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Abstract

Censored data arise in many situations including forestry and medical studies, and may

take several forms. In this project, we consider imputation methods for estimating lifetimes

when interval censored data are available. We investigate an imputation method based on

local likelihood density estimation, where kernel smoothing is used to estimate the underly-

ing distribution of lifetimes in order to calculate the conditional expectation of the observed

lifetime. We contrast this with a simple midpoint estimator, where the imputed lifetime

is the midpoint of the interval censored data. We compare the two imputation methods

in the context of an analysis of tree mortality in British Columbia. The main goal of the

project is to describe the relationships between tree lifetimes and important covariates such

as thinning levels and species of trees while observing how the use of different imputation

methods can affect the derived relationships. Additionally, we investigate the behaviour

of the imputation schemes in simulation studies which vary the widths and sample size of

the interval censored lifetimes.
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Chapter 1

Introduction

Crown thinning is the selective removal of stems and branches to increase light penetration

and air movement throughout the crown of a tree. It is a pruning technique primarily used

on hardwood trees. The intent is to improve a tree’s structure and form while making life

uncomfortable for pests. The effect of crown thinning may depend on species of the tree.

In a designed experiment by the Ministry of Forests in British Columbia, three different

levels of crown thinning were applied to trees in several plots of similar ages in order to

assess the effect of thinning on tree mortality. The thinning treatment was applied about

the time when crown thinning would begin to have an effect. At subsequent visits to the

trees approximately 2-3 years apart, mortality status of the tree was recorded. There are 6

distinct sites in the experiment referred to here as Installations and 4 to 6 Plots within each

site. Installations refer to the general location of the tree stand in British Columbia. The

average ages at thinning are similar within the same Installation. Table A.1 in Appendix

A displays the average age of trees at thinning by Installation and Plot.

The longitudinal measurements of the tree survival status are taken roughly at the

same time within each Plot, but the measurement times for Plots in the same Installation

are quite different. The first measurement time refers to the time at thinning. There were

at most nine follow-up visits to trees; not all trees were examined at each measurement

1



CHAPTER 1. INTRODUCTION 2

time and when trees died no subsequent visit was made to them. Missing data arise at

random for live trees. Tables A.2 and A.3 in Appendix A summarize the total counts of

trees and the counts of live trees at each measurement time after thinning by Plot within

Installation. Those tables suggest that the proportion of missing data is small except for

the last follow-up time. Table 1.1 displays the average number of follow-up visits and length

of the time interval between visits by Installation. There are typically 5 follow-up visits at

each Installation with the average time between visits ranging from about 2 to 4.25 years.

Installations 3 and 5 had somewhat longer average time intervals between follow-up visits.

Table 1.2 provides the number of dead trees at each measurement time by Installation.

Note that Installation 3 has the largest number of dead trees at the first four follow-ups in

part accounting for a lower number of average follow-up times (see Table 1.1).

Table A.4 in Appendix A lists the number of trees subjected to each level of the thin-

ning treatment. The thinning treatment is based on a modified crown thinning that was

conducted in the dormant season. Control trees had no thinning performed. Low Thinning

refers to a thinning rate of 20%, which indicates that 20% of basal area was cut. High

Thinning refers to a thinning rate of 35% of basal area being cut. Overall, there were 2195

Control trees, 1231 trees under Low Thinning, and the remaining 1149 trees were assigned

High Thinning. Within each Installation, each Plot is assigned with one type of treatment

with the exception of Plot 1 in Installation 2.

Let tij be the age at measurement j for tree i and Dij be an indicator variable of

whether tree i is dead (Dij=1) or alive (Dij=0) at measurement j.

The lifetime interval (Li, Ri) for tree i is then:

Li = max{tij |Dij = 0}

Ri = min{tij |Dij = 1}

For tree i, if Dij = 0 at the last follow-up time (max tij for tree i) then the interval is

right censored and we let Ri = ∞.
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We analyze the lifetime interval (Li, Ri) since thinning defined as:

Li = max{tij |Dij = 0} − ti1

Ri = min{tij |Dij = 1} − ti1

The data are interval censored or right censored observations where the right censored

observations correspond to the lifetimes of trees that were still alive at the time of last

measurement. Interval censored observations correspond to interval lifetimes for trees

which died during the observation period. Table 1.3 displays the counts of the dead and

live trees by Species, Installation and Treatment Levels. Douglas Fir and Western Cedar

have a higher portion of right censored observations. By Treatment Level, both the Low

and High Thinning groups have a larger number of right censored observations than the

Control group; hence thinning reduces mortality.

Two types of imputation techniques were used to estimate the observed lifetimes for

interval censored lifetimes: the interval midpoint and an imputation method based on

local likelihood density estimation (Braun et al. 2005). The imputation method based

on local likelihood density is useful for a one sample situation. Here, we have to account

for covariate effects so we apply the method separately to each strata where a stratum

is determined by each combination of tree species and treatment level. We also contrast

this with a naive approach which applies the imputation method based on local likelihood

density estimation without such stratification. Table 1.4 displays count of trees in each

stratum. A large number of trees are Western Hemlock. We confine our analysis in this

project to the main three species: Douglas Fir, Western Hemlock and Western Cedar,

omitting data corresponding to trees labeled as ‘Other Species’.

In addition, we explored various scenarios for interval censored data in a simulation

study where the aforementioned imputation techniques were applied. The performances of

these imputation techniques were assessed under different scenarios with a varying sample

size, interval width, and covariate effects.
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Table 1.1: Average Number of Visits and Length of Interval between Visits by Installation

Installation Average Number Average Length of Interval
of Visits between Visits in Years

1 6.47 2.01
2 5.67 3.21
3 4.97 4.05
4 6.73 1.72
5 5.72 4.24
6 5.83 3.17

Table 1.2: Number of Dead Trees by Installation and Measurement Time (M.i refers to the
(i)th follow-up time after thinning, i=1,..9)

Installation M.1 M.2 M.3 M.4 M.5 M.6 M.7 M.8 M.9 Total in Sample
1 4 18 13 26 23 67 18 38 582
2 30 139 99 69 104 78 51 46 994
3 60 221 137 99 68 138 78 1276
4 3 15 18 23 36 44 21 36 581
5 17 13 32 13 12 30 22 302
6 15 11 13 20 23 11 44 62 840

Grand Total 114 421 310 243 263 380 201 164 62 4575
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Table 1.3: Counts of Dead and Live Trees

Group Group level Alive Dead % Dead Total
By Species Douglas Fir 904 387 30% 1291

Western Hemlock 1173 1470 56% 2643
Western Cedar 324 104 24% 428
Other Species 18 47 72% 65

By Installation 1 376 202 35% 578
2 379 585 61% 964
3 475 741 61% 1216
4 385 193 33% 578
5 163 122 43% 285
6 641 165 20% 806

By Treatment Control 968 1158 54% 2126
Low Thinning 722 473 40% 1195
High Thinning 729 377 34% 1106

Table 1.4: Counts of Dead Trees by Each Combination of Species and Treatment

Species Treatment Total Count of Trees
Douglas Fir Control 189
Douglas Fir Low Thinning 121
Douglas Fir High Thinning 77

Western Hemlock Control 860
Western Hemlock Low Thinning 332
Western Hemlock High Thinning 278

Western Cedar Control 78
Western Cedar Low Thinning 10
Western Cedar High Thinning 16
Other Species Control 31
Other Species Low Thinning 10
Other Species High Thinning 6



Chapter 2

Imputation Methodology

Imputation based on local likelihood density estimation

Kernel density estimation is a nonparametric method for estimating a density function. It

provides a simple way to find overall structure of data sets and requires no pre-specified

functional form. Kernel estimators smooth out the contribution of each observed data

point over a local neighborhood of that data point by using kernel weights, which depend

on the proximity of an observation to the point of estimation. Applications of kernel

smoothing are discussed in Wand (2006) and Ramsay and Silverman (2005). For example,

Ramsay and Silverman (2005) mentions the use of kernel estimators as basis functions

for fitting data. The imputation method based on local likelihood density estimation is

based on an extension of kernel smoothing where the kernel weight is determined by the

conditional expectation of the kernel over that interval. Braun et al. (2005) states that the

main advantages of the method lies in its interpretive appeal as a kernel density estimate

and that its iterative algorithm for solution provides a generalization of the self-consistency

algorithms of Efron (1967), Turnbull (1976) and Li and Yu (1997). In addition, the iterative

algorithm for the conditional expectation converges quickly to a unique solution and this

is not dependent on initial values.

6
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The idea of using nonparametric likelihood estimation for interval censored data is not

new. Efron (1967) proposed an algorithm to obtain Kaplan and Meier (1958)’s nonpara-

metric maximum likelihood estimator for survival function for right censored data and for

more complicated censoring mechanisms such as interval censoring. Turnbull (1976) showed

that when data are interval censored, the nonparametric likelihood estimator is defined up

to an equivalence class of distributions over gaps called innermost intervals. Each of the

Turnbull (1976)’s innermost interval is associated with a probability mass that needs to

be located either to the right-hand, left-hand or mid point of the innermost interval. The

selection of location of probability masses can be arbitrary and this leads to a maximum

likelihood estimator that may not be unique. On the other hand, the iterative algorithm

using the local likelihood density estimation offers a unique solution that converges quickly.

When data are interval censored, our goal here is to estimate the unobserved lifetime.

We let Xi be a lifetime that lies in an interval Ii=(Li, Ri] for a subject i. The estimated

lifetime X̂i can be calculated by taking the conditional expectation of Xi given that Xi lies

in the interval (Li, Ri]:

X̂i = E{Xi|Xi ∈ (Li, Ri]} =

∫ Ri

Li
xf(x)dx∫ Ri

Li
f(x)dx

(2.1)

In order to estimate the expected value above, the underlying density f(x) of the life-

times needs to be estimated. Braun et al. (2005) proposes the following to estimate the

underlying density, f(x).

f̂(x) =
1
n

n∑
i=1

E{Kh(Xi − x)|Ii} (2.2)

Equation 2.2 is the extension of the usual kernel density estimate for the conditional

expectation where a lifetime, Xi, is not directly observed. K(·) is a symmetric probability

density function with the bandwidth h controlling the amount of smoothing; x is the

location of the kernel and Ii indicates the interval where the lifetime Xi lies. The conditional
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distribution itself is unknown. Solving Equation 2.2 involves the kernel density estimate

itself and this results in a fixed point equation of f̂ as follows:

f̂(x) =
1
n

n∑
i=1

Ef̂{Kh(Xi − x)|Ii} (2.3)

The function f(x) is discretized so that it is effectively a vector forming a grid of points

for x and f̂(x), leading to fixed point iteration. At the jth step of the iteration, the kernel

density estimate is updated by:

f̂j(x) =
1
n

n∑
i=1

Ef̂j−1
{Kh(Xi − x)|Ii} (2.4)

The conditional expectation taken with f̂j−1(t) is of the following form:

Ef̂j−1
{Kh(Xi − x)|Ii} =

∫
Ii

Kh(Xi − x)f̂j−1;i(t)dt

The default initial value of f̂0 follows a uniform distribution unless specified otherwise.

The conditional density over the ith interval at the jth step is:

f̂j−1;i(t) = 1(t ∈ Ii)
f̂j−1(t)
cj−1;i

(2.5)

where the normalizing constant for the conditional density over ith interval at the jth step

is:

cj−1;i =
∫

Ii

f̂j−1(t)dt

Since we have a grid of points for x and the corresponding set of f̂(x) values that

are discrete, the above expectation can be approximated by Riemann sum. Similarly, the

expectation is taken for all intervals and the average value of all the expectations over all

intervals is the estimated density f̂j(x) at the jth step.

The iterative algorithm to solve Equation 2.4 is implemented in the ICE package (Braun

et al. 2005) in R. The output of the ICE package consists of a grid of points for x and the

corresponding probabilities. In this project, a particular value of x represents a point in
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lifetime. The probabilities are to be estimated for 200 points of x’s in our study. These x

values along with the corresponding probabilities form a density estimate for the underlying

density of tree lifetimes.

Once the density is estimated, the conditional expectation of a lifetime Xi is calculated

by the following Riemann sum:

X̂i =

∑N
i=1 xiI{Li<xi<Ri}f̂(xi)∑N
i=1 I{Li<xi<Ri}f̂(xi)

. (2.6)

The convergence of the iteration algorithm above can be proven via the contraction map-

ping theorem (Ortega 1976).

The bandwidth h can be estimated by the function ‘dpik()’ in R. The function utilizes

the direct plug-in rules described in Wand (2006). Plug-in bandwidth selection is based

on “Pluging in” estimates of the unknown quantities that appear in the formulae for the

asymptotically optimal bandwidth. The asymptotically optimal bandwidth is derived from

minimizing the asymptotic mean integrated error (AMISE). The mean integrated error

criterion globally measures the distance between the kernel estimator and f . The selected

bandwidth is inversely proportional to a quantity which is a measure of curvature of f .

Thus, for a density with little curvature, little smoothing will be optimal. The gaussian

kernel will be used in our study.

In the following sections, we employ local likelihood density estimation to smooth in-

terval lifetimes of dead trees in order to build a density estimator and hence the imputed

lifetimes. Here this is appropriate since all the live trees are right censored at approxi-

mately the same end of follow-up time, to the right of the interval lifetimes. Since the

smoothing approach relies on local smoothing, lifetimes far away to the right will not affect

the imputation.



Chapter 3

Analysis of tree mortality data

In this section, we use imputation methods for the analysis of the interval censored tree

mortality data. The imputation methods employed are: (i) midpoint (MI), (ii) local likeli-

hood density imputation applied to the data as a whole (LDI), (iii) local likelihood density

imputation within strata defined by species and thinning levels (SLDI).

Figure 3.1 displays the distributions of the imputed lifetimes. The average imputed

lifetimes using the three imputation methods are : MI-10.34 years (sd 7.62), LDI- 10.20

years (sd 7.40) and SLDI - 10.16 years (sd 7.49). Though, there are some slight differences

among the imputed lifetimes from the three methods, overall there is generally considerable

agreement.

Such close similarity among the imputed data sets may be due to interval lengths being

relatively small here; we explore this in Chapter 4. Figure 3.2 shows the distribution of

the interval lengths for the 2008 dead trees. It suggests that among 2008 dead trees, 63%

of the interval lifetimes have the lengths less than 3 years.

Figure 3.3 displays boxplots of imputed lifetimes by Species and Treatment. The first

row of the plot includes the boxplots by species using the three methods. The second

row displays the boxplots in the first row arranged by Type of Species. Row 3 shows the

boxplots by Treatment and finally, the fourth row displays the boxplots organized by level

10
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of Treatment. Figure 3.3 suggests that there seems to be effects due to both Species and

Treatment. The three imputation methods produced very similar results. The imputed

values using the midpoint method shows more variation than those from the other two

methods.

Figure 3.4 displays Kaplan Meyer survival curves by the three imputation methods.

About 40 % of trees die around 15 years after thinning . The Kaplan Meyer curves using

all three imputation methods are almost identical.

Figure 3.5 displays Kaplan Meyer survival curves by Species and Treatment using the

three methods. The first row displays the Kaplan Meyer curves by Species using the three

methods. In the second row, the survival curves in Row 1 are organized by type of Species

showing Douglas Fir, Western Hemlock and Western Cedar from left to right. Row 3

displays the Kaplan Meyer curves by Treatment using the three methods. Finally, Row 4

displays the survival curves organized by Level of Treatment showing the Control group,

Low Thinning and High Thinning from left to right. Figure 3.5 suggests that survival differs

amongst the three species. Western Hemlock seems to have higher mortality while Douglas

Fir and Western Cedar seem to have similar survival experience. Figure 3.5 also suggests

that there exist treatment effects with higher level of thinning yielding lower mortality.

Figure 3.6 displays the estimated underlying density of the tree lifetimes using LDI. The

histogram on the right hand side next to the estimated density displays the distribution of

the midpoints of the interval lifetimes. It shows a similar pattern to the estimated density

using LDI. The estimated density is heavily skewed to the right with the highest peak

occurring around 2 years. This indicates most of the trees that died before the end of

follow-up have lifetimes around 2 years since the time of thinning.

Figure 3.7 displays the histograms of midpoints of the interval lifetimes by strata as de-

termined by each combination of Species and Treatment. The underlying densities among

the three species look quite different as shown in the histograms. The distributions seem

somewhat different across Species and across different Levels of treatment. Figure 3.8
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displays the estimated underlying density for each stratum using SLDI. The estimated

densities vary by each combination of Species and Treatment Levels. It should be noted

that sample size matters when estimating a density, and that the number of lifetime inter-

vals used in the estimation of underlying density for each stratum were different. Strata

for Western Hemlock have the largest sample sizes, especially the Western Hemlock and

Control combination (860 lifetime intervals); their density estimates are shown in Row 2.

Strata for Western Cedar have the smallest sample sizes and their density estimates are

shown in Row 3.

Figure 3.9 shows the absolute differences in imputed lifetimes from the use of the three

imputation methods. Most of the differences are quite small (less than 0.5 years). Some

large differences occur between the estimates obtained from MI and LDI. The average dif-

ference between MI and LDI was 0.24 and the average difference between MI and SLDI was

0.19. Similarly, the average difference between LDI and SLDI was 0.14. This suggests that

stratification when implementing LDI to incorporate the covariate effects has an impact.

The larger differences among the three methods may be linked to the interval lengths in

the tree mortality data. Figure 3.10 displays the absolute differences by interval length.

All three plots show an increasing pattern in the differences as interval length increases.

Regression analysis was performed using the SURVREG procedure in R. The SURVREG

procedure fits parametric accelerated failure time models to survival data that may be left,

right, or interval censored. The parametric model is of the form

log(T ) = y = x′β + σε

where y is usually and is here the log of the failure time variable, x is a vector of covariate

values, β is a vector of unknown regression parameters, σ is an unknown scale parameter,

and ε is an error term; y can be specified as Weibull or Exponential distributions. For the

Weibull model, note that the survival function is

S(t) = Pr(T > t) = exp(− exp(
y − x′β

σ
))
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Figure 3.9: Absolute Differences of Estimates obtained from the Three Imputation Methods
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. See Kalbfleisch and Prentice (1980) and Elandt-Johnson and Johnson (1980) for more

details.

The Weibull model is a proportional hazard model with the logarithm of the hazard

being of the form h(t) = h0(t)e−x′β. Regression coefficient estimates from the COXPH

procedure are expected to be of the same magnitude but opposite in sign to those from

fitting the Weibull model using the SURVREG procedure.

The Weibull and Cox proportional hazard models were fit to the three sets of imputed

values produced by the three imputation methods. Species, Treatment and their interaction

were included in the models as covariates. Table 3.1 displays the estimated covariate effects

and their standard errors from fitting the Weibull model to the three imputed data sets

and from using a full likelihood approach based directly on the interval and right censored

lifetimes. For the full likelihood approach using a Weibull model, note that the likelihood

function becomes:
n∏

i=1

[S(Li)− S(Ri)]Zi [S(Li)]1−Zi

where Zi is an indicator variable for an observation being interval censored. The partial

likelihood function for the proportional hazards model is:

n∏
i=1

{ exp(−X ′
iβ)∑

L∈Ri
exp(−X ′

iβ)
}Zi

where Ri is the risk set corresponding to the imputed lifetime ti. The risk set is the set of

all trees alive and uncensored at ti.

The estimated effects are relative to reference categories; the reference categories for

Species and Treatment are Douglas Fir and Control accordingly. Both the estimated effects

and the standard errors are similar using all three imputation methods and they are quite

comparable with corresponding values from a full likelihood analysis. Table 3.2 displays

the estimated effects using the proportional hazard model. The estimated effects and their

standard deviations show consistent results and are similar in magnitude as those from

the Weibull model. In the following discussion, estimates are based on those derived from
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SLDI imputation and the Cox model.

Western Hemlock relative to Douglas Fir the relative risk of mortality is larger by

a factor of 2.66 when no thinning is applied. With Low Thinning, the relative risk of

mortality is larger by a factor of 2.25. With High Thinning, the relative risk of mortality

is larger by a factor of 2.59. However, neither treatment effect is significant. The relative

risk of mortality of Western Hemlock relative to Douglas Fir seems to be larger regardless

of the Level of Treatment and thinning treatment does not significantly affect the relative

risk of mortality.

Western Cedar relative to Douglas Fir the relative risk of mortality is not significantly

different from that of Douglas Fir when there is no thinning applied (the relative risk is

close to 1). The relative risk of mortality is smaller by a factor of 0.28 when Low Thinning

is applied. With High Thinning, the relative risk is smaller by 0.58. The relative risk of

mortality is minimized when Low Thinning is applied.

Low Thinning relative to the Control group the relative risk of mortality is smaller by

a factor of 0.81 when the treatment is applied to Douglas Fir. The relative risk is smaller

by a factor of 0.68 when the thinning was applied to Western Hemlock. The relative risk

is smaller by a factor of 0.22 with Western Cedar. The relative risk of mortality of Low

Thinning group relative to Control group is minimized with Western Cedar.

High Thinning relative to the Control group the relative risk of mortality is smaller

by a factor of 0.57 when the treatment is subjected to Douglas Fir. The relative risk is

smaller by a factor of 0.55 when high thinning is applied to Douglas Fir. The relative risk

is smaller by a factor of 0.32 when high thinning is applied to Western Cedar. The relative

risk of mortality of High Thinning group is minimized with Western Cedar.

More thinning seems to improve the chance of survival in trees by minimizing the

relative risk of mortality except for Western Cedar where the relative risk is minimized

with Low Thinning. The effectiveness of thinning depends on Species as the interaction

between Types of Species and the Level of Treatment affects the relative risk of mortality
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in trees. Interpretation is similar using other imputation methods.

Figure 3.11 displays diagnostic plots to check for the assumption of the proportional

hazards model. The first column displays, by Species, log(− log S̃(t)) versus log(t) where

S̃(t) is the Kaplan Meyer survival function. The second column displays log(− log S̃(t))

versus log(t) by the Level of Treatment. Imputed values obtained from MI are displayed

in the first row, those from LDI are displayed in the second row, and the last row displays

the imputed values from SLDI. As the parallel curves would suggest that the assumption

of proportional hazard is met, we conclude that there is no striking evidence of departures

from the proportional hazard assumption here.

In order to assess the adequacy of the Weibull model, a residual analysis was per-

formed. If a lifetime Ti has a survival function S(t;xi, β), then the residual defined as

− log(S(t;xi, β)) has a unit exponential distribution. Let êi=− log(S(t;xi, β̂)) for lifetimes

and − log(S(t;xi, β̂)) + 1 for censored times. Then, êi estimates the residuals ei and êi

should behave approximately like a unit exponential. Thus, we plot ordered residuals êi

versus the expected exponential order statistics i.e Savage scores; the values of the ex-

pected exponential order statistics are
∑i

r=1(n − r + 1)−1. The plot should be roughly a

straight line when our original Weibull model is adequate (Lawless 2003). In addtion, we

can treat the residuals as a set of possible censored observations and derive their Kaplan

Meyer estimates S∗(t). A plot of − log(S∗(t)) versus log(t) should be roughly a straight

line when the original model is adequate.

Figure 3.12 displays such residual plots to assess the adequacy of the Weibull model.

The first column plots the ordered residuals versus expected exponential order statistics

using the imputed values from the three imputation methods. The second column plots

the ordered residuals versus their Kaplan Meyer estimates using the imputed values from

the three imputation methods. Both plots show departures from linearity in their tails.

The deviation from linearity may be due to the heavy amount censoring present in the tree

mortality data (over 55% censoring). With such a large amount of censoring, the usefulness
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Table 3.1: Estimated Effects and SE by the Three Imputed Methods and Full Likelihood
Approach using the Weibull Model.

Imputation Method Variable Coefficient (β̂) SE Relative Risk (eβ̂)
MI Western Hemlock -1.12 0.09 0.33

Western Cedar -0.01 0.15 0.99
Low Thinning 0.22 0.13 1.24
High Thinning 0.61 0.15 1.84

Western Hemlock*Low Thinning 0.21 0.14 1.23
Western Cedar*Low Thinning 1.41 0.39 4.10

Western Hemlock*High Thinning 0.05 0.16 1.05
Western Cedar*High Thinning 0.63 0.33 1.88

LDI Western Hemlock -1.12 0.09 0.33
Western Cedar -0.02 0.15 0.98
Low Thinning 0.21 0.13 1.23
High Thinning 0.61 0.15 1.84

Western Hemlock*Low Thinning 0.21 0.14 1.23
Western Cedar*Low Thinning 1.41 0.39 4.10

Western Hemlock*High Thinning 0.05 0.16 1.05
Western Cedar*High Thinning 0.63 0.33 1.88

SLDI Western Hemlock -1.12 0.09 0.33
Western Cedar -0.01 0.15 0.99
Low Thinning 0.22 0.13 1.24
High Thinning 0.61 0.15 1.84

Western Hemlock*Low Thinning 0.21 0.14 1.23
Western Cedar*Low Thinning 1.40 0.39 4.06

Western Hemlock*High Thinning 0.05 0.16 1.05
Western Cedar*High Thinning 0.63 0.33 1.88

Full Likelihood Western Hemlock -1.17 0.09 0.31
Western Cedar -0.02 0.15 0.98
Low Thinning 0.23 0.13 1.26
High Thinning 0.64 0.16 1.90

Western Hemlock*Low Thinning 0.22 0.15 1.25
Western Cedar*Low Thinning 1.49 0.41 4.44

Western Hemlock*High Thinning 0.05 0.17 1.05
Western Cedar*High Thinning 0.66 0.35 1.93
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Table 3.2: Estimated Effects and SE by the Three Imputed Methods using the Proportional
Hazard Model.

Imputation Method Variable Coefficient (β̂) SE Relative Risk (eβ̂)
MI Western Hemlock 0.98 0.08 2.66

Western Cedar 0.02 0.13 1.02
Low Thinning -0.20 0.12 0.82
High Thinning -0.56 0.14 0.57

Western Hemlock*Low Thinning -0.18 0.13 0.84
Western Cedar*Low Thinning -1.29 0.36 0.28

Western Hemlock*High Thinning -0.03 0.15 0.97
Western Cedar*High Thinning -0.57 0.31 0.57

LDI Western Hemlock 0.97 0.08 2.64
Western Cedar 0.02 0.13 1.02
Low Thinning -0.20 0.12 0.82
High Thinning -0.56 0.14 0.57

Western Hemlock*Low Thinning -0.18 0.13 0.84
Western Cedar*Low Thinning -1.29 0.36 0.28

Western Hemlock*High Thinning -0.04 0.15 0.96
Western Cedar*High Thinning -0.57 0.31 0.57

SLDI Western Hemlock 0.98 0.08 2.66
Western Cedar 0.02 0.13 1.02
Low Thinning -0.21 0.12 0.81
High Thinning -0.56 0.14 0.57

Western Hemlock*Low Thinning -0.17 0.13 0.84
Western Cedar*Low Thinning -1.28 0.36 0.28

Western Hemlock*High Thinning -0.03 0.15 0.97
Western Cedar*High Thinning -0.56 0.31 0.57
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of such residual analysis is limited. Figure A.1 in Appendix A displays examples of residual

analysis based on simulated data sets with various amount of censoring. As the amount

of censoring increases, deviation from linearity becomes more obvious. We acknowledge

that the residual plots suggest some concern for the lack of fit of the Weibull model.

Nevertheless, the imputation methods produced very similar results under all analysis.



CHAPTER 3. ANALYSIS OF TREE MORTALITY DATA 29

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

−5
−4

−3
−2

−1

Diagnostic using MI for Species

log(t)

lo
g(
−l
og
(s
ur
v)
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

−7
−5

−3
−1

0

Diagnostic using MI for Treatment

log(t)

lo
g(
−l
og
(s
ur
v)
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

−5
−4

−3
−2

−1

Diagnostic using LDI for Species

log(t)

lo
g(
−l
og
(s
ur
v)
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

−7
−5

−3
−1

0

Diagnostic using LDI for Treatment

log(t)

lo
g(
−l
og
(s
ur
v)
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

−6
−5

−4
−3

−2
−1

Diagnostic using SLDI for Species

log(t)

lo
g(
−l
og
(s
ur
v)
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

−7
−5

−3
−1

0

Diagnostic using SLDI for Treatment

log(t)

lo
g(
−l
og
(s
ur
v)
)

Figure 3.11: Diagnostic Plots to check for Proportional Hazard Assumption using the
Three Imputed values
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Figure 3.12: Residual Diagnostic Plots to check for Weibull Regression Model using the
Three Imputed values



Chapter 4

Simulation Study

Simulation studies were executed in order to compare the three imputation methods. The

three methods compared are: (i) midpoint (MI), (ii) local likelihood density imputation

applied to the data as a whole (LDI), (iii) local likelihood density imputation within strata

defined by species and thinning levels (SLDI). The performance of the three methods was

compared, in terms of their ability to produce precise and accurate estimates of covariate

effects in a Weibull survival analysis.

In a complete factorial design, datasets containing the true lifetime since thinning were

generated from a Weibull distribution with scale parameter θ and the shape parameter

equal to 5 where the scale parameter is defined as:

θ = e−X′β

β is a vector containing the true parameter estimates and the Weibull distribution takes

the following form:

S(t) = θe−5θt

In the datasets, three types of species were present as in the analysis of the tree mortality

data: Douglas Fir, Western Hemlock and Western Cedar, each representing 30, 60 and 10

31
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% of the trees in the datasets. Within each type of species, three levels of treatment were

randomly assigned: 50 % applied to Control group, and 25 % each for Low Thinning and

High Thinning treatments.

Intervals of tree lifetimes were simulated based on the measurement times. The mea-

surement time Vj for the j th visit varies among the trees. The time intervals between the

visit times are modeled as exponential; here, the time between subsequent visits Vj − Vj−1

follows the distribution exp(λ).

Under each scenario, the simulated lifetime intervals for tree i (Li, Ri) are:

if Ti < max{Vj}

Li = max{Vj |Vj 6 Ti|δj = 1}

Ri = min{Vj |Vj > Ti|δj = 1}

if Ti > max{Vj}

Li = max{Vj |δj = 1}

Ri = ∞

where δj = 1 when the tree is visited at the jth visit Vj , and otherwise is 0.

Five factors were initially identified potentially important in their effect on the estima-

tion of the lifetimes using the local likelihood density imputation (LDI): the sample size

(n), the covariate effect (β), the probability of a tree being missed at the visit (p), the

interval width (λ), and bandwidth of the kernel (h). We set p as 10% so as to have the

simulated datasets comparable with the tree mortality data. In the tree mortality data,

not all the trees are visited for each measurement. This suggests in our simulation sce-

nario that measurements of trees are omitted for such visits; we assume such missingness

happens at random. To mimic this, the probability of missing visits for each tree will be

modeled through a Bernoulli random variable δj where the probability of missing a visit

for a tree was p=10%, approximated from the tree mortality data. We fix the bandwidth

as 0.4 so that the amount of smoothing is controlled in the estimation of the underlying

distribution regardless of the sample size per stratum.
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The full factorial design was performed with the following three factors:

• Sample size (n)

Sample size has two levels : n=100 and n=1000, each representing small and large

samples.

• Interval width (λ)

Interval width has two levels: λ = 2 and λ = 5, each representing small and large

intervals. This reflects the time between subsequent visits.

• Covariate effect (β)

The covariate effect has three levels, each representing no effect (β=0,0,0,0), mod-

erate effect (β=-0.1,0.1,0.1,0.1), and large covariate effect (β=-1,0.5,0.5,0.5). The

parameter β1 represents the effect of Western Hemlock relative to Douglas Fir, β2 for

the effect of Western Cedar relative to Douglas Fir, β3 for the effect of Low Thinning

relative to Control, and β4 represents the effect of High Thinning relative to Control.

The three aforementioned imputation methods were applied to the simulated data sets

to compare their performance. The Weibull accelerated failure time regression model was

fit to the three sets of imputed data under each scenario in order to produce the parameter

estimates for our covariates. Table 4.1 displays the twelve scenarios that were examined

based on 1000 simulated data sets.

Figure 4.1 displays distributions of the estimates of β obtained from using the impu-

tation methods and scenarios in the case of β = (0, 0, 0, 0); Table 4.2 provides summary

statistics for these distributions. All three imputation methods performed well in terms of

producing estimates that are close to the true values. The estimates obtained from LDI has

the smallest standard deviation. As sample size increases, the overall precision improves

for all three methods. As the interval width increases, however, MI produces estimates

that are considerably more variable. MI is more sensitive to interval width than LDI or

SLDI estimates.
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Table 4.1: Summary of Simulation Design by Scenario

Scenario Sample size Interval width Covariate efffect
1 n=100 λ=2 β = (0, 0, 0, 0)
2 n=100 λ=2 β = (−0.1, 0.1, 0.1, 0.1)
3 n=100 λ=2 β = (−1, 0.5, 0.5, 0.5)
4 n=100 λ=5 β = (0, 0, 0, 0)
5 n=100 λ=5 β = (−0.1, 0.1, 0.1, 0.1)
6 n=100 λ=5 β = (−1, 0.5, 0.5, 0.5)
7 n=1000 λ=2 β = (0, 0, 0, 0)
8 n=1000 λ=2 β = (−0.1, 0.1, 0.1, 0.1)
9 n=1000 λ=2 β = (−1, 0.5, 0.5, 0.5)

10 n=1000 λ=5 β = (0, 0, 0, 0)
11 n=1000 λ=5 β = (−0.1, 0.1, 0.1, 0.1)
12 n=1000 λ=5 β = (−1, 0.5, 0.5, 0.5)

Figure 4.2 displays distributions of estimates for the scenarios when moderate covariate

effects are present; Table 4.2 provides a summary of these estimates. The use of SLDI

slightly outperforms the other two methods as the estimates obtained from SLDI are closer

to the true values of β and have smaller variances compared to the other two methods.

An increase in sample size contributes to improved precision but it does not seem to affect

the overall accuracy. As the interval width increases, the overall variation in estimates

increases for all three methods.

Figure 4.3 displays estimates obtained for those scenarios when large covariate effects

are present while Table 4.2 summarizes the estimates. Except SLDI, all other methods

failed to produce estimates that are close to the true values of β and biases are quite large

here. An increase in sample size does not reduce bias but reduces variability. An increase

in interval width accompanied with large covariate effects leads to poor performance by

MI and LDI. SLDI seems less affected by the increase in interval width as it still produced

unbiased estimates with relatively small variances.
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Figure 4.1: Boxplots of Estimates of β by Imputation Methods and by Scenario for No
Covariate Effects. The blue horizontal line indicates the true value of β
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Figure 4.2: Boxplots of Estimates of β by Imputation Methods and by Scenario for Mod-
erate Covariate Effects. The blue horizontal line indicates the true value of β
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Figure 4.3: Boxplots of Estimates of β by Imputation Methods and by Scenario for Large
Covariate Effects. The blue horizontal line indicates the true value of β
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Table 4.2: Mean and Standard Deviation (SD) of β̂ by Imputation Methods and Scenario

LDI SLDI MI LDI SLDI MI
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

(β = (0,0,0,0),n = 100, λ = 2) (β = (0,0,0,0),n = 100, λ = 5)

β1 0.001 0.043 -0.005 0.062 0.004 0.070 0.001 0.042 -0.012 0.090 0.004 0.116
β2 -0.008 0.070 0.002 0.107 -0.011 0.108 -0.009 0.065 0.031 0.176 -0.019 0.180
β3 -0.002 0.048 0.001 0.071 -0.005 0.077 -0.001 0.047 0.013 0.096 -0.001 0.125
β4 0.000 0.049 0.005 0.072 -0.002 0.077 0.000 0.049 0.016 0.103 -0.002 0.124

(β = (0,0,0,0),n = 1000, λ = 2) (β = (0,0,0,0),n = 1000, λ = 5)

β1 0.000 0.014 -0.000 0.020 0.000 0.023 0.000 0.013 -0.001 0.025 -0.000 0.037
β2 0.001 0.022 0.001 0.032 -0.001 0.037 -0.001 0.021 0.003 0.042 -0.001 0.058
β3 0.000 0.015 0.000 0.021 -0.002 0.026 -0.000 0.015 0.002 0.028 -0.001 0.039
β4 -0.000 0.015 0.001 0.021 -0.001 0.025 0.000 0.015 0.002 0.028 -0.001 0.041

(β = (−0.1,0.1,0.1,0.1),n = 100, λ = 2) (β = (−0.1,0.1,0.1,0.1),n = 100, λ = 5)

β1 -0.065 0.047 -0.096 0.064 -0.084 0.068 -0.049 0.046 -0.110 0.088 -0.062 0.110
β2 0.076 0.084 0.109 0.107 0.089 0.111 0.049 0.089 0.133 0.152 0.062 0.170
β3 0.070 0.050 0.102 0.070 0.088 0.079 0.048 0.050 0.112 0.097 0.059 0.127
β4 0.070 0.050 0.103 0.070 0.090 0.078 0.046 0.047 0.108 0.094 0.061 0.121

(β = (−0.1,0.1,0.1,0.1),n = 1000, λ = 2) (β = (−0.1,0.1,0.1,0.1),n = 1000, λ = 5)

β1 -0.072 0.014 -0.100 0.019 -0.089 0.022 -0.051 0.014 -0.102 0.025 -0.066 0.036
β2 0.080 0.026 0.101 0.031 0.091 0.034 0.063 0.028 0.105 0.040 0.069 0.055
β3 0.072 0.016 0.099 0.021 0.089 0.025 0.051 0.016 0.102 0.028 0.068 0.040
β4 0.071 0.016 0.099 0.021 0.087 0.024 0.051 0.015 0.101 0.027 0.066 0.041

(β = (−1,0.5,0.5,0.5),n = 100, λ = 2) (β = (−1,0.5,0.5,0.5),n = 100, λ = 5)

β1 -0.860 0.077 -1.003 0.069 -0.859 0.080 -0.660 0.098 -1.007 0.097 -0.588 0.119
β2 0.497 0.135 0.491 0.120 0.524 0.148 0.460 0.138 0.516 0.125 0.430 0.138
β3 0.378 0.087 0.501 0.085 0.406 0.106 0.281 0.091 0.501 0.115 0.275 0.142
β4 0.380 0.085 0.499 0.085 0.410 0.105 0.278 0.087 0.496 0.110 0.277 0.139

(β = (−1,0.5,0.5,0.5),n = 1000, λ = 2) (β = (−1,0.5,0.5,0.5),n = 1000, λ = 5)

β1 -0.857 0.023 -0.996 0.021 -0.851 0.025 -0.669 0.028 -0.999 0.027 -0.584 0.036
β2 0.497 0.036 0.495 0.034 0.523 0.040 0.468 0.040 0.508 0.034 0.429 0.041
β3 0.380 0.025 0.496 0.025 0.406 0.033 0.287 0.026 0.495 0.032 0.275 0.045
β4 0.380 0.024 0.495 0.024 0.405 0.032 0.286 0.026 0.493 0.031 0.274 0.045
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Summary

The interval midpoint (MI) and an imputation method based on local likelihood density

estimation were employed to analyze interval censored tree mortality data. A focus of the

analysis was to assess the effect of species and thinning levels on lifetimes of trees. Since

the imputation method based on local likelihood density estimation (LDI) does not handle

potential covariate effects, we implemented it by each strata based on each combination of

Species and Treatment (SLDI). In terms of estimated effects of Species and Treatment on

tree lifetimes, all three methods produced similar results. The imputed data sets were very

close to each other as were the resulting covariate estimates. As we suspected that this

was due to small interval widths or relatively small covariate effects that are present in the

tree mortality data, we also conducted a simulation study to investigate further the factors

that affect the performance of these three imputation methods. The factors of particular

interests were sample size, interval width and the size of covariate effects. The simulation

studies showed that where there are no covariate effects, all three methods performed well in

producing unbiased estimates with similar standard errors. The estimates based on the use

of SLDI produced larger standard errors, as expected, since the smoothing is performed on

stratified samples and therefore based on a smaller number of observations. Further, MI was

most sensitive to interval width as interval width increased, there were significant increases

39



CHAPTER 5. SUMMARY 40

in variation of the estimates. With increased covariate effects, SLDI outperforms the other

two methods by producing estimates for β which are far less biased. The simulation studies

suggested that both MI and LDI failed to produce unbiased estimates when covariate effects

are large. Increased sample size had an impact on precision of estimates in general. The

dominant factor to determine the overall performance of the imputation methods was

the size of the covariate effects (although both interval width and sample size had some

impact on precision and accuracy of estimates). SLDI performed well regardless of the size

of covariate effects, interval size and sample size. This suggests that potential covariate

effects cannot be ignored in implementing the local likelihood imputation method, and that

when the covariate effects are handled properly, the local likelihood imputation method is

more robust and reliable than MI in imputing true lifetimes.



Chapter 6

Discussion

Through the simulation studies, the imputation method based on local likelihood density

estimation was proven to perform well when covariate effects were handled with stratifi-

cation in its implementation while the approach failed when such covariate effects were

ignored. In regression settings in survival analysis where the effects of covariates are in-

vestigated, the imputation method based on local likelihood density estimation requires a

means to incorporate covariate effects in its implementation. A more efficient approach

than stratification may de developed to incorporate such effects. This is particularly true

in the presence of continuous covariates. Another point that requires attention concerns

variation of interval widths within a data set. In our simulation studies, the widths of

intervals were controlled to be about the same within the data set. The density estimate

acquired by the imputation method based on local likelihood density estimation needs fur-

ther investigation to assess whether it can describe the true underlying density properly in

situations where the interval widths vary significantly within a data set.
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Tables and Figures
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Figure A.1: Diagnostic Plots to check for Weibull Assumption using Simulated Data with
Various amount of Censoring
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Table A.1: Average Age of Trees at Thinning by Installation and Plot

Installation Plot Age at thinning
1 1 40

2 40
3 42
4 38
5 36
6 39

2 1 33
2 34
3 35
4 35
5 35
6 35

3 1 37
2 35
3 36
4 40
5 40
6 39

4 1 35
2 36
3 33
4 36
5 35
6 36

5 1 46
2 50
3 40
4 41

6 1 28
2 28
3 27
4 27
5 26
6 27
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Table A.2: Counts of Trees by Installation, Plot and Measurement Time (M.i refers to the
(i)th follow-up time after thinning, i=1,...,9)

Installation Plot M.1 M.2 M.3 M.4 M.5 M.6 M.7 M.8 M.9 total
1 1 149 147 143 140 135 129 115 105 159

2 50 49 49 50 52 53 57 57 65
3 91 91 92 88 87 84 87 87 114
4 51 51 53 53 51 52 51 52 62
5 61 61 62 64 62 62 59 57 70
6 102 104 98 98 84 74 60 59 112

Subtotal 504 503 497 493 471 454 429 417 582
2 1 101 101 95 93 92 77 69 61 101

2 148 148 140 132 118 100 81 66 148
3 177 169 149 128 115 88 79 74 177
4 221 211 177 146 131 118 103 94 221
5 91 87 80 78 73 69 56 52 91
6 258 250 186 151 130 103 89 79 256

Subtotal 996 966 827 728 659 555 477 426 994
3 1 162 155 133 116 104 95 81 162

2 144 134 114 105 98 91 75 144
3 153 149 128 120 109 100 84 153
4 347 331 257 219 185 165 125 347
5 321 301 235 183 157 147 107 321
6 149 146 128 115 106 93 81 149

Subtotal 1276 1216 995 858 759 691 553 1276
4 1 84 84 84 80 79 73 67 65 84

2 131 130 122 116 103 91 77 69 132
3 77 76 75 76 74 72 69 64 80
4 55 55 52 52 51 49 46 43 55
5 100 99 99 96 94 90 102
6 116 116 118 114 111 111 103 100 128

Subtotal 563 560 550 534 512 486 362 341 581
5 1 55 51 50 49 49 47 43 55

2 74 64 63 58 55 53 43 74
3 81 79 72 61 58 54 48 81
4 92 91 87 72 65 61 51 92

Subtotal 302 285 272 240 227 215 185 302
6 1 73 73 73 70 70 68 67 65 52 76

2 79 80 75 76 73 67 66 64 59 83
3 116 116 110 108 107 100 93 94 88 118
4 138 138 137 132 128 125 117 112 102 226
5 89 91 93 93 91 91 90 91 88 173
6 86 86 86 87 88 87 84 85 84 164

Subtotal 581 584 574 566 557 538 517 511 473 840
Grand Total 4222 4114 3715 3419 3185 2939 2523 1695 473 4575
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Table A.3: Counts of Live Trees at Measurement Times (M.i refers to the (i)th follow-up
time after thinning, i=1,...,9) by Installation and Plot

Installation Plot M.1 M.2 M.3 M.4 M.5 M.6 M.7 M.8 M.9
1 1 147 143 138 134 129 108 105 94

2 49 46 48 50 52 50 57 55
3 91 88 88 86 82 72 86 78
4 51 50 53 51 49 47 51 45
5 60 61 60 62 62 53 56 53
6 102 97 97 84 74 57 56 54

Subtotal 500 485 484 467 448 387 411 379
2 1 101 95 93 92 77 69 61 55

2 148 140 132 118 100 81 66 59
3 169 149 128 115 88 79 74 70
4 211 177 146 131 118 103 94 79
5 87 80 78 73 69 56 52 48
6 250 186 151 130 103 89 79 69

Subtotal 966 827 728 659 555 477 426 380
3 1 155 133 116 104 95 81 72

2 134 114 105 98 91 75 69
3 149 128 120 109 100 84 74
4 331 257 219 185 165 125 99
5 301 235 183 157 147 107 89
6 146 128 115 106 93 81 72

Subtotal 1216 995 858 759 691 553 475
4 1 84 84 80 79 73 67 65 60

2 130 122 115 103 91 77 69 59
3 76 74 75 74 71 69 64 58
4 55 52 52 51 49 46 43 42
5 99 99 96 94 88 80
6 116 114 114 110 104 103 100 86

Subtotal 560 545 532 511 476 442 341 305
5 1 51 50 49 49 47 43 41

2 64 63 58 55 53 43 40
3 79 72 61 58 54 48 42
4 91 87 72 65 61 51 40

Subtotal 285 272 240 227 215 185 162
6 1 73 72 70 68 68 67 65 52 49

2 79 75 75 73 67 65 63 59 51
3 116 110 107 107 100 93 93 88 82
4 138 137 132 128 125 117 112 100 90
5 89 90 93 91 90 89 89 88 72
6 86 85 86 86 87 84 84 80 67

Subtotal 581 569 563 553 537 515 506 467 411
Grand Total 4108 3693 3405 3176 2922 2559 2322 1531 411
Total Visited 4222 4114 3715 3419 3185 2939 2523 1695 473

(from A.2)
Proportion of Missing Trees 7.7% 7.8% 8.0% 8.3% 8.7% 8.8% 11.3% 35.9% 80.9%
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Table A.4: Counts of Trees by Installation, Plot and Thinning Level
Installation Plot Control Low Thinning High Thinning Total

1 1 159 159
2 65 65
3 114 114
4 62 62
5 70 70
6 112 112

2 1 2 99 101
2 148 148
3 177 177
4 221 221
5 91 91
6 256 256

3 1 162 162
2 144 144
3 153 153
4 347 347
5 321 321
6 149 149

4 1 84 84
2 132 132
3 80 80
4 55 55
5 102 102
6 128 128

5 1 55 55
2 74 74
3 81 81
4 92 92

6 1 76 76
2 83 83
3 118 118
4 226 226
5 173 173
6 164 164

Grand Total 2195 1231 1149 4575
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Table A.5: Correspondence Table for Relabeling

Labeling by Ministry Labeling by Ministry Our labeling Our labeling
Installation Plot Installation Plot

8 1 1 1
2 1 2
5 1 3
10 1 4
13 1 5
14 1 6

28 2 2 1
8 2 2
13 2 3
15 2 4
25 2 5
26 2 6

31 1 3 1
2 3 2
3 3 3
4 3 4
5 3 5
6 3 6

43 3 4 1
4 4 2
5 4 3
7 4 4
8 4 5
9 4 6

67 1 5 1
2 5 2
3 5 3
4 5 4

71 3 6 1
5 6 2
11 6 3
14 6 4
15 6 5
16 6 6
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