-3764*x^7+6349*x^6-5873*x^5+3243*x^4-1089*x^3+216*x^2-23*x+1];

polyroots := [[0, 1], [0.5],seq([fsolve(polys[i])], i = 3 .. nops(polys))];
eps := 1/1000000*c;
if startpoly = 1 then

r := 0;
while evalf(c*sqrt(2*r+1)*(n+r+1)!/((n-r)!*(2*r+1)!))< 1 do r:=r+1 end do;
F := (x*(1 - x))^r;
if n mod 2 = 1 then F := F*(2*x - 1) end if

else F := startpoly
end if;
if nargs = 4 then F := F*args[4] end if;
N := 1/2*n - 1/2*degree(F) + 1;
print(F, N - 1);
u := unapply(1/2 - 1/2*sqrt(1 - 4*x), x);
changed := true;
while changed and 1 < N do

if not has(F, 2*x - 1) and
abs(2^(n - degree(F))*c*subs(x = 1/2, 1/F)) < 1 then

print(‘adding the following factor‘, (2*x - 1)^2);
F := F*(2*x - 1)^2;

109

APPENDIX A. INTEGER CHEBYSHEV POLYNOMIALS (MAPLE CODE) 110

N := N - 1
end if;
for i from 3 to nops(polys) do

if (type(polys[i], ‘+‘) and not has(F, polys[i])
or type(polys[i], ‘*‘) and not has(F, op(1, polys[i]))) and

abs(lcoeff(polys[i])^(n - degree(F))*c^degree(polys[i])
‘‘(seq(subs(x=polyroots[i][j], 1/F),j=1..nops(polyroots[i]))))<0.999 then
print(‘adding the following factor‘, polys[i]);
F := F*polys[i];
N := N - 1/2*degree(polys[i])

end if
end do;
changed := false;
innerTable := table();
SimpTable := table();
linpolyinfo := getlinpolyinfo(F, N, c, eps,[0, 1/4, 1/5, 1/6],

[infinity, infinity, infinity, infinity], false);
congs := linpolyinfo[1]; Upper := linpolyinfo[2]; Lower := linpolyinfo[3];
LCM := linpolyinfo[4]; steps := linpolyinfo[5]; sols := linpolyinfo[6];
linpolys := linpolyinfo[7];
for pass to 2 do

print(‘checking factor x*(1-x)‘);
newlowup := applySimp(1, 1, LCM, indices, sols, F,N, c, eps, Lower, Upper,

steps, addressof(SimpTable), addressof(innerTable), true);
if newlowup[2] = 0 then

F := F*x*(1 - x); N := N - 1; changed := true
else

Lower[1] := -newlowup[2]; Upper[1] := newlowup[2]
end if;
if not changed and 1 < N then

print(‘checking factor (2x-1)‘);
newlowup := applySimp(1, 2, LCM, indices, sols, F, N, c, eps, Lower, Upper,

steps, addressof(SimpTable), addressof(innerTable), true);
if newlowup[2] = 0 then

F := F*(2*x - 1)^2; N := N - 1; changed := true
else

Lower[2] := -newlowup[2]; Upper[2] := newlowup[2]
end if

end if;
if not changed and 2 < N then

print(‘checking factor (5*x^2-5*x+1)‘);
newlowup := applySimp(1, 3, LCM, indices, sols, F, N, c, eps, Lower, Upper,

steps, addressof(SimpTable), addressof(innerTable), true);
if newlowup[2] = 0 then

F := F*(5*x^2 - 5*x + 1); N := N - 1; changed := true
else

Lower[3] := -newlowup[2]; Upper[3] := newlowup[2]
end if

end if;
if not changed and 3 < N and pass = 1 then

print(‘checking factor (6*x^2-6*x+1)‘);
newlowup := applySimp(1, 4, LCM, indices, sols, F, N, c, eps, Lower, Upper,

steps, addressof(SimpTable), addressof(innerTable), true);
if newlowup[2] = 0 then

F := F*(6*x^2 - 6*x + 1); N := N - 1; changed := true
else

Lower[4] := -newlowup[2]; Upper[4] := newlowup[2]
end if

end if;
if changed then pass := 2 end if

end do;
if not changed and 13 < N then

rbs := [Upper[1], Upper[2], Upper[3], Upper[4], infinity];
print(‘checking factor 29*x^4-58*x^3+40*x^2-11*x+1‘);
innerTable := table();
SimpTable := table();
linpolyinfo := getlinpolyinfo(F, N, c, eps,[0, 1/4, 1/5, 1/6, 987/4325],

[rbs[1], rbs[2], rbs[3], rbs[4], infinity], false);
congs := linpolyinfo[1]; Upper := linpolyinfo[2]; Lower := linpolyinfo[3];
LCM := linpolyinfo[4]; steps := linpolyinfo[5]; sols := linpolyinfo[6];
linpolys := linpolyinfo[7];

APPENDIX A. INTEGER CHEBYSHEV POLYNOMIALS (MAPLE CODE) 111

b1 := applySimp(1, 5, LCM, indices, sols, F, N, c, eps, Lower, Upper, steps,
addressof(SimpTable), addressof(innerTable), true);

innerTable := table();
SimpTable := table();
linpolyinfo := getlinpolyinfo(F, N, c, eps, [0, 1/4, 1/5, 1/6, 610/4037],

[rbs[1], rbs[2], rbs[3], rbs[4], infinity], false);
congs := linpolyinfo[1]; Upper := linpolyinfo[2]; Lower := linpolyinfo[3];
LCM := linpolyinfo[4]; steps := linpolyinfo[5]; sols := linpolyinfo[6];
linpolys := linpolyinfo[7];
b2 := applySimp(1, 5, LCM, indices, sols, F, N, c, eps, Lower, Upper, steps,

addressof(SimpTable), addressof(innerTable), true);
approxresbound := b1[2]*b2[2]*29^(N - 1)/(4325^(N - 1)*4037^(N - 1));
if approxresbound < 0.999 then

print(‘approximate bound on resultant: ‘,evalf(approxresbound, 10));
print(‘Using Lagrange interpolation technique‘);
resbound := LagrangeStep(F, N - 1, c,29*x^4 - 58*x^3 + 40*x^2 - 11*x + 1,

[[987/4325, b1[2]/4325^(N - 1)],[610/4037, b2[2]/4037^(N - 1)]], eps);
print(‘bound on resultant is :‘,evalf(resbound, 10));
if resbound < 0.999 then

F := F*(29*x^4 - 58*x^3 + 40*x^2 - 11*x + 1); N := N-2; changed:=true
end if

end if;
if not changed then

print(‘checking factor (13*x^3-20*x^2+9*x-1)*(13*x^3-19*x^2+8*x-1)‘);
innerTable := table();
SimpTable := table();
linpolyinfo := getlinpolyinfo(F, N, c, eps, [0, 1/4, 1/5, 1/6,

325741/1367481], [rbs[1], rbs[2], rbs[3], rbs[4], infinity], false);
congs := linpolyinfo[1]; Upper := linpolyinfo[2]; Lower := linpolyinfo[3];
LCM := linpolyinfo[4]; steps := linpolyinfo[5]; sols := linpolyinfo[6];
linpolys := linpolyinfo[7];
b1 := applySimp(1, 5, LCM, indices, sols, F, N, c, eps, Lower, Upper,

steps, addressof(SimpTable), addressof(innerTable), true);
innerTable := table();
SimpTable := table();
linpolyinfo := getlinpolyinfo(F, N, c, eps, [0, 1/4, 1/5, 1/6, 11345/63021],

[rbs[1], rbs[2], rbs[3], rbs[4], infinity], false);
congs := linpolyinfo[1]; Upper := linpolyinfo[2]; Lower := linpolyinfo[3];
LCM := linpolyinfo[4]; steps := linpolyinfo[5]; sols := linpolyinfo[6];
linpolys := linpolyinfo[7];
b2 := applySimp(1, 5, LCM, indices, sols, F, N, c, eps, Lower, Upper,

steps, addressof(SimpTable), addressof(innerTable), true);
innerTable := table();
SimpTable := table();
linpolyinfo := getlinpolyinfo(F, N, c, eps, [0, 1/4, 1/5, 1/6,

261224/1893085], [rbs[1], rbs[2], rbs[3], rbs[4], infinity], false);
congs := linpolyinfo[1]; Upper := linpolyinfo[2]; Lower := linpolyinfo[3];
LCM := linpolyinfo[4]; steps := linpolyinfo[5]; sols := linpolyinfo[6];
linpolys := linpolyinfo[7];
b3 := applySimp(1, 5, LCM, indices, sols, F, N, c, eps, Lower, Upper,

steps, addressof(SimpTable), addressof(innerTable), true);
approxresbound := b1[2]*b2[2]*b3[2]*169^(N - 1)/(1367481^(N - 1)

*63021^(N - 1)*1893085^(N - 1));
if approxresbound < 0.999 then

print(‘approximate bound on resultant: ‘,evalf(approxresbound, 10));
print(‘Using Lagrange interpolation technique‘);
resbound := LagrangeStep(F, N - 1, c, (13*x^3 - 20*x^2 + 9*x - 1)

*(13*x^3 - 19*x^2 + 8*x - 1), [[325741/1367481,
b1[2]/1367481^(N - 1)], [11345/63021, b2[2]/63021^(N - 1)],
[261224/1893085, b3[2]/1893085^(N - 1)]], eps);

print(‘bound on resultant is :‘, evalf(resbound, 10));
if resbound < 0.999 then

F := F*(13*x^3 - 20*x^2 + 9*x - 1)*(13*x^3 - 19*x^2 + 8*x - 1);
N := N - 3; changed := true

end if
end if

end if;
if not changed and 11 < N then

innerTable := table();
SimpTable := table();
linpolyinfo := getlinpolyinfo(F, N, c, eps, [0, 1/4, 1/5, 1/6],

APPENDIX A. INTEGER CHEBYSHEV POLYNOMIALS (MAPLE CODE) 112

[rbs[1], rbs[2], rbs[3], rbs[4]], false);
congs := linpolyinfo[1]; Upper := linpolyinfo[2]; Lower := linpolyinfo[3];
LCM := linpolyinfo[4]; steps := linpolyinfo[5]; sols := linpolyinfo[6];
linpolys := linpolyinfo[7]

end if
end if;
if not changed and 11 < N then

print(‘final check for x*(1-x)‘);
resIs0 := true;
for ind[2] from Lower[2] to 0 do for ind[3] from Lower[3] to Upper[3] do

print(‘--- ?‘, ind[2], ind[3], ‘ ---‘);
newlowup := applySimp(1, 1, LCM, indices, sols, F, N, c, eps,

[Lower[1], ind[2], ind[3], Lower[4], seq(Lower[k], k = 5 .. N)],
[Upper[1], ind[2], ind[3], Upper[4], seq(Upper[k], k = 5 .. N)],
steps, addressof(SimpTable), addressof(innerTable), false);

if newlowup <> {} and (newlowup[1] <> 0 or newlowup[2] <> 0)
then

resIs0 := false; ind[3] := Upper[3]; ind[2] := Upper[2]
end if

end do end do;
if resIs0 then F := F*x*(1 - x); N := N - 1; changed := true end if;
if not changed then

print(‘final check for 2*x-1‘);
resIs0 := true;
for ind[1] from Lower[1] to 0 do for ind[3] from Lower[3] to Upper[3] do

print(‘--- ‘, ind[1], ‘?‘, ind[3],‘ ---‘);
newlowup := applySimp(1, 2, LCM, indices, sols, F, N, c, eps,
[ind[1], Lower[2], ind[3], Lower[4], seq(Lower[k], k = 5 .. N)],
[ind[1], Upper[2], ind[3], Upper[4], seq(Upper[k], k = 5 .. N)],
steps, addressof(SimpTable), addressof(innerTable), false);

if newlowup <> {} and (newlowup[1] <> 0 or newlowup[2] <> 0)
then

resIs0 := false; ind[3] := Upper[3]; ind[1] := Upper[1]
end if

end do end do;
if resIs0 then F := F*(2*x - 1)^2; N := N - 1; changed := true end if

end if;
if not changed then

print(‘final check for 5*x^2-5*x+1‘);
resIs0 := true;
for ind[1] from Lower[1] to 0 do for ind[2] from Lower[2] to Upper[2] do

print(‘--- ‘, ind[1], ind[2], ‘? ---‘);
newlowup := applySimp(1, 3, LCM, indices, sols, F, N, c, eps,
[ind[1], ind[2], Lower[3], Lower[4], seq(Lower[k], k = 5 .. N)],
[ind[1], ind[2], Upper[3],Upper[4], seq(Upper[k], k = 5 .. N)],
steps, addressof(SimpTable), addressof(innerTable), false);

if newlowup <> {} and (newlowup[1] <> 0 or newlowup[2] <> 0)
then

resIs0 := false; ind[2] := Upper[2]; ind[1] := Upper[1]
end if

end do end do;
if resIs0 then F := F*(5*x^2 - 5*x + 1); N := N - 1; changed := true end if

end if
end if;
print(F, N - 1)

end do;
if degree(F) < n then

print([seq(max(abs(Lower[k]), abs(Upper[k])), k = 1 .. min(N, 4))]);
print(‘==================================‘);
print();
F := searchpolys(F, N - 1, c, seq(‘if‘(N < k,infinity, max(abs(Lower[k]),

abs(Upper[k]))), k = 1 .. 4))
end if;
return F

end proc;

LagrangeStep := proc(F, g, c, critpoly, bounds, eps)
local G, G2, G3, P, RootsOfF, S, a, bound, counter, dG3, fixedx, i, iteration, iterations,

j, left, middle, minpoints, minpos, minval, points, right, u, val, xvals, xvar;
iterations := 8;

APPENDIX A. INTEGER CHEBYSHEV POLYNOMIALS (MAPLE CODE) 113

Digits := max(degree(F, x) + 2*g, 10);
u := unapply(1/2 - 1/2*sqrt(1 - 4*x), x);
if type(F, ‘+‘) then RootsOfF := [fsolve(F, x = 0 .. 1/2)]
elif type(F, ‘^‘) then RootsOfF := [fsolve(op(1, F), x = 0 .. 1/2)]
else RootsOfF := [];

for i to nops(F) do if type(op(i, F), ‘+‘)
then RootsOfF := [op(RootsOfF), fsolve(op(i, F), x = 0 .. 1/2)]
else RootsOfF := [op(RootsOfF),fsolve(op(1, op(i, F)), x = 0 .. 1/2)]

end if end do
end if;
RootsOfF := sort([seq(RootsOfF[i]*(1 - RootsOfF[i]), i = 1 .. nops(RootsOfF))]);
G := 0;
for i to nops(bounds) do

P := 1;
for j to g + 1 do if i <> j then P := P*(x - xv[j])/(xv[i] - xv[j]) end if end do;
G := G + abs(bounds[i][2]*P)

end do;
for i from nops(bounds) + 1 to g + 1 do

P := 1;
for j to g + 1 do if i <> j then P := P*(x - xv[j])/(xv[i] - xv[j]) end if end do;
G := G + abs(c*P/subs(x = u(xv[i]), F))

end do;
S := [op(map(x -> x*(1 - x), [fsolve(critpoly, x = 0 .. 1/2)]))];
a := abs(lcoeff(critpoly, x));
bound := a^g;
for j to nops(S) do

G2 := subs(x = S[j], G);
xvals := [seq(bounds[i][1], i = 1 .. nops(bounds)),

seq(evalf(1/4*k*sqrt(5/6)/(g + 1)), k = nops(bounds) + 1 .. g + 1)];
for iteration to iterations do for xvar from nops(bounds) + 1 to g + 1 do

G3 := G2;
points := {0., op(RootsOfF), evalf(1/4)};
for fixedx to g + 1 do

if fixedx <> xvar then
G3 := subs(xv[fixedx] = xvals[fixedx], G3);
points := {xvals[fixedx], op(points)}

end if
end do;
points := sort([op(points)]);
dG3 := diff(G3, xv[xvar]);
minpoints := [];
for counter to nops(points) - 1 do

left := points[counter];
right := points[counter + 1];
while 1/10000 < right - left do

middle := 1/2*right + 1/2*left;
if 0 < evalf(subs(xv[xvar] = middle, dG3))

then right := middle else left := middle
end if

end do;
minpoints := [op(minpoints), middle]

end do;
minval := evalf(subs(xv[xvar] = xvals[xvar], G3));
minpos := xvals[xvar];
for counter to nops(minpoints) do

val := evalf(subs(xv[xvar] = minpoints[counter], G3));
if val < minval then

minval := val; minpos := minpoints[counter]
end if

end do;
xvals[xvar] := minpos;
if j = nops(S) and bound*minval < 1 - eps then

iteration := iterations; xvar := g + 1
end if

end do
end do;
bound := bound*minval

end do;
return bound

end proc;

APPENDIX A. INTEGER CHEBYSHEV POLYNOMIALS (MAPLE CODE) 114

searchpolys := proc(F, n, c, r1b, r2b, r3b, r4b)
local Blower, Bupper, D, LCM, Lower, N, SimpTable, Upper, a, b, checkPoints, congs,

direction, dosubnum, eps, est, flag, i, indices, innerTable, j, linpolyinfo,
linpolys, lower, minpoly, minsup, newlowup, poly, simpblockend, simpblockstart,
simpcutoff, sol, sols, steps, subproblem, thesup, upper;

SimpTable := table();
innerTable := table();
eps := 1/1000000*c;
N := n + 1;
Digits := max(degree(F, x) + 2*n, 10);
checkPoints := getcheckPoints(F,N,c,eps);
linpolyinfo := getlinpolyinfo(F,N,c,eps, [0, 1/4, 1/5, 1/6], [r1b, r2b, r3b, r4b], true);
congs := linpolyinfo[1]; Upper := linpolyinfo[2]; Lower := linpolyinfo[3];
LCM := linpolyinfo[4]; steps := linpolyinfo[5]; sols := linpolyinfo[6];
linpolys := linpolyinfo[7];
if nargs = 8 then for j to nops(args[8]) do

Lower[j] := args[8][j]; Upper[j] := args[8][j]
end do

end if;
if nargs < 8 or args[8] = [] then Upper[1] := 0 end if;
print(‘Upper ‘, Upper);
print(‘Lower ‘, Lower);
print(‘steps ‘, steps);
if N < 11 then simpblockstart := 0; simpblockend := 0
elif N = 11 then simpblockstart := 2; simpblockend := 3; simpcutoff := 50000
elif N = 12 then simpblockstart := 4; simpblockend := 5; simpcutoff := 100000
elif N = 13 then simpblockstart := 5; simpblockend := 7; simpcutoff := 200000
else

simpblockstart := 6; simpblockend := N;
while (Upper[simpblockend] - Lower[simpblockend] + 1)/steps[simpblockend] < 1 do

simpblockend := simpblockend - 1
end do;
simpblockend := min(simpblockend + 2, N - 2); simpcutoff := 500000*N - 6500000

end if;
print(blockstart, simpblockstart, blockend, simpblockend);
dosubnum := 11;
minsup := 1;
minpoly := {1};
indices := [seq(0, k = 1 .. N)];
direction := 1;
i := 1;
while 0 < i do

if direction = 1 then while direction = 1 do
if i < simpblockstart and Upper[i] <> Lower[i] then

if n < dosubnum and 1 < i and indices[i - 1] = 0
and ‘+‘(seq(abs(indices[k]), k = 1 .. i - 1)) = 0 then

newlowup := applySimp(i, i, LCM, indices, sols, F, N, c, eps, Lower,
[seq(Upper[k],k=1..i-1), 0, seq(Upper[k], k=i+1..N)], steps,

addressof(SimpTable),addressof(innerTable), false)
else newlowup := applySimp(i, i, LCM, indices, sols, F, N, c, eps, Lower,

Upper, steps, addressof(SimpTable), addressof(innerTable), false)
end if;
if newlowup = {} then direction := -1

else lower[i] := newlowup[1]; upper[i] := newlowup[2]
end if

elif simpblockstart <= i and i <= simpblockend then
if i = simpblockstart then

print(doingblock);
Bupper := Upper; Blower := Lower;
for j from simpblockstart to simpblockend do

if Upper[j] <> Lower[j] then
est := ‘*‘(seq(ceil((Bupper[k]-Blower[k]+1)/steps[k]),

k = simpblockstart .. N));
print(‘estimated size: ‘, est);
if est <= simpcutoff then

j := simpblockend;
print(‘less than ‘, simpcutoff,‘ so jumping out‘)

else
newlowup := applySimp(i,j, LCM, indices, sols,F, N, c, eps,

Blower, Bupper, steps, addressof(SimpTable),

APPENDIX A. INTEGER CHEBYSHEV POLYNOMIALS (MAPLE CODE) 115

addressof(innerTable), false);
if newlowup = {} then

direction := -1; j := simpblockend
else

Blower[j] := newlowup[1];
Bupper[j] := newlowup[2];
if dosubnum < N and j < 5 and newlowup[1] = 0
and newlowup[2] = 0 then j := simpblockend
end if

end if
end if

end if
end do;
print(doneblock)

end if;
if i = simpblockstart + 1 and 0 < Bupper[i - 1] - Blower[i - 1] and
1 < Bupper[i] - Blower[i] and 2*simpcutoff
<= est/ceil((Bupper[i - 1] - Blower[i - 1] + 1)/steps[i - 1]) then

newlowup := applySimp(i, i, LCM, indices, sols, F, N, c, eps, Blower,
Bupper, steps, addressof(SimpTable), addressof(innerTable), false);

if newlowup = {} then direction := -1
else

if n < dosubnum and 1 < i and indices[i - 1] = 0
and ‘+‘(seq(abs(indices[k]), k = 1 .. i - 1)) = 0

then upper[i] := 0
else upper[i] := newlowup[2]

end if;
lower[i] := newlowup[1]

end if
else

if n < dosubnum and 1 < i and indices[i - 1] = 0
and ‘+‘(seq(abs(indices[k]), k = 1 .. i - 1)) = 0

then upper[i] := 0
else upper[i] := Bupper[i]

end if;
lower[i] := Blower[i]

end if
elif Upper[i] = infinity or Lower[i] = -infinity then

if n < dosubnum and 1 < i and indices[i - 1] = 0
and ‘+‘(seq(abs(indices[k]), k = 1 .. i - 1)) = 0
then newlowup := applySimp(i, i, LCM, indices, sols, F, N, c, eps, Lower,

[seq(Upper[k], k = 1 .. i - 1), 0, seq(Upper[k], k = i + 1 .. N)],
steps, addressof(SimpTable), addressof(innerTable), false)

else newlowup := applySimp(i, i, LCM, indices, sols, F, N, c, eps, Lower,
Upper, steps, addressof(SimpTable), addressof(innerTable), false)

end if;
if newlowup = {} then direction := -1

else lower[i] := newlowup[1]; upper[i] := newlowup[2]
end if

else
if n < dosubnum and 1 < i and indices[i - 1] = 0
and ‘+‘(seq(abs(indices[k]), k = 1 .. i - 1)) = 0

then upper[i] := 0 else upper[i] := Upper[i]
end if;
lower[i] := Lower[i]

end if;
if direction = 1 then

if congs[i] = 0 then
indices[i] := lower[i];
if i <= 4 and indices[i] = 0 and dosubnum <= n then

subproblem:=dosubproblem(linpolys, indices, Upper, Lower, F, n, c, i);
if subproblem[2] <> 1 then

if subproblem[2] < minsup - eps then
minsup := subproblem[2];
minpoly := subproblem[1]

elif subproblem[2] < minsup + eps then
minpoly := minpoly union subproblem[1];
minsup := min(minsup, subproblem[2])

end if
end if;
i := i + 1;

APPENDIX A. INTEGER CHEBYSHEV POLYNOMIALS (MAPLE CODE) 116

direction := -1
else

i := i + 1;
if i = N + 1 then direction := 0 end if

end if
else

b := inner([seq(indices[k], k = 1 .. i - 1)], congs[i, 3]);
D := iquo(b, congs[i, 1], ’rmndr’);
if rmndr = 0 then

a := congs[i, 2]*D mod steps[i];
a := lower[i] + ((a - lower[i]) mod steps[i]);
if a <= upper[i] then

indices[i] := a;
if i <= 4 and a = 0 and dosubnum <= n then

subproblem:=dosubproblem(linpolys,indices,Upper,Lower,F,n,c,i);
if subproblem[2] <> 1 then

if subproblem[2] < minsup - eps then
minsup := subproblem[2];
minpoly := subproblem[1]

elif subproblem[2] < minsup + eps then
minpoly := minpoly union subproblem[1];
minsup := min(minsup, subproblem[2])

end if
end if;
i := i + 1;
direction := -1

else
i := i + 1;
if i = N + 1 then direction := 0 end if

end if
else direction := -1
end if

else direction := -1
end if

end if
end if

end do
elif direction = -1 then while direction = -1 and 0 < i do

i := i - 1;
if 0 < i then

indices[i] := indices[i] + steps[i];
if indices[i] <= upper[i] then

if i <= 4 and indices[i] = 0 and dosubnum <= n then
subproblem:=dosubproblem(linpolys,indices,Upper,Lower,F,n,c,i);
if subproblem[2] <> 1 then

if subproblem[2] < minsup - eps then
minsup := subproblem[2];
minpoly := subproblem[1]

elif subproblem[2] < minsup + eps then
minpoly := minpoly union subproblem[1];
minsup := min(minsup, subproblem[2])

end if
end if;
i := i + 1;
direction := -1

else
i := i + 1;
direction := ‘if‘(0 < i - N, 0, 1)

end if
end if

end if
end do

else
direction := -1;
sol := subs({seq(r[k] = indices[k], k = 1 .. N)}, sols);
j := 0;
flag := true;
while j < nops(checkPoints) and flag do

j := j + 1;
if checkPoints[j, 2] < abs(inner(checkPoints[j, 1], sol)) then

flag := false

APPENDIX A. INTEGER CHEBYSHEV POLYNOMIALS (MAPLE CODE) 117

end if
end do;
if flag then

poly := factor(inner(sol, [seq((x*(1 - x))^k, k = 0 .. N - 1)])*F);
if lcoeff(poly, x) < 0 then poly := -poly end if;
thesup := maxi(poly);
print(poly);
print(evalf(thesup, 10));
print(indices);
print(‘----------------------------‘);
if thesup <> 0 and thesup < minsup - eps then

minsup := thesup; minpoly := {poly}
elif thesup <> 0 and thesup < minsup + eps
then

minpoly := minpoly union {poly};
minsup := min(minsup, thesup)

end if
end if

end if
end do;
if nargs = 8 then return [minpoly, minsup] end if;
print(‘min sup norm is ‘, minsup);
return minpoly

end proc;

maxi := proc(p)
local i, m, p2, p3, poly, v, v2, vals;

p2 := diff(p, x);
if type(p, ‘+‘) then p3 := p2
else poly := 1;

for i to nops(p) do
if type(op(i, p), ‘^‘) then

poly := poly*op(1, op(i, p))^(op(2, op(i, p)) - 1)
end if

end do;
p3 := simplify(p2/poly)

end if;
vals := {0, 0.5, fsolve(p3, x = 0 .. 0.5)};
m := 0;
for v in vals do

v2 := abs(subs(x = v, p));
if m < v2 then m := v2 end if

end do;
return m

end proc;

dosubproblem := proc(linpolys, indices, Upper, Lower, F, n, c, i)
local coeff0, coeffx, intflag, j, newRes, subproblem;

coeffx := coeff(linpolys[i][1], x, 1);
coeff0 := coeff(linpolys[i][1], x, 0);
newRes := [seq(indices[k]/(coeff(linpolys[k][1], x, 1)*coeff0

-coeff(linpolys[k][1], x, 0)*coeffx), k = 1 .. i - 1), infinity,
seq(floor(abs(Upper[k]/(coeff(linpolys[k][1], x, 1)*coeff0
-coeff(linpolys[k][1], x, 0)*coeffx))), k = i + 1 .. 4)];

intflag := true;
for j to 4 do

if i <> j and not type(newRes[j], integer) then intflag := false end if
end do;
if intflag then subproblem := searchpolys(subs(x = x*(1 - x), linpolys[i][1])*F,

n - 1, c, seq(newRes[k], k = 1 .. 4), [seq(newRes[k], k = 1 .. i - 1)])
else subproblem := [1, 1]
end if;
return subproblem

end proc;

getcheckPoints := proc(F, N, c, eps)
local n, checkPoints, meshsize, vals, v;

n := N - 1;

APPENDIX A. INTEGER CHEBYSHEV POLYNOMIALS (MAPLE CODE) 118

checkPoints := [];
meshsize := 0.5/(5*N);
vals := [‘if‘(F = 1, NULL, fsolve(diff(F, x), x=0..1/2)), seq(meshsize*k, k=1..5*N-1)];
for v in vals do

if c < abs(subs(x = v, F)) then
checkPoints:=[op(checkPoints),[[seq((v*(1-v))^k,k=0..n)],(c+eps)/abs(subs(x=v,F))]]

end if
end do;
return evalf(checkPoints)

end proc;

getlinpolyinfo := proc(F, N, c, eps, Rats, rbounds, addextrapoints)
local n, rats, numextra, u, Rflg, i, j, k, rbound, linpolys, linpolystest, numToVary,

firstlinpolys, lastlinpolys, G, minsize, testnum, R, sols, thelcms, LCM, E, Mtrx,
conginfo, minlinpolys, minconginfo, minsols, minLCM, Lower, Upper, congs, steps, gcdi;

n := N - 1;
rats := Rats;
if addextrapoints then numextra := 3 else numextra := 0 end if;
u := unapply(1/2 - 1/2*sqrt(1 - 4*x), x);
Rflg := false;
for i to nops(Rats) do if Rats[i] = 0 then Rflg := true end if end do;
if not Rflg then rats := [op(rats), 0] end if;
for i from 4 to 2*N + 2*numextra do for j to floor(1/4*i) do

if igcd(i, j) = 1 then
Rflg := false;
for k to nops(Rats) do

if Rats[k] = j/i then Rflg := true end if
end do;
if not Rflg then rats := [op(rats), j/i]
end if

end if
end do

end do;
for i to nops(rats) do

try rbound[i] := floor(evalf(denom(rats[i])^n*(c + eps)/abs(subs(x = u(rats[i]), F))))
catch: rbound[i] := infinity
end try

end do;
linpolys:=[seq([denom(rats[k])*x-numer(rats[k]), rbound[k]], k=nops(Rats)+1..nops(rats))];
linpolys := sort(linpolys, (a, b) -> a[2] < b[2]);
linpolys := [seq([denom(rats[k])*x - numer(rats[k]), rbounds[k]],

k = 1 .. nops(Rats)),seq(linpolys[k], k = 1 .. nops(linpolys))];
linpolys := [seq(linpolys[k], k = 1 .. N + numextra)];
if n < 4 or not addextrapoints then

linpolystest := [[seq(linpolys[k], k = 1 .. N)]]
else

numToVary := min(N - 4, 4, floor(1/2*N));
firstlinpolys := [seq(linpolys[k], k = 1 .. N - numToVary)];
lastlinpolys:=combinat[choose]([seq(linpolys[k], k=N-numToVary+1..N+2)], numToVary);
linpolystest:=[seq([op(firstlinpolys), op(lastlinpolys[k])], k=1..nops(lastlinpolys))]

end if;
G := sum(A[kk]*x^kk, kk = 0 .. N - 1);
minsize := [infinity, infinity];
for testnum to nops(linpolystest) do

if n < 4 or not addextrapoints then
linpolys := linpolystest[1]

else linpolys := [seq(linpolystest[testnum][k], k = 1 .. 4),
op(sort([seq(linpolystest[testnum][k], k = 5 .. N)], (a, b)
-> a[2] < b[2] or a[2] = b[2] and coeff(a[1], x) < coeff(b[1], x)))]

end if;
for i to N do R[i]:=coeff(linpolys[i,1],x,1)^n

*subs(x=-coeff(linpolys[i,1],x,0)/coeff(linpolys[i,1],x,1),G)
end do;
sols := solve({seq(R[k] - r[k], k = 1 .. N)},{seq(A[k], k = 0 .. N - 1)});
for i to N do

thelcms[i] := lcm(seq(denom(op(k, rhs(sols[i]))), k = 1 .. nops(rhs(sols[i]))))
end do;
LCM := lcm(seq(thelcms[k], k = 1 .. N));
E := [];
for i to N do

APPENDIX A. INTEGER CHEBYSHEV POLYNOMIALS (MAPLE CODE) 119

if thelcms[i] <> 1 then E := [op(E), rhs(sols[i])*LCM mod LCM] end if
end do;
Mtrx := Matrix(nops(E), N);
for i to nops(E) do for j to N do

Mtrx[i, j] := coeff(E[i], r[j], 1)
end do end do;
conginfo := getCongInfo(Mtrx, nops(E), N, LCM, [seq(linpolys[k, 2], k = 1 .. N)]);
if conginfo[1][1] < minsize[1]
or conginfo[1][1] = minsize[1] and conginfo[1][2] < minsize[2] then

minlinpolys := linpolys;
minconginfo := conginfo;
minsols := sols;
minLCM := LCM;
minsize := conginfo[1]

end if
end do;
sols := subs(minsols, [seq(A[k], k = 0 .. n)]);
Lower := minconginfo[2];
Upper := minconginfo[3];
congs := minconginfo[4];
LCM := minLCM;
steps := [seq(‘if‘(congs[k] = 0, 1, LCM/congs[k, 1]), k = 1 .. N)];
for i to N do

if congs[i] <> 0 then
gcdi := igcd(congs[i][1], op(congs[i][3]));
congs[i][1] := congs[i][1]/gcdi;
congs[i][3] := congs[i][3]/gcdi

end if
end do;
return [congs, Upper, Lower, LCM, steps, sols, minlinpolys]

end proc;

getCongInfo := proc(M, m, n, modulus, bounds)
local D, Mtrx, a, b, col, congs, est, est2, extendsols, gcd, i, j, k, lower,

maxnum, maxone, p, piv, q, row, s, sols, t, temp, upper, v, val;
Mtrx := Matrix(m, n);
for i to m do for j to n do Mtrx[i, j] := M[i, n + 1 - j] end do end do;
row := 1;
i := 1;
while row <= m and i <= n do

j := row;
while j <= m and Mtrx[j, i] = 0 do j := j + 1 end do;
if row < j and j <= m then for col from i to n do

temp := Mtrx[row, col]; Mtrx[row, col] := Mtrx[j, col]; Mtrx[j, col] := temp
end do end if;
if j <= m then

piv[row] := i;
j := j + 1;
while j <= m do

if Mtrx[j, i] = Mtrx[row, i] then
for col from i to n do

Mtrx[j, col] := (Mtrx[j, col] - Mtrx[row, col]) mod modulus
end do

elif Mtrx[j, i] <> 0 then
gcd := igcdex(Mtrx[row, i], Mtrx[j, i],’s’, ’t’);
p := Mtrx[row, i]/gcd;
q := Mtrx[j, i]/gcd;
for col from i to n do

temp := Mtrx[row, col];
Mtrx[row, col] := (s*Mtrx[row, col] + t*Mtrx[j, col]) mod modulus;
Mtrx[j, col] := (p*Mtrx[j, col] - q*temp) mod modulus

end do
end if;
j := j + 1

end do;
row := row + 1

end if;
i := i + 1

end do;
for i from row to m do piv[i] := 0 end do;

APPENDIX A. INTEGER CHEBYSHEV POLYNOMIALS (MAPLE CODE) 120

for i to m do
gcd := igcd(seq(Mtrx[i, k], k = 1 .. n));
if gcd <> 0 then

s := gcd/igcd(gcd, modulus);
if s <> 1 then for col to n do

Mtrx[i, col] := Mtrx[i, col]/s
end do

end if
end if

end do;
for i from 2 to m do

if piv[i] <> 0 then for j to i - 1 do
s := round(Mtrx[j, piv[i]]/Mtrx[i, piv[i]]);
for col from piv[i] to n do

Mtrx[j, col] := mods(Mtrx[j, col] - s*Mtrx[i, col], modulus)
end do

end do
end if

end do;
congs := [seq(0, i = 1 .. n)];
for i to m do

if piv[i] <> 0 then
a := Mtrx[i, piv[i]];
gcd := igcdex(a, modulus, ’s’, ’t’);
congs[n + 1 - piv[i]] := [gcd, s, [seq(-Mtrx[i, n + 1 - k], k = 1 .. n - piv[i])]]

end if
end do;
upper := [seq(bounds[k], k = 1 .. n)];
lower := -upper;
v := 1;
est := 0;
for i to n do

if upper[i] <> infinity then
if congs[i] = 0 then

v := v*(1 + upper[i] - lower[i])
else v := v*ceil((1 + upper[i] - lower[i])*congs[i][1]/modulus)
end if

end if;
est := est + v

end do;
est2 := 1;
for i to min(4, floor(1/2*n)) do

val := (1 + upper[n - i + 1] - lower[n - i + 1])*congs[n - i + 1][1]/modulus;
est2 := est2*(val - floor(val))^i

end do;
return [[est, est2], lower, upper, congs]

end proc;

applySimp := proc(h, i, LCM, indices, sols, F, N, c, eps, Lower, Upper,
steps, addressSimpTable, addressinnerTable, justmax)

local FpowerOftwomN, Fv, Maxri, Maxri2sub, Minri, Minri2sub, STval, SimpTable, cnsts,
cnstsmax, cnstsmin, count, countmax, denomxval, domax, domin, dothismax, dothismin,
fixedRes, iTsval, iTval, iTwithsub, innerTable, j, jmaxmax, jmaxmin, jminmax, jminmin,
lastratmaxri, lastratminri, leftside, leftsidemaxmax, leftsidemaxmin, leftsideminmax,
leftsideminmin, maxri, minri, multiplier, numerxval, numpass, pass, ratmaxri, ratminri,
subMaxriIniTval, subMinriIniTval, theBound, theBoundval, theBoundval2use, twomN,
xpowerOftwomN, xv, xval, xvmaxmax, xvmaxmin, xvminmax, xvminmin;

SimpTable := pointto(addressSimpTable);
innerTable := pointto(addressinnerTable);
iTwithsub := table();
count := 1;
if Upper[i] = infinity then

if justmax then countmax := 6 else countmax := infinity end if
elif N < 10 then countmax := 4
elif N = 10 then countmax := max(5 - i, 3)
elif N = 11 then countmax := max(5 - i, 3)
elif N = 12 then countmax := max(7 - i, 3)
elif N = 13 then countmax := max(8 - i, 4)
elif N = 14 then countmax := max(9 - i, 4)
else countmax := max(N - 4 - i, 5)

APPENDIX A. INTEGER CHEBYSHEV POLYNOMIALS (MAPLE CODE) 121

end if;
fixedRes := {seq(r[k] = indices[k], k = 1 .. h - 1)};
multiplier := ‘if‘(N < 6, ‘if‘(N < 4, 3, 2), 1);
twomN := 2*multiplier*N;
FpowerOftwomN := twomN^degree(F);
xpowerOftwomN := twomN^(2*N - 2);
if Digits < 10 then theBound := (c + eps)*LCM*FpowerOftwomN*xpowerOftwomN;

theBound := op(1, theBound)*10^op(2, theBound)
else

theBound := (c + eps)*LCM*FpowerOftwomN*xpowerOftwomN;
theBound := evalf(theBound, 5);
theBound := (op(1, theBound) + 1)*10^op(2, theBound)

end if;
for j to multiplier*N do

xval := j/twomN;
numerxval := numer(xval); denomxval := denom(xval);
STval := SimpTable[numerxval, denomxval];
if type(STval, name) then

Fv[j] := subs(x = xval, F)*FpowerOftwomN;
xv[j] := [seq((xval*(1 - xval))^k*xpowerOftwomN, k = 0 .. N - 1)];
SimpTable[numerxval, denomxval] := [xv[j], Fv[j], theBound]

else xv[j] := STval[1]; Fv[j] := STval[2]
end if;
iTval := innerTable[numerxval, denomxval];
if type(iTval, name) then

iTval := inner(LCM*sols, xv[j])*Fv[j];
innerTable[numerxval, denomxval] := iTval

end if;
iTwithsub[numerxval, denomxval] := subs(fixedRes, iTval)

end do;
leftside := [seq(iTwithsub[numer(k/twomN), denom(k/twomN)], k = 1 .. multiplier*N)];
cnsts := [seq(‘if‘(k = i or Upper[k] = infinity, NULL, r[k] <= Upper[k]), k = h .. N),

seq(‘if‘(k = i or Lower[k] = -infinity, NULL,-r[k] <= -Lower[k]), k = h .. N),
seq(leftside[k]/theBound <= 1, k = 1 .. multiplier*N),
seq(-leftside[k]/theBound <= 1, k = 1 .. multiplier*N)];

cnstsmax := cnsts;
cnstsmin := cnsts;
print(N, ‘ --- ‘, time(), ‘~~~~~~~~~~~~~~~~~~~‘, Lower[i], Upper[i]);
domax := true;
dothismax := true;
if justmax then domin:=false; dothismin:=false else domin:=true; dothismin:=true end if;
maxri := infinity;
ratmaxri := infinity;
minri := -infinity;
ratminri := -infinity;
numpass := 3;
pass := numpass;
while domax or domin do

if pass = 1 then lastratmaxri := ratmaxri end if;
if dothismax then

Maxri := simplex[maximize](r[i], cnstsmax);
if Maxri = {} then print(infeasible); RETURN({}) end if;
ratmaxri := rhs(op(select(has, Maxri, r[i])));
maxri := floor(ratmaxri)

end if;
if pass = numpass and 2 < count
and lastratmaxri - maxri < 2*ratmaxri - 2*maxri then domax := false
end if;
if pass = 1 then lastratminri := ratminri end if;
if dothismin then

Minri := simplex[minimize](r[i], cnstsmin);
if Minri = {} then print(infeasible); RETURN({}) end if;
ratminri := rhs(op(select(has, Minri, r[i])));
minri := ceil(ratminri)

end if;
if pass = numpass and 2 < count and minri - lastratminri < 2*minri - 2*ratminri then

domin := false
end if;
if maxri < minri then

print(‘no feasible integer points‘); RETURN({})
end if;

APPENDIX A. INTEGER CHEBYSHEV POLYNOMIALS (MAPLE CODE) 122

if pass = numpass and countmax <= count then
if countmax < count or 2*lastratmaxri - 2*ratmaxri < steps[i] or N < 15 and 5 < i then

domax := false
end if;
if countmax < count or 2*ratminri - 2*lastratminri < steps[i] or N < 15 and 5 < i then

domin := false
end if

end if;
if 2 < count and pass = numpass and 4 < i then

if 4*ratminri - 4*lastratminri < steps[i] then domin := false end if;
if 4*lastratmaxri - 4*ratmaxri < steps[i] then domax := false end if

end if;
if 13 < N and i < 5 and count < 4 then

domax := true;
if not justmax then domin := true end if

end if;
if justmax then

if maxri = 0 then domax := false elif count < 3 then domax := true end if
end if;
if pass = numpass or justmax and domax = false then

if justmax then print([evalf(ratmaxri, 8)], time())
else print(evalf([ratminri, ratmaxri], 8), time())

end if
end if;
if domax or domin then

if pass = numpass then
multiplier := 2*multiplier;
twomN := 2*twomN;
FpowerOftwomN := FpowerOftwomN*2^degree(F);
xpowerOftwomN := xpowerOftwomN*2^(2*N - 2);
theBound := theBound*2^(degree(F) + 2*N - 2);
if domax then dothismax := true end if;
if domin then dothismin := true end if

end if;
jmaxmax := 0; jmaxmin := 0; jminmin := 0; jminmax := 0;
Maxri2sub := evalf(Maxri);
Minri2sub := evalf(Minri);
for j to multiplier*N do

xval := j/twomN;
numerxval := numer(xval);
denomxval := denom(xval);
STval := SimpTable[numerxval, denomxval];
if type(STval, name) then

Fv := subs(x = xval, F)*FpowerOftwomN;
xv := [seq((xval*(1 - xval))^k*xpowerOftwomN, k = 0 .. N - 1)];
theBoundval := theBound;
SimpTable[numerxval, denomxval] := [xv, Fv, theBoundval]

else
xv := STval[1];
Fv := STval[2];
theBoundval := STval[3]

end if;
iTsval := iTwithsub[numerxval, denomxval];
if type(iTsval, name) then

iTval := innerTable[numerxval, denomxval];
if type(iTval, name) then

iTval := inner(LCM*sols, xv)*Fv;
innerTable[numerxval, denomxval] := iTval

end if;
iTsval := subs(fixedRes, iTval);
iTwithsub[numerxval, denomxval] := iTsval

end if;
theBoundval2use := theBoundval*(1 - 0.1^floor(Digits/2));
if dothismax then

subMaxriIniTval := subs(Maxri2sub, iTsval);
if theBoundval2use <= subMaxriIniTval then

jmaxmax := jmaxmax + 1;
xvmaxmax[jmaxmax] := [xval, theBoundval]

elif subMaxriIniTval <= -theBoundval2use then
jmaxmin := jmaxmin + 1;
xvmaxmin[jmaxmin] := [xval, theBoundval]

APPENDIX A. INTEGER CHEBYSHEV POLYNOMIALS (MAPLE CODE) 123

end if
end if;
if dothismin then

subMinriIniTval := subs(Minri2sub, iTsval);
if theBoundval2use <= subMinriIniTval then

jminmax := jminmax + 1;
xvminmax[jminmax] := [xval, theBoundval]

elif subMinriIniTval <= -theBoundval2use then
jminmin := jminmin + 1;
xvminmin[jminmin] := [xval, theBoundval]

end if
end if

end do;
if dothismax or domax and pass = numpass then

leftsidemaxmax := [seq(iTwithsub[numer(xvmaxmax[k][1]),
denom(xvmaxmax[k][1])], k = 1 .. jmaxmax)];

leftsidemaxmin := [seq(iTwithsub[numer(xvmaxmin[k][1]),
denom(xvmaxmin[k][1])], k = 1 .. jmaxmin)];

if ratmaxri = lastratmaxri then
cnstsmax := [op(cnstsmax), seq(leftsidemaxmax[k]/xvmaxmax[k][2] <= 1,
k=1..jmaxmax), seq(-1 <= leftsidemaxmin[k]/xvmaxmin[k][2], k=1..jmaxmin)]

else cnstsmax := [seq(‘if‘(k = i or Upper[k] = infinity or
rhs(op(select(has, Maxri, r[k]))) < Upper[k], NULL, r[k] <= Upper[k]),
k=h..N), seq(‘if‘(k = i or Lower[k] = -infinity or Lower[k]
< rhs(op(select(has, Maxri, r[k]))), NULL, -r[k] <= -Lower[k]), k=h..N),
seq(leftsidemaxmax[k]/xvmaxmax[k][2] <= 1, k = 1 .. jmaxmax),
seq(-1 <= leftsidemaxmin[k]/xvmaxmin[k][2], k = 1 .. jmaxmin)]

end if
end if;
if dothismin or domin and pass = numpass then

leftsideminmax := [seq(iTwithsub[numer(xvminmax[k][1]),
denom(xvminmax[k][1])], k = 1 .. jminmax)];

leftsideminmin := [seq(iTwithsub[numer(xvminmin[k][1]),
denom(xvminmin[k][1])], k = 1 .. jminmin)];

if ratminri = lastratminri then cnstsmin := [op(cnstsmin),
seq(-1 <= leftsideminmin[k]/xvminmin[k][2], k = 1 .. jminmin),
seq(leftsideminmax[k]/xvminmax[k][2] <= 1, k = 1 .. jminmax)]

else cnstsmin := [seq(‘if‘(k = i or Upper[k] = infinity or
rhs(op(select(has, Minri, r[k]))) < Upper[k], NULL, r[k] <= Upper[k]),
k=h..N), seq(‘if‘(k = i or Lower[k] = -infinity or Lower[k]
< rhs(op(select(has, Minri, r[k]))), NULL, -r[k] <= -Lower[k]), k=h..N),
seq(-1 <= leftsideminmin[k]/xvminmin[k][2], k = 1 .. jminmin),
seq(leftsideminmax[k]/xvminmax[k][2] <= 1, k = 1 .. jminmax)]

end if
end if;
if nops(cnstsmax) < N - h + 1 then domax := false end if;
if nops(cnstsmin) < N - h + 1 then domin := false end if;
if nops(cnstsmax) <= N - h + 1 then dothismax := false end if;
if nops(cnstsmin) <= N - h + 1 then dothismin := false end if

end if;
pass := pass + 1;
if numpass < pass then pass := 1 end if;
if pass = 1 then count := count + 1 end if

end do;
maxri := min(maxri, Upper[i]);
minri := max(minri, Lower[i]);
if justmax then print([maxri], time()) else print([minri, maxri], time()) end if;
if maxri < minri then RETURN({}) else RETURN([minri, maxri]) end if

end proc;

A.2 The total degree case on [0, 1]×[0, 1]

The following is a Maple implementation of the code outlined in Section 3.4.1. It is in-

tended to be run with the command searchpolys(n,c,[[x1,y1,b1],...,[xk,yk,bk]],

APPENDIX A. INTEGER CHEBYSHEV POLYNOMIALS (MAPLE CODE) 124

1,[poly1,poly2,...,polym]); where n is the total degree and c is an upper bound on

Tn[0, 1]× [0, 1]. The values xi and yi are the coordinates of the rational point (xi, yi) on

the boundary of the unit square and bi is a bound on the magnitude of ri as described in

Section 3.4.1. The optional fourth argument can be used to force additional factors and

the optional fifth argument must be a list of polynomials forming a basis for the lattice of

bivariate polynomials with integer coefficients of total degree at most n satisfying a given

symmetry condition. If no fifth argument is given, the standard basis of monomials is used.

The procedure ApplySimp is used to find the bounds on the ri. The procedure searchpolys

calls getCongInfo from Appendix A.1.

searchpolys := proc(n, c, passedRatBounds)
local D, E, F, G, LCM, Mtrx, N, R, a, b, checkPoints, conginfo, congs, cp, direction,

eps, firstpoints, flag, gcdi, i, indices, j, k, lastpoints, lower, meshdenom,
meshsize, minLCM, minconginfo, minpoints, minpoly, minsize, minsols, minsup,
numToVary, numextra, points, pointstest, poly, rats, size, sol, sols, steps,
testnum, thelcms, thepoints, thesup, thevars, upper;

if 6 <= n then F := x*y*(1 - x)*(1 - y)*(x - y)*(1 - x - y) else F := 1 end if;
if 4 <= nargs then F := F*args[4] end if;
Digits := max(4*n, 50);
eps := 1/1000000*c;
if nargs = 5 then thevars := args[5]
else

thevars := [];
for i from 0 to n - degree(F) do

thevars :=[op(thevars), seq(x^(i - j)*y^j, j = 0 .. i)]
end do

end if;
N := nops(thevars);
G := sum(A[k]*thevars[k], k = 1 .. N);
meshdenom := floor(evalf(N*sqrt(N)));
meshsize := evalf(1/meshdenom);
for i to meshdenom - 1 do

cp[i] := [seq([i*meshsize, j*meshsize], j = 1 .. meshdenom - 1)]
end do;
checkPoints := [seq(op(cp[j]), j = 1 .. meshdenom - 1)];
checkPoints := [seq([[seq(subs({x = checkPoints[j][1],

y = checkPoints[j][2]},thevars[k]), k = 1 .. N)],
c + eps, abs(subs({x = checkPoints[j][1], y = checkPoints[j][2]}, F))],
j = 1 .. nops(checkPoints))];

if n < 6 then rats := [0]; i := 1; j := 1 else rats := []; i := 2; j := 1 end if;
while nops(rats) < N + 3 do

if igcd(i, j) = 1 then rats := [op(rats), j/i] end if;
j := j + 1;
if i <= j then i := i + 1; j := 1 end if

end do;
thepoints := passedRatBounds;
for i to nops(rats) do for j to nops(rats) do

if subs({x = rats[i], y = rats[j]}, F) <> 0 and
0 < ‘+‘(op(map(z -> abs(subs({x = rats[i], y = rats[j]}, z)), thevars)))

then thepoints := [op(thepoints), [rats[i], rats[j],
floor(lcm(denom(rats[i]), denom(rats[j]))^(n - degree(F))

*c/abs(subs({x = rats[i], y = rats[j]}, F)))]]
end if

end do
end do;
thepoints := sort(thepoints, (a, b) -> a[3] < b[3]);
points := [thepoints[1]];
size := 1;
i := 1;
R[1] := lcm(denom(thepoints[i][1]), denom(thepoints[i][2]))^(n - degree(F))

*subs({x = thepoints[i][1], y = thepoints[i][2]}, G);
while size < N do

APPENDIX A. INTEGER CHEBYSHEV POLYNOMIALS (MAPLE CODE) 125

i := i + 1;
R[size + 1] := lcm(denom(thepoints[i][1]), denom(thepoints[i][2]))^(n - degree(F))

*subs({x = thepoints[i][1], y = thepoints[i][2]}, G);
sols := solve({seq(R[k] - r[k], k = 1 .. size + 1)}, {seq(A[k], k = 1 .. N)});
if sols <> NULL then

points := [op(points), thepoints[i]];
size := size + 1

end if
end do;
numextra := 2;
thepoints := [op(points), seq(thepoints[k], k = i + 1 .. i + numextra)];
numToVary := min(floor(1/2*N), 2);
firstpoints := [seq(thepoints[k], k = 1 .. N - numToVary)];
lastpoints := combinat[choose]([seq(thepoints[k],

k = N - numToVary + 1 .. N + numextra)], numToVary);
pointstest := [seq(sort([op(firstpoints), op(lastpoints[k])],

(a, b) -> a[3] < b[3]), k = 1 .. nops(lastpoints))];
minsize := [infinity, infinity];
for testnum to nops(pointstest) do

points := pointstest[testnum];
for i to N do

R[i] := lcm(denom(points[i][1]), denom(points[i][2]))^(n - degree(F))
*subs({x = points[i][1], y = points[i][2]}, G)

end do;
sols := solve({seq(R[k] - r[k], k = 1 .. N)},{seq(A[k], k = 1 .. N)});
if sols <> NULL then

for i to N do
thelcms[i] := lcm(seq(denom(op(k, rhs(sols[i]))),

k = 1 .. nops(rhs(sols[i]))))
end do;
LCM := lcm(seq(thelcms[k], k = 1 .. N));
E := [];
for i to N do

if thelcms[i] <> 1 then
E := [op(E), rhs(sols[i])*LCM mod LCM]

end if
end do;
Mtrx := Matrix(nops(E), N);
for i to nops(E) do for j to N do

Mtrx[i, j] := coeff(E[i], r[j], 1)
end do

end do;
conginfo := getCongInfo(Mtrx, nops(E), N, LCM, [seq(points[k][3], k = 1 .. N)]);
if conginfo[1][1] < minsize[1] or
conginfo[1][1] = minsize[1] and
conginfo[1][2] < minsize[2] then

minpoints := points;
minconginfo := conginfo;
minsols := sols;
minLCM := LCM;
minsize := conginfo[1]

end if
end if

end do;
sols := subs(minsols, [seq(A[k], k = 1 .. N)]);
lower := minconginfo[2];
Upper := minconginfo[3];
k := 1;
while Upper[k] = 0 do k := k + 1 end do;
Upper[k] := 0;
congs := minconginfo[4];
LCM := minLCM;
steps := [seq(‘if‘(congs[k] = 0, 1, LCM/congs[k, 1]), k = 1 .. N)];
for i to N do

if congs[i] <> 0 then
gcdi := igcd(congs[i][1], op(congs[i][3]));
congs[i][1] := congs[i][1]/gcdi;
congs[i][3] := congs[i][3]/gcdi

end if
end do;
print(‘Upper ‘, Upper);

APPENDIX A. INTEGER CHEBYSHEV POLYNOMIALS (MAPLE CODE) 126

print(‘Lower ‘, lower);
print(‘steps ‘, steps);
print(minsize);
minsup := 1;
minpoly := {1};
indices := [seq(0, k = 1 .. N)];
direction := 1;
i := 1;
while 0 < i do

if direction = 1 then while direction = 1 do
if i>1 and indices[i-1]=0 and ‘+‘(seq(abs(indices[k]),k=1..i-1))=0 then

upper[i]:=0
else

upper[i]:=Upper[i];
fi;
if direction = 1 then

if congs[i] = 0 then
indices[i] := lower[i];
i := i + 1;
if i = N + 1 then direction := 0 end if

else
b := inner([seq(indices[k], k = 1 .. i - 1)], congs[i, 3]);
D := iquo(b, congs[i, 1], ’rmndr’);
if rmndr = 0 then

a := congs[i, 2]*D mod steps[i];
a := lower[i] + ((a - lower[i]) mod steps[i]);
if a <= upper[i] then

indices[i] := a;
i := i + 1;
if i = N + 1 then direction := 0 end if

else direction := -1
end if

else direction := -1
end if

end if
end if

end do
elif direction = -1 then while

direction = -1 and 0 < i do
i := i - 1;
if 0 < i then

indices[i] := indices[i] + steps[i];
if indices[i] <= upper[i] then

i := i + 1;
direction := ‘if‘(0 < i - N, 0, 1)

end if
end if

end do
else

direction := -1;
sol := subs({seq(r[k] = indices[k], k = 1 .. N)}, sols);
j := 0;
flag := true;
while j < nops(checkPoints) and flag do

j := j + 1;
if checkPoints[j, 2] < abs(inner(checkPoints[j, 1], sol)*checkPoints[j, 3])
then flag := false
end if

end do;
if flag then

poly := factor(inner(sol, thevars)*F);
thesup := maxi(poly);
print(poly);
print(evalf(thesup, 10));
print(indices);
print(‘----------------------------‘);
if thesup <> 0 and thesup < minsup - eps then

minsup := thesup; minpoly := {poly}
elif thesup <> 0 and thesup < minsup + eps
then

minpoly := minpoly union {poly};

APPENDIX A. INTEGER CHEBYSHEV POLYNOMIALS (MAPLE CODE) 127

minsup := min(minsup, thesup)
end if

end if
end if

end do;
print(‘min sup norm is ‘, minsup);
RETURN(minpoly)

end proc;

maxi := proc (p)
local m1, m2;

m1 := maximize(evalf(p),x = 0 .. 1,y = 0 .. 1);
m2 := maximize(evalf(-p),x = 0 .. 1,y = 0 .. 1);
return evalf(max(m1,m2))

end proc;

ApplySimp := proc(thePoint, F, c, bounds, polys)
local Fval, Maxri, boundConstraints, count, countmax, denomVal, i, j, leftside,

maxTable, maxconstraints, maxval, n, numpointsMax, objectiveFunc, poly;
n := max(op(map(p -> degree(p, x), polys)), op(map(p -> degree(p, y), polys)));
poly := ‘+‘(seq(polys[i]*a[i], i = 1 .. nops(polys)));
boundConstraints := [seq(subs({x = bounds[i][1], y = bounds[i][2]}, poly)*

lcm(denom(bounds[i][1]), denom(bounds[i][2]))^n
<= bounds[i][3], i = 1 .. nops(bounds)),

seq(-subs({x = bounds[i][1], y = bounds[i][2]}, poly)*
lcm(denom(bounds[i][1]), denom(bounds[i][2]))^n
<=bounds[i][3], i = 1 .. nops(bounds))];

maxTable := table();
if n < 6 then denomVal := 8 else denomVal := 16 end if;
numpointsMax := 0;
for i from 0 to denomVal do for j from 0 to denomVal do

Fval := subs({x = i/denomVal, y = j/denomVal}, F);
if Fval <> 0 then

leftside := Fval*subs({x = i/denomVal, y = j/denomVal}, poly)/c;
numpointsMax := numpointsMax + 1;
maxTable[numpointsMax] := leftside <= 1;
numpointsMax := numpointsMax + 1;
maxTable[numpointsMax] := -leftside <= 1

end if
end do

end do;
objectiveFunc := subs({x = thePoint[1], y = thePoint[2]}, poly)*

lcm(denom(thePoint[1]), denom(thePoint[2]))^n;
maxconstraints := [op(boundConstraints), seq(maxTable[i], i = 1 .. numpointsMax)];
count := 1;
countmax := 6;
while count < countmax do

count := count + 1;
Maxri := simplex[maximize](objectiveFunc, maxconstraints);
maxval := subs(Maxri, objectiveFunc);
print(‘maxval ‘, evalf([maxval], 5));
if count < countmax then

denomVal := 2*denomVal;
maxTable := table();
numpointsMax := 0;
for i from 0 to denomVal do

if gcd(i, denomVal) = 1 then for j from 0 to
denomVal do

if gcd(j, denomVal) = 1 then
Fval := subs({x = i/denomVal, y = j/denomVal}, F);
if Fval <> 0 then

leftside := Fval
*subs({x = i/denomVal, y = j/denomVal}, poly)/c;

if 1 < subs(Maxri, leftside)
then

numpointsMax := numpointsMax + 1;
maxTable[numpointsMax]:= leftside <= 1

end if;
if 1 < subs(Maxri, -leftside)

APPENDIX A. INTEGER CHEBYSHEV POLYNOMIALS (MAPLE CODE) 128

then
numpointsMax := numpointsMax + 1;
maxTable[numpointsMax] := -leftside <= 1

end if
end if

end if
end do

end if
end do;
maxconstraints := [op(maxconstraints), seq(maxTable[i], i = 1 .. numpointsMax)]

end if;
print(‘points added ‘, numpointsMax)

end do;
return maxval

end proc;

A.3 The maximum degree case on [0, 1]×[0, 1]

The following is a Maple implementation of the code outlined in Section 3.4.2. It is intended

to be run with the command searchpolys(n,c,[[x1,y1,b1],...,[xk,yk,bk]],poly);

where n is the maximum degree and c is an upper bound on Mn[0, 1]× [0, 1]. The values

xi and yi are the coordinates of the rational point (xi, yi) on the boundary of the quarter

square and bi is a bound on the magnitude of ri as described in Section 3.4.2. The optional

fourth argument poly can be used to force additional factors beyond those that will be

automatically added. The procedure ApplySimp is used to find the bounds on the ri. The

procedure searchpolys calls getCongInfo from Appendix A.1.

searchpolys := proc(n, c, passedRatBounds)
local D, E, F, G, LCM, Lower, Mtrx, N, R, Upper, a, b, checkPoints, conginfo, congs, cp,

direction, eps, firstpoints, flag, gcdi, i, indices, j, lastpoints, lower, meshsize,
minLCM, minconginfo, minpoints, minpoly, minsize, minsols, minsup, numToVary,
numextra, points, pointstest, poly, rats, size, sol, sols, steps, testnum, thelcms,
thepoints, thesup, thevars, u, upper;

if n = 0 then return {1} end if;
if 2 <= n then F := x*(1 - x)*y*(1 - y) else F := 1 end if;
if n mod 2 = 1 then F := F*(1 - 2*x)*(1 - 2*y) end if;
if nargs = 4 then F := F*args[4] end if;
Digits := max(4*n, 20);
eps := 1/1000000*c;
thevars := [];
if degree(F, x) = n then return F end if;
for i from 0 to 1/2*n - 1/2*degree(F, x) do

thevars := [op(thevars), seq(x^i*y^j, j = 0 .. 1/2*n - 1/2*degree(F, x))]
end do;
N := nops(thevars);
G := sum(A[k]*thevars[k], k = 1 .. N);
u := unapply(1/2 - 1/2*sqrt(1 - 4*x), x);
meshsize := evalf(1/16*1/N);
for i to 4*N do cp[i] := [seq([i*meshsize, j*meshsize], j = 1 .. 4*N)] end do;
checkPoints := [seq(op(cp[j]), j = 1 .. 4*N)];
checkPoints := [seq([[seq(subs({x = checkPoints[j][1],

y = checkPoints[j][2]}, thevars[k]), k = 1 .. N)],
c + eps, abs(subs({x = u(checkPoints[j][1]), y = u(checkPoints[j][2])},

F))], j = 1 .. nops(checkPoints))];
if n < 3 then rats := [0]; i := 4; j := 1 else rats := []; i := 4; j := 1 end if;
while nops(rats) < ceil(sqrt(N)) + 2*N do

if igcd(i, j) = 1 then rats := [op(rats), j/i] end if;
j := j + 1;

APPENDIX A. INTEGER CHEBYSHEV POLYNOMIALS (MAPLE CODE) 129

if i < 4*j then i := i + 1; j := 1 end if
end do;
thepoints := passedRatBounds;
for i to nops(rats) do for j to nops(rats) do

if subs({x = u(rats[i]), y = u(rats[j])}, F) <> 0
then thepoints := [op(thepoints), [rats[i], rats[j], floor((denom(rats[i])

*denom(rats[j]))^(1/2*n - 1/2*degree(F, x))
*c/abs(subs({x = u(rats[i]), y = u(rats[j])}, F)))]]

end if
end do

end do;
thepoints := sort(thepoints, (a, b) -> a[3] < b[3]);
points := [thepoints[1]];
size := 1;
i := 1;
R[1] := (denom(thepoints[i][1])*denom(thepoints[i][2]))^(1/2*n - 1/2*degree(F, x))

*subs({x = thepoints[i][1], y = thepoints[i][2]}, G);
while size < N do

i := i + 1;
R[size + 1] := (denom(thepoints[i][1])

*denom(thepoints[i][2]))^(1/2*n - 1/2*degree(F, x))
*subs({x = thepoints[i][1], y = thepoints[i][2]}, G);

sols := solve({seq(R[k] - r[k], k = 1 .. size + 1)}, {seq(A[k], k = 1 .. N)});
if sols <> NULL then

points := [op(points), thepoints[i]];
size := size + 1

end if
end do;
numextra := 5;
thepoints := [op(points), seq(thepoints[k], k = i + 1 .. i + numextra)];
numToVary := 3;
firstpoints := [seq(thepoints[k], k = 1 .. N - numToVary)];
lastpoints := combinat[choose]([seq(thepoints[k],

k = N - numToVary + 1 .. N + numextra)], numToVary);
pointstest := [seq(sort([op(firstpoints), op(lastpoints[k])],

(a, b) -> a[3] < b[3]), k = 1 .. nops(lastpoints))];
minsize := [infinity, infinity];
for testnum to nops(pointstest) do

points := pointstest[testnum];
for i to N do R[i] :=

(denom(points[i][1])*denom(points[i][2]))^(1/2*n - 1/2*degree(F, x))
*subs({x = points[i][1], y = points[i][2]}, G)

end do;
sols := solve({seq(R[k] - r[k], k = 1 .. N)}, {seq(A[k], k = 1 .. N)});
if sols <> NULL then

for i to N do thelcms[i] := lcm(seq(denom(op(k, rhs(sols[i]))),
k = 1 .. nops(rhs(sols[i]))))

end do;
LCM := lcm(seq(thelcms[k], k = 1 .. N));
E := [];
for i to N do

if thelcms[i] <> 1 then E := [op(E), rhs(sols[i])*LCM mod LCM] end if
end do;
Mtrx := Matrix(nops(E), N);
for i to nops(E) do for j to N do

Mtrx[i, j] := coeff(E[i], r[j], 1)
end do end do;
conginfo := getCongInfo(Mtrx, nops(E), N, LCM, [seq(points[k][3], k = 1 .. N)]);
if conginfo[1][1] < minsize[1]
or conginfo[1][1] = minsize[1] and conginfo[1][2] < minsize[2] then

minpoints := points;
minconginfo := conginfo;
minsols := sols;
minLCM := LCM;
minsize := conginfo[1]

end if
end if

end do;
sols := subs(minsols, [seq(A[k], k = 1 .. N)]);
Lower := minconginfo[2];
Upper := minconginfo[3];

APPENDIX A. INTEGER CHEBYSHEV POLYNOMIALS (MAPLE CODE) 130

Upper[1] := 0;
congs := minconginfo[4];
LCM := minLCM;
steps := [seq(‘if‘(congs[k] = 0, 1, LCM/congs[k, 1]), k = 1 .. N)];
for i to N do

if congs[i] <> 0 then
gcdi := igcd(congs[i][1], op(congs[i][3]));
congs[i][1] := congs[i][1]/gcdi;
congs[i][3] := congs[i][3]/gcdi

end if
end do;
print(‘Upper ‘, Upper);
print(‘Lower ‘, Lower);
print(‘steps ‘, steps);
print(minsize);
minsup := 1;
minpoly := {1};
indices := [seq(0, k = 1 .. N)];
direction := 1;
i := 1;
while 0 < i do

if direction = 1 then while direction = 1 do
if 1<i and indices[i-1]=0 and ‘+‘(seq(abs(indices[k]), k=1..i-1))=0 then

upper[i] := 0
else

upper[i] := Upper[i]
end if;
lower[i] := Lower[i];
if direction = 1 then

if congs[i] = 0 then
indices[i] := lower[i];
i := i + 1;
if i = N + 1 then direction := 0 end if

else
b := inner([seq(indices[k], k = 1 .. i - 1)], congs[i, 3]);
D := iquo(b, congs[i, 1], ’rmndr’);
if rmndr = 0 then

a := congs[i, 2]*D mod steps[i];
a := lower[i] + ((a - lower[i]) mod steps[i]);
if a <= upper[i] then

indices[i] := a;
i := i + 1;
if i = N + 1 then direction := 0 end if

else direction := -1
end if

else direction := -1
end if

end if
end if

end do
elif direction = -1 then while

direction = -1 and 0 < i do
i := i - 1;
if 0 < i then

indices[i] := indices[i] + steps[i];
if indices[i] <= upper[i] then

i := i + 1;
direction := ‘if‘(0 < i - N, 0, 1)

end if
end if

end do
else

direction := -1;
sol := subs({seq(r[k] = indices[k], k = 1 .. N)}, sols);
j := 0;
flag := true;
while j < nops(checkPoints) and flag do

j := j + 1;
if checkPoints[j, 2] < abs(inner(checkPoints[j, 1], sol)*checkPoints[j, 3])
then flag := false
end if

APPENDIX A. INTEGER CHEBYSHEV POLYNOMIALS (MAPLE CODE) 131

end do;
if flag then

poly := inner(sol, thevars);
poly := factor(subs({x = x*(1 - x), y = y*(1 - y)}, poly)*F);
thesup := maxi(poly);
print(poly);
print(evalf(thesup, 10));
print(indices);
print(‘----------------------------‘);
if thesup <> 0 and thesup < minsup - eps then

minsup := thesup; minpoly := {poly}
elif thesup <> 0 and thesup < minsup + eps
then

minpoly := minpoly union {poly};
minsup := min(minsup, thesup)

end if
end if

end if
end do;
print(‘min sup norm is ‘, minsup);
RETURN(minpoly)

end proc;

maxi := proc (p)
local m1, m2;

m1 := maximize(evalf(p),x = 0 .. 1,y = 0 .. 1);
m2 := maximize(evalf(-p),x = 0 .. 1,y = 0 .. 1);
return evalf(max(m1,m2))

end proc;

ApplySimp := proc(thePoint, N, c, F, bounds)
local Fval, Maxri, boundConstraints, count, countmax, denomVal, i, j, leftside, maxTable,

maxconstraints, maxval, n, numpointsMax, objectiveFunc, poly, thevars;
if N <= degree(F, x) then return 1 end if;
n := N - degree(F, x);
thevars := [];
for i from 0 to 1/2*n do thevars := [op(thevars), seq(x^i*y^j, j = 0 .. 1/2*n)] end do;
poly := ‘+‘(seq(thevars[i]*a[i], i = 1 .. nops(thevars)));
boundConstraints := [seq(subs({x = bounds[i][1], y = bounds[i][2]}, poly)

*(denom(bounds[i][1])*denom(bounds[i][2]))^(1/2*n)
<= bounds[i][3], i = 1 .. nops(bounds)),
seq(-subs({x = bounds[i][1], y = bounds[i][2]}, poly)
*(denom(bounds[i][1])*denom(bounds[i][2]))^(1/2*n)
<= bounds[i][3], i = 1 .. nops(bounds))];

maxTable := table();
denomVal := max(16, N);
numpointsMax := 0;
for i from 0 to denomVal do for j from 0 to denomVal do

Fval := subs({x = i/denomVal, y = j/denomVal}, F);
if Fval <> 0 then

leftside := Fval*subs({x = i*(1 - i/denomVal)/denomVal,
y = j*(1 - j/denomVal)/denomVal}, poly)/c;

numpointsMax := numpointsMax + 1;
maxTable[numpointsMax] := leftside <= 1;
numpointsMax := numpointsMax + 1;
maxTable[numpointsMax] := -leftside <= 1

end if
end do

end do;
objectiveFunc := subs({x = thePoint[1], y = thePoint[2]}, poly)

*(denom(thePoint[1])*denom(thePoint[2]))^(1/2*n);
maxconstraints := [op(boundConstraints), seq(maxTable[i], i = 1 .. numpointsMax)];
count := 1;
countmax := 6;
while count < countmax do

count := count + 1;
Maxri := simplex[maximize](objectiveFunc, maxconstraints);
maxval := subs(Maxri, objectiveFunc);
print(‘maxval ‘, evalf([maxval], 5));

APPENDIX A. INTEGER CHEBYSHEV POLYNOMIALS (MAPLE CODE) 132

if count < countmax then
denomVal := 2*denomVal;
maxTable := table();
numpointsMax := 0;
for i from 0 to denomVal do

if gcd(i, denomVal) = 1 then for j from 0 to
denomVal do

if gcd(j, denomVal) = 1 then
Fval := subs({x = i/denomVal, y = j/denomVal}, F);
if Fval <> 0 then

leftside := Fval*subs({x = i*(1 - i/denomVal)/denomVal,
y = j*(1 - j/denomVal)/denomVal}, poly)/c;

if 1 < subs(Maxri, leftside) then
numpointsMax := numpointsMax + 1;
maxTable[numpointsMax] := leftside <= 1

end if;
if 1 < subs(Maxri, -leftside) then

numpointsMax := numpointsMax + 1;
maxTable[numpointsMax] := -leftside <= 1

end if
end if

end if
end do

end if
end do;
maxconstraints := [op(maxconstraints), seq(maxTable[i], i = 1 .. numpointsMax)]

end if;
print(‘points added ‘, numpointsMax)

end do;
return maxval

end proc;

Appendix B

Integer Relation Algorithms

(Maple Code)

B.1 The LLL algorithm

The following is a Maple implementation of the LLL algorithm and corresponding integer

relation algorithm as outlined in Section 2.1. For a selection of improvements to the basic

algorithm given here, one is referred to [10].

LLL := proc(L)
local n, N, i, j, k, Mu, q, B, B2, nB2, v1, v2, nv1, nv2, m, tmp;

n := nops(L);
N := nops(L[1]);
B := array(1 .. n, 1 .. N);
B2 := array(1 .. n, 1 .. N);
nB2 := array(1 .. n);
Mu := array(1 .. n, 1 .. N);
for i to n do for j to N do

B[i, j] := L[i][j];
if i = j then Mu[i, j] := 1 else Mu[i, j] := 0 fi

od od;
for i to n do

v1 := [seq(B[i, k], k = 1 .. N)];
for j to i - 1 do

v2 := [seq(B2[j, k], k = 1 .. N)];
Mu[i, j] := inner(v1, v2)/inner(v2, v2);
for k to N do v1[k] := v1[k] - Mu[i, j]*v2[k] od

od;
for k to N do B2[i, k] := v1[k] od;
nB2[i] := inner(v1, v1)

od;
k := 2;
while k < n + 1 do

for j from k - 1 by -1 to 1 do
q := round(Mu[k, j]);
if q <> 0 then for i to N do

B[k, i] := B[k, i] - q*B[j, i];
Mu[k, i] := Mu[k, i] - q*Mu[j, i]

od
fi

133

APPENDIX B. INTEGER RELATION ALGORITHMS (MAPLE CODE) 134

od;
if (3/4 - Mu[k, k - 1]^2)*nB2[k - 1] <= nB2[k] then k := k + 1
else

for i to N do tmp := B[k, i]; B[k, i] := B[k - 1, i]; B[k - 1, i] := tmp od;
for i to N do v1[i] := B2[k, i] + Mu[k, k - 1]*B2[k - 1, i] od;
nv1 := nB2[k] + Mu[k, k - 1]^2*nB2[k - 1];
m := Mu[k, k - 1]*nB2[k - 1]/nv1;
for i to N do v2[i] := B2[k - 1, i] - m*v1[i] od;
nv2 := nB2[k]*nB2[k - 1]/nv1;
for i to k - 2 do

tmp := Mu[k, i]; Mu[k, i] := Mu[k - 1, i]; Mu[k - 1, i] := tmp
od;
for i from k + 1 to n do

tmp := Mu[i, k];
Mu[i, k] := Mu[i, k - 1] - Mu[k, k - 1]*Mu[i, k];
Mu[i, k - 1] := tmp + m*Mu[i, k]

od;
Mu[k, k - 1] := m;
for i to N do B2[k - 1, i] := v1[i]; B2[k, i] := v2[i] od;
nB2[k - 1] := nv1;
nB2[k] := nv2;
k := max(2, k - 1)

fi
od;
RETURN([seq([seq(B[i, j], j = 1 .. N)], i = 1 .. n)])

end;

intRel := proc(x)
local i, j, B, B2, n;

n := nops(x);
B := array(1 .. n + 1, 1 .. n);
for i to n do for j to n do if i = j then B[i, j] := 1 else B[i, j] := 0 fi od od;
for i to n do B[n + 1, i] := 10^Digits*x[i] od;
B2 := LLL([seq([seq(B[i, j], i = 1 .. n + 1)], j = 1 .. n)], n);
RETURN([seq(B2[1][i], i = 1 .. n)])

end;

Examples:

> LLL([[1,2,3],[1,2,4],[0,2,1]]);

[[0, 0, 1], [-1, 0, 0], [0, 2, 0]]

> Digits:=10:
> intRel([11,27,31]);

[1, -5, 4]

> Digits:=60:
> alpha:=3^(1/4)-2^(1/4):
> intRel([seq(evalf(alpha^i),i=0..16)]);

[1, 0, 0, 0, -3860, 0, 0, 0, -666, 0, 0, 0, -20, 0, 0, 0, 1]

B.2 The HJLS algorithm with full reductions

The following is a Maple implementation of the HJLS algorithm with full reductions as

outlined in Section 2.3.1.

HJLS := proc(x)
local A, B, M, r2, n, i, j, k, ii, t, r, maxm, maxmr2, anorm,

alpha, beta, lambda, delta, ld, bd, v1, v2, h0, tol;
n := nops(x);

APPENDIX B. INTEGER RELATION ALGORITHMS (MAPLE CODE) 135

A := array(1 .. n, 1 .. n);
B := array(1 .. n, 1 .. n);
M := array(1 .. n, 1 .. n);
v1 := array(1 .. n);
v2 := array(1 .. n);
h0 := x/evalf(sqrt(inner(x, x)));
r2 := [seq(evalf(sqrt(2)^i), i = 1 .. n - 1)];
tol := max(floor(9/10*Digits), Digits - 4);
for i to n do for j to n do

if i = j then A[i, j] := 1; B[i, j] := 1; M[i, j] := 1
else A[i, j] := 0; B[i, j] := 0; M[i, j] := 0

fi
od od;
M[n, n] := 0;
for j to n - 1 do

v1 := [seq(M[i, j], i = 1 .. n)];
for k from 0 to j - 1 do

if k = 0 then v2 := h0 else v2 := [seq(M[i, k], i = 1 .. n)] fi;
v1 := v1 - inner(v1, v2)*v2

od;
v1 := v1/sqrt(inner(v1, v1));
for i from j to n do M[i, j] := v1[i] od

od;
for i from 2 to n do for j from i - 1 by -1 to 1 do

if M[j, j] < 2*abs(M[i, j]) then
t := round(M[i, j]/M[j, j]);
for k to n do

M[i, k] := M[i, k] - t*M[j, k];
A[i, k] := A[i, k] - t*A[j, k];
B[k, j] := B[k, j] + t*B[k, i]

od
fi

od od;
r := 1;
maxm := M[1, 1];
maxmr2 := r2[1]*M[1, 1];
for i from 2 to n - 1 do

if maxm < M[i, i] then maxm := M[i, i] fi;
t := r2[i]*M[i, i];
if maxmr2 <= t then maxmr2 = t; r := i fi

od;
anorm := 1;
while 10^(-tol) < abs(M[n, n - 1]/anorm) or r <> n - 1 do

alpha := M[r, r];
beta := M[r + 1, r];
lambda := M[r + 1, r + 1];
delta := sqrt(beta^2 + lambda^2);
ld := lambda/delta;
bd := beta/delta;
for k to n do

t := A[r, k]; A[r, k] := A[r + 1, k]; A[r + 1, k] := t;
t := B[k, r]; B[k, r] := B[k, r + 1]; B[k, r + 1] := t;
t := M[r, k]; M[r, k] := M[r + 1, k]; M[r + 1, k] := t

od;
M[r, r] := delta;
M[r, r + 1] := 0;
M[r + 1, r] := alpha*bd;
M[r + 1, r + 1] := alpha*ld;
for k from r + 2 to n do

t := M[k, r];
M[k, r] := bd*t + ld*M[k, r + 1];
M[k, r + 1] := ld*t - bd*M[k, r + 1]

od;
for i from r + 1 to n do

if i = r + 1 then ii := r else ii := r + 1 fi;
for j from ii by -1 to 1 do

if M[j, j] < 2*abs(M[i, j]) then
t := round(M[i, j]/M[j, j]);
for k to n do

M[i, k] := M[i, k] - t*M[j, k];
A[i, k] := A[i, k] - t*A[j, k];

APPENDIX B. INTEGER RELATION ALGORITHMS (MAPLE CODE) 136

B[k, j] := B[k, j] + t*B[k, i]
od

fi
od od;
v1 := [seq(A[n - 1, i], i = 1 .. n)];
anorm := evalf(sqrt(inner(v1, v1)));
r := 1;
maxm := M[1, 1];
maxmr2 := r2[1]*M[1, 1];
for i from 2 to n - 1 do

if maxm < M[i, i] then maxm := M[i, i] fi;
t := r2[i]*M[i, i];
if maxmr2 <= t then maxmr2 := t; r := i fi

od
od;
RETURN([seq(B[i, n - 1], i = 1 .. n)])

end;

Examples:

> HJLS([11,27,31]);

[-1, 5, -4]

> Digits:=80:
a:=evalf(3^(1/4)-2^(1/4)):
HJLS([seq(a^i,i=0..16)]);

[1, 0, 0, 0, -3860, 0, 0, 0, -666, 0, 0, 0, -20, 0, 0, 0, 1]

B.3 The basic PSLQ algorithm

The following is a Maple implementation of the basic PSLQ algorithm as outlined in Sec-

tion 2.4.1. Improved practical algorithms are presented in the next two sections.

pslq := proc(x, T)
local n, B, H, y, i, j, k, gamma, G, GH, miny, minyp, maxHii, s,

t, r, temp, alpha, beta, lambda, delta, bd, ld, a, b, eps, v;
eps := evalf(10^min(-floor(9/10*Digits), -Digits + 4));
n := nops(x);
gamma := evalf(sqrt(4/3)) + 10^(-Digits + 1);
B := array(1 .. n, 1 .. n);
for j to n do for k to n do

if j = k then B[k, k] := 1 else B[j, k] := 0 fi
od

od;
H := array(1 .. n, 1 .. n - 1);
s := array(1 .. n);
for k to n do s[k] := evalf(sqrt(sum(x[jj]^2, jj = k .. n))) od;
for i to n do

for j from i + 1 to n - 1 do H[i, j] := 0 od;
if i <= n - 1 then H[i, i] := s[i + 1]/s[i] fi;
for j to i - 1 do H[i, j] := evalf(- x[i]*x[j]/(s[j]*s[j + 1])) od

od;
y := evalf(x/s[1]);
for i from 2 to n do for j from i - 1 by -1 to 1 do

if H[j, j] < 2*abs(H[i, j]) then
t := round(H[i, j]/H[j, j]);
y[j] := y[j] + t*y[i];
for k to j do H[i, k] := H[i, k] - t*H[j, k] od;
for k to n do B[k, j] := B[k, j] + t*B[k, i] od

fi
od od;
G := array(1 .. n - 1);

APPENDIX B. INTEGER RELATION ALGORITHMS (MAPLE CODE) 137

G[1] := gamma;
GH := array(1 .. n - 1);
GH[1] := H[1, 1];
for i from 2 to n - 1 do G[i] := G[i - 1]*gamma; GH[i] := G[i]*H[i, i] od;
miny := 1;
maxHii := 1;
while eps < miny and 1/maxHii < T do

r := 1;
for i from 2 to n - 1 do if GH[r] < GH[i] then r := i fi od;
temp := y[r]; y[r] := y[r + 1]; y[r + 1] := temp;
for i to n - 1 do

temp := B[i, r]; B[i, r] := B[i, r + 1]; B[i, r + 1] := temp;
temp := H[r, i]; H[r, i] := H[r + 1, i]; H[r + 1, i] := temp

od;
temp := B[n, r]; B[n, r] := B[n, r + 1]; B[n, r + 1] := temp;
if r < n - 1 then

alpha := H[r + 1, r]; beta := H[r, r];
lambda := H[r, r + 1]; delta := sqrt(beta^2 + lambda^2);
bd := beta/delta; ld := lambda/delta;
H[r, r] := delta; H[r, r + 1] := 0;
H[r + 1, r] := alpha*bd; H[r + 1, r + 1] := - alpha*ld;
for i from r + 2 to n do

a := H[i, r];
b := H[i, r + 1];
H[i, r] := a*bd + b*ld;
H[i, r + 1] := b*bd - a*ld

od;
GH[r + 1] := G[r + 1]*abs(H[r + 1, r + 1])

fi;
GH[r] := G[r]*abs(H[r, r]);
for i from r + 1 to n do for j from min(i - 1, r + 1)

by -1 to 1 do
if abs(H[j, j]) < 2*abs(H[i, j]) then

t := round(H[i, j]/H[j, j]);
for k to j do H[i, k] := H[i, k] - t*H[j, k] od;
for k to n do B[k, j] := B[k, j] + t*B[k, i] od;
y[j] := y[j] + t*y[i]

fi
od od;
miny := abs(y[1]);
minyp := 1;
for i from 2 to n do if abs(y[i]) < miny then miny := abs(y[i]); minyp := i fi od;
v := [seq(B[i, minyp], i = 1 .. n)];
miny := evalf(miny/sqrt(inner(v, v)));
maxHii := abs(H[1, 1]);
for i from 2 to n - 1 do if maxHii < abs(H[i, i]) then maxHii = abs(H[i, i]) fi od

od;
if eps < miny then RETURN(‘Lower Bound:‘,

evalf(1/maxHii, min(Digits, 6)))
else RETURN([seq(B[i, minyp], i = 1 .. n)])
fi

end;

Examples:

> pslq([11,27,31],100);

[-1, 5, -4]

> pslq([113,343,31,112],100);

[-7, 1, 0, 4]

> Digits:=70:
> alpha:=evalf(3^(1/4)-2^(1/4)):
> pslq([seq(alpha^i,i=0..16)],10000);
>

[-1, 0, 0, 0, 3860, 0, 0, 0, 666, 0, 0, 0, 20, 0, 0, 0, -1]

APPENDIX B. INTEGER RELATION ALGORITHMS (MAPLE CODE) 138

> Digits:=32:
> alpha:=evalf(3/4*Pi - 7/8*exp(1) + 1/9):
> pslq([-alpha,Pi,exp(1),sqrt(2),1],100);

[72, 54, -63, 0, 8]

> %/(72);

[1, 3/4, -7/8, 0, 1/9]

B.4 The PSLQ algorithm with periodic full reductions

The following is a Maple implementation of the PSLQ algorithm with periodic full reductions

as outlined in Section 2.4.2.

pslq := proc(x, T)
local n, B, H, y, i, j, k, gamma, G, GH, miny, minyp, maxHii, s, t, r,

temp, alpha, beta, lambda, delta, bd, ld, a, b, eps, v, doFullRed;
eps := evalf(10^min(-floor(9/10*Digits), -Digits + 4));
n := nops(x);
gamma := evalf(sqrt(4/3)) + 10^(-Digits + 1);
B := array(1 .. n, 1 .. n);
for j to n do for k to n do if j = k then B[k, k] := 1 else B[j, k] := 0 fi od od;
H := array(1 .. n, 1 .. n - 1);
s := array(1 .. n);
for k to n do s[k] := evalf(sqrt(sum(x[jj]^2, jj = k .. n))) od;
for i to n do

for j from i + 1 to n - 1 do H[i, j] := 0 od;
if i <= n - 1 then H[i, i] := s[i + 1]/s[i] fi;
for j to i - 1 do H[i, j] := evalf(- x[i]*x[j]/(s[j]*s[j + 1])) od

od;
y := evalf(x/s[1]);
for i from 2 to n do for j from i - 1 by -1 to 1 do

if H[j, j] < 2*abs(H[i, j]) then
t := round(H[i, j]/H[j, j]);
y[j] := y[j] + t*y[i];
for k to j do H[i, k] := H[i, k] - t*H[j, k] od;
for k to n do B[k, j] := B[k, j] + t*B[k, i] od

fi
od od;
G := array(1 .. n - 1);
G[1] := gamma;
GH := array(1 .. n - 1);
GH[1] := H[1, 1];
for i from 2 to n - 1 do G[i] := G[i - 1]*gamma; GH[i] := G[i]*H[i, i] od;
miny := 1;
maxHii := 1;
while eps < miny and 1/maxHii < T do

doFullRed := false;
while not doFullRed do

r := 1;
for i from 2 to n - 1 do if GH[r] < GH[i] then r := i fi od;
if abs(H[r, r]) < 2*abs(H[r + 1, r]) then

t := round(H[r + 1, r]/H[r, r]);
y[r] := y[r] + t*y[r + 1];
for j to r do H[r + 1, j] := H[r + 1, j] - t*H[r, j] od;
for j to n do B[j, r] := B[j, r] + t*B[j, r + 1] od

fi;
temp := y[r]; y[r] := y[r + 1]; y[r + 1] := temp;
for i to n - 1 do

temp := B[i, r]; B[i, r] := B[i, r + 1]; B[i, r + 1] := temp;
temp := H[r, i]; H[r, i] := H[r + 1, i]; H[r + 1, i] := temp

od;
temp := B[n, r]; B[n, r] := B[n, r + 1]; B[n, r + 1] := temp;

APPENDIX B. INTEGER RELATION ALGORITHMS (MAPLE CODE) 139

if r < n - 1 then
alpha := H[r + 1, r]; beta := H[r, r];
lambda := H[r, r + 1]; delta := sqrt(beta^2 + lambda^2);
bd := beta/delta; ld := lambda/delta;
H[r, r] := delta; H[r, r + 1] := 0;
H[r + 1, r] := alpha*bd; H[r + 1, r + 1] := - alpha*ld;
for i from r + 2 to n do

a := H[i, r];
b := H[i, r + 1];
H[i, r] := a*bd + b*ld;
H[i, r + 1] := b*bd - a*ld

od;
GH[r + 1] := G[r + 1]*abs(H[r + 1, r + 1])

else doFullRed := true
fi;
GH[r] := G[r]*abs(H[r, r])

od;
for i from 2 to n do for j from i - 1 by -1 to 1 do

if H[j, j] < 2*abs(H[i, j]) then
t := round(H[i, j]/H[j, j]);
y[j] := y[j] + t*y[i];
for k to j do H[i, k] := H[i, k] - t*H[j, k] od;
for k to n do B[k, j] := B[k, j] + t*B[k, i] od

fi
od od;
miny := abs(y[1]);
minyp := 1;
for i from 2 to n do if abs(y[i]) < miny then miny := abs(y[i]); minyp := i fi od;
v := [seq(B[i, minyp], i = 1 .. n)];
miny := evalf(miny/sqrt(inner(v, v)));
maxHii := abs(H[1, 1]);
for i from 2 to n - 1 do if maxHii < abs(H[i, i]) then maxHii = abs(H[i, i]) fi od

od;
if eps < miny then RETURN(‘Lower Bound:‘, evalf(1/maxHii, min(Digits, 6)))
else RETURN([seq(B[i, minyp], i = 1 .. n)])
fi

end;

B.5 The PSLQ algorithm for simultaneous integer relations

The following is a Maple implementation of the PSLQ algorithm for simultaneous integer

relations as outlined in Section 2.5.

pslq_simultaneous := proc(vects)
local B, G, GH, H, Mat, N, a, allzero, alpha, b, bd, beta, bsize, delta, det, eps,

gamma, h, i, indepset, j, k, lambda, ld, maxHval, maxHvalpos, n, numindep,
r, rels, t, temp, theorder, upperj, v, v1, v2;

N := nops(vects);
n := nops(vects[1]);
eps := evalf(10^(-floor(7*Digits/10)));
gamma := evalf(sqrt(4/3)) + 10^(-Digits + 1);
B := array(1 .. n, 1 .. n);
for j to n do for k to n do

if j = k then B[k, k] := 1 else B[j, k] := 0 end if
end do end do;
h := array(1 .. N);
h[1] := Vector(vects[1])/evalf(sqrt(inner(vects[1], vects[1])));
indepset := array(1 .. N);
indepset[1] := 1;
i := 2;
k := 1;
while k < N do

k := k + 1;
h[i] := Vector(vects[k]);
for j to i - 1 do h[i] := h[i] - LinearAlgebra[DotProduct](h[i], h[j])*h[j] end do;

APPENDIX B. INTEGER RELATION ALGORITHMS (MAPLE CODE) 140

if n*eps < ‘+‘(seq(abs(h[i][ii]), ii = 1 .. n)) then
h[i] := h[i]/evalf(sqrt(LinearAlgebra[DotProduct](h[i], h[i])));
indepset[i] := k;
i := i + 1

end if
end do;
N := i - 1;
numindep := N;
if numindep = n then

Mat := Matrix(1 .. n, 1 .. n);
for i to n do for j to n do

Mat[i, j] := vects[indepset[i]][j]
end do end do;
det := LinearAlgebra[Determinant](Mat);
if det = 0 then print(‘try again with more digits (or decrease eps)‘)
else print(‘Input spans R^n‘)
end if;
return [seq(0, i = 1 .. n)]

end if;
H := array(1 .. n, 1 .. n - N);
bsize := 0;
j := 0;
theorder := array(1 .. n);
for i to n do theorder[i] := i end do;
while bsize < n - N do

j := j + 1;
v1 := Vector([seq(B[i, j], i = 1 .. n)]);
for k from -N + 1 to bsize do

if k < 1 then v2 := h[k + N] else v2 := Vector([seq(H[i, k], i = 1 .. n)]) end if;
v1 := v1 - LinearAlgebra[DotProduct](v1, v2)*v2

end do;
for i to bsize do v1[i] := 0 end do;
if n*eps < ‘+‘(seq(abs(v1[ii]), ii = 1 .. n)) then

for i to n do if abs(v1[i]) < eps then v1[i] := 0 end if end do;
bsize := bsize + 1;
i := bsize;
while v1[i] = 0 do i := i + 1 end do;
if bsize < i then

temp := v1[bsize]; v1[bsize] := v1[i]; v1[i] := temp;
for k to bsize - 1 do

temp := H[bsize, k]; H[bsize, k] := H[i, k]; H[i, k] := temp
end do;
for k to N do

temp := h[k][bsize]; h[k][bsize] := h[k][i]; h[k][i] := temp
end do;
temp := theorder[bsize]; theorder[bsize] := theorder[i]; theorder[i] := temp

end if;
v1 := v1/sqrt(LinearAlgebra[DotProduct](v1, v1));
for i to n do H[i, bsize] := v1[i] end do

end if
end do;
for i from 2 to n do for j from min(i - 1, n - N) by -1 to 1 do

if H[j, j] < 2*abs(H[i, j]) then
t := round(H[i, j]/H[j, j]);
for k to j do H[i, k] := H[i, k] - t*H[j, k] end do;
for k to n do B[k, j] := B[k, j] + t*B[k, i] end do

end if
end do end do;
G := array(1 .. n - 1);
G[1] := gamma;
GH := array(1 .. n - 1);
GH[1] := H[1, 1];
for i from 2 to n - N do G[i] := G[i - 1]*gamma; GH[i] := G[i]*H[i, i] end do;
while N < n do

maxHval := abs(H[n - N + 1, n - N]);
for i from n - N + 2 to n - N + numindep do

if maxHval < abs(H[i, n - N]) then maxHval := abs(H[i, n - N]) end if
end do;
r := 1;
for i from 2 to n - N do if GH[r] < GH[i] then r := i end if end do;
while eps < maxHval or r <> n - N do

APPENDIX B. INTEGER RELATION ALGORITHMS (MAPLE CODE) 141

if r < n - N then
for i to n - numindep do

temp := H[r, i]; H[r, i] := H[r + 1, i]; H[r + 1, i] := temp
end do;
for i to n do

temp := B[i, r]; B[i, r] := B[i, r + 1]; B[i, r + 1] := temp
end do;
alpha := H[r + 1, r]; beta := H[r, r];
lambda := H[r, r + 1]; delta := sqrt(beta^2 + lambda^2);
bd := beta/delta; ld := lambda/delta;
H[r, r] := delta; H[r, r + 1] := 0;
H[r + 1, r] := alpha*bd; H[r + 1, r + 1] := -alpha*ld;
for i from r + 2 to n do

a := H[i, r];
b := H[i, r + 1];
H[i, r] := a*bd + b*ld;
H[i, r + 1] := b*bd - a*ld

end do;
GH[r + 1] := G[r + 1]*abs(H[r + 1, r + 1])

else
maxHval := abs(H[n - N + 1, r]);
maxHvalpos := n - N + 1;
for i from n - N + 2 to n - N + numindep do

if maxHval < abs(H[i, r]) then
maxHval := abs(H[i, r]);
maxHvalpos := i

end if
end do;
for i to n - numindep do

temp := H[r, i]; H[r, i] := H[maxHvalpos, i]; H[maxHvalpos, i] := temp
end do;
for i to n do

temp := B[i, r]; B[i, r] := B[i, maxHvalpos]; B[i, maxHvalpos] := temp
end do

end if;
GH[r] := G[r]*abs(H[r, r]);
for i from r + 1 to n - N + numindep do

if r = n - N or i = r + 1 then upperj := r
else upperj := r + 1
end if;
for j from upperj by -1 to 1 do

if abs(H[j, j]) < 2*abs(H[i, j]) then
t := round(H[i, j]/H[j, j]);
for k to j do H[i, k] := H[i, k] - t*H[j, k] end do;
for k to n do B[k, j] := B[k, j] + t*B[k, i] end do

end if
end do

end do;
maxHval := abs(H[n - N + 1, n - N]);
for i from n - N + 2 to n - N + numindep do

if maxHval < abs(H[i, n - N]) then maxHval := abs(H[i, n - N]) end if
end do;
r := 1;
for i from 2 to n - N do if GH[r] < GH[i] then r := i end if end do

end do;
for i from n - N + 1 to n - N + numindep do H[i, n - N] := 0 end do;
for i to n - numindep do

temp := H[n - N, i];
H[n - N, i] := H[n - N + numindep, i]; H[n - N + numindep, i] := temp

end do;
for i to n do

temp := B[i, n - N];
B[i, n - N] := B[i, n - N + numindep]; B[i, n - N + numindep] := temp

end do;
N := N + 1

end do;
rels := array(1 .. n - numindep, 1 .. n);
for i to n - numindep do for j to n do

rels[i, theorder[j]] := B[j, i + numindep]
end do end do;
allzero := true;

APPENDIX B. INTEGER RELATION ALGORITHMS (MAPLE CODE) 142

for i to n - numindep do
v := [seq(rels[i, j], j = 1 .. n)];
for j to nops(vects) do

if abs(inner(vects[j], v)) <> 0 then allzero := false end if
end do

end do;
if allzero then print(‘They are all integer relations‘)

else print(‘They are not all integer relations‘)
end if;
Mat := Matrix(1 .. n, 1 .. n);
for i to numindep do for j to n do Mat[i, j] := vects[indepset[i]][j] end do end do;
for i to n - numindep do for j to n do Mat[i + numindep, j] := rels[i, j] end do end do;
det := LinearAlgebra[Determinant](Mat);
if det = 0 then print(‘ZERO DETERMINANT, NOT A BASIS!!!!‘)

else print(‘They form a basis for the set of simultaneous integer relations‘)
end if;
RETURN(seq([seq(rels[i, j], j = 1 .. n)],i = 1 .. n - numindep))

end proc;

B.6 A multi-level implementation of PSLQ

##############
############## PSLQ
##############
############## procedures:
############## PSLQ, _PSLQ, _PSLQmain, _PSLQfunc1c,
############## _PSLQfunc1r, _PSLQfunc2,_PSLQfunc3
##############
############## Author: Alan Meichsner
############## Summer 2006 (multilevel version)
############## Summer 2007 (complex version)
##############
####
Input: a list of quantities that evaluate to (complex)floats
####
Output: A SUSPECTED integer relation for the input.
(A list of integers with the property that if the lists are thought
of as vectors, then inner(Input,Output)/(|input|*|output|) < epsilon
where the value of epsilon is determined by the value of Digits.)
####

PSLQ:=proc(vect)
local D, X, XiI, XiR, Xninv, allIm, allRe, complexinput, eps, i, n;
if not type(vect,list) then

error"argument must be a list of quantities that evaluate to floating point numbers"
fi;
D:=Digits;
n := nops(vect);
if n<2 then

error"argument must be a list with at least two elements"
fi;
Digits:=D+5;
eps := 10^(-D+log[10](2.*n));
X := evalf(vect);
Xninv:=1/sqrt(‘+‘(seq(Re(X[i])^2+Im(X[i])^2, i = 1 .. n)));
X := X*Xninv;
allRe:=true;
allIm:=true;
for i to n do

if X[i]=0 then return([seq(‘if‘(i=j,1,0),j=1..n)]) fi;
XiR:=Re(X[i]);
XiI:=Im(X[i]);
if not type(XiR,float) and not type(XiI,float) then
error"argument must be a list of quantities that evaluate to (complex)floating point numbers"

fi;
if XiR<>0. then allIm:=false fi;
if XiI<>0. then allRe:=false fi;

od;

APPENDIX B. INTEGER RELATION ALGORITHMS (MAPLE CODE) 143

if allRe or allIm then
complexinput:=false;
if allIm then X:=map(x->-I*x,X) fi;

else
complexinput:=true;

fi;
_PSLQ(X,n,eps,D,complexinput);

end:

_PSLQ:=proc(X,n,eps,D,complexinput)
local A, ABlim, B, Diglist, G, H, basenum, gamma, hdig, i, itype, j, s, sftype, y;
options system, remember;
if complexinput then

sftype:=’complex(sfloat)’;
itype:=’complex(integer)’;

else
sftype:=’sfloat’;
itype:=’integer’;

fi;
s := Array(1 .. n);
H := rtable(1 .. n, 1 .. n - 1, ’datatype’=sftype,subtype=Matrix);
A := rtable(1 .. n, 1 .. n, ’datatype’=itype,subtype=Matrix);
B := rtable(1 .. n, 1 .. n, ’datatype’=itype,subtype=Matrix);
y := Array(1 .. n);
G := hfarray(1 .. n - 1);
hdig := 14;
if D<=hdig then Diglist:=[D]
else Diglist:=[hdig];

basenum:=16;
if 80*basenum<D then

while 64*basenum<D do
basenum:=8*basenum;
Diglist:=[basenum,op(Diglist)]

od;
fi;

fi;
Diglist:=[D,op(Diglist)];
if complexinput then

gamma := evalf(sqrt(2.),hdig)+10^(-hdig+1);
else

gamma := evalf(sqrt(4./3),hdig) + 10^(-hdig+1);
fi;
G[1] := gamma;
for i from 2 to n - 1 do G[i] := G[i - 1]*gamma od;

for i to n do y[i] := X[i] od;
s[n] := Re(y[n])^2+Im(y[n])^2;
for i from n - 1 by -1 to 1 do s[i] := s[i + 1] + Re(y[i])^2+Im(y[i])^2 od;
s := evalf(map(sqrt, s));
for i to n do for j to n - 1 do

if j < i then
H[i, j] := - conjugate(y[i])*y[j]/(s[j]*s[j + 1])

elif j = i then H[i, j] := s[i + 1]/s[i]
else H[i, j] := 0
fi

od
od;
for i to n do for j to n do

if i=j
then A[i,j]:=1; B[i,j]:=1
else A[i,j]:=0; B[i,j]:=0

fi;
od od;
ABlim:=2;
_PSLQmain([H,A,B,y,G],hdig,n,eps,Diglist,complexinput,true);

end:

_PSLQmain := proc()
local A, A2, A3, AB2, ABlim, B, B2, B3, D, Diglist, G, H, H2, H3, Min,

APPENDIX B. INTEGER RELATION ALGORITHMS (MAPLE CODE) 144

X, bottomlevel, calchfA, complexinput, eps, eps2, evalDigs, hdig,
hfABlim, hftype, i, initH, itype, j, k, maxAB, maxHii, minBv,
minBvIm, minBvRe, minHii, miny, minypos, n, nextDigs, oldMin,
scalefactor, sftype, singlestep, t, toplevel, xlim, y, y2,
IR, rcount, icount, rpart, ipart, c;

H:=args[1][1];
A:=args[1][2];
B:=args[1][3];
n:=args[3];
X:=args[1][4];
X:=[seq(X[i],i=1..n)];
G:=args[1][5];
hdig:=args[2];
eps:=args[4];
Diglist:=args[5];
complexinput:=args[6];
toplevel:=args[7];
D:=Diglist[1];
Diglist:=[seq(Diglist[k],k=2..nops(Diglist))];
nextDigs:=Diglist[1];
Digits:=D;
y:=Array(1..n);
for i to n do y[i]:=evalf(X[i]) od;
if toplevel then

ABlim:=2;
if D<=hdig then calchfA:=false else calchfA:=true fi;

else
ABlim:=10^(D-nextDigs);
calchfA:=true;

fi;
if complexinput then

sftype:=’complex(sfloat)’;
hftype:=’complex[8]’;
itype:=’complex(integer)’;

else
sftype:=’sfloat’;
hftype:=’float[8]’;
itype:=’integer’;

fi;

if nops(Diglist)=1 then
bottomlevel:=true;
hfABlim:=10^hdig;
evalDigs:=nextDigs+4;

else
bottomlevel:=false;
evalDigs:=nextDigs;

fi;
if not toplevel then

initH:=rtable(1..n,1..n-1,’datatype’=sftype,subtype=Matrix);
for i to n do for j to n-1 do initH[i,j]:=evalf(H[i,j]) od od;

fi;
if hdig < D then

for i from 2 to n do
for j from i - 1 by -1 to 1 do

if abs(H[j, j]) < 2*abs(H[i, j]) then
t := H[i,j]/H[j,j];
if complexinput then

t:=‘if‘(Re(t)<0,trunc(Re(t)-.5),trunc(Re(t)+.5))
+I*‘if‘(Im(t)<0,trunc(Im(t)-.5),trunc(Im(t)+.5))

else
t:=‘if‘(t<0,trunc(t-.5),trunc(t+.5));

fi;
for k to j do

H[i, k] := H[i, k] - t*H[j, k]
od;
for k to n do

A[i, k] := A[i, k] - t*A[j, k];
B[k, j] := B[k, j] + t*B[k, i]

od;
y[j] := y[j] + t*y[i]

APPENDIX B. INTEGER RELATION ALGORITHMS (MAPLE CODE) 145

fi
od

od
fi;

if bottomlevel then
A2 := rtable(1 .. n, 1 .. n, ’datatype’=hftype,subtype=Matrix);
B2 := rtable(1 .. n, 1 .. n, ’datatype’=hftype,subtype=Matrix);
H2 := rtable(1 .. n, 1 .. n - 1, ’datatype’=hftype,subtype=Matrix);
y2 := rtable(1 .. n, ’datatype’=hftype,subtype=Array);
AB2:=Array(1..n,1..2*n,’datatype’=hftype);

else
A2 := rtable(1 .. n, 1 .. n, ’datatype’=itype,subtype=Matrix);
B2 := rtable(1 .. n, 1 .. n, ’datatype’=itype,subtype=Matrix);
H2 := rtable(1 .. n, 1 .. n - 1, ’datatype’=sftype,subtype=Matrix);
y2 := Array(1 .. n);

fi;
A3 := rtable(1 .. n, 1 .. n, ’datatype’=itype,subtype=Matrix);
B3 := rtable(1 .. n, 1 .. n, ’datatype’=itype,subtype=Matrix);

for i to n do for j to n - 1 do H2[i, j] := evalf(H[i, j],evalDigs) od od;
miny := abs(y[1]);
minypos:=1;
for i from 2 to n do

if abs(y[i]) < miny then miny := abs(y[i]); minypos := i fi
od;
if complexinput then

minBvRe := [seq(Re(B[i, minypos]), i = 1 .. n)];
minBvIm := [seq(Im(B[i, minypos]), i = 1 .. n)];
Min := miny/sqrt(evalf(inner(minBvRe,minBvRe)

+inner(minBvIm,minBvIm)));
else

minBv := [seq(B[i, minypos], i = 1 .. n)];
Min := miny/sqrt(evalf(inner(minBv,minBv)));

fi;

maxAB:=1;
eps2:=10^(-nextDigs+log[10](evalf(n)));

while eps<Min and maxAB<ABlim do
for i to n do

for j to n do
if i = j

then B2[i, j] := 1; A2[i, j] := 1
else B2[i, j] := 0; A2[i, j] := 0

fi
od;

od;
for i to n do y2[i] := evalf(y[i]/miny,evalDigs) od;
xlim:=max(evalf(eps/Min),eps2);

singlestep:=false;
if bottomlevel then

if complexinput then
if evalhf(_PSLQfunc1c(H2, A2, B2, y2, hfABlim, xlim, n, G,calchfA,AB2))=0 then
singlestep:=true

fi;
else

if evalhf(_PSLQfunc1r(H2, A2, B2, y2, hfABlim, xlim, n, G,calchfA,AB2))=0 then
singlestep:=true

fi;
fi;

elif _PSLQmain([H2,A2,B2,y2,G],hdig,n,xlim,Diglist,complexinput,false)=0 then
singlestep:=true

fi;

if hdig<D then
if bottomlevel then
if complexinput then

B3:=mvMultiply(B,
map(x->‘if‘(Re(x)<0,trunc(Re(x)-.5),trunc(Re(x)+.5))

APPENDIX B. INTEGER RELATION ALGORITHMS (MAPLE CODE) 146

+I*‘if‘(Im(x)<0,trunc(Im(x)-.5),trunc(Im(x)+.5)),B2));
else

B3:=mvMultiply(B,map(x->‘if‘(x<0,trunc(x-.5),trunc(x+.5)),B2));
fi

else
B3:=mvMultiply(B,B2);

fi;
for i to n do for j to n do B[i,j]:=B3[i,j]; od od;

if not toplevel then
if bottomlevel then

if complexinput then
A3:=mvMultiply(map(x->‘if‘(Re(x)<0,trunc(Re(x)-.5),trunc(Re(x)+.5))

+I*‘if‘(Im(x)<0,trunc(Im(x)-.5),trunc(Im(x)+.5)),A2),A);
else

A3:=mvMultiply(map(x->‘if‘(x<0,trunc(x-.5),trunc(x+.5)),A2),A);
fi;

else
A3:=mvMultiply(A2,A);

fi;
for i to n do for j to n do A[i,j]:=A3[i,j] od od;
maxAB:=0;
if complexinput then

for i to n do for j to n do
if not toplevel then

if abs(Re(A[i,j]))>maxAB then maxAB:=abs(Re(A[i,j])) fi;
if abs(Im(A[i,j]))>maxAB then maxAB:=abs(Im(A[i,j])) fi;

fi;
if abs(Re(B[i,j]))>maxAB then maxAB:=abs(Re(B[i,j])) fi;
if abs(Im(B[i,j]))>maxAB then maxAB:=abs(Im(B[i,j])) fi;

od od
else

for i to n do for j to n do
if not toplevel and abs(A[i,j])>maxAB then maxAB:=abs(A[i,j]) fi;
if abs(B[i,j])>maxAB then maxAB:=abs(B[i,j]) fi;

od od
fi;

fi;

for i to n do
y[i] := inner(X, [seq(B[k, i], k = 1 .. n)])

od;

oldMin:=Min;
miny := abs(y[1]);
minypos := 1;
for i from 2 to n do

if abs(y[i])<miny then miny:=abs(y[i]); minypos:=i fi;
od;
if complexinput then

minBvRe := [seq(Re(B[i, minypos]), i = 1 .. n)];
minBvIm := [seq(Im(B[i, minypos]), i = 1 .. n)];
Min := miny/sqrt(evalf(inner(minBvRe,minBvRe)

+inner(minBvIm,minBvIm)));
else

minBv := [seq(B[i, minypos], i = 1 .. n)];
Min := miny/sqrt(evalf(inner(minBv,minBv)));

fi;
userinfo(1, ’PSLQ’, "Digits = " || (convert(D,string)) ||

", time = " || (convert(time(),string)) ||
", current minimum = " || (convert(evalf(Min,6),string)));

if (not toplevel) and 2*length(op(1,miny))<nextDigs then maxAB:=ABlim fi;
if oldMin<10*Min then

if toplevel then singlestep:=true;
elif not singlestep then maxAB:=ABlim;
fi;

elif not bottomlevel then singlestep:=false
fi;

else
if complexinput then
for i to n do

APPENDIX B. INTEGER RELATION ALGORITHMS (MAPLE CODE) 147

y[i] := y2[i];
for j to n do

B[i,j]:=‘if‘(Re(B2[i,j])<0,trunc(Re(B2[i,j])-.5),
trunc(Re(B2[i,j])+.5))

+I*‘if‘(Im(B2[i,j])<0,trunc(Im(B2[i,j])-.5),
trunc(Im(B2[i,j])+.5))

od
od;

else
for i to n do

y[i] := y2[i];
for j to n do

B[i,j]:=‘if‘(B2[i,j]<0,trunc(B2[i,j]-.5),trunc(B2[i,j]+.5))
od

od;
fi;
Min := 0

fi;
if eps<Min and maxAB<ABlim then

if toplevel then
if bottomlevel then

if complexinput then
H:=mvMultiply(map(x->‘if‘(Re(x)<0,trunc(Re(x)-.5),trunc(Re(x)+.5))

+I*‘if‘(Im(x)<0,trunc(Im(x)-.5),trunc(Im(x)+.5)),A2),H);
else

H:=mvMultiply(map(x->‘if‘(x<0,trunc(x-.5),trunc(x+.5)),A2),H);
fi;

else
H:=mvMultiply(A2,H)

fi
else

H:=mvMultiply(A,initH);
fi;
if abs(H[n,n-1])=0. or abs(H[n-1,n-1])=0. then Min:=0 fi;
if singlestep and eps<Min then

H3:=LinearAlgebra:-QRDecomposition(
LinearAlgebra:-Transpose(H),’conjugate’=complexinput,’output’=’R’);

for i to n do for j to n-1 do H[i,j]:=H3[j,i] od od;
if not toplevel then

minHii:=max(abs(H[n-1,n-1]),abs(H[n,n-1]));
maxHii:=minHii;
for i to n-2 do

if abs(H[i,i])<minHii then minHii:=abs(H[i,i])
elif abs(H[i,i])>maxHii then maxHii:=abs(H[i,i])
fi;

od;
if minHii<10^floor(-D/2)

or evalf(maxHii*sqrt(n)*10^(D/n),hdig)<1
then RETURN(0)

fi;
fi;
for i to n do for j to n do

A3[i,j]:=A[i,j];
B3[i,j]:=B[i,j]

od od;
userinfo(1, ’PSLQ’, "single stepping at higher precision required");
if _PSLQfunc2([H, A3, B3, y],n,G,ABlim,toplevel,complexinput)=1

then
miny := abs(y[1]);
minypos := 1;
for i from 2 to n do

if abs(y[i]) < miny then
miny := abs(y[i]);
minypos := i

fi;
od;
if complexinput then

minBvRe := [seq(Re(B3[i, minypos]), i = 1 .. n)];
minBvIm := [seq(Im(B3[i, minypos]), i = 1 .. n)];
Min := miny/sqrt(evalf(inner(minBvRe,minBvRe)

+inner(minBvIm,minBvIm)));

APPENDIX B. INTEGER RELATION ALGORITHMS (MAPLE CODE) 148

else
minBv := [seq(B3[i, minypos], i = 1 .. n)];
Min := miny/sqrt(evalf(inner(minBv,minBv)));

fi;
userinfo(1, ’PSLQ’, "Digits = " || (convert(D,string)) ||
", time = " || (convert(time(),string)) ||
", current minimum = " || (convert(evalf(Min,6),string)));

for i to n do for j to n do
A[i,j]:=A3[i,j];
B[i,j]:=B3[i,j]

od od;
else RETURN(0);
fi;

fi;
if eps<Min then

Digits:=evalDigs;
maxHii:=0;
for i to n-1 do

if abs(H[i,i])>maxHii then maxHii:=abs(H[i,i]) fi
od;
if bottomlevel
then for i to n do for j to n-1 do

H2[i,j]:=H[i,j]/maxHii
od od

else scalefactor:=evalf(1/maxHii,evalDigs+4);
for i to n do for j to n-1 do

H2[i,j]:=H[i,j]*scalefactor
od od

fi;
if not singlestep then

if bottomlevel and not complexinput
then evalhf(_PSLQfunc3(H2, n));
else
H3:=LinearAlgebra:-QRDecomposition(
LinearAlgebra:-Transpose(H2),’conjugate’=complexinput,’output’=’R’);
for i to n do for j to n-1 do H2[i,j]:=H3[j,i] od od;

fi;
fi;
Digits:=D;

fi;
fi;

od;
if not toplevel then RETURN(1) fi;

Min := abs(y[1]);
minypos := 1;
for j from 2 to n do

if abs(y[j]) < Min then Min := abs(y[j]); minypos := j fi
od;
IR:=[seq(B[i, minypos], i = 1 .. n)];
rcount:=[0,0];
icount:=[0,0];
for i to n do

rpart,ipart:=Re(IR[i]),Im(IR[i]);
if rpart>0 then rcount:=rcount+[1,1]
elif rpart<0 then rcount:=rcount+[1,0]

fi;
if ipart>0 then icount:=icount+[1,1]
elif ipart<0 then icount:=icount+[1,0]

fi;
od;
if rcount[1]<icount[1] then

c:=‘if‘(rcount[1]-icount[1]-2*(rcount[2]-icount[2])>0,-I,I);
else

c:=‘if‘(rcount[1]+icount[1]-2*(rcount[2]+icount[2])>0,-1,1);
fi;
RETURN(map(z->c*z,IR))

end:

_PSLQfunc1c := proc(H, A, B, y, ABlim, xlim, n, G, calcA, AB2)

APPENDIX B. INTEGER RELATION ALGORITHMS (MAPLE CODE) 149

local GH, Hrrbound, Min, a, alpha, b, bcd, bd, beta, count, delta,
doFullRed, dropback, eps, i, j, k, lambda, lcd, ld, maxAB,
miny, minyp, r, sf, skiplast, ss, stepcount, t, temp, upperJ;

eps := xlim;
maxAB:=1;
Hrrbound:=1e-140;
for i to n-2 do if abs(H[i,i])<Hrrbound then RETURN(0) fi od;
if abs(H[n-1,n-1])<Hrrbound

then if abs(H[n-1,n-2])<Hrrbound
then RETURN(0)
else skiplast:=true; sf:=1;

fi
else skiplast:=false; sf:=3;

fi;
Hrrbound:=1/(G[n-1]*ABlim);
if calcA then

for i to n do for j to n do AB2[i,j]:=A[i,j]; AB2[i,n+j]:=B[i,j] od od;
fi;
for i from 2 to n do

if skiplast and i=n then upperJ:=i-2 else upperJ:=i-1 fi;
for j from upperJ by -1 to 1 do

if abs(H[j, j]) < 2*abs(H[i, j]) then
t := round(H[i,j]/H[j,j]);
y[j] := y[j] + t*y[i];
for k to j do H[i, k] := H[i, k] - t*H[j, k] od;
for k to n do B[k, j] := B[k, j] + t*B[k, i] od;
if calcA then for k to n do

A[i, k] := A[i, k] - t*A[j, k];
if abs(Re(A[i,k]))>maxAB then maxAB:=abs(Re(A[i,k])) fi;
if abs(Im(A[i,k]))>maxAB then maxAB:=abs(Im(A[i,k])) fi;
if abs(Re(B[k,j]))>maxAB then maxAB:=abs(Re(B[k,j])) fi;
if abs(Im(B[k,j]))>maxAB then maxAB:=abs(Im(B[k,j])) fi;

od fi
fi

od od;
if maxAB>=ABlim then dropback:=true else dropback:=false fi;

GH := array(1 .. n - 1);
for i to n - 1 do GH[i] := G[i]*abs(H[i, i]) od;
miny := abs(y[1]);
minyp := 1;
for i from 2 to n do

if abs(y[i]) < miny then
miny := abs(y[i]); minyp := i

fi
od;
ss:=0;
for i to n do ss:=ss+abs(B[i,minyp])^2 od;
Min := evalf(miny/sqrt(ss));
count:=0;
while eps<Min and maxAB<ABlim and not dropback do

count:=count+1;
doFullRed := false;
if calcA then for i to n do for j to n do

AB2[i,j]:=A[i,j]; AB2[i,n+j]:=B[i,j]
od od fi;
stepcount:=0;
while not doFullRed and eps<miny and maxAB<ABlim do

stepcount:=stepcount+1;
if stepcount=sf*(n-1) then doFullRed:=true fi;
r := 1;
for i from 2 to n - 1 do

if GH[r] < GH[i] then r := i fi
od;
if abs(H[r, r])<2*abs(H[r + 1, r]) then

t := round(H[r + 1, r]/H[r, r]);
y[r] := y[r] + t*y[r + 1];
if abs(y[r])<miny then miny:=abs(y[r]) fi;
for j to r do H[r + 1, j] := H[r + 1, j] - t*H[r, j] od;
for j to n do B[j, r] := B[j, r] + t*B[j, r + 1] od;
if calcA then for j to n do

APPENDIX B. INTEGER RELATION ALGORITHMS (MAPLE CODE) 150

A[r + 1, j] := A[r + 1, j] - t*A[r, j];
if abs(Re(A[r+1,j]))>maxAB then maxAB:=abs(Re(A[r+1,j])) fi;
if abs(Im(A[r+1,j]))>maxAB then maxAB:=abs(Im(A[r+1,j])) fi;
if abs(Re(B[j,r]))>maxAB then maxAB:=abs(Re(B[j,r])) fi;
if abs(Im(B[j,r]))>maxAB then maxAB:=abs(Im(B[j,r])) fi;

od fi
fi;
temp:=y[r]; y[r]:=y[r+1]; y[r+1]:=temp;
for i to n - 1 do

temp:=B[i,r]; B[i,r]:=B[i,r+1]; B[i,r+1]:=temp;
temp:=H[r,i]; H[r,i]:=H[r+1,i]; H[r+1,i]:=temp

od;
temp:=B[n,r]; B[n,r]:=B[n,r+1]; B[n,r+1]:=temp;
if calcA then for i to n do

temp:=A[r,i]; A[r,i]:=A[r+1,i]; A[r+1,i]:=temp;
od fi;
if r < n - 1 then

alpha := H[r + 1, r];
beta := H[r, r];
lambda := H[r, r + 1];
delta := sqrt(Re(beta)^2+Im(beta)^2+Re(lambda)^2+Im(lambda)^2);
bd := beta/delta;
bcd:=(Re(beta)-Im(beta)*I)/delta;
ld := lambda/delta;
lcd:=(Re(lambda)-Im(lambda)*I)/delta;
H[r, r] := delta;
H[r, r + 1] := 0;
H[r + 1, r] := alpha*bcd;
H[r + 1, r + 1] := - alpha*ld;
for i from r + 2 to n do

a := H[i, r];
b := H[i, r + 1];
H[i, r] := a*bcd + b*lcd;
H[i, r + 1] := b*bd - a*ld

od;
GH[r + 1] := G[r + 1]*abs(H[r + 1, r + 1])

else
doFullRed := true;
if abs(H[r,r])<Hrrbound and calcA then dropback:=true fi;

fi;
GH[r] := G[r]*abs(H[r, r])

od;

if not dropback then
for i from 2 to n do

if skiplast and i=n then upperJ:=i-2 else upperJ:=i-1 fi;
for j from upperJ by -1 to 1 do

if abs(H[j, j]) < 2*abs(H[i, j]) then
t := round(H[i, j]/H[j, j]);
y[j] := y[j] + t*y[i];
for k to j do H[i, k] := H[i, k] - t*H[j, k] od;
for k to n do B[k, j] := B[k, j] + t*B[k, i] od;
if calcA then for k to n do

A[i, k] := A[i, k] - t*A[j, k];
if abs(Re(A[i,k]))>maxAB then maxAB:=abs(Re(A[i,k])) fi;
if abs(Im(A[i,k]))>maxAB then maxAB:=abs(Im(A[i,k])) fi;
if abs(Re(B[k,j]))>maxAB then maxAB:=abs(Re(B[k,j])) fi;
if abs(Im(B[k,j]))>maxAB then maxAB:=abs(Im(B[k,j])) fi;

od fi
fi

od
od;

fi;
miny := abs(y[1]);
minyp := 1;
for i from 2 to n do

if abs(y[i]) < miny then
miny := abs(y[i]); minyp := i

fi
od;
ss:=0;

APPENDIX B. INTEGER RELATION ALGORITHMS (MAPLE CODE) 151

for i to n do ss:=ss+Re(B[i,minyp])^2+Im(B[i,minyp])^2 od;
Min := miny/sqrt(ss);

od;
if maxAB>=ABlim or dropback then

for i to n do for j to n do A[i,j]:=AB2[i,j]; B[i,j]:=AB2[i,n+j] od od;
fi;
if dropback or count<2

then RETURN(0)
else RETURN(1)

fi;
end:

_PSLQfunc1r := proc(H, A, B, y, ABlim, xlim, n, G, calcA, AB2)
local GH, Hrrbound, Min, a, alpha, b, bd, beta, count, delta,

doFullRed, dropback, eps, i, j, k, lambda, ld, maxAB, miny,
minyp, r, sf, skiplast, ss, stepcount, t, temp, upperJ;

eps := xlim;
maxAB:=1;
Hrrbound:=1e-140;
for i to n-2 do if abs(H[i,i])<Hrrbound then RETURN(0) fi od;
if abs(H[n-1,n-1])<Hrrbound

then if abs(H[n-1,n-2])<Hrrbound
then RETURN(0)
else skiplast:=true; sf:=1;

fi
else skiplast:=false; sf:=3;

fi;
Hrrbound:=1/(G[n-1]*ABlim);
if calcA then

for i to n do for j to n do AB2[i,j]:=A[i,j]; AB2[i,n+j]:=B[i,j] od od;
fi;
for i from 2 to n do

if skiplast and i=n then upperJ:=i-2 else upperJ:=i-1 fi;
for j from upperJ by -1 to 1 do

if abs(H[j, j]) < 2*abs(H[i, j]) then
t := round(H[i,j]/H[j,j]);
y[j] := y[j] + t*y[i];
for k to j do H[i, k] := H[i, k] - t*H[j, k] od;
for k to n do B[k, j] := B[k, j] + t*B[k, i] od;
if calcA then for k to n do

A[i, k] := A[i, k] - t*A[j, k];
if abs(A[i,k])>maxAB then maxAB:=abs(A[i,k]) fi;
if abs(B[k,j])>maxAB then maxAB:=abs(B[k,j]) fi;

od fi
fi

od od;
if maxAB>=ABlim then dropback:=true else dropback:=false fi;

GH := array(1 .. n - 1);
for i to n - 1 do GH[i] := G[i]*abs(H[i, i]) od;
miny := abs(y[1]);
minyp := 1;
for i from 2 to n do

if abs(y[i]) < miny then
miny := abs(y[i]); minyp := i

fi
od;
ss:=0;
for i to n do ss:=ss+B[i,minyp]^2 od;
Min := evalf(miny/sqrt(ss));
count:=0;
while eps<Min and maxAB<ABlim and not dropback do

count:=count+1;
doFullRed := false;
if calcA then for i to n do for j to n do

AB2[i,j]:=A[i,j]; AB2[i,n+j]:=B[i,j]
od od fi;
stepcount:=0;
while not doFullRed and eps<miny and maxAB<ABlim do

stepcount:=stepcount+1;

APPENDIX B. INTEGER RELATION ALGORITHMS (MAPLE CODE) 152

if stepcount=sf*(n-1) then doFullRed:=true fi;
r := 1;
for i from 2 to n - 1 do

if GH[r] < GH[i] then r := i fi
od;
if abs(H[r, r])<2*abs(H[r + 1, r]) then

t := round(H[r + 1, r]/H[r, r]);
y[r] := y[r] + t*y[r + 1];
if abs(y[r])<miny then miny:=abs(y[r]) fi;
for j to r do H[r + 1, j] := H[r + 1, j] - t*H[r, j] od;
for j to n do B[j, r] := B[j, r] + t*B[j, r + 1] od;
if calcA then for j to n do

A[r + 1, j] := A[r + 1, j] - t*A[r, j];
if abs(A[r+1,j])>maxAB then maxAB:=abs(A[r+1,j]) fi;
if abs(B[j,r])>maxAB then maxAB:=abs(B[j,r]) fi;

od fi
fi;
temp:=y[r]; y[r]:=y[r+1]; y[r+1]:=temp;
for i to n - 1 do

temp:=B[i,r]; B[i,r]:=B[i,r+1]; B[i,r+1]:=temp;
temp:=H[r,i]; H[r,i]:=H[r+1,i]; H[r+1,i]:=temp

od;
temp:=B[n,r]; B[n,r]:=B[n,r+1]; B[n,r+1]:=temp;
if calcA then for i to n do

temp:=A[r,i]; A[r,i]:=A[r+1,i]; A[r+1,i]:=temp;
od fi;
if r < n - 1 then

alpha := H[r + 1, r];
beta := H[r, r];
lambda := H[r, r + 1];
delta := sqrt(beta^2 + lambda^2);
bd := beta/delta;
ld := lambda/delta;
H[r, r] := delta;
H[r, r + 1] := 0;
H[r + 1, r] := alpha*bd;
H[r + 1, r + 1] := - alpha*ld;
for i from r + 2 to n do

a := H[i, r];
b := H[i, r + 1];
H[i, r] := a*bd + b*ld;
H[i, r + 1] := b*bd - a*ld

od;
GH[r + 1] := G[r + 1]*abs(H[r + 1, r + 1])

else
doFullRed := true;
if abs(H[r,r])<Hrrbound and calcA then dropback:=true fi;

fi;
GH[r] := G[r]*abs(H[r, r])

od;

if not dropback then
for i from 2 to n do

if skiplast and i=n then upperJ:=i-2 else upperJ:=i-1 fi;
for j from upperJ by -1 to 1 do

if abs(H[j, j]) < 2*abs(H[i, j]) then
t := round(H[i, j]/H[j, j]);
y[j] := y[j] + t*y[i];
for k to j do H[i, k] := H[i, k] - t*H[j, k] od;
for k to n do B[k, j] := B[k, j] + t*B[k, i] od;
if calcA then for k to n do

A[i, k] := A[i, k] - t*A[j, k];
if abs(A[i,k])>maxAB then maxAB:=abs(A[i,k]) fi;
if abs(B[k,j])>maxAB then maxAB:=abs(B[k,j]) fi;

od fi
fi

od
od;

fi;

miny := abs(y[1]);

APPENDIX B. INTEGER RELATION ALGORITHMS (MAPLE CODE) 153

minyp := 1;
for i from 2 to n do

if abs(y[i]) < miny then
miny := abs(y[i]); minyp := i

fi
od;
ss:=0;
for i to n do ss:=ss+B[i,minyp]^2 od;
Min := evalf(miny/sqrt(ss));

od;
if maxAB>=ABlim or dropback then

for i to n do for j to n do A[i,j]:=AB2[i,j]; B[i,j]:=AB2[i,n+j] od od;
fi;
if dropback or count<2

then RETURN(0)
else RETURN(1)

fi;
end:

_PSLQfunc2 := proc(arg1, n, G, ABlim, toplevel, complexinput)
local A, B, GH, H, a, alpha, b, bcd, bd, beta, count, delta,

i, j, k, lambda, lcd, ld, maxAB, r, stepcount, t, temp, y;
H:=arg1[1];
A:=arg1[2];
B:=arg1[3];
y:=arg1[4];
maxAB:=1;
for count to 2 do

for i from 2 to n do for j from i - 1 by -1 to 1 do
if abs(H[j, j]) < 2*abs(H[i, j]) then

t := H[i,j]/H[j,j];
if complexinput then

t:=‘if‘(Re(t)<0,trunc(Re(t)-.5),trunc(Re(t)+.5))
+I*‘if‘(Im(t)<0,trunc(Im(t)-.5),trunc(Im(t)+.5))

else
t:=‘if‘(t<0,trunc(t-.5),trunc(t+.5));

fi;
y[j] := y[j] + t*y[i];
for k to j do H[i, k] := H[i, k] - t*H[j, k] od;
for k to n do B[k, j] := B[k, j] + t*B[k, i] od;
if not toplevel then

for k to n do
A[i, k] := A[i, k] - t*A[j, k];
if complexinput then
if abs(Re(A[i,k]))>maxAB then maxAB:=abs(Re(A[i,k])) fi;
if abs(Im(A[i,k]))>maxAB then maxAB:=abs(Im(A[i,k])) fi;
if abs(Re(B[k,j]))>maxAB then maxAB:=abs(Re(B[k,j])) fi;
if abs(Im(B[k,j]))>maxAB then maxAB:=abs(Im(B[k,j])) fi;

else
if abs(A[i,k])>maxAB then maxAB:=abs(A[i,k]) fi;
if abs(B[k,j])>maxAB then maxAB:=abs(B[k,j]) fi;

fi
od

fi;
fi

od
od;
if abs(H[n,n-1])=0. then count:=2 fi;
if count<2 then

GH := array(1 .. n - 1);
for i to n - 1 do GH[i] := G[i]*abs(H[i, i]) od;
r:=0;
stepcount:=0;
while r<n-1 and stepcount<n-1 and maxAB<ABlim do

stepcount:=stepcount+1;
r := 1;
for i from 2 to n - 1 do

if GH[r] < GH[i] then r := i fi
od;
if abs(H[r, r]) < 2*abs(H[r + 1, r]) then

APPENDIX B. INTEGER RELATION ALGORITHMS (MAPLE CODE) 154

t := H[r+1,r]/H[r,r];
if complexinput then

t:=‘if‘(Re(t)<0,trunc(Re(t)-.5),trunc(Re(t)+.5))
+I*‘if‘(Im(t)<0,trunc(Im(t)-.5),trunc(Im(t)+.5))

else
t:=‘if‘(t<0,trunc(t-.5),trunc(t+.5));

fi;
y[r] := y[r] + t*y[r + 1];
for j to r do H[r + 1, j] := H[r + 1, j] - t*H[r, j] od;
for j to n do B[j, r] := B[j, r] + t*B[j, r + 1] od;
if not toplevel then

for j to n do
A[r + 1, j] := A[r + 1, j] - t*A[r, j];
if complexinput then

if abs(Re(A[r+1,j]))>maxAB then maxAB:=abs(Re(A[r+1,j])) fi;
if abs(Im(A[r+1,j]))>maxAB then maxAB:=abs(Im(A[r+1,j])) fi;
if abs(Re(B[j,r]))>maxAB then maxAB:=abs(Re(B[j,r])) fi;
if abs(Im(B[j,r]))>maxAB then maxAB:=abs(Im(B[j,r])) fi;

else
if abs(A[r+1,j])>maxAB then maxAB:=abs(A[r+1,j]) fi;
if abs(B[j,r])>maxAB then maxAB:=abs(B[j,r]) fi;

fi
od

fi;
fi;
temp:=y[r]; y[r]:=y[r+1]; y[r+1]:=temp;
for i to n - 1 do

temp:=B[i,r]; B[i,r]:=B[i,r+1]; B[i,r+1]:=temp;
temp:=H[r,i]; H[r,i]:=H[r+1,i]; H[r+1,i]:=temp

od;
temp:=B[n,r]; B[n,r]:=B[n,r+1]; B[n,r+1]:=temp;
if not toplevel then for i to n do

temp:=A[r,i]; A[r,i]:=A[r+1,i]; A[r+1,i]:=temp;
od fi;
if r < n - 1 then

alpha := H[r + 1, r];
beta := H[r, r];
lambda := H[r, r + 1];
if complexinput then

delta := sqrt(Re(beta)^2+Im(beta)^2+Re(lambda)^2+Im(lambda)^2);
bd := beta/delta;
bcd:=(Re(beta)-Im(beta)*I)/delta;
ld := lambda/delta;
lcd:=(Re(lambda)-Im(lambda)*I)/delta;
H[r, r] := delta;
H[r, r + 1] := 0;
H[r + 1, r] := alpha*bcd;
H[r + 1, r + 1] := - alpha*ld;
for i from r + 2 to n do

a := H[i, r];
b := H[i, r + 1];
H[i, r] := a*bcd + b*lcd;
H[i, r + 1] := b*bd - a*ld

od;
else

delta := sqrt(beta^2 + lambda^2);
bd := beta/delta;
ld := lambda/delta;
H[r, r] := delta;
H[r, r + 1] := 0;
H[r + 1, r] := alpha*bd;
H[r + 1, r + 1] := - alpha*ld;
for i from r + 2 to n do

a := H[i, r];
b := H[i, r + 1];
H[i, r] := a*bd + b*ld;
H[i, r + 1] := b*bd - a*ld

od;
fi;
GH[r + 1] := G[r + 1]*abs(H[r + 1, r + 1])

fi;

APPENDIX B. INTEGER RELATION ALGORITHMS (MAPLE CODE) 155

GH[r] := G[r]*abs(H[r, r])
od;

fi;
od;
if maxAB<ABlim then RETURN(1) else RETURN(0) fi;

end:

_PSLQfunc3 := proc(B, n)
local a, aa, b, c, i, j, k, t;

for i to n - 1 do
aa := B[i, i]^2;
for j from i + 1 to n - 1 do

if B[i, j] <> 0 then
b := B[i, j];
aa := aa + b^2;
c := sqrt(aa);
a := B[i, i]/c;
b := b/c;
B[i, i] := c;
B[i, j] := 0;
for k from i + 1 to n do

t := B[k, i];
B[k, i] := a*t + b*B[k, j];
B[k, j] := -b*t + a*B[k, j]

od
fi

od
od

end:

Bibliography

[1] J. Aguirre and J. C. Peral. The trace problem for totally positive algebraic integers. In
Number Theory and Polynomials, Conference proceedings, University of Bristol, April
2006. Appendix by J. P. Serre, LMS Lecture Notes.

[2] David H. Bailey and David J. Broadhurst. Parallel integer relation detection: Tech-
niques and applications. Mathematics of Computation, 70:1719–1736, 2000.

[3] David H. Bailey and Helaman R. P. Ferguson. Numerical results on relations be-
tween fundamental constants using a new algorithm. Mathematics of Computation,
53(188):649–656, 1989.

[4] David H. Bailey and Simon Plouffe. Recognizing numerical constants. In The Organic
Mathematics Project Proceedings, pages 73–88. Canadian Mathematical Society, 1997.

[5] Emiliano Aparicio Bernardo. On the asymptotic structure of the polynomials of min-
imal diophantic deviation from zero. Journal of Approximation Theory, 55:270–278,
1988.

[6] Emiliano Aparicio Bernardo. Generalization of a theorem of Fekete to the case of gener-
alized complex polynomials. Litovskii Matematicheskii Sbornik (Lietuvos Matematikos
Rinkinys), 30(4):645–650, October–December 1990. translated version, 1991, Plenum
Publishing Corporation.

[7] Borislav D. Bojanov, Werner Haussmann, and Geno P. Nikolov. Bivariate polynomials
of least deviation from zero. Canadian Journal of Mathematics, 53(3):489–505, 2001.

[8] Peter Borewin and Tamas Erdelyi. The integer Chebyshev problem. Mathematics of
Computation, 65(214):661–681, April 1996.

[9] G. V. Chudnovsky. Number theoretic applications of polynomials with rational coeffi-
cients defined by extremality conditions. In M. Artin and J. Tate, editors, Arithmetic
and Geometry: Papers Dedicated to I.R. Shafarevich on the Occasion of his Sixti-
eth Birthday, volume 1 Arithmetic of Progress in mathematics 35-36, pages 87–105.
Birkhuser, 1983. ISBN 3-376433131-1.

[10] Henri Cohen. A Course in Computational Algebraic Number Theory. Number 138 in
Graduate Texts in Mathematics. Springer, 1993.

156

BIBLIOGRAPHY 157

[11] David Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms. Under-
graduate texts in mathematics. Springer-Verlag, New York, 2nd edition, 1997.

[12] James Callahan et al. Calculus in Context: The Five College Calculus Project. W. H.
Freeman and Company, New York, 1995.

[13] H. R. P. Ferguson and R. W. Forcade. Generalization of the Euclidean algorithm for
real numbers to all dimensions higher than two. Bulletin (New Series) of the American
Mathematical Society, 1(6):912–914, November 1979.

[14] Helaman R. P. Ferguson. A short proof of the existence of vector Euclidean algorithms.
Proceedings of the American Mathematical Society, 97(1):8–10, May 1986.

[15] Helaman R. P. Ferguson. A noninductive GL(n,Z) algorithm that constructs integral
linear relations for n Z-linearly dependent real numbers. Journal of Algorithms, 8:131–
145, 1987.

[16] Helaman R. P. Ferguson, David H. Bailey, and Steve Arno. Analysis of PSLQ, an integer
relation finding algorithm. Mathematics of Computation, 68(225):351–369, January
1999.

[17] Le Baron O. Ferguson. Approximation by Polynomials with Integral Coefficients. Num-
ber 17 in Mathematical Surveys. American Mathematical Society, Providence, Rhode
Island, 1980. ISBN: 0-8218-1517-2.

[18] V. Flamming, G. Rhin, and C. J. Smyth. The integer transfinite diameter of intervals
and totally real algebraic integers. Journal de Theorie des Nombres de Bordeaux, 9:137–
168, 1997.

[19] John B. Fraleigh. A First Course in Abstract Algebra. Addison-Wesley, 5th edition,
1994.

[20] Keith Geddes, Stephen Czapor, and George Labahn. Algorithms for Computer Algebra.
Kluwer Academic Publishers, 1992.

[21] Laurent Habsieger and Bruno Salvy. On integer Chebyshev polynomials. Mathematics
of Computation, 66(218):763–770, April 1997.

[22] J. Hastad, B. Just, J. C. Lagarias, and C. P. Schnorr. Polynomial time algorithms for
finding integer relations among real numbers. SIAM Journal of Computing, 18(5):859–
881, October 1989.

[23] A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász. Factoring polynomials with rational
coefficients. Math. Ann., 261:515–534, 1982.

[24] A. Meichsner. Integer relation algorithms and the recognition of numerical constants.
Master’s thesis, Simon Fraser University, 2001.

BIBLIOGRAPHY 158

[25] H. L. Montgomery. Small polynomials with integral coefficients. In Ten Lectures on
the Interface Between Analytic Number Theory and Harmonic Analysis, volume 84 of
CBMS. Amer. Math. Soc., Providence, R. I., 1994.

[26] I. P. Natanson. Constructive Function Theory, volumes I and II. Ungar, New York,
1964-1965.

[27] Igor E. Pritsker. Small polynomials with integer coefficients. Journal D’Analyse Math-
ematique, 96(1):151–190, December 2005.

[28] E. B. Saff and R. S. Varga. On lacunary incomplete polynomials. Math. Z., 177:297–314,
1981.

[29] C. J. Smyth. Totally positive algebraic integers of small trace. Ann. Inst. Fourrier,
Grenoble, 34(3):1–28, 1984.

[30] Helmuth Späth. Two Dimensional Spline Interpolation Algorithms. A. K. Peters Ltd.,
1995.

[31] B. Vallée. Une Approche Géométrique des Algorithmes de Réduction en Petite Dimen-
sion. PhD thesis, Univ. of Caen, 1986.

[32] Qiang Wu. On the linear independence measure of logarithms of rational numbers.
Mathematics of computation, 72(242):901–911, 2002.

[33] Qiang Wu. A new exceptional polynomial for the integer transfinite diameter of [0, 1].
Journal de Theorie des Nombres de Bordeaux, 15:847–861, 2003.

