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Abstract 

Condensed and solid phase environments offer a wide range of controllable interactions 

for new quantum technologies. Understanding the dynamics of open quantum systems 

interacting with such complex environments is important for correct modeling of many 

chemical and physical phenomena and for development of new quantum technologies. The 

central theme of this thesis is the open system dynamics of a small qua.ntum system coupled 

to self-interacting chaotic environments. 

This thesis consists of Lhree related parts. In the first part, a theory predicting open 

dynamics of a quantum system interacting with chaotic environments is reported. The 

theory is of a Kraus decomposition form, which is exact for chaotic environments of ther­

modynamic dimension. Extension of the theory to time-dependent system Hamiltonians 

is also presented so that it may have practical applications for studies of new quantum 

technologies. In tbe second part, extensive numerical calculations are performed to obtain 

the exact quantum dynamic::; for two realistic models of self-int(~ra.cting environments. Both 

models represent a statistically Hawed isolated quantum computer (QC) core. In the first 

model, the open dynamics of a quantum-control NOT (CNOT) gate in the pre::;ence of static 

internal imperfections are invcstigated and internal error sources are identified for a large 

number of QC configurations. The results indicate that the strong two-body imperfections 

suppress the interna.! decohcrence and enhance the performancc of the CNOT gate. More­

over, the largest source of error is found to be unitary due to coherent shifting rather than 
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demherence. The second model represents a single-qubit detector set-up designed to probe 

the internal bath dynamics. Small low temperature isolated QCs with static internal flaws 

can be considered as prototypical examples of self-interacting - and possibly chaotic - eIl­

vironrnents of two level systems for which the exact quantum dynamics can be numerically 

tractable on a classical computer. In the third part, the theory of chaotic environments is 

tested against the exact numerical results of thc above models and very good agreements 

are obtained. 
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Chapter 1 . 

Introduction 

The dynamics of a closed quantum system evolves from the Schrodinger equation [I]. The 

interaction of a quantum system with its surrounding environment, however, induces quan­

tum processes for which the Schrodingcr's dynamic:s no longer holds. This is usually de­

scribed by stating that the system is not closed and undergoes open system dynamics [2, 3]. 

In general, open system dynamics consists of decoherenee, dissipation, and coherent shift 

processes. Decoherence is a process in which the quantum correlations (i.e. coherent super­

position) of the state of the system are destroyed due to interactions with its environment. 

Dissipation is a means of energy transfer process from the system to its environment. The 

effects of dccoherence and dissipation Oll the systern arc not unitary, and thus irreversible 

in practice. On the other hand, the coherent shift process is a unitary contribution of an 

environment on the open syste111 dynamics, which perturbs the free systcm Hamiltonian 

(ie. the Hamiltonian of the closed quantum system) with a Hermitian perturbation. Con­

sequently, the system evolves under an effectivc system Hamiltonian, which comprises a 

free system Hamiltonian plus a perturbation. Unraveling the effects induced by the dif­

ferent components of system-enviroIllllent. interactions, and thus determining the degree of 

deviation from the Schrodinger dynamics is of particular importance to the understanding 
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2 CHAPTER 1. INTRODUCTION 

of many chemical and physical phenomena and in the developmenL of new quantum tech­

nologies such as molecular motors and electronics [4], laser control scenarios for chemical 

reactions [5], and quantum computing [6-8] 

Traditional theories of open system dynamics represent an environment's degree of free­

dom either phenomenologically [9] or as a collection of non-interacting oscillators [la, 11] or 

spins [12]. These non-interacting environment models are only valid in special instances. For 

example, in modeling atom-radiation interactions, the vacuum radiation field is represented 

by uncoupled oscillators. However, the validity of non-interacting environment models is 

questionable in general. This is because the non-interacting environment models do not ta.ke 

into account the internal dynamics of an environment, which may play an important role in 

a decoherence process and thus may strongly influence the open system dynamics. Consider 

as an example the quantum control [5, 13] of a chemical reaction in a large molecule which 

requires coherent manipulation of the reaction coordinate (i.e. the subsystem) while simul­

taneously interacting with the rest of the molecule(s) (i.e. the microscopic environment) 
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The work reported in this thesis is devoted to the understanding of the open dynamics 

of a small quantum system coupled to self-interacting chaotic environments. This work 

consists of three related parts. The first part is concerned with development of a theory of 

open system dynamics induced by chaotic environments [14J. The theory is of an explicit 

Kraus decomposition form, which hecomes exact for chaotic environments of thermodynamic 

dimension (Le. very large) Generalization of t.he t.heory to time-dependent system Hamil­

tonians has also been achieved [15] and thus the theory may have important applications for 

studies of new quantum technologies [4-8], In the second part, extensive numerical calcu­

lations are performed to obtain exact quantum dynamics for two models of self-interacting 

chaotic environments [16-18]. Both models represent a statistica,lly flawed isolated quantum 

computer (QC) core In the first model, the open dynamics of a quantum-controlled NOT 

(CNOT) gate is investigated and internal error sources are identified [16, 17]. The second 

model represents a single qubit detector set-up designed to probe the internal environment.aJ 

dynamics [18]. Small low temperature isolated QCs wit.h static internal flaws can be con­

sidered as prototypical examples of self-interacting and possibly chaotic - environment.s 

of two level systems for which exact quantum dynamics can be numerically tractable on a 

classical computer. Therefore, the exact numerical results obtained in these studies serve 

as benchmarks, against. which the developed theories of self-interacting environments can 

be tested. Hence, in the third part, the theory [14, 15] developed in the first part is tested 

against the exact benchnlark results [16-18] and very good agreement is obtained. 

The remainder of this chapter is comprised of three sections, ea.ch of which is an intro­

duction to different parts of this thesis. 

1.1 Theories of self-interacting environments 

Many chemical and physical phenomena occur in complex environments, e.g. condensed and 

solid state media, which involve an enormously la.rge number of parLicipating component.s. 
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While the Schrodinger equation for pure quantum states and the Liouville-von Neumann 

equation for pure and non-pure quantum states provide the formally exact dynamics of 

closed quantum systems, in practice, the exact quantum dynamics of such large quantum 

systems <1re not computationally tractable. Fortunately, important dynamical changes nsu­

ally occur only in a small part of such large systems. For example, a reaction coordinate in 

a large molecule is the potentially interesting and the most import<1nt part of the molecule. 

Therefore, a subsystem-environment scheme is employed as a starting point to formul<1te 

the open dynamics of a small quantum system. In subsystem-environment schemes, the 

subsystem or simply the system thus represents the important part of a larger system and 

the rest of the whole can be treated Or approximated as a reservoir (i.e. heat bath). Typical 

examples of this approach include electron [19] and proton [20] transfer reactions in large 

biological molecules, vibratioll<11 relaxation of ions in solution [21], proton transfer in organic 

molecules in solids [20], and migration of defects in solid state media [22]. 

There has been growing interest recently in the development of new quantnm tech­

nologies [4-8]. Principles behind the new quantum technologies rely on the existence of 

special quantum correlations, such as superpositions of states or entangled states. More­

over, it is required that these quantum states can be coherently manipulated by externally 

induced unitary operations, e.g. manipulations by a la"cr. Unfortunately, the quantum 

::ita.tes are fragile and their mainten<1nce is hard to achieve even at very low temperatures. 

Deviations from Schrod inger dynamics are inevitable in pr<1ctiee and thus considered as 

error sources during implementation. In this respect, the destructive effects induced by 

system-environment interactiolls constitute a potenti<111y serious problem for the new quan­

tum technologies. The condensed and solid phase environments provide an attractive range 

of controllable interactions for the quantum technologies. The coherent qua.ntum control of 

<1 quantum system in such complex environments requires det<1i1cd knowledge of all factors 

that affect the open system dynamics. However, the factors which encumber or ease the 
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coherent quantum control in complex environments are not very well known. This is partly 

due to the fact that the internal envirollmental dynamics is neglected by traditional theories 

of decoherence. 

Chaotic dynamics [23, 24] is an unavoidable feature of complex environments. Recent 

experimental [25] and numerical [26] evidence suggests that the condensed phase dynamics 

is genera.l1y chaotic. For example, the dynamics of a colloidal particle in water [25] and vi­

brational dynamics of a silicon crystal [26, 27] have been shown to be chaotic. Anharmonic 

corrections are known to be important. in the study of phonons and essential for an ullder­

standing of heat transport phenomena [281· Chaotic and regular (i.e. integrable) systems 

have qnalitatively different dynamics and therefore chaotic systems cannot be accurately 

described by regular systems. Thus, the self-interacting allel chaotic environment models 

provide a hetter representation of condensed or solid state environments than standard un­

coupled oscillator bath models. .tv1oreover, recent evidence shows that the self-interacting 

environment models [29, 30J can cause much less decoherence than would be predicted by 

uncoupled bath models. Semiclassical [31, 32J and other [33, 34J arguments have been used 

to explain this effect. However, the reverse effect ha.,., a.lso been reported in numerical sim­

ulations at high temperatures [35, 361 and for an environment consisting of a few chaotic 

degrees of freedom [37, 38]. These considerations strongly suggest that the internal dy­

namics of an environment is an important factor that should be taken into account in the 

formulation of open system dynamics. 

Theories implicitly allowing the self-interactions among environmental modes have been 

reported. However, these theories have some disadvantages. For instance, the correlation 

functions appearing in Redfield theory (39, 40] and its generaliza.tions [41,42] are often cal­

culated via realistic molecular dyna.mics simulations where environmental self-interactions 

can fully be taken into account. However, the Redfield theory is known to possess a few 
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drawbacks. The Redfield master equation violates the positivity of the reduced density op­

erator. The use of special initial conditions in some cases is shown to prevent the positivity 

violation [40]. Furthermore, the Redfield master equation predicts an incorrect long time 

limit [43]. The theory developed b,Y Bulgac et al [44] also takes into acc.ount the environ­

mental self-interactions, representing the environment as an ensemble of random matrices. 

However, the ma.'iter equation of Bulgac et al [44] seelIlS only suitable for high t,emperatures 

and the random matrix representation of an environment may not be appropriate to explore 

certain effects intrinsic to a specific environment. Exact solutions for a harmonic oscillator 

coupled to a general environment model are reported as wdl [45]. The semi-classical Wigner 

method predicts quite accurate results [46] at moderately high temperatures. The recently 

developed mean-field master equation [47-51] is also a promising computational tool for 

self-interacting environments. The theory reported in this thesis is free of the limitations of 

the theories summarized above and especially applicable at low temperature limits where 

uew quantum technologies are expected to operate. 

There are two commonly used starting points for derivat.iou of a theory of open system 

dyuamics: the Nakajima and Zwauzig ProjE'ction Operator techniqu(~ [52] and the Kraus 

Operator Sum Reprcseutation (OSR) techniquf' [53]. Both techniques lead to formally 

exact theories for open system dynamics. However, the resulting exact theories arc of 

formal interest only because they do not allow either numerical solutions or explicit forms 

of dynamical equations to be determinf'd. In this thesis, the Kraus OSR techuique is used 

to obtain a dynamical equation of motion for a quantum subsystem interacting with a large 

chaotic environment. The Kraus OSR automatically satisfies all the required conservatiou 

laws for the reduced density, i.e. Hermiticity, positivity and norm conserva.tion. The explicit 

form of Kraus opera.tors for general system-bath models, how(~ver, is impossible to obtain 

in practice. This is partly because the Kraus OSIl is not a uniqne representa.tioll like 

spectral decomposition. Nevertheless, the Kraus OSR provide::; a. good starting point for the 

CHAPTER 1. INTRODUCTION 6

drawbacks. The Redfield master equation violates the positivity of the reduced density op­

erator. The use of special initial conditions in some cases is shown to prevent the positivity

violation [40]. Furthermore, the Redfield master equation predicts an incorrect long time

limit [43]. The theory developed by Bulgac et al [44] also takes into acc.ount the environ­

mental self-interactions, representing the environment as an ensemble of random matrices.

However, the ma.'iter equation of Bulgac et al [44] seelIlS only suitable for high t,emperatures

and the random matrix representation of an environment may not be appropriate to explore

certain effects intrinsic to a specific environment. Exact solutions for a harmonic oscillator

coupled to a general environment model are reported as wdl [45]. The semi-classical Wigner

method predicts quite accurate results [46] at moderately high temperatures. The recently

developed mean-field master equation [47-51] is also a promising computational tool for

self-interacting environments. The theory reported in this thesis is free of the limitations of

the theories summarized above and especially applicable at low temperature limits where

uew quantum technologies are expected to operate.

There are two commonly used starting points for derivat.iou of a theory of open system

dyuamics: the Nakajima and Zwauzig ProjE'ction Operator techniqu(~ [52] and the Kraus

Operator Sum Reprcseutation (OSR) techniquf' [53]. Both techniques lead to formally

exact theories for open system dynamics. However, the resulting exact theories arc of

formal interest only because they do not allow either numerical solutions or explicit forms

of dynamical equations to be determinf'd. In this thesis, the Kraus OSR techuique is used

to obtain a dynamical equation of motion for a quantum subsystem interacting with a large

chaotic environment. The Kraus OSR automatically satisfies all the required conservatiou

laws for the redur.ed density, i.e. Hermiticity, positivity and norm conserva.tion. The explicit

form of Kraus opera.tors for general system-bath models, how(~ver, is impossible to obtain

in practice. This is partly because the Kraus OSIl is not a uniqne representa.tioll like

spectral decomposition. Nevertheless, the Kraus OSR provide::; a. good starting point for the



CHAPTER 1. INTRODUCTION 7 

derivation of approximate master equations as well as evolution equations for open system 

dynamics, see e.g. [54]. In recent investigations [14,15] it has been ShO\-Vll that a unique form 

of Kraus decomposition and an explicit form of Kraus operators can easily be obtained for 

large chaotic environments. In chapter 2 of this thesis, a detailed derivation of the chaotic 

Kraus decomposition (CKD) is presented. 

1.2 Internal errors In flawed quantum computers 

Computers process informat.ion by by manipulating strings of binary numbers. The memory 

of a classical computer is made up of bits. A classical bit is a physical system, nothing bnt 

a switch, with two possible states, i.e 0 or 1. At a particular instance in time, the switch 

can be either on or off. A quantum bit is called a qubit. A qubit is a two-level quantum 

system; such as a spin-half particle or gronnd and excited state of an atom. In addition to 

two classical-like states, i.e. {IO), II)}, qubits have quantnm states, i.e. ;~6) = alO) + bll) 

with complex (l and b such that 101 2 + Ibl 2 = 1. If a qllbit is considered as a quantum switch, 

the state of this switch can be on and off in the same time. 

A two-bit register, i.e. two switches, can store 1 of 4 different binary numbers, i.e. 00, 

01,10 or 11 in its memory. A classical logic operation transforms one of these numbers to 

another. A two-qubit register, on the other hand, can store 4 different numbers in the same 

time as a superposition state, Iv;) = aIOO) + biOI) + cllO) + dill) with a2 + b2 + c2 + d2 = ]. 

Hence, a quantum logic operation OIl l¢) is then equivalent to 4 classical-like operations. All 

N qubit register then can store 2/11 numbers and can perform 2/11 operations simultaneously. 

Hence, quantnm computers provide extremely large number of states for computation. 

Quantum computation can be achieved by using only one- and two-qllbit quantum 

gates. The qua.ntum gates are elementary quantum logic operations which transform an 

iuput qubit state to an output qubit state. A one-qubit gate is an operation performed on 

a state of a single qubit. Similarly, a two-qubit gate is an operation performed on a state 
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of two qubits. It has been shown that universal quantum computation can be achieved by 

one and two-qubit, gates [55-57]. This means that any quantum algorithm, '",hether it is 

simple or very complex, can be composed as a combination of one and two-qubit gates. 

Quantum computation promises superior computing power over classical computation: 

Shor's algorithm [58] can factorize large nnrnbers into primes exponentially faster than any 

classical algorithm. Grover's search [59] algorithm can identify an object from a randomly 

ordered database with a square root increase in speed as compared to its classical analog. 

Quantum cryptography [60] guarantees secure communication and quantum Fourier trans­

form promil>es faster quantum chemistry calculations [61]. This great potential for com­

puta.tional power has motivated numerous experimental proposals. Particular experiments 

with linear ion traps [62] and nuclear spins in solutions [63] have already demonstrated that 

quantum computation is indeed achievable for few qubit systems. However, it seems that 

these pC\,rticular architectures are limited to a small number of qubits, and not easily scalable 

for larger qubit sizes. However, hundreds of qubits are needed for a quantum computer to 

compete with its classical a.nalog [64]. In this respect, solirl state QCs are becoming the ceu­

ter of attention with their scalable architectures. Proposals for scalable qnantum computers 

include nuclear spins embedded in a sol1d [65], Fullerene-electron-I>pin quantum computer 

[66], electrons in quantum dots [67], Josephson-junct.ion devices [68] based on charge [69,70] 

and flux [71] degrees of freedom. 

External errors emerging from interactions of a QC with its external surrounding envi­

ronment are widely believed to be t he primary I1miting factor in the development of quantum 

computing t.echnologies [6-8]. How~ver, recent investigations [16-18] show that. even when 

a QC core is completely isolated from its snrrounding external ~nvironment, the coherent 

dynamics of qubits within all isola.ted QC core are not guaranteed. This is because qubits 

within such an isola.ted QC are still subject to the destructiVE' effects of internal decohcrcncc, 

dissipation anrl coherent shifting caused by possible one- ano two·-body residual interactions 
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and imperfections among the qubits. 

The issue of internal errors attracted attention recently in the context of quantum chaos. 

Investigations [72, 73] based on statistical properties of an eigenspectrum of an isolated QC 

with static internal imperfections show that quantum chaos and a consequent thermaliza­

tion [74] of the QC core is inevitable in the presence of sufficiently strong residual t\vo-qubit 

interactions. Ideal computational states of a. QC are separable. Quantum chaos destroys 

these states as a result of incoherent mixing [75]. The mixing process is expected to worsen 

over time, leading to an effective thermalization of the QG. On the other hand, the dynam­

ical studies [76-78] where the internal imperfections are treated as random perturbations 

show that chaotic perturbations actually stabilize the QC dynamics [76-78]. These seem­

ingly contradictory conclusions, i.e. destruction and stabilization of QCs with quantum 

chaos, suggest that establishing the effects of internal imperfections is a complex problem. 

Internal errors arising in a QC core may originate from internal decoherence, dissipation 

and even coherent shifting. The :->tudies presented here and reported in [16-18] show that 

the relative importance of these effects and their depend.ence on residual internal couplings 

can only be determined via fully realistic dynamical simulations of QC operations. The 

objective of these studies [16-18] was to examine directly the operation of a flawed QC in 

a specific architecture, to investigate the different types of internal errors that emerge, and 

to observe how these errors change with varying magnitudes of static internal imperfections 

between qubits. 

In chapters 3-5 of this thesis, detailed discussions of these three studies [16-18] are 

presented. Specifically, in chapters 3-4, the effects of one- and two-body static flaws in a 

CNOT gate [69] performed on two qubits of a larger JO:iephson charge-quhit QC [68] are 

explored. These two chapters comprise detailed discussions of the results reported in [16, 17]. 

In chapter 5, a single-qubit subsystem is designed to show how the internal dynamics of an 

environment can be prohed via the observation of environment-induced Rabi oscillations in 
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can only be determined via fully realistic dynamical simulations of QC operations. The
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In chapter 5, a single-qubit subsystem is designed to show how the internal dynamics of an

environment can be prohed via the observation of environment-induced Rabi oscillations in
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the subsystem dynamics. Chapter ,5 is ba..sed on the Rabi detector study reported in [18]. 

In chapter 3, a statistically flawed many-qubit isolated QC core is envisaged. A CNOT 

gate operates on two qubits of the QC. The hvo qubits performing the CNOT gate in­

teract with neighboring qubits of the QC via residual interactions. As a result, internal 

errors are generated in the gate. The isolated QC core in this instance is mapped onto a 

subsystem-environment scheme wherein the active part of the QC, a two-qubit register (the 

subsystem), performs the CNOT gate while interacting with the neighboring idle qubits 

(the environment). 

The exact dynamics of the QC are obtained for a variety of configurations: eight different 

initial register states, two different error generators (phase and bit-flip errors) and five 

different intra-environmental interaction strengths, and the errors are identified by use of 

two error quantifiers: purity and fidelity. These error measures are used throughout to 

estimate the quality of computation. In particular, these measures are used to distinguish 

non-unitary errors (i.e. decoherence and dissipation) from those of the unitary type (i.e. 

coherent shifting or distortions) 

In chapter 4, simulation results are reported. First, the results are presented for a.verage 

error quantifiers, i.e. average purity and fidelity. These averages were calculated over 

standard basis states and Bell states, which allowed the compression of the data and the 

estimation of thE' overall relative performance of standard basis sta.tes versus Bell states for 

two different types of error generators. Second, the results are reported for individ ual initial 

states to determine possible state dependency of errors. A brief summary of the results 

presented follows. In all cases, it was found that the gate purity reflects a non-negligible 

amount of decohcrcnee for both bit-flip and phase type non-unitary errors. However, the 

magnitude of errors detected by the gate fidelity is found to be very large as compared to 

those detected by gate purity. This unexpected large difference arises from large unitary 

errors due to the coherent shift process. When the QC is driven into the chaotic- regime by 
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increasing the magnitude of two-body interactions, the non-unitary errors are suppressed 

to a negligible extent. However, thc large unitary errors survive even in the chaotic regime 

and endanger the quality of computation. 

Two important consequences can be deduced from the above results. First, environment­

induced coherent shifts can be a serious source of unitary errors for QCs in the presence of 

static internal imperfections. Second, rlecohcrence recuperating chaotic intra-environmental 

interactions can be used in correction of non-unitary errors. The results also suggest that 

environment-induced nnitary errors can be a more serious obstacle for QC operations than 

non-unitary errors. This observation has not been reported previously. Fortunately, since 

these errors are of unitary type, they may easily be corrected with existing [79] or more 

specifically designed error correction schemes. Moreover, since the chaotic interactions are 

very successful in suppression of non-unitary errors, one can in principle manipulate an ideal 

qubit environment to enhance the performance of active qubits. Hence, deliberately induced 

chaotic interactions can serve a.s an error correcting strategy when implementation of such 

strong qubit-qubit interactions is practical. 

In CNOT studies [16, 17], the coherent shift process was identified as a potentially 

harmful error source for QCs with static internal imperfections. However, in chapter 5, it 

is shown that the coherent shift could be put to good use. Specifically, it is shown that the 

coherent shift can be used to prohe internal dynamics of an environment and to estimate 

the two-body intra-environmental interaction strength. 

On8- and two-·quLJit gates suffice to perform any quantum algorithm. The gate opera­

tions call be accomplished by manipulations of one and two-quLJit control parameters. One 

qubit imperfections may arise clu<: to the variation of one-body control parameters while 

two-qubit imperfections may emerge as a. result of the residual ql1bit-qubit interactions or 

interactions of qnbits with local impurities. The error induced by one-body imperfections 
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should readily be correctable as compared to the errors originating from two-body interac­

tions. Information on the strength of two-body interactions may prove very useful in the 

elimination of their effects. Results reported in [16, 17] and in chapter 4 indiea.te that the 

errors induced by coherent shifts are very sensitive to the magnitude of environmental self­

interactions. This eff"ect can be nsed to devise a detector setup to acyuire useful information 

about environmental self-interactions. 

In chapter 5, a single-qubit detector is devised and allowed to interact '.vith the rest of 

a QC. In this setup, the system degree of freedom consists of a single two-level system and 

the environment degree of freedom includes a number of two-level systems interacting with 

each other. In the absence of system-environment interactions, the detector qubit nnder­

goes a phase evolntion only. Once the system-environment interactions are in effect, the 

populations of the detector display Rabi oscillations due to the coherent shift. The fidelity 

of the detector qubit also shows a periodic behavior in accord with the Rabi oscillations. 

It is shown that the strength of the environmenta1 self-interaction can be determined from 

the period of these oscillations The basic ideas behind this detector setup should also be 

applicable in more general contexts. For example, an optical impurity in a solid may serve 

as a detector to extract knowledge of self-interactions in solids. 

1.3 Testing chaotic Kraus decomposition 

Isolated QCs with static internal fla\'ls are prototypical examples of self-iuteracting chaotic 

environments of two level systems that allow exact numerical solution for the relatively low 

dimension of qubit environments. The exact numerical results obtained in such studies can 

serve a.s benchmarks against which theories for chaotic environments can be tested. Hence, 

in the third part of this thesis the CKD is tested against exact numerical results of the QC 

models. 

In chapter 6, the results of the test calculations are presented for a chaotic regime where 
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the CKD applies. Specifically: the exact numerical results obtained for the Rabi detector 

study are used to test the time-independent form of the CKD aud the exact results of the 

CNOT study are used to test the time-dependent form of the CKD. The accuracy of the 

CKD is estimated by making use of two error quantifiers, i.e. purity and fidelity. Purity is 

used to estimate the accuracy of the CKD in the case of non-unitary effects, i.e. decoheren<.;e 

and dissipation, and fidelity is used to estimate the ac<.;uracy in the case of unitary effects, 

i.e. coherent shifting. While the purity and fidelity suffice for an accurate assessment of open 

system dynamics, these error measures do not provide useful information on which matrix 

elements of a density operator are affected most in the murse of open system dynamics. 

This knowledge may prove very useful, especially in optimization of a quantum algorithm in 

the presen<.;e of mherent shifting. Therefore, the exact numerical results obtained for matrix 

elements of reduced dellsity are also compared with those obtained with the CKD to judge 

whether the CKD is successful in predicting the dynamics of the matrix elements. 

One particular assumption used in the derivation of the CKD is that the dimension of 

the chaotic environment is very large. The CKD becomes exact only when the number of 

environment modes approaches infinity. However, the exact numerical results used to test 

the CKD are limited to an ellvironment of ten two-level systems. Therefore, the prediction 

of the CKD for such a slJlall environment is only approximate. However, qualitatively good 

agreement was obtained and the results for all test cCJ.ses were accurate despite the small 

environmental dimension. In the case of non-unitary effects, the discrepallcies betweell the 

exaet and approximate results are quite small and the accuracy of the CKD is directly 

proportional to the degree of chaos in the environment. III the strongly chaotic regime, the 

highest degree of CJ.ccuracy was obtained in all cases. In the ca.se of unitary effects, very 

good quantitative agreement was achieved in all cases, irrespective of the degree of chaos 

in the envirOllIncnt. Overa.lI, the accuracy of the CKD in predicting the exact results is 

satisfactory and thus the CKD lnay be a valuable computational tool for low temperature 
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simulations of new quantum technologies where other applicable theories of self-interacting 

and chaotic environments arc mostly limited to high temperature applications. 

1.4 Collaborative versus individual work 

Thc work presented in this thesis is published in five journal articles by Cetinba~ and 

Wilkie [14-18]. The majority of the published work is based on the ideas of the author of this 

thesis. These ideas were elaborated in collaboration with Wilkie. In addition, the author of 

the thesis contributed to the five published articles [14-18] by conceiving and developing the 

physical models, writing all the computer codes, executing all the calculations, producing 

all the graphics, writing the first. drafts of all t.he manuscripts, and finally corresponding 

with the journals. 
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Chapter 2 

Kraus decomposition for chaotic 

environments 

In thi~ chapt.er §, a ~imple formula predictiug t.he dynamics of a quaut.um subsy~tem int.er­

act.ing with large chaotic environments is derived. This formula is of the Krans Operator 

Sum Repre~entation (OSR) [53] form, which automatically satisfies all the reqnired con­

servation laws for t.he reduced density operator. The chaotic Kraus decomposition (CKD) 

constitutes a formally exact. equat.ion of motion for the reduced density operator in t.erm~ 

of explicit representations of the Kraus operators. Aside from t.he quantum chaos, the only 

required property of t.he bath Hamiltonian is t.hat it be of t.hermodynamic dimension (i.e. 

very large). 

The organizat.ion of this chapter is as follows. In section 2.1, the Liouville-von Neu­

mann equatiou is int.roduced and iu section 2.2, the reduced density operator formalism 

is discussed. In section 2.3, ba~ie ideas behind the Kraus OSR a.re reviewed by using 

the simplest pmisible case where t.he subsyst.em Hamiltonian is time-independent and the 

system-environment interactiou operator includes only one terrrl. In section 2.4 it is argued 

~This chapter is based OIl two studie~ 14, 151 reported by \:etinba.] and Wilkie. 
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that off-diagonal matrix elements of the environment interaction operator are negligible for 

large chaotic environments. Using this property it is shown in section 2.5 that the resulting 

Kraus decomposition, i.e. the CKD, takes a particularly simple and potentially useful form. 

In section 2.6, a.n extension of the CKD to time-dependent system Hamiltonians and more 

general system-environment interaction operators is provided so that the CKD can be more 

widely applicable. In section 2.7, a numerical strategy for the CKD is summarized and it is 

shown that the CKD can be practically used for computational purposes. 

2.1 Liouville-von Neumann equation 

The dynamics of a closed quantum system, represented by a Hamiltonian, H, evolve from 

the Schrodingcr equation, 
d ~ 

ili-liIJ(t)) = Hlw(t)). (2.1 ) 
dt 

The Schrodinger equation is a first order differential equation in time, the solution of which 

is of the form, 

Iw(t)) = U(t)liIJ(O)), (2.2) 

where the unitary propagator, ut (t) = U- l (t), takes a simple form, 

U(t) = exp {-(i/n.)Ht}, (2.3) 

for time-independent Hamiltonians. In the case of Lime-dependent Hamiltonians, H(t), the 

propagator takes the form 

U(t) = T exp { -(i/li) .it 

H(t')dt'} 

i + (-i/Tl) t dt} H(td.fu 
t 

+(-i/17.f rdt[ (I dt2 TH(tL)H(t2).fu .fo 

+( -i/17.f" .~t dtl .i tl 

dtz .it2 

dt3 TH(td H (tz)H(t3) 

+ ... (2.4) 
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where T is the time ordering operator, which has an important implication when H(t) does 

not commute with itself for different times, i.e. [H(t), H(t' )] i=- 0 for t i=- t l The Lime 

ordering operator states that the chronological ordering, i.e. t] < t2 < t3 ... < t should be 

obeyed for all times. However, in cases where [H(t), if (t l 
)] = 0 holds for t i=- t' , the time 

ordering operator can be omitted from equation (2.4). 

The Schrodinger equation is restricted to state vectors, which are not the most general 

states to represent a physical system, however. A general description of a state of a qua.ntum 

system can readily be achieved by density operators [1]. Density operators, p, should satisfy 

three mathematical condi tions to be allowed as state operators. They should be 

(i) normalized, i.e. Tr [p] = 1, 

(ii) Hermitian, i.e jJ = pt, 

(iii) positive definite or non-negative, i.e. (¢liJl<i») 2: 0 where 1<1» is an arbitrary vector. 

State vectors are pure quantum states that can be distinguished from non-pure states 

(i.e. statistical mixtures) by the condition Tr[jJ2] = 1. Hence, the non-pure states satisfy 

Tr[jJ2] < 1. There is a one-to-one correspondence between st.ate vectors and pure density 

operators. This correspondence can readily be established with the following derivation of 

pure state operators from state vectors, i.e. iJ = 1<1>)(4)[, where 1<1» is an arbitrary normalized 

vector, i.e. (<1>10) = 1. The non-pure states can also be obtained from the pure states as 

follows. Let p be a uon-pure state, i.e. Tr[iJ2] < 1. Since, by definition, p is Hermitian, 

a unique spectral decomposition always exists: jJ = 2:~Pili)(il, where pli) = p~li) and 

2:,Pz = 1. 

The dynamics of density operators, whether they are pure or non-pure, evolve from the 

Liouville-von Neumann equation, which can be obtained from the Schrodinger equation in 

the fotlowing way. Consider an arbitrary density operator of the form, p(O) = 2:i p,li) (il 

Since Tr{li) (il} = (iii) = 1, each Ii) obeys the the Schrodinger equation. Hence, by use of 
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equations (2.2) and (2.3), the exact equation of motion for the density operator is ohtained: 

(2.5) 

which is the solution of the Liouville-von Neumann equation, 

(26) 

Here, the Liouville operator is defined as t == (l/Ji) [il,. ], where [. ,.J is a commntator. 

2.2 Dynamics of a reduced density operator 

In principle, the time-evolved density operator of a quantum system, evolving from the 

Liouville-von Neumann equation (2.6), provides complete probabilistic information for a.ll 

observable quantities. However, the Liouville-von Neumann equation (2.6) allows neither 

exact analytical nor numerical solution when the environment degree of freedom is very 

large. Most of the time a physical system of interest is only a part of a much larger 

system. For example, a reaction coordinate in a. large biological molecule is physicall)r morc 

interesting a.nd important than the rest of the molecule becam;e that is where the dynamical 

changes occur. Therefore, a subsystem-environment scheme is employed as a starting point 

to formulate the dynamicloi of a quantum system of interest. Henceforth, the physically 

interesting part of a large quantum system "vill be referred to as the subsystem or simply 

the loiyloitem, and the rest of this large quantum system as a bath or an environment. 

The reduced density operator of a system is obtained by taking a partial trace over the 

bath degrees of freedom, 

ps(t) = TrB[p(t)], (:2.7) 

where p(t) is the solution of Liouville-von Nfmmann equation (2.6) for the composite system 

(i.e. the subsystem plus the environment). The reduced density operator of a subsystem 

suffices to provide complete probabilistic information for all observable quantities within 
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(2.5)
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the subsystem degree of freedom and the reduced density operator also satisfies three basic 

mathematical conditions, i.e. ps(t) is normalized, Hermitian, and positive definite; see e.g. 

Ref. [1]. 

In the next section, the system, environment, interaction operators, and initial conditions 

are defined and then it is shown how the open system dynamics of a reduced density operator 

can be expressed in terms of Kraus operators. 

2.3 Kraus operator sum representation 

Consider the system and environment degrees of freedom as a bipartite closed system, 

represented by a total Hamiltonian of the form, 

(2.8) 

where fIs is the system Hamilt.onian, Sand B are the system and environment interaction 

operators, respectively, and fIB is the bath or the environment Hamiltonian. 

Assume that the system and environment degrees of freedoms are uncorrelated initially, 

,0(0) = ps(O) ® PB(O), (2.9) 

where ps(O) is an arbitrary initial state for the system and PB(O) is an initial environment 

state of canonical form, i.e. 

(2.10) 

Here, Q = ~n exp {-(JEn } is the partition function and (3 l/kBT is the inverse tem­

perature where kB is the Boltzmann constant. Note that the canonical bath dem;ity 

is const.ructed by using the exact eigenvalues and eigenvectors of the bath Hamiltonian, 

Hln) = Enln), for which the usual completeness relation applies: j = ~n In)(nl and 

(nlm) = 8n ,m 

For Hamiltonian (2.8) and initial condition (2.9), the exact time evolntion of the density 

operator, iJ(t), is given by the solution of the Liouville-von Neumann equation (2.6). The 
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exact subsystem density operator, ps(t), is obtained by tracing over the environment degrees 

of freedom, i.e. 

PS (t) = Tr alU (t )P(O)ut (t)]. (2.11) 

Since the initial canonical bath density is already diagonal in (~igenstates of HB , performing 

the partial trace operation in the same basis, {In)}, yields 

i3S(t) = L(nIU(t) (PS(O) 0 e-~Em Im)(ml) Ut(t)ln). (2.12) 
n ,TIl 

This equation ca.n now be written in a compact form, 

~ - -th(t) = L- JCn,m(t )ps (O)JCn,m (t), (2.13) 

in terms of the following Kraus operators [53J, 

(2.14) 

where Pm = exp {-fJEm}/Q are the initial populations of the bath density operator. For a 

Hermitian Hamiltonian it is always true that 

(2.15) 
n,m 

This is the normalization condition for the Kraus OSR [53J, from which it follows that the 

open system dynamics arc unitary if and only jf the Kraus decomposition (213) has only 

one term. 

The above form of the Kraus OSR (2.13) is exact and thus satisfies a.ll the required 

conservation laws on the subsystem density, i.e. the Hermiticity, positivity, and norm con­

servation. However, the exactness of decomposition is of formal interest only, C:I.'; it is not 

practical for computational purposes and the explicit form of the Kraus operators (2.14) 

are extremely hard to obtain. Moreover, even if the explicit form of the Kraus operators 

were known, the double summation above would render the Kraus decomposition impracti­

cal. Fortunately, for a quantum subsystem interacting with large chaotic environments, the 
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explicit form of the Kraus operators can easily be obtained and the doublE: summation also 

reduces to a single summation. 

2.4 Chaotic environments 

Quantum chaos has a number of important consequences for eigenspectra and matrix ele­

ments of Hamiltonians [23, 24]. The most distinguishing and well-known feature of chaotic 

Hamiltonians is the changes in the statistical properties of their eigenspectra. Eigenspectra 

of chaotic' Hamill,onians display energy level repulsion. On the other hand, Hamiltonians of 

regular systems (i.e. non-chaotic systems) show a high degree of degeneracy and energy level 

clustering in their spectra. While the eigen-statistics of a regular system arc Poissonian, the 

chaotic eigen-statistics are given by the Wigncr-Dyson distribution. 

During the transition from a regular to a chaotic regime, not only the eigenspectra but 

also the properties of eigenstates dramatically change. As a result, matrix elements of op­

erators in the eigenba'3is of chaotic Hamiltonians show quite different features. A particular 

property that will be used in the derivat.ion of the CKD is that the off-diagonal matrix e1e­

ments of the bath coupling operator in the eigenbasis of a ehaohc environment Hamiltonian 

become negligibly small or vanish when the dimension of t.he chaotic environment is very 

large This result has been known for t\.vo decades in the quantum chaos literature [31, 32], 

but its consequences for the Kraus OSR have not been recognized. 

Using thc exact bat.h eigenvalues and eigenstates, ifBin) = En In), the total Hamiltonian 

(2.8) can be written in the following alternative form, 

H = Hs + SL Bn.mln)(ml + LEnln)(nl, (2.16) 
n,'m n 

where Bn,m = (nIBlm) are the matrix element.s of t.he bath coupling operator, B. Effects 

induced by system-environment interactions may depend on many factors, such as the prop­

erties of matrix elements Bn,m, and the operators S and In) (mi. Here, the focus is on the 
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properties of Bn,m because quantum chaos has a number of important consequences for 

these matrix elements. 

At the semi-dassicallimit §, the square of the off-diagonal matrix elements of an operator, 

e.g. 8, scale as IBn,m1 2 
0:: h N where N is the number of environment modes [29, 31, 32]. 

Since the Planck constant is small, these off-diagonal matrix elements should be negJigi­

bly small for sufficiently large N. Alternatively, it ha.s also been shown in [14] that the 

off-dia.gonal matrix elements should also be negligible when the number of environment de­

grees of freedom approach the thermodynamic limit, i.e. N ~ 00. Explicit mathematical 

derivations of the semi-classical [29, 31, 32] and thermodynamic [14] arguments require an 

advanced mathematical knowledge of the phase space representation of quantum mechan­

ics [80] as well as rules of quantum-classical correspondence [81]. Here, the interest is in 

the consequence of these arguments for the Kraus OSR rather than derivations of these 

arguments. Interested readers can find these derivations in [14, 29, 31, 32]. Below, these 

arguments are shortly reviewed. 

Semi-classical limit for chaotic environments 

The semi-classical argument presented here is taken from Ref. [29]. More detailed discussions 

regarding derivations of the formulas given below can be found in [31, 32]. At the semi­

classical limit, diagonal matrix elements of an operator, e.g. B, represented in the basis of 

a large chaotic Hamitonian, e.g. Hs, are given by the formula 

B = (nIBln) ~ 1dx8[En - H(x)]B(x) = (B) (2.17)nn , Jdx J[En - H(x)] 

~The semi-classical limit refers t.o an approximat.e limit where quantum mechanics embraces classical 
mechanics as a limiting case. Loosely stated, this limit can be h ~ O. That is, the Planck constant is 
negligibly small as compared to the other relevant dynamical paran1f'ters. Or, this limit call be a large 
quantum number limit where dynamical variables such as angular moment.um or energy arc: very large as 
compared to the relevant quantum unit chosen. A detailed discussion of quantulll-classical correspondence 
including criticisms of the aforf>mcntioned limits can be found, for example, in Ref. [I]. 

CHAPTER 2. KRAUS DECOMPOSITrON FOR CHAOTIC ENVIRONMENTS 22

properties of Bn,m because quantum chaos has a number of important consequences for

these matrix elements.

At the semi-dassicallimit §, the square of the off-diagonal matrix elements of an operator,

e.g. 8, scale as IBn,m1 2
0:: h N where N is the number of environment modes [29, 31, 32].

Since the Planck constant is small, these off-diagonal matrix elements should be negJigi-

bly small for sufficiently large N. Alternatively, it ha.s also been shown in [14] that the

off-dia.gonal matrix elements should also be negligible when the number of environment de-

grees of freedom approach the thermodynamic limit, i.e. N ~ 00. Explicit mathematical

derivations of the semi-classical [29, 31, 32] and thermodynamic [14] arguments require an

advanced mathematical knowledge of the phase space representation of quantum mechan-

ics [80] as well as rules of quantum-classical correspondence [81]. Here, the interest is in

the consequence of these arguments for the Kraus OSR rather than derivations of these

arguments. Interested readers can find these derivations in [14, 29, 31, 32]. Below, these

arguments are shortly reviewed.

Semi-classical limit for chaotic environments

The semi-classical argument presented here is taken from Ref. [29]. More detailed discussions

regarding derivations of the formulas given below can be found in [31, 32]. At the semi­

classical limit, diagonal matrix elements of an operator, e.g. B, represented in the basis of

a large chaotic Hamitonian, e.g. Hs, are given by the formula

B
nn

= (nIBln) ~ 1dx8[En - H(x)]B(x) = (B)
, Jdx J[En - H(x)]

(2.17)

~The semi-classical limit refers t.o an approximat.e limit where quantum mechanics embraces classical
mechanics as a limiting case. Loosely stated, this limit can be h ~ O. That is, the Planck constant is
negligibly small as compared to the other relevant dynamical paran1f'ters. Or, this limit call be a large
quantum number limit where dynamical variables such as angular moment.um or energy arc: very large as
compared to the relevant quantum unit chosen. A detailed discussion of quantulll-classical correspondence
including criticisms of the aforpmcntioned limits can be found, for example, in Ref. [I].



23 CHAPTER 2. KRAUS DECOMPOSITION FOR CHAOTIC ENVIRONMENTS 

Here (B) is a microcanonical average calculated at the energy E = En, the composite 

variable x = (p, q) represents 6N momenta p and coordinate~ q of the bath, B(x) i~ the 

Wigner function of B. The off-diagonal matrix elements of this operator are given by 

.) .'Ij J~ dt CB(O) - (B)][B(t) - (B)]) exp [i(En - Em )t/11] 
(2.18)IBn,ml- ::: h' 00 . Jdx 8[(E + E )/2 - H(x)l .n m

Here En = N(En) are the unfolded energies, not the actual eigenenergies and therefore, 

IV(E) gives the average number of levels below En rather then the eigenenergies themselves. 

The microcanonical averages are calculated at the unfolded energy (En + Em)/2. It is 

worthwhile to note that equation (2.18) is only valid when the level spacing between unfolded 

levels are constant. 

The time correlation function appearing in equation (2.18) decays exponentially fast 

exp ([2ZtZ) at short times where [2 is the spectral width. It follows then that equation (2.18) 

~implifies to 

2.N - -=, '2 2 2IBn,ml :x h exp [-(En - Em) /4[2 11 1· (219) 

Hence, since the Planck constant h is small and thE' number of bath modes N is large, the 

scaling IBn ,ml'2 C( hN indicates that the off-diagonal matrix elements ~hould be negligible 

for sufficiently large environment:;. 

Thermodynamic limit for chaotic environments 

The argument presented here is taken from Ref. [14] where it is shown that the square of 

the off-diagonal matrix elements IBn,m1 2 --> 0 become negligibly ~mall when the number of 

bath modes approaches the thermodynamics limit, i.e. N --> 00. 

By combining two exact equations (50) and (119) of Ref. [31] one can obtain the following 

exact equation for the off-diagonal matrix elements of an arbitrary quantum system 

IBn,ml:.! = (-!- )}v j'dX dxo B(x)* B(xo) Jdy c'2trt(x-xu).]Y Wn(x + hy /2) Wrn. (xo - hy/2). 
n,m 

(2.20) 
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Here (B) is a microcanonical average calculated at the energy E = En, the composite

variable x = (p, q) represents 6N momenta p and coordinate~ q of the bath, B(x) i~ the

Wigner function of B. The off-diagonal matrix elements of this operator are given by

.) .'Ij J~ dt CB(O) - (B)][B(t) - (B)]) exp [i(En - Em )t/11]
IBn,ml- ::: h' 00 . Jdx 8[(En + Em)/2 - H(x)l . (2.18)

Here En = N(En) are the unfolded energies, not the actual eigenenergies and therefore,

IV(E) gives the average number of levels below En rather then the eigenenergies themselves.

The microcanonical averages are calculated at the unfolded energy (En + Em)/2. It is

worthwhile to note that equation (2.18) is only valid when the level spacing between unfolded

levels are constant.

The time correlation function appearing in equation (2.18) decays exponentially fast

exp (D2t2) at short times where D is the spectral width. It follows then that equation (2.18)

~implifies to

2.N - -=, '2 2 2IBn,ml :x h exp [-(En - Em) /4D 11 1· (219)

Hence, since the Planck constant h is small and thE' number of bath modes N is large, the

scaling IBn ,ml'2 C( hN indicates that the off-diagonal matrix elements ~hould be negligible

for sufficiently large environment:;.

Thermodynamic limit for chaotic environments

The argument presented here is taken from Ref. [14] where it is shown that the square of

the off-diagonal matrix elements IBn,m1 2 --> 0 become negligibly ~mall when the number of

bath modes approaches the thermodynamics limit, i.e. N --> 00.

By combining two exact equations (50) and (119) of Ref. [31] one can obtain the following

exact equation for the off-diagonal matrix elements of an arbitrary quantum system

IBn,ml:.! = (-!-)N j'dX dxo B(x)* B(xo) Jdy c'2trt(x-xu).]Y Wn(x + hy /2) Wrn. (xo - hy/2).
n,m

(2.20)



24 CHAPTER 2. KRAUS DECOMPOSITION FOR CHAOTIC ENVIRONMENTS 

where B(x) is the Wigner function [80] of the operator E and the scaled Wigner function 

for eigenstate n is given by 

(2.21 ) 

where Cn :~ Udx 6(1- H B(X)jE n )jl/2 and In,m = (Cn Cm )l/N and J is a symplectic matrix 

of dimension 2N x 2N. It is shown [81] that Wn(x) has a well-defined classical limit if 

the classical Hamiltonian H 8(X) is chaotic. Note also that the Wigner function of quantum 

Hamiltonian H 8 may differ from the classical Hamiltonian by small corrections which should 

vanish with Planck's constant. 

It is shown in [14] that Jdx 6(I-HB(X)j En) ex: EneS,.!kB where Sn is the microcanonical 

entropy and kB is the Boltzmann constant. Since entropy is an extensive variable, Sn scales 

linearly with N for sufficiently large N. As a result, it follows from I'Hopita.l's rule that Cn 

scales exponentially with N 1 which in turn suggests that In,m is constant, or at most grows 

".-eakly with N since the energies En also increase with N. 

The Wigner fllnctions Wn(x) a.nd B(x) and the associated integrals in (2.20) have well­

defined classical [81] and thus thermodynamic limits. For example, in the classical limit, 

these terms reduce to En 6(En - Ern )B2, which increases gradually with N. Here B2 is the 

classical canonical avera.ge of the squared classical limit of the Wigner function for E. Note 

that E cx:JN and so B2 would normally scale linearly with N. En8(En - Em) is only 

weakly dependent on IV. Note also that 6(En - Errt ) should be understood as a distribution 

with a small but nonzero width. Thus, by I'Hopital's rule, the magnitude of IBn,n,J~ in 

the thermodynamic limit is determined by the factor C,:lrrY....'· Consequently, if h < I n .m , 

which should always be true for sufficiently large N, then IBn,m1 2 
---,; 0 exponeut.ially fast 

as N ---,; x. Hence, the off-uiagona.l matrix clements of E should be uegligibly small for a 

chaotic bath of thermodynamic dimeusion. 

The effect of suppression of decohereuce by chaotic environments was observed for finite 

chaotic spin-baths, see e.g. [29, 30]. In the light of these studies [29, 30], it is arguable 
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that for such small spin-baths neither the semi ··classical limit is well-defined nor may ther­

modynamic limit be attained Therefore, while the off-diagonal matrix elements for small 

chaotic spin-baths can be very small, they should not be totally vanishing. Here, by simply 

assuming that Bn,m = 0 for n ¥- m for sufficiently large chaotic environments, a Kraus de­

composition, i.e. the CKD will be derived in the next section. Since this assumption cannot 

always be valid for small chaotic environments, the question as to whether the assumption 

Bn,m = 0 is justifiable for small chaotic environments needs to be examined. The test re­

sults reported in [14, 15] and presented in chapter 6 show very good agreement between 

exact and CKD results, which suggests that Bn,m = 0 is a reasonable approximation at 

least for the test models studied in chapter 6. Moreover, in chapter 7 it is further verified 

that chaotic intra-bath interactions indeed lead to small off-diagonal matrix elements when 

chaos generating intra···bath interactions and system-euvironment interactions a.re of similar 

kind; nevertheless, inspections of off-diagonals indicate that not everyone of these matrix 

elements are zero, as may be expected. 

2.5 Chaotic Kraus decomposition 

By using the assumption, Bn,m. = 0 for n ¥- m, the Hamiltonian (2.16) can be written as 

(2.22) 
11 

For integer powers of I 0, .. ,00, the matrix elements of the total Hamiltonian obey the 

relation, 

(2.23) 

for all nand m By using this in a Taylor expansion, 
00 .' I 

e~*fll = " i -1Ht) (2.24)
L hili ' 
1=0 ' 

it follows that the Kraus operators (2.14) take a simple form 

(2.25)� 
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For integer powers of I

relation,

"
0, .. ,00, the matrix elements of the total Hamiltonian obey the

for all nand m By using this in a Taylor expansion,
00 .' I

e~*fll = " i -1Ht)
L hili '
1=0 '

it follows that the Kraus operators (2.14) take a simple form

(2.23)

(2.24)

(2.25)
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By substituting this back into (2.13), the fina.l form of the CKD is obtained: 

(2.26) 

The CKD has a suggestive form. For example, in the case where all diagonal coupling 

matrix elements are identical, i.e. Bm,m = B, the CKD reduces to 

- (t) =� -""-(HdSB)L'
1>." PS (0) ""-(HdSB)1 (2.27)PS� e e1\." , 

which suggests that all non-unitary effects disappear and the only effect induced by the 

environment is the coherent shifting, i.e. ifs ~ Hs + SB. 

Similarly, at absolute zero temperature, or provided that the bath state is a pure state, 

there will be no decoherence or dissipation but only coherent shifting. Hence, a chaotic envi­

ronment of thermodynamic dimension cannot inouce decoherence or dissipation at absolute 

zero temperature. This is an interesting prediction because there is no such restriction on 

the regular environments which are known to cause strong decoherence even at absolute 

zero temperature. 

2.6� Time-dependent extension of chaotic Kraus decomposi­

tion 

In this section, a. time-dependent extension of the CKD is derived, which may have wider 

applications than the version developed in the previous section. The general structure of 

the argument used here will be similar to that of the previous section. Now, consider a more 

general Hamiltonian, which is of the form, 

if(t) =� ifs(t) + L S"BJ1. + ifB, (2.28) 
p. 

where Hs(t) = ifs + E(t) consists of the time-independent free system Hamiltonian, ifs , 

and the time-dependent Hamiltonian representing external driving fields, E(t). Here, Sp. 
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and Ell are interaction opprators in the system and bath degrees of frepdom, and HB is a 

chaotic Hamiltonian for a large environment. 

The total Hamiltonian (2.28) can be written in terms of the bath eigenvalues and eigen­

vectors as foHows, 

H = Hs(t) + L 51' L B~··rnln)(ml + L Enln)(nl, (2.29) 
11- n.m n 

where B~'m. = (nIBI'/m) are the matrix elements of the interaction operator in the COIIl­

plete bath eigenbasis. The argument discussed in section 2.4 suggests that the off-diagonal 

matrix elements of the bath interaction operat.or vanish, i.e. B~'m. ----? 0, for large chaotic 

environments, Using this property the total Hamiltonian (2.29) simplifies to 

(2,30) 
7"n 11­

Magnus expansion [82] of (2.14), by using the above Hamiltonian (2.30), then gives 

Kn,mU) =~(711!1 + (-i/it) 1 
t 

dtj H(tl) 

+( -'i/h)2 t dtl t) dt2 t H (tdH(t2)
.fo .fo 

l 1 

+(-i/h)31 dtl 1) dt211"2 dt3 tH(tl)H(t2)H(t3) + .. ,]Im) (2.31) 

which, since H(t) is block diagonal in the bath eigenbasis, simplifies to 

Kn.m(t) =~[l + (-i/h) j't dtl (nIH(tIlln) 
o� 

+( -i/h)2 j't dt 1 (1 dt2 t(nIH(tIlln) (nIH(t2)ln)� 
, 0 .fo 

+( -i/h)3 j't dtl t 1 

dt2 (2 dt3 t(nIH(t J )In)(nIH(t2)ln)(nIH(t3)ln) 
, 0 .fo .fo 

+ ' ,. JOn,m., (2.32) 

Now, using the Magmls expansion [82] in reverse gives 
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which in turn can he suhstituted into (2.13) to obtain the final form of the CKD, 

(234) 
m. 

where the double sum in equation (2.13) becomes a single sum and Km,rn(t) are now given 

by (2.33). Equation (2.34) is the final form of the CKD, which extends equation (2.26) to 

time-dependent subsystem Hamiltonians and more general system-environment intera.etion 

operators. 

2.7 Numerical strategy 

The CKD (2.34) is exact only for large thermodynamic chaotic environments. The exact 

numerical results that ca.n be obtained on a compnter are limited to small environments. 

However, the test results reported in [14, 15] and a1so presented in this thesis suggest that 

the CKD gives accurate results even for small environments. Hence, the CKD can he used 

as a practical computational tool. Here it is shown how equation (2.34) can be employed in 

practice. 

Given the initial subsystem state of the form, P5(0) 1<1)(0))(1/;(0)1, the time evolved 

states can be defined as 

(2.35) 

such that the reduced density is of the form, 

(2.36) 
'n 

where IWm(t)) evolves from the Schrbdinger eqnation, 

(2.37) 
p. 

These equations (2.37) can easily be solved by using standard integration techniques. For 

non-pure initial conditions, rather than solving the Schrodinger equation, the Liouville-von 
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Neumann equation can be numerically tlolved, 

dps(t)jdt = -(ijh)[Hs(t) + Ls"B~1.,m,.os(t)], (2.38) 

" 
with .051.(0) = .os(O), froIll which the reduced density operator can be constructed with 

formula, ps(t) = L,mPmp,;/(t). 

At very low temperatures, where new quantuIll technologies are expected to operate, 

the number of populated bath states will be quite small and so will be the uumber of Kraus 

operators in equation (2.34). Hence, the CKD can serve as a practical computational tool 

for low temperature applications. 
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Chapter 3 

Quantum computers with static 

internal flaws 

Quantum computers (QCs) are subject to internal sources of error in addition to those 

resulting from external environmental interactions. Internal decoherence, dissipation, and 

coherent shifting originate from uncontrollable interactions between pairs of qubits. In this 

chapter§, to study the relative importance of the internal errors, a QC model is developed 

which consists of a CNOT gate performed on two qubits of a manyqubit isolated QC with 

static internal imperfections. The motivations behind this study are discussed in section 

3.1. In section 3.2 mathematical detaib of an isolated QC model are given. The isolated 

QC core is mapped onto a subsystem-environment scheme wherein the active part of the 

QC, i.e. a two-qubit register (the subsystem), performs a CNOT gate while interacting 

with the neighboring qubits (the environment). By defining a variety of configurations, 

i.e. eight different initial register states, two different crror generators (phase and bit­

flip errors) and five different intra-enviromental interaction strengths, the exact quantum 

dynamic:> of the QC will be obtained. In section 3.3, an exact nnmerical approach used 

§This chapter is based on two studies [16, 17J reported by Getinb~ and Wilkie. 

30 

Chapter 3

Quantum computers with static

internal flaws

Quantum computers (QCs) are subject to internal sources of error in addition to those

resulting from external environmental interactions. Internal decoherence, dissipation, and

coherent shifting originate from uncontrollable interactions between pairs of qubits. In this

chapter§, to study the relative importance of the internal errors, a QC model is developed

which consists of a CNOT gate performed on two qubits of a manyqubit isolated QC with

static internal imperfections. The motivations behind this study are discussed in section

3.1. In section 3.2 mathematical detaib of an isolated QC model are given. The isolated

QC core is mapped onto a subsystem-environment scheme wherein the active part of the

QC, i.e. a two-qubit register (the subsystem), performs a CNOT gate while interacting

with the neighboring qubits (the environment). By defining a variety of configurations,

i.e. eight different initial register states, two different crror generators (phase and bit­

flip errors) and five different intra-enviromental interaction strengths, the exact quantum

dynamic:> of the QC will be obtained. In section 3.3, an exact nnmerical approach used

§This chapter is based on two studies [16, 17J reported by Getinb~ and Wilkie.

30



CHAPTER 3. QUANTUM COMPUTERS WITH STATIC INTERNAL FLAWS 31 

in QC simulations is explained and parameters used in the exact calculations are defined. 

Finally, in section 3.4 error qUClntifiers, i.e. purity and fidelity are defined. These error 

quantifiers are used to measure extent of deviation from the ideal CNOT dynamics and 

distinguish non-unitary errors (i.e. decoherence and dissipation) from t.hose of unitary type 

(i.e. coherent distort.ions). 

3.1 Motivations 

Decoherence due to an external macroscopic environment [2] is widely believed to be the 

primary obstacle to the development. of quantum computing technologies [6-8]. However, 

even in the absence of an external environment, the efficient operability of an ~solated QC 

is not guaranteed. This is due to the fact that the destructive effects induced by one­

body imperfections and two-body residual interactions between qubits can still endanger 

the performance of a QC. 

The origin of one-body qubit imperfections is due to slightly different energy spacings 

between the two levels of distinct qubit.s. This type of imperfection is expected especially 

for manufactured qubits such as quantum dot qubits (artificial atoms) and superconducting 

qubits. However, one-body imperfections may abo arise in qubits which arc not genuine but 

effective two level systems. For example, if the ground and first excited state of an atom 

form a qubit; a possible excitation of the atom to higher energy levels can lead to a one-body 

imperfection. In the case that all qubits are identical and thus are of the same energy spacing, 

one-body imperfections may also be induced by interactions of qubits with local impurities. 

Two-body residual interactions are interactions between pairs of qubits. Such int.eractions 

are expected because qubits of a QC may not. b(-~ well isolated from one another. Moreover, 

certain quantum operations can only be performed by inducing a coupling between pairs of 

qubits by external manipulat.ions. The exterual manipulations may not be perfect and lead 

to residual interactions bet.ween qubits. 
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Recent studies on the statistical properties of flawed QCs suggest that chaos emerges in 

a QC core as a result of strong residual qubit-qubit interactions [72-77]. The chaos leads 

to a dynamical thermaljzation [74] and a consequent destruction of the ideal computa.tional 

states of a QC. However, the studies in which the static internal Haws are modeled by 

chaotic random matrices show that chaotic perturbations can actually stabilize the QC 

dynamics [76-78]. These contradictory results, i.e. destruction and stabilization of a QC with 

chaos, suggest that there is no consensus yet on how intemal flaws affect. the performance 

of the various sorts of quantum gates, nor is the precise nature of internal errors identified. 

Questions as to what operations are most vulnerable to internal errors Ileed to be addressed 

and the effects of chaos on the internal errors need to be determined. There is also the issue 

of which initial states are most adversely afrected. Thus, there are mallY open questions 

about the consequellces of int,ernal flaws on the performauce of a QC in the presence of 

imperfections. 

Previous studies of flawed QCs do not address the specifics of an operating isolated QC 

architecture. Nor do these models address what specifically happens to an algorithm in 

the presence of internal flaws. An ideal gate sequence for one architecture may be quite 

different from that of another architecture. Hence, it is of an interest to know what parts 

of an algorithm are affected most (e.g. one- or two-qubit gates), and whether they are 

irreversibly altered via internal decohereuce or dissipation, or merely cohereutly distorted. 

A prior knowledge of such information could be important for optimizing performance of a 

QC architecture and further development of error correction schemes [79]. Hence, there are 

mallY questions that cauuot be meallingfully investigated in the context of random matrix 

formulation or other abstract models for the environment. A closer examination of the 

effects of internal errors in actual QC proposals is thus warranted. 

Residual qubit-qubit interactions arising in a QC core mix the ideal computational 

states (i.e. uncoupled) of qubits [72-74]. While residual qubit-qubit interactions are also 
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responsible for the onset of chaos in a QC core, the mixing process may occur even below 

the chaos border [75]. Hence, in the presence of residual qubit-qubit interactions, whether 

these interactions generate chaos or not, an undesirable correlabon or mixing of computa­

tional states of qubits is unavoidable. In such a situation, even if the QC core is totally 

isolated from its surrounding environment, the qubits within the isolated QC core may still 

experience their own nearby microscopic qubit euvironment and are then subject to inter­

nal sources of decoherence, dissipation and coherent shifting. To investigate these internal 

errors, a subsystem-environment scheme is an appropriate approach. In such a subsystem­

environment scheme, the system part consists of one or two active qubits that perform a 

quantum protocol while the rest of the QC can be considered as inactive or idle, for the sake 

of simplicity. The active and idle parts interact via residual qubit-qubit interactions, and 

the generation of errors as well as the dynamical behavior of these errors due to changes in 

the idle part can be monitored, which is the approach taken in this study. 

This study is focused on the dynamics of a two-qubit subsystem interacting with a 

larger nearby qubit environment. The two-qubit subsystem (i.e. the active part) performs a 

CNOT gate while the rest of the qubits (i.e. the environment) ilre idle. That is, they do not 

perform a predetermined quantum algm:ithm. The effects of imperfections are simulated by 

adding one- and two body imperfections to the idle part and then exploring the dynamical 

changes in the active part. 

3.2 Description of isolated QC model 

The total Hamiltonian for the isolated QC is of the form, 

H(t) = Hs(t) + SB + HB, (3.1 ) 

where Hs(t) is the time-depeudent control Hamiltonian of a two--qubit register performing 

a CNOT gate (i.e. the subsystem Hamiltonian), SB is the interaction operator,S acting in 
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the system and iJ acting in the bath degree of freedom, and HB is the bath Hamiltonian of 

the idle qubits. 

The isolated QC model is parameterized based on a Josephson junction charge qubit 

(JJCQ) QC proposal [69]. This scalable architecture has a very long external decoherence 

time, '" 10-4 s, which in principle allows approximately 106 single qubit operations. Such 

a QC architecture with very long coherence time is an ideal system to study internal de­

coherence dynamics. In the following section, the basic design and operation principle of a 

JJCQ is presented, and then the explicit forms of different components of H(t) are given. 

3.2.1 Josephson junction charge qubit device 

Josephson junction QC architectures are promising quantum information processor candi­

dates due to their long external decoherencc times and scalability, with ease for a large 

number of qubits [68]. A typical charge qubit in its simplest design form is illustrated in 

figure 3.1. A JJCQ is a tiny circuit consisting of a Josephson junction capacitively coupled 

to a gate electrode. The Josephson junction is made up of two superconducting electrodes, 

one of which is called the island and the other is called the electron reservoir. These two 

electrodes are connected with an insulating layer, i.e. the tunnel junction. A UCQ is a de­

vice that harnesses the notable Josephson effect of superconductivity, which emerges at very 

low temperatures, as low as 50 mK or less. At such low temperatures, certain metals become 

superconductors. In their superconducting state, the interactions between electrons become 

important, causing the electrons of a metal to pair up. Each such an electron pair is called 

a Cooper pair, which is responsible for carrying superconducting cnrrent. The Josephson 

effect occurs due to a coherent quantum mechanical tunneling of Cooper pairs through the 

insulating layer, i.e. from superconducting electron reservoir to the superconducting island. 

The coupling energy involved in this process is the Josephson energy E J , with associated 

tunnel junction capacitance C.l. The control gate voltage is coupled to the system through 
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low temperatures, as low as 50 mK or less. At such low temperatures, certain metals become

superconductors. In their superconducting state, the interactions between electrons become

important, causing the electrons of a metal to pair up. Each such an electron pair is called

a Cooper pair, which is responsible for carrying superconducting cnrrent. The Josephson

effect occurs due to a coherent quantum mechanical tunneling of Cooper pairs through the

insulating layer, i.e. from superconducting electron reservoir to the superconducting island.

The coupling energy involved in this process is the Josephson energy E J , with associated

tunnel junction capacitance C.l. The control gate voltage is coupled to the system through
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Figure 3.1: Components of a. Josephson junction charge qubit in its simplest design form. 

a gate capacitor Cg . The current technological advances allow a routine fabrication of very 

low junction capacitance, as low as femtofarad, and the value of gate capacitance can even 

be lower [68]. The corresponding single-electron charging energy Ec == e2 !2(CJ + Cg ) is 

abont. 1 K or higher. The Josephson energy E J depends on the tunneling current and is 

typically on the order of 100 mK. 

The following Hamiltonian describes a JJCQ device [68] 

(3.2) 

where n represent.s a number operator of excess Cooper pairs in the island and 8 represents 

the phase of the superconducting order parameter of the island. The dimensionless gate 

charge nq == Cg Vg !2e is used as a control parameter via externally controlling the gate 

voltage Vg . When the cha.rging energy is very large as compared to the Josephson energy, 

i.e. Ec » EJ, the charge states form a basis and thus the Hamiltonian of equation (3.2) 

can be written in terms of the numher of Cooper pairs n ill the island [68] 

it = L 4Ec(n - nq )2I n)(nl- ~EJ(ln)(n + 11 + In + 1)(17,1) (3.3) 
n 
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By tuning the gate voltage Vg to obtain a gate charge T/,g of approximately a half-integer [68], 

only two charg~ stat~s with n = 0 and n = 1 can be well-separated from the higher states. 

In what follows, the Hamiltonian of the JJCQ device simplifies to a qubit Hamiltonian 

(3.4) 

where B z - 4Ec(n-ngr and B T =- E.]. The charge states n = 0 and n = 1 now correspond 

to mand 11) hasis states in spin-·~ notation. 

Here a typical JJCQ set-up is reviewed in its simplest design form. More detail~d 

discussions and more sophisticated designs of JJCQs can be found, for example, in the 

recent review [u8]. The study presented in this chapter is based on a particular JJCQ QC 

proposal [69]. While a single charge qnbit set-np in this proposal is of a very sophisticated 

design, the form of a single qubit Hamiltonian is the same as the one given by equation (3.4). 

An advantage of this particular QC architecture is that any charge qubit in a circuit (which 

consists of many qubits) can be effectively coupled through a common superconductillg 

inductance [69]. This qnbit-qnbit coupling is represented by an Ising-type interactions 

o-~o-:i: for i =I=- j where indices i and j label two arbitrary qubits in a circuit 

3.2.2 Two-qubit register and CNOT gate 

Qubits. the building blocks of a QC, are two-level quantum systems, customarily represeuted 

by Pauli spin operators, 0- = (o-T'o-y,o-Z)' Thc two eigenstates of o-~, with the convention 

chosen here, 10) == I n (eigenvalue 1) and 11) == 11) (eigenvallle -1), constitute the standard 

basis, i.e. fIO),ll)}, by means of which a state of a qubit and gate operations used to 

manipulate quhit states are defined. 

An arbitrary pure sta.te of a qubit can be written as 

(3.5) 

where t,he rcal numbers 0 :-::; f) s:; 1f and 0 s:;:. ¢ s:;:. 21f define a point on the surface of a unit 
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Figure 3.2: Geometric representation of a qubit state I~) on the Bloch sphere. An arbitrary 
pure state on the Bloch sphere is represented by a pair (e, dJ) ofreal numbers. The eigenstates 
of o-z, i.e. 10) and 11) with (0,0) and (1T, ¢» are located at the north and south poles of 
the sphere. (1T /2, ¢» represent the point.s at equator that denote the states of the form 
(10) + e""'ll))/ /2. The points (1T /2,0) and (1T /2,70) correspond to the eigenstates of o-x, ie. 
(10) + 11))/.)2 and (10) -11))/.)2. The two pairs (1T/2.1T/2) and (1T/2, 31T/2) represent the 
eigenstates of o-y, i.e. (10) + -i11))/ J2 and (10) - iI1))/ /2. 

sphere, i.e. the Bloch sphere. In figure 3.2, the geometrical representation of an arbitrary 

qubit state I~}) as a point on the Bloch sphere is presented. The real number ( appearing 

in equation (3.5) defines a global phase which has no observable consequence. Thus, qubit 

states with arbitrary values of ( have the same representation on the Bloch sphere, which 

leads to the canonical representation of qubit. stat.es with the help of only two real parameters 

eand (jJ 

(3.6) 

Arbitrary logic operations for universal quantum computation can be performed by a 

combination of one- and two-qubit gates [55-57]. Here, the focus is on one of the important 
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Arbitrary logic operations for universal quantum computation can be performed by a

combination of one- and two-qubit gates [55-57]. Here, the focus is on one of the important
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gates of quantum compnLation, namely, the CNaT gate. Bareneo et al. [57] showed that 

a set of gates including all one-qubit gates and a CNaT gate is universal, meaning that 

an arbitrary quantum algorithm can be obtained as a combination of one-qubit gates and a 

CNaT gate. 

The CNaT gate is a two-qubit gate whose action is to flip the second qubit only if the 

first qubit is in state 11), i.e. 

VCNOT 100) 100) 

VCNOT 101) 101) 

UCNOT 110) Ill) 

VCNOT Ill) 110). (3.7) 

In the standard ba.<;is states for two qubits, i.e. {IOO), 101),110), Ill)}, the matrix represen­

tation of the CNOT gate is 

VCNOT = 100)(001 + 101)(011 + 110)(111 + 111)(101· (3.8) 

For a particular QC architecture there may not be a unique or one-step implementation 

of the CNaT gate. However, the CNaT gate can be implemented by a combination of 

elementary one and two-qubit subgates or rotations. The following protocol is one example 

to implement the CNOT gate [69], 

VCNOl' = Y[2) (?T /2)HI1) (7i" / h)HI2) (?T/ .J2)Vcp (?T / 4)H(1) (?T /.J2)H(2) (?T / v'2)Y(2) (?T/2) 

(3.9) 

Here, the subscript.s 1- and 2- indicate the qubit on which the subgates operate. Vcp is a 

two-qubit gate that operates on two qubits. The subgates comprising the CNOT protocol 

operate right-to-left. The CNOT protocol is composed of three different subgates which 

are explained below. 

The subgate Y(2)(a = 7r/2), where 0' is the rotation angle, is a one-qubit 7r/2-rotation 

on the second qubit in the y-direction. This rotation is generated by a combination of x­
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and z-rotations, i.e. 

(3.10) 

where one-qubit rotations in x- and z-directions take the following form for an arbitrary 

rotation angle n, 

(3.11) 

Here, x/z means x or z and i is the index laheling the qubit. The z-rotation, when applied 

on the one-qubit standard ba."iis states, i.e. {10), II)}, induces a phase change proportional 

to the angle of rotation, n. For example, the angle n = 1l' /2 leads to 

(3.12) 

The one-qllbit x-rotation with the angle 0' = 1l' /2 gives 

- 1 
and R X (1l'/2)11) = J2(ll) + iIO)). (3.13) 

The actions of z· and x-rotations on an a.rbitrary quantum state on the Bloch sphere a.re 

depicted in figure 3.~i. 

The Hadamard gates H(!) ((3 = 7f/-J'i) for i = 1,2, where ,6 is the rotation angle, involve 

the first and the second qubits. A Hadamard gate can be obtained by simultaneously 

switching one-qubit control parameters in x- and z-directioIIs, i.e. 

(3.14) 

The Hadamard gate transforms the standard basis states as 

,zc 
- e'~ 

H(1l'/J2)IO) = ~(IO), [1)) and H(7f/J2)]1) = J2(10) ~ 11)). (3.15) 

Finally, the two-qubit controlled-phase shift gate Ucph = 7f/4), where I is the rotation 

angle, is given by 

(316) 
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y-

z-

Figure 3.3: The actions of two rotation operators Rz(O:) and Rx(f3) on an arbitrary state 
I"ljJ) are illustrated on the Bloch sphere The z-rotation Rz(a) transforms the state I'lj;) with 
(8, ¢) to a new state ["W') with (8, ¢ + 0:) by rotating it about the z-axis with an angle 0:. 

The x-rotation RxUj) transforms the same state I'lj;) to a new state 111/') with (8 + (3, ¢) by 
a rotation about the x-axis with angle /3. 

The operation of the UCP(1r/4) gate can be better illustrated with the help of the following 

two-qubit basis states, i.e. {I + +), 1+ -),1- +) ,1- -)}, where 1+) = (10) + 11))/J2 and 

1-) = (10) -11))/v0, 

UCP(1r/4) 1++) = 1++) 

UCP(7r/4) I ' 1+-) 

UCP(1r /4) 1- ,) 1- +) 

UCP(7r /4) I - -) -1- -). (3.17) 

For the time-dependent implementation of the CNOT protocol, t.he following control 

Hamiltonian [69] is employed, 

2 

Hs(t) = -~ L)B~(t)o-~i) + B:(t)o-~l)) + Jx(t)o-~l)o-f). (3.18) 
- t=l 
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Table 3.1: Switching times and active Hamiltonians used to implement the CNOT gate. 

Switching, Intervals Active Hamiltonian 

[to = 0, t] = 1r j(2W)]� 

[tj,t2 = t] +1rj(2BX)]� 

[t2, t3 = t2 + 1rj(2BZ)]� 

[t3) t4 = t3 +v'21rj(2BZ)J� 

[t4, t5 = t4 + 1rj(4Jx)]� 

[t5, t6 = t5 +v'27r j(2B Z 
)]� 

[t6: t7 = t6 + 1rj(2BZ)]� 

[t7, ts = t7 + 7rj(2BX 
)]� 

[t8' t9 = ts + 1rj(2BZ)]� 

Here, B;(t), B;(t) and Ja.(t) are time-dependent control parameters used to generate ele­

rnentary gate operations. Detailed discussions on how to generate one- and two-qubit gates 

experime.ntally from (3.18) by exte-:rnal manipulations of the control parameters can be found 

in [69]. The Hamiltonian (3.18) is the basis of a Josephson charge-qubit QC proposal [69], 

which allows a scalable de.sign wherein any two qubits of the QC can be effectively coupled. 

In addition, the Hamiltonian (3.18) requires only one two-qubit operation to implement a 

CNOT gate. 

The experimental manipulations [69] required to generate the control Hamiltonians 

(318) can induce a potential source of error. A number of simplifying assumptions re­

garding the implementation of the CNOT gat.e are needed in order to concentrate on errors 

that emerge from the-: system-environment interactions. In particular, full control over the 

dynamics of the CNOT gate is assumed, i.e. the effects of faulty SWitching, imperfections 
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Active Hamiltonian

Here, B;(t), B;(t) and Ja.(t) are time-dependent control parameters used to generate ele-

rnentary gate operations. Detailed discussions on how to generate one- and two-qubit gates

experime.ntally from (3.18) by exte-:rnal manipulations of the control parameters can be found

in [69]. The Hamiltonian (3.18) is the basis of a Josephson charge-qubit QC proposal [69],

which allows a scalable de.sign wherein any two qubits of the QC can be effectively coupled.

In addition, the Hamiltonian (3.18) requires only one two-qubit operation to implement a

CNOT gate.

The experimental manipulations [69] required to generate the control Hamiltonians

(318) can induce a potential source of error. A number of simplifying assumptions re-

garding the implementation of the CNOT gat.e are needed in order to concentrate on errors

that emerge from the-: system-environment interactions. In particular, full control over the

dynamics of the CNOT gate is assumed, i.e. the effects of faulty switching, imperfections
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and possible residual interactions induced by noisy fields that can cause fluctuations in con­

trol parameters of the two qubit register and so forth are neglected. It. is also assumed that 

the CNOT gate can be propagated by using perfect square pulses [83], whieh however can 

only be approximately implemented experimentally. I\·10reover, a free Hamiltonian evolution 

is not allowed. Hence, it is assumed that consecutive gates comprising the CNOT protocol 

can l.Je simultaneously switched on and off. In other words, the field strengths experienced 

by qubits can be switched on and off instantaneously via 

(3.19) 

for i = 1, 2 and similarly, 

(3.20) 

Here, B~/Z(t) and Jx(t) are constant in the time interval, [ton, toAl It follows that the 

relation between the actual propagation times and the rotation angles 0, (3, and 'Y defined 

in equations (3.11), (3.14), and (3.16) are given by 0 = BX/Zt for the y-rotation y, (3 = BX!Zt 

for the Hadamard gates H, and 'Y = Jxt for the controlled phase-shift gate, (;cP. Since the 

Hadamard gates on the first and second qubits commute, they are implemented together. 

Hence, the full implementation of the CNOT gate is achieved in nine steps, which consist 

of the Schrodinger evolutions in time intervals, [t" tt+l] for i = 0, .. ) 8. The switching times 

for the components of the CNOT gate, and the corresponding active Hamiltonian in each 

tim!:' interval, are summarized in table 3.1. The unitary operator governing the CNOT gate 

now takes the following time-dependent form 

(;CNOT(t9, to) (;(tg) t8)U(ts, t7 )U(ty, t(j)(;(t6; t5)(;(t5. t4) 

x U(t4, t3)(;(t3, t2)(;(t2, td(;(t 1 ) to)· (3.21) 

In the absence of system-environment interactions, the coherent time evolution of two 

qubits under the <1ction of the CNOT gate is given by 

(3.22) 
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where ptea1(t) is the time-evolved density operator of two qubits and ps(o) is the initia.l or 

input state of two qubits. 

In figure 3.4, the coherent time evolution of ptea1(t) is shown for the initia.l standard 

basis states {IOO) , 101) ,110) ,Ill)}. Figure 3.4 comprises four subfigures. In each subfigure, 

one of the diagonal matrix elements of pteal (0 is plotted as a function of time for four 

different input states. Specifically, the matrix element poo(t) = (OOlp~eal(t)IOO) is plotted 

in subfigure 3.4(a), POl(t) = (Ollpkdeal (t)IOl) in 3.4(b), PlO(t) - (10I Psh-
f tl(t)110) in 3.4(c), 

and Pll (t) = (lllpsdeal(t)lll) in 3.4(d). To distinguish between the input states, each input 

state is plotted with a different colored line. The input state 100) is plotted with black, 101) 

with green, 110) with red, and Ill) with dashed blue lines. 

Consider the transformations on the input state 100) under the CNOT dynamics by 

following the bla.ck dashed lines in figure 3.4. Recall that the first three subgates, i.e. 

(;(tl, to), (;(t2, tt}, and (;(t3' t2) act on the second qubit. At time to = 0, the initial 

populations are POD = 1 and Pal = PIa = Pll = O. The first subgate (;(tl, to) is a 1'0/2­

rotation in the z-direction, the effect of which is a phase challge only with no observable 

consequence on the populatiolls. The second subgate U(t2, tt) is 1r/2-rotation in the x­

direction, which changes the populations of the second qubit. As a results, at time t2 the 

diagonals take the values Poo = POI = 0.5 while the values PtO = PIt = 0 do not change. 

These values of the populations indicate an equal probability superposition of 100) and 10)). 

The third sllbgate (;(t3' t2) is again a z-rotation and results in no observable change in the 

populations. In the time interval (t4, t3), the Hadamard gates arc applied on both qubits and 

give the populations POI = PI1 = 05, Poo = PIO = 0 at time t4 . These populations indicate 

an equal probability superposition of 101) and 111). The next gate applied in the interval 

(t5' t4) is the controlled-phase shift gate, which gives an equal probahility superposition of 

101) and 110) at time (j with the value of populations Pal = PIO = 0.5, Poo = Pll = O. In 

the interval (t6, t5), the two Hadamard gates are applied on both qubits. These Hadammd 
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Figure 3.4: The coherent time-resolved dynamics of the CNOT gate is depicted by diagonal 
matrix clements (i.e. populations) of density operator p~~eal(t). The diagonal matrix element 
poo(t) = (00 Ipsteal (t) 100) is plotted in subfigure (a), POI (t) = (Ollp~cal (t) 101) in (b), PlO (t) = 

(10Ip'teal(t)110) in (c), and Pll(t) = (lllp~cal(t)lll) in (d). In each subfigure, the input state 
laO) is plotted with black, 101) with green, 110) with red, amI Ill) with dashed blue lines. 
The CNOT dynamics is obtained for the following values of contro1 parameters l3T

/
Z = 1 E 

and JX/z = 0.05 E where E is an arbitrary unit. The time is in units of !iff. 

gates are the inverses of the Hadamard gates applied in the interval (t4, t3) and gIve an 

equal probability superposition of 100) and 101) at time t6 with populations Poo = POI = 0.5, 

PIO = Pl1 = O. The la~t three subgates, i.e. 0(t9, ts), O(tP.; t7) and 0(t7, td arc the inverse 

tra.nsformations of the first three subgates, which restore the populations to their initial 

values Poo = 1 and Pal = PlO = Pl1 = °at tg = O. Hence, overall the CNOT gate acts like 

an identity operator on the input state 1(0). 

The CNOT subgates canse similar transformations as explained above when applied to 

the other input states, ie. 101), 110), 111). The overall transformations induced by the 
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Figure 3.4: The coherent time-resolved dynamics of the CNOT gate is depicted by diagonal
matrix clements (i.e. populations) of density operator p~~eal(t). The diagonal matrix element
poo(t) = (00 Ipsteal (t) 100) is plotted in subfigure (a), POI (t) = (Ollp~cal (t) 101) in (b), PlO (t) =

(10Ip'teal(t)110) in (c), and Pll(t) = (lllp~cal(t)lll) in (d). In each subfigure, the input state
laO) is plotted with black, 101) with green, 110) with red, amI Ill) with dashed blue lines.
The CNOT dynamics is obtained for the following values of contro1 parameters l3T

/
Z = 1 E

and JX/z = 0.05 E where E is an arbitrary unit. The time is in units of !iff.
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equal probability superposition of 100) and 101) at time t6 with populations Poo = POI = 0.5,

PIO = Pl1 = O. The la~t three subgates, i.e. 0(t9, ts), O(tP.; t7) and 0(t7, td arc the inverse

tra.nsformations of the first three subgates, which restore the populations to their initial

values Poo = 1 and Pal = PlO = Pl1 = °at tg = O. Hence, overall the CNOT gate acts like

an identity operator on the input state 1(0).

The CNOT subgates canse similar transformations as explained above when applied to

the other input states, ie. 101), 110), 111). The overall transformations induced by the
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CNOT gate are as follows. For the input state 101), plotted with dashed green lines, the 

initial populations, i.e. Pal = 1 and POO = PlO = Pu = 0 at time to = 0 are the same as the 

hnal populations at time tg. Overall, the CNOT gate acts like an identity operator on the 

state 101). For the iuput states 110) and Ill) the effect of the CNOT gate is not trivial. For 

the input state 110), plotted with red dashed lines, the initial populations are PIa = 1 and 

Poo = POI = PII = 0, but the final populations are Pll::'" 1 and Poo = Pal = PlO = 0. Hence, 

the CNOT gate transforms the input state 110) into the output state Ill). Similarly, for the 

input state Ill), plotted with blue dashed lines, while the initial populations are PJ I = 1 

a.nd Poo = POI = PlO = 0, the fina.l populations are PlO = 1 and Poo = POI = Pll = O. The 

CNOT gate thus causes the transformation Ill) ---4 110). 

3.2.3 Residual interactions 

In this section, the error generators, i.e. system-environment interaction operators, are de­

fined Two different types of errors [83J will be investigated; the bit-flip errors are generated 

by an xx-type coupling operator, i.e. 

N+2 

SE = (011) + 012l )tx and t x = I: At 01i 
) , (3.23) 

i=3 

whereas the phase-errors are generated by a zz-type coupling operator, i.e. 

SE = (a{l) + a(2))t and (3.24)z z z 

In both cases, the interaction strength A is randomly and uniformly sampled within [-,\, A] 

where A is equal, in magnitude, to Jx which is the experimentally relevant two-quhit coupling 

strength. 

Although solid and condensed phase QC proposa.ls inherit a variety of physical interac­

tions to couple qubits, and accordingly qubit-qubit residua.l interactions of xx-, zZ-, yy-, or 

xv-type are all possible error generators, only xx-type residual interactions are expected for 

the Josephson charge-qubit QC proposal [69] under investigation. This is due to the fact 
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that two-qubit gates for this design are generated by the :1::1;-type qubit-qubit interactions, 

However, it is noteworthy that different types of resid ual interactions may also be possible 

in the prescnce of impurities, Nevertheless, consideration of the second type of coupling, 

i,e, zz-type interactions will help improve the understanding of the open system dynamical 

effect::;, 

3.2.4 Environment Hamiltonian 

It is assumed that the imperfections arising in the QC core Call be modeled via a combination 

of one- aud two--qubit interactions [72, 73], although higher order interactions may also be 

possible [84], The control Hamiltonian of the two- qubit register, i,e, equation (3,18), 

suggests that the bath Hamiltonian for N-idle bath qubits should be of the form, 

(3,25) 

which can also be considered as an effective Hamiltonian representing the collective dynamics 

of the rest of the QC, Similar Hamiltonians are also widely used as a generic model of an 

isolated QC in the presence of static internal im perfections [72-77]. 

One-body static imperfections in the Hamiltonians of the bath qubits are modeled ran­

domly and uniformly by sampling the coefficients B;/z from the interval, 

(3,26) 

The idle bath qubits should be similar to the active qubits. This is because they all belong 

to the same QC core, Thus, the average values of the distribu tion, B~/z, represent the 

experimentally relevant qu bit dynamics in the absence of imperfections, In other words, the 

idle bath qu bits differ from the active qubits by a static noise characterized by a detuning 

parameter, 8, In modeling two-body residual interactions, i.e, system-bath and intra-

bath interactions, the previous studies are followed [72-77]. These coupling coefficients are 

sampled randomly and uniformly from J~'.1 E [-Jx , Jx ] and A:/z 
E [-A, A]. The same 
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set of Ai values for both xx- and zz-type coupling is used so that the relative importance 

of these error generators can be understood. In previous studies [72-77], the QC core is 

assumed to be a two-dimensional lattice of qubits interacting via nearest-neighbor two­

qubit interactions. \Vhile the same type of distribution for the qllbit-qubit interactions 

is llsed here, all possible pairwise qubit interactions in the bath Hamiltonian (3.25) are 

also allowed. This is because the charge-qubit QC proposal [69] permits all pairwise qubit 

couplings in principle, and so residual interactions among all qu bit pairs are likely to exist. 

Therefore, the use of all qubit-qubit interactions is expected to mimic short as well as 

long-range residual interactions. Nevertheless, the type of the distribution and allowed 

interactions used here should still be considered as an idealization because, for example, 

possible spatial dependencies of the imperfections due to the location of qubits in the QC 

are not explicitly taken into account. In an experiment the magnitude as well as type of 

the imperfection would possibly be intrinsic to the particular experimental condition and 

physical set-up. Nevertheless, to compensate for the idealization of the model developed 

here, a large number of parameters will be used in numerical simulations. 

3.2.5 Initial states 

It is assumed that initial state preparation for the subsystem is achieved before the actual 

dynamics of the CNOT gate is initiated. Moreover, it is assumed that the rest of the QC, 

i.e. the bath qubits, is already thermalized. Thus, the initial state of the whole system is 

given as a� product state, 

p(O) = ps(O) ® PB(O), (3.27) 

where ps(O) is the subsystem density and ,oB(O) is the caIJouical bath density operator. At 

equilibrium the collective state of the thermalized qubits is of the canonical form, 

P8(O) = (I/Q) exp (-ifB/kT)� (3.28) 
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with 

(3.29) 

These initial conditions are not easily achieved in practice, and thus are somewhat unrealistic 

since they do not take into account possihle residual correlations between t.he system and 

bath degrees of freedom. However, inclusion of the effects of imperfect initial conditions 

would greatly complicate this study. Iv1oreover, the aim is to observe the emergence of 

dynamical errors from the residual static internal interactions. 

In simulations, two different sets of initial states for the two-qubit register will be con­

sidered. The first set includes four standard basis states for which the CNOT gate is defined 

ps(O) - Il,bo) (7,bol where I'l,bo) E {100), 101), 110), Ill)}, (3.30) 

and the second set consists of four Bell st.ates defined as 

ps(O) = Iwo)(wol where 11/)0) E {(IOO) ± Ill))/V2, (101) ± 11O))/V2}. (3.31) 

3.3 Exact numerical approach 

Given the Hamiltonians and the initial conditions, the exact reduced density at some later 

time; t, can in principle be calculated by the formula, 

(3.32) 

where 

U(t) = T exp { -(i/n) it H(t')dt'}' (3.33) 

Equation (3.32) is valid for all tempera.tures. In the low temperature limit, the reduced 

density operator, PS (t), is calculat.ed via 

n etg -E jkT 

ps(t) = L e ~, TrB[U(t)I'li n (O))('I1n(O)IUt(t)] (3.34) 
n=l 
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for all initial st.ates of the form, i.e. l\}!n(O)) = IVJo) @ I¢~). Here, the bat.h states, I¢~), are 

obtained by solving the bath eigenvalue equation for the lowest. eigenvalues for N -idle bath 

qubits, 

(3.35) 

In what follows: by defining [\}!,Jt)) = U(t)(I'0o)C'\ ,¢~)) for each bath state, n, the actual 

dynamics are obtained by solving the Schrodinger equation, 

(3.36) 

Note that in equation (3.34) the thermal hath density (3.28) has been replaced wit.h 

ne,g e-E,,/kT 

ps(O) ::= L i(P~) - Q' (¢~I, (3.37) 
n=l 

where the sum is now over the thermally populated bath states only. Thus, n e•g is set so 

that states ne,.g + 1 and higher are uuoccupied, and the partition function is then of the 

form, 

(2' = L exp (-En/kT). (3.38) 
n=l 

3.3.1 Numerics and parameters 

The numerical simulations are based on the experimentally realizable control parameters 

of t.he charge-qubit QC proposal [69]. For computational convenience, the parameters of 

the control Hamiltonian are scaled in units of E = 200 mK. The one- and two-qubit control 

parameters are as follows, 6 x = 6 z = 1, and J x = (l05, respectively. Heuce, a typical 

switching time for the one-quhit gate operations is of order Tl/26z 0.1 ns. The two-qubitC"V 

gate span is however 10 times longer. The total elapsed time for the CNOT gate is then about 

tg = 1.129 ns. The relevant temperature is 50 mK [68] and thus kT = 0.25. While achieving 

this low t.emperature, necessary for coherent quantum controL might. he an experimental 

burden, it leads to a significant computational advantage for exact propagations since only 
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that states ne,.g + 1 and higher are uuoccupied, and the partition function is then of the

form,

(2' = L exp (-En/kT).
n=l

3.3.1 Numerics and parameters

(3.38)

The numerical simulations are based on the experimentally realizable control parameters

of t.he charge-qubit QC proposal [69]. For computational convenience, the parameters of

the control Hamiltonian are scaled in units of E = 200 mK. The one- and two-qubit control

parameters are as follows, 6 x = 6 z = 1, and J x = (l05, respectively. Heuce, a typical

switching time for the one-quhit gate operations is of order Tl/26z
C"V 0.1 ns. The two-qubit

gate span is however 10 times longer. The total elapsed time for the CNOT gate is then about

tg = 1.129 ns. The relevant temperature is 50 mK [68] and thus kT = 0.25. While achieving

this low t.emperature, necessary for coherent quantum controL might. he an experimental

burden, it leads to a significant computational advantage for exact propagations since only
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a few bath states will be populated at this low temperature. n e1g = 20 was sufficient in all 

the calculations. The other parameters that define the bath qubits are Bg = B6 = 1 and 

6 = 0.4. A number of Jx values are considered in order to explore the emergence of chaos: 

Jer = 0.05, 0.25, 0.50, 1.00, 2.00. The subsystem-bath interaction strength is set equal to 

the two-qubit control parameter, and thus)' = 0.05 for both bit-flip and phase errors. 

The exact diagonalization of the bath Hamiltonian (3.25) for ne~q = 20 eigenvalues is 

done by an implicitly restarted Lanezos algorithm [85] for N - 10 idle bath qubits. The 

Schrodinger equation for a given initial subsystem and bath state involves 213 coupled real 

linear differential equations. The numerical integrations are performed by a variable-step 

size Runge-Kutta method [86] of order 8. 

3.4 Error quantifiers: purity and fidelity 

The quantity of primary interest is the rednced density of the active degrees of freedom, 

ps(t), obtained by tracing out the degrees of freedom of the idle bath qnbits, i.e. 

P5 (t) = Tr 8 IP(t )]. (3.39) 

The reduced density snpplies all necessary probabilistic information about the open dy­

namics of the CNOT gate. Hence, once the reduced density is known, the quality of gate 

implementation can readily be Ch'3sessed by standard error quantifiers. Two error quantifiers 

are employed to assess the performance of the CNOT gate purity and fidelity. Non-unitary 

internal errors due to decoherem:e and dissipation are quantified by USillg purity, since the 

purity is insensitive to nnitary effects. Fidflity reflects all sources of error. Hence, a large 

deviation between the purity and fidelity can be used as an illdicator of unitary errors due 

to the coherent shifting process. 

Gate purity, also known as linear entropy, is defined by the trace of the square of the 
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reduced density operator, 

P(t) = Trs[p1(t)],� (3.40) 

and it gives a measure of how close the reduced density stays to a pure state in the course of 

open system dynamic-so The purity for pure states is unity and the purity for mixed states 

is less than unity. 

Gate fidelity can be calculated from the reduced density using 

F(t) = Trs[ps(t)pteal(t)],� (3.41) 

where p,#eal (t) is the time evolved density obtained in the absence of residual interactions 

with the idle qubits, given by equat.ion (3.22). The ideal value of the fidelity for pure initial 

conditions would be unity at all times, i.e. F(t) = 1 in the absence of interaction with the 

idle bath qubits. 

3.4.1 Average error quantifiers 

Exact numerical simulations, reported in the llext chapter, involve a large number of QC 

configurations, i.e. initial conditions, system-bath interactions and bath parameters. In 

order to compress the data, avewge error quantifiers, i.e. the average purity and fidelity, 

are employed. For each of these error quantifiers, two averages are computed: over the four 

initial standard basis states (~3.30), and over the four initial Bell states (3.31). The average 

purity is defined as 

P(t) = ~ LTrs[p1(i)] (3.42) 

Iv>o) 

ami the average fidelity as 

f:(t) = ~	 LTrs[ps(t)p:#eal(i)] (3.43) 

l1Po) 

where the ideal time evolution is given by equation (322). 
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These average error quantifiers will not only allow the determination of the overall mag­

nitude of errors for two sets of initial conditions and two different error generators, but also 

help estimate the overall performance of the chaotic Kraus decomposition for different QC 

configurations and also help present the results in a concise form. 
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Chapter 4 

Simulations for the CNOT gate 

In this chapter§ the exact numerical results obtained in the simulations are reported for a 

large number of quantum computer (QC) configurations, specifically, two sets of total eight 

different initial system states (i .e. the standard basis states and Bell states), two types of 

error generators (i.e. bit-flip and pha..';e errors), and five diflerent values of intra-enviromental 

interactions. In sect.ion 4.1 the results are reported for average error quantifiers, i.e. the 

average purity and fidelity, and an overall performance of the CNOT gate for bit-flip and 

phase type error generators is estimated. In section 4.2 the time evolution of individual 

initial states is examined separately for the bit-flip and phase type error generators, and 

how different operatious comprising the CNOT protocol affected by internal imperfections 

are determined. It is shown that in some cases particular operatious are influenced much 

more strongly than others, and the magnitude of the errors does uot neceessarily correlate 

with the duration of the operation. These results suggest that it may be possible to find a 

particular implementatiou of elementary gates that has a better performance than most. 

~Th is chapter is ba.'ied on two studies [16, 17] reported by Qetinba.<j and Wilkie. 
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Belt states (thick lines) in the case of bit-flip errors (generated hy xx-type coupling) plotted 
for five different values of intra-bath coupling, Jx = 005,0.25,0.50,1.00,2.00 e. 

4.1� Overall performance: standard basis states versus Bell 

states 

In figure 4.1, the average purity, P(t), versus time, and in figure 4.2, the average fidelity, 

F( t), versus time is plotted for bit-flip errors generated by the xx-type interaction operator 

for five different values of intra-bath couplings, .]X In figures 4.3 and 4.4, P(t) and F(t) 

are plotted for phase errors generated by the zz-type interaction operator. In all figures the 

Be1J states are plotted with thick lines to distinguish them from the standard basis states. 

Non-negligible deviations from the perfect purity, i.e P(t) = 1, which are greater 

than the theoretically acceptable limit of 0.99999 [87], are observed in almost all cases, 

which indicates that internal decoherence exists and 11lay be an issue of concern even for a 
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Be1J states are plotted with thick lines to distinguish them from the standard basis states.
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and Bell states (thick lines) in the case of bit-flip errors (generated by xx-type coupling) 
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relatively small number of bath qubits. However, with increasing lx, a transition to chaos 

occurs, which in turn results in a rapid suppression of errors due to the decoherence. ThE' 

confirmation of chaos is discussed in chapter 7. The results indicate that the bath is chaotic 

above lx > 0.15 E. The strongest intra-environmental coupling, lx = 2.00 f, leads to an 

almost complete suppression of decoherence. This is the case for bit-flip as well as phase 

errors. Hence, deliberately induced chaotic bath interactions can enhance the performance 

of a QC, and may even serve as an error correction strategy when such strong interactions 

are practical for a QC design. The results show that the Belt states are slightly more 

susceptible t.o the eff:ccts of internal imperfections than the standard basis states, and the 

bit-flip type errors are of the same magnitude as phase-errors for all initial conditions. 
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Bell states (thick lines) in the case of phase errors (generated by zz-type coupling) plotted 
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The fidelity plots display very large and unexpected deviations from ideality, i.e. :F(t) = 

1 However, the purity plots did not indicate such behavior. Since the purity is insensitive 

to unitary effects, the large deviations between the purity and fidelity plots indicate the 

presence of environment-induced large unitary errors in the CNOT dynamics. Increasing 

Jx results in an improvement in fidelity for phase errors. However, almost no-improvement is 

observed for bit-flip type errors. In fa.ct, increasing lx, slightly deteriorates the performance 

for xx-type interactions. 

The re:::;ults indicate that the surprisillgly high magllitude unita.ry errors destroy the 

fidelity of QC operations, and error correction methods [79] need to operate in order to 

correct the dynamics. Here, the large errors are observed for the two-qubit subsystem 
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The fidelity plots display very large and unexpected deviations from ideality, i.e. :F(t) =

1 However, the purity plots did not indicate such behavior. Since the purity is insensitive

to unitary effects, the large deviations between the purity and fidelity plots indicate the

presence of environment-induced large unitary errors in the CNOT dynamics. Increasing

Jx results in an improvement in fidelity for phase errors. However, almost no-improvement is

observed for bit-flip type errors. In fa.ct, increasing lx, slightly deteriorates the performance

for xx-type interactions.

The re:::;ults indicate that the surprisillgly high magllitude unita.ry errors destroy the

fidelity of QC operations, and error correction methods [79] need to operate in order to

correct the dynamics. Here, the large errors are observed for the two-qubit subsystem
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and these errors are common to the entire active part which in principle may comprise a 

large number of qubits. While existing error correction schemes [79] can be used to remove 

the undesirable enol'S induced by the coherent shift process, the number of single-quhit 

operations needed to correct these errors will be quite high, which in turn considerably 

increases the computational cost. However, since the errors induced by the coherE'nt shift 

process are of unitary nature and thus deterministic, a much simpler error correction scheme 

may be possible. 

Ten different realizations of the QC were explored. The results presented here are only 

for a single realization of the QC but these results are typical. However, some exceptional 

realizations were also encountered. In some cases the bath density of states increases with 
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process are of unitary nature and thus deterministic, a much simpler error correction scheme

may be possible.
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realizations were also encountered. In some cases the bath density of states increases with
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increasing Jx , which causes accidental near degeneracies in the 10'.-\1 energy spectrum of the 

bath. The number of thermally and dynamically populated bath states can then increase 

with increasing Jx . This then results in an anomalous increase of decoherence with Jx . In 

some QC architectures (e.g. symmetric xy-models) not considered here, this is the dominant 

effect.. In these cases the bath cbaos may not be an cffieient approach to correct the non-

unitary errors_ However, in all cases, large unitary errors originating from the coherent shift 

process were observed. 
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Figure 4.6: Time evolution of purity, P(t), in the case of phase errors (generated 
by zz-type coupling) plotted for five different values of intra-bath coupling, Jx 
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Ill). 

4.2 Performance for individual initial states 

In this section the performance of the CNOT gate is examined for individual initial states. 

In section 4.2.1, by examining the purity plots, the errors due to the decoherence and 

dissipation are discllssed. In section 4.2.2 the unitary errors due to the coherent shifting are 

discussed by examining the fidelity plots. 

Figures 4.5-4.8 show purities, P(t), and figures 4.9-4.12 show fidelities, F(t), as a fUl1c­

tion of time. Each figure contains four subfigures in which resnlts for four initial register 

states are plotted. For the standard initial states the subfigure (a) is reserved for the state 

100), the su bfigure (b) for 101), the subfigure (c) for 110), and the Sll bfigure (d) for Ill). 
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4.2 Performance for individual initial states

In this section the performance of the CNOT gate is examined for individual initial states.

In section 4.2.1, by examining the purity plots, the errors due to the decoherence and

dissipation are discllssed. In section 4.2.2 the unitary errors due to the coherent shifting are

discussed by examining the fidelity plots.

Figures 4.5-4.8 show purities, P(t), and figures 4.9-4.12 show fidelities, F(t), as a fUl1c-

tion of time. Each figure contains four subfigures in which resnlts for four initial register

states are plotted. For the standard initial states the subfigure (a) is reserved for the state

100), the su bfigure (b) for 101), the subfigure (c) for 110), and the Sll bfigure (d) for Ill).
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Figure 4.7: Time evolution of purity, P(t), in the case of bit-flip errors (generated 
by xx-type coupling) plotted for five different values of intra-bath coupling, Jx 

0.05,0.25,0.50,1.00,2.00 f. in (a) for (100) + 111))/12, in (b) for (100) -111))/12, in (c) 
for (101) + 110))/12, and in (d) for (101) -110))/12. 

Similarly, for the initial Bell states, the subfigure (a) is reserved for (100) + 111))/12, the 

subfigure (b) for (100) - 111))/12, the subfigure (c) for (101) + 110))/12, and the subfigure 

(d) for (101) 110))//2. For each initial condition the purity or fidelity is plotted for five 

different values of the intra-bath coupling, Jx , in the same subfigure. The switching times 

of elementary gates are also labeled for each subfigure. 

4.2.1 Errors due to decoherence and dissipation 

The purity is plotted for xx-type coupling in figure 4.5 for the standard initial bil.'iis states. 

In each subfigure, five different curves represent the different values of .Ix· Clearly, the lower 
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Similarly, for the initial Bell states, the subfigure (a) is reserved for (100) + 111))/12, the

subfigure (b) for (100) - 111))/12, the subfigure (c) for (101) + 110))/12, and the subfigure

(d) for (101) 110))//2. For each initial condition the purity or fidelity is plotted for five

different values of the intra-bath coupling, Jx , in the same subfigure. The switching times

of elementary gates are also labeled for each subfigure.

4.2.1 Errors due to decoherence and dissipation

The purity is plotted for xx-type coupling in figure 4.5 for the standard initial bil.'iis states.

In each subfigure, five different curves represent the different values of .Ix· Clearly, the lower
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Figure 4.8: Time evolution of purity, P(t), in the case of phase errors (generated 
hy zz-type coupling) plotted for five different values of intra-bath coupling, lx 
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the lx the greater the deviations from the ideal value of purity, I.e. P(t) = 1. For the 

smallest value of intra-bath interaction (i.e. lx = 0.05 f), the highest magnitude of error is 

observed. \\lith increasing Jx , the errors systematically decrease. For l;r; = 2.00 f, there is 

almost no sign of error. For the lower values of JT some oscillations in purity are observed. 

These are indicators of the memory effects present in the dynamics. These effects suggest 

that regular baths (i.e. non-chaotic) are more non-Markovian and cause more decoherence 

and dissipation than chaotic ha.ths. 

All snbfigures for the standard initial states show qualitatively similar behavior. Clearly, 

however, there are also some quantitative differences which are indicators of state specificity. 
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the lx the greater the deviations from the ideal value of purity, I.e. P(t) = 1. For the

smallest value of intra-bath interaction (i.e. lx = 0.05 f), the highest magnitude of error is

observed. \\lith increasing Jx , the errors systematically decrease. For l;r; = 2.00 f, there is

almost no sign of error. For the lower values of JT some oscillations in purity are observed.

These are indicators of the memory effects present in the dynamics. These effects suggest

that regular baths (i.e. non-chaotic) are more non-Markovian and cause more decoherence

and dissipation than chaotic ha.ths.

All subfigures for the standard initial states show qualitatively similar behavior. Clearly,

however, there are also some quantitative differences which are indicators of state specificity.
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Figure 4.9: Time evolution of fidplity, F(t), in the case of bit-flip errors (generated 
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For example, in figure 4.5, the early dynamics t :; t4 look similar in subfigures (a) and (c), 

and in subfigur8s (h) and (d) for Jx = 0.05,0.25,0.50 E But subfigures (a) and (b) look quite 

differ8nt on the same time scale, where bunching of the curves is seen at t3 in subfigures 

(a) and (c), but there are dearly separated curves in sllbfigures (b) and (d) at the same 

time, While the short time similarities of subfignres (a.) and (c) continue throughout the 

dynamics, the dynamics of purity in subfigures (b) and (d) then evolve rather differently. 

The pronounced oscillations in the purity are seen at the regular bath regime in subfigure 

(d), but those seen in subfigure (b) arc more monotonic. For Jx = 0.05 E, the purity 

at tg is roughly 0.935 in fmbfigure (b) and 0.9625 in subfigure (d) which is a significant 
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For example, in figure 4.5, the early dynamics t :; t4 look similar in subfigures (a) and (c),

and in subfigur8s (h) and (d) for Jx = 0.05,0.25,0.50 E But subfigures (a) and (b) look quite

differ8nt on the same time scale, where bunching of the curves is seen at t3 in subfigures

(a) and (c), but there are dearly separated curves in sllbfigures (b) and (d) at the same

time, While the short time similarities of subfignres (a.) and (c) continue throughout the

dynamics, the dynamics of purity in subfigures (b) and (d) then evolve rather differently.

The pronounced oscillations in the purity are seen at the regular bath regime in subfigure

(d), but those seen in subfigure (b) arc more monotonic. For Jx = 0.05 E, the purity

at tg is roughly 0.935 in tmbfigure (b) and 0.9625 in subfigure (d) which is a significant
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Figure 4.10: Time evolution of fidelity, F(t), in the case of bit-flip errors (gener­
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difference. Hence, there is an apparent state specificity to some degree for xx-type coupling 

for the smaller .Ix values. However, the Jx = 1.00 and 2.00 E curves show almost no state 

specificity. 

In figure 4.6, the purity for the standard initial basis states and zz- type error generator 

is plotted. Here the purity plots again show an improvement in purity as .Ix increases. The 

magnitude of the errors is quite similar to that for :r:x-type conpling. The early dynamics 

t ~ t4 are similar in subfigures (a) and (c), and in subfigures (b) and (d) for the lowest, 

.Ix values. There are no strong similarities in purity for any subfigures after t 4 . Here state 

specific behavior appears quite strong with the most divergence taking place during the 
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difference. Hence, there is an apparent state specificity to some degree for xx-type coupling

for the smaller .Ix values. However, the Jx = 1.00 and 2.00 E curves show almost no state

specificity.

In figure 4.6, the purity for the standard initial basis states and zz- type error generator

is plotted. Here the purity plots again show an improvement in purity as .Ix increases. The

magnitude of the errors is quite similar to that for :r:x-type conpling. The early dynamics

t ~ t4 are similar in subfigures (a) and (c), and in subfigures (b) and (d) for the lowest,

.Ix values. There are no strong similarities in purity for any subfigures after t 4 . Here state

specific behavior appears quite strong with the most divergence taking place during the
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Figure 4.11: Time evolution of fidelity, :F(t), in the case of phase errors (generated 
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two-qubit gate. However, the highest t\VO Jx values show little state specificity. 

In figure 4.7, the purity for xx-type coupling and the Bell type initial conditions are 

examined. A rapid correction of errors is observed with increasing Jx . For Jx = 0.05 E, 

again, the worst decoherence is seen, but otherwise the dynamics display qualitatively sim­

ilar behavior to t.hat for the standard basis stat.es. State specific effects look slightly less 

pronounced than those seen in figure 4.5. 

In figure 4.8, the purity is plotted for the Bell states and zz-type system-bath interac­

tions. The behi:\.vior of phase errors does not differ much relative to those observed for the 

standard basis states Howewr, in subfigures (a) and (b) the short time dynamics are quite 
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two-qubit gate. However, the highest t\VO Jx values show little state specificity.

In figure 4.7, the purity for xx-type coupling and the Bell type initial conditions are

examined. A rapid correction of errors is observed with increasing Jx . For Jx = 0.05 E,

again, the worst decoherence is seen, but otherwise the dynamics display qualitatively sim-

ilar behavior to t.hat for the standard basis stat.es. State specific effects look slightly less

pronounced than those seen in figure 4.5.

In figure 4.8, the purity is plotted for the Bell states and zz-type system-bath interac-

tions. The behi:\.vior of phase errors does not differ much relative to those observed for the

standard basis states Howewr, in subfigures (a) and (b) the short time dynamics are quite



65 CHAPTER 4. SIMULATIONS FOR THE CNOT GATE 

(a) (b)� 
I ~',__ , .� 

"~~:"'_ ... ~_ -<r ..... 

'-­
0.9 

, ,09 ~.:, c _ _ _ _ --- •• - •• __ 

"'- .. - .. eo 4_ 

n.R 
.f'� .~ 0.8

• - - - - - - : - , "-i. -I 
0:; 
-0

:g 0.7 

~	 ... . <" ~ u:: 0.7 
0.6 

0.60.5 

0.4 "~------------- 05'----------------' 

Time Time 

(c)� (d) _.. I ...-- .. 
.. :- ..~...- .. :--- .. 

0.9 0.9� 
, ,�

0.8 '. 0.8 
~ 0.7.,� , . :g 0.7iE 0.6 

0.6 

0.5::r� •.• ,I 
~ 

0.3� -------------- 0.4 :---------­

Time Time� 

J,= 0.05 .J, =(I ~ J ~ a.Jfl J.- 1.00 J,= 2.00 
I 
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different. 

In all figures non-negligible deviations of the purit.y from the theoretically desirable limit 

of 099999 (87] are observed for the experimentally relevant two-qubit coupling strength 

.Ix = 0.05 E. Recall that the number of idle bath qubits directly participating in the 

decoherence process was relatively small, i.e. N = 10. This number could be higher for 

la.rger QCs, which suggest.s that internal decoherence can be a matter of concern in a QC 

core in the presence of static internal imperfections. However, it is also clear that increasing 

the intra-bath int.eraction strength, Jx , causes a rapid improvement in purity. Hence, the 

bath chaos stabilizes the gate implementation by causing a reduct.ion of decoherence. For the 

CHAPTER 4. SIMULATIONS FOR THE CNOT GATE 65

:g 0.7

Ll:

"'- .. - .. eo 4_

(b)

'-­, ,

05'----------------'

0.6

0.9

.~ 0.8
0:;
-0
u:: 0.7

(a)

0.5

• • - - - - - : - • "-i" I... . <" ~

0.4"~-------------

0.6

I r"-- , ."~~:"'-'''~_ -<r ..... •

09. ~.:: c , ------ •• _

n.R
.f'

Time Time

(c) (d)
...-- ..

.. :- ..~...- .. :.. - ..

0.8

0.5

0.6

0.4 :----------

0.9

:g 0.7

Ll:

_.. I

, .

, ,
"

0.9

0.8

~ 0.7.,
iE 0.6

::r •.• ,I
0.3 --------------

Time Time

J,= 0.05 .J =(I ~, J ~ a.Jfl
I

J.- 1.00 J = 2.00,

Figure 4.12: Time evolntion of fidelity, F(t), in the case of phase errors (generated
by zz-type coupling) plotted for five different values of intra-bath coupling, Jx

0.05,0.25,0.50,1.00,2.00 f in (a) for (100) + 111))/)2, in (b) for (100) -111))/)2, in (c)
for (101) + PO) )/V2, and in (d) for (101) - 110) )/V2.

different.

In all figures non-negligible deviations of the purit.y from the theoretically desirable limit

of 099999 (87] are observed for the experimentally relevant two-qubit coupling strength

.Ix = 0.05 E. Recall that the number of idle bath qubits directly participating in the

decoherence process was relatively small, i.e. N = 10. This number could be higher for

la.rger QCs, which suggest.s that internal decoherence can be a matter of concern in a QC

<..:ore in the presence of static internal imperfections. However, it is also clear that increasing

the intra-bath int.eraction strength, JX ) causes a rapid improvement in purity. Hence, the

bath chaos stabilizes the gate implementation by causing a reduct.ion of de<..:oherence. For the
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strongest coupling case, Jx = 2.00 E, the effect of decoherence almost completely disappears 

for both types of coupling operators and all initia.l conditions. This suggests that induced 

bath chaos may serve as an error correcting strategy when such strong intra-bath interactions 

are experimentally accessible. 

Overall, the decrease of the purities with time appears qualitatively similar for all initial 

conditions, but the Bell states perform slightly worse than the standard basis states. Since 

the Bell states are entangled states representing the state of two spatially separated qubits, 

they seem morc susceptible to the destructive effects of decoherence. Performance with 

respect to the type of coupling operator appears to be quite similar in all cases Overall, 

the purity decays are of comparable magnitude for both bit-flip and phase type couplings. 

However, intriusic decoherence due to particular initial conditions and coupling operators 

is also seen. For example, decoherence by xx-type coupling affects the system during the 

first gate operation for all initial conditions. In the case of zz-type coupling, however, the 

errors do not emerge until the second gate operation for all standard basis states (as seen 

in figure 4.6) and for two of the Bell states (as seen in figures 4.8(c) and 4.8(d)). 

Decoherence is a state-dependent phenomenon. The slight state specificity discussed 

above cannot be dismissed as negligible, because the small effects observed in one gate 

could get amplified over time during other gates. In almost all cases the observed state 

specific ~ffects are stronger in the non-chaotic bath regime. The chaotic bath dynamics also 

reduce the state specific effects. 

4.2.2 Errors due to coherent shifting 

The time evolution of fidelity, F(t), for xx-type coupling is plotted III figure 4.9 for the 

standard initial basis states and in figure 4.10 for the Bell states. Overall, the fidelity plots 

show qualitatively similar hehavior in tbat they start at one and decay quite uniformly 

toward zero at the end of the gate. The fidelity plots show almost no dependency on Jr' 
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However, with increasing Jx fidelities do get slightly worse. The purity plots showed that 

the deviations of the purity from unity were less than ten perceut in all cases. Here all 

fidelity is lost over the course of a single CNOT gate. Moreover, all of this error should 

be of unitary origin as it does not affed the purity. The degree of error the fidelity plots 

indicate is alarming. But since the error is mostly unitary and thus deterministic, there 

may be some systematic way to remove the unitary crrOl" component. Some state specific: 

recurrences are also seen in subfigures 4.9(c), 4.9(d) and in subhgure 4.10(c). 

Figures 4.11 and 4.12 plot the fidelity for the initial standard basis states and the initial 

Bell states, respectively. The fidelity plots indicate that the behavior of phase errors is 

quite different from those observed for the bit-flip errors. Interestingly, with increasing 

Jx , dramatic improvements in fidelity are observed. \Vhile in the regular bath regime, the 

fidelity loss is about sixty percent, in the chaotic regime it is close to the acceptable limit. 

Moreover, the magnitude of fidelity improvemmt is highly sensitive to the strength of the 

intra-bath coupling, Jx ,· The fidelity plots do not show a strong initial state dependency 

but the fidelity decay for the Bell states in subhgurcs 4.12(a) ami (b), and (c) and (d) show 

similar behaviors for t :S t4. 

CHAPTER 4. SIMULATIONS Fan THE CNOT GATE 67

However, with increasing Jx fidelities do get slightly worse. The purity plots showed that

the deviations of the purity from unity were less than ten perceut in all cases. Here all

fidelity is lost over the course of a single CNOT gate. Moreover, all of this error should

be of unitary origin as it does not affed the purity. The degree of error the fidelity plots

indicate is alarming. But since the error is mostly unitary and thus deterministic, there

may be some systematic way to remove the unitary crrOl" component. Some state specific:

recurrences are also seen in subfigures 4.9(c), 4.9(d) and in subhgure 4.10(c).

Figures 4.11 and 4.12 plot the fidelity for the initial standard basis states and the initial

Bell states, respectively. The fidelity plots indicate that the behavior of phase errors is

quite different from those observed for the bit-flip errors. Interestingly, with increasing

Jx , dramatic improvements in fidelity are observed. \Vhile in the regular bath regime, the

fidelity loss is about sixty percent, in the chaotic regime it is close to the acceptable limit.

Moreover, the magnitude of fidelity improvemmt is highly sensitive to the strength of the

intra-bath coupling, Jx ,· The fidelity plots do not show a strong initial state dependency

but the fidelity decay for the Bell states in subhgurcs 4.12(a) ami (b), and (c) and (d) show

similar behaviors for t :S t4.



Chapter 5 

Probing internal bath dynamics by 

a Rabi detector 

Internal errors in a quantum computer (QC) core may arise due to the existence of one­

body imperfections or as a consequence of residual two-body interactions, or even as a 

result of strong residual interactions with other local impurities in a QC core. One-body 

imperfections can be readily corrected in Ulany cases. Two-body interactions are more 

difficult to deal with and their effects are difficult to predict, since these interactions generate 

an internal dccoherence mechanism. Knowledge of the strength of the two-body intra­

bath interactions may prove very useful for eliminating their effects. It has been observed 

in [16, 17] and shown in chapter 4 that the coherent shift is sensitive to the strength of 

bath self-interaction [16, 17]. In this chapter§, it is shown that a single qubit. detector can 

be configured to measure the bath self-interactions. A model system representing a qubit 

detector interacting with an isolated QC with static internal imperfections is presented. 

In the absence of interactions with the QC, the detector undergoes phase evolution only. 

\i\lhen the detector experiences a coherent shift, as a result of interaction with the QC, 

§This chapter js pa.rtly based on a. study [18] reported by <;etinba~ and Wilkie. 
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it begins Rabi oscillations. The fidelity of the detector also exhibits a periodicity on a 

much longer timescale with a period which is highly sensitive to the strength of bath self­

iuteraction. Measuring the Rabi oscillations or the period fidelity allows one to find the 

intra-bath coupling strength. Moreover, it should be possible to apply the basic ideas 

behind the detector set-up in more general contexts such as optical impurities in solids 

where knowledge of bath self-interaction could be important. 

The study presented in this chapter has been previously published in [18], where in 

addition to exact numerical calculations, approximate results based on a mean-field master 

eqnation have been also reported. Recently, errors have been detected in the master equation 

calculations, making their results of questionable reliability. Here, discussions are be based 

on exact numerical results. Since the master equation is nsed as an alternative method 

to obtain open system dynamics, and the predictions of this master equation are only 

approximate, the absence of the master equation calculations does not alter the conclusions 

presented here to any extent. 

The org;mization of this chapter is as follows. The Rabi detector model is described in 

section 5.1. The exact numerical approach used in the simulations is explained in section .5.2. 

In section 5.3, exact numerical resnlts are presented for short and very long time dynamics 

and the results are discussed. 

5.1 Description of model 

The self-interacting spin-bath model, representing the QC core, consists of N + 1 two level 

systems, and is given by the following total Hamiltonian, 

H = Hs + S13 + HB, (5.1 ) 

where the first term is the free system Hamiltonian, 

(5.2)� 
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the second term represents a system-bath interaction operator in the system 5 and bath iJ 

degrees of freedom, 

5iJ = aiD) t x and t x = L
N 

Atait 
) , (5.3) 

i=l 

and the third term is the batb Hamiltonian given by 

N N-l N 

HB = -~ '" (BX(j(t) + BZ(j(t») + '" '" p,j(j(i)(j(J) (5.4)2 L tX tz LL'x xx· 
i=l t=1 J=t+1 

The index 0 is used to label the detector qubit. The index runs from 1 to N for the bath 

qubits. The imperfections are modeled by choosing the parameters of 513 and HB randomly 

as done previously in chapter 3. 

5.1.1 Parameters 

The parameters used in the numerical calculations are based on a Josephson charge-qubit 

QC proposal [68, 69] for which the experimentally accessible one-qubit energy to perform a 

single-qllbit rotatiou is Bo= 1.00 f where t = 200 rnK. Since all qubits in the Hamiltonian 

(5.1) are the components of the same QC, the imperfections in single-qubit parameters 

should only differ from Boby a detuning parameter, which is set to the value 0 = 0.4 E. Static 

noise is added to all qubits except the detector qubit by choosing B: E [Bo- 0/2, B6 + 5/2] 

and B; E [Bo- 5/2, Bo+ 5/21. The residual two-body interactions are modeled randomly 

and uniformly by choosing 1\ and J~,J from At E [-A, A] a.nd J~,j E [-Jx , JxJ, respectively. 

While a number of intra-bath coupling strengths, ie. Jx = 0.00, 0.15, 0.50, 1.00, 2.00 

in units of E, are considered to explore the integrable to chaotic transition (sec the final 

chapter for confirmation of chaos), ouly one system-bath coupling value, which corresponds 

to the experirnental value for a two-qubit rotation, i.e. A = 0.05 f, is considered. In all 

the calculations the temperature is set to kT = 0.25 E, and the time step of integration is 

6.t = 0.2 n/t s. 
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5.1.2 Initial conditions 

It is assumed that the dynamics of the QC are initiated from a state of product form, 

,0(0) = ,05(0) 0 PB(O). (5.5) 

Here, PB(O) is tbe canonical bath density and P5(0) = (?j;(O))(\b(O)1 is the reduced density 

operator for the detector where 1'1/;(0)) = (10) + [1))/V2. This state of the detector qubit 

will only undergo phase evolution in the absence of interactions with the QC. However, once 

thf' interactions are in effect, the detector will show Rabi oscillations. 

5.2 Exact numerical approach 

By exploiting the low temperature regime for the bath degrees of freedom, the initial bath 

density is approximated as 

,08(0) = LPnl<b~)(¢~1 (5.6) 
n=1 

where Pn = exp (-En/kT)/ L~:l exp (-Em/kT) are the populations of the thermal bath 

state and ifBI¢~) = Enl¢!/t)· Here, the sum in (5.6) is over only the thermally populated 

lowest energy eigenstates of the bath. Therefore, 'TIeig is a cutoff such that the states with 

ne~g + 1 and higher are unoccupied for the fixed low temperature. Vlhile the density of bath 

states and thus the number of thermally populated states varies slowly with J,£ for a fixed 

bath temperature, 'TIe2!} = 20 \Vas sufficient for all cases. 

The time-evolved reduced density is obtained from, 

PS(t) = LPn TrB [ltJI 11 (t)) (W n(t) I], (5.7) 
n=1 

where each ItJln(t)) evolves according to the Schrodinger equation, 

(5.8)� 
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Figure 5.1: Short time dynamics of purity, P(t), plotted for five different values of intra-bath 
couplings, Jx = 0.00,015,0.50,1.00,2.00 E. 

for all initial states of the form, 11]1,,(0)1 = j-I;'J(0)1 @ Iq)~). A Lanczos algorithm [85] is used 

for the diagonalization of the bath Hamiltonian for N = 10 quhits, and an eighth order 

variable stepsize Runge-Kutta method [86] for the numerical integrations. 

5.3 Results 

Purity and fidelity are used to estimate deviations from the pure phase evolution in the 

state of the detector qubit. Purity, defined by P(t) = Trs[,os(t)2], is a good measure of 

decoherence and dissipat.ion since it is insensitive to the coherent effects. For pure initial 

states, the ideal value of purity is equal to one. This would be the case if interaction 

with the bath causes only coherent shifting but no decoherence. Fidelity, defined by F( t) = 
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Figure 5.2: Short time dynamics of fidelity, F(t), plotted for five different values of intra­
bath couplings, Jx - 0.00,015,0.50,1.00,2.00 E. 

Trs[.os(i)pteal(i)] is sensitive to both coherent effects and decoherence Here, .oteal(i) stands 

for the ideal system evolution at time t, in the absence of system-bath interactions. Fidelity 

measures how close an open system's evolution is to the ideal system evol ution. For pure 

initial states, the ideal value of fidelity is also one in the absence of system- bath interactions 

The large deviations in the magnitudes of purity and fidelity gives an indication of coberent 

shifting. 

Recall that the initial state of the detector qu bit is (10) + 11))/J2. In the absence of 

coherent shifting, this state should undergo only phase evolution without significant pOpll­

lation transfer. However, in the presence of coherent shifting, the free system Hamiltonian 

will be shifted by the system coupling operator and thus the detector qubit should display 

large amplitude Rabi oscillations Therefore, the populations of the detector qubit will also 
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coherent shifting, this state should undergo only phase evolution without significant pOpll-

lation transfer. However, in the presence of coherent shifting, the free system Hamiltonian

will be shifted by the system coupling operator and thus the detector qubit should display

large amplitude Rabi oscillations Therefore, the populations of the detector qubit will also
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be monitored to see emergence of the Rabi oscillations as a result of the coherent shift 

process. 

5.3.1 Short time dynamics 

The short time dynamics of P(t) and F(t) are plotted in figures 5.1 and 5.2, respectively, for 

five differeut values of intra-bath couplings, Jx . Figure 5.1 shows a systematic improvement 

in P(t) wit.h iucreasing Jx · For the regular bath, i.e. Jx = 0.00 f, the decoherence is at its 
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Figure 5.4: Long time dynamics of purity, P(t), plotted for five different values of intra-bath 
couplings, JT = 0.00,0.15,0.50,1.00,2.00 t. 

maximum. Above Jx = 0.15 c, chaos sets in and the decoherence is systematically reduced. 

For the strongly chaotic regime, i.e. Jx = 2.00 f, the decoherence almost totally vanishes. 

This result is in agreement with earlier studies, e.g. [29, 30], in which the bath chaos is 

predicted to reduce decoherence. 

The purity plots show partial recurrences in the regular bath regime. Such purity re­

currences have been previously observed for a rmmber of studies [29, 88]. These recurrences 

!essen with increasing magnitude of intra-bath coupling This effect is attributed to the 

transition from non-Markovian to Markovian behavior as a result of chaos, and is discussed 

in detail in the final chapter of this thesis. 

The fidelity plots in figure 5.2 show the presence of rnurh larger deviations from unity 

thall those shown by the purity plots. The fidelity plots also show a quite different trend 
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Figure 5.5: Long time dynamics of fidelity, F(t), plotted for five different values of intra-bath 
couplings, Jx = 0.00,0.15,0.50,1.00,2.00 t. 

with increasing Jx . After a short time, F(t) begins to decay more rapidly for larger values of 

Jx · This snpports the conclusion that large coherent shifts are again present in the dynamics 

as was the case in the CNOT study [16, 17] of chapter 5. It seems that the coherent shift 

process is much more harmful than decoherence or dissipation processes as a potential error 

source for quantum computation [16, 17]. However, it is shown here that the coherent 

shifting can be put to a good purpose. It is also noteworthy that while the coherent shift 

vanishes in some standard models of decoherence, it, is nonzero in general for self-interacting 

baths. Therefore, large magnitude errors induced by the coherent shift process should also 

be expected for condensed phasc environments. 

In figure 5.3, the matrix elements of the detector qubit are plotted for Jx = 1.00 t. In 

figure 5.3(a), large magnitude Rabi oscillations are seen in the populations. There is also 
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Figure 5.6: Long time dynamics of matrix elements of density operator, ps(t), plotted for 
coherent (dashed lines) and decoherent (solid lines) time evolution for Jr = 1.00 c: (a) 
Diagonals of ps(f), Poo(t) = (OIPs(t)IO) (blue) and Pll (t) = (lIPs(t)ll) (black). (b) Real 
part of off-diagonal element of ps(t), Re{pod(t) = Rc{(OIPs(t)ll)} (green) and imaginary 
part of off-diagonal of ps(t), Im{pod(t) = Im{(Olps(t)I1)} (red). 

a small shift of off-diagonal matrix elements seell in figme 5.3(b). These oscillatiolls are 

a direct consequence of the coherent shift process that emerges as a result of system-bath 

interactions. 

5.3.2 Long time dynamics 

In figure 5.4 the exa.ct numerical results for purity are plotted for five different values of Jr. 

Figure 5.4 shows that, suppression of deeoheren,e with increasing Jx is also the dominallt 
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Figure 5.7: Canonical average of bath coupling operator, B, versus lx. 

effect in the long time dyuamics of the purity. In addition, the purity plots reflect the 

presence of long time partial recurrences iu the regular bath regime. These recurrences are 

again caused by memory effects 

In figure 5.5, the exact numerical results for the long time dynamics of the fidelity 

are plotted. In the long time limit, the unitary effects of syst.em-environment interactions 

overwhelm the non-unitary ones, and the contributions of dccoherence to the open system 

dynamics a.re hardly noticeable anymore. This is true even in the non-chaotic bath regime. 

Small-magnitude, high-frequency oscillations are still noticeable. However, the fidelity plot 

displays (1n additional long-time, large-amplitude periodicity. Moreover, the period of the 

fidelity is strongly dependent on the magnitude of lx. 

In figure 5.6, the long time dynamics of matrix clements of the detector qubit is plotted 

for lx = 1.00 c. The Rabi oscillations observed in the populations of ps(t) for short time 

dynamics do st.ill persist for the long time dynamics. The magnitudes of the Rabi oscillations 
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In figure 5.6, the long time dynamics of matrix clements of the detector qubit is plotted

for lx = 1.00 c. The Rabi oscillations observed in the populations of ps(t) for short time

dynamics do st.ill persist for the long time dynamics. The magnitudes of the Rabi oscillations
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are the same as those of the short dynamics and they do not subside in time. 

The form of thc chaotic Kraus decomposition and certain approximate master eqlla­

bons [47-51] suggests that the coherent shift process modifies the free system Hamiltonian 

as Hs ----1 Hs + 135 where 13 = Tr{BpB(On is the canonical average of the bath coupling 

operator and 5 is the system part of the system-bath coupling operator Hence, for the 

detector qubit, the shifted system Hamiltonian is then the following, 

(5.9) 

As noted earlier, only phase evolution is expected for the detector qu bit in the absence of 

coherent shifting. The observed Rabi oscillations in the populations of the detector qubit 

are then induced by the shift term, tJo-~O). 

In figure 5.7, the canonical average of the bath coupling operator, 13, is gIven as a 

function of Jx · Figure 5.7 shows t.hat J3 decreases - while its magnitude 1131 increases - with 

increasing Jx . The changes in the magnitude of IE are fast and very sensitive to intra-bath 

couplings for small coupling values, i.e. Jx < 1, but quite slow above Jx > 1. This behavior 

is in good agreement with the fidelity decay behavior seen in figures 5.2 and 5.5. 

Explaining the sensitivity of the fidelity to Jx is straightforward. Neglecting the effects 

of decoherence and dissipation, it can readily be argued that the shifted system dynamics 

should beat with a frequency of 0 = (B6 2 + I32)1/2 /2h while the unperturbed system phose 

evolves with frequency, w = Bfj/2h. The period of the Rabi oscillations in the populations 

seen in figure 5.3(a) is 0- 1 
. It then follows that the fidelity takes the form, 

F(t) 

+ (510) 

The second term is very small since J32 is very much smaller than 0 2. The third term is 

small since 0 - Bo/2 < n, and the fourth terrn is of order 1. Hence, the small magnitude 

oscillations in fidelity have frequency, 2(0 +w). The large amplitude oscillations are caused 
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by the fourth Lerm, and they have period, n/(O - w) ~ hBo/2B2. Generally, B i~ much 

smaller than Eo, but jj increases with Jx , resulting in a shorter period. This gives rise to 

the changes in the period of the fidelity and explains the behavior observed in figures 5.2 

and 5.5. Since 2(0 + w) varies more slowly with B, the Rabi oscillations in the populations 

are not very sensitive to Jx . The above formula (5.10) for F(t) i~ in excellent agreement with 

the exact result~ for strong intra-bath coupling values, Jx ~ 1, and thu~ strongly support~ 

the conclusion that the shift manifests as Hs -+ Hs + BS. 

Lastly, by measuring the period of the fidelity oscillation one can obtain an estimate of 

B, and from figure 5.7 the magnitude of Jx can then be obtained. Hence, this is a. detector 

of the strength of ba.th self-interaction for this i~olated QC model. The same basic setup 

should also carryover to the case of oscil1a.tor baths, and the technique could potentially be 

used to measure the st.rength of anharmonic interactions in the condensed phase medium. 
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Chapter 6 

Tests for chaotic Kraus 

decomposition 

A Kraus decomposition for quantum systems interacting with large chaotic environments is 

derived in chapter 2, where the extension of the decomposition to include time-dependent 

system Hamiltonians is also provided. The chaotic Kraus decomposition (CKD) is only 

exact for chaotic baths of thermodynamic dimension. Therefore, the performance of the 

CKD should be assessed for small sized haths before it can he used for general applications. 

In this chapter§ the CKD is tf~sted against exact numerical results reported in chapters 

4 and 5. In particular, the performance of the time-independent form of the CKD is tested 

against exact numerical results of the R.abi detector study of chapter 5, and the time­

dependent extension of the CKD is tested against the exact numerical results obtained for 

the CNOT st,udy of chapter 4. 

To assess the performance of the CKD, the predictions of the CKD are compared with 

those of exact numerical results for two error quantifiers: i.e. purity and fidelity. The purity 

is used to assess the accuracy of the CKD for the non-unitary effects, i,e. decoherence and 

§This chapter is taken from two studies [14, 15] report,ed by Getjflb~ and Wilkie. 
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dissipation, and the fidelity is used to estimate the accuracy for the unitary effects of system-

environment interactions. In addition, the matrix elements of the reduced density operator 

predicted by the CKD are compared with those obtain8d by exact numerical simulations. 

The test results show that the CKD is very accurate in spite of the relatively small bath 

dimension used in the exact simulations. These promising results suggest that the CKD can 

be a practical computational tool for low temperature simulations of open quantum system 

dynamics induced by chaotic environments. 

6.1 Rabi detector study 

In this section an analytic solution of the CKD is presented for the Rabi detector study. 

The details of Hamiltonians, initial conditions and numerical parameters used in this study 

are discussed in chapter 5. Here these quantities are reviewed and used to construct the 

explicit form of Kraus operators for the CKD 

The total Hamiltonian for the Rahi detector study is of the form, H = Hs + SE + fiB; 

see equation (51). Here, H.') is the subsystem Hamiltonian defined in equation (5.2). The 

system-hath coupling operator, S for the system part and B for the bath part, is given 

by equation (5.3). The bath Hamiltonian, HB, is defined hy equation (5.4). The Kraus 

operators for the Rabi detector study take the following simple form, 

(6.1 ) 

The initial bath populations, Pn = exp (- En/ kBT)/ L::;~1 exp (-Em/ kaT), and the diago­

nal matrix elements of the bath coupling operator, Bn-.n = (dJ~(O)IEI¢;;(O))I, are calculated 

by using the exact eigenstates of the bath Hamiltonian obtained in chapter 5. 

The reduced density at time t is expressed in terms of these Kraus operators, 
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ps(t) = L Kn ( t)ps (O)K:~ (t). (6.2) 
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dissipation, and the fidelity is used to estimate the accuracy for the unitary effects of system-

environment interactions. In addition, the matrix elements of the reduced density operator

predicted by the CKD are compared with those obtain8d by exact numerical simulations.

The test results show that the CKD is very accurate in spite of the relatively small bath

dimension used in the exact simulations. These promising results suggest that the CKD can

be a practical computational tool for low temperature simulations of open quantum system

dynamics induced by chaotic environments.

6.1 Rabi detector study

In this section an analytic solution of the CKD is presented for the Rabi detector study.

The details of Hamiltonians, initial conditions and numerical parameters used in this study

are discussed in chapter 5. Here these quantities are reviewed and used to construct the

explicit form of Kraus operators for the CKD

The total Hamiltonian for the Rahi detector study is of the form, H = Hs + SE + fiB;

see equation (51). Here, Hs is the subsystem Hamiltonian defined in equation (5.2). The

system-hath coupling operator, S for the system part and B for the bath part, is given

by equation (5.3). The bath Hamiltonian, HB, is defined hy equation (5.4). The Kraus

operators for the Rabi detector study take the following simple form,

(6.1 )

The initial bath populations, Pn = exp (- En/ kBT)/ L::;~1 exp (-Em/ kaT), and the diago­

nal matrix elements of the bath coupling operator, Bn-.n = (dJ~(O)IEI¢;;(O))I, are calculated

by using the exact eigenstates of the bath Hamiltonian obtained in chapter 5.

The reduced density at time t is expressed in terms of these Kraus operators,

n e-eg

ps(t) = L Kn ( t)ps (O)K:~ (t).
n=1

(6.2)
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Now, inserting the initial density, ,os(O) = Iw(O))(<J;(O)I, where I<J;(O)) = (10) + 11))/J2, 

into the above equation, the CKT for the given temperature, kaT = 0.25 and n etg = 20 

then has the form, 

CI'(t) [co (t)] * 
(6.3) 

Ico(tW 

where 

(6.4) 

(6.5) 

and 

an = ~~ and bn = JB~ + 4B~,n . (6.6) 

6.1.1 Results for purity and fidelity 

The accuracy of the CKD has been tested for several values of intra-bath couplings in the 

chaotic bath regime, i.e. for Jx = 0.50,1.00,2.00 E. Here, the predictions of the CKD are 

compared with exact numerical results for the purity, 'P(t), and fidelity, :F(t), of the reduced 

density. 

In figure 6.1 for short time dynamics, and in figure 6.2 for long time dynamics, P( t) 

is plotted for three different values of intra-bath coupling, .Ix. The time is in units of 

"h/(. The red dashed lines are the CKD predictions while the black solid lines represent 

the exact dynamics. Even for .Ix = 0.50 E, shown in subfigures 6.1(a) and 6.2(a), the 

decoherence predicted by the CKD is of the correct order of magnitude. However, it is 

not quantitatively accurate. There is a faster time scale to the exact dynamics which is 

not captured at all by the CKD. Much better agreement is observed in subfigures 6.1(b) 

and 6.2(b) where Jx = 1.00 E and hence the chaos is stronger. As seen in subfigures 6.1(c) 
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and 6.2(c), for the strongest chaotic case, i.e. Jx = 2.00 f, the CKD results are in very good 

agrcement with the exact results. 

ln figure 6.3 for short time dynamics, and in figure 64 for long time dynamics, F(t) 

is plotted for both exact and CKD results for the same three different values of intra-bath 

coupling Jx . The magnitudes of the errors in F(t) are much larger than those in P(t). The 

purity measures only non-unitary errors bnt the fidelity is also sensitive to unitary errors. 

The largc deviation of F(t) from P(t) thcrefore indicates the presence of a large coherent 

shift. The agreement between the CKD and exact results is quite good even for Jx = 0·50 E, 

shown in subfigures 6.3(a) and 6.4(0.). For J,; = 1.00 £, shown in subfigures 6.3(b) and 6.4(b), 

the agreements are very good. For Jx = 2.00 c ,the agreements seen in subfigures 6.3(c) 
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coupling Jx . The magnitudes of the errors in F(t) are much larger than those in P(t). The
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The largc deviation of F(t) from P(t) thcrefore indicates the presence of a large coherent
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shown in subfigures 6.3(a) and 6.4(0.). For J,; = 1.00 £, shown in subfigures 6.3(b) and 6.4(b),
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and 6.4(c) are excellent where the Kraus and exact results almost completely overlap. 

6.1.2 Results for reduced density matrix elements 

In this section, the matrix elements of reduced density predicted by the CKD are compared 

to those obtained by exact numerical simulations. The matrix elements are plotted for the 

short time dynamics in figure 6.5, and for the long time dynamics in figure 6.6 for Jx = 100 t. 

In subfigures 6.5(0.) and 6.6(a), the populations of reduced density and in subfigures 6.5(b) 

and 6.6(b), the off-diagonal matrix elements are plotted. In all these figures, the exact 

results are plotted with solid lines and the CKD results are plotted with dotted lines. 

Matrix element plots show a high degree of accuracy in all cases. Indeed, the CKD 
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and 6.4(c) are excellent where the Kraus and exact results almost completely overlap.

6.1.2 Results for reduced density matrix elements

In this section, the matrix elements of reduced density predicted by the CKD are compared

to those obtained by exact numerical simulations. The matrix elements are plotted for the

short time dynamics in figure 6.5, and for the long time dynamics in figure 6.6 for Jx = 100 t.

In subfigures 6.5(0.) and 6.6(a), the populations of reduced density and in subfigures 6.5(b)

and 6.6(b), the off-diagonal matrix elements are plotted. In all these figures, the exact

results are plotted with solid lines and the CKD results are plotted with dotted lines.

Matrix element plots show a high degree of accuracy in all cases. Indeed, the CKD
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results are virtually indistinguishable from the exact results. This is true for short as well as 

long time dynamics. Simi1ar degrees of accuracy are also obtained for other int.ra-coupling 

values, /r. = 0.50 f and Jx = 2.00 f, not reported here. This high degree of accuracy is 

remarkable given that the bath contains only ten qubits. Moreover, it suggests that the CKD 

can actually be employed as a useful computational method for low temperature simulations 

of open system dynamics where the new quantum technologies are expected to operate. 

6.2 CNOT study 

In this section, the test results for the CNOT st.udy of chapter 4 are presented. Analytic 

solutions for the CKD should be readily obtainable due to the low dimension of the CNOT 

system. However, an alternative numerical strategy was employed here, as is outlined in 

section 2.7. While this approach is also generally applicable for any subsystem state, it is 

even more straightforward for pure initial system states, as is the case for the CNOT study. 

The finjt step in the numerical strategy is to construct the effective system Hamiltonians 

for the Kraus operators by using the original system Hamiltonians and coherent shift terms: 

(6.7) 

where 0: E {x, z} stands for xx- and zz-type coupling, respectively. The subsystem Hamil­

tonians, Hs(t), and corresponding switching times for the CNOT gate arc given in table 

3.1. Here, E~,n(o-~I) + u~)) are the coherent shift terms More specifically, (o-~) + ui2)) are 

the system coupling operators and E~,n = (<p!;ltO'I¢~) are the diagonal matrix elements 

of the bath coupling operators in the complete bath eigenbasis, i.e. iIBI<p~) = Enl¢~). A 

summary of the effective syst.em Hamiltonians can be found in table 6.1. In the numerical 

calculations, n etg = 20 low lying exact bath eigenstates Icb~) are used to calculate E~,TI terms 

for Jx = 0.50,1.00,2.00 c. 

Given the effective system Hamiltonians for the CNOT gate, the time---evolved dynamics 
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Table 6.1: Switching times and Hamiltonians including coherent shift terms used to imple­
ment the CNOT gate by the CKD. 

Switching Intervals Effective Hamiltonian 

[to = O,tt = -;;-/(2BZ)] 

[t1,t2 = t1 + 71"/(2BX)] 

[t2, t3 = t2 + 71" /(2BZ)] 

[t3, t4 = t3 + .)271"/(2BZ 
)] 

[t4,t5 = t4 + 71"/(4Jx)] 

Its: t(j = ts + .)271"/(2BZ 
)] 

[t6' t7 = t(j + -;;-/(2BZ)J 

[t7' ts = t7 + 71" /(2BX)] 

[ts, t9 = ts + 71"/(2W)] 

for each bath eigenstate, {I¢~)} with n = 1, .. , neig = 20: can be calculated by numerical 

solutions of the Schrodinger equation, 

dl'l/Jn(t))/dt = -(i/n.)Hefr(t)I1/Jn(t)). (6.8) 

The Schrodinger equation is solved for two sets of eight initial states. The first set consists 

of standard basis states, i.e. l"lfJo) E {IOO), 101), 110), Ill)}, and the second set includes the 

Bell states, i.e. '0'0) E {(I00) ± 111))/\1"2, (101) ± 11O))/v'2}· 

In the following the time-evolved rednced density for each initial condition is constructed 

via 

(6.9) 
n 

where Pn = cxp (-En/kRT)/ L~~o'~\ exp (-Em/kRT) are the initial bath populations. 

The CKD requires exact bath eigenstate::; in the calculation::; of the B;,n terms. Exact 

diagonalization of the bath Hamiltonian should be easy to achieve for quite large bath 
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dimensions by standard matrix diagonalization rout.ines. In cases when the bath dimension is 

t.oo large and thus exact diagonalization is impossible, such as large coupled oscillator baths, 

alternative approaches may be taken to calculate B~,n and En. For example, quantum-semi­

classical molecular dynamics simulations can prove very useful to calculate B~·n terms. 

Perhaps, the Wigner method [46] would suffice to calculate B~,n once the En are known. 

These approaches are not within the scope of this thesis and will be investigated elsewhere. 

6.2.1 Results for average purity and fidelity 

In this section, the accuracy of t.he CKD is tested by comparing the predictions of the CKD 
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The average purity, P(t), is plotted for xx-type coupling, the generator of bit-flip errors, 

in figure 6.7 and for zz-type coupliug, the generator of phase errors, in figure 6.8 for three 

different values of intra-bath coupling in the chaotic regime, i.e. Jx = 0.50,1.00,2.00 c. 

The exact nnmerical results are represented by solid lines and the CKD results are given by 

dotted lines, and each coupling value J.e is assigned to the same color and line convention 

throughout. Results for the standard basis states and Bell states are shown in subfigures 

(a) and (b), respectively. Switching times of elementary gate operations are also indicated 
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All purity figures for both type couplings indicate t.hat dec;oherence and dissipation result 

in a purity decay of less t.han 1 % over the course of t.he CNOT gat.e. For xx-type system­

bath coupling, subfigure 6.7(a) shows excellent quantitative agreement between the exact 

and CKD for the most chaotic ca::5e of Jx = 2.00 c. For Jx = 1.00 E, tlle agreement is also 

good with errors in the purity of less than 0.05 %. For the least chaotic case of Jx = 050 f, 

the discrepancy is on t.he order of 0.2 %. Overall. these results me surprisingly accurate for 

the small bath. The results for Bell states presented in subfigure 6. 7(b) also show the same 
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Figure 6.7: Exact numerical (solid lines) and CKD (dotted lines) results for averaged purity, 
P(t), iu the case of xx-type coupling for Jx = 0.50 f. (black), Jx - 1.00 f. (red), and 
Jx = 2.00 f. (blue). (a) Standard basis states and (b) Bell ::>tates. 
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Figure 6.7: Exact numerical (solid lines) and CKD (dotted lines) results for averaged purity,
P(t), iu the case of xx-type coupling for Jx = 0.50 f. (black), Jx - 1.00 f. (red), and
Jx = 2.00 f. (blue). (a) Standard basis states and (b) Bell ::>tates.
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Figure 6.8: Exact numerical (solid lines) and CKD (dotted lines) results for averaged purity, 
P(t), in the case of zz-type conpling for lc = 050 E (black), Jx = 100 E (red) , and 
.Ix = 2.00 f (blue). (a) Standard basis states and (b) Bell states. 
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Figure 6.8: Exact numerical (solid lines) and CKD (dotted lines) results for averaged purity,
P(t), in the case of zz-type conpling for lc = 050 E (black), Jx = 100 E (red) , and
.Ix = 2.00 f (blue). (a) Standard basis states and (b) Bell states.
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Figure 6.9: Exact numerical (solid lines) and CKD (dotted lines) results for averaged fidehty, 
F(t), in the case of xx-type coupling for lr = 0.50 t. (black), Jx = 1.00 t (red), and 
Jx = 2.00 t (blue). (a) Standard basis states and (b) Bell states. 
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Figure 6.9: Exact numerical (solid lines) and CKD (dotted lines) results for averaged fidehty,
F(t), in the case of xx-type coupling for lr = 0.50 t. (black), Jx = 1.00 t (red), and
Jx = 2.00 t (blue). (a) Standard basis states and (b) Bell states.
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fidelity, F(t), in the case of zz-type coupling for Jx = 0.50 E (black), Jx = 1.00 E (red), and 
Jx = 2.00 E (blue). (a) Standard basis states and (b) Bell states. 
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Figure 6.10: Exact numerica.l (solid lines) and CKD (dotted lines) results for averaged
fidelity, F(t), in the case of zz-type coupling for Jx = 0.50 E (black), Jx = 1.00 E (red), and
Jx = 2.00 E (blue). (a) Standard basis states and (b) Bell states.
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degree of high accuracy obtained for standard basis states. 

For zz-type system-bath coupling, subfigure 6.8(a) shows quite low accuracy as compared 

to the xx-type system-bath coupling cases seen in subfigure 6.7(a). The overall exact decay 

of purity for all couplings is comparable, but the CKD discrepancies for Jx = 2.00 f are 

on the order of 01 %, while those for Jx = 1.00 E are about 0.2 %. For lx = 0.50 E, the 

error is of order 2 %: which is significant but is still not cata.strophic. Subfigure 6.8(b) for 

Bell states again shows the same degree of accuracy as seen in subfigure 0.8(a) for standard 

basis states. 

The average fidelity, :F(t), is plotted for xx-type coupling in figure 6.9 and for zz-type 

coupling in figure 6.10, for the same Jx values. Here, a perfect agreement between the 

exact and CKD predictions is seen for all states, for all lx values: and for all couplings. 

This degree of accuracy is remarkable since these errors are now very large. The fidelity 

in figure 6.9 decays to 10 % of its initial value, while that in figure G.lO decays to 70 % 

of its initial value. The average fidelity of figure 6.9 for xx-type coupling shows almost no 

sensitivity to lx, while that in figure 6.10 for zz-type coupling varies snbstantially with lx· 

The CKD captures both of these effects The large magnitude of the fidelity decay in both 

cases is due to a coherent shifting of the subsystem dynamics. 

6.2.2 Results for reduced density matrix elements 

The purity and fidelity suffice for an overall identification of the magnitudes of non-unitary 

and unitary errors. The comparison of ideal and actual reduced density matrix elements, 

however, provides further valuable information on what actually goes wrong during the im­

plementation of an algorithm. Here, as a generic representation of the results, a comparison 

of the matrix elements for two initial subsystem states is presented; Ill) is representative of 

the standard basis states, and (100) + Ill)) / j2 is representative of Bell states. Both xx-type 

and zz-type couplings for J~. = 1.00 f are considered. 

CHAPTER 6. TESTS FOR CHAOTIC KRAUS DECOMPOSITION 97

degree of high accuracy obtained for standard basis states.

For zz-type system-bath coupling, subfigure 6.8(a) shows quite low accuracy as compared

to the xx-type system-bath coupling cases seen in subfigure 6.7(a). The overall exact decay

of purity for all couplings is comparable, but the CKD discrepancies for Jx = 2.00 f are

on the order of 01 %, while those for Jx = 1.00 E are about 0.2 %. For lx = 0.50 E, the

error is of order 2 %: which is significant but is still not cata.strophic. Subfigure 6.8(b) for

Bell states again shows the same degree of accuracy as seen in subfigure 0.8(a) for standard

basis states.

The average fidelity, :F(t), is plotted for xx-type coupling in figure 6.9 and for zz-type

coupling in figure 6.10, for the same ,Ix values. Here, a perfect agreement between the

exact and CKD predictions is seen for all states, for all lx values: and for all couplings.

This degree of accuracy is remarkable since these errors are now very large. The fidelity

in figure 6.9 decays to 10 % of its initial value, while that in figure G.lO decays to 70 %

of its initial value. The average fidelity of figure 6.9 for xx-type coupling shows almost no

sensitivity to lx, while that in figure 6.10 for zz-type coupling varies snbstantially with lx·

The CKD captures both of these effects The large magnitude of the fidelity decay in both

cases is due to a coherent shifting of the subsystem dynamics.

6.2.2 Results for reduced density matrix elements

The purity and fidelity suffice for an overall identification of the magnitudes of non-unitary

and unitary errors. The comparison of ideal and actual reduced density matrix elements,

however, provides further valuable information on what actually goes wrong during the im­

plementation of an algorithm. Here, as a generic representation of the results, a comparison

of the matrix elements for two initial subsystem states is presented; Ill) is representative of

the standard basis states, and (100) + Ill)) / j2 is representative of Bell states. Both xx-type

and zz-type couplings for J~. = 1.00 f are considered.



98 CHAPTER 6. TESTS FOR CHAOTIC KRAUS DECOMPOSITION 

The matrix elements are compared for xx-type coupling in figure 6,11 and for zz-type 

coupling in figure 6.12 for the initial state Ill). In these and subsequent figures, the coherent 

(i.e. error-free) time evolution is given by black solid lines. Exact time evolutions are plotted 

by solid green lines, i'lnd the CKD results are given by dashed red lines. 

Each subfigure represents a different matrix element. The specific matrix elements 

plotted in each subfigure are as follows: pW(t) = (0In'2 [ps(t)]10) is plotted in subfig­

ure (a), pi~)(t)-'- (lITr:z[ps(tYl/l) in (b), Re{pg)(t)} = Re{(0ITr2[ps(t)1I1)} in (c) and 

Im{pgl)(t)} = Im{(0ITr2 [ps(t)]ll)} in (d). Similarly, Pb~)(t) = (OITrdPs(tYIIO) is plotted in 

subfigure (e), p~;)(t) = (1ITrdps(t)]ll) in (f), Re{Pb;)(t)} = Re{(OITrdps(t)]ll)} in (g), and 

Im{P6~)(t)} = Im{(OITrdps(t)]ll)} in (h). 

The agreement between the exact and CKD results is excellent in all cases The dcvia­

tions from the coherent time evolution are large in all cases, while the discreprtllcies between 

the exact and CKD results are basica.lly negligible. The worst deviations are again seen in 

the zz-type coupling case, but these are still very small. 

The results are shown for the matrix elements for the initial Bell state (100) + Ill))/v'2 

in figure 6.13 for xx-type coupling and in figure 6.14 for zz-type coupling. The agreement 

between the exact and the CKD predictions is a.ga.in very good. The only visible deviations 

arise from zz-type conpling cases. See, for example, subfigure 6.14(a) and subfigure 6.14(c) 

where some small deviations are seen. 
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Figure 6.11: Exact numerical (::;olid green lines) and CKD (dashed red lines) results for 
matrix elemcnt::; of reduced density of fir::;t and secoud qubits iu the case of xx-type coupling. 
Error-free time evolution is given by a solid black line. The initial state of the system is 

Ill) and the intra-bath coupling Jx = 100 E. pb~(t) plotted in subfigure (a), pg)(t) in (b), 

Re{p6~)(t)} in (c), and lm{pg)(t)} in (d), p~~)(t) in (e), p~~)(t) in (f), Re{pb;){t)} in (g), and 

llll{p~~)(t)} in (h). 
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Chapter 7 

Discussions 

This chapter§ is reserved for discussions and explanations of a number of effects observed 

in the studies reported in this thesis. In previous chapters the effects of static internal 

imperfections on QC operations have been investigated. The primary objective has been to 

determine the efl'ecl of internal errors on QC operations, and also secondarily to determine 

the effects of attendant chaos on these errors. In doing so, a variety of two-qubit intra­

bath interaction strengths have been considered for which one can expect that increasing 

two-qubit intra-bath interactions would induce chaos in the bath degree of freedom. In 

section 7.1, by using two independent methods, it has been confirmed that the bath Hamil­

tonians are chaotic. It was observed that increasing two-qubit intra-bath interactions results 

in reduced decoherence and dissipation. In section 7.2 this effect is explained bnsrd on three 

different arguments. In section 7.3 a detailed discussion of the coherent shift process is 

given and the consequent large unitary errors are explained. In particular, by a comparison 

between the time scales of fidelity decays for the CNOT and Rabi studies it is argued that 

the errors arising from coherent shifting can be a serious obstacle for QC operations. 

SThis chapter is partly based on <J. study [17] reported by C;::etinb~ and Wilkie 
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exp(-s) is plotted by a solid red line and the Wigner-Dyson distribution P(s) 
(r./2)sexp (-r.s 2 /4) is plotted by a dashed blue line. 

7.1� Identification of chaos: level statistics and Loschmidt 

echo 

A convenient way to verify the crossover from the regular (i.e. non-chaotic) to chaotic 

regimes is to observe the nearest-neighbor level-spacing distribution P(s). As chaos emerges, 

the functional form P(s) changes from the Poisson distribution P(s) = exp (-s), charac­

teristic of regular systems, to the Wigner-Dyson distribution P(s) = (r. /2)s exp (-7TS
2 /4), 

appropriate for chaotic systems [23, 24]. 

To verify that this transition does indeed occur in the bath Hamiltonian of the QC core, a 

level statistics analysis was performed on the unfolded spectrum of 200 lowest eigenenergies 

of HB. The unfolded energies, E" were generated from the actual energies, E. using the
" 

smoothed staircase functions, ie. f\I(E) via E., = f\I(E,). Here .f\r(E) was obtained as a 

po)yuomial least squares fit to t.he actual staircase function, N(E) = L:~~~ 0(E - E t ) where 
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8 (;1:) is the Heaviside step function. 

A summary of the results of the nearest neighbor spacing analysis are given in figure 7.1. 

The onset of chaos can be seen for a relatively weak inter··qubit coupling strength of Jx = 

0.15 where the functional form is close to the Wigner-Dyson distribution. Above this value 

chaos sets in, and the eigenstatistics are basicaUy consistent with the characteristics of the 

Wigner-Dyson distribution. 

While level-spacing statistics are considered to be a universal indicator of quantum 

chaos, they do not provide information on the degree of chaos. Therefore, the Loschmidt 

echo, M(t) [89] was also examined, which is widely believed to he an efficient indicator of 

quantum chaos [90], and which also gives a quantitative indication of the strength of the 

chaos 

The Loschmidt echo is calculated for the bath Hamiltonian with the following formula, 

(7.1 ) 

where 1'1/)0) is the ground eigenstate of Ho, fIo is the regular bath Hamiltonian (i.e. HB for 

Jx = 0.00) and V is the chaos generating perturbation Hamiltonian (i.e., the xx coup1ing 

terms) for Jx = 0.05,0.15,0.50,1.00,2.00. A summary of the M(t) calculations is presented 

in figure 7.2. 

It is clear from figure 7.2 that an increasing magnitude of intra-bath coupling /c results 

in faster exponential decay of M (t), and this may be interpreted as an increasing degree of 

chaos. Note that for smaller J7; (i.e Jx < 0.50) the echo M(t) does not reach zero. 

7.2 Non-unitary effects 

In this section, the reduction of decoherence due to the chaos generating two-hody intra­

bath interactions is discussed. This effect was the subject of a number of studies and can 

he explained by three different but related arguments. The first argument is based on 
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the chaotic Kraus decomposition, the second argument is based 011 an approximate mean­

field master equation and finally, the third argument is based on intra-bath entanglement 

generation due to two-body intra-bath interactions. 

First argument 

The performance of the CKD was tested in the chaotic regime for a large number of QC C011­

figurations and surpassingly accurate results were obtained despite the small bath size used 

in the simulations. lt was observed that the accuracy of the CKD dramatically increased 

with increasi11g degree of bath chaos. The most accurate results were obtained for the 

strongly chaotic regime, i.e. Jx = 2.00 t. In the case of xx-type system-bath interactio11s, 

the predictions of the CKD were in an excellent agreement with exact results. However, 

in the case of zz-type system-bath i11teractions, while the qualitative performance of the 

CKD was still good, the quantitative agreements between the CKD and exact results were 

relatively poor as compared to xx-type coupling cases. 

The derivation of the CKD is based on the assumption that off-diagonal matrix elements 

of a bath coupling operator become vanishingly small for large chaotic baths, which implies 

that the CKD becomes exact in the semi-classical limit for large chaotic baths or when the 

number of bath modes approaches the thermodynamics limit. In what follows, it is expected 

that the performance of the CKD in predicting exact results should be proportional to the 

dimension of the bath degree of freedom. He11ce, the larger t,he number of bath modes, 

the more accurate the CKD predictions should be. However, the exact bC11chmark results 

used to test the CKD were limited to quite small baths, ie. 10-qubit baths. Nevertheless, 

surprisingly good results are obtained especially for xx-type COUpli11g cases. For baths of 

such small size, the off-diagonals can be quite small, but should not be totally vanishing. 

Figure 73 shows the absolute values of off-diagonal matrix elements of bath coupling 

operators, 1(<b~ltxl¢f)1 and 1(¢~ltzl¢f)1 versus eigenvector index n for increasing values 
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versus eigenvector index are plotted for increasing values of intra-bath coupling Jx . Here 
the state ldif) refers to the ground state of fJB and the index n labeling the eigenstates I¢~) 
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of intra-bath coupling Jx . In figure 7.3(a) the off-diagonals are plotted for x~r-type coupling 

and in figure 7.3(b), the off-diagonals are plotted for zz-type coupling. n = 199 matrix 

elements are calculated but only n = 50 of those are plotted for the clarity of the figures. 

The magnitude of the remaining matrix elements are very close the magnitude of matrix 

clements for n = 50. In the case of xx-type coupling, it is clear that increasing the magnitude 

of chaos generating intra-bath interactions, parameterized by Jx , results in a systematic 

reduction in the magnitudes of the off-diagonal matrix elements. However, in the case of 

zz-type coupling, it is not clear that the magnitude of the off-diagonal actually decreases. 

These observations are consistent with the accuracy of the CKD for differeut types of system­

environment couplings. The test results showed very good agreement between exact and 

CKD results for xx-type coupling for which the off-diagonal matrix elements become small 

as intra-bath coupling increases. In the case of zz-type coupling, the performance of the 

CKD was poor as compared to the xx-type coupling cases for which the off-diagonal matrix 

elements did not show a systematic decrease as intra-bath coupling increases. 

The good performance of the CKD in predicting exact results, especially for xx-type 

conpling cases, suggestt:> that the suppression of decoherence effect should be related to 

the arguments used in derivation of the CKD. Nevertheless, since the arguments can only 

be justifiable for very large environments, the tendency of decreasing off-diagonals with 

increasing Jx as well as the observed accuracy of the CKD should be related to a special 

effect (which is justifiable for small baths) rather than the dimension of the bath degree of 

freedom. 

The chaos generating two-body iuteractiom" parameterized by J x > in the bath Hamiltoni­

ans iJ.B are of xx-type. In the strongly chaotic regime the bath Hamiltonians are dominated 
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of these eigenstates rather than the large bath dimension. This special effect explains the 

surprisingly good accuracy of the CKD in the casc of xx-type system-bath interactions. 

Since there is no snch a special effect for zz-type system-bath interactions, the accuracy 

of the CKD for zz-type system-bath interactions was relatively poor. While this special 

effect explains the accuracy of the CKD for different t,ypcs system-bath interactions it does 

not provide a complete explanation for the observed systematic suppression of decoherence 

effect in the case of zz-type syst.em-bath interactions. Before giving the other arguments 

in this regard, it is noteworthy that there may also be a dynamical contribution to t.hese 

off-diagonal matrix elelnents, i.e. rapid phase fluctuations originating from the fast chaotic 

bath dynamics so that their net contributions to open system dynamics average out to zero. 

Yet, thb situation does not require vanbhing of the off-diagonals. This subtlety remains to 

be confirmed. 

Second argument 

The second argument with which an attempt is made to explain the suppression of de-

coherence effect and chaos favored Markovian dynamics is based on a mean field master 

equation [47-51]. For a total Hamiltonian, H = Hs + SE + HB , this approximate master 

equation takes the following form, 

d _ j.t _ 
-ps(t) = - (ijli) [Heff , ps(t)] - dt'W(t - t')LDPS(t'), (7.2)
dt 0 

where HeEf is an effective subsystem Hamiltonian including coherent shift terms, the form 

of which will be discussed in section 7.3, .co = (Cjn?){[·5,5] + [S,5']} is a dissipative 

Lindblad-Kossakowski operator [9], 5 is the system coupling operator, and C is the canonical 

variance of the bath coupling operator, B. The memory function of this master equation, 

W(t), is given by 

(7.3) 
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where 

p [(AAt) - (AA)]j vi (AAt), (7.4) 

[(AAt) + (AA)]/V(AAt), (7.5) 

and 

(AA) 

(7.6) 

1 
2 2 [2msmBTr{H2} - 2Tr{H}2 - 8msTr{H 2 ,oB} - 4Tr{H,oB}2

mSmB 

+ 2msmBTr{H2p1} + 2msTr{if2}TrB{p1} + 4mBTr{H,oB}Tr{Hp1} 

'2 ' 2 '2'+ 8TrB{Trs{H} ,oB} +4msTrs{TrB{H,oB} } + 4msTrs{TrB{H,oB}TrB{H}} 

, - 2 '- 2
4msmBTr s{TrB{ H,oB }TrB{ H,oB}} - 4msTrs{TrB {H}TrB{H ,oB} }Tr B{PB} 

+ 2msmBTrs{TrB{H,oB}2}TrB{p1} - 2mBTr{H pB }2TrB{,o1} 

(7.7) 

Master equations which include a memory function like W(t) are called non-Markovian 

master equations. Master equations which do not take into account the memory effects are 

called Markovian mast.er equations. 

The parameters, p and (j, given by equations (7.4) and (7.5) are taken from the appendix 

of report [50]. These parameters are defined over a finite basis a.nd thus it is necessary that 

all the operators appearing in equations (7.6) and (7.7) be represented by using a finite basis 

before calculations are done. The parameters of the master equation involve two types of 

averages canonical and ordillary averages. According to the prescription given in [GO], the 

canonical averages including C, B. and also the terms involving the canonical bath density, 

pB(O), a.re defined for a fixed IJath temperature and should he calculated hy choosing a cut­

off, i.e. neig such that the states with netg + 1 and higher are not populated for a given bath 
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Figure 7.4: Canonical variances, Cx and Cz , in the bath coupling operators for xx- and 
zz-type couplings are plotted for increasing valnes of .Ix. Data points are connected by lines 
to guide to the eye. 

temperature. Note that this is the approximation used in the exact dynamical calculations 

of the CNOT and Rabi studies. However, the calculation of the ordinary averages such as 

Tr{H} appearing in equations (7.6) and (7.7) requires a full Hamiltonian spectrum. Here, 

only the low energy spectrum of the bath Hamitonian (not the full spectrum) will be taken 

into account, and ne~g = 20 eigenvalues and eigenstates will be used in the calculation of C, 

I3, and all the terms appearing in p and q. This is because of the following reasons. Firstly, 

the intention here is not to test the performance of this master equation. Based on recent 

reports [50, 51], it is simply assumed here that the master equation is physical and captnres 

the importaut aspects of open system dynamics induced by chaotic environments. Secoudly, 

the knowledge of the full bath spectrum may be important when the uumber of dynamically 
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populated bath states j::; greater than the number of thermally populated bath states If this 

were the ca::;e, n eLg = 20 might be a poor approximation. However, the very good agreement 

between the CKD and exact results indicates that the number of dynamically populated 

bath states should not be an issue of concern here, since the CKD does not ta.ke into account 

the dynamically populated bath states. Hence, neig = 20 should suffice to show tha.t the 

chaotic baths favor Markovian dynamics and suppress decoherence. 

The exact numerical calculations for the CNaT and the R.abi studies showed partial 

recurrences in the purity plot::; in the regular bath regime. The recurrences are signatures of 

quantum memory that stems from non-local correlatious (between the states of the system 

and the environment) established by system-environment interactions. For both the CNaT 

and the Rabi studies, the quantum dynamics is initiated from a state of a product form, 

i.e . .0(0) = ps(O) ® PB(O). In the course of dynamics, the system and environment states 

are correlated, which means that the time-evolved state p(t) cannot be written as a product 

state, i.e. p{t) i- ps{t) ® PB(t). Hence, the effect of system-environment interactions is 

to generate a correlated state p(t) representing the state of both system and environment 

degrees of freedom. Since the correlated state p(t) represents both system and environment 

degrees of freedom, the state of the system ps(t) = Tr Blp(t)] has a certain memory of 

the bath degrees of freedom. The CNaT and the Rabi studies showed that the memory 

effects, i.e. the recurrences in the purity plots lessened with increasing magnitude of intra­

bath coupling, i.e. with the emergence of chaos. This effect is attributed to the favored 

Markovian dyna.mics due to chaos. Markovian dyuamics (i.e. rnemoryless dynamics) require 

a separation of relaxation times for the ::;ystem and bath degrees of freedom [91]. A chaotic 

bath can relax internally and quickly. However, the only available relaxation mechanism for 

a regular bath is through interaction with the subsystem. Therefore, chaotic baths should 

be more Markovian, which results in reduced memory effects and vanishing recurrences. 

The master equation (7.2) predicts that decoherence and dissipation in the chaotic regime 
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are governed by two factors; the variance, C, of the bath cou pIing operator, and the positive 

Gaussian shaped memory function, W(t) (unity at t = 0). Thus, based on this master 

equation, the suppression of decohereuce must either be govemed by a decrea,,(~d variance 

or by I:m increased Markovian behavior. 

To favor Markovian behavior the memory function is expected to shift its weight to 

shorter times as Jx increases. As a consequence, the bath will tend to canse less decoher­

euce. One would also expect the variance in the xx-type system-bath coupling to decrease 

with increasing Jx due to the vanishingly small off-diagonal matrix elements. As explained 

above, the off-diagonals are vanishing because of the orthogonality of eigenstates. However, 

this need not be the case with zz-type system-bath coupling, because the zz-type coupling 

operator does not commute with the xx-type coupling operator. Hence, both factors should 

favor the reduction of decoherence in the xx-type coupling case, but the reduction of de-

coherence in the zz-type conpling case, according to this master equation, should originate 

from the increasing Markovian nature of the dynamics. To verify these conclusions, firstly, 

the variances of the bath coupling operators will be examined, and secondly, the product 

of the variances and memory functions associated with :rx aud zz-type couplings will be 

studied. 

Defining the system-bath interactions as t x = L~12 ),,01') for xx-type coupling, and 

t z = L~~2 ),ioii) for zz-type coupling, the variances of these interactions operators canllOw 

be given via Cx = TrB[(t x - f:x?PB(O)] for the xx case, and Cz = TrB[(t z - f;z)2 pB {0)] 

for the zz ca~e. Here f:x = TrB[txP8 (O)] and f;z = TrB[tzPB(O)] denote the canonical 

averages. The definition of ;:78(0) is given in equation (3.37). 

In figure 7.4, the canonical variances of bath coupling operators are plotted Cl.':i a function 

of Jr' Figure 7.4 shows a decline of the variance for t x with increasing Jr.' Note, however, 

that there is a growth of variance for t z \\lith increasing Jx , as expected. Cx declines with 

increasing Jx because the chaos generating interactions, parameterized by Jx , and the bath 
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coupling operator, Lx, are of the same kind. For strong .lx' the eigenstates of HE are abo 

eigenstates of t x . Hence, the off-diagonals of t x in the basis of HE are vanishing. Note 

that this situation does not require a large thermodynamic bath dimension because of the 

orthogonality of eigenstates. In parallel to the t case, a growth of Cz with Jx can also bex 

understood because the variances are calculated over the same bath states and f:,£ and t z 

operators are related by canonical commutation rules. 

In figure 7.5(a), the product of the variance and the memory function for xx-type cou­

pling is plotted for different values of .lx . The dominant effect here is the decrease in the 

magnitude caused by the reduction of variance. However, the function is also becoming 

more Markovian, since it is weighted over a smaller time interval. In figure 75(b), the the 

product of the variance and the memory function for zz-type coupling is plotted for different 

values of .lx . Figure 7.5(b) shows a growth in the initial magnitude which corresponds t.o an 

increasE' in the variance. But there is also a marked shift toward shorter times. Again, the 

dynamics are becoming more Markovian with strong .lx, and it is this which should cause 

the reduction of decoherenee. Thus, both types of coupling show a reduction of decoherence 

in the chaotic regime, but the manifestation of this effect is a bit different. 

Third argument 

The suppression of decoherence in the presence of two-body intra- bath interactions can also 

be explained by an argument developed by Dawson et al [34]. The authors argued that this 

effect originates from t.he monogamous nature of quantum entanglement [92]. Examining 

the details of this argument requires basic information on entangled states and quantum 

entanglement which is provided below. 

Entangled states can simply be considered as non-local superpositions of states bE'tween 

two quantum subsystems. Note however that multipartite entanglement among many quan­

tum subsystems is also possible. Here, for the sake of argument, the discussions are limited 
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to two quantUIIl subsystems. In the course of open system dynamics, for example, an initial 

state of product form, p(O) = PS(O)0PB(O), for the subsystem, S, and the bath, B, becomes 

an entangled state due to the system-environment interactions, which means that the time 

evolved state for the bipartite system represented by p(t) cannot be written as a product 

form of its components anymore, i.e. ji(t) i ps(t) is! PB(t). Hence, decoherence emerges in 

the subsystem state, ps(t) = TrB[p(t)], for which P(t) = Trs[p1J < 1, since the bipartite 

state, (J(t), is an entangled state. 

The typical examples of entangled states are the Bell states (see equation (3.31), for 

example), which are also called maximally entangled states. Here, the maximality of entan­

glement has an important implication for decoherence. That is, the maximum entanglement 

between two subsystem states implies a complete decoherence on the state of each subsys­

tem. Consider two qubits A and B in the possession of Alice and Bob. Assume that Alice 

and Bob's two qubit state is a Bell state of the form, lAB) = (100) + Ill))/V2, which repre­

sents a state of two qubits for the bipartite system, A + B A probe on either Alice's qubit 

PA = TrB{IAB)(ABI} or Bob's qubit PB = TrA{IAB)(ABI} shows that 

= 
( 

~ o!)PA O
Hence, while the two-qu bit Bell state lAB) is a pure state, the single qubit states, PA a.nd 

PB, are non-pure and show a complete decoherence for which the purity takes its minimum 

value, PA = PH = 1/2. 

To gain an insight into the monogamy of entanglement, consider now three qubits A, B, 
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three-partite correlations. This is the simple picture of monogamy of entanglement which 

CHAPTER 7. DISCUSSIONS 117

to two quantum subsystems. In the course of open system dynamics, for example, an initial

state of product form, p(O) = PS(O)0PB(O), for the subsystem, S, and the bath, B, becomes

an entangled state due to the system-environment interactions, which means that the time

evolved state for the bipartite system represented by p(t) cannot be written as a product

form of its components anymore, i.e. ji(t) i ps(t) is! PB(t). Hence, decoherence emerges in

the subsystem state, ps(t) = TrB[p(t)], for which P(t) = Trs[p1J < 1, since the bipartite

state, (J(t), is an entangled state.

The typical examples of entangled states are the Bell states (see equation (3.31), for

example), which are also called maximally entangled states. Here, the maximality of entan­

glement has an important implication for decoherence. That is, the maximum entanglement

between two subsystem states implies a complete decoherence on the state of each subsys­

tem. Consider two qubits A and B in the possession of Alice and Bob. Assume that Alice

and Bob's two qubit state is a Bell state of the form, lAB) = (100) + Ill))/V2, which repre­

sents a state of two qubits for the bipartite system, A + B A probe on either Alice's qubit

PA = TrB{IAB)(ABI} or Bob's qubit PB = TrA{IAB)(ABI} shows that

( O~ o!)PA =

Hence, while the two-qu bit Bell state lAB) is a pure state, the single qubit states, PA a.nd

PB, are non-pure and show a complete decoherence for which the purity takes its minimum

va.lue, PA = PH = 1/2.

To gain an insight into the monogamy of entanglement, consider now three qubits A, B,

and C in the possession of Alice, Bob, and Charlie. Assume that Alice and Bob's qubits,

i.e. A + B are in a maximally entangled Bell state and Charlie's qubit is in an arbitrary

one-qlluit state. In order for this Bell state to correlate with the state of Charlie's qubit,

the maximality condition on the Bell state must be given up. Otherwise, there would he no

three-partite correlations. This is the simple picture of monogamy of entanglement which



118 CHAPTER 7. DISCUSSIONS 

suggests that quantum correlation cannot be freely shared. 

Nmv, the supression of decoherence argument by Dawson et al [34] can be stated. ThE' 

authors show in [34] that the entanglement shared by a bipartite quantum system, i.e. a 

subsystem and bath, is limited by the amount of entanglement each system (i.e. subsystem 

and bath) possesses separately. Hence, by maximizing the intra-bath entanglement [34], 

provided that the maximality of intra-bath entanglement is preserved under the action of 

local bath Hamiltonian, one can in principle minimize the system-bath entanglement. As a 

result, decoherence tan be suppressed. 

It is noteworthy that the entanglement argument does not make a reference to the bath 

chaos. However, there is a connettion between chaos am} entanglement, which is uiscussed 

below. During a crossover from a regular to chaotic regime, uot only eigenstatistics but 

also the properties of eigenstates dramatically chauge. To see this, consider a chaotic bath 

Hamitonian written in a two compouent form, iIB = fIo + V where fIo is the regular 

Hamitonian component (i.e. non-chaotic), e.g. representing one-body interactions (i.e fIB 

for Jx = 0) and V is the chaos generatiug interactions component, e.g. representing two­

body interactions (i.e. fIB for Jx =I- 0). Let fIoli) = Eili) be eigenvalues and complptc 

eigenvectors of fIo. The eigenvectors, In), of the chaotic bath Hamiltonian, HB (with 

Jx =I- 0) can be written as a linear combination of eigenvectors of the regular Hamiltonian, 

l.e. In) = L, r.,I). Here, the effect of chaos generating interactions, V, is to mix the 

regular Hamiltoniaus' eigenstates. Hence, the eigenstates of the chaotic bath Hamiltonian 

show a high degree of quantum correlations in the eigenbasis of the corresponding regular 

Hamiltonian. Since the quantum entanglement is a special case of general superpositions, 

the multipartite entanglement in eigenstates of chaotic Hamiltoniaus is then quite natural. 

Indeed, it has been shown in a number of studies [93] that quantum chaos results in an 

cnt.anglement generation. 

While the cha,os and entanglement arguments may seem equivalent this may not be 
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always the case. There is evidence [94] that chaos reduces entanglement generation in some 

cases. H has also been shown [35-38] that chaotic baths induce more decoherence than 

regular baths in some instances This is an opposite effect to that reported in this thesis. 

It would be interesting to verify whether only intra-bath entanglement generating chaotic 

interactions reduces decoherence. 

7.3 Unitary effects 

All unitary effects observed in the CNOT and Rabi detector studies arise as a consequence 

of the coherent shift process. According to the CKD, the (;Qherent shift emerges from a 

Hamiltonian of the form H = Hs + SB + HB as 

(7.8) 

where (nIBln) are the diagonal matrix elements of bath coupling operator, E. The coherent 

shift enters the approximate master equation (7.2) through the effective system Hamiltonian 

Heff , which is of the form, 
..... '" ..... -

Heff = Hs + SB, (7.9) 

where B is the canonical average of the bath coupling operator, E. Note that the shift 

predicted by the CKD and the approximate ma..ster equation is equivalent at absolute zero 

temperature, provided that the only populated bath state at absolute zero is the ground 

state of the bath. At very low bath temperatures, where the quantum technologies are 

expected to operate, the number of populated bath states will be quite low and thus the 

bath dynamics will be dominated by the gronnd state of the bath Hamiltonian. As a 

result, the CKD and the approximate master equation should give equivalent results for the 

coherent shift process at very low temperatures. 

The form of the coherent shift Hamitonian suggests that a non-negligible contribution 

from the coherent shift should always be expected whenever the canonical average of the 

CHAPTER. 7. DISCUSSIONS 119

always the case. There is evidence [94] that chaos reduces entanglement generation in some

cases. H has also been shown [35-38] that chaotic baths induce more decoherence than

regular baths in some instances This is an opposite effect to that reported in this thesis.

It would be interesting to verify whether only intra-bath entanglement generating chaotic

interactions reduces decoherence.

7.3 Unitary effects

All unitary effects observed in the CNOT and Rabi detector studies arise as a consequence

of the coherent shift process. According to the CKD, the (;Qherent shift emerges from a

Hamiltonian of the form H = Hs + SB + HB as

(7.8)

where (nIBln) are the diagonal matrix elements of bath coupling operator, E. The coherent

shift enters the approximate master equation (7.2) through the effective system Hamiltonian

Heff , which is of the form,
..... '" ..... -

Heff = Hs + SB, (7.9)

where B is the canonical average of the bath coupling operator, E. Note that the shift

predicted by the CKD and the approximate ma..ster equation is equivalent at absolute zero

temperature, provided that the only populated bath state at absolute zero is the ground

state of the bath. At very low bath temperatures, where the quantum technologies are

expected to operate, the number of populated bath states will be quite low and thus the

bath dynamics will be dominated by the gronnd state of the bath Hamiltonian. As a

result, the CKD and the approximate master equation should give equivalent results for the

coherent shift process at very low temperatures.

The form of the coherent shift Hamitonian suggests that a non-negligible contribution

from the coherent shift should always be expected whenever the canonical average of the



120 CHAPTER 7. DISCUSSIONS 

0.07 

0.06 

0.0 

V) 
~ 
OJ) 

'­'" 
~ 0.04 
> 
'" c;; 
u 
'2 0.03 
c 
0 

C<:l 

U 
I'L~I 

0.02 

0.01 

00 0.5 l.5 2 

J 
x 

Figure 7.6: Absolute values of canonical averages, It J.! and Itzl, are plotted for increasing 
values of Jx . Data points are connected by lines to guide to the eye. 

subsystem-bath coupling operator has a non-vanishing value (i.e., B i- 0). In some of the 

older spin- boson and boson-bosol1 studies, the existence of coherent shift was not discussed 

since the coupling operators are of Jaynes-Cummings or coordinate type for which B = 0, 

and the shift therefore vanishes. The coherent shift has importa.nt consequences when the 

native subsystem Hamiltonian does not commute with the shift Hamiltonian, i.e. [Hs l 5] i-

O. In this case, the effect of the shift is a distortion of the subsystem dynamics which can 

cause large unitary errors. In cases when~ the subsystem and shift Hamiltonians commute, 

the coherent shift, more or less, corresponds to an energy shift similar to Lamb shift-like 

contributions. In this case, generation of unitary errors may be more easily avoided. 

Figure 7.6 shows the a.bsolute values of the ca.nonical averages of the bath-coupling 

operators, i.e. Itxl = ITr[txPB(O)ll and lI;zl = ITr[tzPB(O)]I, versus increasing values of Jx ' 
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In the case of zz-type coupling, an overall decrease in the average is seen with increasing 

magnitude of Jx · In the case of xx-type coupling, however, the increasing magnitude of 

Jx results in a small increase in the average. This is clearly consistent with the observed 

improvement in fidelity with increasing .Ix for zz-type coupling (seen in figures 4.11 and 

4.12) and the slight decline of fidelity for xx-type coupling (seen in figures 4.9 and 4.10). 

The unitary effects observed in the CNOT study are not of Lamb shift type and thus are 

quite worrying. The magnitude of the fidelity decay for the span of a single CNOT gate is 

much larger than one would have expected based on the results of the Rabi study. The bath 

Hamiltonian, and xx-type coupling operator and its strength, employed in the Rabi study, 

were identical to those used in the CNOT study, so that the magnitude of the shift is not 

altered, but somehow the shift is dramatically more harmful. Moreover, this has nothing to 

do with the small subsystem dimension. 

To show this, calcnlations were carried out for a two-qubit subsystem (two-qubit Rabi 

detector) which has the subsystem Hamiltonian, 

fI{' = -~(B 0-(1) + B 0-(2)) (7.10)
.~ 2 Z z Z Z , 

where B z = 1 f and the dynamics evolve from au initial state of the form, I7/Jo) = (10) + 

11)) ® ([0) + (1))/)2. The fidelity for the two-qubit Rabi detector is plotted in figure 7.7, 

which shows that the two-qubit Rabi detector shows a similar fidelity decay behavior to the 

single--qubit Rabi detector seen in figure 5.5. 

The only remaining possibility for the large fidelity decay observed for the CNOT gate 

is the state dependency of fidelity. That is, the rapidly changing nature of the state on 

which the CNOT gate operates should be responsible for the large fidelity decay. In what 

follows, a direct analogy between the CNOT subsystem and a kicked-top [95] can readily 

be established by viewing the fidelity (in the absence of the wcak non-nnitary effects) as 

being similar to the Loschmidt echo of a kicked-top [96]. A kicked-top is a simple system 

displaying irreversible and chaotic behavior, which can be considered as a single spin (eg. 
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Figure 7.7: Time evolution of fidelity, F(t), for two-qubit Rabi detector. 

a qubit) subject to periodic pertmbations. Thc detailed discussion of the kicked-top can be 

found in [9fi. 96]. Here, only an analogy beLween dynamical behaviors of a kicked-top and 

the CNOT gate is made. 

A :"econd unexpected effect is that the fidelity decay seems to be almost independent of 

B, which itself change:" with Jx as :"hown in figure 7.G In the single qnbit Rabi detector 

stndy [18], the fidelity decay time wa:,; highly sensitive to Jx , and the same is true of the two­

qubit Rabi detector (see figure 7.7). Here, the period of the decay increases snbstantially by 

10 ns when Jx increases from zero to 0.15 f, then declines from .Ix = 0.15 f to Jx = 050 f, 

and finally moves toward some saturated value after J" = 1.00 f Fidelity decay times for 

the CNOT with xx-type coupling vary by less than 0.1 ns. This is thus a major effect It 
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seems quite likely that these two unusual effects are somehow related, and that the CNOT 

dynamics have a phenomenology similar to that of the Loschmidt echo of a kicked-top [96J. 

It is well-known that there are two regimes of Loschmidt echo of a kicked-top [96]: the 

fast exponential decay regime which is insensitive to the pertnrbation strength, and the 

Golden Rule regime where decays are slower and decay rates depend on the perturbation 

strength [96]. The results for the CNOT gate and Rabi detectors also fit into this picture, 

and the origin of the two unexpected unitary effects can be explained as arising from the 

rapidly changing nature of the CNOT gate. 

The two-qubit Rabi detector would correspond to vanishingly weak kicking which would 

be expected to lie in the Golden Rnle regime, where decays are slower and decay rates 

depend on the perturbation st.rength [96]. However) note also that t.he sensitivity of fidelity 

to Jx disappears in the strongly chaotic bath regime (i.e. Jx = 1 E and .]X = 2 E) where the 

period of decay saturates toward a certain value. 

On the other hand, it appears that the CNOT gate for the xx-type coupling case lies 

in the exponential decay regime where the fidelity does not show any sensitivity to pertur­

bation strength. However, the CNOT gate for the zz-type coupling case lies in the Golden 

Rule regime where the dominant effect is the high sensitivity of fidelity to the perturbation 

strength. The kicked-top or rapidly changing nature of the CNOT gate suggests that remov­

ing the effects of the decay after completion of the gate may not be possible, which means 

that error correction strategies for the shift must be performed during each snbcomponent 

of the gate. 
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Chapter 8 

Conclusion 

The central theme of this thesis is the open system dynamics of a small quantum system 

coupled to self-interacting chaotic environments. Many physical and chemical phenomena 

occur in condensed phase media where dynamics is chaotic. Condensed phase environments 

also offer a wide range of controllable interactions for new quantum technologies. Hence, 

the prediction of open system dynamics of quantum systems embedded in chaotic environ­

ments can have many important applications. Standard models of decoherence represent 

an environment degree of freedom as a collection of non-interacting harmonic oscillators or 

spins. These representations are not valid when environmental dynamics is chaotic. 

In the first part of this thesis a Kraus decomposition governing the dynamics of a quan­

tum system interacting with large chaotic environments was derived. The extension of the 

decomposition to a time-dependent system Hamiltonian was also achieved so that the de­

composition has wider applications. In the second part of this thesis two self-interacting ­

and chaotic - spin bath models were studied by exact numerical calculations. These models 

represent an isolated QC with static internal imperfections. In the first model, internal 

dccoherence dynamics of a CNOT gate was investigated for a large number of QC configu­

rations: two sets of eight initial subsystem states (i.e. standard basis states and Bell states), 
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two different types of error generators (ie. phase and bit-flip errors), and five different val­

ues of intra-bath interactions. For these QC configurations, potential SOurces of errors were 

identified. The results showed that while internal decoherence can be a matter of concern, 

the primary source of error is unitary, induced by the coherent shift process. It wa.s shown 

that chaotic interactions in the environment degree of freedom can suppress the error due 

to the decohercnce. Hence, deliberately ind uced chaotic bath interactions may prove an ef­

ficient error correction strategy when such strong interactions can readily be implemented. 

The fact tha.t alarming sources of internal errors are unitary, induced by coherent shifting 

rather than decoherence or dissipation, is not expected from previous studies. Since these 

errors are unita.ry and thus deterministic in nature, they may be correctable by existing or 

specifically tailored new methods. The second model reported in this thesis is a detector 

set-up configured to probe internal bath dynamics. While coherent shift was identified as a 

serious source of error, the detector set-up showed that the shift can a.lso be used for a good 

purpose, and by using the detector valuable information on environmental self-interactions 

can be obtained. In the third part of this thesis the performance of the Kraus decompo­

sition was tested against exact numerical results of QC models and very good agreements 

were obtained. The promising results suggest that the Kraus decomposition can be used as 

a practical compu tational tool for low temperature applications of open system dynamics 

ind uced by chaotic euvironments. 
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