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Abstract

The focus of this thesis is to mathematically model and solve the inverse problem

of reconstructing a dynamic medical image. We use a stochastic approach based on

a Markov process to model the problem. We introduce a novel proximal approach

based on a Bregman projection, and we apply it during the Kalman filter algorithm

to ensure positivity and spatial regularization. We do not postulate precise a-priori

information about the underlying dynamics of the physical process. We establish

theoretical properties of our solution, and we test our method for the case of im-

age reconstruction in time-dependent single photon emission computed tomography

(SPECT). Static SPECT reconstruction algorithms assume that the activity does not

vary in time. In many situations, however, physicians are interested in the dynamics

of the underlying physiological process. For example, rate of uptake or wash-out of the

pharmaceutical tracer will provide functional diagnosis information. Thus arises the

need to explore time-varying SPECT which, mathematically, is an ill-posed inverse

problem.

In this thesis, we investigate a projected Kalman reconstruction approach to es-

timate the dynamic activity. We give a brief overview of imaging in general, and

medical imaging in particular. We then describe some important aspects of SPECT

imaging, one of the two main imaging modalities in nuclear medicine.

We formulate a linear state-space model of the problem, and we introduce the

optimal recursive Kalman filter (KF) and smoother. However, the Kalman output
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image is unidentifiable because of the presence of negative components in the activity.

Setting negative values of the activity to zero or taking their absolute value does not

lead to an acceptable solution. We thus incorporate a proximal method to induce a

positive estimator, and then we establish a number of mathematical and statistical

properties of our estimator.

While KF does a temporal smoothing, it does not include a spatial regularization.

We present spatial regularization schemes, and we give a detailed description on how

to implement them. We provide numerical results to corroborate the effectiveness

of our reconstruction method and to confirm our theoretical results. Finally, we

summarize our findings and state directions of present and future work.
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5.5 Hölder Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.6 Segmentation Regularization . . . . . . . . . . . . . . . . . . . 78

6 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3 First Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.4 Positive Kalman . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.5 Tikhonov Regularization . . . . . . . . . . . . . . . . . . . . . 99

6.5.1 Augmented . . . . . . . . . . . . . . . . . . . . . . . 101

6.6 Median Regularization . . . . . . . . . . . . . . . . . . . . . . 103
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Chapter 1

Dynamic Medical Image

Reconstruction

Images and visualization have become increasingly important in many areas of science

and technology. Advances in hardware and software have allowed computerized image

processing to become a standard tool in many scientific applications. Applications

include, although are not restricted to, remote sensing when imaging the earth or

a planet, electrical resistivity imaging as a geophysical method to image the under-

ground, SONAR as a sound navigation ranging imaging, Radar imaging, and medical

imaging [32].

An image lifetime goes through three stages, acquisition, processing, and interpre-

tation. In this thesis we focus on image reconstruction, which belongs to the second

stage, processing. Processing involves contrast enhancing, denoising, deblurring, in-

painting, coregistation, segmentation, or reconstruction of an image. To reconstruct

an image, we first obtain or record data via some form of sensing. We need then to

link the data to the object we aim to image via physical models, usually in a simplified

form. We are often faced with additional challenges such as data scarcity and even

the data available to us may be distorted or tarnished by noise. Mathematical tools

1



CHAPTER 1. DYNAMIC MEDICAL IMAGE RECONSTRUCTION 2

such as Fourier transforms, matrix theory, optimization techniques, probability and

statistics are essential in imaging. Image analysis, for instance, uses mathematical

tools such as geometry of curves and surfaces and bounded variations (BV) functions.

It utilizes also elements from Bayesian statistical inference, wavelets, and iterative

optimization techniques. Image modeling employs tools such as distributions, Lp and

Sobolev Hn(Ω) spaces, Markov and Gibbs random fields and processes, level sets,

PDEs, and Mumford-Shah free boundary [32, 38, 92].

Medicine is an area where image science has supplied many essential tools for

diagnosis, treatment, and intervention to improve health care. Since the discovery

and application of X-Rays by Wilhelm Röntgen (1895), medical imaging has grown

and much improved [37]. This includes multi-dimensional modalities such as X-ray

computed tomography, ultrasonic imaging (1942), and magnetic resonance imaging

or MRI (1973). Different disciplines including physics, engineering computer science,

mathematics, and medicine have contributed to the evolution of medical imaging.

Since the introduction of the Gamma camera by Hal Anger (1957), nuclear medicine

now provides two imaging modalities, positron emission tomography (PET) and single

photon emission computed tomography (SPECT). The word “tomography” is derived

from the Greek τoµoσ (tomos), to cut or slice, and γραφoς (graphy), to write. Some

image modalities focus on revealing structures (X-ray tomography), others on reveal-

ing function (functional MRI or fMRI, PET, SPECT).

1.1 Nuclear Medicine Imaging

Emission tomography and transmission tomography are the two main families of med-

ical imaging. Nuclear medicine belongs to the first family, where the radiation source

is inside the patient, while X-ray belongs to the second family, where the radiation

source is outside the patient. In case of SPECT and PET, a judiciously designed
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chemical tagged with a radioactive tracer is administered to the patient, usually by

intravenous injection. A radioactive tracer, or just radiotracer, is a special molecule

carrying an unstable isotope named radionuclide. It is chosen to amass in a targeted

organ or region of the body, the heart or the brain for instance. The unstable iso-

tope emits γ rays (photons) and an external device, the gamma camera, detects the

radioactivity originating from the patient, see Figure 1.1. As a consequence, nuclear

medicine measures the function or metabolism of a targeted organ or region of the

body [26]. MRI or ultrasound imaging assess functionality of an organ as well, how-

ever, nuclear medicine has the advantage that it provides much higher SNR (signal

to noise ratio) than any other modality [92]. We get a considerable amount of data

in both transmission and emission medical tomography although the dosage to the

patient is limited in both cases, thus decreasing the SNR.

Figure 1.1: Photons radiating from the region of interest in SPECT.

We might have a camera with one or more heads. The camera could be stationary
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or rotating so that we obtain one or several angles of view, respectively. Data from a

rotating camera form what we call a sinogram which is a set of binned data represent-

ing one slice through all the projections, see Figure 6.2 for an example. At any angle

of view, the data is the projection of a 3D activity distribution onto the 2D camera

detectors. In transmission tomography, X-ray tomography for instance, the source’s

position is known so that every collected photon yields exact information about the

projection line, that is the line joining the detection incidence and the source. This

is not the case in emission tomography where the activity distribution, the emitting

source of photons, is the unknown that we aim to solve for. To extract information

about the spatial distribution of the activity, a collimator is used [38]. In SPECT,

the collimator is a thick plate with hexagonal holes. This permits the detection of

only these photons that are almost parallel to the axis of the holes, see Figure 1.1.

Since most photons are absorbed by the collimator, the price is that this operation

hurts the sensitivity. Even with knowledge of the direction of the emitted photons,

information about the depth at which the disintegrations take place is lacking. It is as

if we are asked to determine uniquely two or more numbers given only their sum, thus

the need of a large number of angles of view around the patient. Indeed, the overlap

that we get in the data informs us about the position of the object under scrutiny.

Another difference between X-ray imaging and nuclear medicine imaging is that

we have a smaller amount of detected photons in the latter [92]. Thus noise is a big

player in this process and must be taken care of; hence stochastic modeling becomes

very useful. We cannot predict the exact moment at which the atom will disintegrate,

however we know the decay probability as

dN(t)

dt
= −βN(t)

where β is an isotope dependent decay constant and N(t) is the activity at time t.

This differential equation gives away the expected value as

N(t) = N(t0)e
−β(t−t0)
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Since the process is statistical, we usually measure only an approximation to the true

N(t). The Poisson distribution describes the probability of rare events occurring in a

fixed period of time but having very many opportunities to happen. It is a limiting

case of the binomial distribution. It can be shown that it models well the probability of

detection of photons in SPECT [45, 67, 86] and improves the reconstruction compared

to the assumption of normality of the measurement noise. Let k be a nonnegative

integer and suppose λ is the expected number of occurrences during a given interval

of time, then the probability that there are exactly k detected photons is equal to

pλ(k) =
e−λλk

k!
(1.1.1)

The Gaussian distribution, with the same mean λ and standard deviation
√

λ, ap-

proximates very well this Poissonian probability when λ becomes large (λ ≥ 8 in

practice). However, with small values of λ, the Poissonian distribution is not even

approximately symmetric.

Line integrals through the body could model the data in SPECT. Photons that

travel through the body could be absorbed or could be scattered, thus not reaching

the detector or deviating their trajectory from a straight path, respectively. Line

integrals can not model these phenomena and more sophisticated physical models

are called upon. A stochastic approach is one of them. Instead of calculating line

integrals, we estimate rather the probability that an emitted photon from a certain

location reaches a certain position in the camera taking into consideration factors such

as attenuation, scattering, and blurring [86]. On the basis of the emitted photons that

are registered by the gamma camera, the distribution of the radioactivity within the

body is estimated; this mathematical operation is called reconstruction. A medical

condition could then be indicated by an unusual lack of the radionuclide or more than

usual presence of it in the targeted region.

Interested readers may wish to consult [26, 32, 37, 38, 92] for more about imaging

in general and medical imaging in particular including nuclear medicine, especially
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the SPECT modality, and the mathematics involved in all of these.

1.2 Image Reconstruction

The standard process is to discretize the problem by dividing the region(s) under

inspection into small parts called pixels in 2D or voxels in 3D. If we denote by x

the vector of these pixel/voxel values and by y the projections, then we are basically

solving a large system of linear equations, Cx = y. Here, C is the system matrix,

the mathematical model of how x and y are connected. This system does not need

to be square. We could affiliate to it two square systems, C>Cx = C>y, referred to

as the normal equation, and CC>z = y. Direct methods exist to solve this system

with a square matrix, however, they cannot be applied in our setting [26]. Not only

are they computationally intensive, but a solution might not exist or may not be

unique. In addition, the unknown x has many components, in the thousands and

even in the millions, since it is the vectorization of a discrete approximation of a 2

or 3 dimensional continuous function. Thus direct methods are not widely applied

and, for example, the use of Gauss elimination is precluded. The matrix C for our

application of interest is often if not always a rectangular matrix, with fewer rows than

columns. Thus we might have infinitely many solutions or no solutions at all. We

have only noisy measured data, thereby we do not want to find an exact solution even

if such a solution exists. An exact solution is not useful because it is the consequence

of over-fitting the result to noisy data. We prefer a regularized approximate solution.

The mathematics behind image reconstruction has seen early developments. Radon

published his famous paper in 1917 [80] linking any function f to its sinogram p(s, θ).

It is called the Radon transform operator that associates with each line its line inte-

gral. It saw its first application in computed tomography (CT) in 1970 and later on

in nuclear medicine imaging. The matrix C, in this case, is modeled as a transform
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operator. The projected data can be represented as follows,

g(s, θ) = Rf(r)

where R is the Radon transform operator and f is the activity function, usually used

in a discrete form as a vector x; θ is the position angle of the camera head and s

is the distance between the camera and the object. We need to find f(r) given the

sinogram g(s, θ); that is we must invert the Radon transform as follow

f(r) = R−1{g(s, θ)}

A less used way to solve for f is by direct inversion of the Radon operator using the

Hilbert transform operator [51]. A very important operator in signal processing is the

Fourier transform. There exists a useful relationship between the Fourier transform

and the Radon transform known as central slice theorem or the projection theorem.

In the 2-dimensional case for instance, the projection-slice theorem states that the

Fourier transform of the projection of a 2-dimensional function f(r) onto a line is equal

to a slice through the origin of the 2-dimensional Fourier transform of that function

which is parallel to the projection line. As a consequence f can be reconstructed

by performing first a 1D Fourier transform of g at different angles, followed by a

2D inverse Fourier transform. The Filtered back-projection algorithm (FBP) is the

earliest reconstruction method tailored to medical imaging. It is the most widely used

analytic reconstruction method in tomography and is a numerical implementation of

the inversion formula of the Radon transform. Roughly speaking, the backprojection

step produces a blurred version of f and the filtering step aims to reduce this blur;

some useful references are in [71, 76]. If we had the line integrals for every line, then

we could use that data to determine the activity, with some precision. In practice

though, we have available only finitely many noisy line integral values, so using the

central slice theorem gives us only approximate solutions. Nonetheless, the main

advantage of this approach is its time efficiency.
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In SPECT, the ideal setting is that photons do not interact with matter, however

they do in practice. Take for instance the isotope 99mTc whose energy is 140 keV. Ev-

ery 5 cm of tissue absorbs about 50% of the photons [92]. This information is required

for the matrix C, thus we must correct for this effect in order to apply the central slice

theorem; this is not an obvious task in SPECT. In addition, data suffers significantly

from Poisson noise. Recently, an inversion formula for the attenuated radon transform

was offered by Novikov [77]. Based on this inversion formula, Kuyansky [66] looked

into a SPECT reconstruction.

An alternative to analytical approaches is to use iterative approaches. The maxi-

mum likelihood expectation maximization (MLEM) or just EM algorithm, introduced

in 1982 [86], is the most popular algorithm; it is based on a Bayesian model. It yields

automatically nonnegative solutions, a desirable feature in medical imaging which is

lacking in FBP solutions. This statistical view sees the activity x as the expected

number of emitted photons at the th location during the scanning time. Thereby the

location values can be seen as parameters to be estimated. Thus the expected number

of detected photons at the ıth detector is

E(yı) =
∑



Cıx

However, the actual count yı replaces the expected count E(yı). Hence we do not

seek an exact solution, rather, an approximate one. We have only noisy data and

as the number of iterations increases, we obtain projections closer and closer to this

noisy data. This phenomenon has been observed in the EM algorithm. Thus EM

is only semi-convergent; that is noise is amplified at high iteration numbers [26]. A

remedy to this fallout is to stop the EM algorithm early on in the iteration. Another

remedy is to ameliorate our comparison criterion between the measured data and the

projections of the actual approximate. An improved criterion could be to have the

projections of the actual approximate as close as possible to the measured data and

the reconstructed image not being too noisy. Thereby we might introduce a prior
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knowledge as a constraint into our optimization problem. This operation is called

regularization. The prior, based on our assumption of what the true image should

be like, is usually chosen to penalize noisy images. Maximizing both criteria has

been done for EM and a one-step-late (OSL) algorithm was introduced by Green in

1990 [47].

We can say that there exist mainly two classes of reconstruction methods in tomo-

graphy. The first class corresponds to noniterative methods that includes the ana-

lytical deterministic approaches like convolution techniques; FBP is one of these [6,

61, 76]. The second class corresponds to the iterative approaches that includes the

stochastic methods based on bayesian analysis. Statistical criteria that have been

utilized in devising these methods include the minimum mean squares error (MMSE),

weighted least squares (WLS), maximum entropy (ME), maximum likelihood (ML),

and maximum a posteriori (MAP). The algebraic reconstruction technique (ART)

and multiplicative ART (MART) were first introduced by Gordon et al [46] (1970);

although it was noticed later on that ART is but a particular case of Kaczmarz’s

algorithm [59] introduced earlier (1937). ART and MART are two examples of this

second class of iterative methods. Other iterative approaches have been used such

as Gauss-Seidel, conjugate gradient (CG), EM and OSEM (ordered subsets EM), a

faster variant of EM [54]. Even though CG can be quicker than EM, it is still slow for

the large problems that we face in image reconstruction [99]. It is also harder to find

pre-conditioners for this ill-conditioned image reconstruction problem except when

we deal with extremely structured matrices, which is not usually the case. Time-

consuming convergence of EM has restricted its use clinically although it produces

acceptable reconstructions early in the iterative process. The authors of [65] pro-

posed a Newton and Conjugate Gradient based algorithms for both PET and SPECT

using Bayesian estimators, while Jonhson et al [58] experimented with a nonlinear

optimization method.
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Standard SPECT imaging, where FBP and EM for instance are applied, assumes

the distribution of the radioactive tracer is stationary or with little temporal change.

The typical acquisition time in SPECT is 20 minutes thereby we get inconsistent data

if the image does change with time.

1.3 Dynamic SPECT Image Reconstruction

Nuclear medicine is interested in the dynamics of the human body’s physiological pro-

cesses and biochemical function [92]. It uses a tracer that is showing time-dependent

physiological effects because this time-dependency is of medical interest. Assume a

triple-head camera is used while taking three angular measurements at each time

frame, one measurement per head, and let the region of interest and each camera be

discretized into 643 and 642 locations respectively. This will give us only 3× 642 data

for 643 unknowns. Hence we have a very under-determined problem to solve. The

goal is to reconstruct a sequence of images (movie) from very few data. This is an

inverse problem.

An inverse problem is the task where the values of some model parameters must

be obtained from the observed data. In our setting, an inverse problem consists of

estimating or reconstructing a target function from a limited number of measurements

that are connected to the target function. We do not observe or measure the target

function, a dynamic activity in our case, directly whose values would have made up

a complete set of data. Hence, we have indirect or incomplete data of the function.

In SPECT imaging, the target function is the radioactivity distribution. Standard

SPECT imaging assumes the distribution of the radioactive tracer is stationary. Ana-

lytical reconstruction techniques such as FBP with an eventual 3 DRP (3D reprojec-

tion method) [39] and iterative ones such as OSEM can be used in the static case of

tomography. However, these approaches break down when trying to solve a dynamic
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SPECT problem since they are only suited for a static activity. Subsequently, we

need different reconstruction approaches for non-static images.

Time-varying or dynamic SPECT reconstruction can be mathematically modeled

as an optimization problem with a huge number of variables. A problem is called

well-posed in the sense of Hadamard [15] if it obeys three conditions, the solution of

the problem is unique, exists for any data, and depends continuously on the data. A

problem is ill-posed if it fails to satisfy any of these conditions. Given the recorded

data, the solution of the reconstruction problem may not be unique or may not even

exist in the case of data inconsistency. The problem is then ill-posed. Inverse problems

are also ill-conditioned in practice. As a way to diminish sensitivity to noise and other

modeling errors, we call on regularization. Thus even if the large system Cx = y had

an exact solution, which is unlikely if the data contain noise, this solution is not sought

after since it is a solution that is overfitted to the noisy sinogram y. Regularization

assists in curing an ill-posed problem. This ill-posedness of the reconstruction problem

is further amplified by physical degradation like camera blurring, photon scattering,

or attenuation. The reconstructed image has to be a tradeoff between accuracy and

damping of the noise within it. Thus arises the need for fast and robust algorithms

and regularization can assist to make the solution less sensitive to noise and modeling

errors.

Some authors have used nonlinear least squares method to fit sum of exponentials

in one or two compartments modeling in the context of dynamic SPECT [70, 72, 73].

Instability could happen that results in an inadequate reconstruction; this was men-

tioned by Blondel et al [17]. Meanwhile, estimating the activity straight off from

the observations while mixing spline and least squares was introduced by Reutter

et al [81]. Bauschke et al [13] have offered what they call a dynamic EM approach

by using the activity dynamics as linear constraints. Later on, Celler et al [29] in-

vestigated reconstructing dynamic images assuming monotone activity only. They
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modeled the reconstruction problem as a constrained least squares problem. Activ-

ities are not always monotone in their behavior. Take for example the liver where

activity is increasing, arrives at a peak, and then drops-off.

Research on reconstruction algorithms of time-varying SPECT imaging has been

relatively scarce. Farncombe [40] implemented a time-varying adaptation of the EM

algorithm in the same spirit of the work developed earlier in [13]. To cope with

different behaviors of dixels/doxels (dynamic pixels/voxels) within different regions,

they used a “mask”. The major inconvenience is that obtaining this mask can be

a challenging problem in itself since it might require prior knowledge, or introduces

additional variables. The same could be said about the work of Tanoh [93] who

uses linear constraints for the primal-dual algorithm he proposed to solve the inverse

problem of dynamic SPECT. Some of the existing dynamic SPECT reconstruction

techniques use an optimization black box solver. Limber et al [70] employ the L-

BFGS-B package to solve the least squares reconstruction problem; while Blinder et

al [16] use the KNITRO package [55]. The drawback of these plans of attack is the

lack of flexibility and the difficulty in finding good tuning parameters. Furthermore,

methods as in [13, 16, 17, 29, 40, 72, 93], need an additional pre-processing step to

build their mask. The pre-processing step may fail to estimate accurately the activity

uptake time, and worse, the shape of the TAC, which could be misleading. The

reconstructed TACs might also not be as smooth as they should be, refer for instance

to [16]. As a consequence, these methods are costly in time and prone to introduce

some bias.

1.4 Thesis Overview

The focus of this thesis is to mathematically model and solve the inverse problem of

reconstructing a dynamic medical image. We introduce a Kalman-based algorithm
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which is a stochastic-recursive-iterative hybrid approach while relying on a linear state-

space model of the problem. Based on a stochastic model, we employ a time-recursive

scheme (the Kalman filter) to get a solution. This solution might be unidentifiable,

because it has negative components that appear to have a deleterious effect on other

components. Setting negative values of the activity to zero or taking their absolute

value does not result in an acceptable image. We then use a novel iterative proximal

approach based on a Bregman projection, and we apply it during the Kalman filter al-

gorithm to enforce nonnegativity and add spatial regularization. We do not postulate

precise a-priori information about the underlying dynamics of the physical process.

We establish theoretical properties of our solution, and we test our method for the

case of image reconstruction in SPECT. While KF does a temporal smoothing, it does

not include a spatial regularization. We present spatial regularization schemes, and

we give a detailed description on how to implement them. We apply this approach

numerically to dynamic SPECT reconstructing a digital phantom. Optimization is

at the core of our technique. The Kalman algorithm has been applied to dynamic

SPECT only seldom and not usually for image reconstruction purposes [19, 63].



Chapter 2

Temporal Recursive Filtering

As far as we can reckon from human history, we humans have been filtering things

for almost all the time. Take the basic example of water filtering. A simple way to

filter out undesired contents is by using our hands to take leaves off the top of the

water. Another instance is when we instinctively filter noise from our milieu. It is

fortunate this way, otherwise, our state of being could have been affected drastically

had we cared about the small noises around us. We automatically disregard redun-

dant sounds, such as the one of traffic and noisy neighbors, and we concentrate on

significant sounds, such as the voice of an inspiring speaker for instance. Engineers

have turned to filtering in their pursuit of bettering our life. They filter out noise

from electromagnetic signals to improve radio communications [87]. Thus we receive

clear useful information from corrupted signals.

A recursive filter is a kind of filter which reuses one or more of its outputs as a

feedback input. The Kalman filter is one known example [62]. It has been intro-

duced almost fifty years ago and has its roots in the least squares approach, also

known as regression analysis, that goes as far back as Gauss. He is usually credited

with developing the fundamentals of this analysis in 1795 when he was only 18 years

old, eventhough he did not publish his work until 1809. The idea of least squares

14
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analysis was also independently formulated by the Frenchman Adrien-Marie Legen-

dre in 1805; the term “least squares method” is a direct translation from the French

“méthode des moindres carrés”. Kalman published his famous paper [62] in 1960,

describing a recursive solution to the discrete-data linear filtering problem; however,

Thiele and Swerling had developed a similar algorithm earlier [68]. Since then, there

are literally thousands of articles and dozens of books dealing with this technique;

see [7, 27, 74, 87, 105] and references therein. Kalman filtering (KF) has been applied

in diverse areas such as aerospace, marine navigation, nuclear power plant instru-

mentation, demographic modeling, electrical impedance, manufacturing, and many

others. Recently, KF was applied to time-varying SPECT [63].

KF is an efficient recursive filter which estimates the state of a dynamic system

from a series of incomplete and noisy measurements. The Kalman filter takes ad-

vantage of the dynamics of the activity, which regulate its time evolution, to take

away the effects of noise and errors in order to get a good estimate of the activity

at the present time (filtering), at a future time (prediction), or at a time in the past

(interpolation or smoothing) [7]. KF is out of the ordinary since it is a purely time

domain filter, which is more suitable to our time-varying SPECT case. Most filters,

for example a low-pass filter or Wiener filter, are formulated in the frequency domain

when we need to suppose that we have a stationary or periodic activity distribution;

which is obviously not the case for dynamic SPECT.

KF is a temporal regularizer in its essence; however it does not take care of spatial

regularization, which is a desirable qualitative feature in medical imaging. In addi-

tion, KF may produce negative activity; that is an activity with some or all of its

components taking negative values. This is meaningless in medical imaging. These

are two drawbacks of the KF algorithm. Our aim is to reconstruct an activity using

the KF algorithm while remedying its two shortcomings.
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2.1 Kalman Filter in SPECT

In applications, the most significant class of filters are the shift invariant filters. If

the input is shifted in time and such a filter is implemented then the result is just

shifted in time. Put differently, the response of the filter to an input does not depend

on the time that the input arrives. Boulfelfel et al [19] used a shift-variant KF for

post-reconstruction restoration of SPECT slices. They showed that their approach

performed better than shift-invariant KF, nonetheless they did not use KF to recon-

struct the activity. Artemiev et al [9] established a general framework to apply KF

to solve for any recursive tomographic image. To speed up the process and overcome

the storage restriction, they introduced a pseudo KF. They were not concerned, for

instance, with the reconstructed activity having a physical meaning, that is being

nonnegative. The authors in [10, 60, 102] use an augmented system in implementing

Tikhonov spatial regularization into KF. The method is an extension of Tikhonov in

which the original observation model is replaced by an augmented one. This approach

is expensive memory and time wise.

Lately, Kervinen et al. [63] used KF in dynamic SPECT, but they did not include

spatial regularization. For the nonnegativity, they employed the Fast Non-Negativity-

constrained Least Squares (FNNLS) developed earlier by Bro et al [22] in 1998. In

the original article, Bro et al showed that their algorithm is 5 to 20 times faster than

the NNLS (Non-Negativity-constrained Least Squares), first introduced by Lawson et

al [69] in 1974. FNNLS uses an active-set-method optimization technique based on

line search; which is known to be time consuming because of the Hessian and function

evaluations. Van Benthem et al [100] improved FNNLS later on in 2004 via rearrang-

ing calculations, thus introducing the Fast Combinatorial NNLS (FC-NNLS). Kim et

al [64] combine the strengths of gradient projection with a non-diagonal gradient scal-

ing scheme to come up with a new algorithm in 2005, a Projected Quasi-Newton for

the NNLS (PQN-NNLS). They showed that PQN-NNLS could outperform FNNLS
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numerically hundreds times in certain cases. Unfortunately, their tests were mostly

done on over-determined problems. To the best knowledge of the author, nothing

is known regarding the performance of PQN-NNLS in the case of under-determined

systems.

2.2 Stochastic Modeling

Notation. The following notation is used throughout the paper. We denote by Rp

and Rp
+ the p-dimensional Euclidean space and the nonnegative orthant, respectively.

The set of all n × p matrices with real entries is denoted by Rn×p. I denotes the

identity matrix; its size is always clear from the context. The operator Tr(B) denotes

the trace of the matrix B, which is the sum of its diagonal components. For a vector

u, the Euclidean norm is denoted by ‖·‖ and u> denotes the transpose vector. The ıth

component of a vector u ∈ Rp is denoted by uı. Let x and y be two random vectors;

E(x) and E(x|y) denote the expectation of x and the conditional expectation of x

given y. The conditional expectation of xk given y1, · · · , ys and its variance/covariance

matrix E[(xk − x̂k|s)(xk − x̂k|s)>] are denoted x̂k|s = E(xk|y1, · · · , ys) and Pk|s. We

also refer to x̂k|k as simply x̂k. We denote by int C the interior of the set C.

2.2.1 Problem setting

We consider a physiological process where the distribution of the radioactive tracer

in an organ or a specific region is time dependent. This region is divided into small

parts called dynamic voxels in 3D or doxels and dynamic pixels in 2D or dixels; we

also refer to them as locations. A SPECT camera, that could have one, two or three

heads, is used to register the number of photons emitted by the patient. We assume

three heads in our simulation, however, our method does not depend on the number

of heads. The camera rotates around the patient through 180◦ with S stops during
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a total acquisition time T , usually 20 minutes. The surface of each camera’s head is

composed of a set of detectors/bins. We assume that the activity is constant during

the time interval of a single projection/stop, but is allowed to vary in time from one

projection to the next one over the whole acquisition period. The distribution of the

activity in the organ is denoted by a vector x(t) whose dimension is equal to the total

number of doxels/dixels. The data collected by the camera detectors at time t is

denoted by a vector y(t) whose dimension is equal to the total number of detectors.

The vector y(t) is also called measurement, projection, or observation vector. The

activity in the organ is not directly observable and its dynamics is unknown. The

goal is to reconstruct the emission object x(t) from the measured data y(t).

Let tk, k = 1, . . . , S, be a sequence of acquisition times, N the total number of

doxels/dixels and M the total number of bins. We denote by xk ∈ RN
+ and yk ∈ RM

+

the spatial distribution of the activity and the measured data at the kth instant of

time. The observations y1, y2 . . . , yS are independent random vectors. Furthermore,

each observation yk depends on xk only. In previous works on dynamic tomographic

imaging [8, 63], a linear model is used to describe both the evolution of the activity

and the link between the activity and data measurements. We describe next an

optimal linear real-time reconstruction of dynamic images.

A stochastic process with the Markov property is called a Markov chain. Markov

property means that the future depends only on the present since it is assumed that

all past information is already fully captured in the present state. Hence future states

are achieved from the present state via a probabilistic process. A random walk is a

well known instance of a Markov process. It is related to a diffusion model which is

the net motion of a substance from an area of high concentration to an area of low

concentration [56]. The flow of a radioactivity could be seen as a diffusion model [81].

Although Bayes has proved a special case of Bayes’ theorem more than 250 years
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ago, the term Bayesian was coined only in the 1950s to refer to evidential interpreta-

tion of probability. This is the idea that probability should be viewed as a subjective

degree of belief in a proposition in contrast to the frequentist view of the probability

theory. To start off, we suppose that the image detection process is linear and in-

cludes additive noise. In addition, the radioactivity image is a random vector discrete

in space and time. Therefore, the evolution model can be interpreted as a Markovian

process. The Bayesian approach justifies the rationale for the Markovian stochastic

estimation theory. This strategy results in Kalman filter based reconstruction in the

time domain. We proceed as follows.

The activities sequence x1, x2 . . . , xS satisfy the Markov property with unknown

time varying transition/evolution matrix Ak ∈ RN×N . That is

xk = Akxk−1 + µk (2.2.1)

where µk is the error random vector in modeling the transition from xk−1 to xk with

E(µk) zero and covariance matrix Qk. The argument we develop here is also valid for

a homogeneous Markov sequence where the transition matrix is time invariant. Let

cı(k) be the probability that an emission from doxel/dixel ı during the acquisition

time tk will be detected in bin . We call the projection or observation matrix the

time varying matrix Ck = [cı(k)]. Finding a suitable system matrix Ck is an ongoing

research topic [57] and some algorithms have been proposed [101]. We assume that

this system matrix Ck is known. The observation and activity vectors are related by

the following

yk = Ckxk + νk (2.2.2)

where νk is the noise vector in recording the data with E(νk) zero and covariance ma-

trix Rk. In practice, a high noise level makes the problem very challenging if no prior

information is available. Each acquisition time constitutes a separate reconstruction

problem. The sequential nature of the measurement is suitable for a recursive recon-

struction method such as Kalman filtering. The sequence of activities xk is a hidden
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Markov chain (HMC) since it is observed through yk using (2.2.2). We assume that

we deal with white noise. Otherwise, our model should go first through the step of

a pre-whitening process [49]. White noise, like white light, is a random signal with a

flat power spectral density of all frequencies that constitute it.

2.3 Kalman Filtering

The Kalman filter is a Bayesian model that propagates the first and second moment

of the conditional probability, namely the mean and the variance/covariance. We are

solving for the vector activity xk at every time k. We need to find a vector estimate

x̂k which will be x̂k|k = E(xk). The estimation error at the kth sampling instant is

computed via the covariance matrix Pk|k = E[(xk − x̂k|k)(xk − x̂k|k)>]. The Kalman

filter is an optimal estimator in the least square sense. We need then to find each x̂k|k

that minimizes Tr(Pk|k), that is the expected squared error, or E[(xk − x̂k|k)>(xk −
x̂k|k)], using a subset of the projections y1, · · · , yk, where k indicates the index of the

last available measurement.

We apply the Kalman filter algorithm to recursively find x̂k, which generates the

conditional expectation x̂k|k. With the linear state-space equations (2.2.1) and (2.2.2),

the Kalman filter propagates the activity estimate and its covariance. It proceeds in

three steps, predicting, correcting, and smoothing ; see [7, 62, 87, 105] and references

therein. The first two steps, predicting and correcting, are usually referred to in the

literature as the filtering portion of the algorithm.

Predicting Step Assume we have an initial estimate activity x̂0|0 and its covariance

matrix P0|0. For k = 1, . . . , S, compute the following steps that yield the predicted
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variance Pk|k−1 and activity x̂k|k−1,

Pk|k−1 = AkPk−1|k−1A
>
k + Qk (2.3.1)

x̂k|k−1 = Akx̂k−1|k−1 (2.3.2)

where Ak is the transition/evolution matrix at time k, refer to equation 2.2.1. Recall

that µk is the error random vector in modeling the transition from xk−1 to xk with

covariance matrix Qk.

Correcting Step Then compute the following correcting steps that yield the filtered

variance Pk|k and activity x̂k|k,

Kk = Pk|k−1C
>
k (CkPk|k−1C

>
k + Rk)

−1 (2.3.3)

Pk|k = (I −KkCk)Pk|k−1(I −KkCk)
> + KkRkK

>
k (2.3.4)

x̂k|k = x̂k|k−1 + Kk(yk − Ckx̂k|k−1) (2.3.5)

where Kk is the Kalman gain. Recall that Ck is the projection or observation matrix

and νk is the noise vector in recording the data with covariance matrix Rk, refer to

equation 2.2.2.

Smoothing Step The recursive algorithm that calculates the estimate x̂k|S, where

S denotes the total number of measurements, is called the Kalman smoother. We

refer to x̂k|S as x̂k too. To get smoothed values, run the following backward recursion

for k = S − 1, · · · , 1:

Jk = Pk|kA
>
k P−1

k+1|k (2.3.6)

Pk|S = Pk|k + Jk(Pk+1|S − Pk+1|k)J
>
k (2.3.7)

x̂k|S = x̂k|k + Jk(x̂k+1|S − x̂k+1|k) (2.3.8)

where Jk is called the backward gain. This recursive procedure in KF goes in time

from the evolution/transition matrix Ak, the variance matrix Qk, and the calculated
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matrix Pk−1|k−1 to predict the covariance Pk|k−1. The Kalman gain Kk is formed

afterwards which helps to update the estimated activity x̂k|k, and the covariance

matrix Pk|k. These in turn will contribute to perform the next step in the recursion.

The difference yk − Ckx̂k|k−1 in (2.3.5) is called the measurement innovation or the

residual [105]; where Ckx̂k|k−1 is compared to the observation yk. If this difference is

zero the two will be in complete agreement; which means that our predicted estimated

activity will be the corrected/filtered one as well.

On one hand, as Rk the observation covariance error draws near zero, think then

of Kalman gain Kk as drawing near C−1
k assuming that this inverse has some meaning.

Hence the corrected estimated activity x̂k|k will weigh the innovation, that is the ob-

servation, more heavily. On the other hand, as the predicted covariance matrix Pk|k−1

nears zero, the gain Kk nears zero and we will then weigh the innovation less heavily.

Said otherwise, we remark that the weighting by the gain matrix Kk is that when we

have high confidence in our measurements, that is the covariance Rk approaches zero,

the present data yk is “believed” more while the predicted estimated x̂k|k−1 is trusted

less. By the same token, as we have high confidence in our evolution model, thus

our covariance error Pk|k−1 approaches zero, the present data yk is trusted less and

emphasis is put more on the predicted estimated activity x̂k|k−1. The most impressive

feature is that the KF technique is an on-line recursive algorithm in lieu of an off-line

batch algorithm [105]. Hence, there is no need to store the past measurements in

order to estimate the present activity. As a consequence, we deal with smaller size

problems at each time recursion.

KF performs the conditional probability density propagation for our problem in

which the system can be described through a linear model and in which system

and measurement noises are white and Gaussian. The noise in dynamic SPECT is

Poissonian (equation 1.1.1), however, the Poisson distribution is approximated by a

Gaussian distribution when the number of detected photons goes to infinity, in practice
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a number above 8, refer to section 1.1. Under these conditions, the mean, mode,

median, and virtually any reasonable choice for an “optimal” estimate all coincide,

including the maximum likelihood estimate; so there is in fact a unique “best” estimate

of the value of activity distribution [7, 27, 74, 87, 105]. Under these three restrictions,

the KF can be shown to be the best filter of any imaginable form [87, 105]. Some of

the restrictions can be removed, granting a qualified optimal filter. For example, if the

Gaussian assumption is removed, the KF can be shown to be the best (minimum error

variance) filter out of the class of linear unbiased filters. That is, it is the BLUE (best

linear unbiased estimator). These three assumptions are reasonable for our dynamic

SPECT application, even though being Gaussian is not a must.

Derivation of the Kalman algorithm equations can be found in [7, 87] where op-

timization is yet another tool to obtain them. We wish to estimate the unknown xk

in both equations 2.2.1 and 2.2.2. First, the estimate x̂k must be a linear function of

the data; that is it has to be of the form x̂k = H>
k yk where the matrix Hk is to be

found. Second, the estimate x̂k is required to be unbiased or E(x̂k) = E(xk). Third,

the matrix Hk has to be chosen as to minimize E(|x̂k − xk|2).

2.4 Drawbacks of the Kalman Filter

The Kalman algorithm has some drawbacks that we aim to correct for. First, the

Kalman filter and smoother algorithm does not guarantee nonnegativity of the recon-

structed activity. The update equations for x̂ in (2.3.5) at the correcting step and

in (2.3.8) at the smoothing step can not guarantee the nonnegativity of x̂. Both equa-

tions involve inversion of a matrix and subtraction of vectors, which may introduce

negative elements. This is not feasible in nuclear medicine and also gives unidentifi-

able images. Setting negative values of the reconstructed activity to zero or taking the

absolute value does not give an acceptable solution. Second, KF is based on temporal
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assumptions on the object only. In particular, the smoothing of the object is done in

the temporal domain. Thus, it is a very efficient temporal regularization technique for

recovering an object. Since the problem we face is also spatially ill-posed, the spatial

characteristics are poorly reconstructed by the Kalman filter. Another drawback of

KF is the computational complexity. The cost of the algorithm grows like N3, refer

to section 6.9.



Chapter 3

Generalized Proximal Method

We require a nonnegative approximate solution x? while solving an inverse problem

having the large real system Cx = y. We offer to use a projected temporal recursive

filter. We saw in chapter 2 that the Kalman filter, a temporal recursive filter, pro-

duced the solution x̂ which might be nonpositive. Thus we want to find the weighted

projection x? = projWRN
+
(x̂) with respect to a certain symmetric positive definite matrix

W . Methods such as NNLS [69] and FNNLS [22] could be used to find the projection

and we have covered their shortcomings in section 2.1. We propose a proximal method

using a Bregman generalized distance based on a Bregman-Legendre function.

In 1967, Bregman [21] introduced what are now called Bregman projections with

respect to generalized distances such as Kullback-Leibler distortion. We purport here

a new alternative, to enforce the nonnegativity/positivity, using a proximal approach

via an entropy distortion, which is an instance of the generalized Bregman distance.

This approach not only achieves the desired nonnegativity and is very simple to im-

plement, but it is also easily extendable to implement spatial regularization. Our

method draws from convex optimization.

25
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3.1 Convex Optimization

Optimization means seeking a minimum or a maximum of a real-valued function of

one or several variables. When we put some restrictions on the acceptable solutions,

such as being nonnegative, we have constrained optimization. Solving an optimization

problem algebraically is usually very hard and we resort to iterative techniques. Con-

vex optimization is a sub-class of optimization where interesting things take place. In

general if a function has a minimum, this minimum is only a local minimum and not

necessarily a global one. Yet for convex functions, a local minimum is also a global

one. Looking for a global maximum of a concave downwards function f is equivalent

to finding the global minimum of the concave upwards (convex) function -f .

Convex optimization plays a significant role in many applications, including ours.

As in the case of general functions, we might have some constraints on the accept-

able solutions and we usually use convex sets to describe the constraints. For more

about convex optimization refer to Rockafellar’s classic [82], where the subsequent

fundamental definitions and theorems can be found.

3.2 Basic Notions

Definition 3.1.

(a) A function f : R→ R is said to be convex if for each pair a and b with a 6= b, the

chord with end points (a, f(a)) and (b, f(b)) is on or above the graph of f(x).

That is ∀a, b ∈ R and λ ∈ R with 0 < λ < 1

f(λa + (1− λ)b) ≤ λf(a) + (1− λ)f(b)

(b) f is said to be strictly convex if it is convex and the strict inequality holds above

whenever a 6= b.
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Figure 3.1: Non convex function.
Figure 3.2: Non smooth convex func-
tion.

Figure 3.3: Non strictly convex func-
tion.

Figure 3.4: Strictly convex smooth
function.
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Figure 3.1 shows an example of a non convex function. It is evidenced by a chord,

linking two points on the graph, that is below the graph of the function. The function

f(x) = x4 − 2x2 + 1 is a simple example. Looking for a global minimum of a non

convex function f is not an easy task. Thus we could work with a convex version

of f called co(f) or the convex hull of f . The advantage of working with co(f) is

that the global minimum of co(f) is the same as the one of f , meanwhile co(f) has

the interesting property of being convex, refer to figure 3.1. Figure 3.2 exhibits a

non differentiable convex function; f(x) = |x| is an example. Figure 3.3 exhibits a

non strictly convex function. Finally, figure 3.4 shows a strictly convex and smooth

function; f(x) = x2 is a very common example. The last class of functions proves to

be useful for the generalized Bregman distances which is covered in the next section.

We have a similar definition of a convex function of several variables.

Definition 3.2.

(a) The function f : Rm → R is said to be convex if, for each pair of vectors a and b

and for every λ such as 0 < λ < 1, we have

f(λa + (1− λ)b) ≤ λf(a) + (1− λ)f(b)

(b) Let C ⊂ Rm. C is said to be convex if [a, b] ⊂ C whenever the vectors a, b ∈ C.

That is ∀λ ∈ [0, 1], ∀a, b ∈ C, λa + (1− λ)b ∈ C

Figure 3.5 shows an example of a convex set in R2 where it is evidenced by a chord,

joining two points, as entirely belonging to the set. Figure 3.6 shows an example of a

non-convex set where a chord is not entirely in the set. Constraints on x, such as when

we aim to enforce nonnegativity or when we desire a regularized solution, often mean

we impose on x to belong to certain convex sets. Measured data or incorporating

some a priori knowledge about x usually contribute to defining these sets.

Another useful property in convex optimization is the notion of conjugate func-

tion [96].
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Theorem 3.1. A function f : R → R is convex if and only if there is a function

f ? : R→ R ∪ {+∞} such that ∀x ∈ R

f(x) = sup
x?∈R

[x?x− f ?(x?)]

The function f ? is called the conjugate of f . Hence f and f ? form a pair of

functions such that for all x, x? ∈ R

f(x) + f ?(x?) ≥ xx?

Figure 3.7 exhibits a geometrical interpretation of a conjugate function. For a convex

function f , a line k with slope x? and intercept -s dwells nowhere above its graph is

equivalent to saying that for any z ∈ R, x?z − s ≤ f(z) hence s ≥ x?z − f(z). The

lowest number s, which fulfills this inequality, is supz∈R[x
?z− f(z)] = f ?(x?). Moving

k upwards as far as possible, we get a line l(x?) that crosses the graph of f and whose

intercept is -f ?(x?). The graph of f is the envelope of the lines l(x?) (x? ∈ R) is

equivalent to saying f is convex [96].

The conjugate function associated with a function of several variables f is the

function

f ?(x?) = sup
z

(〈x?, z〉 − f(z))

Figure 3.5: Convex set. Figure 3.6: Non convex set.
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where 〈. , .〉 is the usual scalar product between two vectors of the same dimension.

We have a similar inequality as in the case of one dimension

f(x) + f ?(x?) ≥ 〈x, x?〉

This is called Fenchel’s inequality.

Figure 3.7: Conjugate function.

3.3 Bregman Distance

In order to define a Bregman distance, we need first additional definitions [82].



CHAPTER 3. GENERALIZED PROXIMAL METHOD 31

Definition 3.3.

(a) A function f : S ⊆ Rm → [−∞, +∞] is convex if and only if its epigraph is

convex. A convex function f : S ⊆ Rm → [−∞, +∞] is proper if there is no

z ∈ S with f(z) = −∞ and if there is some z ∈ S with f(z) < +∞.

(b) The essential domain of f is ∆f = {z ∈ S | f(z) < +∞}.

(c) A proper convex function f is closed if it is lower semi-continuous, that is if

f(z) = lim inf f(y), as y → z, ∀z ∈ S. Recall that

lim inf
y→z

f(y) = inf
ε>0

(sup{f(t) : t ∈ S ∩B(z; ε)− {z}})

where B(z; ε) denotes the metric ball of radius ε and centre z.

(d) A proper convex function f is said to be essentially smooth if

1. the interior of its domain int ∆f 6= ∅
2. f is differentiable on int ∆f , and

3. lim`→+∞ ‖∇f(z`)‖ = +∞ whenever z` is a sequence in int ∆f converging

to a point on the boundary of int ∆f .

(e) The subdifferential of a function f at z is the set

∂f(z) = {z?|〈z?, x− z〉 ≤ f(x)− f(z),∀x}

The domain of ∂f is the set dom ∂f = {z|∂f(z) 6= ∅}

(f) A closed proper convex function f is essentially strictly convex if f is strictly

convex on every convex subset of dom ∂f .

If f is differentiable at z, then the subdifferential is reduced to one element, namely

the gradient

∂f(z) = {∇f(z)} (3.3.1)

We are ready to introduce the Bregman distance [31],
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Definition 3.4. Let f be a closed proper convex function that is differentiable on

int ∆f 6= ∅. For all x ∈ ∆f and y ∈ int ∆f , the corresponding Bregman distance

Df (x, y) is defined as follows

Df (x, y) = f(x)− f(y)− 〈∇f(y), x− y〉 (3.3.2)

Figure 3.8: Bregman distance.

It is an easy exercise to check that Df (x, y) ≥ 0 is always true since a con-

vex function is always on or above its tangents. Indeed, the minimum require-

ment for a distance is to be nonnegative. We could also have two vectors x and

y with an infinite distance, that is Df (x, y) = +∞. In order to get the deduction

Df (x, y) = 0 implies x = y, it suffices to have f being essentially strictly convex.

Figure 3.8 shows the case of a real-valued function f of a single real variable.

The Bregman distance associated with f is the vertical length between f(x) and

the tangent of f at y. The simplest and most widely utilized Bregman distance is
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associated with the following function

f(x) = 〈x, x〉

so that (3.3.2) becomes

Df (x, y) = 〈x, x〉 − 〈y, y〉 − 〈x− y, 2y〉 = ‖x− y‖2

Hence we recover the usual Euclidian squared distance. We have all the ingredients

to introduce the Bregman projection onto closed convex sets. For interested readers,

a good reference is [31].

3.4 Bregman Projection

We associate to the Euclidian distance, a particular case of Bregman distance, the

projection of a point or a vector onto a convex set referred to as the orthogonal projec-

tion. It is the shortest distance between the point and the convex set. The Bregman

distance, which could be seen as the generalized distance, implies a generalized pro-

jection onto a convex set [25].

Definition 3.5. Let C 6= ∅ be a closed convex set such that C ∩ int ∆f 6= ∅. Choose

x ∈ int ∆f . The Bregman projection of x onto C relatively to f is,

projfC(x) = arg min
z∈C∩∆f

Df (z, x)

It remains to prove that the above projection is well defined. This is where convex

optimization plays an important role. It is useful for finding the projection into

convex sets to guarantee feasibility where we commonly work with the argument of

the function instead of the value of its minimum. We summarize here the discussion

given in [11, 25]. If f is essentially smooth, then projfC(x) exists. If f is strictly convex

on ∆f , then projfC(x) is unique. Some restrictions on f help in uniquely finding this

projection; more convex optimization notions are then in order [82].
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Definition 3.6. A closed convex proper function f is Legendre, or a convex function

of Legendre type, if

1. int ∆f is nonempty

2. f is essentially smooth, and

3. f is essentially strictly convex.

It can be shown that [82],

Theorem 3.2. If f is a convex function of Legendre type then

∇f : int ∆f → int ∆f?

is a bijection, continuous in both directions, and (∇f)−1 = ∇f ?, where the function

f ? is the conjugate of f .

It entails that if int ∆f? = Rm then the range of ∇f is Rm and the equation

∇f(x) = z can be uniquely solved for every z in Rm.

Definition 3.7. A function f is super-coercive or 1-coercive if

lim
‖x‖→+∞

f(x)

‖x‖ = +∞

Figure 3.9: Orthogonal projection. Figure 3.10: Bregman projection.
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A Legendre function is super-coercive is equivalent to saying int ∆f? = Rm. The

main consequence is that if f is Legendre, then projfC(x) is uniquely defined. Moreover,

this projection is in int ∆f . This is cited in [31] as zone consistency.

Figure 3.9 shows the usual case, in R2, of the orthogonal projection and figure 3.10

the one of the generalized projection. The orthogonal projection projC , that is using

the euclidian distance, on a closed convex set C is a nonlinear operator unless C is a

subspace. It has the interesting property under the form of an inequality

‖x− projC(x)‖ ≤ ‖x− z‖ ∀ z ∈ C

This inequality says that the shortest path from a point x to the set C is obtained

by projecting x onto C and is a logical consequence of the generalized Pythagorean

theorem

‖x− projfC(x)‖2 + ‖ projfC(x)− z‖2 ≤ ‖x− z‖2

for all z in C. When f is Legendre we obtain an equivalent result when we think of

a generalized distance rather as a squared than a squared root distance [25, 31]

Df (z, projfC(x)) + Df (projfC(x), x) ≤ Df (z, x)

for all z in C. This is called Bregman’s Inequality. Thus we have

Df (projfC(x), x) ≤ Df (z, x) ∀z ∈ C

It means that projfC(x) is the closest point, in the closed convex set C, to the point x

when using the generalized distance Df with respect to the Legendre function f . These

generalized projections are the basis of proximal approaches in convex optimization.

3.5 Euclidian Proximal Approach

Convex optimization is very useful for finding the projection onto a convex set to en-

sure feasibility. Recall that we are looking for a nonnegative solution to the Kalman
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filter output x̂. Thus x? = projRN
+

x̂ is the best approximation in RN
+ to x̂, i.e. the

point of RN
+ nearest to x̂. Imposing the nonnegativity on the solution implies we are

seeking a certain regularized solution. Convex optimization is also useful for regular-

ization of optimization problems, thereby we have a family of optimization approaches

called proximal minimization algorithms. In the first place, these algorithms employed

Euclidian distances then later on were generalized using Bregman distances.

Jean-Jacques Moreau (?1923) is one of the founding fathers of the convex analy-

sis discipline together with Hermann Minkowski (1864-1909), Werner Fenchel (1905-

1988), and Tyrrell Rockafellar (?1935). Moreau first introduced what has become

known as Moreau’s proximity operator when he published in 1963 a manuscript in

French [75], “Inf-convolution des fonctions numériques sur un espace vectoriel”. When

we are interested in minimizing a proper closed convex function ϕ : Rm → R∪{+∞},
we use techniques such as gradient descent when ϕ is differentiable. However, when

ϕ is not, the problem is harder. Moreau’s approach augments the function ϕ in order

to make it differentiable, thus we have a Moreau’s operator working as an envelope of

the function ϕ.

envϕ(x) = inf
z

(
ϕ(z) +

1

2
‖z − x‖2

)
(3.5.1)

We have a proof in [82] that the infimum in (3.5.1) is uniquely achieved at a point

referred to as z = proxϕ(x). Note that the function envϕ is differentiable where

∇ envϕ(x) = x − proxϕ(x) [26]. Hence, the function ϕ achieves its global minimum

at z = proxϕ(x). The differentiable convex envelope envϕ of ϕ can be seen as the

“infimal convolution” of ϕ(z) and 1
2
‖z‖2 [52] and both minimizers of envϕ and ϕ are

the same. This is due to Morreau’s theorem [82] which generalizes the decomposition

of vectors in Rm relatively to a subspace.
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3.6 Generalized Proximal Operators

Several authors, Morreau among them, took on this idea of proximity operators and

developed it further. We could for instance take the fraction
1

2
in 3.5.1 and replace it

with
1

α
, where we may vary the parameter α in the open real interval ]0, +∞[; this was

done and is referred to as Moreau-Yosida regularization. Moreover, when we take α as

a large number, we are then solving for a Tikhonov regularized problem where we are

looking for a minimum norm solution. Other authors replaced the Euclidian distance

with a generalized one [31, 95]. Hence they were interested in solving problems of the

form

Ef (ϕ, x) = arg min
z

(ϕ(z) + Df (z, x))

The above problem is well defined and admits a unique solution when we impose some

restrictions on ϕ and f . Bauschke et al [12] characterize this solution and associate to

it a left proximal operator ←−−prox. The operator Ef (ϕ, x) has also properties similar to

Moreau’s proximity operator. More about proximal approaches can be found in [25]

and references therein.

3.7 Nonnegative Minimization Method

We analyze a numerical algorithm to compute a nonnegative minimum of the convex

function

ϕ(x) =
1

2
‖x̂− x‖2

W + αψ(x) (3.7.1)

In the case where ψ = 0, many authors [22, 63, 69, 100] have proposed nonnegative

minimization techniques using active set method, Newton method or quasi-Newton

method involving a line search strategy which is computationally expensive. Kervi-

nen et al [63] use Fast Non-Negativity-Constrained Least Squares (FNNLS) developed

earlier by Bro et al [22]. Recently, Kim et al [64] combined the strengths of gradient
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projection with a non-diagonal gradient scaling scheme to come up with a new algo-

rithm, a Projected Quasi-Newton for the NNLS (PQN-NNLS). We propose here an

alternative based on a proximal approach.

Let us start with the following unconstrained optimization problem

min
x∈RN

ϕ(x) (3.7.2)

The convex optimization problem (3.7.2) has a unique minimizer that we denote by

x? = proxα
ψ(x̂); that is

proxα
ψ(x̂) = arg min

x∈RN

(
1

2
‖x̂− x‖2

W + αψ(x)

)

If W = I, proxα
ψ is the Moreau’s proximity operator [34] of index α ∈ ]0, +∞[ of

the function ψ. These operators generalize the projection onto convex sets. In the

particular case when ψ is the indicator function of a convex set C, ψ(v) = χC(v)

where it is zero if v is in the closed convex set C and +∞ otherwise, proxα
ψ is the

weighted projection of x̂ onto the set C and the orthogonal one if W = I. When the

set C is the nonnegative orthant RN
+ , choosing x̂+ = max{x̂, 0} as a projection of x̂

may give a good result and this is commonly used [15]. However, due to the weighted

norm, such approach is not recommended.

Our approach could be referred to as a generalized proximal method. Instead

of the original minimization problem, we are rather solving an augmented problem

via an iterative algorithm. The name iterative comes from the Latin word iterum,

which means “again”. In ancient times, Archimedes (c.250 BC) was using an iterative

procedure when he was getting better approximations of the lower and upper bounds

of the area of a circle by repeating the process of inscribing and circumscribing the

circle with more regular polygons. The idea behind iterative algorithms is to find a

solution by consecutive estimates. The limit of these successive approximates would

converge, in the best case, to the solution we desire.
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The generalized proximal method is an iterative approach for minimizing the con-

vex and differentiable function ϕ over the closure of the essential domain ∆f of a

second convex function f : R+
N → R while we presume that such a minimizer x?

exists. We first augment the function ϕ(x) with a generalized distance with respect

to a function h, which has the same domain as f

Φ(x, z) = ϕ(x) +
1

γ
Dh(x, z) (3.7.3)

where γ > 0, and its significance would be seen shortly. When ψ = 0 in equation 3.7.1,

we are just enforcing the nonnegativity, otherwise, we are asking for a spatial regu-

larized nonnegative solution with α as a regularization parameter. From now on, we

set C = RN
+ , the nonnegative orthant. We are then more interested in the convex set

int C than in h itself. This leads us to limit our choices of h to functions that have

int C as their essential domain.

We start first with x0 ∈ int C. Having found the iterate x`, we are then concerned

with the following minimization problem

x`+1 = arg min
x

Φ(x, x`) (3.7.4)

We could characterize the next iterate x`+1 by taking the sub-gradient of the right

side of (3.7.3)

∂h(x`)− ∂h(x`+1) ∈ γ∂ϕ(x`+1)

We are interested more in differentiable functions ϕ in (3.7.1) and using the equal-

ity (3.3.1) we get

∇h(x`+1) = ∇h(x`)− γ∇ϕ(x`+1) (3.7.5)

It is not apparent how we could isolate x`+1 using (3.7.5). We are not interested in

any specific function h, we are rather interested in its domain C. The idea is to let

h = f − γϕ. The function f is differentiable and has the same domain C as h, but

has the advantage in making calculating x`+1 more obvious. With this choice of f ,
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equation 3.7.5 reduces to the following algorithm

∇f(x`+1) = ∇f(x`)− γ∇ϕ(x`) (3.7.6)

where the parameter γ > 0 is chosen so that the function h(x) = f(x) − γϕ(x) is

convex. C. Byrne [24] provides a similar algorithm when ϕ is a sum of convex functions

with the particular case of γ = 1 when ϕ is a single convex function. Both functions f

and ϕ, in the examples he took to illustrate his point, belong to the Kullback-Leibler

divergence family; refer to section 3.9 about this family of functions. Our functions f

and ϕ are, however, a mixture of a quadratic and a Kullback-Leibler, respectively. The

function f −ϕ will never be convex globally. Thus the introduction of the parameter

γ to make h = f − γϕ a convex function at least locally. C. Byrne [24] established

a convergence theorem of his algorithm, which he refers to as IPA (interior point

algorithm), by restricting the function f to the class of Bregman-Legendre functions.

3.8 Bregman-Legendre Functions

Censor and Lent [30] introduced Bregman functions in 1981 inspired by the key paper

of Bregman [21] (1967). Neither a Bregman function alone nor a Legendre function

alone possess the necessary requirements to establish convergence theorems while a

function which is both Bregman and Legendre is too restrictive. Later on in 1995,

Bauschke and Borwein [11] studied the Bregman projection method within the pow-

erful framework of convex analysis. New perspectives open up as the rich class of

Bregman-Legendre functions is brought in. Those functions are Legendre with some

extra, but not to the extent of being Bregman as well. It is an in-between class of

functions; it is included in the class of Legendre functions and it includes the class of

Bregman and Legendre functions.

Definition 3.8. A Legendre function f is a Bregman-Legendre function if:
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BL1: ∀x ∈ ∆f , Df (x, ·) is coercive

BL2: if x ∈ ∆f and x /∈ int ∆f , ∀`, y` ∈ int ∆f with y` → y ∈ bd(∆f ) (boundary of

∆f) and if Df (x, y`) remains bounded, then Df (y, y`) → 0, so that y ∈ ∆f

BL3: if x`, y` ∈ int ∆f , with x` → x, y` → y, x, y ∈ ∆f but /∈ int ∆f , and if

Df (x
`, y`) → 0 then x = y

Bregman-Legendre functions provide the proper context for the discussion of Breg-

man distances and Bregman projections onto convex sets, mainly [11]

Proposition 3.1. Suppose f is a Bregman-Legendre function.

If Df (x, y`) → 0 ∀y` ∈ int ∆f , then y` → x

This leads to the following convergence theorem [24] of the update formula (3.7.6).

Recall that we choose C = ∆f = RN
+ .
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Figure 3.11: Kullback-Leibler function.

Theorem 3.3. Let f be a Bregman-Legendre function. For any starting vector

x0 ∈ int C, the sequence x` in (3.7.6) converges to a minimizer of the function ϕ+χC,
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where x is in the set C (the closure of the essential domain of f), assuming that such

minimizers exist.

We know now that the IPA (3.7.6) converges to a unique solution, however, it

is not evident how we can obtain explicitly x`+1. The choice of the function of the

generalized distance is very crucial indeed. We need a Bregman-Legendre function

such that its domain is the nonnegative orthant. The next section introduces a typical

example.

3.9 Boltzmann-Shannon Entropy

The similarity of the IPA and the projected gradient is clear, but the former avoids

the computation of the projection required at each iterate. Hence IPA can be seen as

an implicit projected gradient algorithm. It finds, as in the case of the EM algorithm,

a nonnegative minimizer of ϕ. One of the powerful benefits of the IPA update formula

is that all iterates remain in the essential domain of f if the initial iterate does. In our

case, we choose f so that its essential domain is equal to the set of prior constraints.

A well suited candidate is the Boltzmann-Shannon entropy function known also as the

Kullback-Leibler (KL) distortion or distance associated with the convex differentiable

function f(x) = x log(x)− x, refer to figure 3.11. It is defined as follow,

Definition 3.9. Let u and v be positive numbers

KL(u, v) = u log
u

v
+ v − u

KL(u, 0) = +∞ KL(0, v) = v KL(0, 0) = 0

Extending to nonnegative vectors a and b

KL(a, b) =
N∑

=1

KL(a, b) =
N∑

=1

(a log
a

b

+ b − a)
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A generalized distance Df does not have to be symmetric unless f is quadratic [11].

The KL distance is one instance; note how in general

KL(a, b) 6= KL(b, a)

What appears to be a shortcoming gives actually rise to interesting features. Here

is the tale of two algorithms. Although the EM algorithm was originally devised as

a statistical parameter estimation and was not thought of as linked to any linear

system, Byrne [23] showed convincingly that the EM method leads to a nonnegative

minimizer of KL(y, Cx). He showed also that the simultaneous MART (SMART)

converges to a nonnegative minimizer of KL(Cx, y). Like two faces of the same coin,

EM and SMART are two algorithms deduced from the same distance.

3.10 Nonnegativity Minimization Algorithm

The KL function is a Bregman-Legendre function [11]. Its conjugate is the exponential

function, f ?(x?) = exp(x?). Hence theorem 3.2 is very useful to invert the update

formula (3.7.6). Recall theorem 3.2 that states for a Legendre function f

(∇f)−1 = ∇f ?

We have then (∇f)−1(x) = exp(x), which is a bijection. We also have∇f(x) = log(x).

Recall equation (3.7.6)

∇f(x`+1) = ∇f(x`)− γ∇ϕ(x`)

which implies

∇−1f
(∇f(x`+1)

)
= ∇−1f

(∇f(x`)− γ∇ϕ(x`)
)
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Hence

x`+1 = exp
(∇f(x`)− γ∇ϕ(x`)

)

= exp
(
log(x`)− γ∇ϕ(x`)

)

= x` exp
(−γ∇ϕ(x`)

)

knowing that

ϕ(x) =
1

2
‖x̂− x‖2

W + αψ(x) (3.10.1)

where ψ is a convex differentiable function. The minimization algorithm for this

particular choice of f is the following

Algorithm 3.1. Choose γ > 0 and choose α ∈ ]0, +∞[. Start with x0 ∈ int C. For

` = 0, 1, . . . compute

x`+1
ı = x`

ı exp
(−γ(∇ϕ)ı(x

`)
)
, ı = 1, . . . , N

until convergence.

In the limit, algorithm (3.1) finds an approximate solution x∗ = proxα
ψ(x̂). The

convergence result for this algorithm is stated in theorem 3.3.

This is a generalized proximal approach that computes x?, the weighted projection

of x̂ onto RN
+ . It is a proximal method, that generalizes the projection operator,

and a distinctive iterative algorithm, that requires a relatively simple calculation

executed repeatedly. The iterations give rise to a sequence of approximate answers

that converges to the solution of the problem, x?, regardless of the starting point

x0 ∈ int C. Resorting to a projector operator seems like an intuitive choice to get an

“optimal” nonnegative solution. Can we justify this choice? This is the topic of the

next chapter.



Chapter 4

Parameter Estimation

We are solving an inverse problem that involves the reconstruction of a dynamic

nonnegative image x as a medical imaging application within the context of nuclear

medicine. We showed how the formulation of this problem gave rise to the application

of a temporal recursive filter, namely the Kalman filter. KF, having its origins in the

well-known least squares (LS) techniques [7, 87], is more suitable for over-determined

problems. Our dynamic image reconstruction we deal with is, however, an under-

determined problem, and KF does not produce the desired image. As it was evidenced

in section 2.4, we will probably get some negative components in the solution x̂, which

is not a feasible solution in nuclear medicine. We offered in section 3.10 a remedy

to overcome this shortcoming. It is in essence a weighted projection of x̂ onto the

nonnegative orthant RN
+ while using a generalized proximal approach to achieve this

goal. The nonnegative activity x gives rise to the solution x̂ as the BLUE (best

linear unbiased estimator) when we do not enforce the positivity and by naturally

projecting onto RN
+ to have x?, we intent to get back a “best” nonnegative estimate

of the original activity x. How “good” is x?? Is it better than x̂ and in what sense? Is

this projection the “optimal” one? Those are the questions we aim to answer in this

chapter relying on parameter estimation theory. Parameter estimation is an active

45
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field of research and many references can be consulted for more information; refer for

instance to [2, 3, 18, 36, 90]. Let us first start with a summary.

4.1 Overview

An estimator seeks to approximate an unknown parameter of a physical model based

on direct or indirect measurements. We are concerned with the accuracy and preci-

sion of the measurements and these are the precision and accuracy of the estimator

as well [18]. An estimator is a vector function of the data made to evaluate the pa-

rameters. The estimate is a value taken by the estimator while the estimand is the

quantity to be estimated; this will always be, for us, the true/simulated value of the

parameter. Estimation theory, a branch of statistics and signal processing, concerns

itself by studying desirable characteristics of an estimator and the consequences once

we choose a certain one. When we are confronted with discrepancies in measuring the

same quantities, we are then faced with the problem of getting the “best” estimation

of these quantities while reducing the effect of the errors. Usually, we do not possess

enough or exact knowledge about the errors or discrepancies, thus we treat them as

random variables. Often, we have only limited or no knowledge about the nature of the

randomness of the errors. Hence, the literature provides a number of so called “good”

estimators, i.e., estimators with desirable properties based on certain assumptions on

the error behaviour. So terms like “good” or “optimal” refer to specific underlying

assumptions. Under certain conditions an estimator has all or almost all properties of

a good estimator, and this is indeed the case for the Kalman filter. The LS, minimum

mean square (MMS), maximum a posteriori (MAP), maximum likelihood (ML) are

examples of criteria for choosing a “good” estimator [2, 3, 18, 36, 90]. Each criterion

is, in its own right, concerned with achieving desirable properties. Hence, the need

arises to codify and rationalize our choices and put them on firm ground.
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Applications, particularly in astronomy and space, were the driving force of esti-

mation. The Babylonians (300 BC) [90] were interested in knowing the positions of

moving celestial bodies from various measurements, thus they were using the arith-

metic mean as an estimator. Euler was interested (1750) in analyzing the irregularities

in the motion of some planets taking advantage of the then recent development of the

calculus of probabilities. Bernoulli (1777) was aware of the problem of outliers in

the data when we use the arithmetic mean while the probabilistic Bayes’ rule (1760)

brought out the cornerstone of most methods in estimation theory. This leads the

way for stochastic approaches to the estimation problem.

The LS method, a deterministic approach, is a very popular technique used to

compute estimations of parameters to fit the measurements. This is the oldest tech-

nique and has its origins in the famous memoir, with application to astronomy, of

the French mathematician Legendre, “Nouvelles Méthodes pour la Determination des

Orbites des Comètes” (1805) [90]. Then the German mathematician Gauss (1809)

claimed that he had been using the LS technique as early as 1795. Historians later

on could substantiate his claim and now LS is generally attributed to Gauss. This re-

minds us of the bitter anteriority dispute of the Leibniz-Newton controversy about the

invention of Calculus. Several authors such as Cauchy contributed to the enrichment

of the LS method.

Departure from the LS started early in the 20th century with Pearson, when he

came up with the method of moments, and then with Fisher, when he introduced

the ML approach in 1911. Contributions to parameter estimation theory was mainly

done by statisticians until Wiener and Kolmogorov tried (1940) to bridge the gap

between them and mathematicians, connecting the two views of the stochastic and

the deterministic [90]. This lead to the KF (1960).

The KF equations are not free from controversy either. The case with Legendre

and Gauss contention of the antecedency of LS is repeated with Swerling who had
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published a similar work (1958) as Kalman did, and claimed priority over Kalman

but without success. The time was just ripe for the new method. KF [62], which

could be seen as a sequential LS, saw its first application by NASA scientists to solve

the problem of trajectory estimation for the Apollo program. This application to

aerospace completed the full circle since the Babylonians’ time 23 centuries ago.

LS has mainly two versions, the original and simple one is referred to as the

ordinary LS (OLS), which could be seen as a determinist view of the estimation

problem. LS has a more sophisticated version known as the weighted or generalized

LS (WLS or GLS). The latter differs from the former in that it introduces weights

which regulate the importance of each observation. Aitken [3], from New Zealand

(1935), has demonstrated that with a proper choice of the weighting matrix equal to

P−1, where P is the covariance matrix, the LS approach performs as best as it can in

the sense it is the BLUE. Hence, the GLS is also referred to as the Aitken estimator.

Suppose that we wish to have an estimate θ̂LS of an unknown θ from a data set y

using LS. The idea is to minimize the incurred error θ̃ = θ− θ̂, that is to say we aim to

minimize lLS(θ̃) = (θ− θ̂)>(θ− θ̂). The loss function lLS of LS could be generalized by

introducing a symmetric positive definite matrix W . We would then aim to minimize

the cost function, lGLS(θ̃) = (θ − θ̂)>W (θ − θ̂) instead, as we would recover the one

of OLS by letting W = I.

In probability, the covariance matrix furnishes a measure of the behavior of the

estimator. First, recall the well known property of the covariance matrix, see for

instance [18].

Proposition 4.1. The covariance matrix P of a stochastic real values vector is sym-

metric positive semi-definite. It is definite if and only if its stochastic components are

linearly independent. In this case, its inverse P−1 is also symmetric positive definite.

It comes at no surprise that we would shoot for an estimator that minimizes the
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error variance. Hence the mean square error (MSE) was introduced and could be seen

as the probabilistic equivalent to the deterministic LS cost function

MSE(θ̂) = LMS(θ̃) = E
(
(θ − θ̂)>(θ − θ̂)

)
(4.1.1)

The variance (Var) measures also the estimator’s deviation from its expected value.

It measures the variations of the estimates from try out to try out as a consequence

of the variations in the observations and does so relative to the mean value of the

estimator. This mean value needs not to be equal to the true value of the parameter.

It can be proven that [90]

MSE(θ̂) = E(θ̂ − E(θ̂))2 + (E(θ̂)− θ)2 = Var(θ̂) + β2(θ̂) (4.1.2)

where β(x̂) is called the bias. The mean square error is then equal to the sum of the

variance and the square of the bias. The bias of an estimator gives information about

its systematic error while its covariance gives us its nonsystematic error. Unbiased

estimator means that if we take a very large number of random observations, the

average value of the parameter estimates will be theoretically exactly equal to the

estimand. Minimum variance means that the estimator has the smallest variance,

and thus the narrowest confidence interval, of all estimators of its type. The MSE

evaluates the quality of an estimator in terms of its variation and unbiasedness. For

an unbiased estimator, the MSE is the variance.

MSE(θ̂) = Var(θ̂) (4.1.3)

The operators MSE and Var have the disadvantage of heavily weighting outliers. This

is a consequence of the squaring of each term, which weighs large errors more heavily

than small ones. Researchers have used alternatives to avoid this shortcoming. Hence

loss functions based on the mean absolute error or the median have been introduced.

Like any other loss function L, notice how the loss function LMS in (4.1.1), is

chosen to satisfy three conditions [90].



CHAPTER 4. PARAMETER ESTIMATION 50

1. L(0) = 0, to ensure that there is no loss with a zero error.

2. L is symmetric, to guarantee the independence of L of the sign of the error.

3. L is convex, to make sure that L is an increasing function of the error variable.

Hence the powerful tools of convex optimization, introduced in chapter 3, are very

useful once more. For example, the KF estimator, a conditional expectation that

has been shown acting as a projection operator, could be retrieved using convex

optimization, refer for instance to [7, 87].

MSE is regarded as a way of measuring the performance of an estimator. It was

proven [3] that the linear minimum MSE and GLS give the same estimator when

the weighting matrix W is chosen to be the real symmetric positive definite P−1,

with P being the covariance matrix. Recall that, in section 2.3, an estimator which

is unbiased, linear, and minimizes the MSE is called the BLUE. It is only natural

that someone would use GLS with W = P−1 even in the nonlinear case. This has

been done in inverse problems, refer for example to [63, 102]. However, to the best

knowledge of the author no property of optimality or other was formulated as yet;

this is the theme of section 4.4.

4.2 Parameter Estimation Properties

The ML, introduced by Fisher (1911), is another estimator. When we have mea-

surements y of the quantity z, which is only known to belong to a certain family of

probability distributions g(y|θ), we want to estimate the unknown parameter θ that

maximizes the likelihood of getting the data y. ML, LS, GLS estimators, and others

have given rise to estimators of the form θ̂ = h(y) [2, 3, 18, 36, 90]. Based on the

errors θ̃ = θ − θ̂, they should be “good” estimators in verifying as many as possible



CHAPTER 4. PARAMETER ESTIMATION 51

of the following requirements, although these are artificial and arbitrary; in the sense

that other interested people may not agree with the rationale behind this choice.

1. Consistency The ideal case is to have θ̃ = 0, however, this is close to impossible

because of the Cramér-Rao inequality that set a lower bound on Cov(θ̃) [18].

Hence we must settle for less and require that at least this error converges, with

probability 1, to 0 when we augment the size n of the data.

lim
n→∞

P (|θ̂ − θ| < ε) = 1 ∀ε > 0 (4.2.1)

2. Sufficiency A reasonable requirement is that the estimator should use all avail-

able data and extract all information carried in them.

3. Acceptability When we compute the estimator with a different set of data, it

should still give an acceptable value of the parameter. The data vectors in the

observed data set contain no missing elements.

4. Unbiasedness Although a biased estimator could be useful, an unbiased one,

that is E(θ̂) = E(θ), is usually desired at least asymptotically.

5. Efficiency The error covariance, E
(
(θ − θ̂)(θ − θ̂)>

)
, should be minimal at least

asymptotically.

The Kalman filter estimator was established [87] to satisfy the requirements above

thus providing estimates that are optimal in the LS, ML and Bayesian sense for a

Gauss-Markov model. Optimization techniques that are used to numerically compute

estimators include, but are not limited to, Newton procedure, generalized Gauss-

Newton, steepest descent, iteratively reweighted LS, conjugate gradient, and Polak-

Polyak-Ribiere-Sorenson procedure [18].

We usually make the Gaussian assumption about the errors θ̃ = θ − θ̂ based on

the rationale of the Central Limit Theorem of probability theory. Given an unbiased
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estimator θ̂ of θ and that the error belongs to the Gaussian family with a given

covariance matrix P , the probability density function (pdf) is

g(θ̃) =
1

(2π)
N
2

√
det(P )

exp

(
−1

2
(θ − θ̂)>P−1(θ − θ̂)

)
(4.2.2)

Let

a2 = (θ − θ̂)>P−1(θ − θ̂) (4.2.3)

The quadratic form equation (4.2.3), which is also the useful part of the log-likelihood

LL function, defines a surface and characterizes g(θ̃) of (4.2.2) in the sense that for

each a2, we have a constant pdf value. It can be shown that this surface is an

ellipsoid in Rn [90]. Its center is the estimate θ̂ and its semiaxes have magnitude

a2λı > 0 (ı = 1, · · · , n) and directions defined by ξı, λı and ξı being the eigenvalues

and eigenvectors respectively of the symmetric positive definite covariance matrix P .

So far we have seen that two main methods of parameter estimation theory ex-

ist, the deterministic LS approach and its variants and the probabilistic Bayesian

approaches such as ML. Different estimation criteria could give away different esti-

mators stressing the point of arbitrariness of an optimality choice. Fortunately, there

are times when both methods yield the same estimator as in the case of KF [7, 87],

a linear, unbiased, GLS and MSE estimator, within the framework of Gaussian pdf

and linear model. These last two assumptions prove useful to extract some properties

about the estimator x?.

4.3 Positive Image

The nonnegative activity x gives rise to the KF estimator x̂. KF propagates x̂ and

covariance matrix P at each step of the recurrences (2.3.3) and (2.3.6) with an error

x̃ = x̂ − x. Making the assumption that x̃ follows a normal distribution of centre 0
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and covariance matrix P , x̃ ∼ N (0, P ), the pdf is

g(x̃) =
1

(2π)
N
2

√
det(P )

exp

(
−1

2
(x− x̂)>P−1(x− x̂)

)
(4.3.1)

We have

x̂ = x + x̃ (4.3.2)

We reverse the process. Knowing or observing x̂, we aim to select the nonnegative

parameter value x? which realizes the largest possible pdf g(x̃). In other words, we

look for a constrained ML estimator of (4.3.2). We have seen that equation (4.2.3)

characterizes completely the Gaussian pdf g(x̃). Hence we need to minimize

1

2
(x− x̂)>P−1(x− x̂) (4.3.3)

This is equivalent to minimizing ‖x−x̂‖2
P−1 in RN

+ . The minimizer is an oblique/weighted

projection onto the nonnegative orthant. We obtain the same quantity to minimize

while using the likelihood terminology. The log-likelihood function, that is the log of

the pdf g(x̃), to be maximized with respect to x is

LL(x) = −1

2
(x− x̂)>P−1(x− x̂) + c

for some constant c. Because the logarithm is a continuous strictly increasing function

over the range of the likelihood, the values which maximize the likelihood will also

maximize its logarithm. Since maximizing the logarithm requires simpler algebra, it

is the logarithm which is maximized.

4.4 Properties of the Projected KF Estimator

We deal with an operator that we could refer to as a projected KF and we would

like to assess this estimator’s goodness in terms of known properties of parameter

estimation. Next, we establish that it is a ML estimator.
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4.4.1 Maximum Likelihood

Maximum likelihood estimation is based on the assumptions that the distribution of

the data is known and the expectation model is correct. ML methods have desir-

able mathematical and optimality properties. Recall the invariance property of ML

estimators [90].

Lemma 4.1. Suppose that θ̂ is the ML estimator of θ in Rn. Consider the (not

necessarily injective) vector mapping % : Rn → Rm. Then %(θ̂) is the ML of %(θ) in

Rm.

We set C = RN
+ , the nonnegative orthant where N is the size of the activity we

are solving for. For the symmetric positive definite matrix P−1, define

projP
−1

: RN → C

ẑ 7→ z? = arg min
z∈C

‖z − ẑ‖2
P−1 (4.4.1)

where

‖z − ẑ‖2
P−1 = (z − ẑ)>P−1(z − ẑ) (4.4.2)

Refer to figure 4.1 that illustrates this projection in a 2D setting. The estimator

x̂ of the nonnegative activity x, being the KF estimator, is then a ML of x in RN

within the framework of a Gaussian pdf and a linear model. Moreover, since C is a

closed and convex set and the quadratic form (z − ẑ)>P−1(z − ẑ) is convex in the

variable z ∈ RN , we conclude that projP
−1

(ẑ) exists and is unique [1], so that the

mapping 4.4.1 is well defined. Furthermore, projP
−1

(v) = v if and only if v ∈ C

because the matrix P−1 is positive definite. Recall that x is nonnegative and x̂ is its

ML in RN . Apply lemma 4.1 with % = projP
−1

, we deduce that x?
P−1 = projP

−1

(x̂) is

the ML estimator of x = projP
−1

(x) with respect to the matrix P−1. We have just

proved the following theorem.



CHAPTER 4. PARAMETER ESTIMATION 55

Figure 4.1: Illustrating the oblique projection for 2D. ẑ is the KF estimate and z? is
the nonnegative estimate as an oblique projection onto the first quadrant.
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Theorem 4.1. Let x be a nonnegative activity and x̂ be its KF estimator in RN . Let

P−1 be the symmetric positive definite matrix inverse of the covariance matrix of the

error x̃ = x− x̂. While x̂ is the ML estimator of x in RN , the projected KF estimator

x?
P−1 is the constrained ML estimator of x in C = RN

+ within the framework of a linear

model and Gaussian pdf given by equation 4.3.1.

For ease of notation, we will drop from now on the subscript P−1. Hence we would

refer to x?
P−1 as x? and it is assumed that the projection is done with respect to P−1.

4.4.2 Consistency

Besides the invariance property, a ML estimator possesses a second property ( [42]

and references therein).

Theorem 4.2. A ML estimator is consistent in the sense of equation 4.2.1.

Thus we have another property of our estimator x? giving the following result.

Corollary 4.1. The estimator x? ∈ C is an asymptotic consistent ML estimator of

the nonnegative activity x, that is to say

lim
n→∞

P (|x? − x| < ε) = 1 ∀ε > 0 (4.4.3)

where n is the size of the data.

The set C = RN
+ is not a subspace of RN and projP

−1

is a projection, the map-

ping 4.4.1 is a nonlinear operator that maps x̂ into x?. Hence x? is not a linear

function of x since x̂ is already one. Usually, there will be no unbiased and optimal

nonlinear estimator of x even in the event of normally distributed data. Nonetheless,

ML estimators could exhibit asymptotic behavior, to the extent they could be unbi-

ased and optimal for a fixed number of data. In addition, the convex set C, being

a cone, has the salient property of “almost” linearity referred to as the nonnegative

homogeneity [20], ProjC(αz) = α ProjC(z) ∀ α > 0.
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4.4.3 Unbiasedness

Theorem 4.3. As its parent x̂, x? is an unbiased constrained estimator of the non-

negative activity x, meaning

E(x?) = E(x) (4.4.4)

Simon et. al. [88] proved the same property and the optimality one, that follows

shortly, for Kalman filtering with state equality constraints Dxk = dk; that is when

the state xk is known to belong to a hyperplane. Simon et.al. [89] then proved both

properties in the case of state variable inequality constraints Dxk ≤ dk. They notice

that almost all algorithms for solving such optimization problems belong to the active

set methods. They base their argument on this fact assuming that the correct set of

active constraints is known a-priori to them. We do not use an active set method

to solve the constrained Kalman and we do not even know if there are any null

components nor where they are located in the activity xk. We are instead solving for

lower bounds xk ≥ 0 constraints. Their arguments are therefore not useful to us.

Proof: We seek to find the oblique projection of x̂ on the positive orthant C,

minz
1

2
‖z − x̂‖P−1 subject to z ∈ C

The Lagrangian of the constrained problem is,

L(z, λ) =
1

2
(z − x̂)>P−1(z − x̂)− λ>z (4.4.5)

We formulate the first order Karush-Kuhn-Tucker conditions,

Stationarity:

∇L(x?, λ?) = 0 (4.4.6)

that is,

P−1(x? − x̂)− λ? = 0
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or

λ? = P−1(x? − x̂) (4.4.7)

Primal feasibility:

x? ≥ 0 (4.4.8)

Dual feasibility:

λ? ≥ 0 (4.4.9)

Complementary slackness:

(λ?)>x? = 0 (4.4.10)

Even though we are interested in a general case of an oblique projection, the argu-

ment in the case of the orthogonal projection is interesting in itself. So let us consider

the particular case when P−1 = I. Equation 4.4.7 combined with equation 4.4.9 gives,

λ? = x? − x̂ ≥ 0

so that x? ≥ x̂. But we have x? ≥ 0, equation 4.4.8, and (x? − x̂)>x? = 0, equa-

tion 4.4.10, which implies that x? = max(x̂, 0).

Recall Jensen’s Inequality [20]. If x is a random variable such that x ∈ ∆g with

probability one, and g is convex, then we have

g(E(x)) ≤ E(g(x)) (4.4.11)

provided the expectations exist. We apply Jensen’s Inequality 4.4.11 with the convex

function max(y, 0) to get,

0 ≤ max(E(x̂), 0) ≤ E(max(x̂, 0))

0 ≤ E(x̂) ≤ E(x?) (4.4.12)
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Using equation 4.4.10 and the fact that the error and the state are uncorrelated [7],

we have

E(λ?
ı x

?
ı ) = E(λ?

ı )E(x?
ı ) = 0 ∀ı (4.4.13)

Recall that the Kalman output x̂, as an estimate of the positive activity x, is unbiased,

E(x̂) = E(x) ≥ 0. There are two cases to consider for equation 4.4.13. On one hand,

if E(λ?
ı ) = E(x?

ı − x̂ı) = 0 for some ı, then E(x?
ı ) = E(x̂ı). On the other hand, if

E(x?
ı ) = 0 for some ı, then using inequality 4.4.12 we have 0 ≤ E(x̂ı) ≤ E(x?

ı ) = 0;

that is E(x̂ı) = 0. Both cases sum up to

E(x?) = E(x̂)

We therefore conclude the proof of the unbiasedness in the case of orthogonal projec-

tion, E(x?) = E(x).

Let us now proceed to the more general case when the projection is oblique. The

complementary slackness says that (x?)ıλ
?
ı = 0 ∀ı. Since the error and the state are

uncorrelated [7], we have E(x?
ı λ

?
ı ) = E(x?

ı )E(λ?
ı ) = 0. There are two cases to consider.

On one hand, if E(λ?
ı ) = 0 for some ı, then P−1E(x?

ı − x̂ı) = 0 so that E(x?
ı ) = E(x̂ı).

On the other hand, if E(x?
ı ) = 0 for some ı, let I be the set of these ı.

Since ∀ı ∈ I, E(x?
ı ) = 0, then x?

ı = 0 since x? ≥ 0; which implies λ?
ı = (P−1(x? −

x̂))ı > 0. Since ∀ı ∈ I, x?
ı > 0, then (P−1(x?−x̂))ı = 0. The matrix P−1 is symmetric

positive definite, therefore

∑

ı∈I∪I
(x? − x̂)ı(P

−1(x? − x̂))ı =
∑
ı∈I

(x? − x̂)ı(P
−1(x? − x̂))ı +

∑

ı∈I
(x? − x̂)ı(P

−1(x? − x̂))ı

=
∑
ı∈I

(x? − x̂)ı(P
−1(x? − x̂))ı

= (x? − x̂)>P−1(x? − x̂)

≥ 0
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Consequently,
∑
ı∈I

(x? − x̂)ı(P
−1(x? − x̂))ı ≥ 0

or

−
∑
ı∈I

x̂ı(P
−1(x? − x̂))ı ≥ 0

Passing to the expectation we have,

−
∑
ı∈I
E(x̂ı)E((P−1(x? − x̂))ı) ≥ 0

We know that E(x̂ı) ≥ 0 and E((P−1(x?−x̂))ı) > 0; this implies E(x̂ı) = 0 for all ı ∈ I.

The two cases that we considered here allow us to conclude that E(x?) = E(x̂) = E(x).

The projected KF x? is an unbiased constrained estimator of the nonnegative activity

x.

2

4.4.4 Optimality

Hitherto we have seen that x? ∈ C is an affine ML, consistent, and unbiased con-

strained estimator of the nonnegative activity x. At the end of subsection 4.4.1, we

concluded that x?, being ML, is an asymptotically optimal estimator with probabil-

ity 1. However, the KF estimator x̂ is also an unbiased and optimal estimator of x

while being linear. The estimator x̂ is not anymore optimal when we introduce the

positivity constraint into the estimator. Does x? do better than the KF solution x̂

since x? is rather a constrained ML in C? The answer is yes in the following sense.

Theorem 4.4. The estimator x? ∈ C of x performs better than the estimator x̂ in

the sense that the mean square error of x? is smaller than the mean square error of

x̂,

MSE(x?) ≤ MSE(x̂) (4.4.14)
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which is equivalent to say

Tr
(
Cov(x− x?)

) ≤ Tr
(
Cov(x− x̂)

)

Before giving a proof, we need a definition of nonexpansive mappings [15].

Definition 4.1. Let χ be a Hilbert space and ‖.‖ a vector norm. An operator T , not

necessary linear, in χ is a nonexpansive mapping if ∀ z1, z2 ∈ χ, then

‖T (z2)− T (z1)‖ ≤ ‖z2 − z1‖ (4.4.15)

Recollect a classical result in convex optimization about projection onto closed

convex sets [91].

Proposition 4.2. Let u, v ∈ χ, a Hilbert space with ‖.‖ as a vector norm, and let

projF (u), projF (v) be the corresponding projections onto any closed and convex set F ,

then

‖ projF (u)− projF (v)‖ ≤ ‖u− v‖ (4.4.16)

This property of the projection onto closed convex set states that the projection

operator is nonexpansive (definition 4.1), see figure 4.2 for a geometrical intuition of

this result.

Proof: Recall the definition of the operator MSE giving by equation (4.1.1).

MSE(x?) = E
(
(x− x?)>(x− x?)

)

MSE(x̂) = E
(
(x− x̂)>(x− x̂)

)

As we have seen in the case of unbiased estimators, like both x? and x̂, equation (4.1.1)

becomes equation (4.1.3) entailing

MSE(x?) = Var(x?)

MSE(x̂) = Var(x̂)
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Figure 4.2: Illustrating the inequality (4.4.16) for projection onto closed convex set.

Apply proposition 4.2 to χ = RN , F = C = RN
+ with projC the oblique projection

onto C as defined in the operation (4.4.1), so that x? = projC(x̂). Since x ∈ C means

x = projC(x), we have

‖x− x?‖2 ≤ ‖x− x̂‖2 (4.4.17)

The expectation operator is positive, Y ≥ 0 ⇒ E(Y ) ≥ 0. Thus inequality (4.4.17)

implies

E
(
(x− x?)>(x− x?)

) ≤ E (
(x− x̂)>(x− x̂)

)

that is

MSE(x?) ≤ MSE(x̂)

Note

MSE(Y ) = Tr (Cov(Y ))

Hence theorem 4.4 is also saying

Tr (Cov(x? − x)) ≤ Tr (Cov(x̂− x)) (4.4.18)

The estimator x? ∈ C performs better than x̂ in the minimum variance sense.

2
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4.5 Summary

The KF estimator x̂ ∈ RN is the optimal estimator of the activity x in the mean

squares error sense. However, it is not necessarily nonnegative as it is the case for x.

The matrix P is the covariance of the error (x− x̂) which is updated at each step of

the KF recurrence. We have seen that using the oblique projection x?, with respect

to the symmetric positive definite matrix P−1, as an estimate in RN
+ performs better

than x̂. Not only does the estimator x? conserve the same properties as the KF x̂

of being unbiased, consistent, and ML, but in addition, the MSE(x?) is smaller than

MSE(x̂). Results in chapter 6 confirms these properties. The next chapter will tackle

the lack of spatial regularization in KF.



Chapter 5

Spatial Smoothness

We have concluded chapter 2 by stating that while the KF estimator includes temporal

smoothness, it lacks the spatial one due to two main reasons. First we are solving for

a nonnegative solution, and second we have at hand a spatially ill-posed problem; KF

does not handle well either one of these two challenges. Hence we need to impose a

spatial regularization which is basically done by introducing a priori knowledge into

the problem. Two main practical approaches are generally applied namely, including

constraints into the problem and using iterative solvers.

5.1 Nonnegativity Constraint

We have already covered in chapter 3 how we impose nonnegativity while using an

iterative algorithm to achieve that goal. We have also seen in chapter 4 how the

nonnegative solution x? performs better than the KF x̂.

The solution x? is a constrained ML in the nonnegative orthant since we showed

in chapter 4 that we had to maximize the likelihood function over its domain of def-

inition. We also established that this constrained ML was equivalent to a GLS with

64
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an appropriate choice of the weighting matrix. Thus we injected a-priori information

about the unknown x by restricting the likelihood function domain to be nonneg-

ative. This is fundamentally a statistical cornerstone to some of the regularization

approaches. Recall the cost function that we aimed to minimize

(x− x̂)>W (x− x̂),

where W is a symmetric positive definite weighting matrix. This is equivalent to

minimizing

‖x− x̂‖2
W .

Using the matrix W = P−1, where P is the covariance matrix of the error x− x̂, gives

the optimal nonnegative estimator, refer to theorem 4.4. Letting

ϕ(x) =
1

2
‖x− x̂‖2

P−1

=
1

2
(x− x̂)>P−1(x− x̂)

we have

∇ϕ(x) = P−1(x− x̂)

and algorithm 3.1 reduces to

Algorithm 5.1. Choose γ > 0 and start with x0 ∈ int C. For ` = 0, 1, . . . compute

x`+1
ı = x`

ı exp
(−γ(P−1(x` − x̂))ı

)
, ı = 1, . . . , N

until convergence.

The clustering point of algorithm 5.1 is the nonnegative solution we desire.

5.2 Iterative Solver

Iterative methods could serve as a regularization of ill-posed problems. The number

of iterations plays the role of the regularization parameter [15] since semiconvergence
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happens when we deal with noisy images as it was remarked for the EM algorithm;

refer to section 1.2 for more details. A typical iterative algorithm involves a relatively

simple calculation, performed repeatedly. An iterative method gives rise to a sequence

of approximate answers that, in the best case, converges to the solution of the problem.

We have at hand an inverse problem of image reconstruction from projections, which

is ill-posed. Consequently, as the number of iterations increases the iterates get at

first closer to the desired solution and then move away. An obvious remedy is to stop

the iterations earlier. Our approach involves stopping iterative algorithms prior to

convergence; we confirm this numerically in section 6.4. Next we see how we employ

a very well known regularization technique.

5.3 Tikhonov Regularization

V. Ivanov and D. Phillips were the first to propose each a different cure for ill-posed

problems (1962), even though one year later, it was A. Tikhonov who independently

offered a general method called regularization [15] that unifies both approaches of

Ivanov and Phillips. The central idea is to proceed by approximate solutions that

depend on a so called regularization parameter α. In the absence of noise in the

data and errors in modeling, the approximated regularized solution converges to the

exact solution as α gets closer to 0. Otherwise, we get an optimal approximate

solution associated with an optimal α. Furthermore, appropriate choices of α give back

both methods of Ivanov and Phillips. Lagrange multipliers are used to incorporate

constraints into a minimization problem in the optimization field. Tikhonov [98]

built upon properties of these multipliers to develop his regularization algorithm.

The original idea in Tikhonov regularization was based on the approximation of the

operator that transforms the unknown x into the data y by a coercive operator, which

had a bounded inverse. KF filters out the solution over time, and we utilize Tikhonov
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regularization for a spatial filtering.

We mention in sections 1.2 and 1.3 that we deal with an inverse problem that is

ill-posed. Recall that a problem is called well-posed in the sense of Hadamard [15] if

it obeys three conditions: the solution of the problem is unique, exists for any data,

and depends continuously on the data. A problem is ill-posed if it fails to satisfy any

of these conditions. We are solving linear systems involving huge, in the thousands or

even millions of entries, and not necessary sparse or of any known structure matrices.

When a small change in the coefficients of a matrix results in a large change in the

solution, we say that the matrix, say B, (or the problem) is ill-conditioned. This is

captured in the so-called condition number; which is

κ(B) = ‖B−1‖‖B‖

A problem with a huge condition number is said to be ill-conditioned while a problem

whose condition number is close to one is said to be well-conditioned. For instance,

when this number is 106, a relative error in the data of magnitude 10−6 could generate

an error of magnitude 100% in the solution. The condition number is also a measure of

the cooperativeness of the problem with digital computation. Thus a well-conditioned

numerically problem is well-posed and hence the close connection between these two

properties. While ill-posedness pertains to a continuous problem, ill-conditioning is

related to a discrete problem. When we discretize our ill-posed problem, the condition

number of the corresponding discrete problem can be very large.

We face the ill-posedness problem when we estimate the unknown activity x from

the data pertaining to x only. This data is incomplete, that is the system does not

convey complete information about the activity. Even if we had very accurate, that

is, noise free data, we would have difficulties solving our inverse problem. We should

not look for an exact solution and should focus instead only on an approximate one,

since an exact solution would be matching the noisy measurements. This first basic

approach might help to cure ill-posedness. This does, however, not address issues of
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uniqueness and ill-conditioning.

Having the ability to use prior knowledge concerning x could stabilize the algo-

rithm. Tikhonov regularization [97, 98], known as ridge regression in the statistical

community, is our third remedy to help cure ill-posedness. It has been introduced in

various settings. It is also known in the literature as Tikhonov-Phillips regularization

due to the work of D. L. Phillips [78]. Recall that we are minimizing the function

of 3.7.1

ϕ(x) =
1

2
‖x̂− x‖2

W + αψ(x) (5.3.1)

When we are interested in a nonnegative solution only, we set α = 0. Since we aim for

a regularized solution, we must impose α > 0. To enforce a Tikhonov regularization

type, we choose

ψ(x) =
1

2
‖L(x− x̄)‖2 (5.3.2)

where x̄ is some target value of x and L is some appropriately selected Tikhonov

matrix. For instance, if we choose x̄ = 0 and L = I, we are then concerned with a

minimum norm solution. If we take x̄ = 0 and L to be some differential operator,

we are then interested in a spatially smooth outcome. Choosing α to be high implies

we are relying more in our prior information while having it extremely small means

that we are not really interested in a regularized answer. Hence there is a risk of

ending up with a solution that is shaped more with our prior and there is a also a

risk of ending with an undesired solution in case we forsake our prior. Attaining an

equilibrium between including prior information and working with the data only is

our goal, while accomplishing it is not an easy endeavor.

Choosing the regularization parameter α is at the same time important and hard.

Intensive research in both the mathematical and statistical communities has been

going on and the perfect recipe has yet to be found. It is known that an optimal value

of α exists in theory in the sense that the regularized solution is the closest to the

activity we are solving for [84]. The parameter α is plotted against an energy function
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and we obtain a L-curve plot. It is called so because, in most cases, its log-log plot

has the shape of the letter L that has a global minimum αoptimal. Nevertheless in

practice, determining αoptimal involves knowledge of the unknown x. Methods have

been developed to estimate αoptimal when we have no knowledge about the unknown

such as prescribed energy, prescribed discrepancy, and Miller approaches [14, 83, 84,

103].

The behavior of the regularized solution as a function of the regularization param-

eter emphasizes again the semiconvergence property [15]. Thanks to this property,

we know that an optimal value of the regularization parameter exists, even if its

determination may be difficult. Optimal here means that among all regularized so-

lutions, that corresponding to this value of the regularization parameter provides the

best approximation of the unknown object. As we mentioned earlier, an interesting

property of several iterative methods for the solution of a linear problem is that they

can be viewed as regularization methods if the problem is ill-posed. In these cases

the role of the regularization parameter is played by the number of iterations and the

semiconvergence, which holds true again, implies the existence of an optimal value

of α, in the sense specified above. An αoptimal corresponds to an optimal number of

iterations.

Regularization and optimization are closely connected. We emphasized in chap-

ter 3 the central role that convex optimization plays and how generalized distance,

known also as Bregman distance (1967), is important. These generalized distances

and projections associated with them give rise to useful iterative algorithms [31].

They are useful also for regularization of optimization problems, thus we have a class

of optimization algorithms called proximal minimization algorithms where originally

Euclidian distances were used. Consider the following optimization problem

Minimize ϕ(x) (5.3.3)

s. t. x ∈ F
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where ϕ : RN → R is a given convex function and F ⊆ RN is a nonempty closed

convex subset of RN .

The idea is based on converting (5.3.3) into a sequence of optimization problems by

adding terms to ϕ(x). These added terms measure the distance between the variable

vector x and the current iterate x`, either in the Euclidian sense, or in a generalized

sense, according to some Df distance. The proximal minimization algorithm can

be viewed within the general approach known as regularization. Suppose that the

problem (5.3.3) is ill-posed in some sense. By this we mean simply that it lacks

some desirable property, such as spatial smoothness, for example. In such a situation

it is sometimes possible to modify the original objective function ϕ(x) by adding a

term αψ(x) such that the perturbed function ϕ(x) + αψ(x) has the desired property,

which ϕ(x) lacks. α is the regularization parameter. For the regularization method to

work we usually look for conditions that will guarantee that as α → 0+ the solution

of the perturbed problem will converge to a solution of the original problem [31].

Regularization and optimization are indeed closely interconnected. Next we see our

proximal approach at work to achieve regularization of the Tikhonov type.

Using equations (5.3.1)-(5.3.2), we have

∇ϕ(x) = P−1(x− x̂) + αL(x− x̄)

and algorithm 3.1 becomes

Algorithm 5.2. Choose γ > 0 and choose α ∈ ]0, +∞[. Start with x0 ∈ int C. For

` = 0, 1, . . . compute

x`+1
ı = x`

ı exp

(
− γ

((
P−1(x` − x̂)

)
ı
+ α

(
L(x` − x̄)

)
ı

))
, ı = 1, . . . , N

until convergence.

The authors in [10] analyze a Tikhonov based spatial regularization method. They

claim that their work is the first to describe how to incorporate spatial regularization
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in Kalman filtering. We have implemented their method and compared it to our

approach; our performs better. We detail this issue more in subsection 6.5.1. The

drawback of Tikhonov regularization, though, is that it has too strong a smoothing

effect and does not preserve edges. As a consequence, the reconstruction produces

blurred images. Alternative methods exist for regularization of imaging problems. In

addition to Tikhonov regularization, we propose a regularization by a function with

better edge preserving properties.

5.4 Energy Function and Approximation

A cost function that involves a 2-norm as a regularizer, à la Tikhonov-Philips, is usu-

ally unsatisfying because many images are not globally smooth. They have region

boundaries across which the image values change sharply. The quadratic regular-

ization causes the edges to become blurred. Little variations between neighboring

locations are due to noise while large variations are due to the presence of edges. This

premise is the basis of most edge preserving regularization schemes including applica-

tions to tomography [4, 5, 53]. We need a cost function that favors local smoothness

with well defined boundaries. We propose to use a 1-norm instead of the 2-norm in

the penalty cost function ψ. Both penalty cost functions are convex functions. How-

ever, the 1-norm based one has the advantage that it increases less rapidly than the

quadratic function for sufficiently large arguments since it is a linear increase instead

of a quadratic one. Thus large differences between neighboring locations are penalized

less than with the quadratic penalty. This uses local information to detect if an edge

is present or not.

Like variance, mean squared error has the disadvantage of heavily weighting out-

liers. An example of such a use is KF which is based on MSE. This is again a result

of the squaring of each term, which effectively weights large errors more heavily than
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small ones. This property, undesirable in many applications, has led researchers to

use alternatives such as the mean absolute error, or those based on the median. In

the language of probability theory, the value of c that minimizes E(|X − c|) is the

median of the probability distribution of the random variable X.

Figure 5.1: First order neighborhood configuration.

Let Nı denote the set of indexes of voxels/pixels which are neighbors of pixel ı.

Define the energy function ψ by

ψ(x, m) =
∑

ı

∑
∈Nı

wı|xı −m| (5.4.1)

where wı ≥ 0 are the neighborhood weights, m is a target image. From now on, we

assume that wı = 1 ∀ ∈ Nı and is zero otherwise, in the sense that all neighboring

locations have the same contribution. Therefore

ψ(x,m) =
∑

ı

∑
∈Nı

|xı −m| (5.4.2)

The function ψ is related to the Gibbs distribution in the Bayesian imaging con-

text [43, 44]. This energy function does not penalize large differences between loca-

tions in the same neighborhood. We adopt a first order neighborhood, see Figure 5.1

for a 2D example. We refer the reader to [43, 50] for higher order neighborhoods. The

absolute value function preserves the edges, e.g. abrupt changes in the image texture.

This function penalizes deviations within uniform regions without necessarily penaliz-

ing the larger differences which occurs at the boundary between two different regions
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of the image. This is an advantage over the Tikhonov based method. A connection

exists between |x| and the median as follow

median{z1, · · · , zm} = arg min
s∈R

∑
ı

|s− zı| (5.4.3)

For instance, median{1, 1, 7} = 1 = arg mins∈R(|s − 1| + |s − 1| + |s − 7|). The

result (5.4.3) has been proven, that is, the median minimizes the sum of the absolute

deviations [35, 48, 85]. Said otherwise, given a set of values z1, z2, · · · , zm, the sum of

absolute deviations is minimal when deviations are calculated from the median. For

the continuous case, Cramér [35] considers the random variable ξ, the median µ, and

an eventual in-between position θ. When θ > µ, he takes advantage of the relation

E(|ξ − θ|) = E(|ξ − µ|) + 2

∫ θ

µ

(θ − z) dF (z)

and that
∫ θ

µ
(θ − x) dF (z) is positive to prove that E(|ξ − θ|) achieves its minimum

value at θ = µ.
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Figure 5.2: log cosh function and its derivative with two values of η.

We call “Median” the regularization involving the function ψ in (5.4.2). This regu-

larization function is particularly suited to recover blocky images with sharp faces and
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edges. Nonetheless, the absolute value function is convex but not differentiable where

the voxel/pixel intensity is zero. Therefore, the optimization problem becomes non

differentiable which is computationally impracticable. To circumvent this difficulty

we approximate the absolute value with the function

ϕη(x) =
1

η
log cosh(η x) (5.4.4)

which goes back to Green [47] as an extension of the Geman and McClure potential

function [44]. There exists δ > 0 such that when η is close to δ, then ϕη(x) → |x|.
Thus an appropriate choice of η may give a better approximation with numerical

advantages in optimization. Note that ϕη(x) is differentiable and its first derivative is

given by ϕ′η(x) = tanh(η x), see Figure 5.2. There exist other differentiable functions

which approximate the absolute value quite well; take for instance ϕη(x) =
√

η2 + x2.
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Figure 5.3: tanh(ηv)/(2v) function with two values of η.

In order to encourage smoothing within a region and discourage smoothing across

boundaries, Charbonnier et al [33] have suggested three conditions on the weighting

function ψ′(v)/(2v), namely
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1. 0 < limv→0 ψ′(v)/(2v) = M to ensure isotropic smoothing in homogeneous areas.

2. limv→∞ ψ′(v)/(2v) = 0 to ensure preservation of edges.

3. ψ′(v)/(2v) is strictly decreasing to avoid instabilities.

where M is finite. Tikhonov regularization is associated with ψ(v) = v2 which is

convex. However, ψ′(v)/(2v) = 1 does not satisfy the second and third conditions.

Total variation is related to ψ(v) = v which is convex, but ψ′(v)/(2v) = 1/(2v) does

not satisfy the first condition. Geman and McClure [44] use ψ(v) = v2/1 + v2 which

verifies the three conditions but is not convex. To approximate the convex function we

employ, ψ(v) = |v|, with the convex and differentiable function ϕη(v) = 1
η
log cosh(ηv).

It has ψ′(v)/(2v) = tanh(ηv)/(2v) which satisfies the three conditions with M = η/2,

Figure 5.3 illustrates these facts.

Now we have assembled all the ingredients to study the numerical solution of

problem (3.7.1). With ψ given in (5.4.2), we get

ϕ(x,m) =
1

2
‖x̂− x‖2

P−1 + α
∑

ı

∑
∈Nı

|xı −m| (5.4.5)

where x̂ is KF output activity and P is the covariance matrix of its error. We seek to

minimize (5.4.5), hence

(x?,m?) = arg min
x≥0,m

ϕ(x,m) (5.4.6)

The function ϕ is continuous, nonnegative, convex, and coercive so that it has a

global minimum (x?,m?). This is a joint estimation of vectors x and m that we solve

iteratively via an alternating algorithm as follow

x`+1 = arg min
x≥0

ϕ(x,m`) (5.4.7)

m`+1 = arg min
m

∑
ı

∑
∈Nı

|x`+1
ı −m| (5.4.8)

Applying the result (5.4.3) and rearranging the double sums in (5.4.8), we have

m`+1
 = median{x`+1

ı , ı ∈ N}  = 1, . . . , N
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where N is the set of indexes of locations which are neighbors of location m. Thus

(5.4.7) becomes

x`+1 = arg min
x≥0

1

2
‖x̂− x‖2

P−1 + α
∑

ı

∑
∈Nı

|xı −m`
| (5.4.9)

In order to make the minimization problem differentiable, we employ the approxima-

tion (5.4.4), so that

x`+1 = arg min
x≥0

1

2
‖x̂− x‖2

P−1 +
α

η

∑
ı

∑
∈Nı

log cosh
(
η(xı −m`

)
)

(5.4.10)

Let

ϕ(x) =
1

2
‖x̂− x‖2

P−1 +
α

η

∑
ı

∑
∈Nı

log cosh
(
η(xı −m`

)
)

(5.4.11)

Fixing the index ı and taking the partial derivative of ϕ w.r.t. xı, we obtain

∂ϕ

∂xı

(x) = P−1(x− x̂)ı + α
∑
∈Nı

tanh
(
η(xı −m`

)
)

(5.4.12)

The general algorithm 3.1 yields the following alternating algorithm.

Algorithm 5.3. Choose γ > 0 and choose α ∈ ]0, +∞[. Start with x0 ∈ int C and

m0
 = median{x0

ı , ı ∈ N}  = 1, . . . , N . For ` = 0, 1, . . . compute

x`+1
ı = x`

ı exp

(
− γ

((
P−1(x` − x̂)

)
ı
− α

∑
∈Nı

tanh
(
η(x`

ı −m`
)

) ))
ı = 1, · · · , N

m`+1
 = median{x`+1

ı , ı ∈ N}  = 1, . . . , N

until convergence.

Tikhonov regularization and median regularization differ only in the norm they

use, the former uses the 2-norm and the latter uses the 1-norm. Next, we introduce

a more generalized context of regularization.
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5.5 Hölder Filter

Now, we describe some regularization schemes depending on a different choice of

ψ(v). When using Tikhonov regularization, we have ψ(v) = ‖Lv‖, where L is a dif-

ferential operator. The median regularization function is ψ(v) =
∑

i

∑
j∈Ni

|vi − x̂j|;
whose approximation is ψη(v) =

∑
i

∑
j∈Ni

ϕη(vi − x̂j). Another type of regulariza-

tion function close to the Tikhonov family is the mean regularization, where ψ(v) =
∑

i

∑
j∈Ni

|vi− x̂j|2. The two former regularization operators belong to a more general

family of filter operators that we call Hölder filter. Typically, the Hölder filter replaces

each location by the Hölder mean of its neighborhood. That is,

ṽi = arg min
z∈R

∑
j∈Ni

|z − vj|p

where 1 ≤ p < +∞. Choosing p such that 1 ≤ p < +∞ makes the above functional

convex and differentiable except the case p = 1 at the origin. This latter instance was

dealt with in section 5.4. The Hölder mean filter transforms an image v to a new one

given by ṽ = Mp(v) such that

Mp(v) = arg min
u∈RN

∑
i

∑
j∈Ni

|ui − vj|p

It is straightforward to show that ṽi = Mp
i (v). For the sake of clarity, we write

ṽi = Mp(vj, j ∈ Ni). We use this filter in two special cases, p = 1 where the Hölder

mean coincides with the median, and p = 2 where we find the arithmetic mean.

The median and mean regularization methods are based on the following alternating

minimization formulation,

min
v,u∈RN

+

(
1

2
‖x̂− v‖2

P−1 + α
∑

i

∑
j∈Ni

|ui − vj|p
)

(5.5.1)

An optimal solution (v∗, u∗) is such that v∗ = proxα
ψp

(u∗), and u∗ = Mp(v∗), which

can be computed by using the following iterations

vm+1 = proxα
ψm

p
(x̂), um = Mp(vm), m = 1, 2, . . .
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where the starting guess is v0 > 0, ψm
p (v) =

∑
i

∑
j∈Ni

|um
i − vj|p, and p ∈ {1, 2}. We

could utilize our algorithm 3.1 to solve vm+1 = proxα
ψm

p
(x̂). Notice that the incorpo-

rated target value in the regularization function is not fixed; it is updated during the

iteration. Foundations of this alternating minimization, including convergence, are

provided in [12].

5.6 Segmentation Regularization

In medical imaging, we are sometimes not interested in individual intensities of each

and every pixel/voxel but rather on some ROI (region of interest) intensities. We are

then more concerned with a segmented reconstruction [81]. A CT scan for instance

might give us an idea about the ROI. In case we have this prior knowledge about the

selection of ROI before hand, we could include this constraint, reduce the size of our

problem, and have by the same token a better spatial regularization. A commonly

used approach is to proceed through a change of variable, see for instance [28]. Let

ξ be the activity vector of the disjoint p ROI. Let E represent the N × p belonging

matrix of each pixel to a unique ROI. It has therefore only one 1 in every column and

row and the rest of the entries are zeros. A 1 in row ı and column  implies the ıth

pixel belongs to the th ROI. Consequently we have the following relation

x = Eξ (5.6.1)

Instead of a transition and an evolution models for the activity x, we have rather

similar ones for the activity ξ. Hence equations (2.2.1) and (2.2.2) write

ξk = Ãkξk−1 + µ̃k (5.6.2)

yk = C̃kξk + ν̃k (5.6.3)

where C̃k = CkE. Therefore, in lieu of solving for a bigger size x, we solve for a much

smaller size ξ. Algorithm 5.1 becomes



CHAPTER 5. SPATIAL SMOOTHNESS 79

Algorithm 5.4. Choose γ > 0 and start with ξ0 ∈ intRp
+. For ` = 0, 1, . . . compute

ξ`+1
ı = ξ`

ı exp
(
−γ(P−1(ξ` − ξ̂))ı

)
, ı = 1, . . . , p

until convergence to ξ?. Then set

x? = Eξ?



Chapter 6

Numerical Experiments

Previously, we have stated the inverse problem of reconstructing a medical image in

nuclear medicine. We have employed the KF to give us an initial estimate that we

project onto the nonnegative orthant. We have proven some properties of our nonneg-

ative estimator and introduced spatial regularization schemes. Next, we corroborate

the effectiveness of the developed algorithms using a digital phantom. Some of the

presented theoretical foundation and validating experiments are reported in [79].

6.1 Procedure

Assume we are provided with projection matrices C1, · · · , CS and projections

y1, · · · , yS. We give a systematic method on how we can implement our approach.

Procedure 6.1.

step 1 Start with an initial guess vector x̂0|0 and an initial covariance matrix P0|0.

For k = 1, · · · , S, execute step 2, 3, and 4

step 2 At the kth recursion, choose the covariance matrices Qk and Rk (section 2.3);

examples of how are given in section 6.3

80
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step 3 Use the Kalman filter algorithm, Eqs. (2.3.1) to (2.3.5), to calculate x̂k|k−1

and x̂k|k

step 4 Use algorithm 3.1, in one of its particular forms developed in chapter 5, to

achieve nonnegativity and/or smoothness of x̂k|k if necessary

step 5 For k = S − 1, · · · , 1, use the Kalman smoothing algorithm, Eqs. (2.3.6)

to (2.3.8), to calculate the estimate x̂k|S and

step 6 Use algorithm 3.1, in one of its particular forms developed in chapter 5, to

achieve nonnegativity of x̂k|S if necessary.

6.2 Simulation

Our phantom is composed of six regions of interest (ROI) or segments. Each ROI

has a different time activity curve (TAC), see Figure 6.1. The example investigated

in this work is based on the teboroxime dynamics in the body during first hour post

injection. The choice of the time activity curves (TACs) is motivated by the behavior

of liver, healthy myocardium, muscles, stenotic myocardium, and lungs, respectively.

Only one slice is modeled; that is we simulate a 2D object. The star-like shape placed

on the left ensures that the phantom is not entirely symmetrical. We simulate 120

projections over 360◦, one projection for every 3◦ with attenuation and a 2D Gaussian

detector response.

There are three camera heads consisting of 64 square detectors each measuring

0.625 cm in each side, see Figure 1.1. The distance from the annulus to the detector-

rotation axis is 30 cm. We simulate 40 time instances for three heads; that is we have

3 × 40 = 120 projections for a camera rotating clock wise (CW) in a circular orbit.

Head 1 starts at −60◦, head 2 at 60◦, and head 3 at 180◦. A low energy high resolution

(LEHR) collimator is used with a full width at half maximum (fwhm). We determine
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Figure 6.1: Simulated annulus with its different ROI and their TACs: (a) simulated
activity at time 3, (b) at time 15, and (c) TACs of the 6 different ROI.

the blurred parallel strip/beam geometry system matrices for all projections with

resolution recovery and attenuation correction [93, 94].

We have 64 projection values for each head, which amounts to a total of 192

observations at each time frame. The size of the image we aim to reconstruct is

625 = 25 × 25 dixels; this is an under-determined problem with a ratio of 1:3.25

of data to unknowns. It is an ill-posed problem. We have experimented with one-

head as well as with two-head camera: This makes the problem even more ill-posed

with a 1:9.76 and a 1:4.88 ratio respectively. We have six kinds of TACs that are

very representative for clinical applications. The annulus has four arcs that we name

“Left”, “Upper”, “Right”, and “Lower” according to their location. The activity is

decreasing in the Left arc, increasing-decreasing in the Upper arc, constant in the

Right arc, and increasing in the Lower arc; see Figure 6.1. The star-like shape has

zero activity within it and is called the “Star” region; we refer to it as “Background”

too. The annulus is immersed within a region that has the sky-blue color in our figure.



CHAPTER 6. NUMERICAL EXPERIMENTS 83

It is called “Immersed” and has a constant activity. We have six ROIs in total.

6.3 First Tests

We provide quantitative analysis of the reconstructed images in order to compare the

simulated activity with the reconstructed one. We define the relative deviation error

τ of the reconstructed activity v∗ from the truth x, refer to (6.3.1) through (6.3.3).

Hence we compare the simulated count xı,k with the corresponding reconstructed one

v∗ı,k at each time frame k for every location ı. We sum over a ROI containing J

dixels normalized by the total simulated/true counts in order to diminish the effect of

statistical fluctuations. We have a τROI,k for every sector. These indicators allow us to

see how the method performs under different dynamic behaviors. We could compare,

for instance, sectors with fast washout with those with slow one [17]. We calculate

similar τk over the total number of doxels (dynamic voxels) N then we average them

over the total number S of time acquisitions; so that we have τavg. This is an objective

comparison of the quality of reconstruction for different sets of parameters such as

iteration stopping criteria, noise levels, etc. The closer τavg is to zero, the better the

reconstructed images should be.

τ 2
ROI,k =

∑J
ı=1(v

∗
ı,k − xı,k)

2

∑J
ı=1 x2

ı,k

(6.3.1)

τ 2
k =

∑N
ı=1(v

∗
ı,k − xı,k)

2

∑N
ı=1 x2

ı,k

(6.3.2)

τavg =
1

S

S∑

k=1

τk (6.3.3)

Preliminary tests are performed to choose initial covariance matrices, initial activ-

ity, number of iterations in the projection algorithm, as well as regularization tuning

parameters. Our guide to distinguish between a variety of them is the τ value com-

bined with visual inspection; this is a heuristic approach. The parameter that gives
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us the least value of τavg in (6.3.3) and/or better smoothed images will be our choice.
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Figure 6.2: Sinogram or 2D projections: y-axis has the bin number and the x-axis
has the 40 time instances of the 3 heads. Time instances from 1 to 40 are for head
1, 41 to 80 for head 2, and 81 to 120 for head 3. A color intensity of a pixel is the
number of detected photons by a certain bin at a certain time.

To see the importance of the number of heads, we experimented with a camera

that has one, two, and three heads to see if there is any improvement, see sinogram in

Figure 6.2. We apply the procedure 6.1 with algorithm 5.1 in step 4 and 6 where we

choose γ = 1, which is our choice from now on. The parameter γ is chosen to make

the function f − γϕ convex to ensure convergence of the algorithm 3.1. The choice

γ = 1 is heuristic and the rationale behind it goes as follows.

The convex function f is the negative entropy and the convex function ϕ is

quadratic. Consider the Hessian of f − γϕ which is of the form

diag(
1

x
)− γP−1 (6.3.4)

where diag( 1
x
) is the diagonal matrix having the components 1

xı
in its main diagonal.

Numerical experiments show that the matrix P−1 is almost diagonal with values of the

order 10−3 or so. Recall that x is a nonnegative variable. When xı is sufficiently large,
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this Hessian is negative definite. That is any choice of γ will not render the function

f − γϕ convex for all values of x. However, we are interested only in convexity when

the activity x takes some finite values. In our numerical experiments at hand, the

maximal value of xı is less than 150 or so. Thus the Hessian takes the approximate

form

diag(
1− γP−1

ıı xı

xı

) (6.3.5)

The term P−1
ıı xı is less than 1 and the choice of γ = 1 would make the Hessian positive

definite.

With the choice of these parameters, the TACs look similar in shape to the true

activity for the three reconstructed images; however this shape similarity phenomenon

is more pronounced with three than with one head since we have less statistics, that

is fewer photons detected by the camera when we have fewer heads; see Figure 6.3.

The τavg value in the case of one head is 0.50. Images were also less noisy and TACs

were closer to the true ones, for instance, with two than with one-head camera. TACs

with two and three heads are almost the same; however, we have a slightly smaller

τavg value of 0.37 with three compared to 0.40 with two. The results we present from

now on are obtained with a triple-head camera.

We mentioned in section 2.2.1 that the flow of the radioactivity could be seen as

a diffusion model which is related to a random walk model [56]. The latter model is

very useful if we do not possess enough knowledge about the radioisotope substance

flow. We assume that the system dynamics are unknown to us (2.2.1); therefore we

use a random walk. In practical terms, we set Ak = I, for all k = 1, · · · , S. For the

state transition linear model, we proceeded as follows. We are not interested in the

background and we assume that we know the locations of these zero activities; this

is a common practice [40, 63, 81]. We have run experiments without this assumption

and results are very comparable to when we have run them with this assumption.

One interesting way to deal with this assumption is as this. Set to zero the values of
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Figure 6.3: Reconstructed TACs with one, two, and three heads camera.

the corresponding positions of the matrix Ck and of the initial guess. The updating

equations 2.3.1, 2.3.3, and 2.3.6 ensure that the updated activities will remain equal

to zero; thus the KF reconstructs perfectly the star/background region(s).

We experiment with different initial guesses x̂0|0 such as (10−6, · · · , 10−6)> and

(1, · · · , 1)>. We also start the algorithm with the static image given by OSEM where

the background activity is set to zero; we call this initial guess OSEM act. We likewise

run KF backward in time starting with an arbitrary starting image and use its final

output at time 1 as another choice for x̂0|0. The average of the deviation error τavg

combined with visual inspection show that there is a slight advantage in favor of the

OSEM act, especially in rendering the edges of the background.
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We do not have much confidence in our initial activity guess x̂0|0 so we choose the

initial covariance matrix to be pretty large, P0|0 = 105I. We have also tried the last

covariance matrix P coming out from KF run backward in time; no improvement has

been noticed tough. In any case, KF has the interesting property that the effect of

the initial values of x̂0|0 and P0|0 diminishes over time, already after the first two or

three steps of the recursion. The update formulas for the covariance matrix P ensure

its symmetry in theory ((2.3.1), (2.3.3), and (2.3.6)) at each step. However, numerical

calculations might introduce nonsymmetry into them; so we substitute 1
2
(P +P>) for

P at each step to ensure symmetry.

Recall that E(µk) = 0, and E(µkµ
>
k ) = Qk. We experimented with

Qk = σ2




1 ρ ρ2 ρ3 · · ·
ρ 1 ρ ρ2 · · ·
ρ2 ρ 1 ρ · · ·
ρ3 ...

...
. . . ρ

... · · · ρ2 ρ 1




where ρ is some small positive value, for example, 10−1. The higher the power asso-

ciated with ρ the farther are pixels from each other. This choice made no difference

compared to the simpler one by choosing Qk = Q = σ2I, ∀k ∈ {1, . . . , S}.

Meanwhile E(νk) = 0 and E(νkν
>
k ) = Rk, so we take Rk = diag(yk), at each step k

of the recursion, yk being the projection data or number of detected photons at time

k. Recall that, section 1.1, the data yk is an instance of a Poisson random variable

Yk with mean E(Yk) = yk and standard deviation σ(Yk) =
√

yk.

We present here results obtained with x̂0|0 = OSEM act and P0|0 = 105I only. In

contrast to other approaches, [81] for instance, we do not assume here the segments

to be known exactly. We make use of these segments only to interpret the results. As

a consequence, there are some differences in intensity between pixels within the same

region. To assess the effectiveness of the method, we show the TACs averaged over
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the pixels within the same ROI.
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Figure 6.4: Without and with positivity reconstructed images and TACs: (a) sim-
ulated at time 9, (b) reconstructed without enforcing positivity, (c) reconstructed
with enforcing positivity, (d), (e) and (f) TACs of Lower, Left, and Upper regions
respectively.

6.3.1 Results

Right after each time step k of KF, we took the absolute value of the reconstructed

activity, abs(x̂k), and, in a second experiment, we set to zero its negative values; that

is we took max(x̂k, 0) where x̂k is the Kalman output. We obtained a τavg equal to

2×1029 and 3×1017 respectively. We repeated the experiment in applying abs(x̂) and

max(x̂, 0) only once at the end of the algorithm. We got high τavg as 2.12 and 1.80

respectively. More to the point, the images were unidentifiable in all these four cases.

Recall that using max(x̂k, 0) means we apply the orthogonal projection. Consequently

the fact that we did not get any meaningful image confirms theorem 4.1 that the

projected KF estimator x?
P−1 is the constrained ML estimator of x in C = RN

+ within
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Figure 6.5: All reconstructed TACs without positivity. Blue —— for true/simulated
TAC, red —— for reconstructed TACs. Note the scales.

the framework of a linear model and Gaussian pdf given by equation 4.3.1; refer also to

section 3.7 for more details. We observe in Figure 6.4 that the algorithm reconstructs

perfectly, as it should, the star region without or with enforcing any kind of positivity;

refer to section 6.3. This is evidenced by the fact that the reconstructed TACs in the

star region are exactly the same as the simulated one; refer for instance to Figure 6.5

and Figure 6.6. We ran KF without enforcing the positivity; that is without applying

our proximal method. We then applied KF with positivity using algorithm 5.1 and

compared both outputs. The averaged TACs in every region look similar without and

with positivity which is in accordance with theorem 4.3 emphasizing the unbiasedness

of x? and x̂, see Figure 6.4. This is explained by the fact that KF gives an optimal

estimate on average at each time k for every region but not for every dixel. However,

we got only meaningless images without positivity. This is more apparent when we

plot all TACs over different regions for both without and with positivity, see Figure 6.5

and Figure 6.6. When you compare the figures, please note the difference in the scales.
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Note for instance how some values are negative and go below and above the true ones

by about 500 without the positivity; while values stay pretty close to the true ones

and above zero with the positivity. This is reflected in the average over time τavg

of 2.42 without positivity and 0.37 with positivity. Theoretical results about these

observations have been established in section 4.4.4. It is clear that our approach of

enforcing positivity in the output images, that come from the classical KF algorithm, is

better than using the abs and max functions or than just doing nothing. The proximal

approach to enforce nonnegativity is indeed an efficient tool to enforce some spatial

regularization, refer to section 5.1 for more details including theorem 4.4 stating that

the estimator x? performs better in the MSE sense.
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Figure 6.6: All reconstructed TACs with positivity. Blue —— for true/simulated
TAC, red —— for reconstructed TACs. Note the scales.

We like to see how our algorithm behaves in the presence of good and bad signals,

or in our setting, noiseless and noisy data, refer to Figure 6.7 and compare it to

Figure 6.2. We run tests where we compare reconstructions with and without noise

included into the data/observations. Instead of working with the observation y as is
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Figure 6.7: Noiseless sinogram or 2D projections without noise: y-axis has the bin
number and the x-axis has the 40 time instances of the 3 heads. Time instances from
1 to 40 are for head 1, 41 to 80 for head 2, and 81 to 120 for head 3. A color intensity
of a pixel is the number of detected photons by a certain bin at a certain time..

in the case of noiseless data, we took rather a Poisson random observation with mean

y in the case of noisy data. We notice that there are very slight differences in the

TACs and in the reconstructed images with and without noisy data, see Figure 6.8.

We include, for reference, different plots for the τ function for both noisy and noiseless

data, see Figure 6.9 and Figure 6.10. The τavg value at 0.36 without noise is slightly

smaller than the one with noise, which is 0.37. This should come at no surprise since

the less noisy the data the better the method should perform. However, the approach

is not very sensitive to noise in the data; it filters out the noise from data very well.

In general, the τ function is somehow “decreasing” over time (plot of “τ in all” of

Figure 6.9); which means that our algorithm improves in time as it should.

Theorem 4.1 posits that the estimator x? is the ML of the nonnegative activity x

in RN
+ w.r.t. P−1 within the context of the Gaussian pdf, given by equation 4.3.1,

using a linear model. To see the importance of the oblique projection through the
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Figure 6.8: Reconstructed TACs and images with and without noise in data.

0 10 20 30 40
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 time

 τ in immersed

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

 time

 τ in lower

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 time

 τ in right

0 10 20 30 40
0.3

0.35

0.4

0.45

0.5

0.55

 time

 τ in all

Figure 6.9: τ function with noisy data.
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Figure 6.10: τ function for data without noise.

weighting matrix W = P−1, we experimented with different matrices. We tried

W = I, orthogonal projection, and W = P ; neither choice leads to any meaningful

reconstructed image. We also used W = P−1 + εΥ as a slightly perturbed P−1. The

matrix Υ was either a uniform random matrix within the interval [0, 1], a Gaussian

random matrix, or just the matrix having the number 1 in all its entries. We varied

ε from 10−6 up to 10−3. In all these cases the average deviation was greater than

0.37, the one with W = P−1, starting from 0.37 up to 0.81. We did not get any

meaningful image starting from ε = 10−3 and up. This suggests that the symmetric

positive definite matrix P−1 is indeed the optimal weighting matrix.

6.4 Positive Kalman

Our first task was to determine the tuning parameters. Recall that in section 2.3 we

choose to model the noise as white noise, that is Qk = σ2I. The Kalman algorithm
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gives two reconstructed images, one after the filtering step that we call “filtered”,

another one after the smoothing step, that we call “smoothed”, refer to section 2.3.

We are interested in the behavior of dynamic regions. Therefore, from now on we

only show the TACs of the lower, left, and upper arcs. Using τavg as our primary

criterion to discriminate for potential values and/or visual inspection while varying

one parameter at the time thus keeping the rest constant, we found first that there is

not much of a τavg gain when increasing or decreasing the value of σ2; see Figure 6.11

for τavg as a function of σ2. We have a τavg around 0.36 for σ2 between 4 and 4×108;

thus the choice of a log scale for our x-axis. We have a minimum value of 0.37 when

Q ≈ 40I. The fact that our algorithm is not sensitive to the value of the error

covariance matrix Q shows that it handles already “some” of the ill-posedness of our

problem.
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Figure 6.11: τavg as a function of log(σ2
Q).
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Figure 6.12: τavg as a function of the number of iterations.
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Figure 6.13: Image at time 13 and TACs at different number of iterations.
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Figure 6.14: Images at different number of iterations: Truth in 1st row, images at 1st

iteration in 2nd row, images at 3rd iteration in 3rd row, and images at 7th iteration in
4th row.

0

50

100

 Time 4

0

50

100

0

50

100

0

50

100

 Time 7

0

50

100

0

50

100

0

50

100

 Time 17

0

50

100

0

50

100

0

50

100

 Time 22

0

50

100

0

50

100

0

50

100

 Time 29

0

50

100

0

50

100

Figure 6.15: Nonnegative images at various times: Truth in 1st row, filtered image in
2nd row, smoothed image in 3rd row.
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The projected Bregman algorithm to ensure nonnegativity is iterative in the time-

domain. We use the same heuristic approach to find the number of iterations to be

carried out. Iterative algorithms should give better results as we run them longer, that

is, as we increase the number of iterations. In our case, we notice that τavg goes from

0.37 at the first iteration down to about 0.30 at the ninth iteration. The deviation τavg

is indeed improving and Figure 6.12 illustrates this fact. However, images are getting

noisier while the TACs are not improving much, Figure 6.13 testifies to that. Observe

also how the reconstructed images in Figure 6.14 deteriorate as we increase the number

of iterations. We are witnessing a pointwise but not a uniform convergence. A similar

phenomenon is observed with the EM algorithm where we have semi-convergence

instead of a normal “full” convergence. Indeed, it was noticed that we should stop

EM earlier on in the iterations before the solution starts to fit to the noisy data.

Section 5.2 details how an iterative scheme, as it is our case here, could be used as a

tool to impose some spatial regularization. Subsequently, we only apply one iteration

from now on as a trade off between reasonable τavg and smooth images. This is of

course a subjective choice and one could run the algorithm for more than one iteration.

Figure 6.15 depicts images of the simulated/true annulus at various times together

with the reconstructed filtered and smoothed ones when we enforce the positivity. Im-

ages look fine, however, the left arc looks noisy at the first few instances of time. This

could be explained by the fact that this is where we have a rapidly decreasing activity

and the algorithm takes longer before it catches on. Reconstructed smoothed images

look smoother than the filtered ones as expected. We notice even an improvement

intensity-wise since they are closer to the true ones; compare for instance the upper

region at different times and how images look closer in color to the true ones than the

filtered images. This is reflected in τavg where the smoothed reconstructed image has

τavg = 0.37 while the filtered one has τavg = 0.42, see Table 6.2.

Figure 6.16 displays the averaged TACs over three different regions. We plot
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Figure 6.16: Averaged TACs for each region with positivity: Blue TACs for truth,
red TACs for reconstructed filtered, and black TACs for smoothed. (a), (b), and (c)
TACs for lower, left, and upper arcs respectively.

the true ones, shown in blue, the reconstructed filtered ones, shown in red, and the

reconstructed smoothed ones, shown in black. Note that both reconstructed TACs

look pretty close to the true ones shape-wise and in quantity/intensity/color. This is

very interesting since we use only a basic approximation, namely first-order random

walk, to describe the evolution model. Smoothed TACs look indeed “smoother” than

the filtered ones as promised by the smoothing step in the Kalman algorithm. There

are however some differences in intensity between pixels within the same region, see

for instance the right and lower arcs. Smoothing is done over time with KF; that is we

have a temporal regularization but not a spatial one. Tikhonov spatial regularization

is the topic of the next section.

Table 6.1 lists CPU times taken to run our algorithm. We experimented on a P4

3.00 GHz desktop. All times are given in seconds (sec). It takes about 79.3 sec to

run the whole algorithm; where 49.0 sec are spent in the filter step and the remaining
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30.3 sec in the smoother step. We need to run the positivity stage during both steps.

It takes about 8.4 sec in KF and 0.6 sec in the smoother; much less than KF or only

7.6%. This is explained by the fact that after the filtering step, images are already

nonnegative and there is no need, most of the time, to enter the positivity stage during

the smoothing step. The positivity takes about 9.1 sec in total, an average of 0.11 sec

per recursion, less than 11.5% of the total running time. There are 79 recursions in

total, 40 in the filtering step and 39 in the smoothing step.

Table 6.1: CPU times in seconds and percentages.

Filter step Smoother step Both steps
total positivity time 8.43 0.64 9.07
positivity mean time per recursion 0.21 0.02 0.11
reconstruction total time 49.03 30.27 79.30
positivity time as percent of total 17.18% 2.11% 11.43%

6.5 Tikhonov Regularization

In chapter 5 we covered the spatial smoothness of the solution of our image recon-

struction in nuclear medicine. Recall that two main practical approaches are gen-

erally applied: introducing constraints into the problem and using iterative solvers.

In section 6.3.1 we have seen how our proximal method to enforce the nonnegativity

constraint takes care of some of the spatial regularization. In section 6.4 we have

also shown that the iterative scheme we employ is numerically efficient to help our

solution to be more spatially regularized. In order to include more spatial constraints

into the reconstruction, we experiment now with Tikhonov regularization known as

ridge regression in the statistics community; refer to section 5.3 for more details about

this method. The cost function that we are minimizing using a Bregman projection

is
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Figure 6.17: Tikhonov regularized images at various times: Truth in 1st row, filtered
image in 2nd row, smoothed image in 3rd row.

f(v) =
1

2
‖v − x̂‖2

P−1 +
α

2
||Lv‖2 (6.5.1)

where L is an appropriately chosen regularization operator, x̂ is the output activity

of the Kalman algorithm. We follow the same systematic procedure 6.1 with the cost

function from (6.5.1) and algorithm 5.2 in step 5. We tried L = I; that is we preferred

a solution with smaller norm. We also chose L, see below for an example, to be the

second order differential operator that we note as Diff2 where the neighboring system

is shown in Figure 5.1. We did not notice any significant change or improvement from

one setting to another. Images presented here are from the setting L = Diff2 and

Q = 40I. We got, for instance, the following stencil for the Diff2 operator based on
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the neighboring system of Figure 5.1,



−2 1 0 1 0 0 0 0 0

1 −3 1 0 1 0 0 0 0

0 1 −2 0 0 1 0 0 0

1 0 0 −3 1 0 1 0 0

0 1 0 1 −4 1 0 1 0

0 0 1 0 1 −3 0 0 1

0 0 0 1 0 0 −2 1 0

0 0 0 0 1 0 1 −3 1

0 0 0 0 0 1 0 1 −2




We observed in section 5.3 that an optimal value of α exists even though finding

it is not an easy task and is an ongoing active research topic. Our take on this issue is

heuristic. We thus experimented with various values of this parameter α. The smallest

value of τavg happens when αoptimal ' 10−5; the smoothed reconstructed image has

τavg = 0.36 and of the filtered one has τavg = 0.42. It takes about 79.7 sec to run the

whole algorithm where nonnegativity and Tikhonov regularization takes about 11.5%

of the total running time. It is as much time as when we impose the nonnegativity

constraint only. We notice that there are some pixels’ grouping if we compare the

reconstructed image to the one done with enforcing the nonnegativity constraint only;

compare for instance the lower and upper regions in Figure 6.15 and Figure 6.17. As it

is known in the regularization literature, Tikhonov tends to over-smooth. We observe

the same effect here where we see that images look blurred.

6.5.1 Augmented

We drew attention in section 5.3 to the fact that the authors in [10, 60, 102] use an

augmented system in implementing Tikhonov regularization into KF. The method

is an extension of Tikhonov in which the original observation model is replaced by
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an augmented one; we therefore refer to this approach as “augmented”. The equa-

tion (2.2.2) is then replaced with

ỹk = C̃kxk + ν̃k (6.5.2)

where

ỹk =


 yk

αLx̄k


 , C̃k =


 Ck

αL


 , and ν̃k =


 νk

εk




with L being the second-order difference or Diff2 matrix as we defined it before. The

vector εk is a Gaussian zero-mean error of the fictitious noisy observations αLx̄k with

covariance Uk and x̄k being some target value.

We implemented this method in order to compare it to ours, referred to as “Breg-

man” in Figure 6.18. We found the best tuning parameter α to be 10−2 via numerical

trials with x̂0|0 = OSEM act, Q = 40I, P0|0 = 105I, and Uk = I. We used the same

projected Bregman technique to ensure the positivity of the solution. So we keep the

same conditions of the experiment except the way we implemented Tikhonov regular-

ization. With x̄ = 0 we get τavg = 0.35 and 0.36 with x̄ being the average of the true

activity. Those values of deviation error are similar in range compared to Tikhonov

regularization presented previously, which is 0.36 and TACs are almost the same, re-

fer to Figure 6.18. It takes about 150.4 sec to find the solution using this method.

It is about one and a half times as long as the computational time of the Tikhonov

regularization using our implementation. Beside the usual Tikhonov over-smoothing

effect, we do lose here, with this augmented system, some of the characteristics of the

annulus; see for instance the region around the background in Figure 6.18. Further-

more, the augmented method is very demanding in terms of memory space because

it is doubling the size of vectors and quadrupling one of the matrices in (6.5.2), es-

pecially the size of the matrix to invert in (2.3.3). Tikhonov regularization seems to

behave better with our implementation.
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Figure 6.18: Augmented vs Bregman Tikhonov regularization at time 22: Blue for
truth, red for augmented, and black for Bregman.

6.6 Median Regularization

To avoid the over smoothing of Tikhonov type regularization, we introduced in sec-

tion 5.4 an edge preserving regularization as an alternative. It is in essence based

on the absolute value function |x|. The absolute value function is convex but not

smooth; it is not differentiable at zero. We used the following approximation that is

both convex and differentiable, ϕη(x) = 1
η
log cosh(η x), see Figure 5.2. As mentioned

before in section 5.4, a connection exists between the |x| function and the median,

thus the name of “Median” for this edge-preserving approach. Recall that the cost

function is

f(v) =
1

2
‖x̂− v‖2

W + α
∑

i

∑
j∈Ni

|x̂i − vj| (6.6.1)

We apply the systematic procedure 6.1, with the cost function (6.6.1), using the

algorithm 5.3 in step 5. Our criteria of selecting parameters are again the value of
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Figure 6.19: Median regularized images at different times: Truth in 1st row, filtered
image in 2nd row, smoothed image in 3rd Row.

τavg and visual inspection. We notice that choosing any value of the parameter η

greater or equal to 5 has not much bearing in improving the reconstructed images

while we have an optimal value of the parameter α around 10−2. We present results

done with η = 20 and α = 10−2. Figure 6.19 exhibits the reconstructed filtered and

smoothed images together with the simulated/true ones at different instances of time

when we applied the median regularization. The smoothed reconstructed image has a

τavg of 0.37 while the filtered one has 0.43. It takes about 83.8 sec to run the Median

algorithm where nonnegativity and median regularization takes about 11.9% of the

total running time, comparable to when we impose the nonnegativity only. Notice

the blocky segments and edge-preserving at the borders of the regions. As in the

previous approaches, reconstructed smoothed images are “smoother” and somehow

“better” than the filtered ones. The median approach groups pixels together within a

certain ROI. Furthermore, the too much smoothing effect of Tikhonov regularization,

for instance in the middle of the images and at the borders of the arcs, has diminished
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with the median regularization. Table 6.2 summarizes the deviation error τ of several

reconstructions we presented up to now.
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Figure 6.20: Three reconstructed images at different times: Truth in 1st row, just
positivity in 2nd row, positivity and Tikhonov regularization in 3rd row, positivity
and median regularization in 4th row.

So far we have reconstructed images using KF projected using Bregman distance

to ensure nonnegativity. We have obtained quite good images and TACs. Temporal

regularization is taken care of by KF itself. Enforcing the nonnegativity, stopping

the iterative algorithm earlier on, implementing “Tikhonov” and “Median” all serve

to impose spatial regularization and by the same token to minimize more the effect

of the ill-posedness. See Figure 6.20 for the three reconstructed images put together

one after the other. As we have already mentioned in this section, blocky segments
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and edge-preserving at the borders of the regions are present when using the Median

algorithm and the too much smoothing effect of the Tikhonov regularization is less

present. We also mentioned in 6.5.1 that there are some pixels’ grouping, when we

use the Tikhonov algorithm, comparatively to with enforcing nonnegativity constraint

only; compare for instance the lower and upper regions.

6.7 Hölder Filter Regularization
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Figure 6.21: Mean-before and mean-after regularization at time 22 - TACs: Blue for
truth, red for mean-before, and black for mean-after.

We implemented and tested more regularization approaches. Tikhonov and Me-

dian regularization use the 2-norm and 1-norm respectively to achieve their purpose

of regularization. Both norms are associated essentially with the mean and median

functions and we have put these norms in a more generalized Hölder norm form, see

section 5.5. Therefore, we apply these functions to our x̂, the output activity of KF.
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Figure 6.22: Median-before and median-after regularization at time 22 - TACs: Blue
for truth, red for median-before, and black for median-after.

These two norms are rightfully referred to in the literature as filter window averag-

ing and median filter. We referred to them before as Hölder filter of order 2 and

1. We used these two variants in two ways each. We applied one of these functions

before entering the next step of the recurrence of the KF, meaning after applying our

positivity algorithm. We also just applied one of them after applying the projected

KF, that is at the end of the algorithm. We thus have another two variants for the

mean and median functions, four in total. We name them “Mean-Before”, “Mean-

After”, “Median-Before”, and “Median-After” respectively. Figure 6.21 presents the

TACs and the reconstructed “Mean-Before” and “Mean-After” images at one instance

of time while Figure 6.22 shows the ones of “Median-Before” and “Median-After”.

These variants not only do a good job in edge-preserving, but also blur the images

less. However, the four variants succeeded to an extent to group pixels within each

one of the ROI. Notice, for instance, how the “star” region is even more blurred with

this mean filter approach than when we use Tikhonov and how its shape looks like a
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square with this median filter.
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Figure 6.23: All reconstructed images: Truth in 1st row, just positivity in 2nd row,
Tikhonov in 3rd row, mean-before in 4th row, mean-after in 5th row, median in 6th

row, median-before in 7th row, median-after in 8th row.

For completeness sake we provide the seven sets of images at different instances of

time that we reconstructed so far with and without regularization together with the

simulated/true ones, see Figure 6.23. Notice that the three median-based approaches

give better images. The “Median” ones look a little better even though it does not

give the smallest τ value among the three median regularization-based ones. Table 6.2

summarizes the deviation error τ and Table 6.3 summarizes the total CPU times in
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seconds of some reconstructions we presented so far.

Table 6.2: Deviation error τavg of several reconstructions.

Filtering Step Smoothing Step
No positivity 2.59 2.42
With positivity 0.42 0.37
Augmented 0.40 0.36
Tikhonov 0.42 0.36
Mean-before 0.49 0.46
Mean-after 0.43 0.39
Median-before 0.43 0.39
Median-after 0.43 0.38
Median 0.43 0.37

Table 6.3: CPU time in seconds of several reconstructions.

Positivity Tikhonov Median Augmented
79.30 79.65 83.82 150.44

6.8 Comparing with Improved dEM Algorithm

We mentioned in section 1.3 that methods based in using a “mask” to incorporate

inequality constraints on the variables could be costly in time and prone to introduce

some bias. There is ongoing work to improve the dEM algorithm [40] mainly by

updating the peaks of the TACs using techniques explored in [41]. We include here a

comparison between this improved dEM and our approach that we refer to as projected

Kalman.

The simulated 2D phantom is a combination of two slices of a 3D phantom, one

containing the bladder and the other one containing the two kidneys. Five ROIs are

simulated over 48 time frames knowingly, right kidney, left kidney, bladder, immersed,
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Figure 6.24: Simulated 64× 64× 48 kidney phantom at time 7.

and background. The resulting 2D phantom, courtesy of Thomas Humphries, is a

64 × 64 × 48 movie that we refer to as the kidney phantom; see Figure 6.24. The

sinogram is done with two heads camera in L-mode, 64 detector bins in each head. One

camera starts off behind the two kidneys and the other on the side closest to the right

kidney. It then rotates clockwise behind the phantom over 360◦. There is no Poisson

noise added in the sinogram for dEM reconstruction while there is one included in the

sinogram for our approach. The improved dEM reconstruction is better than just by

using the classical dEM alone since the TACs are smoother than those, for instance,

exhibited in [16]; see Figure 6.26. We observe that both reconstructions, improved

dEM and projected Kalman, yield about the same quality level images and TACs;

refer to Figure 6.25 and Figure 6.26.
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Figure 6.25: Improved dEM and Projected Kalman kidney images: Truth in 1st row,
improved dEM in 2nd row, and projected Kalman in 3rd row.
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Figure 6.26: Reconstructed kidney TACs with improved dEM algorithm and projected
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6.9 Various Sized Phantoms

The 25× 25 digital phantom, 625 pixels in total, we used for experiments is now set

into a bigger 64× 64 phantom, see Figure 6.27. We utilized the 25× 25 one in order

to determine heuristically the tuning parameters of the reconstruction. We are now

ready to push for bigger phantoms with the same parameters that we summarize in

table 6.4. The parameters might depend on the grid size and further experiments

could help to clarify this issue. However, one heuristic way of getting in general the

tuning parameters of any reconstruction is to start off with a coarser grid. Once we

have them, we could proceed thereafter with finer grids.
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Figure 6.27: Simulated 64 × 64 annulus and TACs: (a) phantom at time 3, (b) at
time 15, (c) TACs.

Table 6.4: Tuning parameters.

x̂0|0 P0|0 Qk Rk W γ # of iter αTikh αMedian

OSEM act 105I 40I diag(yk) P−1 1 1 10−5 10−2
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Figure 6.28: Size 31× 31 digital phantom at time 22 - TACs: Blue for truth, red for
filtered, and black for smoothed.

We conducted trials with sizes 31 × 31, 961 pixels, 45 × 43 to include a zero-

activity background, 1935 pixels, and 64 × 64, 4096 pixels; Figures 6.28, 6.29, 6.30

give the reconstructed images and TACs respectively. The ratio of data to unknowns

is summarized in table 6.5 and goes from 1:3.25 for the 25× 25 size to 1:21.34 for the

64× 64 size phantom.

We notice that the TACs of the three bigger sized phantoms look similar in shape

to the true ones. The TAC of the “Upper” arc succeeds in catching the time of the

peak as it was the case with 25× 25 size, see Figure 6.16. As we increase the number

of pixels from 625 to 4096, the intensity at the peak in the “Upper” arc, for instance,

gets smaller; compare this intensity in Figure 6.16, 6.28, 6.29, and 6.30. The smoothed

reconstructed images are again better than the filtered ones. For the static case, a

reconstruction of a 3D image can take several hours using OSEM [104]. In our 2D

dynamic SPECT reconstruction, an acceptable amount of CPU time would ideally

be then few minutes. Table 6.6 sums up the CPU time taken to run each size of the
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Figure 6.29: Size 45× 43 digital phantom at time 22 - TACs: Blue for truth, red for
filtered, and black for smoothed.

phantom. It goes from 80 seconds for 625 pixels to 4.5 hours for 4096 pixels. While

the size 4096 is about 6.6 times the one of 625, the CPU time is almost 200 times

as much. Therefore, we have a complexity of the order N3. This huge jump could

be explained by the few matrix multiplications, of the same size as the one of the

phantom, that are involved in (2.3.3) and (2.3.6) of the Kalman algorithm.

Table 6.5: Ratio of data to unknowns.

Size 25× 25 31× 31 45× 43 64× 64
Ratio 1 : 3.25 1 : 5.00 1 : 10.00 1 : 21.34

As far as the values of the average deviation τavg are concerned, we are still in the

vicinity of 0.4 as it was the case with 25×25 size. Table 6.7 includes those values. We

present reconstructions done with Tikhonov and Median spatial regularization for size

31× 31 and 45× 43, see Figure 6.31, 6.32, 6.33, and 6.34. We notice again grouping



CHAPTER 6. NUMERICAL EXPERIMENTS 116

0 20 40

20

40

60

80

100

120

140

 Lower

 time
0 20 40

0

20

40

60

80

 Left

 TACs of different sectors

true
filtered
smoothed

0 20 40
0

20

40

60

80

100

 Upper

 time

0

20

40

60

80

100

120

 True at time 22

0

20

40

60

80

100

120

 Filtered

0

20

40

60

80

100

120

 Smoothed

Figure 6.30: Size 64× 64 digital phantom at time 22 - TACs: Blue for truth, red for
filtered, and black for smoothed.

Table 6.6: CPU time of various sizes.

Size 25× 25 31× 31 45× 43 64× 64
Time 80 seconds 4.5 minutes 34 minutes 4.5 hours

of pixels due to Tikhonov, compare for instance Figure 6.29 with Figure 6.32. While

Tikhonov regularization over smooths especially at the boundaries of the regions,

the Median regularization preserves the edges, compare Figure 6.32 and Figure 6.34.

TACs are once more similar in shape to the simulated ones in all these cases of

regularization.

Table 6.7: Average deviation τavg of different sizes.

Size 25× 25 31× 31 45× 43 64× 64
τavg 0.37 0.43 0.46 0.46
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Figure 6.31: Size 31× 31 digital phantom with Tikhonov regularization at time 22 -
TACs: Blue for truth, red for filtered, and black for smoothed.
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Figure 6.32: Size 45× 43 digital phantom with Tikhonov regularization at time 22 -
TACs: Blue for truth, red for filtered, and black for smoothed.
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Figure 6.33: Size 31 × 31 digital phantom with Median regularization at time 22 -
TACs: Blue for truth, red for filtered, and black for smoothed.
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Figure 6.34: Size 45 × 43 digital phantom with Median regularization at time 22 -
TACs: Blue for truth, red for filtered, and black for smoothed.
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6.10 Spatial Regularization via Segmentation
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Figure 6.35: Regularization via segmentation images at different times: Truth in 1st

row, filtered image in 2nd row, smoothed image in 3rd Row.

Finally we include spatial regularization via segmentation. When we know how

to partition the digital phantom into nonintersecting regions, we can include this

additional constraint into the problem and reduce its size at the same time. We offer

here an experiment done when we have perfect information about the six ROIs. We

utilize the procedure 6.1 where the variable is now ξ instead of x as we mentioned

in section 6.10. We apply procedure 6.1 where we employ algorithm 5.4 in step

4 and 6 while the matrix CkE substitutes the matrix Ck in steps 4 and 6. The

computation takes 1.72 seconds, 2% of the one of 25× 25 phantom, while the average

deviation is 0.06, 6.5 times better than the unsegmented. Figure 6.35 shows the

reconstructed filtered and smoothed images together with the simulated one while

Figure 6.36 exhibits the reconstructed TACs being very close to the true time activity

curve. We get a much better reconstruction since we have more data. This sustains

the asymptotic consistency property, as the observations number increases, of the
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estimator x? given in corollary 4.1. Recall the consistency property (4.2.1),

lim
n→∞

P (|x? − x| < ε) = 1 ∀ε > 0

where n is the size of the data. Furthermore, the estimator seems to confirm that it

is sufficient, acceptable, unbiased, and efficient thus verifying the criteria stipulated

in section 4.2,
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Figure 6.36: TACs of three regions: Blue TAC for truth, red TAC for reconstructed
filtered, and black TAC for smoothed.



Chapter 7

Conclusions

In this thesis we have presented reconstruction schemes for a nuclear medicine prob-

lem. Our approach does not require a precise a-priori information about the underly-

ing dynamic physical process. It consists of finding the best linear unbiased estimator

solution of the dynamic SPECT reconstruction problem and then applies a general-

ized proximal approach. The initial solution was found using the classical Kalman

algorithm. However, this solution is meaningless because it fails to be nonnegative.

Setting negative values of the activity to zero or taking their absolute value do not

work to get an acceptable solution. We remedied this Kalman algorithm’s shortcom-

ing by projecting this solution onto the nonnegative orthant via a Bregman approach.

We showed that the projected estimator not only conserves the same properties as

its parent Kalman filter estimator, but also performs better. Analysis of images and

time activity curves showed a net improvement. The Kalman filter by nature takes

care of temporal regularization. However, we do not have spatial smoothness, even

among pixels within the same region. We propose then a few spatial regularization ap-

proaches. Numerical results confirm the effectiveness of our methods, especially with

the “Median” approach that preserves the edges, while keeping the temporal smooth-

ness feature. We also compared our Tikhonov regularization implementation with

121
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the one implemented in earlier work and found that ours outperformed it in terms of

running time and memory space needs, while producing images of comparable quality.

We used a heuristic method to determine the regularization parameters. Ongoing

work consists of improving regularization by choosing a different operator L, neighbor-

ing system, and by automating the choice of the parameters. One way we are thinking

of doing this is by using the L-curve [14, 83]. Cross validation [103] and discrepancy

principle [84] are yet other approaches to experiment with. We are investigating other

regularization avenues such as total variation.

First-order hidden Markov chain models very well a large portion of problems in-

cluding those of tracer kinetics. We only experimented here with a first-order random

walk; thus we chose the identity as the evolution matrix. We are looking into using a

higher order random walk. Interesting aspects of the proposed method remain to be

investigated, for example addressing the issue of computational complexity for large

scale systems.

In this thesis we offered a mathematical model and numerical approach to solve

the inverse problem of dynamic medical image reconstruction. Inverse problems are

typically ill-posed and ill-conditioned. Our method performs well in handling both

challenges. We believe that our approach could be utilized when the activity is static

(time independent) and in other fields as well where nonnegativity or spatial regular-

ization are required.
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