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Abstract 

Multiple description coding (MOC) is an attractive diversity technique of combating trans­

mission errors, where several compressed bit streams (descriptions) are generated, which 

can be transmitted via different paths. Judiciously designed redundancies are introduced 

in all bit streams such that the reconstruction quality degrades gracefully when some of 

them are lost. 

A new multipie description coding paradigm is proposed in this dissertation, by com­

bining the time domain lapped transform, block level source splitting, inter-description pre­

diction, and coding of the prediction residual. The joint design of all system components 

is developed, and the asymptotic performance in the OPCM case for first-order Gauss­

Markov sources is analyzed. Image coding results show that the proposed method can 

significantly outperform other methods in the literature. The effects of different transforms 

and the size of the prediction filter are also studied. 

A number of generalizations of the proposed scheme is studied as well. First, the two 

dimensional Wiener filter is introduced into this scheme. These filters can improve the 

performance when the redundancy is low. Secondly, the proposed scheme is extended to 

three-description and four-description cases. The optimal design and image coding results 

are reported. 
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Chapter 1 

Introduction 

1.1 Introduction 

Image and video communications are ubiquitous in people's life. However, the storage and 

transmission of digital images and videos require much more resources and bandwidths 

than traditional voice and text messages. For examples, a low quality video communication 

with 352 x 288 resolution needs 5-10 Mbps bandwidth. The raw high definition TV 1080130 

signal requires a much higher bandwidth of 190 Mbps. With the increasing demand of 

video applications and the limited bandwidths, the video and image compression technol­

ogy has gained more and more attentions. Most of the compression techniques can be 

categorized into two types, lossless and lossy compressions. The lossless compression 

allows a perlect reconstruction, but it has a theoretical maximum compression ratio, de­

pending on the entropy of the data. The lossy compression allows some extend of quality 

degradation. It can adjust the quality level and the compression ratio accordingly for differ­

ent applications. The objective of designing such a system is to find the best quality with a 

given compression ratio. 

The internet has become one of the main communication methods. Millions of video 

1 



2 CHAPTER 1. INTRODUCTION 

communications are transmitted over internet everyday. For example, more and more 

people watch IPTV and YouTube videos, and many companies use video webcast to an­

nounces their financial statement. But the internet is not a perfectly reliable transmission 

media, as it is packet based and could have packets loss. Multimedia applications are 

extremely sensitive to transmission errors, because of the extensive use of prediction and 

entropy coding in the compression algorithms. Therefore some kinds of error protection 

have to be introdcued to the multimedia applications. 

One way to fight the packet loss is to retransmit the lost packets. But for real time 

communications, the re-transmission can introduce unpleasant delay. Sometimes the cus­

tomers would prefer some quality degradations rather than excessive delay, especially in 

real-time applications. Another approach to alleviate the impact of packet loss is to add 

some redundancies into the bitstream, such that when some packets are lost, the decoder 

can still reconstruct an acceptable result. One way to achieve this is to use error correction 

coding. However, this increases the complexity of the encoder and the decoder, and may 

not suitable for some applications. 

In this thesis, we are interested in another method, the multiple description coding 

(MOC), where the content is coded into several descriptions, which can be transmitted 

through different paths. If some descriptions are corrupted during the transition, the re­

ceiver can still reconstruct the source with other available descriptions. The more descrip­

tions are available at the decoder, the better quality can be achieved. The robustness of 

the system is therefore improved by exploiting the diversity of the transfer paths. 

Contrary to the conventional source coding which removes the redundancy from the 

source, the MOC tries to add back some controlled redundancy into the transmitted bit­

stream. Since compression is still a requirement, the design of MOC thus needs to strike a 

balance between the compression efficiency and robustness. 
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1.2 Main contributions 

Most exisitng MDC algorithms are built on top of some conventional compression schemes. 

The most popular image compression scheme employes block transform coding, where the 

image are partitioned into small data blocks, which are then decorrelated by a block trans­

form such as the Discrete Cosine Transform (DCT). followed by quantization and entropy 

coding. The DCT has many advantages for natural images, but at low bitrates, the dis­

continuities at the block boundaries cause the notorious blocking artifacts. To reduce the 

blocking artifacts, the wavelet transform and the lapped transform have been developed. In 

particular, a time-domain lapped transform(TDLT) is proposed in [46], which applies pre­

and post-processing to the DCT. The TDLT keeps the block-based infrastructure, and main­

tains a good trade-off between the complexity and the performance. As a result, it has also 

been adopted by Microsoft Windows Media Video, the SMPTE VC-1 video coding stan­

dard, and the HD-DVD video coding format. It is also being standardized by the JPEG 

committee as a future image coding standard. 

The time domain lapped transform also provides a flexible way to introduce redundancy 

to the transform coefficients. The amount of redundancy can be controlled by designing 

lapped transforms with different pre and postfilters. The redundancy can be used to predict 

the lost coefficients, when some data are missing during transmission. This feature was 

exploited to design an error resilient system in [25]. However, the prediction-oniy approach 

has poor performance at high rate, because of the presence of the prediction residual. 

In addition, the redundancy is only controlled by the transform. If the change of channel 

condition requires different redundancy, a different transform has to be used to encode the 

data, which increases the complexity of the system. 

In this thesis, a new MDC framework is proposed, which is based on the time domain 

lapped transform and prediction compensation. In this scheme, the prefiltered source im­

age is split into two parts. Each part is coded at a high-rate in one description. Each 
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description also encodes the prediction residual of the other description at a lower-rate. 

This allows us to control the redundancy of the system without changing the transform. 

The theoretical performance of this scheme is studied in the Differential Puise Code Mod­

ulation (DPCM) case. We also implement this scheme in the lapped transform framework, 

and present the design of the corresponding optimal lapped transform. Experiment results 

show that the performance of the new technique can be significantly better than that of the 

two-stage modified multiple description scalar quantizer(MMDSQ) [43], which has the best 

result in the literature. 

The prediction used in the scheme above is based on one-dimensional Wiener fil­

ter. Better prediction can improve the performance at low redundancy. Therefore, two­

dimensional Wiener filter is also investigated in this thesis to enhance the performance of 

the system. In addition, we also generalize the basic scheme to more than two descritpions, 

and present the design and image coding results for three-description and four-description 

coding. 

The resuits presented in this thesis has been pUblished in [40, 24]. A journal paper was 

accepted in December 2008 and will appear in 2009 [39]. 

1.3 Thesis outline 

Chapter 2 covers the fundamentals of the time domain lapped transform and multiple de­

scription coding. Chapter 3 introduces the proposed multiple description coding with pre­

diction compensation. Chapter 4 investigates the application of the two dimensional Wiener 

filter in the proposed MDC scheme. Chapter 5 presents the design and the coding results 

for MDC with more than two descriptions. Finally Chapter 6 presents the conclusions and 

discusses some future works. 



Chapter 2 

Background 

2.1 Time-Domain Lapped Transform 

2.1.1 Conventional lapped transform 

The discrete cosine transform (OCT) based compression algorithms are used in most im­

age and video coding standards. This is because the OCT is near-optimal for smooth 

signals, and there are many fast algorithms for it. However, two problems exist in this kind 

of coding schemes. First, only spatial correlation inside the single block is considered and 

the correlation between neighboring blocks is not fuliy exploited. Second, since the blocks 

are non-overlapping, there may be discontinuities along the boundary regions of the blocks 

in the reconstruction, which will cause the notorious blocking artifacts, especialiy at low bit 

rates. 

The lapped transform (LT) is one of the techniques developed to reduce the blocking 

artifacts In OCT based coding schemes. The LT is a linear transform which first partitions 

the input signal into overlapped blocks. Unlike the M x M biock transform which maps M 

input sample to M transform coefficients, the LT is a M x L linear operator, where L > M. 

In one dimensional(1-0) case, the input signal x is grouped into overlapping sequences 

5� 
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X m of length L, and there is an overlap of L - M samples between neighboring x m . If the 

M x L transform matrix of the LT is written as H, the corresponding transformed sequences 

Ym (length of M) is Ym = Hxm, so the number of output coefficients is still equal to the 

number of input samples. That is, the transform is still critically sampled. Typically, L is 

chosen to be multiple of M, i.e., L = KM, where K is called the overlap factor. Therefore 

each block has an overlap of (K - I)M samples with each of the neighboring blocks. 

At the decoder side, we have the L x 1"17 inverse transform matrix F. The reconstructed 

signal sequences xm = FYm' xm is also overlapped with adjacent neighbors. Therefore 

to recover the original signal x, the reconstructed sequences should be added together 

in a overlapping matter. For example, the last L - M samples of current reconstructed 

sequence xm should be added with the first L - AI samples of the next reconstructed 

sequence Xm +l. For two-dimensional implementation, the transform is applied to each row 

and then each column separately or vice versa. 

In general, more overiap in the lapped transform gives better performance. However, 

the computation cost also increases, and the quality will not improve too much after a 

certain value. Considering the trade-off between the complexity and the quality, most of 

the practical LT use the value L = 2M. The polyphase format of the LT can be written as 

[26J: 

= 1[10][11][10:- ][1 I] ~ (2.1 ) E(z) C G(z)C, 
2 0 V I -I 0 z-11 I-I 

where C is the }II-points DCT matrix, and I is the identity matrix. The matrix V is the 

only free variable in the formula. When the matrix V is orthogonal, the LT is called the 

Lapped Orthogonal Transform (LOT), otherwise it is called the Lapped Biorthogonal Trans­

form (LBT). The design of the lapped transform is to find the optimal matrix V that optimizes 

some objective functions. 
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M/2 

X(n~t8=; Z·i(n-l) 
s(n-I)~1~ll,n~l) 

x(n)~ x(n) 

S(n) I ~ I y(n~ 
x(n+ 1) p x(n +1)

o ~ .o;(n+U c }(n+l) 

T x(n+2)"n+2)~.~. 

Figure 2.1: Forward and inverse time-domain lapped transforms (TOLT). 

2.1.2 Time-domain lapped transform (TDLT) 

The conventional lapped transform applies post processing to the OCT. One problem of 

this scheme is that existing OCT based scheme has to be redesigned to apply the LT. This 

can be difficult, especially in the hardware. A new structure of the lapped transform is 

developed in [46], where preprocessing of the OCT is applied. Therefore it is possible to 

keep the existing OCT based structure intact. Thus the lapped transform based codec can 

be obtained with minimal modification of the popular OCT based codec. 

Fig. 2.1 shows the block diagram of the time-domain lapped transform (TOLT). At the 

encoder, an M x M prefilter P is employed at the boundary of two blocks (M is the block 

size). The M-point OCT C is then applied to each block, creating basis functions that 

cover two blocks. In the decoder, the inverse OCT and postfilter T at block boundaries are 

applied. Matrices P and T have the following structures to yield near-optimal linear-phase 
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lapped transform [46]: 

P = W diag{I, V}W, (2.2) 

T = p-I = W diag{I, V-I}W, (2.3) 

(2.4)WJz [: ~I]'= 

where I and J are .~f x t:; identity matrix and counter-identity matrix, respectively. Matrix J 

is obtained by flipping I horizontally or vertically ([26J, pp. 149). The matrix V is an t:; x t:; 
invertible matrix that can be optimized for different purposes. In this thesis, the notation 

diag{A, B} denotes a block diagonal matrix with matrices A and B on the diagonal, and 

zeros elsewhere. 

Denote Po and PI as the first and the last M/2 rows of the prefilter P, and To and T I 

as the first and the last M /2 columns of T, respectively, i.e., 

(2.5) 

(2.6)T = [ To Tj], 

the M x 2M forward lapped transform F and 2M x M inverse transform G can be written 

as 

F = C diag{P" Po}. (2.7) 

(2.8) 

The time-domain expression of the M x L transform can be represented by the M x M 
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~o 

E:
DCTb'- , 

, 
~"'--'l~~ , 

Figure 2.2: Polyphase structure of the time-domain lapped transform. 

polyphase matrix as [46]: 

E(z) = (2.9)C[I 0] [0 I] p, 
o zI I 0 

This is shown in Figure 2.1. Similarly, we can also represent the inverse transform by a 

M x M polyphase matrix. 

2.1.3 Coding gain 

To obtain the best performance of the system, one need to select the design objective, 

which depends on the applications of interest. For data compression, the coding gain is 

a very important factor for designing a transform. The coding gain is a measure of the 

reconstruction quality improvement of the codec over the Pulse Coding modulation (PCM) 

based scheme, with the same bitrate. The PCM coding is a very simple scheme, where 

the input signal is directly quantized to a specified bit rate. To get a higher coding gain, 

a transform should compact most of the energy into a few number of coefficients. In the 

TDLT, the prefilter acts as a flattering operator [46], which packs more energies to the 

low-frequency coefficients than the DCT. 
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q
x Y, I' y, x, 

.t­
q'J+l 

Xn +! Yn+] )'/1+1 ..i"n+l 
+F G 

qn+M 

X u Yn.M . Yn+, Xn+M+ 

Figure 2.3: A general model for transform based coding system. 

Since most of the transform are invertible, the distortion in the reconstructed image is 

contributed by the quantization noise. To derive the formula of the coding gain, we use 

the system in Figure 2.3 as an example, where F and G are block transform. For perfect 

reconstruction transforms, the forward and inverse transform matrices should satisfy FG = 

I. 

We assume the input signal X n is a stationary random process. The variance of the 

transformed signal Yn can be obtained from the transform matrix and the correlation matrix 

of the input signal. The variance (1;k of signal Yk is the k-th diagonal element of matrix 

FRxxFT By rate-distortion theory, the variance of the quantization noise, (1~k' is related to 

the ()'~k by 

(2.10) 

where bk is the number of bits allocated to the k-th signal Yk. And C is a constant which 

depends on the statistic of input signal Xk. After the inverse transform, the variance of the 

reconstructed distortion is: 

(2.11 ) 
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where g. is the k-th column of the inverse transform matrix G. Assuming the noise of 

different subbands are uncorrelated, the average distortion of each sample is 

(2.12) 

Let the average number of bits allocated to each channel be b = k L~~O' b•. In the PCM 

system, the signal is directly quantized to bit b. Therefore, the quantization noise PCM is : 

2 C2-2b 2apCM =, ax' (2.13) 

The coding gain of the given transform scheme over the PCM is thus 

(2.14) 

In (2.14), the bit rate allocated to each subband is a free parameter. We need to select 

the best bit rate combination to obtain the highest coding gain for the given system. For 

example, we could allocated more bits to low frequency coefficients, which contain most in­

formation. The maximum coding gain is obtained, when L~~Ol 2- 2bk a;k Ilg. II' is minimized 

under the condition of b = ~~ L~~Ol b•. We thus have the Lagrangian equation 

M-l 1 M-l 

L = L T2bka~kllgkl12 + A(M Lb. - b). (2.15) 
11:=0 k=o 

The solution for (2.15) is 

(2.16) 
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Coding Gain = 9.6115 dB 
5 ,------,-----,-----T----~--____, 
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Figure 2.4: Design example: Biorthogonal8 x 16 TDLT with coding gain 9.61 dB. 

Plugging (2.16) into (2.14), we have the optimal coding as 

(2.17) 

When the transforms are orthogonal, Ilgkll = 1, so the denominator above reduces to the 

geometric mean of the subband variance. 

When F and G are lapped transform, the coding gain still have the same formula. The 

difference is that the filter gk has length L instead of M. 
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2.1.4 Design and Fast Implementations 

In many compression applications, the goal of transform design is to find the one with the 

highest coding gain. Since there is no closed-form solution for our problem, we have to use 

numerical optimal functions to find out the best transform. Since matrix V is the only free 

parameter in the transform, the problem reduces to find the optimal matrix V. It has been 

shown that the structure of the TDLT is close to optimal in the family of linear-phase filter 

banks [46]. For example, the optimized 8 x 16 TDLT gives a coding gain of 9.61 dB. The 

frequency response of the designed TDLT is shown in Figure 2.4. Compared to this, the 

ideal result in [1] is only 9.63 dB, but the structure and implementation of TDLT are much 

simpler. 

As we know, any N x N orthogonal matrix can be factored into a cascade of N(N ­

1)/2 plane rotations and N sign parameters [49]. For the biorthogonal case, one can 

use N(N- 1) rotations and N diagonal entries according to the SVD factorization. This 

property can be used to find the fast implementation of the TDLT. For example, we can 

use the plane rotation operations to implement matrix V and the DCT. However, plane 

rotations stili involve floating point multiplications, which are slow and undesired in DSP or 

VHDL implementation. To further reduce the cost, the lifting-based fast TDLT can be used, 

which is mUltiplier-free. Details of this solution can be found in [46]. Some approximations 

can also be applied in the lifting-based algorithm. Although the coding gain is not as high 

as the original structure, the system complexity can be further reduced. 

2.1.5 Summary 

The TDLT implements the lapped transform through time-domain pre-processing of DCT 

inputs and post-processing of the IDCT outputs. The pre- and postfilters are placed at the 

boundaries of DCT blocks. The overlap factor can be easily modified by change the size 
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of the pre- and postfilters. Moreover, we can have multi passes of the pre- and postfil­

ters. With those features, the trade-off between the complexity and performance can be 

easily obtained. Since the DCT structure is kept intact, the original DCT-based software 

or hardware can be reused when the TDLT is applied. The TDLT provides better coding 

performance with a moderate increase of the computationai complexity, when the lift-based 

fast TDLT is used. 

This general framework allows a great degree of fiexibilities. With different prefilters, the 

TDLT can easily adjust the coding performance, which is an important benefit for designing 

a multiple description coding system. Therefore, we chose TDLT as the basic framework 

for the technique proposed in this thesis. 

2.2 Multiple Description Coding 

2.2.1 Introduction 

In multiple description (MD) coding, the source is encoded into several representations; 

each of them is called one description and can be transmitted over a different channel. 

Ideally, information of the original source can be distributed over all descriptions according 

to the capacities of different channels. At the receiver side, the quality improves steadily 

as the number of descriptions available increases. In order to gain robustness against 

the loss of descriptions, MD coding has to sacrifice some compression efficiencies, such 

that some redundancies can be introduced into the descriptions. The design questions in 

the MD coding include how to generate the descriptions, how to allocate the rates over 

different descriptions, and what are the optimal performance that can be achieved by the 

MD coding. These issues will be discussed next. 
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Figure 2.5: Typical 2 channel multiple description coding system. 
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Figure 2.6: Example of the scalar quantizer for channel splitting 

2.2.2 MD model 

A typical two-channel multiple description coding scenario is shown in figure 2.5. The 

source signal passes through the MD encoder and is encoded into two descriptions, which 

are transmitted over Channel 1 and Channel 2 respectively. The two descriptions are 

somehow correlated. At the receiver side, there are three decoders, two side decoders and 

one central decoder. When one channel is broken and only one description is received, the 

receiver decodes the available description with the corresponding side decoder. When both 

descriptions are available, the central decoder is applied to obtain a better reconstructed 

signal. 

One simple way for MD coding is to use specially designed scalar quantizers. Figure 

2.6 shows an example by using two uniform quantizers for channel splitting. Each quan­

tizer has an offset from each other. The signal is quantized into 2 bits for each channel. 
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The total bits used on the signal are 4 bits. When both channels are available, the de­

coded signal can achieve 3·bit accuracy, due to the shifted partitions of the two quantizers. 

Therefore each channel carries 0.5 bits per sample of extra information. In other words, 

the redundancy of the system is 0.5 bits per sample. 

Two fundamental and interweaving difficulties in MOC design are how to introduce a 

controlled amount of redundancy into the descriptions which the decoder can conveniently 

utilize, and how to exploit the source correlation to facilitate MO encoding and decoding. 

The importance of these issues is corroborated by Shannon's comments on reliable com­

munications ([37J, pp. 75): '~ny redundancy in the source will usually help if it is utilized at 

the receiving point. In particular, If the source already has a certain redundancy ... a siz­

able fraction of the letters can be received incorrectly and still reconstructed by the context." 

The "redundancy" in Shannon's paper includes both the additional redundancy introduced 

by the encoder and the original source correlation. 

Many practical MOC schemes have been proposed. In [51], a multiple description scalar 

quantizer (MOSQ) is developed, which is asymptotically near optimal [52]. It is also shown 

in [52] that the product bound of the central and side distortions is constant for a given bit 

rate. This property has been widely used as a performance measure for MOC. The MOSQ 

has been used in, for example, [2, 36], together with OCT or the wavelet transform. One 

problem of MOSQ is that it requires special index assignment, which is difficult to design 

and implement. Its redundancy is also not easy to control. 

In [43], a scalar quantizer-based modified MOSQ (MMOSQ) with the same asymptotical 

performance as the MOSQ is developed, in which two staggered scalar quantizers are used 

to generate the first layer of each description, respectively, similar to Fig. 2.6. Another 

scalar quantizer is used to further partition the joint bins of the first-layer quantizers, and 

the output of which is split into the two descriptions. The detail of this method is in the later 

section, since we will compare our proposed method mainly with MMOSQ. 
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Another large family of MDC schemes follows the source splitting approach pioneered 

by Jayant in [19, 20], where a speech signal is split into even and odd samples, and DPCM 

is used to encoded each description. If one description is lost, the missing data are pre­

dicted from their neighbors in the other description, using the correlation of the source. 

However, the prediction errors of the missing data are tied to the source correlation, which 

cannot be controlled. Therefore the overall distortion in this case is not satisfactory [19, 14]. 

In [18], DPCM is used before splitting, and the prediction in the DPCM is designed to pre­

serve some source correlations. Therefore the redundancy between the descriptions can 

be adjusted, albeit in a very limited range. Although the method can reduce the inter­

description prediction error, the remaining error still curbs the performance of the side de­

coder, especially at high rates. 

In [22], the transform coefficients are split into two parts. Each part is quantized into one 

description. Each description also includes some redundant data by coarsely quantizing 

the other part, which helps the decoding when the other description is lost. The optimal 

redundancy rate allocation is studied. A similar approach is developed in [28] using the 

Set Partition in Hierarchical Trees (SPIHT) algorithm [35]. Recently this method is applied 

to the JPEG 2000 framework in [45] under the name of RD-MDC, in which each JPEG 

2000 code-block is encoded at two rates, one in each description, and the rate allocation 

is determined by Lagrangian optimization. Some performance gains of the RD-MDC over 

[22, 28] are due to the more advanced entropy coding in JPEG 2000. In addition, to get 

balanced descriptions and optimal performance, the RD-MDC needs to classify all code­

blocks into two subsets, such that any code-block in one subset has similar rate-distortion 

curve to another code-block in the other subset. This procedure is highly time-consuming. 

Another drawback of the RD-MDC is that its side decoder performance at low redundancies 

is also not satisfactory, because each description has too little information about the other 

description. 
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The pairwise correlating transform (PCT) [54] introduces another method of splitting 

the data. Different from [22, 28], the redundancy in [54] is controlled by a set of 2 x 2 

correlating transforms. If one coefficient is lost, it is estimated from its counterpart in the 

other description. The PCT can achieve a lower redundancy range than the MDSa, but it 

has worse performance at high rates [54]. It is shown in [55] that this is also caused by 

the residual of the linear prediction, similar to [19]. To resolve this problem, it is proposed 

in [55] to encode the prediction residual in each description, but no image coding result 

is reported. In [12], the PCT is generalized to introduce correlation among more than 

two coefficients. In [13, 23], the quantized frame expansion theory is developed to create 

oversampled MDC systems. 

The PCT framework has some inherent drawbacks. First of all, although the PCT has 

good low redundancy performance in theory, its practical application could not achieve 

this, because the PCT can only be applied to coefficients with large variances relative to 

the quantization error [54]. Other coefficients are directly split into the two descriptions. In 

the side decoder, these low-variance coefficients are simply estimated as zero. Therefore 

at low redundancies, the side decoder performance will be very limited. Secondly, similar 

to [19], the PCT does not perform well at high redundancies because of the prediction 

residual. In this case the decoded image of the side decoder in [54] can be 2 dB lower than 

the MDSa. 

Thirdly, the PCT only uses the correlation it inserts between the two parts of a block, but 

does not exploit the rich correlation among neighboring blocks. Finally, the practical imple­

mentation of PCT is quite complicated. Given L coefficients, the PCT needs to pair the two 

coefficients with the k-th and (L - k)-th largest variances, and the optimal PCT depends 

on the coefficient variances. To estimate these variances, the method in [54] classifies all 

image blocks into four classes. Coefficient variances of each class are then calculated and 

sorted for PCT designs. In addition, eXisting entropy coding for single description coding 
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cannot be used for the PCT outputs due to the different statistics and block sizes. 

A generalized PCT (GPCT) is proposed in [55], which is a hybrid method. At low re­

dundancies it is simply the PCT. At high redundancies, in addition to PCT, each description 

also encodes the prediction residual of the other half of PCT outputs. Nevertheless, the 

analysis in [55] shows that the GPCT is still 3 dB away from the result that can be achieved 

by the MDSQ and the MMDSQ. Also, although the GPCT improves the PCT at high redun­

dancies, it does not solve the other problems of the PCT. In fact, it further complicates the 

system, because another new transform and entropy coding have to be designed for the 

residual data, leading to a MDC system with three stages of transforms: the de-correlating 

transform (e.g., the DCT), the PCTs, and the transform for the residual. In addition, there 

has not been any practical application using the GPCT. 

In addition to the DCT and the wavelet transform, the lapped transform [26] has also 

been utilized in MDC, originated from its application in error resilience and error conceal­

ment [16, 8]. In [17, 5, 6], the lapped orthogonal transform output is split at the block level. 

The redundancy is controlled by designing lapped transforms with different tradeoffs be­

tween compression efficiency and error resilience. When some descriptions are lost, the 

lost blocks are estimated by averaging neighboring blocks in [17]. In [5, 6], the missing 

areas are concealed by imposing a smoothness constraint. In [48], a new family of lapped 

transform called the time domain lapped transform [46] is used, which simplifies the de­

sign. The Wiener filter is applied in [25] to replace the simple average in estimating the lost 

blocks. Despite significant improvement over [17, 5, 6, 48], the performance in [25] is still 

below that of [43], due to the presence of the prediction error. Another common problem 

of [17, 5, 6, 48, 25] is that they cannot vary the redundancy for the given transform. From 

the point of view of introducing controlled redundancy, both the lapped transform approach 

and the PCT can be viewed as the generalization of the DPCM method in [18] to transform 

coding case. 
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As a summary, in [19, 20j, the existing correlation in the source is cleverly utilized, 

but they cannot adjust the redundancy of the MDC system. Although the methods in [36, 

43, 22, 28, 45, 54, 55] can control the amount of redundancy, they do not fUlly exploit the 

source correlation. The scheme in [18] uses the source correlation to provide a limited 

redundancy, but is based on DPCM, and suffers from the prediction error at high rates. 

Given these limitations of existing methods, one of the motivations of this thesis is to 

develop a MDC scheme that can simultaneously achieve the following properties: taking full 

advantage of the rich correlation of the source in the MD encoding and decoding, providing 

effective control of the redundancy of the system, and achieving satisfactory performance at 

all rates and redundancies. Another goal of this thesis is to improve the performance of MD 

image coding by applying this scheme. Since MD image coding and MD video coding are 

two most important applications of MDC, and there are still many open problems in MDC 

theory, especially for more than two descriptions, new findings in the MD image coding can 

help the development of MD video coding. 

The requirement of utilizing the source correlation in MD encoding and decoding sug­

gests us to deviate from the traditional transform paradigm, for which the error resilient 

design of the iapped transform becomes a very suitable platform. In particular, we will use 

the time-domain lapped transform (TDLT) developed in [46]. 

2.2.3 The MD rate distortion region 

For lossy data compression, the quality of the reconstructed data depends on the bit rate 

that is used to encode the source. The rate-distortion (R-D) theory is a branch of infor­

mation theory that studies the achievable distortion at a given rate, or vice versa. The R-D 

bounds are usually difficult to compute except for a few simple situations, such as Gaussian 

sources. The definitions used here and more details of the rate distortion theory could be 

found in [7] and [3]. 
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Several concepts need to be defined first. The n-Iength source sequence is noted as 

xl") = {Xl, X" ... x n }; the reconstructed sequence is noted as xln ) = {Xl, X" ... , Xn }. A 

distortion measure is a mapping from the set of source-reconstructed pairs into the set of 

non-negative real numbers. The most common one is the squared error: 

d(x, x) = (x - x)'. (2.18) 

The average distortion between sequences xln) and xln) is defined by 

(2.19) 

Usually the input source is modeled as a sequence of independent, identically dis­

tributed, real random variables Xl") = {Xl, X" ... , X n }. The encoding function f(.) is a 

mapping from all possible source sequences to an index in {I, 2, ... , 2nR }, where R is the 

rate. The decoding function g(.) is the mapping from an index in {I, 2, ... , 2"R} back to the 

reproduction sequence Xln) = {Xl.X" ... ,Xn }. Those two functions is called a source 

code. The distortion associated with this code is the expected value 

(2.20) 

A rate-distortion pair (R, D) is achievable if there exists a sequence of (2nR , n) rate distor­

tion codes such that 

(2.21) 

The rate-distortion region for a source is the closure of the set of achievable rate distortion 

pairs. 

In general, it is very difficult to find out the boundary of the rate distortion region from 

the definition. However, this is doable for some special cases. For example, a Gaussian 
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source with variance ,,2 has a distortion-rate function of 

(2.22) 

In fact, this is the upper bound for the distortion-rate functions of all continuous-value 

sources. If a source has a probability density function p(x) and variance ,,2, the distortion­

rate function satisfies 

(2.23) 

where h = - f p(x) log2 p(x )dx is the differential entropy. From 2.23, we know the Gaussian 

sources are the most difficult to compress. 

In the case of multiple description coding, the rate distortion theory is more complicated, 

and remains largely open, especially for more than two descriptions. For two-description 

case, the MD region is the closure of the set of achievable quintuples (R j , R2, Do, D j , D2), 

where R j and R2 are the rate of Description one and two respectively, D j and D2 are the 

distortion of the side decoder 1 and decoder 2, and the Do is the distortion of the central 

decoder. 

In [10j, an achievable two-description rate-distortion region for independent and identi­

cally distributed sources was derived. The region was shown by Ozarow to be complete for 

memoryless Gaussian sources under the mean squared-error distortion measure [29]. For 

other memoryless sources, a set of outer and inner bounds was derived in [58], and these 

bounds were generalized to sources with memory in [57). In particular, the outer bound 

is tight at high rates. For a memoryless Gaussian source with variance ,,2 ,the MD region 

should be: 

(2.24) 

(2.25) 
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(2.26) 

From these equations, we can know that when both side distortions are large, the central 

distortion can be very good. But if the side distortions are belter, the central distortion will 

be sacrificed. 

If both channels have the same condition, i.e., the same probability of loss, we can 

design the MD system as R] = Rz, D] = D z. If we assume the source has unit variance, 

it can be proved that the side distortion bound is [11]: 

D] 2: min {~[1 + Do - (1- Do))I- 2-Z(RI+R21/Do] ,1- )1- 2-Z(RI+R2)/Do} 

(2.27) 

If the base rate of Do is r = R(Do) and redundancy of the MD coding is p = R] +Rz-R(Do), 

plug the basic rate distortion bound Do 2: 2-z,· into (2.27), we have the side distortion 

bound: 

~ [1 + 2-z, - (1 - 2-z')/1 - 2 zP] , for p ~ r - 1 + logz(1 + 2-z,) 
(2.28) 

1- vI - 2 zP, for p > r -1 +logz(l + 2-Z,). 

Figure 2.7 shows the MD side distortion bound as the function of redundancy ratio, for 

unit basic rate, such that r = 1. The redundancy ratio f is the ratio of redundancy rate p 

over the basic rate r: 

(2.29) 

From the figure 2.7, we can see that as c ---> 0, the slope of the curve is infinite. At 

that point, the idea MD system, which can achieve the distortion bound, uses all the bits to 
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Figure 2.7: MD coding side distortion bound vs redundancy ratio with unit basic rate 

improve the central distortion. The infinity slope means that a small additional bit can reo 

duce the side distortion dramatically. As the redundancy ratio increases, the slope reduces. 

Therefore the efficiency of improving the side decoder decreases. When the total rate is 

fixed, how to distribute the bits between improving the central distortion and improving the 

side distortion becomes an important problem. In many cases, the linear combination of the 

central and side distortions is used as performance measure. The weights of the distortion 

could be determined by the probabilities of losing different descriptions. 

2.2.4 The modified multiple description scalar quantizer (MMDSQ) 

In multiple description coding, the specially designed MD scalar quantizer has gained 

more and more attentions. In [52], Vaishampayan presented the asymptotic analysis of 

the entropy-constrained multiple description scalar quantizer(MDSQ). In the balanced two­

description case, it is shown that the distortion product of the central and side distortion of 
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Figure 2.8: Modified multiple description scalar quantizer example 

this quantizer with a uniform central quantizer is 

(2.30) 

where R is the rate of each description, Px = (27re)-12 2hp is the entropy power of the 

source, and hp is the differential entropy of the source. 

The performance of the MDSQ is only 3.07 dB worse than the theoretical bound, 

which is the same as the gap of the single-description entropy-constrained scalar quan­

tizer. When nonuniform central quantizers are used, this production can be further reduced 

by OAdB [44]. 

However, the side quantizers in MDSQ are not conventional quantizers. The cell does 

not consist of a continuous intervals; one side quantization cell is the union of several 

noncontiguous intervals. The MDSQ also involves a complex index assignment. 

Recently, a modified multiple description scalar quantizer (MMDSQ) is introduced by 

Tian [43]. Instead of complex index assignment, the MMDSQ uses a simple two-stage 

scalar quantizer scheme, as shown in Fig. 2.8. This simple scheme stili achieves an 

asymptotic performance that is identical to the entropy-constrained MDSQ. 

The first stage of MMDSQ has two uniform side quntizers with staggered bins, which 

is similar to the simple example shown in Figure 2.6. Therefore the joint quantizer has a 

half size bin. In the second stage, the half size bin is divided evenly into a fixed number of 

bins to obtain the second stage quantizer. Each quantization value of the first stage side 
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quantizers is entropy-coded and put into the corresponding description. The indices from 

the second stage quantizer is also entropy-coded but split evenly between two descriptions. 

At the receiver side, if only one description is available, the corresponding side quantizer is 

utilized to decode the first stage information, whereas the information of the second stage 

is discarded. When both descriptions are received, the joint quantizer is used to get a 

coarse result, and then the decoder will use the second stage information to obtain a more 

accurate result. 

The performance of the MMDSQ can be easily analyzed. The rate of the first stage of 

each description is R" and that of the second stage of each description is R 2• Assuming 

high bit rate coding, the side distortions of the two uniform side quantizers with entropy 

coding are [15J 

(2.31) 

If we assume R, is high, the source distribution in each side quantization cell can be 

22R2regarded as uniform. The number of bins in the second quantizer is N = . Since 

the interval of bins of the joint quantizer is half of the side quantizer, and each of this 

interval is divided into N uniform bins, the central distortion of MMDSQ is 

(2.32) 

Thus the production of the side and the central distortions is 

(2.33) 

where R = R, + R2 is the rate of each description. This formula is identical to (2.30). 

This means that the MMDSQ has the same asymptotic performance as the MDSQ, but the 

complexity of the MMDSQ is much lower than the MDSQ. 
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The MMDSQ provides a more flexible tradeoff control mechanism. The two side quan­

tizers controls the side distortions. The number of bins in the second stage quantizer 

controls how good the central reconstruction could be. The tradeoff between the side and 

central distortions can be easily controlled by changing the two quantizers. It is much sim­

pler than the MDSQ which needs to reassign the indices to adjust the distortion tradeoff. 

The combination of the MMDSQ, wavelet and Tarp filter outperforms other MDSQ· 

based image coding methods such as [36]. In fact, it represents the state of the art in 

MD image coding. However, the MMDSQ does not have satisfactory performance at low 

redundancy regime, which is a desired property of good MDC schemes ([54], pp. 365). 

Another problem of MMDSQ and MDSQ is that no attempt is made to utilize the source 

correlation for MDC purpose. 

2.2.5 Summary 

The multiple description coding has gained grOWing attentions recently, although it was 

proposed long time ago. The MD coding was invented for bad communication environment 

where the losing of partial information during transmission is common. The most typical 

circumstance for MD coding to be used is the IPffCP network. The applications in which 

MD coding is useful are most likely real-time and have some quality degradation tolerance. 

The rate distortion for MD coding system is much more complicated than the normal rate 

distortion problems. To design a MD coding system, many things need to be considered. It 

requires a tradeoff between the side distortion and central distortion. Therefore, the f1exility 

for adjusting the distortions is very important. Many techniques have been proposed for 

achieving MD system, and the MD scalar quantizer is a popular one, but it needs com­

plicated index design. This problem is solved in the MMDSQ, which achieves the same 

performance as the MDSQ. 

In addition to the quantizer, the transform can also be used for MD coding. In the 
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next few chapters, a new MD technique with the lapped transform is introduced and the 

performance is compared with MMDSQ. 



Chapter 3 

MOC with Prediction Compensation 

3.1 Introduction 

As mentioned before, an error resilient lapped transform is developed in [25], where the lost 

blocks are predicted by Wiener filter, which gives much better performance than the simple 

average scheme in [48]. However, this scheme cannot give satisfactory side decoder per­

formance if used as a MOC method, because the prediction is not accurate enough. The 

problem is especially noticeable at high bit rates. 

In this chapter, we develop a MOC scheme on top of the Wiener filter scheme in [25]. 

We first partition the image into two sub-images after the prefilter of the time-domain lapped 

transform. Each SUb-image is coded as the base layer of one description. Each description 

also predicts the other description using Wiener filter, and encodes the prediction residual 

as an enhancement layer. This can improve the side decoder performance. This method 

has the same spirit as the method in [55]. However, the design and implementation of our 

method are both simpler than those in [54, 55], because we split the data at block level and 

only one transform and one Wiener filter need to be designed, whereas coefficient level 

splitting is used in [55], which calls for the design of a set of PCTs. Another advantage 

29� 
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of our method is that superior performance can be obtained without any modification of 

existing entropy coding algorithm. 

The joint design of the Wiener filter and the lapped transform will be presented, in­

cluding the optimal bit allocation between the base layer and the enhancement layer. The 

asymptotic performance of our method is analyzed by replacing the block transform with 

the OPCM. In this case, our method is only about 3 dB away from the theoretical bound 

given in [52, 57], when the input is assumed to be first-order Gauss-Markov sources. This 

makes it a simple but effective improvement over Jayant's method in [19]. When transform 

coding is used, our scheme is especially suitable for natural images, and experimental re­

sults show that at the same bit rate and central distortion, our method can outperform the 

method in [43] by more than 8 dB if only one description is received. We also study the 

performances of the OCT, the performance of the single description optimized TOLT in [46] 

and the effect of Wiener filter size in the proposed framework. 

3.2 Problem Formulation and Optimal Design 

In this section, we present the proposed MOC scheme and discuss its advantages over 

other methods. We then formulate the joint design of various components of the system, 

and derive the optimal solution. 

3.2.1 Overview of the Proposed MOe Scheme and its Advantages 

In this chapter, we modify the TOLT framework to generate two descriptions. Fig. 3.1 

illustrates the encoding and decoding of one description by the proposed method. The 

other description is obtained similariy. In this chapter, we use x(k), s(k), and y(k) to 

denote the k-th block of prefilter input, OCT input, and OCT output. The reconstruction of 

a variable is denoted by the hat operator. 
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In Fig. 3.1, after prefiltering the input, the prefiltered blocks {s(k)} are split into even­

indexed blocks and odd-indexed blocks. After OCT, quantization, and entropy coding, the 

two groups of blocks form the base layers of the two descriptions, respectively. Since 

the base layer only includes data of a half of the input, each description also contains an 

enhanced layer to help reconstructing the other half, if only one description is received. To 

fUlly exploit the correlation among neighboring blocks, in each description we use a Wiener 

filter H to predict a block using its two reconstructed neighboring blocks, as in [25J. More 

precisely, s(n) in Fig. 3.1 is predicted using the nearest N samples from §(n - 1) and N 

samples from §(n + 1), where N is chosen between 1 and M, and M is the block size. The 

formula of the Wiener filter is given in the section 3.2.2. Different from [25J, in this chapter 

the prediction residuals {d(k)} are further OCT-transformed, quantized and entropy-coded 

to form the enhancement layer of each description. 

At the decoder side, if only one description is received, the missing blocks are first es­

timated from the received base iayer blocks by Wiener filter. The decoded enhanced layer 

blocks are then added to the estimation before post/i1tering. When both descriptions are 

available, only the decoded base layers from the two descriptions are fed to the post/ilter 

for reconstruction. The enhanced layer in each description is simply discarded. There­

fore the enhanced layer is the redundancy introduced by our method, which can be easily 

controlled by adjusting the quantization step. 

Our scheme enjoys various advantages over existing methods. Compared to MOSa, 

MMOSa, RO-MOC, PCT/GPCT, it uses Wiener filter based prediction to exploit the source 

correlation between neighboring blocks in creating MOC. The importance of utilizing the 

source correlation can be seen in Sec. 3.5, where even a simple system with OCT and 

linear interpolation based prediction can outperform other leading MOC methods in some 

cases. Compared with MOSa and [19, 20, 18], our method offers a more flexible control of 

the redundancy. Our method is also superior to [22, 28, 45] by using predictive coding, as 
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it is well established that for correlated sources, predictive coding has better rate-distortion 

performance than direct encoding ([41], pp. 113), i.e., it achieves lower distortion at the 

same bit rate. 

The proposed scheme also avoids other problems of the PCT and GPCT. Firstly, predic­

tion in the spatial domain allows the residual to be coded even at low redundancies, where 

important image edge information can still survive the large quantization step after the pre­

diction and drastically improve the side decoder quality. In contrast, most coefficients in 

the PCT are split directly in this case, which are uncorrelated and cannot be predicted 

from each others, leading to inadequate performance. Secondly, we will show that at high 

redundancies, the theoretical performance of our method is as good as the GPCT. The 

practical performance of our method is even better, as it is very suitable for nonstationary 

signals can achieve similar or slightly better results than the MMOSQ and RO-MOC at high 

redundancies. 

In addition, our scheme can be easily optimized and implemented, and good perfor­

mance can be expected. For example, only one prefilter and one Wiener filter need to be 

designed instead of many PCTs. The block level splitting has much less impact on coding 

efficiency than coefficient level splitting. The prediction residual of the block Wiener filter is 

similar to the block-based motion estimation residual in video coding, and can be well de­

correlated by the OCT, and there is no need for a new transform. Our experimental results 

also show that the entropy coding for the base layer can be applied to the enhanced layer 

directly with good performance. In addition, the postfilter can serve as a de-blocking filter 

to smoothen the artifacts and improves the visual quality, especially around the predictively 

coded blocks. 



CHAPTER 3. MDC WITH PREDICTION COMPENSATION 34 

3.2.2 Wiener filter derivation 

In this section, we derive the Wiener filter H in Fig. 3.1. In [25], all data in the two neigh­

boring blocks are used to estimate a lost block. This needs a Wiener filter of size M x 2M. 

Since the performance of the system is not sensitive to the size of the Wiener filter, in this 

chapter we use N (1 ~ N ~ M) boundary samples from each of the two neighboring 

biocks to estimate the lost block. The value of N is selected based on the application to 

obtain a desired trade-off between complexity and performance. 

In Fig, 3.1, the prediction of s(n) is sH(n) = H 82,N, where H is the M x 2N prediction 

filter, and 8Z,N is a 2N x 1 vector containing 2N nearest neighboring samples next to s(n), 

N samples from 8(n -1) and N samples from 8(n + 1). That is, 

(3.1 )8Z.N = [ 8~(n - 1) 8~(n + 1) r 
where 

8B(n -1) = [ sM-N(n - 1) ... sM-l(n - 1) r 
(3.2) 

8B(n + 1) = [ so(n + 1) .. , SN-l (n + 1) r, 
The autocorrelation of the prediction residual is 

Rdd = E{(H82,N - s(n)J(H82,N - s(n))T}, (3,3) 

The Wiener filter that minimizes the MSE trace{Rdd}/M is H = R"2 NR:-1. ,where 
, S2,N S2,N 

R'.2,N is the correlation matrix between s(n) and 82,N, and R.2,N'2,N is the autocorrelation 

matrix of 82,N, A high rate assumption is usually used to simplify the design ([25, 41], 

pp, 114). In this case, the quantization noise is ignored, and the Wiener fiiter can be 
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approximated as 

(3.4) 

The matrices involved can be obtained from the structure of the lapped transform in Fig. 

2.1. Define 

83 = [ 8T (n _ 1) 8T(n) 8T(n + 1) ] T 
(3.5) 

x4 = [ xT(n - 1) xT(n) xT(n + 1) xT(n + 2) r 
As shown in Fig. 2.1, 83 = P34X4' Thus R"" = P 34 R.x,x,pr4' where 

P 34 = diag{PI , P, P, Po}, (3.6) 

Po and PI are the first and the second M/2 rows of the prefilter P, as given in (2.5), and 

Rx,x, is the autocorrelation matrix of X4. In this chapter, Rx,x, is obtained by assuming 

the input follows a first-order Gauss-Markov model with correlation coefficient of T = 0.95. 

Matrices RSS"N and R'"NS"N in (3.4) can then be obtained from the appropriate sub­

matrices of R"s, according to their definitions. 

From u(n) = Cd(,,) = C(8(n) - H 52, IV ) and the Wiener filter H given in (3.4), we have 

(3.7) 

In this chapter, this is used in Eq. (3.19) to obtain the distortion of the enhanced layer. 

As in [25], we normalize the Wiener filter to have unit row sums. In addition, two M x N 

Wiener filters are used at the boundary to predict a block from only the top or the bottom 

neighboring block. 



CHAPTER 3. MDC WITH PREDICTION COMPENSATION 36 

3.2.3 Joint Optimal Design of the System Components 

Let R (in bits/pixel (bpp)) represent the overall bit rate of the two descriptions, i. e., the ratio 

between the total bits of the two descriptions and the number of input samples. Let Ro and 

R j denote the average bits for each base layer sample and each enhanced layer sample, 

respectively. The bit rate for each description is thus ~(Ro + R j ) bpp/description, and the 

total rate is R = Ro + R j • 

As shown below, given the target bit rate R, the probability p of losing one description, 

the matrix V in prefilter P, and the value N for Wiener filter, we can find the closed-form 

expressions of the corresponding optimal Wiener filter H and bit allocation Ro and R j 

that minimize the expected distortion at the receiver. To further find the optimal matrix V 

among all possible V's with the minimal expected distortion, an unconstrained numerical 

optimization program, such as the function fminunc in MATLAB, can be used, by treating 

all entries of V as unknown variables. Numerical optimization has to be used in this step 

because the objective function is a complicated nonlinear function of the entries of V. 

Although global optimality is not guaranteed in general, this method has been widely used 

with satisfactory performance in filter bank optimization [17, 6, 48, 46, 25]. In this part, we 

give the derivation of the first step, i.e., the optimal Ro and R j for a given V. The solution 

of the corresponding Wiener filter is given in the section 3.2.2. 

Let Do and D j be the central distortion and side distortion, i.e., the mean squared error 

(MSE) when the decoder receives two and one description, respectively. The expected 

distortion D is defined as 

D = (1 - p)2DO + 2p(1 - p)D j • (3.8) 

In the proposed MDe scheme, each description contains half base layer blocks and half 

enhanced layer blocks. Only base layer blocks are used if two descriptions are received. If 
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one of them is lost, half of the input is reconstructed via base layer and the other half is via 

enhanced layer, Therefore 

Do = DBM, 
(3,9)

1 
D J = 2(DB,M + DE,M), 

where DB,M and DE,M are the MSE caused by the subband quantization noise in base 

layer and prediction-compensated enhanced layer, respectively. SUbstituting into (3.8), we 

have 

D = (1 - p)2 DB,M + p(1 - p)(DB,M + DE,M) 
(3.10) 

= (1 - P)DB,M + p(1 - p)DE,M. 

We first find the optimal expressions of DB,M and DE,M for given Ro and R j , under the 

optimal bit allocation within each block. Since the inverse lapped transform is generally 

not orthogonal, the reconstruction error D B,M or DE,M is the weighted combination of 

subband quantization noises, and the weighting parameters are the norms of the inverse 

transform filters. Let the quantization noise of y(k) be qy(k). After the inverse TDLT, the 

reconstruction error becomes G qy(k). As usual, we assume the quantization noises of 

different subbands are uncorrelated. Therefore the MSE of the reconstruction is 

M-I 
1", 22 

DB,M = M LJ Ilgill aq,(i)' (3.11 ) 
i=O 

where a;,(,) is the variance of the i-th entry of qy(k), and gi is the i-th column of G. Under 

2the assumptions of high rates and Ll.d. sources, aq, ('), can be written as ([41], pp. 108) 

(3.12) 

where E is a constant that depends on the input statistics and the quantization scheme. 
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Hoi is the bits allocated to the i.-th entry of a base layer block, and h L~Ol Rf}; = RD. 

o-~(i) is the variance of the i-th entry of y(k), which is the i-th diagonal element of the 

autocorrelation matrix R yy : 

(3.13) 

and X2 = [xT(k} xT(k + 1}(. 

Upon optimal bit allocation of RDi [21], the minimal value for (3.11) is given by 

(3.14) 

This is in fact the objective function of the single description coding. For block transforms, 

the minimum value of (3.14) is achieved by the Karhunen-Loeve Transform (KLT). For 

lapped transforms and longer filter banks, there is no closed-form solution, but numerical 

optimization method can be used to find the solution that minimizes (3.14). 

In single description coding, the coding gain in (2.17) is defined based on o-1,M' When 

M = 8, the coding gain of the optimized TOLT in [46] is 9.62 dB for first-order Gaussian­

Markov inputs with correlation r = 0.95. This is substantially higher than the 8.83 dB of the 

OCT. 

We now look at DE,M, the MSE caused by enhanced layer blocks in the side decoder. 

It can be seen from Fig. 3.1 that the prediction residual is 

d(n} = s(n) - sH(n}, (3.15) 

where sH(n) is the Wiener filter-based prediction of s(n) from §(n - 1) and §(n + 1). The 

derivation of sH(n) for the given prefilter is given in the section 3.2.2. At the decoder, the 

reconstruction of a predictively coded block s(n} is 

§(n) = d(n) + sH(n}, (3.16) 
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where d(n) is the reconstruction of d(n). From (3.15) and (3.16) we can getthe relationship 

sen) - s(n) = den) - den). (3.17) 

In other words, the reconstruction error of s(n) is equal to that of the prediction residual 

den). This is indeed a property of any differential coding system ([41], pp. 113). 

As in Fig. 3.1, let u(n) be the DCT transform of den), we have 

den) - den) = cT qu(n), (3.18) 

where qu(n) is the quantization noise of u(n). After postfiltering, the reconstruction error 

becomes T 21 C T qu(n) = Gqu(n), and its MSE is 

M-l 

1 "", 112 2 -2RD E,M = M L.. < Ilgi "U(i)2 h, (3.19) 
1=0 

where Rli is the bits allocated to the i-th entry of u(n). "~(i) is the variance of the i-th 

entry of u(n), given by the i·th diagonal element of the autocorrelation matrix R uu . The 

expression of R uu is given by Eq. (3.7) in the section 3.2.2. 

Since (3.19) has the same format as (3.11), the derivation from (3.11) to (3.14) can be 

applied here, and the minimal value of DE,M after optimal bit allocation is therefore 

(3.20) 

The remaining bit allocation issue is to find the optimal Ro and R1 for the given P that 

minimize the expected distortion D in (3.10). Substituting (3.14) and (3.20) into (3.10), the 
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problem can be written as 

(3.21) 

s.t. Ro+ R, = R. 

This can be solved using the Lagrangian method by defining an objective function 

(3.22) 

where .\ is the Lagrangian multiplier. Taking derivatives of the objective function with re­

spectto Ro and R" and letting the results to be 0, we can find expressions of Ro and R, in 

terms of .\. Substituting them into Ro+ R, = R, the optimal mUltiplier .\ is found to be 

(3.23) 

from which the optimal Ro and R, can be obtained. After considering the constraints of 

Ro :c: Rand R, :;. °,the optimal bit allocation can be found to be 

. R 1 uB.Mz� )Ro = mm R,,. + 4: logz -2-- ,
(� - pUE,M 

R 1 u~M )R, = max 0, ~ - - logz -z-'- .� (3.24)
( 2 4 pUE,M 

At high rates, i.e., if R, is not forced to °in (3.24), substituting this into (3.14) and (3.20), 

we have 

R
DB,M = E..;p UB,MUE,MT , 

(3.25)
1 .-R 

DE M = E - uB MUE M2 = DB M/p., ..;p"� , 
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In this case, the minimal objective function in (3.21) becomes 

D m ;." = 2(1 - P)DB,M = 2< JP(l - p)IIB,MIIE,MT
R (3.26) 

Finally, plugging (3.25) into Do and D 1 in (3.9) yields the following distortion product DoD]: 

1 (1 ) 2 2 2 2-2RD D +P<IIBMIIEM (3.27)0]=- .
2 " 

which will be further discussed in the OPCM case in Sec. 3.3. 

The following remarks are in order. 

Remark 1: Eq. (3.24) shows that more bits should be allocated to the prediction residuai 

when the loss probability p is higher or when IIJ"M is larger (the data are more difficult to 

predict). Notice that R] = 0 when R < ~ log2 (;¥L). In this case the method reduces 
paE,M 

to our previous approach in [25]. However, it should be emphasized that this threshold 

is derived based on the first-order Gauss-Markov model. For nonstationary signals like 

natural images, we will show in Sec. 3.5 that sending prediction residual is beneficial even 

at very low bit rates, because these bits are spent at regions with strong edges, and can 

thus significantly improve the reconstruction quality. 

Remark 2: Eq. (3.26) shows that the optimal TOLT for the proposed MOC scheme 

needs to minimize IIB,MIIE,M, whereas the optimal single description transform shouid 

minimize 1I1,M in (3.14). Therefore the optimal TOLT for the proposed MOC is different 

from the single description case, although the difference is not very much, as shown in 

Sec. 3.4. 

Remark 3: Eq. (3.26) also shows that when the loss probability p changes, we always 

need to minimize IIB,MIIE,M' Therefore the optimal transform is independent of p. This is 

desired in practice since we only need to have one optimal transform for a large range of 

channel conditions. If R] is forced to 0, (3.26) will be invalid, and the optimal transform 
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will be a function of p. However, our optimization results in Sec. 3.4 show that the optimal 

transform is not sensitive to p. 

Remark 4: The OCT can be considered as a special case of the TOLT when the prefilter 

P = 1. In this case, the derivation above is still valid. The performance of the proposed 

method in the OCT case will be compared with the TOLT case in Sec. 3.4 and Sec. 3.5. 

3.3 Asymptotic Performance of the Proposed Method 

In this section, we analyze the asymptotic performance of our method by studying the 

OPCM case, which has the same performance as transform coding when the block size 

goes to infinity [21]. In the OPCM case, we split the data into even and odd samples, and 

use OPCM to encode each group. Each description also predicts the samples in the other 

group and encodes the prediction residual as the enhanced layer. Since the block size is 

M = 1, there is no block transform and lapped transform. 

This special case of our method is indeed an improvement of Jayant's OPCM based 

method in [19, 20]. As discussed in previous chapter, Jayant's method splits the source 

at sample level and uses linear prediction between the two descriptions, but it does not 

encode the prediction residual. Therefore the performance of its side decoder is not satis­

factory. 

3.3.1 Optimization of the DPCM Case 

Assume the input follows a first-order Gauss-Markov model with correlation coefficient r. 

After splitting, each part is still a first-order Gauss-Markov signal, but with correlation co­

efficient r 2 . Let Xn-l and Xn+l be two consecutive samples in one description. If the 

OPCM is used in each description, the optimal prediction of Xn+1 from ,"n-I is given by 
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.i:',+1 = r 2x"_I' At high rates, the variance of the residual en+1 = Xn +! - xn +! is 

(3.28) 

where a~ is the quantization noise variance of Xn_1 and is negligible at high rates. 

Similar to (3.17) [41], the DPCM system also satisfies Xn+1 - X n+l = 1'''+1 - en+l' 

Therefore the reconstruction error fo x(n + 1) after DPCM with bit rate Ro is 

(3.29) 

This can be viewed as the counterpart for (3.14). 

When one description is lost, each missing sample x" is first predicted from X"-1 and 

Xn+l' i.e., 

- hl- - ]T~h- (3.30)In = In-I, Xn+l = X2, 

where the optimal solution for h is the Wiener filter. At high rates, it is approximately [20] 

(3.31 ) 

In this case, the variance of the residual X n - X" is 

(3.32) 

In Jayant's method, this error exists even at high rates. In our method, the prediction 

residual is further encoded at rate R 1 in the enhanced layer in each description, leading to 

a reduced distortion of 

(3.33) 
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which is the counterpart for (3.20). Since (3.29) and (3.33) have the same format as (3.14) 

and (3.20), respectively, the bit allocation solution (3.24) to (3.21) can be applied here as 

well. From (3.28) and (3.32) we know that,,~ 1/"~ 1 = (1 + ,.2)2, so (3.24) becomes: 

(3.34) 

3.3.2 Asymptotic Performance of the Proposed Method 

It is shown in [52] (see also [43]) that under the high rate assumption, the product of the 

side distortion and the central distortion of a MDC scheme for a stationary source satisfies 

(3.35) 

where Px is the entropy power of the source ([41], pp. 95). In the DPCM case of our 

method, sUbstituting the bit allocation into (3.29), (3.33) and (3.9), we can get 

This corresponds to (3.27) for M = 1. To gain more insights, notice that the variance of the 

innovation sequence of a first-order Gauss-Markov signal is ";', = (1 -- r2)".~, which is also 

the entropy power of the signal, i.e., Px = ,,~. Therefore the distortion product in (3.36) can 

be written as 

D D = ~ ,2 (1 + p)P2 T 2R (3.37)o 1 2 :1:' 

Comparing (3.37) and (3.35), the asymptotic periormance of the proposed method is away 

from the theoretical bound by a factor of 2(1 + p), or roughly 3 dB for small values of p. This 

is similar to the periormance of the GPCT in [55] at high redundancies. However, it should 
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be noted that this result is for the first-order Gauss-Markov signal, which is stationary. We 

will show in Sec. 3.5 that for nonstationary signals such as natural images, the proposed 

method performs equally well as other MOC algorithms at high redundancies. For low 

redundancies, it significantly outperforms other methods, because the block-level prediction 

compensation is very suitable for nonstationary signals. 

Fig. 3.2 compares the central, side and expected SNRs of Jayant's method and the 

OPCM case of the proposed method for p = 0.1. The input is assumed to be a first-order 

Gauss-Markov source with r = 0.95. The constant < is chosen as 1. The figure shows 

that the side SNR of Jayant's method could not be improved at high rates, due to the 

existence of prediction error (3.32), which dominates the expected distortion at high rates. 

This problem is resolved in our method by encoding the prediction error. Thus both the side 

SNR and the expected SNR can be improved as the increase of the bit rate. However, this 

is achieved at the price of reduced central SNR. Fig. 3.2 also shows that when the bit rate 

is below about 2.6 bitslsample, no residual is encoded, and our method reduces to Jayant's 

method. However, we will show in Sec. 3.5 that for natural images, it is always helpfUl to 

encode the residuals. 

3.4 Optimization Results 

In this section, we show various optimized distortion products and filter coefficients for the 

proposed method. Table 3.1 summarizes the optimized distortion product DoD] under 

different configurations of the transform, block size M, description loss probability p, and 

value N of the Wiener filter. The input is assumed to be a first-order Gauss-Markov signal 

with (T; = 1 and r = 0.95. Similar to Fig. 3.2, f = 1 is selected. The bit rate is fixed at R = 4 

bpp. The source codes to generate the results in this thesis can be downloaded from [27]. 

Three configurations of the proposed prediction compensated MOC algorithm are com­

pared with the OPCM in Table 3.1. The first one jointly optimizes the prefilter and the 
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Figure 3.2: Comparison between the DPCM case of our method and Jayant's method ( 
with a; = 1, r' = 0.95, , = 1). 

Wiener filter to minimize the expected distortion in (3.10). We denote this method as mul­

tiple description lapped transform with prediction compensation (MOLT-PC). The second 

one is denoted as TOLT-PC, which uses the best filter for single description coding, i.e., by 

optimizing (3.14). The last one is denoted as OCT-PC, which only uses the DCT, i.e., no 

prefilter. In TDLT-PC and DCT-PC, Wiener filter and residual encoding are still used. 

In Table 3.1, the performance of MDLT-PC already approaches the DPCM when M = 

16. For M = 8, the distortion product of the three configurations is about 5%, 10% and 

20% inferior to the DPCM, respectively. Reducing the size of the Wiener filter increases 

the distortion, but the change is less than 3%. For M = 8, even MDLT-PC with N = 1 has 

better performance than TDLT-PC with N = 8, shOWing the advantage of joint optimization. 

Another observation is that MDLT-PC with M = 4 is about 2.5% worse than DCT-PC with 

M = 8. Finally, it is shown in [25] that Wiener filter with N = 1 is optimal for DCT. In this 

case, it actually reduces to linear interpolation. Despite its simplicity, we will show in Sec. 
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Table 3.1: Distortion product DoD, (x 10-') of different configurations (with 0"; = 1, r = 

0.95, c = 1, and R = 4 bpp) 

Transform M N P = 0.01 P = 0.05 P = 0.1 p= 0.2 
DPCM 1 1 1.88 1.95 2.04 2.23 

16 16 1.89 1.97 2.06 2.25 
8 8 1.97 2.05 2.14 2.34 

MDLT-PC 8 2 2.00 2.08 2.18 2.38 
8 1 2.02 2.10 2.20 2.40 
4 4 2.29 2.38 2.49 2.72 
8 8 2.06 2.14 2.24 2.45 

TDLT-PC 8 2 2.09 2.17 2.28 2.49 
8 1 2.11 2.19 2.30 2.50 

DCT-PC 8 1 2.23 2.32 2.43 2.65 

3.5 that the DCT-PC can still get better results than MMDSQ and RD-MOC in certain cases. 

We show in Sec. 3.2 that the optimal transform is independent of p when R, > O. Sim­

ulation results also show that the coding gain of the optimized transform does not change 

very much when R, is forced to O. The optimal result is also not sensitive to Rand N. For 

M = 8, when the bit rate R and the error probability p vary in a large range, the coding 

gain of the optimized TDLT only changes in a small region between 9.41 dB and 9.61 dB. 

This makes it possible to fix the transform and still achieves near optimal performance for 

all practical scenarios. 

Two design examples will be used in the image coding in the next section. The first one 

is optimized for M = 8, R = 1 bpp, p = 0.2 and N = 8. The coding gain of the result is 9.53 

dB, the product DoD, is 0.00164, and the corresponding optimized matrix V in the TDLT 

prefilter is given by 
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0.8787 0.6591 0.2426 0.1521 

-0.5619 0.8044 0.5009 0.1444 
v= (3.38) 

0.1165 -0.3914 0.9813 0.2933 

-0.0383 0.0129 -0.1641 1.0875 

The second example is optimized for M = 8, R = 1 bpp, p = 0.2 and N = 1, with a coding 

gain of 9.54 dB and DoD) = 0.00167. The optimized matrix V is 

0.9424 0.6840 0.1942 0.1046 

-0.5389 0.8658 0.5061 0 1037 
v= (3.39) 

o1126 -0.3688 1.0344 02778 

-0.0402 -0.0001 -0.1323 1.1183 

In this case, the corresponding 8 x 2 Wiener !ilter is given by 

0.67 0.63 0.59 0.54 0.46 0.41 0,37 0,33 ] T 

[ 0.33 0.37 0.41 0.46 0,54 0,59 0,63 0,67 

which can be easily implemented. 

3.5 Image Coding Performance 

In this section, we evaluate the performance of the proposed MOe method in the coding 

of natural images. Six 512 x 512 standard test images with very different characteristics 

are used. The block size M is selected to be 8. The two descriptions are generated by 

partitioning the transformed blocks in a checkerboard pattern such that the four immediate 

neighboring blocks of each block belong to the other description. All base layer blocks 

in each description are grouped together to form a 256 x 512 sub-image, which is then 
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encoded by the embedded entropy coding in [47]. Similarly, all enhanced layer blocks 

in each description are also grouped together and encoded by the same entropy coding 

algorithm. The source codes and testing parameters for all results can be downloaded 

from [27]. 

The 1-0 Wiener filter is applied to 2-D images in a separable manner. Firstly, each row 

of a block is Wiener-predicted using the same rows in the left and right neighboring blocks. 

Secondly, each column of the block is estimated using the same columns in the top and 

bottom neighboring blocks. After that, the average of the row and the column predictions is 

used as the final prediction of the 2-D block. The 2-D prediction residual is then calculated 

and encoded in the enhanced layer. 

We first study the trade-off between the central and the side PSNRs. This is related to 

the distortion product DoD] and has been used as a performance measure in, for exam­

ples, [52, 36, 43, 45]. In our method, this can be easily achieved by varying the quantization 

steps of the two layers. In Fig. 3.3 and Fig. 3.4 the proposed method is compared with 

the wavelet and Tarp filter-based MMOSQ in [43], and the JPEG 2000-based RO-MOC in 

[45] (source code at [34]), which represent the state of the art in MOC. Four configurations 

of the proposed method are tested, namely, MOLT-PC with N = 8 and N = 1 (Eq. (3.38), 

(3.39)), TOLT-PC with N = 8 and OCT-PC with N = 1. The average of the two side PSNRs 

is used as the side PSNR in these figures. The overall bit rate R is chosen as 1 bpp and 

0.2.5 bpp, respectively. 

It can be seen that the performances of MMOSQ and RO-MOC are very similar in many 

cases. The MMOSQ performs better for smooth images like Lena and Peppers, whereas 

RO-MOC is better for images with more textures, such as Barbara. 

Compared with MMOSQ and RO-MOC, our method outperforms in most cases of Bar­

bara, Boat, Baboon, and Goldhill, many with large margins, especially at low redundancies. 

Given the same central PSNR, the side PSNR of our method can be more than 8 dB and 6 
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dB better for R = 1 bpp and R = 0.25 bpp, respectively. For smooth images like Lena and 

Peppers, our method can still achieve better performance in many low redundancy cases. 

At high redundancies, the three methods behave very similarly, especially for smooth im­

ages. 

The results also show that the proposed method is not sensitive to the size of the Wiener 

filter. In most cases, the performance of the low-cost MOLT-PC with N = 1 is very similar 

to that of the MOLT-PC with N = 8, making it a good candidate for practical applications, 

due to its simpler Wiener filter. 

When the single description optimized TOLT is used (TOLT-PC), the curves are lower 

than the jointly optimized MOLT-PC curves by less than 0.5 dB in all cases. If only the OCT 

is used (OCT-PC), the curves can be up to 2 dB lower, with more degradations at low rates. 

These relationships agree with Table 3.1 for Gauss-Markov sources. However, a surprising 

observation is that even the simple OCT-PC with linear interpolation can achieve similar 

or better performance than MMOSQ and RO-MOC at some high rate experiments. This 

underscores the importance of utilizing source correlation in MOC. 

The first points of all curves of our method correspond to the case with RI = O. In this 

case, the proposed method reduces to the prediction-only method in [25], and reasonable 

side PSNR is still obtained. In contrast, the side decoding performance of MMOSQ with 

low redundancies is quite poor, because most received bits are in the second layer and 

cannot be used. Similar defect also exists in the RO-MOC at low redundancies, because 

there is little information about half of the code-blocks. 

Fig. 3.5 shows portions of some decoding results with one description. The three 

methods are compared at the same total bit rate and same central PSNR. Clearly, our 

method achieves significant improvement in both the PSNR and the visual quality. 

In terms of complexity, the RO-MOC in [34] takes 34 seconds to encode an 512 x 512 

image on a PC with 2.13GHz Intel Core 2 Ouo CPU and 2GB memory, whereas both 
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MMOSQ and our method need less than one second. The decoding speeds of the three 

methods are all less than one second. 

Finally, we compare our method with the PCT. The same condition as in Fig. 9 of [54] 

is used, where the central PSNR of image Lena is kept at 35.78 dB. To get this central 

PSNR, the JPEG-based single description coder in [54] needs a rate of R" = 0.60 bpp, 

whereas the TOLT codec in [46] only needs 0.346 bpp, because of the improved transform 

and entropy coding. 

Two side PSNRs of the PCT are reported in [54]: 27.94 dB at a total rate of R = 

0.688 bpp and 29.63 dB at R = 0.733 bpp. The redundancy over R" is 15% and 22%, 

respectively. To get the same side PSNRs, our MOLT-PC with N = 8 needs a rate of 

0.379 and 00400 bpp, and the redundancy is 9.6% and 15.7%, respectively. This shows that 

our method can achieve the same side PSNR with less redundancy than the PCT. The 

comparison is qUite rough because of the difference in the codecs, but even if the PCT can 

be implemented in the TOLT framework, it is still difficult to surpass our method due to its 

various limitations, e.g., it does not use any correlation between blocks, it cannot predict 

most of the coefficients at low redundancies, and its entropy coding will be compromised 

because of the coefficient-level split. 

3.6 Conclusion 

This chapter presents a MOC paradigm by integrating time-domain lapped transform, block 

level splitting, linear prediction and compensation. The method can fully utilize the source 

correlation while simultaneously provide effective redundancy control. Image coding results 

show that it outperforms existing methods in the literature significantly. Our source codes 

can be downloaded from [27]. 

The proposed method can be further improved. One possible solution is to improve the 

performance of the Wiener filter, as will be studied in the next chapter. 
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The method can also be generalized to create K descriptions, where K > 2. A direct 

generalization is to split the image into K sub-images after prefiltering. Each sub-image 

is coded as the base layer of one description. Each description also encodes the predic­

tion residuals of all other sub-images as the second layer. At the decoder, if a block has 

a high-quality reconstruction via base layer coding, it is used directly. Otherwise, the av­

erage of all low-quality reconstructions of a block via enhanced layers is used as the final 

reconstruction. This will be studied in Chapter 5. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 3.5: Side decoder results with total rate of 1 bpp in (a-c) and 0.25 bpp in (d-t). The 
central PSNR is included in the parentheses. (a): Barbara by MMDSQ: 24.52 dB (36.09 
dB); (b): Barbara by RD-MDC: 27.60 dB (36.07 dB); (c): Barbara by MDLT-PC: 31.68 dB 
(36.07 dB); (d) Goldhill by MMDSQ: 24.58 dB (30.35 dB); (e) Goldhill by RD-MDC: 24.46 
dB (30.35 dB); (f) Goldhill by MDLT-PC: 27.22 dB (30.35 dB). 



Chapter 4 

Improvement to MOLT-PC for image 

coding 

4.1 Introduction 

In this chapter, we investigate the techniques to improve the performance of the proposed 

mUltiple description codec on the image coding. At the side decoder, the reconstruction of 

the missing data involves two steps, the prediction from the first layer data of the received 

description, and the prediction residual from the second layer. Therefore if we can get 

a more accurate prediction of the lost data, the energy of the prediction residual will be 

reduced, and we will need iess bits to encode the residual. The saved bits can be used to 

improve the quality of the base layer, which in turn will improve the overall rate-distortion 

performance of the system. 

The Wiener filter method discussed in the previous chapter can be improved as follows. 

The design of the Wiener filter is based on one-dimensional (1-0) signal model, and the 

result is applied to two-dimensional (2-D) signal via the classic separate approach, i.e., 

each row of the lost block is first estimated from its horizontal neighbors. A vertical estimate 

56� 
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M 

M 

I, 

(a) (b) 

Figure 4.1: (a) Estimation of the lost block from four neighbors, (b) Estimation of the lost 
block from N layer of neighboring samples 

is then obtained for each column, and the average of the two estimates is used as the final 

result. This simple treatment does not exploit the 2-D geometric structures of the input and 

can create some artifacts, especially near the edges. In this chapter, we will explore the 

feasibility of using two-dimensional Wiener filter to this problem. 

4.2 Two dimensional prediction 

4.2.1 2-D Wiener filter derivation 

The descriptions of MDLT-PC are generated such that even and odd blocks are in different 

descriptions. Therefore in the two dimensional natural image, one block has its four direct 

neighboring blocks (top, bottom, left, right) in the other description. In other word, if one 

description is lost, each missing block can be predicted from four immediate neighboring 
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blocks. Figure 4.1 (a) shows the estimation from the four neighboring blocks. If all neigh­

boring data are used to estimate the lost block, the size of the corresponding 2-D Wiener 

filter will be M2 x 4M2. Suppose So is the missing prefiltered block of size M x M to be 

predicted, and Sj, i = 1, ... ,4 the top, bottom, left, and right neighbor of So, respectively. If 

we use S" i = 0, .. , ,4 to represent the M2 x 1 vectors obtained by stacking the M columns 

of block S, together, all coefficients of the 4-connection neighbors can be put into a 4M2 x 1 

vector as 

(4.1 ) 

The 2-D Wiener filter is thus 

(4.2) 

where the R s· s· is the correlation matrix between So and S4C, and the R s• s· is the 
o 4.C 4C 4.C 

autocorrelation of the S4C. The correlation matrices involved above can be obtained as the 

follows. Each S, is a function of 2M x 2M input samples Xi' The relationship between X, 

and S, is thus 

(4.3) 

Denote 0 the Kronecker product, equation (4.3) can be turned into the 1-D expression 

(4.4) 

By the definition of S4C in (4.1), we have 

(4.5) 
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From (4.4) and (4.5), we get 

(4.6) 

Our experimental result shows that the performance is not sensitive to the size of the 

Wiener filter. Therefore, we can use less number of samples for prediction and reduce the 

computation cost. The reduced sized estimation is shown in Fig. 4.1 (b). The downsized 

2-D Wiener filter is a M 2 x 4MN matrix, where N is number of layers of the boundary 

samples from each of four neighboring blocks for estimation. S4C,N is the vector of Wiener 

filter input samples, which are the gray areas of the neighboring blocks in Fig. 4.1 (b). It is 

a subset of S4C. The downsized Wiener filter can be written as: 

(4.7) 

The correlation matrix R§ § and R§ § are the submatrices of R§ § and R§ §
o 4C,N N,4C N,4C 0 4C 4C 4C 

respectively. Some column or row reordering operations may be required, depending on 

how the input vector is stacked. 

4.2.2 Objective Function and Optimal Rate Allocation 

Given the target bit rate R and the probability p of losing one description, our objective is 

to find the optimal prefilter P and the optimal bit allocation Ro and R 1 that minimize the 

expected distortion. The expected distortion D is defined as 

D = (1-p)2Do +2p(1-p)D1 . (4.8) 

In the proposed MDe scheme, each description contains base layer blocks and the 

enhanced layer blocks. Only base layer blocks are used if two descriptions are received. If 
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one of them is lost, half of the image is reconstructed via base layer blocks and the other 

half is via prediction. Therefore Do and D] can be written as 

Do = DM,I, 
(4.9) 

D j = 21 
(DM,I + DM,p), 

where DM,J and DM,p are the MSE contributed by base layer coded blocks and prediction­

based blocks, respectively. The subscript M denotes the block size. SUbstituting into (4.8), 

we have 

D = (1 - p)2 DM,I + p(l - p)(DM,I + D",!'p) 
(4.10) 

= (1 - p)DM,I + p(l - P)DM,P. 

Let's note the prediction residual M x M matrix as do and the prediction residual M x M 

matrix after OCT as to. We have 

(4.11 ) 

where C = 000; to and do are the vectors which are stacked from to and do. The encoder 

will quantize the prediction residual to to generate enhanced layer blocks. Therefore, at the 

decoder side, the distortion of the reconstructed losing block is introduced mainly by the 

quantization noise of the prediction residual if the total bit rate is high. 

Let us note the M x M matrix, eo, as the quantization noise of the prediction residual 

blocks before inverse OCT. After the inverse OCT and post filter, the quantization noise is 

extended to the 2M x 2M region. Because of the linearity of the transform and the additive 

of the quantization noise, the final distortion can be obtained by passing the quantization 

noise eo through the synthesis filter. The synthesis filter, which includes the inverse OCT 
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and post filter, is a 2M x M matrix, noted as G. The quantization noise in the output signal 

can be written as 

(4.12) 

Let 

(4.13) 

The vector format of the quantization noise Vo can be written as: 

(4.14) 

Therefore, the 2-D signal is written in form of 1·0 vector, and the transform can also be 

regarded as 1·0 transform. We can obtain the bit allocation and distortion in the same way 

as the 1·0 case. The distortion for the reconstructed missing block is 

M2_1 

2R
DM.P.area = T , IT (o-;,119iI1 2 )fr, (4.15) 

i=O 

Where, R j is the bit rate to transmit the enhanced layer blocks(prediction residuals); the U[, 

are the diagonai elements of the correlation matrix Riot, ' which is 

(4.16) 

119i11 2 .i = 1, ... ,M2 is the norm of i-th columns the filter G. The distortion is calculated 

over a 2M x 2M area. For the base layer block part, we will have the simiiar result 

M 2 _I 
2R 

DM,Larea = T o IT (u;,119iI1 2)':i'z (4.17) 
i=Q 
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Where u~, is the diagonal element of the correlation matrix R yOYO ' which is 

(4.18) 

Therefore, the distortions per pixel for the two types of blocks are 

(4.19) 

To find the optimal Ro and R[ that minimize the expected distortion D, we substitute (4.19) 

into (4.10), and the problem can be simplified into 

(4.20) 
s.t. Ro + R[ = R 

It can be solved by Lagrangian method. With the constrain of Ro :'0 Rand R[ ~ 0, the 

optimal bit allocation can be found to be: 

R 1 u' )Ro = min R, - + - log, --;( 2 4 pu[ 

R 1 u
2 

)R1 = ma.x O~ - - -log2 ----% (4.21 )( 2 4 pu[ 

4.3 2-D Statistical Models 

The 2-D Wiener filter (4.2) requires the knowledge of the 2-D auto correlation matrix of the 

input. AR(1) modei is the common model used for the natural images. There are two ways 

to generate the 2-D autocorrelation matrix by using AR(1), the separable model and the 
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isotropic model. In general, the isotropic model is a more accurate representation of the 

natural images, and we will use this model for the designs and experiments in this chapter. 

In the isotopic model, the correlation of two points, Txx(h, k), can be found to be 

T (h k) = a2p.Jh"W (4.22)XI; X 1 

where the hand k are the horizontal and vertical distant, respectively; the a; is the variance 

of the input data, the p is the correlation coefficient. The value of p is chosen to be 0.95. 

4.4 Optimization and Image Coding Performance 

The optimization for the pre- and post-filters in lapped transform for 2-D Wiener filter is sim­

ilar to one dimension case. There is no closed-form solution for the problem, and numerical 

optimization is used instead. The initial point of the optimization is the one obtained from 

the one-dimensional case. It turns out that the optimized transform using 2-D Wiener filter 

is very similar to the transform optimized for 1-D Wiener filter. This means we can use the 

same transform for both 1-D and 2-D cases. Therefore, we still use the transform given by 

(3.38) in this following experiments. 

The testing images are 512 standard test images with different characteristics. The 

block size M is selected to be 8. All base layer blocks in each description are grouped 

together to form a 256 x 512 sub-image, which is then encoded by the embedded entropy 

coding in [47]. Similarly, all enhanced layer blocks in each description are also grouped 

together and encoded by the same entropy coding algorithm. 

To implement the 2-D Wiener filter, all related samples are put into a vector by stacking 

the coiumns of the four neighboring blocks. So the input vector is a 4M2 x 1 vector for 

the full size Wiener filter and 4MN x 1 for the reduced-complexity Wiener filter. The 2-D 

prediction residuai is then calculated and encoded in the enhanced layer. 
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Figure 4.2: Trade-off between the central PSNR and the side PSNR for MOLT-PC with 2-D 
Wiener filter and 1-0 Wiener filter at R = 1 biVpixel. (a): Barbara; (b): Boat; (c): mandrill; 
(d): Goldhill; (e): Lena; (f): Peppers. 
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We first study the trade-off between the central and the side PSNRs. This trade off is 

achieved by varying the quantization steps of the two layers. In Fig. 4.2, we compares the 

proposed MDC with 1-D Wiener filter and 2-D Wiener filter. We have three configurations 

for the 2-D Wiener filter regarding its size and the adaptivily to the encoded images, namely, 

MDLTPC-2D with N =8, and N = 1. The average of the two side PSNRs is used as the 

side PSNR in these figures. The overall bit rate R is chosen as 1 bpp. 

Compared to the one-dimensional Wiener fiiter, the 2-D Wiener filter prediction does 

give some improvements. The gain is about 0.3 dB. In most of the cases, the performance 

of the 2-D Wiener filter with N = 1 is very similar to that of the 2-D Wiener filter with N = 8. 

One interesting thing is that the improvement at the first point of all curves is the largest. 

This points corresponds to the case with R] = 0, which means that no enhanced layer data 

are transmitted. In this case, the system is degraded into the prediction-only mentioned in 

[24]. As the bit rate allocated to the enhanced layer increases, the improvement of both 

2-D Wiener filter is reduced. This is because although the 2-D Wiener filter can reduce the 

MSE of the prediction. the improvement is quite limited, since there is no perfect prediction. 

As more bits are allocated to the enhanced layer, the quantization error drops much faster 

than the drop of the prediction residual. Therefore the improvement of the 2-D Wiener filter 

becomes less important. 

4.5 Conclusion 

This chapter discusses the techniques which can be used to improve the performance 

of the proposed MDC paradigm.By introducing the 2-D Wiener filter, we can improve the 

centrai and side distortion curve by 0.2 dB. However, as the enhanced layer gets more bits, 

the improvement of the 2-D prediction becomes less obvious. It should also be noticed that 

the computation cost of 2-D predictions are much higher than the 1-D case. 



Chapter 5 

MOLT-PC with More Descriptions 

As discusses before, the multiple description coding can improve the robustness of the 

system to packet loss. However, MOC with more than two descriptions has not been well 

studied. In [12], it is proposed to obtain MOC with many channels by cascading various 

smaller pairwise correlating transforms. However, the complete solution is still unknown. 

An-channel MOC is proposed in [30, 31 J, using the distributed source coding theory. A 

practical design example using scalar quantizer and channel code is reported in [32]. In 

[53], the MOC with individual and central receivers is studied. In [42]. a sequential design 

of the MOSQ is proposed, which facilitates the design of MOSQ with three descriptions. 

Two such examples are developed in it. However, the sequential MOSQ method is difficult 

to be generalized to MOC with more than three descriptions. 

In this chapter, we design the optimal lapped transform for the MOLT-PC with three 

descriptions and four descriptions, and demonstrate their perlormance in image coding. 

As will be shown later, the generation of four description coding is actually very similar to 

the two-description case, therefore we will focus on the design of three-description coding. 

66� 
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5.1 Overview of the 3-D System 

To generate three descriptions, the prefiltered blocks are split into three subsets {so(k) = 

s(3kn, {sj(k) = s(3k + In, and {s2(k) = s(3k + 2n. We call these blocks the intra blocks 

of each description. After DCT, quantization, and entropy coding, each subset of intra 

blocks form the base layers of one description. To improve the reconstruction quality when 

some descriptions are lost, in each description we also include the prediction residual of 

other subsets as the enhancement layer, usually at much lower bit rate than the base layer. 

The prediction is obtained by Wiener filter. In analogy to motion estimation and motion 

compensation in video coding, we refer these prediction residuals as the inter blocks. 

At the decoder side, if all descriptions are received, the decoded intra blocks from all 

descriptions are combined. The postlilter is then applied to obtain the reconstructed signal. 

The inter biock bits in each description are simply discarded. These data are therefore the 

redundant data of the MDC system. If some descriptions are lost, the missing blocks are 

first estimated from the received intra blocks by Wiener filter. The decoded inter blocks 

(residuals) are then added to the estimation before postliltering. 

To simplify the encoder and decoder structure, each description includes the prediction 

residual of all other blocks than are not intra-coded in that description. In other words, one 

third of the image blocks are intra-coded and the remaining two thirds are inter-coded in 

each description. As a result, if only two descriptions are received, each of them can gen­

erate a reconstruction for the lost subset. We take the average of the two reconstructions 

are the final reconstruction. This can reduce the MSE by one half. 

The design of the system includes determining the optimal prefilter for the lapped trans­

form, the optimal prediction filter for lost blocks, the optimal bit allocation between the intra 

blocks and inter blocks, as well as the bit allocation within a block. The objective is to 

minimize the expected distortion at the receiver. 

We use R (in bits/pixel/description)) to represent the bit rate of each description. Ro and 



CHAPTER 5. MOLT-PC WITH MORE DESCRIPTIONS 68 

R j denote the average bits for each intra block pixel and each inter block pixel, respectively. 

Therefore ifthere are three descriptions, the bit rate for each description is R = 1{1~ +2RJl 

bpp/description, or 3R =!?{J + 2Rj • 

As in the previous chapters, we use xli), sri), y(i) and qy(i) to denote the i-th block of 

prefilter input, OCT input, OCT output and quantization noise of intra blocks, respectively. 

We also use d(i), uri) and qu(i) to denote the i-th inter block (prediction residual), its OCT 

output and quantization noise, respectively, as shown in Fig. 3.1. The reconstruction of a 

variable is denoted by the hat operator. 

5.2 The Wiener Filter 

To facilitate the R-D optimization of the problem, we use Wiener filter to estimate the blocks 

in other descriptions. Here we only give the formulas for the first description, where {s(3k)} 

are intra-coded. The formulas for other descriptions can be derived similarly. Define the 

two neighboring intra blocks as 

(5.1 ) 

The Wiener filters for estimating s(3k + 1) and s(3k + 1) from SI2 are 

HI = Ra(3k+l)SI2R;';SJ2' 
(5.2) 

H 2 = Rs(3k+2)sr2R~;S[2· 

As usual, the quantization noise is ignored in the Wiener filter. All matrices in the Wiener 

filters can be obtained by assuming an input signal model (AR(1) model is used in this 

paper) and considering the effect of the prefilter in the TDLT. 

As in [25], we also normalize the Wiener filter so that all row sums are equal to 1. In 

addition, a special Wiener filter is used at the boundary to predict a missing block from only 
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one neighboring block. 

To apply the Wiener liiter in (5.2) to 2-D images, we first estimate each row of a lost 

block using the horizontal neighbors, and then estimate each column of the block using 

vertical neighbors. The average of the horizontal and vertical estimations is used as the 

final prediction. 

5.2.1 Objective Function and Optimal Rate Allocation 

Given the target bit rate R and the probability p of losing one description, our objective is to 

find the optimal prefilter P and the optimal bit allocation Rn and R, for intra and inter blocks 

that minimize the expected distortion. We use D i to denote the MSE when i descriptions 

are received. We also assume that all descriptions are balanced, i.e., they have the same 

rate and distortion. The expected distortion D is therefore defined as 

(5.3) 

Note that the scenario of losing all descriptions is also considered to enable fair comparison 

with the MDC with two descriptions in [39]. 

Let D I and D p be the MSE contributed by intra-coded blocks and prediction-based 

inter-coded blocks, respectively. The subscript M denotes the block size 

When three descriptions are received, only intra-coded data are used in reconstruc­

tion. Thus D3 = DI. When only one description is received, one third of the signal 

is intra coded, whereas two thirds of the signal are inter-coded. Therefore the MSE is 

D, = 1/3 (DI + 2Dp). If two descriptions are received, each of them can generate a re­

construction of the missing description. By averaging the two reconstructions, the MSE of 

the missing data can be halved. Therefore the overall MSE is D z = 1/3 (2D1 + 1/2Dp). 

To find DI, let the quantization noise of y(n) be qy(n). After the inverse TDLT, the 

reconstruction error becomes Gqy(n). As usual, we assume the quantization noises of 
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different subbands are uncorrelated. Therefore the MSE of the reconstruction is 

(5.4) 

where a' (0) is the variance of the quantization noise of the i-th entry of y(n), and gi is the qy , 

i-th column of G. At high rates, a' (0) can be written as q, , 

(5.5) 

where < is a constant that depends on the input statistics and the quantization scheme. For 

entropy constrained scalar quantization of Gaussian sources, we have < = "Tre/6. RDi is 

the bits allocated to the i-th entry of an intra block, and the average intra block bit rate is 

~l Lt~, RD, = RD. a~(i) is the variance of the entry, which is the i-th diagonal element of 

the autocorrelation matrix R yy : 

(5.6) 

and x, = [xT(n) xT(n + l)]T 

Upon optimal bit allocation [21], the minimal value for (5.4) is given by 

(5.7) 

This is in fact the objective function of the single description coding (SDC). For block trans­

forms, the minimum value of (5.7) is achieved by the KLT, of which the DCT is a close 

approximation, if the input follows an AR(1) model with strong correlation. For lapped 

transforms and longer filter banks, there is no closed form expression for the optimal so­

lution, but numerical optimization method can be used to find the solution that minimizes 

(5.7). 

If only one description is received, the error contributed by intra-coded blocks is the 
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same as above. To find Dp, the MSE caused by inter-coded blocks, we first write the 

reconstruction of s(3k + j) (j = 1,2) as 

§(3k + j) = cl(3k + j) + SHI (3k + j), (5.8) 

where cl(3k + j) and SHI (3k + j) are the reconstruction of d(3k + j) and the prediction of 

s(3k + j) from §(3k) and §(3k + 3), respectively. Since the prediction residual d(3k + j) at 

the encoder is given by 

d(3k + j) = s(3k + j) - SHI (3k + j), (5.9) 

the following relationship can be obtained from (5.8) and (5.9): 

§(3k + j) - s(3k + j) = cl(3k + j) - d(3k + j). (5.10) 

In other words, the reconstruction error of s(3k + j) is equal to that of the prediction residual 

d(3k + j). This is indeed a property of any differential coding system [41]. 

Since d(3k + j) and u(3k + j) are related by a OCT transform, we have 

cl(3k + j) - d(3k + j) = C T qu(3k + j). (5.11 ) 

After postfiltering, the reconstruction error becomes T 21 C T qu(3k + j) = Gqu(3k + j), and 

its MSE is 
M-l 

Dp(3k+j) = ~ L <IIg,112D"~,(3k+j)T2Rh(3k+j). (5.12) 
i=O 

where D"~. (3k + j) is the i-th diagonal element of the autocorrelation matrix of u(3k + j) as 

given by 

(5.13) 
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Since Eq. (5.12) has the same format as the reconstruction error caused by qy(n) 

in (5.4), the derivation from (5.4) to (5.7) can be applied here, and the minimal value of 

Dp(3k + j) after optimal bit allocation is therefore 

(5.14) 

Since we assume the input signal a stationary random process, we can easily proved 

that a~, (3k + 1) = a~, (3k + 2), thus j can be dropped. 

(5.15) 

The expected distortion is thus 

D=(1-p)"D/ 

21 ( 1)+ 3p(1 - p) 3" 2D/ + "2 Dp 
(5.16) 

+ 3p
2 

(1 - p)3"
1 

(D/ + 2Dp) 

After simplification, we get 

1 2RD = (1 - p)w2
M,I T 2Ro + -p(1 _ M,PT l + p3 a 2.p)(1 + 3p)w2 

x (5.17)2 

The remaining bit allocation issue is to determine the optimal Ro and R j that minimize 

the expected distortion D, subject to R o+ 2R j = 3R. 

. (1 ) 2 2-2Ro 1 (1 )(1 3) 2 2-2R ,mm -pfaM,I +"2P -p + p,aM,P , 
(5.18) 

S.t. Ro + 2Rj = 3R. 
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The problem can be solved by Lagrangian method. After considering the constraints of 

Ro :S Rand R] ~ 0 , the optimal bit allocation can be found to be 

. ( 1 4CTX-r,I)Ro = Ilun R, R + - log2 ( ) 2 ' 
3 p 1 + 3p CT M,P 

1 4CTX-r I )
R] = max 0, R - -log2 ( )' 2 . (5.19)

( 6 p 1 + 3p CT M,P 

The optimal bit allocation above is for a given prefilter P. To further optimize P, a 

unconstrained optimization program can be used to find the optimal prefilter P (more pre­

cisely the matrix V in the prefilter and the corresponding TOLT that minimize the expected 

distortion. 

5.3 Implementation and Image Coding Results 

Fig. 5.1 (a) shows the partitions of image blocks into three descriptions. All blocks with the 

same index are grouped into one description as intra coded blocks, the rest of blocks are 

grouped as the inter coded blocks of that description. The 1·0 Wiener filter is applied to 

the image, similar to the two descriptions case. The row prediction and column prediction 

are obtained first and the average of two predictions is used as the final prediction of the 

2-D block. 

The generation of four description coding is actually very similar to two-description cod­

ing. The block index assignment of 4-0 MOe is shown in Fig. 5.1 (b). The blocks with 

the same index are the intra coded blocks of corresponding description. The prediction 

process is slightly different from the two-description and three-description cases. 

For example, in description 1, we first predict all blocks with index 2 from two vertical 

neighboring blocks with index 1. Next, all block with index 3 are predicted from two hori­

zontal index-1 neighboring blocks. After that, the predicted blocks with indices 2 and 3 are 
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3 4 3 4 

(a) (b) 

Figure 5.1: Block distribution for MOC with many descriptions. (a) Three descriptions (b) 
Four descriptions. ss 

used to predict the blocks with index 4. In each case, the prediction only uses two neigh­

boring blocks. Therefore the 1-0 Wiener filter developed in Chapter 3 can be used directly. 

It is for this reason that we will apply the optimized lapped transform and Wiener filter for 

two-description coding to four-descriptions coding directly. 

Fig. 5.2 summaries the decoded PSNRs of different images at R = 1/N bpp for N = 2, 

3, and 4, where N is the number of descriptions in the codec, and DN" is the distortion 

of N-description codec when i descriptions are received, with i ranging from 1 to N. The 

redundancy is defined as (N - I)RdRo, i.e., the ratio between the enhancement layer bit 

rate and the base layer bit rate. Some examples at 25% redundancy are shown in Fig. 5.3 

and Fig. 5.4. 

It can be seen that the results with all descriptions are similar in 2·description, 3­

descriptions and 4-description cases. This suggests that the proposed 3-0 and 4·0 MOC 
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Figure 5.2: Image coding results with R = 11M bpp and M 2, 3, and 4. (a) Barbara; (b) 
Boat; (c) Baboon; (d) Goldhill; (e) Lena; (I): Peppers. 
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do not introduce too much redundancy. As the number of descriptions increases, the codec 

provides more granularities. It also shows 0 3,2 and 04,3 are similar to 02,1, whereas 03,1 

and 0 4 ,2 are similar. 

Although the coding efficiency of two-description coding is higher than three or four 

description case, its expected distortion can be worse at higher error probability. Fig. 5.5 

shows the expected distortion of image Barbara at different error probability and bit alloca­

tion. The variance of the image is used as the distortion when all descriptions are lost. It 

can be seen that for p = 0.01, M = 2 gives the best result, whereas M = 3 and M = 4 

gives the lowest distortion for p = 0.05 and p = 0.15, respectively. Therefore, having more 

descriptions is useful when the error probability is higher. 

5.4 Conclusions 

In this chapter, the prediction-compensated mUltiple description coding with many descrip­

tions is studied. The performance of the proposed method in image coding is demon­

strated, which shows that more descriptions can be useful when the error probability is 

higher. 
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(a) (b) 

(c) (d) 

Figure 5.3: Reconstructed image Barbara at R = 11M bpp, 25% redundancy and different 
configurations. (a) Ds,s (36.50 dB). (b) D3 ,2 (30.01 dB). (c) DS,l (26,58 dB). (d) D4 ,1 (24.93 
dB). 
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(a) (b) 

(c) (d) 

Figure 5.4: Reconstructed image Lena at R = 11M bpp, 25% redundancy and different 
configurations. (a) D3 ,3 (39.25 dB). (b) D3 ,2 (34.57 dB). (c) D3 ,1 (31.36 dB). (d) D',l (29.45 
dB). 
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Figure 5.5: The expected distortion of the image Barbara with different number of descrip­
tions and error probability. (a) p = 0.01. N = 2 has the best result. (b) p = 0.05. M = 3 has 
the best result. (c) p = 0.15. N = 4 has the best result. 



Chapter 6 

Conclusions and Future Work 

6.1 Conclusions 

In this thesis, we proposed a new multiple description coding scheme, by integrating the 

time domain lapped transform, block level splitting, linear prediction and prediction com­

pensation. 

The new scheme with two descriptions is studied first. The objective function for de­

signing the proposed system is formulated and optimal result is obtained by numerical 

optimization. The asymptotic performance of the OPCM case of our method is analyzed 

and compared with Jayant's MOC method. The image coding experiment shows that our 

method can outperform the state-of-the-art method by up to 8 dB. 

We next investigate the application of 2-D Wiener filter in the proposed scheme. The 

image coding results show that the performance can be improved when the redundancy 

is low. However, as the redundancy increases, the effect of the better prediction is less 

obvious. 

Finally, we extend our work into more than two descriptions. In particular, the schemes 

with three descriptions and four description are developed. Image coding results show that 

80� 
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these cases can outperform the two-description case when the channel error probability is 

high. 

The results presented in this thesis has been published in [40, 24]. A journal paper is 

also being reviewed [39]. 

6.2 Future Work 

The proposed scheme can be further improved and applied to different areas. 

6.2.1 Sequential Prediction 

In the MDC with more than two descriptions in Chapter 5, each description uses one subset 

of data to predict all other subsets. This could be inefficient when the number of descrip­

tions is large. Another method is to predict the other subsets sequentially and encode the 

corresponding prediction residuals. This should improve the rate-distortion performance of 

the method. 

6.2.2 Entropy coding 

The multiple description coding proposed here uses the same embedded entropy coding in 

[47] for both the base layer and the enhanced layer. However, due to the different properties 

of the base layer and enhanced layer data, different entropy codings should be used to 

maximize the performance. For example, the contexts for the arithmetic coding should be 

defined differently in the two layers. 

6.2.3 Different transform coding 

The proposed prediction compensation method can be applied to different transform cod­

ings, such as wavelet transform. The use of different transforms will pose new challenges 
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for the design of the prediction filter. 

6.2.4 Applications in video coding 

This thesis focuses on image coding. But the proposed method can be applied to video 

coding as well. Although it can be easily applied to the intra frames (I frame) in the video 

codec, the proposed method has not considered many issues in video coding, such as the 

error propagation. Special attentions should be made on these topics when the method is 

used in video coding. 
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