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Abstract

Condensed and solid phase environments offcr a wide range of controllable interactions
for new quantum technologies. Understanding the dynamics of open quantum systems
interacting with such complex environments is important for correct modeling of many
chemical and physical phenomena and for development of new quantum technologics. The
central theme of this thesis is the open system dynamics of a small quantum system coupled
to self-interacting chaotic environments.

This thesis consists of three related parts. In the first part, a theory predicting open
dvnamics of a quantum system interacting with chaotic environments is reported. The
theory is of a Kraus decomposition form, which is exact for chaotic environments of ther-
modynamic dimension. Extension of the theory to time-dependent system Hamiltonians
is also presented so that it mayv have practical applications for studies of new gquantum
technologies. In the sccond part, extensive numerical calculations are performed to obtain
the exact quantum dynamics for two realistic models of self-interacting environments. Both
models represent a statistically flawed isolated quantum computer (QC) core. In the first
model, the open dynamics of a quantum-control NOT (CNOT) gate in the presence of static
internal imnperfections are investigated and internal error sources are identified for a large
number of QC configurations. The results indicate that the strong two-body imperfections
suppress the internal decoherence and enhance the performance of the CNOT gate. More-

over, the largest source of error is found to be unitary due to coherent shifting rather than



deccherence. The second model represents a single-qubit detector set-up designed to probe
the internal bath dynamics. Small low temperature isolated QCs with static internal Haws
can be considererd as prototypical exaroples of self-interacting — and possibly chaotic - en-
vironments of two level systems for which the exact quantum dynamics can be numerically
tractable on a classical computer. In the third part, the theory of chaotic environments is
tested against the exact numnerical results of the above models and very good agreements

are obtained.
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Chapter 1

Introduction

The dynamics of a closed quantum system evolves from the Schrodinger equation [11. The
interaction of a quantum system with its surrounding environment, however, induces quan-
tum processes for which the Schrédinger’s dynamics no longer holds. This is usually de-
scribed by stating that the system is not closed and undergoes open system dynamics [2, 3].
In general, open systern dynamics consists of decoherence, dissipation, and coherent shift
processes. Decoherence is a process in which the quantum correlations (i.e. coherent super-
position) of the state of the system are destroyed duc to interactions with its environment.
Dissipation is a means of energy transfer process from the system to its environment. The
effects of decoherence and dissipation ou the system arc not unitary, and thus irreversible
in practice. On thc other hand, the coherent shift process is a unitary contribution of an
environment on the open system dynamics, which perturbs the free system Hamiltonian
(i.e. the Hamiltonian of the closed quantum system) with a Hermitian perturbation. Con-
sequently, the system evolves under an effective system Hamiltonian, which comprises a
free system Hamiltonian plus a perturbation. Unraveling the effects induced by the dif-
ferent components of system-environment interactions, and thus determining the degree of

deviation from the Schrodinger dynamics is of particular importance to the understanding



CHAPTER 1. INTRODUCTION 2

of many chemical and physical phenomena and in the development of new quantum tech-
nologies such as molecular motors and electronics [4], laser control scenarios for chemical
reactions [5], and quantum computing [6-8]

Traditional theories of open system dynamics represent an environment’s degree of free-
dom either phenomenologically [9] or as a collection of non-interacting oscillators [10, 11] or
spins [12]. These non-interacting environment models are only valid in special instances. For
example, in modeling atom-radiation interactions, the vacuum radiation field is represented
by uncoupled oscillators., However, the validity of non-interacting environment models is
questionable in general. This is because the non-interacting environment models do not take
into account the internal dynamics of an environment, which may play an important role in
a decoherence process and thus may strongly influence the apen system dynamics. Consider
as an example the quantum control [5, 13] of a chemical reaction in a large molecule which
requires coherent manipulation of the reaction coordinate (i.e. the subsystem) while simul-
taneously interacting with the rest of the molecule(s) (i.e. the microscopic environment)
as well as with the hosting media e.g. gas phases, solutions, surfaces, or solids (i.e. the
macroscopic environment). Molecules are strongly self-interacting anharmonic micrescopic
environments and hence are not well represented by independent harmonic oscillators or
spins. Likewise, the hosting media are strongly self-interacting and anharmonic in general.
Thus, the coherent quanturu control in condensed phase media, by and large, consists of a co-
herently manipulated quantum subsystem coupled to strongly self-interacting and possibly
chaotic environments. These considerations suggest that more general approaches beyond
the standard scenarios of decoherence are warranted for correct modeling of open systein
dynamics in eondensed phase environments. This can be accomplished by general environ-
ment models in which self-interactions among environmental modes are [ully included and
therefore such environment models are more appropriate to represent complex environments

with non-trivial internal dynamics.
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The work reported in this thesis is devoted to the understanding of the open dynamics
of a small quantum system coupled to self-interacting chaotic environments. This work
consists of three related parts. The first part is concerned with development of a theory of
open systern dynamics induced by chaotic environments [14]. The theory is of an explicit
Kraus decomposition form, which becomes exact for chaotic environments of thermodynamic
dimension (l.e. very large). Generalization of the theory to time-dependent systen: Hamil-
tonians has also been achieved [15] and thus the theory may have important applications for
studies of new quantum technologies [4-8]. In the second part, extensive numerical calcu-
latious are performed to obtain exact quantum dynamics for two models of self-interacting
chaotic environments [16-18]. Both models represent a statistically flawed isolated quantum
computer (QC) core. In the first model, the open dynamics of a quantum-controlled NOT
(CNOT) gate is investigated and internal error sources are identified [16, 17]. The second
model represents a single qubit detector set-up designed to probe the internal environmental
dynamics [18]. Small low temperature isolated QCs with static internal flaws can be con-
sidered as prototypical examples of self-interacting and possibly chaotic - enviromments
ol two level systems for which exact quantum dynamics can be numecrically tractable on a
classical computer. Therefore, the exact numerical results obtained in these studics serve
as benchmarks, against which the developed theories of self-interacting environments can
be tested. Hence, in the third part, the theory [14, 15] developed in the first part is tested
against the exact benchmark results [16-18] and very good agreement is obtained.

The remainder of this chapter is comprised of three sections, each of which is an intro-

duction to different parts of this thesis.

1.1 Theories of self-interacting environments

Many chemical and physical phenomena occur in complex environments, e.g. condensed and

solid state media, which involve an cnormously large number of participating components.
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While the Schrodinger equation for pure quantum states and the Liouville=von Neumann
equation for pure and non-pure quantum states provide the formally exact dynamics of
closed quantum systems, in practice, the exact quantum dynamics of such large quantum
systems are not compulationally tractable. Fortunately, important dynamical changes nsu-
ally occur only in a small part of such large systems. Far example, a reaction coordinate in
a large molecule is the potentially interesting and the nrost important part of the molecule.
Therefore, a subsystem-environment scheme is employed as a starting point to formulate
the open dynamics of a small quantum system. In subsystem-environment schemes, the
subsystem or simply the systern thus represents the important part of a larger system and
the rest of the whole can be treated or approximated as a rescrvoir (i.e. heat bath). Typical
examples of this approach include electron [19] and proton [20] transfer reactions in large
biological molecules, vibrational relaxation of ions in solution {21], proton transfer in organic
molecules in solids [20], and migration of defects in solid state media [22].

There has been growing interest recently in the development of new quantum tech-
nologies [4-8]. Principles behind the new quantumn technologies rely on the existence of
special quantum correlations, such as superpositions of states or entangled states. More-
over, it is required that these quantum states can be coherently manipulated by externally
induced unitary operations, e.g. manipulations by a laser. Unfortunately, the quantum
states are fragile and their maintenance is hard to achieve even at very low temperatures.
Deviations from Schrédinger dynamics are inevitable in practice and thus considered as
error sources during implementation. In thig respect, the destructive effects induced by
system-environment interactions constitute a potentially serious problem for the new quan-
tum technologies. The condensed and solid phase environments provide an attractive range
of controllable interactions for the quantum technologies. The coherent quantum control of
a quantum system in such complex environments requires detailed knowledge of all factors

that affect the open systern dvnamics. Howewver, the {actors which encumber or ease the
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coherent quantum contrel in complex environments are not very well known. This is partly
due to the fact that the internal environmental dynamnics is neglected by traditional theories
of decoherence.

Chaotic dynamics [23, 24] is an unavoidable feature of complex environments. Recent
experimental [25] and numerical [26] cvidence suggests that the condensed phase dynamics
is generally chaotic. For example, the dynamics of a colloidal particle in water [25] and vi-
brational dynamics of a silicon crystal [26, 27 have been shown to be chaotic. Anharmonic
corrections are known to be important in the study of phonons and essential for an under-
standing of heat transport phenomena [28]. Chaotic and regular (i.e. integrable) systems
have gnalitatively dillerent dynamics and therefore chaotic systemns cannot be accurately
described by regular systeins. Thus, the self-interacting and chaotic environment models
provide a hetter representation of condensed or solid state envirenments than standard un-
coupled oscillator bath models. Moreover, recent evidence shows that the self-intcracting
environment models [29, 30] can cause much less decoherence than would be predicted by
uncoupled bath models. Semiclassical [31, 32] and other [33, 34] arguments have been used
to explain this effect. However, the reverse effect has also been reported in nwnerical sim-
ulations at high temperatures [35, 36] and for an environment consisting of a few chaotic
degrees of freedom (37, 38]. These considerations strongly suggest that the internal dy-
naiaics ol an environment is an important factor that should be taken into account i the
formulation of open systemn dynamics.

Theories implicitly allowing the self-interactions among environmental modes have been
reported. However, these theories have some disadvantages. For instance, the correlation
functions appearing in Redfield theory (39, 40| and its generalizations [41, 42] are often cal-
culated via realistic molecular dynamics simulations where environmental self-interactions

can fully be taken imnto account. However, the Redfield theory is known to possess a few
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drawbacks. The Redfield master equation violates the positivity of the reduced density op-
erator. The use of special initial conditions in some cases is shown to prevent the positivity
violation [40]. Furthermore, the Redfield master equation predicts an incorrect long time
limit [43]. The theory developed by Bulgac ef ol [44] alsc takes into account the environ-
mental self-interactions, representing the environment as an ensemble of random matrices.
However, the master equation of Bulgac et al [44] seems only suitable for high temperatures
and the random matrix representation of an environment may not be appropriate to explore
certain effects intrinsic to a specific environment. Exact solutions for a harmonic oscillator
coupled to a general environment model are reported as well [45]. The semi-classical Wigner
method predicts quite accurate results [46] at moderately high temperatures. The recently
developed mean-field master equation [47-51] is alsc a promising computational tool for
self-interacting environments. The theory reported in this thesis is free of the limitations of
the theories summarized above and especially applicable at low temperature limits where
uew quanturn technologies are expected to operate.

There are two commonly used starting points for derivatiou of a theory of open system
dyuamics: the Nakajima and Zwauzig Projection Operator technique [52] and the Kraus
Operator Sum Represeutation (OSR) technique [53]. Both techniques lead to formally
exact theories for open system dynamics. However, the resulting exact theories arc of
formal interest only because they do not allow either numerical solutions or explicit forms
of dynamical equations to be determined. Ir this thesis, the Kraus OSR techuique is used
to abtain a dynamical equation of motion for a quantum subsystem interacting with a large
chaotic environment. The Kraus OSR automatically satisfics all the required conservatiou
laws for the reduced density, 1.e. Hermiticity, positivity and norm conservation. The explicit
form of Kraus operators for general system-bath models, however, is impossible to obtain
in practice. This is partly because the Kraus OSR is not a unique representation like

spectral decompositionn. Nevertheless, the Kraus OSR provides a good starting point for the
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derivation of approximate master equations as well as evolution equations for open system
dynamics, see e.g. [64]. In recent investigations [14, 15] it has been shown that a unique form
of Kraus decomposition and an explicit forin of Kraus operators can easily be obtained for
large chaotic environments. In chapter 2 of this thesis, a detailed derivation of the chaotic

Kraus decomposition (CKD]} is presented.

1.2 Internal errors in flawed quantum computers

Computers process information by by manipulating strings of binary numbers. The memory
of a classical computer is made up of bits. A classical bit is a physical system, nothing bnt
a switch, with two possible states, i.e. 0 or 1. At a particular instance in time, the switch
can be either on or off. A quantum bit is called a qubit. A qubit is a two-level quantum
system; such as a spin-half particle or gronnd and excited state of an atom. In addition to
two classical-like states, i.e. {[0},[1)}, qubits have quantnm states, i.e. ) = al0) + b|1)
with complex a and b such that |¢|? + |6/ = 1. If a qubit is considercd as a quantum switch,
the state of this switch can be on and off in the same time.

A two-bit register, i.e. two switches, can store 1 of 4 different binary numbers, i.e. (0,
01,10 or 11 in its memory. A classical logic operation transforms one of these numbers ta
another. A two—qubit register, on the other hand, can store 4 different numbers in the same
time as a superposition state, |} = a|00) +b]01) + ¢|10) + d|11) with a? +b* + 2 4+ d? = 1.
Hence, a quantum logic operation on |1f) is then equivalent to 4 classical-like operations. An
N qubit register then can store 2”¥ numbers and can perform 2% operations simulianeously.
Hence, quantnm computers provide extremely large number of states for computation.

Quantum computation can be achicved by using only one- and two—qubit quantum
gates. The guantum gates are elementary quantuin logic operations which trausform an
input qubit state to an output qubit state. A one—qubit gate is an operation performed on

a state of a single qubit. Similarly, a two—qubit gate is an operation performed on a state
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of two qubits. It has been shown that universal quantum computation can be achieved by
one and two—qubit gates [55-57]. This means that any quantum algorithm, whether it is
simple or very complex, can be composed as a comnbination of one and two-qubit gates.

(Quantum computation promises superior computing power over classical computation:
Shor’s algorithm [58] can factorizce large nnnbers into primes exponentially faster than any
clagsical algorithm. Grover’s search [59] algorithm can identify an object from a randomly
ordered database with a square root increase in speed as compared to its classical analog.
Quantum cryptography [60] guarantees secure communication and quantum Fourier trans-
form promises faster quantum chemistry calculations [61]. This great potential for com-
putational power has motivated numerous experimnental proposals. Particular experiments
with linear ion traps [62] and nuclear spins in solutions {63 have already demonstrated that
quantum computation is indeed achievable for few qubit systems. However, it seems that
these particular architecturcs are limited to a small number of qubits, and not easily scalable
for larger qubit sizes. However, hundreds of qubits are needed for a quantum computer to
compete with its classical analog [64]. In this respect, solid state QCs are becoming the ceu-
ter of attention with their scalable architectures. Proposals for scalable gnantum computers
include nuclear spins embedded in a solid [65], Fullerene—electron—spin quantum computer
[66], electrons in quantum dots [67], Josephson-junction devices [68] based on charge [69, 70
and fux [71] degrees of frecdom.

External errors emerging from interactions of a QC with its external surrounding envi-
ronment are widely believed to be the primary limiting factor in the development of quantun
computing technologies [6-8]. However, recent investigations [16-18] show that even when
a QC core is completely isolated from its snrrounding external euvironment, the coherent
dynamics of qubits within an isolated QC core are not guaranteed. This is hecause qubits
within such an isolated QC are still subject to the destructive effects of internal deccherence,

dissipation and coherent shifting caused by possible one— and two-body residual interactions
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and imperfections among the qubits.

The issue of internal errors attracted attention recently in the context of quantum chaos.
Investigations [72, 73| based on statistical properties of an eigenspectrum of an isolated QC
with static internal imperfections show that quantum chaocs and a consequent thermaliza-
tion [74] of the QC corc is inevitable in the presence of sufficiently strong residual two—qubit
interactions. Ideal computational states of a QC are separable. Quantum chaos destroys
thesc states as a result of incoherent mixing [75]. The mixing process is expected to worsen
over time, leading to an effective thermalization of the QC. On the other hand, the dynam-
ical studies [76-78] where the internal imperfections are treated as random perturbations
show that chaotic perturbations actually stabilize the QC dynamics {76-78]. These seem-
ingly contradictory conclusions, ie. destruction and stabilization of QCs with quantum
chaos, suggest that establishing the effects of internal imperfections is a complex problem.

Internal errors arising in a QC core may originate from internal decoherence, dissipation
and even coherent shifting. The studies presented here and reported in [16-18] show that
the rclative importance of these effects and their dependence on residual internal couplings
can only be determined via fully realistic dynamical simulations of QC operations. The
objective of these studies [16-18] was to examine directly the operation of a fAawed QC in
a specific architecture, to investigate the different types of internal errors that emerge, and
to observe how these errors change with varying magnitudes of static internal imperfections
between qubits.

In chapters 3-5 of this thesis, detailed discussions of these three studies [16-18] are
presented. Specifically, in chapters 3—4, the effects of one— and two-body static flaws in a
CNOT gate [69] performed on two qubits of a larger Josephson charge-qubit QC [68] are
explored. These two chapters comprisc detailed discussions of the results reported in {16, 17].
In chapter 5, a single-qubit subsystem is designed to show how the internal dynamics of an

environment can be probed via the observation of environment—induced Rabi oscillations in
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the subsystem dynamics. Chapter 5 is based on the Rabij detector study reported in [18].

In chapter 3, a statistically flawed many—qubit isolated QC core is envisaged. A CNOT
gate operates on two qubits of the QC. ‘The two qubits performing the CNOT gate in-
teract with neighboring qubits of the QC via residual interactions. As a result, internal
errors are generated in the gate. The isolated QC core in this instance is mapped onto a
subsystem-environment scheme wherein the active part of the QC, a two-qubit register (the
subsystemn}, performs the CNOT gate while interacting with the neighboring idle qubits
{the environtment).

The exact dynamies of the QC are obtained for a variety of configurations: eight different
initial register states, two different error generators (phase and bit-flip errors) and five
different intra-environmental interaction strengths, and the errors are identified by use of
two error quantifiers: purity and fidelity. These error measures are used throughout to
estimate the quality of computation. In particular, these measures are used to distinguish
non-unitary errors {(i.e. deccoherence and dissipation) from those of the unitary type (i.e.
coherent shifting or distortions).

In chapter 4, simulation results are reported. First, the results are presented for average
error quantifiers, l.e. average purity and fidelity. These averages were calculated over
standard basis states and Bell states, which allowed the compression of the data and the
estimation of the overall relative performance of standard basis states versus Bell states for
two different types of error generators. Second, the results are reported for individual initial
states to determine possible state dependcncy of errors. A brief summary of the results
presented follows. In all cases, it was found that the gate purity reflects a non-negligible
amount of decoherence for both bit-flip and phase type non-unitary errors. However, the
magnitude of errors detected by the gate fidelity is found to be very large as compared to
those detected by gate purity. This uncxpected large difference arises from large unitary

errors due to the coherent shift process. When the QC is driven into the chactic regime by
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increasing the magnitude of two-body interactions, the non-unitary errors are suppressed
to a negligible extent. However, the large unitary errers survive even in the chaotic regime
and endanger the quality of computation.

Two important consequences can be deduced from the above results. First, environment-
induced coherent shifts can be a serious source of unitary errvors for QCs in the presence of
static internal imperfections. Second, decoherence recuperating chaotic intra-environmental
interactions can be used in correction of non-unitary errors. The results also suggest that
environment-induced nnitary crrors can be a more serious obstacle for QC operations than
nen-unitary errors. This observation has not been reported previously. Fortunately, since
these errors are of unitary type, they may easily be corrected with existing [79] or more
specifically designed error correction schemes. Moreover, since the chaotic interactions are
very successful in suppression of non-unitary errors, one can in principle manipulate an ideal
qubit environment to enhance the performance of active qubits. Hence, deliberately induced
chaotic interactions can serve as an error correcting strategy when implementation of such
strong qubit-qubit interactions is practical.

In CNOT studies [16, 17], the coherent shift process was identified as a potentially
harmful error source for QCs with static internal imperfections. However, in chapter 5, it
is shown that the coherent shift could be put to good use. Specifically, it is shown that the
coherent shift can be used to probe internal dynarmnics of an environment and to estimate
the two-body intra-cnvironmensal interaction strength.

One- and two-qubit gates suffice to perform any quantumn algorithm. The gate opera-
tious can be accomplished by manipulations of one and two-qubit control parameters. One
qubit imperfections may arise due to the variation of one-body control parameters while
two-qubit imperfections may emerge as a result of the residual qubit-qubit interactions or

interactions of qubits with local impurities. The error induced by one-body imperfections
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should readily be correctable as compared to the errors criginating from two-body interac-
tions. Information on the strength of two-body interactions may prove very useful in the
elimination of their effects. Results reported in [16, 17] and in chapter 4 indicate that the
errors induced by coherent shilts are very sensitive to the magnitude of environmental self-
interactions. This effect can be nsed to devise a detector setup to acquire useful information
about environmental self-interactions.

In chapter 5, a single-qubit detector is devised and allowed to interact with the rest of
a QC. Tn this setup, the system degree of freedoni consists of a single two-level system and
the environment degree of freedom includes a number of two-level systems interacting with
each other. In the absence of system-environment interactions, the detector qubit under-
goes a phase evolntion only. Once the systemn-environment interactions are in effect, the
populations of the detector display Rabi oscillations due to the coherent shift. The fdelity
of the detector qubit alsc shows a periodic behavior 1 accord with the Rabi oscillations.
It is shown that the strength of the environmental sclf-interaction can be determined from
the period of these oscillations. The basic ideas bchind this detector setup sheuld also be
applicable in more general contexts. For example, an optical impurity in a solid may serve

as a detector to extract knowledge of self-interactions in solids,

1.3 Testing chaotic Kraus decomposition

Isolated QCs with static internal Raws are prototypical examples of self-iuteracting chaotic
environments of two level systems that allow exact numerical solution for the relatively low
dimension of qubit environments. The exact nurmerical results obtained in such studies can
serve as benchimarks against which theories for chaotic environments can be tested. Hence,
in the third part of this thesis the CKD is tested against exact numerical results of the QC
maodels.

In chapter 6, the results of the test calculations are presented for a chaotic regime where
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the CKD applies. Specifically, the exact numerical results obtained for the Rabi detector
study are used to test the time-independent form of the CKD aud the exact results of the
CNOT study are used to test the time-dependent form of the CKD. The accuracy of the
CKD is estimated by making use of two error quantifiers, i.e. purity and fidelity. Purity is
used to estimate the accuracy of the CKD in the case of non-unitary effects, i.e. decoherence
and dissipation, and Adclity ig used to estimate the accuracy in the case of unitary effects,
i.e. coherent shifting. While the purity and fidelity suffice for an accurate assessment of open
systemn dynamics, these error measures do not provide useful information on which matrix
elements of a density operator are affected most in the course of open system dynamics.
This knowledge may prove very useful, especially in optimization of a quantum algorithm in
the presence of coherent shifting. Therefore, the exact numerical results obtained for matrix
elements of reduced deusity are also compared with those obtained with the CKD to judge
whether the CKD is successful in predicting the dynarmics of the matrix elements.

One particular assumption used in the derivation of the CKD is that the dimension of
the chaotic environment is very large. The CKD becomes exact only when the number of
environment modes approaches infinity. However, the exact numerical results used to test
the CKD are limited to an environment of ten two-level systems. Therefore, the prediction
of the CKD for such a small environment is only approximate. However, qualitatively good
agreement was obtained and the results for all test cases were accurate despite the small
environmental dimension. In the case of non-unitary effects, the discrepaincies between the
exact and approximate results are quite small and the accuracy of the CKD is directly
proportional to the degree of chaos in the environment. In the strongly chaoctic regime, the
highest degree of accuracy was obtained in all cases. In the case of unitary effects, very
good quantitative agreement was achieved in all cases, irrespective of the degree of chaos
in the enviroriment. Ovwverall, the accuracy of the CKD in predicting the exact results is

satisfactory and thus the CKD may be a valuable computational tool for low temperature
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simulations of new quantum technologies where other applicable theories of self-interacting

and chaotic environments are mostly limited to high temperature applications.

1.4 Collaborative versus individual work

The work presented in this thesis is published in five journal articles by Cetinbag and
Wilkie [14-18]. The majority of the published work is based on the ideas of the author of this
thesis. These ideas were elaborated in collaboration with Wilkie, In addition, the author of
the thesis contributed to the five published articles [14-18] by conceiving and developing the
physical models, writing all the computer codes, executing all the calculations, producing
all the graphics, writing the first drafts of all the manuscripts, and finally corresponding

with the journals.



Chapter 2

Kraus decomposition for chaotic

environments

In this chapter %, a simple formula predictiug the dynamics of a quautum subsystem inter-
acting with large chaotic envircnments is derived. This formula is of the Krans Operator
Sum Representation (OSR) [53] form, which automatically satisfies all the required con-
servation laws for the reduced density operator. The chaotic Kraus decomposition (CKD)
constitutes a formally exact equation of motion for the reduced density operator in terms
of explicit representations of the Kraus operators. Aside from the quantum chaos, the only
required property of the bath Hamiltonian is that it be of thermodynamic dimension (i.e.
very large).

The organization of this chapter is as follows. In section 2.1, the Liouville-von Neu-
mann equatiou is introduced and iu section 2.2, the reduced density operator formalism
is discussed. In section 2.3, basic ideas behind the Kraus OSR are reviewed by using
the simplest possible case where the subsystem Hamiltonian is time-independent and the

systerm-environment interactiou operator includes only one term. In section 2.4 it is argued

SThis chapter is based on two studies |14, 15| reported by Cetinbag and Wilkie.
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that ofl-diagonal matrix elements of the environinent interaction operator are negligible for
large chaotic environments. Using this property it is shown in section 2.5 that the resulling
Kraus decomposition, i.e. the CKD, takes a particularly simple and potentially uscful form.
In section 2.6, an extension of the CKD to time-dependent system Hamiltonians and more
general system-environment interaction operators is provided so that the CKD can be more
widely applicable. In section 2.7, a numerical strategy for the CKD is summarized and it is

shown that the CKD can be practically used for computational purposes.

2.1 Liouville-von Neumann equation

The dynamics of a closed quantum system, represented by a Hamiltonian, H . evolve from
the Schrodinger equation,

m%\qj(m = H|Y(t)). (2.1)
The Schrodinger equation is a first order differential equation in time, the solution of which

is of the form,
[0 (2)) = Ut} T(0)), (22)
where the unitary propagator, U7(t) = U~'(t), takes a simple form,

Ult) = exp{—(i/h)Ht}, (2.3)

for time-independent Hamiltonians. In the casc of time-dependent Hamiltonians, H (1), the

propagator takes the form
1)
Uity = ’fexp{—(i/ﬁ}/ H(t')dt'}
Ja
L
_ i+(~i/ﬁ)/ dty H(t)
Ju
¢ t) o .
+(—z'/h)?/ dtl/ dty TH(t)H (t2)

0 0
+(—z‘/h)-’*[0 dty [Oldtz [Dzdtg TH (1) H (t2)H (t3)

. (2.4)
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where 7 is the time ordering operator, which has an important implication when ﬁ(t) does
not commute with itself for different times, ie. [H(¢), H{t')) £ 0 for t # /. The time
ordering operator states that the chronological ordering, i.e. ¢, < i3 < #5--- < { should be
obeyed for all times. However, in cases where [H (1), H(f")] = 0 holds for t # ¢' | the time
ordering operator can be omitted from equation {2.4).

The Schrodinger equation is restricted to state vectors, which are not the most general
states to represent a physical system, however. A general description of a state of a quantum
system can readily be achieved by density operators [1]. Density operators, g, should satisfy

three mathematical conditions to be allowed as state operators. They should be
(1) normalized, i.e. Tr[g] = 1,
(ii) Hermitian, i.e. p = p,
(iii) positive definite or non-negative, i.e. {¢|j|@) > 0 where |¢} is an arbitrary vector.

State vectors are pure quantum states that can be distinguished from non-pure states
(i.e. statistical mixtures) by the condition Tr[p?] = 1. Hence, the non-pure states satisfy
Tr[,(")z} <. 1. There is a one-to-one correspondence between state vectors and pure density
operators. This correspondence can readily be established with the following derivation of
pure state operators from state vectors, i.e. p = |¢){d|. where |¢) is an arbitrary normalized
vector, i.e. {¢|éd) = 1. The non-pure states can also be obtained from the pure states as
follows. Let j be a non-pure state, i.c. Tr[p?] < 1. Since, by definition, § is Hermitian,
a unique spectral decomposition always exists: f = 3 pi|i}{¢], where §li) = p,[i) and
=L

The dynamics of density operators, whether they are pure or non-pure, evolve from the
Liouville-von Neumann equation, which can be obtained from the Schridinger equation in
the following way. Consider an arbitrary density operator of the form, 4(0) = >~ p,li){i].

Since Tr{|i)(i|} = {i|i) = 1, each |7} obeys the the Schradinger equation. Hence, by use of
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equations {2.2) and {2.3), the exact equation of motion for the density operator is obtained:

5(6) = TWHOTT () = 3 pl () G0 (), (2.5)
which is the solution of the Liouville-von Neumann equation,
L i(t) = Lp(t) (2.6)
at N T P '

Here, the Liouville operator is defined as L = (1/h) [H } where |-, -] is a commntator.

2.2 Dynamics of a reduced density operator

In principle, the time—evolved density operator of a quantum system, evolving from the
Liouville-von Neumann equation (2.6), provides complete probabilistic information for all
observable quantities. However, the Liouville-von Neumann equation {2.6) allows neither
exact analytical nor numerical solution when the environment degree of freedom is very
large. Most of the time a physical systemn of interest is only a part of a much larger
systern. For example, a reaction coordinate in a large biological molecule is physically more
interesting and important than the rest of the molecule because that is where the dynamical
changes occur. Therefore, a subsyatem-environment scheme is employed as a starting point
to formulate the dynamics of a quantum system of interest. Henceforth, the physically
interesting part of a large quantum systemn will be referred to as the subsystem or simply
the system, and the rest of this large quantum system as & bath or an environnient.

The reduced density operator of a system is obtained by taking a partial trace over the

bath degrees of freedom,
ps(t) = Tepla(t)). (27)

where 5(t) is the solution of Liouville—von Neumann equation (2.6) for the composite system
(i.c. the subsystem plus the environment). The reduced density operator of a subsystem

suffices to provide complete probabilistic information for all observable guantities within
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the subsystem degree of freedom and the reduced density operator also satisfies three basic
mathematical conditions, lL.e. ps(#) is normalized, Hermitian, and positive definite; see e.g.
Ref. [1).

In the next section, the systemn, environment, interaction operators, and initial conditions
are defined and then it is shown how the open system dynamics of a reduced density operator

can be expressed in terms of Kraus operators.

2.3 Kraus operator sum representation

Consider the system and environment degrees of freedom as a bipartite closed system,

represented by a total Hamiltonian of the form,
g:H.S+§B+HB, (2.8)

where ﬁg is the systemy Hamiltonian, S and B are the system and environment interaction
operators, respectively, and I;TB 1s the bath or the environment Hamiltonian.

Assume that the system and environment degrees of freedoms are uncorrelated initially,
#(0) = ps(0) @ £5(0), (2.9)

where g5{0) is an arbitrary initial state for the system and pg(0} is an initial environment

state of canonical form, i.e.
e_ﬁE-m,

p8(0) = 3 fm) 5 (m, (2.10)

Here, @ = > exp{—GE,} is the partition function and § = 1/kgT is the inverse tem-
perature where kg is the Boltzmann constant. Note that the canonical bath density
is constructed by using the exact eigenvalues and eigenvectors of the bath Hamiltonian,
Hln) = E,ln), for which the usual completeness relation applies: I = 3 |n){n| and
(npm) = 6pm.

For Hamiltonian (2.8} and initial condition (2.9}, the exact time evolution of the density

operator, p(t), is given by the solution of the Liouville-von Neumann equation (2.6). The
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exact subsystemn density operator, ps(t), is obtained by tracing over the environment degrees

of freedom, i.e.
bs(t) = Tra[U(£)p(O)UT (1)) (2.11)

Since the initial canonical bath density is already diagonal in eigenstates of Hg, performing
the partial trace operation in the same basis, {|n}}, yields
P—P‘BE.TH

pst) = S nl010) (45(0) & 5 o ) 0. (212)

n,m
This equation can now be written in a compact form,
Ps(t) = D Kam(t)ps(O)KL i (8), (2.13)
0T
in terms of the following Kraus operators [53],

Ko (1) = /P (U (1)), (2.14)

where p,, = exp{—JEn,}/Q are the initial populations of the bath density operator. For a
Hermitian Hamiltonian it is always true that
> Knm(®K] mlt) = Is. (2.15)
n,m
This is the normalization condition for the Kraus OSR [53], from which it follows that the
open systemn dynamics are unitary if and only if the Kraus decomposition (2.13) has only
one term.

The above form of the Kraus OSR (2.13) is exact and thus satisfies all the required
conservation laws on the subsystern density, i.e. the Hermiticity, positivity, and norm con-
servation. However, the exactness of decomposition is of formal interest only, as it 1s not
practical for computational purposes and the explicit form of the Kraus operators (2.14}
are extremely hard to obtain. Moreover, even if the explicit form of the Kraus operators
werce known, the double summation above would render the Kraus decomposition impracti-

cal. Fortunately, for a quantum subsystem interacting with large chaotic environments, the
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explicit form of the Kraus operators can easily be obtained and the double summation also

reduces to a single summation.

2.4 Chaotic environments

Quantum chaos has a number of important consequences for eigenspectra and matrix ele-
ments of Hamiltonians |23, 24]. The most distinguishing and well-known feature of chaotic
Hamiltonians is the changes in the statistical properties of their eigenspectra. Eigenspectra
of chaotic Hamiltonians display energy level repulsion. On the other hand, Hamiltonians of
regular systems (1.e. non-chaotic systems) show a high degree of degeneracy and energy level
clustering in their spectra. While the eigen-statistics of a regular system are Poissonian, the
chaotic eigen-statistics are given by the Wigner-Dyson distribution.

During the transition from a regular to a chaotic regime, not only the eigenspectra but
also the properties of eigenstates dramatically change. As a result, matrix elements of op-
erators in the eigenbasis of chaotic Hamiltonians show quite different features. A particular
property that will be used in the derivation of the CKD is that the ofl-diagonal matrix ele-
ments of tlie bath coupling operator in the eigenbasis of a chaotic environment Hamiltonian
become negligibly small or vanish when the dimension of the chaotic environment is very
large. This result has been known for two decades in the quantum chaos literature [31, 32,
but its consequences for the Kraus OSR have not been recognized.

Using the exact bath eigenvalues and cigenstates, Hg|n) = E,|n), the total Hamiltonian
(2.8) can be written in the following alternative form,

H=Hs+S8> Bumlny(m|+ > Ealn(nl, (2.16)

ThTIL n
where B, ,, = {n|Blm) are the matrix elements of the bath coupling operator, B. Effects
induced by system-environment interactions may depend on many factors, such as the prop-

erties of matrix elements B,, ,,, and the operators S and fn){m|. Here, the focus is on the
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properties of By , because quantum chaos has a number of important consequences for
these matrix elements.

At the semi-classical limit ¥, the square of the off-diagonal matrix elements of an operator,
e.g. B, scale as | B |? h™ where N is the number of environment modes [29, 31, 32].
Since the Planck constant is small, these off-diagonal matrix elements should be negligi-
bly small for sufficiently large N. Alternatively, it has also been shown in [14] that the
off-diagonal matrix elements should also be negligible when the number of environment de-
grees of freedom approach the thermodynamic limit, ie. N — oo, Explicit mathematical
derivations of the semi-classical [29, 31, 32] and thermodynamic [14] arguments require an
advanced mathematical knowledge of the phase space representation of quantum mechan-
ics [80] as well as rules of quantum-classical correspondence [81]. Here, the interest is in
the consequence of these arguments for the Kraus OSR rather than derivations of these
arguments. Interested readers can find these derivations in [14, 29, 31, 32|. Below, these

arguments are shortly reviewed.

Semi-classical lirnit for chaotic environments

The semi-classical argument presented here is taken from Ref. [29]. More detailed discussions
regarding derivations of the formulas given below can be found in [31, 32]. At the semi-
classical limit, diagonal matrix elements of an operator, e.g. B, represented in the basis of

a large chaotic Hamitonian, e.g. Hp, are given by she formula

B . idx S{E, — H(x)|B(x)
Ban = {n|Bn) ~ | dx 6|Bn — H(x)]

= (B) (2.17)

“The semi-classical limit refers to an approximate limit where quantum mechanics embraces classical
mechanics as a limiting case. Loosely stated, this limit can be h — 0. That is. the Planck constant is
negligibly small as compared to the other relevant dynamical parameters. Or, this limit can be a large
quantum number limit where dynamical variables such as angular momentum or energy arc very large as
compared to the relevant quantum unit chosen. A detailed discussion of quantum-classical correspondence
including crivicisms of the aforementioned limits can be found, for example, in Ref. [1].
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Here (B} is a microcanonical average calculated at the energy F = FE,, the composite
variable x = (p,q) represents 6N momenta p and coordinates g of the bath, B(x) is the

Wigner function of B. The off-diagonal matrix elements of this operator are given by

v At (B(0) — (BY)[B(t) ~ {B)]) exp [i(En — Bt /R

lB«’hm‘: >l fd){ 5[(En + Em)/z - I:I(x)]

(2.18)

Here E, = N(E,) are the unfolded energies, not the actual eigenenergies and therefore,
N(FE) gives the average number of levels below E, rather then the eigenenergies themselves.
The microcancnical averages are calculated at the unfolded energy (F, + En)/2. It is
worthwhile to note that equation (2.18) is only valid when the level spacing between unfolded
levels are constant.

The time correlation function appearing in equation (2.18) decays exponentially fast
exp (Qt%) at short times where © is the spectral width. It follows then that equation (2.18)
simplifies to

| B |? x WY exp [=(E, — i) /40757 (2.19)

Hence, since the Planck constant f is small and the number of bath medes V is large, the
scaling | By .n|* o« h" indicates that the off-diagonal matrix elements should be negligible

for sufficiently large environimments.

Thermodynamic limit for chaotic environments

The argument presented here is taken from Ref. [14] where it 1s shown that the square of
the off-diagonal matrix clements | By, 1> — 0 become negligibly small when the number of
bath modes approaches the thermodynamics limit, i.e. N — .

By combining two exact equations (50) and (119) of Ref. [31] one can cbtain the following

exact equation for the off-diagonal matrix elements of an arbitrary quantum system

. h
|‘Bn,m|2 = (7

Lam

)Y / dx dxy B{x)"B(xg) / dy PO W (x + by [2)Woa (%0 — by /2),
(2.20)
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where B(x) is the Wigner function [80] of the operator B and the scaled Wigner function

for eigenstate n 1s given by
Wa(x) = Cp /dv eXMPViq — hv/2|n)m|q + kv /2) (2.21)

where C,, = [[ dx 8(1 - Hg(x)/En)]V? and L, ;n = (CaCi)V/Y and J is a symplectic matrix
of dimension 2N x 2N. It is shown [81] that W, (x) has a well-defined classical limit if
the classical Hamiltonian H g{x) is chaotic. Note also that the Wigner function of guantum
Hamiltonian Hg may differ from the classical Hamiltonian by small corrections which should
vanish with Planck’s constant.

It is shown in [14] that [ dx 6(1—Hg(x)/E,) & E.e5+/*8 where S, is the microcanonical
entropy and kg is the Boltzmann constant. Since entropy is an extensive variable, 5, scales
linearly with NV for sufficiently large N. As a rcsult, it follows from 'Hépital’s rule that O,
scales exponentially with N, which in turn suggests that [, ,, is constant, or at most grows
weakly with N since the energies £, also increase with V.

The Wigner functions W,,(x) and B{x) and the associated integrals in (2.20) have well-
defned classical [81] and thus thermodynamic limits. For example, in the classical imit,
these terms reduce to E,0(F, — Em)ﬁ, which increases gradually with N. Here B? is the
classical canonical average of the squared classical limit of the Wigner function for B. Note
that B o« VN and so B2 would normally scale linearly with N. E,5(E, — E.,) is only
weakly dependent on N. Note also that 6(F,, — F.,,) should be understood as a distribution
with a small but nonzero width. Thus, by 'Hépital's rule, the magnitude of |By, .|* in
the thermodynamic limit is determined by the factor (%ﬂ-)“ Consequently, if & < [ o,
which should always be true for sufficiently large N, then |j’_5",b,m|2 — () exponeutially fast
as N — oo, Hence, the off-diagonal matrix elements of B should be uegligibly small for a
chaotic bath of thermodynamic dimeusion.

The effect of suppression of decohereuce by chaotic environments was observed for hinite

chaotic spin—baths, see e.g. [29, 30]. In the light of these studies [29, 30|, it is arguable
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that for such small spin-baths neither the semi-classical limit is well-defined nor may ther-
modynamic limit be attained. Therefore, while the off-diagonal matrix elements for small
chaotic spin-baths can be very small, they should not be totally vanishing. Here, by simply
assuming that By, = 0 for n # m for sufficiently large chaotic environments, a Kraus de-
compuosition, i.e. the CKD will be derived in the next section. Since this assumption cannot
always be valid for small chaotic environments, the question as to whether the assumption
Bnm = 0 is justifiable for small chaotic environments needs to be examined. The test re-
sults reported in [14, 15] and presented in chapter 6 show very good agreement between
exact and CKD results, which suggests that B, ,, = 0 is a reasonable approximation at
least for the test models studied in chapter 6. Moreover, in chapter 7 it is further verified
that chaotic intra-bath interactions indeed lead to small off-diagonal matrix elements when
chaos generating intra-bath interactions and system-euvironment interactions are of similar
kind; nevertheless, inspections of nff-diagonals indicate that not every one of these matrix

elements are zcro, as may be expected.

2.5 Chaotic Kraus decomposition

By using the assumption, B, ,,, = 0 for n 3 m, the Hamiltonjan (2.16) can be written as

H=Hgs+ (8Bn, + En)n)(n| (2.22)

For integer powers of [ = 0, .., 00, the matrix elements of the total Hamiltonian obey the

relation,
. . . !
(n|H'lm)y = (Hg + 8B, + En) S (2.23)
for all n and m. By using this in a Taylor expansion,
[aw] - !
-Lf (—iH1)
A ; L (2.24)

it follows that the Kraus operators (2.14) take a simple form

K;n,m(t) = pmeiﬁ(ﬁs_&S\Bm'm}EM)l5n.m- (225)
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By substituting this back into (2.13), the final form of the CKD is obtained:

efﬁﬁm e ’ e -
ps(t) = 0 e (Hst3Bm it jo(0)enFsH5Bmmt, (2.26)

T

The CKD has a suggestive form. For example, in the case where all diagonal coupling

matrix elements are identical, 1.e. By, ,» = B, the CKD reduces to
ps(t) = e RUPsTIBN 5 (0)er s+ SBIL (2.27)

which suggests that all non-unitary effects disappear and the only effect induced by the
euvironment is the coherent shifting, i.e. Hs — Hg + SB.

Similarly, at absolute zero temperature, or provided that the bath state is a pure state,
there will be no decoherence or dissipation but only coherent shifting. Hence, a chaotic envi-
ronment of thermodynamic dimension cannot induce decoherence or dissipation at absolute
zero ternperature. This is an interesting prediction because there is no such restriction on
the regular environments which are known to cause strong decoherence even at absolute

zZero temperature.

2.6 Time-dependent extension of chaotic Kraus decomposi-
tion

In this section, a time-dependent extension of the CKD is derived, which may have wider

applications than the version developed in the previous section. The general structure of

the argument used here will be similar to that of the previous section. Now, consider a more

general Hamiltonian, which is of the form,
H{ty=Hs(t)+ > _S8,B, + Hp, (2.28)
N

where Hg(t) = Hs + £(t) consists of the time-independent free system [Hamiltonian, Hs,

and the time-dependent Hamiltonian representing external driving fields, £(t). Here, Sﬂ,
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and By are interaction operators in the system and bath degrees of freedom, and Hgis a
chaotic Hamiltonian for a large environment.
The total Hamiltonian (2.28) can be written in terms of the bath eigenvalues and eigen-

vectors as follows,

H=Hs(t)+> 5, Bi™my{m|+ Y Enln){nl, (2.29)
n n.m n
where B'™ = {n|B,|m) are the matrix elements of the interaction operator in the com-

plete bath eigentasis. The argument discussed in section 2.4 suggests that the off-diagonal
matrix elements of the bath interaction operator vanish, i.e. By — 0, for large chaotic

environments. Using this property the total Hamiltonian (2.29) simplifies to
H=Hs(t) +> O S.B™ + Ep)my{m. (2.30)
™. .U.
Magnus expansion [82] of (2.14), by using the above Hamiltonian (2.30), then gives
t
Bnanlt) = VmnllL + (=i/n) [ dey (e
0
L 4H . R
+(—i/R)? / dn/ dty TH(t)H (1)
JO 0
i { a8 i o . .
+(—z‘/h)‘*f dty / dig/ dis TH(t1)H (t2)H (ts5) + ... ]jm) (2.31)
0 0 0
which, since H(2) is block diagonal in the bath eigenbasis, simplifies to
.t
Rol®) = Vald + (=i/8) [ dts (alFi )l
0
t f o )
wim? [ [ d Tl A el
Jo 0

-+ T ty X ) X .
+(4/h>3_/0 dt, /0 dts ] dts Tl B (1)) (nl 2 (1)) (nl 1 (23) )

+ B (2.32)

Now, using the Magnus expansion [82] in reverse gives

-t
Kpm(t) = /Pm T exp {% /0 dt' (Hg(t') + ZSHB.TM + E'm)} Snm (2.33)

1
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which in turn can be substituted into (2.13) to obtain the final form of the CKD,
= Ko ()ps(OK, (1), (2.34)
TrL

where the double sum in cquation {2.13) becomes a single sum and ?Cm‘,,t(t) are now given
by {2.33). Equation (2.34) is the final form of the CKD, which extends equation {2.26) to
time-dependent subsystem Hamiltonians and more general system-environment interaction

operators.

2.7 Numerical strategy

The CKD (2.34) is exact only for large thermodynamic chaotic environments. The exact
numerical results that can be obtained on a computer are limited to small environments.
However, the test results reported in [14, 15] and also presented in this thesis suggest that
the CKD gives accurate results even for small environments. Hence, the CKD can he used
as a practical computational tool. Tere it is shown how equation (2.34) can be emploved in
practice.

Given the initial subsystem state of the form, pg(0) = [¢(0)}{:(0)], the time evolved
states can be defined as

| (£)) :Texp{ ;[ dt'(Hs(t) + 5 5, Bmm)} (0)) (2.35)

I

such that the reduced density is of the form,

me‘?‘f/m wm(t)l (2.36)

where |1, (1)) evolves from the Schridinger equation,
dlipm (£)) /dt = — (i/R)[Hs(t) + Z SuBI™ [t (6)). (2.37)

These equations (2.37) can easily be solved by using standard integration techniques. For

non-pure initial conditions, rather than solving the Schraodinger equation, the Liouville-von
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Neumann equation can be numerically salved,
dpT(t)/dt = —(i/R)[Hs(t) + ZS B™ 52 ()], (2.38)

with §¢(0) = ps(0), from which the reduced density operator can be constructed with
formula, gs(t) =3, pmde(t).

At very low temperatures, where new quantum technologies are expected to operate,
the number of populated bath states will be quite small and so will be the uumber of Kraus
operators in equation (2.34). Hence, the CKD can serve as a practical computational tool

for low temperature applications.



Chapter 3

Quantum computers with static

internal flaws

Quantum computers (QCs) are subject to internal sources of error in addition to those
resulting from external environmental interactions. Internal deccherence, dissipation, and
coherent shifting originate from uncontrollable interactions between pairs of qubits. Tn this
chapter’, to study the relative importance of the internal errors, a QC model is developed
which consists of a CNOT gate performmed on two qubits of a many--qubit isolated QC with
static internal imperfections. The motivations behind this study are discussed in section
3.1. In section 3.2 mathematical details of an isclated QC model are given. The isolated
QC core is mapped onto a subsystem-environment scheme wherein the active part of the
QC, i.e. a two-qubit register (the subsystem), performs a CNOT gate while interacting
with the neighboring qubits (the environment). By defining a variety of configurations,
Le. eight different initial register states, two different crror generators (phase and bit-
fip errors) and five different intra-enviromental interaction strengths, the exact quantum

dynamics of the QC will be obtained. In section 3.3, an exact numerical approach used

$This chapter is based on two studies [16, 17] reported by Cetinbag and Wilkie.



CHAPTER 3. QUANTUM COMPUTERS WITH STATIC INTERNAL FLAWS 31

in QC simulations is explained and parameters used in the exact calculations are defined.
Finally, in section 3.4 error quantifiers, i.c. purity and fdelity are defined. Thesc error
quantifiers are used to measure cxtent of deviation from the ideal CNOT dynamics and
distinguish non-unitary errors (i.c. decoherence and dissipation) from those of unitary type

(i.e. coberent distortions).

3.1 Motivations

Decoherence due to an external macroscopic environment [2] is widely believed to be the
primary obstacle to the devclopment of quantum computing technologies [6-8]. However,
even in the absence of an external environment, the eflicient operability of an wsolated QC
is not guaranteed. This is due to the fact that the destructive effects induced by one-
body imperfections and two-body residual interactions between qubits can still endanger
the performance of a QC.

The origin of one-body qubit imperfections is due to slightly different energy spacings
between the two levels of distinet qubits. This type of tmperfection is expected especially
for manufactured qubits such as quantum dot qubits (artificial atoms) and superconducting
qubits. However, one-body imperfections may also arise in qubits which are not genuine but
effective two level systems. For example, if the ground and first excited state of an atom
form a qubit, a possible excitation of the atom to higher energy levels can lead to a onc-body
imperfection. In the casc that all qubits are identical and thus are of the same energy spacing,
one-body imperfections may also be induced by interactions of qubits with local impurities.
Two-body residual interactions are interactions between pairs of qubits. Such interactions
are expected because qubits of a (QC may not be well isolated from one another. Moreover,
certain quantum operations can only be performed by inducing a coupling between pairs of
qubits by external manipulations. The exterual manipulations may not be perfect and lead

to residual interactions between qubits.
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Recent studies on the statistical properties of flawed QCs suggest that chaos emerges in
a QC core as a result of strong residual qubit—dubit interactions [72-77]. The chaos leads
to a dynamical thermalization [74] and a consequent destruction of the ideal computational
states of a QC. However, the studies in which the static internal Haws are modeled by
chaotic random matrices show that chaotic perturbations can actually stabilize the QC
dynamics [76-78]. These contradictory results, i.e. destruction and stabilization of a QC with
chaos, suggest that there is no consensus yet on how internal flaws affect the performance
of the various sorts of quantum gates, nor is the precise nature of internal errors identified.
(Questions as to what operations are most vulnerable to internal errors need to be addressed
and the effects of chaos on the internal errors need to be determined. There is also the issue
of which initial states are most adversely affected. Thus, there are many copen questions
about the consequences of internal flaws on the performance of a QC in the presence of
imiperfections.

Previous studies of flawed QCs do not address the specifics of an operating 1solated QC
architecture. Nor do these models address what specifically happens to an algorithm in
the presence of internal flaws. An ideal gate scquence for one architecture may be quite
different from that of another architecture. Hence, it is of an interest to know what parts
of an algorithm are affected most {e.g. one- or two-qubit gates), and whether they are
irreversibly altered via internal decohereuce or dissipation, or merely cohereutly distorted.
A prior knowledge of such information could be important for optimizing performance of a
QC architecture and further development of error correction schemes [79]. Hence, there are
maiy questions that cauunot be meaningfully investigated in the context of random 1natrix
formulation or other abstract models for the environment. A closer examination of the
effects of internal errors in actual QC proposals is thus warranted.

Residual qubit—qubit interactions arising in a QC core mix the ideal computational

states (i.e. uncoupled) of qubits [72-74]. While residual qubit-qubit interactions are also
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responsible for the onset of chaos in a QC core, the mixing process may occur even below
the chaos border [75]. Hence, in the presence of residual qubit-qubit interactions, whether
these interactions generate chaos or not, an undesirable correlation or mixing of computa-
tional states of qubits is unavoidable. In such a situation, even if the QC core is totally
isolated from its surrounding environment, the qubits within the isolated QC core may still
experience their own nearby microscopic qubit euvironment and are then subject to inter-
nal sources of deccherence, dissipation and coherent shifting. To investigate these internal
errors, a subsystem-environment scheme is an appropriate approach. In such a subsystem-
cnvironment scheme, the system part consists of one or two active qubits that perform a
quantum protocol while the rest of the QQC can be considered as inactive or idle, for the sake
of simplicity. The active and idle parts interact via residual qubit—qubit interactions, and
the generation of errors as well as the dynamical behavior of these errors due to changes in
the idle part can be monitored, which is the approach taken in this study.

This study is focused on the dynamics of a two-qubit subsystem interacting with a
larger nearby qubit environment. The two-qubit subsystem (i.e. the active part) performs a
CNOT gate while the rest of the qubits (i.e. the environment ) are idle. That is, they do not
perform a predetermined quantum algotithm. The effects of imperfections are simulated by
adding one— and two body imperfections to the idle part and then exploring the dynamical

changes inn the active part.
3.2 Description of isolated QC model
The total Hamiltonian for the isolated QC is of the formn,

H(t) = Hs(t) + SB + Hg, (3.1)

where Hg(t) is the time-dependent control Hamiltonian of a two—qubit register performing

”~

a CNOT gate (i.e. the subsystem Hamiltonian), S B is the interaction operator, $ acting in
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the system and B acting in the bath degree of freedom, and Hpg is the bath Hamiltonian of
the idle qubits.

The isolated QC model is parameterized based on a Josephson junction charge qubit
(JJCQ) QC proposal [69]. This scalable architecture has a very long external decoherence
time, ~ 10~% s, which in principle allows approximately 10° single qubit operations. Such
a QC architecture with very long colierence time is an ideal system to study internal de-
coherence dynamics. In the following section, the basic design and operation principle of a

JJCQ is presented, and then the explicit forms of different, components of H(t) are given.

3.2.1 Josephson junction charge qubit device

Josephson junction QC architectures are promising quantum information processor candi-
dates due to their long external decoherence times and scalability, with ease for a large
number of qubits [68]. A typical charge qubit in its simplest design form is illustrated in
figure 3.1. A JJCQ is a tiny circuit consisting of a Josephson junction capacitively coupled
to a gate electrode. The Josephson junction is made up of two superconducting electrodes,
one of which is called the island and the other is called the electron reservoir. These two
electrodes are connected with an insulating layer, i.e. the tunnel junction. A JJCQ is a de-
vice that harnesses the notable Josephson effect of superconductivity, which emerges at very
low temperatures, as low as 50 mK or less. At such low temperatures, certain metals become
superconductors. In their superconducting state, the interactions between electrons become
important, causing the electrons of a metal to pair up. Each such an electron pair is called
a Cooper pair, which is responsible for carrying superconducting cnrrent. The Josephson
effect occurs due to a coherent guantum mechanical tunneling of Cooper pairs through the
insulating layer, i.e. from superconducting electron reservoir to thie superconducting island.
The coupling cnergy involved in this process is the Josephson energy Ky, with associated

tunnel junction capacitance ;. The control gate voltage is coupled to the system through
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Figure 3.1: Components of a Josephson junction charge qubit in its simplest design form.

a gate capacitor Cy. The current technological advances allow a routine fabrication of very
low junction capacitance, as low as femtofarad, and the value of gate capacitance can even
be lower [68]. The corresponding single-electron charging energy B = €2/2(Cy + Cy) is
abont 1 K or higher. The Josephson energy £y depends on the tunneling current and is
typically on the order of 100 mK.

The following Hamiltonian describes a JICQ device [68]
H = 4Ec(n—ny)° — Ejcos© (3.2

where n represents a number operator of excess Cooper pairs in the island and © represents
the phase of the superconducting order parameter of the island. The dimensionless gate
charge n, = C,V;/2e is used as a control paramneter via externally controlling the gate
voltage V. When the charging energy is very large as compared to the Josephson energy,
ie. Eqc » Ej, the charge states form a basis and thus the Hamiltonian of equation (3.2}
can be written in terms of the number of Cooper pairs n iu the island [68]

R = Y2 4Ec(n — nglunl = 5 Eslln) (0 +1] + [0 + 1){n) (3:3)

n
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By tuning the gate voltage V, to obtain a gate charge n, of approximately a half-integer [68],
ouly two charge states with n = 0 and n = 1 can be well-separated from the higher states.

In what follows, the Hamiltonian of the JJCQ device simplifies to a qubit Hamiltonian

- 1 1
; B Bz‘\z_ _B.’E"J: A
H 5820z — 5 Bad (3.4)

where B, = 4E¢c(n—n,)? and B, = E;. The charge states n = 0 and n = 1 now correspond
to 10} and [1) basis states in spin-1 notation.

Here a typical JJCQ set-up is reviewed in its simplest design form. More detailed
discussions and more sophisticated designs of JJCQs can be found, for example, in the
recent review [68]. The study presented in this chapter is based on a particular JJCQ QC
proposal [69]. While a single charge qnbit set-np in this proposal is of a very sophisticated
design, the form of a single qubit Hamiltonian is the same as the one given by cquation (3.4).
An advantage of this particular QC architecture is that any charge qubit in a circuit (which
consists of many qubits) can be effectively coupled through a common superconducting
inductance [69]. This qubit-gubit coupling is represented by an Ising-type interactions

gLéd for i # j where indices ¢ and 7 label two arbitrary qubits in a circuit.

3.2.2 Two-qubit register and CNOT gate

QQubits, the building blocks of a QC, are two-level quantum systems, customarily represeuted
by Pauli spin operators, & = (6r,6,,5,). The two eigenstates of &, with the convention
chosen here, |0y = |1) (eigenvalue 1) and |1} = ||} (eigenvalue -1), constitute the standard
basis, 1e. {|0},]1}}, by means of which a state of a qubit and gate operations used to
manipulate qubit states are defined.

An arbitrary pure state of a qubit can be written as
f . @
o) = e (COS 5[0) + &% sin 51)) , (3.5)

where the rcal numbers 0 < 8 < 7 and 0 < ¢ < 27 define a point on the surface of a unit
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Figure 3.2: Geometric representation of a qubit state [/} on the Bloch sphere. An arbitrary
pure state on the Bloch sphere is represented by a pair (6, ¢) of real numbers. The eigenstates
of &,, 1.e. |0) and |1) with (0,¢) and (7, &) are located at the north and south poles of
the sphere. {7/2.¢) represent the points at equator that denote the states of the form
(J0y + *|1))/+/2. The points (7/2,0) and (7 /2, %) correspond to the eigenstates of &, i.c.
(|0) +[1))/+/2 and (|0} — [1})/v/2. The two pairs (7/2,7/2) and (7/2,37/2) represent the
eigenstates of 4,, i.e. (J0) +i[1))/v/2 and (|0) —i[1))/V2.

sphere, 1.e. the Bloch sphere. In higure 3.2, the geometrical representation of an arbitrary
qubit state |¥) as a point on the Bloch sphere is presented. The real number ¢ appearing
in equation (3.5) defines a global phase which has no observable consequence. Thus, qubit
states with arbitrary values of { have the same representation on the Bloch sphere, which
leads to the canonical representation of qubit states with the help of only two real parameters
8 and ¢

6 @
|v) = cos §|0} + €™ sin §|1) (3.6)

Arbitrary logic operations for universal quantum computation can be performed by a

combination of onc— and two—qubit gates [55-57]. Here, the focus is on one of the itnportant
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gates of quantum compntation, namely, the CNOT gate. Barenco et al. [57] showed that
a set of gates including all one—qubit gates and a CNOT gate is universal, mcaning that
an arbitrary quantum algorithm can be obtained as a combination of one-qubit gates and a
CNOT gate.

The CNOT gate is a two--qubit gate whose action is to flip the second qubit only if the

first qubit is in state |1}, i.e.

Ucnor [00) = [00)
Uenot [01) = [01)
Ucnor 110y = [11)
Ucnot 11} = [10). (3.7)

In the standard basis states for two qubits, 1.e. {|00},]01},|10},(11)}, the matrix represen-

tation of the CNOT gate is
Ucnor = |003(00] + [015(01] 4 110){11] 4 |11}{10]. (3.8)

For a particular QC architecture there may not be a unique or ene—step implementation
of the CNOT gate. However, the CNOT gate can be implemented by a combination of
elementary one and two-qubit subgates or rotations. The following protocol is one example

to implement the CNOT gate [69],

UCNO"[" = j)gg)(ﬁ/Q)?%El) (7"/\/5)7‘122) (TF/\@)UCP(WM)H(U(W/\/E)ﬂ(z)(ﬁ/\@)y(z) (7/2)
(3.9)
Here, the subscripis 1- and 2- indicate the qubit on which the subgates operate. Ucp is a
two-qubit gate that operates on two qubits. The subgates comprising the CNOT protocol
operate right—to-left. The CNOT protocol 1s composed of three different subgates which
are explained below.
The subgate J}(g)(a = 7/2), where o is the rotation angle, is a one-qubit 7/2-rotation

on the second qubit in the y-direction. This rotation is generated by a combination of z-
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and z-rotations, i.e.
Viay(m/2) = RS (m/2) Ry (m /2)REy (7/2), (3.10)

where one-qubit rotations in x— and z-directions take the following form for an arbitrary

rotation angle a,

ATz (i
R(i/) (a) = exp (203(:/)(2) . (3.11)

Here, x/2 means x or z and i is the index labeling the qubit. The z-rotation, when applied
on the one-qubit standard basis states, i.e. {|0},]1}}, induces a phase change proportional

to the angle of rotation, a. For example, the angle o = 7 /2 leads to
R*(n/2)|0) = 310y and  R*(7/2)]1) =¢ '%]1). (3.12)

The one-qubit z-totation with the angle o = /2 gives

1
ﬁ

1

R¥(r/2)|0) = 7

(|05 + 1Y) and  R*{(m/2){1} = —(|1) + i|0)). (3.13)

The actions of z- and z-rotations on an arbitrary quantum state on the Bloch sphere are
depicted in figure 3.3.

The Hadamard gates 7%(2)(6 — w/+/2) for i = 1,2, where & is the rotation angle, involve
the first and the second qubits. A Hadamard gate can be obtained by simultaneously

switching one—qubit control parameters i z- and z-directions, 1.e.

= g 4 50
Piy(m/V2) = exp (E{L) (3.14)

The Hadamard gate transforms the standard basis states as
R/ V2)I0) = 200+ 1) and R/ = (0 - ). (@15)

Finally, the two-qubit controlled—phase shilt gate UCP("}( = 7 /4), where v is the rotation

angle, is given by

— TS0y a2 a1 202)
Uep(m/d) = exp (14( Gy -6y a8y by )) (3.16)
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Figure 3.3: The actions of two rotation operators H,(a) and fﬁ(ﬁ) on an arbitrary state
|4} are illustrated on the Bloch sphere. The z-rotation R, (o) transforms the state |1) with
(8,¢) to a new state ') with (6, ¢ + a) by rotating it about the z-axis with an angle «.
The z-rotation R, (4) transforms the same state 1) to a new state [¢") with (8 + 3, ¢) by
a rotation about the z-axis with angle 3.

The operation of the Ucp(‘ﬂ'/4) gate can be better illustrated with the help of the following
two-qubit basis states, i.e. {|++),|+ =), —+),| = =}, where |+) = (|0} + |1})/V2 and

=) =10y = [1))/V2,

Uep(z/a) | ++) = [++)
Ucp(r/a) |+ ) = [+ )
Ucpln/a) | =+) = |-+
Ucp(n/4) | = =) = ~[—-) (3.17)

For the time-dependent implementation of the CNOT protocol, the following control
Hamiltonian [69] is employed,

2
1 X . . ,
Hs(t) = =5 Y (BI1)6D + B (1)61) + Ta(t)sL 6" (3.18)

=1
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Table 3.1: Switching times and active Hamiltonians used to implement the CNOT gate.

Switching Intervals Active Hamiltonian

[to = 0,4, = 7/(258%)] ~1p7sl

[ty b2 =ty + 7/(287)] ~%BI&9

fto, 13 = ta + 7/ (28%)] 1B

[ta,t = by + V27/(2B7)] BT (68 +61)
[ta, ts = ta + 7/ (47.)] To(~6%) 68 +667)
[ts, ts = ts + /2 /(2B)] +1Be 3% (6% 46y
lto. t7 — 1o + 7/ (2B%)] -3B7"

[t7,ts = t7 4+ 7/ (2B%)] 1 iBe6

[ts.ta = ts + 7/(28%)] 176l

Here, B¥(t), BZ(1) and J.(t) are time-dependent control parameters used to generate ele-
mentary gate operations. Detailed discussions on how to generate one— and two—qubit gates
experimentally from (3.18) by external manipulations of the control parameters can be found
in [69]. The Hamiltonian (3.18) is the basis of a Josephson charge-qubit QC proposal [69],
which allows a scalable design wherein any two qubits of the QC can be effectively coupled.
In addition, the Hamiltonian (3.18) requires only one two-qubit operation to implement a
CNOT gate.

The experimental manipulations [69] required to generate the control Hamiltonians
(3.18) can induce a potential source of error. A number of simplifying assumptions re-
garding the implementation of the CNOT gate are needed in order to concentrate on errors
that emerge [rom the system-environment interactions. In particular, full control over the

dynamics of the CNOT gate is assumed, i.e. the effects of faulty switching, imperfections
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and possible residual interactions induced by noisy fields that can cause fluctuations in con-
trol parameters of the two qubit register and so forth are neglected. It is also assumed that
the CNOT gate can be propagated by using perfect square pulses [83], which however can
only be approximately implemented experimentally. Moreover, a free Hamiltonian evolution
ig not allowed. Hence, it is assumed that consecutive gates comprising the CNOT protocol
can be simultaneously switched on and off. In other words, the feld strengths experienced

by qubits can be switched on and off instantaneously via

B () = BP0t — ton) ~ O(t — ton)] (3.19)
for ¢ = 1,2 and similarly,
Te(t) = To[O0 — tan) — Ot — toﬁ)]- (3.20)

Here, Bf/z(t) and J.(t) are constant in the time interval, [ton,tog]- It follows that the
relation between the actual propagation times and the rotation angles «, 4, and vy defined
in equations (3.11), (3.14), and (3.16) are given by a = /%t for the y-rotation Y, § = 5%/%¢
for the Hadamard gates H, and v = J,¢ for the controlled phase-shift gate, Ucp. Since the
Hadamard gates on the first and second qubits commute, they are implemented together.
Hence, the full implementation of the CNOT gate is achieved in nine steps, which consist
of the Schrodinger evolutions in time intervals, [¢,, t,41] for 7 = 0,..,8. The switching times
for the components of the CNOT gate, and the corresponding active Hamiltonian in each
time interval, are summmarized in table 3.1. The unitary operator governing the CNOT gate

now takes the following time-dependent forin
Ucnotlte, to) = Ults. ts)U(ts, t1)U(t7, t6)U (16, t5)U (5. 1a)
X Ulta, t3)0 (t3, 8230 (o, 1)U (11, 1o)- (3.21)

In the absence of system-environment interactions, the coherent time evolution of two

qubits under the action of the CNOT gate is given by

gl sy = Uonor(ts, to)ps(0) 0 Engrr (e, to)- (3.22)
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where i (t) is the time-evolved density operator of two qubits and ps(0) is the initial or

input state of two qubits.

In figure 3.4, the coherent time evolution of §&¢® (1) is shown for the initial standard
basis states {|00),|01},]10},|11}}. Figure 3.4 comprises four subfigures. ln each subfigure,
one of the diagonal matrix elements of Fi€°%(t) is plotted as a function of time for four
different input states. Specifically, the matrix element pgo(t) = {00]5%(¢)[00) is plotted
in subfigure 3.4(a), poi(t) = (01|54 ()]01) in 3.4(b), pro(t) - (10[5E()]10) in 3.4(c),
and p11(t) = (111591 (+)]11) in 3.4(d). To distinguish between the input states, each input
state is plotted with a different colored line. The input state |00} is plotted with black, |01)
with green, |10} with red, and {11} with dashed blue lines.

Consider the transformations ou the input state |00) under the CNOT dynamics by
following the black dashed lines in figure 3.4. Recall that the first three subgates, i.e.
ﬁ(tl,to), l}(tg,tl), and U(tg,tg) act on the second qubit. At time tp = 0, the initial
populations are pgy = 1 and po; = pio = pn1 = 0. The first subgate U(tl,to) is a w/2-
rotation in the z-direction, the effect of which is a phase change only with no observable
consequence on the populations. The second subgate U(t?,t[) is 7 /2-rotation in the z-
direction, which changes the populations of the second qubit. As a results, at time t5 the
diagonals take the values pon = por = 0.5 while the values p1p = p1; = 0 do not change.
These values of the populations indicate an equal probability superposition of [00) and |01).
The third subgate U{ts, t2) is again a z-rotation and results in no observable change in the
populations. In the time interval (f4,¢3). the Hadamard gates are applied on both qubits and
give the populations pg; = p11 = 0.5, pog = p10 = 0 at tune ty. These populations indicate
an equal probability superposition of |01} and |11}. The next gate applied in the interval
(t5,tq) is the controlled-phase shift gate, which gives an equal probability superposition of
|01} and '10} at time #; with the value of populations pgy = pip = 0.5, ppo = p11 = 0. In

the interval (f¢,¢5), the two Hadamard gates are applied on both qubits. These Hadamard
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Figure 3.4: The coherent time-resolved dynamics of the CNOT gate is depicted by diagonal
matrix elements (i.e. populations) of density operator ﬁ?ea’ (t). The diagonal matrix element
poo(2) = (0017541 (£)100) is plotted in subligure (a), po1(¢) = {01749 (£)[01) in (b), pro(t) —
(10]peet (4)]10) in (c), and py1(¢) = (11]p2(#)[11) in (d). In each subfigure, the input state
|00} is plotted with black, |01) with green, |10} with red, and |11} with dashed blue lines.
The CNOT dynamics is obtained for the following values of control parameters B7/% = 1 ¢
and J%/% = 0.05 € where € is an arbitrary unit. The time is in units of hje.

gates are the inverses of the Hadamard gates applied in the interval (t4,t3) and give an
equal probability superposition of |00} and |01} at time tg with populations pgg = por = 0.5,
P10 = p11 = 0. The last three subgates, i.e. U{to, %), U(ts.t7) and ff(t?,tg;) are the inverse
transformations of the fArst three subgates, which restore the populations to their initial
values pgy = 1 and pg1 = p1o = p11 = 0 at f{g = 0. Hence, overall the CNOT gate acts like
an identity operator on the input state |00).

The CNOT subgates canse similar transformations as explained above when applied to

the other input states, i.e. |01}, [10}), |11}. The overall transformations induced by the
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CNOT gate are as follows. For the input state 101}, plotted with dashed green lines, the
initial populations, i.e. pgr = 1 and pgg = p1p = p11 = 0 at time fp = 0 are the same as the
final populations at time #g. Overall, the CNOT gate acts like an identity operator on the
state |01). For the input states |10} and |11} the effect of the CNOT gate is not trivial. For
the input state |10}, plotted with red dashed lines, the initial populations are p)g = 1 and
poo = po1 = p11 = O, but the final populations are p17 = 1 and poo = pa1 = 210 = 0. Hence,
the CNOT gate transforms the input state |10) into the output state [11). Similarly, for the
input state |11}, plotted with blue dashed lines, while the initial populations are p); = 1
and pop = po1 = p1o = 0, the final populations are p1g = 1 and pogg = po1 = p11 = 0. The

CNOT gate thus causes the transformation |11) — |10}).

3.2.3 Residual interactions

In this section, the error generators, 1.e. system-environment interaction operators, are de-
fined. Two different types of errors {83] will be investigated; the bit—flip errors are generated

by an zz-type coupling operator, i.e.

N42
SB = (&:(Cl) + 6;2))i$ and %, = Z )\afrs(j), (3.23)
=3

whereas the phase—errors arc generated by a zz-type coupling operator, i.e.

N2
SB=(" 4+, and .= ) Asl (3.24)

1=3
In both cases, the interaction strength A is randomly and uniformly sampled within [— X, )]
where A is equal, in magnitude, to J,. which is the experimentally relevant two-qubit coupling

strength.

Although solid and condensed phase QC proposals inherit a variety of physical interac-
tions to couple qubits, and accordingly qubit-qubit residual interactions of zz-, zz-, yy-, or
zy-type are all possible error generators, only xz-fype residual interactions are expected for

the Josephson charge-qubit QC proposal [69] under investigation. This is due to the fact
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that two-qubit gates for this design are generated by the zz-type qubit-qubit interactions.
However, it is noteworthy that different types of residual interactions may also be possible
in the prescnce of impurities. Nevertheless, consideration of the second type of coupling,
ie. zz-type interactions will help improve the understanding of the open system dynamical

effects.

3.2.4 Environment Hamiltonian

It is assumed that the imperfections arising in the QC core can be modeled via a combination
of one- aud two-qubit interactions {72, 73], although higher order interactions may also be
possible [84]. The control Hamiltonian of the two-qubit register, i.e. equation (3.18),

suggests that the bath Hamiltonian for N-idle bath qubits should be of the form,

1 N+2 N+l N+2

fly=33 (Bz&l + Brol )+ 30 N salel), (3.25)
1=3 1=3 j=it+1

which can also be considered as an effective Hamiltonian representing the collective dynamics
of the rest of the QC. Similar Hamiltonians are also widely used as a generic maodel of an
isolated QC in the prescnce of static internal imperfections [72-77].

One-body static imperfections in the Hamiltonians of the bath qubits are modcled ran-

domly and uniformnly by sampling the coefficients Bf/z from the interval,

B** ¢ [BY*—6/2, BE* 4 5/2). (3.26)

4

The idle bath gubits should be similar to the active qubits. This is because they all belong
to the same QC core. Thus, the average values of the distribution, Bg/z, represent the
experimentally relevant qubit dynamics in the absence of imperfections. In other words, the
idle bath qubits differ from the active qubits by a static noise characterized by a detuning
parameter, 0. 1n modeling two-body residual interactions, l.e. system-bath and intra-
bath interactions, the previous studies are followed [72-77]. These coupling coeflicients are

sampled randomly and uniformly from Jy7 € [-J;, J;] and /\T/Z € [-A, A]. The same
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set of A; values for both xzz- and zz-type coupling is used so that the relative importance
of these error generators can be understood. In previous studies [72-77], the QC core is
assumed to be a two-dimensional Jattice of qubits interacting via nearest-neighbor two-
qubit interactions. While the same type of distributicn for the qubit-qubit interactions
15 used here, all possible pairwise qubit interactions in the bath Hamiltonian (3.25) are
also allowed. This is because the charge-qubit QC proposal [69] permits all pairwise qubit
couplings in principle, and so residual interactions amnong all qubit pairs are likely to exist.
Therefore, the use of all qubit-qubit interactions is expected to mimic short as well as
long-range residual interactions. Nevertheless, the type of the distribution and allowed
interactions used here should still be considered as an idealization because, for example,
possible spatial dependencies of the imperfections due to the lecation of qubits in the QC
are not explicitly taken into account. In an experiment the magnitude as well as type of
the imperfection would possibly be intrinsic to the particular experimental condition and
physical set-up. Nevertheless, to compensate for the idealization of the model developed

here, a large number of parameters will be used in numerical simulations.

3.2.5 Initial states

It is assumed that initial state preparation for the subsystem is achieved hefore the actual
dynarnics of the CNOT gate is initiated. Moreover, it is assumed that the rest of the QC,
i.e. the bath qubits, is already thermalized. Thus, the initial state of the whole system is
given as a product state,

A(0) = ps(0) ® ps(0), (3.27)

where pg{0) is the subsystern density and pg(0) is the canouical bath deusity operator. At

equilibrium the collective state of the thermalized qubits is of the canonical form,

p8(0) = (1/Q) exp (—Hp/kT) (3.28)
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with

Q = Trglexp (- Hg/kT)). (3.29)

These initial conditions are not easily achieved in practice, and thus are somewhat unrealistic
since they do not take mto account possible residual correlations between the system and
bath degrees of frecdom. However, inclusion of the effects of tmperfect initial conditions
would greatly complicate this study., Moreover, the aim is to observe the emergence of
dynamical errors from the residual static internal interactions.

In simulations, two different sets of initial states for the two-qubit register will be con-

sidered. The first set includes four standard basis states for which the CNOT gate i1s defined
£5(0) = libo){ho| where |4} € {|00),[01),]10). [IT}}, (3.30)
and the second set consists of four Bell states defined as

ps(0) = [tho)(tho| where |vig) € {(|00) £ [11))/v2, (|01} £ [10))/v2}. (3.31)

3.3 Exact numerical approach

Given the Hamiltonians and the initial conditions, the exact reduced density at some later

time, ¢, can in principle be calculated by the formula,
ps(t) = Tra[U(6)A0)T (1)), (3.32)

where
-t
(1) — Texp {—(i/h)/ H(t’)dt’}. (3.33)
0
Equation {3.32) is valid for all temnperatures. In the low temperature limit, the reduced
density operator, pg(t), is calculated via
Merg e_En,/kT

psit) = 3 S Tes 001000} (3.34)

n=1
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for all initial states of the form, i.e. [¥,(0)} = ¥} ® |#2). Here, the bath states, |¢Z), are

obtained by solving the bath eigenvalue equation for the lowest eigenvalues for N-idle bath
qubits,

Hplo7) = Eulér). (3.35)

In what follows, by defining |¥,(#)} = U{t){|¢0)@ ¢53) for each basth state, n, the actual

dynamics are obtained by solving the Schridinger equation,
dlWa(t))/dt = —(i/R)H (2)[%n () (3.36)

Note that in equation (3.34) the thermal bath density (3.28) has been replaced with

Terg 5 (-E_E”/kT 3
pp(0) =Y bn)—g—(@nl. (3.37)
n=1

where the sum is now over the thermally populated bath states only. Thus, ne,, is set so
that states n.,, + 1 and higher are uuoccupied, and the partition function is then of the
form,

Tlerg

Q' =) exp(—E/kT). (3.38)

n=1

3.3.1 Numerics and parameters

The numerical simulations are based on the experimentally realizable control parameters
of the charge-qubit QC proposal [69]. For computational convenience, the parameters of
the control Hamiltonian are scaled in units of € = 200 mK. The one- and two-qubit control
parameters are as follows, 8% = B* = 1, and 7, = .05, respectively. Heuce, a typical
switching time for the one-qubit gate operations is of order &/28% ~ 0.1 ns. The two-qubit
gate span is however 10 times longer. The total elapsed time for the CNO'T gate is then about
tg = 1.129 ns. The relevant temperature is 50 mK [68] and thus k7" = 0.25. While achieving
this low temiperature, necessary for coherent quantum control. might be an experimental

burden, it leads to a significant computational advantage for exact propagations since only
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a few bath states will be populated at this low temperature. n.,, = 20 was sufficient in all
the calculations. The other parameters that define the bath qubits are Bf = Bf = 1 and
¢ = 0.4. A number of J,. values are considered in order to explore the emergence of chaos:
Jr, = 0.05, 0.25, 0.50, 1.00, 2.00. The subsystem-bath interaction strength 1s set equal to
the two-qubit control parameter, and thus A = 0.05 for both bit-Aip and phase errors.

The exact diagenalization of the bath Hamiltonian (3.25) for ng, = 20 eigenvalues is
done by an implicitly restarted Lanczos algorithm [85] for N = 10 idle bath qubits. The
Schrédinger equation for a given initial subsystem and bath state involves 2! coupled real
linear differential equations. The numerical integrations are performed by a variable-step

size Runge—Kutta method [86] of order 8.

3.4 FError quantifiers: purity and fidelity

The quantity of primary interest is the rednced density of the active degrees of freedom,

ps(t}, obtained by tracing out the degrees of freedom of the idle bath gnbits, i.e.
pslt) = Trali(t)]. (3.39)

The reduced density snpplies all necessary probabilistic information about the open dy-
namics of the CNOT gate. Hence, once the reduced density is known, the quality of gate
implementation can readily be assessed by standard error quantifiers. Two error quantifiers
are emploved to assess the performance of the CNOT gate: purity and fidelity. Non-unitacy
internal errors due to decoherence and dissipation are quantified by usiug purity, since the
purity is insensitive to nmitary effects. Fidelity reflects all sources of error. Hence, a large
deviation between the purity and fidelity can be used as an dicator of unitary errors due
to the coherent shifting process.

Gate purity, also known as linear entropy, is delined by the trace of the square of the
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reduced density operator,

P(t) = Trs[p5(t)]. (3.40)

and it gives a measure of how close the reduced density stays to a pure state in the course of
open systemn dynamics. The purity for pure states is unity and the purity for mixed states
is less than unity.

Gate hdelity can be calculated from the reduced density using

Flt) = Trelps(t)pde 1)), (3.41)

where 54¢!(t) is the time evolved density obtained in the absence of residual interactions

with the idle qubits, given by equation (3.22). The ideal value of the fidelity for pure initial
conditions would be unity at all times, i.e. F(t) =1 in the absence of interaction with the

idle bath qubits.

3.4.1 Average error quantifiers

Exact numerical simulations, reparted inn the next chapter, involve a large number of QC
configurations, i.e. initial conditicns, system-bath interactions and bath parameters. In
order to compress the data, average error quantifiers, i.e. the average purity and fidelity,
are employed. For each of these error quantifiers, two averages are computed: over the four
initial standard basis states (3.30), and over the four initial Bell states (3.31). The average

purity is defined as

_ 1 A
Pt =, 3 Trslad(0) (3.42)
[va)
and the average fidelity as
T _ 1 LA ~ideal ¢
Flt) = 2 %TIS[PS(UPS (t)] (3.43)
Yo

where the ideal time evolution is given by equation (3.22).
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These average error quantifiers will not only allow the determination of the overall mag-
nitude of errors for two sets of initial conditions and two different error generators, but also
help estimate the overall performance of the chaotic Kraus decomposition for different QC

configurations and also help present the results in a concise form.



Chapter 4

Simulations for the CNOT gate

In this chapter® the exact numerical results obtained in the sirnulations are reported for a
large nuinber of quantum computer {QC) configurations, specifically, two sets of total eight
different 1nitial system states (i.e. the standard basis states and Bell states), two types of
error generators (i.e. bit-flip and phase errors), and five different values of intra-enviromental
interactions. In section 4.1 the results are reported for average error quantifiers, i.e. the
average purity and fidelity, and an overall performance of the CNOT gate for bit-flip and
phase type error generators is estimated. In section 4.2 the time evolution of individual
initial states is examined separately for the bit-flip and phase type error generators, and
how different cperatious comprising the CNOT protocol affected by internal imperfections
are determined. It 1s shown that in some cases particular operatious are influenced much
more strongly than others, and the magnitude of the errors does uot neccessarily correlate
with the duration of the operation. These results suggest that it may be possible to find a

particular implementatiou ol elementary gates that has a better performance than most.

SThis chapter is based on two studies [16, 17] reparted by Cetinbas and Wilkie.
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Figure 4.1: Time evolution of average purity, P(t), for standard basis states (thin lines) and
Bell states (thick lines) in the case of bit-flip errors (generated by zz-type coupling) plotted
for five different values of intra-bath coupling, .J. = 0.05,0.25,0.50, 1.00,2.00 €.

4.1 Overall performance: standard basis states versus Bell

states

In Agure 4.1, the average purity, P{t), versus time, and in figure 4.2, the average fidelity,
F(t), versus time is plotted for bit-flip errors generated by the zz-type interaction operator
for five different values of intra-bath couplings, J,. In figures 4.3 and 4.4, P(t) and F(t)
are plotted for phase errors generated by the zz-type interaction operator. In all figures the
Bell states are plotted with thick lines to distinguish them from the standard basis states.

Non-negligible deviations from the perfect purity, i.e. P(t) = 1, which are greater
than the theoretically acceptable limit of 0.99999 [87], are observed in almost all cases,

which indicates that internal decoherence exists and may be an issue of concern even for a



CHAPTER 4. SIMULATIONS FOR THE CNOT GATE

.
w

Average fidelity

J=005 M =025  J=0S0  I=100  4=200

Figure 4.2: Time evolution of average fidelity, F(t), for standard basis states (thin lines)
and Bell states (thick lines) in the case of bit-fip errors (generated by zz-type coupling)
plotted for five different values of intra-bath coupling, J; = 0.05,0.25,0.50,1.00,2.00 €.

relatively small number of bath qubits. However, with increasing J,, a transition to chaos
occurs, which in turn results in a rapid suppression of errors due to the decoherence. The
confirmation of chaos is discussed in chapter 7. The results indicate that the bath is chaotic
above J, > 0.15 e. The strongest intra—environmental coupling, J, = 2.00 ¢, leads to an
almost complete suppression of decoherence. This is the case for bit-flip as well as phase
errors. Hence, deliberately induced chaotic bath interactions can enhance the performance
of a QC, and may even serve as an error correction strategy when such strong interactions
are practical for a QC design. The results show that the Bell states are slightly more
susceptible to the effccts of internal imperfections than the standard basis states, and the

bit-flip type errors are of the same magnitude as phase-errors for all initial conditions.
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Figure 4.3: Time evolution of average purity, P(t), for standard basis states (thin lines) and
Bell states (thick lines} in the case of phase errors {generated hy zz-type coupling) plotted
for five different values of intra-bath coupling, J, = 0.05,0.25,0.50, 1.00,2.00 «.

The fidelity plots display very large and unexpected deviations from ideality, i.e. F(¢) =
1. However, the purity plots did not indicate such bchavior. Since the purity is insensitive
to unitary effects, the large deviations between the purity and fidelity plots indicate the
presence of environment-induced large unitary errors in the CNOT dynamics. Increasing
Jz results in an improvement in fidelity for phase errors. However, almost no-improvement is
observed for bit-flip type errors. In fact, increasing J.., slightly deteriorates the performance
for xz-type interactions.

The results indicate that the surprisiugly high maguitude unitary errors destroy the
fidelity of QC operations, aud error correction methods [79] need to operate in order to

correct the dynamnics. Here, the large errors are observed for the two-qubit subsystem
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Figure 4.4: Time evolution of average fidelity, F(¢), for standard basis states (thin lines) and
Bell states (thick lines) in the case of phase errors (generated by zz-type coupling) plotted
for five different values of intra-bath coupling, J, = 0.05,0.25,0.50,1.00,2.00 «.

and these errors are common to the entire active part which in principle may comprise a
large number of qubits. While existing error correction schemes (79] can be used to remove
the undesirable errors induced by the coherent shift process, the number of single-qubit
operations needed to correct these errors will be quite high, which in turn considerably
increases the computational cost. However, since the errors induced by the coherent shift
process are of unitary nature and thus deterministic, a much simpler error correction scheme
may be possible.

Ten different realizations of the QC were explored. The results presented here are only
for a single realization of the QC but these results are typical. However, some exceptional

realizations were also encountered. In some cases the bath density of states increases with
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Figure 4.5: Time evolution of purity, P(¢), in the case of bit-fip errors (generated
by xz-type coupling) plotted for five different values of intra-bath coupling, J, =
0.05,0.25,0.50,1.00,2.00 ¢ in (a) for 00), in (b) for |01}, in (c) for |10}, and in (d) for
[11}.

increasing .f., which causes accidental near degeneracies in the low energy spectrum of the
bath. The number of thermally and dynamically populated bath states can then increase
with increasing Jz. This then results in an anomalous increase of decoherence with J,. In
some QC architectures (e.g. symmetric ry-models) not considered here, this is the dominant
effect. In these cases the bath chaos may not be an officient approach to correct the non-
unitary errors. However, in all cases, large unitary errors originating from the coherent shift

process were observed.
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Figure 4.6: Time evolution of purity, P(¢), in the case of phase errors {generated
by zz-type coupling) plotted for five different values of intra-bath coupling, J. =
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4.2 Performance for individual initial states

In this section the performance of the CNOT gate is examined for individual initial states.
In section 4.2.1, by examining the purity plots, the errors due to the decoherence and
dissipation are discussed. In section 4.2.2 the unitary errors due to the coherent shifting are
discussed by examining the fidelity plots.

Figures 4.5-4.8 show purities, P(¢), and figures 4.9-4.12 show fidelities, F(t}, as a func-
tion of time. Each figure contains four subfigures in which results for four initial register
states are plotted. For the standard initial states the subfigure {a) is reserved for the state

00), the subfigure {(b) for |01), the subfigure (c) for |10}, and the subfigure (d) for |11}.
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Figure 4.7: Time evolution of purity, P(t}, in the case of bit-flip errors (generated
by za-type coupling) plotted for five different values of intra-bath coupling, J, =
0.05,0.25,0.50,1.00,2.00 ¢ in {(a) for (JO0) + [11))/v/2, in (b} for (|00 — 11)}/v/2, in (c)
for (|01) + |10Y)/v/2, and in {d) for (|01) — [10))/+/2.

Similarly, for the initial Bell states, the subfigure (a) is reserved for (J00) + |11})/v/2, the
subfigure (b) for {00} — [11})/v/2, the subfigure (c) for (|01} + |10))/v/2, and the subfigure
(d) for {|01) — |10})/v2. For each initial condition the purity or fidelity is plotted for five

different valnes of the intra-bath coupling, J., in the same subfigure. The switching times

of elementary gates arc also labeled for each subfigure.

4.2.1 Errors due to decoherence and dissipation

The purity is plotted for zz-type coupling in figure 4.5 for the standard initial basis states.

In each subfigure, five different curves represent the different values of .J.. Clearly, the lower
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Figure 4.8: Time evolution of purity, P(f), in the case of phase errors (generated
by zz-type coupling) plotted for five different values of intra-bath coupling, J, =
0.05,0.25,0.50,1.00,2.00 ¢ in (a) for (|00} + |11))/+/2, in (b) for (|00) — [11})/v/2, in (c)
for (|01) + [10))/v/2, and in (d) for (|01 — [10})/v/2.
the J; the greater the deviations from the ideal value of purity, i.e. P(t) = 1. For the
smallest value of intra-bath interaction (i.e. J; = 0.05 €), the highest magnitude of error is
observed. With increasing .J., the errors systematically decrease. For J, = 2.00 ¢, there is
almost no sign of error. For the lower values of J, some oscillations in purity are observed.
These are indicators of the memory effects present in the dynamics. These effects suggest
that regular baths {i.e. non-chaotic) are more non-Markovian and cause more decoherence
and dissipation than chaotic baths.

All subfigures for the standard initial states show qualitatively similar behavior. Clearly,

however, there are also some quantitative differences which are indicators of state specificity.
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Figure 4.9: Time evolution of fidelity, F(¢), in the case of bit-flip errors (generated
by zz-type coupling) plotted for five different values of intra-bath coupling, J, =
0.05,0.25,0.50,1.00,2.00 ¢ in (a) for |00}, in (b) for |01}, in {c) for |10}, and in (d) for
111).

For example, in figure 4.5, the early dynamics ¢ < #; look similar in subfigures (a) and (c),
and in subfigures (b) and (d) for J; = 0.05,0.25,0.50 €. But subfigures (a) and (b) look quite
different on the same time scale, where bunching of the curves is seen at tg in subfigures
(a) and (c), but there are clearly separated curves in subfigures (b) and (d) at the same
time. While the short time similarities of subfignres (a) and (¢) continue throughout the
dynamics, the dynamics of purity in subfigures (b) and {d} then evolve rather differently.
The pronounced oscillations in the purity are seen at the regular bath regime in subfigure
(d), but those scen in subfigure (b) arc more monotonic. For J, = 0.05 ¢, the purity

at tg is roughly 0.935 in subfigure (b} and 0.9625 in subfigure (d) which is a significant
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Figure 4.10: Time evolution of fidelity, F(t), in the case of bit-flip errors (gener-
ated by zz-type coupling) plotted for five different values of intra-bath coupling, J, =
0.05,0.25,0.50,1.00,2.00 ¢ in (a) for (|00) 4 [11))/+/2, in {b) for (J00) —|11)}/+/2, in (¢) for
(101} + 103)/+/2, and in (d) for (|01} - 110))/V/2.

difference. Hence, there is an apparent state specificity to some degree for xz-type coupling
for the smaller J, values. However, the .J, = 1.00 and 2.00 ¢ curves show almost no state
specificity.

In figure 4.6, the purity for the standard initial basis states and zz- type error generator
is plotted. Here the purity plots again show an improvement in purity as J, increases. The
magnitude of the errors is quite similar to that for zz-type coupling. The early dynamics
t < ty are similar in subfigures {(a) and (¢}, and in subfigures (b) and (d) for the lowest
Jr values. There are no strong similarities in purity for any subfigures after ;. Here state

specific behavior appears quite strong with the most divergence taking place during the
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by zz-type coupling) plotted for five different values of intra-bath coupling, J, =
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two-qubit gate. However, the highest two J. values show little state specificity.

In figure 4.7, the purity for zz-type coupling and the Bell type initial conditions are

examined. A rapid correction of errors is observed with increasing J,. For J, = 0.05 ¢,
again, the worst decohercnce is seen, but otherwise the dynamics display qualitatively sim-
ilar behavior to that for the standard basis states. State specific effects look slightly less
pronouriced than those seen in figure 4.5.

In figure 4.8, the purity is plotted for the Bell states and zz-tvpe system-bath interac-
tions. The behavior of phase errors does not differ much relative to those observed for the

standard basis states. However, in subfigures (a) and (b) the short time dynamics are quite
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Figure 4.12: Time evolntion of fAdelity, F(¢), in the case of phase errors (generated
by zz-type coupling) plotted for five different values of intra-bath coupling, J, =
0.05,0.25,0.50,1.00,2.00 ¢ in (a) for (j00} + [11)}/v2, in (b) for {J00) — {11))/v/2, in (c)
for (|01} + 103)/v/2, and in (d) for (|01) — [10})/+/2.

different.

In all figures non-negligible deviations of the purity frem the theoretically desirable limit
of 0.99999 [87] are observed for the experimentally relevant two-qubit coupling strength
J, = 0.05 e. Recall that the number of idle bath qubits directly participating in the
decoherence process was relatively small, ie. N = 10. This number could be higher for
larger QCs, which suggests that internal decoherence can be a matter of concern in a QC
core in the presence of static internal imperfections. However, it is also clear that increasing
the intra-bath interaction strength, J., causes a rapid improvemnent in purity. Hence, the

bath chaos stabilizes the gate implementation by causing a reduction of decoherence. For the
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strongest coupling case, J, = 2.00 ¢, the effect of deccherence almost completely disappears
for both types of coupling operators and all initial conditions. This suggests that induced
bath chaos may serve as an error correcting strategy when such strong intra-bath interactions
are experimentally accessible.

Overall, the decrease of the purities with tirne appears qualitatively similar for all initial
conditions, but the Bell states perform slightly worse than the standard basis states. Since
the Bell states are entangled states representing the state of two spatially separated qubits,
they seemn more susceptible to the destructive effects of decoherence. Performance with
respect to the type of coupling operator appears to be quite similar in all cases. Owverall,
the purity decays are of comparable magnitude for both bit-fip and phase type couplings.
However, intriusic decoherence due to particular initial conditions and ccupling operators
is also seen. For example, decoherence by zz-type coupling affects the system during the
first gate operation for all initial conditicns. In the case of zz-type coupling, however, the
errors do not emerge until the second gate operation for all standard basis states (as seen
in figure 4.6) and for two of the Bell states (as seen in figures 4.8(¢) and 4.8(d)).

Decoherence is a state—dependent phenomenon. The slight state specificity discussed
above cannot be dismissed as negligible, because the small effects observed in one gate
could get amplified over time during other gates. In almost all cases the observed state
specific effects are stranger in the non-chaotic bath regime. The chaotic bath dynamics also

reduce the state specific effects.

4.2.2 FErrors due to coherent shifting

The time evolution of fidelity, F(¢), for zz-type coupling is plotted in figure 4.9 for the
standard initial basis states and in figure 4.10 for the Bell states. Overall, the fidelity plots
show gualitatively similar behavior in that they start at one and decay quite uniformly

toward zero at the end of the gate. The fidelity plots show alniost ne dependency on J;.
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However, with increasing J; fidelities do get slightly worse. The purity plots showed that
the deviations of the purity [rom unity were less than ten percent in all cases. Here all
fidelity is lost over the course of a single CNOT gate. Moreover, all of this error should
be of unitary origin as it does not affect the purity. The degree of error the fidelity plots
indicate is alarming. But since the error is mostly unitary and thus deterministic, there
may be some systematic way to remove the unitary error component. Some state specific
recurrences are also seen in subfigures 4.9{c¢), 4.9(d) and in subfigure 4.10{c).

Figures 4.11 and 4.12 plot the fidelity for the initial standard basis states and the initial
Bell states, respectively. The fidelity plots indicate that the behavior of phase errors is
quite different from those obscrved for the bit-flip errors. Interestingly, with increasing
J, dramatic improvements in fidelity are observed. While in the regular bath regime, the
Odelity loss is about sixty percent, in the chaotic regime it is close to the acceptable limit.
Moreover, the magnitude of fidelity improvement is highly sensitive to the strength of the
intra-bath coupling, J.,. The fdelity plots do not show a strong initial state dependency
but the fidelity decay for the Bell states in subfigures 4.12(a) and (b), and {c¢) and {d) show

similar behaviors for ¢ < ¢4.



Chapter 5

Probing internal bath dynamics by

a Rabi detector

Internal errors in a quantum computer (QC) core may arise due to the existence of one-
body imnperfections or as a consequence of residual two-body interactions, or even as a
result of strong residual interacticns with other local impurities in a QC core. One-body
imperfections can be readily corrected in many cases. Two-body interactions are more
difficult to deal with and their effects are difficult to predict, since these interactions generate
an interual decoherence mechanism. Knowledge of the strength of the two-body intra-
bath interactions may prove very useful for eliminating their effects. It has been observed
in [16, 17] and shown in chapter 4 that the coherent shift is sensitive to the strength of
bath self-interaction [16, 17). In this chapter?, it is shown that a single qubit detector can
be configured to measure the bath self-interactions. A model system representing a qubit
detector interacting with an isolated QC with static internal imperfections is presented.
In the absence of interactions with the QC, the detector undergoes phase evolution only.

When the detector experiences a coherent shift, as a result of interaction with the QC,

5This chapter is partly based on a study [18] reported by Cetinbas and Wilkie.

68
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it begins Rabi oscillations. The fidelity of the detector also exhibits a periodicity on a
much longer timescale with a period which is highly sensitive to the strength of bath self-
interaction. Measuring the Rabi oscillations or the period fidelity allows one to find the
intra-bath coupling strength., Moreover, it should be possible to apply the basic ideas
behind the detector set-up in more general contexts such as optical impurities in solids
where knowledge of bath self-interaction could be important.

The study presented in this chapter has been previously published in [18], where in
addition to exact numerical calculations, approximate results based on a mean-field master
egnation have been also reported. Recently, errors have been detected in the master equation
calculations, making their results of questionable reliability. Here, discussions are be based
on exact numerical results. Since the master equation is nsed as an alternative method
to obtain open system dynamics, and the predictions of this master equation are only
approximate, the absence of the master equation calculatious does not alter the conclusions
presented here to any extent.

The organization of this chapter is as follows. The Rabi detector model is described in
section 5.1. The exaet numerical approach used in the simulations is explained in section 5.2,
Tu section 5.3, exact numerical results are presented for short and very long time dynamics

and the results are discussed.

5.1 Description of model

The self-interacting spin-bath model, representing the QC core, consists of N 4+ 1 two level

systems, and is given by the following total Hamiltonian,
F[:H3+SB+1£IB, {5.1)
where the first term is the free systern Hamiitonian,

Bjol”, (5.2)
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the second term represents a system-bath interaction operator in the system S and bath B

degrees of freedom,

N
SB=6"5, and T,=> Ao, 5.3
x x
=1
and the third term is the bath Hamiltonian given by
LN N—1 N
fip=-35" (Brof + Brol) + > D JLead. (5.4)
=1 =1 j=1+1

The index 0 is used to label the detector qubit. The index runs from 1 to N for the bath
qubits. The imperfections are modeled by choosing the parameters of SBand Hg randormly

as done previously in chapter 3.

5.1.1 Parameters

The parameters used in the numerical calculations are based on a Josephson charge-qubit
QC proposal [68, 69] for which the experimentally accessible one-qubit energy to perform a
single-qubit rotation is Bf = 1.00 ¢ where ¢ = 200 mK. Since all qubits in the Hamiltonian
{(5.1) are the components of the same QC, the imperfections in single—qubit parameters
should only differ from Bj by a detuning parameter, which is set to the value ¢ = 0.4 ¢. Static
nolse is added to all qubits except the detector qubit by choosing Bf € (B —46/2, BE +§/2]
and B¥ € [B — §/2, B§ +6/2]. The residual two-body interactions are modeled randomly
and uniformly by choosing A, and J;? from A, € [~A, A] and J e [—Jr, Jz|, respectively.
While a number of intra-bath coupling strengths, i.e. J, = 0.00, 0.15, 0.50, 1.00, 2.00
in units of €, are considered to explore the integrable to chaotic transition (see the final
chapter for confirmation of chaocs), ouly one systeni-bath coupling value, which corresponds
to the experimental value for a two-qubit rotation, i.e. A = 0.05 ¢, is considered. In all

the calculations the temperature is set to &T = 0.25 ¢, and the time step of integration is

At =0.2 hfes.
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5.1.2 Initial conditions

It 1s assumed that the dynamics of the QC are initiated from a state of product form,
p(0) = ps(0) ® pp(0). (5.5)

Here, gp5(0) is the canonical bath density and pg(0) = [4(0))(¢(0)] is the reduced density
operator for the detector where |(0)) = {|0) + |1})/+/2. This state of the detector qubit
will only undergo phase evolution in the absence of interactions with the QC. However, once

the interactions are in effect, the detector will show Rabi oscillations.

5.2 Exact numerical approach

By exploiting the low temperature regime for the bath degrees of freedom, the initial bath

density is approximated as
Ticag

p5(0) = palef)(6f (5.6)

n=1

where p, = exp (= E,/kT)/ Z:;f;’] exp (—£,,/kT) are the populations of the thermal bath
state and I:IBWE) = F,|65). Here, the sum in (5.6) is over only the thermally populated
lowest energy eigenstates of the bath. Therefore, n., is a cutoff such that the states with
Nesg + 1 and higher are unoccupied for the fixed low temperature. While the density of bath
states and thus the number of thermally populated states varies slowly with J; for a fixed
bath temperature, ne,, = 20 was sufficient for all cases.

The time—-evolved reduced density is obtained from,

Trerg

ps(t) =" pu Tral[Ta(t) (2] (5.7)

n=1

where each |¥,(f)) evolves according to the Schrodinger equation,

ih—({l‘l’n(i)) = H|U,(t))

= (5.8)
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Figure 5.1: Short time dynamics of purity, P(t), plotted for five different values of intra-bath
couplings, J. = 0.00,0.15,0.50,1.00,2.00 .

for all initial states of the form, |¥,(0}) = [4(0)) ® [#Z). A Lanczos algorithm [85] is used
for the diagonalization of the bath Hamiltonian for N = 10 qubits, and an eighth order

variable stepsize Runge-Kutta method [86] for the numerical integrations.

5.3 Results

Purity and fdelity are used to estimate deviations from the pure phase evolution in the
state of the detector qubit. Purity, defined by P(t) = Trg[ps(t)?], is a good measure of
decoherence and dissipation since it is mnsensitive to the coherent effects. For pure initial
states, the ideal value of purity is equal to one. This would be the case if interaction

with the bath causes only coherent shifting but no decoherence. Fidelity, defined by F(t) =
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Trg(ps(#)pi89 ()] is sensitive to both coherent effects and decoherence. Here, 5164 (t) stands
for the ideal system evolution at time ¢, in the absence of system-bath interactions. Fidelity
measures how close an open system's evelution is to the ideal system evolution. For pure
initial states, the ideal value of fidelity is also one in the absence of system-bath interactions.
The large deviations in the magnitudes of purity and fidelity gives an indication of coberent
shifting.

Recall that the initial state of the detector qubit is {|0) + |1})/+/2. In the absence of
coherent shifting, this state should undergo only phase evolution without significant popu-
lation transfer. However, in the presence of coherent shifting, the free system Hamiltonian
will be shifted by the system coupling operator and thus the detector qubit should display

large amplitude Rabi oscillations. Therefore, the populations of the detector qubit will also
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Fignre 5.3: Short time dynamics of matrix elements of density operator, ps(t), plotted for
coherent (dashed lines) and decoherent (solid lines) time evelntion for J, = 1.00 e (a)
Diagonals of pg(t), pon(t) = (0lps(t)|0) (blue) and p11(t) = (11p5(t)|1) (biack). (b) Real
part of off-diagonal element of pg(t), Re{pa1 }(¢t) = Re{{0|ps(¢}|1}} (green} and imaginary
part of off-diagonal of gs{t), Im{pn) }{t) = Im{{0]ps(t}|1)} (red).

be monitored to see emergence of the Rabi oscillations as & result of the coherent shift

process.

5.3.1 Short time dynamics

The short, time dynamics of P(t) and F(¢) are plotted in figures 5.1 and 5.2, respectively, for
five different values of intra-bath couplings, ./;. Figure 5.1 shows a systematic improvement

in P(t) with increasing J,. For the regular bath, i.e. J, = 0.00 ¢, the decoherence is at its
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Figure 5.4; Long time dynamics of purity, P(t). plotted for five different values of intra-bath
couplings, J; = 0.00,0.15,0.50,1.00,2.00 €.

maximum. Above J, = 0.15 ¢, chaos sets in and the decoherence is systematically reduced.
For the strongly chaotic regime, i.e. J; = 2.00 ¢, the decoherence almost totally vanishes.
This result is in agrecment with earlier studies, e.g. [29, 30], in which the bath chaos is
predicted to reduce decoherence.

The purity plots show partial recurrences in the regular bath regime. Such purity re-
currences have been previously observed for a nnmber of studies [29, 88]. These recurrences
lessen with increasing magnitude of intra-bath coupling. This effect is attributed to the
transition [rom non-Markovian to Markovian behavior as a result of chaos, and is discussed
in detail in the final chapter of this thesis.

The fidelity plots in figure 5.2 show the presence of much larger deviations from unity

than those shown by the purity plots. The fidelity plots also show a quite different trend
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with increasing J;. After a short time, F () begins to decay more rapidly for larger values of
Je. This supports the conclusion that large coherent shifts are again present in the dynamics
as was the case in the CNOT study [16, 17] of chapter 5. It seems that the coherent shift
process is much more harmful than decoherence or dissipation processes as a potential error
source for quantum computation [16, 17]. However, it is shown here that the coherent
shifting can be put to a good purpose. It is also noteworthy that while the coherent shift
vanishes in some standard models of decoherence, it is nonzero in general for self-interacting
baths. Therefore, large magnitude errors indnced by the coherent shift process should also
be expected for condensed phase environments.

In figure 5.3, the matrix elements of the detector qubit are plotted for J, = 1.00 €. In

figure 5.3(a), large magnitude Rabi oscillations are seen in the populations. There is also
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Figure 5.6: Long time dynamics of matrix elements of density operator, ps(t), plotted for
coherent (dashed lines) and decoherent (solid lines) time evolution for J, = 1.00 e (a)
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a small shift of off-diagonal matrix elements seen in figure 5.3(b). These oscillations are
a direct consequence of the coherent shift process that emerges as a result of system-bath

interactions.

5.3.2 Long time dynamics

In figure 5.4 the exact numerical results for purity are plotted for five different values of J;.

Figure 5.4 shows that suppression of decoherence with increasing J; is also the dominant
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Figure 5.7: Canonical average of bath coupling operator, B, versus J;.

effect in the long time dyuamics of the purity. In addition, the purity plots reflect the
presence of long time partial recurrences iu the regular bath regime. These recurrences are
again caused by memory effects.

In figure 5.5, the exact numerical results for the long time dynamics of the fidelity
are plotted. In the long time limit, the unitary effects of system-environment interactions
overwhelm the non-unitary ones, and the contributions of decoherence to the open system
dynamics are hardly noticeable anymore. This is true even in the non-chaotic bath regime.
Small-magnitude, high—frequency oscillations are still noticeable. However, the fidelity plot
displays an additional long—time, large-amplitude periodicity. Moreover, the period of the
fidelity is strongly dependent on the magnitude of J,.

In figure 5.6, the long time dynamics of matrix clements of the detector qubit is plotted
for J, = 1.00 e. The Rabi oscillations observed in the populations of jg(t) for short time

dynamics do still persist for the long time dynamics. The magnitudes of the Rabi oscillations
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are the same as those of the short dynamics and they do not subside in time.

The form of the chaotic Kraus decomposition and certain approximate master equa-
tions [47-51] suggests that the coherent shift process modifies the free system Hamiltonian
as Hg — Hg + BS where B = Tr{Bpz(0)} is the canonical average of the bath coupling
operator and $ is the systermn part of the system-bath coupling operator. Hence, for the

detector qubit, the shifted system Hamiltonian is then the following,

1 _
Hg = —iBgagm + B0, (5.9)

As noted earlier, only phase cvolution is expected for the detector qubit in the absence of
coherent shifting. The observed Rabi oscillations in the populations of the detector qubit
are then induced by the shift term, B&&O).

In figure 5.7, the canonical average of the bath coupling operator, B, is given as a
function of J;. Figure 5.7 shows that B decrecases — while its magnitude | B| increases — with
increasing J,. The changes in the magnitude of | B’ are fast and very sensitive to intra-bath
couplings for small coupling values, i.e. J, < 1, but quite slow above J, > 1. This behavior
is in good agrecment with the fidelity decay behavior seen in figures 5.2 and 5.5.

Explaining the sensitivity of the fidelity to J, is straightforward. Neglecting the effects
of decoherence and dissipation, it can readily be argued that the shifted system dynamics
should beat with a frequency of Q = (Bz% + B%)1/2/2h while the unperturbed system phase
evolves with frequency, w = B§/2h. The period of the Rabi oscillations in the populations

seen iu figure 5.3{(a) is @', It then follows that the fidelity takes the form,

F{ty = %[1 + (g)2 cos 2wt — W cos 2(0 + w)t
L BROEBYD o o

4072
The second term is very small since B? is very much smaller than 2. The third term is
small since 2 — Bj§/2 < €1, and the fourth term is of order 1. Hence, the small magnitude

oscillations in fidelity have frequency, 2(© +w). The large amplitude oscillations are cansed



CHAPTER 5. PROBING INTERNAL BATH DYNAMICS BY A RABI DETECTOR 80

by the fourth term, and they have period, n/(2 — w) = hBZ/2B% Generally, 5 is much
smaller than B, but 3 increases with J,, resulting in a shorter period. This gives rise to
the changes in the period of the fidelity and explains the behavior ohserved in figures 5.2
and 5.5. Since 2(Q +w) varies more slowly with 5, the Rabi oscillations in the populations
are not very sensitive to J,. The above formula (5.10) for F(t) is in excellent agreement with
the exact results for strong intra-bath coupling values, J, > 1, and thus strongly supports
the conclusion that the shift manifests as IS’S — H’s + BS.

Lastly, by measuring the period of the fidelity oscillation one can obtain an estimate of
B, and from figure 5.7 the magnitude of .J; can then be obtained. Hence, this is a detector
of the strength of bath self-interaction for this isolated QC model. The same hasic setup
should also carry over to the case of oscillator baths, and the technique conld potentially be

used to measure the strength of anharmonic interactions in the condensed phase medium.



Chapter 6

Tests for chaotic Kraus

decomposition

A Kraus decomposition for quantum systems interacting with large chaotic environments is
derived in chapter 2, where the extension of the decomposition to include time-dependent
system Hamiltonians is also provided. The chaotic Kraus decomposition (CKD) is only
exact for chaotic baths of thermodynamic dimension. Therefore, the performance of the
CKD should be assessed for small sized baths before it can be used for general applications.

In this chapterd the CKD is tested against exact numerical results reported in chapters
4 and 5. In particular, the performance of the time-independent form of the CKD is tested
against exact numerical results of the Rabi detector study of chapter 5, and the time-
dependent extension of the CKD is tested against the exact numerical results obtained for
the CNOT study of chapter 4.

To assess the performance of the CKD, the predictions of the CKD are compared with
those of exact numerical results for two error quantifiers, i.e. purity and fAdelity. The purity

is used to assess the accuracy of the CKD for the non-unitary effects, i.e. decoherence and

¥This chapter is taken from (wo studies [14, 15] reported by Cetinbag and Wilkie.

31
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dissipation, and the fidelity is used to estimate the accuracy for the unitary effects of system-
environment interactions. In addition, the matrix elements of the reduced density operator
predicted by the CKD are compared with those obtained by exact numerical simulations.
The test results show that the CKD is very accurate in spite of the relatively small bath
dimension used in the exact simulations. Thesc promising results suggest that the CKD can
be a practical computational tool for low temperature simulations of open quantum system

dynamics induced by chaoctic environments.

6.1 Rabi detector study

In this section an analytic solution of the CKD is presented for the Rabi detector study.
The details of Hamiltonians, initial conditions and numerical parameters used in this study
are discussed in chapter 5. Here these quantities are reviewed and used to construct the
explicit form of Kraus operators for the CKD.

The total Hamiltonian for the Rabi detector study is of the form, H = Hs + SB + Hpg;
see equation (5.1). Here, Hy is the subsystem Hamiltonian defined in equation (5.2). The
system-bath coupling operator, S for the system part and B for the bath part, is given
by equation {5.3). The bath Hamiltonian, Hp, is defined by equation (5.4). The Kraus

operators for the Rabi detector study take the following simple form,
. 1
Kn(t) = /Pnexp {%(539@ - Bn,navg“))t}. (6.1)

The initial bath populations, p, = exp (= E,/ksT)/ > % exp (—E,/kpT), and the diago-
nal matrix elements of the bath coupling operator, B,., = (62 (0)|B|¢Z(0)}|. are calculated
by using the exact eigenstates of the bath Hamiltonian obtained in chapter 5.

The reduced density at time ¢ is expressed in terms of these Kraus operators,

Tlewg

ps(t) = Kalt)ps(0)KL(1). (6.2)

=1
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Now, inserting the initial density, As(0) = [22(0)){¢2(0)], where |[2:(0)) = (|0} + |1))/+/2,
into the above equation, the CK'T for the given temperature, kgT = 0.25 and ne, = 20

then has the form,

) i et (D12 )l (1)
ps(t) = pn .| (6.3)
n=1 gt @) )]
where
2 Bz - QBn.'rz - .
et (t) = \g_ [cos ant + i(b‘) sin ant] , _ (6.4)
2 B, + 2By}
cp(t) = \g_ [cos Ant — i(er’) sin ant] , (6.5)
and

bn
O = o and b, = /B2 +4BZ . (6.6)
] y/ :

6.1.1 Results for purity and fidelity

The accuracy of the CKD has been tested for several values of intra-bath couplings in the
chaotic bath regime, ie. for J; = 0.50,1.00,2.00 ¢. Here, the predictions of the CKD are
compared with exact numerical results for the purity, P(¢), and fidelity, F(t), of the reduced
density.

In figure 6.1 for short time dynamics, and in figure 6.2 for long time dynamics, P(t)
is plotted for three different values of intra-bath coupling, J;. The time is in units of
h/e. The red dashed lines are the CKI) predictions while the black solid lines represent
the exact dynamics. Even for J, = 0.50 €, shown in subfigures 6.1(a) and 6.2(a), the
decoherence predicted by the CKD is of the correct order of magnitude. However, it is
not quantitatively accurate. There is a faster time scale to the exact dynamics which is
not captured at all by the CKD. Much better agreement is observed in subfigures 6.1(b)

and 6.2(b) where J; = 1.00 ¢ and hence the chaos is stronger. As seen in subfigures 6.1{c)
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Figure 6.4: Long time dynamics: exact numerical (black solid lines) and CKD (red dashed
lines) results for fidelity, F{t), plotted in {a) for J, = 0.50 €, in (b} for J, = 1.00 ¢, and in
{c) for J, =2.00 €.
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Figure 6.5: Short time dynamics of matrix elements of snbsystem density, pg(t), for
Jr = 1.00 . Exact numerical results are given by solid lines and CKD results by dot-
ted lines. (a) Diagonals of ps(t), (0|ps(¢)|0) (green) and (1|ps{t)|1) (red}. (b) Real part of
ofi-diagonal element of ps(t), Re{{0|ps(t)]1}} (black) and imaginary part of off-diagonal of
ps(t), Tm{ (0lps(t)[1}} (blue)

and 6.2(c), for the strongest chaotic case, i.e. J, = 2.00 ¢, the CKD results are in very good
agreement with the exact results.

In figure 6.3 for short time dynamics, and in figure 6.4 for long time dynamics, F(2)
is plotted for both exact and CKD results for the same three different values of intra-hath
coupling J,. The magnitudes of the errors in (1) are much larger than those in P(t}. The
purity measures only non-unitary errors but the fidelity is also sensitive to unitary errors.
The large deviation of F(t) from P(t} therefore indicates the presence of a large coherent
shift. The agreemenst between the CKD and exact results is quite good even for J, = 0.50 ¢,
shown in subfigures 6.3(a) and 6.4(a). For J, = 1.00 ¢, shown in subfigures 6.3(b) and 6.4(h),

the agreements are very good. For J; = 2.00 ¢ the agreements seen in subfigures 6.3{c)
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Figure 6.6: Long time dynamics of matrix elements of subsystem density, pg(#), for
Jr = 1.00 e Exact numerical results are given by solid lines and CKD results by dot-
ted lines. (a) Diagonals of pg(t), (0]ps(t)|0) {green} and {1|ps(t}|1) (red). {b) Real part of
off-diagonal element of ss(¢), Re{{(0|ps(t)|1}} (black) and imaginary part of off-diagonal of
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and 6.4(c) are excellent where the Kraus and exact results almost completely overlap.

6.1.2 Results for reduced density matrix elements

In this section, the matrix elements of reduced density predicted by the CKD are compared
to those obtained by exact numerical simulations. The matrix elements are plotted for the
short time dynamics in figure 6.5, and for the long time dynamics in figure 6.6 for J, = 1.00 €.
In subfigures 6.5(a) and 6.6{a), the populations of reduced density and in subfigures 6.5(b)
and 6.6(b), the off-diagonal matrix elements are plotted. In all these figures, the exact
results are plotted with solid lines and the CIKD results are plotted with dotted lines.

Matrix element plots show a high degree of accuracy in all cases. Indeed, the CKD
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results are virtually indistinguishable {rom the exact results. This is true for short as well as
long time dynamics. Similar degrees of accuracy are also obtained for other intra-coupling
values, J, = 0.50 ¢ and J, = 2.00 ¢, not reported here. This high degree of accuracy is
remarkable given that the bath contains only ten qubits. Moreover, it suggests that the CKD
can actually be employed as a useful computational method for low temperature simulations

of open system dynamics where the new quantum technologies are expected to operate.

6.2 CNOT study

In this section, the test results for the CNOT study of chapter 4 are presented. Analytic
solutions for the CKD should be readily obtainable due to the low dimension of the CNOT
system. However, an alternative numerical strategy was employed here, as is outlined in
section 2.7. While this approach is also generally applicable for any subsystem state, it is
even more straightforward for pure initial system states, as is the case for the CNOT study.

The first step in the numerical strategy is to construct the effective system Hamiltonians

for the Kraus operators by using the original system Hamiltonians and coherent shift terms:
He(t) = Hs(t) + 22765 4 687) (6.7)

where o € {z, z} stands for zz- and zz-type coupling, respectively. The subsystem Hamil-
tonians, He(t), and corresponding switching times for the CNOT gate are given in table
3.1. Here, EZ’”(E;E}” + og)) are the coherent shift terms. More specifically, (55 + UE,Q)) are
the system coupling operators and Ya™ = (65|5,|¢F) are the diagonal matrix elements
of the bath coupling operators in the complete bath eigenbasis, i.e. ﬁgléf) = E.|¢2y. A
summary of the effective systermn Hamiltonians can be found in table 6.1. In the numerical

LT

calculations, e, = 20 low lying exact bath eigenstates |¢Z} are used to caleulate o™ terms
s Theag g n

for J, = 0.50,1.00,2.00 ¢.

Given the effective system Hamiltonians for the CNOT gate, the time—evolved dynamics
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Table 6.1: Switching times and Hamiltonians including coherent shift terms used to imple-
ment the CNOT gate by the CKD.

Switching Intervals Effective Harniltonian

[to = 0,¢) = =/(288%)] L6 4 pnn 0 4 59

[t1,t2 = t1 + 7/ (28B7)] 1 Be5! (2) L m+6é2))

[to,ts = to + 7w/ (287} +1B250 (2) 4l (1) +&g2))

s, ta = ta + V21 /(28%)] ~1B=52 (69 4 69y mn(al) 4 62y
ta,ts = ta + 7/(47;)] (a0 =6 4 sy | snmal) 4 5@
[ts, ts = 15 + V/2m/ (2887} L1y (6 4ty g snmel) o &9))
[te, 17 = tg + 7/(2B7)] 1856 4 grn el 4 50

ltr,ts = t7 + 7/ (2B%)] R e L)

[ts, tg = tg + m/(2B7)] 11826 § zmr el 1 6P)

for each bath eigenstate, {[éf)} with n = 1,...,ne, = 20. can be calculated by numerical

solutions of the Schradinger equation,

AP (£)) fdt = — (/) Ho () (1)) (6.8)

The Schridinger equation is solved for two sets of eight initial states. The first set consists
of standard basis states, i.e. [@o) € {|00),]01),]10),|11}}, and the second set includes the
Bell states, .. ") € {(J00Y = [11))/+/2, (|01} £ [103}//2}.

In the foliowing the time—evolved rednced density for each initial condition is constructed
via, s

ps(t) =Y Palibnlt)) (Ualt), (6.9)

where p,, = exp (—E,/kpT)/ Yo, exp (—Fnm /kgT) ate the initial bath populations.

The CKD requires exact bath eigenstates in the calculations of the By terms. Exact

diagonalization of the bath Hamiltonian should be easy to achieve for quite large bath
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dimensions by standard matrix diagonalization routines. In cases when the bath dimension is
too large and thus exact diagonalization is impossible, such as large coupled osciilator baths,
alternative approaches may be taken to calculate B, and E,,. For example, quantum-semti-
classical molecular dynamics simulations can prove very useful to calculate B/™ terms.
Perhaps, the Wigner method [46] would suffice to calculate B," once the F,, are known.

These approaches are not within the scope of this thesis and will be investigated elsewhere.

6.2.1 Results for average purity and fidelity

In this section, the accuracy of the CKD is tested by comparing the predictions of the CKD
with those of exact results for average purity, P(t), and fidelity, F(¢). Definition of these
error quantifiers can be found in section 3.4.1.

The average purity, P(t), is plotted for zz-type coupling, the generator of bit-flip errors,
in figure 6.7 and for zz-type coupliug, the generator of phase errors, in figure 6.8 for three
different walues of intra-bath coupling in the chaotic regime, ie. J, = 0.50,1.00,2.00 ¢
The exact nnmerical results are reprasented by solid lines and the CKD results are given by
dotted lines, and each coupling value J; is assigned to the same color and line convention
throughout. Results for the standard basis states and Bell states are shown in subfigures
(a) and (b), respectively. Switching times of elementary gate operations are also indicated
by the grid lines.

All purity figures for both type couplings indicate that decoherence and dissipation resulf
in a purity decay of less than 1 % over the course of the CNOT gate. For zz-type system-
bath coupling, subfigure 6.7{a) shows excellent quantitative agreement between the exact
and CKD for the most chaotic case of J. = 2.00 e. For J, = 1.00 ¢, the agreement is also
good with errors in the purity of less than 0.05 %. For the least chaotic case of J, = 0.50 ¢,
the discrepancy is on the order of 0.2 %. Overall, these results are surprisingly accurate for

the small bath. The results for Bell states presented in subfigure 6.7(b) also show the same
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Figure 6.7: Exact numerical (solid lines) and CKD (dotted lines) results for averaged purity,
P(t), iu the case of zz-type coupling for J, = 0.50 e (black), J; = 1.00 € (red), and
Jr = 2.00 € (blue). (a) Standard basis states and (b} Bell states.



CHAPTER 6. TESTS FOR CHAOTIC KRAUS DECOMPOSITION 94

1.000

0.998

0.996

0.994

0.992

Average purity

0.990

0.988

0.986

0.984

1.000
0.998
0.996
0.994
0.992
0.990
.988

Average purity

0.986
.984
0.982

Time

Figure 6.8: Exact numerical {solid lines) and CKD (dotted lines) results for averaged purity,
P(t), in the case of zz-type conpling for J, = 0.50 ¢ (black), J, = 1.00 € (red), and
Jr = 2.00 € (blue). (a) Standard basis states and (b} Bell states.
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Jr = 2.00 € (blue). (a) Standard basis states and (b) Bell states.
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Figure 6.10: Exact numerical (solid lines) and CKD (dotted lines) results for averaged

fidelity, F(t), in the case of zz-type coupling for J; = 0.50 € (black), J; = 1.00 € (red), and
Jr = 2.00 € {blue). (a) Standard basis states and (b) Bell states.



CHAPTER 6. TESTS FOR CHAOTIC KRAUS DECOMPQOSITION 97

degree of high accuracy obtained for standard basis states.

For zz-type system-bath coupling, subfigure 6.8(a) shows quite low accuracy as compared
to the zz-type system-bath coupling cases seen in subfigure 6.7(a). The overall exact decay
of purity for all couplings is comparable, but the CKD discrepancies for J, = 2.00 ¢ arc
on the order of 0.1 %, while those for J, = 1.00 ¢ are about 0.2 %. For J, = 0.50 ¢, the
error is of order 2 %, which is significant but is still not catastrophic. Subfigure 6.8(b) for
Bell states again shows the same degree of accuracy as seen in subfigure 6.8(a) for standard
basis states.

The average fidelity, F(t), is plotted for zz-type coupling in figure 6.9 and for zz-type
coupling in figure 6.10, for the same .J, values. Here, a perfect agreement between the
exact and CKD predictions is seen for all states, for all J, values, and for all couplings.
This degree of accuracy is remarkable since these errors are now very large. The Rdelity
in figure 6.9 decays to 10 % of its initial value, while that in figure 6.10 decays to 70 %
of its initial value. The average fidelity of figure 6.9 for zz-type coupling shows almost ne
sensitivity to J., while that in figure 6.10 for zz-type coupling varies snbstantially with J;.
The CKD captures both of these effects. The large magnitude of the fidelity decay in both

cases is duc to a coherent shifting of the subsystem dynamics.

6.2.2 Results for reduced density matrix elements

The purity and hdelity suffice for an overall identification of the magnitudes of non-unitary
and unitary errers. The comparison of ideal and actual reduced density matrix elements,
however, provides further valuable information on what actually goes wrong during the im-
plementation of an algerithm. Here, as a generic representation of the results, a comparison
of the matrix elements for two initial subsystern states is presented; |11} is representative of
the standard basis states, and (|00} +|11))/v/2 is representative of Bell states. Both zz-type

and zz-type couplings [or J,. = 1.00 ¢ are considered.
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The matrix elements are compared for zz-type coupling in figpure 6.11 and for zz-type
coupling in figure 6.12 for the initial state [11). In these and subsequent figures, the coherent,
(i.e. error-free) time evolution is given by black solid lines. Exact time evolutions are plotted
by solid green lines, and the CKD results are given by dashed red lines.

Each subfigure represents a different matrix element. The speciic matrix elements
plotted in each subfigure are as follows: p&))(t) = {0|Tr3[p5(?)]10) is plotted in subfig-
ure (a), o0 (1) — (UTrafps()]1) in (b), Re{ply (1)} = Rel(0[Tra[ps(t)][1)} in (c) and
Im{pfy (1)} = Im{ (0] Tra|ps (1)) 1)} in (d). Similacly, o3 (t) = (O/Tr (35 (£)]]0) is plotted in
subigure (e), o2 (¢) = (1Tryps (01} in (), Re{p{ (1)} = Re{{0]Tr1[ps()][L)} in (g), and
Im{pf (1)) = Im{{(0|Tr1 [ps(t)][1)} in (h).

The agreement between the exact and CKD results is excellent in all cases. The devia-
tions from the coherent tirne evolution are large in all cases, while the discrepancies between
the exact and CKD results are basically negligible. The worst deviations are again seen in
the zz-type coupling case, but these are still very small.

The results are shown for the matrix elements for the initial Bell state (|00) + |11})/v/2
in figure 6.13 for zz-type coupling and in figure 6.14 for zz-type coupling. The agreement
between the exact and the CKD predictions is again very good. The only visible deviations
arise from zz-type conpling cases. See, for example, subfigure 6.14(a) and subfigure 6.14(c}

where some small deviations are seen.
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Chapter 7

Discussions

This chapter? is reserved for discussions and explanations of a number of effects observed
in the studies reported in this thesis. In previous chapters the effects of static internal
imperfections on QC operations have been investigated. The primary objective has been to
determine the effect of internal errors on (QC operations, and also secondarily to determine
the effects of attendant chaos on these errors. In doing so, a variety of two-qubit intra-
bath interaction strengths have been considered for which one can expect that increasing
two-qubit intra-bath interactions would induce chaos in the bath degree of freedom. In
section 7.1, by using two independent methods, it has been confirmed that the bath Hamil-
tonjans are chaotic. It was observed that increasing two-qubit intra-bath interactions results
in reduced decoherence and dissipation. In section 7.2 this effect is explained based on three
different arguments. In section 7.3 a detailed discussion of the coherent shift process is
given and the consequent large unitary errors are explained. In particular, by a coniparison
between the time scales of fidelity decays for the CNOT and Rabi studies it is argued that

the errors arising from coherent shifting can be a serious obstacle for QC operations.

$This chapter is partly based on a study [17) reported by Cetinbag and Wilkie.

103
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Figure 7.1: Level spacing distribution P(s} versus s. The Poissen distribution P(s) =
exp (-s) is plotted by a solid red line and the Wigner-Dyson distribution P(s} =
(w/2)s exp (—7s?/4) is plotted by a dashed blue line.

7.1 Identification of chaos: level statistics and Loschmidt

echo

A convenient way to verify the crossover from the regular (i.e. non-chaotic) to chaotic
regimes is to observe the nearest—neighbor level-spacing distribution P{s). As chaos emerges,
the functional form P(s) changes from the Poisson distribution P(s) = exp (—s), charac-
teristic of regular systems, to the Wigner~Dyson distribution P(s) = (7/2)sexp {—ms?/4),
appropriate for chaotic systems {23, 24].

To verify that this transition does indeed occur in the bath Hamiltonian of the QC core, a
level statistics analysis was performed on the unfolded spectrum of 200 lowest eigenenergies
of Hp. The unfolded energics, I, were generated from the actual energies, £,, using the
smoothed staircase functions, i.e. N(E) via E, = N(E,). Here N(E) was obtained as a

polyuomial least squares fit to the actual staircase function, N{£) = Zfﬁ? O(E — F,) where
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Figure 7.2: (a) Short and (b) long time Loschmidt echo dynamics of the bath Hamiltonian

for J, = 0.05,0.15,0.25,0.50, 1.00, 2.00.
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©(z) is the Heaviside step function.

A summary of the results of the nearest neighbor spacing analysis are given in figure 7.1.
The onset of chaos can be seen for a relatively weak inter-qubit coupling strength of J,. =
0.15 where the functional form is close to the Wigner—Dyson distribution. Above this value
chaos sets in, and the eigenstatistics are basically consistent with the characteristics of the
Wigner—Dyson distribution.

While level-spacing statistics are considered to be a universal indicator of guantum
chaos, they do not provide information on the degree of chaos. Therefore, the Loschmidt
echo, M(t) [89] was also examined, which is widely believed to be an efficient indicator of
quantum chaos [90], and which also gives a guantitative indication of the strength of the
chaos.

The Loschmidt echo is calculated for the bath Hamiltonian with the following formula,

M (t) = |{to] exp {iHot /h} exp {—i(Ho + V)t/ T} o) 2, (7.1)

where |i0g) is the ground eigenstate of fIO, H, is the regular bath Hamiltonian (i.e. Hpg for
Jr = 0.00) and V is the chaos generating perturbation Hamiltonian (i.e., the zz coupling
terms) for J, = 0.05,0.15,0.50,1.00,2.00. A summary of the M (¢t} calculations is presented
in figure 7.2.

1t 15 clear from Rgure 7.2 that an increasing magnitude of intra-bath coupling J,. resuits
in faster exponential decay of M(t), and this may be interpreted as an increasing degree of

chaos. Note that for smaller J,; (i.e J; < 0.50) the echo M (¢} does not reach zero.

7.2 Non-unitary effects

In this section, the reduction of decoherence due to the chaos generating two-body intra-
bath interactions is discussed. This effect was the subject of a number of studies and can

be explained by three different but related arguments. The first argument is based on
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the chaotic Kraus decomposition, the second argument is based o1 an approximate mean-
field master equation and finally, the third argmment is based on intra-bath entanglement

generation due to two-body intra-bath interactions.

First argument

The performance of the CKD was tested in the chaotic regime for a large number of QC cou-
figurations and surpassingly accurate results were obtained despite the small bath size used
in the simulations. 1t was observed that the accuracy of the CKD dramatically increased
with increasing degree of bath chaos. The most accurate results were obtained for the
strongly chaotic regime, ie. Jy; = 2.00 €. In the case of zu-type system-bath interactious,
the predictions of the CKD were in an excellent agreeinent with exact results. However,
in the case of zz-type system-bath uiteractions, while the qualitative performance of the
CKD was still good, the quantitative agreements between the CKD and exact results were
relatively poor as compared to zz-type coupling cases.

The derivation of the CKD is based on the assumption that off-diagonal matrix elements
of a bath coupling operator becoine vanishingly small for large chaotic baths, which inplies
that the CKD beeomes exact in the semi-classical limit for large chaotic baths or when the
number of bath modes approaches the thermodynamics limit. In what follows, it is expected
that the performance of the CKD in predicting exact results should be proportional to the
dimmension of the bath degree of freedoin. Hence, the larger the number of bath modes,
the more accurate the CKD predictions should be. However, the exact benchmark results
used to test the CKD were limited to quite small baths, i.e. 10-qubit baths. Nevertheless,
surprisingly good results are obtained especially for zz-type coupling cases. For baths of
such small size, the off-diagonals can be quite small, but should not be totally vanishing.

Figure 7.3 shows the absolute values of off-diagonal matrix elements of bath coupling

operators, [{6515,[¢%)| and [(¢8]5,|¢P)| versus eigenvector index n for increasing values
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Figure 7.3: In (a) for za-type coupling and in (b} for zz-type coupling, the absolute values
of off-diagonal matrix elements of bath coupling operators, [{¢2[5,]¢23 and |(92|5, 0P|
versus eigenvector index are plotted for increasing values of intra-bath coupling J;. Here
the state ¢} refers to the ground state of H g and the index n labeling the eigenstates 2
of Hg runs from n = 2 to n = 50. Data points are connected by lines to guide to the eve.
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of intra-bath coupling J.. In figure 7.3(a) the off-diagonals are plotted for za-type coupling
and in figure 7.3(b}, the off-diagonals are plotted for zz-type coupling. n = 199 matrix
elements are calculated but only n = 50 of those are plotted for the clarity of the figures.
The magnitude of the remaining matrix elements are very close the magnitude of matrix
clements for n = 50. In the case of zz-type coupling, it is clear that increasing the magnitude
of chaos generating intra-bath interactions, parameterized by J;, results in a systematic
reduction in the magnitudes of the off-diagonal matrix elements. However, in the case of
zz-type coupling, it is not clear that the magnitude of the off-diagonal actually decreases.
These observations are consistent with the accuracy of the CKD for differeut types of system-
environment couplings. The test results showed very good agreement between exact and
CKD results for zz-type coupling for which the off-diagonal matrix elements hecome small
as intra-bath coupling increases. In the case of zz2-type coupling, the performance of the
CKD was poor as compared to the xz-type coupling cases for which the off-diagonal matrix
elements did not show a systematic decrease as intra-bath coupling increases.

The good performance of the CKD in predicting exact results, cspecially for zz-type
coupling cases, suggests that the suppression of decoherence effect should be related to
the argunients used in derivation of the CKD. Nevertheless, since the arguments can only
be justifiable for very large environments, the tendency of decreasing off-diagonals with
increasing J, as well as the observed accuracy of the CKD should be related to a special
effect (which is justifiable for small baths) rather than the dimension of the bath degree of
freedom.

The chaos generating two-body iuteractions, parameterized by J;, in the bath Hamiltoni-
ans Hp are of zz-type. In the strongly chaotic regime the bath Hamiltonians are dominated
by xzx-type intra-bath interactions. Hence, in the case of zz-type sytem-bath interactions,
and for strong J,, the eigenstates of Hg are then also the eigenstates of zz-type intcraction

operators, which implies that the off-diagonals becomes very small due to the orthogonality
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of these eigenstates rather than the large bath dimension. This special effect explains the
surprisingly good accuracy of the CKD in the casc of zz-type system-bath interactions.
Since there is no such a special effect for zz-type system-bath interactions, the accuracy
of the CKD for zz-type system-bath interactions was relatively poor. While this special
effect explains the accuracy of the CKD for different types system-bath interactions it does
not provide a complete explanation for the observed svstematic suppression of decoherence
effect in the case of zz-type system-bath interactions. Before giving the other arguments
in this regard, it is noteworthy that there may also be a dynamical contribution to these
off-diagonal matrix elements, i.e. rapid phase fuctuations originating from the fast chaotic
bath dynamics so that their net contributions to open system dynamics average out to zerc.
Yet, this situation does not require vanishing of the off-diagonals. This subtlety remains to

be confirmed.

Second argument

The second argument with which an attempt is made to explain the suppression of de-
coherence effect and chaos favored Markovian dynarnics is based on a mean field master
equation [47-51]. For a total Hamiltonian, H = Hg + 5B + Hpg, this approximate master

equation takes the following form,

d

dﬁﬂﬂ~wmmmmﬂm—lfwwu—maﬁﬂm, (7.2)

where Heg is an effective subsystem Hamiltonian including coherent shift terms, the form
of which will be discussed in section 7.3, Lp = (C/R*){[-S,5] + [S,S5"]} is a dissipative

Lindblad-Kossakowski operator [9], S is the system coupling operator, and C is the canonical

variance of the bath coupling operator, B. The memory function of this master equation,

W (1), is given by

W)= (L= 5 (o) + 50 = (1) + o (o0) e 0", (73)

37 457 48



CHAPTER 7. DISCUSSIONS 111

where
p o= [(AAl) (AR (), (7.4)
g = [(AAl) + (AAQ)]/4/ (A4, (7.5)
and
(ALY = ﬁ[?mgmgrfr{ﬁz}—2Tr{ﬁ}2+4TrB{Trg{];’}2f)B}
SR
+ 2msTrs(Trp{Hpp}’} — dmsTe{H?pg} - 2Tx{Hpp}*). (7.6)
(AAly = W%[gmsmﬂr{ﬁ?} — 2Tr{I}? — 8mgTr{H%pp) — 4Tr{H pp}?
SY"R

+ 2msmpTr{H*pE) + 2msTr{H?} Trp{ph} + dmpTr{Hpp} Tr{ H j%}

+ 8Trg{Trs{H}?pn} + dmsTrs{Trp{Hpp}*} + 4msTre{Trp{Hpp} Tra{H}}

— AT{HYTr{Hp%} — 2mpTrg{Trs{Hps)?} — 2T p{Trs {(H )} Trp{p%}
amsmpTrs{Trp{Apg}Trp{Hp}h)} - dmsTrs{Trp{H}Tra{H pn}} Tra{f}}

+ 2msmpTes{Trp{Hpn) ) Trp{pp)} — 2mpTr{H g} Tra{p})

+ AT{HYT {5} Trp{pp}] (7.7)

Master equations which include a memory function like W (¢) are calied non-Markovian
master equations. Master equations which do not take into account the memory effects are
called Markovian master eguations,

The parameters, p and ¢, given by equations (7.4) and (7.5) are taken from the appendix
of report [50]. These parameters are defined over a finite basis and thus it is uecessary that
all the operators appearing in equations (7.6) and (7.7) be represented by using a finite basis
before calculations are done. The parameters of the master equation involve two types of
averages: canonical and ordinary averages. According to the prescription given in [50], the
canonical averages including €', B. and also the terms involving the canonical bath density,
p5(0), are defined for a fixed bath temperature and should be calculated by choosing a cut-

off, i.e. ngy such that the states with ng,4+ 1 and higher are not populated for a given bath
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Canonical variances

Figure 7.4: Canonical variances, C; and C,, in the bath coupling operators for zz- and
zz-type couplings are plotted for increasing valnes of .J,. Data points are connected by lines
to guide to the eye.

temperature. Note that this is the approximation used in the exact dynamical calculations
of the CNOT and Rabi studies. However, the calculation of the ordinary averages such as
Tr{H} appearing in equations (7.6) and (7.7) requires a full Hamiltonian spectrum. Here,
only the low energy spectrum of the bath Hamitonian (not the full spectrum) will be taken
into account, and n.,, = 20 eigenvalues and eigenstates will be used in the calculation of C,
B, and all the terms appearing in p and g. This is because of the following reasons. Firstly,
the intention here is not to test the performance of this master equation. Based on recent
reports [50, 51], it is simply assumed here that the master equation is physical and capinres
the importaut aspects of open system dynamics induced by chaotic environments. Secoudly,

the knowledge of the full bath spectrum may be irnportant when the uumber of dynamically
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Figure 7.5: The products of the canonical variances, C, and C,, and the memory function,
W (t), versus time: (a) zz-type coupling and (b) zz-type coupling.
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populated bath states is greater than the number of thermally populated bath states. 1f this
were the case, n.,; = 20 might be a poor approximation. However, the very good agreement,
between the CKD and exact results indicates that the number of dynamically populated
bath states should not be an issue of concern here, since the CKD does not take into account
the dynamically populated bath states. Hence, ngy = 20 should suffice to show that the
chaotic baths favor Markovian dynamics and suppress decoherence.

The exact numerical calculations for the CNOT and the Rabi studies showed partial
recurrences in the purity plots in the regular bath regime. The recurrences are signatures of
quantum memory that stems from non-local correlatious {between the states of the system
and the environment) established by system-environment interactions. For both the CNOT
and the Rabi studies, the quantum dynamics is initiated from a state of a product form,
ie. p(0) = ps(0) @ £5(0). In the course of dynamies, the system and environment states
are correlated, which means that the time-evolved state p(¢) cannot be written as a product
state, i.e. p(t) # ps(t) @ pe(t). Hence, the effect of system-environment interactions is
to generate a correlated state g(t) representing the state of both system and environment
degrees of freedom. Since the correlated state j{t) represents both system and environment
degrees of freedom, the state of the system pgs(i) = Trgl[g(f)] has a certain memory of
the bath degrees of freedom. The CNOT and the Rabi studies showed that the memory
effects, 1.e. the recurrences in the purity plots lessened with increasing magnitude of intra-
bath coupling, i.e. with the emergence of chaos. This effect iz attributed to the favored
Markovian dynamics due to chaos. Markovian dyuamics (i.e. memoryless dynamics) require
a separation of relaxation times for the systern and bath degrees of freedom [91]. A chaotic
bath can relax internally and quickly. However, the only available relaxation mechanism for
a regular bath is through interaction with the subsystem. Therefore, chaotic baths should
be more Markovian, which results in reduced memory effects and vanishing recurrences.

The master equation (7.2) predicts that decoherence and dissipation in the chaotic regime
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are governed by two factors; the variance, C, of the bath coupling operator, and the positive
Gaussian shaped memory function, W{t) {unity at ¢ = 0). Thus, based on this master
equation, the suppression of decoherence must either be governed by a decreascd variance
or by an increased Markovian behavior.

To favor Markovian behavior the memory function is expected to shift its weight to
shorter times as J; increases. As a consequence, the bath will tend to canse less decoher-
euce. One would also expect the variance in the zz-type system-bath coupling to decrease
with increasing J,. due to the vanishingly small off-diagonal matrix elements. As explained
above, the off-diagonals are vanishing because of the orthogonality of eigenstates. However,
this need not be the case with zz-type system-bath coupling, because the zz-type coupling
operator does not commute with the xz-type coupling operator. Hence, both factors should
favor the reduction of decoherence in the rz-type coupling case, but the reduction of de-
coherence in the zz-type coupling case, according to tlus master equation, should originate
from the increasing Markovian nature of the dynamics. To verify these conclusions, hrstly,
the variances of the bath coupling operators will be examined, and secondly, the product
of the variances and memory functions associated with zx and zz-type couplings will be
studied.

Defining the system-bath interactions as &, = Zf\:gz /\163) for zz-type coupling, and
3, = iV:'gz /\1-59) for zz-type coupling, the variances of these interactions operators cain now
be given via Cp = TrB[(iI,, — £.)%58(0)] for the zx case, and C, = Tr,g[(iz ~ £.)?%55(0)]
for the zz case. Here &, = TrB[ixﬁB{D)] and ¥, = Trg[iz,ég(o)] denote the canonical
averages. The definition of pg(0) is given in equation (3.37).

In figure 7.4, the canonical variances of bath coupling operators are plotted as a function
of J,. Figure 7.4 shows a decline of the variauce for £, with increasing J;. Note, however,
that there is a growth of variance for ﬁ)z with increasing Jy, as cxpected. (', declines with

increasing J, because the chaos generating interactions, parameterized by J;. and the bhath



CHAPTER 7. DISCUSSIONS 116

coupling operator, Y., are of the same kind. For strong J,. the eigenstates of Hp are also
eigenstates of $,. Hence, the off-diagonals of 3., in the basis of Hp are vanishing. Note
that this situation does not require a large thermodynamic bath dimension because of the
orthogonality of eigenstates. In parallel to the S, case, a growth of ¢, with J, can also be
understood because the vanances are calculated over the same bath states and iI and iz
operators are related by canonical commutation rules.

In figure 7.5(a), the product of the variance and the memory function for zz-type cou-
pling 1s piotted for different values of J,. The dominant effect here is the decrease in the
magnitude caused by the reduction of variance. However, the function is also becoming
more Markovian, since it is weighted over a smaller time interval. In figure 7.5(b}, the the
product of the variance and the memory function for zz-type coupling is plotted for different
values of J;. Figure 7.5(b} shows a growth in the initial magnitude which corresponds to an
increase in the variance. But there is also a marked shift toward shorter times. Again, the
dynamics are becoming more Markovian with strong .J;, and it is this which should cause
the reduction of decoherence. Thus, both types of coupling show a reduction of decoherence

in the chaotic regime, but the manifestation of this effect is a bit different.

Third argument

The suppression of decoherence in the presence of two-hody intra-bath interactions can also
be explained by an argument developed by Dawson et al [34]. The authors argued that this
effect originates from the monogamous nature of quantum entanglement [92]. Examining
the details of this argument requires basic information on entangled states and gquanfum
entanglement which is provided below.

Entangled states can simply be considered as non-local superpositions of states between
two quantum subsystems. Note however that multipartite entanglement among rmany quan-

tum subsystems is also possible. Here, for the sake of argument, the discussions are limited
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to two quantum subsystems. In the course of open system dynamics, for example, an initial
state of product form, 4(0) = p5(0)® 65 (0), for the subsystem, 5, and the bath, B, becomes
an entangled state due to the system-environment interactions, which means that the time
evolved state for the bipartite system represented by A(t) cannot be written as a product
form of its components anymore, l.e. j(t} # p5(t) ® pg(t). Hence, decoherence emerges in
the subsystem state, g(t) = Trg[p(t)], for which P(t) = Trg[p%] < 1, since the bipartite
state, A{t}, is an entangled state.

The typical examples of entangled states are the Bell states (see equation (3.31), for
example), which are also called maximally entangled states. Here, the maximality of entan-
glement has an important implication for decoherence. That is, the maximum entanglement
between two subsystem states implies a complete decoherence on the state of each subsys-
tem. Consider two qubits 4 and B in the possession of Alice and Bob. Assume that Alice
and Bob’s two qubit state is a Bell state of the form, |AB) = (J00) + [11})//2, which repre-
sents a state of two qubits for the bipartite system, 4 + B. A probe on either Alice’s qubit

pa =Trp{|AB){AB|} or Bob’s qubit pp = Tra{|AB){AB|} shows that

1 1
) 3 O ] 3 0
pa= and jpg=
1 1
0 3 0 2

Hence, while the two-qubit Bell state |AB) is a pure state, the single qubit states, p4 and
g, are non-pure and show a complete decoherence for which the purity takes its minimum
value, Py = Pg = 1/2.

To gain an insight into the monogamy of entanglement, consider now three quhits 4, B,
and C' in the possession of Alice, Bob, and Charlie. Assume that Alice and Bob’s qubits,
ie. A4 B are in a maximally entangled Bell state and Charlie’s qubit is in an arbitrary
one-qubit state. In order for this Bell state to correlate with the state of Charlie’'s qubit,
the maximality condition on the Bell state must be given up. Otherwise, there would be no

three-partite correlations. This is the simple picture of monogamy of entanglement which
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suggests that quantum correlation cannot be freely shared.

Now, the supression of decoherence argument by Dawson el al [34] can be stated. The
authors show in [34] that the entanglement shared by a bipartite quantum system, ie. a
subsystem and bath, is limited by the amount of entanglement each system (i.e. subsystem
and bath) possesses separately. Hence, by maximizing the intra-bath entanglement [34],
provided that the maximality of intra-bath entanglement is preserved under the action of
local bath Hamiltonian, one can in principle minimize the system-bath entanglement. As a
result, decoherence can be suppressed.

It is noteworthy that the entanglement argument does not make a reference to the bath
chaos. However, there 15 a connection between chaos and entanglement, which is discussed
below. During a crossover from a regular to chaotic regime, uot only eigenstatistics but
also the properties of cigenstates dramatically chauge. To see this, consider a chaotic bath
Hamitonian written in a two compouent form, Hyg = Hy + V where Hg is the regular
Hamitonian component (i.e. non-chaotic), e.g. representing one-body interactions (i.e. Hg
for J, = 0) and V is the chaos generatiug interactions component, e.g. representing two-
body interactions (i.e. Hg for J; # 0). Let Hol?) = FE;li) be eigenvalues and complete
eigenvectors of Hy. The eigenvectors, |n), of the chaotic bath Hamiltonian, Hg (with
Jr # 0) can be written as a linear combination of eigenvectors of the regular Hamiltonian,
ie. |ny = ) c ). Here, the effect of chaos generating interactions, V', is to mix the
regular Hamiltoniaus' eigenstates. Hence, the eigenstates of the chaotic bath Hamiltenian
show a high degree of quantum correlations in the eigenbasis of the corresponding regular
Hamiltonian. Since the quantum entanglement is a special case of general superpositions,
the multipartite entanglement in eigenstates of chaotic Hamiltoniaus is then quite natural.
Indeed, it has been shown in a number of studies [93] that quantum chaos results in an
cntanglement generation.

While the chaos and entanglement arguments may seem equivalent this may not be
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always the case. There is evidence [94] that chaos reduces entanglement generation in some
cases. 1t has also been shown [35-38] that chaotic baths induce more decoherence than
regular baths in some instances. This is an opposite effect to that reported in this thesis.
It would be interesting to verify whether only intra-bath entanglement generating chaotic

interactions reduces decoherence.

7.3 Unitary effects

All unitary effects observed i the CNOT and Rabi detector studies arise as a consequence
of the coherent shift process. According to the CKD, the coherent shift emerges from a

Hamiltonian of the form H — He+ SB+ Hg as
H, — Hs+ S(n|B|n) (7.8)

where (r|Bln) are the diagonal matrix elements of bath coupling operator, B. The coherent
shift enters the approximate master equation (7.2) through the effective system Hamiltonian

H_r, which is of the form,

Heﬁ':ﬁS“‘s‘B, (7.9)

where B is the canonical average of the bath coupling operator, B. Note that the shift
predicted by the CKD and the approximate master equation is equivalent at absolute zero
temperature, provided that the only populated bath state at absolute zero is the ground
state of the bath. At very low bath temperatures, where the quantum technologies are
expected to operate, the number of populated bath states will be quite low and thus the
bath dynamics will be dominated by the ground state of the bath Hamiltonian. As a
result, the CKD and the approximate master equation shonld give equivalent results for the
coherent shift process at very low temperatures.

The form of the coherent shift Hamitonian suggests that a non-negligible contribution

from the coherent shift should always be expected whenever the canonical average of the
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Figure 7.6: Absolute values of canonical averages, |¥,| and |%,|, are plotted for increasing
values of J,. Data points are connected by lines to guide to the eye.

subsystem-bath coupling operator has a non-vanishing value (i.e., B # 0). In some of the
older spin-boson and boson-beson studies, the existence of coherent shift was not discussed
since the coupling operators are of Jaynes-Cunimings or coordinate type for which B = 0,
and the shift therefore vanishes. The coherent shift has important consequences when the
native subsystem Hamiltonian does not commmute with the shift Hamiltonian, i.e. [I:Ig, S) #
0. In this case, the effect of the shift is a distortion of the subsystem dynamics which can
cause large unitary errors. In cases where the subsystem and shift Hamiltonians commute,
the coherent shift, more or less, corresponds to an energy shift similar to Lamb shift-like
contributions. In this case, generation of unitary errors may be more easily avoided.
Figure 7.6 shows the absolute values of the canonical averages of the bath-coupling

operators, 1.e. |Z.| = |Tr[E,/p(0)| and = |Tr[%, pg(0)]], versus increasing values of J,.

L,
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In the case of zz-type coupling, an overall decrease in the average is seen with increasing
magnitude of J;. In the case of xz-type coupling, however, the increasing magnitude of
Jr results in a small increase in the average. This is clearly consistent with the observed
improvement in fidelity with increasing J; for zz—type coupling {seen in figures 4.11 and
4.12} and the slight decline of fidelity for rz—type coupling (seen in figures 4.9 and 4.10).

The unitary effects observed in the CNOT study are not of Lamb shift type and thus are
quite worrying. The magnitude of the fidelity decay for the span of a single CNOT gate is
much larger than one would have expected based on the results of the Rabi study. The bath
Hamiltonian, and zz-type coupling operator and its strength, employed in the Rabi study,
were identical to those used in the CNOT study, so that the magnitude of the shift is not
altered, but somehow the shift is dramatically more harmful. Moreover, this has nothing to
do with the small subsystem dimension.

To show this, calenlations were carried out for a two-qubit subsystem (two-qubit Rabi

detector) which has the subsystem Hamiltonian,

Hg = ﬁ%(Bzoﬂ'il) + Bzé-z(zz))a (?10)

where B, = 1 ¢ and the dynamics evolve from an initial state of the form, |[¢o) = (|0} +
1)) @ (|0} + |1})/v/2. The fdelity for the two-qubit Rabi detector is plotted in figure 7.7,
which shows that the two-qubit Rabi detector shows a similar fidelity decay hehavior to the
single-qubit Rabi detector seen in figure 5.5.

The only remaining possibility for the large fidelity decay observed for the CNOT gate
Is the state dependency of fidelity. That is, the rapidly changing nature of the state on
which the CNOT gate operates should be responsible for the large fidelity decay. In what
follows, a direct analogy between the CNOT subsystem and a kicked-top [95] can readily
be established by viewing the fidelity (in the absence of the weak non-nnitary effects) as
being similar to the Loschmidt echo of a kicked-top [96]. A kicked-top is a simple system

displaying irreversible and chaotic behavior, which can be considered as a single spin (e.g.
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Figure 7.7: Time evolution of fidelity, F(t}, for two-qubit Rabi detector.

a qubit) subject to periodic perturbations. The detailed discussion of the kicked-top can be
found in [95. 96]. Here, only an analogy belween dynamical behaviors of a kicked-top and
the CNOT gate is made.

A second unexpected effect is that the fidelity decay seems to be almost independent of
B, which itself changes with J, as shown in fignre 7.6. In the single qnbit Rabi detector
stndy [18], the fidelity decay time was highly sensitive to J;, and the same is true of the two-
qubit Rabij detector (see figure 7.7). Here, the pericd of the decay increases substantially by
10 ns when J,. increases from zero to 0.15 ¢, then declines from J, = 0.15 ¢ to J;, = 0.50 ¢,
and finally moves toward some saturated value after J,, = 1.00 . Fidelity decay times for

the CNOT with zz-type coupling vary by less than 0.1 ns. This is thus a major effect. It
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seems quite likely that these two unusual effects are somehow related, and that the CNOT
dynamics have a phenomenology similar to that of the Loschmidt echo of a kicked-top [96].

It is well-known that there are two regimes of Loschmidt echo of a kicked-top [96]: the
fast exponential decay regime which is insensitive to the pertnrbation strength, and the
Golden Rule regime where decays are slower and decay rates depend on the perturbation
strength [96]. The results for the CNOT gate and Rabi detectors also fit into this picture,
and the origin of the two unexpected unitary effects can be explained as arising from the
rapidly changing nature of the CNOT gate.

The two-qubit Rabi detector would correspond to vanishingly wealk kicking which would
be expected to lie in the Golden Rnle regime, where decays are slower and decay rates
depend on the perturbation strength [96). However, note also that the sensitivity of fidelity
to J, disappears in the strongly chaotic bath regime (i.e. J, =1 ¢ and J, = 2 ¢) where the
period of decay saturates toward a certain value.

On the other hand, it appears that the CNOT gate for the za-type coupling case lies
in the exponential decay regime where the fidelity does not show any sensitivity to pertur-
bation strength. However, the CNOT gate for the zz-type coupling case lies in the Golden
Rule regime where the dominant effect is the high sensitivity of fidelity to the perturbation
strength. The kicked-top or rapidly changing nature of the CNOT gate suggests that remov-
ing the effects of the decay after completion of the gate may not be possible, which means
that error correction strategies for the shift must be performed during each snbcomponent

of the gate.
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Conclusion

The central theme ol this thesis is the open systemn dynamics of a small quantum system
coupled to self-interacting chaotic environments. Many physical and chemical phenomena
occur in condensed phase media where dynamics is chaotic. Condensed phase environments
also offer a wide range of controllable interactions for new quantum technologies. Hence,
the prediction of open system dynamics of quantum systems embedded in chaotic environ-
ments can have many important applications. Standard models of decoherence represent
an environment degree of [reedom as a collection of non-interacting harmonic oscillators or
spins. These representations are not valid when environmental dynamics is chaotic.

In the first part of this thesis a Kraus decornposition governing the dynamics of a quan-
tum system interacting with large chaotic environments was derived. The extension of the
decomposition to a time-dependent system Hamiltonian was also achieved so that the de-
composition has wider applications. In the second part of this thesis two self-interacting —
and chaotic — spin bath models were studied by exact numerical calculations. These models
represent, an isolated QC with static internal imperfections. In the frst model, internal
decoherence dynamics of a CNOT gate was investigated for a large number of QC configu-

rations: two sets of eight initial subsystemn states (i.e. standard basis states and Bell states),
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two different types of error generators (i.e. phase and bit-flip errors), and five different val-
ues of intra-bath interactions. For these QC configurations, potential sources of errors were
identified. The results showed that while internal decoherence can be a matter of concern,
the primary source of error is unitary, induced by the coherent shift process. 1t was shown
that chaotic interactions in the environment degree of freedom can suppress the error due
to the decoherence. Hence, deliberately induced chaotic bath interactions may prove an el-
ficient error correction strategy when such strong interactions can readily be implemented.
The fact that alarming sources of internal errors are unitary, induced by coherent shifting
rather than decoherence or dissipation, is not expected from previous studies. Since these
errors are unitary and thus deterministic in nature, they may be correctable by existing or
specifically tailored new methods. The second madel reported in this thesis is a detector
set-up configured to probe internal bath dynamics. While coherent shift was identified as a
serious source of error, the detector set-up showed that the shift can also be used for a good
purpose, and by using the detector valuable information on environmental self-interactions
can be obtained. In the third part of this thesis the performance of the Kraus decompo-
sition was tested against exact numerical results of QC models and very good agreements
were obtained. The promising results suggest that the Kraus decomposition can be used as
a practical computational tool for low temperature applications of open system dynamics

mmduced by chaotic euvironments.
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