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Abstract

This thesis consists of three essays that study three interdependent topics: microstruec-
ture foundation of velatility clustering, incfficiency of information diffusion and jump detce-
tion in high frequency financial time series data.

Volatility clustering, with autocorrelations of the hyperbolic decay rate, is unguestion-
ably one ol tlic most iniportant stylized facts of financial time serics. The hrst essay forins
Chapter | which presents a market microstructure model that is able to generate volatility
clustering with hyperbolic autocorrelations through traders with multiple trading frequen-
cies using Bayesian information updating in an incomplete market. The model illustrates
that signal extraction, which is induced by multiple trading frequency. can increase the
persistence of the volatility of returns. TFurthermore, it is shown that the local temporal
memory of the underlying time series of returns and their volatility varies greatly with the
number of traders in the market.

The second essay, Chapter 2, presents a market microstructure model showing that an
increasing nuniber of information hierarchies among informed competitive traders leads to a
slower information diffusion rate and informational inefficicncy. The model illustrates that
informed traders may prefer trading with each other rather than with noise traders in the
presence of the information hierarchies. Furthermore, it is shown that momentum can be
generated from the trend following behavior pattern of noise traders.

I propose a new nonparametric test based on wavelets to detect jump arrivals in high
frequency financial time series data, in the third essay, Chapter 3. It is demonstrated that
the test is robust for different specifications of price processes and the presence of market
microstructure noise and it has good size and power. Further, I examine the multi-scale
jump dynamics in U.S. equity markets and the findings are as tellows. First, the jump

dynamics of equities are cotirely different across different time scales. Second, although
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arrival densities of positive jumps and negative jumps are syinmetric across different time
scales, the magnitude of jurnps ig distributed asyimmetrically at high frequencies. Third, only
twenty percent of juups occur in the trading session from 9:30AM to 4:00PM, suggesting

that jumps are largely determined by news rather than liquidity shocks.

Keywords: Trading frequency; Volatility clustering; Signal extraction: Hyperbolic decay: Information
hierarchies; Information diftusion rate; Momentum: Jump detection; Wavelets; Directional jumps:

Negative jumps: Positive jumps

Subject terms: Trading frequency; Volatility clustering; Hierarchical information; Momentum: Wavelets;

Risk management
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Chapter 1

Trading Frequency and Volatility
Clustering

1.1 Introduction

Over the last five decades, a broader picture of the time series features of asset prices
has emerged. Among these features, return predictability at high trading frequencies and
persistence of the variance of returns have received significant attention both theoretically
and empirically. This latter feature is also known as volatility clustering and is unquestion-
ably oue of the most important stylized facts of financial time series. Engle (1982, 2000)
and Bollerslev (1986) have proposed (G}ARCH-family models, which has been shown to
be capable of capturing conditional volatility parsimoniously. In addition, as documeuted
by Mandelbrot (1963), the autocorrelations of the variance of returns decay at a hyper-
bolic rate rather than exponentially. Several studies, however, have investigated the reasons
and mechanisms behind such volatility persistence in market microstructure-type economic
models, and have snccessfully generated volatility clustering.!

The microstructure model proposed in this chapter provides a framework for generating
volatility clustering of the returns with autocorrelations of hyperbolic decay. In addition,
the proposed mechanism is capable of generating a linearly trending price and a negative

correlation at the first lag of returns. The formation of volatility clustering is due to the

'For example, Brock and LeBaron (1996), Cabrales and Hoshi (1996). Granger and Machina (2006)
presents general mechanisms of how a time-invariant system can exhibit volatility clustering, although they
do not provide microeconomic models that ¢ould lead to the system proposed in their paper.



CHAPTER 1. TRADING FREQUENCY AND VOLATILITY CLUSTERING 2

combined effects of the presence of rational traders with multiple trading frequencies and
their strategic interactions. It is natural to model traders with mnltiple trading frequencies,
because not all traders trade at every possible opportunity.? The assumption that traders
trade strategically is also plausible, since large investors are aware that their trades have
an impact on the market price and take this effect into account. Note that ne specific
assumptions need to be made regarding the informational structure; information can he
available either privately or publicly.

Specifically, T consider a discrete-time, multiperiod model in which traders trade a stock
that has a limited risk absorption capacity (i.e., an upward sloping supply curve).® Traders
are divided into two groups according to their trading frequency, while group size is random
to prevent perfect signal extraction. Type A traders trade more frequently (trade every
trading period) while type B traders trade less frequently (trade every second period).?
In this model, traders may differ in the following respects: First, they may have different
beliefs about fundamentals either due to different initial belicfs in the public signal environ-
menl or different realizations of signals in the private signal environment. Second, {raders
differ in trading strategies due to their different trading frequencies. Let the public signal
environment with identical initial priors of fundamentals be the benchmark case. In such
a benchmark case, the ageregate demand of type A traders depends on the presence of
type B traders. Therefore, although there are no trades between groups, there will be an
alternating pattern in price due to the multiple trading frequencies.

When traders of multiple trading frequency behave strategically, the volatility clustering
is generated for two reasons. First, multiple trading frequencies lead to an alternating
pattern in prices, which generates a serial correlation in the magnitude of returns. The
alternating pattern in prices is partly dne to the absence of infreqnent traders, which lowers
the size of the aggregate demand in every second period. The alternating pattern in prices
is also partly due to the different strategies nsed by freqnent traders depending on the

presence of infrequent traders. Intuitively, frequent traders may behave like nionopolists

*(ne example is the futures market. where typical traders are hedgers and speculators. The speculators
in futures market generally have shorter trading horizons. Another example is the comparison of intraday
traders and mutual fund managers, since mutual fund managers cannot conduct intraday trading due to
regulatory restrictions.

*To allow for the strategic interaction between traders, 1 do not allow an infinite supply of the asset, such
that large orders would have no impact on price.

“For simplicity. I do not mode the arrivals of traders endogenously, although the main results will apply
with endogenous arrivals.
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in the absence of infreqnent traders and like oligopolists in their presence. We label this
source of volatility clustering the alternaiing effect. Secondly, in the private signal case.
each group of traders has its own set of signals. Given difforent trading frequencies, it is
natural for traders in one group to infer the other group’s signals from the price. Infrequent
traders can infer the signals from the price in the period when they are absent, because the
prices are entirely determined by the demands of frequent traders. Therefore, past prices
provide information that determines the current price. This feedback mechanism facilitates
the formation of the volatility clustering (see, e.g., Brock and LeBaron (1996)). We label
this source of volatility clustering the signal extraction effect.”

When there is strategic interaction between traders, then the group size of traders, L.e.,
the mean arrival of traders, also has an impact on the optimal strategy of traders. The
strategic competition is more intense with larger group sizes. In the limit, the strategic
interaction among large groups of traders converges to the competitive outcome. This
decreases the persistence of the magnitude of returns significantly. These results show that
when group sizes are large, the volatility clustering becomes negligible. Thus, the strategic
behavior is necessary for the presence and the persistence of volatility clustering in this
model.

There are two additional stylized facts that are generated by our model in addition to
volatility elustering, namely, lincarly trending prices and a negative correlation at the first
lag of returns. The former is mainly due to the optimal trading strategy used by the traders
in equilibrium. There are two ways for traders to make a profit in my model. First, traders
who hold shares of the stock receive the payoff on the terminal trading date. Traders adjust
their optimal holdings according to the realization of their own signals and to the other
group’s signals that they have extracted. Second, traders will harvest capital gains if they
can correctly anticipate the price movenent. Decause traders are informationally large in
this model, they can strategically adjust their holdings across the remaining trading dates in
order to take the advantage of their own impact on prices, which leads to trending prices.®

The negative {irst-order antocorrelation of returns is consistent with the concept of noisy

5This mechanism can generale volatility clustering aven in the public signal case where signal extraction
is absenl. On the other hand, 1 find that signal extraction without multiple trading frequencies cannot
generate volatility clustering.

SFor example, if they believe that the stock is undervalued in the current period, they may adjust their
holdings over several periods instead of just increasing their current period holding which may could drive
the price up sharply and dimiuigh the future capital gains.
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rational expectation equilibrium (see e.g., Makarov and Rytchkov (2007)). The correlation
between realized and expected returns can be shown to depend partly on the correlation
between exogenous supply and the current price, which is negative.

This model generates a number of interesting and testable implications that are absent
from standard models of asset pricing with uniform trading frequency. For instance, the
traders withh more precise signals have a uarginal effect on the evolution of the equilibriun.
This seemingly counterintuitive result can be explained by the fact that traders strategically
adjust their optimal holdings over all trading dates. Perhaps the most novel feature of
the model is that traders with different trading frequencies have different levels of impact
on equilibrium prices and returns, with infrequent traders having a larger effect. This
naturally results from the fact that infrequent traders have fewer trading dates toe smooth

their adjustment of optimal holdings.”

Furthermore. T show that signal extraction not
only helps traders to infer the fundamentals more precisely but also provides them with
more accurate guesses as to the behavior of the other type of traders. This leads to greater
persistence in the magnitude of returns. Naturally, this provides both a feedback mechanism
and a forward mechanism, both of which coniribute to the formation of volatility clustering.

Overall, the main contributions of this chapter are as follows. First, rational traders
with multiple trading lrequencies behaving strategically can generate volatility clustering,
and this mechanisim is robnst with respect to different specifications of informational strue-
ture. The qualitative statistical properties of equilibrium including prices, returns and the
magnitude of returns, are similar in the public and the private signal settings, with or with-
out the same initial beliefs about fundamentals. Second, multiple trading frequency in the
private signal environment can induce signal extraction, which contributes to the formation
of volatility clustering and leads to hierarchical information. Hence, multiple trading fre-
quencies within the private information environment provides theorctical justification for
the existence of hierarchical information, where the infinite regress problem collapses (see,
e.g., Townsend {1983), McNulty and Huffman (1996) and Bomfim (2001}). Third, retnrn
predictability is generated and is robust with respect to diflerent informational structures.

Several papers have examined the role of multiple trading frequencies in different en-

vironments. For example, Cliristian and Jia (2005) try to determine the optimal trading

7 As stated earlier, the proposed mechanism can generate similar stylized facts in various informational
settings which may lead to identification problems. This issue can be easily solved by examining the impulse
responses of traders with different trading frequencies.
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frequency using a technical trading rule. Hauser ef ol {2001) shows that the higher aggre-
gate trading frequency, the more efficient the price discovery in a non-dealer market. To
my knowledge, however, no paper which links the multiple trading frequencies to volatil-
ity clustering and hicrarchical information. Unlike Hauser et ol (2001}, who focus on the
trading frequency determined by the institution at the aggregate level, this study examines
trading frequency at the microstructure level.

There are a number of ways to generate volatility clustering. For instance, Brock and
LeBaron (1996) studied asymmetric information, the adaptive beliefs model of stock price
and volume, in which volatility clustering is generated from traders experimenting with
different belief updating systems, where experimenting is based on the past profits and
expeeted titure profits. Cabrales and Hoshi (1996) built a heterogeneons beliefs asset pricing
model in which the persistence of distribution of wealth can lead to volatility clustering.
The approach in Haan and Spear (1998) was to develop a heterogeneous agent, incomplete
market model of interest rates, in which persistence of financial frictions leads to volatility
clustering. de Fontnouvelle (2000} investigated a costly inforination model of asset trading,
in which agents need to pay to acquire information, which leads to volatility clustering
in price. Timmermann {2001) studied an imperfect information model of asset pricing, in
which Bayesian updating of parameter estimates leads to volatility clustering. Hommes
{2006) has an excellent survey on generating volatility clustering through interacting agent
models, see also Hommes (2008). In such models, these wide range of stylized facts are
generated from the interaction between informed and noise traders through the adaptive
belief updating and its evolution, as in Brock et al. (2005). One of our distinct contributions
to this literature is the embedding of a Bayesian Nash equilibrium model which leads to
the strategic interaction amongst informed traders. Such interaction in the presence of the
multiple trading frequency is capable of generating a set of stylized facts widely observed in
the finance literature.

Unlike Brock and LeBaron (1996), this model does not rely on the experimentation
between different beliefs npdating svstems. Although the feedback mechanisni, i.e., the
signal extraction, can contribute to the formation of volatility clustering of returns in this
maodel, it is not essential. In this model, volatility clustering is generated even in the public
signal environment where signal extraction is absent. Unlike Timmermann (2001), Bayesian
information updating is not sufficient to generate volatility clustering in this model. My

findings show that without strategic behavior, the volatility clustering is absent cven with
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Bayesian information updating.

This chapter is organized as follows. Section 1.1 describes the basic setting used in the
chapter. Section 1.2 starts with the benchmark environment of the public signal case. In
this case, although the setting is simplistic in that all signals are assumed to be publicly
available, the model can generate the three stylized facts: First, prices display long mem-
ory and an upward sloping trend. Second, returns are stationary and display a negative
first-order correlation. Third, the variance of returns (or the magnitude of returns) displays
volatility clustering with hyperbolic decay rate. Section 1.3 considers the different infor-
mation structure of the private signal case, which yields additional interesting results. The
private signal case possesses all the features of the public signal case. In addition, multiple
trading frequencies lead to signal extraction behavior, which adds to the temporal memory
of the variance of returns and generates an information hierarchy. In Section 1.4, Monte
Carlo simulations are carried out to illustrate the stylized facts, which are consistent with
the theoretical results. Section 1.5 considers two extensions: First, in addition to improving
the understanding of fundamentals, signal extraction can also help traders to predict the
behaviors of the other group; we label this sophisticated signal extractian. Hence, signal
extraction not only provides a feedback mechanism but also a forward-looking mechanism
that links the prices to futwre prices. The other extension is to allow heterogeneous priors,

which is shown to have negligible effects on the main findings. I conclude afterwards.

1.2 Basic Setting

I model a hypothetical financial market in which there is a single trading asset.®* Assume
that there are two groups of traders on the market, namely Type A and Type I3 traders.
Type A traders come to the market every period (speculators}, while Type D traders come
every other period (fundamentalists). Figure 1.1 iliustrates this multiple trading frequency
market structure. During a trading period, traders receive a signal about the value of the
underlying asset. For analytical tractability, I make two simplifying assumptions: trading
dates are finite and traders maximize per period profit. The first assumption is innocuous.
The myopic preference assumiption may cause dissatisfaction, but it helps to avoid the

large state variables problem which is endemic in the* forecasting the forecasts of others”

81 borrow the notation of Hong et al. (2008), who investigate the role of overconfidence in gencrating
speculative bubbles.
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Figure 1.1: A FLOWCHART FOR MULTIPLE TRADING FREQUENCY. Type A traders {speculators) come to the
market every trading date while type B traders {fundamentalists) come to the mnarket every second trading
date.

literature. However, it turns out that it is not a serious problem to ignore hedging demand
when the agent’s maximization problem has a quadratic form and the signals are normally
distributed.?

There is a single traded asset in the economy, with 7'+ 1 trading dates: ¢t =0, 1, ... |
T'. The asset pays /T at £ =T, where ]? is a normally distributed random variable. !’ The
supply function of outstanding shares is (}s = p — «, wheve (J; is aggregate liquidity supply
and « captures the fixed cost of providing outstanding shares.!* The supply function takes
on a simplest form, because the supply side is not the main focus of this chapter.

Two groups of traders, type A and type B, maximize a per-period objective function
E(W), taking into account their own infiuences on the equilibrium prices,'? where W is the
wealth of the trader. The type A traders come to the market at every date, but type B
tradersonly come at ¢ =0, =2, ... . {=T—-1i{Tisodd,ort=1,t=3,...,t=T-1
if 7" is even.

The arrivals of traders from both groups are assumed to be random. Random arrivals
make it difficulty for traders to distinguish signals from the prices. The effective numbers

of traders, nj® and nf for type A and type B, are governed by an identical and independent

"However, myopia is not a main driver of equilibrium price and return dvuanics in this model. As
indicated earlier, there are two channels for the proposed mechanism to generate volatility clustering, namely,
“Lhe alternaling effect” and “the signal extraction eflect”. The first channel iz a naiural consequence of
traders with multiple trading frequency. The second channel is naturally embedded in the private information
cnvironment. These two chanuels are independent ol the myopic prelerence of traders.

"®The payofl fcan be interpreted as the liguidation value of the firm, and may be negative in the case of
bankruptcy {considering the opportuuity cost).

Y'The supply side is not modeled explicitly. The liquidity supply may come from noise traders or long
term investors.

"Myopic preferences are adopted to avoid dynantic hedging problem and to obtain an analytically tractable
solution.
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(iid) normal distribution,® N(n,w).
When t = 0, the two groups’ prior beliefs about )T are normally distributed, denoted by
1 1

N()’A'OA, 5) and N(_;‘BB, E) where _}%A and fgg can be different. Since 1 focus on the effect of

H

trading frequency, the same prior beliefs are assumed, i.e., ,)%A = ‘)?073 = ‘?6. Att=12, ...
T — 1, each trader type receives one signal: Sf! = f—l— e and SF = i+ effort=12 ...
T~ 1, where ¢, ¢ are iid normally distributed N (0, ,ic) where 7, is the precision of the
signal 4

I start with the public signal case. Figure 1.2 illustrates the mechanism of price formation

in the public signal case.

1.3 Public Signals

1.3.1 Equilibrium

I first solve for the beliefs of the two types of traders at time ¢. Using standard Bayesian

updating formulas, these beliefs are easily characterized by the following proposition.

Proposition 1 The belicfs of the two groups of traders at t ere normelly distributed as

N(fA ) and N(fF, L), where the precision is given by

T{:Ti_1+27‘{ (1.])
and the means are given by

-~ -~ i iy
=t ;j(Si‘ +SE oty

. . Te iy ;
fE=7E, +T—L(s;9+5ffzf£1). (1.2)

If The traders are with identical priors, Le. f04 = f# then their beliefs remain the same
over all the trading period, i.e., ‘)"'}‘" = ﬁB = ﬁ fort =12, ..., T =1 Without a loss of
generality, [ solve the model when T is even. Given beliefs as in Proposition 1, T can solve

for the equilibrium asset holdings ‘"‘3‘?‘71 for type A and 22 | for type B traders, and the

Y The arrival process of traders is independent of the economic variables. To avoid negative arrivals, I put
a lower bound on the actual arrivals in the simulation study presented in Section 1.4,

The inverse of the variance of the signal can be interpreted as the precision of the signal. If the variance
of the signal increases, the precision of the signal decreases.
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prices pr—1 at T — 1. With risk neutral preferences, we can write the utility maximization
problem faced by the ith type A trader as
nE_ nf
r}th a+ZxT 1J+Z:LT1J]13T 14

T,

where the frst-order condition is
“ A B A
froy~oa—{(n—Yap_ ; —nap_y; — 2254, =0

Invoking symmetry, we have 22_ |, = 22_| for all i,j in equilibrium, which leads to

~1,2
IA — froy — o
-1 2n+ 1

Hence, the Bayesian Nash equilibrium at 7" — 1 can be characterized by

A B Jr-i -«
Z - Iy = Fp_] = ———
T-1 o1 T—1 o1
_ fT 1
pro1 = a+(np 1+nT 2T 1—a+(nT ot 1)_2 1 (1.3)

Given the equilibrium price at 7" — 1, we can use backward induction to derive the
equilibrium holdings and price fort =7 -2, ¢t =T -3, ..., t =1. Ift is even, only type A
traders arrive at market. Using an argument similar to the T - 1 case, the optimal demand
for the ith trader of type A is

Ewpi1—a
n+1
where Eyprry = Elperi|le], which is the conditional expectation of the next period price at
time ¢ given the information set [y available at ¢, i.e., I = {p—1. -9, Pi-3, ... .P1, Pot
Note that in period ¢. in order to determine the optimal holdings, traders need to forecast
the next period price, pi+y, and the optimal holdings of other traders.!d If ¢ is odd, both
type A traders and tvpe B traders come to the market. Using a similar argument as above,
the optimal demand for the type A trader is

Epry) — o
n+1

%5, is not determined when traders make their decisions at time (. The joint decisions of all market
participants lead to the equilibrium price p;.
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The equilibriuni at ¢ =0, 1, 2, ..., T'— 2 differs from that at ¢ = T — | due to the myopic
preference assumption. When ¢ =0, 1, 2, ..., T — 2, traders only care about the price of the
asset one period ahead because of their per period profit orientation. The optimal holding is
determined by the forecast of the price in the next period which can be solved by backward

induction and the expected holdings of other traders.

Proposition 2 The Doyesian Nash equilibrium of { can be characterized by
if t is odd

o (T —t=1j/2,(T—1-1) .

Te = &y == (2n+ 1)T—+072(n + 1)(1&:—1)/2(}% - o)
9(T—t-1)/2,,(T—t-1)

(2n + 1)(T—i+1)/2(n+ l)(Tft—l)/Q

(fe =)

pe = ot mf+ad)

if t is even
o (T=#)/2,(T—1-1) -
'T:tA = T_1)/2 _ 9(ji - CI)
(2n+ 1)T-0/2{p 4 1)(T'-1)/2
o T'=8)/2,(T—i=1) -
) 7 —ift — )
(2n + 1Y{T=0/2(p 4 1){T-0/2

pe = o+(n}

Based on Proposition 1, Propoesition 2 characterizes the Bayesian Nash equilibrium for
all trading dates. The equilibrium price is a function of the remaining trading horizon and
beliefs, which implies that the price dynamics are governed jointly by the trading horizon

and the beliefs of traders.

1.3.2 Equilibrium Properties

The previous section characterized the Bayesian Nash equilibrium in the public signal
case. To examine how the mechanism proposed in the chapter, namely, traders with the
multiple trading frequencies behaving strategically, can generate the claimed stylized facts,
including return predictability and volatility clustering, we need to study the properties of

the equilibrium. The main properties of the equilibrium described are

1. Price series possess a linear trend and ave linearly dependent.

2. Return serics are stationary, and there is a negative autocorrelation of returns at first

lag.

3. Return series display volatility clustering with hyperbolic decay autocorrelations.
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Before elaborating on each of these properties, I will describe the equilibrium behavier

of beliefs where the equilibrium price is a function of beliefs.

Beliefs

First, beliefs exhibit long memory as shown in Lemuma 3.

Lemma 3
- 1 1
Cov(fis fi ) = —— = (1.4)
Ti-y T
where 7,_, is the precision of beliefs at { — j for 7 =1,2,3,. ...t - L
Remarks:

1. Lemma 3 shows that beliefs have long memory and that the autocovariance function is
a hyperbolic function of lags. To illustrate the nature of long memory and hyperbolic
decay in beliefs, consider an impulse response experiment. ror simplicity, assume that

there is only one positive innovation at ¢ = 1 and zero at other trading dates. Using

Proposition 1, we know that the beliefs for tradersat t =1,2, ..., T — 1 are
PR t t
fr=Fo+ =+ Y g+ > ) (1.5)
E 2=1 i=1

where ¢g = f—ﬁ). Given the innovation at t = 1, the beliel fl is updated and the effect
of the innovation on the belief at t = 1 is 7./71. Then, the effect of the innovation on
the helief at £ +1, };+1 is 7. /7141 and the effect of the innovation on the belief at #4
is 7./ ,. Note that 7,.; = 7 +2{t + j)7.: this leads to the persistence of beliefs, and

the decay rate is hyperbolic.

2. Lemma 3 also characterizes the limiting behavior of the beliefs, which converge to the
true value of the underlying asset JFas t— o0 Ast — o0, 7./7 — 0, and 2ir /7 — 1,
Equation 1.5 is reduced to )"; = fo+eo = ﬁ) -i—f— ﬁ:_) = f This implies that the beliefs

of traders converge asymptotically to the true value of the underlying asset.
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Prices

For simplicity, I assume that a = 0 so that I can work with the logarithm of price

series, 10

" —
logp, = A+ §B +log fr  fort is odd
¢ -
logpe = Cp+ §B +log fi for tiseven (1.6)

where A; = log(nf* + nf) + % log2+ (T — 1}logn — T—,_jrllog(Qn +1) - T2—1 log(n + 1),
B = [log{2n + 1) + log(n + 1) — log2 — 2logn), C; = log{nf*) + %1og2 + (T - 1jlogn —
Llog(2n + 1) — Llog(n + 1).

Remarks:

1. From Equation 1.6, price series contain three components: A4; and Cf, %B and log ﬁ
Ay and € are exogenous randon variables that are determined by the iid arrival
process. B is a positive constant that acts as a drift parameter. Therefore, logp, has
a deterministic linear upward sloping trend. As shown in Equation 1.4, ﬁ is a long
memory process. Therefore the price process also has a leng memory which arises

from the hyperbolic decay of the beliefs.

2. Intuitively, prices have long memories because of the embedded helief process. Price
is a linear function of beliefs and preserves the linear dependence structure of beliefs.

As a result, the price series display long memory.

3. The deterministic trend originates from the strategic behaviors of traders. Traders
will face a trade-off in deciding whether to increase their holdings. On the one hand,
increasing their holdings today means that they can sell more at a higher price tomor-
row. On the other hand, increasing their holdings will increase the cost of acquiring
shares today. Without strategic behavior,!” traders are not aware of their own im-

pact on equilibrium price. They will therefore adjust their holdings until the price

"*Monte Carlo simulations suggest that the results are not sensitive when o is nonzero.
With the beliefs characterized in Proposition 1, we can solve for the equilibrium asset holdings =4, for
type A and x2_| for type B traders, and prices pr—. at time T—1, With risk-neutral preferences, E[j] = p7

which implies that pr_) = fr-;. Using the market clear condition, we have 14, = .E’?_l = ﬂ‘-._h""' T
-1 =

This implies that at T' — 2, when only type A traders come to the market, E[pr_1| = pr—2, which implies
pr-o= fr_aand p,= fi for i =1, 2,..., T — 1. Hence, prices follow a martingale process and there is no
upward sloping trend einbedded in the price series.
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difference is zero, which leads o zero expected profit [or every trading date. With
strategic behavior, traders will exploit their monopolistic powers to prevent the in-
crease of prices in the current period to order 1o make profits. When the remaining
trading horizon is longer, the strategic behavior of traders has a larger cumulative
impact cn price, which implies that the prices increase over time. Notice that this
time trend can contribute to the time varying variance of price but not the volatility

clustering of returns.

Returns

18

The gross returns'® are defined by r; = p;/p;—; and the logarithm retwrn log(r,) at ¢ is

equal to
1Ug Ty = D[ + ]Dg Zf‘

where D, = log(n + 1) — log(n) + log(n* + nP) — log{2n? |} and Z, = Fi/fio1. Dyis an
exogenous random variable which is determined by the arrival process, and Z; is the ratio
of beliefs of two types of traders. In order to understand the properties of 7, we need to
study the time series properties of 3, and Z,. Since it is difficult to get a closed form for

the autocovariance function of Z; and D,, we rely on Mounte Carlo simulations.

Remarks:

1. The negative first-order autocorrelation of returns is mainly due to the change in the
mean intensity of arrivals due to multiple trading frequencies. As shown in Figure 1.3,
D¢ possesses a negative first-order autocorrelation with the magnitude -0.25 and no
statistically significant autocorrelations at higher lags. In the meantime, Z; possesses
no statistically significant autocorrelations at any lag. With the joint effects of Z; and

Dy, the Monte Carlo study suggests that r; has a negative first-order autocorrelation.

Volatility Clustering

Let log(r,) = Dy +1og Z;, while log Z; = Eog(ﬁ) — log(ﬁ_l). It is easy to show that I, is

a stationary process. Hence I focus on the time series properties of Z;,. Z; can be recursively

"% Alternatively, one can define returns by = = log(p:) —~ log(pi—1). These two specifications do not alter
the core findings.
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written as'?

no, SAESE m )
o SAL+SE, Ti—1 L1

Z, =1+ ) - 2), (1.7)

which is a nonlinear function of Z;_4.

Remarks:

1. For exposilicnal purposes, [ define 7, = f(7;_1). Using Equation 1.7, L have Var(log(rs) =
Var|D,] + Var|Z] = Var|Dy] + (a—g%)QVar[Ztml}. Remember that Z;_; is a func-
tion of r¢_y, ie, Z,1 = f'(r, 1) . This suggests that Var(log(r;) = Var[D;] +
(5'—2,%)21/&?“(,,*;1[7-,,,1)). As in Granger and Machina (2006), when Z; is a nonlinear

function of Z;_ . it is evidence of volatility clustering.

2. Volatility clustering is mainly due to the time series properties of Z;. As shown in
Figure 1.3, Var(Dy) posscsses no statistically siguificant autocorrelations at any lag.
In contrast, the autocorrelations of Var(Z;) at the first ten lags are all statistically
significant with magunitudes ranging from 0.05 to 0.27. In addition, Var(Z:) decay
with a hyperbolic rate of 0.34.

Impact of Signal Precision

In addition to the stylized facts, this model generates interesting predictions that are
absent from the standard asset pricing model. For example, this model predicts that the
traders with more precise signals impose smaller effects on changing eqnilibrium prices. It
is useful to consider an impulse response experiment. We start with an equilibrium where
the beliefs of traders have already converged to the true value of the underlying asset,
le, fA() = ,f~ Suppose there is a large negative innovation in the signal at ¢ = 1 with the
magnitude —f . ie., St = 0and SZ = 0. All other signals are equal to fiie, SP=5F= f.

There is no noise in arrivals, i.e., n{‘ =nP =nand & = (. Then the beliefs, equilibrium

"9See derivations in Appendix B.
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prices, and returns can be computed according to Proposition 2

- 27‘6 Te-1

foo= Fo-=5=22F
Tt

Tt
AT —t+1}/2, Tt

P = G T T O T 1)/2jt for ¢ is odd
Q(T t)/" T—t )
Py = G T (1)~ ,)/2ft for t is even
-2
o= —.
Tt

When the precision of signal 7, increases, the innovation iu the signal has a smaller effect on

T2

returns. To see this, note that v, = can be rewritten as 1 — When 7. increases,

za

ry decreases. This implies that when traders have more precise 510na1 the change in price
is smaller. This seemingly counterintuitive result is caused by the strategic adjustinents of
the optimal holdings of traders. When the signal is precise, traders tend to be reluctant
to adjust their optimal holdings. This leads to traders with more precise signals imposing

smaller effects on equilibrium prices and returns.

1.4 Private Signals

The model developed in the previous section is simple, vet capable of capturing the
three stylized facts of financial data. Namely, prices display long memory and an upward
sloping trend, returns are slationary and display a negative first-order correlation, and the
variance of returns (magnitude of returns) displays volatility clustering with a hyperbolic
decay rate. This section examines a variant of the model where the traders receive private
signals instead of public signals. Signal extraction due to multiple trading frequencies in
a private signal environment naturally contributes to the formation of volatility clustering.
Intuitively, given different trading frequencies, it is natural for traders in onc group to infer
the other group’s siguals from the prices. Infrequent traders can infer the signals from the
price in the period when they are absent, because the prices are entirely determined by the
demands of the frequent traders. Therefore, the past prices provide information that deter-
mines the current price. This feedback mechanism facilitates the formation of the volatility
clustering (see, e.g., Brock and LeBaron (1996)). Signal extraction generates other interest-
ing findings as well, which provide insights inte understanding private information trading

in the market microstructure. For example, signal extraction in this model generates an
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information hierarchy among traders in an ez ante symmetric information setting.”® Inr this
model, infrequent traders can infer signals received by {requent traders exactly. In addition,
infrequent traders infer more precise signals than frequent traders. The information hier-
archy ereated by multiple trading frequencies suggests that the asymmetry of information
diffusion may be endogenously determined by trading frequencies, rather than exogenously
given.

The importance of the private signal case is that it leads to signal extraction through
the channel of multiple trading frequency. If the traders with several trading frequencies
come to the market, we should expect to see “the alternating effect” lessen because of the
smoothing effect of these traders. However, we should expect to see “the signal extraction
cffect” strengthen the impact on the formation of “volatility clustering”. This is due to the
fact that traders with several trading frequencies lead to hierarchical information through

signal extraction behaviar.

1.4.1 Informational Structure

Note that at ¢ =0,2, ..., T —4, T — 2, only type A traders are present in the market.
This implies that the eqnilibrium prices in such periods are entirely determined by the
behavior and beliefs of type A traders. Therefore, type B traders can extract the beliefs of
the type A traders by inverting the equilibrium price function of the beliefs.

[ assume that traders know the exact number of traders who came to the market in the
last period, i.e., at time £, the information set for the traders is Iy = {F;_|, Nﬁl, Nﬁl},
where Poy = {pi—1,pe—2, ..., p1, po}, and N4y = {0 nt,, ..., nd'} and N2, =

{(nP 0l . nfY}.

1.4.2 Bayesian Nash Equilibrium

To describe signal extraction behavior and the evolution of beliefs, I first characterize

the Bayesian Nash equilibrium. Given a sequence of beliefs after signal extraction, EA and

EB tor type A traders and type B traders respectively, we can solve for the equilibrium at

time I — 1.

* A symmetric information setting means that ez ante. all traders will receive the same number of signals
per period, which are drawn from 4:d distribution.
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With risk-neutral preferences, we can characterize the utility maximization problem
faced by the éth type A trader as

nf_, ng_,

mmb oH—E 1T1J+E Tle :LT],

:CT 12
The first-order condition is

2 , A B gA
froy—a—(n—Lep gy —nwp_ ;- 27, =0

A B
" fT71 —a - NITP
= Iy 1 ™ n—+1

Hence, the Bayesian Nash equilibrium at T' — 1 can be characterized by

A _ (n+1)ff, —nff, —«
=1 = 2n - 1
W B (n+ 1)f75_1 — nf{}_l -
== 2n + 1
Pro1 = o+nfozfo b afoafoy
Given the price in the T — 1 period, we can derive the eguilibrium for¢=1,2 3, ..., 7 -2

Proposition 4 The Bayesian Nash equilibrium of ¢ is characterized by

if t 15 odd:
AT —t=1)/2,(T~t=1) D T—t-1)/2,,(T=8)

(2n+ 1)T- t+1)/2(n+1)(T - S/Q(ft o) = (2n 1 )T-40/2(5, - )Tt 1)/2”* - )
o(T=t-1)/2,,(T~1-1) o(T=i=1)/2,, T 1)

B _ By FA
Ly (2n + 1)(T7r+1)/2(,n + 1)(T—t*3}/2(ft a) (20 + 1)(T4+1)/‘2(n+ 1)(T—t—l)/2(‘ff a)
o = a+nf xy +n£5L{5
if 1 18 even:
o(T-)/2,,(T—1-1)
o G (F )
(20 + LY{T-972(n 4+ 1 {T-0/2
o(T—1)/2,,(T-1-1) N
e = a—}»(nf -

A
B TG - o)
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1.4.3 Signal Extraction

Using Proposition 4, we can describe the signal extraction behavior of traders. At =T —
1, type B traders know the actual arrivals n4t_, and n2 , of both types of traders. and price
pr_z in the last period. From Proposition &, pr 2 = a + (nf‘)(—g—?%-—)(f%_g — ). There-

2n-+1) n—i(—]
2n—1)(n+i) -
(2njng_, (pT72 O.).

Hence, at T—1, type B traders know type A traders’ beliefat T'—2, ‘fz‘ﬂfg. A similar analysis

fore, the type B traders can invert, the price formula to get ‘fif.'_g =a+

can be applied to type A fraders and to other trading dates.

Proposition 5 Type A traders know the exact beliefs of type B traders every other trading
period, and type B troders know the exact beliefs of type A traders every trading period, i.e.,

1. Whent is odd, type B traders know ]?;L, f{lg, C f';f’ while type A traders only know
T8 B {5
fr,—21 j(,—d: st fO .

2. When t is even, type I traders know };{ 1 ‘EA_ 9 e, ,)%4 while type A traders only
krnow ftBul,. fﬁfj; ce j(’,g

Furthermore, traders can recover the private signals received by the other group by
krowing the history of the beliefs. For instance, type B traders know the full history of }';’4,
and they understand that the difference in the beliefs is due to the signals. By inverting
the Bayesian updating formula, they can even infer the private signals received by type A
traders in addition to their beliefs.

Assuming that the identical initial prior beliefs ,)?OA = }ICE,B are common knowledge, then

the beliels of each type of traders can be determined as follows:

Proposition 6 The beliefs of two groups of traders of t are normally distributed, denocted

by N(f, L) and N(fP, %),where the precision for type A traders is given by

t oy
T]A = T64+T€
T{“ = 71’4'4{—2'rE
Tfl = 17+, fortas2k—1,k>2
o= A b T, fortis 2k k> 2
1—%—(7‘,"31)2

P
where T/ = AerE P Te
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The mean for type A traders is given by

iy - T -~
R A d CIRE il
!
- N T, -~
o= ForLosp st -2
5
- iy T iy :
A S (A () fort=2k=1,k22
i
~A
~ -~ Te -~ T = = ,
I = B (SR - R+ R ) fort=k k22
i :
-~ n L B
where 5 = TiaSito Sicy

1+TLBI 1+’-z81.

The precision for type B traders is given by

T{B = 'rdB—FTe
TtB = TtB_1+2T6 fort > 2

and the mean for type D traders is given by
B B Te ~B
o= 1+ 587 - 1)
1

iy T -~ .
ft€1+T—;(S§+5ﬁ1a2f£1) fort > 2
t

B
1

Remarks:

1. Type B traders know the exact private signals received by type A traders, where type
A traders only have estimates of the type B traders’ private signals (§i4)- This implies
that there is an informational hierarchy among traders. Type B traders know all the
signals that type A traders know. Notice that we start from an ez anie symmetric

setting.

2. Type B traders extract higher precision signals: the signals extracted by type B traders

are of precision 7., while the signals extracted by tvpe A traders are of precision
~ 1+ )2 . . ~
7= (1_:2:]1;271- It is easy to see that (1 +72,)% > 1 + (72,)* Therefore, 7/ =

1+(T:871)2,_ 21
EEVCCRC

* An exception occurs at ¢ = 2. This is the only trading dale where type A traders can extract an exact
signal received by type B traders. This exception originates from the assumption that initial beliels are
identical. When I relax this assumption in Section 1.5, type A traders are no longer able to extract exact
signals.
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3. Signal extraction facilitates the formation of volatility clustering by changing the for-
mation of the beliefs. It is easy to see that due to signal extraction, there is a correla-
tion between the traders’ beliefs which is absent in the public sighal case. The price
is linear in beliefs and preserves the correlation between the traders’ beliefs in its own

correlation across trading dates.??

1.4.4 Equilibrium Properties

The previous section, 1 characterized the Bayesian Nash equilibriuni in the public signal
case. In order to examine how the mechanism proposed in the chapter, namely, traders with
the multiple trading frequencies behaving strategically can generate return predictability
and volatility clustering, we need to study the properties of the equilibrium. In addition, I
are going to examine the difference between the equilibria in the private signal case and the

public signal case. The main properties of the equilibrium in the private signal case are

1. Price series possess a linear trend and are linearly dependent.

2. Return series are stationary and there is a negative autocorrelation of returns at first
lag.

3. Return series display volatility clustering with hyperbolic decay autocorrelations.

Before elaborating on each of these properties, 1 will describe the equilibrium behavior

of beliefs where the equilibrium price is a function of beliefs.

Beliefs

['irst, beliefs exhibit long mermory as shown in Lemma 7.

?2In addition to the beliets charnel, signal extraction can facilitate the formation of volatility clustering by
providing a forward looking mechanism. As discussed in Section 1.5, when traders use signal extraction not
only to improve the understanding of fundamentals (via the beliefs channel) but also to predict the behaviors
of the other group of traders, the effect of signal extraction on the formation of volatility clustering is suonger.
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Lemma 7 The autocovariance functions of beliefs f{‘ and fF can be characterized by

PO 1 1
Coulf{ ) = —— =
J Tfij T.',A
C‘ B‘ B_ = — - —
O’U(.fﬂ fﬁ _j) TrEj 7}"9
[¢/2]

>t

k

Coo(ff fB ) = +=L

’U(.f{ ,ft J) TtATtBij

where [z] is the integer part of z.

Remarks:

1. As in the public signal case, the signal innovation will have an impact on the beliefs

even at long lags and the decay rate is hyperbolic. To see this, rewrite the equations

for the beliefs in the form

(2 £/2
¢ Z?{AEO ZﬁA€§k
= fot %(teo + Zef] 4 Al — + }‘"‘:lﬂq
7t =1 T ¢
-1
o= ﬁ)—l-:—;((l?t— 1)60—1—2(6;4—0—6{3)—1—6;9) {1.8)
t =1

where ey = fm— _)"’B and E}‘d‘ = §fA - f Using a similar impulse response experiment as
in the public signal case, one can show that the beliefs have long memory and that

the decay rate is hyperbolic.

2. It then foliows that when t — oo, the beliefs of each group converge asvmptotically to

the true value of the underlying asset.

3. The correlation between beliefs is nonzero. It originates from the signal extraction
behavior. For instance, as shown in Proposition 6, type B traders know the private
signals received by type A traders in the last period. Hence, there is a common signal
incorporated in the beliefs of type B traders in the current trading period and type A
traders in the last trading period. This imposes a correlation structure on the beliefs
of the traders. It turns out that the correlation structure of the beliefs is preserved in

the prices, since the price is linear in beliefs.
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Prices

Next, [ examine the properties of prices. The prices characterized in Proposition 4 can

be rewritten as

n iy I y B .
m o= a+ (- n—Jr17?,15’)1{5(_,@4 — o)+ (nf - mnf)f{t(ﬁ —a) fortisodd
21/2(9 l 1/2 -
P, = ot m(f—;wl'nff(t(ff — ) for t is even

ST~ —1)/2 (T -t—1)
n i) ~F /2t 1)(T & 372
For simplicity, 1 assume that @ = 0 and that there is no ncise in the arrivals, i.e,

n{* = nf = n. Therefore, the prices can be characterized by:

where I; =

o= ni lKL(ﬁA + 1B for ¢ is odd
Dt Qllifzt)gimnfﬁ(ﬁl) for ¢ is even (1.9)
where Ki = Gt e
Remarks:

I. As in the public signal case, (log) price has a linear trend over time: log K| is linear in
t. Therefore K, increases exponentially.® Again, the deterministic trend arises from
strategic behaviors of traders. Due to differences in beliefs, they may adjust Lheir
optimal heldings at different rates. This further contributes to the alternating pattern

in prices.

2. The prices display long memories because of the embedded belief process. Likewise,
the price is linear in beliefs and preserves the dependence structure of the heliefs.

Formally, the autocovariance function of prices can be characterized by

n (n+ /2% g
Cov(ps, pr-2j-1) = n+1( 1) KiKy_o, aCov(f4 + f7, fitay 1)
2

i

n+12K5K5—2jCOV(f£4+f:ttgwft'4—2j+f£2j)

Cov{pr, p-2;)

Blog Ky = (T —1)/2log2 + (T — 1)/2logn— (T —1)/2log(2n+ 1) — (T ~ 3) log{n + 1) + £/2[log(2n + 1) +
log(n+ 1) — log?2 — 2logn].
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where

COV( IA + ffB‘ )[fdi_) +f!B—J)

Covi{fA+ F2, fA)

Returns

[¢/2] f/2)
oA =A
Tk ZW
l 1 . 1 l | kel L k=
A A 5~ B | _A ~A
T—y T -, T T T Ty Tt
[¢/2]
~A
) | Zﬂc
k=1
A Faa
Ty T T T,

Next, I examine the return series. Define v, = p;/p;_1. Since it is difficult to get a closed

form for the autocovariance function, 1 rely on Monte Carlo simulations. Monte Carlo

simulations show that the autocorrelation of v; at the first lag is -0.25 and is statistically

significant, while the autocorrelations at other lags are statistically indistinguishahle from

FASINGR

Volatility Clustering

-~

A
Let ry = X; + Y;, where X; = ?}F’T—
i—1

X = 1+

Remarks:

Tt—1 ( Sﬁ

B
and ¥} = /. X, can be rewritten as

21,

54 Tr-1 X

|. For expositional purposes, I define Xy = mi,(X:—1). Using the same methods of analysis

as in the public signal case, we obtain

Var(ry) = Var{Yy)+ Var(X,) + 2Cov(X,, Y})

= Var(¥p) +

Remember that X,_; is a function of vy, ie., X;_q = m; ' (r_1)

0m¢
E?Xt,kl

)2 Var(X;_1) + 2Cov( Xy, ¥7)

. This suggests

that Var(r;) = Var(¥}) + (aéggl—jl)QVar(mt_l(r,q)) +2Cov( Xy, ¥.). As in Granger and

Machina (2006), when X, is a nonlinear function of X;_, it is evidence of volatility

clustering.
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2. Signal extraction adds terms to the expression for volatility clustering. Cov(Xy,Y))

% ff
s 374, and CYEN As

shown in Lemma 7, the covariance between heliefs is positive. This shows that signal

is the covariance between the beliefs ratios of type A traders

extraction facilitates the formation of volatility clustering.

Role of Multiple Trading Frequency

Through a multiple trading frequency mechanism, this model generates interesting pre-
dictions that are absent from the standard asset pricing model. 1 already discussed one
example in the public signal case, namely, that signal precision has an impact on the equi-
librium prices and retnrns. With signal extraction. this model is capable of generating other

interesting predictions.

. Traders with different trading frequencies have different levels of impact on equilibrium
prices aud returns. To see this, it is useful to consider a heuristic argument. Let us
compare the cumulative impact of one innovation in the signal for type A traders or
type B traders. As bhown in Equatlon 1.8, the cumulative impulse response of signal

for type A traders is Z—Er + Z—j; In contrast, the cumulative impulse response of
=1 1,—-1

Z—L Note that 7 < 7, and —L— . < 1.

Tt—l

signal for type D traders is
g ¥ ;—&—3—1 RS
= =
Given that 77! is positive every other period, the cumulative impulse response of the

infrequent traders to a signal i1s smaller. Notice that the smaller cumulative impulse
response is due to the fact that type A traders are not capable of doing signal extraction

every trading period and their signal precision is lower,

2. The timing schedule of signals has an impact on equilibrium prices and returns. It
arises from the fact that type A traders are only able to extract exactly the signal
of type B traders on ¢ = 2. If the bad news arrives at a later time, type A traders

incorporate it into their beliefs differently.

1.5 Simulations

This section illustrates how the model is able to generate the claimed stylized facts,

namely, lincarly trending prices, negative first-order autocorrelation of returns and volatility
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clustering. In the simulations, the parameters are set at « = 100, T = 130, n = 50, fz 150,
790 = 10, 7. = 3 and «w = 400. I also report the robustness of the findings with different sets

of parameter values.

1.5.1 Public Signals

The simulatiou results illustrate that (log) prices are linearly trending, returns are sta-
tionary and possecss a negative first lag autocorrclation, which is consistent with the literature
(see, e.g., Dacaorogna et al. (2001)). In addition, as shown in Figure 1.4, the autocorrelation
function of the variauce of returns decays hyperbolically. Table 1.3 reports the average
autocorrelations of v, and Var(r;) across 100 simulations in the public sigual case. Tt shows
that for ¢, there is a statistically significant negative autocorrelation at the first lag with

o magnitude of -0.48.21

There are no statistically siguificant autocorrelations at other lags.
For Var(r;). all autocorrelations are statistically siguificant, with magnitudes rangiug from
0.07 to 0.347.

The fixed cost of providing liquidity, ¢, mainly affects the position of the prices. Varviug
o does not alter the pattern of the prices and returns. Tu addition, changing « has negligible
effects on the dependence structure of returns and the variance of returns. Chauges in «
mainly change the position of prices but not the slope of price series. Because the fixed
cost is constant over time, the return series will be independent of «. Figure 1.5 shows the
simulation results for & = 80, o = 150 and a = 200. The simulation results are consistent
with our intuition. The dependence structure of the returns and the variance of returns are
almost. the same for different « values.

Next, 1 examine the meau arrivals of traders of each group, n. As a common property
of the Cournot game, as n increases, the prices become more volatile. In the mean time,
the returns display less dependence structure, and less dependence structure at the second
moment (the variance of returns). Intuitively, as n increases, the strategic outcome con-
verges to the competitive outcome, which involves less strategic behavior and rednces the
dependence structure of the returns and the variance of returns. Fignre 1.6 shows the anto-

correlation functiou of returns and the variance of returns when n = 50, n = 100, n = 200.

2The magnitude of the frst order autocorrclation of returns is larger than is observed empirically, How-
ever, if traders are price takers instead of strategic traders, the first order autocorrelation coefficient of
returns is not statistically significant from zero. In practice, the market participants should be a mixture of
small traders who are price Lakers and inslitution tradcrs who have influence on price. The interaction ol
the mixture of traders may lead to a lower first order autocorrelation coefficient in magnitude.



CHAPTER 1. TRADING FREQUENCY AND VOLATILITY CLUSTERING 26

The simulations show that as n increases, the variance of returns displays less dependence
structure. When n = 200, the autocorrelation coefficients of the variance of returns at all
but the first lag are very small. In contrast, when #n = 50, the variance of returns displays
evidence of volatility clustering.

I continue to study the effects of the variance of arrivals, w. Figure 1.7 suggests that w
has a negligible effect on the dependence structure of return and the variance of returns. It
mainly affects the volatility of prices. Tf w is lower, then the prices hecome smoother (less
volatile}. This is consistent with our intuition that w is the parameter characterizing the
arrival process only, which is independent of the npdating procedure. This means that w
should not have any explanatory power in the dependence strncture as opposed to 7. which
can affect the dependence stracture of the variance of returns by affecting the interaction
between traders.

Finally, T investigate the effects of ., the precision of the signal. When the precision
of the signal is high, it tends to put more weight on the signals rather than the beliefs of
the last period. Therefore, the potential high precision signal 7. can reduce the dependence

structure. The simulation results suggest that the magnitude of this effect is small.

1.5.2 Private Signals

The simulatiou results are quite similar to the public signal case. Price series have an
upward sloping trend and there is a dependence structure in returns, while the returns are
stationary. The first-order antocorrelation coefficient of the returns is uegative. As in Figure
1.8, the autocorrelation function of the variance of returns exhibits hyperbolic decay, which
is evidence of volatility clustering. Table 1.4 reports the average autocorrelations of v, and
Var(r;) in 100 simulations. It shows that for r;, the aulocorrelation at the first lag is -0.25,
which is statistically significant, while the autocorrelations at other lags are statistically
indistinguishable from zero. For Var{r), all the autocorrelations arve statistically significant.
The magnitude ranges from 0.1 to 0.29. Compared to the public signal case, the persistent
structure of Var(ry) is of a similar magnitude.

I also present the results of the experiments in terms of parameters in Figure 1.9, Fig-
nres 1.10 and 1.11. The model behavior resembles the public signal case. The dependence
structures of returns and the variance of returns, which are captured by the autocorrelation
function, are similar when changing the carrying cost, . Changing the mean intensity of

arrival n has negligible effects on dependence structure of returns. As n increases, however,
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the variance of returns becomes less persistent, which is reflected in smaller magnitude of
the autocorrelation coefhicients, Different valnes of the standard deviation of arrivals w have
negligible effects on the dependence structure of returns and the variance of returns.

To swrnmarize, this simulation provides an illustration of the robustness of the proposed
mechanism. In both the public and the private signal cases, the simnlation demonstrates
the three stylized facts. First, the prices display long memory and an upward sloping
trend. Second, the retwrns are stationary and display a negative first-order correlation.
Third, the variance of returns (the magnitude of returns) display volatility clustering and
the decay rate is hyperbolic. Furthermore, the simulations suggest that there is an inverse
relationship between the mean inteusity of the arrivals and the persistence structure of the
variance of returns. In both cases, as the mean intensity of the airivals n increases, the
magnitudes of the autocorrelations become smaller, indicating that the variance of returns
is less persistent. As guided by the theoretical framework, it is reasouable to believe that
this diminishing effect of mecan inteusity of the arrivals is due to less strategic behaviors of
traders, as the Bayesian Nash equilibrium converges so the competitive equilibrium. This
framework suggests that strategic behavior contributes to the persistent structure in the

variance of returns.

1.6 Extensions

1.6.1 Sophisticated Guess

The previous analysis shows that signal extraction facilitates the formation of volatility
clustering through a beliefs channel. It is interesting to consider additional mechanisms
led by signal extraction. In additional to the beliefs channel, traders seek the short-run
profit apportunities by predicting the other party’s behavior using the extracted beliefs.
Intuitively, this forward looking mechanism will bring even more persistence to the prices
and the magnitude of returns.

For expositianal purposes, first consider the Bavesian Nash equilibriurn at time T — 1.
Time T — 1 is the last trading date. Therefore, traders only care about the true value of

the underlying asset. The profit maximization problem faced by the ¢th type A trader can



CHAFPTER 1. TRADING FREQUENCY AND VOLATILITY CLUSTERING 28

be characterized by

nf_| nf_,

maxE G+Z$T 1J,+Z$TJJ]:CT1,L

“’*Tlf

Therefore the equilibrium at time T — 1 is the same as in the signal extraction case we
studied in Section 1.3

» _ (n+1)f;137] —nf—ﬁ"_l -

STl on+1

B - (n+ 1)~f’1§71 p "lfiﬂ—l -
T o2n + 1

pro1 = at+nfyafo +ndafg.

At time T — 2, only type A traders come to the market, and they care about the per
period profit instead, i.e., they care about the price in the next period pr—y instead of f

Therefore, the profit maximization problem faced by the ith type A trader at time T — 2 is

A

T2 nf ,
maxE lpr 1 — (o + ZmT 25+ Z Tp_a )] QJT 2,
Tz i=1 7=1
which implies that
" _ EA[T)T,]] — &
=2 n—+1 '
By backward induction,
Elpral—a = Eg 2o, +nfoof]
_ A
= nk [2 +1(]"’1"1*]”1”1'213)]
24
n" —~
= ong 1( AR+ BARRD.

At t =T —2, the best guess for };‘fl_l is ff:‘_g, the current mean of the beliefs. Without signal
extraction, the best guess for fi'g—l is also J’“;‘i"kg, because there is no further information on
the beliefs of type B traders. With signal extraction, type A traders may be able to find a
better guess instead of their own belief, for instance, ch\?‘?—a- One direct impact of this new
guess is that signal extraction behavior can alter the optimal holdings of traders and the
equilibrium price.

Given a sequence of beliefs after signal extraction, }}4 and ]?;B for type A and type B

traders, T can characterize the Bayesian Nash equilibrium as:
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Proposition 8 The Bayesian Nash equalibrium at t can be characterized by

o(T=1=3)/2,, (T—t-1}

_ TA | B
T = (2n + 1)T—=172(n + 1)(T—t—3)/2(f-¢ + fiZe - 2a)
T =t=3)/2,,(T—1) ) .
C(2n+ HTD2(n ¢ 1)(Tft71)/2(ft—l 15— 20)
QT.n(Tftfl) ~ ~
5B _ B | TA
YT BT (n 1 1)(T+3>/2(ft +Jemy - 20)
ntT=0) FA |, 7B
C(2n+ )T 02(n + 1)@,;,1)/2(]% +fiZz — 20)
P = a+ nfa:fl +nfBﬂ:§9
if t s odd;
Q(T—z—:z)/?n(T—n—l) = =
A _ A TR
Lt - (2n+ l)(T_‘)/Z(n+ ].)l'r _-'/z(.ft + fﬁ*l 20’)
o = a+ ()l

if t is even;

Fignre |.13 demonstrates the simulation result and Table 1.5 demonstrates the average
autocorrelations of vy and Var(ry) across 100 simulations. We can see that the vaviance of
7y displays a more persistent structure which is reflected by larger magnitude of autocor-
relations ranging from 0.168 to 0.383. This suggests that signal extraction can affect the

formation of prices and induce more persistence in the variance of returns.

1.6.2 Heterogeneous Priors

Previous analysis assumed that the prior beliefs are the same for both types of traders.
In this section, 1 extend the models studied in the previous sections 10 allow for the hetero-

geneous priors, i.e. f’gf‘ # f;]B

Public Signals

I start with the public signal case, in which both traders receive the same signal but
thay will hold different beliefs. I will solve the Bayesian Nash equilibrinm in a similar way

to the private signal case. Formally, the beliefs of both groups can be characterized by
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Proposition 9 The beliefs of two groups of traders at t are normally distributed, denoted
by N{f, 1}—') and N(fB, %);whe're the precision is given by

T =Te-1 + 27

and the means are given by

—~ —~ T —
o= f:{1+,r_j(554+5t8‘2ff4—1)
2 -~ T . i
o= .f{€1+;t(558+‘5r4—2f£1)-

We can characterize the Bayesian Nash equilibrium at ¢ as:

Proposition 10 The Bayesian Nash equilibrium ot £ can be characterized by:

(T =t=1)/2,,(T~1-1) (Tt 1)/2, (T =1}

A _ TA _ _ r:
£ (2n + l)(T—t+1)/2(n 4 1)(T—L~3)/2(ft ) (2n + 1)(T—t+1)/2(n I 1)(T—g-1)/2(ft o)
Q(T—t—l)/Qn(T—l—t) - 2(T—-t—1)/2n(T—-t) =N
:EfB = L Tt — (J’tB - ) - 4 2 T—t—1 Q(f"/q - O!')
(Qn 4 l)(T t.l)/2(n+ 1)( t—3)/2 (2n+1)(T t+1)/ (n . 1)( )1
p = a+niaf+nlzf
if tis odd;
o(T=1)/2,,(T-1-1) N
i = 5 (7 - o
(20 + 1T 0200 4+ 1T -0/2
T —1)/2, (T—1-1) N
_ A A

Py = & + (nt }(2??,-1— 1)(T_£)/2(n T l)(T—t)/Q(ft Oi).

if t s even.
Remarks:

1. Monte Carlo simulations confirm that heferageneous beliefs in the public signal case
will not change qualitative features of the main results. From Proposition 10, we can
see that the Bayesian Nash equilibrium is quite similar to the private signal case. This
makes sense because with heterogeneous priors, the beliefs are different at cach trading

date even with pubiic signals.
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Private Signals

Note that with heterogeneous beliefs, type A traders cannot extract exact signals at any
trading date as opposed to the homogeneous priors case, in which they could at £ = 2. This
is the only modification of the cquilibrium in the private signals case with heterogeneous
priors. Instead, type A traders can only get a composite signal combined with the initial
belief of type B traders }%B and their belief fAIB att =1 Fort=3,4,5, ..., 7T—1, the signal

extraction behavior of both types is identical to the homogeneous priors case. Formally.

Proposition 11 The beliefs of the two groups of traders ot L are normally distributed,
denoted by N{(f2, n) and N(fE, T%): where the precision for type A troders s given by

Ti4 = Tf)q +T{
T.',A - T{il‘.‘Tﬂ fortis2k—1,k>2
o= T b T Jortis2k k21
where 7 = T(T—LBI);TE The mean for type A is given by
t +72 0
- A, TeroA FA
;o= + —6(51 —fi)

JA = jr}*_l+—;( - fh, fortis2k -1, k> 2

fAtA = ft 1+ A(SA Efil) Tt—,q( fr 1), fortis 2k, k21
i

= 5 58 58 .. . .
where §A = =172 4 ol The precision for type B traders is given by
L T4 1+77,
‘TIB = ng + T
'rtB = 72, 4% fort>2

and the mean for type B traders s given by

Te

o= 78+ B( - 75

o= fz_]+;§(sf+sﬁl—2f¢’?l) fort>2
1

Figure 1.12 depicts the average autocorrelations of 4 and Var(ry) across 100 simulations

in the public signal case and in the private signal case with heterogeneous priors. It shows
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that the magnitudes of the average autocorrelations are similar to those in the cases with
homogeneous beliefs. This implies that the changing from the homogeneous priors to the
heterogeneons priors have negligible effects on the persistence structure of the refurns and
the variance of returns.

In summary, heterogeneous beliefs affect the equilibrinm in a minor way. In the public
signal case, traders have different beliefs. The differences in beliefs are constant over time
and equal to the difference in priors. In the private signal case, it changes the belief updating
of type A traders at only one trading date, # = 2. As a result, the qualitative properties of

prices, returns, and volatility of returns do not change.

1.7 Conclusions

This chapter has developed a discrete-time multiperiod model of volatility clustering
due to the combined effects of rational traders with multiple trading frequenicies and their
strategic interactions. First, multiple trading frequencies lead to an alternating pattern in
prices which generates a serial correlation in the magnitude of the returns. Secondly, signal
extraction provides a feedback mechanism, which induces a correlation between the past
prices and the current price. This facilitates the formation of the volatility clustering. In
addition, the proposed mechanism is capable of generating linearly trending prices and a
negative correlation at the first lag of returns.

I also find that the number of traders has an impact on the formation of volatility
ctustering. This is a consequence of the fact that when the mean intensity of arrivals
Increases, the strategic competition outcome will converge to the competitive outcome.
Hence, the effect of strategic interaction diminishes. Monte Carlo simulations show that
in all settings, as the mean arrivals of traders increase, the variance of returns becomes
less persistent. In the extreme, when the nnmber of traders is sufficiently large, the model
predicts that there is only one statistically significant first-order awtocorrelation of variance
of retnrns, while other autocorrelation coefficients are statistically indistinguishable trom
ZETO.

This model yields several interesting predictions. First, traders with more precise signals
have a smaller impact on the evolution of equilibrium prices and returns. Secondly, traders
with different trading frequencies impose different levels of impact on the equilibrium prices

and returns. Frequent traders respond to the signals in smaller magnitudes and this is
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transformed into a smaller cumulative impact on the evolution of the equilibrium.

I show that an information hierarchy can be generated in an ex anie symmetric setting
through signal extraction. Thus when trading frequencies are diffevent, signal extraction
can endogenously determine the information diffusion. The informational advantages of
the traders may be due to their trading frequency. One potentially interesting avenue for
future research is to endogenize the trading frequencies in a more general model where
trading frequencies and an information hierarchy are simultaneously determined. Doing so
would allow us to address additional issues, such as the microstructure impact of trading
from information diffusion. For instance, in the context of this model, trading frequency is
exogenously determined and leads to signal extraction which generates volatility ¢lnstering
and information hierarchy. It is not obvious which factors make traders choose to trade less

frequently. I leave the clarification of these issues for the future work.
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Lags Iy Var(Dy)

Mean Std  p-value Mean Std  p-value
1 -0.235 0.073 0 0.018 0.041 0
2 0.006 0.082 0.444 0.007  0.080 0.252
3 -0.008  0.060 0.203 -0.004  0.046 0.338
5 -0.002 0.064 0.770 -0.003  0.052 0.560
6 -0.004 0.070 0.608 -0.007  0.047 0.174
7 -0.009 0.076 0.233 -0.003  0.050 0.549
8 0.003 0.068 (.693 -0.006  0.0430 0.198
9 -0.005 0.070 0.507 0.006  0.067 0.356
10 -0.006 0.069 0.419 -0.005  0.044 0.239

Table 1.1: MoNTE CARLO STUDY OF [); (ARRIVAL COMPONENT). First column
reports the mean of autocorrelations. Second column reports the variance of autocor-
relations. Third column reports the p-value of { test for null hypothesis that the mean
equals zero. The columns four to six are the corresponding results for variance of D..

Lags Z, Var(Z;)

Mean Sed  p-value Mean Std  p-value
1 -0.024 0172 0.290 0.271 0.152 0
2 0.009  0.157 0.624 0.220 0179 0
3 -0.036 0.161 0.043 0.200 0.141 0
4 0.001 0.171 0.938 0.144 0.160 0
5 0.006 0.160 0.641 0.130  0.155 0
6 0.001  0.173 0.924 0.108 0.164 0
7 -0.002 0.1537 0.865 0.097 0177 0
8 0.008 0.164 0.486 0.079 0.167 0
9 0.015 0.172 0.126 0.071 0.166 0
10 0.002 90.163 0.871 0.054 0.174 0

Table 1.2: MonTE CARLO STUDY OF Z, (BELIEF COMPONENT). First column reports
the mean of autocorrelations. Second columu reports the variance of autocorrelations.
Third column reports the p~value of ¢ test for null hypothesis that the mean equals zero.
The columna fonr to six are the corresponding results for variance of Z,.

34
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Lags T Var(r,)

Mean Std  p-value Mean Std  p-value
1 -0.48¢  0.058 0 0.347 0.165 0
2 -0.005  0.097 0.57% 0.094 0.153 0
3 0.001 0.103 0.138 0.099 0.155 0
4 -0.002  0.109 0.893 0.091 0.152 0
5 -0.006 0.088 0.414 0.083 0.164 0
6 0.013 0.098 0.534 0.083 0.154 0
7 -0.011  0.093 0.187 0.082 0.162 0
3 0.005 0.110 0.308 0.086 0.152 0
9 -0.004  0.09% 0.291 0.079 0.155 0
10 -0.003  0.105 0.938 0.071 0.160 0

Table 1.3: AUTOCORRELATIONS OF 7, aAND VAR(r,) IN PUBLIC SIGNAL CASE. First

column reports the average of the auntocorrelations across 100 simulations.

Second

column reports the standard deviation of the autocorrelations across 100 simulations.
Third column reports the p-value ol ¢t test for the null hypothesis that the mean eqnals
zero. The columns four to six are the cerresponding results for Var(r;).

Lags 7 Var(r,)

Mean Std  p-value Mean Std  p-valne
1 -0.461  0.077 0 0.293 0.151 0
2 -0.018 0.131 0173 0.125 0.171 0
3 0.017 0.114 0.134 0.121 0.159 0
4 -0.001  0.119 0.905 0.125 0.157 0
5 0.010 0.127 0.413 0.128 0.160 0
6 -0.009 0131 0.519 0.119 0.160 0
7 0.016 0.115 0.173 0.114 0.172 0
8 -0.014  0.125 0.280 0.102 0.162 0
9 0.013 0.122 0.291 0.114 0.158 0
10 0.001 0.110 0.302 0.109 0.170 0

Table 1.4: ACFs OF 71 AND VAR(7+) IN SIGNAL EXTRACTION CASE. First colnmn
reports the mean of autocorrelations. Second column reports the variance of autocor-
relations. Third column reports the p-value of ¢ test for nnll hypothesis that the mean

equals zero. The colnmns four to six are the corresponding resnlts for Var(r;).
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Lags T Var(r)

Mean Std  p-value Mean Std  p-value
1 -0.460 0.099 0 0.383 0.154 0
2 -0.023  0.166 0.169 0.214 0.160 0
3 0.024 0.142 0.090 0.204 0.165 0
4 -0.003 0.144 0.860 0.202 0.163 0
5 0.011 0.150 0.479 0.198 0.163 0
6 -0.006 0.151 0.698 0.188 0.176 0
7 -0.019  0.135 0.221 0.179 0.187 0
8 0.019 0.144 0.188 0.166 0.165 0
9 0.002 0.140 0.179 0175 0.153 Q
10 0.001 0.138 0.913 0168 0.178 0

Table 1.5: ACFS OF ry AND VAR{r:) WHEN TRADERS USE SOPHISTICATED GUESS.
First colurnn reports the mean of antocorrelations. Second columu reports the variauce
of autacorrelations. Third column reports the p-value of ¢ test for null hiypothesis that
the mean equals zero. The column four to six are the corresponding results for Var(r.).

36
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Figure 1.2: A FLOWCHART POR THE PUBLIC SIGNAL CASE: HOW THE PRICE IS GENERATED? In the public
signal case, each trader receives a signal, observes the signal ol other traders, and forecasts the next period’s
price at the beginning of the current trading period. Based on this inforination, each trader updates his
beliel about the value of the underlying asset and adjusts his optimal holdings which are aggregated into the
market demand. Combined with the market supply, the price is determined.
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Figure 1.3: MonTE CARLO STUDY OF AUTOCGRRELATION FUNCTION (ACF) OF Dy AND Z,. (a) Average
autocorrelations of D, across 100 simulations. {b) Average autocorrelations of Var(I)). (c) Average auto-
correlations of Z;. (d) Average autocorrelations of Var(Z;). For ACF plots, a hyperbolic decay function of
autocorrelations is imposed.
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tions of returns across 100 simulations {e) Average autocorrelations of variance of returns. For ACT plots,
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Figure 1.5 DBPENDENCE STRUCTURE {AUTQCORRELATION FUNCTION (ACF) OF rp AND VAR(r)) AND
CARRYING COST iN THE PUBLIC SIGNAL GASE. (a) Average autocorrelations of returns across 100 simnulations
for o = 80. (b) Average autocorrelations of variance of returns for & = 80. {c) Average autocorrelations
of returns for a = 150. (d) Average autocorrelations of variance of returns for when o = 150. (e} Average
autocorrelations of returns for o = 200. (f) Average autocorrelations of variance of returns for a = 200. For
ACT plots, a hyperlolic decay function of autocorrelations is imposed.
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Figure 1.6: DEPENDENCE STRUCTURE (AUTOCORRELATION FUNCTION {ACF) OF r; AND VAR{r))} AND
MEAN ARRIVALS TN THE PUBLIC SIGNAL CASE. (a) Average autocorrelations of returns across 100 simulations
for n = 50. (b) Average autocorrelations of variance of returns for n = 50. (¢) Average autocorrelations o
returns for n = 100. (d) Average ACF of variance of returns for n = 100. () Average autocorrelations of
returns when n = 200, (f} Average autocorrelations of variance of returng for n = 200. For ACF plots, a
hyperbolic decay function of autocorrelations is imposed.
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Figure 1.7 DEPENDENCE STRUCTURE {AUTQCORRELATION FUNCTION (ACF) OF r; AND VAR(r,)) AND
STANDARD DEVIATION OF ARRIVALS IN THE PUBLIC SIGNAL CASE. (a) Average autocorrelations of returns
across 100 simulations {or /& = 10. (b) Average autocorrelations of variance of returns for /w = 10. (c)
Average autocorrelations of returns lor /o = 20. (d) Average autocorrelations of variance of returns [or
vw = 20. (e) Average anlocorrelations of recurns for v = 30. (f) Average autocorrelations of variance of
returns for /o = 30, For ACF plots, a hyperbolic decay function of autocorrelations is imposed.
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Figure 1.8: SiMULATION RESULTS IN THL PRIVATE SIGNAL CASE. (a) Time series of simulated prices. (b)
Time series of simulated returns. (¢) Time series of simulated variance of returns. {d) Average autocorrela-
tions of returns across 100 simulations (e) Average autocorrelations of variance of returns. For ACF plots,

a hyperbolic decay function of antocorrelations is imposed.
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Figure 1.9: DEPENDENCE STRUCTURE {AUTOCORRELATION FUNCTION (ACF) OF r; AND VaR(r:)) anD
CARRYING COST IN THE PRIVATE SIGNAL GASE. (a) Average autocorrelations of returns for o = 80 across 100
simulations. (b) Average autocorrelations of variance of retnrns for o = 80. {c) Average antocorrelations

of returns for o

= 100. {(d) Average autocorrelations of variance of returns for a = 100.

{(e) Average

antocorrelations of returns for ¢« = 120. ([) Average antocorrelations of variance of returns for o = 120. For
ACF plots. a hyperbolic decay [unction of antocorrelations is imposed.
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Figure 1.10: DEPENDENGE STRUCTURE (AUTOCORRELATION FUNCTION (ACF) OF vy AND VAR{r;)) AND
MEAN ARRIVALS IN THE PRIVATE SIGNAL CASE. (a) Average autocorrelations of returns across 100 simulations
for n = 30. (b) Average autocorrelations of variance of returns for = 50. (c) Average autocorrelations of
returns for n = 50. (d) Average autocorrelations of variance of returns for n = 80. () Average autocorrela-
tions ol returns for n = 80. {[) Average autocorrelations ol variance ol returns for n = 80. For ACF plots, a
hyperbolic decay [unction of autocorrelations is imposed.
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Chapter 2

Hierarchical Information and Price

Discovery

2.1 Introduction

The rate of iuformatiou diffusion, and, consequently, price discovery, is conditional on
not only the design of the market microstructure, but also the iuformational structure. The
existing finance literature demonstrates that by polarizing traders into informed traders and
noise traders, price discovery can be very slow (see Kyle (1985)) or very fast (see Foster and

Viswanathan (1993)) depending on the market microstructure.!

The goal of this chapter
is to understand the impact of the informational structure on the degree of information
diffusion inefficiency. I show for instance, that even in a market where there are many
informed traders, the rate of information diffusion can be very slow if the information is
distributed hierarchically.

Specifically, 1 consider a discrete time, infinite trading horizon model in which traders
trade a single asset with a probability of liquidation in cvery period. The traders differ
in two ways. First, traders are in different information hierarchy levels such that traders
in a higher information hierarchy level embed the information of those in lower hierarcly

levels. Such a hierarchy leads $o a mechanism where informed traders in a higher hierarchy

'Kyle (1985) shows that when a monopolistically informed trader strategically trades with neise traders,
the monopolist will prevent the inlormation from being released, which in turn leads to a slower rate of
information diffusion. On the other hand, information is released almost instanily when informed wraders
possessing identieal information compete very aggressively, as analyzed in Foster and Viswanathan {1993).
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level may prefer trading against informed traders in lower hierarchies. In order to trade
against informed traders in lower hierarchies, a trader needs to maintain the informeational
advantage by preventing the spread of the intormation incorporated into the price (at a fast
rate). Thus, this informational mechanism can lead to inefficiency in information diffusion.
This is more likely to happen when the number of information hierarchies increases. Second,
traders in the lowest information hierarchy, 1.e., noise traders, do not receive signals about
fundamentals and trade on price direction. Thus, this setting includes the traditional stylized
setting of the dichotormy of informed traders and noise traders as a special case. When the
informed traders trade with the noise traders, they take into account the fact that noise
traders trade on price direction. This can lead to the generation of the momentum, i.e.
positive autocorrelation in returns.

The informativeness of price, or the rate of the information diffusion, is a function
of the layers of hierarchies among informed traders for the following reasons. First, the
expectation error of the value of the underlying asset originating from the signal extraction
of the partially informed traders makes the price less informative. The accuracy of the
expectation formed by the partially informed traders decreases as the number of the layers
of the hierarchies iucreases. This decrease in accuracy is partly due to the fact that it is
increasingly hard for the partially informed traders to infer whether the movement in price is
due to a change in fundamental value of the underlying asset or the liquidity shock brought
by noise traders.? Second, the prevention of information disclosure by informed traders
in higher information hierarchies makes the price less informative. When the riskiness of
tradiug with other informed traders relative to the riskiness of trading with noise traders
decreases, the informed traders will prevent information disclosure in order to make a profit
from other informed traders. I show that informed traders in higher information hierarchies
are more likely to be profitable if they trade against other informed traders when the price
deviates sufficiently far away from the fundamental value of the underlying asset and the
number of information hierarchy laycrs increases. As a result, the information diffusion is
slower when the number of information hierarchy layers among informed traders increases.

In addition, rather than assuming that the behavior of noise traders is independently

*For instance, a positive innovation in the value of the underlying asset is the observational equivalent
to a shortage of liquidity supply provided by noise traders from the perspective of the partially informed
traders.
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and identically distributed across time, as in the standard literature, [ argue that the be-
havioral pattern of noise traders consists of predictable (based on price direction) and an
unpredictable (idiosyncratic liquidity shock) components. In turn, this model generates a
number of interesting and testable implications that are absent from existing models of
rational noisy equilibriuni. For instance, the predictable pattern of noise traders’ behavior
resulting in persistence structure in prices, regardless of the distributional properties of the
fundamentals. In addition, interaction between informed traders and noise traders can lead
to various market liquidity levels. Perhaps the most novel feature of this model is that the
trend-following behavior pattern of noise traders can generate momentum i returns, i.e.,
a positive autocorrelation in returns. One explanation comes from the setf-fulfilling type
argument that when noise traders believe there is momentum, they will follow the trend;
while when noise traders follow the trend, momentum can be generated.

Owverall, the main contributions of this chapter are as follows. First, this chapter pro-
pases a framewotk to study the impact of hierarchical information and the layers of hierarchy
on the speed of price discovery. I show that the speed of price discovery and the informa-
tiveness of price decrease when the number of the information hierarchy layers increases.
Second, the predictable behavior pattern of noise traders has a significant impact on the
persistence structure of prices and returns. The trend-following behavior pattern lacilitates
the formation of momentum iu returns. Third, bounded rationality of necise traders (the
unpredictable componeut) may generate profits for them when informed traders believe it is
too risky to trade with them and choose to trade with other informed traders, thus providing
justification for the cxistence of noise traders.

The rest of the chapter is organized as follows. In Section 2.2, a case of two information
hierarchies is discussed where only one informed trader and noise traders are presented
in the market. This model serves as a benchmark to motivate the extensions that follow
and demonstrates that the predictable pattern of noise traders results in the persistence
in prices and facilitates the formation of persistence in returns. In addition, the trend-
tollowing behavior of noise traders can geuerate momentum in returns. In section 2.3, an
information hierarchy with three levels, two types of informed traders and noise traders, is
studied. The information diffusion is slower compared to the benchmark case. In section 2.4,
a general case of V information hierarchies is investigated. The information diffusion speed
decreases as the number of information hierarchy levels increases. In section 2.5, Monte

Carlo simulations are carried out to demonstrate the impact of the predictable pattern of
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noise traders and of the number of hierarchical information levels. Finally, I conclude.

2.2 The Case of Two Information Hierarchies

I begin by providing a simple version of this model without modeling the interactions
between informed traders at different hierarchical information levels. This special case helps
develop the intuition for how the interaction between a competitive informed trader who has
no influence on the formation of market pricc and noise traders affects the equilibrium pron-
erties and the formation of return predictability, in particnlar, the formation of momentum.
The benchmark case is also interesting in its own right as it provides a framework to study
how the behavior of noise traders affects the equilibrium properties that can nol be cap-
tured by existing noisy rational expectation literatures. In Section 2.3, I extend this version
to allow for interactions between informed traders by explicitly modeling the information

hierarchy among informed traders.

2.2.1 Financial Assets

Consider two traded assets. One is a riskless asset with a fixed rate of return of 147, The
othier assct is composed of shares or ¢laims on a hypothetical firni, which pavs no dividends
but has a chance of being liquidated every period. The probability of being liquidated in
period ¢ + 1, conditional on the firm’s surviving until period £, is assumed to be constant
A. When liguidation happens, the firm pays the shareholders a liquidation value Vi, which
is assumed to follow a stochastic process. Throughout the chapter, I assume that V; is
Gaussian. V; can be independently and identically distributed (:¢d} or serially correlated.
The normality assumption is for the purpose of simplicity as it permits the existence of a

linear equilibrium. The market price for the risky asset is /.

2.2.2 Game Structure

Two groups of investors, one informed trader and contineum of uoise traders, trade the
asset on every trading date. At the beginning of each trading date, noise traders supply a
certain amount of the shares of the underlying asset to the market. The supply of noise

traders is stochastic, which captures the bounded rationality of noise traders. The informed

I borrow the basic setting from Makarov and Rytchkov {2007).
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trader observes the current market price and submits his demand. The price can be adjusted
upward or downward, and the informed trader will adjust his optimal demand for the number
of shares of the underlying asset accordingly. The market clears when the demand from the

informed trader equals to the supply from noise traders.

2.2.3 Noise Traders

Traditionally, the behavior of liquidity suppliers, i.e., noise traders has been assumed
in the literature to be independently and identically distributed (iid) over time. With the
purpose of investigating the effects of the interactions between noise and informed traders
on the equilibrium outcomes, I model the behavior of noise traders in a way consistent with
Harris (2003). Harris (2003) describes the noise traders as types of traders who trade based
on their beliefs concerning the price change direction rather than the fundamentals of the
underlying agset. According to this description, a typical example of noise trader is a tech-
nical trader. Technical traders trade based on “pattern recognition” type techniques which
aid in the formation of the beliefs concerning the direction of prices.? Therefore, I assume
that there is a predictable components of the aggregate supply of noise traders (technical
traders) that should be a function of past prices. In additiou, there is an unpredictable con-
ponent which captures the difference in opinions among noise traders or technical traders.
Hence, T model the aggregate supply of the shares of the underlying asset from noise traders
throughout the chapter f as GP._1 + ©,, where F, is the price of the trading asset. SF_;
captures the predictable component of the aggregate supply of shares from noise traders.
©; is the iid Gaussian with mean 0 and variance ¢&.> The random component is for the
purpose of preventing prices from being fully revealing, in the spirit of Grossman and Stiglitz
(1980).6

3 is an aggregate measure of noise traders’ supply of shares of the underlying asset. The

sign of [ indicates the aggregate response of the noise traders to the price change dirvection.

“There are two different types of technical analysis: subjective and objective analysis. Subjective analysis
captures the fact that different traders may come up with different conclusions based on the same inforiation
ser due 10 subjective judgmenls or priors. Even in objective analysis, differenl traders may have different
confidence levels or tolerance levels which lead to different trading decisions

"The mean is not necessarily 0. It could be a positive number with a large magnitude. which would
guarantee that noise traders always supply a positive number of shares. The zero mean assumption could
be interpreted as demeaned supply.

5The predictable component is specified for simplicity, although it is easy to extend this analysis to allow
for many price lags without chauging the main results.
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For instance, if # < 0, noise traders will sell the traded asset when the unit price is negative
{price is decreasing). It seems that the noise traders behave as if they follow the trend of the
price. We label noise traders with negative 5 “frend followers”. In contrast, if G > (1, noise
traders will sell the trading asset when the unit change of price of the traded asset is positive
(price is increasing), i.e., noise traders act against the trend of the price, and we label the
noise traders with positive 7 “controriens”. The magnitude of F measures the sensitivity of
noise traders to price direction changes. The larger the magnitude of £, the more sensitive
noise traders are to the changes in price direction. That is, if the magnitude of 3 is large,
with a small change of price, noise traders adjust their holdings of the underlying asset to
a large extent. The magnitude of 8 can be interpreted as the aggregate number of noise
traders present in the market as well. 3 could be time-varying. Throughout this chapter,
however, I do not intend to model the evolution of noise traders and assume g to be a time
invariant parameter. [ will elaborate more on the relationship between g and equilibrium

properties later.

2.2.4 Informed Traders

In this benchmark model, 1 only consider a single informed investor. In each trading
period 7, the investor receives a signal S; about the fundamental value of the underlying

asset V.
S =Vi+ b (2'1)

where n;, ~ 4idN{0,1). b, is the standard deviation of the signal and 1/b? is the precision
of the signal. The signal is more informative when b, decreases. The investor is assumed to
have a mean-variance preference, i.e., E(W,;} — %(5 Var(W,}, where W; is his wealth level at
t and & is the preference parameter. When é = 0, the traders are risk neutral, and when &
increases, the traders become more risk averse. In order to obtain a closed-form solution,
I use myopic preference to abstract away from dynamic hedging considerations.” Let Qex1

be excess return, i.e.,

Que1 = AV + (1= AP — (1 + 1) R, (2.2)

“Myopic preference is a simplifying assumption, and its inain purposc is to oblain an analytically tractable
sclution.,
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where AV + (1 — AYP is the expected return from the holding of one share of the
trading asset and {1 4 7}F; is the opportunity cost of holding. Therefore, the per period

utility maximization problem for the informed trader is
1
IT}?XE[QHHFJXz - §5VG’F[Qt+1|Ft]X¢2
f

where F} is the information set available for informed traders that contains the current price,

the history of past prices, and all the received signals, that is, F; = {F, Pic1, ..., Fo, St Si—a. -

and X, is the holding of the informed investor at trading period ¢. For the expositional pur-
poses, 1 use Fi.} = E[.|F;] throughout the chapter. Hence, the optimal demand of the
shares of the underlying asset from informed traders at ¢ is

o EQua]
2= e Qe

Let wy = mf[g— so that X; = w;F;[@Q¢y1]. Thus, the informed trader adjnsts his holding

(2.3)

of the risky asset proportional to the expected return from the holdings. The risk averse
cocfficient affects the proportion of the informed trader’s investment in the risky assct.
When ¢ = 0, the optimal holding X, is not well-defined for Ey[Q¢11] £ 0, and X, could be
any amonut for E[{+1] = 0. Namely, if the informed trader is risk-neutral, he would like
to borrow an infinite amount of money to invest in the risky asset if its expected return is
greater than zero. He will spend any portion of his wealth on the risky asset if its expected
return is equal to zero becausc the risky asset is indifferent from the riskless asset in this
case. Similarly, when § increases, the trader becomes more risk averse, he will invest less
and less of his wealth into the risky asset. In particular, if § = co, he will not invest any of

his wealth into risky asset.

2.2,5 Equilibrium

1 focus on stationary and linear expectation equilibrium, where Var;[Q;41] is constant

such that w; = WEFI[Q—] = w is time invariant and there is no bubble in prices. Hence
[ALEIES]

Xy = wEi|Qu11]. Market clearing implies X, = 8F, | + ©;. Hence,

B8P 1 O, 1
) - B AVer 4+ (1= 2
O aaan LT Vet (E= A ] (2.4)

T =

Defining Py = P, — pPi—1, we can rewrite Equation 2.4 as

* @t 1 .
B = w(1+.r) + 1+TE¢[/\V1+1+(1 _ /\)Pt-i—l]

.,SU},
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where p solves:
(1= X"+ (L+r)p+3=0 (2.5)

The detailed derivation is given in Appendix. Iterating Equaticn 2.5 forward and invoking

the no-bubble constraint, i.e., limj_.m(%)jﬂﬂ = (), we have:

oc

o 1- ) (1 = \Orast
pr o= Ot RAAT - S 7 A S sk
¢ w(1 +T‘)+§(1+T) A Verst w{l+r) )
O A W
= —m+2(1+T) Ey[AVitst1]
/ $=0
Hence,
e, 1A
— P, — SEAVie .. 2.6
Py =pF 4 w(1+7‘)+§(1—0—7') A Vs (2.6)

Equatiou 2.6 shows that the equilibrium price at time ¢ is the sum of three terms. The
first term incorporates the predictable pattern of noise traders’ behavior. As shown in
Equation 2.5, the serial correlation structure of prices (p} is a function of the predictable
pattern of noise traders’ behavior (3). Intuitively, because the informed trader understands
that the predictable pattern of the aggregate supply from the noise traders is a function of
past prices, he can forecast the mean of the aggregate supply from the noise traders. Thus,
the trader can form a better forecast of the price in the next period by taking into account
this information, which will help increase his profit. As a result, the price in the next period
is correlated with the past prices, which generates the serial correlation. As demonstrated
in a later section, this serial correlation in prices brought by the predictable pattern in
noise traders’ behavior generates a serial correlation in returns as well. Therefore, the
momentum could be generated. Notice that this result is independent of the assumption
of the fundamental value of the underlying asset. [ will elaborate more on this in later
sections. The second term compensates for the risks for informed traders, which originate
from the non-predictable component of aggregate noise traders’ behavior. The third term

is the expected payoff of asset holdings.
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2.2.6 Equilibrium Properties
Stationary Equilibrium

This section studies the cenditions for the equilibrium price to be stationary. I rewrite
FEquation 2.5 as

o0

Oy L=A ;
P=pPioy = =g Zﬂ(l — ) EWVirnl (27)

Notice that in Equation 2.7, the right hand side (RHS) is assumed to be covariance station-
ary and has finite variance given the stationary assumption of V. Therefore, the price is

covariance stationary when |p| < 1. Formally,

Proposition 12 The relationship between the stationarity of equilibrium and 3 can be sum-

marized as follows:

1. When noise traders are trend followers {8 < Q), the mazimum number of station-
ary equilibric is 1. Formally, there exist a stationary equilibrium if end only if the

probability of liguidation is not sufficiently large (A < B+ r +2).

2. When noise traders are contrarians and not sensitive to price direction change 1—'2@ >
3 = 0) and the probability of liquadation is sufficiently large (A > 8 — 1), there is a
unigue stetionary equilibrium. However, if the probability of liguidation 1s not suffi-

ciently large, (A < 3 —r), there exists two stationary equilibria.

3. When noise fraders are contrarians and they are sensifive to price direction change
(3 > L) and of the probability of liquidation is sufficiently small (A < 1), there
exist two stationary equiltbria. Additionally, if A > 3—r, there is a unique equilibrium.

Otherwise, if 1_424 < A< B —r, there is no stetionary equilibrium.

Proposition 12 suggests that the predictable component § and the probability of lig-
uidation A play important roles in determining of the stationarity of the equilibrium price
process. As shown in Proposition 12, the equilibrium can be stationary only if the liquida-
tion probability is not large. This result is consistent with the observation that when the
probability of being liguidated in the following period is very large, an informed trader is
reluctant to adjust the optimal holding in response to the short run profitable opportunity

originating from the trading pattern of noise traders. When the probability of liquidation is
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small, the riskiness of exploiting the short run profitable opportunity from noise traders is
relatively low. In that case, the informed trader may be more willing to adjust his holding
accordingly. Therefore, the market will be cleared because the demand from the informed
trader will match the supply from noise traders. Therefore, a stationary equilibrium can

exist only if the probability of liquidation is sufficiently low.

Momentum

Momentum is defined as the rate of acceleration of a security’s price or volume in techni-
cal analysis terms. Once a momentum trader sees an acceleration in a stock’s price, earnings,
or revenues, the trader will often take a long or short position in the stock with the hope that
its momentum will continue in either an upward or downward direction. This strategy relies
more on short-term movements in price rather than on the fundamental value of companies.
Jegadeesh and Titman (1993} show that the momentum trading strategy can generate ab-
normal profit. Since its discovery, momentum has been one of the most resilient anomalies
challenging the warket efliciency hypothesis. It is well known that auy theory seeking to
explain momentum should be able to generate positive serial correlations in returns. In this
section, I show the ability of my model to generate momentum, and particularly the positive
autocorrelation in returns.

I consider two specifications of Vi, To start, I assume V; are iid with Ey[Vi ] = p
Hence, Equation 2.6 becomes

SF A
w(l+7) * T +#)\

Pi=pPpi - (2.8)

Equation 2.8 demonstrates that if |p| < 1, P follows an autoregressive (AR} (1) process
and Corr[P,, P,—s| = p® follows directly. Defining return as the difference between the price
levels, i.e., ry = P — P_q, we have

8 -0

(L4 7) (2.9)

Tt =pry—1 —

Equation 2.9 shows that given |p| < 1, returns follow an autoregressive moving average model
(ARMA)(1,1) process with mean 0. It can further be shown that Corr[r,, 7y 1| = p? +p—1.

It follows directly that there can be a positive serial correlation of returns at the first lag.

Formally, if p < # or p > ‘/i’l, the returns display a positive autocorrelation at first
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lag, i.e., momentum is generated.®

The result of positive serial correlations in returns provides a rational explanation of
momentum. From Proposition 12, if we restrict ourselves to stationary equilibrium, the
only possible scenario resulting in positive serial correlations in returns is when p is positive
which corresponds to 8 < 0 and A < 3+ r+ 2 case. This suggests that it is only possible in
my model to generate a momentum anomaly when noise traders behave like trend followers.
This is consistent with a self-fulfilling explanation. The reason why noise traders behaves like
trend-followers is because the momentum anomaly exists, and when noise traders behaves
like trend-followers, the momentum anomaly can be generated.

Next, I consider V; to be a stationary AR{1) process. That is, V; = aV, 1 + bye;, where
e; are iid standard normals, b, is the inverse of the square root of the precision of the
innovations, and a < 1. When b, increases, the precision of the signal decreases; that is, the

Vi becomes noisier. Then E;[V;. 4] = a®V,. Hence

@t /\G,V;g
Fo=pF 1~ 2.10
ks w(1+r)+1+rﬁ(1—)\)a ( )
Defiring return as the difference in price, i.e., r, = £, — %1, we have:
AG Aa
Ty = pPri-1 — : . AV, (2-11)

w(l+7) +14—7"713(1—)\)
where A®, = ©, — ©; 1 and AV, = V, — V,_y. It can be shown that the unconditional
covariance of returns is

a% n 22a?
WH1+7r)2 (I+r—all-=X)

Covlry, re—1] = pVarfr,_1] + 2\.r’aLr[‘vQ_l] (2.12)

We are still able to generate positive serial correlations in returns when g > 0. From
Proposition 12, when noise traders are trend-followers, the p can be positive and momentum
can exist. In addition, even if p is negative, it is still possible for momentum to exist as long
as the right hand side (RHS) of Equation 2.12 is positive. In other words, if the fundamental
value of the underlying asset is serially correlated, the momentum could exist regardless of

the behavior pattern of the noise traders.

8In order to have a positive g which is consistent with the observed price autocorrelation coefficient, 1
choose p > % Combined with the annual risk free rate r = 0.03 and liquidation probability A = 1077,
we need to have J < —1.
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‘What if There is no Pattern in Noise Traders’ Behavior?

To illustrate of the benefits of the assumption that there is a predictable component
in noise traders’ behavior, i.e. GF;_y, I investigate the case where there is no predictable
pattern in noise traders’ behavior, i.e., § = 0. That is, the liquidity supply from noise
traders is ©;, where ©@; is #id normal. This is consistent with the standard assumption
about noise traders’ behavior in the literature (for instance, Kyle (1985)). The equilibrium

price can be shown to be
o, S
P=— — VB AV, 2.13
t o117 +§(1+T) AV st) ( )

This shows that the statistical properties of prices are fully determined by the statistical
properties of the fundamental value of the underlying asset in the absence of the predictable
pattern in noise traders’ behavior. Hence, the extra gains from the assumption of a pre-

dictable pattern in noise traders’ behavior can be summarized as follows:

1. The assumption of a predictable pattern. i.e., # # 0, results in persistence in price
regardless of the statistical assumption of fundamentals. On the contrary, if there is
ne predictable pattern, i.e., § = 0, the persistence structure in price depends on the
statistical assumption of fundamentals. With the presence of the predictable pattern
in noise traders’ behavior, price is persistent even when V, is 4¢d. The persistence in
prices is partly due to the fact that the informed trader adjusts his optimal holding
based on the expectation of the predictable pattern in the noise traders’ behavior.
This predictable pattern in noise traders’ behavior preserves the correlation structure
of prices across time. The persistence in prices is also due to the fact that the noise
traders utilize the information concerning past prices to adjust their position, which
determines the price in the current period. This feedback mechanism can also help
the formation of the persistence structure in prices. On the contrary, if there is
no predictable pattern in noise traders’ behavior, the equilibrium price is entirely
determined by the distributional assumption of fundamentals, i.e., V;. To see this,
from Equation 2.13 I can demonstrate that if V5 is #id, P, is 4id. If V; is an AR(1)

process, then P, is an AR(1) process.

2. The assumption of a predictable pattern, i.e., 3 # 0, generates momentum (the posi-

tive serial correlation in returns), while if there is no predictable pattern, i.e., 8 =0,
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momentum cannot be generated in my model. When there is no predictable pattern in
noise traders’ behavior, generally, asymmetric information cannot generate momentum
alene. Intuitively, rational traders require higher compensation for holding a larger
amount of the risky asset. This leads to a positive relationship between returns in the
next period and the supply from noise traders. In the meantime, there is a negative
relationship between price and the supply from noise traders. Recall that return in this
period is the difference between prices. If supply is assumed to be iid, realized returns
are negatively correlated.” On the contrary, when there is a predictable pattern in
noise traders’ behavior, as indicated earlier, momentum or positive serial correlation
in returns can be generated in my model. Notice that there are two opposing effects
that generate momentum. OGne is the negative slope in the demand curve of inforined
traders and the other one is trend-following behavior of noise traders. I show that un-
der some parameters values, the noise traders’ trend following behavior may dominate
the downward demand curve effects, which generates a positive serial correlation in

returns and provides an explanation for the existence of momentum.

2.3 The Case of Three Information Hierarchies

I now extend the simple model of the previous section to allow for the interaction of
informed traders at different hierarchical information levels. I consider two types of informed
traders, corresponding to two informational hierarchical levels. To obtain a closed form
solution, I further simplify the setting. Assume there are two factors that jointly determine
the fundamental values of the underlying asset. That is, V; is a function of the two factors
V} and V2. For simplicity, I assume that the function is linear, i.e., V; = V' + V2. In
addition, I assume that there is no noise in the signals. Namely, a type 1 trader (fully
informed trader} receives two signals per period, 51, = VLl and So; = Vt?. A Type 2 trader
(partially informed trader) receives only one signal Sp; = V2. Furthermore, I assume that
Vil and V? are AR(1) processes, i.e., Vil = aV! | 4+ byel and V2 = aV2 | + byei.

The information set for the type 2 trader is Foy = {P,, Fi-1,. . ., T/?, Vf_l, ...}, and the
information set for the type 1 trader is Fy; = {P, By, ., VL, V2 1, VE, V2,,.. .} By

construction, Foy C F14, and it captures the idea of a hierarchical information structure. It

2Cov[Qe, ] — Cov[O., Py — Pii] = Cov|Oy, 2] < 0.
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is well known from the existing literature on forecasting the forecasts of others, the infinite
regress problem can be avoided with a hierarchical information structure. Intuitively, a fully
informed trader knows everything a partially informed trader knows. Therefore, a fully
informed trader knows exactly the expectation formed by a partially informed trader on the
signal received by the fnlly informed trader. Then the infinite regress problem collapses.*’

Formally, the three information hierarchies’ equilibrium is characterized as:

Proposition 13 If a type ! trade observes V! and ch and a type 2 trader only observes

V2, the equlibrium price is
P, = pPy+PuVi+ Po®y+ Pa(Vl - V1),

where

Y

ai
L +a(l- )

- ak
aws(A+ (1 /\}—ﬁp%fa(lw\))

%+ aw(l - Ae

b =

Py =

where V! = B[V} |Foyl, @ = w4 w2, wy = VarlQui1| Fral, we = VarlQs 1] Foy, and where

p solves
(1= - (1+7Q-3=0

and ¢ solves

2 aA

) 2 2 2
£ 521~ o)1 -a%c) — b = P2 =0
g )~ cbv Z+a(l+A)

The expectation errors follow an AR{1) process:

V=V = eV = VL)) - buee! + kP

101t is well known that when a hierarchical information structure exists, the [ully inlormed traders can
infer the exact expectations of the partially informed traders. Then signal extraction problem between these
traders can be characterized by a finite number of the state variables that include the expectations of the
partially informed traders. [[ there is no hierarchical information structnre, the signal extraction problem
needs to be characterized by an iufinite number of the states varizbles that include the infinite iteration
ol expectation among traders, for instance, trader A's expectation of trader B’s expectation, trader B's
expectation of trader A’s expectation of trader B's expectation, and so on.
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where k = — ——p—t—.

+Fa
%..4.))

Proposition 13 shows that the equilibrium price in the case of three information hi-
erarchies consists of four terms, instead of three terms as in the case of two information
hierarchies . The extra term is PA(ﬁl — Vf), which captures the expectation error of type
2 traders in guessing the signal received by type 1 traders. That is, the forecasting behavior
of type 2 traders adds noise to the equilibrium price. Further, as shown in Proposition 13,
the expectation error follows an AR(1) process and is thus persistent.

Intuitively, the persistent structure in prices leads to a slower information diffusion rate.
If there is no persistent structure in prices, the innovation in fundamentals can be incor-
porated immediately. But when prices are persistent, the innovation in fundamentals can
bave long lasting effects so that the prices can not immediately be adjusted to reflect the
fundamental value of the underlying asset. The persistent structure is due to the combined
effects of persistent structure through the predictable pattern in noise traders and the per-
sistent expectation errors formed by partially informed traders. Thus, 1 label the former
effect the “beta cffeet” and the latter the “hierarchical effect”. T will continue to investigate

the roles of these two effects on the information diffusion rate in the next section.

2.3.1 Imformation Diffusion Rate

As mentioned earlier, the persistent structure in prices leads to a slower information
diffusion rate. The slower information diffusion rate comes from two sources: the “bheta

effect” and the “hierarchical effect”.

Beta effect

To study the role of the predictable pattern of noise traders’ behavior in generating a
slower information diffusion rate, I abstract from the hierarchical information setting. That
is, I consider the two information hierarchical levels case. Without loss of generality, |
restrict myselt to the AR specification of fundamental evolution, i.e., V; = aV;_1 + bue,
where ¢, are iid standard normals, b, is the inverse of the square root of the precision of
the innovations, and o < 1. As b, increases, the V; becomes noisier. Then Ey[Vir4] = a*V}.
Hence

S] n Aaly
w(l+r) 1+r—(1-Aa

By=pPi— (2.14)
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When there is no predictable pattern in noise traders’ behavior, i.e., § = 0, the equilibrium
price is
@t - /\(I‘/f
Wl+r)y 14+r—{1—-Xa

F= (2.15)

To demonstrate a slower information diffusion rate, 1 show that the impulse response in
prices to an innovation in liquidity shocks brought by noise traders, i.e., in @y, is larger.
Intuitively, when there is an innovation in fundamentals, if the impulse response of prices
is larger, it will take a longer time for prices to “settle down”. That is, the information

diffusion rate is slower.

Lemma 14 The wiformation diffusion rale is slowcer if there is a predicleble pattern

noise traders’ behavior.

Proof: If there is no predictable pattern in noise traders’ behavior, i.e.., § = 0, the impulse
respanse of prices to an innovation in liquidity shocks brought by noise traders, i.e., €, is
IR} such that

1
C(1+m)0
IR, = 0 (2.16)

IR} =

for £t =0,1,.. .. Notice that TR; > 0 for all t. Meanwhile, if there is a predictable pattern
in noise traders’ behavior, i.e., § # 0, the impulse response of prices to an innovation in the
fundamental value of the underlying asset, i.e., Vi, is IR? such that

_ L

(1+7)2

pIR7_, (2.17)

IRy = -

IR?

for t = 0,1,... It is easy to see that TR? — IR} = pIR?_, > 0 for all t > 0. That is, the
impulse response in prices to an innovation in liquidity shocks is greater when 4 # 0 than
when 3 =0. IR} > IR} for all ¢ implies that the difference between the current price and
equilibrium price is smaller when 3 = (). Therefore, it takes less time for price to converge
in the case where noise traders do not have predictable pattern, i.e., 3 = 0. In other words,
the information diffusion rate is slower if there is a predictable pattern in noise traders’

behavior.
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Q.ED

Lemma 14 shows that the existence of a predictable pattern in neise traders’ behavior
leads to a slower information diffusion rate. The slower information diffusion rate is due to
the fact that informed traders make trading decisions taking into account the predictable
pattern in noise traders’ behavior that generates the persistent structure in prices.

In addition, I investigate the deviation of prices from the fundamental value of the
underlying asset due to the existence of the predictable pattern in noise traders’ behavior.
If the deviation is different than zero persistently, then the information is incorporated into
prices at a slower rate.

Formally, if there is no predictable pattern in noise traders’ behavior, 1.e., § = 0, there
is no deviation of prices from the fundamental value of the underlying asset because of
the complete market. That is, when § = 0, the price in every period tully rcflects the
fundamental valne of the underlying asset. Meanwhile, if there is a predictable pattern in
noise traders’ behavior, ie., # # 0, as shown in Equation 2.14, the price in every period

deviates from the fundamental value of the underlying asset. The deviation is
Dy =pFi_ (2.18)

for £ = 0,1,... It is easy to see that D, > 0 for all t. That is, the predictable pattern
in noise traders’ behavior leads to deviation of prices from the fundamental value of the
underlying asset. The information about the fundamental value of the underlying asset,
i.e., innovation in V}, is incorporated into the price at a longer horizon. It also takes prices
a longer time to adjust to account for the innovation in fundamental value of the underlying

asset.

Hierarchical Effect

This section study the role of hierarchical information levels in generating a slower
information diffusion rate. To isolate the beta effect brought by the predictable pattern in

noise traders’ behavior, I impose 3 = 0 in this part.

Proposition 15 The information diffusion rate is slower in the cose of three informotion

hierarchies than in the case of twe information hierarchies.

Proof: Formally, the three information hierarchies’ equilibrium when 8 = 0 is characterized

as: If a type 1 trader observes V! and V/? and a type 2 trader only observes V2, the
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equilibrium price is

P = PyVi+ Pe®, + PalVi — V1),

where
1
P, = ————
© (1 +7)
)
P, = ‘
v 1+7-(1-MNa
P:.A w2(1+r)P{,

AL +r) —wiae

where ﬁl = E[Vt1|F2,t], Q= wy +wsy, wy = Var[Qep | Fiy], wo = Var[Quy1|Fay], where ¢
solves

1-AN2

9

Ué(l*awr 9 wy
Tolm M= (1 - e2e)(1+ L1 —
by, Q%a?A? (1-e)(1 = a%e)( wg( acl—l—r cwg 1+7

The expectation errors follow an AR(1) process:

V-V =ac(VE, - VL)) - buee + kP40,

Ll —geidy
. — - ai wy 1+r . y o
where k = (1 C)/(1+r—a,(1—A) 1+:;(1—o,c§jrf))' It is easy to see that 7, > 0. In addition,

B, > P4 > 0. To see that,

LUQ(l + T)P{/

P LSl
o Q(]_ -+ ?") — w1ac
1
= — Py (2.19)
2 - acﬁ) +1

Notice that Z1(1 - ac%—;—%) +1 > 1, so that P{, > P} > 0. The impulse response of prices

to an innovation in liquidity shocks of the underlying asset IR} is

IR = (kPa+1)P
IR} = d'dkPy for t>0 (2.20)

Notice that because shocks in the supply by noise traders, 1.e., the innovations in ©;, affect
the price persistently because that they are incorporated into the persistent expectation er-
rors formed by the partially informed trader. It takes time for the partially informed traders
to learn that liquidity shocks are irrelevant to the fundamental value of the underlying asset.
Thus, it takes prices a longer time to adjust to the shocks in supply by noise traders and

the information diffusion rate is slower.
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Q.ED

I further investigate the deviation of prices from the fundamental value of the underlying
asset due to the existence of the predictable pattern in noise traders’ behavior. If the
deviation is consistently non-zero, then the information is incorporated into prices at a
slower rate.

Formally, if there is no predictable pattern in noise traders’ behavior, i.e., @ = 0, there
is no deviation of prices from the fnndamental value of the underlying asset because of
the complete market. That is, when [ = 0, the price in every period fully reflects the
fundamental value of the underlying asset. Meanwhile, with three hierarchical information
levels, the price in every period deviates from the fundamental value of the underlying asset.

The deviation is

D= PA(V} - V) (2.21)
for t =0,1,.... It iseasy to see that D; > 0 for all t. That is, the case of three information

hierarchies leads to the deviation of prices from the fundamental value of the underlying
asset. The information about the fundamental value of the underlying asset, i.e., innovation
in V,, is incorporated into the price at a longer horizon. Therefore, it also takes prices a

longer time to adjust to the innovation in fundamental value of the underlying asset.

2.3.2 Stationary Equilibrium

Similar to the case of two information hierarchies, there are two possible values of p for

the equilibrium. Solving the reoots explicitly, we have

(1 +T)j:'\/(1+7")2+4(1_)\)%
2(1 - X

P = (2.22)

From Proposition 13,we have P, — pF,_1 = + P/ V; + %9: + PA(ﬁl ~ V'), The right hand
side (RHS) of the equation is assumed to be stationary and has finile variance given the

stationary assumption of V;. Therefore, the price is stationary when |p| < 1. Formally,

Proposition 16 The relofionship between the stationarity of equilibrium ond 0 can be sum-

marized as follows:

1. When notse traders are contrarians, the mazimum number of stafionary equilibria is
1. Formally, there exist o unigue stationary equilibrium if and only if the probability

of liquidation 12 not sufficiently large (A < 2 +r — %)
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2. When noise traders are trend followers and they are not too sensifive to price direction

changes {— lTr)

< 3 < 0}, and of the probability of liguidation is not sufficiently large
(A< —r— ﬁ), two stationary equilibria exist. Otherwise. if lquidation is sufficiently

large (A > —r — %), there exists a unigue stationary equilibrium.

3. When noz’ee traders are contrarians and they are sensitive to price direction changes
(3 < — HT]) and the probability of liguidation is sufficienily large (—r—— < A, there

is a umque stationary equilihrium. If the probability of liguidation is sufficiently small
1-—v JE]

—r — a

A< "’) there are two stotionary equilibria. Otheruise, i.e.,

there is no stationary equilibrium.

Proposition 16 suggests that in addition to the number of equilibria, the predictable
pattern of noise traders’ behavior can affect the stationarity of the equilibrium price process
as well. It is interesting to note that the impact of the predictable pattern of noise traders’
behavior affects the stationarity of the equilibrium price process in a different way. For
instance, in the case of two information hierarchies, when noise traders are trend-followers,
there can be two stationary equilibria, while at most one equilibrium can exist in the case

of three information hierarchies when noise traders are trend-followers.

2.3.3 Persistent Prices

Proposition 13 allows us to calculate the correlation structure of prices explicitly. 1t can
be shown that in stationary equilibrium, the variance of price is
k?ad,

Var[B} = m

).

! X ~Var{Vj] + 22 Pl —1—(52 &+
L= 0% (g +0(l+ )2 S

This demonstrates that there are two sources of noise in the price. One is the random
(unpredictable) behavior of noise traders, and the other is from the expectation errors of
partially informed trader. Notice that if the noise traders’ behavior becomes noisier, i.e., og
increases, the variance of expectation errors of the partially informed trader also increases.
Intuitively, partially informed trader will try to distinguish the effects of noise traders’
behavior and of the signals of the fully iuformed trader on prices. Because noise traders’
behavior does not reveal any information on fundamental value of the underlying asset, it
is not helpful in forming expectations of the fundamental value of the underlying asset. If

the behavior of noise traders becomes noisier, it is harder for the partially informed traders



CHAPTER 2. HIERARCHICAL INFORMATION AND PRICE DISCOVERY 89

to extract useful information on fundamentals. The partially informed trader will make
greater errors in forming expectations of fundamental value of the underlying asset, which
also leads to a noisier market price.

Furthermore, the correlation structure of prices can be recursively represented as:

1 a?X?
1- Pz((fq+a,(1 + A2
+PXCov[V)! — VL VL - VL

] N —~) + PZac
(;rr +a(l+ A))?

a’® a?x?
1- PQ((%—O—Q(l—O—/\))Q

Cov[R, Pry] = pVar[Pa]+ )Cov[V;, Vi1

. ¢4
= pVar[F|+ 1 - 2(
17

Cov[P,, Fi—s] = pCov|P, Pi_gs1 | )+ Pi(ac)®

This shows that the prices are more persistent compared to the case of two information
hierarchies because of the additional correlation structure brought about hy the expectation

errors, i.e., P2 (ac)?.

2.3.4 Return Predictability

The return is defined by the difference in prices, i.e., ry = F,— F,_;. From Proposition 13,
return is
aA

rE=priel —
2 ta(l+A)

AW+—S—A6¢+PAA(T7;1 VY, (2.23)
where AV, =V, = Vi_y, AQ; = ©, — O,y and A(VE - V) = (V! — V1) — (WL, - V2 ,).
Notice that the statistical structure of returns is determined by the statistical properties
of AVy, A9y, and A(Tzl — V4), which correspond to evolution of the fundamental value of
underlying asset, noise traders’ behavior, and expectation errors. Notice that AV follows an
ARMA(1,1) process, A(ﬁ? — V) follows an ARMA(1,1) process and AQ, follows a MA(1)

process. Formally,

AVi=Vi = Vi =alVir = Vioo) tbvla — 1) =adV 1+ bvle — 1)

AT V) = ac(a (T —14) — (byeel — k%@t —byeel |+ k:%@t_l) (2.24)
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Similar to the analysis of prices, the correlation structure of returns is
2}2 2
- Cov[AV;, AV — 2203
(zm +all+ A2 &)
+PXCoVIA(V! = Vi), A(VL, — Vi)
2/\2 2
—" _Cov[AV;, AViy] - 220
(p_ﬂ -+ @(l -+ /\))" Jﬁ

+PECov[A(T) — V), AVL, — Vs, (2.25)

Coviry,mi 1] = pVarfrey] A

Covlrg, rins] = pCovlrg, 1] +

This shows that there is a serial correlation structure in returns. Moreover, it is possible to
generate moinentmm, 1.e., a positive correlation in returns, under certain parameter values.

In this section, I investigate the impact of interaction between informed traders at differ-
ent information hierarchies, namely, the fully informed trader and partially informed trader,
on eqnilibrium properties. 1 show that compared to the case of two information hierarchies,
the market price contains an extra term, which is the expectation error originating from
signal extraction by the partially informed trader and adding noise to the market price.
This leads to a slower information diffnsion rate. The slower information diffusion rate is
due to the combined effects of the “beta” cffect (the persistence structure brought by the
predictable pattern in noise traders’ behavior) and the “hierarchical effect” (the extra noise
brought by the signal extraction behavior of the partially informed trader). Therefore, the
increased number of iuformation hierarchies decreases the information diffusion rate. That
is, when there is an innovation in the fundamental value of the underlying asset, it takes a
longer time for the market price to incorporate the innovation and reflects the fundamental
value of the underlving asset. Furthermore, prices become more persistent. The extra persis-
tenice is also due to the persistence in the expectation errors made by the partially informed
trader, which are due to the persistence of the belief updating. In addition, momentum in
returns can be generated as well. Two sources contribute to the formation of momentum.
First, as in the case of two information hierarchies, the predictable pattern of noise traders’
behavior can aid in the formation of momentum via the self-fulfilling mechanism. Second,

the autocorrelations in expectation errors can contribute to the momentum as well.

2.4 Case of N Information Hierarchies

[ extend the Case of three information hierarchies to allow for N information hierarchies

to study the impact of increasiug the number of information hierarchies. Intuitively, with



CHAPTER 2. HIERARCHICAL INFORMATION AND PRICE DISCOVERY 71

increasing number of information hierarchies, the fully informed traders may want to trade
with the traders in lower information hierarchies. This is because it is possible that the risk-
iness of trading with the partially informed traders is lower than trading with noise traders
because the riskiness originating from the unpredictable pattern of their behavior may be
relatively larger. Formally, | assume there are N factors determining the fundamental value
of the underlving assct in a linear fashion, ie., V; = Nil Vi*. In addition, [ assume that
there is no noise in signals for all tvpes of traders, andnﬁle type 7 informed trader observes
|72 .,VtN’]. Assume V; is an AR(1) process, i.e., V* = aV2 +bye} forn=1,2,... , N1
The information set for a type i trader is Fy; = { P, Poet, .., V2L VP4, - VN ..} By
construction, Fyy C Fy if i > 3.

Proposition 17 If o type i informed trader observes Vi, .. ., VtN_l, for i=1,2,.. . ,N—1.

The eguilibrium price is

s—1
P, = pPy+ PyVi+ Pa®, + Pa (Vi — Vi) + Z Pa.- 1(2 =Y V),
where
P
Po = 2
ST B
aA
P = ——
—p— —a(l—=X)
P awn (A (1 - N PY)
AN-2 — N_2
4% —a{l =X Y w
i=1
forl<s< N-2,
N-1 N-=2
a2, w(A+ (1= NPy) —aws1 2 Pa
i=s i=s+1
Fae = s5=1
2 a1-0 5w
? i=1
fors=1,
N-2
awz (A + (1= A)P) —acuwn 3, Pa
PAl = =2

~2 —aw (1 - Me
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- . N-1
where Vi, = EV] |Foy| forj=1,2,.. ,s-1;Q= Zl W ws = VorlQue11Fsy); p solves

(1 - N2 —(1+r)Qp-3=0

and ¢ solves

2 N=2
081 - a1 - a%e) = by (Py — 3~ Pac)’ =0
s5=]1

The expectation errors from type 2 traders follow an AR{1) process:

f}zl,n -W'= ac(??l,t—l - VL) = byee] + kPo®©y

where k =

3
H-etitn I
The expectation errors from type s traders follow an AR(1} process, for s > 2:

s5—1 s5—1 5—1 5—1 s—1
Gn n _ rn n i

DoV =DVt =aly Vi -3 Vi) by ) e

n=1 n=1 n=1 n=1 i=1

Remarks:

1. Observational equivalence of informed traders in higher information hierarchies. No-
tice that, the noise traders’ behavior only affects the type 2 trader (the partially
informed trader in second highest information hierarchy} directly. Partially informed
traders in other information hierarchies need to distinguish more than two sources of
randomness, and they only have the market price as an identifving instrument. One
interesting result in this setting is that the forecasting of the signals owned by the
trader in a higher hierarchy collapses. Formally, E{E[V#|F; || Fis] = E{V{|F; 4], which
follows directly from the law of iterated expectation. It simply states that the traders’
best guess in lower hierarchies concerning the signal received by the traders in higher
hierarchies is their own expectation of the fundainental value of the underlying asset.
This suggests that traders in lower information hierarchies simply cannot distinguish
the traders in higher information hierarchies, implying that all traders in higher in-
formation hierarchies are observationally egnivalent in the perspective of a trader in

a lower hierarchy.
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2. Traders in higher information hierarchies may want to trede with informed traders i
lower information hierarchies. Intuitively, the fully informed trader knows the optimal
trading decisions of any partially informed traders in lower hierarchies. Therefore,
there is only one type of risk if the [ully informed trader wants to trade with the
partially informed traders, which originates from the probability of being liquidated.
Meanwhile, in addition to the liquidation risk, the fully informed trader faces extra
risk when he wants to trade with noise traders, which is due to unpredictable part
of noise traders’ behavior. In other words, it may be more profitable for the fully
informed trader to trade with the partially informed traders rather noise traders. It
can be shown that under certain parameter values, the fully informed trader will trade
against the partially informed traders rather than noise traders. T will elaborate more

on it in a later section.

3. The rotionale for the presence of noise traders. Following the analysis above, when
traders with an informational advantage choose not to trade with noise traders, noise
traders could make a profit. The conventional wisdom that noise traders could not
make a profit in the long run dictates that informed traders have the informational
advantages and do at least well as noise traders. However, in my model, informed
traders may prefer trading among themselves rather than trade against noise traders.
This may lead to profits for noise traders even in the long run. Thus, the presence of

noise traders on the market is justified.

2.4.1 Information Diffusion Rate

Similar to the case of three information hierarchies, the persistent structure in prices
leads to a slower information diffusion rate. The slower information diffusion rate is due to
two sowrces: the “beta effect” and the “hierarchical effeet’”, as in the case of threc information
hierarchies. The “beta effect” works similar to that in the case of three informational
hierarchies and we restrict ourselves to the study of the “hierarchical effect”. Tn Particular,
we want to study the relalionship between information diffusion rate and the number of

information hierarchies.
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Hierarchical Effect

This section studies the roles of the number of information hierarchies in generating
a slower information diffusion rate. To isolate the beta effect brought by the predictable
pattern in noise traders’ behavior, I impose g = ( in this section.
Proposition 18 The information diffusion rete slows as the number of informalion hier-

archies increases.

Proof: Formally, the N information hierarchies equilibrium when 3 = (} is characterized as:

If a type ¢ informed trader ohserves Vi, .. .,ViN_l, for i=1,2,...,N — 1. The equilibrium
price is
s—1 3—1
Po= V4 PeOc+ Py VZt V)+Z .Q.blZV;nb*ZVcn)x
n=1 n=1
where
1
= tan
P‘,} _ aA

14+r—(1-Aua
awn -1(A+ (1 — )P”)

1
Pf_vvfz =

(14+7)0 —~a(l — A) \;%

forl <s< N2,

— N—

¢S GO 1= NP awenr 5 Pa
=35 i=s5+1

PH —
As T PEE]
(1+7)0~a(l =X w
=1
for s =1,
N2
awa(A+ (1 = X)PY) — aews 3. PR
" . =2
Al m (14+7)Q—aw (1l - A)c
~ N—-1
where Vsj,t = E[V/|Fsl for j =1,2,...,8 = 1; @ = Y wy; ws = Var[Qu+1|Fs,, where ¢
n=1
solves
2 1-AN2
Ué (1 al_n_?-) 9 W 14)\ 9 W 1-2 D]
To I (1 )1 - a2e)(1+ (1 - ac — (L - _
P (90 =+ 21 —aeq ) - o ZH - aer D)
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The expectation errors from type 2 traders follow AR{1) process:

1721,3, -V = G‘C(?Ql,t~1 - VL1) — bycet + KPS,

w—l(l —aciz2
£ +

where k = (1 — C)/(Hrj;\(l—)\) 1+::_;(1_a51é))-

The expectation errors from type s traders follow AR(1) process, for s > 2:

s—1 s=1 s—1 s—1 s—1
320 no__ {71 " i
Vs,t_ E V, —@(E :Vs,t—l_ Vity) ~ by E :fa-

n=1 n=1 n=1 n=1 1=1

It is easy to see that P > 0.

The impulse response of prices to an innovation in liguidity shocks of the underlying

asset TR, is

IRy = (kP +1)P4
IRZ1 = a,tctkPé' for t >0 (2.26)

Notice that liquidity shocks, i.e., the innovations in ©,, affect the price persistently because
that the shocks in supply by noise traders are incorporated into persistent expectation errors
formed by the partially informed traders. It takes time for the partially iuformed traders
to learn that the changes in prices are due to shocks in supply and are irrelevant to the
fundamental value of the underlying asset. Thus, it takes prices a longer time to adjust to

account for the shocks in supply of noise traders and the information diffusion rate is slower.
QED

Further, I investigate the deviation of prices from the fundamental value of the underlying
asset due to the existence of the predictable pattern in noise traders’ behavior. If the
deviation is consistently non-zero, the information is incorporated into prices at a slower
rate.

Formally, if there is no predictable pattern in noise traders’” behavior, i.e., 7 = 0, there
is no deviation of prices from the fundamental value of the underlying asset because of
the complete market. That is, when § = 0, the price in every period fully reflects the
fundamental value of the underlying asset. Meanwhile, with N hierarchical information
levels, the price in every period deviates from the fundamental value of the underlying

asset. The deviation is

N-1 5—1 s-1
Dy=Pa(T, ~ VO + 3 Paca (S0 - STV (2.27)
5=3 n=1 n=1
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for t =0,1,.... It is easy to see that Iy > 0 for all t. That is, the case of N information
hierarchies leads to deviation of prices from the fundamental value of the underlying asset.
That is, the information about the fundamental value of the underlying asset, i.e., innovation
in ¥V} is incorporated into the price at a longer horizon. In addition, as the number of
information hierarchies increases, the deviation could be even larger because of the existence

of the expectation errors formed by all partially informed traders.

2.4.2 Trading Among Informed Traders

As mentioned earlier, the traders in higher information hierarchies may want to trade
against the traders in lower information hierarchies. To illustrate, let us consider the case of
three information hierarchies. As shown in Appendix A, the demand from the fully informed

trader is
wr(((1= Mo = L+ )P+ (A (1= N P)aVy+ (1= N PABI(VY, - VA DA (2.28)
while the demand from the partially informed trader is
@(((1=Np = 1+ )P+ O+ (1= )Py)a(V + V) (2.29)

where V! = a(1 — k(Py — Pa)VL | +k(Py — Pa)V{ + kPo©,.

Consider & scenario where there is a supply shock and no change in the fundamental
valuc of the underlying asset, such that noise traders choose to supply more, i.e., AG, > 0.
Although there is no change in the fundamental value of the underlying asset, both types
of informed traders will adjust their optimal demands accordingly. Notice that partially
informed traders will adjust their expectations of the fundamental value of the asset down-
ward, due to the fact that they cannot distinguish the decrease in fundamental value of
the underlying asset from a positive supply shock. Hence, the quantity of adjustment for
partially informed traders is (A + (1 — A)Py)akPoA©, and for fully informed traders is
(1= NPAB((Vh — VAIFL,

As indicated earlier in Proposition 13, the expectation error is an AR(1) process and
thns persistent. Therefore, from the perspective of the fully informed trader, the expectation
error should have the same signs for time ¢t and time ¢ + 1.

If Py < 0 and thus (A + (1 — A)Pv)ekPg < 0, partially informed traders will choose to
decrease their optimal demand by mistakenly believing that the fundamental value of the

asset decreases. This is simply because they cannot distinguish the decrease in fundamental
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value in the underlying asset from the a positive supply shock. On the other hand, when
Pa < 0 and thus (1 — A}Pa < 0, fully informed traders will trade based on the expectation
errors from partially informed traders. Notice that partially informed traders will adjust
their expectation of the fundamental value of the nnderlying asset downward, i.e., ﬁl —
V! < 0. From the persistence of the expectation error, fully informed traders will believe
E[(VA, — VLI < 0. Thus, they will increase the holding of the underlying asset in
order to make profit from the mistakes of the partially informed traders. Therefore, fully
informed traders trade against partially informed traders by trading in opposite directions.
In summary, I show that when Pg < 0 aud Pa < 0, fully informed traders trade against
partially informed traders in order to profit from the mistakes of the partially informed

traders.

Propaosition 19 [f 3 <0, p > 0 and 0 < k < 1. frading amongst informed traders con
happen. In addition, in this cose, Py < 0.

3 < 0 implies that noise traders are trend followers and p > 0 implies that the price has a
positive autocorrelation coefficient which matches the empirical observation of the financial
time scrics of price. According to the Bucy-Kalman filter formula, & is the weight used in
the belief updating. A positive k suggests that new information and current belief both
receive attention. As a result, the partially informed traders adjust their belief in a wrong
way when there is a positive shock in supply.

A negative Py suggests that when there is a positive innovation in fundamental value
of the underlying asset, the price may decrease in response. This is inefficient because such
trading amongst informed traders can prolong the proccdure of information diffusion and
thus the rate of information diffusion is slower.

Proposition 19 characterizes one set of possible parameter values which can generate
trading amongst informed traders. That is, partially informed traders mistakenly adjust
their beliefs in a wrong way when they cannot distinguish the positive shock in supply from
& decrease in fundamental value of the underlying asset. If fully informed traders know that
noise traders are trend followers and partially informed traders make a mistake in adjusting
their beliefs, they will trade against the partially informed traders to make a profit. This
profitable opportunity originates from the mistakes made by the partially informed traders.
This is inefficient, because il that is the case, it leads to a negative response of current

market price to a positive innovation in the fundamental value of the underlying asset. This
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distortion of price response is due to the informational arbitrage amongst informed traders.

2.5 Numerical Analysis

In this section, I present a nnmerical study of the model. Using this numerical study,
I can show the statistical properties of equilibrium, namely, the price structure, and the
retnrn predictability. Second, I want to investigate the “beta effect” and the “hierarchical
effect” and their implications.

The parameters used in the simulation study are as follows. The probability of liquida-
tion X is 5%, which corresponds to an expected lifespan of 20 periods. The risk-free rate r is
1%, which corresponds to the annual yield on a treasury bill. The parameters that describe
the fundamental value of the underlying asset are chosen to match the volatility of returns
at 12% and I set @ = 0.85 and by = 0.3. I vary thc above parameters and find that the

different sets of parameters do not change the main results qualitatively.

2.5.1 Impact of Noise Traders

First, I study the effects of noise traders” behavior. I mainly study the behavior of
noise traders in the case of two information hierarchies and the case of three information
hierarchies. To match the prices’ empirical behavior, we want to have a positive AR(1)
coeflicient that is close to 1. I choose § = —2 In the case of two information hierarchies
and § = —20 in the case of three information hierarchies. The Figure 2.1 shows a typical
set of plots of price series, return series, and persistent structure which is captured by
autocorrelations of prices and returns. It shows that the prices are persistent, and there is a
first order positive serial correlation with the magnitude 0.8 in returns. There is a positive
serial correlation in returns which suggests the existence of momentum. Similar patterns
can also be observed in the plot of the case of three information hierarchies. although the
first order serial correlation in returns drops and returns become much less persistent, which
is a better approximation of the empirical behavior of returns. This decrease in persistence
stroncture in returns may be due to the existence of interactions between the informed traders
which diminishes the effect of the persistent structure brought by the predictable pattern in
noise traders’ behavior. Thus, when there are more information hierarchies, the magnitude
of the momentum effect is smaller, as shown in Table 2.2, The magnitude of the first order

autocorrelation of returns decreases when the number of information hierarchies increases.
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Furthermore, Table 2.2 indicates that the persistence structure in returns decreases when
the number of information hierarchies increases.

Table 2.1 shows that the simulation results for “beta effect” in the case of three informa-
tion hierarchies. First column reports AR coefficient of price series, p. It demonstrates that
when the magnitude of § increases, the AR coefficient p decreases. Intuitively, when the size
of noise trading on a financial market increases, the behavior of the market price is driven by
the noise traders’ behavior. The forecasting behavior of informed traders which contribute
to the persistence of price in a diminishing manner. The sccond column reports the first lag
serial correlation in returns which also suggests that the magnitude of “momentum effect”
decreases as the magnitude of F increases.

There is an ARCH effect in returas which suggests the volatility clustering of returns,
Intuitively, because there are potentially two equilibrium with two ps, the switching from
equilibrium can induce the volatility clusteriug of returns. The persistence structure of
squared returns decreases as the magnitude of 5 increases as evidenced by the decrease in
the reported sum of the autocorrelation coefficients of first 10 lags of squared returns.

Define A&; = fffl ~ V1. Table 2.1 reports the effects of the predictable pattern of the
noise traders behavior. 5 become more negative implyiug that the noise traders trade more
and more aggressively as trend-followers.

The negative correlation between Ay and V; is interesting. It implies that when there is
a positive shock in the fundamental value of the underlying asset, the expectation is biased
downward. Therefore, the partially informed trader takes a fundamental risk. When noise
traders trade more and more aggressively, the partially informed trader takes more and
more fundamental risk. The seventh column shows that given the noise traders are trend-
followers, they are right about price direction. It is may be due to that the fully informed
trader may find out that it is not that profitable to trade with noise traders and he chooses
to trade with the partially informed traders using his own informational advantage. Notice
that in this setting, it may be less risky to trade with the partially informed traders than
with noise traders. Although there is predictable pattern in noise traders’ behavior, it
becomes increasingly risky when noise traders trade aggressively. Hence, the fully informed
trader instead chooses to exploit his informational advantage over the partially informed
traders.

The negative correlation between expectation errors and supply shocks is also consistent

with our intuition. Intuitively, if there is a positive shock in liquidity supply, the price will
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go down. The partially informed trader cannot distinguish whether the drop in price is due
to a negative shock iu fundamentals or a positive shock in supply. Hence, he adjusts his
expectation downward.

The deviation of price from the fundamentals is increasing in 4. When the magnitude of
3 decreases, i.e, traders trade less aggressively, p increases. When p approaches 1, there is a
sharp increase in the deviation corresponding to a 98% increase in mean of price. It seems
that as noise traders trade less aggressively, the price becomes more persistent and the a
bubble, i.e., the deviation of market price from the fundamental value of the underlying

asset, is generated.

2.5.2 Impacts of the Number of Hierarchies

I choose § = —20 for all values of N. Table 2.2 reports the effects of the number
of information hicrarchies. First thing to note is that the corresponding AR cocfficients of
price monotonically increase when &V increases, implying that price becomes more persistent.
Intuitively, if there are more information hierarchies, the expectation errors from the signal
extraction behavior of all partially informed traders make the price more persistent. The
weight of the past price in determining the current price increases as more partially informed
traders try to do signal extraction. Thus, the current price is more correlated with the past
price, i.e., the AR coefficient for price incresscs.

The autocorrelation coefficient of return decreases as the number of the information
hicrarchies increases as [ indicated earlier. To be consistent with the empirical finding, the
number of information hierarchies should be greater than 9, which generates a 0.1 to 0.2
autocorrelation coefficient. ARCH effect exists in the returns as well. And the persistence
structure of squared returns increases as the number of information hierarchies increase.

As shown in the last column of Table 2.2, the slower information diffusion rate is captured
by the number of time periods it takes for the price to converge back to the long run
equilibrium price. To do this, 1 start with a positive supply shock with a magnitude 0.1
and set all Vis constant. Then | examine the difference between the current price and the
fundamental valuc of the underlying asset. If the difference is sufficiently small, the price
converges to the fundamental value.!! Then I report the uumber of periods for the price to

converge. We can see clearly that as the number of information hierarchies increases, it takes

"Tn the simulation. 1 use 1077 as a threshald level.
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a longer time for price to converge back to the long run fundamental value of the underlying
asset. This provides simulation evidence of one of the main results of the chapter: As the
number of information hierarchics increases, the information diffusion is slower. A similar
experiment is studied for the shock in the fundamental value of the underlying asset, and a

similar pattern is found.

2.6 Conclusion

In this chapter, I develop a discrete time, infinite time period model to understand the
relationship between hierarchical information and price discovery. The partially informed
traders trade a stock based on their signals and expectation of the sighals received by
fully informed traders. The expectation errors from the signal extraction behavior of the
partially informed traders is preserved in the market price, which prevents the information
from being released at the same rate as if there was no hierarchical information among
traders and the information was released instantaneously. As the number of informational
hierarchies increases, it becomes harder for the partially informed traders to distinguish
between the shock in fundamental value of the underlying asset and liquidity shock brought
about by noise traders. The slower price discovery process of the financial market can also
be partly due to the fact that fully informed traders may prefer to trade with partially
informed traders. In order to make a profit from the partially informed traders, the fully
informed trader should prevent the information disclosure and takes the opposite position
of the partially informed traders if they make large expectation errors. Therefore, this
informational arbitrage leads to a slower information diffusion rate.

In addition, noise traders’ behavior is modeled with a predictable behavior pattern. This
framework yields a number of interesting findings. For instance, the predictable pattern of
noise traders brings the persistence structure in prices regardless of the statistical properties
ol the fundamentals of the underlving asset. In addition, the predictable pattern of noise
traders’ behavior can aid in the formation of the momentum, i.e., the positive autocorrelation
in returns.

One potentially interesting avenue for future work is to endogenize the evolution of the
predictable pattern of noise traders’ behavior. Doing so would allow us to determine the
relationship between the information diffusion and liquidity of the market. For instance,

this extra nncertainty of the predictable pattern in noise traders’ behavior may affect the
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interactions among informed traders and further affect the information diffusion speed.
Meanwhile, the evolution of the liquidity supply of noise traders will affect the market
depth. This study may provide insights into the correlation of market depth and information

diffusion speed.



3 p  Corrlry,ryy] ARCH Y JACF(})|  Cor[Vy, A  Corr[@, A, DBubble

-11 0.995 0.753 0 1.879 -0.460 -0.508 0.670
-15 0.960 0.736 0 1.092 -0.541 -0.331 0.025
-20 0.922 0.723 0 0.964 -0.586 -0.213 0.010
-25  0.880 0.697 0 0.867 -0.607 -0.130 0.006
=30 0.833 0.657 0 0.775 -0.618 -0.068 0.003
-35  0.776 0.585 0 0.587 -0.624 -0.018 -0.001
-0 0.701 0.536 ] 0.640 -0.626 -0.028 0.013
-45  0.594 0.488 0 0.506 -(0.630 -0.065 0.003

Table 2.1: EFFECTS OF THE PREDICTABLE PATTERN OF THE NOISE TRADERS' BEHAVIOR. The frst column reports the
corresponding AR coefficient of the price series, p. The second column reports the firsl lag serial correlation in returns.
The third column reports the P-value of the ARCH test with the Ho: No ARCH eflecls in rcturns for the firsi 10 lags.
The fourth column reports the sum of the magnitudes ol the autocorrelation function (ACF) coefficients of the squared
returns for the first 10 lags. The fAftl columnn reports the correlation between fundamental value and the expectation ervors
of the partially informned trader. The sixth column reports Lhe correlation between lignidity shocks and expectation errors
from the partial inforined trader. The seventh colunin reports the deviation of price [rom the fundamental value discounted
using a risk [vee rate and corrected for liquidity risk. The fundamental value of the asset is delined as ﬁr_)—“aﬁﬁ The
equilibrium price withoul liquidity shocks is used for comparison with the purpose ol isolating the effects of . TFormally,

Prr:m'u,parisun = ,OP[_ L _i’:lg)\)w + Pa(T/’T _ V’l)
e

AYHAODSIA HOIHd ANV NOILVIWYHOANI TVIOIHOYVHHIH ¢ HHLdVHO
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N i) Corr|ry,re—1] ARCH EMCF(?'EL Adjustment Periods

5 0.859 0.692 0 0.797 7
6 0.895 0.490 0 0.855 11
7 0.920 0.301 0 1.282 18
9 0.939 0.208 0 1.578 29
10 0.952 0.154 0 1.848 32
14 0.987 0.113 0 2.978 36
15 0.992 0.109 0 2.156 39
Table 2.2: ErrpaTs 01 THE INCREASING NUMBER OF HIERARCHICAL INFORMATION LEVELS. 4 = —20 for all the cases. The

firsl colnmn reports the corresponding AR coclficient of the price series, p. The second column reports the firsl Jag serial
correlation in returns. The third column reports the P-valie of the ARCH test witli the Ho: No ARCH effects in returns [or
the hrst 10 lags. The fourtly column reports the sinn of the magnitudes of the autocorrelation function (ACF) cocfRcients of
the squared returns for the firsl 10 lags. The fifth column reports the number of time periods for the price to converge back
to the stationary equilibrinmn price level given a positive shock in supply ol noise traders.

AYTAOOSIA HOIHd ANV NOLLYIWHOANI TVOIHOYVHAIH € HILJAVHO

(3]
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Figure 2.1: SIMULATION RESULTS IN TWO INFORMATION HIERARCHIES CASE. {a) Time series of simulated
prices. (b) Time series of simulated returns. {¢) Time series of simulated variance of returns. {d) Average
autocorrelations of returns across 100 simulations.
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Figure 2.2: SIMULATION RESULTS IN THREE INFORMATION HIERARCHIES CASE. (a) Time series of simulated
prices. (b) Time series of simulated returns. () Time series of simulated variance of returns. (d) Average

autocorrelations of returns across 100 simulations.



Chapter 3
Jump Detection by Wavelets

In the last two decades, statistics and finance literature have produced substantial em-
pirical evidence that many financial time series contain surprise elements or jumps. It is
well understood that compared to continuous price changes, jumps have distinctly differ-
ent modeling, inference, and testing requirements for the valuation of derivative securities,
require a certain distributional framework for inferring extreme risks, and require special-
ized statistical measures of optimal portfolio allocation. Thus, understanding what drives
jumps in underlying securities, how to characterize jumps both theoretically and empiri-
cally, and having efficient tests available for jumps that are sufficiently robust to withstand
mis-specification and small sample bias is imperative.

This chapter proposes a method based on maximum overlap wavelet transformation
(MODWT) to detect and estimate the exact jump location, jump size, and the number of
jumps in a given time interval from high frequency data. A useful property of MODWT is
that the number of scaling and wavelet coefficients is equal to the number of data points.
With this feature of MODWT and a zero phase distortion wavelet function, the location of
jumps can be detected precisely from noisy time series processes. In addition to practical
jump detection criterion as provided by Fan and Wang (2007}, this chapter provides the
asymptotic distribution of the test statistic, and the test demonstrates good power and
size. I show that the test using MODWT with Haar flter is equivalent to Lee and Mykland
(2008). Additionally, when a wavelet filter with less leakage, e.g., a least asymumetric wavelet

filter, is used, the performance of the test improves.! The improvement originates from the

LA filter with less leakage is one that is closer to being an ideal band-pass flter.

87
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fact that the wavelet coefficients of a wavelet filter with less leakage contain the weighted
average of microstructure noise and continuous changes in price processes and jumps. At
locations with no jumps, the weighted average is closer to zero than a simple difference of
price process. Thus, identifying spurious jumps becomes easier while preserving power in
detecting true jumps.?

Substantial research effort has beeu dedicated to juinp detectiou in asset prices. Among
previous studies, Andersen et ol. (2003) proposed a method using a jump-robust estimator
of realized volatility, Barndorfl-Nielsen and Shephard (2004, 2006) proposed a bi-power
variation (BPV) measure to separate the jump variance and diffusive variance. Lee and
Mykland (2008} developed a rolling-based nonparametric test for jumps and estimates of
jump size and jump arrival time. Jiang and Oomen (2008} proposed a jump test based on the
idea of “variance swap™ and explicitly accounted for market microstructure noise. Johannes
(2004) and Dungey et al. (2007) found significant evidence for jumps in U.S. treasury bond
prices and rates. Piazzesi (2003) demonstrated that jump modeling leads to improved bond
pricing in the U.S. treasury market. Andersen ef al. (2007) showed that incorporation of
jump components could improve the forecasting of return volatility. As indicated by Fan and
Wang (2007), when market returns contain jumps, separating the variation in returns into
jump and diffusion components is important for efficient estiination of realized volatility.

Although several tests can be used to identify the existence of jumps, particularly with
high frequency data, these tests cannot provide an exact location of jumps even ex post.
The estimation of the exact jump location is important for understanding the jump density
and its distribution (see Dnngey et ol. (2007) and Jiang et al. (2008)). Moreover, the exact
detection of the jump location is of great importance for improving derivative hedging.
In the presence of jumps, the market is incomplete, and hedging based on the continuous
price process thus leads to hedging error. The exact detection of jump location allows the
development of hedging strategies and an efficient dynamic rebalancing of hedging portfolios.

The use of wavelets is of importance in jump detection for the following reasons. First,
the ability of wavelets to decompose noisy time series data into different time scales is
essential for distinguishing jumps from continuous movement in underlying asset and mi-

crostructure noise. Intuitively, if there is no noise in the data, a jump can be defined as

2Spurious jumps are false jumps due to large movements originates [rom the presence microstructure
notse or large spot volatility.
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the change in the mean of the time series. If there is no noise, locating the jump by ex-
amining the location where the mean price changes abruptly would be sufficient. Wavelet
coefficients contain this information. However, financial and economic time series are far
from noise-free and the degree of noise becomes substantial at higher frequencies, i.e., mar-
ket microstructure noise. Market microstructure noise is due to imperfections of trading
processes that comprise a vast array of issues collectively known as market microstructure
and include price discreteness, infrequent trading, and bid-ask bounce effects. The wavelet
coeflicients at jump locations are larger than other wavelct coefficients duc to the fact that
wavelet coefficients decay at a different rate for continuous processes and jump processes.
In a given small time interval, changes in continuous price processcs should be very close
to zero while on the contrary, jumps are never close to zero. Such information is contained
in wavelet coefficients at the jump locations (see Wang (1995) and Fan and Wang (2007)).%
Second, estimation of jump size is highly correlated with the estimation of integrated volatil-
ity. As shown in Fan and Wang (2007), wavelets shows superior estimation of the integrated
volatility, which can be used to improve the efficiency of the estimation of jump size.

This chapter implements the wavelet jump test to examine the jump dynamics of three
individual equities in U.S. equity markets and finds that the jump dyvnamics of equities are
entirely different across different time scales. This suggests that choosing a proper sampling
frequency is important for extracting full jump dynamics. Based on the data set used in
the chapter, this suggests that the popular choice of five-minute sampling frequency may
neglect a large proportion of jump dynamics embedded in transaction prices. Additionally,
although jump arrival densities of positive jumps and negative jumps are symmetric across
time scales, the magnitude of jumps is asymmetrically distributed at high frequencies. This
suggests that a skewed distribution for the magnitude of jumps should be employed in risk
managerment or asset pricing practices concerning high frequency trading. Finally, only
twenty percent of jumps occur in the trading session from 9:30 AM to 4:00 PM, which
suggests that the jumps are largely determined by news and not by liquidity shocks. This
also suggests that the mutual fund traders or other institutional traders who are prohibited

by regulation fron intra-day trading should pay closer attention to news outside of trading

“Wang {1995) and Fan and Waug (2007) proposed a wavelsts-based procedure using the different conver-
gence rates of wavelel cocflicients with or without jumps. In addition Lo jump size, Fan and Wang {2007)
could estimate the number of juinps and an estimated interval of jump location, although an exact point
estimate ol jump location was still absent.
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sessions.

Overall, the main contributions of the chapter are as follows. First, a nonparametric
jump detection test based on wavelets is proposed and the asymptotic distribution of the
test statistic is established. This test is showu to improve jump detection by identifying
spurious jumps more accurately. In addition, it provides exact jump location due to the
combined effects of MODWT and a zero phase distortion filter. Second, 1 show that the
jump detection test is robust in the presence of microstructure noise. Third, the empirical
implementation of the wavelet test in U.S. equity markets demonstrates a dramatic change
of jump dynamics across time scales, the asymmetric digtribution of jump magnitudes at
high frequencies and the occurences of the majority of jumps outside the trading session.

The rest of the chapter is organized as follows. Section II provides the theoretical
framework for jump detection in the absence of microstructure noise and introduces the
wavelet-based juinp test statistic. The asymptotic distribution of the test statistic follows
a scaled normal distribution and the scalar is determined by the properties of the wavelet
filter. Section III extends the framework to investigate the performance of the test in the
presence of the microstructure noise. I show that the asymptotic distribution of the test
statistic under the null hypothesis remains the same. Section I'V presents the Monte Carlo
simulation results, which demonstrate the finite sample behavior of the proposed test. I
cshow that the test has desirable size and power in small samples. Section V discusses the

empirical examination of jump dynamics in eguity markets. I conclude afterwards.

3.1 No Microstructure Noise

I employ a one-dimensional asset return process. Let the logaritlun of the market price
of underlying asset be written as £, = log 5, where S; is the asset price at t. For expositional
purposes, I restrict myself to finding the jumps in assct prices as follows. When there are

no jumps in the market prices, F; is represented as

23 ol
Pt=/ p.sd3+/ o sdW, (3.2)
4] J0

where the two terms correspond to the drift and diffusion parts of X;. In the diffusion term,
W, is a standard Brownian motion, and the diffusion variance ¢? is called spot volatility.

Equivalently, P, can be characterized as

dP; = ppdt 4 o dW,. (32)
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When there are jumps, /; is given hy

N,

4 it
a:f p,sds—F/ osdWs+ D Ly (3.3)

where N, represents the number of jumps in & up to time ¢ and L; denotes the jurnp size.

Or equivalently, P, can be modeled as
dPL = }_Ltdt ~+ O'Lde + Ltdf\f-t (-_7)4)

where NV, is a counting process that is left un-modeled. I assume jump sizes L) are indepen-

dently and identically distributed. Theyv are also independent of other random components
W, and N,.

Observations of £, the log price, are only available at discrete times 0 =iy < 4 <ty <

. < tp, = T. For simplicity, [ assume observations are equally spaced: Af = #; — #;_1.

Following Lee and Mykland (2008), I impose the following necessary assumptions on price

processes throughout this chapter: For any small € > 0,

1_
ALl sup, supy cycp,. b = pt, | = Op(AT27F)

1,
AL2 sup, sup; c,cy,, 0w — 0n| = Op(AT27F)

The assumption Al.1 and Al.2 can be interpreted as the drift and diffusion coeflicients not
changing dramatically over a short time interval. Formally, this states that the maximum
change in mean and spot volatility in a given time interval is bounded above. The assump-
tions Al.1 and AL.2 guarantee that the available discrete data are reasonably well-behaved
such that the data are a good approximation of the continuous process of the underlying as-
set. The availability of high frequency financial data allows us to improve the approximation

of the continuous underlying asset process using discrete data.

3.1.1 Intuition and Definition of the Test

Wavelets

A wavelet is a small wave that grows and decays in a limited time period.* To formalize

the notion of a wavelet, let h = (hg, 1, ..., hr—1) be a finite length discrete wavelet (or high

A This section follows Gengay et al. (2001) closely.
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pass) flter coefficient for & wavelel such Lhat it integrates (sums) to zero

L—1
> k=0
0]

and has unit energy

L-1

Zh?:l
0

where L is the length of the wavelet filter. Using wavelet filter coefficients, let scaling filter

coefhcients be
g ={-1)"* gy forl=0,... ,L-1

With both wavelet filter coeflicients and scaling filter coefficients, I can decompose the
data using the (discrete) wavelet transformation (DWT). Formally, let me introduce the
DWT throngh a simple matrix operation. Let x to be the dyadic length vector (N = 27) of

observations. The length N vector of discrete wavelet coefficients w is obtained via
w=Wx

where W is an N x N orthonormal watrix defining the DWT. The vector of wavelet coeffi-
cients can be organized into J + 1 vectors, w = [un, wa, ..., wy, vy]?, where w; is a length
N/2/ vector of wavclet coefficients associated with changes on a scale of length A, = 271,
and vy is a length N /27 vector of scaling coefficients associated with averages on a scale of
length 27 = 2.

The matrix W is composed of the wavelet and scaling filter coefficients arranged on a

row-by-row basis. Let
_ T
hy = [hi,v-1, b v—a, - Rt Ryl

be the vector of zero-padded unit scale wavclet filter coefficients in reverse order, where T
is the matrix transpose operation. Thus, the coefficients kg, ... h1 -1 are taken from an
appropriate ortho-normal wavelet family of length L, and all values L < ¢ < N are defined

to be zero. Now circularly shift k1 by factors of two so that

2
h% — (b, o v, a2 g kol T

1
h(l ) (P13, b2 g hug. . hys falt
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and so on. Define the N/2 x N dimensional matrix W; to be the collection of NV/2 circularly

shifted versions of ;. Hence,
Wy =R RY, RE g

Let Ay be the vector of zero-padded scale 2 wavelet filter coefficients defined similarly to
hy. Waq is constructed by circularly shifting the vector hs by factor of four. Repeat this to
construct W, by circularly shifting the vector h; {the vector of zero-padded scale 7 wavelet
filter coefficients) by 2?. The matrix Vy is simply a column vector whose elements are all
equal to 1/v'N. Then, the N x N dimensional matrix W is W = [W;, W, ..., W,, V5T

To complete the construction of the ortho-normal matrix W, we must be able to explicitly
compute the wavelet filter coefficients for scales 1,...,J. Define the wavelet filter A, for
scale A, = 297! as

i-2

H_?‘k = HI,QJ*IA- mod N HGI,Ql mod N k= 01 ey N - 1.
=0

The modulus operator is required in order to account for the boundary of a finite length
vector of ohservations. Thus, we are imiplicitly assuming that x is periodic. Also, let us
define the scaling filter gy for scale Ay as

J-1

Gk = H Gian mod o K =0, N =1,
1=0

Note that if the data do not represent a dvadic length vector. then we must account for
boundary issues. This is one of the reasons why maximuin overlap discrete wavelet trans-
formation (MODWT) is attractive when dealing with empirical time series problems.

The following properties are important for distinguishing the MODWT from the DWT:

1. The MODWT can accommodate any sample size N, while DW'T restricts the sample

size to muitiples of 2.

2. The wavelet and scaling coeflicients of a MODWT are associated with zero phase
filters. Thus, events that feature in the original time serics can be properly aligned
with features in the MODWT coefficients.

3. The MODWT is invariant to circular shifts in the original time series. This property
does not hold for the DWT.
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4. The MODWT wavelet variance estimator is asyvmptotically more efficient than the

same estimator based on the DWT.

For both MODWT and DW'T, wavelet coeflicients contain inlormation about the high fre-
aguency movemnents in the data serics, while scaling cocfficients contain information abaut the
low frequency movements. In the next section, I investigate the application of the wavelet

method to jnmp detection for high-fregnency time series data.

Intuition of the Test

Wavelets has been shown to be nsefn! for jump detection when the underlying process is
a diffnsion process as shown in Fan and Wang (2007). As mentioned earlier, Fan and Wang
{2007) used a special property of the wavelet expansion, i.e., the localization property, if
a function is Holder-continuous with a jump at a point,? then the wavelet coefficients of
the high pass filter close to that point decay at order ‘2,5'(%}, where 7 is a scale for wavelet
decomposition. This special feature svas used to separate jumps from the continuous parts
and microstructure noise (see Wang (1993)).

Although Fan and Wang (2007) showed the effectiveness of the wavelets wmethod for
jump detection with a diffusion process convincingly, the statistic of the jump detection
test was not formally defined. Thus, the distributional properties of the jump detection
procedure were not discussed. Meanwhile, because discrete wavelet transformation (DWT)
was applied to the data, the jump location could only be estimated with an informational
loss in time domain.

This chapter proposes a framework that treats jum) detection using wavelets formally.
Befare I mathemnatically define the jummp detection statistic Jy-, I address the basic intuition
behind the preoposed detection technique as follows. Imagine that asset prices evolve con-
tinuously over time. Suppose that due to an announcement or other informational shock,
a jump iu (log) prices occurs at time £,. Given the additive nature of the jump, we expect
to see the mean level of the price process to shift. Thus, if we examine high frequency
movement, we will find a large movement in prices or a return of large magnitude. To
illustrate this, let return be r, = F, — F,_,. At time {,, v, can be approximated by

(e, — e, )AL+ {0y, — 0y, )W, _ At + L, . For a small time interval, assumptions A1.1 and

*Holder-continuous is an attribute of a function ¢ : RY — R. g is said to be Holder-continuous {f there
exist constants C and 0 < £ < 1 such that for all v and » in R%:|g{u) — glo}] < Cllu— ¢||®.
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A1.2 imply that the first two terms in the return expression should be close to zero while
the third term, which is equal to the jump size, should be different from zero. Thus, we
should expect to see an absolute large value for the return v, at the juinp location. Note
that the return r, is the difference of log price . Thus, the information about the return
should be stored in the wavelet filter coefficients if we apply the wavelet transformation to
P, Therefore, we should see a wavelel coefficient of a large magnitude at jump location
once the wavelet transformation is applied to the data.

However, due to price discreteness, we can observe a large magnitude of change at the
jnmp location if there is also a large spot volatility. Due to price discreteness, the sampling
frequency of the data is bounded below. Increased volatility leads to a large movement in
returns. Thus, it is difficult to distinguish whether the observed large movement in prices
is due to a jump in price process or a volatility of large magnitude. This is not an issue if
the time unit of the observed price process is infinitely small. Thus, this problem shonld be
alleviated if the data is examined at a higher frequency. However, we wish to consider this
problem explicitly for the purpose of determining test efficiency. This can be accomplished
by normalizing the absolute value of wavelet coefficients via division by the estimated spot
volatility. In this chapter, I apply the bi-power variation estimator suggested by Barndorfi-
Nielsen and Shephard (2004) as & consistent estimate of the spot volatility in the presence
of jumps.

Furthermore, 1T use the maximum overlap discrete wavelet transformation (MODWT)
instead of discrete wavelet transforination. The reasons are as follows. First, MODWT
generates an equal number of wavelet coefficients (high pass filter) as the original data series.
Combined with zero phase correction, the locations of the wavelet coefficients naturally
reveal information concerning the original data in the time domain. Thns, the jump location
detection is reduced to a jump detection problem. Second, MODWT shows superiority over
DWT in decomposing the movements in the data series into high and low frequency. The
performance of the test relies on its ability to decompose the data into different scales by
wavelet transformation. The MODWT is a suitable choice for the main purpose, which is

to detect the exact jump location of the data series in this chapter.

Definition of the Test

Formally, let F;, be the wavelet coefficients of £}, where the scale of the wavelet trans-

formation is j = 1,...,logy(T). Intuitively, the first scale level of wavelet decomposition
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should be of major concerns for jump detection. I define the test statistic as Jy., which
tests at tiine ¢; whether a jump ocewrs for ¢ =0...., T as
Jwiiy = L (3.5)
Tt
i1 -1
where 37 = 2= 5|2, |[Pry L] and @y = 25 5 Py,

Note that I enki[z)loyf a bi-power variation methj;;ll to estimate the integrated volatility
of the underlying process. There are alternative methods for estimating the integrated
volatility; these include two scale realized volatility estimators (TSRV} (Zhang et al. (2003}
and multi-scale realized volatility estimmators (MSRV) (Zhang {(2006)). However, Barndorff-
Nielsen and Shephard (2004) demonstrated that the presence of jumps in the underlying
asset will change the asymptotic behavior of the tests. Additionally, it was shown that a

bi-power variation estimator is robust in the presence of the jumps.®

3.1.2 Null Distribution: No Jumps
Haar Filter Case

Under the null hypothesis that there is no jump occuring at time #;, as At goes to zero,
fw(z’) should go to zero under assumptions A1.1 and A1.2. Theorem 20 relates the proposed
statistic in the case of MODW'T with Haar filter to the test statistic proposed in Lee and
Mykland {2008) (Lee and Mykland test, LM test).

Theorem 20 Suppose assumptions A1.1 and Al.2 are satisfied. If there is no jump m
(t,—1.1,), as At — 0
Uy~ Uiy

sup; |Tw (i) — Jwli)| = Op(AtT ™) where  Jw(i) = -

(3.6)

i1
Here U, = \/%_t(W,Z - Wy,_,), a stendard normal variable, U, , = ﬁ S U; and ¢ =
=1

EU]] = %E— is a constant, where Wy follows a Brownwan motion process.

Proof: Using MODWT with Hear filter to transform the data, the wavelet coefficients at
scale level 1 are

1 1
Py, = E(Pm ~B,_ )= 5(10g5u —log S, ). (3.7}

°Fan and Wang (2007) found that there are. on average, fonr jumps in foreign exchange market,
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Hence, we have

‘ t,
log Sy, — log Sy, | :/ ;.Ludu+/ FudW (u). (3.8)

Ly fion

Imposing assumption Al.l. we have

t, .
f pudu — pre, AL = Op(ALT7) (3.9)
L?—l
This implies
t .
sup| (i — pru—)du| = Op(AEZ7C) {3.10)
£
Similarly, we have
o, .
sup [U'u - U‘ufl]dul = Op(AtE_‘) (3.11)
by
It can be shown that”
log S, — log Se,_, — @i, = oy, VAHU, - Ty 1) + Op(A£T7) (3.12)

where U; = _\/13=L( t, —Ws,_ ), which is an independently identically distributed {#id) normal

_ , =1
and U{,] =T Z Uj.
J=0

For the denominator, following Barndorff-Nielsen and Shephard (2004), we have

i1
Pfimm_;oczaﬁwl = Plimm—»om ZUOQ Sty — log Sy, [ log Sy, —log Sy, |
' k=2
- cﬂga_l (3.13)
where ¢ = E[|U)|] = V—?; Hence
= U, -0,
Twii) = =—L yo,a1¢ (3.14)

QED

"See Lee and Mykland (2008) for & detailed derivation.
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Di4) Filter Case

Theoretically, the Haar flter localizes relatively well for jump detection in a continuous
price process, but in reality, data are only discretely available. The discretization of data
might be accompanied by discretization error, a type of microstructure noise whose effects
of microstructure noise on volatility are not negligible. Thus, large returns generated from
a discrete data set might be due to noise with large instantaneous volatility. Distinguishing
a jump from & large retvrn due to a “volatility offect” is difficult. I propose to the use of
an alternative wavelet filter that is closer to being an ideal band-pass filter. Such a filter
assigns different weights to the returns in a moving window where the wavelet coefficients
caplure the weighted average of differenced data (the returns). This enhauces the efficiency
of distinguishing the jumps from returns due to “volatility effect”. However, this simulta-
neously increases the difficulty of detecting the exact location of the jumps. This trade-off
may require an optimal design of wavelet filters that can achieve the overall efficiency in
both jump detection and jump location. The optimal design of the wavelet is beyond the
scope of this chapter and T only show the distribution of the test statistic with a D(4) filter
in this section. A Monte Carlo study is conducted in a later section which demonstrates
that nsing a least asymmetric filter rather than a Haar filter improves the efficiency of the
test.

Under the null hypothesis that no jump occurs at time ¢,. as At goes to zero, j}y('i)
should go to zero under the assumptions of A1.1 and Al.2. Thecrem 21 demonstrates the
distribution of the proposed statistic in the case of MODWT with [D(4) filter.

Theorem 21 Assuming zero drift in the underlying price process and supposing assump-

flons A1.1 and A1.2 are satwsfied, of there is no jump in (t,-1,t,), as At — 0

sup; |jw(l) — Jw (9} = Op(/_\t%ﬁ() where  Jw (i) = % (3.15)

Here U; = ﬁ(Wt, — Wi, ), o standard normal varable, and a constant ¢ = 3\%} where Wy

follows a Brouwmian motion process.

Proof: Assuming zero drift, using MODWT with D(4) filter to transform the data, the
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wavelet coefficients at scale 1 are
1
P = 750 - VBP + (VB=3)P (35 V3IB, L, + (F1 - VO)PL)
1
= —=((1=V3)(P, -~ P )+ (1 +V3)(P,, - P, o) - 2P, — P,))
42
1 al
= m((l — V3)(log Sy, —log S;, )+ (1= V3)(log S, _, — log S1,_)
—2(log 5y, —log Se,_,))- (3.16)
Hence, we have
I an
log S, — log 5, , = / fudu + / o dW (1)
L1 b
by o1 ti-1
log S¢,_, —loghy, , = ] ,uudu—l—] o, dW (u)
t,_2 ty 2
ti—2 by -2
log S, , —logh,. , = / Lo At + / . dW(u) (3.17)
b3 [
Imposing assumption Al.1, we have
t,
f pde — g, (AL = Op(/_\t%_f) (3.18)
29 |
This implies
t 5
sup| [tt — fu1]dul = Op(Atz71) (3.19)
('771
Similarly, we have
L
sup| [ [0u — ou1]du] = O, (A7) (3.20)
[SH}
It can be shown that
log Sy, —log S, = o VAL + OP{At“‘)
log Sy, —loghy, , = o, ,VAHU 1)+ Op(At"‘)
IOgSLFQ — log Shu:; = O _4V [_\‘L(Ug 2) + OP{A'(__() (321)

where U; = ﬁ(Wﬂ —W _ ), which is an independently identically distributed (éid} normal.

Hence, P\, is a linear combination of iid normal variables I/;s. Therefore, P ;, is normally

distributed with mean (0 and variance

ori = 75\ - 2Bt

+(4+2V3)o} , +407 .
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For the denominator, in order to apply the resnlts from Barndorff-Nielsen and Shephard

(2004), we redefine P, to be a new diffnsion process
Py, = op,dWx (3.22)

ops, 18 continnous, so we can apply the result from Barndorfl-Nielsen and Shephard (2004).

Hence:
p—1
Jl?zfﬂ,] = Z IP].,.!,,IIPI,Q,[‘ (323)
k=2
i—1
. 2~ .
plimar—oc’oy,, | = pi’bmm—.omé |Pe )| Pre,
= 2o, | (3.24)
o= V2
where ¢ = 7 Hence
U.
Jw(i) = = + 0p,AT (3.25)

[

This can be extended to allow for nonzevo drift case.

Therefore, the distribution of the test statistic is unchanged under a D{4) filter.

3.2 With Microstructure Noise

Due to market microstructure, high frequency data are noisy. A cominon modeling
approach is to treat microstructure noise as ordinary “observational ervor”, and then assume
that the observed high-frequency data P are equal to the latent, true log-price process F;

of a security plus market microstructnre noise ¢, thus:
P; =F+e (326)

where £ is the logarithm of the observable transaction price of the security observed at
time ¢ and increment in ¢, is mean 0 #d noise with variance 2 and independent of P, When

there are no jumps in the market price, P/ is represented as

"+ ‘
Py :j ,usds—’—[ osdWi s+ e {3.27)
0 0
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where the three terms correspond {o the drift and diffusion parts of P and the 22d inarket
microstructure noise. In the diffusion term, W, is a standard DBrownian motion, and the

diffusion variance o} is called spot volatility. Equivalently, P can be characterized as
AP = pedt + o dWy ¢ + ndWo . (3.28)

‘When there are jumps, F is given by

Ny

4 2
Pt* = / Lhetls + / Osduf']!_s + e + Z L (329)
0 0

=1
where N, represents the number of jumps in 7 up to time t and L; denotes the jump size.

Equivalently, Py can be mnedeled as
AP = ppdt + oudWip + ndWa s + Led Ny (3.30)

where N, is a counting process that is left un-modeled. I assume jump sizes L; are indepen-
dently and identically distributed and also independent of other random components W,

and N;. Additionally, microstructure noise is perfectly correlated with price.

3.2.1 Under the Null: No Jumps

Theorem 22 characterizes the asymptotic behavior of the proposed test statistic when

market microstructure noise is presented.

Theorem 22 Assuming zero drift in the underlying process and supposing assumptions

A1 and A1.2 are satisfied, of there is no jump in (t,-1,4,), as At — 0

sup; |Jw (i) = Jw(d)] = Op(At2™)  where  Juw (i) = v (3.31)

C

Here U, = \/LA—r(DV,,l —We, ). o standard normal variable and a constant c = E||U}]] = %

Proof: Let us investigate the denomninator and numerator of Ju (). As a simple demon-
stration, let us assume a zero drift case. For the numerator: using MODWT with a Haar

filter to transform the data, the wavelet coefficients at scale level 1 are

(log S{, — I(Jg 5,571 + & — 6t,1). (332)

I3

* 1 * *
Pl,tzg(P: 7Ptfl)=

S

Recall that

(log Sy, — log Sy, ,) = oy, VALU, + Op(ALF =) (3.33)
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and

e, — e, = VALU; + Op(At279) (3.34)
where [/, = ﬁ(Wa —~W4, ), which is an independently and identically distributed normal.
Therefore,

2P, = (n+ 01, WAL, + Op(A127) (3.35)

For the denominator, following Barndorff-Nielsen and Shephard (2004), we have

2—1
l £ 3 [ »
P— Z VRPN
k=2
1 i—1
= > " l(log Sy, dog S, )+ (e, — g {108 ey, — log Si,_,) + (e, — €t

i —3
k=2

i—1
1 Z .
= m I log étk - IOg S“’k* l| ].Og Sf.‘:~l - 108 ka—Ei
k=2

P =1
+3 -3 Z I logs"‘k - 1Ogsf-kﬁ1:}(€hfl - Fvﬁg-_.z)l
k=2
1 i—1
+i—3 Z|(€ik_elk_1)“(6tkq *Ctk_g)l (3.36)
k=2

Recall that

_ = )
plimar—o—s > g Sy, -~ log Sy, Ilog Sy, ~ log Sy, | = cPoi | (3.37)
k=2
where e = E[|U)|| = \l/-/_% The second term in Eqguation 3.36 behaves as in
9 =1
plimai—or—s Z; [log S, — log Si, (e, = €4, )
= plim 2F[|logSy — log Sx_1||Ellei—1 — ¢ 2| = 2¢%04_ |7 (3.38)

The third term in Equation 3.36 behaves as in

i-1
. 1 .
pl?imf_\.t—()m E ler, — et (e, — €6, o) = plim (3.39)
) k=2
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Hence
1 2—1
22 D IBLLIIB | plim (o, + ) (3.40)
k=2
- U,
Jwli)= =+ 0,A2 ¢ (3.41)
Q.E.D

Theorem 22 indicates that the statistic Jiy (i} is robust in the presence of microstructure
noise. Intuitively, in the presence of microstructure noise, underlying process as dF =
dF = pdt + ofdW, can be rewritten as long as the noise increment is #id, where o/ is
a function of spot volatility o, and the volatility of microstructure noise 5. Thus, it is
equivalent to have a larger spot of volatility. If we want to estimate the integrated volatility,
distinguishing the spot volatility of the underlying process (¢;) from the microstructure
noise (1} is a challenging task when g} is the only information available {See Zhang et al.
(2005) and Zhang (2006)). However, the numerator of the test statistic is also composed
of microstructure noise. Hence, we only need to estimate the “new spot volatility” of the
underlying process, gf. Note that the new underiying process is well-defined so that the
bi-power variation estimator is a consistent estimator of o7 {or o¢ + 1). Therefore, the
asymptotic distribution of the test is not changed in the presence of microstructure noise.
Issues related to microstructure noise are impoertant in finance literature, especially for
estimation of integrated volatility. Microstructure noise might be due to the imperfections
in trading processes, including price discreteness, infrequent trading, and bid-ask hounce
effects. It is well-known that higher price sampling frequencies are linked to a larger the im-
pact of microstructure noise. Zhang et al. (2005) demonstrated that estimation of integrated
volatility via a realized volatility method is severely contaminated by microstructure noise.
Fan and Wang (2007) assumes a very small noise ratio in detecting jumps. The distribution
of the test proposed in Ait-Sahalia and Jacod (2009) is different in the presence of mi-
crostructnre noise. Lee and Mykland {2008) chose a rather low sampling frequency (fifteen
minutes} in an empirical study in order to avoid the impact of inicrostructure noise. Because
the asymptotic distribution of this statistic is robust in the presence of microstructure noise,
I do not need to decrease the sampling frequency. Thus, I claim that this technique of jump

detection is more eflicient.
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3.3 Monte Carlo Simulations

In this section, I examine the eflectiveness of the wavelet-based jump test using Monte
Carlo simulations. The performance of the test statistic is examined at different sampling
frequencies. An Euler method is used to generate countinnous diftusion processes aud the

burn-in period observations is discarded to avoid the effects of the initial value.

3.3.1 Under the Null

This subsection illustrates the simulated test statistic under the null hypothesis of no
jump in a given period of time. The asymptotic distribution of the statistic is a scaled

standard normal and the scaling factor is E|U] = \/% Formally, T consider
AP = pydt + o dW,. (3.42)

where p; is the drift in price process and ¢, is the diffusion or spot volatility in the price
process. 1 consider four scenarios: ¢ = 0 and ¢, = o (zero drift and constant volatility as
the benchmark), y; # 0 and o4 = ¢ (non-zero drift and constant volatility), @ = 0 and
o: # a (zero drift and stochastic volatility), and p; # 0 and o, # ¢ (non-zero drift and
stochastic volatility). Specifically, T assume g, = 1 or g = 0 for non-zero and zero drift
cases, respectively.® T employ an Ornstein-Uhlenbeck process as the volatility model for the

stochastic volatility case:

dPt ,uf,dt + JLdW1,-¢

dloga? = k(log7® — loga?) + 6dWo, (3.43)

where k measures the recovery rate of volatility to the mean and log @ can be interpreted as
the long run mean of volatility, d is the diffusion parameter for volatility process.? Following
Fan and Wang (2007), I assume that the correlation between Wi, and Wy, is p, which is
negative and captures the asymmetric impact of the innovaticn in price process. [n this

section, following Fan and Wang (2007), I assume k = —0.1, logd® = —6.802, § = 0.25.

*[ also investigated various specifications for drift part as well, for instance the mean reverting process as
Ornstein-Uhlenbeck process. I found that the specification of drift part has negligible impact on the main
result.

¥ also investigated olher specifications of the pracess and found that different specifications of volatility
processes did not qualitatively changed the main results.
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Figure 3.1 shows the density plot of the statistic for 1 million observations when a Haar
filter is used. The top left panel shows the zero mean and constant volatility case; top right
panel depicts the non-zero mean and constant volatility case; bottom left panel shows the
zero mean and stochastic volatility case; and hottom right panel depicts the non-zero mean
and stochastic volatility case.

Figure 3.2 shows the density plot of the statistic for one million observations when a
58 filter is used. The top left panel shows the zero mean and constant volatility case; top
right panel depicts the non-zero mean and constant volatility case; bottom left panel shows
the zero mean and stochastic volatility case; and bottom right panel depicts the non-zero
mean and stochastic volatility case. The reason for choosing 58 rather D4 filter is that the
S8 belongs to the least asymmetric filter class which snpposedly permits nearly zero phase
distortion; this is helpful in conveying information about the jump location in the time
domain. Simulations show that jump detection using a D4 filter is similar to that using a
S¥ filter.

Additionally, Figure 3.1 and Figure 3.2 show that the test statistic follows a standard
normal distribution when volatility is constant. When volatility is stochastic, the test statis-
tic has fat tails. | found that when the frequency increases, i.e., At — 0, the fat tail of the
test statistic diminishes. The fat-tailness of the test statistics originates from two sources.
First, the estimation of spot volatility using bi-power variation is unfavorable if there are
insufficient data close to the boundary of the wavelet transformation. Second, the Haar
filter has excessive leakage in decomposing the data into noise component and continuous
components. It is notable that 58 filtor outperforms the Haar filter while the distribu-
tion of the test statistics nnder the null hypothesis using the S% filter is closer to a normal

distribution even in stochastic volatility cases.!?

"“Simulations show that the at-tailness of null distribution originates [rom two sources: the poor petfor-
mance of bi-power vanation estimator for small samples and the choice of wavclet filter. Poor perforuiance
ol the bi-power variation estimator for smaull samples occurs when there are only a few data points available
for estimation, e.g., when the flier location is close to the boundary of the data set. Additionally, simule-
lions dermnonstrate that the wavelet flter with less leakage can decrease the fal-tailness of the null empirical
distribution. This is mainly due to the fact that wavelet filters with less leakage will more sophisticatedly
utilize information both at the estimated location and in the neighborhood of the estimated location, This
mitigates the small sample estimation problem brought abont by bi-power variation.
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3.3.2 Size and Power

First, I present the size of the test statistic in Table 3.1.1' As shown in the table, the
test statistic has a good size. The probability of false jump detection is quite close to the
theoretical value, i.e.. 1% when the 99% quantile from the simulated distribution of the test
statistic is used and 5% when the 95% quantile is used.

Subsequently, I study the power of the test statistic. For the purposes of illustraticn, I
allow only one jump per simulation. In particular, 1 study a sample of 1,024 observations
and a jump occurring at the 819tk observation. The jump size could be large, e.g., 3o (three
standard deviation of return volatility) or could small, e.g, 0.1¢ (10% standard deviation
of return volatility).'? T also examine the performance of the test statistic at the different
time scales. In the simulations, the number of repetitiens is 1,000.

I employ two measures of performance to characterize the test. Oue is the power of the
test, which is the probability of detecting the actual jump at the tiine 4 when the jump
occurs. Note that when [ apply the test to the simulated data, I let it detect the location
of jump itself without using the information about the actual jump location. The power of
test is calculated by the number of cases where the test detects a jump at 819¢h observation
divided by the number of repetitions. I also consider another measure, a success rate
measure, which is consistent with the probability of spurious detection of jumps (G5 D) as
in Lee and Mykland (2008). Specifically, if the test detects the true jump without detecting
any other spurious jumps, [ call it a success. Recall that there is only one jump in the true
data, i.e., the test should detect one and only one jump at the 819th observation. Therefore.
the second measure is the success rate, i.e., the number of successes divided by the number
of repetitions.

When the test statistic exceeds a threshold, the null hypothesis of no jumps is rejected.
There are two threshold levels used in this chapter: 95% and 99% quantiles of the null
distribution. I also investigate the performance of the test statistic with different time
scales; Thus, I let the time step used to generate the continuous process of the underlying
asset be 252 times the number of observations per day. For instauce, I choose the tine step

beiween observations to be 252 * 1 for daily observations. In the simulations, [ choose the

YT use 95% and 99% critical values from the standard normal distribution multiplied by a scalar ¢ = {,—;

2 Fan and Wang (2007) found that the ratio of junip variation to the total return variation is 1 to 1.5 in
the foreign exchange market.
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observations per day to be 24 or 12. Thus, the sample size of 1024 corresponds to two weeks
of hourly data or one month of bi-hourly data. The findings suggest that the power of the
test is improved when sampling frequency s higher. This is consistont with the findings of
Lee and Mykland (2008).

Table 3.2 shows the power comparisons for the S8 Alter case, Haar filter case (LA,
linear test ol Barndorfi-Nielsen and Shephard (2006) (BNS), and diftference test of Jiang
and Qomen (2008} (JO). The wavelet-based test has good power and outperforms other
tests at both the 95% and 99% quantiles. For a wide range of jump sizes {0.50 to 37), both
S& and Haar filters can detect the actual jump without failure. For jump size 0.250 when
the S8 filter is used, the test can detect the actual jump with 83% probability if the 957
quantile is used and 62% probability if 99% quantile 1s used. Similarly, for the 0.1¢ case, the
S8& filter detects jumps with 21% and 8% probability, respectively. The Haar filter detects
the actual jurups with a probability 97% and 91% for 95% and 99% quantiles, respectively,
for jump size 0.250. For jump size O.1¢, the Haar filter detects the actual jump with the
probabilities 34% and 16% accordingly. Recall that wavelet coefficients of the Haar filter are
simple differences of prices, whereas wavelet coefficients of S8 filter are weighted averages ot
returns in the neighborhood of a given location. Thus, it is easier for a Haar filter to detect
large movement in returns and, not surprisingly, the Haar filter marginally outperforms
the S8 filter when the maguitude of jump is very small. Both the Haar filter and the 58
filter outperforin BNS and JO tests using the 95% or 99% quantile. This suggests that
wavelet-based methods can be more effective for detecting large movements in the presence
of jumps. Note that a large variation in microstructure noise is equivalent to decrease
the relative magnitude of jump size to the spot volatility of underlying process. From the
simulations, wavelet-based wethods indeed demonstrate superior performance for detecting
junmps even when the jump size relative to spot volatility is small. This is important for
detection of jumps in high frequency financial time series data, where microstrucrure noise
inevitably exists.

As a perfoermance measure, power only considers the ability of a test to detect the
true jumps while ignoring the possibility of spurious jumps detection. Intuitively, if we
set a threshold low enough to reject the null hypothesis at every point of time, the actual
jumps can he detected without failure if they exists. However, too many spurious junips
are detected. Thus success rate is employed as another measure. Recall that success rate

measures the ability of a test to detect the actual jumps only. That is, if and only if
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the test only detects the true jumps, it is regarded as successful. This measure is more
appropriate for describing the performance of jump detection tests. Table 3.3 presents
success rate comparisons for the S8 filter, Haar filter (LM), linear test of Barndorff-Nielsen
and Shephard (2006) (BNS), and difference test of Jiang and Oemen (2008) (JO). When
the 95% quantile is used as threshold level, the success rate is zeros for both the S8 and
Haar filter. In contrast, BNS provides a 15% to 25% success rate. The JO test provides a
5% success rate. Combined with the power results, the zero success rate suggests that both
the Haar and S8 filters always detect at least one spurious jump in addition to the actual
jump. The BNS and JO tests show a superior performance for not detecting spurious jumps
compared to Haar filter and S® filter using 95% quantile as the threshold level. However,
when 99% quantile is used as threshold level, the S8 filter outperforms BNS, LM, and JO
tests at all jump size levels. This shows that when a more stricter threshold level is imposed,
i.e., a 99% quantile rather a 95% quantile, the S8 flter outperforms the BNS and JO tests
in both power and success rate.

Additionally, the S8 filter is recommended rather than the Haer filter for the following
reasons. First, when a 99% quantile is used as a threshold, the success rate of S8 filter is
satisfactory compared to the Haar filter and other alternative candidate tests. Second, the
58 filter can provide comparable power to the Haar filter when the magnitude of jump is in
a range from 0.250 to 3. Thus, when a filter with less lcakage is used, the test performance
improves.

Overall, the proposed test demonstrates satisfactory power for detecting jumps. Based
on simulations, I recommend the S8 filter or the other filters with less leakage and the use
of a siringent threshold level (at least 99% quantile) for empirical implementation of jump
detection. The filter with less leakage possesses similar power to the Haar flter (Lee and
Mykland test), but the success rate is higher. This improvement occurs because the wavelet
filter with less leakage averages the noise embedded in the underlying process to facilitate

the to differentiation of the jump from the noise (volatility effect).

3.4 Empirical Analysis for U.S. Equity Markets

In this section, I apply the jump detection test to three major U.S. individual equities
transaction prices to determine their jump dynamics. To characterize jump dynamics, the

frequency of arrivals and the magnitude of jumps need to be characterized. Using a jump
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detection method, the jump locations can be estimated in a given time interval.'® Thus, the
arrival density of jumps per trading day can be subsequently calculated. To characterize the
magnitude of the jumps, I employ a method that follows Fan and Wang (2007). Formally,
for each estimated jump location ¢;, 1 choose a small neighborhoeod, ¢; =+, where small ~v > 0.
Then, I calculate the average of the prices over [t —, ;] and [f,,¢,++]. Let P, _ and P, _ to
denote the averages accordingly. The jump size is estimated by Ly, = P, — F, _. Fan and
Wang (2007} shows that this estimator of jump size is consistent when the neighborhood 4

is chosen such that ~ ~ T2 where T is the sample size.

3.4.1 Multi-Scale Jump Dynamics

1 use ultra-high frequency tick data from transactions on the New York Stock Exchange
[NYSE} collected from the Trade and Quote (TAQ) database. 1 apply the jump detection
test to the log transaction prices. The time span is three months from January 1st 2003
to March 31st 2008, which represents latest data available and which has never been in-
vestigated in the literature. I choose three equities {Wal-Mart (WMT}, IBM (IBM) and
General Electric (GE}) to compare their jump dynamics. Recall that the test is robust in
the presence of microstructure noise, I employ one minute data to unprove the efficiency of
estimation.!4

For the comparison purposes, 1 also report jump dynamics at different time scales:
specifically, jump dynamics are reported using one-minute data, five-minute data and fifteen-
minute data.'® This comparison offers nseful insights for both the theoretical framework for
junip detection and the implementation of empirical jump detection. Due to the rohustness
of this test in the presence of microstructure noise, the difference in jump dynamics detected
at diflerent time scales should account for the difference in juinp arrival densities at different
time scales. Intuitively, if two jumps of similar magnitudes occur in opposite directions,
i.e., a positive jump and negative jump. a large diffcrence in price level should not be
observed; thus we will claim that there were no jumps in this tinie interval. Specifically, low

frequency data might ignore jump dynamics that could not be captured due to the sampling

1310 this chapter, the time interval is chosen o be one day.

“Tick level transaction data are irregularly spaced time series data and need to be converted into regularly
spaced time series data for the implementation of the test. See Dacorogna ef al. {2001} for a discussion about
transformiug irregularly spaced time series data into regularly spaced time series data.

YLee and Mykland (2008) used fifteen-minute transaction data.
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frequency. In order to examine the jump dynamics at a pre-chosen sampling frequency, we
implicitly assume that the smallest duration between two jumps should be larger thai the
time interval implied by the sampling frequency. 1f this is true, significant differences should
not be observed in jump dynamics across different time scales. Otherwise, a higher sampling,
frequency should be used to extract full jump dynamics.

Table 3.4 and Figure 3.3, Figure 3.6 and Figure 3.9 report the dynamics of jump arrivals
for these three equities. Jump dynamics for the same equity are entirely different at difterent
time scales; specifically, the jump arrival densities for GE are 11.7, 3.7, and 1.5 jumps per day
at one-minute, five-minutes, and filleen-minules sampling frequency, respectively. Similar
patterns are found for IBM and WM'T. The jump arrival densities for IBM are 11.3, 3.6,
and 1.2 jumps per day at onc-minute, five-minutes, fifteen-minutes sampling frequency,
respectively. The jump arrival densities for WMT are 11, 3.6, and 1.3 at one-minute,
five-minutes, fifteen-minutes, respectively. Thus, the juinp arrival densities at one-minute
samnpling frequency per day for all three egnities are higher than jump arrival densities at
five-minutes and fifteen-minules. As stated earlier, if the sampling frequency is lugh enough
to observe full jump dynamics, significant differences should not be observed in jump arrival
densities across time scales. Therefore, sampling data at fifteen-minutes ignores a significant
portion of jump dynamics that occurs at higher [requencies than the sampling frequency.
Thus, sampling data at fiftcen-minutes even five-minutes might not be appropriate for the
purpose of risk management or dynamic hedging which requires continuous adjustments of
positions. If the jump arrival deusity is estimated at an incorrect frequency, the impact
of jumps will be underestimated. Another suggestion is that the averaging of jumps with
opposite directions should be considered for dvnamic hedging. It should also be noted that
the jump arrival densities are similar for all three equities at the same scale. This suggests
that macroeconomic news might play an important role in the formation of jumps that

accounts for “common trend”.

3.4.2 Positive Jumps Versus Negative Jumps

[ further investigated the jump dynamics for jumps ol different directions, i.e., positive
junps and negative jumps. Table 3.4, Figure 3.4, Figure 3.7, and Figure 3.10 report the ar-
rival densities for jumps of different dircctions. Jump arrivals are symmetric for all cquitics.
Thus, the arrival densities of positive jumps and negative jnmps are similar across different

time scales. For instance, the arrival deusities of positive and negative jumps for GE at
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one-minute sampling frequency are 6.1 and 5.6 per day, respectively. The arrival densities
of positive and negative jumps for GE at five-minutes are 1.8 and 1.9 per day, respectively.
The arrival densities of positive and negative jumps for GE at fifteeu-minutes are 0.75 and
0.75 per day, respectively. This pattern also holds for IBM and WMT.

Furthermore, the magnitudes of jumps are asymmetric at high frequencies for all equities.
At the one-minute sampling frequency, the mean size of negative jumps for GE is —0.04%
of the return while the mean size of the positive jumps is 0.01% of the return. In the
case of TBM, the mean size of jumps is —0.02% and 0.10% respectively. This suggests
that ihe rmagnitudes of jumps are not symmetric at high sampling frequencies. Symmetric
distribution of jump sizes for derivative security pricing should not be assumed in practice.

This asymmetry in jump magnitude is decreased at lower sampling frequencies.

3.4.3 Trading Session Versus Off-Trading Session

I alsc decampose the jump dynamics of all these equities into two sessions: the day
trading session (9:30 AM to 4:00 PM for NYSE} and the off-trading session. Notice that for
hedging purposes, the jumps in the day trading session are more relevant because dynamic
hedging needs to continuously account for the impact of jumps on the prices of underlying
assets. Mutual fund traders or other institutional investors cannot engage in intra-day
trading due to regulatory constraints. Thus, the jumps in the off-trading sessions might be
more relevant. Table 3.4, Figure 3.5, Figure 3.8, and Figure 3.11 report the jump dynamics
in the day trading session. It demonstrates that the majority of jumps occurs in off-trading
sessions, Only twenty percent of jumps occurs in the day trading session. The average
number of jumps acecur in day trading time session at one-minute frequency per day is 2 to
3 which is comparable to the findings of Fan and Wang (2007). This suggests that mutual
fund or other institutional traders should pay closer attention to the macroeconomic news
or other prescheduled news that contribute to the majority of jump arrivals. This also
suggests that jumps are niostly determined by informational factors other than hqguidity
shocks brought about by noise traders.

Additionally, the average sizes of positive and negative jumps in the trading session are
different across time scales. It seems that at high frequencies, the magnitudes of the jumps
of different directions are quitc asymmetric. This asymmetry diminishes as the sampling
frequency decreases. This suggests that normality assumption of jump sizes might not be

a good approximation for high frequency data; a skewed distribution might be required for
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modeling of jump size when conducting high frequency trading.

3.5 Conclusions

This chapter introduces a new nonparanietric test based an the wavelets method to detect
jurnp arrival times in high frequency financial tinie series data. This newly proposed test is
motivated by the ability of the wavelets method to decompose the data into different time
scales. This localization property of wavelets is shown to be superior for jump detection. [
show that the distribution of the test under the null hypothesis of no jumps is asymptotically
normal. I demonstrate that the test is robust for different price processes and the presence
of market microstructure noise. A Monte Carlo simulation is conducted to demonstrate the
test has good power and size. 1 also demonstrate that the use of wavelet filters with less
leakage improves the success rate of the test, i.e., the ability of the test to only detect the
true jumps.

An empirical implementation is then conducted for U.S. equity markets, and jump dy-
namics changes dramatically across time scales. This suggests that choosing a proper sam-
phing frequency is very important for investigating the full jump dynamics. Additionally,
the arrival densities of positive jumps and negative jumps are similar, but the magnitudes
of the jumps are asymmetrically distributed (at high frequencies}. Finally, the majority of
jumps occur outside of the day trading session and only twenty percent of jumps occur in
the day trading session.

One potentially interesting avenue for future research is to relate the jumps to macroeco-
nomic news and liguidity shocks. Recall that jumps can be irregular (due to macroecononic
news) or regular (due to liquidity shocks brought about by noise traders), but this distine-
tion has not received much attention in the literature. Intuitively, irregular jumps cannot
be assumed to occur regularly and should be modeled separately. Thus, it is important
to separate the detected jumps into two categories: irregular and regular jumps. Doing
50 helps to conditionally predict jumps and improve asset pricing and hedging activities in

practice.16

18) am currently working on this.



CHAPTER 3. JUMP DETECTION BY WAVELETS

Haar filter

S8 fAlter Haar filter S8 filter

95% confidence level 99% confidence level

0.0510

0.0450

0.0490

0.0510

pu=0and oy =0
.0490 0.0110 0.0100

p#0and o, =0
0.0500 0.0110 0.0100

p=0and o # o
0.0490 0.0100 0.0100

p#land o, # o
0.0500 0.0100 0.0100

Table 3.1: SizE oF TEST STATISTIC AT 95% AND 99% QUANTILES. Size is defined as
the detection of spurious jumps nnder the null hypothesis of no jumnps. The number of
Monle Carlo simulations is 1000, Four scenarios are inveslipaled; spocifically, the casce
of zero mean and constant variance, the case ol non-zero mean and constant variance,
the case of zero mean and non-constant variance. and the case ol non-zero mean and

non-constant variance.
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Jump size S8 filter Haar filter (LM) Linear test (BNS) Difference Test (JO)

Frequency = 2 hours, 95% confidence level

3.00a 1.0000 1.0000 0.8550 0.8430
1.00s 1.0000 1.0000 (0.8110 0.7690
J.500 1.0000 1.0000 0.7110 0.6470
0.25a 0.8500 0.9720 0.5330 1.4400
100 (.2160 {J.3360 g¢.1110 0.0990

Frequency = 1 hour, 95% confidence level

3.000 1.0000 1.0000 0.8740 0.8610
1.00g 1.0060 1.0000 0.8460 0.8210
0.500 1.0000 1.0000 0.8030 0.7550
0.25a 0.9300 0.9760 0.6380 0.5540
0.100 0.2180 0.3800 0.1090 0.0980

Frequency = 2 hours, 99% confidence level

3.000 1.0000 1.0000 0.8530 0.8430
1.00e 1.0000 1.0000 0.8110 0.7650
0.50¢a 1.0000 1.0000 0.7110 0.6470
0.25¢0 (0.6260 0.9080 0.5330 0.4400
0.10¢ (.0820 0.1380 0.1110 0.0990

Frequency = 1 hour, 99% coufidence level

3.00e 1.0000 1.0000 0.8740 0.8610
1.00a 1.0000 1.0000 0.8460 0.8210
0.50a 1.0000 1.0000 0.8030 0.7550
0.25¢ (.7000 0.9120 0.6380 0.5540
0.100 0.1020 0.1860 0.1090 0.0980

Table 3.2: PoOWER COMPARISON WITH OTHER JUMP TESTS. The simulation only allows
one jumnp and assnmes constant volatility and non-zero drift part in price process. The
mumber of repetitions is 1,000. The power of the test is defined as the probability that
the test will detect the actual jump {even when the test also detects spurious jumps).
The table shows the power of my test (S8 filter, Haar filler corresponding to Lee and
Mykland (2008} (LM)), linear test of Barndorfl-Nielsen and Shephard (2006) (BNS),
and difference test of Jiang and Oomen (2008) (JO). The time interval for integration
of the linear (BNS) and difference tesls (JO) s one day The jump sizes are 10%, 25%,
50%, 100%, 300% ol the spot volatility.
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Jump size S8 filter Haar filter (M) Linear test (BNS) Difference Test (JO)

Freguency = 2 hours, 95% confidence level

3.000 0.0000 0.0000 0.2511 0.0650
1.00¢ 0.0000 0.0000 0.2426 0.0484
0.50¢0 0.0000 0.0000 0.1190 0.0010
0.25¢ 0.0000 0.0000 {.0840 0.0000
0.10o (0.0000 0.0000 0.0510 0.0000

Frequency = 1 hour, 95% confidence level

3.000 0.0000 0.0000 00.1884 0.0050
1.00c 0.0000 0.0000 0.1686 (3.0076G
0.50¢ 0.0000 0.0000 0.0910 0.0009
0.25¢ 0.0000 0.0000 0.0000 0.0000
0.10¢ 0.0000 0.0000 0.0000 0.0000

Freguency = 2 hours, 99% confidence level

3.000 0.8020 0.0400 0.2511 0.0650
1.000 0.1980 0.0100 0.2426 0.0484
0.50a 0.0502 0.0080 0.1190 0.0010
0.250 0.0240 0.0040 0.0840 0.0000
0.10¢ 0.0020 0.0000 0.0510 0.0000

Frequency = 1 hour, 99% confidence level

3.00s 0.2400 0.1120 0.1884 0.0090
1.000 0.2120 0.1000 0.1686 (.0076
.50 0.1560 0.0190 0.0910 0.0009
0.25¢0 0.1120 0.0120 0.0000 0.0000
0.100 0.0040 0.0040 0.0000 0.0060

Table 3.3: SUCCESS RATE COMPARISON WITH OTHER JUMP TESTS. The simulation
only allows one jump and assumes constant volatility and non-zero drift part in the price
process. The number of repetitions is 1,000, Success rate is defined as the probability
that the test will detect only true jumps. The table shows the success rale of my test
{88 filter, Hear filter corresponding to Lee and Mykland (2008} (LM}), Linear test of
Barndortf-Nielsen and Shephard (2006) (BNS), and Differcnee test of Jrang and Ootnen
(2008) (JO). The time interval for integration of the linear (BNS) and difference tests
(JO) is one day. The jumnp sizes are 10%, 25%, 50%, 100%, 300% of the spot volatility.
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Sampling Frequency Ny Ny, Np . N, Sizey, Sizen, . Sizey,
GE

1-min 11.7 610 560 270 —0.04% 0.01% —-0.04%

A-1nins 3.70  1.80 190 090 —0.09% 0.01%  -0.09%

15-mins 1.50 075 075 070 —0.03% 0.04% -0.04%
IBM

1-min 11.3 590 540 270 -0.001% 0.10% —0.02%

S-1ming 360 1.80 180 070 -0.05% 0.02% —0.05%

L5-mins 1.20 060 060 040 -—0.05% 0.03% -0.07%
WMT

1-min 110 600 500 350 —001% 0.08% —0.01%

5-mins 360 190 170 1.00 —0.20% 0.05% —0.05%

15-mins 1.30 0.80 050 040 -0.02% t.01%  —0.02%

Table 3.4: JuMp DYNAMICS OF INDIVIDUAL EQUITIES. This table contains the jump
dynamics of three U.S. individual equities: GE, IBM, and WMT based on transaction
prices from the New York Stock Exchange (NYSE) duriug three months from January
1st to March 31st, 2008. Nt is the average number of total jumps estimated in each
day. N7y is the average of the number of pesitive jumps estimated for each day. N7 -
is the average number of negative jumps estimated for each day. N, is the average
number of trading session jnmps estimated for each day. Sizey, is the average mag-
nitude of the trading-session jumps estimated for each day. Swzen, | is the average
magnitude of positive trading-session jumps estimated for each day. Sizen, _ is the
average magnitude of the negative trading-session junps estimated for each day.
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Figure 3.1: DENSITY PLOT OF THE SIMULATED STATISTIC UNDER THE NULL HYPOTHESIS WITH THE Haar
FILTER. {a) Density plot of the simulated statistic with zero mean and constant volatility. {b} Density plol of
the simulated statistic with non-zero inean and constant volatility. {c) Density plot of the simulated statistic
with zero mean and stochastic volatility. (d) Density plot ol the simulated statistic with non-zero mean
and stochastic volatility. For each plot, a standard normal density lunction is imnposed. The solid line is
a standard normal density function and the line with circles is an empirical null distribution of the jump
statistic from one millien simulations.
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Figure 3.2: DENSITY PLOT OF THE SIMULATED STATISTIC UNDER THE NULL HYPOTHESIS WITH THE S8
FILTCR. (&) Density plot of the simulaled statistic with zero mean and constant volatility. {b) Density plot of
the simnlated statistic with non-zero mean and constant volatility. {(¢) Density plot ol the sunulated statistic
with zero mean and stochastic volatility. (d} Density plot ol the simulated statistic with nou-zero mean
and stochastic volatility. For each plot, a standard normal density function is imposed. The solid line is
a standard normal density function and the line with circles is an empirical null distribution of the jump
statistic from one million simulations.
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(a) Total jumps at 1-min frequency

(b} Total jumps at 5-mins frequency

nol

a2

(¢) Total juinps at 15-mins [requency

119

Figure 3.3: MULTI-SCALE JUMP DYNAMICS OF GENERAL ELECTRONIC {GE) FROM JANUARY 1 TG Maki i
31. 2008. (a) The toval number of jumps estimaled for each day using one-ininute data. (h) The tolal
number of jumps estimated in each day using five-minutes data. (¢} The total number of jumps estimated

in each day using fillcen-minutes dala.
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(&) Positive jumps at 15-mins frequency {f) Negative jumnps at 15-mins [requency

Figure 3.4: MULTI-SCALE DIRECTIONAL JUMP DYNAMICS OF GENERAL ELECTRONIC (GE) FROM JANUARY
1 To Magrch 31, 2008. (a) The number of positive jumps estimated for each day using one-minute data.
{b) The number of negative jumps estimated for eaclh day using one-minute data. (¢) The number of positive
jumps cstimated for cach day using five-miuutes data. {d) The number of negative jumps estimated for cach
day using five-minutes data. (e) The number of positive jumps estimated for each day using fifteen-minutes
data. {()The number of negative jumps estimated for each day using fifteen-minutes data.
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{a) Trading session jumps at l-min frequency () Of-trading session jumps at I-min (requency

20 .5 a0
AT PP
FPPTY ESDOY JOw .

{c) Trading session jumps at 5-mins frequency (d) Off-trading session jurmps at 5-1nins frequency
{e) Trading session jumps al 15-mins frequency (£) Of-trading session jumps ai 15-mins frequency

Figure 3.3: MULTI-8CALE JUMP DYNAMICS OF GENERAL ELECTRONIC (GE) FROM JANUARY 1 7O MaRCH
31, 2008. (a) The number of trading session jumps estimated for each day using one-minute data. (b}
The nuruber of off-trading session jumps estimated for each day using one-minule data. (¢) The number of
trading session jumps estimated for each day using five-minules data. {d) The number of off-trading session
jumps estimated for each day using five-rmnutes data. {e) The number of trading scssion jumips estiated
for each day using fifieen-minutes data. (f} The number of ofi-trading session jumps estimated 1n each day
using fifteen-minutes data.
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{a} Total jumps at 1-min frequency

-3 |

(b} Total jumps al 3-mins frequency

{c) Total jumps at 15-mins frequency

Figure 3.6: MULTI-SCALE JUMP DYNAMICS OF INTERNATIONAL BUSINESS MacHING (IBM) PROM JANUARY
1 To MaRCH 31, 2008, {a) The total number of jumnps estimated for each day using one-minute data. (b)
The total number of jumps estimated in each day using five-minutes data. (c¢) The toral mumber of jumps
estimalird in each day using fifteen-minutes data
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(a) Positive jumps at 1-min frequency (b} Negative juinps at 1-min frequency

i ] 3

]

{e) Positive jumps at 15-mins (requency () Negative jumps al 15-nins frequency

Figure 3.7 MULTI-SCALE DIRECTIONAL JUMP DYNAMICS OF INTERNATIONAL BUSINESS MacHINE {I[BM)
FRONM JANUARY 1 TO MaRrRchH 31. 2008. {(a) The number ol positive jumps estimated for each day using
one-minute data. (b} The number of negative jumnps estimated for each day using one-minute data. (¢) The
number of posilive jumps estimaled lor each day using live-minuies daia. {d) The number of negative jumps
esiimated for each day using five-minutes data. (e} The number of positive jumps estimated for each day
using fifteen-minutes dara. (f)The number of negative jumps estimated for each day using fifteen-minutes
data.
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{a) Trading sessiou jumps at 1-min freguency h) Of-trading session jumps al 1-min frequency
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{¢) Trading session jumps at 5-min frequency

{e¢) Trading session jumps at 15-min frequeucy (f) Off-trading session jumps at 13-min frequency

Figure 3.8: MULTI-3CALE JUMP DYNAMIGS OF INTERNATIONAL BUSINESS MACHINE (IBM) FROM JANUGARY
1 7o MaprcH 31, 2008, a) The number of trading session jumps estimated for each day using one-m:ute
data. (b) The number of off-trading session jumps estimated for each day using one-miuute data (c)
The number of trading session jumps estimated for each day using five-minutes data. (d) The number
of off-trading session jumps estimated for each day wsing five-minutes data. (&) The number of trading
session jumps estimated for each day using fifteen-minutes data. {f}) The number of ofl-trading session jumps
estimated in each day using fifteen-minntes data.
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{c) Total jumps at 15-mins frequency

Figure 3.9: MULTI-SCALE JUMP DYNAMICS OF WAL-MART FROM JanuUaRy 1 TO March 31, 2008, {(a)
The total number of jumps estimated for each day using one-minute data. (b} The total number of jumps
estimaled in cach day using five-minutes data. {¢) The Lotal numhber of jumps estimaled in each day using
fifteen-minutes data.
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1 | |
(a) Positive jumps at. l-min [requeucy (b} Negative jumps at 1-min frequency
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(c) Positive jwmnps at 5-mins [requency {d) Negative jumps at 5-mins frequency
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{e) Positive jumps at 15-mins frequency {f} Negative jumps at 15-mins frequency

Figure 3.10: MULTI-SCALE DIRECTIONAL JUMF DYNAMICS OF WAL-MART FROM JANUAKRY 1 TGO MaRcH
31, 2008. {2) The number of positive juinps estimated for each day nsing one-moinute data. {b) The number
of negative jumps estimated for each day using one-minute data. {c¢) The number of positive jumps estiinated
for each day using five-minutes data. {d) The number of negative jumps estimated for each day using [ive-
mimtes data. (e) The number aof positive jumps estimated for each day using fifteen-minntes data. (f,The
nnmber of negative jumps estimaied for each day using fificen-minutes data.



CHAPTER 3. JUMP DETECTION BY WAVELETS 127

{a) Trading session jumps at 1-min frequency (b) Of-trading session jumps at l-main frequency
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{c} Tracling session jumps at 5-mins frequency (d) Ofl-trading session jumps at 5-mins [requency

{e) Trading session jumps at 15-mins [requency (f) Off-tradmg session juimps at 15-mius fiequency

Figure 3.11: MULT-SCALE JUMP DYNAMICS OF WAL-MART FROM JANUARY 1 TO MaARCH 31, 2008. a)
The number of trading session jumps estimated for each day using one-minuse data. (b) The number of
of-trading session jumps estimated for each day using one-minute data. (c¢] The number of trading session
juraps estimated [or each day using five-minutes data, {d) The numher of ofl-trading session jumps cstimaird
tor each day using five-minntes data. (¢) The number of trading session jumps estimated for each day using
fifteen-minuies data. (f) The number of ofl-trading session jnmps estimated in each day using fifteen-minutes
data.



Appendix A

Appendices

A.1 Appendix A: Proofs

Proof to Proposition 1
Proof: With identical initial beliefs ﬁf‘ = f?, and invoking DeGroot (1970}, this leads to

FA=fBfort=1,2,... T-1
T = Tt 2%
TA A Te i cA B A
= .f;—1+?:(51 +57 = 2f24)
B B | Te B A A FH
fo = 5 TT—E(St + 57 = 2f).

QED

Proof to Proposition 2
Proof: The proof is by induction. The Bayesian Nash equilibrium at 7" -1 is characterized
by

A B fro1 -«
Th_y = Tp_y =@p_1 = ———
=i =1 2+ 1
A B
pro1 = o+ (np_gp+ngg)rra
A f’f—l e

= o+ (i +nf ) 1

Therefore, the equilibrium characterization holds when ¢ =T — 1. Suppose the Proposition

128
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holds at ¢t = 2k, where & is a integer such that 2k < T — 1, i.e,

P (T —28)/2,,(T—2k~1) ~

2T Gy TR0 L) anye ok — o)
(T ~2k) /2, (T ~2k~1) _

(0 T O)T-2K72( 1)@~ a7 fa

por = o+t (an — ).

Therefore at t = 2k — 1, the ith tvpe A traders face the maximization problem which

can be characterized by

2!:. 1 "m 1

AL a4 “E[P% (o + ZIN. 1t ZTzh 1,3 TZA 1
First-order condition to the above utility maximization problem is:
A B 9.4 —
Elpar) —a = (n - 1)5%4,; — My — 2Ty, = 0.

Invoking the symmetry result, we will have .ﬂ.:‘;k g = 3:23&‘_1 in equilibrium, then Equation A.1

can be rewritten as:

wh | = Elpl =
= 2n+1
Attt =28 -1,
2(T 2k)/2 (T-2k) . \
E[p%:] = [ +(n2h)(2 +1)(T 2k) /2(n+1 (T- 2.&)/2()[. ‘Of)]
2k)

{2 (T-2k)

—~

o(T
= a+tn E(for — )

J(2n+ 1){T=2k) /2 4 YT -2k)/2
(T =2k) /2, (T -2k+1) .

*r (2n + 1){T-26)/2{n 4 1)(T72k)/2(f2k—1

- o).
Therefore, the optimal holdings for type A traders and type B traders at ¢ = 2k — 1 can be
characterized by

Elpa| - a (T =2k /2, (T—2k+1) N
Tho1i = The 1o = .[p% g = (fox—y — ).
: 2n -+ 1 (2n + 1)(T-25+2)/2(n 4 1)(T-2k)/2

Further, the price at t =2k — 1 is

9(T=2k) /2, (T ~2k)
( +1)(T+2I‘+2)/2(W+ )(T Ik /)(f“)}‘ 1-—0;)

Pak-1 = a + (ﬂéx—l + ”2%:—1)
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At t =2k — 2, the type A traders face the maximization problem which can be charac-
terized by

7”;;‘:\-.72
Elpogq — (o + 5 4
marya 241 Q 1132;:-2,9}3?21‘:-2,2-
j=1

First-order condition to the above utility maximization problem is:
Elpok_i] — o —(n—Daby . —2z4 ,,=0
P2k—i] —a—(n )332&—1,;. 2Lak-1,, = V-

Invoking the symmetry result, we will have :175_‘%,";1 = :cr_’?m ) in equilibrium, then Equation A1
can be rewritten as:

a4 _ Elpyiea] - o
Tag—2, = T a1

Similarly, at t = 2k — 2

(T =2k) /2, (T=2k) N )
(2n + DNT-24072(n 4 1)(T-28)72 (fok1 = o]
T —2&)/2,, (T —2k) _
2 + 1T -2%+2)/2(p 4 1)(T~2*:)/2E(f2“"1 - @)
(T =2k+2)/2,,(T-2k+1)

Elpa—] = E[“*(”?&—]*”ngc-l)

= a+2n(

= ot (2n + 1)(T- 254202, + 1)(T—2k)/2(f2‘*f2 - )

Therefore, the optimal holding for type A traders and type B traders at t = 2k — 2 can
be characterized by

Elpak-1] — o
n-+ 1
2(7’—2k+2)/2TL('1"—2R:+1)

A
Tok—2,

o~

(zn + 1)(T—2k+2)/2(n € 1)(T72;c+2)/2 (f?k?? - Oz)
o(T~)/2,(T-t=1)

-~

T TR T 10 (fe — a).

Furthermore, the price at ¢ = 2k — 2 is

o T=t) /2, (T—t~1) -

A (2n + LT=07%(n | 1)(T_L)/2(fl, - a).

p= o+ (ng

QED

Proof to Proposition §
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Proof : At ¢, both types of traders know actual arrivals of both types of traders’ last
period, Nf_l and NFB(I, and price m the last period, p,—y. When ¢ is odd, ¢ — 1 is even.

From Proposition 4.

.2(T—.t+1)/2n(’f-¢)

_ A A
D1 = & + (n’tfl) (2?1 4 1)(]“_&,;1)/2(”‘ + 1)(T_t+1)/2(ft—l - Cl‘)- (Al)
Type B can infer £, according to
L (2n+ 1)[T7L+1)/2(n+1)(T—t+1)/2
foy =o+ ST 40200 () (pr—1 — o), (A2)

while type A cannot extract any information abont }’Ey When ¢ is even, ¢ - 1 is odd. From
Proposition 4,
— A n B K FA B _ L A N pe ry: . A3
pr1 =+ (g, f”t-l) G (fi) —a) + (n{.—l —.nt—l) (e 1ifil, —a) (A3)
n 41 n+1

HUT =)/ 20 (T—1)

where Ky = w2y, ryrroe-

Type B can infer ﬁi , according to

=4 (D41 — ) (nf, - nilnf—])Kt~l(}}zl —al
fei=at — F = e . (A4)
(nfly - Fml ) He— ity — syl K

And type A can also infer f?il in a similar way:

s A A
7B - (p1-1 — v (n ) — 2l DK (f - o) (A.5)
oy =a—+ - — . B
(nf, — %“3{1”‘%1 (nf - ﬁT”iA—l)KPI

Hence,

1. When ¢ is odd, type B traders know };‘l i fg“_Q, o J%"‘ while type A only know }”}5’_ 2

B 7B
ftfq,? | jO .
2. When t is even, type B traders know f[i], f{‘lQ, Cy fUA while type A only know fﬁl,
B 7B
fth., ey fo .

Q.ED

Proof to Proposition 6
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Proof: This is done by induction. Notice that at ¢ = I, there is no need to do signal
extraction because there are no signals for traders at ¢ = 0. Therefore at ¢ =1, both types

of traders will update their belief according to their own signals, i.e:

T{q = TOA + 7
‘rlB = T(‘)B + 7
A 74, Teroa A
R R R G ()

fl

o= st

At t = 2, type B traders know ﬁ“‘, and type A traders know le For type B traders,
they can infer the signal type A traders received at ¢ = 1, 57! = (EA - )‘%/‘)T‘_—I: + ‘E)A. In
the meantime, type A traders are also able to infer the exact signal type I3 received at
t=1,8F = (}"\IB - ‘E]B);‘:i + ;%B when ¢ = 2. Therefore type A traders update their beliefs
incorporating their own signal S3' and the signal extracted S, while type B traders update

their beliefs incorporating their own signal & and the signal extracted S, i.e:

o =

Tflﬁ—?‘re
?TZB = Tigﬁ—}rf
T a4, 7 . A
o= f (S ST -2
2
7B 8, "<, oB A 7B
fy = A +T—;(SQ + S0 = 2f7).

2
At ¢t = 3, type B traders know EA and ff‘} while type A traders have no further infor-
—~ o~ A —~
mation. Similarly, type B traders can infer exact signal S¢' = (f* — fi') & + 2/ - ¢

while tvpe A traders cannot, i.e:

T@f‘ = T§4 + 7.

Tg‘,B = 759 + 27

TA ry Te oA TA

& = féd*“FT—;(Sg - f3)
3

7B iy Te roB ry

fi = f2B+;(§(53 + 85— 2f7).
3

—

At t = 4, type B can infer St = (;‘\3”" — ff‘)i + }g“_\ while type A knows f¥ and )?;B

7
T
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Type A traders understand that

o= e p(sf st -2
T3
P 'T .
= fB+ 8(5*2+S“~2f1).—5(53+50 —~2fP)
2 d
f

= P Io(8B v st - 0fB)

TSPy sp-ofE o T
T3 1'3

“(SE 45t 2fBy).

B
T2

Therefore, type A traders cannot exact the exact signal anymore. They can only know

.58+ fgrSéB , which is normally distributed. They can always normalize this combined
3

signal to update their belief. Let 85t = ﬁ—fg + TE be the normalized signal, where S5 is

— 2
normally distributed with mean f, precision 7§ = 8—_'_7-—’3;—.'—6 Therefore,

o= o 7

Tf = 'T;;B—FQTC

FA gA _ FA i oaa 7

fi = f3 _(4—f3)+_p,(551‘“f3)
4 74

-~ ~ T ~

o= fi8+T—B(SQB+Si4—2fiB)-
5

Suppose the proposition holds at ¢ = 2k, This implies

-~

T T4 Tk GA  FA

o= o+ ¢ (52}: Foko1) -+ =585 — fa1)
Tak T2k

5 ~5

f = ka Ry (S‘)I\ + S5k~ 25 )
T%

15 Iz} B
S Y ls”h 2 S3k_1
where 53 = T + T

At t = 2k 4+ 1, type B traders know f'ﬂ, ﬁ_f}c;,, while type A traders have no further
information. Notice that §é4k is a function of Sﬁ:_g and SSC_I. This implies type B traders

know §31 Therefore, type B traders can infer exact signal

4 ~A
A Tok (TA _ Fa Tk G o 7A
83 = Tzk (for = foka ~ To/;; (S5 = for 1))+ f3i (A.6)
3

'We have atready shown that it holds at ¢ = 4.
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while type A traders cannot infer anything new. Therefore, at t = 2k + 1,

_A _ A
Tok41 = Top T Te
B _B

Tapy1l = Top b 27«

A _ S A

fopn = fak + (8% — far)
Tzh 1

rys] B 7 B A TR

foer = fa+ —5— (S5 + S5 — 2/53).
Skl

In other words, the proposition holds at ¢ = 2k + 1. To complete the proof, we also need
to examine the heliefs updating at ¢t = 2k + 9 At t = 2k + 2, type B traders know f/;k_{_l
and ka- Therefore, they can infer Sﬁ,H = 2“1 (fok+1 )?2/}‘) + f;f}r Therefore, for type B

traders, the belief updating at ¢ = 2k + 2 is cha;acteuaed as

B I ,
Takt2 = T2A+1+°fc

7B )
s = B+ 5= (5540 + S50 ~2f3h0)
G
while type A traders only know fA'ng and Ek;,1. They understand the belief updating of
type Bat ¢t =2k + 118

fBa=FE+ 55 (85, +54-2ff)
"2;{\ +1

Y= Te iy
= fobo1 + =5 (S5 + S5y = 2f5i_1) + —5—(Shes + Sk - 2f5)
Tok “2k+1

B A 7B
=Jfp 1+ T_B(S% + S3%—1 = 2fok—1)
2k

R ¢ /qB A 7B
b5 (S5er + s — 251+ =5 (S5 + S5y — 2f51))
2A+1 "2k
: o SA 55 S5 .
Therefore, type A can infer a composite signal 53} , = 1-+::k+21 + TZTE: with the
I o~ 1+(r2 2 . . ‘
precision Tg’?‘,H = “—fﬁ%ﬁ In summary, the helief updating of type A traders at § =
2k + 2 is
A A
Tohia = Tohpr +Te + Tobro
Tobig = Tokes + 27
ko
A _ A E+ FA
Fiwe = Fh + = (8o — Fobor) + 2S5 — ko)
2k+2 2haD
“~B _ A B
[y = fH+ —5 {3k o + Sth1 — 2fa10 ).

Tok12
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Hence, the proposition holds at ¢t = 2k + 2 and this completes the proof.
Q.ED

FProof to Proposition 12
It is straight forward to check that the proposition holds. Then we leave out for readers’

EXErcise.

£
b
g

Proof to Proposition 13

If hicrarchical information structurce is assumed, the infinite regress problem collapses. The
iterated expectations is reduced to V! = B[V} |Fo ). We restrict ourself to the linear rational
expectation equilibrium, where the price is a linear function takes the form of

Pﬁ:PPpl+Pth+Pe@1+PA(‘:};l—Vrl) (A7)
Given Equation A.7, the demand for type 1 trader, the fully informed trader and the
demand of type 2 trader, the partially informed trader are
th = w1 E[Qi1| F1)
X7 = 0o FlQira| Fau) (A.8)

Using Equation A.7, we have

Quer = A+ (1 =M Poy — 1+ 7P
= AV 4 (1= N{pP 4+ PuVigr + PaBia + PalVih, — VL) - (1 =7 P,
= (0= NpPe+ A+ {1~ NPe)aV + bue) + (1 — AN PaBiy
H1 = NPV - V) — (L +)P (A.9)

Hence, we have

BlQulFer = ((1=Xp— 1+ )P+ A+ (1= N Pv]af¥! + VI + (1= N Pa(V - V)
= ((1=-Xp- 0+ P+ A+ {1 =XP)a(V + V)
(1= Xp— (L +r)P+ (A+ (1= NPV + (A + (1~ 0P )a(V) - v
( NF )

1

ElQui k1] (1= Xp = (LEr)P+ (A (1- NPv)aVe + (1= MPaBIL, - VL]
(A.10)
Therefore, aggregate market demand is

XM+ X7 = 0 - Np—- 0+ )P+ (A+ (1= N Py)aVh)
+Hwr(l = NP EVAL — VP +an(A+ (1 W P)a(V - V)
(A1)
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Market clearing condition implies that

GPa+0, = Q1=XNp— {0+ + (A (L - NPv)elr)
(= NP2 BV = VB oA+ (1 ) P)alVE V)
(A.12)
Matching coeflicients with Equation A.7, we have
_ 3
P A - A -0+
b G0+ - NPy
Y i
1
P f—
° O~ Xp - L+ 7))
{(A.13)
Hence, we can solve all parameters except Pa and they are
0 = (Q~A00° —(1+m0p-2
A
Py = -2
! ,D% — a1 —A)
Po = %
(A.14)

Now, we need to calculate Pa. Inorder to do that, we need to model the filtering expectation
problem for type 2 trader explicitly,. What type 2 trader can effectively observe is (Py —
POV + Po©;. He need to forecast V;'. It is essentially a filter problem. We set up the
system as

1

i

Vv, aVily, + byet

w = (Pv—Pa)V' + Potd,
Where ¢} is iid normal with mean 0 and variance 1 and ©; is #id normal with mean 0 and
variance O’%. Applying Kalman-Bucy filter?. we have

V! = a(l —k(Pv — PA)V | + k(Py ~ PA)V,' 4 kPe®: (A.15)
where k solves
PRota®(Py — PAYK" + (P3ob(1 o) + b5 (Py — Pa)’ )k — bL(Py — Pa) =0
Let ¢ =1 - k(P — Pa), we can rewrite Equation A.15 into

i1

V= = aoVh, — VL)) - bucel + kPe®, (A.16)

2See Jazwinski (1970) for a description.



APPENDIX A. APPENDICES 137

If we impose Equation A.16 on the market clearing condition, we have
wlac(l — /\)Pg + wza(/\ + (l - /\)Pv)

Pa AT N (71 {A.17)
Hence, we can solve for P, and ¢ simultaneously
awa (A + (1= /\)——_é"’;ﬁ)
Pa = *%—awl(li./\)c . (A.18)
where ¢ solves
g;ag(l — e}l —atc) = el (Py — Pa) =0
Q.ED

Proof to Proposition 17

We only prove it when N =4, The proof for N > 4 is similar. First, we have two partially
informed traders, type 2 trader who knows V2, V3, and type 3 trader who only knows V.
Notice that there is only one instrnment for them to filter the nseful information for them,

i.e., the market price of the underlying asset. We conjecture the price to take form of:

Bo= pha+ v+ get + PV~ VY 4 Pra (Vi + V- V= 1),
(A.19)

where V3, = B[V Fy ], Vi, = B[V} Fy), Vi, = B[V Fa).

Given Equation A.19, the demands from all traders are:

X! =w B[@Qu|F )
Xf = wo E[Qy 1| Fa,]
X} = nmEQin|Fay)

Using Equation A.19, we have

Qiy1 = AV 4 (1 — AP - (1 + T')Pt
= AV + (1= oD+ PuVier + PoOra + Par (V3 - VL)
P2 (V) + Ve = VA = VA — (L)
= == (1 +rP+ (A+ (0 = MNP )(aVi+bye) + (1 - A} PoO;sy
- NPV = VA + Par (Vi + V0 - VAL - V2D (A20)
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Hence, we have:

ElQinlFs:] = ({1 - Xp- (1 +rP+ {0+ (1-2)
1= NP (E[V2 1) Fs] = Vi)
(L= = (L P O+ (L= NPy)a(V + V2 + 1)
(L= Ao~ (L+r))P+{A+ (1= A)PyjaV +
A4 (1 - )PV)G'(LS.HI + LB‘H»l ~ Vi - V)
(1= Mp— 14+ P+ A+ (1= XP)aV) + 12+ V)
FO - NPa B[V 1V = Vil = V3L Fa)]
= (1= Xp— (L+m)P+ 0+ (1= NPv)aV + O+ (1= N Pv)a(Vy, — V5)
HL = NP2 B[V + Vi — Vi = V2 R
(1= /\)PAEEWM—A - VclHin.L]
ElQiaiFi = ((1-XNp— (1+m)EP+ A+ (L= NPy)aV; + {1~ NPar B{(Vi,y, — VADIFLY
+(1 )\)PNE[(‘“Z tr1 T Vg e — Vi VAR (A.21)

P‘/) ( £+VjL+V)

(
=
(
(

E[Qir1] Fa]

fl

Imposing market clearing condition and match the coefficients with Equation A.19, we

have:
3
p =
Q1= M- 1 +7)
af2(A+ (1 - APy
Py = —=
- Ap- (L +7))
1
F. =
T QA1)
(A.22)
Hence, we can solve all parameters except Pa1 and P2 and they are:
0 = (1- 0 - (1+mQp-3
P aA
v = g
—p% —a(l —A)
fel
Ps = =
° 8
(A.23)

Now, we need to calculate Py1 and FPa2. In order to do that, we need to model the filtering
expectation problem for type 2 trader and type 3 trader explicitly. What type 2 trader can
effectively observe is (Py — Pa1 — Pa2)V 4+ Pg®,. And type 3 trader can effectively observe
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(Py — Pa2)(V1 4+ V2 + Pax (1721,,) + Ps®,. Type 2 trader need to forecast V! while type 3
trader need to forecast V!, V% and f}zlt Notice that in hierarchical information structure,
F34 C Fay. Therefore we have E|E[V! |Fy ]| F3,] = B[V} Fyy) = 173{£ which follows directly
from law of iterated expectation.

Next, let us write the filter problem for type 2 tvader first:

1A aVil | +byet

(Py — Pa1 — Pa2)V} + Pa©;

fl

Yt

where c} is 7Zd normal with mean 0 and variance 1 and ©; is 44d normal with mean 0 and

variance 02. Applying Kalman-Bucy filter, we have:
V5= a(1 - k(Py - Pa)VL, + k(P - Pa)V! 4 kPo®, (A.24)
where k solves
P3oda®(Py - Palk? + (P3od(1 — a®) + 63 (Py — Pa)? ik — b3 (Pv — Pa) =0

wherePA =P/_\_1+PA2.
Let ¢ =1 — A(Pv — Pa), we can rewrite Equation A.24 into

Vi -V} =ae(VL, - Vi) - byeed + kPo®y (A.25)

We continue to investigate the filter problem faced by type 3 trader:

e G 14 Dyoeg
0 ac 01 ~bvc€%+kJP@@L

The second line of Equation A.26 means that type 3 trader do not make systemaitic expec-

v+ v
‘721,.9 -V

[ARE 7

. (A.26)
V‘zl,r,—l - thl

tation errors. It implies that in equilibrium, type 3 trader can forecast the right parameter
values which determine the evalution process of tlie expectation errors for type 2 trader but

not the errors themselves. If we apply Kalman-Bucy filter again, we have:

Vi VR (b 0| [RalPy=Paa) kiParyifa 0 Vi + V2L,
Vi, -V, 01 ko(Py — Paz) kaPai] |0 ac| V4, =V,

b ((Py — Paa (Vi + V2 + Pai(V3) + Po©y)

1 2 i1 ’ (A.27)
fa((Py = Paz) (Vi + Vi) + Par(Vyy) o+ Fo©y)
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where k&) and ks are parameters describe the weights used in filtering. Notice that it is really
complicated to solve the parameters matrix directly. But we do not need to solve for the

parameters value for filtering. We only need ta describe the evolution of expectation errors

of type 3 trader. Notice that f/\f&ljt - %{L = (0 by law of iterated expectation. Equation A.27
can be reduced to:

= 1 0 ki(Py — Paz) ki Pa:

g1 kol Py — Prz)  kaPan

kL ((Pv — Paz)(V -+ VE) 4 Par (V) + PoBy)
kol (P — Pa2) (V4 V2) 4 Par(V3,) + Pa©y)

Vit 4+ Vi
0

a 0

0 ac

al 172
V3=171 + Va,sq
0

Explicit calculation shows:

VSI,t + %Qt -V -VE = all-k(R - PAE))(%l,pl + ?32,3-1 ~ Vit - Vi3 4 ki Peoy
e Par (V) = VI 4 (1= ky(Py — Paz)by(e} +€)
Pa(Ve, =V = a(Py - Pa)(Vy + V3~ Vi - V2D
~bu{Pv — Paxle; +€) ~ PoB®)) (A.29)

Substitute the second line of Equation A.29 into the first line of Equation A.29, we have

(V4 Vi -V =V = alV o+ W2 -V - V)~ bv(d + o)
[A.30)
Equation A.25 and Egnation A .30 describe the evolution of expectation errors of type 2
trader and type 3 trader respectively. Using them with market clearing conditions, we have:

aws(A+ {1 = X)) Py)

P32 - =
= —afw +w)(1—A)
P - awa(A+ (1 - A)Py)) — ac(l — Nwg Py
A —8 _ae(l - Nw
> 1
where ¢ solves
g2 2 2 aA 2
co(l —e)(l - a“c) —ch — Pp1 — Paz)*=0
’6)2 =] ( V(—%~a(l+,\) A f_\)

QED
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Proof to Proposition 19
From Proposition 13, FPg = % Hence, if 8 <0 and p > 0, Po < 0. Pg < Osuggests that if

there is a positive shock in noise traders’ supply, price should decrease in response.

Then we only need to check the sign of Pa.
First, we prove that if Pa < 0, then % < 0. Suppose not, Py > 0.
g

From Proposition 13, By = —Sﬁ)‘(l—/\), the sign of F is determined by the sign of i
— 2 a(l-

a(l — A). To see this, if Py > 0, that is, ~!;% —ail =) > 0. We must have Q(f—ff—2 -
a$+(1 — A)c) > 0 and awz (A + (1 — A)P-) > 0. From Proposition 13, Pa is
awa (X + (1 — A} Py)

~53— —awi(l — X

awa( A+ (1 - M Py)
Q-5 — a%(1- A

Py =

(A.31)

Recall 2 = wq + w2 and both wy and wy are positive. Hence, 3 < 1. Therefore, both

numerator and denominator are positive. Hence, Pa > 0. That is, to have a P, < 0, Py

should be negative.

If Py is negative, i.e., —ﬂ% —a(l —X) <0

There are two possible scenarios: first, Lhe nwnerator in Equation A.31 is negative, i.e., if

Py < ‘JT/\A' The denominator of Equation A.31, (—p—% —a‘3-(1 — A)c), should be positive

in order for Pa < 0. That is, af-(1 — Aje < _B% < a(l — X). Notice that this requires that
He < ). Because ¢ < 1, it is sufficient to have ¢ < 1. From the proof to Proposition 13,

we know that 0 < k < 1 can guarautee 0 < ¢ < 1.

Second, the numerator in Equation A.31 is positive, i.e, if 0 > Py > fﬂl_L/\. However, it is

uot possible. To see that,

Ao 1= A —all - )]
v+ = [~& — a1 =M1 - A
_Ap_%

_ (A.32)
(-4 —a(l— N1 -]

We know that 3 < 0, p> 0, & > 0 and XA > 0. Hence, the numerator of Equatiou A.32 is

positive. For the denomiuator, [—% —a{l — A)] < 0 because of Py < 0 and [1 — ] > 0.
Thus, the denominator of Equation A.32 is negative. That is, Py, + 1_iX < 0. In other word,
(A+ (1 - A)Py) < 0. That is, only the first scenario is possible.
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QED
A.2 Appendix B: Derivations
Derwation of Fquation 1.7
We start with Z;. By definition, Z, = -?L, which can be written as

Jt—1

A B
Tt fia
(A.33)

Note that ﬁ = Tfrﬁ which can be written as

dr=1

1 Te _—
=T (sf +SE)
2 fi1

i1 T2

which can be used to solve —?1—

Ji—1

1 _ (%l B th_fZ/l-l)

fia SA +SED

Substitute Equation A.34 into Equation A.33, we get the expression.

Derwation of Fquation 2.5

In order to get Equation 2.5, we need to rewrite Equation 2.4 into

o, A
— pPi_i=— E[AVi, — A -
P, — pPiy w(1+r)A+ v [AVir1 + (1 = A)(FPe1 - pP)]

where A is a constant. Hence,

B e e w el LG RN )

(1+

In order to match the coefficients of Equation 2.4, we need to have:

8
w(l+r)

Ap(l — A)
1+r

[ P

1+
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The first line implies that A = —w(’?_i_r) and substitute it into second line. Then we

have:

(1- N+ {1 +rwp+3=0.
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