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Abstract 

This thesis consists of three essays that study three interdependent topics: microstruc

turc foundation of volatility clustering, inefficiency of information diffusion dud jump detec

tion ill high frequency financial time series data. 

Volatility clustering, with autocorrelations of the hyperbolic decay rate, is unquestion

ably one of t hc most import alit stylized facts of financial time series. The hrst essay forms 

Chapter 1 which presents a market microst.ructure model that is able to generate volatility 

clustering with hyperbolic autocorrelatiolls through traders with multiple trading frequen

cies using Bayesian information updating in an incomplete market. The model illustrates 

that signal extraction, which is induced by multiple trading frequency, can increase the 

persistence of the volatility of retmns. Furthermore, it is shown that the local temporal 

memory of the undedying time series of returns and their volatility varies greatly with the 

number of traders in the market. 

The second essay, Chapter 2, presents a market microstructure model showing that all 

increasing number of information hierarchies among informed competitive traders leads to a 

slower information diffusion rate and informational inefficiency. The model illustrates that 

informed traders may prefer trading with each other rather than with noise traders in the 

presence of the information hierarchies. Furthermore, it is shown that momentum can be 

generated from the trend following behavior pattern of noise traders. 

I propose a new nonparametric test based on wavelets to detect jump arrivals in high 

frequency financial time series data, in the third essay. Chapter 3. It is demonstrated that 

t.he tr:st. is robust for different spec.ifirations of pnre. pwresse.s and the. prC'scnc.e of markd 

microstructme noise and it has good size and power. Further; I examine the multi-scale 

jump dynamics in U.S. equity markets and the findings are as follows. First; t.hE' jump 

dynamics of equities are entirely diH'crent across differcnt tlme swlcs. Second, although 

111 



arrival densities of positive jumps and negative jumps are symmetric across different time 

scales, the magnitude of jumps is distributed asymmetrically at high frequencies. Third, only 

twenty percent of jumps occur in the trading session from 9:30AM to 4:00PI'vI, suggesting 

that jumps are largely determined by news rather than hquidity shocks. 

Keywords: n'ading frequency: Volatility clustering; Signal extraction: Hyperbolic decay: Infonnat.ion 

hierarchies; Information difhlSioIl rate; Momentum: Jump detection; \Vavelets; Directional jumps: 

Negative jumps: Positive jumps 

Subject terras: Trading frequency: VolatiJityclustering: Hierarchical information; ivlomentuIIl: Wavelel;s; 

Risk management 
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Chapter 1 

Trading Frequency and Volatility 

Clustering 

1.1 Introduction 

Over the last five decades, a broader picture of the time series features of asset prices 

has emerged. Among these features, return predict.ability at high trading frequencies and 

p~rsist(;nce of the varif1llce of retmns haw' received significant. attention both theoretically 

and empirically. This lat.ter feature is also known as volatility clustering and is unquestion

ably oue of the most. important. stylized facts of financial t.ime series. Engle (1982, 2000) 

and TIollerslev (1986) have proposed (G) ARCH-family models, which has been shown to 

be capable of capturing conditional volatility parsimoniously. In addition, as documeuted 

by Mandelbrot (1963), the autocoITelations of the variance of returns decay at a hyper

bolic rate rather than exponentially. Several studies, however, have investigated the reasons 

and mechanisms behind such volatility persistence in market microstructure-type economic 

models, and have snccessfully generated volatility clustering. 1 

The microstructure model proposed in this chapter provides a framework for generating 

volatility clustering of the returns with autocorrelations of hyperbolic decay. In addition, 

the proposed mechanism is capable of generating a linearly trending price and a negative 

correlation at the first lag of returns. The formation of volatility clustering is due Lo the 

lFor example, Brock and LeBaron (1996), Cabrales and Hoshi (1996). Granger and Machina (2006) 
presents general mechanisms of how a time-invariant. system can exhibit volalility dust.ering, although they 
do not provide microeconomic models that could lead to the system proposed in their paper. 

1 



2 CHAPTER 1. TRADING FREQUENCY AND VOLATILITY CLUSTERING 

combined effects of the presence of rational traders with multiple trading frequencies and 

their strategic interactiolls. It is natural to model traders with rnnltiple trading frequencies; 

because not all traders trade at every possible opportunity.2 The assumption that. traders 

trade strategically is also plausible, since large investors are aware that their trades have 

an impact on the market price and take this effect into account. T\'ote that no specific 

assumptions need to be made regarding the informational structure; information can be 

available either privately or publicly. 

Specifically, I consider a discrete-time, multiperiod modd in which traders trade a stock 

that has a limited risk absorption capacity (i.e., an upward sloping supply curve).3 Traders 

are divided into two groups according to their trading frequency, while group size is random 

to prevent perfect signal extraction. Type A traders trade more frequently (trade every 

trading period) while type B traders trade less frequently (trade every second period).4 

In this model, traders may differ in the following respects: First, they may have different 

beliefs about fundamentals either due to different initial uelicfs in the public signal environ

menl or different realizations of signals in the private signal environment. Second, traders 

differ in trading strategies due to their different trading frequencies. Let the pubLic signal 

environment with identical initial priors of fundamentals be the benchmark case. In such 

a benchmark case, the aggregate demand of type A traders depends on the presence of 

type B traders. Therefore, although there are no trades between groups, there will be an 

alternating pattern in price due to the multiple trading frequencies. 

When traders of multiple trading frequency behave strategically, the volatility clustering 

is generated for two reasons. First, multiple trading frequencies lead to an alternating 

pattern in prices, which generates a serial correlation in the magnitude of returns. The 

alternating pattern in prices is partly dne to the absence of infreqnent traders, which lowers 

the size of the aggregate demand in every second period. The alternating pattern in prices 

is also partly due to the different strategies nsed by freqnent traders depending on the 

presence of infrequent traders. Intuitively, frequent traders may behave like monopolists 

20ne example is the rllt.ure~ market. where typical traders are hedgers and speculators. The speculators 
in futures market generally have shorter trading horizons. Another example is the comparison of intraday 
traders and mutual fund managers, since mutual fund managers cannot conduct intraday trading due t.o 
regulatory restrictions. 

3To allow for the strategic interaction her.ween tr<Lders, I do not allow an infinite supply of the a.."set., snrh 
that large orders would have no impact on price. 

'For simplicity. I do not model the arrivals of traders endogenously; although the main results will apply 
wit.h endogenous arrivals. 



3 CHAPTER 1. TRADING FREQUENCY AND VOLATILITY CLUSTERING 

in the absence of infreqnent traders and like oligopolists in their presence. We label this 

source of volatility clustering the altfOrnatmg effect. Secondly, in the private signal case, 

pa,h group of traders has its own set of signals. Giwn different trading frf'quencics, it is 

natmal for traders in one group to infer the other group's signals from the price. Infrequent 

t.raders can infer the signals from the price in the period when they are absent, because the 

prices are entirely determined by the demands of frequent traders. Therefore, past prices 

provide information that determines the current price. This feedback mechanism facilitates 

the formation of the volatility clustering (see, e.g., Drock and LeBaron (1996)). We label 

this source of volatility clustering the signal extraction effect.5 

'When there is strategic interaction between traders, then the group size of traders, i.e., 

the mean arrival of traders, also has an impact on the optimal strategy of traders. The 

strategic competition is more intense with larger group sizes. In the limit, the strategic 

interaction among large groups of traders converges to the competitive outcome. This 

decreases the persistence of t1le magnitude of returns significantly. Thesc results show that 

when group sizes are large, t.he volatility clustering becomes negligible. Thus, the strat.egic 

behavior is necessary for the presence and the persistence of volatility clustering in this 

model. 

There are two additional stylized facts that are generated by our model in addition to 

volatility clustering, namely, lincarly trending prices and a negative correlation at the first 

lag of returns. The former is mainly due to the optimal trading strategy used by the traders 

in equilibrium. There are two ways for traders to make a profit in my model. First. traders 

who hold shares of th<': stork rpC'eive thr payofl on the tcrmimll tradinf'; date, Tradt'I"S adjust 

their optimal holdings according to the realization of their own signals and to the other 

group's signals that they have extracted. Second, traders will harvest capital gains if they 

can correctly anticipate the price movement. Decause traders are informationally large in 

this model, they can strategically adj ust their holdings across the remaining trading dates in 

order to take the advantage of their owu impact on prices, which leads to trending prices6 

The negative first-order autocorrelation of returns is consistent with the concept of noisy 

5Thb mechanism can generate volatility clustering even in the public signal case where signal extraction 
is absenl. On (he other hand, I find that signal extraction without multiple trading frequencies cannot 
generate volatility clustering. 

6Por example, if they believe that. the stock is undervalued in the current period, they may adjust t.heir 
holdings over several periods instead of just increasing their current period holding which may could drive 
the price up sharply and dirniuish the futlll'e capital gains. 



4 CHAPTER 1. TRADING FREQUENCY AND VOLATILITY CLUSTERING 

rat.ional expect.ation equilibrium (see e.g., Makarov and Rytchkov (2007)). The correlation 

bet.ween realized and expected returns can be shown t.o depend partly on the correlat.ion 

between exogenous supply and the cmrent price, which is negative. 

This model generates a number of interesting and test.able implications that are absent 

from standard models of asset pricing with uniform trading frequency. For instance, t.he 

trad.ers with more precise signals have a marginal effect OIL the evolution of the equilibrium. 

This seemingly counterintuitive result can be explained by the fact that traders strategically 

adjust their optimal holdings over all trading dates. Perhaps the most novel featme of 

the model is that traders with different trading freqnencies have different levels of impact 

on equilibrium prices and returns, with infrequent traders having a larger effect. This 

naturally results from the fact. that infrequent t.raders have fewer t.rading dates to smooth 

t.heir adjustment of optimal holdings 7 Furthermore, I show that signal extraction not 

only helps traders to infer the fundamentals more precisely but also provides them with 

more accurate guesses as to the behavior of the other type of traders. This leads to greater 

persistence in the magnitude of retUTHs. Naturally, this provides both a feedback mechanism 

and a forward mechanism, both of which contribute to the formation of volatility clustering. 

Overall, the main contributions of this chapter are as follows. First, rational traders 

with multiple trading frequencies behaving strategically can generate volatility clustering, 

and this mechanism is robnst with respect to different specifications of informational struc

ture. The qualitative statistical properties of equilibrium including prices, returns and the 

magnitude of returns. are similar in the public and the private signal settings, with or with

out the same initial beliefs about fundamentals. Second, multiple trading freqnency in the 

private signal environment can induce signal extraction, which contributes to the formation 

of volatility clustering and leads to hierarchical information. Hence, multiple trading fre

quencies within t.he privat.e information environment provioc;s theordical just.ification for 

the existence of hierarchical information, where the infinite regress problem collapses (see, 

e.g., To,"vnsend (1983), Mc~ulty and Huffman (1996) and Bomfim (2001)). Third, retnrn 

predictability is generated and is robust with respect to diH'erent iuformatio1H:l1 structures. 

Several papers have examined the role of multiple trading frequencies in different en

vironments. For example, Christian and Jia (2005) try to determine the optima.l trading 

7 A~ stat.ed earlier, the proposed mechanbm can generate similar stylized fads in variolls informational 
settings which may lear! co identification problems. This issue ca.n be easily solver! by examining the impulse 
responses of ~ra.ders with differE'nt trading frequencies. 
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frequency using a technical trading rule. Hauser et at. (2001) shows that. the higher aggre

gate trading frequency, the more efficient the price discovery in a non-dealer market. To 

my knowledge, hO\vever, no paper ""hich links the multiple trading frequencies to volatil

ity clustering and hicrarchical information. Unlike Hauser et al. (2001), who focus on the 

trading frequency determined by the institution at the aggregate level, this study examines 

trading frequency at the microstructure level. 

There are a number of ways to generate volatility clustering. For instance, Brock and 

LeBaron (1996) studied asymmetric information, the adaptive beliefs model of stock price 

and volume, in which volatility clustering is generated from traders experimenting with 

different belief updating systems, where experimenting is based on the past profits and 

expccr.erl. flltmE' profit,s. Cabrales and Hoshi (1996) built a h('terogem'Olls bf'liefs ass't pricing 

model in which the persistence of distribution of wealth can lean. to volatility clustering. 

The approach in Haan and Spear (1998) was to develop a heterogeneous agent, incomplete 

m1l..rket model of interest rates, in which persistence of financial frictions leuds to volatility 

clustering. de Fontnouvelle (2000) investigated a costly information model of asset trading, 

in which agents need to pay to acquire information, which leads to volatility clustering 

in price. Timmermann (2001) studied an imperfect information model of asset pricing, in 

which Bayesian updating of parameter estimates leads to volatility clustering. Hommes 

(2006) has an excellent survey on generating volatility clustering through interacting agent 

models, see also Hommes (2008). In such modeb;, these wide range of stylized facts are 

generated from the interaction between informed and noise traders through the adaptive 

belief updating and its evolution, as in Brock et 0.1. (2005). One of our dist.inct contributions 

to t.his literature is the embedding of a Bayesian Nash equilibrium model which leads to 

the strat.egic interaction amongst informed traders. Such interaction in the presence of the 

multiple trading frequency is capable of generating a set of stylized facts widely observed in 

the financE' literature. 

Unlike Brock and LeBaron (1996). this model does not rely on the experimentation 

Getween different beliefs npdating systems. Although the feedback mechanism, i. e., the 

signal extraction, can contribute to the formation of volatility clustering of returns in this 

modeL it is not essential. In this model, volatility clustering is generated even in the public 

signal environment where signal extraction is absent. Unlike Timmermann (2001), Bayesian 

information updating is not sufficient to generate volatility clustering in this model. ~'1y 

finn.ings show that. without stmtegic bphavior, the volatility clustering is RbsE'nt even with 
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Bayesian information updating. 

This chapter is organized as follows. Section 1.1 describes the basic setting used in the 

chapter. Section 1. 2 starts with the benchmark environment of the public signal case. In 

this case, although the setting is simplistic in that all signals are assumed to be publicly 

available, the model can generate the three stylized facts: First, prices display long mem

ory and an upward sloping treud. Second, returns are stationary and display a negative 

first-order correlation. Third, the variance of returns (or the magnitude of returns) displays 

volatility clustering \vith hyperbolic decay rate. Section 1.3 considers the different infor

mation structme of the private signal case, which yields additional interesting results. The 

private signal case posses~cs all the features of the public signal case. In addition, multiple 

trading frequencies lead to signal extraction behavior, \vhich adds to the temporal memory 

of the variance of returns and generates an information hierarchy. In Section 1.4, :-10nte 

Carlo simulations are carried out to illustrate the stylized facts, which are consistent with 

the theoretical results. Section 1.5 considers two extensions: First, in addition to improving 

the understanding of fundamentals, signal extraction can also help traders to predict the 

behaviors of the other group; we label this sophisticated signal extraction. Hence, signal 

extraction not only provides a feedback mechanism but also a forward-looking mechanism 

that links the prices to future prices. The other extension is to allow heterogeneous priors, 

which is shown to have negligible effects on the main findings. I conclude afterwards. 

1.2 Basic Setting 

I model a hypothetical financial market in which there is a single trading asset. 8 Assume 

that there are hvo groups of traders on the market, namely Type A and T,vpe n traders. 

Type A traders come to the market every period (speculators), while Type D traders come 

every other period (fundamentalists). Figme 1.1 illustrates this multiple trading frequency 

market structure. During a trading period, traders receive a signal about the value of the 

underlying asset. For analytical tractability, I make two simplifying assumptions: trading 

dates are finite and traders maximize per period profit. The first assumption is innocuous. 

The myopic preference assumption may ca.use dissatisfaction, but it helps to avoid the 

large state variables problem which is endemic in the" forecasting the forecasts of others" 

8r borrow the notation of Hong et al. (2006), who investigate the role of ovcrconfidence in gencrating 
speculative bubbles. 



7 CHAPTER 1. TRADING FREQUENCY AND VOLATILITY CLUSTERING 

IType A I IType A &: B I IType A I IType A & B I 

j j j I 
----t[Ijf----[I±TI-------[@]-------[@]

Figure 1.1: A FLOWCHART FOR MULTIPLe TRADING FREQUENCY. Type A trader~ (~peculators) come to the 
market every trading date while type B truder~ (fllndamentali~ts) come to t.he market every second trading 
date. 

literature. However, it. t.urns out t.hat it is not a serious problem t.o ignore hedging demand 

when the agent's maximization problem has a qnadratic form and the signals are normally 

distributed. 9 

There is a single traded asset in the economy, with T + 1 trading dates: t = 0, 1, ... , 

T. The asset pays .1 at t = T, where J is a normally distributed random vdl"iable. lO The 

supply function of outst.anding shares is Qs = p - IT, where Qs is aggregate liquidity supply 

and a raptures the fixed cost of providing outstanding sharesll The supply function takes 

on a simplest form, because the supply side is not the main focus of this chapter. 

Two groups of traders, type A and type B, maximize a per-period objective function 

E(vV), taking into account their own influences on the equilibrium pri<.;es, 12 where W is the 

wealth of the trader. The type A traders come to the market at every date, but type B 

traders only come at t = 0, t = 2, ... 1 t =T -1 ifT is odd, or t = 1, t = 3, ... , t = T-1 

if T is even. 

The arrivals of traders from both groups are assumed to be random. Random arrivals 

make it difficulty for trader5 to distinguish signals from the prices. The effective numbers 

of traders, ni4 and nf for type A and type B, are governed by an identical and independent 

9However, myopia is not a main driver of equilibrium price aDd return dyuu.lllics in thi~ model. As 
indicated earlier, there are two channels for the proposed mechanism to generate volatilit.y clustering, namely, 
"th(~ alternating dTect" and "the signill f'xt.racl iOIl dTect". The llr~r channel is a natural consequcnc~ or 
traders with multiple trading frequency. The second channel is naturally embedded in the private information 
environment. These two chanlleb are independent of the myopic preference of traders. 

laThe payoff 1Cal1 be interpreted as the liquidation value of the firm, and may be negative in the case of 
bankruptcy (considering the opport'lluity cost). 

llThe supply side is not modeled explicitly. The liquidity ~upply may come from Iloi~e traders or long 
term invest.or~. 

12 Myopic preference~ (lre adopted t.o avoid dynamic hedging problem and to obt.ain an analytically t.ractable 
~olution. 
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(iid) normal distribut.ion,13 JV(n, w). 

When t = 0, the two groups' prior beliefs about f are normally distributed, denoted by 

NCfoA, ;0) and N(.ff, ;0) where .faA and.11/ ('an bf' difl('r~nt. Sinc~ 1 fortIS on the effect of 
Atrading frequency, the same prior beliefs are assumed, i.e., .f = .1J3 = .To. At t = 1,2, ,o 

T - 1, each trader type receives one signal: Sf = T+ f-t and sf = T+ ~f for t = 1,2, . 

, T - 1, where f~) fP are iid normally distributed N(O, ~ ), where T~ is the precision of the 
, < 

signal. 14 

I start, with the public signal case. Figure 12 illustrates the mechanism of price formation 

in the public signal case. 

1.3 Public Signals 

1.3.1 Equilibrium 

I first. solve for the beliefs of the t\,,'O types of traders at t.ime t. Using standard Bayesian 

updating formulas, these beliefs are easily characterized by the following proposition. 

Proposition 1 The beliefs of the two gTOUpS of traders at t are normally distr'ib1ded as 

N (ItA, -!-;) and N (.It -t ), where the precision is given by 1 

(1.1) 

and the means are given by 

":A ":A T£ A B ":A.It = .11- 1 + -(St + SI - 2f t-I) 
Tt 

f-::B f-::B T~ (SB sA ') ~f'B )
. t =. t-l + - t + I - -. [-1 . (1.2) 

T[ 

If The traders are with identical priors, i.e. 164 = It', then their beliefs remain the same 

over all t,he trading period, i.e., ,Ji4 = hE = It fort = 1,2, ... , T - 1 Wit.hout a loss of 

generality, I solve the model when T is even. Given beliefs as in Proposition 1, I can solve 

for t.he equilibrium asset holdings Xf-l for t.ype A and X~_1 for type B traders, and the 

13The arrival process of traders is independent of the economic variables. To avoid negative arrivals, I put 
11 lower bound on the actual arrivals in the simulat.ion study present.ed in Section lA. 

HThe inverse of the variance of the signal can be interpret.ed as t.he precision of t.he signal. If the variance 
of the signal increases, the precision of the signal decreases. 
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prices PT-I at T - 1. ''lith risk neutral preferences, we can write the utility maximization 

problem faced by the ith type A trader as 

ni_l n¥_l 
max E[l- (0' + Lxi-I,] + L X~-l)]X~-U
Ax
T-l,' j=l ]=1 

where the first-order condition is 

~ A B Afr-l -- Q - (n - l)xT_l,j - nxy_l,j - 2XY_l,i = O. 

Invoking symmetry we have xi-I", = Xf--I,J for all i,j in equilibrium, which leads to 

A _ fr-l-O: 
XT - I - 2n + 1 

Hence. the Bayesian Nash equilibrium at T - 1 can be characterized by 

B fr-I - Q 

xT-I = xT -1 = 2n + 1 
~ 

A B A B fr-l - Q 
PT-l = 0' + (nT-I + nT_dxT-l = Q + (nT-I + nT-I) 2n + 1 (1.3) 

Given the equilibrium price at T - 1, we can use backward induction to derive the 

equilibrium holdings and price for t = T - 2, t = T - 3, ... , t = 1. If t is even, only type A 

traders arrive at market. Using an argument similar to the T - 1 case, the optimal demand 

for the ith trader of type A is 

EtPL+I - 0 

n+1 

where Etpt+l = E[PHIIItl, which is the conditional expectation of the next period price at 

time t given the information set It available at t, i,e., It = {Pt-l, PL-2, Pt-3, .. ,PI, po}· 

Note that in period t. in order to determine the optimal holdings, traders need to forecast 

the next period price, PL+!> and the optimal holdings of other traders. 15 If t is odd, both 

type A traders and type B traders come to the market. Using a similar argument as above, 

the optimal demand for the type A trader is 

Etpt+1 - 0' 

2n+ 1 

15 p) is not determined when traders make their decisions at, t,ime I. The joint decisions of all market 
participants lead to the equilibrium price P,. 
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The equilibrium at t = 0, I, 2, ... , T - 2 differs from that at t = T - 1 due to the myopic 

preference assumption. 'When t = 0, I, 2, ... , T - 2, traders only care about the price of the 

asset one period ahead because of t.heir per period profit orientation. The optimal holding- is 

determined by the forecast of the price in the next period which can be solved by backward 

induction and the expected holdings of other traders. 

Proposition 2 The flayeszan Nash eq'ulJibrium at t can be characterized by 

if t is odd 

2(1'-t-I)/2n (1'-l-l) ~ 

x~ = xf = Xt = (2n+ 1)(1'-t+l)/2(n+ 1)(1'-t-1l/2Ut - a) 

A B 2(1'-t- 1l/2n (1'-t-1) --;-

Pt a + (nt + nt ) (2n + l)Cf - 1Hl/2(n + 1)(1'-1-1)/2 (it - a) 

if t is even 

')(1'-tl/2 (1'-t-1) _ 

Xi 
4 

(2n + ~)(1'-t)/~(n + 1)(1'-1)/2 (II - a) 

A 2(1'-t)/2n(1'-t-l) --;-

Pt = ex + (n[ ) (2n + 1)(1'-1l/2(n + 1)(1'-tJ/2(Jt - a). 

Based on Proposition 1, Proposition 2 characterizes the Bayesian Nash equilibrium for 

all trading dates. The equilibrium price is a function of the remaining trading horizon and 

beliefs: which implies that the price dynamics are governed jointly by the trading horizon 

and the beliefs of traders. 

1.3.2 Equilibrium Properties 

The previous section characterized the Bayesian Nash equilibrium in the public signal 

case. To examine how the mechanism proposed in the chapter, namely, traders with the 

multiple trading frequencies behaving strategically, can generate the claimed stylized facts, 

including return predictability and volatility clustering, we need to study the properties of 

the equilibrium. The main properties of the equilibrium described are 

1.� Price series possess a linear trend and are linearly dependent. 

2.� Rrturn series are stationary, and there is a negati ve autocorrelat.ion of rd.ufl1s at first 

lag. 

3.� Return series display volatility clustering with hyperbolic decay autocorrelations. 



11 CHAPTER 1. TRA.DING FREQUENCY AND VOLATILITY CLUSTERING 

Before elaborating on each of these properties, I will describe the equilibrium behavior 

of beliefs where the equilibrium price is a function of beliefs. 

Beliefs 

First, beliefs exhibit long memory as shown in Lemma 3. 

Lemma 3 

(1.4) 

where Tt- J is the precision of beliefs at t - j for j = 1,2,3, ... , t - 1. 

R.emarks: 

1.� Lemma 3 shows that beliefs have long memory and that the autocovariance function is 

a hyperbolic function of lags. To illustrate the nature of long memory and hyperbolic 

decay in beliefs, consider an impulse response experiment. For simplicity, assume that 

there is only one positive innovat,ion at t = 1 and zero at othey trading dates. Using 

Proposition I, we know that the beliefs for traders at t = 1, 2, ... , T - 1 are 

t t 
~ -: 'It ""' A ""' BIt� = fo + :-(2tto+ ~f~ + ~f1 ) (1.5 ) 
't.

t"'l t=1 

where fa = 1-10. Given the innovation at t = 1, the belief it is updated and the effect 

of the innovation on the belief at t = 1 is Ttl7}. Then, the effect of the innovation on 

the belief at t + 1, h.+1 is Tt / Tt+ 1 and the effect of the innovation on thc bclief at t + j 

is Tt/Tt,-J. Note that Tt+j = TO +2(t +j)Tt~ this leads to the persistence of beliefs, and 

the decay rate is hyperbolic. 

2.� Lemma 3 also characterizes the limiting behavior of the beliefs, which converge to the 

true value of the underlying asset 1as t --'> 00. As t --'> 00, Tt/Tt --'> 0: and 2tTt /Tt --'> 1, 

Equation 1.5 is reduced to .~ = .To + to = .To + I-To =T This implies that the beliefs 

of traders converge asymptotically to the true value of the underlying asset. 



12 CHAPTER 1. TRADING FREQUENCY AND VOLATILITY CLUSTERING 

Prices 

For simplicity, I assume that 0: oso that I can work with the logarithm of price 

ser1e5,16 

t 
logpt At + "2B + log it for t is odd 

t ~ 

logpt Ct + "2B + log it for t is even� (1.6) 

where At = log(nf + nf) + T 21 log2 + (T - 1) logn - Tt110g(2n + 1) - T 21 log(n + 1), 

B = [log(2n + 1) + log(n + 1) - log2 - 2logn], Ct = log(nf) + ~ log2 + (T - 1) log n 

f log(2n + 1) - f log(n + 1). 

Remarks: 

1.� From Equation 1.6, price series contain three components: At and Ct , ~B and log it. 
Ai and Cr are exogenous random variables that are determined by the iid arrival 

process. B is a positive constant that acts as a drift parameter. Therefore, logpt has 

a deterministic linear upward sloping trend. As shown in Equation 1.4, it is a long 

memory process. Therefore the price process also has a long memory which arises 

from the hyperbolic decay of the beliefs. 

2.� Intuitively, prices have long memories because of the embedded belief proc.;ess, Price 

1S a linear function of beliefs and preserves the linear dependence structure of beliefs. 

As a result, the price series display long memory. 

3.� The deterministic trend originates from the strategic behaviors of traders. Tl'aders 

will face a t.rade-off in deciding whether to in~rease t.heir holdings. On t.he onE' hand, 

increasing their holdings today means that. they can sell more at a higher price tomor

row. On the other hand. increasing their holdings will increase the cost of acquiring 

shares today. Without strategic behavior,17 traders are not aware of tbeir own im

pact on equilibrium price, They will therefore adjust their holdings until the price 

l6Mollte Carlo simulations suggest that the results are not sensitive when a is nonzero, 

17With the beliefs characterized in Proposit,ion 1, we ca.n solve for the equilibrium aSSt'! holdings xi- J for 

type A and X¥_l for type B traders, and prices pT•. l at time T-l. With risk-neutral preferences. E[j] - p-r 

which implies that PT-l = !T-l, Using the market clear condition, we have X:f-J = ,r¥-J = .[r-'--' , 
t) F-t f1 _} 

This implies that at T - 2, when only type A traders come to the market, E[PT-l] = PT-Z, which implies 
PT-2 = .!T-2 and p, = ,ft [or I = 1, 2, , . " T - 1. Hence, prices follow a martingale process and there is no 
upward sloping trend embedded in t,he price series. 
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difference is zero, \vhich leads Lo zero expect.ed profit. for every trading date. WiLh 

t>trategic behavior, traders will exploit their monopolistic powers to prevent. the in

(TE'as(' of pri('~::; in the current. period to ordn TO make profits. VVh011 r,hc remaining 

trading horizon is longer, the strategic behavior of traders has a larger cumula.tive 

impact on price, which implies that the prices increase over time. Notice that this 

time trend can contribute to the time varying variance of price but not the volatilit.y 

clustering of returns. 

Returns 

The gross returns18 are defined by rt = Pt/Pt-I and the logarithm return 10g(rtJ at t is 

equal to 

logT[ = D[ + log Zt 

where D t = log(n + 1) - log(n) + log(nt4 + nf) - log(2n:_1) and Z[ = it! it-I. Dt is an 

exogenous random variable which is det.ermined by the arrival process, and Zt is the ratio 

of beliefs of two types of traders. In order t.o underst.and the properties of Ttl we lleed to 

study the time series properties of D t and Zt. Since it is difficult to get a closed form for 

t.he aut.ocOV'Cl.riance function of Zt and D t , we rely on Monte Carlo simulations. 

Remarks: 

1.� The negative first.-order autocorrelation of returns is mainly due to the change in t.he 

mean intensity of arrivals due to multiple trading frequencies. As shown in Figure 1.3, 

Dt possesses a negative first-order autocorrelation with the magnitude -0.25 and no 

statistically significant autocorrelations at higher lags. In the meantime, Z/ possesses 

no statistically significant autocorrelations at any lag. With the joint effects of Zt and 

Dt , the T\!Ionte Carlo study suggests that T/ has a negative first-order autocorrelation. 

Volatility Clustering 

Let 10g(Td = D t +log Z[, while log Z, = log(id -IOg(]~_I)' It is easy to show that D t is 

a stationary process. Hence I focus on the time series properties of Z[. Zt can be recursively 

~8 Altemd,tively, oue can define returns by Tl = log(pe) - log(PI_~)' These two s~ecifi(;al,ioJls do not altel 
the cor<, findings. 
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written as19 

SA...L 58 1
Zt� = 1 + Tt-l ( At ~ (1 _ Tt-2 __ ) - 2), (1. 7)I 

Tt 5 1_ 1 + St-l Tt-l Zt-1 

which is a nonlinear function of ZI-1' 

R.emarks: 

1.� For expositional purposes, I define Zt = It (Zt-1)· Using Equation 1.7, I have Var(log(rt) = 
Va.r[Dd + Var[Zt] = V m'[D,] + (8~:~1 )2Var[Zt_d· R.emember that ZI-1 is a func

tion of Tt-], i.e., Zt-1 = I t-
l (rt-l). This suggests that Var(logh) = Var[DrJ + 

(a~f~1)2Var(.f~-lh-t}). As in Granger and 1hchina (2006), when Zt is a nonlinear 

function of Zt-I ' it is evidence of volatility clustering. 

2.� Volatility clustering is mainly due to the time series properties of Zt. As shown in 

Figure 1.3, Var(Dt} possesses no statistically significant aut.ocorrelations at any lag. 

In contrast, the autocorrelations of Var(Zt} at the first ten lags are all statistically 

significant with magnitudes ranging hom 0.05 to 027. In addition, Var(Zd decay 

with a hyperbolic rate of 0.34 

Impact of Signal Precision 

In addition to the stylized facts, this model generates interesting predictions that are 

absent from the standard asset pricing model. For example, this model predicts that the 

traders with more precise signals impose smaller effect.s on changing eqnilibrium prices. It 

is useful to consider an impulse response experiment. We start with an equilibrium where 

the beliefs of traders have already converged to the true value of the underlying asset, 

i.e., ./0 = f. Suppose there is a large negative innovation in the signal at t = 1 with the 

magnitude - T i.e., 5('1. = 0 and S~ = O. All other signals are equal to 1, i.e., St' = sF = 1 
There is no noise in arrivals, i.e, n~ = nf = nand Cl' = O. Then the beliefs, equilibrium 

19See derivations in Appendix B. 
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prices, and returns can be cornputed according to Proposition 2 

ft J(1- 27,) = 7t-1 J 
7t Tt 

2(T-t+1)/2nT-t 

Pt ft for t is odd 
(2n + 1)(1'-t+l)/2(n + 1)(T-t-l)/2 

2(T-t)/2nT-I. ~
 

pI, for t is even� 
(2n + 1)(T-t)/2(n + 1)(T-t)/21't 

7t-2 

71 

When the precision of signal T, increases, the innovation iu the signal hils a smaller effect on 

returns. To see this, note that r't = T!-2 can be rewritten as 1 - '0 
4 .,(. vVhen 7, increases,

Tt -~~ 

r't decreases. This implies that when traders have more precise signal, the change in price 

is smaller. This seemingly counterintuitive result is caused by the strategic adjustments of 

the optimal holdings of traders. When the signal is precise, traders tend to be reluctant 

to adjust their optimal holdings. This leads to traders with more precise signals imposing 

smaller effects on equilibrium prices and returns. 

1.4 Private Signals 

The model developed in the previous section is simple, yet capable of capturing the 

three stylized facts of financial data. Namely, prices display long memory and an upward 

sloping trend, returns are stationary and display a. negative first-order correlation, and the 

variance of returns (magnitude of retmns) displays volatility clustering with a hyperbolic 

decay rate. This section examines a variant of the model where the traders receive private 

signals instead of public signals. Signal extraction due to multiple trading frequencies in 

a private signal environment naturally contributes to the formation of volatility clustering. 

Intuitively, given different trading frequencies, it is natmal for traders in one group to infer 

the other group's siguals from the prices. Infrequent traders can infer the signals from the 

price in the period when they are absent, because the prices are entirely determined by the 

demands of the frequent traders. Therefore, the past prices provide information that deter

mines the current price. This feedback mechanism facilitates the formation of the volatility 

clustering (see, e.g., Brock and LeBaron (1996)). Signal extraction generates other interest

ing findings as well, which provide insights into understanding private information trading 

in the market microstructme. For example, signal extraction in this model generates an 
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information hierarchy among traders in an ex ante symmetric information setting 20 In this 

model, infi'equent traders can infer signals received by frequent traders exactly, In addition, 

infrequent traders infer more precise signals than frequent traders. The information hier

archy created by multiple trading frequencies suggests that the asymmetry of information 

diffusion may be endogenously determined by trading frequencies, rather than exogenously 

given. 

The importance of the private signal case is that it leads t,o signal extraction through 

the channel of multiple trading frequency. If the traders with several trading frequencies 

come t.o the market, we should expect to see "the alternating effect" lessen because of the 

smoothing effect of these traders. However, we should expect to see "the signal extraction 

effed," st.rengthen the impact on the formation of "volatilit,y clustering". This is dne to the 

fact that traders with several trading frequencies lead to hierarchical information through 

signal extraction behavior. 

1.4.1 Informational Structure 

Note that at t = 0, 2, ... , T - 4, T - 2, only type A traders are present in the market. 

This implies that the eqnilibrium prices in such periods are entirely determined by the 

behavior and beliefs of type A traders. Therefore, type D traders can extract the beliefs of 

the type A traders by inverting the equilibrium price function of the beliefs. 

I assume that traders know the exact number of traders who came to the market in the 

last period, i.e., at time t, the information set for the traders is It {Pt-I, N{:'-I' N/!.-.} , 

where Pt - 1 {Pt-I,Pt-2, .. " PI, po}, and Nt-I = {nt-l,nt"'!.-2' 1 n~} and Nt-I = 
B B B}{n t - 1,nt - 2 ,···, no . 

1.4.2 Bayesian Nash Equilibrium 

To describe signal extraction behavior and the evolution of beliefs, I first characterize 

the Bayesian Nash equilibrium, Given a sequence of beliefs after signal extraction, it and 

.ff for type A traders and type B traders respectively, we can solve for the equilibrium at 

time T - 1. 

2U A symmetriC information setting means that ex ante. all trad0rs will receive the same number of signals 
per period, which are drawn from i~d distribution. 



CHAPTER 1. TRADING FREQUENCY AND VOLATILITY CLUSTERlNG 17 

With risk-neutral preferences, we can characterize the utility maximization problem 

faced by the ith type A trader as 

n:f_l n¥_l 
rIIax E[l - (0: + L X~-l,j + L ·Y,¥-I,j)]X~.-l.i 

X T - 1" J=l J=l 

The first-order condition is 

fA (' l),.A B 2 A 0.IT-l - 0: - n - ,ET-I,j - nXT_I,j - xT-l,l. = 
~A B 

A 'fT-l - (l nXT_1,j 
=}XT-1,.= n+l 

Hence, the Bayesian Nash equilibrium at T - 1 can be characterized by 

-A -B(n + 1)fT - - _ - 0:A 1 nf1' 1
X1'-1 2n·· 1 

, -B ~A 

B (n + 1)f1'- 1 - rljT_1 - 0: 
X1'-1 = 

2n+ 1 
Q + n A xA + n B , .BP1'-1 = 1'-1' T-1 1'-I,E1'-[' 

Given the price in the T -1 period, we can derive the equilibrium for t = 1, 2, 3, ... IT - 2: 

Proposition 4 The Bayesian Nash equilib1'ium at t is characterized by 

~ft is odd: 

AXt =� 

B�xt.� 

Pt� 

if t is even: 

2(T-t)/2n (7'-1-t) ~A 

(2n + 1)(1'-t)/2(n + 1)(1'-t)/2 (ft - 0:) 

A 2(1'-t)/2n (T-1-t) ~A 

Pt 0: + (nt ) (2n + l)(T-t)/2(n + 1)(T-t)/2 (ft - 0:). 



CHAPTER 1. TRADING FREQUENCY AND VOLATILITY CLUSTERING 18 

1.4.3 Signal Extraction 

Using Proposition 4, we can describe the signal extraction behavior of traders. At, t = T

1, type B traders know the actual arrivals n~_2 and n~_2 of both types of traders. and price 

PT-2 in the last period. From Proposition 8, PT-2 = a + (nt) (271+mn+1) (.rit 2 - a). There

fore, the type D traders can invert the price formula to get Tf-2 = a+ (2~-1)(~+1)(PT-2 - 0:).
11.)tl·T _ 2 

Hence, at T ~ 1, type B traders know type A traders' belief at T - 2, 1-ft-2' A similar analysis 

can be applied to type A traders and to other trading dates. 

Proposition 5 Type A traders know the exact beliefs of type B traders ever'Y other trading 

period, and type B trader'S know the exact beliefs of type A traders every trading period, i.e., 

1. When t is odd, type n tmders know .Ti/~ l' .ft-:2' ... )it while type A traders only know 
~B ~B ?B 
f t - 2 } f/.- 4 ,· ., fa· 

2. When t is even, type B trader'S know l{~-l! .!t-:2' ,.. , .164 while type A traders only 
~B ~B ~B 

know f t - 1, ft-3' ... ! fa . 

Furthermore, traders can recover the private signals received by the other group by 

knowing the history of the beliefs. For instance, type B traders know the full history of [('I, 
and they understand that the difference in the beliefs is due to the signals. By inverting 

the Bayesian updating formula, they can even infer the private signals received by type A 

traders in addition to their beliefs. 

Assuming that the identical initial prior beliefs .faA = .m are common knowledge, then 

the beliefs of each type of traders can be determined as follows: 

Proposition 6 The beliefs of two groups of traders at t are normally distributed, denoted 

by N (it, i) and N (f(3, t), where the precision for type A traders is given by 

T
A 

TO 
A + T,1 

Tf = T{~ + 2T, 

ATil 
t T t - 1 + T" for t is 2k - l! k ? 2 

T
A = for t is 2k, k ? 2t 
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The mean for type A traders is given by 

fort = 2k - I, k 2: 2 

for t = 2k, k 2: 2 

The precision for type B tr'aders is given by 

and the mean for type B tr'aders is given by 

for t 2: 2 

Remarks: 

1.� Type B traders know the exact private signals received by type A traders, where type 

A traders only have estimates of the type D traders' private signals (Si4 ) This implies 

that there is an informational hierarchy among traders. Type B traders know all the 

signals that type A traders know. Notice that we start from an ex ante symmetric 

setting. 

2.� Type B traders extract higher precision signals: the signals extracted by type B traders 

are of precision T f , while the signals extracted by type A traders are of precision 
-A l+(TR.I)2 .� B 2 B 2 '-A 
't� = (1 )j )2 T{. It 1S easy to see that (1 + Tt - 1 ) > 1 + (Tt-I) . Therefore, Tt+T1_ 1 
l-;-(Ti~_1)2 ')1 
(1+T,D_1)2'€ < T{.

21 An except.ion occur~ at l = 2. This is the only t.rading dat,€' where type A traders can extract an exact 
signal received by type B traders. This exception originat.es from t.he assumption that init.ial belii'f~ are 
ident.ical. vVhen I relax this assumption in Section 1.5, t.ype A traders are no longer able to ext.ract exact 
signals. 
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3.� Signal extraction facilitat.es the formation of volatility clustering by changing the for

mation of the beliefs. It is easy to see that due to signal extraction, there is a correla

tion between the traders' beliefs which is absent in the public signal case. The price 

is linear in belicfs and preserves the correlation between the traders' beliefs in its own 

correlation across trading dates 22 

1.4.4 Equilibrium Properties 

The previous section, I characterized the Bayesian Nash equilibriulll in the public signal 

case. In order to examine how the mechanism proposed in the chapter, namely, traders with 

the multiple trading frequencies behaving strategically can generate return predictability 

and volatility clustering, we need to study the properties of the equilibrium. In addition. I 

are going to examine the difference between the equilibria in the private signal case and the 

puhlic signal case. The main properties of the equilibrium in the private signal case are 

1.� Price series possess a linear trend and are linearly dependent. 

2.� Return series are stationary and there is a negative autocorrelation of returns at first 

lag. 

3.� R.eturn series display volatility clustering with hyperbolic decay autocorrelations. 

Before elaborating on each of these properties, I will describe the equilibrium behavior 

of beliefs where the equilibrium price is a function of beliefs. 

Beliefs 

First, beliefs exhibit long memory as shown in Lemma 7. 

221n addition Lo the beliefs channel, signal extraction can facilitate the formation of volatility clustering by 
providing a forward looking mechanism. As discussed in Section 1.5, when traders use signal extraction not 
only to improve the understanding of fundamentals (via the beliefs channel) but also to predict the behaviors 
of t he other gTOUp of (.radel·;', the effect of signal extraction on tIle formation of volatility dustering is SLI Ol'g"l'. 
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Lemma 7 The autocova,ria,nce functions of beliefs f/ and f? can be characterized by 

where [x] is the integer part. of .1;. 

R.emarks: 

1, As in the public signal case, the signal innovation will have an impact on the beliefs 

even at long lags and t.he decay rate is hyperbolic. To see this, rewrite the equations 

for the beliefs in the form 

(1.8) 

where to = T- .fu and ~A = st - T Using a similar impulse response experiment as 

in the public signal case, one can show that t.he beliefs have long memory and that 

the decay rat.e is hyperbolic. 

2.� It then follows that when t - 00, the beliefs of each group converge asymptotically t.o 

the true value of the underlying asset.. 

3.� The correlation bet\veen beliefs is nonzero, It originates from t.he signal extraction 

behavior. For instance, as shown in Proposition 6, type B traders know the private 

signals received by type A traders in the last period, Hence, there is a common signal 

incorporated in the beliefs of type B traders in the current trading period and type A 

traders in the last trading period. This imposes a correlat.ion structure on the beliefs 

of the traders. It turns out that the correlation structure of the beliefs is preserved in 

the prices, since the price is linear in beliefs. 
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Prices 

Next, I examine the properties of prices. The prices characterized in Proposit.ion 4 can 

be rewritten as 

for� t is odd 

Pt =� for t is even 

• 2(T-I-lJ/2 (T .. ,-l)n
where I<"t = (271.+1)(1 '+I)!2(n+1l(T t 3)/2' 

For simplicity, 1 assume that 0: = 0 and that there is no nOIse in the arrivals, i.e, 

nt~ = nf = n. Therefore, the prices can be chaJ'acterized by: 

for t is odd Pt 

PI =� for t is even ( 1.9) 

2(T-i-1J/2n (T--1-1J 

where K t = (21< .oil(T r+1J/2(n+1)(T t 3)/2' 

Remarks: 

1.� As in the public signal case, (log) price has a linear trend over time: log K t is linear in 

t. Therefore K t increases exponentially23 Again, the deterministic trend arises from 

strategic behaviors of traders. Due to differences in beliefs, they may adjust Lheir 

optimal holdings at different rates. This further cuutributes to the alternating pattern 

in prices. 

2.� The prices display long memories because of the embedded belief process. Likewise, 

the price is linear in beliefs and preserves the dependence structure of the beliefs. 

Formally, the autocovariance function of prices can be characterized by 

Cov(Pt J Pt-2j-l) 

2310g K t = (T - 1)/21og2 + (T - 1)/2 log n - (T - 1)/21og(2n + 1) - (T - 3) log(n + 1) + t/2[log(2n + 1) + 
log(n + 1) - log2 - 2lognJ. 
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where 

Returns 

Next, I examine the return seTies. Define rt = pt/Pt-l. Since it is difficult to get a closed 

form for the autocovariance function, 1 rely on Monte Carlo simulations. Monte Carlo 

simulations show that the autocorrelation of rt at the first lag is -0.25 and is statistically 

significant, while the alltocorrelations at other lags are statistically indistinguishable from 

zero. 

ValatiEty Clus tering 
~ -B 

Let rio = Xt + yt, where X t = L~ and yt = JL\ . X t can be rewritten as<

2J,_1 2 1-1 

S A 
7t-1 ( t ( 7t.~2 1) )1+- - 1-----1 

- SA - Xi[ t-l /(-1 1-1 

Remarks: 

1.� For expositional purposes, I define XI = mt(Xt-d. Using the same methods of analysis 

as in the public signal case, we obtain 

Var(rd = Var(Yt ) + Var(Xd + 2Cov(Xt , Yi.) 
8mt 2 

Var(lt) + (aXt-l) Var(Xt - 1) + 2Cov(Xt, yt) 

Remember that X t - 1 is a function of rt-}, i.e., Xt- 1 = m t 1(rt_d . This suggests 

that Va:r(rt) = Var(Yi) + (at7~)2Var(mt1(rf-d) + 2Cov(Xt , yt). As in Granger and 

?\1achina (2006), when X t is a nonlinear function of X t - 1 , it 1S evidence of volatility 

clustering. 
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2.� Signal extraction adds terms to the expression for volatility clustering. Cov(Xt , Yi) 
-A ~B 

is� the covariance between the beliefs ratios of type A traders, ') L~ and 2 f.!:'l . As 
-f'-1 f'-1 

shown in Lemma 7, the covariance between beliefs is positive. This shows that signal 

extraction facilitates the fonnation of volatility clustering. 

Role of Multiple Trading Frequency 

Through a multiple trading frequency mechanism, this model generates interesting pre

dictions that are absent from the standard asset pricing model. I already discllsscd one 

example in the public signal case, namely, that signal precision has an impact on the equi

librium prices and retnrns. \Vith signal extra.ction, this model is capable of generating other 

interesting predictions. 

1.� Tra.ders with differellt trading frequencies have different levels of impact on equilibrimll 

prices aud returns. To see this, it is useful to consider a heuristic argument. Let us 

compare the cumulative impact of one innovation in the signal for type A traders or 

type B traders. As shown in Equation 1.8, the cumulative impulse response of signal 
t t 

for type A traders is " ~ + ,,~. In contrast, the cumulative impulse response of L.JTi L.J"t 
1.=1 ~=1 

I: 
t -A 

t 

signal for type 13 traders is ~.,.---::-ul ,,~.	 1B.1 Note that 7/ < T( and -I < 1. 
1'J� ~rJ_l L.J1't +rt  1 

i=l t=l 

Given that 'T/ is positive every other period, the cumulative impulse response of the 

infrequent traders to a signal is smaller. Notice that the smaller cumulative impulse 

response is due to the fact that type A traders are not capable of doing signal extraction 

every trading period and their signal precision is lower. 

2.� The timing schedule of signals has an impact on equilibrium prices and returns It 

arises from the fact that type A traders are only able to extract exactly the signal 

of type B traders on t = 2. If t,he bad news arrives at a later time, type A traders 

incorporate it into their beliefs differently. 

1.5 Simulations 

This section illustrates how the model is able to generate the claimed stylized facts, 

namely, linearly trending prices, negative first-order autocorrelation of rctums and volatility 
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clustering. In the simulations, the parameters are set at a = 100, T = 150, n = 50, f = 150, 

'10 = 10, 7"" = 3 and w = 400. I also report the robustness of the findings with different sets 

of parameter values. 

1.5.1 Public Signals 

The simulatiou results illustrate that (log) prices are linearly trending, returns are sta

tionary and possess a negative first lag autocorrelation, which is consistent with the literature 

(see, e.g., Dacorogna et a.l. (2001)). In addition, as shown in Figure 1.4, the autocorrelation 

function of the variauce of returns decays hyperbolically. Table 1.3 reports the average 

autocorrelations of rt and Var(rd across 100 simulations in the public sigual case. It shows 

that for rt, there is a statistically significant negative autocorrelation at the first lag with 

a magnitude of -0.48 21 There are no statistically siguificant auto correlations at other lags. 

For Var(Td, all autocorrelations are statistically siguificant, with magnitudes rangiug from 

0.07 to 0.347. 

Tllf' fix('d ('ost of providing liquidit.y, el, mainly affects the posit.ion of t.he prices. Varyiug 

Ct does not alter the pattern of the prices and returns. Iu addition, changing a has negligible 

effects on the dependence structure of ret.urns and the variance of returns. Chauges in Ct 

mainly change the po::iition of prices but not the slope of price series. Beca.u:;e the fixed 

cost is COllstant over time, the return series will be independent of a. Figure L5 shows the 

simulation results for a = 80, a = 150 and () = 200. The simulation results are consistent 

with om intuition. The dependence structure of the returns and the variance of returns are 

almost. the same for different 0' values. 

Next, I examine the meau arrivals of traders of each group, n. As a common property 

of the Cournot game, as n increases, the prices become more volatile. In the mean time, 

the returns display less dependence structure, and less dependence structme at the second 

moment (the variance of returns). Intuitively, as n increases, the strategic outcome con

verges to the compet.itive outcome, which involves less strategic behavior and rednces the 

dependence structure of the returns and the variance of returns. Fignre 1.6 shows the anto

correlation functiou of returns and the variance of retmns when 11, = 50, n = 100, n = 200. 

24Thc magnitude of tl1c first oruer autocorrelation of returns is largcr tlLiltl i~ observed empirieully. How
ever, if traders are price takers instead of strategic traders, the first order autoconelation coefficient of 
returns is not statistically significant from zero. In practice, the market participants should be a mixture of 
small traders who are pricE" takcrs and inst.itut.ion tradcr~ who have influence on price. The int.f'ract.ion of 
the mixture of traders may lead to a lower first order autocorrelation coefficient in magnitude. 
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The simulations show that as n increases, the variance of returns displays less dependence 

structure. When n = 200, the autocorrelation coefficients of the variance of returns at all 

but r.l1f' first lag art' wry small. In contrast, whp.n 71. = 50, the variance of returns displays 

evidence of volatility clustering. 

I continue to study the effects of the variance of arrivals, w. Figure 1.7 suggests that w 

lm~ a uegligible effect on the dependence structure of return and the variam;e of returns. It 

mainly affects the volatility of prices. If w is lower, then the prices become smoother (less 

volatile). This is consistent with our intuition that w is the parameter characterizing the 

arrival process only; which is independent of the npdating procedure. This means that w 

should not have any explanatory power in the dependence strncture as opposed to 71., which 

ran affect the depcndc:nrp. st.rncture of the variance of returns by affecting the interaction 

between traders. 

Finally; I investigate the effects of T" the precision of the signal. When the precision 

of the signal is high, it tends to put more weight on the signals rather than the beliefs of 

the last period. Therefore, the potential high precision signal IE can red uce the dependence 

structure. The simulation results suggest that the magnitude of this effect is small. 

1.5.2 Private Signals 

The simulatiou results are quite similar to the public signal case. Price series have an 

upward sloping trend and there is a dependence structure in returns, while the returns al'e 

stationary. The first.-order antocorrelation coefficient of the returns is uegative. As in Figure 

1.8, the autocorrelation function of the variance of returns exhibits hyperbolic decay, which 

is evidence of volatility clustering. Table 1.4 reports the average autocorrelations of Tt and 

Var(rd in 100 simulations. It shows that for 't; the autocorrelation at the first lag is -0.25, 

which is statistically signifiCilJlt, while the autoconelations at other lags are statistically 

indistinguishable from zero. For Var(rt}, all the autocorrelations Me :;tati:;tically significant.. 

The magnitude range:; fi'om 0.1 to 0.29. Compared to the public :;ignal case, the persistent 

structure of Var(rt} is of a similar magnitude. 

I also present the results of the experiments in terms of parameters in Figure 1.9, Fig

mes 1.10 and 1.11. The model behavior resembles the public signal case. The dependence 

structures of returns and the variance of returns. which are captmed by the autocorrelation 

function, are similar when changing the carrying cost, 0:. Changing the mean intensity of 

arrival 71. has negligible efI'ects on dependence structure of returns. As 71. increases, ho\vever, 
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the variance of returns becomes less persistent, which is reflected in smaller magnitude of 

the autocorrelation coefficients. Different valnes of the standard deviation of arrivals w have 

negligible effect.s on the rlepenrlence struct.ure of returns and the variancE' of rctnrns. 

To summarize, this simulation provides an illustration of the robustness of the proposed 

mechanism. In both the public and the private signal cases, the sirnnlation demonstrates 

the three stylized facts. First, the prices display long memory and an upward sloping 

trend. Second) the returns are stationary and display a negative first-order correlation. 

Third, the variance of returns (the magnitude of returns) display volatility clustering and 

the decay rate is hyperbolic. Furthermore, the simulations suggest that there is an inverse 

relationship between the mean intensity of the arrivals and the persistence structure of the 

variance of returns. In both cases, as the mean intensity of the arrivals n increases, the 

magnitudes of the autocorrelations become smaller, indicating that the variance of returns 

is less persistent. As guided by the theoretical framework, it is reasouable to believe that 

this rlirninishing effect of mean intcnsity of the arrivals is due to less strategic bchaviors of 

traders, as the Bayesian Nash equilibrium converges to the competitive equilibrium. This 

framework suggests that strategic behavior contributes to the persistent structure in the 

variance of returns. 

1.6 Extensions 

1.6.1 Sophisticated Guess 

The previous analysis shows that signal extraction facilitates the formation of volatility 

clustering through a beliefs channel. It is interesting to consider additional mechanisms 

led by signal extraction. In additional to the beliefs channel, traders seek the short-run 

profit opportunities by predicting the other party's behavior using the extracted beliefs. 

Intuitively, this forward looking mechanism will bring even more persistence to the prices 

and the magnitude of returns. 

For expositional purposes, first consider the Bayesian Nash equilibrium at time T - l. 

Time T - 1 is the last trading date. Therefore, traders only care about the true value of 

the underlying asset. The profit maximization problem faced by the ith type A trader can 
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be characterized by 

Ti;f-l n¥_l 
- ~ A ~ .8 A 

~ax Elf - (a + 0 XT-1,j + 0 XT-I,))]XT-1,i' 
x T _ J" j= l j=1 

Therefore the equilibrium at time T - 1 is the same as in the signal extraction case we 

studied in Section 13 

.~A
,1.0'1'-1 

~A ~B 

(n + 1)1''1'-1 - n!T-l 

2n+ 1 

- a 

B 
~B ~4 

(n + 1).fr-1 - n!r_1 - 0' 
XY-l 

2n+ 1 

PT-1 
A A B, B

o:+nT_1 xT_l +nT-l·l:T-1· 

At time T - 2, only type A traders come to the market, and they care about the per 

period profit instead, i.e, they care about the price in the next period PT-l instead of .f. 
Th0rcfor0, the profit maximizat.ion problem faced by the ith type A trader at time T - 2 is 

n;f_2 n!f._z 

nlClu'{ EA[PT_I - (ex + L X;_2,j + L :l:~-2.J)]X;-2,1 
X7-_2., j=1 )=1 

which implies that 

By backward induction, 

EA[n~~1x4_1 + n~-1x~-11 
A[ n (-A?B 1

nE 2n + 1 !T-1 + fr-l - 200) 

') 

~(g4[f~A ] + g4[f13 ]).
2n + 1 '1'-1 '1'-1 

At t = T - 2, the best guess for 11-1 is 1:f--2' the current mean of the beliefs. Without signal 

extraction, the best guess for 1#-1 is also 1:ft-2' because there is no further information on 

the beliefs of type B traders. vVith signal extraction, type A traders ma.y be able to find a 

better guess instead of their own belief, for instance, l¥-3' One direct impact of this new 

guess is that signal extraction behavior can alter the optimal holdings of traders and the 

equilibrium price. 

Given a sequence of beliefs after signal extraction, itA and 1f for type A and type 13 

traders, I can characterize the Bayesian Nash equilibrium as: 
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Proposition 8 The Bayesian Nash equilibrium at t wn be characterized by 

== 

Pt 

if t is odd; 

X 
A 

. t 
2(T-f-2)!2 (T-t-l)n ~A ":"B 

(2n + 1)(T-I.)!2(n + 1)(T-tJ/2(.f,. + 1t-1 - 20') 

PI a + (n~)x~ 

if t is even; 

Fignre 1.13 demonstrates the simulation result and Table 1.5 demonstrates the average 

autocorrelat.ions of rt and Var(rd across 100 simulations. vVe can see that the variance of 

rt clisplays a more persistent structure which is reflected by la.rger ma.gnitude of autocor

relations ranging from 0.168 to 0.383. This suggests that signal extraction can affect the 

formation of prices and induce more persistence in the variance of returns 

1.6.2 Heterogeneous Priors 

Previous analysis assumed that the prior beliefs are the same for both types of traders. 

In this section, I extend the models studied in the previous sections to allow for the hetero

. • }":"OA../.. frao .geneous pnors, I.e. I' 

Public Signals 

I start with the public signal case, in which both traders receive the same signal but 

they will hold clifferent beliefs. I will solv0. th8 Baycsiim Nash equilibrium in fl similar way 

to the privdte signal case. Formally, the beliefs of both groups can be characterized by 
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Proposition 9 The beliefs of two groups of traders at t are normally distributed, denoted 
Bby N UtA, t) and N (ft , t )) whe're the precision is given by 

Tt = Tt-l + 27" 

and the means are given by 

~Af1-1 

{B 
. t-l 

+ T, (SA + SB _
t t 

7t 

+ T, (sB + SA _
7t t t 

2f":4 )
t-l 

2iB ) . 
. t-l 

We can characterize the Bayesian Nash equilibrium at t as:� 

Proposition 10 The Bayesian Nash equilibrium at t can be characterized by:� 

2(T-t-l)/2n (T-1-L) ~A 

"""'(2-n-+-l"--;)(::::T--t:-+"""'1):-;'/2~(-n-+-l)--;:(T::::--"""'L--3::-:-)/=2(ft 

2(T-f-l)/2n (T-l-t) "':"B 

(2n -I- 1)(T-t+l)/2(n + 1)(T-t-3)/2 (ft 

0: + nAxA + nBxBPt ttl t 

2f t is odd; 

2(T-t-l)/2 Cf -l] "':"Bn 
a) - (2n + 1)(T-t+l)/2(n + 1)(T-t-l)/2Ut - 0:) 

2(T-t-l)/2n (T-t) ~A 

0') - (2n + 1)(T-t+l)/2(n . 1)(T-t-l)/2 UI - 0:) 

2(T-t)/2n (T-l-i) ~A 
A 

.X t = (2n+ 1)(T-t)/2(n+ 1)(T-t)/2(fi - 0:) 

2 (T-t)/2 (T-l-t)
A n ~A 

Pt 0: + (n l ) (2n + 1)(T-L)/2(n + 1)(T-t)/2 Ut - 0:). 

if t is even. 

Remarks: 

1.� Monte Carlo simlllations confirm that heterogeneous l)('liefs in t.he pllblic signa.l case 

will not change qualitative features of the main results. From Proposition 10, we can 

see that the Bayesian Nash equilibrium is quite similar to the private signal case. This 

makes sense beca.use with heterogeneous priors, the beliefs are different at each trading 

date even with public signals. 
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Private Signals 

Note that with heterogeneous beliefs, type A traders cannot. ext.ract exact signals at any 

trading date as opposed to the homogeneous priors case, in which they could at t = 2. This 

is the only modification of the equilibrium in the prlvate signals case with heterogeneous 

priors. Instead, type A traders can only get a composite signal combined with the initial 

belief of type D traders lr and their belief Jr at t = 1. For t = 3, 4, 5, ... , T -1, the signal 

extraction behavior of both types is identical to the homogeneous priors case. Formally, 

Proposition 11 The beliefs of the two groups of traders at t are normally dist7'/'buted, 

denoted by NUt, t) and N(ftB , *), where the precision for type A tmde'f's 2S given by 

for t is 2k - I} k ~ 2 

~ r B S8 S8 
where Sfl = '-I '-2 + ----i..::.L. The precision fOT type B traders is given by

I. l+TP 1 l+Tl~'1 

Tf = -,t +Tc 

TI
B 

Tt 1 + 2Tr for t ~ 2 

and the mean for type B traders 2S given by 

Figure 1.12 depicts t.he average autocorrelations of rt and Var(rd across 100 simulations 

in the public signal case and in the private signal case with het.erogeneous priors. It shows 
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that the magnitudes of the average autoeorrelations are similar to those in the cases ,,,.'ith 

homogeneous beliefs. This implies that the changing from the homogeneous priors to the 

heterogeneolls priors havp negligiblf' efferts on t.he persist,enre st.rncturc of the retnrns and 

the variance of returns. 

In summary, heterogeneous beliefs affect the equilibrinm in a minor way. In the public 

signal case, traders have different beliefs. The differences in beliefs are constant over time 

and equal to the difference in priors. In the private signal case, it changes the belief updating 

of type A traders at only one trading date, t = 2, As a result, the qualitative properties of 

prices, returns, and volatility of returns do not change. 

1.7 Conclusions 

This chapter has developed a discrete-time multiperiod model of volatility clustering 

due to the combined effects of rational traders with IIlultiple trading frequellcies and their 

strategic interactions. First, multiple trading freqllencies lead to an alternating pattern in 

prices which generates a serial correlation in the magnitude of the returns. Secondly, signal 

extraction provides a feedback mechanism, which induces a correlation between the past 

prices and the current price. This facilitates the formation of the volatility clustering. In 

addition, the proposed mechanism is capable of generating linearly trending prices and a 

negative correlation at the first lag of returns. 

I also find that the number of traders has an impact on the formation of volatility 

dustering. This is a consequence of the fact that when the mean intensity of arrivals 

increases, the strategic competition outcome will converge to the competitive outcome. 

Hence, the effect of strategic interaction diminishes. Monte Carlo simulations show that 

in all settings, as the mean arrivals of traders increase, the variance of returns becomes 

less persistent. In the extreme, when the nnmber of traders is sufficiently large, the model 

predicts that there is only one statistically significant first-order autocorrelation of variance 

of retnrns, while other autocorrelation coefficients are statistically indistinguishable from 

zero, 

This model yields several interesting predictions. First, traders with more precise signals 

have a smaller impact on the evolution of equilibrium prices and returns. Secondly, traders 

with different trading frequencies impose different levels of impact on the equilibrium prices 

and returns. Frequent traders respond to the signals in smaller magnitudes and this is 
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transformed into a smaller cumulative impa.ct on the evolution of the equilibrium. 

I show that an information hierarchy can be generated in an ex ante symmetric setting 

t.hrough signal extrartion. Thus when trading frcqupncif's are different, signal 0xtra0tion 

can endogenously determine the information diffusion. The informational advantages of 

the traders may be due to their trading frequency. One potentially interesting avenue for 

future research is to endogenize the trading frequencies in a more general model where 

trading frequencies and an information hierarchy are simultaneously determined. Doing so 

would allow us to address additional issues, such as the microstructure impact of trading 

from information diffusion. :For instance, in the context of this maciel, trading frequency is 

exogenously determined and leads to signal extraction which generates volatility clnstering 

and information hierarchy. It is not obvious which factors make traders choose to trade less 

frequently. I lea.ve the clarification of these issues for the future work. 
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Lags Var(Dr ) 

rvlE'an Stu p-value Mean Std p-va.lue 
1 -0.255 0.073 o O.QlS 0.041 o 
2 0.006 0.082 0.444 0.007 0.060 0.252 
3 -0.008 0.060 0.203 -0.004 0.046 0.338 
5 -0.002 0.064 0.770 -0.003 0.052 0.560 
6 -0.004 0.070 0.608 -0.007 0047 0174 
7 -0.009 0.076 0.233 -0.003 0.050 0.549 
S 0.003 0.068 0.693 -0.006 0.0430 0.198 
9 -0.005 0070 0.507 0006 0067 0.356 
10 -0.006 0.069 0.419 -0.005 0.044 0.239 

Table 1.1: IV[ONTE CARLO STUDY OF Dt (ARRIVAL COMPONENT). First column 
reports the mean of autocorrelil-tions. Second column reports the varia.nce of aut.ocor
relations. Third column reports the Ii-value of I, test for null hypothesis that the mean 
equals zero. The columns four to six are the corresponding results for variance of D,. 

Lags 
Mean Std p-value Mean Std p-value 

1 -0.024 0.172 0.290 0.271 0.152 0 
2 0.009 0.157 0.624 0220 0.179 0 
3 -0.036 0.161 0043 0.200 0.141 0 
4 0.001 0.171 0.938 0.144 0.160 0 
5 0.006 0.160 0.641 0.130 0.155 0 
6 0.001 0.173 0.924 0.108 0.164 0 
7 -0.002 0.157 0.865 0.097 0.177 0 
8 0.008 0.164 0.486 0079 0.167 0 
9 0.015 0.172 0.126 0.071 0.166 0 
10 0.002 0.163 0871 0.054 0.174 0 

Table 1.2: l'vlONTE CARLO STUDY OF Z, (SELIEF COl\lPONENT). First column report~ 
the mean of autocorrelations. Second columu reports the variance of autocorrelations. 
Third column reports the p-value of t test for null hypothesis that the mean equals zero. 
The columns fom to six are the corresponding results for variance of Z,. 
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Lags 'tt Var(rr)
~-,-------",-::..,---~-

Std p-value i\'lean Std p-value 
1 -0.489 0.058 o 0.3L17 0.165 0 
2 -0.005 0097 0.579 0.094 0.153 0 
3 0.001 0.105 0.138 0.099 0.155 0 
4 -0.002 0.109 0.893 0.091 0.152 0 
5 -0.006 0.088 0.414 0.083 0.164 0 
6 0013 0.098 0.534 0.083 0154 0 
7 -0.011 0.093 0.187 0.082 0.162 0 
8 0008 0.110 0308 0.086 0.152 0 
9 -0.004 0.099 0.291 0.079 0.155 0 
10 -0.003 0.105 0.958 0.071 0.160 0 

Table 1.3: AlJTOCORRELATIONS OF '1', AND VAR(1't} IN PUBLIC SIGNAL CASE. First 
column reports the average of the alltocorrelations across 100 simulations. Second 
column reports the standard deviation of the autocorrelations across 100 simulations. 
Third column reports the p-value of t test for the null hypothesis that the mean eqnals 
zero. The columns four to six are the corresponding results for Var(7'd. 

Lags rt Var(rt) 
Mean Stu p-value Mean Stu p-valne 

1 -0.461 0.077 0 0.293 0.151 0 
2 -0.018 0.131 0173 0125 0.171 0 
3 0.017 0.114 0.134 0.121 0.159 0 
4 -0.001 0.119 0.905 0.125 0.157 0 
5 0.010 0.127 0.413 0128 0.160 0 
6 -0.009 0.131 0.519 0.119 0.160 0 
7 0.016 0.115 0.173 0.114 0.172 0 
8 -0.014 0.125 0.280 0.102 0.162 0 
9 0.013 0.122 0.291 0.114 0.158 0 
10 0.001 0.110 0.902 0.109 0.170 0 

Table 1.4: ACFS OF 1'1 AND VAR(lt) IN SIGNAL EXTRACTION c..>.SE. First colnmn 
reports the mean of autocorrelations. Second column reports the variance of autocor
relations. Third column reports the p-value of t test for nnll hypothesis that the mean 
equals zero. The colnmns four to six are the corresponding resnlts for Var( rt). 
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r't 

Mean Stu p-value Mean 
1 -0460 0.099 o 0.383 0.154 0 
2 -0.023 0.166 0.169 0.214 0.160 0 
3 0.024 0.142 0.090 0.204 0.16.5 0 
4 -0.003 0.144 0.860 0.202 0.163 0 
5 0.011 0.150 0.479 0198 0.163 0 
6 -0.006 0.151 0.698 0.188 0.176 0 
7 -0.019 0.135 0.221 0179 0.187 0 
8 0019 0.144 0.188 0166 0165 0 
9 0.002 0.140 0.179 0.175 0.153 0 
10 0.001 0136 0.913 0.168 0.178 0 

Table 1.5: ACFs OF 1"t A:-ID VAR(1"r.) WI-IEN TRADERS USE SOPHISTICATED GUESS. 

First column reports the mean of autocorrelations. Second columu reports the variauce 
of autocorrelations. Third column reports the p-value of t test for null hypothesis th<J,t 
the mean equ<J,J.~ zero. The column four to six: are the corresponding results for Var(r,,). 
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Figure 1.2: A FLOWCHART FOR THE PUDLIC SIGNAL CASE: HOVv THE PRICE [S GENERATED? In the public 
signal case, each trader receives a signal, observes the signal of other traders, and forecasts the next. period's 
price at the beginning of the current trading period. Based on this information, each trader updates his 
belief about the value of the underlying asset and adjusts his optimal holdings which are a~gregated into the 
In<lrket demand. Combined with the market supply, the price is determined. 
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Figure 1.3: MONTE CARLO STUDY OF AUTOCORRE:LATION FUNCTION (ACF) OF' D L AND ZI. (a) Average 
autocorrelations of D, across 100 simulations. (b) Average autocorrelations of Var(Dtl. (c) Average auto
correlations of ZL. (d) Average autocorrelations of Var(ZI). For ACF plots, a hyperbolic decay function of 
autocorrelations is imposed. 
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Figure 1.4: SIMULATION RI<;SULTS IN THI<; PUBLiC SIGNAL CASE. (a) Time series of simulated prices. (b) 
Time series of simulated returns. (c) Time series of simulated variance of returns. (d) Average autocorrela
tions of returns across 100 simulations (e) Average autocorrelations of variance of returns. For ACF plots, 
a hyperbolic decay function of autocorrelations is imposed. 
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(e) ACF of returns for Q = 200 (f) ACF of variance of returns for Q = 200 

Figure 1.5: DEPENDENCE STRUCTURE (AUTOCORRELATION FUNCTION (ACF) OF 'ft AND VAR(r,)) AND 

CARRYING COST IN THE PUBLIC SIGNAL GASE. (a) Average autoeorrelations of returns across 100 simulations 
for Q = 80. (b) Average atltoeorrelations of variance of returns for () = 80_ (c) Average autoeorrelations 
of returns for 0: = 150. (d) Average autocorrelations of variance of returns for when Cl = 150. (e) Average 
autocorrelations of returns for Q = 200. (f) Average autocorrelations of variance of returns for Q = 200. For 
ACF plots, a hyperbolic decay function of autocorrelations is imposed. 
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(a) ACF of ret.urns for n = 50 (b) ACF of variance of retul'rlS for n = 50 
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Figure 1.6: DEPr.NDGNCE STRUCTURE (AUTOCORRELATION FUNCTION (ACF) OF '/ AND VAR(r,)) AND 

MEAN ARRIVALS IN THE PUBLIC SIGNAL CASE, (a) Average autocorrelations of returns across] 00 simulatiollo' 
for n = 50. (b) Average autocorrelations of variance of returns for n = 50. (c) Average autocorrelations ,," 
returns for n = 100. (d) Average ACF of variance of returns for n = 100. (e) Average autocorreldtions of 
returns when '/1 = 200. (f) Average autocorrelations of variance of returns for n = 200. For ACF plots, a 
hyperbolic decay function of autocorrelations is irnposed. 
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(a) ACF of ret,urns for /W = 10 (b) ACF of variance of returns for /W = 10 
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(c) ACF of returns for .;::J = 20 (d) ACF of variance of returns for/W = 20 

LA, LA, 

(e) ACF of returns for /W = 30 (f) ACF of variance of returns for /W = 30 

Figure 1.7: DEPENDENCE STRUCTURE (AUTOCORR.ELATION FUNCTION (ACF) OF 'r, AND VARh)) AND 

STANDARD DEVIATION OF ARRIVALS IN THE PUI3LlC SIGNAL CASE. (a.) Avera.ge autocorrelations of returns 
across 100 simulations for/W = 10. (b) Average autocorrelations of va.riance of returns for /W = 10. (c) 
Average autocorrelatioIL~ of returns [or .jW = 20. (d) Average autocolTeJations of variance of returns for 
/W = 20. (e) Average antocorrelations of returns for·.jW = 30. (f) Average autocorrelations of variance or 
returns for/W = 30. For ACF plots, a hyperbolic decay function of autocorrelations is imposed. 
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Figure 1.8: SIMULATION RESULTS IN THe PRIVATE SIGNAL CASE. (a) Time series of simulated prices. (b) 
Time series of simulated returns. (c) Time series of simulated variance of returns. (d) Average autocorrela
tions of returns across 100 simulat,ions (e) Average autocorrelations of variance of ret.urns. For ACF plots, 
a hyperbolic decay function of autocorrelations is imposed. 
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(e) ACF of returns for Q = 120 (f) ACF of variance of returns for Q = 120 

Figure 1.9: DEPENDENCE STRUCTURE (AUTOCOTUlELATJON FUNCTION (ACF) OF T't AND VAR(rt)) AND 

CARRYINC COST IN THE PRIVATE SIGNAL GASe. (a) Average autocorrelations of returns for Q = 80 across 100 
simulations. (b) Average autocorrelations of variance of retnt'lls for I) = 80. (c) Average antocorrelations 
of returns for Q = 100. (d) Average autocorrelations of variance of returns for a = 100. (e) Average 
antocorrelations of returns for (X = 120. (f) Average antocorrelations of variance of returns for Q = 120. For 
ACF plots. a hyperbolic decay function of antocorrelations is imposed. 
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Figure 1.10: DEPENDENCE STRUCTURE (AUTOCORRELATION FUNCTION (ACF) OF rl. AND VAR{rt)) AND 

MEAN ARRIVALS IN THE PRIVATE SICNAL CASE. (a) Average autocorrelations of returns across 100 simulations 
for n = 30. (b) Average autocorrelations of varia.nce of returns for = 50. (c) Average autocorrelations of 
returns for n = 50. (d) Average autocorrelations of variance of returns for n = 80. (e) Average autocorrela
tions of returns for fI = 80. (f) Average autocorrelatiolls of variance of returns for n = 80. For ACF plots, a 
hyperbolic decay function of autocorrelations is imposed. 
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Figure 1.11: DEPENDENCE STRUCTURE (AUTOCORRELATION FUNCTION (ACF) OF Tt AND VARh)) AND 

VARIANce OF ARIllV.\LS IN THE PRIVATE SIGNAL CA.SE. (a) Average autocorrelatians of returns across 100 
simulations for y'W = 10. (b) Average autocorreJal.ions of variance of retnrns for y'W = 10. (c) Average 
autocorrelations of returns for y'W = 20. (d) Average autocorrelations of variance of returns for JW = 20. 
(e) Average autocorrelatioJls of returns for JW = 30. (f) Average autocorrelations of variance of returns for 
JW = 30, For ACF plots, a hyperbolic decay function of autocorrelat,ions is imposed. 
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Figure 1.12: THE EFFECTS OF HETEROGENEOUS PRIORS ON AUTOCORRELATION FUNCTION (ACF) OF 'T, 
AND VAR.(Tt}. (a) Average autocorrelations of T, acros~ 100 simulations with public signal. (b) Average 
autocorrelations of Var(rt} with public signal. (c) Average autocorrelation;; of 1', with private signal. (eI) 
Average autocorrelations of Var(r,) with private signal. For ACF plots, a hyperbolic decay function of 
autocorreJations is imposed. 
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Figure 1.13: SIMUtATION RESULTS WHEN TRADERS USE SOPHISTICATED GUESS. (a) Time series of simulated 
prices. (b) Time series of simnlated returns. (c) Time series of simulated vari(ll1ce of returns. (d) Average 
autocorrelations of returns (e) Average autocorrelations of variance of returns. For ACF plots, a hyperbolic 
decay function of autocorrelations is imposed. 



Chapter 2 

Hierarchical Information and Price 

Discovery 

2.1 Introduction 

The rate of iuformatiou diffusion, and, consequently, price discovery, is conditional on 

not only the design of the market microstructure, but also the iuformational structure, The 

existing finance literature demonstmtes that by polaJ'izing traders into informed traders and 

noise t.raders, price discovery can be very slow (see Kyle (1985)) or very fast (see Foster and 

Viswanathan (1993)) depending on the market microstructure. 1 The goal of this chapter 

is to understand the impact of the informational structure on the degree of information 

diffusion inefficiency. I show for instance, that even in a market \vhere there are many 

informed traders, the rate of information diffusion can be very slow if the information is 

distributed hieraJ'chically. 

Specifically, I consider a discrete time, infinite trading horizon model in which traders 

trade a single asset with a probability of liquidation ill every period. The traders differ 

in two ways, First, traders are in different information hierarchy levels such that traders 

in a higher information hierarchy level embed the information of those in lower hierarchy 

levels. Such a hierarchy leads to a mechanism where informed traders in a higher hierarchy 

I Kyle (1985) shows that when a monopolistically informed trader stra.tegically trades with noise traders, 
the monopolist will prevent the information from being released, which in turn leads to a ~lower rate of 
information diffusion. On t.he other hand, informat.ion is released almost instanLly when informed Lradf'r~ 

p05~e5sing identical information compete very a.ggres5ively. as analyzed in Fo~ter and Yiswanathan (1993). 

49� 
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level may prefer trading against informed traders in lower hierarchies. In order to trade 

against informed traders in lower hierarchies, a trader needs to maintain the informational 

advantage by preventing the spread of the information incorporated into the price (at a fast 

rate). Thus, this informational mechanism can lead to inefficiency in information diffusion. 

This is more likely to happen when the number of information hierarchies increases. Second, 

traders in the lowest information hierarchy, i.e., noise traders, do not receive signals about 

fundamentals and trade on price direction. Thus, this setting includes the traditional stylized 

setting of the dichotomy of informed traders and noise traders as a special case. When the 

informed traders trade with the noise traders, they take into account the fact that noise 

traders trade on price direction. This can lead to the generation of the momentum, 1.e. 

positive autocorrelation in retmns. 

The iniormativeness of price, or the rate of the information diffusion, is a function 

of the layers of hierarchies among informed traders for the following reasons. First, the 

expectation error of the value of the underlying asset originating from the signal extraction 

of the partially informed traders makes the price less informative. The accuracy of the 

expectation formed by the partially informed traders decreases as the number of the layers 

of the hierarchies iucreases. This decrease in accuracy is partly due to the fact that it is 

increasingly hard for the partially informed traders to infer whether the movement in price is 

due to a change in fundamental value of the underlying asset or the liquidity shock brought 

by noise traders 2 Second, the prevention of information disclosure by informed traders 

in higher information hierarchies makes the price less informative. When the riskiness of 

tradiug with other informed traders relative to the riskiness of trading with noise traders 

decreases, the iuformed traders will prevent information disclosure in order to make a profit 

from other informed traders. I show that informed traders in higher information hierarchies 

are more likely to be profitable if they t,mde against other informed traders wh('n t,he price 

deviates sufficiently far away from the fundamental value of the underlying asset and the 

number of iniormation hierarchy layers increases. As a result, the information diffusion is 

slower when the number of information hierarchy layers among informed traders increases. 

In addition, rather than assuming that the behavior of noise traders is independently 

2For instance, il po~itive innovaLioll in the value of the underlying a~set i~ the observational equivalent, 
to a shortilge of liqUidity supply provided by noise traders from the perspective of the partially informed 
traders. 
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and identically distributed across time, as in the standard literature, I argue that the be

havioral pattern of noise traders consists of predictable (based on price direction) and an 

unpredictable (idiosyncratic liquidity shock) components. In turn, this model generates a 

number of interesting and testable implications that are absent from existing models of 

rational noisy equilibrium. For instance, the predictable pattern of noise traders' behavior 

resulting in persistence structure in prices, regardless of the distributional properties of the 

fundamentals. In addition, interaction between informed traders and noise traders can lead 

to val'ious market liquidity levels Perhaps the most novel feature of this model is that the 

trend-following behavior pattern of noise traders can generate momentuill in returns, i.e., 

a positive autocorrelation in returns. One explanation comes from the seif-fulfilling type 

argument that when noise traders believe there is momentum, they will follow the trend; 

while when noise traders follow the trend, momentum can be generated. 

Overall, the main contributions of this chapter are as follows. First, this chapter pro

poses a framework to study the impact of hierarchical information and the layers of hierarchy 

on the speed of price discovery. I show that the speed of price discovery and the informa

tiveness of price decrease when the number of the information hierarchy layers increases. 

Second, the predictable behavior pattern of noise traders has a significant impact on the 

persistence structure of prices and returns. The trend-following behavior pattern facilitates 

the formation of momentum iu returns. Third, bounded rationality of noise traders (the 

unpredictable componeut) may generate profits for them when informed traders believe it is 

too risky to trade with them and choose to trade with other informed traders, thus providing 

justification for the cxistenre of noise traders. 

The rest of the chapter is organized as follows. In Section 2.2, a case of two information 

hierarchies is discussed where only one informed trader and noise traders are presented 

in the market. This model i:ierves as a benchmark to motivate the extensions that follow 

and demonstrates that the predictable pattern of noise traders results in the persistence 

in prices and facilitates the formation of persistence in returns. In addition, the trend

following behavior of noise traders can geuerate momentum in returns. In section 2.3, an 

information hierarchy with three levels, two types of informed traders and noise traders, is 

studied. The information diffusion is slower compared to the benchmark case. In section 2.4, 

a general case of N information hierarchies is investigated. The information diffusion speed 

decreases as the number of information hierarchy levels increases. In section 2.5, Monte 

Carlo simulations are carried out to demonstrate the impact of the predictable pattern of 
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noise traders and of the number of hierarchical information levels. Finally, I conclude. 

2.2 The Case of Two Information Hierarchies 

I begin by providing a simple version of this model without modeling the interaction~ 

between informed traders at different hierarchical illforma~ion levels. This special case helps 

develop the intuition for how the interaction between a competitive informed trader who has 

no influence on the format.ion of market price and noise traders affects the eqnilibrillm prop

erties and the formation of return predictability, in particnlar, the formation of momentum. 

The benchmark case is also interesting in its own right as it provides a framework to study 

how the behavior of noise traders affeds the equilibrium properties that can not be cap

tured by existing noisy rational expectation literatures. In Section 2.3, I extend this version 

to allow for interactions between informed traders by explicitly modeling the information 

hierarchy among informed traders,3 

2.2.1 Financial Assets 

Consider two traded assets. One is a riskless asset with a fixed rate of return of 1+r. The 

other asset is composed of shares or claims on a hypothetical firm, which pays no dividends 

but has a chance of being liquidated every period. The probability of being liquidated in 

period t + 1, conditional on the firm's surviving until period t, is assumed to be constant 

>.. When liquidation happens, the firm pays the shareholders a liquidation value Vt, which 

is assumed to follow a stochastic process. Throughout the chapter, I assume that Vt is 

Gaussian. Vi: can be independently and identically distributed (iid) or serially correlated 

The normality assumption is for the purpose of simplicity as it permits the existence of a 

linear equilibrium. The market price for the risky asset is Pl' 

2.2.2 Game Structure 

Two groups of investors, one informed trader and continuum of uoise traders, trade the 

asset on every trading date. At the beginning of each trading date, noise traders supply a 

certain amount of the shares of the underlying asset to the market. The supply of noise 

traders is stochastic, which captures the bounded rationality of noise traders. The informed 

3I borrow the basic set,ting from Makarov and Rytchkov (2007). 
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trader observes the current market price and submits his demand. The price can be adjusted 

upward or downward, and the informed trader will adjust his optimal demand for the number 

of shares of the underlying asset accordingly. The market clears when the demand from the 

informed trader equals to the supply from noise traders. 

2.2.3 Noise Traders 

Ttaditionally, the behavior of liquidity suppliers, i.e., noise traders has been assumed 

in the literature to be independently and identically distributed (iid) over time. With the 

purpose of investigating the effects of the interactions between noise and informed traders 

on the equilibrium outcomes, I model the behavior of noise traders in a way consistent with 

Harris (2003). Hanis (2003) describes the noise traders as types of traders who trade based 

on their beliefs concerning the price change direction rather than the fundamentals of the 

underlying asset. According to this description, a typical example of noise trader is a tech

nical trader. Technical traders trade based on "pattern recognition" type techniques which 

aid in the formation of the beliefs concerning the direction of prices. 4 Therefore, I assume 

that there is a predictable components of the aggregate supply of noise traders (technical 

traders) that should be a function of past prices. In additiou, there is an unpredictable com

ponent which captmes t.he difference in opinions among noise r,rac!l.'rs or technical traders. 

Hence, I model the aggregate supply of the shares of the underlying asset from noise traders 

throughout the chapter Qf as /3Pt-l + 8/; where PI is the price of the trading asset. (3Pt-l 

captures the predictable component of the aggregate supply of shares from noise traders. 

8 t is the iid Gaussian with mean 0 and variance a~.5 The random component is for the 

pmpooe of preventing prices from being fully revealing, in the spirit of Grossman and Stiglitz 

(1980)6 

/3 is an aggregate measure of noise traders' supply of shares of the underlying aoset. The 

sign of /3 indicates the aggregate response of the noise traders to the price change direction. 

4There are two different types of technical analysis: subjective and objective analysis. Subjective analysis 
captures the fact that different tnwers may COIlle up with different conclusions based on the same infOrlll(:l.tioll 
set due to subjecl,ivf' judgmf'nts or priors. Even in objective analysis, differenL tradcrs mllY have different 
confidence levels or tolerance levels which lead to different trading decisions 

"The mean is not necessarily O. It could be a positive number with a large magnitude. which would 
guarantee that noise traders always supply a positive number of shares. The zero mean assumption could 
be interpreted as demeaned supply. 

6The predictable component is specified for simplicity, although it is easy to extend this analysis to allow 
for many price lags without chauging the main results. 
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For instance, if f3 < 0, noise traders will sell the traded asset when the unit price is negative 

(price is decreasing). It seems that the noise traders behave as if they follow the trend of the 

price. We label noise traders with negative f3 "trend followers ". In contrast, if f3 > 0, noise 

traders will sell the trading asset when the unit change of price of the traded asset is positive 

(price is increasing): i.e., noise traders act against the trend of the price, and we label the 

noise traders with positive f3 "cont.rarians". The magnitude of f3 measures the sensitivity of 

noise traders to price direction changes. The larger the magnitude of {3, the more sensitive 

noise traders are to the changes in price direction. That is, if the magnitude of f3 is large, 

with a small change of price, noise traders adjust their holdings of the underlying asset to 

a large extent. The magnitude of f3 can be interpreted as the a.ggregate number of noise 

traders present in the market as well. (3 could be time-varying. Throughout this chapter, 

however, I do not intend to model the evolution of noise traders and assume f3 to be a time 

invariant parameter. I will elaborate more on the relationship between ,8 and equilibrium 

properties later. 

2.2.4 Informed Traders 

In this benchmark model, I only consider a single informed investor. In each trading 

period t, the investor receives a signal St about the fundamental value of the underlying 

asset Vt: 

(2,1) 

where 7)t '" iidN (0,1). bs is the standard deviation of the signal and l/b; is the precision 

of the signal. The signal is more informative when bs decreases. The investor is assumed to 

have a mean-variance preference, i.e., E(Wt ) - ~c5VaT(WI)' where Wt is his wealth level at 

t and 5 is the preference parameter. When 5 = 0, the traders are risk neutral, and when 6 

increases, the traders become more risk averse. In order to obtain a closed-form solution, 

I use myopic preference to abstract away from dynamic hedging considerations. 7 Let Q/+l 

be excess return, i.e., 

(2.2) 

7Myopic preference is a simplifying assumption; and its 1ll,tin purpose is (,0 obLain an analytically tractable 
solution. 
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where AVt+l + (1 - A)Pt+1 is the expected return from the holding of one share of the 

trading <J.osct and (1 + r )Pt is the opportunity cost of holding. Therefore, the per period 

utility maximization problem for the informed trader is 

1 2 
m1;xEIQt-i-llFt]Xt - 2oVaT[Qt+llFt]Xt 

where F t is the information set available for informed traders that contains the current price, 

the history of past prices, and all the received signals, that io, Pt = {Pt, Pt - I , .. . ,Po, St, S,.-L···, So}, 

and X t is the holding of the informed investor at trading period t. For the expositional pur

poses, I use Etl.] = E[.jFtl tlu-oughout the chapter. Hence, the optimal demand of the 

shares of the underlying asset from informed traders at t is 

- EdQt+dX (2.3)t - [. t5VaTt Qt. I ~ 

Let Wt = 6\1("',[Q._ .' so that X t = wtEtlQt+l]' Thus, the informed trader a.djnsts his holding 

of the risky asset proportional to the expected return from the holdings. The risk averse 

coefficient a.H'ects the proportion of the informed trader's investment in the risky asset. 

"Vhen 6 = 0, the optimal holding X t is not well-defined for EdQt+d i- 0, and XI could be 

anyamonnt for EdQI+I] = O. Namely, if the informed trader is risk-neutral, he would like 

to borrow an infinite amount of money to invest in the risky asset if its expected return is 

greater than zero. He will spend any portion of his wealth on the risky asset if its expected 

rcturn is equal to zero because the risky asset is indifferent from the riskless asset in this 

case. Similarly, when 6 increases, the trader becomes more risk averse; he will invest Jess 

and less of his wealth into the risky asset. In particular, if 6 = 00, he will not invest any of 

his wealth into risky asset. 

2.2.5 Equilibrium 

I focus on stationary and linear expectation equilibrium, where VardQt+d is constant 

such that Wt = V I[Q ] = W is time invariant and there is no bubble in prices. Hence 
Q art 1+1 

X t = wEdQt+d· Market clearing implies Xl = fJPI - I + El t . Hence, 

fJPt - 1 Elt 1 
(2.4)Pt = - w(l + r) - w(l +r) + 1 + rEdAVt+l + (1 - A)Pt+1l 

Defining ~* = PI - pPt - 1 , we can rewrite Equation 2.4 as 

* El t 1 [ () • ]Pt = - (1 ) + --Et A\It+! + 1 - A Pt , I 
W +'r l+r .,
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where p solves: 

(1- >.)p2 + (1 +r)p+ f3 = o. (2.5) 

The detailed derivation is given in Appendix. Iterating Equation 2.5 forward and invoking 

the no-bubble constraint, I.e., limj---;:)C(i~;)jPt+j = 0, we have: 

_ Gf ~1->'8EXV; _(1-.\)Gt+8+1j
Pt = w(l + r) + L...,( 1 + r) d t+.>+l w(l + T) 

8=0 

8/ + ~(1 - .\)8E [XV. ]
w(l I r) ~ 1 + r t 1+.>+1 

Hence, 

(2.6) 

Equatiou 2.6 shows that the equilibrium price at time t is the sum of three terms. The 

first term incorporates the predictable pattern of noise traders' behavior. As shown in 

Equation 2.5, the serial correlation structure of prices (p) is a function of the predictable 

pattern of noise traders' behavior (,13). Intuitively, because the informed trader understands 

that the predictable pattern of the aggregate supply from the noise traders is a function of 

past prices, he can forecast the mean of the aggregate supply from the noise traders. Thus, 

the trader can form a better forecast of the price in the next period by taking into account 

this information, which will help increase his profit. As a result, the price in the next period 

is correlated with the past prices, which generates the serial correlation. As demonstrated 

in a later section, this serial correlation in prices brought by the predictable pattern in 

noise traders' behavior generates a serial correlation in returns as well. Therefore, the 

momentum could be generated. Notice that this result is independent of the assumption 

of the fundamental value of the underlying asset. I ,vill elaborate more on this in later 

sections. The second term compensates for the risks for informed traders, which originate 

from the non-predictable component of aggregate noise traders' behavior. The third term 

is the expected payoff of asset holdings. 
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2.2.6 Equilibrium Properties 

Stationary Equilibrium 

This section studies the conditions for the equilibrium price to be stationary. I rewrite 

Equation 2.5 as 

00 

8 t 1- A s2:�
Pt� - PPt - 1 = - ( ) + (--) EtlAvt+s+ll (2.7) 

w 1 + r 8=0 1 r 

Notice that in Equation 2.7, the right hand side (RHS) is assumed to be covariance station

ary and has finite variance given the stationary assumption of Vi. Therefore, the price is 

covariance stationary when Ipl < L Formally, 

Proposition 12 The relationship between the stationanty of equilibrium and fJ can be sum

marized as follows: 

1.� When noise traders are trend followers ({3 < 0), the maximum number of station

ary equilib'ria is 1. Formally, there exist a stationary equilibrium if and only if the 

probability of liquidation is not sufficimtly large (A < (3 + r + 2) 

2.� When noise trader'S are contrarians and not sensitive to pr-ice direction change er > 
(3 > 0) and the pmbabilzty of liquzdation is sufficiently large (A > /3 - r), there is a 

unique stationary equilibrium. However, if the probability of liquidation zs not suffi

ciently large, (A < /3 - r), there wrists two stationary equilibria. 

3.� When noise traders are contrarians and they are sensitive to price direction change 

(,6 > Itr 
) and 2f the probability of liqU?:dation is sufficiently small ()., < Itr 

), there 

exist two stationary equilibria. Additionally; if)., > ,8 - r, there is a unique equilibrium. 

Otherwise, if It < )., < (3 - T; there is no stationary equilibrium. 

Proposition 12 suggests that the predictable component (3 and the probability of liq

uidation )., play important roles in determining of the stationarity of the equilibrium price 

process. As shown in Proposition 12, the equilibrium can be stationary only if the liqnida

tion probability is not large. This result is consistent with the observation that when the 

probability of being liquidated in the following period is very large, an informed trader is 

reluctant to adjust the optimal holding in response to the short run profitable opportunity 

originating from the trading pattern of noise traders. When the probability of liquidation is 
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small, the riskiness of exploiting the short run profitable opportunity from noise traders is 

relatively low. In that case, the informed trader may be more willing to adjust his holding 

accordingly. Therefore, the market will be cleared because the demand from the informed 

trader will match the supply from noise traders. Therefore, a stationary equilibrium can 

exist only if the probability of liquidation is sufficiently low. 

Momentum 

Momentum is defined as the rate of acceleration of a security's price or volume in tedmi

cal analysis terms. Once a momentum trader sees an acceleration in a stock's price, earnings, 

or revenues, the trader will often take a long or short position in the stock with the hope that 

its momentum will continue in either an upward or downward direction. This strategy relies 

more on short-term movements in price rather than on the fundamental value of companies. 

Jegadeesh and Titman (1993) show that the momentum trading strategy can generate ab

normal profit. Since its discovery, momentum has been one of the most resilient anomalies 

challenging the market efiiciency hypothesis. It is well known that allY theory seeking t.o 

explain momentum should be able to generate positive serial correlations in returns. In this 

section, I show the ability of my model to generate momentum, and particularly the positive 

autocorrelation in returns. 

I consider two specifications of vt. To start, I assume vt are iid with Edvt+~' = J..i. 

Hence, Equation 26 becomes 

SL AJ..i 
Pt = pPL- 1 - ( ) +-- (2.8) 

w l+r r+A 

Equation 2.8 demonstrates that if Ipl < 1, Pt follows an autoregressive (AR) (1) process 

and Corr[Pt" Pt,-s] = pS follows directly. Defining return as the difference between the price 

levels; i.e., rt = Pt - PL- L \Ve have 

(2.9) 

Equation 2.9 shows that given Ipl < 1, returns follow an autoregressive moving average model 

(ARMA)(I,l) process with mean O. It can further be shown that Corrh, rt-l] = p2 +p-1. 

It follows directly that there can be a positive serial correlation of returns at the first lag. 

Formally, if p < -1-1 or p> ~-l, the returns display a positive autocorrdation at first 
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lag, i.e., momentum is generated. 8 

The result of positive serial correlations in returns provides a rational explanation of 

momentum. From Proposition 12, if we restrict ourselves to stationary equilibrium, the 

only possible scenario resulting in positive serial correlations in returns is when p is positive 

which corresponds to f3 < 0 and ,\ < .8 + r + 2 case. This suggests t.hat. it is only possible in 

my model to generat.e a momentum anomaly when noise traders behave like trend followers. 

This is consistent with a self-fulfilling explanation. The reason why noise traders behaves like 

trend-followers is because the momentum anomaly exists, and when noise traders behaves 

like trend-followers, the momentum anomaly can be generated. 

Next, I consider Vt to be a stationary AR(l) process. That is, Vi = o.Vi.-l + bvct, where 

Ct are iid standard normals, bv is the inverse of the square root of the precision of the 

innovations, and a < 1. When bv increases, thE: precision of the signal decreases; that is, the 

Vi becomes noisier. Then EdVi+sJ = aSVi· Hence 

St '\o.VtRt = PRi-I - + ---....,--....,...,.- (2.10)
w(l +r) 1 +r - (1- ,\)0. 

Defining ret.urn as the difference in price, i.e., rt = Pt - Pt.-I, we have: 

.6.8t '\0..6.\1; (2.11)rt. = prt-l - w(l + r) + 1 + r _ 0.(1 _ ,\) t, 

where .6.8t = 8[ - E\-l and .6. Vi. = Vi. - Vi-I' It can be shown that the unconditional 

covariance of returns is 

(2.12) 

vVe are still able to generate positive serial correlations in returns when p > O. From 

Proposition 12, when noise traders are trend-followers, the p can be positive and momentum 

can exist. In addition, even if p is negative, it is still possible for momentum to exist as long 

as the right hand side (RHS) of Equation 2.12 is positive. In other words, if the fundamental 

value of the underlying asset is serially correlated, the momentum could exist regardless of 

the behavior pattern of the noise traders. 

8In order to have a positive p which is consistent with the observed price autocorrelation coefficl t, I 
choose p> ~-l. Combined with the annual risk free rate r = 0.03 and liquidation probability A = 1 %, 
we need to have (J < -1. 
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What if There is no Pattern in Noise Traders' Behavior? 

To illustrate of the benefits of the assumption that there is a predictable component 

in noise traders' behavior, i.e. f3Pt - l , I investigate the case where there is no predictable 

pattern in noise traders' behavior, i.e., 13 = 0. That, is, the liquidity supp1y from noise 

traders is 8 t , where 8 t is iid normal. This is consistent with the standard assumption 

about noise traders' behavior in the literature (for instance, Kyle (1985)). The equilibrium 

price can be shown to be 

00 

8 t "'"'( 1 - A)S ., [ ] (2.13)Pi = - w(l + r) + ;:0 1 + T Et AVt+s+l 

This shows that the statistical properties of prices are fully determined by the statistical 

properties of the fundamental value of the underlying asset in the absence of the predictable 

pattern in noise traders' behavior. Hence, the extra gains from the assumption of a pre

dictable pattern in noise traders' behavior can be summarized as follows: 

1.� The assumption of a predictable pattern, i.e., ,8 :f:. 0, results in persistence in price 

regardless of the statistical assumption of fundamentals. On the contrary, if there is 

no predictable pattern, i.e., 13 = 0, the persistence structure in price depends on the 

statistical assumption of fundamentals. 'With the presence of the predictable pattern 

in noise traders' behavior, price is persistent even when Vt is iid. The persistence in 

prices is part1y due to the fa.ct that the informed trader adjusts his optimal holding 

based on the expectation of the predictable pattern in the noise traders' behavior. 

This predictable pattern in noise traders' behavior preserves the correlation structure 

of prices across time. The persistence in prices is also due to the fact that the noise 

traders utilize the information concerning past prices to adjust their position, which 

determines the price in the current period. This feedback mechanism can also help 

the formation of the persistence structure in prices. On the contrary, if there is 

no predictable pattern in noise traders' behavior, the equilibrium price is entirely 

determined by the distributional a.'sllmption of fundamentals, i.e., vt. To see this, 

from Equation 2.13 I can demonstrate that if vt is iid, Pi is iid. If Vt is an AR(l) 

process, then PI is an AR.(l) process. 

2.� The assumption of a predictable pattern, i.e., 13 :f:. 0, generates momentum (the posi

tive serial correlation in returns), while if there is no predictable pattern, i.e., .8 = 0, 
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momentum cannot be generated in my model. When there is no predictable pattern in 

noise traders' behavior, generally, asymmetric information cannot generate momentum 

alone. Intuitively, rational traderS require higher compensation for holding a larger 

amount of the risky asset. This leads to a positive relationship between returns in the 

next period and the supply from noise traders. In the meantime, there is a negative 

relationship between price and the supply from noise traders. Recall that return in this 

period is the difference between prices. If supply is assumed to be iid, realized returns 

are negatively correlated. 9 On the contrary, when there is a predictable pattern in 

noise traders' behavior, as indicated earlier, momentum or positive serial correlation 

in returns can be generated in my model. Notice that there are two opposing effects 

that generate momentum. One is the negative slope in the demand curve of informed 

traders and the other one is trend-following behavior of noise traders. I show that un

der some parameters values, the noise traders' trend following behavior may dominate 

the downward demand curve effects, which generates a positive serial correlation in 

returns and provides an explanation for the existence of momentum. 

2.3 The Case of Three Information Hierarchies 

I now extend the simple model of the previous section to allow for the interaction of 

informed traders at different hierarchical information levels. I consider two types of informed 

traders, corresponding to two informational hierarchical levels. To obtain a closed form 

solution, I further simplify the setting. Assume there are two factors that jointly determine 

the fundamental values of the underlying asset. That is, vt is a function of the two factors 

V/ and ~2 For simplicity, I assume that the function is linear, i.e, vt ::::: v/ + vt In 

addition, I assume that there is no noise in the signals. Namely, a type 1 trader (fully 

informed trader) receives two signals per period, 51,t ::::: ~J and 52,! ::::: ~2 A Type 2 trader 

(partially informed trader) receives only one signal 52,t ::::: Vr Furthermore, I assume that 

vt1 and V;2 are AR(l) processes, i.e., V? ::::: a~~l + bvc~ and vt2 ::::: Q,~~l + bVf.t-

The information set for the type 2 trader is F2,t = {Pt, Pt- l , . .. , Vl, V;~l'" .}, and the 

information set for the type 1 trader is FI,t ::::: {Pt, Pt - 1, ..., V/, V;:'ll, . .. , V;2, vt~l" ..}. By 

construction, F2 ,t c Fu , and it captures the idea of a hierarchical information structure. It 
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is well known from the existing lit.erature on forecasting the forecasts of others, the infinite 

regTess problem can be avoided with a hierarchical information structure. Intuitively: a fully 

informed trader knows everything a partially informed trader knows. Therefore, a fully 

informed trader knows exactly the expectation formed by a partially informed trader on the 

signal received by the fnlly informed tra.der. Then the infinite regress problem collapses. lO 

Formally, the three information hierarchies' equilibrium is characterized as: 

Proposition 13 If a type 1 trade observes ~I and ~2 and a type 2 trader only observes 

~2} the equzlibrium price is 

where 

Pe 
p 

(J 

Pv = 
a).. 

JL + 0.(1 -)..)
pO 

aW2().. + (1 - )..) -;h::(H,\)) 

~ + aWI(l ~ )..)c 

lwhere V = E[~1IF2,t], n = WI + W2, WI = Var[Qt+IIF1,t], W2 = Var[Qt+lIF2,t], and where t 

(J solves 

and c solves 

p2 2 2 2 A.).. 2
tJ2 ae(l - c)(l - a c) - cb v ( (J + pC;).) = 0 
, pu+ a(l+)") 

The expectation erTOrs follow an AR(1) process: 

WIt is well known that when a hierarchical information structure exists, the fully informed traders can 
infer the exact expectations of the partially informed traders. Then signal extraction problem between these 
traders can be characterized by <1 finite number of thc state variables t hat include the expecttltiolls of the 
partially informed traders. rr there is no hierarchical information structnre, the signal extraction problem 
needs to be characterized by an iufinite number of the sttltes wl.Tic.bles that include the infinite iteration 
of expectation among traders, for instance, trader A's expectation of trader 8's expectation, trader B's 
expectation of trader A's expectation of trader 8's expectation, and so on. 
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WheTe k = - "J.
1-c 

p' 
d + L?>;;n ,(I ),) 

Proposition 13 shows that the equilibrium price in the case of three information hi

erarchies consists of four terms, instead of three terms as in the case of two information 

hierarchies. The extra term is P6 (t~1 - V/), which captures the expectation error of type 

2 traders in guessing the signal received by type 1 traders. That is, the forecasting behavior 

of type 2 traders adds noise to the equilibrium price. Further, as shown in Proposition 13, 

the expectation error follows an AR(l) process and is thus persistent. 

Intuitively, the persistent structure in prices leads to a slower information diffusion rate. 

If there -is no persistent structure in prices, the -innovation in fundamentals can be incor

porated immediately. But when prices are persistent, the -innovation in fundamentals can 

bave long lasting effects so that the prices can not immediately be adjusted to reflect the 

fundamental value of the underlying asset. The persistent structure is due to the combined 

effects of persistent structure through the predictable pattern in noise traders and the per

sistent expectation errors formed by partially informed traders. Thus, I label the former 

effect the "beta effed" cllld the latter the "hierarchical effect". I will continue to investigate 

the wles of these two effects on the information diffusion rate in the next section. 

2.3.1 Information Diffusion Rate 

As mentioned earlier, the persistent structure in prices leads to a slower information 

diffusion rate. The slower information diffusion rate comes from two sources: the "beta 

effect" and the "hierarchical effect" . 

Beta effect 

To study the role of the predictable pattern of noise traders' behavior in generating a 

slower information diffusion rate, I abstract from the hierarchical information setting. That 

is, I consider the two information hierarchical levels case. Without loss of generality, I 

restrict myself to the AR specification of fundamental evolution, i.e., Vi = aVt - 1 + bV(i, 

where Ei are iid standard normals, bv is the inverse of the square root of the precision of 

the innovations, and a < 1. As bv increases, the Vt becomes noisier. Then EdVi+s] = aSVt. 

Hence 

D n 8 t AaVi 
.q = p.rt -t - + ---~::"----.,.- (2.14)

w(l+T) l+r-(l-.>.)a 
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When there is no predictable pattern in noise traders' behavior, i.e., j3 =: 0, the equilibrium 

price is 

et ~a~Pt = - + -----::--....,....,- (2.15) 
. w(l+r) l+r-(l-~)a 

To demon:>tra.te a slower information diffusion rate, I show that the impulse response in 

prices to an innova.tion in liquidity shocks brought by noise traders, i.e., in eL, is larger. 

Intuitively, when there is an innovation in fundamentals, if the impulse response of prices 

is larger, it will take a longer time for prices to "settle down". That is, the information 

diffusion rate is slower. 

Lemma 14 The mIormation diffusion rate zs slower ~f there LS a predictable pattern tn 

noise traders) behavior. 

Proof: If there is no predictable pattern in noise traders' behavior, i.e.; ,6 = 0, the impulse 

response of prices to an innovation in liquidity shocks brought by noise traders, i.e., et , is 

I Rl such that 

1 

(1 + r)O 

o (2.16) 

for t = 0,1, .... Notice that I Rt ~ 0 for all t. Meanwhile, if there is a predictable pattern 

in noise traders' behavior, i.e., (3 =F 0, the impulse response of prices to an innovation in the 

fundamental value of the underlying asset; i.e.; \It, is I Iii such that 

1 
1R6 

(1 + r)O 

IR~ pI R~-l (2.17) 

for t = 0, 1, .... It is easy to see that I Rr - I R~ = pIRtl > 0 for all t ~ O. That is, the 

impulse response in prices to an innovation in liquidity shocks is greater when {3 =F 0 than 

when ,6 = O. I Rt > I Rl for all t implies that the difference bet\veen the current price and 

equilibrium price is smaller when ,6 = O. Therefore, it takes less time for price to converge 

in the case where noise traders do not have predictable pattern, i.e., (3 = O. In other words, 

the information diffusion rate is slower if there is a predictable pattern in noise traders' 

behavior. 
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Q.E.D 

Lemma 14 shows that the existence of a predictable pattern in noise traders' behavior 

leads to a slower information diffusion rate. The slower information diffusion rate is due to 

the fact that informed traders make trading decisions taking into account the predictable 

pattern in noise traders' behavior that generates the persistent structure in prices. 

In addition, I investigate the deviation of prices from the fundamental value of the 

underlying asset due to the existence of the predictable pattern in noise traders' behavior. 

If the deviation is different than zero persistently, then the information is incorporated into 

prices at a slower rate. 

Formally, if there is no predictable pattern in noise traders' behavior, i.e., (j = 0, there 

is no deviation of prices from the fundamental value of the underlying asset because of 

the complete market. That is, when fJ = 0, the price in every period fully reflects the 

fundamental valne of the underlying asset. }.:Ieamvhile, if there is a predictable pattern in 

noise traders' behavior, i.e., f3 =I- 0, as shown in Equation 2.14, the price in every period 

deviates from the fundamental value of the underlying asset. The deviation is 

Dt = PPt - 1 (2.18) 

for t = 0, 1, . ... It is easy to see that D t > °for all t. That is, the predictable pattern 

in noise traders' behavior leads to deviation of prices from the fundamental value of the 

underlying asset. The information about the fundamental value of the underlying asset, 

i.e., innovation in Vt, is incorporated into the price at a longer horizon. It also takes prices 

a longer time to adjust to account for the innovation in fundamental value of the underlying 

asset. 

Hierarchical Effect 

This section study the role of hierarchical information levels in generating a slower 

information diffusion rate. To isolate the beta effect brought by the predictable pattern in 

noise traders' behavior: I impose f3 = °in this part. 

Proposition 15 The information diff'u..sion rate is slower in the case of three information 

hierarchies tha.n in the case of two informa.tion· hierarchies. 

Proof: Formally, the three information hierarchies' equilibrium when (3 =°is characterized 

as: If a type 1 trader observes ~l and ~2 and a type 2 trader only observes ",?, the 
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equilibrium price is 

where 

1 
p~ = 

n(l + 1') 

P{. = 0), 

1+1'-(1-),)0 

wz(l + r)P{; 
n(l + r) - W10C 

where v.I. 1 = E[VlIF2,t], n = W] + Wz, WI = Var[Qt+lIFl,t], W2 = Var[Qt+l/F2,t], where C 

solves 

? (1 l->')Z ),(J,e - a1+7 (1- c)(1- 02c)(1 + Wl (1 _ ac 1 - ), ))2 _ C(WI (1 - OC~ ))2 = 0� 
b~ nZaZ),Z Wz 1 +1' Wz 1 +1'� 

The expectation errors follow an AR(1) process: 

>. ~ (1-o,c i~ \ ) 
where k = (1- c)/(l+r-oa(]->')l~h(l_o,cD))'It is easy to see that P{; > O. In additlOn 

~2 l+-r 

P{; > P~ > O. To see tha.t, 

wz(l + r)P~pi
6 D(l + 1') - Wl0e 

1 I 
(2.19)1 >. Pv

~(1· oc-=-) + 1
"-'2 l+r 

Notice that ~(1 - ac~+~) + 1 > 1, so that P{; > P~ > O. The impulse response of prices 

to an innovation in liquidity shocks of the underlying asset I Rr is 

IRg (kP6 + l)P~
 

I R~ = atctkPe for t > 0 (2.20)� 

Notice that because shocks in the supply by noise traders, i.e., the innovations in Gt , affect 

the price persistently because that they ale incorporated into the persistent expectation er

rors formed by the partially informed trader. It takes time for the partially informed traders 

to learn that liquidity shocks are irrelevant to the fundamental value of the underlying asset. 

Thus, it takes prices a longer time to adjust to the shocks in supply by noise traders and 

the information diffusion rate is slower. 
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Q.E.D 

I further investigate the deviation of prices from the fundamental value of the underlying 

asset due to the existence of the predictable pattern in noise traders' behavior. If the 

deviation is consistently non-zero, then the information is incorporated into prices at a 

slower rate. 

Formally, if there is no predictable pattern in noise traders' behavior, i.e., (J = 0, there 

is no deviation of prices from the fnndamental value of the underlying asset because of 

the complete market. That is, when f3 = 0, the price in every period fully reflects the 

fundamental value of the underlying asset. I\1eanwhile, with three hierarchical information 

levels. the price in every period deviates from the fundamental value of the underlying asset. 

The deviation i8 

(2.21) 

for t = 0, 1, .... It is easy to see that D1• > 0 for all t. That is. the case of three information 

hierarchies leads to the deviation of prices from the fundamental value of the underlying 

asset. The information about the fundamental value of the underlying asset, i.e., innovation 

in \It, is incorporated into the price at a longer horizon. Therefore, it also takes prices a 

longer time to adjust to the innovation in fnndamental value of the underlying asset. 

2.3.2 Stationary Equilibrium 

Similar to the case of two information hierarchies, there are two possible values of p for 

the equilibrium. Solving the roots explicitly, we have 

(1 +r) ± J(1 +r)2 +4(1- ,\)~ 
P1.2 = 2(1 _ >') (2.22) 

From Proposition 13,we have Pt - pPl - 1 = +Pv vt + ~et + p,0,(f? - lin. The right hand 

side (RHS) of the equation is assumed to be stationary and has finile variance given the 

stationary assumption of Vi, Therefore, the price is stationary when Ipl < 1. Formally, 

Proposition 16 The relationship between the stationarity of eqll,ilibrium and (J can be sum

marized as follows: 

1. YVhen noise traders are contrarians, the maximum number of stationary equilibria is 

1. Formally, there exist a unique stationary equilibrium if and only if the probabilzty 

of liquidation zs not sufficiently large (>' < 2 + r - g). 
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2.� When noise traders are trend followers and they are not too sensitive to pr'ice direction 

changes (- !1(lt') < f3 < 0), and ~f the probability of liquidation is not sU.fficiently large 

(A < -r - g), two stationary equilibria. wrist. Otherwise. if liqv.ida.tion is '<;11.[ficip.ntl1j 

large (A > -r - ~), there exists a unique stationary equilibrium. 

3.� vVhen noise traders are contrarians and they are sensitive to price direction changes 

(fJ < - S!(lt·) ), and the probability of liquidation is sufficiently large (-r - ~ < A, there 

is a unique stationary equilibrium. If the probability of liquidation is sufficiently small 

(A < 1;1'), there are two stationary equilibria. OtherWise, i.e., 1;1' < A < -I' - M, 
there is no stationary equilibrium. 

Proposition 16 suggests that in addition to the number of equilibria, the predictable 

pattern of noise traders' behavior can affect the stationarity of the equilibrium price process 

as well. It is interesting to note that the impact of the predictable pattern of noise traders' 

behavior affects the stationarity of the equilibrium price process in a different way. For 

instance, in the case of two information hierarchies, when noise traders are trend-followers, 

there can be two stationary equilibria, while at most one equilibrium can exist in the case 

of three information hierarchies when noise traders are trend-followers. 

2.3.3 Persistent Prices 

Proposition 13 allows us to calculate the correlation structure of prices explicitly. It can 

be shown that in stationary eqUilibrium, the variance of price is 

This demonstrates that there are two sources of noise in the price. One is the random 

(unpredictable) behavior of noise traders, and the other is from the expectation errors of 

partially informed trader. Notice that if the noise traders' behavior becomes noisier, i.e., ae 

increases, the variance of expectation errors of the partially informed trader also increases. 

Intuitively, partially informed trader will try to distinguish the effects of noise traders' 

behavior and of the signals of the fully iuformed trader on prices. Because noise traders' 

behavior does not reveal any information on fundamental value of the underlying asset, it 

is not helpful in forming expectations of the fundamental value of the underlying asset If 

the behavior of noise traders becomes noisier, it is harder for the partially informed traders 
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to extract useful information on fundamentals. The partially informed trader will make 

greater errors in forming expectations of fundamental value of the underlying asset, which 

also leads to a noisier market price. 

Furthermore, the correlation structure of prices can be reeursively represented as: 

2 A21 0.
pVar[Pt - I ] + --2 ( ;3 )Cov[vt, Vt-I]

1 - p (-~IT + 0.(1 + A))2
p 

I 2 ~I 1 ~I l'-,-P,:, Cov[~ - Vi ,Vi-I - Vi, l 
2 2 

. [1 a ( aA ) 2= pVar Pt + --2 {/ + P,:,ac
1-p (prr+a(1+A))2 

s 2 \ 2 . a aA 2 s 
[ !'--2( )+P6 (ac)pCovPt,Pt-s+l f3 

1-p (-:JI+ a(1+A))2
f' 

This shows that the prices are more persistent compaJ'ed to the case of two information 

hierarchies because of the additional correlation structure brought about by the expectation 

errors, i.e., P,3..(ac)2. 

2.3.4 Return Predictability 

The rrtmn is definf'd by the difference in prires, i.p." rt = Pt-PI-I. From Proposition 13, 

return is 

G.A P ~I 1 
rt = prl-I - ;3 .0.vt + -.0.8t + P,:,.0.(Vi - Vi ), (223) 

pr! + a,(l + A) (3 

~ 1 ""1 1 ~ 1 1
where .0. vt = Vi - Vi-I, .0.8( = 81. - 8 t - I and .0.(Vi - vt) = (V{ - Vi, ) - (Vi-I - Vi-I)' 

Notice that the statistical structure of returns is determined by the statistical properties 

of .0.Vi , .0.8t, and .0.(11/ - Vi), which correspond to evolution of the fundamental value of 

underlying asset, noise traders' behavior, and expectation errors. Notice tha.t .0.VI follows an 

ARMA(1,l) process, .0.(~I - Vi) follows an ARlvIA(1,l) process and .0.8t follows a MA(1) 

process. Formally, 

.0. Vi. = Vi - Vt '- l = a(Vi-I - Vi-2) + bV(fl - £1-1) = 0..0. Vi-I + bV(ft - Et-I) 

~ 1 ~I 1 PIP
.0.(V; - Vi) = ac(.0.(V; - Vi)) - (bvCCt - k08 t - bVCcL_I + kj38t - d (2.24) 
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Similar to the analysis of prices, the correlation structure of returns is 

CoVh,Tt-l1 
_ 

pVar[rt-l]+ 
a2..\2 p2 :2 

6 Cov[6Vi,6Vi-ll-~crE> 
(pO + a(l + ..\))2 (3 

2 ~l 

+P~ Cov[6(vt 
~1 

- Vi), 6(vt-l  Vi-d] 

COV[Tt, Tt- ...l 
a2 ..\2 

pCovh, Tt-5+11 + (3 Cov[6 Vi, 6 Vi-5] 
(pl1 + a(1 + ..\))2 

p:2 :2 
- ~cre 

(3 
2 ~l -1

+P~ Cov[6(vt - Vi), 6(vt-s - Vt -.5 )] (2.25) 

This shows that there is a serial correlation structme in returns. Moreover, it is possible to 

generate momentnm, i.e., a positive correlation in returns, under certain parameter values. 

In this section, I investigate the impact of interaction between informed traders at differ

ent information hierarchies, namely, the fully informed trader and partially informed trader. 

on eqnilibrium properties. I show that compared to the case of two information hierarchies, 

the market price contains an extra term, ,vhich is the expectation error originating from 

signal extraction by the partially informed trader and adding noise to the market price. 

This leads to a slower information difrnsion rate. The slower information diffusion rate is 

due to the combined effects of the "beta" effect (the persistence structure brought by the 

predictable pattern in noise traders' behavior) and the "hierarchical effect" (the extra noise 

brought by the signal extraction behavior of the partially informed trader). Therefore, the 

increased number of iuformation hierarchies dcrreftses t.he information cliffusion rate. That 

is, when there is an innovation in the fundamental value of the underlying asset, it takes a 

longer time for the market price to incorporate the innovation and reflects the fundamental 

value of the underlying asset. Furthermore, prices become more persistent. The extra persis

tence is abo due to the persistence in the expectation errors made by the partially informed 

trader, which are due to the persistence of the belief updating. In addition, momentum in 

returns can be generated as well. Two sources contribute to the formation of momentum. 

First, as in the case of two information hierarchies, the predictable pattern of noise traders' 

behavior can aid in the formation of momentum via the self-fulfilling ml"chanism. Second, 

the autocorrelations in expectation errors can contribute to the momentum as well. 

2.4 Case of N Information Hierarchies 

I extend the Case of three information hierarchies to allow for N information hierarchies 

to study the impact of increasiug the number of information hierarchies. Intuitively, with 
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increasing number of information hierarchies, the fully informed traders may want to trade 

with the traders in lower information hierarchies. This is because it is possible that the risk

iness of trading with the partially informed traders is lower than trading with noise traders 

because the riskiness originating from the unpredictable pattern of their behavior may be 

relatively larger. Formally, I assume there are N factors determining the fundamental value 
N-l 

of the underlying assd. in a linear fashion, i. e., Vi = L V;.n. In addition, I assume that 
n=1 

there is no noise in signals for all types of traders, and the type i informed trader observes 

Vt" ... , ~N -1. Assume Vi is an AR(I) process, i.e.; vtn = a.VZ~1 +bvtf" for n = 1,2, , N-l. 

The information set for a type i trader is Fi,t = {Pt; Pt- I , ... , ~" ~i_l"'" '-"tN-I, }. By 

construction, Fi,t C Fj .t if i > j. 

Proposition 17 If 0, type i informed tmder observes ~" ... , ~N -I, for i = 1,2, ... 1 N - l. 

The equilibrium price zs 

N -1 05-1 05-1 

Pt PPt - 1 + PvVt + Peet + P6 I (Dl,t - V/) + L P6 ,-1(L Vo5~t - L ~n), 
05=3 n=1 n=1 

where 

Pe� 
p 

;3 

Pv =� - '3;n - a( 1 - ,,\) 

a<.v'N-1("\ + (1- "\)Pv) 
N-? 

_fl - 0.(1 -,,\) L- Wi 
P i=l 

for 1 < s < N - 2; 

N-l� N-2 
a L w1(,,\ + (1 ~ "\)Pv ) ~ aWo5+I L P6' 

i=o5� i=o5+1 
05-1 

- fl - a(l - ,,\) L Wi 
P i=1 

for s = 1; 

N-2 

awz (,,\ + (1 - ,,\)Pv) - a.CW2 L P6' 
i=2 
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N-l 
where V!,t = E[vilFs,tl for j = 1,2, .. , s - 1; [l = ~ Wn ; Ws = VariQt+1IFs,t], p solves 

n=1 

(1 - ,A)[lp2 - (1 + r)[lp oJ = a 

and (; solves 

2� N-2 

;2(J"~(1- c)(l- a2c) - cbt(Pv - L Pc:,s f = a 
8=1 

The expectation errors from type 2 traders follow an AR(1) process.' 

l-ch k = -----:----"-..,-;"N--:_2:--were 
vA L Pt:;' 

ih-a.(l+Aj ,=1 

The expectation errors from type s traders follow an AR(1) process, for s > 2: 

s-1 s-l s-l 8-1 s-1 

LV;,I! - Lvt = Q'(LV;~t-l - L~~I) - bv LC~' 
n=l n= 1 n=l n=l i=l 

Remarks: 

1.� Observational equivalence of informed traders in higher information hierarchies. No

tice that, the noise traders' behavior only affects the type 2 trader (the partially 

informed trader in second highest information hierarchy) directly. Partially informed 

traders in other information hierarchies need to distinguish more than two sources of 

randomness, and they only have the market price as an identifying instrument. One 

interesting result in this setting is that the forecasting of the signals owned by the 

trader in a higher hierarchy collapses. Formally, E[E[VllFj,t]lFi,tl = E[V£,IFi,tL which 

follows directly from the law of iterated expectation. It simply states that the traders' 

best guess in lower hierarchies concerning the signal received by the traders in higher 

hierarchies is their own expectation of the fundamental value of the underlying asset. 

This suggests that traders in lower information hierarchies simply cannot distinguish 

the traders in higher information hierarchies, implying that all traders in higher in

formation hierarchies are observationally eqnivalent in the perspective of a trader in 

a lower hierarchy. 
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2.� Traders in higher information hierarchies ma:1J want to trade with informed traders zn 

lower information hiemr·chies. Intuitively, the fully informed trader knows the optimal 

trading decisions of any partially informed traders in lower hierarchies. Therefore, 

there is only one type of risk if the fully informed trader wants to trade with the 

partially informed traders, which originates from the probability of being liquidated. 

Meanwhile, in addition to the liquidation risk, the fully informed trader faces extra 

risk when he wants to trade with noise traders, which is due to unpredictable part 

of noise traders' behavior. In other words, it may be more profitable for the fully 

informed trader to trade with the partially informed traders rather noise traders. It 

can be shown that under certain parameter values, the fully informed trader will trade 

against the partially informed traders rather than noise traders. I will elaborate more 

on it in a later section. 

3.� The mtionale fOT the presence of noise traders. Following the analysis above, when 

traders with an informational advantage choose not to trade with noise traders, noise 

traders could make a profit. The conventional wisdom that noise tradp-rs could not 

make a profit in the long run dictates that informed traders have the informational 

advantages and do at least well as noise traders. However, in my model, informed 

traders may prefer trading among themselves rather than trade against noise traders. 

This may lead to profits for noise traders even in the long run. Thus, the presence of 

noise traders on the market is justified. 

2.4.1 Information Diffusion Rate 

Similar to the case of three information hierarchies, the persistent structure in prices 

leads to a slO\ver information diffusion rate. The slower information diffusion rate is due to 

two somces: the "ueta effect" and the "hierarchical effed" , as in the case of three information 

hierarchies. The "beta effect" works similar to that in the case of three informational 

hierarchies and we restrict ourselves to the study of the "hierarchical effect". In Particular, 

we want to study the relationship between information diffusion rate and the number of 

information hierarchies. 
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Hierarchical Effect 

This section studies the roles of the number of information hieral'chies in generating 

a slower information diffusion rate. To isolate the beta. effect brought by the predictable 

pattern in noise traders' behavior, I impose {3 = 0 in this section. 

Proposition 18 The information diffusion mie slows as lhl:: number of infonnalwn hie'r

archies increases, 

Proof: Formally, the N information hierarchies equilibrium when f3 = 0 is characterized as: 

If a type i informed trader observes ~\ ... ,V/v-l, for i = 1,2; ... , N - 1. The equilibrium 

price is 

N-l 5-1 5-1 

Pt P~Vf +~8t +PZdvL - v/) + L PZs-l(L~t - Lvt), 
5=3 n=1 n=1 

where 

1 

n(l + r) 
aA 

P~ 
1 + or - (1 - ),)a 

Q.WN-l(A + (1- )")P~)
P" !:'.N-2 N-2 

(1 + r)n - a(1 - A) L Wi 
i=l 

for 1 < s < N - 2, 

N-l N-2 
a L Wt ().. + (1 - ),,)Pv ) - aws+l L Pi\.' 

i=s i=s+1P" i\.' ,5-1 

(1 + r)n - a(1 - )..) L Wi 
i=l 

for s = 1, 

N-2 
aW2(), + (1 - )')P~) - aCW2 L PZ,. 

i=2 
= 

iV-I 

where Vl,t = E[VllFs,t1 for j = 1,2, ' , ., s - 1; n = L wn; Ws = Var[Qt+lIF5,tL where c 
n=1 

solves 

a~ (l - a i~;)2 2 WI 1 -), 2 WI 1 -).. 2 
- (1 - c)(1 - a c)(1 + -(1 - ac--)) - c( -(1 - ac--)) = 0 
b~ 0 2a2 ),2 W2 1 + T W2 1 + r 
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The expectation errors from type 2 traders follow AR(l) process 

Vl,t - W= ac(Vl,t-1 - vt~l) - bva } + kP~8t 

""I (l-ac~) 
- ( ) / ( u>. ""2 H-r)h kwere - 1- c l+r-a(1->.) l+:~(1-acL;) .� 

The expectation errors from type s traders follow AR(l) process, for s > 2:� 

s-1 s-1 s-I .5-1 8-1 

~ V;~t - ~ ytn = Q,(~ V;~t-1 - ~ V/: j ) - bv ~E1 
n=1 n=l n=1 n=1 ,=1 

It is easy to ~ee that P~ > 0 

The impulse response of prices to an innovation in liquidity shocks of the underlying 

asset I R{, is 

(kP~1 + l)P~
 

a.tctkP~ fOT t > 0 (2.26)� 

Notice that liquidity shocks, i.e., the innovations in 8 1 , affect the price persistently because 

that the shocks in supply by noise traders are incorporated into persistent expectation errors 

formed by the partially informed traders. It takes time for the partially iuformed traders 

to learn that the changes in prices are due to shocks in supply and are irrelevant to the 

fundamental value of the underlying asset. Thus, it takes prices a longer time to adjust to 

account for the shocks in supply of noise traders and the information diffusion rate is slower. 

Q.E.D 

Further, I investigate the deviation of prices from the fundamental value of the underlying 

asset due to the existence of the predictable pattern in noise traders' behavior. If the 

deviation is consistently non-zero, the information is incorporated into prices at a slower 

rate. 

Formally, if there is no predictable pattern in noise traders' behavior, i.e., (3 = 0, there 

is no deviation of prices from the fundamental value of the underlying asset because of 

the complete market. That is, when fJ = 0, the price in every period fully reflects the 

fundamental value of the underlying asset. Meanwhile, with N hierarchical information 

levels, the price in every period deviates from the fundamental Value of the underlying 

asset. The deviation is 

N-l s-1 8-1 

Dt = PD.1 (Vl,t - V/) + ~ PD.'-l (~V;,li - ~ Vin 
) (2.27) 

8=3 n;1 n=l 
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for t = 0,1, . It is easy to see that D t > 0 for all t. That is, the case of N information 

hierarchies leads to deviation of prices from the fundamental value of the underlying asset. 

That is, the information about the fundamental value of the underlying asset, i.e., innovation 

in VI is incorporated into the price at a longer horizon. In addition, as the number of 

information hierarchies increases, the deviation could be even larger because of the existence 

of the expectation errors formed by all partially informed traders. 

2.4.2 Trading Among Informed Traders 

As mentioned earlier, the traders in higher information hierarchies may want to tracle 

against the traders in lower information hierarchies. To illustrate, let us consider the case of 

three information hierarchies. As shown in Appendix A, the demand from the fully informed 

trader is 

while the demand from the partially informed trader is 

(2.29) 

",.here V/ = 0.(1 - k(Pv - P2.))~~l + k(Pv - P2.)V/ + kPefh· 

Consider a scenario where there is a supply shock and no change in the fundamental 

value of the underlying asset, such that noise traders choose to supply more, i.e.; 6.8{ > O. 

Although there is no change in the fundamental value of the underlying asset, both types 

of informed traders will adjust their optimal demands accordingly. Notice that partially 

informed traders will adjust their expectations of the fundamental value of the asset down

ward, due to the fact that they cannot distinguish the decrease in fundamental value of 

the underlying asset from a positive supply shock. Hence, the quantity of adjustment for 

partially informed traders is (A + (1 - A)Pv)akPe6.8t and for fully informed traders is 
...... 1 1

(1 - A)P2.E[(Vt+l - Vt+1)1F1,tl. 
As indicated earlier in Proposition 13, the expectation error is an AR(l) process and 

thns persistent. Therefore, from the perspective of the fully informed trader, the expectation 

error should have the same signs for time t and time t + 1. 

If Pe < 0 and thus (A + (1 - A)Pv)akPe < 0, partially informed traders will choose to 

decrease their optimal demand by mistakenly believing that the fundamenbll value of the 

asset decreases. This is simply because they cannot distinguish the decrease in fundamental 
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value in the underlying asset from the a positive supply shock. On the other hand, when 

Pc.. < 0 and thus (1 - :A)Pc.. < 0, fully informed traders will trade based on the expectation 

errors from partially informed traders. Notice that partially informed traders will adjust 

their expectation of the fundamental value of the nnderlying asset downward, i.e., 0;1 
~l < O. Fl.·om the per~istence of the expectation error, fully informed traders will believe 

E[(V;~l - 1.-'t~1)IF1,t] < O. Thus, they will increase the holding of the underlying asset in 

order to make profit from the mistakes of the partially informed traders. Therefore, fully 

informed traders trade against partially informed traders by trading in opposite directions. 

In summary, I show that when Pe < °aud P6 < 0, fully informed traders trade against 

partially informed traders in order to profit from the mistakes of the partially informed 

traders. 

Proposition 19 If ,8 < 0; p > 0 and 0 < k < 1. trading amongst informed tmde'f's can 

happen. In addition; in this case, Pv < 0. 

(3 < a implies that noise traders are trend foHowers and p > a implies that the price has a 

positive autocorrelation coefficient which matches the empirical observation of the financial 

time series of price. According to the Buey-Kalman filter formula, k is the weight llsed in 

the belief updating. A positive k ~uggests that new information and cmrent belief both 

receive attention. As a result, the partially informed traders adjust their belief in a wrong 

way when there is a positive shock in supply, 

A negative Pv suggests that when there is a positive innovation in fundamental value 

of the underlying asset, the price may decrease in response. This is inefficient because such 

trading amongst informed traders can prolong the proccclme of information diffusion and 

thus the rate of information diffusion is slower. 

Proposition 19 characterizes one set of possible parameter values which can generate 

trading amongst informed traders. That is, partially informed traders mistakenly adjust 

their bellefs in a wrong way when they cannot distinguish the positive shock in supply from 

a decrease in fundamental value of the underlying asset. If fully informed traders know that 

noise traders are trend followers and partially informed traders make a mistake in adjusting 

their beliefs, they will trade against the partiaJly informed traders to make a profit, This 

profitable opportunity origina.tes from the mistakes made by thc partially informed tradcrs, 

This is inefficient, because if that is the case, it lea.ds to a negative response of current 

market price to a positive innovation in the fundamental value of the underlying asset. This 
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distortion of price response is due to the informational arbitrage amongst informed traders. 

2.5 Numerical Analysis 

In this section, I present a nnmerical study of the model. Using this numerical study, 

I can show the statistical properties of equilibrium, namely, the price structure, and the 

retnrn predictability. Second, I want to investigate the "beta effect" and the "hierarchical 

effect" and thpir implirations. 

The parameters used in the simulation study are as follows. The probability of liquida

tion A is 5%, which corresponds to an expected lifespan of 20 periods. The risk-free rate or is 

1%, which corresponds to the annual yield on a treasmy bill. The parameters that c1escribe 

the fundamental value of the underlying asset are chosen to match the volatility of retmns 

at 12% and I set a = 0.85 and bv = 0.3. I vary thc above parameters and find that the 

diH'erent sets of parameters do Hot change the main results qualitatively. 

2.5.1 Impact of Noise Traders 

First, I study the effects of noise traders' behavior. I mainly study the behavior of 

noise traders in the case of two information hierarchies and the case of three information 

hierarchies. To match the prices' empirical behavior, we want to have a positive AR(l) 

coefficient that is close to 1. I choose {J = -2 in the case of two information hierarchies 

and {J = -20 in the case of three information hierarchies. The Figure 2.1 shows a typical 

set of plots of price series, return series, and persistent structure which is captured by 

autocorrelations of prices and returns. It shows that the prices are persistent, and there is a 

first order positive serial correlation with the magnitude 0.8 in returns. There is a positive 

serial correlation in returns which suggests the existence of momentum. Similar patterns 

can also be observed in the plot of the ca.'3e of three information hierarchies, although the 

first order serial correlation in returns drops and returns become much less persistent, which 

is a better approximation of the empirical behavior of retmns. This decrease in persistence 

strncture in returns may be due to the existence of interactions between the informed traders 

which diminishes the effect of the persistent structure brought by the predictable pattern in 

noise traders' behavior. Thus, when there are more information hierarchies, the magnitude 

of the momentum effect is smaller, as shown in Table 2.2. The magnitude of the first order 

autocorrelation of returns decreases when the number of information hierarchies increases. 
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Furthermore, Table 2.2 indicates that the persistence structure in retums decreases when 

the number of information hierarchies increases. 

TRbl". 2.1 sho'\Ts that the simulRt.ion l'f~slllts for "beta effect" in the case of t.hree informa

tion hif:rarchies. First column reports AR coefficient of price series, p. It demonst.rates that 

when the magnitude of ,6 increases; the AR coefficient p decreases. Intuitively, when the size 

of noise trading on a financial market increases, the behavior of the market price is driven by 

the noise traders' behavior. The forecasting behavior of informed traders which contribute 

to the persistence of price in a diminishing manner. The second column reports the first lag 

serial correlation in returns which also suggest.s that the magnitude of "momentum effect" 

decreases as the magnitude of f3 increases. 

Thr.rc is an AR.CH effect. in returns which snggr.st.s the volatility clustering of returns. 

Intuitively, because there are potentially two equilibrium with two ps, the switching from 

equilibrium can induce the volatility clusteriug of returns. The persistence structure of 

squared returns decreases as the magnitude of .6 increases as evidenced by the decrease in 

the report.ed sum of the autocorrelation coefficients of first 10 lags of squared returns. 

Define b.t = ~1 - '-"t1 Table 2.1 reports the effects of the predicta.ble pattern of the 

noise traders behavior. f3 become more negative implyiug that the noise traders trade more 

and more aggTessively as trend-followers. 

The nega.tive correla.tion between b.t and Vi is interesting. It implies that when there is 

a positive shock in the fundamental value of the underlying asset, the expectation is biased 

downward. Therefore, the partially informed trader takes a fundamental risk. When noise 

traders trade more and more aggressively, the partially informed trader takes more and 

more fundamental risk. The seventh column shows that given the noise traders are trend

followers, they are right about price direction. It is may be due to that the fully informed 

t.rarler may find out that it is not that profitable to tmrle with noist' traders and hf' ,hoosf's 

to trade with the partially informed traders using his own informational advantage. Notice 

that in this setting, it may be less risky to trade with the partially informed traders t.han 

wit.h noise traders. Although there is predictable pattern in noise traders' behavior, it 

becomes increasingly risky when noise traders trade aggressively. Hence, the fully informed 

trader instead chooses t.o exploit his informational advantage over the partially informed 

traders. 

The negative correlation between expectation errors and supply shocks is also consistent 

with our intuition. Intuitively, if there is a positive shock in liquidity supply, the price will 
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go down. The partially informed trader cannot distinguish whether the drop in price is due 

to a negative shock iu fundamentals or a positive shock in supply. Hence, he adjusts his 

expectation downward. 

The deviation of price from the fundamentals is increasing in {3. When the magnitude of 

{3 decreases, i.e, traders trade less aggressively, p increases. 'vVhen p approaches 1, there is a 

sharp increase in the deviation corresponding to a 98% increase in mean of price. It seems 

that as noise traders trade less aggressively, the price becomes more persistent and the a 

bubble, i.e., the deviation of market price from the fundamental value of the underlying 

asset, is generated. 

2.5.2 Impacts of the Number of Hierarchies 

I choose f3 = -20 for all values of N. Table 2.2 reports the effects of the number 

of information hierarchies. First thing to note is that the corresponding AR c:oefficieuts of 

price monotonically increase when N increases, implying that price becomes more persistent.. 

Intuitively, if there are more information hierarchies, the expectation errors from the signal 

extraction behavior of all partially informed traders make the price more persistent. The 

weight of the past price in determining the current price increases as more partially informed 

traders try to do signal extraction. Thus, the current price is more correlated with the past 

price, i.e., the AR coefficient for price increases. 

The autocorrelation coefficient of return decreases as the number of the information 

hicrarrhies increases as I indicated earlier. To be consist.ent with the empirical finding, the 

number of information hierarchies should be greater than 9, which generates a 0.1 to 0.2 

autocorrelation coefficient. ARCH effcct exists in the returns as wel1. And the persistence 

structure of squared returns increases as the number of information hierarchies increase. 

As shown in the last column of Table 2.2, the slower information diffusion rate is captured 

by the number of time periods it takes for the price to converge back to the long run 

equilibrium price. To do this, I start with a positive supply shock with a magnitude 0.1 

and set all Vi,s constant. Then I examine the difference bet\.veen the current price and the 

fundamental value of the underlying asset. If t.he difference is sufficiently small, the pTice 

converges to the fundamental value.]l Then I report the uumber of periods for the price to 

converge. We can see clearly that as the number of information hierarchies increases, it takes 

11 In t.he simula.t.ion. I use 10-4 as a threshold level. 
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a longer time for price to converge ba.ck to the long run fundamental value of the underlying 

asset. This provides simulation evidence of one of the main results of the chapter: As the 

number of information hierarchies incf('ase's, t.he' information diffusion is slower. A silllilar 

experiment is studied for the shock in the fundamental value of the underlying asset, and a 

similar pattern is found. 

2.6 Conclusion 

In this chapter, I develop a discrete time, infinite time period model to understand the 

relationship bet-ween hierarchical information and price discovery. The partially informed 

traders trade a stock based on their signals and expectation of the signals received by 

fully informed traders. The expectation errors from the signal extraction behavior of the 

partially informed traders is preserved in the market price, which prevents the information 

from being released at the same rate as if there was no hierarchical information among 

traders and the information was released instantaneously. As the number of informational 

hierarchies increases, it becomes harder for the partially informed traders to distinguish 

between the shock in fundamental value of the underlying asset and liquidity shock brought 

about by noise traders. The slower price discovery process of the financial market can also 

be partly due to the fact that fully informed traders may prefer to trade with partially 

informed traders. In order to make a profit from the partially informed traders, the fully 

informed trader should prevent the information disclosure and takes the opposite position 

of the partially informed traders if they make large expectation errors. Therefore, this 

informational arbitrage leads to a slower information diffusion rate. 

In addition, noise traders' behavior is modeled with a predictable behavior pattern. This 

framework yields a number of interesting findings. For instance, the predictable pattern of 

noise traders brings the persistence structure in prices regardless of the statistical properties 

of the fundamentals of the underlying asset. In addition, the predictable pattern of noise 

traders' behavior can aid in the formation of the momentum, i.e.: the posi tive autocorrelation 

in returns. 

One potentially interesting avenue for future work is to endogenize the evolution of the 

predictable pattern of noise traders' behavior. Doing so would allow us to determine the 

relationship between the information diffusion and liquidity of the ma.rket. For instance, 

this extra nncertainty of the predictable par,tern in noise traders' behavior may affect the 
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interactions among informed traders and further affect the information diffusion speed. 

lvfeanwhile, the evolution of the liquidity supply of noise traders will affect the market 

depth. This study may provide insights into the correlation of market depth and information 

difFusion speed. 
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Figure 2.1: SIMULATION RESULTS IN TWO INFORMATION HIERARCHIES CASE. (a) Time series of simulated 
prices. (b) Time series of simulated returns. (c) Time series of simulated variance of returns. (d) Average 
autocorrelations of returns across 100 simulations, 



CHAPTER. 2. HIERARCHICAL EVFOWHATION AND PRICE DISCOVERY 86 

:~ ........----.------.-----,-.----.-----'� 
,",0 '00 OJ, '000 '00 '00 .00 

(a) Simulated prices (b) Simulated returns 

ci 

i
g'-r----.-----.-----.-----.-----' 

600 An:"" """ 

(c) Simulated variance of returns (d) ACF of returns 

Figlll'e 2.2: SIMULATION RESULTS IN THREE INFORMATION HIERARCHIES CASE. (a) Time series of simulated 
prices. (b) Timfl series of sinlulated returns. (c) Time series of simulated variance of returns. (d) Average 
autocorrelations of rflturns across 100 simulations. 



Chapter 3 

Jump Detection by Wavelets 

In the last two decades, statisTics and finance lir,cratmp hav~ produced substantial ~m

piricu.l evidence that many financial time series contain surprise elements or jumps, It is 

well understood that compared to continuous price changes, jumps have distinctly differ

ent modeling, inference, and testing requirements for the valuahon of derivative securities, 

require a certain distributional framework for inferring extreme risks, and require special

ized statistical measures of optimal portfolio allocation. Thus, understanding what drives 

jumps in underlying securities, how to characterize jumps both theoretically and empiri

cally, and having efficient tests available for jumps that are sufficiently robust to withstand 

mis-specification and small sample bias is imperatiVf~. 

This chapter proposes a method based on maximum overlap wavelet transformation 

(MODWT) to detect and estimate the exact jump location, jump size, and the number of 

jumps in a given time interval from high frequency data. A useful property of MODWT is 

that the number of scaling and wavelet coefficients is equal to the number of data points. 

With this feature of MODWT and a zero phase distortion wavelet function, the location of 

jumps can be detected precisely from noisy time series processes. In addition to practical 

jump detection criterion as provided by Fan and Wang (2007), this chapter provides the 

asymptotic distribution of the test statistic, and the test demonstrates good power and 

size. I show that the test using MODWT with H aar filter is equivalent to Lee and lvlykland 

(2008). Additionally: when a wavelet filter with less leakage, e.g.) a least asymmetric wavelet 

filter 1 is llsed, the performance of the' test improves. 1 The improvement originates from the 

1A filter with less leakage is one that is closer to being an ideal band-pass filter. 

87 
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fact that the wavelet coefficients of a \vavelet filter with less leakage contain the weighted 

average of microstructure noise and continuous changes in price processes and jumps. At 

locations with no jumps, the weighted awrage is closer t.o zero t.han a simple difference of 

price process. Thus, identifying spurious jumps becomes easier while preserving power in 

detecting true jumps.2 

Substantial research effort has beeu dedi(;ated to jump detedioll in asset prices. Among 

previous studies, Andersen et al. (2003) proposed a method using a jump-robust estimator 

of realized volatility, Barndorff-Nielsen and Shepha.rd (2004, 2006) proposed a bi-power 

variation (BPV) measure to separate the jwnp variance and diffusive variance. Lee and 

Mykland (2008) developed a rolling-based nonparametric test for jumps and estimates of 

jump size and jump arrival time. Jiang and Oomen (2008) proposed a jump test based on the 

idea of "variance swap" and explicitly accounted for market microstructure noise. Johannes 

(2004) and Dungey et oJ (2007) found significant evidence for jumps in U.S. treasmy bond 

prices and rates. Piazzesi (2003) demonstrated that jump modeling leads to improved bond 

pricing in the U.S. treasury market. Andersen et 0.1. (2007) showed that incorporation of 

jump components could improve the forecasting of return volatility. As indicated by Fan and 

'Wang (2007), when market returns contain jumps, separating the variation in returns into 

jump and diffusion components is important for efficient estimation of realized volatilit.y. 

Although several tests can be used to identify the existence of jumps, particularly with 

high frequency data, these tests cannot provide an exact location of jumps even ex post. 

The estimation of the exact jump location is important for understanding the jump density 

and its distribution (see Dnngey et al. (2007) and Jiang et al. (2008)). Moreover, the exact 

detection of the jump location is of great importance for improving derivative hedging. 

In the presence of jumps, the market is incomplete, and hedging based on the continuous 

price process thus leads to hedging error. The exact detection of jump location allows the 

development of hedging strategies and an efficient dynamic rebalancing of hedging portfolios. 

The use of wavelets is of importance in jump detection for the following reasons. First, 

the a.\:.lility of wavelets to de(;ompose noisy time series data into different time scales is 

essential for distinguishing jumps from continuous movement in underlying asset and mi

crostruct.ure noise. Intuitively, if t.h0rc is no nois(' in t.h(' data, c1. jump C<1.n b~ d~fin('.d as 

2Spurious jumps are false jumps due to large movements originates from the presence microstructure 
noise or large spot volatility. 
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the change in the mean of the time series If there is no noise, locating the jump by ex

amining the location where the mean price changes abruptly ""ould be sufficient. Wavelet 

roeflkients \.Ontain this information. However, financial and economic time series are fiH 

from noise-free and the degree of noise becomes substantial at higher frequencies, i.e., mar

ket microstructure noise. Market microstructure noise is due to imperfections of trading 

processes that comprise a vast array of issues collectively known as market microstructure 

and include price discreteness, infrequent trading, and bid-ask bounce effects. The wavelet 

coefficients at jump locations are larger than other wavelet coefficients due to the fact that 

wavelet coefficients decay at a different rate for continuous processes and jump processes. 

In a given small time interval, changes in continuous price processes should be very close 

to zero while on the contrary, jumps are never close to zero. Such information is contained 

in wavelet coefficients at the jump locations (see Wang (1995) and Fan and Wang (2007)).3 

Second, estimation of jump size is highly correlated 'wi th the estimation of integrated volatil

ity. As shown in Fan and Wang (2007), wavelets shows superior estimation of the integrated 

volatility, which can be used to improve the efficiency of the estimation of jump size. 

This chapter implements the wavetet jump test to examine t,he jump dynamics of three 

individual equities in U.S. equity markets and finds that the jump dynamics of equities are 

entirely different across different time scales. This suggests that choosing a proper sampling 

frequency is important for extracting full jump dynamics. Based on the data set used in 

the chapter, this suggests that the popular choice of five-minute sampling frequency may 

neglect a large proportion of jump dynamics embedded in transaction prices. Additionally, 

although jump arrival densities of positive jumps and negative jumps are symmetric across 

time scales, the magnitude of jumps is asymmetrically distributed at high frequencies. This 

suggests that a skewed distribution for the magnitude of jumps should be employed in risk 

management or asset pricing practices concerning high frequency trading. Finally, only 

twenty percent of jumps occur in the trading session from 9:30 AM to 4:00 PM, which 

suggests that the jumps are largely determined by news and not by liquidity shocks. This 

also suggests that the mutual fund traders or other institutional traders who are prohibited 

by regulation from intra-day trading should pay closer attention to news outside of trading 

3Wang (1995) and Fall and Wang (2007) proposed a, wavelets-based procedure using the dif!erellt CUl\vel
gence rHte~ of wavdcL coefficients with or without jumps. In addit,ion Lo jump si7e, Fan ann 'Wang (2007) 
could estimate the number of jumps and an estimated interval of jump location, although an exact point 
estima.[;e of jump location was still absent. 
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sessions. 

Overall, the main contributions of the chapter are as follows. First, a nonpararnetric 

jump detection test based on wavelets is proposed and the asymptotic distribution of the 

test statistic is established. This test is showu to improve jump detection by identifying 

spurious jumps more accurately. In addition, it provides exact jump location due to the 

combined effects of MODWT and a zero phase distortion filter. Second, I show that the 

jump detection test is robust in the presence of microstructure noise. Third, the empirical 

implementation of the wavelet test in U.S. equity markets demonstrates a dramatic change 

of jump dynamics across time scales, the asymmetric distribution of jump magnitudes at 

high frequencies and the occurences of the majority of jumps outside the trading session. 

The rest of the chapter is organized as follows. Section II provides the theoretical 

framework for jump detection in the absence of microstructure noise and introduces the 

wavelet-based jump test statistic. The asymptotic distribution of the test statistic follows 

a scaled normal distribution and the scalar is determined by the properties of the wavelet 

filter. Section III extends the framework to investigate the performance of the test in the 

presence of the microstructure noise. I show that the asymptotic distribution of the test 

statistic under the null hypothesis remains the same. Section IV presents the Monte Carlo 

simulation results, which demonstrate the finite sample behavior of the proposed test. I 

show that the test has desirable size and power in small samples. Section V discusses the 

empirical examination of jump dynamics in equity markets. I conclude afterwards. 

3.1 No Microstructure Noise 

I employ a one-dimensional asset return process. Let the logaritlun of the market price 

of underlying asset be written as Pt = log St \vhere St is the asset price at t. For expositional 

purposes, I restrict myself to finding the jumps in asset prices as follows. When there are 

no jumps in the market prices, Pt is represented as 

j ./. /.t.
Pt = J1. sds + (]" sdWs (3.1 ) 

o . 0 

where the two terms correspond to the drift and diffusion parts of Xt. In the diffusion term, 

Wt is a standard Brownian motion, and the diffusion variance fJt is called spot volatility. 

Equivalently, Pi can be characterized as 

(3.2) 
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When there are jumps, PI is given by 

(3.3) 

where Nt represents the number of jumps in Pt up to time t and L l denotes the jump size. 

Or equivalently, PI can be modeled as 

(3.4) 

where Nt is a counting process that is left un-modeled. I assume jump sizes £1 are indepen

dently and identically distributed. They are also independent of other random components 

W t and Nt· 

Observations of Pt , the log price, are only available at discrete times 0= to < t l < t2 < 

< tn = T. For simplicity, I assume observations are equal1y spaced: b.t = ti - ti-I· 

Fol1owing Lee and lVIykland (2008), I impose the fol1owing necessary assumptions on price 

processes throughout this chapter: For any small f > 0, 

The assumption Al.I and Al.2 can be interpreted as the drift and diffusion coefficients not 

changing dramatically over a short time interval. Formally, this states that the maximum 

change in mean and spot volatility in a given time interval is bounded above. The assump

tions Al.I and Al.2 guarantee that the available discrete data are reasonably well-behaved 

such that the data are a good approximation of the continuous process of the underlying as

set. The availability of high frequency financial data allows us to improve the approximation 

of the continuous underlying asset process using discrete data. 

3.1.1 Intuition and Definition of the Test 

Wavelets 

A wavelet is a small wave that grows and decays in a limited time period 4 To formalize 

the notion of a wavelet, let h = (ho, hI, ... , hL-d be a finite length discrete wavelet (or high 

4Tl.is section follows Gen<;ay et al. (2001) closely. 
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pass) filter coefficient for a wavelet such Lhat it integrates (sums) to zero 

L-l 

Lhl.==O 
o 

and has unit energy 

where L is the length of the wavelet filter. Using wavelet filter coefficients, let scaling filter 

coefficients be' 

91. == (-l)I+lhL_I_1. for l == 0, .. .,L- 1. 

'iVith both wavelet filter coefficients and scaling filter coefficients, I can decompose the 

data using the (discrete) wavelet transformation (DWT). Formally, let me introduce the 

DWT throngh a simple matrix operation. Let x to be the dyadic length vector (N == 2)) of 

observations. The length N vector of discrete wavelet coefficients w is obtained via 

W == ~Vx 

where W is an N x N orthonormallllatrix defining the DWT. The vector of wa.velet coeffi

cients can be organized into J + 1 vectors, W == [WI, 102, .. . ,10), 'V)jT, where Wj is a length 

2j 1N /2 j vector of wavelet coefficients associated with changes on a scale of length AJ == -· , 

and 'V) is a length N /2) vector of scaling coefficients associated with averages ou a scale of 

leng;th 2) == 2>.). 

The matrix W is compospd of th!" wavelet ancl scaling filter coefficients arranged on a 

row-by-row basis Let 

be the vector of zero-padded unit scale \vavclet filter coefficients in reverse order, where T 

is the matrix transpose operation. Thus, the coefficients hI,o, ... , h1,L-I are taken from an 

appropriate ortho-normal wavelet family of length L, and all values L < t < N are defined 

to be zero. Now circularly shift hI by factors of two so that 

[hI,), hI,O, h1,N-l, h1,N-2 . .. , h1,3, h1,2f 

[hI ,3, h l ,'l, hl,l' 16 1,0, .. , hl,G, h l ,4]T 
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and so on. Define the N /2 x N dimensional matrix W} to be the collection of N /2 circularly 

shifted versions of hI. Hence, 

Let h'2 be the vector of zero-p~l,dcled scale 2 wavelet filter coefficients defined similarly to 

hr· W 2 is constructed by circularly shifting the vector h2 by factor of four. Repeat this to 

constmct W) by circularly shifting the vector hj (the vector of zero-padded scale j wavelet 

filter coefficients) by 2J. The matrix VJ is simply a column vector whose elements are an 

equal to l/m. Then, the N x N dimensional matrix W is W = (Hl1, W2,"" WI, VJjT. 

To complete the construction of the ortho-normal matrix TV, we must be able to explicitly 

compute the wavelet filter coefficients for scales I, ... ,J. Define the wavelet filter h), I for 

2j� 1scale AJ = - as 

j-2 

H).k = H1,2J-lk mod tV II G 1,2 1 mod lV' k = 0... , N - l. 
1=0 

The modulus operator is required in order to account for the boundary of a finite length 

vector of observations. Thus, we are implicitly assuming that x is periodic. Also, let us 

define the scaling filter gJ for scale AJ as 

.7-1 

Gj,k = II G 1,21k mod N' k = 0, ... , N - l. 
1=0 

Note that. if the data do not represent a dyadic length vector. then we must account for 

boundary issues. This is one of the reasons why maximum overlap discrete wavelet trans

formation (MODWT) is attractive when dealing with empirical time series problems. 

The following properties are important for distinguishing the MODWT from the DWT: 

1.� The MODWT can accommodate any sample size N, while DWT restricts the sample 

size to multiples of 2. 

2.� The wavelet and scaling coefficients of a MODWT are associated with zero phase 

filters. Thus, events that fea.ture in the original time series can be properly aligned 

with features in the MODWT coefficients. 

3.� The MODvVT is invariant to circular shifts in the original time series. This property 

does not hold for the DWT. 
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4.� The IvIODvVT wavelet variance estimator is asymptotically more efficient than the 

same estimator based on the DWT. 

For both MODWT and DVVT, wavelet coefficients contain information about the high fre

qllency movements in the dat.a series, while scaling coefficient.s contain informat.ion about the 

low frequency movements. In the next section, I investigate the application of the wavelet 

method to jnmp detection for high-freqnency time series data. 

Intuition of the Test 

'Wavelet.s has been shown to be nsefnl for jump detection when the underlying process is 

a diffnsion process as shown in Fan and \~lang (2007). As mentioned earlier, Fan and Wang 

(2007) used a special property of the wavelet expansion, i.e., the localization property, if 

a function is Holder-continuous with a jump at a point,'5 then the wavelet coefficients of 

the high pass filter dose to that point d<>r.ay at order 2)( t), where j is a scale for wavelet 

decomposition. This special feature was used to separate jumps from the continuous parts 

and microstruct me noise (see vVang (1995)) 

Althongh Fall ami Wang (2007) showed the effectiveness of the wavelets method for 

jump detection with a diffusion process convincingly, the statistic of the jump detection 

test was not formally defined Thus, the distributional properties of the jump detection 

procedure were not discussed. Meanwhile, because discrete wavelet transformation (DvVT) 

was applied to the data, the jump location could only be estimated with an informational 

loss in time domain, 

This chapter proposes a framework that treats jump detection using wavelets formally. 

Before I mathematically define the jump detection statistic Jvv, I address the basic intuition 

behind the proposed detection technique as follows. Imagine that asset prices evolve con

tinuously over time. Suppose that due to an announcement or other informational shock, 

a jump in (log) prices occurs at time t~. Given the additive nature of the jump, we expect 

to see the mean level of the price process to shift. Thus, if we examine high frequency 

movement, \ve will find a large movement in prices or a return of large magnitude. To 

illustrate this, let return be Tt, = Pt, - Pt,-l' At time t b '(1, can be approxima.ted by 

(J.lL, - ~Lt)_l )~t + (O't, - 0'/,_1) Wt'_l ~t +L t ,. For a small time interval, assumptions ALl and 

'Holder-continuous is an attribute of a function 9 : Rd 
---; R. g, is said to be Holder-continuou~ if there 

exist constants C and 0::; E ::; 1 such that fOl' all u and v in Rd:lq(u) - g(v)1 ::; Cllu - diE 
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Al.2 imply that the first two terms in the return expression should be close to zero while 

the third term, which is equal to t.he jump size, should be different from zero. Thus, we 

should expect to see an absolute large value for the return TL at the jump location. Note 

that the return Tt is the difference of log price Pt· Thus, the information about the return 

should be storecl in the wavelet filter coefficients if we apply the wavelet transformation to 

Pt· Therefore, we should see a wa.velet coefficient of a large magnitude at. jump location 

once the wavelet transformation is applied to the data. 

Hmvever, due to price discreteness, we can observe a large magnitude of change at the 

jump location if there is also a. large spot volatility. Due to price discreteness, the sampling 

frequency of the data is bounded below. Increased volatility leads to a large movement in 

returns. Thus, it is difficnlt to distinguish whether the observed Jar!!;e movement in pricE'S 

is due to a jump in price process or a volatility of large magnitude. This is not an issue if 

the time unit of the observed price process is infinitely small. Thus, this problem shonld be 

alleviated if the data is examined at a higher frequency. However, we wish to consider this 

problem explicitly for the purpose of determining test efficiency. This can be accomplished 

by normaliZing the absolute value of wavelet coefficients via division by the estimated spot 

volatility. In this chapter, I apply the bi-power variation estimator suggested by Barndorff

Nielsen and Shephard (2004) as a. consistent estimate of the spot volatility in the pn-::iilCe 

of jumps. 

Furthermore, I use the maximum overlap discrete wavelet transformation (fvIODWT) 

instead of discrete wavelet transformation. The reasons are as follows. First, ]'vIODWT 

grmerat.E's an eqnal number of wavelet coefficiE'nts (high pass filter) as t.h~ original data seri0s. 

Combined with zero phase correction, the locations of the wavelet coefficients naturally 

reveal information concerning the original data in the time domain. Thns, the jump location 

detection is reduced to a jump detection problem. Second, MODWT shows superiority over 

D\VT in decomposing the movements in the data series into high and low frequency. The 

performance of the test relies on its ability to decompose the data into different scales by 

wavelet transforma.tion. The MODWT is a suitable choice for the main purpose, which is 

to detect the exact jump location of the data series in this chapter. 

Definition of the Test 

Formally, let Pj.f be the wavelet coefficients of Pt, where the scale of the wavelet trans

formation is j = 1; ... , log2(T). Intuitively, the first scale level of wavelet decomposition 
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should be of major concerns for jump detection. I define the test. statistic as J"".. , which 

tests at time ti \vhether a jump occurs for i = 0, ... J T as 

- . Pl,L, - mi
Jydz) = ~ (3.5) 

Cft'_l 

,-1 2-1 

where ar'_l = '~3 L IPl'/;,llPl,t,.,I, and m2= i~1 L PUk ' 
k=2 k=1 

Note that I employ a bi-power variation method to estimate the integrated volatility 

of the underlying process. There are alternative methods for estimating the integrated 

volatility; these include t.wo scale realized volatility estimators (TSRV) (Zhang et al (2005) 

and multi-scale realized volatility cstinmtors (IvlSRV) (ZhaJlg (2006)). However, Barndorff

Nielsen and Shephard (2004) demonstrated that the presence of jumps in the underlying 

asset will change the asymptotic behavior of the tests. Additionally, it was shown that a 

bi-power variation estimator is robust in the presence of the j urnps 6 

3.1.2 Null Distribution: No Jumps 

H aar Fi! ter Case 

Under the null hypothesis that there is no jump oceuring at time ti , as 6.t goes to zero. 

lwei) should go to zero under assumptions Al.I and Al.2. Theorem 20 relates the proposed 

statistic in the case of MODWT with H aar filter to the t.est statistic proposed in Lee and 

Mykland (2008) (Lee and Mykland test, LM test). 

Theorem 20 S"uppose assumptions Al.l and A1.2 are satisfied. II then.. is no jump m 

(t,-l J t ,.), as 6.t --> 0 

Ui U i 1where Jw(i) = - - . (3.6) 
C 

i-l 

Here Ui = vk(Wt , - Wt"'l), a standard normal variable, U,-l = ,2} L Uj , and c 
)=1 

f1U2 IJ = ~ is a constant, where Wt follows a Brownwn motion process. 

Proof: Using MOD\VT with H aar filter to transform the data, the wavelet coefficients at 

scale level I are 

(3.7) 

°Pan and Wang (2007) found t.hClt there are. on average, four jumps in foreign exchange market. 
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Hence, we have 

(, t' 
logSt, -logSt,_l = t'-l Itudu + }i'-l O"udH/(u).1

Imposing assumption A1.L we have 

This implies 

Similarly, we have 

It can be shown that! 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

where Ui = k(Wtl - Wt,_l)' which is an independently identically distributed (iid) normal 
1,-1 

- l'\"'
and Ui - 1 = ~ L. UJ . 

j~O 

For the denominator, following Barndorff-Nielsen and Shephard (2004), we have 

(3.13) 

where c = E[IU.I] = ~. Hence 

(3.14) 

Q.E.D 

7See Lee and Mykland (2008) for a detailed derivation. 
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D(4) Filter Case 

Theoretically, the H a.Q.r filter localizes relatively well for jump detection in a conLinuous 

price process, but in reality, data are only discretely available. The discretization of data 

might be accompanied by discretization error, a type of microstructure noise whose effects 

of microstructure noise on volatility are not negligible. Thus, large returns generated from 

a discrete data set might be due to noise with large instant,aneous volatility. Distinguishing 

It jump from a large rct.mn due to fI "volatilit,yeffrd" is difficult. I propose t.o tlw lIS(' of 

an alternative wavelet filter that is closer to being an ideal band-pass filter. Such a filter 

assigns different weights to the returns in a moving window where the wavelet coefficients 

C(1lJture the weighted average of differenced data (the returns). This enhallces t.he efficiency 

of distinguishing the jumps from returns due to "volatility effer:t". However, this simulta

neously increases the difficulty of detecting the exact location of the jumps. This trade-off 

may require an optimal design of wavelet filters that can achieve the overall efficiency in 

both jump detection and jump location. The optimal design of the wavelet is beyond the 

SCoP('~ of this chapter and I only show the distribution of th0 t,0St. statist.ic wit.h a D(4) fi1t.0r 

in this section, A Monte Carlo study is conducted in a later section which demonstrates 

that nsing a least asymmetric filter rather than a H a.m' filter improves the efficiency of the 

test. 

Under the null hypothesis that no jump occurs at time t2 , as 6t goes to zero, J;vCi) 

should go to zero under the assumptions of All and A1.2. Theorem 21 demonstrates the 

distribution of the proposed statistic in the case of lVIODWT with D(4) filter. 

Theorem 21 Assuming zero drift in the v.nderlying price pTocess and supposing assump

tions Ai.i and Ai.2 are satzsJied, tf there is no Jump in (t"-l, tt)' as 6t -+ 0 

~ 3 

h w (~.) V" (3.15)SUPi IJw(i) - Jw(i)1 = Op(6t2-<) were J =-. 
c 

Here Vi = k(Wt, - "Vr'_l)' a standard normal vanable, and a constant c = ~, where Wt 

follows a DTOwnian motion process. 

Proof: Assuming zero drift, using MODWT with D( 4) filter to transform the data, the 
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wavelet coefficients at scale 1 are 

1 
4J2( (1 - J3)Pt, + (J3 - 3)Pt'_1 + (3 + J3)Pt,_z + (-1 - J3)Pt,_J 

1 = 4J2((l- J3)(Pt, -- Pt,_I) + (1 + J3)(Pt, __ - P',-3) - 2(Pt ._ 1 - Pt,-2)) 

1~((1 - J3)(log S t, -logSt,_J + (1:- J3)()ogSt,.__ -logSI._3)
4v2� 
-2(logSt'_1 -logSt, __ ))· (3.16)� 

Hence, we have 

log St, .- log St,_ 1 

(3.17) 

Imposing assumption A1.1, we have 

r· JI'udu - IJt'_It::. t = Op(t::.d- f 
) (3.18)

)l1.-1 
This implies 

(3.19) 

Similarly, we have 

(3,20) 

It can be shown that 

log St, - log 5t ,_1 0t,_1 /{;j(U,) + Op(t::.d-() 

log St'_1 - log St'_2 Ot'_2~(Ut-IJ+ Op(t::.t~-f) 

log St'_2 - log 5t'_3 01,_3 JM(Ui - 2 ) + Op(t::.d- f 
) (3.21) 

where Ui = kcWt , - Wt,_l)' which is an independently identica.lly distributed (iid) norma.l. 

Hence, Pl,t, is a linear combination of iid normal variables UiS, Therefore, Pi,!, is normally 

distributed with mean 0 and variance 
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For the denominator, in order to apply the resnlts from Barndorff-Nielsen and Shephard 

(2004), we redefine Pl,t, to be a new diffnsion process 

(3.22) 

ap,t, is cont.innous, so we can apply the resuit from Barndortr-Nielsen and Shephard (2004). 

Hence: 

',-1 

a~,tt.) = L 1Pl,t,lIPl ,I' z-11 (3.23) 
k=2 

(3.24 ) 

where c = ~. Hence 

(3.25) 

This can be extended to allow for nonzero drift case. 

Q.E.D 

Therefore, the distribution of the test statistic is unchanged under a D(4) fiiter. 

3.2 With Microstructure Noise 

Due to market microstructure, high frequency data are noisy. A common modeling 

approach is to treat microstructme noise as ordinary "observationai error" , and then assume 

that the observed high-frequency data Pt are equal to the latent, true log-price process PI 

of a security plus market rnicrostruct.nre noise Et, thus: 

(3.26) 

where Pt is the logaritllm of the observable transaction price of the security observed at 

time t and increment in £1 is mean 0 iid noise with variance .,.,2 and independent of Pt. When 

there are no jumps in the market price, Pt is represented as 

(3.27) 
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where the three terms correspond to the drift and diffusion parts of Pt and the iid market 

microstruct.ure noise. In the diffusion term, W t is a standard Brownian mobon, and the 

diffusion variance a1 is called spot volatility. Equivalently, Pt can be characterized as 

(3.28) 

When there are jumps, Pt is given by 

t t N, 

Pt = r /-Lsds + r asdWI,s + tt + L Ll (3.29)
Jo Jo I~I 

where Nt represents the number of jumps in Pt up to time t and Ll denotes the jump size. 

Equivalently, Pt can be modeled as 

(3.30) 

where Nt is a counting process that is left Illl-modeled. I assume jump sizes Ll are indepen

dently and identically distributed and also independent of other random components Wt 

and Nt. Additionally, microstructure noise is perfectly correlated with price. 

3.2.1 Under the Null: No Jumps 

Theorem 22 characterizes the asymptotic behavior of the proposed test statistic when 

market microstructure noise is presented. 

Theorem 22 Assuming zero drift ~in the underlying process and supposing assumptions 

A 1.1 and A.1. 2 are satls.tied, l.f there is no jump in (t.-I, t,) as 6.t --t 0 

where (3.31) 

Here U. = kPVI , - Wt,_J, a standard normal variable and a constant c = ElIU.IJ = ~. 

Proof: Let us investigate the denominator and numerator of Jw(i). As a simple demon

stration, let us assume a zero drift case. For the nnmerator: using MODWT with a H aaT 

filter to transform the data, the wavelet coefficients at scale level 1 are 

P;,t = ~(Pt - Pt-l) = ~(logSI -log SI-1 + f.t - tt-l)' (3.32) 

Recall that 

(3.33) 
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and 

(3.34) 

where U, = h(Wt , - Wt,_I)' which is an independently and identically distribut,ed normal. 

Therefore, 

(3.35) 

For t.he denominator, following Barndorff-Nielsen and Shephard (2004), we have 

,-1� 

_l_"'lr IIP* I�i - 3 L 1/1.1 !,tk-l 
k=2 
;-1 

'j ~ 3 L 1(logSlk - )ogSt,,_J + ((Ik - (lk_l)ll(logStk_l - log Slk_2) + ((Ik-) - (lk-2)1 
k=2 

1 ;-1� 

i _ 3 L IlogStl -logStlc_llllogSlk_l -log Sl k_ 21� 

k=2 

2 ~-1
 

+i _ 3 L IlogS/'k -logStk_lll(ft,_, - fl k _ 1 )1� 
k=2 

1 ~-1 

+-.-3 L I(clk - ctk_l)II((lk_1 - (lk-2)1 (336) 
t - k=2 

Recall that 

(3.37) 

where c = EllUl'll = ~. The second term in Equation 3.36 behaves as in 

,-1
2", 

plim6l->O i _ 3 L Ilog Stk - log Stk_ III (fl,_l - ft k _ 2) I 
k='2 

plim 2E[llogSk -logSk-lllEllct-l - (1-21] = 2c2al,_,7) (3.38) 

The third term in Equation 3.36 behaves ~ in 

1 i-I 

plim6t~Oi_3LI((I!.-f.t!_I)"(flk_)-fl._ 2 )1 =plim c 2r? (3.39) 
k=2 
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Hence 

,-1 

2 i ~ 3 L 1P{,tkIIP{h-ll plim (Ch, -1 + TJ)2 C:2 (3.40) 
k=2 

(3.41) 

QE.D 

Theorem 22 indicates that the statistic J';¥ (i) is robust in the presence of microstructure 

noise. Intuitively, in the presence of microstructure noise, underlying process as dPt = 

dPt = J.l,dt + atdvV/ can be rewritten as long as the noise increment is iid, where ai. is 

a function of spot volatility at and the volatility of microstructure noise TJ Thus, it is 

equivalent to have a larger spot of volatility. If we want to estimate the integrated volatility, 

distinguishing the spot volatility of the underlying process (at) from the microstructure 

noise (ry) is a challenging task when at is the only information available (See Zhang et aZ. 

(2005) and Zhang (2006)). However, the numerator of the test statistic is also composed 

of microstructure noise. Hence, we only need to estimate the "new spot volatility" of the 

underlying process, at. NoLe thaI, the new underlying process is well-defined so that the 

bi-power variat,ion estimator is a consistent estimator of at (or at + 7]). Therefore, the 

asymptotic distribution of the test is not changed in t,he presence of microstructure noise. 

Issues related to microstructure noise are important in finance literature, especially for 

estimation of integrated volat,ility. ivIicrostructure noise might be due to the imperfections 

in trading processes, including price discreteness, infrequent trading, and bid-ask bounce 

effects. It is well-known that higher price sampling frequencies are Linked to a larger the im

pact of microstructure noise. Zhang et a1. (2005) demonstrated that estimation of integrated 

volatility via a realized volatility method is severely contaminated by microstructure noise. 

Fan and Wang (2007) assumes a very small noise ratio in detecting jumps. The distribution 

of the test proposed in Ait-Sahalia and Jacod (2009) is different in the presence of mi

crostructnre noise. Lee and Mykland (2008) chose a rather low sampling frequency (fifteen 

minutes) in an empirical study in order to avoid the impact of microst,ructure noise. Because 

the asymptotic distribution of this statistic is robust in the presence of microstructure noise, 

I do not need to decrease the sampling frequency. Thus, I claim that this technique of jump 

detection is more efficient. 
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3.3 Monte Carlo Sinlulations 

In this section, I examine the effectiveness of the wavelet-based jump test using Monte 

Carlo simulations. The performance of the test statistic is examined at different sampling 

frequencies. An Euler lnethod is used to generate continnous difl:"usion proce~ses and the 

burn-in period observations is discarded to avoid the effects of the initial value. 

3.3.1 Under the Null 

This subsection illustrates the simulated test statistic under the null hypothesis of no 

jump in a given period of time. The asymptotic distribution of the statistic is a scaled 

standard normal and the scaling factor is E[U] = ~. Formally, I consider 

(3.42) 

where /J.t is the drift in price process and at is the diffusion or spot volatility in the price 

process. I consider four scenarios: Itt = 0 and at = (J (zero drift and constant volatility as 

the benchmark), /Jt =I 0 and at = a (non-zero drift and constant volatility), /J·t ;::;: 0 and 

at =I a (zero drift and stochastic volatility), and /J.t #- 0 and at #- a (non-zero drift and 

stochastic volatility). Specifically, I assume }.J.,l = 1 or /J.t = 0 for non-zero and zero dri ft 

cases, respectivelyS I employ an Ornstein-Uhlenbeck process as the volatility model for the 

stochastic volatility case: 

dPt /J.tdt + at.dW1,t 

d loga; k(log0'2 -loga;) + 6dW2.t (3.43) 

where k measures the recovery rate of volatihty to the mean and log 0'2 can be interpreted as 

the long run mean of volatility, 0 is the diffusion parameter for volatility process. 9 Following 

Fan and Wang (2007), I assume that the correlation between WI,l and W2 ,t is p, which is 

negative and captures the asymmetric impact of the innovation in price process. In this 

section, following Fan and Wang (2007), I assume k = -01, loga2 = -6.802, 6 = 025 

5[ also investigated various specifications for drift, part as well, for instance the mean reverting process as 
Ornstein-Uhlenbeck process. I found that the specification of drift part has negligible Impact on the main 
result. 

91 also investiga.ted other specifications of the process and found that different specificatIOns of vola.tilily 
processes did not qualitatively changed the main results. 
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Figure 3.1 shows the density plot of the statistic for 1 million observations when a H aar 

filter is used. The top left panel shows the zero mean and constant volatility case; top right 

panel depicts the non-zero mean and constant volatility case; bottom left panel shows the 

zero mean and stochastic volatility case; and bottom right panel depicts the non-zero mean 

and stochastic volatility case. 

Figure 3.2 shows the density plot of the statistic for one million observations when a 

58 filter is used. The top left panel shows the zero mean and constant volatility case; top 

right panel depicts the non-zero mean and constant volat,ility case; bottom left panel shows 

the zero mean and stochastic volatility case; and bottom right panel depicts the non-zero 

mean and stochastic volatility case. The reason for choosing 58 rather D4 filter is that the 

5R bf'lon/';s to tl1f' least asymmf'triC' filt<.>r class which snpposedly permits llf'arly zero phasf' 

distortion; this is helpful in conveying information about the jump location in the time 

domain. Simulations show that jump detection using a D4 filter is similar to that using a 

5s filter. 

Additionally, Figure 3.1 and Figure 3.2 show that the test statistic follows a standard 

normal distribution when volatility is constant. When volatility is stochastic, the test statis

t.ic has fat tails. I found t.hat when the frequency increases, ie., 6. t -> 0, the fat. tail of the 

test statistic diminishes. The fat-tailness of the test statistics originates from two sources. 

First, the estimation of spot volatility using bi-power variation is unfavorable if there are 

insufficient data close to the boundary of the wavelet transformation. Second, the H aar 

filter has excessive leakage in decomposlng the data into noise component and continuous 

components. It is notable that 58 filter olitperforms the H aar filter while the dist.ribll

tion of the test statistics nnder the null hypothesis using the 58 filter is closer to <1 normal 

distribution even in stochastic volatility cases. 10 

lOSimulations show that the fat-tailness of null distribution originat.es from two sources: the poor perfor
mance of bi-puwer vanation est.imator for small samples and the choice of wavelet filter. Puor per[urll'ldJir.,C 
of the bi-power variation estimator for sm<L1I samples occurs when t.here are only a few data point.s available 
for estimation, e.g., when the filter location is close to the boundary of the data set. Additionally, simuh.· 
tions demonSTrate thai. I he wavekt filt.er with less leakage can c1f'crf'asc the fat.-tallness of thE' null empiricill 
distribution. This is mainly due to the face that wavelet filt,ers with less leakagi: win morc sophisticatedly 
utilize information both at the estimated location and in the neighborhood of the estimated location, Tllis 
mitigates the small sample estimation problem brought abont by bi-power variation. 
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3.3.2 Size and Power 

First, I present the size of the test statistic in Table 3.1 11 As shown in the table, the 

test statistic has a good size. The probability of false jump detection is quite close to the 

theoretical value, i.e ... 1%when the 99% quantile from the simulated distribution of the test 

statistic is used and 5% when the 95% quantile is used. 

Subsequently, I study the power of the test statistic. For the purposes of illustration, I 

allow only one jump per simulation. In particular, 1 study a sample of 1,024 observations 

and a jump occurring at the 819th observation. The jump size could be large, e.g.: 3a (three 

standard deviation of return volatility) or could small, e.g, 0 la (10% standard deviation 

of return volatility).12 I also examine the perforIllauce of the test statistic at the different 

time scales. In the simulations, the number of repetitions is 1,000. 

I employ two measures of performance to charact.erize the test. One is the power of the 

test, which is the probability of detecting the actual jump at the time i when the jump 

occurs. Note that when I apply the test. to the simulated data, I let it detect the location 

of jump itself without using the information about the actual jump location. The power of 

test is calculated by the number of cases where the test detects a jump at 819th observation 

divided by the number of repetitions. I also consider another measure, a success rate 

measure, which is consistent with the probability of spurious detection oJ jumps (GSD) as 

in Lee and Ivlykland (2008) Specifically, if the test detects the true jump without detecting 

any other spurious jumps: I call it a success. Recall that there is only one jump in the true 

data, i.e., the test should detect one and only one jump at the 819th observation. Therefore. 

the second measure is the success rate, i.e., the number of successes divided by the number 

of repetitions. 

When the test statistic exceeds a threshold, the null hypothesis of no jumps is rejected. 

There are two tlu'eshold levels used in this chapter: 95% and 99% quantiles of the null 

distribution. I also investigate th(' performance of the test statisti(' wit.h diffen:nt time 

scales; Thus, I let the time step used to generate the continuous process of the underlying 

asset be 252 times the number of observations per day. For instance, I choose the time step 

between observations to be 252 * 1 for daily observations. In the simulations, I choose the 

tIl use 95% and 99% critical values from the standard normal distribution multiplied by a scalar c = ~. 

12Pall and Wang (2007) found that the ratio of jump variation to the total return variation is 1 to 1.5 in 
the foreign exchange market. 
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observations per day to be 24 or 12. Thus, the sample size of 1024 corresponds to two weeks 

of hourly data or one month of bi-hourly data. The findings suggest that the power of the 

tE'st, is improved w1wn samplin~ fn~qllen('y is highf'r. This is consistent, with thE' fillflings of 

Lee and !vIykland (2008). 

Table 3.2 shows the power comparisons for the 58 filter case, Haar filter case (Lt--l) , 

linear test of Barndorff.-Nielsen and Shephard (20U6) (I3NS), and difference test of Jiang 

and Oomen (2008) (JO). The wavelet-based test has good power and outperforms other 

tests at both the 95% and 99% quantiles. For a wide range of jump sizes (0.50' to 30'), both 

58 and H aar filters can detect the actual jump without failure. For jump size 0.250' when 

the 58 filter is used, the test can detect the actual jump with 83% probability if the 901ft' 

quantile is used and 62% probability if 99% quantile is used. Similarly, for the °10' case, the 

58 filter detects jumps with 21 % and 8% probability, respectively. The H aQ,r filter detects 

the actual jumps with a probability 97% and 91 % for 95% and 99% quantiles, respectively, 

for jump size 0,250', For jump size 0.10', the Haar filter detects the actual jump with the 

probabilities 34% and 16% accordingly. Recall that wavelet coefficients of the H aar filter are 

simple differences of prices, whereas wavelet coefficients of 58 filter are weighted averages ot 

returns in the neighborhood of a given location Thus, it is easier for a H aar filter to detect 

large movement in returns and, not surprisingly, the H aaT filter marginally outperforms 

the 58 filter when the maguitude of jump is very small, Both the H aar filter and the 58 

filter outperform Bl\'S and JO tests using the 95% or 99% quantile, This suggests that 

wavelet-based methods can be more effective for detecting large movements in the presence 

of jumps, Note that a large variation in microstructure noise is equivalent to decrease 

the relative magnitude of jump size to the spot volatility of underlying process. From the 

simulations, wavelet-based methods indeed demonstrate superior performance for detecting 

jumps even when the jump size relative to spot volatility is small, This is important for 

detection of jumps in high frequency financial time series data, where micTOstructure noise 

inevitably exists 

As a performance measure, power only considers the abilit,y of a test t,o detect the 

true jumps while ignoring the possibility of spurious jumps detection, Intuitively, if we 

set a threshold low enough to reject the null hypothesis at every point of time, the actual 

jumps can be detected without failure if they exists, However, too many spurious jumps 

are det,ected. Thus success rate is employed as another measure. Recall that success rate 

measures the ability of a test to detect the actual jumps only, That is, if and only if 
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the test only detects the true jumps, it is regarded as sllccessful. This measure is more 

appropriate for describing the performance of jump detection tests. Table 33 presents 

success rate comparisons for the 58 filter, H o.o.r filtf'r (LM), linp(l,r tcst. of Darndorff-:'<idscn 

and Shephard (2006) (BNS), and difference test. of Jiang and Oomen (2008) (JO). vVhen 

the 95% quantile is used as threshold level, the success rate is zeros for both the 58 and 

H aar fiUer. In C'ontrust, BNS provides i::\. 15% to 25% success rate. The JO test provides a 

5% success rate. Combined with the power results, the zero success rate suggests that both 

the H aar and 58 filters always detect. at least one spurious jump in addition to the actual 

jump. The BNS and JO tests show a superior performance for not detecting spurious jumps 

compared to H o.o.r filter and 58 filter using 95% quantile as the threshold level Hmvever, 

when 99% quantile is used as threshold level, the 58 filter out.performs BNS, LM, anel .TO 

tests at all jump size levels. This shows that when a. more stricter threshold level is imposed, 

i.e., a 99% quantile rather a 95% quantile, the 58 filter outperforms the BNS and JO tests 

in both power and success rate. 

Additionally, the 58 filter is recommended rather than the H o.o.r filter for the following 

reasons. First, when a 99% quantile is used as a threshold, the success rate of 58 filter is 

satisfactory compared to the H aar fitter and other alternative candidate tests. Second, the 

58 filter can provide comparable power to the H aar filter when the magnitude ofjump is in 

a range from O.25a to 30". Thus, when a filter with less leakage is used, the tcst performance 

improves. 

Overall, the proposed test demonstrates satisfactory power for detecting jumps. Based 

on simulations, I recommend the 58 filter or the other filtprs with If'sS leaka.ge and the 11Sf' 

of a stringent threshold level (at least 99% quantile) for empirical implementation of jump 

ctetection. The filter with less leakage possesses similar power to the H aar filter (Lee and 

Mykland test), but the success rate is higher. This improvement oecms because the wavelet 

filter with less leakage averages the noise embedded in the underlying process to facilitate 

t.he to ctifferentiation of the jump from the noise (volatility effect). 

3.4 Empirical Analysis for U.S. Equity Markets 

In this section, I apply the jump detection test to three major U.S. individual equities 

transaction prices to determine their jump dynamics. To characterize jump dynamics, the 

frequency of arrivals and the magnitude of jumps need t.o be characterized. Using a jump 
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detection method, the jump locations can be estimated in a given time interval. 13 Thus, the 

arrival density of jumps per trading day can be subsequently calculated. To characterize the 

magnitude of the jumps, I employ a method that follows Fan and Wang (2007). Formally, 

for ea,ch estimated jump location ti, I choose a small neighborhood, t(~·:, where small "',/ > O. 

Then, I calculate the average of the prices over [t; -,', til and [t~, t~ +1]' Let Pt,- and Pt, _ to 

denote the averages accordingly. The jump size is est"imated by Lt, = Pt, -, - Pi, _. J:<"'an and 

Wang (2007) shows that this estimator of jump size is consistent when the neighborhood 1 
2is chosen such that: "- T- 1/ , where T is the sample size. 

3.4.1 Multi-Scale Jump Dynamics 

I use ultra-high frequency tick data from transactions on the New York Stock Exchange 

(NYSE) collected from the Trade and Quote (TAQ) database. I apply the jump detect.ioll 

test to the log transaction prices. The time span is three months from January 1st 2008 

to March 31st 2008, which represents latest data available and which has never been in

vestigated in the literature. 1 choose three equities (Wal-Mart (WMT), IBM (IBM) and 

General Electric (GE)) to compare their jump dynamics. Recall that the test is robust in 

the presence of microstructure noise, I employ one minute data to improve the efficiency of 

estimation. 14 

For the comparison purposes, I also report jump dynamics at different time scales: 

specifically, jump dynamics are reported using one-minute data, five-minute data and fifteen

minute data. 1-5 This comparison offers useful insight.s for both t.he theoretical franwwork for 

jump detection and the implementation of empirical jump detection. Due to the robustness 

of this test in the presence of microstructure noise, the difference in jump dynamics detected 

at dillerent time scales should accouut for the difference in jump arrival densities at different 

t.ime scales. Intuitively, if two jumps of similar magnitudes occur in opposite directions, 

i.e., a positive jump and negative jump, a large diffcrence in price level should not be 

ohserved; thus we will claim that there were no jumps in this time interval. Specifically, low 

frequency data might ignore jump dynamics tha.t could not be captured due to the sampling 

13In t.his chapter .. the time interval is chosen to be one day. 

14Tick level transaction data are irregularly spaced time series data and need to be converted int.o regularly 
spaced time series data for the implementat,ion of the test. See Dacorogna el al. (2001) for a discussion about 
transformiug irregularly spaced time series dat,a into regularly spaced t.ime series data. 

'SLee and Mykbild (2008) used fift.een-mirmte t,ransaction dat.a. 
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frequency. In order to examine the jump dynamics at a pre-chosen sampling frequency. we 

implicitly assume that the smallest duration between two jumps should be larger thall the 

tinw interval implied by tlw sampling frt>quency. If this is tnlP, significant diff0rence" should 

not be observed in jump dynamics across different time scales. Otherwise, a higher sampling 

frequency should be used to extract full jump dynamics. 

Table 3.4 and Figure 3.3, Figure 3.6 and Figure 39 report the dynamics of jump arrivals 

for these three equities. Jump dynamics for the same equity are entirely different at different 

time scales; specifically, the jump arrival densities for GE are 11.7, 3.7, and 1.5 jumps per day 

at one-minute, five-minutes, and fiHeen-minutes sampling frequency, respectively. Similar 

patterns are found for IBIvI and WMT. The jump arrival densities for IBM are 11.3, 3.6, 

and 1.2 jumps per day at. onc-minutE\ fiVC'-minutcs, fifteen-minutes sampling frcqlwncy, 

respectively. The jump arrival densities for WMT are 11. 3.6. and 1.3 at one-minute, 

five-minutes, fifteen-minutes, respectively. Thus, the jump arrival densities at one-minute 

sampling frequency per day for all three eqnities are higher than jump arrival densities at 

five-minutes and fifteen-minutes. As stated earlier, if the sampling frequency is high enough 

to observe full jump dynamics, significant differences should not be observed in jump arrival 

densities across time scales. Therefore, sampling data at fifteen-minutes ignores a significant 

portion of jump dynamics that occurs at higher frequencies than the sampling frequency. 

Thus, sampling data at fifteen-minutes even five-minutes might not be appropriate for the 

purpose of risk management or dynamic hedging which requires continuous adjustments of 

positions. If the jump arrival deusity is estimated at an incorrect frequency, the impact 

of jumps will be nnderestimated Another suggestion is that the averaging of jumps with 

opposite directions should be considered for dynamic hedging. It should also be noted that 

the jump arri\~a.l densities are similar for all three equities at the same scale. This suggests 

that macroeconomic news might play an important role in the formation of jumps that 

accounts for "common trend" . 

3.4.2 Pos'itive Jumps Versus Negative Jumps 

I further investigated t.he jump dynamics for jumps or different directions, i.e., positive 

jumps and negative jumps. Table 3.4, Figure 3.4, Figure 3.7, and Figure 3.10 report the ar

rival densities for jumps of different directions. Jump arrivals are symmetric for a11 equities. 

Thus, the arrival densities of positive jumps and negative jnmps are similar across different 

time scales. For instance, the arrival deusities of positive and negative jumps for GE at 
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one-minute sampling frequency are 6.1 and 5.6 per day, respectively. The arrival densities 

of positive and negative jumps for GE at five-minutes are 1.8 and 1.9 per day, respectively. 

The arrival densities of positive and llcf!,ativc jumps for GE at fift,peu-minlltcs arc 0.7~ and 

0.75 per day, respectively. This pattern also holds for mM and vVMT. 

Furthermore, the magnitudes of jumps are asymmetric at high frequencies for all equities. 

At the one-minute sampling frequency, the mean size of negative jumps for GE is -0.04% 

of the return while the mean size of the positive jumps is 0.01% of the return. In the 

case of mIvI, the mean size of jumps is ~002% and 0,10% respectively. This suggests 

that the magnitudes of jumps are not symmetric at high sampling frequencies. Symmetric 

distribution of jump sizes for derivative security pricing should not be assumed in practice. 

This asymmetry in jump magnitude is decreased at lower sampling frequencies. 

3.4.3 Trading Session Versus Off-Trading Session 

I also decompose the jump dynamics of all these equities into two sessions: the day 

trading session (9:;30 AlVI to 4:00 PM for NYSE) and the off-trading sf'ssion. Notice that, for 

hedging purposes, the jumps in the day trading session are more relevant because dynamic 

hedging needs to continuously account for the impact of jumps on the prices of underlying 

assets. Mutual fund traders or other institutional investors cannot engage in intra-day 

trading due to regulatory constraints. Thus, the jumps in the off-trading sessions might be 

more relevant. Table 3.4, Figure 3.5, Figure 3.8, and Figure 3.11 report the jump dynamics 

in the day trading session. It. demonstrates that the majority of jumps occurs in off-tradi.ng 

sessions. Only twenty percent of jumps occurs in the day trading session. The average 

number of jumps occur in day trading time session at one-minute frequency per day is 2 to 

3 which is comparable to the findings of Fan and Wang (2007). This suggests that mutual 

fund or other institutional traders should pay closer attention to the macroeconomic news 

or other prescheduled news that contribute to the majority of jump arrivals. This also 

suggests that jumps are mostly determined by informational factors other than liquidity 

shocks brought about by noise traders. 

Addi.tionally, the average sizes of posit.ive and negative jumps in the trading session are 

different across time scales. It seems that at high frequencies, the magnitudes of the jumps 

of different directions arc quite asymmetric. This asymmetry diminishes as the sampling 

frequency decreases. This suggests that normality assumption of jump sizes might not be 

a good approximation for high frequency data; a skewed distribution might be required for 
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modeling of jump size when conducting high frequency trading. 

3.5 Condusions 

This chapter introduces a new nonparametric test based on the wavelets method to detect 

jump arrival times in high frequency finaJlcial time series data. This newly proposed test is 

motivated by the ability of the wavelets method to decompose the data into different time 

scales. This localization property of wavelets is shown to be superior for jump detection. I 

show that the distribution of the test under the null hypothesis of no jumps is asymptotically 

normaL I demonstrate that the test is robust for different price pl'ocesses and the presence 

of market microstructure noise. A I\!Ionte Carlo simulation is conducted to demonstrate the 

test has good power and size. I also demonstrate that the use of wavelet filters with less 

leakage improves the success rate of the test, i.e., the ability of the test to only detect the 

true jumps. 

An empirical implementation is then conducted for U.S. equity markets, and jump dy

namics changes dramatically across time scales. This suggests that choosing a proper sam

pling frequency is very impol'tant for investigating the full jump dynamics. Additionally, 

the arrival densities of positive jumps and negative jumps are similar, but the magnitudes 

of the jumps are asymmetrically distributed (at high frequencies). Finally, the majority of 

jumps occur outside of the day trading session and only twenty percent of jumps occur in 

the day trading session. 

One potentially interesting avenue for future research is to relate the jumps to macroeco

nomic news and liquidity shocks. Recall that jumps can be irregular (due to macroeconomic 

news) or regular (due to liquidity shocks brought about by noise traders), but this distinc

tion has not received much attention in the literature. Intuitively, irregular jumps cannot 

be assumed to occur regularly and should be modeled separately. Thus, it is important 

to separate the detected jumps into two categories: irregular and regular jumps. Doing 

so helps to conditionally predict jumps and improve asset pricing and hedging activities in 

practice. 16 

16r am currently working on this, 
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H am' filter 58 filter H aar filter 58 filter 
95% confidence 1cvel 99% confidence level 

J.L = 0 and at = a� 
0.0510 0.0490 0.0110 0.0100� 

J.L i= 0 and al = a� 
0.0490 0.0500 0.0110 0.0100� 

J.L = 0 and al i= a� 
0.0490 00490 0.0100 0.0100� 

J.L i= 0 and al i= (J� 

0.0510 0.0500 0.0100 0.0100� 

Table 3.1: SIZE OF' TEST STATISTIC AT 95% AND 99% QUANTILES. Size is defined as 
the detection of sl?uriou5 jumps nnder the null hypothesis of no jumps. The number of 
\·[onl.c Carlo silllulations is 1000. Four ~ceni1rjos arf' inV<'Sl.igi1.l('d~ spexificwly, the rasc 
of zero mean and constant variance, the case of non-zero mean and constant variance, 
the ca~e of zero mean and non-constant variance. and the ca~e of non-zero mean and 
non-constant variance. 
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Jump size 58 filtfT Haar filter (LM) Linear tf'st (ENS) Diff0rencr Test (.TO)� 

Frequency = 2 hOUTS, 95% confidence level� 
3.00a 1.0000 1.0000 0.8550 0.8430 

1. OOa 1.0000 1.0000 0.8110 0.7690 

0.·50a 1.0000 1.0000 0.7110 0.6470 
0.25a 0.8500 0.9720 0.5330 0.4400 
O.IOa 0.2160 0.3360 0.1110 0.0990 

Frequency = 1 hour, 95% ronfidE'nce kvd� 
3.00a 1.0000 1.0000 08740 0.8610� 
1.00a 1.0000 1.0000 0.8460 0.8210� 
050a 1.0000 1.0000 0.8030 07550� 
0.25a 0.9300 0.9760 0.6380 0.5540� 
0.10a 0.2180 0.3800 01090 0.0980� 

Frequency = 2 hours, 99% confidence level� 
300a 1.0000 1.0000 0.8.550 0.8430� 
1.00a 1.0000 1.0000 0.8110 0.7690� 
0.50a 1.0000 1.0000 0.7110 0.6470� 
0.25a 0.6260 0.9080 0.5330 0.4400� 
0.10a 0.0820 0.1380 0.1110 00990� 

Frequency = 1 hour, 99% ronfictenC'C' level 
3.00a 1.0000 1.0000 0.8740 0.8610 
100a 10000 1.0000 0.8460 0.8210 
0.5017 1.0000 1.0000 0.8030 07550 
0.250' 0.7000 0.9120 0.6380 05540 
O.lOa 0.1020 0.1860 0.1090 00980 

Table 3.2: POWER COMPARISON WITH OTHER JUMP TESTS. The simulation only allows 
one jump and assnmes constant volatility and non-zero drift part. in price process. The 
nnmber of repetitions is 1,000. The power of the test is defined as the probability that. 
the test will detect the actual jump (even when the t,est also detects spurious jumps). 
The table shows t,he power of my test (SR filter, Haar filler corrcsponding to L('e and 
Myldand (2008) (LM)), linear rest of BarndorfI-Nielsen and Shephard (2006) (B\'8), 
and dIfference test of Jiang and Oomen (2008) (JO). The time int,erval [or integration 
o[ Lhe li11('fH (liNS) i1nd difkrcnce tesl.s (JO) b 011(' day The jump sizes are 10%. 2~%, 

5U%, 100%, ;~OO% o[ the spot volatility. 
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Jump size $8 filter Haar filter (LM) Linear test (BNS) Difference Test (JO) 

Frequency = 2 hours, 95% ('onfid~nee level 
3.000' 0.0000 0.0000 0.2511 0.0650 
1.000' 0.0000 0.0000 0.2426 0.0484 
0500' 00000 0.0000 a 1190 0.0010 
0.250' 0.0000 0.0000 0.0840 0.0000 
0100' 0.0000 0.0000 0.0510 0.0000 

Frequency = 1 hour, 95% confidence level� 
3.000' 0.0000 0.0000 0.1884 0.0090� 
1.000' 0.0000 0.0000 01686 0.0076� 
0.500' 00000 0.0000 0.0910 0.0009� 
0.250' 0.0000 0.0000 0.0000 0.0000� 
0.100' 00000 0.0000 00000 0.0000� 

Frequency = 2 hours, 99% ~onfiden~e level� 
3.000' 0.8020 0.0400 0.2511 0.0650� 
1. 000' 0.1980 0.0100 0.2426 0.0484 
0.500' 00502 0.0080 01190 0.0010 
0.250' 00240 0.0040 0.0840 0.0000 
0.100' 0.0020 0.0000 0.0510 0.0000 

Freq-uency = 1 hour, 99% confidence level 
3.000' 0.2400 0.1120 0.1884 0.0090 
1.000' 0.2120 01000 0.1686 0.0076 
0.500' 0.1560 0.0190 00910 0.0009 
0.250' 0.1120 0.()l20 0.0000 0.0000 
0.100' 0.0040 0.0040 0.0000 0.0000 

Table 3.3: SUCCESS RATE COMPARISON WITH OTHER JUMP TESTS. The simula.tion 
OJ11y allows one jump and assumes constant volatility and non-zero drift part in the price 
process. The Humber of repetition~ is 1,000. Su(;cess rate is defined as the probability 
that the test will detect only true jumps. The table shows the success rate of my test 
(58 filter, Haa.r filter corresponding to Lee and }.i[yklalJd (200,) (LM)), Linear t,est of 
Rarndorff-Nielsen and Sllephard (2006) (nNS), dlld Differcnce l~t of Jlang and Oomen 
(2008) (.10). The time interval for integration of the linear (BNS) and difference tests 
(JO) is one day. The jump sizes are 10%, 2:1%, 50%, 100%, 300% of the spot volatility. 
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Sampling Frequency NT NT,+ NT,- Nt SizeN, SizeN,.+ SizeN,_� 
GE� 

1-min 11.7 6.10 5.60 2.70 -0.04% 0.01% -0.04%� 
5-mins 3.70 1.80 1.90 090 -0.09% 0.01% -0.09%� 
15-mins 1.50 0.75 0.75 0.70 -0.03% 0.04% -0.04%� 

IBM 
1-min 11.3 5.90 5.40 2.70 -0.001% 0.10% ~0.02% 

5-mins 360 1.80 1.80 0.70 -0.05% 0.02% -0.05% 
15-mins 1.20 0.60 0.60 0.40 -0.05% 0.03% -007% 

WMT 
1-min 11.0 600 500 3.50 -0.01% 0.08% -0.01% 
5-mins 3.60 1.90 1.70 1.00 -0.20% 0.05% -0.05% 
15-mins 1.30 0.80 0.50 0.40 -0.02% 0.01% -0.02% 

Table 3.4: JUMP DYNAMICS OF INDlVrDUAL EQUITIES. This table contains the jump 
dynamics of three U.S. individual equities: GE. IBM, and WMT based on transaction 
prices from the New York St.ock ExcJlangf' (NYSE) duriug three mont.hs from January 
1st. to March 3lst, 2008. lliT is the averag'e number of tot.al jumps estimated in each 
day. NT.+ is the average of the number of positive jumps estimated for each day. NT.
is the average number of negat.ive jumps estimated fur each day. N,. is the average 
number of trading session jnmps estimated for each day. S·i.zeN, is the average mag
nitude of the trading-session jumps estimated for each day. 8'tZe,vr..+ is the average 
magnitude of positive trading-session jumps estimated for each day. SizeN,._ is the 
average magnitude of the negative trading-session jumps estimated for each day. 
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(c) 1-1 = 0 and (Jt i= (J (d) I-l i= 0 and (Jt i= (J 

Figure 3.1: DENSITY PLOT OF THE SIMULATED STATISTIC UNDER THE NULL I{YPOTHESIS WITH THE HaaT 
FILTER. (a) Density plot. of the simulat.ed statistic with zero mean and constant. volatility. (b) Density plot of 
the simulat.ed statistic with non-zero Illeall and constant volatility. (c) Density plot of the simulated stat.istic 
with 7.ero mean and stochastic volatility. (d) Density plot of the simulated st.atistic with non-zero mean 
ancl stochastic volatility. For each plot, a standard normal density function is imposed. The solid line is 
a standard normal density fUllction and the line with circles is a.n empirical null distribut.ion of the jump 
statistic from one million simulations. 
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Figure 3.2: DENSITY PLOT Of' THE SIMULATED STATISTIC UNDER THE NULL HYPOTHESIS WITH THE 58 
FILTeR. (a) Density plot of the simulated statistic wit.h zero mean and com;tant volat.ility. (b) Density plot. of 
the simnlat.ed statistic with non-zero mean and constant volatility. (c) Density plot of the simulated statistic 
with zero mean and stochastic volatility. (d) Density plot of the simulated statistic with nou-zero mean 
and stochastic volatility. For each plot, a stand8xd normal density function is imposed. The solid line is 
a standard normal denSity function and the line with circles is an ernpiriwl null distribution of the jump 
statistic from one million simulations. 
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(a) Total jumps at l-min frequency 

(b) Total jumps at 5-mins frequency 

(cl Total jumps at 15-mins frequency 

Figure 3,3: MULTI,SCALE JUMP DYNAMICS Of GENERAL ELECTRONIC (GEl FROM JA'IUAHY 1 TO MAfldl 

31, 2008, (a) The total Ilumber of jumps estimated for each day using one-minute data, (b) The t lal 
number of jumps estimated in each day using five-minutes data, (c) The total number of jump:; estimated 
in each day llsing fifLeen-minutes data, 
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(a) PositivE' jumps at I-min frequency (b) Negative jumps at I-min frequency 
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(c) Positive jumps at 5-mins frequency (d) Negative jumps at 5-mins frequE'ncy 
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(e) Positive jumps at 15-mins frequency (f) Negative jumps at 15-mins frequency 

Figure 3.4: l'vluLTI-SCALE DIRECTIONAL JUt"IP DYNAivJlCS OF GENERAL fl.ECTR.ONIC (GE) FRot,,( JANUARY 

1 TO MARCH 31, 2008. (a) The numher of positive jumps estimated for each day using one-mInute datil. 
(b) The number of negative jumps estimated for each day using one-minute data. (c) The number of positive 
jumps estimated COT mch day using five-miuut-cs data. (d) The numher of negaUve jumps cstimal,ed for each 
day using five-minutes data. (e) The number of positive jumps estimated for each day using fifteen-minutes 
dil-ta. ([)The number of negative jump!> tstlllwted fot each day lliiillg fifteen-n.illutes data. 
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•• ' '" ... "'~, ~,.. .~. , ... , • -. , .. ", ... > _ ... WM' ... " ..... .... ._" ,.... ...,. "'. ,_,... 
(a) Trading seS1iion jumps at I-min frequency (h) Off-trading session jllmps al I-min l'requenry 

: In
(c) Trading se~sion juml?~ at 5-mins frequency (d) Ofl~trading se~sioll Jurnp~ at 5-1nins frequeHcy 

(e) Trading session jumps at 15-mins frequency (f) Off-trading session jumps at. 15-mins frequency 

Figure 3.5: MOLTI-SCALE JUMP DYNAMICS OF GENERAL ELECTRONIC (GE) FROM JANUARY 1 TO MARCH 

31, 2008. (a) The number uf trading session jumps estimated for each day using one-minute data. (b) 
The nuruber of off-trading session Jumps estimated for each day nsing one-minute data. (c) The number of 
trading sessiou jumps estlmated for each day using five-minutes data. (d) The number of off-trading session 
jumps cstHnal,ed for each clay using live-ullnutes data.. (e) The number of tro.ding ~cssioTl jumps estilrlated 
for each day using fifteen-minutes data. (f) The number of off-trading sessIOn jumps estimated In each day 
using fifreeu-mlOutes data. 
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(a) Total jumps at I-min frequency 

(b) Total jumps at 5-mins frequency 

(c) Total jumps at i5-mins frequency 

Figure 3.6: MULTI-SCALE JUMP DYNAMICS OF lNTERKATIONAL BUSINESS :'VIACHINC (IBM) FROM JANL-\RY 

1 TO MARCH 31, 2008. (a) The total number of jumps estimated for each day using one-minute dctta. ,b) 
The total number of jumps estimated in each day using five-minutes data. (c) The toral number of jumps 
eSlimalf'd in each day using fifteen-minutes data 



123 CHAPTER 3. JU1vrp DETECTION BY WAVELETS 

(a) pO$itive jumps at 1-min frequency (b) Negative jump$ at I-min frequency 

(c) PO$itive jumps at 5-mins frequency (d) Negative jumps at 5-m1l1S frequency 
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(e) Positive jumps at I5-mins frequency (f) Negative jumps at I5-mins frequency 

Figure 3.7: Ml'LT1-SC.-'\LE DIRECTIONAL JUMP DYNAMICS Of INTERNATIONAL BUSINESS [V[ACHINE (IBM) 
FRO\'/ JANUARY I TO !I·-!ARCH 3 L 2008. (a) The number of positive jumps estimated for each day using 
one-minute data, (b) The number of negative jumps estimated for each day using one-minute elata, (e) The 
number of positive jumps p.st,imil.ted for each day using five--minuLf'S data. (d) The nnmber of n(:~;aLjv(' jumps 
estimated for each day using five-minutes data. (e) The number of positive jumps estimated for each day 
using fifteen-minutes dara. (f)The number of negative jumps estimated for each day using fifteen-minutes 
data. 
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(a) Trading sessiou jumps a.t l-min frequency (h) Off-tmding session jumps at l-min frequenry 

(c) Trading session jumps CIt 5-min frequency (el) Off-trading session jumps at 5-nUll frequellcy 

~	 
,----,-------------..

~ 

:� 

I
I :j� 
I� 

.� I 
= 

• I"., ...... ... 

(e) Trading session jumps at 15-min frequeuey (f) Off-trading session Jumps at lS-min frequency 

Figure 3.8: !V!ULTI-SCALE JUMP DYNAMICS OF INTERNAT10NAL BUSIN£SS MACHIN.E (IBM) FROM JANU,\RY 

1 TO \'vIARCH 31, 2008. a) The nnmber of trading session jumps estimated for each day using one-fIll:iute 
data. (b) The number of ofl~trading session jumps estimated for each day U5ing one-miuute ([ilia (e) 
The number of trading session jumps estimated for each day using five-minutes data. (d) The number 
of off-truding ~s.~ioll jumps estimated fOI each day using five-minut.es data. (e) The number of tradins 
session jumps estimated for each day using fifteen-minutes data. (f) The number of off-trading seSSIOn jumps 
estlma.ted in each day using fifteen-minntes data. 
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(a) Total jumps at I-min frequency 

(b) Total jumps at 5-mins frequency 
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(c) Total jumps at I5-mins frequency 

Figure 3.9: MULTI-SCALE JUl\IP DYNAMICS OF WAL-MART PROM JANUARY 1 TO i\1ARCH 31, 2008. (a) 
The total number of jump~ estimated for each day using one-minute data. (b) The total number of jumps 
cSlimal prJ in (,ach rJny using fivp-minut.es drtLa. (c) The Lotal number of jumps est.imnl.ed in f'.<\C:h day using 
fifteen-minutes <.laLa. 
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(a) Positive jumps at I-min [requeucy (b) Negative jumps at I-min frequency 

(c) Positive jumps at 5-mius frequency (d) Negative jumps at 5-mins frequency 
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(e) Positive jumps at IS-mins frequency (f) Negative jumps at IS-mins frequency 

Figure 3.10: MULTI-SCALE DIRECTIONAL JUMP DYNAMICS OF' \VAL-J:Ii!.-\RT FROM JANUARY 1 TO II'lARCH 

31,2008. (a) The number of positive jumps estimated for each day using one-minute data. (b) The number 
of negative jumps estimat.ed for each day using one-minute data. (c) The number of positive jumps estimated 
for each day using five-minutes dala. (d) The number of uegaLive jumps estimated for each day using five
minntes data. (e) The number of positive jumps estimated for each day using fifteen-minntes data. (f/fhe 
nnmber of negative jumps estimatcd for each day using fiferen-minntcs dat.a. 
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(a) Trading se~ion jumps at. 1-min frequency (b) Off-trading session Jumps at 1-min frequency 
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(c) Trading session jumps at 5-mins frequency (d) Off-trading session jumps at. 5-mins frequenc.v 
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(e) Trading session jumps at· 15-mins frequency (f) Oft~tra.d1Jlg session JUJlJPS at ] 5-11lill~ flequell<;y 

Figure 3.11: IV[ULTI-SCALC JUMP DYNA"ncs OF WAL--MART FROM JANUARY 1 TO MARCI·! 31, 2008. a) 
The number of trading session jumps estimated for each day using one-minute data. (b) The number of 
off-tra.ding session jumps estimated for each day using one-minute data. (c) The number of trading session 
jumps C'Stimated [or each day using fivc-minllt,p.~ data. (d) Th(' numher of oCT-trading session jumps cstim"ll'd 
for each day lIsing five-minntes data. (e) The number of trading session jumps estimated for each day uSln~ 

fifteen-minutes detta. (f) The number of off-t,ra.diug session jnmps estimated in each day using fifteen-minute" 
data. 
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Appendices 

A.I Appendix A: Proofs 

PTOOJ to Proposition 1 
Proof: With identical initial beliefs loA ::::: ]ti, and invoking DeGroot (1970), this leads to 

~A - fiB f01' t - 1 ') T - I'ft -) ... , .-. t ..... l 

Tt Tt-1 + 2Tc 

~A ~A Tf A B --:-:4
It II-1 + -(St + SI - 2ft-d 

Tt 

,ftB 
::::: j{3 + T 

f (sF + sf - 2H-~1) 
Tt 

Q.E.D 

Proof to PTOposition 2 
Proof: The proof is by induction, The Bayesian Nash equilibrium at T -1 is characterized 

by 

B iT-I - 0' 
XT-l = XT-l::::: 2n + 1 

PT-1 0. + (n~-l + n~_l )XT-l 

A B (I-I-a
0'+ (nT-l +nT-l)' 2n+l . 

Therefore, the equilibrium characterization holds when t = T - 1. Suppose the Proposition 

128� 
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holds at t = 2k, where k is a integer such that 2k S T - 1, i.e, 

2(1'-2k1/2 ,(1'-2k- 11 _n

(2n + 1)(1'-2k1/2(n + 1)(1'-2k)/2(.!2k - a) 

A 2(1'-2k)/2n(T-2k~l) ~ 

P2k = Q + (n21J (2n + 1)(1'-2k)/2(n + 1)(1'-2kJ/2 (f2k - a). 

Therefore at t = 2k - 1, the ith type A traders face the maximization problem which 

can be characterized by 

n~k_l nfl-l 

maxT24 1.,E[P2k - (0 + L X~k-l,j + L Xfk-l,j)]XiA-l y
k 

j=1 J=l 

First-order condition to the above utility maximization problem i;,;: 

B . A) A 
E [P2k1- a - (n - 1 X2k-1,j - nX2k_1,j - 2X2k-1,~ = O. 

Invoking the symmetry result, we will have x2\_1 = x¥k __ 1 in equilibrium, then Equation A.l 

can be rewritten a;,;: 

A E[P2k] - a 
X2k-1." = 2n + 1 . 

At t = 2k - 1, 

?(1'-2k)/2n (1'-2k) 

E[a + (n~k) (2n + 1)(1'-2k)/2(n + 1)(1'-2k)/2 Chk - a)J 

2(1'-2k)/2n (1'-2k) ~ 

= Q + n (2n + 1)(1'-2k)/2(n + 1)(1'-2~;)/2E(f2k - a) 

2(1'-2k)/2n (1'-2k+1) _ 

= a + (2n + 1)(1'-21<:)/2(71 + 1)(1'-210)/2(1210-1 - a). 

Therefore, the optimal holdings for type A traders and type B traders at t = 2k - 1 can be 

characterized by 

. E[p 1.1- '" ')(1'-2k)/2n (1'-2k+1)A Jj 2,' ~.~ ~ 

x2~:-1,i = x2k-1,'. = 2n+ 1 = (2n+ 1)(1'-2k+2)/2(n+ 1)(1'-2101/2 (f2k-l - a). 

Further, the price at t = 2k - 1 is 

A B 2(1'-2k)/2n (1'-2k) 

P2k-1 = a + (n2k-1 + n21<:-1) (2n + 1) (1'+21<:+2)/2(n + 1)(1'-2k)/2 (hk-1 - a). 
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At t = 2k - 2, the type A traders face the maximization problem which can be charac

terized by 
ntk-2 

maxX~_2.' E[P2k-1 - (Q + L x2L2,JJX~k-2". 
j=l 

First-order condition to the above utility maximization problem is: 

Invoking the symmetry result, we will have x2\-l = x~k-l in equilibrium, then Equation A.l 

can be rewritten as: 

it _ E[P2k-r] - (y 

x')k-2 ,- . 
-, '11 + 1 

Similarly, at t = 2k - 2 

it B 2(1'-2k)/2n (1'-2k) ~ . 

E[P2k-rl = E[n: + (17,2k-1 + 17,2k - 1) (217, + 1)(1'-2k+2)/2(17, + 1)(1'-21.0)/2 (12k-1 - ry)] 

2(1'-2k)/217, (1'-2k) _ 

Q+ 217, (217, + 1)(1'-2k+2)/2(17, + 1)(1'-2~:)/2E(h~:-1 - Q) 

2(1'-2X:+2)/2'11(1'-2X:+1) ~ 

= 0 + (217, + 1)(1'-2X:+2)/2(n + 1)(1'-2k)/2 (12k-2 - a). 

Therefore, the optimal holding for type A traders and type B traders at t = 2k - 2 can 

be cha.racterized by 

E[P2k-1] - a 
= 

17,+1 
2(1'-2k+2)/2n(T-2~:+1) ~ 

= (217, + 1)(1'-2~:+2)/2(n + 1)(1'-2k+2)/2 (12k-2 - 0) 

2(1'-1)/217,(1'-1.-1) ~ 

= (2n + 1)(1'-1.)/2(17, + 1)(1'-1)/2 (it - a). 

Furthermore, the price at t = 2k - 2 is 

Q.ED 

Proof to Proposition 5 
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Proof: At t, both types of traders know actual arrivals of both types of traders' last 

period, Ni?-l and N/!_11 and price in the last period, PI-I. When t is odd, t - 1 is even. 

From Proposition 4. 

A 2(T-t+I)/2n (T -I) "':'.1 

Pt-l = a + (nt -1) (2n + 1)(T-l-i- l l/2(n + 1)(T-t+1l/2(Jt-1 - a). (A.l) 

Type B can infer .fi?-1 according to 

'7A (2n + 1)(T-I+1 l /2(n + 1)(T-t+1l/2 
(A.2)11-1 = 0' + 2(T-i+I)/2 (T- tl(nA ) (Pt-1 - a),n t-1 

while type A cannot extract any information about it l' 'When t is even, t- 1 is odd. From 

Proposition 4, 

-- -- -- 2(T-l)/2n (T-t) f "':'A d
whe1e 1<"1-1 = (2n+I)(T-i+2)/2(n+l)(T-t-2)/2' Type 13 can in er 11- 1 aceor ing to 

(A.4) 

And type A can also infer fE-I in a similar way: 

(A.5) 

Hence, 

~4 ~ -A' -S
1 "Vhen t is odd, type B traders know ii-I' ft~21 ... 110 wIllIe type A only know 1,-21 

~B 'BI t - 4 1 ... 1 .fa . 

2. When t is even, type B traders know itll ~~2' ... , faA while type A only know Ttl' 
~B ~BI t -3" .... 1 10 . 

Q.E.D 

Froof to Proposition 6 
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Proof: This i::; clone by induction. Notice that at t = 1, there is no need to do signal 

extraction because there are no signals for traders at t = O. Therefore at t = 1, both types 

of traders will update their belief according to their own signals, i.e: 

TA A 
1 =� TO + Tc 

_8 +_T1 
B 

'0 J ( 

'""A fA . T'(SA i A )
11 .0 1-- 1-0 

Tl 
~B --:-s T, B "l3 
11 = .to + -(51 - fa ).

T1 

At t = 2, type D trader::; know it, and type A traders know J? For type B traders .. 

they can infer the signal type A trader::; received at t := I, st = ChA - .101 ) -;: + .IoA . In 

the meantime, type A traders are also able to infer the exact signal type D received at 

t = 1, Sf = C!? - .rr)~ +.-m when t = 2. Therefore type A traders update their beliefs 

incorporating their own signal 55.\ and the signal extracted Sf, while type B traders update 

their beliefs incorporating their own signal S/f and the signal extracted Si4 , i.e: 

A :=T2 T{'1 + 2Tt: 

872 = Tf + 2T,� 

N = 1(" + T~ (st + sf ~ 2N)� 
T2 

~B b T( B A ~B 
f2 = h + B (52 + S1 - 2h ).

T2 

AAt t := 3. type D traders know h and .it, while type A traders have no further infor
~ ~ _A ~ 

mation. Similarly, type B traders can infer exact signal st = (f2A - f~);, + 2ft - Sf 
while type A traders cannot, i.e: 

T3
4 = T~ + Tt 

Tf := T! + 2T, 

f34 l A + ~(SA - [4)
2 T.;,"' 3 .2 

~B "8 T( B A 13h h + 3(53 + 52 - 212 ).
T3 

AAt t := 4, type D can infer Sf = cl1 - h ) ~: + N, while type A knows if and Jr. 
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Type A traders understand that 

Therefore, type A traders cannot exact the exact signal anymore. They can only know 

T"SIj + -:;trs/f, which is normally distributed. They can always normalize this combined 
:J 

signal to update their belief. Let $;,,4 = TtPSi + tS/(D be the normalized signal, where 5:;" i::;
+T3 +T3 

- (l. Ll)2
normally distributed with mean f, precision rt = (l::;h 2 T". Therefore, 

Suppose the proposition holds at t = 2k 1 This implies 

~, Til Sil S8where SA - 2k-l 2k-2 + 2k-l 
2k - 1+"'2~_1 1+T2~_1 ' 

At t = 2k + 1, type B traders know Itk, 7;1-1' while type A traders have no further 

information, Notice that Stk is a function of SJ1:-2 and Sfk-l· This implies type J3 traders 

know 821- Therefore, type B traders can infer exact signal 

(A.6) 

I \Ve have already shown that it holds ill t = 4. 
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while type A traders cannot infer anything new. Therefore, at t = 2k + 1, 

_A 
/2k+1 

_B 
'21;+1 

-A�
f 2k+l� 

In other words, the proposition holds at t = 2k + I, To complete the proof, we also need 

to examine the heliefs updating at t = 2k + 2, At t = 2k + 2, type 13 traders know hk+l 
-. , T A ....... ...-.. .

and f?k Therefore they can infer SA = 2k-rl (l'A - fA) + fA Therefore for tvpe B - " 2k+l T, 2k+1 2h- 2k' '.J 

traders, the belief updating at t = 2k + 2 is characterized as 

B 
T2k+2 

~B 

hh2 

while type A traders only know hA-+I and hk-l, They understand the belief updating of 

type B at t = 2k + 1 is 

~ _B SB S8 
Therefore, type A can infer a composite signal SA, = '2kH 2!' + 2Hl. with the 

2k,2 I+T2~+1 I+TJ{+l' 
1 '( 8 )2" -ApreCIsIOn T2h'-',2 = (~..L7

2£+) )2 Tc- In summary, the helief updating of type A traders at t = 
, T 2k+ 1 

2k + 2 is 

A 
T2k:..L2 

B 
T2A-+2 = 
-A� 
fU;+2� 

~B 

f2k+2 = 
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Hence, the proposition holds at t = 2k + 2 and this completes the proof. 

Q.E.D 

Proof to Proposition 12� 
It is straight forward to check that the proposition holds. Then we leave out for readers'� 

exercise.� 

Q.E.D 

Proof to Proposition 13 
If hierarchical infofTnation structure is assumed, the infinite regress problem collapses. The 
iterated expectations is reduced to V/ = E[Y? 1F2,tl. We restrict ourself to the linear rational 
expect.ation equilibrium, where the price is a linear function takes the form of 

(A.7) 

Given Equation A.7, the demand for type 1 trader, the fully informed trader and the 
demand of type 2 trader, the partially informed trader are 

X t 
l 

= :"'1 E[Q'-I-t1 FI,,) 

X? = :.;zF:[Qt+1 IF•.d (A.B) 

Using Equation A.7, we have 

Q'+I 'xV;'+1 + (1 - 'x)P'+1 - (l + r)P, 

'x~';'+l + (1 - 'x)(pPt + PVV,+I + Pe 8'+1 + P~(V'~l - V,'et») - (1 + r)P, 

(1 - 'x)pPt + (,X + (1 - 'x)Pv)(aV, + bVfd + (1 - 'x)h,8'+1 

+(1 - A)P~(V'~1 - Vl~l) - (1 + r)Pt (A9) 

Hence, we have 

((1 - A)p- (1 + r»Pt + [A+ (1 - 'x)Pv]a[f,;l + ,,;2] + (1 - 'x)P~(f,'l~1 - V'~I) 

(1 - 'x)p - (l + r)P, + (A + (1 - 'x)Pv )a(V;1 + V,2) 

«1 - ,X)p - (1 + 7')Pt + (A + (1 - A)Pv)aV, + (A + (1 - A)Pv)a.(V,1 - v,l) 

((l - 'x)(l - (1 + r»Pt + (,X + (1 - ,X) Pv)aYt + (1 - 'x)P~£[(f"t~1 - V,:.. t )\1-\,,) 

(A.lO) 

Therefore, aggregate market demand is 

x,1 + X,2 = 0.((1 - A)p - (1 + r))P,. + (,X + (1 - 'x)Pv )aV, ) 

+(,)1(1 - 'x)P6.E[V'~l - V/,-dFu ] +W2(A+ (1- 'x)T'v)a(V,,! - V/) 

(A.l1) 
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Market clearing condition implies that 

(JPt - 1 + 8, !l((1 - A)p - (l + r))P, + (A + (1 - A)PV)UVtl 

+("'-'1(1- A)J,,,,E[{::~~l - V;~lIF),t) +W2(A+ (1- A)Pv)(),(~l - V,I) 

(A.12) 

Matching coefficients wlth Equation A.7, we have 

(j 
P 0((1 - A)p - (1 + r)) 

a!l(A + (1 - A)PV
Pv n((l - A)p - (l + 7')) 

1
Pe 

0((1 - A)p - (1 + 7')) 

(A.13) 

Hence, we can solve all parameters except Pc:. and they are 

o� (1 - A)I1/ - (1 + r)!lp - (J 

aA
Pv 

- ;~ - u(1 - A) 

PPe 
73 

(A.14) 

Now, we need to calculate Pe:". In order to do that, we need to model the filtering expectation 
problem for type 2 trader explicitly. What type 2 trader can effectively observe is (Pv 
P6)~1 + Peef . He need to forecast ~I. It is essentially a filter problem. We set up the 
system as 

V/ aV/_ 1 + bv d 
ye (Pv - p",W/ + PPJ8 t 

Where ~t is iid normal with mean 0 and variance 1 and e t is iid normal with mean 0 and 
variance a§. Applying Kalman-Bucy filter 2. we have 

(A.15) 

where k solves 

Let c = 1 -� k(Pv - P6 ), we can rewrite Equation A.15 into 

(A.16) 

2See Jazwinski (1970) for a description. 
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If we impose Equation A.16 on the market clearing condition, we have 

Pc,. = :"'lac(l - ),,)Pc,. + W20,()" + (1 - ),,)Pv) 
(A.I?)0((1- ),,)p- (1 +r) 

Hence, we can solve for PI:i and c simultaneously 

UW2(),,+(1-),,) ph n: _ A»t 
P", = (A.18) 

where c solves 
o 

p- 2 )( 2 2 2""2rJ'e(l - r:� 1 - a c) - cbv(Pv - Pc,.) = 0 
ii 

Q.E.D 

Proof to Proposition 1 'l 
\Ve only prove it, when N =4. The proof for N > 4 is similar. First, we have two partially 

informed traders, type 2 trader who knows V?, ~3, and type 3 trader who only knows ~a 

No(ice that there is only one instrnment for them to filter the useful information for them, 

i.e., the market price of the underlying asset. We conjecture the price to take form of: 

I{ = pPI - 1 + Pvvt + ~el + Plll (V1,t - V/) + P1l2(Vl,t + V3~t - v? - V(
2 

), 

(A.19) 

where V2~f = EW? IF2,t], {ilt = E[VlIF3,t], f3\ = E[V?1F3,tl· 

Given Equation A.19, the demands from all traders are: 

xl = W1 E [Qt+l/ FJ/; 

xl = W2 E [Qi+lIF2,1] 

xl = W3 E [Qt+11F3,tl 

Using Equation A.19, we have 

Qt+l =� .\\!t+l + (1 - .\)Pt+1 - (1 + r)Pt 

.\yt+l + (1 - .\)(pp{ + PVVt-cl + Pe 8 t+1 + P6 ) (172\+1 - v~~d 

+P1l2(V3~t+l + V3~t+l - V;~J - V~~l») - (1 + r)Pt 

((1 - .\)p ~ (1 + i))Pt + (.\ + (1 - .\)Pv )(avt + bvet) + (1 - .\)Pe8t-Ll 

+0- ,\)(P6 1(t!l,l+1 - Vt~l) + P1l2(fi,t+l + f3~t+l - vt~l - Vt~d (A.20) 
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Hence, we have: 

E[Qt+lIF3 t] = ((1 - '\)p - (1 + T))Pt + (,\ + (1 - '\)PV )a(~l,t + v.}t + v,?) 
~l -1

+(1 - '\)P6 l(E[V2J+lI F3.tl- \13,1+1) 

((1 - '\)p - (1 + f'))Pt + (.\ + (1 - '\)Pv )a(V3\ + V1~t + Vt
3 

) 

((1 - .\)p - (L + Tnpt + (,\ + (1- '\)Pv)aYt + 

(.\ + (1 - '\)PV)a,(V3
1
.t+l + V3~t+l - v,~l - V;~l) 

E[C·tt-,-) IF2.t] ((1 - ,\)p - (1 + "))Pt + (.\ + (1 - '\)Pv)o.(V/ + Vt
2 + V;3) 

~l ~2 ,1 2
+(1 - '\)P"",2E[(\l3,t"~ !- V3.r+l - ~I+l - Vt+1!P2,t)]� 

((1 - ,\)p - (1 + T))Pt + (,\ + (1 - '\)Pv)a\Jt + (,\ + (1 - '\)Pv)a(V2~1 - Vi\)� 

+(1 - '\)P"",2E[(V},t+l + Vft-+-l - V;~1 - V;: .:F2.tl� 
-(1 - ,\)P"",2E[V2.h-l - Vt~ljF2.tl
 

E[Qt+lIFl,tl ((1 - '\)p - (1 + r-))Pr + (,\ + (1 - '\)Pv)a'V; + (1 - ,\)P6 1E[(V2
1
,t+l - Vt~l)!Fu] 

~l ~2 1 2 .+(1 - .\)P"",2E[(~3,t+l + V3,t+l - 11,+1 - V,+l)IPl.t] (A.21) 

Imposing market. clearing condition and mat.ch the coefficients with Equation A.19, ,'Ie 

have: 

p 
D((l - '\)p - (1 + r)) 

anp, + (1 - .\)Pv
Pv 

D((l- ),)p- (1 + r)) 
1 

Pe 
D((1- ),)p - (1 + T)) 

(A.22) 

Hence, we can solve all parameters except Pf::,l and P6 2 and they are: 

0= (1-),)D p2-(1+r)Dp-,8' 
a), 

Pv 
_L - 0,(1-),)

pll 

p
Pe 

{j 

(A.23) 

Now, we need to calculate P6 l and Pf::,2. In order to do that, we need to model the filt.ering 

expectation problem for type 2 trader and type 3 trader explicitly. What type 2 trader can 

eflectively observe is (Pv - Pf::,1 - P62 )v? +PeSt· And t.ype 3 trader can eflectively observe 
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(Pv - P~2 )(V/ + V?) + Pf::,1 W1,t) + PeGt. Type 2 trader need to forecast V/ while type 3� 

trader need to forecast ~1, ~2 and V2~t. Notice that in hierarchical information structure,� 

F3,t C F2,t. Therefore we have E[E[VlIF2,tI1F3,d = E[~IIF3,t1 = Vit which follows directly� 

from law of iterated expectation.� 

Next, let us write the filter problem for type 2 trader first:� 

~l = a~:-1 + bvcF 

Yt = (Pv - Pi:,1 - Pf::,2)V/ + PeGt 

where t~ is iid normal with mean 0 and variance 1 and e t is iid normal with mean 0 and 

variance a~. Applying Kalman-Dury filter, we haVE~: 

~l	 = G,(l - k(Pv - Pf::,))V/_ 1+ k(Pv - pf::,)~l + kPe8 t (A.24) 

where k 80lves 

where Pi:, = Pi:,l + P::::,2.� 

Let c = 1 - k(Pv - Pfl ), we can rewrite Equation A.24 into� 

(A.25) 

\Ve continue to investiga~e the filter problem faced by type 3 trader: 

~1+Vi2] [a 0] [Vi~I+V;~I]. [10] [ bvct ] (A.26)[ Pl,t - ViI = 0 ac Vl,t-l - V;~1 --- 0 1 -bvccl. + kPeGt 

The 8econd line of Equation A.26 means that type 3 trader do not make systematic expec

tation errors. It implies that in equilibrium, type 3 trader can forecast the right parameter 

values which determine the evolution process of the expectation errors for type 2 trader but 

not the errors themselves. If we apply Kalman-Buey filter again, we have: 

~1 ~2]
~3,t + ~~.t = ([1 0] _[k1(PV- Pfl2) k1Pfll]) [a 0] [~3>-J + ~3:t-l][ VI3,t - VI3,1 ° 1 k2(PV - Pf::,2) k2Pf::,1 0 ac V3,t-l - V3,1-1 

1 2
+� [k1((A,,T - Pf::,2)(Vi + Vi ) +Pf::,l(Vl,t) + PeGt)] (A.27) 

k2((Pv - Pfl2)(Vi1 + Vi2) + Pf::,l(V{t) + Peet) , 
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where k1 and k2 are parameters describe the weights used in filtering. Notice that it is really 

complicated to solve the parameters matrix directly. But we do not need to solve for the 

parameters value for fiJt<'ring. We only need to describe the evolution of expectfl.tion ('frors 

of type 3 trader. Notice that V} i-V} t = 0 by law of iterated expectation. Equation A.27, , 

can be reduced to: 

(A.28) 

Explicit calculation shows: 

~ 1 ~ 2 1 -2� ~ 1 ~ 2 I 2
V3,t + V3,t - 11; - Vt =� 0,(1- kI(A/ - Pt>2»(V3 ,t-1 + V3,t-l - Vi-I - 11;-1) + k1P(-)8t 

+k1Pt>l(V21,t - 11;1) + (1 - k1(Pv - Pt>2»bv(c.~ + c.f) 
1 1� ~1 ~') 1 2

Pt>1(V2,t - Vi.) =� o,(Pv ~ P6,2)(V3,t-1 + V3~t-1 - Vi.-I - Vi.-I) 

-bv(Pv - Pt>2 (d + c.Z) - Pe8d (A.29) 

Substitute the second line of Equation A. 29 into the first line of Equation A. 29 J we have 

(A.30) 

Equation A. 25 and Eqnation A .30 describe the evolution of expectation errors of type 2 

trader and type 3 trader respectively. Using them with market clearing conditions, we have: 

aW3(A + (1 - A)PV ) 

~ - a(wl + w2)(1 - A) 

OW2(A + (1 - A)Pv» - aC(l - A)W2Pt>2 
- (!. - ac(l - A)Wl

p 

where c solves 

p2 2 2 2 aA� 2
2'O'e(l- c)(l - a c) - cbv ( (J - P6,l - Pt>2) = 0 
(J - pI) - 0,(1 + A) 

Q.E.D 
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Proof to Proposition 19 
From Proposition 13, Pe = ~. Hence, if f3 < °and p > 0, Pe < 0. Pe < Osuggests that if� 

there is a positive shock in noise traders' supply, price should decrease in response.� 

Then we only need to check the sign of P6..� 

First, we prove that if pC;., < 0, then Pv < ° Suppose not, Pv > 0.� 

Fl'Om Proposition 13, Pv = i3 a~ , the sign of Pv is determined by the sign of - If) 
-prr-a 1-,\) p 

0.(1 - A). To see this, if Pv > 0, that is, - ~~ - 0.(1 - A) > O. We mllst have DC - ~l 

arr(l - A)C) > °and awz(A + (1 - A)PV) > O. From Proposition 13, Pi:>. is 

o.W2(A + (1 - A)Pv)
P6. = -% - aWl(1 - A)C 

aW2(A + (1 .- A)PV ) 
= (A.31)

D[- ;0 - a?t(1- A)C] 

Recall D = WI + W2 and both WI and W2 are positive. Hence, 'ff < 1. Therefore, both 

numerator and denominator are positive. Hence, P6. > 0. That is, to have a P6. < 0, Pv 

should be negative. 

If Pv is nega.tive, i.e., -:0 - 0.(1- A) < 0 

There are two possible scenarios: first, the numerator in Equation A.31 is negative, i.e., if 

Pv < -1~'\' The denominator of Equation A.31, (-:n -0.1+(1 - A)C), should be positive 

in order for Pi:>. < 0. That is, a '1; (1- A)C < -:0. < 0.(1- A). Notice that this requires that 

TI-c < 1. Because rr < 1, it is sufficient to have C < 1. From the proof to Proposition 13, 

we know that 0 < k < 1 can guarautee °< c < 1. 

Second, the numerator in Equation A.31 is positive, i.e., if 0> Pv > -I~'\' However, it is 

uot possible. To see that, 

A o.A(1- A) + A[-ih - 0.(1 - A)] 
Pv + 1- ~ = [-:0 - 0.(1 - A)][1 - A] 

-A f3 
pll 

(A.32)!-ih - 0.(1- A)][1 - A] 

vVe know that (3 < 0, P > 0, D > °and), > O. Hence, the numerator of Equatiou A.32 is 

positive. For the denomiuator, [-!!o - 0.(1 - A)] < 0 because of Pv < 0 and [1 - A] > O. 

Thus, the denominator of Equation A.32 is negative. That is, PI! + I~'\ < O. In other word, 

(A + (1 - A)PV ) < O. That is, only the first scenario is possible. 
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Q.E.D 

A.2 Appendix B: Derivations 

Derivation oj Equation 1. 7 
vVe start with Zt. By definition, Zt = ..iL, which can be written as 

h-1 

7 sA +SB 
Zt = 1 + -=-( t ~ t - 2) 

7t fl-1 

(A.33) 

Note that _1_ 
Z'-l 

= &-2. which can be written as 
/'-1 ' 

1 Tt-1 
= 

Zt-l 7[-2 

T( (SA I 
--:~;o-- t-l T 

It-2fl-l 

S8 )t-l 

which can be used to solve .,.!...... 
fl-l 

1 

.ft-l 

Substitute Equation A.34 into Equation A.33, we get the expression. 

Derivation oj Equation 2.5 
In order to get Equation 2.5, we need to rewrite Equation 2.4 into 

8 t 6. 
PI  pPt-l =  ( )6. + --E[Avt-rl + (1 - A)(Pt+1 - pPt )] 

w l+r 1+7' 

where 6. is a constant. Hence. 

(1 + 
6.p(l  A)

1 )Pt+r 
= PPt - 1 -

8 t 6. 
( ).6. + --E[Avt+l + (1- A)Pt+ 11 

w l+r l+r 

In order to match the coefficients of Equation 2.4, we need to have: 

P 
6. 

f3 
w(I + r) 

1 + _6._p-,--(l_-_A_) 
l+r 
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The first line implies that .6. = - _('j(J,) and substitute it into second line. Then we
fJu.-1 TT 

have: 

(1 - >')/ + (1 +r)wp+ f3 = o. 
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