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Abstract

The ATLAS detector will begin taking data from p-p collisions in 2009. This experiment
will allow for many different physics measurements and searches. The production of tau
leptons at the LHC is a key signature of the decay of both the standard model Higgs (via
H → ττ) and SUSY particles. Taus have a short lifetime (cτ = 87 µm) and decay hadroni-
cally 65% of the time. Many QCD interactions produce similar hadronic showers and have
cross-sections about 1 billion times larger than tau production. Multivariate techniques
are therefore often used to distinguish taus from this background. Boosted Decision Trees
(BDTs) are a machine-learning technique for developing cut-based discriminants which
can significantly aid in extracting small signal samples from overwhelming backgrounds.
In this study, BDTs are used for tau identification for the ATLAS experiment. They are a
fast, flexible alternative to existing discriminants with comparable or better performance.

iii



To my parents.

iv



Acknowledgments

I would like to thank my family for their amazing support and patience as September after
September has found me “still in school”. To my parents, brothers Bryan and Dean, and
grandparents: I love you and appreciate you. Having a strong family is a great blessing to
me.

I am fortunate to work with a wonderful supervisor. Dugan, thank you for teaching
me about research and giving me the opportunity to work with you. I’ve learned that the
time you spend and that many of the things that you have helped me with or taught me are
beyond what should reasonably be expected from a supervisor. Thank you for correcting
my spelling mistakes, teaching me shell scripting, and not getting mad when I bought a
new computer only to discover that it was the monitor that was broken. Thanks also to the
other HEP supervisors: Mike Vetterli for teaching me about detectors and Bernd Stelzer for
helpful comments and suggestions.

I owe much thanks to the ATLAS tau group, which has some great people working in
it. Among them are those who led us as conveners over the course of my degree: Elzbieta
Richter-Was, Wolfgang Mader, and Yann Coadou. Stan Lai has enthusiastically answered
so many random email questions and, along with Nico Meyer, Anna Kaczmarska, and
Marcin Wolter, greatly assisted me with tau reconstruction issues. I also thank Łukasz
Janyst for help in the BDTAnalysis program design and for the programming help via in-
stant messenger.

I thank the students in the SFU HEP group, from “oldest” to “youngest”: Dag, for
ROOT help, in-office soccer games, and various forms of “older brother” style teasing and
support; Zhiyi for making my macros work and me laugh; Doug, our computing guru,
for designing the BDTAnalysis package and teaching me a lot about programming; Travis
for the company and random facts about everything; Rogayeh for discussions about world

v



ACKNOWLEDGMENTS vi

issues outside of physics (they do exist); Michel for teaching me French (or at least trying
to); Noel for reconstructing the calibration study samples; Sarah for increasing both the
female and the Abbotsford population of the office; and Suvayu for the fun conversations
and for the future computer help. I also thank the post-docs. Jyothsna has fed me and
kept me company at CERN (and got lost with me in Torino) and helped me with many
tau-related issues. She really is “always available” for us students. I thank Teresa for help
with the error calculations and for many very helpful discussions about physics and other
things.

On a personal level, I have had great community and emotional support throughout
university. I thank all my roommates past and present. A special thanks to my little com-
munity here who has kept me company, sane, fed, and dancing during the last stretch of
this degree: Sara (for good talks), Mirjam and David, Laleh (always a bright smile), Scott
(trouble), Shannon (walking buddy), and Dave (supplier of food and good breaks).

Finally, I thank my creator God for every reason I have to thank those listed above.
Thank you for grace and love and the life you’ve given me. Thank you also for making the
world so interesting to study.



Contents

Approval ii

Abstract iii

Dedication iv

Acknowledgments v

Contents vii

List of Tables x

List of Figures xii

1 Introduction 1
1.1 The Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Extensions to the Standard Model . . . . . . . . . . . . . . . . . . 5
1.1.2 Physics Motivation to Study Taus . . . . . . . . . . . . . . . . . . 5

1.2 Experimental Particle Physics . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Experimental Setup 9
2.1 The Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 The ATLAS Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Geometry of the ATLAS Detector . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Detector Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Detector Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

vii



CONTENTS viii

2.5.1 The Inner Detector . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.2 Calorimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.3 ATLAS Software . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 The Tau Lepton 23
3.1 Introduction to Taus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Tau Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 The Track Seeded Algorithm (Tau1P3P) . . . . . . . . . . . . . . . 26
3.2.2 The Calorimeter Seeded Algorithm (TauRec) . . . . . . . . . . . . 29
3.2.3 Reconstruction Performance . . . . . . . . . . . . . . . . . . . . . 30

4 Tau Identification 31
4.1 Tau Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Jet Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Tau Identification Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.1 Calorimeter Seeded Algorithm . . . . . . . . . . . . . . . . . . . . 33
4.3.2 Track Seeded Algorithm . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Current Identification Algorithms . . . . . . . . . . . . . . . . . . . . . . . 46

5 Boosted Decision Trees 48
5.1 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Tree Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 Tau Identification Using Boosted Decision Trees 54
6.0.1 Samples Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.1 Discriminating Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.1.1 Variable Correlations . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2 Developing BDTs for Tau ID . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2.1 Tuning Decision Tree Parameters . . . . . . . . . . . . . . . . . . 66
6.2.2 Binning by ET . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2.3 Binning by Track Multiplicity . . . . . . . . . . . . . . . . . . . . 75

6.3 Performance of BDTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



CONTENTS ix

6.4 Systematic Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.4.1 Safe Variables for Early Running . . . . . . . . . . . . . . . . . . 83
6.4.2 Calibration Studies . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.5 Implementation in ATLAS Software . . . . . . . . . . . . . . . . . . . . . 96

7 Summary and Outlook 97

A Uncertainty Calculations Using Bayes’ Theorem 98

Bibliography 100



List of Tables

1.1 The leptons and quarks in the standard model [1]. There is an antiparticle
with equal mass and opposite charge associated with each lepton and quark
listed above. Quarks are also coloured, which is a label given to specify
that there are three distinct types of quark for each flavour. . . . . . . . . . 3

1.2 The bosons which mediate the forces. . . . . . . . . . . . . . . . . . . . . 4

3.1 Leading decay modes for τ− [1]. h± stands for π± or K±. . . . . . . . . . 24
3.2 Track quality criteria for seed tracks and default associated tracks (track-

based candidates), and loose tracks (calo-based candidates) [2]. . . . . . . 26

6.1 Relative background rejection rates as a function of the MinLeafSize and
signal efficiencies. Numbers are with respect to reconstruction, not MC
truth, and are therefore useful only for comparing relative parameter per-
formance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2 Relative background rejection rates as a function of number of boosts and
signal efficiencies for calo+trk candidates. Numbers are with respect to
reconstruction, not MC truth, and are therefore useful only for comparing
relative parameter performance. . . . . . . . . . . . . . . . . . . . . . . . 69

6.3 Signal efficiencies with corresponding background rejection and BDT cut
for final BDT results shown in this section. . . . . . . . . . . . . . . . . . 82

6.4 Training statistics for calibrated sample. The background types available
through ATLAS are binned by energy. Each background event is weighted
by cross-section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

x



LIST OF TABLES xi

6.5 Signal efficiencies with corresponding background rejection and BDT cut
for the calibrated and uncalibrated testing results for calo+trk seeded can-
didates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.6 Signal efficiencies for the calibrated and uncalibrated samples correspond-
ing to the same BDT cut for calo+trk seeded candidates . . . . . . . . . . 96



List of Figures

1.1 (a) Branching ratios for main decays of the SM Higgs boson [3] and (b)
branching ratios for heavy charged Higgs boson in the SUSY model [4]. . 6

2.1 Illustration of the CERN accelerator complex. Copyright CERN [5]. . . . . 10
2.2 Overall view of the LHC experiments, located on the France-Switzerland

border. Copyright CERN [6]. . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Cut-away view of the ATLAS detector. ATLAS Experiment Image: Copy-

right CERN, [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Two production channels of the Higgs boson. . . . . . . . . . . . . . . . . 15
2.5 Cut-away view of the ATLAS inner detector. Copyright: The ATLAS Ex-

periment at CERN, [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Drawing showing the sensors and structural elements traversed by a charged

track of 10GeV pT in the barrel inner detector (η=0.3). The track traverses
successively the beryllium beampipe, the three cylindrical silicon-pixel lay-
ers with individual sensor elements of 50x400 µm2, the four cylindrical
double layers (one axial and one with a stereo angle of 40 mrad) of bar-
rel silicon-microstrip sensors(SCT) of pitch 80µm, and approximately 36
axial straws of 4 mm diameter contained in the barrel transition-radiation
tracker modules within their support structure. Copyright: The ATLAS
Experiment at CERN, [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 Cut-away view of the ATLAS calorimeter system. Copyright: The ATLAS
Experiment at CERN, [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . 19

xii



LIST OF FIGURES xiii

2.8 Sketch of a barrel module of the EM calorimeter, where the different layers
are clearly visible with the ganging of electrodes in φ . The granularity in
eta and phi of the cells of each of the three layers and of the trigger towers
is also shown. Figure from [7]. . . . . . . . . . . . . . . . . . . . . . . . 21

2.9 The energy response obtained for the visible energy from τ → ρν events
using candidates with one π0 subcluster. Figure from [8]. . . . . . . . . . 22

3.1 Reconstruction efficiency for all calo seeds (left) and calo+trk seeds (right)
for Z → ττ events. The “All prong” plot does not require any track match-
ing; the 1(3) prong plots require exactly 1(3) true MC stable charged daugh-
ter(s) and 1(3) reconstructed tracks. . . . . . . . . . . . . . . . . . . . . . 30

4.1 The centrality fraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 The electromagnetic radius. . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 The hadronic radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 The isolation in the calorimeter. . . . . . . . . . . . . . . . . . . . . . . . 36
4.5 The transverse energy width in the η strip layer. . . . . . . . . . . . . . . 37
4.6 The charge calculated by the associated tracks. . . . . . . . . . . . . . . . 37
4.7 Number of hits in the η strip layer. . . . . . . . . . . . . . . . . . . . . . 38
4.8 Definition of pseudo impact parameter in the x− y plane is shown in (a). P

indicates the primary vertex of the collision, V is the secondary vertex, and
d0 is the impact parameter: the closest approach perpendicular the track to
the z-axis. The impact parameter significance of the leading track is show
for signal and background in (b). . . . . . . . . . . . . . . . . . . . . . . 39

4.9 The transverse flight path is shown in (a), where P is the primary interac-
tion point and V is the secondary vertex, as in 4.8(a). Part (b) shows the
transverse flight path significance distribution. . . . . . . . . . . . . . . . 40

4.10 Number of tracks in small ring. . . . . . . . . . . . . . . . . . . . . . . . 41
4.11 ET over pT of the leading track: ET /pT1. . . . . . . . . . . . . . . . . . 42
4.12 The number of isolated tracks. . . . . . . . . . . . . . . . . . . . . . . . . 43
4.13 The width of the tracks for 3 prong candidates. . . . . . . . . . . . . . . . 44
4.14 The invariant mass of the tracks for 3 prong candidates. . . . . . . . . . . 44



LIST OF FIGURES xiv

4.15 The definition of Z0 sin(θ) is shown in (a). C is the point of closest ap-
proach in the x− y plane to the primary vertex P. The points C, P, and the
secondary vertex V correspond exactly with the points in Figure 4.8(a). The
distribution of the significance of Z0 sin(θ) is shown in (b). . . . . . . . . . 45

4.16 The number of π0 subclusters associated with the tau candidate. . . . . . . 46

5.1 Visual representation of a single decision tree. Blue circles represent nodes
and green leaves are the terminal leaves. In this case, the root node cuts on
emRadius < 0.25. Candidates with a value greater than this travel left and a
cut on hadRadius is made. Those candidates with hadRadius ≤ 0.2 (failing
the node cut) would be assigned a decision tree value Di = 0.12 according
to the leaf purity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Decision tree output for 1 tree (no boosting). Background events peak to
the left and signal events peak to the right. . . . . . . . . . . . . . . . . . 51

6.1 Reconstructed background ET weighted by cross section for calo+trk can-
didates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2 Fraction of electromagnetic transverse energy ET (EM)
ET

. . . . . . . . . . . . 57
6.3 The smallest separation between associated tracks in cone ∆R < 0.2 for 3

prong calo+trk candidates. . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.4 The largest separation between associated tracks in cone ∆R < 0.2 for 3

prong calo+trk candidates. . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.5 Distributions of etEMSumPTtracks. . . . . . . . . . . . . . . . . . . . . . 58
6.6 Distribution of etHadSumPTtracks. . . . . . . . . . . . . . . . . . . . . . 59
6.7 Distribution of sumPTTracksOveret. . . . . . . . . . . . . . . . . . . . . . 60
6.8 Distribution of EteflowOverEt for calo+trk candidates. . . . . . . . . . . . 61
6.9 Variable correlation plots for signal samples of all calo+trk seeded candi-

dates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.10 Linear correlations of a subset of the discriminating variables for truth

matched reconstructed calo+trk seeded taus from Z → ττ (by prong type),
calculated with TMVA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



LIST OF FIGURES xv

6.11 Example of BDT output assigned to an independent sample of signal and
background objects. Background objects have a lower score on average
than true taus do. A cut on this score can be used to distinguish taus from
background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.12 The background rejection vs signal efficiency curve is shown. Performance
can be evaluated by this curve. To summarize the performance as a sin-
gle number, the ratio of the areas below and above the curve within the
bounding box, as shown, is also used as an evaluation criterion. . . . . . . 65

6.13 Results for various minimum leaf size settings for trees with 10 boosting
cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.14 Ratio of area below and above the curve of background rejection vs signal
efficiency wrt. MinLeafSize in Figure 6.13. . . . . . . . . . . . . . . . . . 68

6.15 Performance for various number of boosts. Numbers are with respect to
reconstruction, not MC truth, and are therefore useful only for comparing
relative parameter performance. . . . . . . . . . . . . . . . . . . . . . . . 70

6.16 Ratio of area below and above the curve of background rejection vs signal
efficiency wrt. the number of boosting cycles in Figure 6.15. . . . . . . . . 70

6.17 Performance for various AdaBoost β values for calo+trk candidates. Trees
trained with 50 boosts. Numbers are with respect to MC truth. . . . . . . . 71

6.18 Variable distributions for MC taus reconstructed as calo+trk seeded candi-
dates by ET bin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.19 Variable distributions for QCD dijets reconstructed as calo+trk seeded tau
candidates by ET bin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.20 BDTs with 20 boosts each. The unbinned trees are trained on all ET and
prong ranges and the binned set contains 4 BDT’s for the ET ranges 10,30,60,80,80+
GeV with no prong binning. . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.21 Distribution of charged tracks for calo+trk seeded candidates, as calculated
by the calo seeded algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.22 Sample of distributions by prong bin for calo+trk seeded signal taus. . . . . 76
6.23 Sample of distributions by prong bin for calo+trk seeded background jets. . 77



LIST OF FIGURES xvi

6.24 BDT with 20 boosts each for calo+trk seeded candidates. The unbinned
trees are trained on all ET and prong ranges. For trees with binning, two
BDTs are trained, one each for 1-prong and 3-prong candidates. . . . . . . 78

6.25 BDTs trained and tested on calo seeded candidates. All trainings use 20
boosts, β = 0.2, and MinLeafSize=100. ET bins are 10, 30, 60, 80, 80+GeV
and prong bins are 1 and 3 prong. . . . . . . . . . . . . . . . . . . . . . . . 78

6.26 BDT output for calo+trk (a) and all calo (b) candidates using the unbinned
BDTs with 50 boosts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.27 BDT performance on calo+trk (a) and all calo (b) candidates. BDT training
uses 50 boosts, β = 0.2, and MinLeafsize=100. Not binned by ET or prong.
Error bars according to statistical uncertainty are included, but are too small
to see. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.28 BDT performance on calo+trk (a) and all calo (b) candidates by prong.
BDT training uses 50 boosts, β = 0.2, and MinLeafsize=100. Training not
binned by ET or prong. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.29 BDT performance comparison for safe variable lists. BDTs trained on
the full variable list (pink), calorimeter approach (black), and calo+trk ap-
proach. All sets use 20 boosts. . . . . . . . . . . . . . . . . . . . . . . . . 85

6.30 Variable distributions for signal taus comparing calibration schemes. . . . 87
6.31 Variable distributions for background tau candidates comparing calibration

schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.32 Variable distributions for signal taus comparing calibration schemes. . . . 89
6.33 Variable distributions for background tau candidates comparing calibration

schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.34 Width type variable distributions for signal taus comparing calibration schemes.

91
6.35 Width type variable distributions for background tau candidates comparing

calibration schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.36 Boosted decision tree output for calibrated and uncalibrated samples. . . . . 94
6.37 Performance of the BDT trained on the calibrated sample and applied to

the calibrated and uncalibrated testing set are overlayed for BDT cuts cor-
responding from 0 to 0.63. . . . . . . . . . . . . . . . . . . . . . . . . . . 94



LIST OF FIGURES xvii

6.38 Background rejection vs signal efficiency of the BDT trained on the cali-
brated sample and applied to the calibrated and uncalibrated testing set are
overlayed for the entire BDT cut range. . . . . . . . . . . . . . . . . . . . 95



Chapter 1

Introduction

With the start-up of the Large Hadron Collider (LHC), particle physics is entering a new
era. The LHC will collide protons at a centre-of-mass energy over 7 times that of the current
highest energies. The discovery potential for new physics and opportunities to verify the
standard model are enormous. Detectors have been designed and built with this range of
possibilities in mind. One general purpose detector situated on an LHC collision point is A
Toroidal LHC ApparatuS (ATLAS).

In order to meet the physics goals of the ATLAS experiment, it is important to correctly
identify particles within the detector. Taus are one type of particle worth detecting, as
they are a signature for several interesting physics processes. Unfortunately, they are also
difficult to distinguish from a very high jet background.

The Boosted Decision Tree (BDTs) algorithm is a multivariate technique, which creates
a specialized set of criteria over many variables to extract small signals from large, similar
backgrounds. BDTs have been employed in tau identification and it will be shown that they
make improvements over baseline discriminants.

This thesis documents studies in tau identification using BDTs. Chapter 1 introduces
the standard model and motivates these studies. Chapter 2 provides details on the LHC and
ATLAS detector. Chapter 3 gives further background on the tau lepton and its reconstruc-
tion in ATLAS while Chapter 4 discusses identification methods. The details of how BDTs
are built are given in Chapter 5. The application of BDTs to taus, including optimization
studies, are shown in Chapter 6. Finally, some concluding remarks are given in Chapter 7.

1



CHAPTER 1. INTRODUCTION 2

1.1 The Standard Model
The standard model of particle physics is very well tested and extremely successful. Rather
than being a single theory in itself, the standard model is a collection of several comple-
mentary theories which together describe interactions between the elementary particles that
make up matter. Three fundamental interactions (two of which have been unified) are
described by corresponding theories and incorporated into the standard model. Each in-
teraction involves an exchange of force carrying bosons (integer spin1 particles) between
fermions (half-integer spin particles).

The elementary particles whose bound states make up all known matter in the universe
fall into one of two categories: leptons or quarks. The sets of leptons and quarks are each
organized into three generations. They are shown with their charges2 and masses3 in Table
1.1.

There are four fundamental forces in nature. Each is mediated by bosons as force carri-
ers and is described by a physical theory. The forces, from strongest to weakest, are (relative
strength in brackets):

• Strong force (1): interacts at short range (within the radius of a nucleon) and is me-
diated by gluons. Particles which have colour charge take part in strong interactions.
Strong interactions are governed by the theory of Quantum Chromodynamics (QCD).

• Weak force (10−3): interacts at short range, to about 10−18 m. It is mediated by 3
bosons: W± and Z0. All particles may undergo weak interactions. It is described by
Flavordynamics (the Glashow-Weinberg-Salam theory).

• Electromagnetic force (10−14): of infinite range and mediated by the photon γ . All
particles with an electric charge are affected by the electromagnetic force. It is de-
scribed by the theory of Electrodynamics.

1Spin is an intrinsic internal quantum number carried by the particle
2all charges are in units of the electron charge e
3The unit of energy used in particle physics is the electron-volt (eV), which has a value of

1.602×10−19 Joules. Because this is a very small unit, MeV (106 eV), GeV (109 eV), and TeV (1012 eV) are
more common in subatomic physics. Likewise, masses are measured in units of MeV/c2. Often c is set to 1
and masses are quoted in units of MeV (or GeV).
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Table 1.1: The leptons and quarks in the standard model [1]. There is an antiparticle with
equal mass and opposite charge associated with each lepton and quark listed above. Quarks
are also coloured, which is a label given to specify that there are three distinct types of
quark for each flavour.

Generation

I

II

III

Leptons - Spin 1
2

Flavour Mass
(GeV/c2)

Charge

νe electron neutrino < 1×10−8 0
e electron 0.511×10−3 -1
νµ muon neutrino < 2×10−3 0
µ muon 0.106 -1
ντ tau neutrino < 0.02 0
τ tau 1.78 -1

Quarks - Spin 1
2

Flavour Massa

(GeV/c2)
Charge

u up < 3×10−2 2
3

d down < 6×10−2 −1
3

c charm 1.27 2
3

s strange 0.104 −1
3

t top 171 2
3

b bottom 4.20 −1
3

aQuark masses are dependent upon the scale and scheme of the measurements. u-, d-, and s-quark masses
are estimates of so-called “current-quark masses”, in a mass-independent subtraction scheme such as MS at a
scale µ ≈ 2 GeV. The c- and b-quark masses are the “running” masses in the MS scheme. The t-quark mass
is a direct observation of top events.

• Gravity (10−43): of infinite range but very weak compared to the other three forces.
The force of gravity does not play a role in elementary particle physics and is not
incorporated in the standard model.

The masses of the mediating bosons are shown in Table 1.2.
The electron is the lightest lepton. There are two other lepton generations, or flavours,

(µ and τ) which are similar to the electron but heavier. For each lepton flavour there is a
particle of charge –1 and a neutral, weakly interacting particle called a neutrino. Of the
three charged leptons, only the electron is stable.

A major difference between quarks and leptons is that quarks carry colour charge and
leptons do not. The result is that unlike leptons, quarks are affected by the strong force
which can bind quarks together to form hadrons (colourless4 bound states of quarks). Or-

4All hadrons are colourless. They either contain 3 quarks each with a unique colour (red, green, and blue),
or 2 quarks with a colour-anticolour configuration.
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Table 1.2: The bosons which mediate the forces.
Name Mass

(GeV/c2)
Charge

Electromagnetic Force - Spin 1
γ photon 0 0

Weak Force - Spin 1
W− 80.4 -1
W+ 80.4 +1
Z0 91.2 0

Strong Force - Spin 1
Name Mass

(GeV/c2)
Charge

g gluon 0 0

dinary matter consists of protons, neutrons and electrons. The protons and neutrons are
bound states of quarks (uud and udd respectively) held together by the strong force. Pro-
cesses such as α decays and jet hadronization (see Section 4.2) are due to the strong force.

Leptons only interact electromagnetically and via the weak force. The electromagnetic
and weak forces were unified by Salam, Glashow, and Weinberg in what is known as the
electroweak force. This unification is appropriate for energies above 100 GeV.

There is one outstanding aspect of the standard model that has yet to be verified. A
mechanism called electroweak symmetry breaking is responsible for giving masses to par-
ticles in the standard model [9]. Without this phenomenon, all particles within the standard
model should be massless, which is contrary to observation. However, a consequence of
electroweak symmetry breaking is the existence of a spin 0 particle, the Higgs boson, which
has never been observed. The detection of the Higgs is essential to validate the standard
model and finding or excluding the Higgs is among the most important goals of the ATLAS
experiment.

The Higgs can decay to two fermions f f̄ , two photons γγ , two gluons gg, and to the
weak mediating bosons W +W− and ZZ if the mass of the Higgs is high enough to allow
the decay. The probability for each decay depends upon the coupling strength of the Higgs
to the vertex of the decay. The coupling strength is proportional to the masses or square
of the masses (depending on the process) of the decay products, so that the Higgs decays
preferentially to particles of a higher mass. This is a significant motivation for ATLAS to
have strong tau identification capabilities, as the tau is the heaviest lepton and the Higgs
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preferentially decays to taus over other leptons.

1.1.1 Extensions to the Standard Model
Despite the experimental success of the standard model, there are convincing reasons to
believe that the standard model is not complete. There are more than 20 parameters in the
standard model (mainly fundamental masses and mixing angles) that cannot be predicted
by it and must be found through experimentation. This requirement for so much external
input implies that there are aspects of particle physics that cannot be explained or predicted
by the standard model. Furthermore, the standard model has no candidate for dark matter
or any framework to incorporate gravity at the quantum scale. It also cannot explain why
significantly more matter than antimatter is observed in the universe when equal amounts
of both should have been created during the big bang. For this reason, many people believe
that there must be a larger overarching theory which describes how fundamental matter in-
teracts. If this is the case, the standard model must exist as a limiting case or approximation
to the larger theory.

One popular extension of the standard model is “supersymmetry” (SUSY). It is neces-
sary in some formulations of string theory and a quantum theory of gravity is compatible
with it. Furthermore, it may also hold the explanation for matter-antimatter asymmetry
[10]. In this theory, every fermion (half-integer spin particle), has a corresponding super-
symmetric “twin” boson (integer-spin). Likewise, for every boson in the standard model,
there is a corresponding supersymmetric fermion superpartner. The lightest supersymmet-
ric particle is a candidate to explain dark matter. Searches are being conducted for these
extra supersymmetric particles in order to verify such a theory. There are many types of
supersymmetry theories. One of these theories is the Minimal Supersymmetric extension
of the Standard Model (MSSM), which also unifies the strong and electroweak interactions
at very high energies. In this model, there are five Higgs bosons: H± and three neutral: h,
H, and A.

1.1.2 Physics Motivation to Study Taus
Tau properties have been studied extensively and many are known to high precision. The
majority of current experimental publications on the tau, including many branching fraction
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measurements, are made at B factories such as those used by the BaBar and Belle collabo-
rations. The ATLAS detector in a p-p collision environment is not optimal for these types
of precision measurements and this is not the goal.

Even though certain precision measurements will not be the focus of the experiment,
taus play a significant role in the physics goals of the ATLAS program both as a decay
product of the Higgs boson and a probe for new physics. As the heaviest lepton, the tau
couples to the Higgs boson more strongly than the other leptons both in the standard model
(SM) and Minimal Super Symmetric Model (MSSM). Figure 1.1(a) shows that the branch-
ing ratio H → τ+τ− for a low mass standard model Higgs (mh < 120 GeV) is smaller only
to that of H → bb̄. These are the only two direct fermion decay modes which are expected to
be distinguishable from background. The H → bb̄ events have an irreducible larger back-
ground from gg → bb̄, however. Furthermore, unlike b-quarks, taus only interact by the
electroweak force, so higher order QCD corrections are not required, making calculations
cleaner.

(a) (b)

Figure 1.1: (a) Branching ratios for main decays of the SM Higgs boson [3] and (b) branch-
ing ratios for heavy charged Higgs boson in the SUSY model [4].
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Taus will also be important to many beyond-the-standard-model searches such as the
following Higgs searches [11]:

• neutral Higgs bosons from the MSSM couple most strongly to the heaviest lepton and
the heaviest down-type quark. Even though the Higgs branching ratio to the b-quark
is ∼ 90 % and only ∼ 10 % to the tau, the tau provides the cleanest signal.

• H± → τντ is one of the most promising decay channels for charged Higgs discovery
if mH < mt , as shown by the branching fractions in Figure 1.1(b). Even for mH >

mt , the more plentiful H± → tb channel has a large irreducible background, unlike
H± → τντ . The polarization of the tau can be used to further distinguish signal
from background, which will make H± → τντ valuable for extending the discovery
potential of the charged Higgs.

1.2 Experimental Particle Physics
Many particles are short lived and must first be created in the laboratory before they can
be studied. Furthermore, one cannot see elementary particles; they must be observed indi-
rectly. Their properties are measured according to their interactions with matter. With these
interactions, particle identification, energies, and decay properties are inferred. These two
requirements, creation and observation, are the driving motivation behind large particle ac-
celerators and detectors such as the LHC and ATLAS. In this system, two beams of protons
are accelerated to very high energies in the LHC and collide head-on in the middle of the
ATLAS detector.

High energies are required for two main reasons. The first reason is to be able to create
massive particles. During beam collisions, two particles of mass m1 and m2 may interact
and annihilate to form a third particle. The mass m of this third particle may exceed m1 +m2

if the initial particles have sufficient energy, due to Einstein’s equation E = mc2. Secondly,
high energies are required to study features at small distances. The wavelength of a particle
decreases with momentum by λ = h

p , where h is Planck’s constant. A smaller wavelength
allows the interaction to resolve small distances.

The actual interactions in ATLAS are not fixed at 14 TeV, however. A proton of high
energy contains not only two u and one d valence quarks, but many gluons and additional
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“sea” quark-antiquark pairs as well. Each parton5 within the proton carries some fraction x
of the total proton momentum. When two partons from opposing beams collide, the total
center of mass energy of the collision is dependent on the sum of the two momentum frac-
tions and sets the maximum mass of any newly created particle. The fraction of momentum
carried by a parton can range from very low to nearly 1. The proton-proton collisions that
occur within ATLAS therefore cover a wide range of center of mass energies, with 14 TeV
being the theoretical maximum energy. It is because the z component of the parton energy is
unknown that the typical energy measurement in ATLAS is only in the direction transverse
to the beamline (denoted by ET ). While the original energy boost along z is unknown, the
transverse energy and momentum should always be conserved in every interaction.

Every collision within the LHC produces many secondary particles. Different types of
particles require different detection strategies. The size and variety of components within
the ATLAS detector reflects these needs.

5a quark or gluon
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Experimental Setup

2.1 The Large Hadron Collider
The Large Hadron Collider (LHC), which will begin full operations in 2009, is designed
to collide proton beams with a center-of-mass energy of 14 TeV. This will be the highest
energy achieved thus far by a hadron collider. The LHC will also periodically accelerate
lead ions for a center-of-mass collision energy of 5.5 TeV per nucleon pair.

The LHC is located on the France-Switzerland border in a tunnel 50 to 175 m un-
derground. To save on construction costs, the LHC reused the accelerator tunnel from the
Large Electron-Positron Collider (LEP). This pre-defined tunnel radius limited the maximal
energy the proton beam could achieve for a given magnet strength.

The protons pass through a series of accelerators before reaching the LHC. They begin
in the Linac2 (Linear Accelerator), then are injected into the PSB (Proton Synchrotron
Booster), then the PS (Proton Synchrotron), and then the SPS (Super Proton Synchrotron).
Finally, protons with an energy of 450 GeV are injected from the SPS into the LHC. The
layout of these accelerators is shown in Figure 2.1.

In total, there are 4 collision points and 6 experiments on the LHC ring:

• A Toroidal LHC ApparatuS (ATLAS), a general-purpose experiment utilizing the p-p
beam,

• Compact Muon Solenoid (CMS), the second general-purpose experiment utilizing
the p-p beam,

9
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Figure 2.1: Illustration of the CERN accelerator complex. Copyright CERN [5].

• Large Hadron Collider forward (LHCf) consists of 2 detectors situated at ±140 m
from the ATLAS interaction point. It will study very forward particles to compare
and verify MC simulations of cosmic ray events,

• A Large Ion Collider Experiment (ALICE), which will use the lead beam collisions
to study the quark-gluon plasma,

• LHCb, which will use b-quarks created in proton collisions to study matter-antimatter
asymmetry,

• TOTal Elastic and diffractive cross section Measurement (TOTEM), which will also
study forward particles to measure the LHC luminosity and total cross section, elastic
scattering, and diffractive processes.

Figure 2.2 shows the geographical location of the LHC and the four collision points.
The two counter-rotating beams collide discretized packets, or bunches, of protons ev-

ery 25 ns. The LHC tunnel contains dipole magnets which have two cores with opposite
magnetic fields. In each of these cores, a proton beam circulates in the direction opposite to
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Figure 2.2: Overall view of the LHC experiments, located on the France-Switzerland bor-
der. Copyright CERN [6].

the beam in the other core, held in its path by the dipole magnets. At the collision point, the
beams are angled towards each other and collide with a half crossing angle of 142.5 µrad.

CMS and ATLAS search for events and signatures which are very rare compared to
ordinary events. The luminosity of the LHC, which is related to the number of collisions
that can be produced in a detector per cm2 per second, is therefore important. It is defined
as

L = f N1N2
A

where f is the frequency of bunch crossings, Ni is the number of protons in bunch i, and
A is the effective cross-sectional area of the beams (a cross-section that takes the angles of
the beam collision into account). The peak luminosity at the LHC will be 1034 cm2 s−1.

2.2 The ATLAS Experiment
Surrounding one of these four collision points on the LHC is “A Toroidal LHC ApparatuS”
(ATLAS), one of two general purpose detectors on the LHC ring. Its design, assembly,
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calibration, and overall preparation have been a collaborative effort among the 37 nations
and 2500 scientists who contribute to the ATLAS project.

The ATLAS detector is situated in an underground cavern and completely surrounds the
LHC collision point with many layers of different detectors arranged progressively through
the radial direction. It is 25m high, 44 m long, and weighs approximately 7000 tonnes. The
detector is comprised of several subsystems which include the inner detector, the calorime-
ter system, and the muon system. A computer engineered view of the detector is shown in
Figure 2.3.

2.3 Geometry of the ATLAS Detector
The Cartesian coordinates of the ATLAS detector are defined with the axis origin at the
interaction point. The beam direction defines the z-axis, the positive x-axis points into the
center of the LHC ring, and the positive y-axis points upwards.

The azimuthal angle is measured around the beam axis such that tan(φ) = px
py

. The polar
angle θ is the angle from the beam axis. However, a quantity called the rapidity is favoured
to express angle with respect to the beam line because differences in rapidity are invariant
under Lorentz boosts. It has the further advantage that particle production is roughly inde-
pendent of the rapidity. A massless approximation to rapidity is the pseudorapidity, defined
as η = − ln

(

tan
(θ

2
))

. Angular separation between points is defined by

∆R =
√

(φ ′ −φ)2 +(η ′ −η)2 =
√

∆φ 2 +∆η2

The main regions of the detector are the barrel (with |η| < 2.5) and the two end-caps
(|η| ≥ 2.5) on either side.

2.4 Detector Requirements
While the ATLAS detector was designed to detect many possible physics processes, its
design was heavily influenced by the need to observe or exclude the Higgs boson over its
entire allowed mass range. The dominant decay modes of the Higgs depend on its mass,
which is unknown. The multiplicity of events and high backgrounds also require several
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Higgs channels to be measured in order to verify results. This results in a very broad set of
required detector capabilities. At low mass, for example, the H → γγ channel is important,
and requires the ability to identify the outgoing photons amidst background. If the Higgs
has a higher mass, H → Z∗Z with both Z’s decaying to leptons is a clean channel to identify.
This is a strong motivator for the stand-alone muon system

Along with direct Higgs decay products, objects associated with the Higgs production
are used for Higgs identification. As shown in Figure 2.4(a), the WW and ZZ fusion produc-
tion of the Higgs requires the tagging of forward jets, requiring full calorimeter coverage
of the detector. The tt̄ fusion production of the Higgs shown in Figure 2.4(b), which results
in a ttH final state, requires secondary vertexing capabilities in the tracker to identify the
b-jets from the t decays and from H → bb. Because all these processes are relatively rare,
a high luminosity is required.
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Figure 2.3: Cut-away view of the ATLAS detector. ATLAS Experiment Image: Copyright
CERN, [7].
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Figure 2.4: Two production channels of the Higgs boson.

The following are general requirements that the ATLAS detector has been designed to
fulfill [7]:

• Electronics are to be fast and radiation hard and a high detector granularity is required
to cope with LHC energies and luminosity.

• Coverage in all directions (φ and pseudo-rapidity η).

• Excellent calorimetry: electromagnetic for electron and photon identification and full
hadronic coverage for jet and missing transverse energy measurements.

• Good muon identification and energy resolution with good charge identification up
to large pT .

• Efficient triggering on processes of interest with acceptable background rejection.

2.5 Detector Components
Descriptions of subdetectors relevant to these tau identification studies are given below
[7, 12].
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2.5.1 The Inner Detector
The paths of charged particles can be reconstructed by piecing together discrete space points
in detectors as they pass through. This process, called tracking, uses data from the in-
ner detector (ID), which is comprised of three complimentary but separate sub-systems: a
pixel detector, a silicon SemiConductor Tracker (SCT), and a Transition Radiation Tracker
(TRT). An overview of the ID is shown in Figure 2.5 and a more structural view is in Figure
2.6. The general function of each system is to record a “hit” when a particle passes through
a certain point of the detector. These hits, when fit together, form the particle’s trajectory.
The inner detector is immersed in a 2T magnetic field. Charged particles are deflected by
the magnetic field and their momentum and charge can be found using the curvature of the
tracks. With 1000 particles expected to traverse the region covering η < 2.5 every 25 ns,
high granularity is required to separate tracks from different particles.

Figure 2.5: Cut-away view of the ATLAS inner detector. Copyright: The ATLAS Experi-
ment at CERN, [7].

The pixel detector and the SCT are collectively referred to as the precision tracker.
They are arranged in concentric cylinders around the beam axis in the barrel region and in
disks perpendicular to the beam in the end-cap region. The purpose of these detectors is
to provide the fine granularity required for impact parameter and vertexing measurements.
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Figure 2.6: Drawing showing the sensors and structural elements traversed by a charged
track of 10GeV pT in the barrel inner detector (η=0.3). The track traverses successively
the beryllium beampipe, the three cylindrical silicon-pixel layers with individual sensor el-
ements of 50x400 µm2, the four cylindrical double layers (one axial and one with a stereo
angle of 40 mrad) of barrel silicon-microstrip sensors(SCT) of pitch 80µm, and approxi-
mately 36 axial straws of 4 mm diameter contained in the barrel transition-radiation tracker
modules within their support structure. Copyright: The ATLAS Experiment at CERN, [7].

The size of this detector is limited by cost and by the desire to limit the amount of material
placed in front of the calorimeters. The pixel detector is the innermost detector. It covers
the vertex region and has the highest granularity. Located directly outside the beampipe,
each pixel in the barrel region is 50µm wide in R−φ and 400 µm long. Each track crosses
3 pixel layers on average. The intrinsic precision of the barrel is 10 µm (in R− φ ) and
115 µm (in z), while it is 10 µm (in R−φ ) and 115 µm (in R) in the end-cap disks. The
middle tracker in the ID is the silicon SCT. It consists of four double layers of stereo silicon
strips. That is, each set of stereo strips contains one strip aligned in the azimuthal direction
and one rotated by 40 mrad with respect to the first one. This configuration provides two-
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dimensional capabilities. The end-cap region is constructed similarly, with a set of strips
running radially and a second set of stereo strips at an angle of 40 mrad to the first.

The TRT, which is a set of straw tube trackers, is located outside of the SCT. The
straw (Polyimide) drift tubes are 4mm in diameter and are filled with gas (70% Xe, 27%
CO2, and 3% O2) and contain an anode (tungsten plated with gold) running through the
center. The straws are 144 cm long in the barrel region and extend parallel to the beam
pipe. The TRT registers a large number of hits, typically 36 per track. This high number
of hits compensates for its lower intrinsic precision of 130 µm per straw. It is also used for
electron identification by detecting transition radiation photons.

Track reconstruction efficiencies for muons, pions, and electrons are shown in Figure
2.7(a) and reconstruction efficiencies for pions as a function of |η| for several values of
transverse momentum are shown in Figure 2.7(b).
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(a) Track reconstruction efficiencies as a func-
tion of |η | for muons, pions and electrons with
pT = 5 GeV. The inefficiencies for pions and
electrons reflect the distribution of material in the
inner detector as a function of |η |. Figure from
[7].
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Figure from [7].
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2.5.2 Calorimetry
The energy of particles in ATLAS is measured by a system of calorimeters in the barrel
and end-cap regions. The calorimeter system has two main components: the electromag-
netic (EM) and hadronic calorimeters. The barrel region of the EM calorimeter provides
fine granularity for precision measurements while the barrel and endcap, along with the
hadronic calorimeters provide appropriate jet and missing transverse energy measurements.
A view of the calorimeter system is shown in Figure 2.7.

Figure 2.7: Cut-away view of the ATLAS calorimeter system. Copyright: The ATLAS
Experiment at CERN, [7].

The EM calorimeters are located outside of the inner detector. They consist of one bar-
rel (|η| < 1.475) and two end-cap components (1.375 < |η| < 3.2), each divided into 3
layers. Each is constructed of layers of lead in an accordion shape with LAr sandwiched
in between. The accordion shape allows for multiple absorbing plates without the need for
azimuthal supports and gaps for readout cables, which would cause dead regions. Imme-
diately before the EM calorimeter is a thin LAr layer, a presampler detector which covers
the barrel region from |η| < 1.52 and the endcap up to |η| < 1.8. The first layer of the
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EM calorimeter is finely segmented in η (0.003× 0.1 in ∆η ×∆φ ), which enhances pre-
cision measurements of the position of individual particles, such as the two photons from
π0 decay. It is referred to as the η strip layer elsewhere in this thesis. Angular resolution
in the central region of the EM calorimeter is best in the strip layer and ranges in the last
two layers from 0.025×0.1 in ∆η ×∆φ and ranges to 0.050×0.025 in the third layer. This
granularity is fine enough to detect the position of electrons and photons precisely in the
area covered by the ID, which is important for π0 reconstruction. The total thickness of the
EM calorimeter is > 22(> 24) radiation lengths X0 in the barrel(end-cap) region, where a
radiation length is the amount of material traversed for an electron’s energy to be reduced
to 1

e of its original energy on average. The geometry of the barrel component of the EM
calorimeter is shown in Figure 2.8. The energy response for hadronic tau decays with a
reconstructed electromagnetic subcluster is shown in Figure 2.9.

The hadronic calorimeter system consists of the tile calorimeter in the barrel region
(|η| < 1.0 and extended barrels from 0.8 < |η| < 1.7), and the LAr calorimeter in the end-
cap (1.5 < |η| < 3.2). The tile calorimeter is a sampling calorimeter, segmented into 3
layers. The absorber material is steel and it uses scintillating tiles as the active material.
The thicknesses of the 3 layers are 1.5, 4.1, and 1.8(1.5, 2.6, and 3.3) interaction lengths λ
for the barrel(extended barrel), where an interaction length is the average distance travelled
by a hadron before interacting. The hadronic end-cap calorimeter is made of 2 wheels of
32 wedges each per end-cap. Each wedge is a series of copper plates with LAr gaps.

The LAr forward calorimeter is located radially inside the endcap calorimeters. Its three
modules in each endcap include one copper module optimized for EM measurements and
two tungsten layers for hadronic measurements. The forward calorimeter is approximately
10 interaction lengths deep.

2.5.3 ATLAS Software
The ATLAS detector provides readout in the form of many electronic signals. These signals
must be converted into quantities that characterize the particles in a process called recon-
struction. A software framework called Athena has been built to handle the reconstruction
and aid in physics analysis. Monte Carlo sample sets have been generated to simulate
physics and the detector response in the ATLAS detector. The simulation begins with the
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Figure 2.8: Sketch of a barrel module of the EM calorimeter, where the different layers are
clearly visible with the ganging of electrodes in φ . The granularity in eta and phi of the
cells of each of the three layers and of the trigger towers is also shown. Figure from [7].

generation of the interactions by a program such as Pythia [13]. The energy depositions
in each detector due to these events are simulated and these depositions are turned into the
electronic signals that each detector would put out in a process called digitization. This is
achieved using software called Geant4 [14] . Either these simulated MC digitized signals
or real signals from data are fed to reconstruction.

Reconstructed data contain particle kinematic and identification information, which can
be used to do physics analysis.
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Figure 2.9: The energy response obtained for the visible energy from τ → ρν events using
candidates with one π0 subcluster. Figure from [8].
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The Tau Lepton

3.1 Introduction to Taus
In 1975, a team at the Stanford Linear Accelerator announced the observation of

“64 events of the form

e+ + e− → e± + µ∓+ ≥ 2 undetected particles

for which we have no conventional explanation”

when the center-of-mass energies reached at least 4 GeV. It was concluded that

“the signature e-µ events cannot be explained by the production and decay
of any presently known particles or as coming from any of the well-understood
interactions which can conventionally lead to an e and a µ in the final state”
[15].

The explanation turned out to be the tau, which falls in to the third and final of the known
lepton generations. The e− µ events observed by Perl et al were explained by e+e− →
τ+τ− production followed by a subsequent tau decay:

τ± → µ±ντνµ

τ∓ → e∓ντνe

23
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Table 3.1: Leading decay modes for τ− [1]. h± stands for π± or K±.

Leptonic Decay Modes
Decay Mode Branching Fraction

e−ν̄eντ 17.85±0.05 %
µ−ν̄µντ 17.36±0.05 %

Total Leptonic 35.21 %

Leading Hadronic Decay Modes
Decay Mode Branching Fraction

π−ντ 10.91±0.07 %
π−π0ντ 25.52±0.10 %

π−π+π−ντ 8.99±0.06 %
π−π0π0ντ 9.27±0.12 %

h−ωντ 1.99±0.08 %
π−π+π−π0ντ 2.70±0.08 %

π−3π0ντ 1.04±0.07 %
Total Hadronic 64.79 %

As with all charged leptons, the tau is a spin 1
2 particle with a charge of –1. It is the

heaviest lepton, with its measured mass averaged to 1776.84± 0.17 MeV [1], about 3500
times the mass of the electron.

Unlike the electron, which is stable, the tau has an average mean lifetime of 290.5±
1.0× 10−15 sec (cτ ∼ 87µm) [1]. It has two general decay modes: leptonic and hadronic.
The leading decay modes are listed in Table 3.1. To conserve charge, all decay modes have
an odd number of charged daughters in the final state and while modes with 5 charged
daughters do exist, the branching fraction is very small (∼ 0.001 %). Similarly, taus do
decay to charged hadrons other than π± (such as K±), but the branching fractions are sig-
nificantly smaller than the modes listed in Table 3.1. Hadronic taus are often classified by
the number of stable charged decay products (“prongs”) and in practice they are referred to
as “1-prong” or “3-prong”.

3.2 Tau Reconstruction
The lifetime of the tau is small enough that the leptonic decay modes are difficult to distin-
guish from prompt primary leptons. The tau reconstruction program in ATLAS is therefore
limited to hadronically decaying taus. All hadronic decay modes with a significant branch-
ing fraction are composed of one or more π± and a ντ , and may include one or more π0,
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which further decays by π0 → γγ . For detection, these 3 decay components require the use
of the tracking system and the EM and hadronic calorimeters for π± and the EM calorime-
ter for π0. The daughter neutrinos limit the reconstructed tau energy and require a good
Emiss

T resolution if the invariant mass of the object decaying into the tau is to be measured.
Taus are reconstructed in the ATLAS offline reconstruction software. The tau recon-

struction algorithm uses objects which have been previously reconstructed, such as tracks
and clusters of energy depositions. The tau reconstruction relies on these other objects
and is therefore considered a higher level reconstruction algorithm. Tracks, for example,
are formed from hits using the ATLAS track reconstruction software (described in Chapter
2.2) and these are then read in by the tau reconstruction software. For good tau reconstruc-
tion and identification, it is important to be able to reconstruct impact parameters and count
isolated charged tracks accurately.

Historically, two reconstruction algorithms, one calorimeter seeded (named TauRec)
and one track seeded (named Tau1P3P), have been used. These have recently been merged
so that both algorithms are run and tau candidates are classified as track seeded only, calo
seeded only, or calo+trk seeded (seeded by both). The details of these algorithms and the
order in which they run are discussed in Sections 3.2.1 and 3.2.2.

Each algorithm provides a list of discriminating variables useful for tau identification,
which will be discussed in Chapter 4. Many discriminating variables are unique to one
particular algorithm so that the calo+trk candidates benefit from a more extensive list of
available variables. The details of the reconstruction algorithms have been documented
within ATLAS [8, 2].

Along with tau reconstruction, the reconstruction of π0 subclusters within the tau decay
is possible due to the high granularity of the electromagnetic calorimeter [8]. A topolog-
ical clustering algorithm (see Section 3.2.2) is used to identify electromagnetic subclus-
ters with ET > 1 GeV separated from the impact point of tracks in the middle layer by
∆R < 0.0375. It further requires the subclusters to deposit more than 10% of their energy
in the strip+presampler, which helps distinguish against hadronic π±. Further corrections
were also are made to reduce the energy due to close or overlapping π±.
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3.2.1 The Track Seeded Algorithm (Tau1P3P)
A good quality track is a seed to this algorithm. The algorithm then searches for additional
tracks within ∆R < 0.2 of this track seed and which pass the “Associated Track” criteria.
Candidates with more than 8 tracks and multi-track candidates whose charge is not |Q|= 1
are excluded.

The track seeded algorithm searches for tracks with pT > 6 GeV which pass the track
quality criteria in Table 3.2, where

• NSi is the number of hits in the SCT.

• normalized χ2 is a function expressing the overall fit of the tracks.

• Pixel Hits Npixel is the number of hits in the pixel detector.

• B-layer Hits Nblay is the number of hits in the inner-most pixel layer.

• High/Low Threshold Hit Ratio NHT
TRT /NLT

TRT is the ratio of high to low threshold hits
in the TRT, which helps in the identification of electrons.

Table 3.2: Track quality criteria for seed tracks and default associated tracks (track-based
candidates), and loose tracks (calo-based candidates) [2].

Track Criteria Seed Track Associated Track Loose Track
pT (GeV) > 6 1 1
|η| < 2.5 2.5 2.5
impact parameter d0 (mm) < 1 1 1.5
Silicon Hits NSi ≥ 8 8 6
TRT Hits NTRT ≥ 10 no cut no cut
normalized χ2 < 1.7 1.7 3.5
Pixel Hits Npixel ≥ no cut 1 1
B-layer Hits Nblay ≥ no cut 1 no cut
High/Low Threshold Hit Ratio
NHT

TRT /NLT
TRT <

no cut 0.2 no cut
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If only 2 tracks associated to a candidate are found, the algorithm loosens the associated
track criteria by dropping the χ2 and NHT

TRT /NLT
TRT criteria in the hopes of matching a third

track.
The direction of the candidate is defined by the direction of the track seed at the primary

vertex in the case of a 1-prong candidate; it is the pT - weighted barycenter of the tracks for
a 3-prong candidate.

The energy of these candidates is calculated using an energy flow algorithm [2, 8, 16].
This algorithm is designed to model tau energy well and underestimate energy from QCD
jets, the largest background to taus (see Chapter 4). It is defined particularly to exploit
the fact that the tau is expected to deposit a charged hadronic energy component from one
or more π±’s and a neutral electromagnetic component from any additional π 0. Unlike
a typical jet, a hadronic tau decay contains few if any neutral components and no neutral
hadronic components, as the daughter π0’s decay into photons before interacting with the
detector. A tau decay therefore deposits minimal neutral hadronic energy and its track(s)
tend to have a higher transverse momentum than a jet in the same energy range.

The energy from a tau jet ideally consists of the energy from charged tracks plus the
neutral electromagnetic energy depositions from photons decaying from π 0’s:

EIdeal
T = Eem

T +∑ ptrack
T . (3.1)

Energy depositions from decay daughters often overlap each other or leak outside of small
energy clusters and corrections are therefore needed. The energy flow algorithm is defined
similarly, but includes terms to correct for leakage and overlapping showers. The full energy
flow calculation is

Eeflow
T = Eemcl

T +EneuEM
T +∑ ptrack

T + resEchrgEM
T + resEneuEM

T . (3.2)

This definition does not allow for neutral hadronic components to the transverse energy,
which results in an underestimation of the energy of a jet.

The energy of the reconstructed tau candidate is categorized according to deposition in
order to define terms in Eeflow

T :

• Eemcl
T : the transverse energy summed over all cells labelled as purely photonic, which

is found by a clustering algorithm. It is seeded by a cell in the electromagnetic
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calorimeter with ET > 0.2 GeV and includes all cells from the first three samplings
of the LAr calorimeter within ∆η ×∆φ = 0.0375× 0.0375 of the seed. This energy
is mainly deposited from the decay of the π0 daughter into photons. Only clusters
isolated from tracks and which pass a hadronic leakage cut are used;

• EchrgEM
T : the charged transverse energy in the EM calorimeter. That is, the total

scalar sum of energy deposited in the electromagnetic calorimeters within a window
of ∆η ×∆φ = 0.0375 of a valid track. There are no charged electromagnetic daugh-
ters in a hadronic tau decay but the charged hadronic daughters deposit energy in the
electromagnetic calorimeters. Likewise, EchrgEM01

T is the same scalar sum, but only
for cells within the first two EM layers. The energy deposited by the π± in the first
two layers of the electromagnetic calorimeter is minimal. These are used in defining
the correction terms;

• EneuEM
T : the neutral electromagnetic transverse energy. This is the energy in the

electromagnetic calorimeter that was not flagged either as Eemcl
T or EchrgEM

T . In the
case of a tau, it is comprised mainly of energy from γ and π0’s that either did not
seed isolated clusters and did not overlap any tracks or whose electromagnetic energy
depositions were beyond that of the cluster radius. There is also a contribution from
the leakage of the charged hadronic component that showered early and was outside
the narrow cone defined for EchrgEM

T .

• ∑ ptrack
T : the sum of the transverse track momentum;

• EchrgHAD
T : the charged hadronic transverse energy. It includes the energies from all

cells in the hadronic calorimeter within ∆R < 0.2 of a valid track and is flagged for
use with the correction terms;

Two correction terms are also defined for the energy flow algorithm:

• resEchrgEM
T corrects for leakage of γ showers into cells flagged for EchrgHAD

T . In the
case of 3 prong decays and 1 prong decays in which EchrgEM

T /ptrack
T < 0.05, the cor-

rection is resEchrgEM
T = max(0.,EchrgEM

T − 0.7 × ∑ ptrack
T ). For 1 prong decays in

which the charged track and neutral electromagnetic showers are minimally over-
lapped, such that EchrgEM

T /ptrack
T > 0.05 and EchrgHAD

T /ptrack
T > 0.4, the correction
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is resEchrgEM
T = min(EchrgEM

T ,2.5×EchrgEM01
T . For those 1 prong decays in which

EchrgEM
T /ptrack

T > 0.05 but EchrgHAD
T /ptrack

T < 0.4, then resEchrgEM
T = max(0.,EchrgEM

T −
0.65× ptrack

T ). This has been defined empirically for late hadronic showers in which
little energy is deposited in the first layers of the electromagnetic calorimeter.

• resEneuEM
T corrects for double counting from leakage of energy from charged hadronic

particles in the electromagnetic calorimeter which was deposited outside the associ-
ated track cone. It is defined as resEneuEM

T = −0.1× ptrack
T and is applied in the third

category above: when EchrgEM
T /ptrack

T > 0.05 but EchrgHAD
T /ptrack

T < 0.4, as long as
resEneuEM

T +EneuEM
T > 0.

If no calorimeter seeds are found, the energy flow defines the default energy for this
candidate.

3.2.2 The Calorimeter Seeded Algorithm (TauRec)
Once a track seeded candidate is established, the track seeded algorithm searches for topoclus-
tered jets within ∆R < 0.2 of the candidate and calls the calorimeter seeded algorithm if any
are found. Once the track seeded algorithm is finished constructing candidates for the event,
the calorimeter seeded algorithm is run to search for further calorimeter seeds that do not
lie within ∆R < 0.2 of the track seeds. It uses topoclustered jets in a cone algorithm of
radius ∆R = 0.4 as seeds.

The topological clustering (4-2-0) scheme used for tau reconstruction is seeded by a
cell with energy > 4σ in calorimeter noise. Cells directly neighbouring these seed cells
which have energy > 2σ in calorimeter noise are then added to the cluster, as are the cells
neighbouring these ones which are also above 2σ in noise. Finally, once this base cluster is
formed, all cells directly adjacent to the cluster are also added to the cluster [2, 17].

A cone jet algorithm forms a cone of uniform radius in η − φ space, centered by the
energy distribution within the cone. In the case of a topocluster cone algorithm, the cone jet
is seeded by clusters with pT greater than some threshold (1 GeV in ATLAS). All objects
(ie. clusters) within ∆R < 0.4 are then combined with this seed. The four-momentum of the
clusters within the cone are added and a cone center is defined as the center of the combined
four-momenta. A cone of ∆R < 0.4 is formed around this new direction and objects within
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the new cone are again used to calculate a new four-momentum. A new cone center is again
defined and the process repeats until the direction of the cone does not change.

Topoclustered cone jets with pT > 10 GeV and |η| < 2.5 are considered seeds to the
calo-seeded tau reconstruction algorithm. Topoclustering resolution in the forward region
(|η| & 2.5) is poor due to the decrease in linear distance between jets and the larger cell
size in η −φ [17].

The energy of the calo-seeded tau candidate is calculated as a sum of cell-weights de-
rived from MC simulations (H1-style calibration). They are a function of cell energy density
and position. These weights are then multiplied by an additional factor which is tuned to
an energy scale for the tau using an MC energy distribution and is often less than 1.

Tracks within ∆R < 0.3 of the calo-seed are associated to the tau candidate if they meet
the quality requirements in Table 3.2. The direction of the tau is defined as the ET -weighted
barycenter of the calorimeter cells which seeded the candidate.

3.2.3 Reconstruction Performance
Overall tau reconstruction efficiency for either algorithm is 98% and efficiency for recon-
struction by both seeds is 74% for candidates above 10 GeV. The performance of the algo-
rithms can be seen in Figure 3.1.
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Figure 3.1: Reconstruction efficiency for all calo seeds (left) and calo+trk seeds (right) for
Z → ττ events. The “All prong” plot does not require any track matching; the 1(3) prong
plots require exactly 1(3) true MC stable charged daughter(s) and 1(3) reconstructed tracks.



Chapter 4

Tau Identification

In ATLAS, the identification of taus is a separate stage of tau candidate analysis which
occurs after tau reconstruction. Reconstruction, as described in Section 3.2, uses tracks
and calorimeter clusters to construct objects which look like taus, the outcome of which
is called a “tau candidate”. Identification then selects the candidates which are most tau-
like. The goal of tau reconstruction in ATLAS is to maximize the efficiency for finding
true hadronic taus. Reconstruction is perfect when every tau that decays hadronically in the
ATLAS detector is reconstructed as a tau candidate by reconstruction software. The trade-
off is that a high rate of other objects faking taus are also reconstructed as tau candidates.
Recall, for example, that calorimeter seeded tau candidates are identified by a jet algorithm
with little requirements other than a minimum energy deposit. Most jets with a minimum
energy should then be reconstructed as a calorimeter seeded candidate. Further background
rejection therefore occurs during the identification process, in which tau candidates are
analyzed by some criteria and scored according to how likely it is that they are really a tau.

4.1 Tau Production
Taus will be produced through electroweak decays of bosons, such as W → τντ and Z → ττ
and possibly H → ττ . The expected product of cross-section and branching ratios for tau
production from W and Z bosons, which are the most important samples of taus produced,
for p-p collisions at

√
s = 14 TeV is 5540 pb and 458 pb respectively.

31
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4.2 Jet Background
The major source of background to taus is jets, which is a general name for sprays of
particles produced through a process called hadronization. Jets are produced through QCD
processes, mainly qq, qg, and gg interactions. Isolated partons undergo fragmentation as
they radiate gluons which form quark-antiquark pairs. Hadronization occurs when these
quarks combine to produce stable colourless hadrons. The result is a stream of collinear
hadrons with total momentum approximately the same as the original outgoing quark. A
jet can contain any hadron kinematically allowed, but it is dominated π± and π0. It is this
stream of similar particles, many with tracks, that can be difficult to distinguish from a
hadronic tau decay. In fact, it is possible for a jet to contain only a few pions so that their
content is identical to a hadronic tau.

The most plentiful source of jets at the LHC energies will be from dijet events. These
occur when two partons are scattered during a collision and subsequently hadronize, re-
sulting in two back to back jets. Unlike the mediator in electroweak interactions, gluons
interact with each other. Higher order corrections to cross-sections are significant and this,
along with parton distribution function (PDF) uncertainties, is why the exact rate of ex-
pected dijet production is not known to high precision. The dijet cross-section for p-p
collisions at

√
s = 14 TeV is expected to be around 1.9× 1010 pb, more than 106 times

larger than the expected production due to W and Z decays. This overwhelming rate of
background objects, many of which look very much like hadronic tau decays, requires a
strong tau identification program for ATLAS.

4.3 Tau Identification Variables
A jet is produced through the hadronization process and contains many particles within a
localized area in η − φ (∆R) space. During shower development, some of these original
particles also decay. The hadronic tau jet, however, starts with a weak decay so that the
resulting daughter particles have a smaller opening angle, which contributes to the fact that
they tend to have narrower particle showers than jets. Furthermore, taus usually have fewer
charged tracks and carry larger fractions of momentum in the leading tracks than jets in the
same energy range do.
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Variables which exploit these differences have been defined and are calculated auto-
matically by the reconstruction algorithm. Some variables are calculated only for one of
the two types of seeded algorithms while some are calculated for both types of seeds (the
results may not be identical due to slightly different inputs or definitions). A candidate that
has been seeded by both algorithms therefore possesses the maximum amount of discrimi-
nating information available. Below is a set of variable descriptions and definitions, largely
adapted from documentation for each algorithm, as indicated by the citations in each entry.
Variable distributions for a signal sample of taus from a Z → ττ decay and a background
of jets from dijet events over a range of pT are provided with the definitions.

4.3.1 Calorimeter Seeded Algorithm
The calorimeter seeded algorithm reconstructs the following discriminating variables rele-
vant to the studies in this work:

• The centrality fraction

The centrality fraction quantifies the characteristic that taus carry the majority of their
energy in the central region of the jet cone by

C f rac =
∑i ET, i
∑ j ET, j

, (4.1)

where the indices i and j run over all calorimeter cells in a cone around the cluster
barycentre with ∆R < 0.1 and ∆R < 0.4, respectively, and ET, i and ET, j denote the
transverse cell energies [2]. The centrality fraction distribution is shown in Figure
4.1.

• The electromagnetic radius RRRem

To exploit the smaller transverse shower profile in tau decays, the electromagnetic
radius Rem is used, defined as

Rem =
∑n

i=1 ET, i

√

(ηi −ηcluster)
2 +(φi −φcluster)

2

∑n
i=1 ET, i

, (4.2)

where i runs over all cells in the electromagnetic calorimeter in a cluster with ∆R <

0.4. The quantities ηi, φi, and ET, i denote their position and transverse energy. Cells
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Figure 4.1: The centrality fraction.

may have different sizes depending on the layer and their η value. The size varies
from ∆η ×∆φ = 0.003× 0.1 in the η-strip region of the barrel to 0.025× 0.025 for
the second calorimeter layer. Furthermore, the segmentation ranges from this lower
limit of 0.003×0.1 in the central regions to 0.1×0.1 in 2.5 < |η|< 3.2. This change
in segmentation in η leads to a dependence of the performance on η as the resolution
decreases in the forward region. This variable shows good discrimination power at
low ET but becomes less effective at higher ET as the jets become narrower with
high ET [8]. The variable distribution can be seen in Figure 4.2.

• The hadronic radius Rhad

The hadronic radius Rhad is defined analogously:

Rhad =
∑n

i=1 ET, i

√

(ηi −ηcluster)
2 +(φi−φcluster)

2

∑n
i=1 ET, i

, (4.3)

where i runs over all cells in the hadronic calorimeter in a cone of ∆R < 0.4 [2]. Like
the EM radius, the narrower shower profile of the tau results in a smaller hadronic
radius than that of a typical jet. The variable distribution can be seen in Figure 4.3.



CHAPTER 4. TAU IDENTIFICATION 35

emElectromagnetic Radius R
0.1 0.2 0.3

No
rm

al
ize

d 
# 

of
 E

ve
nt

s

0

0.05

0.1

0.15

0.2

0.25

0.3
 from ZτSignal 

Jet Background

Figure 4.2: The electromagnetic radius.

hadHadronic radius R
0 0.1 0.2 0.3

No
rm

al
ize

d 
# 

of
 E

ve
nt

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
 from ZτSignal 

Jet Background

Figure 4.3: The hadronic radius.

• Isolation in the calorimeter

Jets built on clusters from hadronic tau decays are well collimated and therefore a
tight isolation criterion can be used. Here a ring of 0.1 < ∆R < 0.2 was chosen as the
isolation region and the quantity

∆E12
T =

∑i ET, i
∑ j ET, j

, (4.4)
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is calculated, where the indices i and j run over all electromagnetic calorimeter cells
in a cone around the cluster axis with 0.1 < ∆R < 0.2 and ∆R < 0.4, respectively, and
ET, i and ET, j denote the transverse cell energies.

Like Rem, the ∆E12
T distribution shows an ET dependence and becomes narrower with

increasing ET . This variable also depends on the event type and is expected to be
less effective for events with higher hadronic activity, like e.g. t t̄ events. The variable
distribution can be seen in Figure 4.4.
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Figure 4.4: The isolation in the calorimeter.

• Transverse energy width in the η strip layer

The transverse energy width ∆η is defined as

∆η =

√

√

√

√

∑n
i=1 Estrip

Ti (ηi−ηcluster)
2

∑n
i=1 Estrip

Ti
, (4.5)

where the sum runs over all strip cells in a cone with ∆R < 0.4 around the cluster
barycentre and Estrip

Ti is the corresponding strip transverse energy [2]. This is denoted
as stripWidth2 in Chapter 6. The variable distribution can be seen in Figure 4.5.
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Figure 4.5: The transverse energy width in the η strip layer.

• Charge of the tau candidate

The charge of a tau candidate is defined as the sum over the charge(s) of the associated
track(s). A tau is more likely to be reconstructed with the correct charge |Q|= 1 than
a jet. The misidentification of the charge on the level of a few percent shows almost
no ET dependence [2]. The charge distribution can be seen in Figure 4.6.
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Figure 4.6: The charge calculated by the associated tracks.
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• Number of hits in the ηηη strip layer

This is the number of hits in the η direction in the finely segmented strip detector,
Nstrip, in the first layer of the electromagnetic barrel calorimeter. Cells in the η strip
layer within ∆R < 0.4 around the cluster barycentre are counted as hits if the energy
deposited exceeds 200 MeV. In contrast to jets, a significant fraction of 1 prong tau
leptons deposit nearly no energy in the η strip layer (τ± → π±ν decays have only a
hadronic component) and the number of corresponding hits is small [8]. The variable
distribution can be seen in Figure 4.7.
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(a) All calo+trk seeded candidates
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Figure 4.7: Number of hits in the η strip layer.

• Lifetime signed pseudo impact parameter significance of leading track

The impact parameter of the leading track may be calculated for hadronic tau decays
even in the case of 1 prong decays, where a secondary vertex cannot be calculated.
At present only a 2-dimensional impact parameter, also called the pseudo impact
parameter, is used. It is defined as the distance from the beam axis to the point of
closest approach of the track in the plane perpendicular to the beam axis, as shown
in Figure 4.8(a). The lifetime of the tau (cτ = 87µm) is significant enough for a
detectable separation between the primary vertex and its decay vertex. A jet does
not have such a separation, so the impact parameter from the leading track in the
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tau decay is expected to be larger and have higher resolution. From this information
and from the jet axis, a quantity denoted as lifetime signed pseudo impact parameter
significance, defined as sigd0 = d0/σ 2

d0
where σ is the impact parameter resolution,

is calculated [8]. The variable distribution can be seen in Figure 4.8(b).
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(a) Pseudo impact parameter,
adapted from [18].
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(b) Distribution of pseudo impact parameter signif-
icance of leading track.

Figure 4.8: Definition of pseudo impact parameter in the x− y plane is shown in (a). P
indicates the primary vertex of the collision, V is the secondary vertex, and d0 is the impact
parameter: the closest approach perpendicular the track to the z-axis. The impact parameter
significance of the leading track is show for signal and background in (b).

• Transverse flight path significance Lxy/σLxy

For τ candidates with more than one loose track (associated tracks assigned by the
calorimeter seeded algorithm), a vertex is reconstructed from the loose tracks using
the adaptive vertex fitter [19]. The transverse flight path significance is defined by the
transverse displacement of this vertex Lxy with respect to the primary vertex, divided
by its uncertainty σLxy. When the primary vertex resolution of the event is worse than
the uncertainty of the beam spot, then the beam spot position and uncertainty is used
instead of the primary vertex. As with the pseudo impact parameter significance, the
transverse flight path significance is expected to be higher for taus than for jets. This
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variable is available for all candidates with more than one reconstructed track. The
variable distribution can be seen in Figure 4.9.
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(a) Transverse flight path.
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(b) Transverse flight path significance distribution
for 3 prong candidates.

Figure 4.9: The transverse flight path is shown in (a), where P is the primary interaction
point and V is the secondary vertex, as in 4.8(a). Part (b) shows the transverse flight path
significance distribution.

• Number of tracks in small ring

The number of tracks with pT > 1 GeV within the region between a smaller and
larger radius in η −φ space is used for discrimination. The default radii used in this
study are ∆r = 0.07 and ∆R = 0.35 [20]. This variable is named nTracksdrdR within
the algorithm and in the analysis in Chapter 6. Hadronic tau jets tend to have fewer
tracks within this ring than other jets do. The variable distribution can be seen in
Figure 4.10.

• EEETTT over pppTTT of the leading track

A large fraction of the energy is expected to be carried by the leading track of a
tau decay and, consequently, the ratio of the cluster transverse energy ET to the
transverse momentum of the leading track pT1 ( ET

pT 1
) is expected to be small (close

to 1). Values above one are expected from tau decay modes involving additional π 0s
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Figure 4.10: Number of tracks in small ring.

and for three-prong decays. This provides discrimination against QCD jets, which
are expected to have a more uniform distribution of pT among the tracks. They
are also expected to have more additional neutral particles than hadronic taus. The
ET dependence is modest for tau decays but more pronounced for QCD jets, which
tend to become more signal like with higher ET [8]. The variable distribution can be
seen in Figure 4.11.

The following quantities are also calculated by the calorimeter seeded algorithm. They are
not directly used as discriminating variables, but are used in expressions (generally ratios)
with other quantities to form further discriminating variables (see Chapter 6):

• Total transverse momentum of associated tracks

The scalar sum of the transverse momentum of each track attributed to the tau candi-
date: ∑ ptrack

T .

• Total transverse energy of tau candidate

The total transverse energy, ET, measured by the calorimeters as described in Section
3.2.2.
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Figure 4.11: ET over pT of the leading track: ET /pT1.

• Electromagnetic transverse energy of tau candidate

The electromagnetic transverse energy using MC based cell-weights (H1-style cali-
bration). The electromagnetic portion includes the Presampler + EM1 + EM2 layers.

• Hadronic transverse energy of tau candidate

The hadronic transverse energy calibrated using MC based cell-weights (H1-style cal-
ibration). The hadronic portion includes the cryo + EM3 + TILE1 + TILE2 + TILE3
layers.

4.3.2 Track Seeded Algorithm
The track seeded algorithm reconstructs the following discriminating variables relevant to
the studies in this work:

• Number of isolated tracks

Number of tracks, Ncore
trk , in the isolation cone from the seed track [8]. The default

cone is 0.2 ≤ ∆Riso ≤ 0.4. Tau decays tend to have fewer charged tracks which are
closer together than the tracks from jets, as seen in Figure 4.12.
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Figure 4.12: The number of isolated tracks.

• The width of the energy in strips

The width of the energy deposition in the strips, (∆η)2, calculated as the variance in
the η coordinate, weighted by the transverse energy deposition in a given strip [8]:

(∆η)2 =
∑(∆ητ1p3p,strip)2 ·Estrip

T

∑Estrip
T

− (∑∆ητ1p3p,strip ·Estrip
T )2

(∑Estrip
T )2

. (4.6)

Referred to as rWidth2Trk3P within the analysis in Chapter 6.

• The width of tracks

The width of tracks, weighted with their transverse momenta, calculated as the vari-
ance (for candidates with more than one track) [2]:

TrackWidth =
∑(∆ητ1p3p,track)2 · ptrack

T
∑ ptrack

T
− (∑∆ητ1p3p,track · ptrack

T )2

(∑ ptrack
T )2 . (4.7)

The variable distribution can be seen in Figure 4.13
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Figure 4.13: The width of the tracks for 3 prong candidates.

• Invariant mass of the tracks, Mtrk

Invariant mass of the tracks system (for candidates with more than one track) [2]. For
true taus, this should not exceed the tau mass. Jets do not have such an upper limit on
the invariant mass. Referred to as massTrk3P in Chapter 6.

The variable distribution can be seen in Figure 4.14
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Figure 4.14: The invariant mass of the tracks for 3 prong candidates.
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• Z0 sin(θ) significance of leading track

The significance of Z0 sin(θ) of the leading track, where Z0 is the distance in the
transverse plane between the track and the reconstructed primary vertex. It is mul-
tiplied by sin(θ) to obtain the projection of Z0 along the line perpendicular to the
track [8]. See Figure 4.15(a) for clarification. The significance is defined as Z0 sin(θ )

σZ0 sin(θ )
,

where σZ0 sin(θ ) is the uncertainty in Z0 sin(θ). As with the impact parameter, this
is expected to be higher for taus than for jets. The variable distribution is shown in
4.15(b).
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(a) Z0 sin(θ ), adapted from [18].
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(b) Distribution of Z0 sin(θ)
σZ0 sin(θ )

of the leading track.

Figure 4.15: The definition of Z0 sin(θ) is shown in (a). C is the point of closest approach
in the x− y plane to the primary vertex P. The points C, P, and the secondary vertex V
correspond exactly with the points in Figure 4.8(a). The distribution of the significance of
Z0 sin(θ) is shown in (b).

• Number of π0 Subclusters

Isolated electromagnetic subclusters with no associated track are used to identify
subclusters due to π0 decays. The distribution is shown in Figure 4.16.
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Figure 4.16: The number of π0 subclusters associated with the tau candidate.

4.4 Current Identification Algorithms
Tau identification focuses on identifying taus and rejecting background objects from the set
of reconstructed candidates. This process is not specific to the type of event from which
a candidate originates. Therefore, only quantities that express the properties of the tau
are used in identification. No event information (such a 6ET) is used. Furthermore, the
background is so plentiful and too many jets are so similar to taus that any one variable
cannot be used to distinguish the two. The general strategy in the identification algorithms is
to use a technique to combine several variables in a defined way to create a single, superior
variable. This combination strategy is what is meant by a “multivariate” technique.

The baseline identification tool for taus is currently a logarithmic likelihood multivari-
ate technique which is derived from probability density functions (pdfs) of signal and back-
ground Monte Carlo (MC) samples [21].

The classifier is defined as
d =

LS
LB +LS

, (4.8)

where LS(B) is the likelihood that the tau candidate is truly signal(background). The likeli-
hoods are found using the pdf for each variable xk:

LS/B =
k=nVars

∏
k=1

pS/B
k (xk), (4.9)
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where pS/B
k is the probability density function for each variable for signal/background. Note

that the likelihood defined in Equation 4.9 clearly does not take any correlations into ac-
count. This is one disadvantage to the likelihood multivariate discriminant. The discrimi-
nant d peaks sharply at 0 and 1 and a transformed discriminant is therefore used:

d ′
= − ln

(

1
d −1

)

=
k=nVars

∑
k=1

ln
pS

k(xk)

pB
k (xk)

. (4.10)

This discriminant is available for all candidates formed by the calorimeter seeded algorithm
(both alone and calo+trk seeded).

The optimization and performance of the likelihood has been documented in detail in
[8, 21]. Other identification methods, including a cut method and neural networks (track-
based algorithm), also exist in the ATLAS tau program. The performance of the loga-
rithmic likelihood method is shown in Chapter 6 in comparison to boosted decision tree
performance.



Chapter 5

Boosted Decision Trees

In high energy physics, the general technique for identifying events or objects of interest
amongst a high background environment involves applying a set of criteria on eligible can-
didates. The criteria are chosen to minimize the number of true background candidates
(background faking the interesting object) while maximizing the number of true signal can-
didates (actual object of interest) which pass. These criteria are generally referred to as cuts.
However, with such a technique some true signal candidates are bound to fail the series of
cuts and some background candidates will pass. This results both in a loss in signal events
and in an impure final state.

A decision tree uses this multiple cut technique in a sophisticated way in order to salvage
the signal candidates which would otherwise be lost and remove background that would
normally pass. It is designed to maximize signal and background separation by recycling
events that both pass and fail cuts for further analysis. Decision tree (DT) algorithms do not
require any a priori assumptions about input variable correlations. Furthermore, the training
time for building boosted decision trees is relatively short, making them easier to study and
develop than other multivariate methods such as neural networks. Boosted Decision Trees
(BDTs) have already been shown to be effective in high energy physics, such as in the
first evidence for single top quark production analysis by the D0 Collaboration [22]. The
similarity of the jet background to the tau signal at the LHC is a motivation to study the
use of boosted decision trees in combining many weak classifying variables into a stronger
discriminant for tau identification in ATLAS.

48
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5.1 Decision Trees
A decision tree is a machine-learning technique which combines several weak classifiers to
create a more powerful multivariate discriminant. It is a way of organizing and choosing
the cuts applied to a candidate depending on whether it passed or failed the previous cuts.

In general, a decision tree is a structure of cuts organized into nodes. A node is the
decision point in the tree in which a variable and cut value are provided and the candidate is
determined to either pass or fail it. The pass or failure determines which node the candidate
will encounter next. As seen in Figure 5.1, a tree begins at a primary (root) node and
branches off to two secondary nodes corresponding to the pass or fail of the root node
cut. Each of these nodes carries a cut qualification and a tested candidate would again
advance from this node either to the left or right daughter node. Each cut path eventually
stops at some terminal node or “leaf” possessing a classifier value which will be assigned
to the candidate. Consequently, any event that fails a certain cut will not be thrown away
immediately as background, but continue to be analyzed. All events are given a decision
tree score between 0 and 1, which is described later in this section.

Decision tree training uses a set of known signal and background training events, each
with weight wi, to build a tree structure of cuts node by node. The function used in this
method to quantify the separation between signal and background at any given node is
called the Gini index, defined as

Gini = 2p(1− p),

where the purity p is

p =
S

S +B =

∑
s

ws

∑
s

ws +∑
b

wb

and S(B) is the weighted1 total number of signal (background) events which landed on the
node during training. Thus, the Gini index for a node is 0 (minimal) when the purity is either
1 or 0 (pure signal or pure background) and maximized when the purity is 0.5 (maximally
mixed sample).

1Events in a signal or background sample are often given different weights, which correspond to cross-
sections. Further weighting is introduced during boosting iterations, as explained in Section 5.2.
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Figure 5.1: Visual representation of a single decision tree. Blue circles represent nodes and
green leaves are the terminal leaves. In this case, the root node cuts on emRadius < 0.25.
Candidates with a value greater than this travel left and a cut on hadRadius is made. Those
candidates with hadRadius ≤ 0.2 (failing the node cut) would be assigned a decision tree
value Di = 0.12 according to the leaf purity.

Beginning with an initial root node containing all the events, the variable and corre-
sponding cut which maximizes separation is calculated and executed. The maximum sep-
aration is defined as the maximum change in the Gini index between the mother node and
the two daughter nodes. That is, for each potential cut, the weighted change in Gini index

∆Gini = GiniMother − fL ·GiniL− fR ·GiniR

is calculated, where L(R) represents the left(right) daughter node and fL(R) is the weighted
fraction of events in the daughter node. The cut corresponding to the highest ∆Gini is
chosen. Following this initial branching, the best cuts according to the Gini separation are
calculated and executed for both the left and right daughter nodes. The tree then grows as
the cut selection process continues at each node. A node is no longer split when a split
would result in less than a minimum number of events landing in the node. Such an unsplit
node is the “leaf” node described earlier. Each leaf node is assigned a purity value p as
defined above.
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Figure 5.2: Decision tree output for 1 tree (no boosting). Background events peak to the
left and signal events peak to the right.

A test event works through the cut conditions beginning with the root node and follows
the path along the tree according to pass (right daughter) or fail (left daughter) until it lands
on a terminal node. The decision tree result (or classifier value) D(i) for an event tested on
a single tree is equal to the purity of the leaf on which the testing terminates. See Figure
5.2 for the distribution of a decision tree purity value for a single tree.

5.2 Boosting
While a single tree on its own improves upon a simple cut-based analysis, boosting sig-
nificantly increases the performance of this single tree. It also helps smooth distributions
which may otherwise appear spiky due to features of a specific training sample when lim-
ited statistics are used. In general, the boosting process uses the training results of the first
tree to increase the weights of candidates that were misclassified. A new tree is then trained
using these weights. Boosting effectively re-weights candidates that the previous tree clas-
sified incorrectly in order to increase their importance during the next training. Terminal
leaves are labelled either background or signal leaves according to a set purity threshold
(often 0.5). Misclassification occurs when a candidate of one type (signal or background)
terminates on a leaf of opposite classification.

Using this boosting method, many trees are then trained with new weights calculated
after each retraining. In this study, boosting has been applied according to the (discrete)
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AdaBoost method [23]. Once a single tree Tm (where m denotes the tree number) is trained,
the boosting parameter assigned to this tree is given by

αm = β ln
(

1− εm
εm

)

, (5.1)

where β is a boosting parameter studied in Section 6.2.1 and εm is the misclassification
error rate of the mth tree defined as the weighted fraction of misclassified candidates

εm =

∑
i

wmi ×Mm(i)

∑
i

wmi

using the binary value Mm(i) = 1 for candidates misclassified by Tm and 0 otherwise and i as
a sum over all candidates in the training sample, each with weight wmi . Training candidates
for the tree Tm+1 are then assigned the weight

wm+1i = wmi × eαm×Mm(i).

Consequently, the weights of correctly classified candidates are not changed. Because εm >

0.5 and thus α is always positive, this increases the weight of misclassified candidates,
giving them higher priority in the calculation of tree Tm+1.

During the testing phase, the final decision tree result assigned to candidate i is

D(i) =
Mtree

∑
m=1

αmDm(i).

Because using an average of many trees also reduces statistical fluctuations that may
creep in due to a limited training sample size, boosting makes decision trees more stable.

5.3 Tree Parameters
As is clear from the description above, several user defined parameters affect training and
boosting of decision trees. These include:

• Minimum leaf size: threshold number of candidates in a node, below which node
splitting is forbidden, converting the node into a leaf
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• NBoosts: number of boosting cycles

• AdaBoost parameter β : controls strength of candidate re-weighting as in Equation
(5.1)

• BoostingPurityLimit: purity threshold to classify a leaf as signal or background

The effect of these parameters on tau ID is shown in Section 6.2.1.



Chapter 6

Tau Identification Using Boosted
Decision Trees

This chapter defines the complete list of variables used for tau identification. It then ex-
plores several BDT parameters which can be varied to increase performance. Final results
are shown for the tau identification and background rejection. Some extra studies which
look towards early data within ATLAS are also presented.

6.0.1 Samples Used
This study uses Monte Carlo simulated events for the training and assessment of BDT
performance. The events are all reconstructed from version 14.2.10 of the ATLAS Athena
software. The taus come from a Z → ττ sample as signal and jets from QCD dijet events
of various ET ranges as background. The MC QCD dijet events used are in the ET ranges
from below the tau reconstruction threshold to above 560 GeV to simulate the background
and are weighted by cross-section. The weighted ET is shown in Figure 6.1.

The signal taus used include calo and calo+trk seeded candidates and have been matched
to true tau leptons generated by Monte Carlo in the event. Likewise, the jet background
consists of reconstructed calo and calo+trk seeded tau candidates which have been matched
to jets reconstructed at truth level using a cone algorithm with ∆R < 0.4 (Cone4TruthJets).
The matching requirement for both signal and background is that the candidate lies within
a cone of ∆R < 0.2 from the corresponding truth object.

54
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Figure 6.1: Reconstructed background ET weighted by cross section for calo+trk candi-
dates.

6.1 Discriminating Variables
This study develops BDTs separately for tau candidates seeded by both the calorimeter and
track algorithm (calo+trk seeded candidates) and for those seeded only by the calorimeter
seeded algorithm (calo only candidates). The BDT developed for the calo only candidates
uses all the variables listed below from the calorimeter seeded algorithm. The BDT for
the calo+trk seeded candidates uses all the track seeded algorithm variables listed in addi-
tion to the calorimeter algorithm variables. This capitalizes on the more extensive list of
discriminating variables calculated for the candidates seeded by both algorithms.

The variables below defined by the calorimeter seeded reconstruction algorithm and
discussed in Section 4.3.1 are used in this analysis. They are referred to in this analysis by
the shortened names in bold:

• centralityFraction: the centrality fraction.

• emRadius: the electromagnetic radius Rem.

• hadRadius: the hadronic radius Rhad .

• isolationFraction: isolation in the calorimeter.

• stripWidth2: transverse energy width in the η strip layer.

• charge: charge of the tau candidate.
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• numStripCells: number of hits in the η strip layer.

• ipSigLeadTrack: lifetime signed pseudo impact parameter significance of leading
track.

• nTracksdrdR: number of tracks in small ring.

• trFlightPathSig: transverse flight path significance LLLxy///σσσ Lxy.

• etOverPtLeadTrack: EEETTT over pppTTT of the leading track.

Additional variables defined in the following way are calculated manually using infor-
mation from the calorimeter seeded algorithm:

• EtEMEt: the fraction of electromagnetic transverse energy, ET (EM)
ET

. A significant
portion of energy deposited by hadronically decaying taus with 1 or more recon-
structed π0 subclusters is electromagnetic. In this case, the tau often deposits a
greater fraction of its energy in the electromagnetic calorimeter than background jets
do. Note that the electromagnetic energy ET (EM) is calibrated using a MC weight-
ing and that the total energy ET includes an extra, global calibration factor on top of
this. The result is that the fraction ET (EM)

ET
may sometimes be greater than 1 due to

the calibration differences. This distribution is shown in Figure 6.2.

• dRmin: the smallest separation between associated tracks in a cone with ∆R < 0.2
for candidates with more than one reconstructed track. Hadronic tau decays are more
collimated than jets and therefore the tracks are generally closer together. This results
in a smaller separation between tracks. The distribution is shown in Figure 6.3.

• dRmax: the largest separation between associated tracks in a cone with ∆R < 0.2
for candidates with more than 1 reconstructed track. As with dRMin, this value is
expected to be smaller for hadronic taus than for background jets. The distribution is
shown in Figure 6.4.

• etEMSumPTtracks: the electromagnetic transverse energy divided by the total trans-
verse energy from tracking, ET (EM)

∑ pTTrack
. Many hadronic tau decays with no π0 daughters

leave little to no energy in the electromagnetic calorimeters. Furthermore, as dis-
cussed in Section 4.3, a larger portion of the total transverse tau energy is carried
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(a) Trk+calo candidates with 0 reconstructed π0

subclusters
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(b) Trk+calo candidates with 1 or more recon-
structed π0 subclusters

Figure 6.2: Fraction of electromagnetic transverse energy ET (EM)
ET
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Figure 6.3: The smallest separation between associated tracks in cone ∆R < 0.2 for 3 prong
calo+trk candidates.

by charged candidates and registered in the total pT of the tracks. This results in a
larger denominator and smaller value on average in ET (EM)

∑ pTTrack
for taus. This is shown

for candidates both with and without any reconstructed π0 subclusters in Figure 6.5.
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Figure 6.4: The largest separation between associated tracks in cone ∆R < 0.2 for 3 prong
calo+trk candidates.

etEMSumPTtracks
0 1 2 3 40

0.02

0.04

0.06

0.08

0.1

0.12
No Pi0 Subclusters

 from ZτSignal 

Jet Background

(a) Calo+trk candidates with no reconstructed π0

subclusters.
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(b) Calo+trk candidates with 1 or more recon-
structed π0 subclusters.

Figure 6.5: Distributions of etEMSumPTtracks.

• etHadSumPTtracks: the hadronic transverse energy divided by the total transverse
energy from tracking, ET (Had)

∑ pTTrack
. As with etEMSumPTtracks, the denominator is ex-

pected to be larger for hadronic taus. However, all hadronic taus have a hadronic
decay component and this variable has less discriminating power than etEMSumPT-
tracks, which can take advantage of those without an electromagnetic component.
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The distribution of etHadSumPTtracks is shown in Figure 6.6.
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Figure 6.6: Distribution of etHadSumPTtracks.

• sumPTTracksOveret: the ratio of pT calculated from tracking to total transverse
energy found by the calorimeter, ∑ pTTrack

ET
. Charged decay products carry a larger

fraction of the energy of a hadronic tau decay than of a jet. Therefore the fraction of
the ET which is also carried by total track transverse momentum is higher for taus
than jets, as shown in Figure 6.7.

Figure 6.7(a) shows that the total signal distribution appears to have two maxima
centered near 0.5 and 1. This is due to several hadronic decay modes of the tau. As
seen in Table 3.1, roughly 2

3 of all three prong decay modes do not contain a π0. In
this case, the charged daughters should carry all of the visible transverse energy of
the tau decay. For the 1

3 of 3 prong decays that do contain a π0 daughter, it is one of
four visible decay products and one would expect that the charged daughters to carry
3
4 of the visible energy, on average. Figure 6.7(b) shows that for 3 prong taus, the
distribution of sumPTTracksOveret peaks near 1 and has a low tail due to the decays
with a π0 daughter.

For 1 prong tau decays with no π0 daughter, the charged daughter should carry most
of the visible transverse energy of the tau decay, as shown in Figure 6.7(c). In the case
of 1 prong tau decays with a π0 daughter, one would expect the charged daughters to
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carry roughly half of the visible transverse energy of the tau decay, which is consistent
with Figure 6.7(d).
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no reconstructed π0 subcluster.

T
 of tracks)/E

T
(Sum of p

0 0.5 1 1.5 20

0.02

0.04

0.06

0.08

0.1
1Prong: 1 or More Pi0 Subclusters

 from ZτSignal 

Jet Background

(d) Distribution of sumPTTracksOveret for 1
prong calo+trk seeded candidates which have 1
or more reconstructed π0 subclusters.

Figure 6.7: Distribution of sumPTTracksOveret.
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The following additional variables calculated by the track seeded algorithm and dis-
cussed in Section 4.3.1 are used in this analysis. They are referred to in this analysis by the
shortened names in bold:

• rWidth2Trk3P: the width of tracks momenta.

• massTrk3P: the invariant mass of the tracks system.

• trFlightPathSig: the significance of transverse flight path.

• numPi0: the number of π0 Subclusters.

One additional variable is calculated manually using the following information from the
track seeded algorithm:

• EteflowOverEt: the ratio of ET calculated by the energy flow algorithm and ET from
the calorimeter. As discussed in Section 3.2.1, the energy flow algorithm calculates
the transverse tau energy well, but underestimates the transverse jet energy. This ratio
is therefore higher for taus than for jets. The distribution of EteflowOverEt is shown
in Figure 6.8.
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Figure 6.8: Distribution of EteflowOverEt for calo+trk candidates.
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6.1.1 Variable Correlations
As many of the above variables describe the same physical quantities using varied defini-
tions, it is expected that some discriminating variables will be correlated. While it is not
necessary to know the variable correlations when choosing discriminating variables, it can
be valuable to understand correlations in order to simplify trees. For example, one may
reduce the variable list by removing one of a set of highly correlated variables without a
significant loss in performance. This improves training time and reduces the number of
variables one has to understand when dealing with systematic uncertainties. This method
was used when defining a list of safe variables described in Section 6.4.1. Correlation scat-
ter plots are shown in Figure 6.9 and the linear correlation matrix calculated with TMVA
[24] is in Figure 6.10.
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Figure 6.9: Variable correlation plots for signal samples of all calo+trk seeded candidates.
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Figure 6.10: Linear correlations of a subset of the discriminating variables for truth matched
reconstructed calo+trk seeded taus from Z → ττ (by prong type), calculated with TMVA.
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6.2 Developing BDTs for Tau ID
Boosted Decision Trees for tau identification are built using the algorithm described in
Chapter 5 and the variables listed in Section 6.1. Training samples of pure signal and pure
background objects are used to build the trees. Once a BDT is built, it is applied to samples
of pure signal and pure background which are independent of the training samples and used
for BDT evaluation. Each testing object is evaluated and assigned a BDT output score. An
example of the BDT output for signal and background can be seen in Figure 6.11.

BDT Output
0 0.2 0.4 0.6 0.8 10

0.02
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0.06
0.08

0.1
0.12
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0.16
0.18  from ZτSignal 

Jet Background

Figure 6.11: Example of BDT output assigned to an independent sample of signal and
background objects. Background objects have a lower score on average than true taus do.
A cut on this score can be used to distinguish taus from background.

The criterion for evaluating the performance is the relative background rejection rate
for given signal efficiencies. The signal and background efficiencies are defined as:

εSignal =
# of matched reco taus passing cut which have n tracks

# of MC taus which have n charged daughters

εJet =
# of matched tau candidates passing cut which have n tracks

# of MC Jets

where n may be 1 or 3 and is the number of tracks. In the case of MC, n is the number of
the true charged stable daughters in MC. In the case of reconstruction, n is the number of
reconstructed tracks. Note that the signal sample requires that the number of reconstructed
tracks match the number of MC charged stable daughters. For the purpose of these per-
formance plots, the cut to be passed is either on a BDT or likelihood classifier value. The
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kinematic binning is by the true visible transverse energy (neutrino momentum is excluded)
in the case of the signal sample and is done by reconstructed transverse energy in the case
of background rejection.

The rejection is then
Re jection =

1
ε
−1

To quantify performance as a single number, the ratio of the areas below and above the
background rejection vs signal efficiency curve was calculated. Because of the unstable
behaviour of the curves at low efficiency and the unfixed y-axis limits, the bounds ε > 0.1
and Rejection < 104 were used in the area calculations. The area below the curve increases
with higher performance resulting in an increased ratio. Figure 6.12 illustrates these areas.
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Figure 6.12: The background rejection vs signal efficiency curve is shown. Performance
can be evaluated by this curve. To summarize the performance as a single number, the ratio
of the areas below and above the curve within the bounding box, as shown, is also used as
an evaluation criterion.
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Tuning parameters and object definitions may improve the performance of boosted de-
cision trees. Overall optimization is achieved both through physics optimizations and algo-
rithm optimizations.

For physics optimizations, improvements in signal efficiency and background rejection
might be made by specializing on different categories of taus. While decision trees are
calculated to optimize signal and background separation node by node, they do not predict
how a cut at a certain node will affect the possible separation of one or more nodes later.
Therefore, if a certain initial cut naturally separates candidates into streams of similar tau
types but does not produce the maximum Gini separation, it will not be chosen. One must
implement such initial separations by hand. In this case, a specialized boosted decision tree
is calculated specifically for candidates that all share further selected qualities in common.
Generally referred to as “binning”, BDTs may be calculated individually for taus which fall
into a common energy range and hadronic decay type (for example: 1 prong, 3 prong, and
those including π0 daughters) to compare performances.

The tuning of the BDT parameters in 5.2 is discussed below.

6.2.1 Tuning Decision Tree Parameters
There are very few parameters that can be tuned while training BDTs. To measure perfor-
mance, BDTs were trained for varying parameter values to study the effects of the param-
eter. Unless otherwise stated, the values of the parameters which are not being varied were
held at MinLeafSize=100, nBoosts=10, and AdaBoost β = 0.2.

The MinLeafSize controls the minimum number of training events that must land on a
leaf. If less than the minimum number would have landed in the leaf if the chosen cut had
been made, the splitting stops. The choice of MinLeafSize is a balance between keeping
the parameter high enough so that the leaves are statistically significant but low enough that
a suitable number of cuts are made before the splitting stops. Furthermore, it is possible for
the MinLeafSize performance to correlate to the size of the training sample. For this reason,
the MinLeafSize choice was studied using both the full unbinned training sample available
and the 1 prong 10–30 GeV set as an example of a smaller training set. The results can be
seen in Table 6.1 and Figures 6.13–6.14.

One sees that the MinLeafSize does not affect performance significantly within this
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Table 6.1: Relative background rejection rates as a function of the MinLeafSize and signal
efficiencies. Numbers are with respect to reconstruction, not MC truth, and are therefore
useful only for comparing relative parameter performance.

MinLeafSize 30% eff 40% eff 50% eff 60% eff 70% eff 90% eff
20 200 110 60 40 30 10
50 220 110 70 40 20 10
80 200 110 60 40 20 10
100 210 110 60 40 20 10
120 200 110 60 40 20 10
150 220 110 60 40 20 10
200 200 100 60 40 20 10

Unbinned sample

MinLeafSize 30% eff 40% eff 50% eff 60% eff 70% eff 90% eff
20 90 50 30 20 10 0
50 90 50 30 20 10 0
80 90 50 30 20 10 0
100 90 60 40 20 10 0
120 90 50 30 20 10 0
150 110 60 30 20 10 0
200 100 50 30 20 10 0

1 prong 10–30 GeV candidates

range. The MinLeafSize affects training time, as a smaller leaf size requires more nodes to
be made and results in larger and deeper trees. This is an argument to keep the MinLeafSize
relatively high. For further studies it was therefore decided to study the unbinned sample
with a MinLeafSize of 100 and that any smaller training sample (due to ET and/or prong
binning) would use a MinLeafSize of 150.

The performance as a function of number of boosting cycles can be seen in Table 6.2 and
Figures 6.15–6.16. Figure 6.15 shows that the performance improves with more boosts in
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Figure 6.13: Results for various minimum leaf size settings for trees with 10 boosting
cycles.
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Figure 6.14: Ratio of area below and above the curve of background rejection vs signal
efficiency wrt. MinLeafSize in Figure 6.13.

the large sample. The 10–30GeV bin sample, however, did not gain significant performance
when increasing the boosting to more than 10 times. Based on this study, 50 boosting cycles
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were chosen for the unbinned sample. The performance as a function of the AdaBoost β
parameter training with 50 boosting cycles is shown in Figure 6.17. With this increase in
boosts, a β value of 0.2 is sufficient.

Table 6.2: Relative background rejection rates as a function of number of boosts and signal
efficiencies for calo+trk candidates. Numbers are with respect to reconstruction, not MC
truth, and are therefore useful only for comparing relative parameter performance.

nBoosts 30% eff 40% eff 50% eff 60% eff 70% eff 90% eff
0 70 51 41 25 17 4
5 170 100 60 40 20 10
10 210 110 60 40 20 10
20 240 130 70 40 20 10
40 230 130 70 40 20 10
50 220 130 70 40 20 10
70 220 130 70 40 20 10
100 220 130 70 40 20 10
200 220 130 70 40 20 10

Unbinned sample

nBoosts 30% eff 40% eff 50% eff 60% eff 70% eff 90% eff
10 110 60 30 20 10 0
15 110 50 30 20 20 0
20 100 60 30 20 20 0
40 100 50 30 20 10 10
60 100 50 30 20 10 10

1 prong 10–30 GeV candidates
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Figure 6.15: Performance for various number of boosts. Numbers are with respect to re-
construction, not MC truth, and are therefore useful only for comparing relative parameter
performance.
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Figure 6.16: Ratio of area below and above the curve of background rejection vs signal
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Figure 6.17: Performance for various AdaBoost β values for calo+trk candidates. Trees
trained with 50 boosts. Numbers are with respect to MC truth.

6.2.2 Binning by ET

Taus of different energy ranges show slightly different characteristics. In general, they tend
to have narrower showers with increasing energy, which affects the distribution of most
discriminating variables. Jets also become narrower with higher energy, but less so than
taus do. The dependence on ET can be seen in Figures 6.18 and 6.19, in which several
discriminating variables are plotted in different ET ranges.

Figure 6.20 shows that the unbinned training performs better than one binned by this
ET range (10–30, 30–60, 60–80, 80–80+ GeV).



CHAPTER 6. TAU IDENTIFICATION USING BOOSTED DECISION TREES 72

centralityFraction
0 0.5 10

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45  from ZτSignal 
10-30 GeV
30-60 GeV
60-80 GeV
80+ GeV

emRadius
0 0.1 0.2 0.30

0.05

0.1

0.15

0.2

0.25

0.3  from ZτSignal 
10-30 GeV
30-60 GeV
60-80 GeV
80+ GeV

isolationFraction
0 0.2 0.4 0.6 0.80

0.05

0.1

0.15

0.2

0.25  from ZτSignal 
10-30 GeV
30-60 GeV
60-80 GeV
80+ GeV

numStripCells
0 10 20 30 400

0.05

0.1

0.15

0.2

0.25  from ZτSignal 
10-30 GeV
30-60 GeV
60-80 GeV
80+ GeV

1P3P_EteflowOverEt
0 0.5 1 1.5 20

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16  from ZτSignal 
10-30 GeV
30-60 GeV
60-80 GeV
80+ GeV

Figure 6.18: Variable distributions for MC taus reconstructed as calo+trk seeded candidates
by ET bin.
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Figure 6.19: Variable distributions for QCD dijets reconstructed as calo+trk seeded tau
candidates by ET bin.
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Figure 6.20: BDTs with 20 boosts each. The unbinned trees are trained on all ET and prong
ranges and the binned set contains 4 BDT’s for the ET ranges 10,30,60,80,80+ GeV with
no prong binning.
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6.2.3 Binning by Track Multiplicity
The distribution of the number of charged tracks can be seen in Figure 6.21. By definition,

nTrack
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0.9  from ZτSignal 
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Figure 6.21: Distribution of charged tracks for calo+trk seeded candidates, as calculated by
the calo seeded algorithm.

3 prong taus have a minimum of 3 visible decay products which are most often π±. They
therefore tend to be wider, their track momentum carries a greater fraction of the measured
calorimeter energy, and they show an increased proportion of hadronic energy compared to
1 prong taus. The number of charged tracks therefore affects the shape of discriminating
variables. This can be seen in Figures 6.22-6.23. Note that the truth matching for the signal
further requires that the reconstructed candidate have the same number of charged tracks
as the true tau has stable charged daughters. The 3-prong bin is trained and tested (for
performance) on true 3-prong taus. In practice, it will be applied to any candidate with
> 1 charged track. Figure 6.24 shows, however, that in this case an unbinned tree performs
better than one binned by prong.

Figure 6.25 summarizes the binning performance for calo seeded candidates. As with
the calo+trk candidates, the unbinned tree performs the best.
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Figure 6.22: Sample of distributions by prong bin for calo+trk seeded signal taus.
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Figure 6.23: Sample of distributions by prong bin for calo+trk seeded background jets.
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Figure 6.24: BDT with 20 boosts each for calo+trk seeded candidates. The unbinned trees
are trained on all ET and prong ranges. For trees with binning, two BDTs are trained, one
each for 1-prong and 3-prong candidates.
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Figure 6.25: BDTs trained and tested on calo seeded candidates. All trainings use 20 boosts,
β = 0.2, and MinLeafSize=100. ET bins are 10, 30, 60, 80, 80+GeV and prong bins are 1
and 3 prong.
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6.3 Performance of BDTs
Following the studies in the previous section, the classifier output for both seed types is
shown in Figure 6.26.
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Figure 6.26: BDT output for calo+trk (a) and all calo (b) candidates using the unbinned
BDTs with 50 boosts.

Figures 6.27 and 6.28 compare the performance of BDTs for the calo+trk and calo
seeded candidates to the standard likelihood2008 results. Figure 6.27 also includes error
bars for statistical uncertainty (details in Appendix A). It is evident that with the number
of events used for testing, the statistical errors are small compared to the performance of
the BDT. The final parameters used were MinLeafSize=100 and AdaBoost β = 0.2, with
50 boosting cycles and no binning by either ET or track multiplicity. These studies show
that BDTs need not be binned by ET or track multiplicity to be as good as or better than the
standard likelihood (which is binned) in most regions.
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Figure 6.27: BDT performance on calo+trk (a) and all calo (b) candidates. BDT training
uses 50 boosts, β = 0.2, and MinLeafsize=100. Not binned by ET or prong. Error bars
according to statistical uncertainty are included, but are too small to see.
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Figure 6.28: BDT performance on calo+trk (a) and all calo (b) candidates by prong. BDT
training uses 50 boosts, β = 0.2, and MinLeafsize=100. Training not binned by ET or
prong.
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The background rejection for specific signal efficiencies is given in Table 6.3.

Table 6.3: Signal efficiencies with corresponding background rejection and BDT cut for
final BDT results shown in this section.

Signal Eff. 30% 40% 50% 60% 70%
1 Prong

Bkg Rejection 2100 910 390 70 30
BDT Cut 0.74 0.68 0.61 0.39 0

3 Prong
Bkg Rejection 5800 1900 690 50 50
BDT Cut 0.70 0.64 0.53 0 0

Calo+trk seeded candidates

Signal Eff. 30% 40% 50% 60% 70%
1 Prong

Bkg Rejection 2200 1000 520 290 120
BDT Cut 0.81 0.76 0.71 0.66 0.58

3 Prong
Bkg Rejection 4600 1600 480 90 10
BDT Cut 0.70 0.64 0.56 0.40 0

All calo seeded candidates

6.4 Systematic Effects
A strategy for evaluating the errors in multivariate techniques has been demonstrated by
the D0 experiment in the handling of neural network (NN) systematic errors [25]. In the
case of D0, in which the experiment has been running for many years, the main factor
in determining the accuracy of the training model is statistics. Ensembles of individual
variables fluctuated by statistical uncertainty are generated to assess acceptance error on
NN cuts. The algorithm is reassessed for each variable ensemble so that for each assessment



CHAPTER 6. TAU IDENTIFICATION USING BOOSTED DECISION TREES 83

only one variable is fluctuated. The systematic error for a given neural network cut is the
quadratic sum of the RMS of events passing this cut for each variable ensemble.

This type of assessment is appropriate for an analysis that has been properly calibrated
and in which the Monte Carlo variable distributions model those from data very well. How-
ever, for an experiment such as ATLAS, which is just starting up, statistical errors will not
be the dominant error. Instead, choosing well modeled variables and estimating the effects
due to miscalibrations or other problems related to understanding the detector will be of
more importance.

6.4.1 Safe Variables for Early Running
With collisions in ATLAS beginning very soon, one must think practically about how AT-
LAS subdetectors will perform in early running and with what accuracy discriminating
variables will be modeled. Two lists of variables which are expected to be well modeled
in early data have been defined by the tau group in ATLAS. This includes an approach
which uses information from the calorimeter as well as a more aggressive approach which
includes additional tracking variables. Variables which use information from one subde-
tector should be favoured over those that use several subdetectors or which rely heavily on
hadronic calibration.

An example of the reasoning involved in these decisions is as follows. The central-
ity fraction relies on energy measurements from both the electromagnetic and hadronic
calorimeters. It is also highly correlated to the variable emRadius, which depends only
on the electromagnetic calorimeter. Therefore, emRadius was chosen and the centrality
fraction was excluded from the safe variable list.

The two approaches include the following variables, which were previously defined in
6.1.

Calorimeter Approach Additional Track Variables
emRadius ET (Had)

∑ pTTrack

isolationFraction ET (EM)
∑ pTTrack

strip width (stripWidth2) W Track (rWidth2Trk3P)
ET (EM)

ET
(EtEMEt) etOverPtLeadTrack
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The performance of BDTs using this reduced list is shown in Figure 6.29. In both
the calo+trk and all calo seeded categories, performance is degraded when moving to the
safe variable list. The calo+trk seeded BDTs improve performance when moving to the
calo+track variables approach, but the BDTs for the calo candidates do not. The calo+trk
candidates have better quality tracks than the calo only candidates, so it is expected that
tracking variables would be more significant in this case. For a signal efficiency of 30%,
the calo+trk BDTs decrease in background rejection from 1227 to 335 (reduced to 27%
of the original rejection) when moving to the calo plus track approach. Likewise, the calo
only candidates drop from a background rejection of 1312 to 476 (reduced to 26% of the
original rejection) when moving to the calo plus track safe variable approach.



CHAPTER 6. TAU IDENTIFICATION USING BOOSTED DECISION TREES 85

Signal Efficiency
0 0.2 0.4 0.6 0.8 1

Ba
ck

gr
ou

nd
 R

ej
ec

tio
n

210

310

410

510 Calo+Trk
BDT no binning
Calo Approach
Calo+trk Approach

(a) Calo+trk seeded candidates.

Signal Efficiency
0 0.2 0.4 0.6 0.8 1

Ba
ck

gr
ou

nd
 R

ej
ec

tio
n

1

10

210

310

410

510 All Calo
BDT no binning
Calo Approach
Calo+trk Approach

(b) All calo seeded candidates.

Figure 6.29: BDT performance comparison for safe variable lists. BDTs trained on the full
variable list (pink), calorimeter approach (black), and calo+trk approach. All sets use 20
boosts.
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6.4.2 Calibration Studies
To estimate the performance of BDTs in an environment in which calibration may not
be reliable, MC samples were reconstructed with all energy calibrations at the EM scale.
The reason for this is twofold. First of all, it provides an opportunity to study the change
in discriminating variables and multi-variate performance in an environment in which the
energy scale is incorrect. Secondly, it is expected that the EM scale will be calibrated faster
than the hadronic scale in early running. This calibration shift is then a model for one
possible early running situation. In this study, the “calibrated” sample refers to candidates
calibrated in the default manner (as described in Section 3.2), while “uncalibrated” refers to
the samples in which all energy calibration is at the EM scale. All of the following studies
were performed using the calo+trk seeded candidates.

The variables etEMCalib and etHadCalib are normally calibrated using MC based cell-
weights (H1-style calibration). Using only an EM calibration decreases the average of the
distributions for both signal and background, as shown in Figures 6.30(a), 6.30(b), 6.31(a),
and 6.31(b). The total ET of the tau uses this same calibration, with an extra factor applied
to scale the energy appropriately for tau decays (see Section 3.2.2). The overall ET of
the candidate also decreases for both signal and background when using the EM scale
calibration, as seen in Figures 6.30(c) and 6.31(c). Figures 6.30(d) and 6.31(d) show no
significant change to the sum of the transverse momentum calculated from the tracks, as
expected.

Variables which are ratios of energy measurements (as described in Section 6.1) are
shifted according to the change in energy detailed above. These changes are shown in
Figure 6.32 for signal and 6.33 for background. Variables that describe the width of the
candidate shower change very little, as shown in Figures 6.34 and 6.35.
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associated with the tau candidate.

Figure 6.30: Variable distributions for signal taus comparing calibration schemes.
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Figure 6.31: Variable distributions for background tau candidates comparing calibration
schemes.
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Figure 6.32: Variable distributions for signal taus comparing calibration schemes.
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Figure 6.33: Variable distributions for background tau candidates comparing calibration
schemes.
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Figure 6.34: Width type variable distributions for signal taus comparing calibration
schemes.
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Figure 6.35: Width type variable distributions for background tau candidates comparing
calibration schemes.
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Table 6.4: Training statistics for calibrated sample. The background types available through
ATLAS are binned by energy. Each background event is weighted by cross-section.

Sample # of Calib
Training Events

# of Calib
Testing Events

# of Uncalib
Testing Events

Cross-section
(pb)

Signal
Z → ττ 21537 35184 36154 246

Background Dijet Events
17-35 GeV 57235 28120 53400 1.38×109

70-140 GeV 323545 - - 5.88×106

140-280 GeV 57659 - - 3.08×105

280-560 GeV 23925 - - 1.25×104

A boosted decision tree was trained on the calibrated sample using the number of train-
ing events listed in Table 6.4. The training was of 50 boosting cycles using an Adaboost
β = 0.2 and MinLeafSize=100. It was then applied both to calibrated and uncalibrated
independent testing samples. The background testing sample was comprised entirely of a
sample in the range 17-35 GeV (labelled “5010”) to avoid a weighted background. This
simplifies error calculations as well as direct comparisons between two different samples.

The signal and background BDT scores are shown in Figures 6.36(a) and 6.36(b) re-
spectively. The uncalibrated background sample shows a shift towards higher BDT output
values for a BDT score of up to about 0.6. The background shift to higher BDT scores can
be expected by the variable shifting. For example, the maximum of the variable “fraction
of energy flow to total ET ” (6.33(a)) shifts to just above 1. Similarly, the fraction of the
sum of the track momentum to the total ET shifts significantly towards higher values. Both
of these shifts cause the background to appear more tau-like.

Throughout the range of signal efficiencies from 0.59 to 0.39 the calibrated sample
performs slightly better than the uncalibrated sample. This corresponds to BDT cuts from
about 0 to 0.63. The performance of this region can be seen in Figure 6.37. The errors are
calculated using a Bayesian method, the details of which are in Appendix A.
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Figure 6.36: Boosted decision tree output for calibrated and uncalibrated samples.
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Figure 6.37: Performance of the BDT trained on the calibrated sample and applied to the
calibrated and uncalibrated testing set are overlayed for BDT cuts corresponding from 0 to
0.63.
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Figure 6.38: Background rejection vs signal efficiency of the BDT trained on the calibrated
sample and applied to the calibrated and uncalibrated testing set are overlayed for the entire
BDT cut range.

In the region in which very few background events pass the BDT cut (the high back-
ground rejection region), the uncalibrated sample performs better. This is shown in Figure
6.38. Because of the small number of background events remaining after cuts above 0.63,
it is questionable as to whether this difference in performance is statistically significant.

Signal efficiencies with corresponding background rejection and BDT cut for the cali-
brated and uncalibrated testing results are quantified in Table 6.5. The column correspond-
ing to 15% signal efficiency is provided to demonstrate how few testing candidates pass
cuts in the high rejection region, which leads to high uncertainty. Table 6.6 shows the
signal efficiencies which correspond to a particular BDT cut for both the calibrated and
uncalibrated sample. While the signal efficiencies do lie outside the error range for several
cuts, the differences are small. One can expect only small deviations in expected signal
efficiency in such a calibration situation.

Overall, the uncalibrated sample shows a shift towards higher values in the BDT output
of the background and little change in the signal sample. The result is that over the range
of most BDT cuts, a signal efficiency quoted for a given BDT cut which was calculated on
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Table 6.5: Signal efficiencies with corresponding background rejection and BDT cut for the
calibrated and uncalibrated testing results for calo+trk seeded candidates

Signal Eff. 15% 30% 40% 50%
Calibrated; # MC Jets: 399836

Bkg Rejection 22212+5687
−4856 3250+302

−285 1252+72
−69 403+13

−13
BDT Cut 0.771 0.68 0.62 0.548
# Jets Pass 18 123 319 990

Uncalibrated; # MC Jets: 221304
Bkg Rejection 55325+33259

−23666 3687+450
−455 1195+90

−86 396+17
−17

BDT Cut 0.764 0.679 0.625 0.557
# Jets Pass 4 60 185 557

Table 6.6: Signal efficiencies for the calibrated and uncalibrated samples corresponding to
the same BDT cut for calo+trk seeded candidates

BDT Cut 0.74 0.68 0.62 0.549
Signal Efficiencies

Calibrated 20.07% ±0.18 30.05%±0.21 40.08% ±0.22 49.97% ±0.23
Uncalibrated 19.21%±0.17 29.90% ±0.20 40.83 ±0.22 50.95% ±0.22

a calibrated sample will yield the same signal efficiency for an uncalibrated sample. Signal
acceptance expectations do not have to be adapted for an uncalibrated sample. However,
one should expect a slightly higher background acceptance for an uncalibrated sample up
to BDT cut of about 0.63.

6.5 Implementation in ATLAS Software
BDTs for tau identification have been implemented in TauDiscriminant, the tau identifica-
tion package within the ATLAS Athena software package. This package runs on every re-
constructed tau candidate and provides multi-variate discrimination scores for background
rejection. Details on the package have been given in a talk by Marcin Wolter [26].



Chapter 7

Summary and Outlook

ATLAS will begin taking data on p-p collisions in 2009. Understanding and identifying
standard model particles is an important aspect of the experiment both to ensure proper
functioning of the detector and for precision measurements. This is especially necessary
during early data taking. Taus are one of these standard model particles whose identifi-
cation and properties must be well-understood in ATLAS. They are especially difficult to
identify because jets look very similar and have a very high cross-section. Taus are also sig-
natures for the Higgs decay as well as for some SUSY events and are therefore of particular
importance.

Boosted decision trees have been shown to be valuable for tau identification. They are
a fast and flexible alternative to existing discriminants and perform better than baseline
discriminants without requiring samples to be divided into ET and prong bins. The use of
safe variables exclusively was also studied and shows a degradation in background rejection
when using the calo plus track approach from 1227 to 335 for calo+trk seeded candidates.
A calibration study was also performed and showed that the expected signal efficiency does
not change through these calibration changes but that background acceptance may increase
up to moderate BDT cuts. An implementation has been included in the ATLAS software in
the TauDiscriminant package.
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Appendix A

Uncertainty Calculations Using Bayes’
Theorem

The uncertainties in this analysis were calculated by a method developed by Marc Paterno
and implemented as the BayesDivide method in the ROOT analysis software [27]. A sum-
mary of the method, derived from the documentation, is included for completeness [28].

Often in high energy physics analysis either a Poisson or binomial error calculation is
used. However, these both break down in certain boundary regions in the case of efficiency
uncertainties, where k events out of a total N pass a cut. The BayesDivide method is de-
signed specifically to calculate uncertainties in efficiency values when the value of k is close
to 0 or N.

For example, in a Poisson distribution the uncertainty δk in k is
√

k and δN in N is
√

N
so that the uncertainty in efficiency is given by

δε ′ = ε
′

√

(

δk
k

)2
+

(

δN
N

)2

=

√

k2(N + k)
N3 .

(A.1)

When no events pass the cut, k = 0, which results in an error of δε ′ = 0. Likewise, k = N
results in δε ′ = 1±

√

2/N, which is greater than 1. Neither of these results is reasonable,
so it appears that the boundaries of the possible values for k are not treated properly by this
method.
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Similarly, the binomial method would estimate that

σk =
√

var(k)

=
√

ε(1− ε)N.
(A.2)

The error in efficiency is found by dividing both sides of the equation by N to obtain

δε ′ =
1
N

√

k(1− k/N). (A.3)

When k = 0 or k = N, the error is zero, which cannot be correct.
For this reason, a Bayesian approach was used. We want to know P(ε|k,N, I), the

probability that given an observed measurement of k events passing out of N (with prior
information I) the efficiency is truly ε . Bayes’ Theorem states that

P(ε|k,N, I) =
P(k|ε,N, I)P(ε|N, I)

Z . (A.4)

That is, the probability that ε is the true efficiency is equal to the probability that k events
will pass for an efficiency ε times the probability that, prior to any measurements, the
efficiency will be ε , all divided by a normalization constant. A binomial distribution is
assumed so that

P(k|ε,N, I) =
N!

k!(N − k)!εk(1− ε)N−k (A.5)

and all physically reasonable efficiencies, prior to considering the data, were given equal
probability:

P(ε|N, I) =







1 if 0 ≤ ε ≤ 1,

0 otherwise.
(A.6)

The normalization constant is found by
∫ ∞

−∞
P(ε|k,N, I)dε = 1. (A.7)

The full solution becomes

P(ε|k,N, I) =
Γ(N +2)

Γ(k +1)Γ(N − k +1)
εk(1− ε)N−k, (A.8)

which gives the probability distribution as a function of efficiency for given values of k
and N. The shortest 68.3% confidence interval of this probability function is then used to
characterize the uncertainty. This effectively results in a 1 standard deviation Gaussian er-
ror. The confidence interval does not have a closed-form solution, so the error is calculated
numerically by the BayesDivide method.
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