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ABSTRACT 

This dissertation examines undergraduate and graduate university students' emergent 

conceptions of mathematical infinity. In particular, my research focuses on identifying 

the cognitive leaps required to overcome epistemological obstacles related to the idea of 

actual infinity. Extending on prior research regarding intuitive approaches to set 

comparison tasks, my research offers a refined analysis of the tacit conceptions and 

philosophies which influence learners' emergent understanding of mathematical infinity, 

as manifested through their engagement with geometric tasks and two well known 

paradoxes - Hilbert's Grand Hotel paradox and the Ping-Pong Ball Conundrum. In 

addition, my research sheds new light on specific features involved in accommodating 

the idea of actual infinity. 

The results of my research indicate that accommodating the idea of actual infinity 

requires a leap of imagination away from 'realistic' considerations and philosophical 

beliefs towards the 'realm of mathematics'. The abilities to clarify a separation between 

an intuitive and a fonnal understanding of infinity, and to conceive of 'infinite' as an 

answer to the question 'how many?' are also recognised as fundamental features III 

developing a nonnative understanding of actual infinity. Further, in order to 

accommodate the idea of actual infinity it is necessary to understand specific properties 

of transfinite arithmetic, in particular the indeterminacy of transfinite subtraction. 
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One afternoon I sat re{ax.jng on tfie grass) avoiding my 
responsi6ifities. '}(ear6y, a group of cfiifdren prayed under tne 
stern eye of a cfiaperone. )Is tfie cfiifdren ran c{oser and 
c{oser to wfiere I sat) seeking ways to avoid tfieir cfiaperone) 
I 6ecame curious and ask,ed one cfiife!: 

"If you cou{d do anytfiing you wanted today, 
wfiat wou{d it 6e?)} 

erfie cfiifd rep{ied witfi a question of fiis own: 

"tyou mean 6eyond wfiat I cou{d actua{{y acfiieve? JJ 

*** 

erfiis dissertation is dedicated to tfie peop{e in my rife wfio 
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CHAPTER 1: 

INTRODUCTION 

Commemorating Georg Cantor's contributions to the theory of mathematical infinity is a 

plaque that reads: "The essence of mathematics lies in its freedom" (Aczel, 2000, p.228). 

1.1 History, Ra tionale, and Research Questions 

Infinity has played a central role in the historical development of mathematics and 

mathematical thought. From as early as 450 BC, mathematicians and philosophers have 

been intrigued by the ethereal dance of infinity. Over the centuries, as an understanding 

of infinity developed and changed, mathematics too evolved, reflecting the community's 

emerging understanding of a concept so heavily shrouded in mystery. With new 

discoveries and inventions it eventually became clear that not one, but many, concepts of 

infinity had a place in mathematics. 
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One of the early contributions to the idea of infinity was made by Aristotle when 

he distinguished between two types of infinity: potential infinity and actual infinity. 

Aristotle defined potential infinity as "that whose infinitude is spread over time" (Moore, 

1995, p.114), that which is inexhaustible. One may think of potential infinity as a 

process, which at every instant in time is finite, but which goes on forever. In contrast, 

actual infinity describes a completed entity that encompasses what was potential. It is 

"the infinite present at a moment in time" (Dubinsky, Weller, McDonald, & Brown, 

2005a, p.341). 

Aristotle considered potential infinity a "fundamental feature of reality" (Moore, 

1995, p.114), however, he refuted the existence of actual infinity. He believed that since 

an infinite totality, such as that of the natural numbers, could never be enumerated, 

infinite quantities could not exist. To Aristotle, the idea of a 'completed' infinite entity ­

the actually infinite - was "incomprehensible, because the underlying process of such an 

actuality would require the whole of time" (Dubinsky et aI., 2005a, p.341). The idea of 

actual infinity and the interplay between it and potential infinity inspired some of the 

earliest and most resilient controversy in mathematics - much of which stemmed from 

mystifying paradoxes created by Zeno of Elea in 450 Be. Aristotle's rejection of the 

possibility of the actually infinite had a profound and lasting influence in mathematics: 

for two thousand years mathematical infinity was conceived of mainly as potential. 

Of course, a concept such as infinity cannot help but attract some renegade 

thinkers. Archimedes, for instance, demonstrated through one-to-one correspondence that 

two infinite sets could be "equal in multitude" (Netz & Noel, 2007, p.201). The 

Archimedes Palimpsest presents an argument which corresponds an infinite set of 
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triangles, which make up a prism, with an infinite set of lines, which make up a rectangle, 

and as such is the earliest known mathematical document to consider actual infinity. 

Another advocate of actual infinity was Galileo Galilei. In his 1638 manuscript Discorsi e 

Dimonstrazioni Matematiche, intorno a due nuove scienze a dialogue between the 

characters Simplicio and Salviati illustrated some of the anomalies of actual infinity, 

although it fell short of resolving them. Some years later, Bernard Bolzano made a 

compelling case for the actually infinite by critiquing definitions of infinity that he 

deemed too narrow, such as Spinoza's understanding that "those things alone are infinite 

which are incapable of further increase" (Bolzano, 1950, p.82). Bolzano, unlike Aristotle, 

could conceive of an infinite collection as a totality without having to imagine each 

element individually. He conceived of infinite sets by describing their elements, and as 

such could compare their cardinalities. Although Bolzano's work was influential in 

advancing the notion of actual infinity, it lacked the consistency and rigour of Georg 

Cantor's theory of transfinite numbers. Cantor's work with transfinite cardinals and 

ordinals was revolutionary, and contributed significantly to the foundations of set theory. 

Whereas Bolzano and Cantor grappled with the infinitely large, Gottfired 

Wilhelm Leibniz had his mind on the infinitesimally small. Leibniz's infinitesimals 

played a fundamental role in the discovery and development of calculus, and are central 

to mathematical analysis, the "symphony of the infinite" (Hilbert, 1925, p.138). Despite 

the important ideas linked to infinitesimals, the infinitesimally small went without 

rigorous definition until the 20th century, with the introduction of nonstandard analysis 

by Abraham Robinson. 
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This historical outline hints at the central role infinity has, and continues, to play 

in the pursuit of knowledge and mathematical understanding. However, infinity also has a 

role in the pursuit of knowledge ~rmathematical understanding. 

As a new researcher in mathematics education, I was drawn to the concept of 

infinity for several reasons. I was, and still am, intrigued by the infinite - by its 

properties, its mystique, its freedom from the constraints of 'reality'. It was exactly that 

'freedom' which captured me: that distinctive quality which rouses the imagination, 

provoking controversy, and challenging some of the fundamental ideas intuited as truth. 

Further, in meeting these challenges and controversy an individual is invited to think in 

often new and complex ways - to engage in 'advanced mathematical thinking'. 

The tenn 'advanced mathematical thinking' carries with it many descriptions. 

Although there is no agreement on the definition, many of the characteristics describing 

advanced mathematical thinking are exemplified in the concept of infinity. 

One working description suggests advanced mathematical thinking (AMT) 

involves abstract, deductive thought (Robert & Schwarzenberger, 1991; Tall 1991, 1992), 

and includes "proving in a logical manner based on definitions" (Tall, 1991, p.20). 

Alternatively, ideas that exercise advanced mathematical thinking may be considered as 

ones that are not "entirely accessible to the five senses" (Edwards, Dubinsky, & 

McDonald, 2005, p.18), and lack "an intuitive bases founded on experience" (Tall, 1992, 

p.49S). The abstract and intangible nature of actual infinity epitomises both of these 

descriptions. The ideas discussed in this research dissertation illustrate just a few of the 

infinity-related problems that rely on the abstract, fonnal definitions of concepts for 

which intuition and the senses have no foundation. Further, the ability to engage in AMT 
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about infinity depends on a related complex mental process: that of abstraction. As an 

illustration, consider the definition for equivalence of infinite sets in Cantorian set theory: 

it depends on the abstraction of particular attributes of the set elements. As will become 

clear in the following chapters, in order to think meaningfully about actual infinity, an 

individual must be able to extract and isolate relevant properties and relations. 

Abstraction requires a shift in attention from the objects of thought to their structure or 

relationships (Harel & Tall, 1991). As is illustrated in this research dissertation, 

investigating the equivalence between two sets involves abstracting from the particular 

numbers of each set (the objects), to consider, for instance, whether the sets are countable 

(the structure) or whether a correspondence exists between the sets (the relationship). 

Another alternative definition of AMT is Harel and Sowder's (2005) relativistic 

tenn 'advanced mathematical-thinking' (AM-T), which describes the cognitive processes 

at work when overcoming an epistemological obstacle. Harel and Sowder reference 

Brousseau (1997) in his description of Duroux's idea of an epistemological obstacle. In 

this sense, an epistemological obstacle must satisfy three conditions: (l) it has occurred 

as a cognitive obstacle in the history of mathematics, (2) it is knowledge or conception 

that produces inconsistencies in different contexts, and (3) it may withstand "both 

occasional contradictions and the establishment of a better piece of knowledge" 

(Brousseau, 1997, p.99). The epistemological obstacles related to infinity and learners' 

attempts to cope with these obstacles and the corresponding abstractions required for 

their conception, are of interest in my research. These obstacles, and the leaps involved in 

overcoming them, motivated the overarching questions addressed in this dissertation. 
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Specifically, I attend to the following interrelated questions: (1) What can be 

learned about university students' emergent conceptions of infinity through their 

engagement with geometric tasks and paradoxes? (2) What are the specific features of 

accommodating actual infinity? (3) What are the cognitive leaps connected to the idea of 

mathematical infinity? 

1.2 Thesis Organisation 

The journey to answer these questions that is presented in this dissertation mirrors my 

journey as a researcher. It begins with a consideration of the theoretical background of 

infinity within mathematics and mathematics education. Chapter 2 examines various 

mathematical disciplines in which infinity plays an important role. A historical account of 

Cantor's theory of transfinite numbers, Robinson's nonstandard analysis, and topics in 

calculus are among the issues touched upon. Chapter 3 extends on these issues by 

exploring and resolving a selection of well-known paradoxes that deal with the counter­

intuitive nature of actual infinity. In Chapter 4, the role of infinity within mathematics 

education is addressed through an exposition of prior research concerning learners' 

understanding of infinite sets and infinite cardinals. Chapter 5 offers an account of the 

theoretical perspectives that guided my research. 

In Chapters 6 through 8 I present three separate studies, which identify and 

discuss different issues pertaining to the research questions expressed above. Within each 

of the studies, I present the particular research methodologies that I followed, and 

introduce the groups of participants. A guiding theme in these studies was to explore not 

only what an individual knows about infinity, but also what an individual is willing to 

learn about infinity. The first study, Intuitions of 'Infinite Numbers ': Infinite Magnitude 
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vs. Infinite Representation, explores the naIve and emergent conceptions of infinity of 

undergraduate university students, as manifested in their engagement with a series of 

geometric tasks. Chapter 7, Paradoxes as a Window to Infinity, examines approaches to 

infinity of two groups of university students with different mathematical background: 

undergraduate students in liberal arts programs and graduate students in a mathematics 

education master's program. Data for this study was drawn from participants' 

engagement with two of the well-known paradoxes explored in Chapter 3: Hilbert's 

Grand Hotel paradox, and the Ping-Pong Ball Conundrum. As a follow up, Chapter 8 

presents the study Accommodating the Idea ofActual Infinity, which seeks to provide a 

refined account of both naIve and sophisticated conceptions of infinity. This study 

considers the conceptions of mathematics majors, graduates, and doctoral candidates, as 

they engaged with the Ping-Pong Ball Conundrum and one of its variations. 

Chapter 9 is devoted to a discussion and analysis of the main themes and 

challenges which emerged throughout my research, and which transcend the individual 

studies. It identifies the epistemological obstacles participants faced, and frames them 

within the context of the cognitive leaps necessary for developing an understanding of 

mathematical infinity. The dissertation closes with a summary of the outcomes and main 

contributions of my research, which are offered in Chapter 10. Overall, my research 

offers a refined understanding of individuals' struggles with infinity, the obstacles that 

are faced, and ways in which those obstacles can be overcome. 
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CHAPTER 2: 

INFINITY IN MATHEMATICS 

This chapter attempts to illustrate the relevance and importance of infinity to mathematics 

by exploring some of the major disciplines to which infinity contributes: calculus, 

analysis, and set theory. Although the chapter does not exhaust the many and vaned 

contributions and conceptions of infinity within mathematics, it paints a picture of the 

diverse understanding and applicability of infinity by focusing on the areas in which the 

infinite is most prominent. 

In the two sections that follow, some of the fundamental properties and theory 

related to infinity are discussed and framed within an historical context. The first section 

of this chapter explores various aspects of Cantorian set theory. Properties of cardinal and 

ordinal infinity are developed to give an idea of the inherent anomalies of actual infinity, 

as well as to provide a foundation for forthcoming chapters in which normative and 

intuitive understandings of actual infinity are discussed and contrasted. The second 
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section briefly delves into the 'symphony of infinities' of calculus, analysis, and 

nonstandard analysis. It offers a broad perspective of 'non-Cantorian' infinity, and 

speculates on how an understanding of different infinities can contribute to an overall 

understanding of calculus or analysis. The mathematics developed in this chapter sets the 

stage for the paradoxes regarding infinity that are explored in Chapter 3. 

2.1 Cantorian Set Theory 

Cantorian set theory is a rich area of investigation whose complexity is matched by its 

elegance, intrigue, and beauty. Cantor's characterization of actual infinity and his theory 

of transfinite numbers have had a significant impact on mathematics over the past 

hundred years. The profoundness of his ideas inspired David Hilbert to praise them as 

providing mathematics "with the deepest insight into the nature of the infinite" (Hilbert, 

1925, p.138-9) procured by "a discipline which comes closer to a general philosophical 

way of thinking" (ibid). Cantor's theory, though controversial at the time, added depth 

and rigour to emerging conceptions of infinity, which included Bolzano's progressive 

views that the infinite is more than "that which has no end' (Bolzano, 1950, p.82). 

Cantor's theory of transfinite numbers established two types of transfinite, or 

'infinite', number: cardinals, numbers which quantify the sizes of sets, and ordinals, 

generalized natural numbers used in indexing. Both transfinite cardinals and ordinals 

developed from Cantor's consideration of the quantity of elements in sets; they 

extrapolate from everyday uses of number in counting and ordering, respectively. The 

notation adopted in this chapter differs from Cantor's notation, but is used for the sake of 

clarity and easy reading. For a set M, denote the cardinal number ofM by the symbol IMI, 

and the ordinal number, or ordinal type, of M by the symbol M. Properties of transfini te 
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cardinals are developed at considerable length in the following sections so as to establish 

a shared understanding of concepts relevant to the nonnative resolutions of the paradoxes 

explored in Chapter 3, as well as to the empirical studies presented in Chapters 6 - 8. 

2.1.1 Transfinite Cardinals 

In order to investigate the cardinality of a set M, Cantor considered each of the elements 

m in M. However, rather than being interested in which elements were in M, or what their 

particular magnitudes may be, Cantor abstracted from these elements to identify each 

with a 'unit'. He defined the cardinality of M, 1M], as "a definite aggregate composed of 

units, and this number has existence in our mind as an intellectual image or projection of 

the given aggregate M' (Cantor, republished in 1955, p.86). In other words, by projecting 

each element In E M to an abstract unit, Cantor could focus on the magnitude of sets 

without the distraction of the particular elements in the set - a distraction which mislead 

many of his predecessors. This set of units was then quantified to describe the 'size' of 

the set M, that is, to define its cardinality. 

Cantor also defined an equivalence relation on two sets M and N, M ~ N, as a 

correspondence between each element of one with exactly one element of the other. By 

definition, the equivalence is: reflexive, M ~ M; symmetric, M ~ N implies N - M; and 

transitive, if M, N, and P are sets such that M ~ Nand N ~ P, then M ~ P. It is through 

this equivalence relation that Cantor established how two sets could have the same 

cardinality. He wrote, "Of fundamental importance is the theorem that two aggregates M 

and N have the same cardinal number if, and only if, they are equivalent" (Cantor, 1955, 

p.87). Thus, M and N have the same cardinality (or are 'equinumerous') if, and only if, 

there exists a one-to-one correspondence, denoted q> : M ~ N. 
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To appreciate the significance of this classification of cardinality, the following 

three typical examples of transfinite cardinality are considered. 

Example 1: Cardinalities of Nand E 

Let N denote the set of all natural numbers {I, 2, 3, ... }, and E the set of all even 

numbers {2, 4, 6, ... }. To show INI = lEI, it is sufficient to establish an equivalence 

between the two sets, N ~ E. The bijective map rp : N ~ E, for which rp(n) = 2n, for 

every n E N, detennines the required equivalence. Clearly, rp is one-to-one, since every 

natural number has a unique double. Also, rp is onto since every even number is a product 

of 2 and a specific natural number. The following Figure 2.1 illustrates this: 

1 2 3 4. n 

I I I I I
 
2 4 6 8 2n 

Figure 2.1: Corresponding Nand E 

Thus, N ~ E, and INI = lEI. 

Example 2: Cardinalities of Nand Q 

As before, let N denote the set of natural numbers {I, 2, 3, ... }. Also, let Q denote the set 

of rational numbers, with Q = {~ : a, b E Z, b i:- A}, where Z denotes the set of integers. 

To detennine whether or not these two sets are equinumerous, it is helpful to make use of 

a particular property ofN, that is, its countability. The natural numbers are an example of 

a countably infinite set, or as Cantor referred to them, a 'denumerable' set. Their 

cardinality is denoted by the symbol ~o. An arbitrary set is considered countable if, and 

only if, it can be put in a one-to-one correspondence with a subset ofN; all finite sets are 

countable, as are some infinite sets. To establish that an infinite set has cardinality 
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equivalent to INI = ~o, it is enough to show that its elements can be systematically listed 

in such a way that all of the elements are guaranteed to be included in the list without any 

repetition. In the case of the rational numbers, this is best illustrated with the following 

diagram: 

1/4 2/4 3/4 414 .. 

Tl /}I 13-;,' 3f3 413 ... 

/':-:~' . ~ . 
-----.," 112'1' 2r2 :,312 4/2 ... 

[ ,1, >V--'-=0--. 

111 /2Il' '3/1 ' 411,. ... / 0 ) . / }I 

... -411 !-3t1') (.2/!' ,'·1/1'< . .. ' 
\~- t /' .;/ .,'_--_.-'-­

... .4/2:312'. ·2r2~ '.112:,
~I I _ 

1 .... '.. '-', 
... ·413 ·3f3- .2!Jt-. '-1f3l. ­\. . . 

... -414 -314 ·2/4 -1/4 

Figure 2.2: Corresponding Nand Q 

Unwinding the spiral yields a countable list in which each rational number can be paired 

with exactly one natural number: a in Q is paired with 1 EN, 111 is paired with 2, -111 is 

paired with 3, 2/1 is paired with 4, 1/2 is paired with 5, and so on. 

Example 3: Cardinalities of Nand R 

The real controversy over Cantor's theory of transfinite numbers stemmed from his 

assertion that there were infinities of different magnitude. This was very difficult for his 

contemporaries to digest, and indeed it was something that even Cantor had difficulty 

believing (CavailU:s, 1962). The prestigious mathematician Leopold Kronecker, believed 

mathematics should be based only on natural numbers (Lavine, 1994), and apparently 

went to some lengths to try to suppress Cantor's work (Aczel, 2000; Rucker, 1982). 
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Figure 2.2: Corresponding Nand Q

Unwinding the spiral yields a countable list in which each rational number can be paired

with exactly one natural number: a in Q is paired with 1 EN, 111 is paired with 2, -111 is

paired with 3, 2/1 is paired with 4, 1/2 is paired with 5, and so on.

Example 3: Cardinalities of Nand R

The real controversy over Cantor's theory of transfinite numbers stemmed from his

assertion that there were infinities of different magnitude. This was very difficult for his

contemporaries to digest, and indeed it was something that even Cantor had difficulty

believing (CavailU:s, 1962). The prestigious mathematician Leopold Kronecker, believed

mathematics should be based only on natural numbers (Lavine, 1994), and apparently

went to some lengths to try to suppress Cantor's work (Aczel, 2000; Rucker, 1982).

12



This example shows that the cardinality of R, where R denotes set of real 

numbers, is larger than t'\o. Suppose to the contrary that IRI = t'\o. For this to be true, it 

should be possible to express the set of real numbers as a countable list (as in example 2 

with Q). In Cantor's words, it should be possible to "bring the totality [of R] into the 

form of a simply infinite series yI' Y2' ... , Yu' ... such that {yJ would represent the totah ty 

of [R)" (Cantor, 1955, p.l71). To use Cantor's notation, consider Y1) E R for every U E N. 

As a real number, y has a (non-unique) decimal representation. If, for example, y is less 
1) 1) 

than 1, then its representation can be expressed as y :::: O.y \y ~y 3'" The indexing of the 
1) u 1). 1) 

decimal digits serves two purposes: the first index number identifies to which real 

number the decimal digit corresponds, and the second digit identifies the position in the 

decimal expansion that the digit occupies. For example, Y29 is the ninth digit in the 

decimal expansion of Y2 (for whatever number Y2 might be). The argument proceeds as 

follows. Assume each Y1) E (0, 1) I. Then, the infinite sequence Yl' Y2' ... , Y1)' .•• can be 

written as: 

0'YIIYI2YI3" .� 

O,Y21� Y22Y23 ·· .� 

0'Y31Y32Y33 ".� 

O.y lY ~Y 3'"u u.... u 

This list, however, is not exhaustive. It is possible to construct a number in (0, 1) that is 

distinct from each of the numbers in the list. This is done by Cantor's diagonal argument. 

II is then possible to detennine IRI by either generalizing the same argument, or establishing a one-lo-one 
correspondence between (0, I) and R See Burger & Starbird (2000), or Goldberg (1965) for this proof, 
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Imagine a number O. "( II "( 22 Y 33""' "( uu···, where "( II is different from "(II' and "( 22 1S 

different from "(22' and similarly, each of the y is different from each of the "( ,and
uu uu 

where the "( uu are not O's or 9's. Then, O. Y II Y 22 Y 33'" Y uu··· is a real number in the 

interval (0, 1) which is not on the list since it is different by at least one digit from each of 

the "(u above - it differs from Y by the first decimal digit, Y by the second digit, Y by the 1 2 u 

u-th digit, and so on. Further, restricting "( from being 0 or 9 speaks to the non­
uu 

uniqueness of decimal representations of real numbers - it prevents a situation where, 

say, 0.100 ... is on the list, and 0.099 ... is the number with each Y different from y . 
uu uu 

This construction contradicts the assumption IRI = ~o, and establishes the real numbers 

as an uncountably infinite set, a set whose cardinality is larger than ~o. 

Properties: Transfinite A rithmet ic 

As can be deduced from the above examples, transfinite cardinals have different 

properties from finite ones. Here I illustrate some aspects of transfinite cardinal 

arithmetic by considering the smallest transfinite cardinal, ~ 0, and the set N. Imagine 

adding to N a new element, say ~. Then the union (N, P) is equivalent to N by a 

correspondence that matches 1 E N with ~, 2 E N with the element 1 in (N, P), and every 

U E N greater than 1 with u - I E (N, ~). The following diagram illustrates the pairing: 

I 2 3 4 ... n 

I I I I I� 
~ 12 3 ... n -l� 

Figure 2.3: Corresponding Nand (N, P)� 

14 

Imagine a number O. 'Y II 'Y 22 Y 33""' 'Y uu"" where 'Y II is different from 'Y II , and 'Y 22 1S

different from 'Y 22 , and similarly, each of the y is different from each of the 'Y ,and
uu uu

where the 'Y uu are not O's or 9's. Then, O. Y II Y 22 Y 33'" Yuu'" is a real number in the

interval (0, 1) which is not on the list since it is different by at least one digit from each of

the 'Yu above - it differs from Y1 by the first decimal digit, Y2 by the second digit, Yu by the

u-th digit, and so on. Further, restricting 'Y from being 0 or 9 speaks to the non-
uu

uniqueness of decimal representations of real numbers - it prevents a situation where,

say, 0.100 ... is on the list, and 0.099 ... is the number with each y different from y .
uu uu

This construction contradicts the assumption IRI = ~o, and establishes the real numbers

as an uncountably infinite set, a set whose cardinality is larger than ~o.

Properties: Transfinite A rithmet ic

As can be deduced from the above examples, transfinite cardinals have different

properties from finite ones. Here I illustrate some aspects of transfinite cardinal

arithmetic by considering the smallest transfinite cardinal, ~ 0, and the set N. Imagine

adding to N a new element, say ~. Then the union (N, P) is equivalent to N by a

correspondence that matches 1 E N with ~, 2 E N with the element 1 in (N, P), and every

U E N greater than 1 with u - I E (N, ~). The following diagram illustrates the pairing:

I 2 3 4 ... n

I I I I I
~ 12 3 ... n -l

Figure 2.3: Corresponding Nand (N, P)

14



This establishes the property that ~o = ~o + 1. Order is not an issue with cardinalities, so 

~o + 1 = Xo. Adding one to both sides of the equation gives, Xo + 2 = Xo + 1 = ~o. By 

repeating this one finds: Xo = Xo + D, for any DEN, and further Xo = Xo + Xo. This 

equality can be rewritten as ~o·2 = ~o. Repeatedly adding ~o to itself yields ~o'D = ~o, 

for any DEN. 

It is also true that ~O'Xo = Xo. To verify this, consider n = {(a, b) : 0, bEN}. 

The sets {Co, 0) : a E N} and {CO, b) : bEN} correspond with N in a natural way. Thus, 

n can be thought to have cardinality ~o·~o. The goal now is to show n is countable. 

This is accomplished by showing that all the elements in n can be systematically listed. 

One way to do so is in the following list, which proceeds from top to bottom, left to right: 

(1, 1) 

(l, 2), (2, 2), (2, 1) 

(1,3), (2, 3), (3,3), (3, 2), (3, 1) 

(1, D), (2, D), ... , (D, D), (D, D- 1), ... , (D, 1) 

This listing establishes n is countable, so it is equivalent to N, and Xo·Xo = Xo. 

2 
From this equality, ~o = Xo. Multiplying both sides of the equation by ~o yields 

3 2 D 

~o = Xo = ~o· Repeatedly multiplying by Xo gives the equality Xo = ~o, valid for 

every DEN. These properties extend to other transfinite cardinals such as ~ I - the 

cardinality of the smallest uncountable infinite set. Cantor established that for every 

cardinal number, there is a next-larger cardinal, X0, X I, X2, ... , XD, .... Further, he 

showed that no largest cardinal exists. This claim is justified following the next section, 

which turns to the other of Cantor's transfinite numbers: ordinals. 
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2.1.2 Transfinite Ordinals 

An ordinal number is defined in an analogous way to cardinal number, only with added 

criteria. Consider a set A to be ordered if there is a relation <, such that: 

(a) For any a, b E A, then a < b or b < a or a = b; 

(b) For any aJ b, C E A, if a < band b < c, then a < c. 

The set N is ordered, as is the set of integers, Z. An ordered set A is called well-ordered jf 

every non-empty subset S of A has a least element, that is, there exists an element I E S 

such that I ~ S, for all S E S (Ciesielski, 1997). The natural numbers therefore are also 

well-ordered, whereas the integers are not since there is no least integer. As before, 

Cantor abstracted from the elements of a well-ordered set, though this time retaining the 

order among the elements: the abstracted elements are units with the same order as their 

corresponding elements in A (Cantor, 1955, p.112). 

As in the cardinal case, Cantor established an equivalence relation between well­

ordered sets to determine if their ordinal numbers were equal. He defined two well­

ordered sets as equivalent, denoted by A ~ B, if there exists an order-preserving bijection, 

\II : A ~ B, for which \II(a) < \II(b), if a < b. It follows that two well-ordered sets have the 

same ordinal, A = B, if and only if, they are equivalent, A ~ B. Recalling example 1 

from section 2.1.1, the bijection rp(n) = 2n, for all n E N, established an equivalence 

between Nand E. This bijection is also order-preserving, so N = E . 

Cantor's theory of transfinite numbers included a description of addition and 

multiplication for ordinals, not all of which is within the scope of this dissertation. The 

impact of order on this branch of transfinite arithmetic can be illustrated by comparing 
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the ordinals of the sets N, (p, N), and (N, p), for p ~ N. By definition, the set (p, N) has 

least element p, followed by the regular ordering ofN. Conversely, eN, p) has an ordering 

which places p as its largest element. Thus, if co = N , then I + co = (p, N) , and co + I = 

(N, p). There exists an order-preserving bijection \jf : N --+ (p, N), such that \jf(l) = p, 

and \jf(n) = n - 1, for every n > 1. Consequently, N ::::: (p, N) and co = I + co. On the 

contrary, the sets Nand (N, p) are not equivalent: N has no greatest element but (N, p) 

does, namely p. Thus, co + I is different from CJ) = I + co. 

The last bit of Cantor's work examined in this chapter addresses the possibility of 

an infinite quantity of infinite quantities. 

2.1.3 Cantor's Theorem and the Continuum Hypothesis 

An elegant result of Cantor's work with transfinite numbers is the discovery that there is 

an unending and strictly increasing sequence of cardinal numbers. This result is a 

consequence of the following theorem: 

Theorem: There is no greatest cardinal number. 

The proof develops in two parts. The first part establishes an increasing sequence of 

infinite cardinals, and the second part addresses the possibility of a greatest cardinal. 

Consider a set S and its power set P(S) , which consists of all the subsets of S. The 

cardinality lSI is less than or equal to the cardinality IP(S)!, since the map from Sto P(S) 

that takes every XES to the subset {x} E P(S) is a bijection onto a subset of P(S). To 

show the cardinality lSI is strictly less than the cardinality IP(S) I, that is lSI < IP(S)[, 

consider any map T : S --+ P(S). By considering a specific subset of P(S) it is possible to 

show that no map T will map onto the entire set P(S). Let K be the subset of P(S) that 
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contains only the elements which do not correspond to an element in the domain of -c; 

formally, let K = {x E S : x II -c(x)}, where -c(x) c P(S). There are two possibilities for K: 

either K is in the image of 1", or else it is not. If K is not in the image of -c, then -c cmmot be 

bijective since P(S) would contain an element for which no corresponding element in S 

exists. Conversely, if K is in the image of -c, then there must exist some element YES, for 

which K = -c(y). In this case, either y E -c(y) or y II -c(y) must be true. The fonner case 

establishes y in the image of -c and implies y II K, contradicting the assumption K = -c(y). 

On the other hand, if y is not in the image of -c - i.e. y II -c(y) - then y E K, which again 

contradicts the assumption that K = -c(y). Thus, no map from S to its power set P(S) can 

be bijective, and so, the cardinality of P(S) must be strictly greater than the cardinality of 

S, IP(S) I > lSI· This result is known as Cantor's Power Set Theorem. It gave rise to 

Russell's paradox regarding the cardinality of the power set of the set of all sets, which, 

unfortunately, is outside the scope of this chapter. 

The remainder of the proof that no greatest cardinal exists follows from Cantor's 

Power Set Theorem. Suppose, in order to derive a contradiction, there exists a largest 

cardinal number ICj. There must also exist a corresponding set C for which ICI is the 

cardinality. Furthennore, C must have a power set, P(C). By Cantor's Power Set 

Theorem, jP(C) I is strictly greater than ICI. However, this contradicts the assumption that 

ICI is the largest cardinal number. QED. 

A consequence of these theorems is the endless sequence of transfinite cardinals, 

~o, ~ J, ~2, ... , ~u, .... However, it is an open question whether this list includes 

transfinite cardinalities of all sizes. The Continuum Hypothesis proposes there is no 

cardinality between the cardinality of the natural numbers, INj = ~o, and the cardinality of 
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the continuum, IP(N) I = t"). As it stands, the Continuum Hypothesis can neither be 

proved nor disproved: in 1940 Kurt Godel proved that it is impossible to disprove the 

Continuum Hypothesis, and conversely, in 1963, Paul Cohen proved that it is impossible 

to prove it (Burger & Starbird, 2000). The uncertainty in the Continuum Hypothesis has 

led some mathematicians to question whether there might be alternative means to deal 

with infinity. Such a theory developed from the work of Abraham Robinson in the 1960s. 

His treatment of infinitesimals and infinitely large numbers is a focus of the next part of 

this chapter. 

2.2 Non stan dard An alysis, I nfi nitesimals, an d Calculus 

Infinitesimals have played an important role in the founding and teaching of calculus. In 

the l600s Gottfried Leibniz and Sir Isaac Newton independently developed a calculus 

that used infinitesimal numbers to intuitively describe derivatives, integrals, and rates of 

change (Loeb, 2000; Keisler, 2000). At the time, mathematicians were more concerned 

with expanding and developing results than rigorous proof (Kleiner, 2001). However, as 

the trend shifted from intuitive geometric reasoning to more analytic reasoning, an 

emphasis on rigour began to develop. Leibniz's and Newton's intuitive uses of the 

infinitesimally small were harshly criticized. George Berkeley, for instance, described 

infinitesimals sardonically as "the ghosts of departed quantities" (as quoted by Lavine, 

1994, p.24), and criticized the general lack of consistency within calculus and analysis. 

Nearly two hundred years later, in the 1820s, Augustin Cauchy introduced rigour 

into analysis, and did so through the concept of limits (Lavine, 1994). Yet, Cauchy's 

defmition of limit was still murky and made use of inflllitesimais in an intuitive way, 

despite their ambiguity. As the focus of analysis shifted more towards limits, the need for 
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complete rigour and consistency became more prominent. Finally, in 1870, Karl 

Weierstrass fonnulated a completely rigorous treatment of calculus by introducing the 1::-0 

definition of limit, and consequently, eliminating infinitesimals from the foundations of 

analysis (Kleiner, 200 I; Lavine, 1994). The insight gained from considering limits in 

tenns of infinitesimals, however, was too powerful to ignore completely. Even today, 

mathematicians appeal to infinitesimals on an intuitive level to help their students 

develop an understanding of the 1::-0 limit. 

In 1960, Abraham Robinson gave a rigorous mathematical foundation for the use 

of infinitesimals in calculus (Loeb, 2000). His work in nonstandard analysis has catalyzed 

research in areas beyond calculus as well, including probability, mathematical physics, 

and finance. Nonstandard analysis established a rigorous calculus that builds naturally on 

the intuitiveness of infinitesimals. This section examines some of the properties of 

infinite numbers and infinitesimals in the set of nonstandard numbers, the hyperreals. It 

also explores how a 'non-standard' approach to infinity may contribute to students' 

understanding of calculus, and in particular, limits. The chapter then closes with a look at 

properties of infinite series and sequences, and demonstrates how different conceptions of 

infinity can playa part in students' understanding of calculus. 

2.2.1 Nonstandard Numbers 

The set of hyperreal numbers, denoted R *, is an extension of the set of real numbers that 

includes both 'standard' real numbers and 'nonstandard' numbers - numbers that are 

infinitely big or infinitesimally small. The extension is praised for its natural 

generalization of properties of real numbers to hyperreal numbers (Tall, 200 I). All of the 
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they are merely extended to apply to all of the elements in R* The field of hyperreal 

numbers consist of three types of nonstandard number: infinitesimals, positive infinite 

numbers, and negative infinite numbers. By deflOition, a positive infinite number is one 

that is greater than every real number, and likewise, a negative infinite number is one 

that is less than every real number. An element E E R* is called a positive infinitesimal jf 

o< £ < 0, for every positive real number o. Similarly, E is called a negative infinitesimal 

if 0 < £ < 0, for every real a < O. In general, an infinitesimal is a number £ that is either 

positive or negative infinitesimal or zero. Keisler (2000) uses the metaphor of the real 

line to help establish an intuition of infinitesimals. He suggests thinking about the real 

line zoomed in at zero with something like a super microscope; infinitesimals are the very 

small, negligible numbers around and including zero. 

Properties of infinite numbers and infinitesimals are more or less what might be 

expected from extending properties ofreal numbers. For instance, with real numbers, the 

reciprocals of very small numbers are themselves quite large. Similarly, if £ is positive 

infinitesimal, then 1/£ is a positive infinite number. Conversely, the reciprocal of an 

infinite number is infinitesimal. In order to gain a flavour for the intuitive treatment of 

infinity within nonstandard analysis, some of the properties of infinitesimals and infinite 

numbers are illustrated in the following examples. A more complete introduction to 

hyperreals can be found in Keisler (2000). 

For each of the following examples consider E, 8 as two infinitesimals, a, b as two 

real numbers, and H, K as two infinite numbers. 
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Example 1. Products of Hyperreals 

(i)� a'£ is infinitesimal. Intuitively, picture an infinitely thin rectangle oflength a, and 

infinitesimal area. If E is a positive infinitesimal, then 6·£ is infinitesimal and 

greater than £. Likewise, 28·£ is infinitesimal and greater than 6·£. 

(ii)� £·8 is infinitesimaL For example, if 0 < £ < a, for every a> 0, then the product £·8 

satisfies 0 < d3 < a·b < a for every a> 0, and is thus infinitesimal by definition. 

(iii) RK is infinite. Hand K can be thought of as the reciprocals of some infinitesimal 

numbers, so, HX = 1/£ . 1/8 = (£·8Y!. Since £·8 is infinitesimal by (i), its 

reciproca1must be infinite. A similar argument shows a· H is infinite. 

(lv)� H-£ is indeterminate. For example, if £ = I/H2
, then H-£ will be infinitesimal; if 

£ =� I/H, then the product H·£ is equal to 1; and if £ = JH then the product R£ 

will be an infinite number. 

Example 2. Quotients of Hyper rea Is 

(i)� The quotient of any infinite or real number by a non-zero infinitesimal IS an 

infinite number: H/£ and al£ are infinite. 

(ii)� The quotient of any infinitesimal or real number by an infinite number IS 

infinitesimal: £/H and alH are infinitesimal. 

(iii) bl£ and Hlb are infinite numbers, provided E and b are non-zero. Similarly, £Ib 

and blH are infinitesimal. 

(iv) The� quotient of two infinitesimals, £/8, or of two infinite numbers, H/K, is 

indeterminate. As in the case of products, the relative size of infinitesimals and 

infinite numbers determines the value of the quotient. 
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Example 3. Calculations 

') . 5{;4 - 8{;J + {;2 

(1 The quotIent 3{; IS infinitesimal provided E IS non-zero. Notice that 

5{;4 _8{;' + {;2 5 8 E 
simplifies as _{;3 - -E

2 +-. Since each of the terms is infinitesimal, the 3{; 3 3 3 

sum is also infinitesimal. 

(ii) The quotient ~f: ~ 2 is finite, but not infinitesimal. To see this, rewrite the 

quotient as: 1 _~~ 1~~/H2 . As l/H and 2/H2 are infinitesimal, the numerator and 

denominator are both finite (non-infinitesimal) numbers, and so is the quotient. 

(iii) If H is positive infinite then ~ -~ is infinitesimal. Although the root 

of a positive infinite number is positive infinite (Keisler, 2000), this difference 

can be simplified to show that it is infinitesimal. Multiplying ~ -~ by 

...JH+J+~ . 2 
. ~ ~ yIelds the product . ~ _h7I . The denominator is a sum of 
"H+ 1 +"H-l "H+ I +"H-I 

two positive infinite numbers, and hence is itself positive infinite. Thus the 

quotient, and its equivalent expression ~ -~ , is infinitesimal. 

The goal of this section was to demonstrate some of the properties attributed to 

nonstandard number systems. These properties, as well as others, contributed to a 

rigorous and consistent foundation for a use of infinity that is different from Cantor's 

cardinal and ordinal infinity. Although it is not yet as widely studied as Cantorian set 

theory, researchers in nonstandard analysis promote its applicability to all branches of 

mathematics and claim it can do much to enrich and direct new investigations in 

mathematics (Loeb, 2000). This use of infinity and infinitesimals also has consequences 
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for mathematics educators, particularly with respect to understanding limits (Tall, 1981, 

1992, 2001), as limits and nonstandard numbers are calculated in analogous ways. 

2.2.2 Infinitesimals and Limits 

The £-8 definition of a limit, formulated by Weierstrass, contributed to the first 

completely rigorous treatment of calculus. With the introduction of the £-8 definition, 

infinitesimals gradually faded from formal use (until recently with Robinson's work in 

the 1960s), though it is still customary to argue informally in termS of them. The informal 

appeal to infinitesimals that appears in limiting language such as 'approaches' or 'gets as 

close as you'd like' has been linked to students' inappropriate mental model of a limit as 

unreachable (Tall, 1980; Tall & Vinner, 1981). Williams (1991) observed a persistent 

notion of limits as unreachable in college students who were familiar with the formal 

definition. Intuitions of limits as dynamic, potentially infinite processes, along with the 

abstractness of the £-8 definition have contributed to the extensive difficulties students 

encounter in calculus (Cottrill, et al., 1996; Davis & Vinner, 1986; Sierpinska, 1987; Tall, 

1981, 1992; Tall & Vinner, 1981; Williams, 1991). 

Robinson's nonstandard analysis and its corresponding calculus make use of the 

intuition of infini tesimals to establish a notion of limit that is in the spirit of the founding 

fathers of calculus, and that may help students overCome the challenges of £-8 analysis 

(Tall, 2001). The intuitive ease with which a nonstandard limit is defined, and the explicit 

attention to the role of infinitesimals contribute to a fonnulation of the limit concept that 

is at once similar and distinct from the £-8 one. For instance, standard calculus texts, such 

as Stewart (1999), define the limit of a function as: 
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Let/be a function defined on some open interval (a, b), and Jet x E (a, b). The limit 

of/(x) as x approaches a is equal to the value L, if for every £ > 0 there exists a 8 > 0 

such that I/(x) - LI < c; whenever 0 < x - a < 6. 

Conversely, a nonstandard definition reads: 

/(x) - L is infinitesimal whenever x - a is infinitesimal. 

The latter definition is less abstract, and naturally extends students' pnor expenences 

with limiting computations. In nonstandard calculus, limits of functions are typically 

computed by determining the 'standard' part of the function. This is exemplified in the 

following example. 

Example 1. Nonstandard L imils 

Find the limit as x - 00 of[(x) = }~2x+: 2 . Let H be a positive infinite number. Then the 

limit of/(x) is the standard part of/(H). That is: st( ~t~ ~ 2)' Recalling example 3(ii) 

z 
. . 2H + H . l'fi 2 + IIH d k' h d dfrom the prevIOus sectIOn, H2 _ H + 2 Simp lies to I _ ] IH + 21H2, an ta mg t e stan ar 

part of/(H) essentially amounts to neglecting the infinitesimal values of l/H and 2/H2 

Thus the limit is st(f(H) = 2. 

Nonstandard and standard approaches to limit computations are carried out in 

very similar ways. The standard approach determines the limit as x approaches infinity by 

examining each of the terms 2, I, lIx, -l/x, and 2/x2 individually. The last four of these 

terms 'tend' to zero, and the limit is determined to be 2. The major differences in these 

approaches lie in how the limits are conceived. Defining the limit as the standard part of a 

hyperreal number maintains the dynamic nature attributed to limits without obscuring the 
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property of attainability. The concept of limit is fundamental to calculus and analysis. It 

is closely linked to important ideas in both fields, including infinite series and sequences. 

2.2.3 Series and Sequences 

The importance of series and sequences in and beyond calculus is irrefutable, and stems 

from Newton's early description of functions as sums of infinite series (Lavine, 1994). In 

modem use, it is important to distinguish between the properties of convergent and 

3divergent series and sequences. Infinite sums such as 1 + x + :l + x ... were problematic 

for Newton since for some values of x the series converged, but for others, the series 

diverged. Newton generally dismissed divergent series as useless, and was more 

interested in developing concepts around series that converged (Lavine, 1994). Leonhard 

Euler, on the contrary, rejected the idea that attention should be restricted to convergent 

series, and developed several techniques for computing infinite sums of both convergent 

and divergent series, many of which are still widely used. 

Series and the limits of their corresponding sequences are fundamentally 

interconnected: limits are used in order to determine convergence, and convergence can 

be used in order to determine limits. A series L 
co 

all IS defined as convergent jf the 
11=0 

sequence of its partial sums {Sn}, where Sn = ao + aJ + ... + an, is convergent and the 

limit as n tends to infinity of {sn} exists as a real number. Otherwise, the series diverges. 

The sum of a convergent series is equal to the limit value of {SIl}' Additionally, if the 

series is convergent, then the limit as n approaches infinity of the sequence {an} is zero. 

To show this last implication, one need only express the term an as the difference of the 

two partial sums Sn - Sn-J, and then take their limits. Since {Sn} converges, the limits of Sn 
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and Sn-J are equal, and thus their difference is zero. These properties of series illustrate an 

instance where understanding infinity strictly as potential - an inexhaustible process ­

can lead to inaccurate conceptions, such as that of limit as unreachable and sum as 

unattainable. As a result of conceiving of a potentially infinite process of summing, 

infinite series may be thought to either all 'sum to infinity,' or to sum very close, but not 

equal, to the limit of the partial sums. 

Infinite series have also played an important role in the history and use of 

integration. Newton developed a method of integrating functions that involved 

integrating each term of its infinite series representation. This method of integration is 

still used today for such functions as e-"], for which no other means is appropriate. 

Functions, such as.f(x) = e-x2 
, whose antiderivative is not an elementary function (i.e. one 

that is built from basic operations such as addition, exponentials, or logarithms), are 

expressed as polynomials with infinitely many terms. Integrating these functions then 

involves integrating the series representation term by term (up to a point, to establish the 

pattern) and then determining the new sum. In addition to integration, expressing a 

function as a sum of infinitely many terms is also useful for solving differential 

equations, and approximating functions by polynomials. Approximating by polynomials 

is used in computer science, for example, to represent functions on calculators or 

computers. Replacing functions with infinite series is also common practice III 

mathematical physics and chemistry, where phenomena are analyzed based on the 

behaviour of the series that represent them. An understanding of infinity is not only 

central for an understanding of mathematics, but also of the mathematical foundation of 

many scientific disciplines. 

27 

and Sn-J are equal, and thus their difference is zero. These properties of series illustrate an

instance where understanding infinity strictly as potential - an inexhaustible process ­

can lead to inaccurate conceptions, such as that of limit as unreachable and sum as

unattainable. As a result of conceiving of a potentially infinite process of summing,

infinite series may be thought to either all 'sum to infinity,' or to sum very close, but not

equal, to the limit of the partial sums.

Infinite series have also played an important role in the history and use of

integration. Newton developed a method of integrating functions that involved

integrating each term of its infinite series representation. This method of integration is

still used today for such functions as e-"], for which no other means is appropriate.

Functions, such as.f(x) = e-x2
, whose antiderivative is not an elementary function (i.e. one

that is built from basic operations such as addition, exponentials, or logarithms), are

expressed as polynomials with infinitely many terms. Integrating these functions then

involves integrating the series representation term by term (up to a point, to establish the

pattern) and then determining the new sum. In addition to integration, expressing a

function as a sum of infinitely many terms is also useful for solving differential

equations, and approximating functions by polynomials. Approximating by polynomials

is used in computer science, for example, to represent functions on calculators or

computers. Replacing functions with infinite series is also common practice III

mathematical physics and chemistry, where phenomena are analyzed based on the

behaviour of the series that represent them. An understanding of infinity is not only

central for an understanding of mathematics, but also of the mathematical foundation of

many scientific disciplines.

27



CHAPTER 3:� 

PARADOXES OF THE INFINITE� 

"More than once in history the discovery of paradox has been the occasion for 

major reconstruction at the foundations of thought." (Quine, 1966, p.3) 

Concepts of infinity are at the centre of many mathematical paradoxes. As the renowned 

mathematician and philosopher Bernard Bolzano observed: 

"Certainly most of the paradoxical statements encountered In the mathematical 

domain ... are propositions which either immediately contain the idea of the 

infinite, or at least in some way or other depend upon that idea for their attempted 

proof' (Bolzano, 1950, p.75). 

Paradoxes involving the infinite are unlike many philosophical paradoxes that are 

comprised of self-contradictions or absurd assumptions, such as the barber who shaves all 

and only the village men who do not shave themselves (an informal variation of Russell's 

paradox), or Epimenides the Cretan, who said that all Cretans were liars (Quine, 1966). 
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Instead, paradoxical statements regarding the infinite stem from the seemingly impossible 

attributes of mathematical infinity, and tend to expose preconceptions that were once 

believed to be fundamental. Quine classified such a paradox. as falsidical - one that "not 

only seems at first absurd but also is false, there being a fallacy in the purported proof' 

(1966, p.5). These fallacies might arise from erroneously extending familiar properties of 

finite concepts to the infinite case, or from the belief that infinity is synonymous with 

eternity. 

Properties of infinity have puzzled and intrigued minds for centuries, with the 

earliest conundrums dating back to Zeno of Elea circa 450 Be. Zeno's paradoxes 

highlighted the inherent anomalies of the infinite, and had such a profound impact on 

mathematics and mathematical thought that Bertrand Russell attributed to them "the 

foundation of a mathematical renaissance" (1903, p.347). Today, there are several 

paradoxes concerning the infinite, though most stir up the same tensions first noted by 

Zeno - namely the conflict between intuition and fonnal mathematics, and the interplay 

between potential and actual infinity. 

The paradoxes explored in this chapter build on the mathematical understanding 

of infinity that was developed in Chapter 2. They are arranged into three sections, each of 

which begins with the presentation and nOIDlative resolutions of related paradoxes. The 

common themes in their resolutions are then summarised. Section 3.1 examines two 

famous paradoxes attributed to Zeno, including the famous incident which pit the athlete 

Achilles against a tortoise in an impossible race. Section 3.2 includes Hilbert's Grand 

Hotel, a building that can continually accommodate new guests despite having no 

vacancy. Finally, section 3.3 is dedicated to the 'super-task' involved in the Ross­
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which begins with the presentation and nOIDlative resolutions of related paradoxes. The

common themes in their resolutions are then summarised. Section 3.1 examines two
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Achilles against a tortoise in an impossible race. Section 3.2 includes Hilbert's Grand

Hotel, a building that can continually accommodate new guests despite having no

vacancy. Finally, section 3.3 is dedicated to the 'super-task' involved in the Ross-
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Littlewood paradox. Alternatively known as the Ping-Pong Ball Conundrum, this paradox 

extends the issues raised by Zeno by requiring the coordination of three infinite entities: 

two sets of ping-pong balls, and a collection of intervals of time. 

3.1 Infinite Series, Finite Sums 

One of the seemingly paradoxical properties of infinity encountered by students is during 

some of their first experiences with calculus: that an infinite series may sum to a finite 

quantity. The counter-intuitive aspect of an endless calculation summing to a finite 

number is the basis for some of the earliest recorded paradoxes. Zeno of Elea famously 

toiled with tbis mysterious property of wbat are now known to be convergent series. He 

devised the two following paradoxes, which seem to defy physics and experience, and 

which went without rigorous resolution until the advent of modem calculus. 

3. J. J The Dichotomy Paradox 

A man wishes to walk the length of a room. Before he can travel the en/ire 

distance, he mus/ first walk half the dis/ance. Afler that, he must walk half 

the remaining distance, and then again half the remaining distance. 

Continuing in this way, can the man walk the entire length of the room? 

Everyday experience seems to resolve this question quickly enough: surely it is possible 

to travel the length of a room. The Dichotomy Paradox, however, lies in the way the 

distance between the two opposing walls of the room is subdivided. The sequence of the 

successive distances can be represented as {Y;, li4, Va, ... }; since each term is a power of 

Y2 and no power of Ih is equal to zero, the end of the room seems to be unreachable. In 

modem mathematical language, this paradox can be resolved by considering the total 

distance as the sum of the half distances, that is, the sum Y2 + ~ + 118 + ... This series is 

convergent, and so the limit of its partial sums - s l = Y2, S2 = Y2 + Ji4, S3 = Ih + Y4 + 118, and 
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so on - will be equivalent to its sum. Alternatively, a formula devised by Euler for 

verifying infinite sums shows that summing the total number of half distances results in 

00 

the entire length of the room, that is, Li = I ~2 Ii = I. 

)=1 

3.1.2 Achilles and the Tortoise 

Achilles and a tortoise agree to race. Since Achilles is the faster runner, the 

tortoise is given a head start. Can Achilles overtake the tortoise to win the 
race? 

Here again everyday experience suggests an obvious resolution to this problem: clearly 

the faster runner will gain a lead and win the race. As in The Dichotomy Paradox, 

however, this "catch 22" stems from the subdivision of space. Since the tortoise starts 

ahead of Achilles, by the time Achilles has made up the tortoise's head start, the tortoise 

will have travelled a further distance. Achilles must therefore make up for this new 

distance. Again, however, by the time he has, the tortoise has moved still further. 

Although this new distance is shorter, Achilles must again make up for it. This continual 

progression of making up a seemingly endless sequence of distances suggests Achilles 

can never pass the tortoise because he cannot catch up infinitely many times. 

Consider a representation of this paradox in terms of sequences, senes, and 

convergence. Unlike Zeno's dichotomy above, Achilles is not travelling towards a static 

object (the wall). His attempt to catch the moving tortoise necessitates an examination of 

two series: the distances Achilles travels, {an}, and the distances the tortoise travels, {tn}. 

Here aJ represents Achilles' position at time 1 (the start of the race), a2 his position at 
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time 2, and an his position at time n, and similarly for the tortoise and In. This IS 

summarized in the following diagram: 

Achilles 

Tortoise 
II 12 

Figure 3.1: Sequences {an} and {In} 

As the race progresses and the finish line approaches; the positions an and In become 

closer and closer. Mathematically, both sequences are said to be monotonic and bounded. 

It is well known (e.g. Stewart, 1999) that every bounded; monotonic sequence of real 

numbers is convergent. Now, consider the relationship between {an} and {In}. Evidently, 

an < In for all n E N - hence Achilles' perpetual need to catch up - however, notice that 

for every n, In = an + J. The sequences are the same aside from one term, and the added 

initial term in {an} does not affect the limit to which the sequence converges. Therefore; 

the limits of the two sequences must be same: 

lim a/1 = lim a17 +1 = P, for some PEN. 
n-+OC' n-+::() 

This limit P is precisely where Achilles will catch up to the tortoise. 

3.1.3 Common Themes 

The understanding of infinity required for both of the above resolutions hinges on the 

distinction between potential and actual infinity. Recall, potential infinity may be thought 

of as inexhaustible - a process, which at every instant in time is finite but which 

continues forever. Whereas, actual infinity is thought of as a complete and existing entity; 

one that encompasses what was potential. With respect to the process of crossing a room 

or catching up to a tortoise, the traveller is faced with a potenlially infinite number of 

subregions - there is always more distance to travel, an end point never seems to be 
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reached. However, the set of successive halves {Y2, ~, Va, ... }, for example, is an actually 

infinite set - it is a complete entity that contains an infinite number of elements. Consider 

again the limit of partial sums discussed in The Dichotomy Paradox resolution. The 

dynamic nature of a limit relates to potential infinity - the partial sums approach 1. 

However, the actually infinite set {12, ~, Y8, ... }, as well as the set {an} from Achilles and 

the Tortoise paradox, represent bounded sequences. The set of distances to cross the 

room or catch up to the tortoise are completed infinite sets whose elements may be 

summed to attain a definite result. The infinite number of intervals that seemed to extend 

endlessly while in potential is actually encompassed within a finite distance. It is toward 

the actually infinite that we now tum. 

3.2 Cardinality and Infinite Se~s 

Cantor's (1915) Contributions to the Founding of the Theory of Transfinite Numbers 

revolutionized infinity's role within mathematics. The existence of actual infinity, and the 

relationship an infinite set has with a proper subset of itself, were concepts that were 

grappled with and poorly understood for many years prior to, and following, Cantor's 

publication. Bolzano, for instance, recognized the actual infinity of natural numbers, 

although his ideas conflicted with what is now accepted as the fonnal mathematical 

definition of infinite sets. Bolzano's inconsistent characterization of infinite sets 

illustrates the challenges in the paradoxes of this subsection. 

Bolzano reasoned that two sets, such as the sets of rational numbers in A = [0, 5] 

and B = [0, 12], could be coupled in a one-to-one correspondence. However, he argued 

that at the same time the numbers in [0, 12] were obviously more numerous than the ones 

in the set [0,5]. He wrote: 
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"Although every quantity in A [the set of numbers from °to 5] or B [the set from ° 
to 12] allows of coupling with one and only one in B or A, yet the set of quantities in 

B is other and greater than in A, since the distance between the two quantities in B is 

other and greater than the distance between the corresponding quantities in A" 

(Balzano, reprinted 1950, p.l 00). 

Balzano constructed the map 5y = 12x, for x E [0, 5] and y E [0, 12], and argued that 

although it coupled each element in [0, 5) with exactly one element in [0, 12] and vice 

versa, the two set were not equinumerous. He reasoned that since the interval [0, 12) is 

longer than [0, 5], the 'distance' between values for y must be larger than the 'distance' 

between values for x. Thus, he claimed the set [0, 12] was more numerous than [0, 5]. 

Contrary to what is accepted today, Bolzano warned that when addressing infinite sets, 

one-to-one correspondence 

"never justifies us, we now see, in inferring the equality of the two sets, in the event 

of their being infinite, with respect to the multiplicity of their members - that is, 

when we abstract from all individual differences" (1950, p.98). 

He reasoned instead that "two sets can sti 1I stand in a relation of inequality, in the sense 

that the one is found to be a whole and the other a part of that whole" (ibid). 

3.2.1� Galileo'sParadox 

There are as many peJ/eet squares as there are natural numbers. 

Galileo's paradox first appeared in his 1638 manuscript Diseorsi e Dimonstrazioni 

Matematiehe, intorno a due nuove scienze as a topic of conversation between the 

characters Simplicio and Salviati. Salviati suggested the sets were equinumerous since: 
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"there are as many [squares] as the corresponding number of roots, since every 

square has its own root and every root its own square, while no square has more 

than one root and no root more than one square" (Galilei, reprinted 1914, p.32). 

This argument effectively establishes a one-to-one correspondence between the two sets, 

which by Cantor's definition, guarantees that the cardinalities of both sets are the same. 

However, this seems to conflict with practical experience: how can a set that is properly 

contained in another set be equal to it in size? Extending Bolzano's line of reasoning, one 

would have to conclude the set of natural numbers {I, 2, 3, ... } was greater (more 

numerous) than the set of squares {l, 4, 9, ... } because "one is found to be a whole and 

the other a part of that whole" (1950, p.98). Galileo, however, reasoned the sets must be 

equal in size because in his understanding of infinity, "the attributes 'equal,' 'greater,' 

and 'less,' are not applicable to infinite, but only to finite, quantities" (1914, p.32-3). In 

fact, neither argument satisfactorily resolves Galileo's paradox. 

It was Cantor's method of abstracting from the elements of a set and identifying 

them each with a 'unit' that enabled him to define the cardinal number of a set as "a 

definite aggregate of units ... [which exists] as an intellectual image or projection of the 

given aggregate" (1915, p.86). In other words, Cantor countered Bolzano's 'distance' 

argument by ignoring the particular magnitude of the numbers and identifying them each 

with an abstract 'unit'. With this abstraction, Cantor established that two sets are 

equivalent if, and only if, their cardinalities are equal - that is, if, and only if, there is a 

one-to-one correspondence between the 'units' in one set and the 'units' in the other. In 

this paradox, it is the correspondence that GaliIeo's Salviati describes that establishes 

equivalence. However, Galileo's argument that infinite sets are incomparable is 

inconsistent with today's convention. Recall that Cantor's diagonal argument, discussed 
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in Chapter 2, showed that the real numbers, for instance, are more numerous than the 

natural numbers, dispelling Galileo's claim that comparisons such as 'greater' or 'less' 

are not applicable to infinite quantities. 

3.2.2 Hilbert's Paradox: The Grand Hotel 

The Grand Hotel has infinitely many rooms and no vacancy. If only one 
person is allowed per room, how can the hotel accommodate a new guest? 

Unlike in a hotel with finitely many rooms, in the Grand Hotel, 'no vacancy' does not 

prohibit a new guest from being accommodated. The idea is simply to free up an already 

occupied room by rearranging the accommodations. This can be done in different ways, 

one possibility is to have the guest in room one move to room two and displace the 

person there. This guest moves from room two to room three. The guest in room three 

moves to room four, and so on. Since there are infinitely many rooms, each guest can 

displace his neighbour, and leave the first room vacant for the new arrival. 

The resolution of this paradox relies on the one-to-one correspondence between 

the sets N = {l, 2, 3, ... } and N = {2, 3,4, ... }. The map sending x E N tox + lEN is 

bijective, and thus the cardinalities of the two sets are the same. Identifying the set of 

guests with N, and the set of occupied rooms after the shift with N, it is clear that even 

when each guest has moved to his neighbour's room, there are still enough rooms for all. 

Analogous arguments extend to variations of Hilbert's Grand Hotel that attempt to 

accommodate arbitrary, or even countably infmite, amounts of new guests. 

3.2.3 Common Themes 

Both Galileo's paradox and Hilbert's Grand Hotel paradox are resolved through Cantor's 

theory of transfinite numbers. In order to resolve these paradoxes it is necessary to 
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appreciate that infinite quantities have distinct properties from finite ones. Galileo's claim 

that 'greater,' 'less,' and 'equal' are not applicable to infinite quantities did have some 

truth to it - 'greater,' 'Jess,' and 'equal' as they apply to finite quantities are inappropriate 

for comparing in.finite ones. Adding one more element to a finite set will change its 

cardinality, but the same is not true when dealing with infinite sets. As discussed in 

Chapter 2, it is possible even to double or triple, for example, the quantity of elements in 

an infinite set without altering its cardinality. All of the comparisons between infinite sets 

and cardinalities hinge on an ability to correspond each element of one set with exactly 

one element of another. If a one-to-one correspondence exists between two infinite sets, 

they are, by definition, equinumerous. It is this elegance, along with the profound insight 

of Cantor's theory of transfinite numbers, which prompted Hilbert to praise Cantor's 

work as "the finest product of mathematical genius and of the supreme achievements of 

purely intellectual human activity" (1925, p.l38). 

3.3 Transfinite Subtraction 

In this section the issues raised by the great minds of Zeno, Galileo, and others, are 

extended even further. The paradoxes explored in this section are deviations of the Ross­

Littlewood paradox, and centre around a 'super-task' - a task which occurs within a finite 

interval of time, yet which involves infinitely many steps (Thompson, 1954). The 

following 'super-task' contributes to the Ping-Pong Ball Conundrum and its variations, 

which illustrate aspects of transfinite arithmetic that are quite different from the 

properties of finite arithmetic. 
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3.3.1 The Ping-Pong Ball Conundrum 

An infinite set of numbered ping-pong balls and a very large barrel are 

instruments in the following experiment, which lasts 60 seconds. In 30 

seconds, the task is to place the first 10 balls into the barrel and remove the 

ball numbered 1. In half of the remaining time, the next 10 balls are placed 

in the barrel and ball number 2 is removed. Again, in half the remaining 

time (and working more and more quickly), balls numbered 21 to 30 are 

placed in the barrel, and ball number 3 is removed, and so on. After the 

experiment is over, at the end of the 60 seconds, how many ping-pong balls 

remain in the barrel? 

In this thought experiment there are three infinite sets to consider: the in-going ping-pong 

balls, the out-going ping-pong balls, and the intervals of time. The necessity to coordinate 

three infinite sets, along with the counterintuitive (and unavoidable) boundedness of one 

of them, creates a level of complexity in this paradox that is absent in Hilbert's Grand 

Hotel, for example. The infinite sequence of time intervals e/2, 1i4, VB, ... } is bound 

between 0 seconds and 1minute, and the sum of the corresponding series is I (\:2 + %+ Yg 

+ ... = 1). The conf1ict between an 'unlimited' number of time intervals and a 'limited' 

time of 1 minute (or 60 seconds) underscores the interplay between potential and actual 

infinity. In order to make sense of the nonnative resolution to this paradox, an 

understanding of actual infinity is necessary. Despite the fact that at every time interval 

there are more in-going than out-going balls, at the end of the experiment the barrel will 

be empty. An important aspect in the resolution of this paradox is the one-to-one 

correspondence between each of the infinite sets and the set of natural numbers. 
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and T = eh, 14, Va, ... }, respectively, can also be put into a one-to-one correspondence by 

pairing any x E B with (Y2t E T. This correspondence assures that when the 60 seconds 

runs out, so do the balls. These facts are necessary but not sufficient to guarantee an 

empty barrel. 

An essential feature of this thought experiment is the ordering of the out-going 

balls. It is not enough that the amount of out-going balls corresponds to the amount of 

time intervals. In order for the barrel to be empty at the end of the experiment the ping­

pong balls must be removed consecutively, beginning from ball #1. Consequently, there 

will be a specific time for which each of the in-going balls is removed. The issue of order 

and its effect on the paradox resolution is addressed in the following paradox. The Ping-

Pong Ball Conundrum and its variation constantly engage the minds of mathematicians 

and philosophers, attempting both to provoke controversy (Van Bendegem, 1994) and to 

lay controversy to rest (Allis & Koetsier, 1995). 

3.3.2 The Ping-Pong Ball Variation 

An inj7.nite set of numbered ping-pong balls and a very large barrel are 

instruments in the following experiment, which lasts 60 seconds. In 30 

seconds, the task is to place the jirst 10 balls into the barrel and remove the 

ball numbered 1. In half of the remaining time, the next 10 balls are placed 

in the barrel and ball number 11 is removed. Again, in half the remaining 

time, balls numbered 21 to 30 are placed in the barrel, and ball number 21 

is removed, and so on. At the end of the 60 seconds, how many ping-pong 

balls remain in the barrel? 

This thought experiment is very similar to the Ping-Pong Ball Conundrum previously 

discussed. The two paradoxes serve as an illustration of the anomalous properties of 

transfinite subtraction - while transfinite addition is a well-defined extension of addition 

of natural numbers, transfinite subtraction is indetenninate. In the Ping-Pong Ball 
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Variation, the ping-pong balls are not removed in consecutive order. Instead, the 

experiment calls for the removal of balls numbered 1 at time one, ball number II at time 

two, ball number 21 at time three, and so on. Thus, despite the bijection between the 

natural numbers, the powers of Y2, and the set {I,ll, 21, ... }, infinitely many balls 

remain in the barrel at the end of the 60 seconds. In this experiment there will never be a 

time interval wherein balls 2 to 10, 12 to 20, 22 to 30, and so on, are removed. The 

seemingly minor distinction between removing balls consecutively versus removing them 

in a different ordering has a profound impact on the resolution of the paradoxes: while in 

one instance subtracting X0 from itself yielded zero, in the other it yielded Xo. 

Another way to vary this ping-pong dilemma is to introduce a bit of bedlam: rather 

than removing the balls in a specific order, consider the consequences of removing the 

balls randomly. If balls were removed randomly, it would be impossible to determine 

precisely how many balls were left in the barrel, or which ones for that matter. Perhaps 

all of the balls were removed, perhaps one Or two balls were 'skipped' and left behind, or, 

perhaps infinitely many balls remain. 

3.3.3 Common Themes 

The Ping-Pong Ball Conundrum highlights more of the subtleties of Cantor's theory of 

transfinite numbers - namely, the ambiguity with subtracting infinite quantities. Although 

Cantor established transfinite addition as a well-defined operation, where Xo + n = Xo for 

any n E R, subtraction cannot be uniquely defined, since X0 - X0 could be any real 

number (or indeed ~o itself). Due, in part, to the ambiguity of transfinite subtraction, in 

these ping-pong experiments, it was not the number of balls that were removed that is the 

only important feature ~ it is also which balls and how. 
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The importance of order in the ping-pong conundrum is unavoidable, although it 

is something that is easily overlooked in a leamer's first encounter with these paradoxes. 

Common experience with subtraction, and the corresponding intuitions, may leave a 

learner unprepared to address the indeterminacy of transfinite subtraction - that is, 

unprepared to recognise that subtracting a cardinality from itself might not yield zero. A 

detailed look at the specific challenges associated with transfinite arithmetic, and III 

particular the challenges connected to the expreSSion '00 - 00', occurs III Chapter 9: 

Cognitive Leaps toward Understanding Infinity. 

The guiding intuitions and conceptions that contributed to the historical 

controversy around the Ping-Pong Ball Conundrum, its variations, and also around 

Hilbert's Grand Hotel paradox, persist in learners' naIve approaches to these paradoxes. 

As discussed in the empirical studies in Chapters 7 and 8, many of these conceptions 

emerged as coercive influences in participants' resolutions, and either neglected or were 

at odds with the accepted mathematical properties of actual infinity. Whether it was the 

indeterminacy of subtracting infinitely many ping-pong balls from infinitely many ping­

pong balls, or the confusion around a 'completely full' infinite hotel, the resistance 

toward accepting properties of actual infinity illuminated participants' conceptions 

regarding the nature of mathematics. 
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CHAPTER 4: 

INFINITY IN MATHEMATICS EDUCATION 
RESEARCH 

Students' reasoning concerning the counterintuitive nature of cardinal infinity has been a 

popular focus of current research (see among others: Dreyfus & Tsamir 2004; Fischbein, 

Tirosh, & Hess, 1979; Tall 2001; Tsamir, 1999,2001; Tsamir & Dreyfus, 2002; Tsamir 

& Tirosh, 1999; Weller, Brown, Dubinsky, McDonald, & Stenger, 2004). The body of 

literature ranges from explorations of learners' intuitive understanding of infinity to 

developing pedagogical tasks that will encourage a deliberate use of fonnal definitions. 

Learners' notions of infinity have also contributed to the development of several 

epistemological frameworks (e.g. Brown, McDonald, & Weller, in press; Dreyfus & 

Tsamir, 2004; Lakoff & Nunez, 2000; Tall, 1980). 

This exposition of the mathematics education literature regarding learners' 

understanding of infinity begins with a review of the research which addresses the 

intuition of infinity as an 'endless' entity. Fischbein, Tirosh, and Melamed (1981) 
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established that problems relating to actual infinity appear as contradictory to the basic 

intuition that infinity means inexhaustible. Accordingly, section 4.1 surveys some of the 

tasks regarding actual infinity that elicited intuitions of a single, 'endless' infinite. 

Extending on early work by Fischbein and his collaborators, a current trend in research 

has been to examine learners' conceptions when comparing cardinalities of different 

infinite sets. Their conceptions have been analysed based on the techniques or principles 

they apply to the task. As SUCh, the focus of section 4.2 takes account of learners' nai·ve 

resolutions to set comparison tasks. [n contrast, section 4.3 surveys the infonned 

conceptions of students with varying levels of mathematical sophistication, as well as 

those with instruction on Cantorian set theory. The approaches and conceptions of 

infonned participants, along with the persistent intuitions of nai"ve participants, have 

prompted several pedagogical considerations and strategies, which are addressed in the 

final section of this chapter, section 4.4. 

4.1 Intuitions of a Single, 'Endless' Infinite 

The concept of infinity carries with it a "surprisingly rich intuitive base that many 

students seem naturally to be endowed with" (Mamona-Downs, 2002, p.49). Research 

into the nature of learners' intuitions of infinity has shown "that infinity appears 

intuitively as being equivalent with inexhaustible" (Fischbein, 2001, p.324). Specifically, 

learners are naturally inclined to conceive of a potential or 'dynamic' infinity - a process 

for which every step is finite, but which continues endlessly. Intuitions of an 'endless 

infinite' have been observed in students of all levels, from middle school to university 

(e.g. Tirosh, 1991). In resonance with the general characteristics of intuitions, the idea of 

43� 

established that problems relating to actual infinity appear as contradictory to the basic

intuition that infinity means inexhaustible. Accordingly, section 4.1 surveys some of the

tasks regarding actual infinity that elicited intuitions of a single, 'endless' infinite.

Extending on early work by Fischbein and his collaborators, a current trend in research

has been to examine learners' conceptions when comparing cardinalities of different

infinite sets. Their conceptions have been analysed based on the techniques or principles

they apply to the task. As such, the focus of section 4.2 takes account of learners' nai·ve

resolutions to set comparison tasks. [n contrast, section 4.3 surveys the infonned

conceptions of students with varying levels of mathematical sophistication, as well as

those with instruction on Cantorian set theory. The approaches and conceptions of

infonned participants, along with the persistent intuitions of nai"ve participants, have

prompted several pedagogical considerations and strategies, which are addressed in the

final section of this chapter, section 4.4.

4.1 Intuitions of a Single, 'Endless' Infinite

The concept of infinity carries with it a "surprisingly rich intuitive base that many

students seem naturally to be endowed with" (Mamona-Downs, 2002, p.49). Research

into the nature of learners' intuitions of infinity has shown "that infinity appears

intuitively as being equivalent with inexhaustible" (Fischbein, 2001, p.324). Specifically,

learners are naturally inclined to conceive of a potential or 'dynamic' infinity - a process

for which every step is finite, but which continues endlessly. Intuitions of an 'endless

infinite' have been observed in students of all levels, from middle school to university

(e.g. Tirosh, 1991). In resonance with the general characteristics of intuitions, the idea of

43



an endless infinite tends to be resilient: it is seen as self-evident, intrinsically certain, 

coercive, and resolute (Fischbein, 1987). 

An interesting illustration of learners' intuition of an endless infinity appeared in 

Fischbein et a1. 's 1981 research with middle school students (grades 8 and 9). One of the 

research tasks involved determining the sum of the infinite series 1 + i;2 + ~ + V8 + ... , 

which appeared geometrically as a series of line segments of decreasing length. The 

majority of participants confidently concluded that the magnitude of the resulting sum 

would be infinite, while only a small minority of participants realised the sum of the 

series was equal to 2. Typical justifications for the infinite result included: 

"A line segment can be extended endlessly;" 

"We shall always be able to add another part;" and 

"The process can be continued endlessly" (Fischbein et aI., 1981, p.505). 

Similarly, in Tirosh's 1991 study, participants of varying ages and math background who 

reasoned that the set of even numbers was infinite did so with justifications such as: 

"If you add 2 to an even number, you get another even number, and you can always 

add an even number" (p.343). 

The association of infinity with inexhaustibility was suggested by Fischbein to be "the 

essential reason for which, intuitively, there is only one kind, one level of infinity. An 

infinity which is equivalent with inexhaustible cannot be surpassed by a richer infinity" 

(2001, p.324). 

The belief that there is only a single, endless, infinite has also surfaced as students 

considered and compared the quantity of natural numbers with the quantity of real 

numbers (Fischbein et aI., 1981). In a study that analysed the conceptions, levels of 

confidence, and degrees of obviousness associated with middle school students' 
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responses to set comparison tasks, Fischbein et a1. (1981) asked participants to compare 

the number of elements in the set {I, 2, 3, ... } with the number of points on a line. The 

goal of the study was to quantify the level of confidence and degree of obviousness a 

student expressed in his or her solution in order to estimate the intuitive acceptance of 

that response. A high level of confidence and a high degree of obviousness corresponded 

to a high degree of intuitiveness. In response to the comparison, a small minority of 

participants reasoned that it was not possible to match every point with a different natural 

number. However, these students demonstrated little confidence in their responses and 

tended to base conclusions on interpretations that are deemed incorrect by mathematical 

convention, such as "The line has no beginning but the numbers start with 1" (Fischbein 

et aI., 1981, p.507). In contrast, Fischbein et al. noted that the large majority of students 

who answered incorrectly - that the two sets were equinumerous - accepted that solution 

as "highly evident and reliable" (ibid). The typical response by these students was "there 

is an infinity of points on the line, and there is an infinity of natural numbers" (Fischbein 

et aI., 1981, p.506). 

4.2 NaIve Resolutions to Set Comparison Tasks 

Current research suggests students' approaches to tasks regarding infinity tend to develop 

by reflecting on knowledge of related finite concepts and extending these familiar 

properties to the infinite case (Dreyfus & Tsamir, 2004; Fischbein, 2001; Fischbein et aI., 

1979; Tall, 2001). As Fischbein (2001) observed, when learners attempt to establish an 

understanding of abstract concepts, their tacit mental representations in the reasoning 

process replace the abstract concepts by more accessible and familiar ones. In particular, 

when analysing infinite sets, students may apply familiar methods for comparing sets that 
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are acceptable in the case of finite sets, such as the inclusion (or part-whole) method, but 

which result in contradictions in the infinite case (Dreyfus & Tsamir, 2004; Fischbein et 

al., 1979; Tall, 200 I). 

Consider, for example, the two finite sets A = {I, 2, 3, 4} and B = {2, 4}. The 

inclusion method of comparison demonstrates that set B is a subset of A, and not equal to 

A, and thus has fewer elements. Attempting to correspond each element in A with a 

unique element in B also shows that the two sets contain a different number of elements. 

Conversely, take the sets N = {I, 2, 3, ... } and E = {2, 4, 6, ... }. In this case, the 

inclusion method and the correspondence method give way to contradictory results. 

Recall from Chapter 2 that by definition, an infinite set can be put into a one-to-one 

correspondence with one of its proper (infinite) SUbsets, such as with the sets Nand E. 

Tirosh and Tsamir (1996), who investigated high school students' conceptions of 

infinity, observed that the majority of participants reasoned that N had greater cardinality 

than E. The main argument offered by students drew on the inclusion method of 

comparison: since E was contained in N, N was clearly more numerous. Similar results 

were obtained by Fischbein et al. (1979) when they surveyed middle school students. 

Again, the majority of participants reasoned that N was the larger set since E was 

included in N. Fischbein et al. (1979) also observed that the inclusion method was the 

preferred method for comparing the set of points on a line segment and the set of points 

on a square, as many participants argued that the segment was a part of the square and 

thus the two could not have the same quantity of points. Other students objected to the 

possibility that sets of different dimension could have the same cardinality. Analogous 

responses were also observed for the comparison of points on a square with points on a 
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cube. The argument that objects of different dimension must have different cardinality 

can also be viewed as an implicit inclusion argument. Properties of three-dimensional 

objects discussed in grade school geometry tend to be described in terms of the two­

dimensional shapes that form them: a square forms a face of a cube, and as such might be 

considered as 'included' in the cube. 

The inconsistencies observed in students' responses to these questions versus their 

comparison of the natural numbers with points on a line (discussed in section 4.1) is 

proposed by Fischbein et a1. to stem from the "highly labile" nature of the intuition of 

infinity, one that depends both on "conjectural and contextual influence" (1979, p.32). 

Tsamir noted additional contradictions in students "declaring that infinite sets are 

incomparable and then proceeding to compare them," (1999, p.228), or "stating that all 

infinite sets are equal (have the same number of elements) and then proceeding to provide 

'unequal' as a solution" (ibid). Dreyfus and Tsamir observed that their "students 

frequently reached contradictory conclusions when comparing the same pair of sets given 

in different representations. Unfortunately, [the students] usually remained unaware of 

these contradictions" (2002, pA). 

Inconsistencies in students' responses have also been linked to irrelevant visual 

aspects. Tirosh and Tsamir (1996, as well as Dreyfus & Tsamir, 2004; Stavy & Tirosh, 

2000; Tsamir, 200 I; Tsamir & Dreyfus, 2002; Tsamir & Tirosh, 1999) observed that the 

presentation of infinite sets had an impact on high school students' choices of comparison 

methods. If two sets were presented side-by-side, students were more likely to conclude 

the sets were of different magnitude than if the same sets were presented one above the 

other. These studies made use of four different visual representations of sets and observed 
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which were more likely to elicit a controlled use of the one-to-one method of set 

comparison. The different representations presented to students are exemplified in Figure 

4.1 (below); they include the numerical-vertical, numerical-explicit, geometric, and 

numerical-horizontal representations. 

N : {l, 2, 3, 4, } lcm 2cm 3cm 

E: {2, 4,6,8, } O~/, , 
2cm 4cm 6cm 

~ 

Nurneric al-Vetic al Geometric 

N : {1, 2, 3, 4, ..} 

E: {l x2, 2 x2, 3 x2, 4x2, ... } N: {t, 2, 3, 4, ... } E: {2, 4, 6, 8, ... } 

Numerical Explicit Nurneric al-Horizontal 

Figure 4.1: Set Representations 

Results of these studies consistently found that both the numerical-explicit and 

geometric representations elicited a more instinctive use of one-to-one correspondences 

when comparing sets than the other two representations. In contrast, the numerical-

horizontal representation gave an impression of nested sets, and was found to encourage 

an erroneous use of the inclusion method. As one student reflected, the geometric 

representation provided "a graphic, a visual image of the possible way to pair the 

numbers in the two infinite sets" (Dreyfus & Tsamir, 2004, p.284). This student also felt 

that the numerical-explicit representation put "extra emphasis on the way we can pair 

matching elements. It shows beyond any doubt that there is an equivalence 

correspondence. It also emphasizes the way that this correspondence determines the 

equality of the sets' size" (Dreyfus & Tsamir, 2004, p.285). 
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4.3 Instruction and Mathematical Sophistication 

A series of studies has been conducted on the conceptions of students of varying levels of 

mathematical sophistication as they attended to the cardinalities of finite and infinite sets 

(e.g. Tirosh, 1991; Stavy & Tirosh, 2000). Tirosh (1991) surveyed students from 

elementary school to university to investigate the intuitive methods used to determine 

whether a given set was infinite or finite. Surprisingly, Tirosh observed that of the 

various groups of students, university students most frequently gave incorrect responses 

when shown practical examples of finite sets, such as the number of drops of water in a 

cup or in the Pacific Ocean. Participants described the "infinite divisibility of drops of 

water" and "the unlimited space of the Pacific Ocean" (Tirosh, 1991, p.346) to justify 

their infinite responses, with the former argument being by far the most common 

justification for infiniteness among all groups of students. 

In a similar study, Stavy and Tirosh (2000) investigated the relationship between 

students' mental models regarding the particulate nature of matter and the infinite nature 

of geometrical figures. Students in grades 7, 8, 10, and 12 were asked about the 

divisibility of copper wire and line segments. In resonance with Tirosh's (1991) 

observations, the frequency of incorrect infinite responses - that a copper wire may be 

divided 'endlessly' - increased with age. Tirosh (1999) summarized: more mathematical 

background did not correspond to more correct categorizations of infinite sets. 

Nevertheless, Tirosh did note a correlation between students' responses and their 

mathematics experiences: students with a more sophisticated mathematical background 

demonstrated a more systematic use of logical schemes - which Fischbein et al. (1979) 

observed are naturally adapted to finite objects. Tirosh also noted that students with more 
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mathematical experience made more frequent use of 'intuitive rules' - which are taken as 

self-evident and viewed as true without justification (Stavy & Tirosh, 2000). These 

observations hint at the possibility that understanding properties of infinite sets requires a 

step away from the intuitive and a realisation that prior experience with finite entities and 

schemes may not be generalizable to the infinite case. 

The relationship between students' conceptions of infinity and their mathematical 

background, particularly with respect to their knowledge of Cantorian set theory, 

continues to be of interest. Research has shown that knowledge of Cantorian set theory 

and the preferred method of set comparison did not prevent secondary and even college 

students from oscillating between one-to-one correspondence and inclusion methods. In 

fact, these students even seemed unaware of the necessity of avoiding incompatible 

methods of comparison (Borasi, 1985; Duval, 1983; Fischbein et aI., 1979; Fischbein et 

a1., 1981; Tirosh, 1991; Tirosh & Tsamir, 1996; Tsamir, 1999, 2003; Tsamir & Tirosh, 

1999). One such instance occurred in Tsamir (2003), where prospective secondary school 

teachers were asked to assess the applicability of different methods of set comparison 

when dealing with infinite sets. They were presented with three methods of comparison: 

one-to-one correspondence, inclusion, and the 'single infinity' argument. The majority of 

participants had previously taken a class in Cantorian set theory, and despite formal 

knowledge and their tendency to accept the one-to-one correspondence criterion as an 

appropriate method of comparison, a substantial number of these participants also found 

the other criteria acceptable. Tsamir noted, "Even after studying set theory, participants 

still failed to grasp one of its key aspects, that is, that the use of more than one ... criteria 

for comparing infinite sets will eventually lead to contradiction" (2003, p.90). 
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In a recent study, Brown, McDonald, and Weller (in press) also observed that 

formal instruction had little impact on the approaches of university students as they 

addressed a question of cardinality comparison. These students had recently completed an 

upper year mathematics course which addressed Cantorian set theory, and they were 

ro 

asked to prove or disprove the equality U P( {I, 2, ... , k}) = P(N) , where P represents 
k=l 

the power set operator. With a similar argument to Cantor's diagonal proof (Chapter 2), it 

is possible to show that peN), the set of all subsets of N, is uncountable; whereas, the 

infinite union on the left of the equal sign is a countable union of finite sets. Of the 

thirteen students interviewed by Brown et aI., only one was able to correctly solve the 

task, and then only with considerable prompting from the interviewer. Interestingly, 

although the students "demonstrated knowledge of the definitions of the objects involved, 

all of the students tried to make sense of the infinite union by constructing one or more 

infinite processes" (McDonald & Brown, 2008, p.61) - that is, the students relied on 

intuitive, rather than formal, approaches. Furthermore, each of the students attempted to 

resolve this problem by constructing an infinite iterative process, even though the 

problem itself was stated in terms of static objects, not processes (Weller et a!., 2004). 

4.4 Pedagogical Strategies 

Students' well-documented struggle to understand and appreciate aspects of cardinal 

infinity has motivated efforts to improve and refine pedagogical strategies. The geometric 

representation pictured in Figure 4.1 (section 4.2) offers one example of how researchers 

and instructors can make use of the tangible nature of a visual image. In the set activities 

administered by Dreyfus and Tsamir (2004, also Tsamir & Dreyfus, 2002; Tsmair & 
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Tirosh, 1999), geometric figures were used to emphasize a correspondence between 

numerical sets, as well as to draw students' attention to the inconsistencies of comparing 

infinite sets with different methods. For instance, an activity designed by Tsamir and 

Tirosh (1999) had students examine the set of natural numbers, which were enumerated 

on a card up to the number 21. The task began by circling all of the multiples of four that 

appeared in the set and then creating a new set with these circled numbers. Students were 

later asked to compare the cardinalities of {l, 2, 3, ... } and {4, 8, 12, ... }. Many students 

relied on the inclusion method for comparison and concluded that the set of natural 

numbers was greater than the set of multiples of four. One of the goals of this study was 

to elicit cognitive conflict, thus this task was followed by an analysis of the geometrical 

representation of the corresponding sets, which was intended to emphasise the one-to-one 

correspondence. Students were asked to consider a set of line segments with increasing 

lengths (Figure 4.2a), and then to imagine constructing squares in such a way that the 

segments were of the same lengths as the sides of the squares (Figure 4.2b). 

I-------l , I I , 1-1----~I , ... } 

lcm 2cm 3cm 

a) Segments of increasing lengths 

, ... }D.O. 
4cm 8cm l2cm 

b) Squares of increasing perimeters 

Figure 4.2: Geometry as Analogy 
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As in the diagram, the lengths and perimeters were written below each segment 

and square, respectively. Students were asked whether more than one square could be 

constructed for each segment. They were also prompted to speculate on the relationship 

between the length of a side and the length of the perimeter of any square. Tsamir and 

Tirosh concluded that this series of activities "has the potential for raising students' 

awareness of incompatibilities in their own solutions to the same mathematical problem" 

(1999, p.216). Tsamir (2003) emphasised the importance of drawing to students' 

awareness the inconsistencies resulting from different methods of comparison. McDonald 

and Brown (2008) concurred with Tsamir's suggestion that eliciting cognitive conflict in 

learners offers a means to help "students understand what to do and why, and that using 

more than one criteria to compare infinite sets leads to contradictions" (McDonald & 

Brown, 2008, p.59). Similarly, Sierpinska (1987) suggested eliciting cognitive conflict in 

learners might be a starting point to overcoming epistemological obstacles related to 

limits and infinity, such as the problematic view that mathematics should avoid dealing 

with infinity and instead restrict its attention to finite numbers. 

The geometrical presentation of Figure 4.2 above, offered Tsamir and Tirosh's 

participants a one-to-one pairing that was much more obvious to see than in numeric 

presentations. The sets {I, 2, 3, ... } and {4, 8, 12, ... } were thought of as the set of 

lengths of the segments and the set of perimeters of the corresponding squares, 

respectively. This use of a geometric image provided an alternative way for students to 

consider the numbers and sets they were comparing. Attributing numbers to lengths and 

perimeters may be a way to detach the numbers from their magnitudes and create an 

analogy with which to consider the two sets in question. The meaning of the numbers in 
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this context would then change from their meamng m the abstract set notation, and 

students could attend, not to the specific numbers themselves, but to the natural 

correspondence between a side and a perimeter of a square. In addition, through this 

analogy, students could extrapolate their experiences with, and ideas about, finite sets of 

squares in order to imagine an infinite set that is consistent with their prior knowledge. 

Tsamir and Tirosh recognised the use of analogy with a familiar experience as an 

effective instructional tool for triggering "the spontaneous use of one-to-one 

correspondence" (1999, p.216). However, as noted by Tsamir (2003), and as mentioned 

in section 4.3, participants must come to appreciate one-to-one correspondence as the 

only appropriate method of infinite cardinality comparison, and it is unclear whether 

reasoning by analogy will contribute to such an understanding. 

Having now established some of the key results relating to infinity in mathematics 

and mathematics education, the next chapter discusses the theoretical perspectives that 

guided my research. The studies that are presented in Chapters 6, 7, and 8, as well as the 

integrated analysis and discussion that follows in Chapter 9, stemmed from my 

consideration of the interrelated theoretical underpinnings of 'reducing levels of 

abstraction' (Hazzan, 1999), APOS Theory (Dubinsky & MacDonald, 2001), and 

'measuring infinity' (Tall, 1980). 
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CHAPTER 5: 

THEORETICAL PERSPECTIVES 

The theoretical perspectives discussed in this chapter contributed to the overarching 

framework which guided the empirical investigations that are presented in Chapters 6, 7, 

and 8. Three interrelated frameworks are discussed and connected in this chapter, and the 

means with which they informed the analysis of participants' responses to tasks and 

paradox resolutions are illustrated. Hazzan's (1999) perspective of reducing the level of 

abstraction in order to establish meaning about a concept is connected to Tall's 

framework of 'measuring infinity', and then related to Dubinsky and McDonald's (2001) 

APOS - Action, Process, Object, Schema - Theory. This inter-connected theoretical 

foundation is used to interpret participants' approaches to resolving tasks regarding actual 

infinity, as well as to analyse the conceptions that were elicited by these tasks. 

The concept of actual infinity can present considerable challenges to learners, and 

as exemplified in Chapter 4, a more sophisticated mathematical background does not 
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necessarily correspond to a normative approach to problems and paradoxes of actual 

infinity. The anomalies of actual infinity - some of which were illustrated in Chapter 2 ­

are difficult to grasp for various reasons, including their inaccessibility, abstraction, and 

formal structure. Compounding these difficulties are the inconsistencies learners may 

face when trying to reconcile properties of actual infinity with their prior mathematical 

knowledge, experiences, and intuitions. As such, it is not uncommon for learners to 

experience a state of cognitive conflict as they grapple with an entity that must be treated 

as a completed totality, but which appears to our intuitions as endless. Cognibve conflict 

is regarded as a state in which learners become aware of inconsistent or competing ideas. 

Piaget (1985) described an analogous state of 'disequilibration' as an essential aspect of 

cognitive growth. In Piaget's perspective, cognitive structures are developed as learners 

integrate information into their existing structures - that is, new knowledge is thought to 

develop in conjunction with prior understanding, building on, extending, or revamping 

existing knowledge. During the process of cognitive growth, Piaget hypothesised that 

learners expenence temporary stages In a cycle of equilibration, disequilibration, and 

reequilibration (Kamii, 1986). In other words, an individual is constantly seeking to 

maintain a state of cognitive coherence (equilibration), however this state of equilibration 

may be unhinged by the recognition of discrepancies between the individual's existing 

cognitive structure and external information. This 'unhinging' relates to Piaget's stage of 

disequilibration; it instantiates cognitive conflict. The recognition of discrepancies is 

necessary to trigger a stage of cognitive conflict, which can in tum motivate the 

individual to reconcile the conflict by seeking new information or by attempting to 
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restructure existing information. Reconciling the cognitive conflict, or 'disequilibration', 

corresponds to Piaget's 'reequilibration', the final stage in his cycle of cognitive growth. 

In certain cases, inconsistencies in an individual's cognitive structure may go 

unnoticed. In such a case, if a learner's incompatible and inconsistent ideas are 

recognized by the instructor, but not yet recognised by the individual, the individual is 

said to face a potential cognitive conflict (Zazkis & Chernoff, 2008). Zazkis and 

Chernoff argue that a potential cognitive conflict can develop into a cognitive conflict in 

an instructional situation. For instance, problems and paradoxes regarding infinity present 

learners with a potential cognitive conflict - a discrepancy exists between properties of 

actual infinity and a learner's intuition and prior (finite) experiences. In the studies 

described in Chapters 6, 7, and 8, activities were designed and employed as means to 

draw to the attention of participants the inconsistencies in their ideas. The intent of the 

activities was to invoke a cognitive conflict from the potential conflict that was presented 

by properties of infinity as they appeared in paradoxes or geometric tasks. 

Participants' reactions to the potential cognitive conflict offered by properties of 
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interest in the forthcoming studies. The following sections explore the interrelated 

theoretical frameworks that were used to interpret participants' conflict resolution as well 

as their emergent conceptions of infinity. In the first section, the perspective of reducing 

the level of abstraction (Hazzan, 1999) is discussed in connection with Tall's (1980) 

framework of 'measuring infinity'. Following that, the second section considers the 

APOS (Action, Process, Object, Schema) Theory (Dubinsky & McDonald, 2001). 

57� 

restructure existing information. Reconciling the cognitive conflict, or 'disequilibration',

corresponds to Piaget's 'reequilibration', the final stage in his cycle of cognitive growth.

In certain cases, inconsistencies in an individual's cognitive structure may go

unnoticed. In such a case, if a learner's incompatible and inconsistent ideas are

recognized by the instructor, but not yet recognised by the individual, the individual is

said to face a potential cognitive conflict (Zazkis & Chernoff, 2008). Zazkis and

Chernoff argue that a potential cognitive conflict can develop into a cognitive conflict in

an instructional situation. For instance, problems and paradoxes regarding infinity present

learners with a potential cognitive conflict - a discrepancy exists between properties of

actual infinity and a learner's intuition and prior (finite) experiences. In the studies

described in Chapters 6, 7, and 8, activities were designed and employed as means to

draw to the attention of participants the inconsistencies in their ideas. The intent of the

activities was to invoke a cognitive conflict from the potential conflict that was presented

by properties of infinity as they appeared in paradoxes or geometric tasks.

Participants' reactions to the potential cognitive conflict offered by properties of

actual infinity, as well as their naIve and emergent conceptions of infinity, were of

interest in the forthcoming studies. The following sections explore the interrelated

theoretical frameworks that were used to interpret participants' conflict resolution as well

as their emergent conceptions of infinity. In the first section, the perspective of reducing

the level of abstraction (Hazzan, 1999) is discussed in connection with Tall's (1980)

framework of 'measuring infinity'. Following that, the second section considers the

APOS (Action, Process, Object, Schema) Theory (Dubinsky & McDonald, 2001).

57



5.1 Reducing Abstraction and Measuring Infinity 

As learners engage in novel problem solving situations, their attempts to make sense of 

unfamiliar and abstract concepts can be described through the framework of reducing 

levels of abstraction (Hazzan 1999). In Hazzan' s (1999) perspective, learners will attempt 

to cope with novel concepts through different means of reducing abstraction. For 

instance, Hazzan described "students' tendency to work with canonical procedures in 

problem solving situations" (1999, p.80) as a means of reducing abstraction. She 

observed that working with familiar entities was a common strategy for learners who 

were faced with problems for which an understanding of the mathematical entities 

involved were not yet constructed. As an example, Hazzan noted that when learning 

abstract algebra, students would "often treat groups as if they were made only of numbers 

and of operations defined on numbers" (I999, p.77). By basing arguments on familiar 

mathematical entities, such as numbers, in order to cope with unfamiliar concepts, such 

as groups, students lower the level of abstraction of those concepts. In the context of 

infinity, one such example is students' use of familiar (finite) measuring properties to 

interpret infinite quantities of measurable entities, such as the quantity of points on a line 

segment. This example of reducing the level of abstraction of infinitely many points on a 

line segment relates to Tall's (1980) notion of 'measuring infinity.' 

5.1.1 Measuring Infinity 

Tall (1980) suggested intuitions of infinity can develop by extrapolating measunng, 

rather than cardinal, properties of numbers. Many of our everyday experiences with 

measurement and comparison associate 'longer' with 'more.' For example, a longer 

inseam on a pair of pants corresponds to more material. Likewise, a longer distance to 
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travel corresponds to more steps one must walk. Tall (1980) proposed extrapolating this 

notion can lead to an intuition of infinities of 'different sizes.' A measuring intuition of 

infinity coincides with the notion that although any line segment has infrnitely many 

points, the longer of two line segments will have a 'larger' infinite number of points. Tall 

(1980) called this notion 'measuring infinity' and suggested it is a reasonable and natural 

interpretation of infinite quantities, especially when dealing with measurable entities such 

as line segments. Although Tall's perspective of 'measuring infinity' focuses on 

geometric entities such as line segments, 1 would like to suggest that the notion of 

'measuring infinity' extends further. Relating Tall's perspective to the Ping-Pong Ball 

Conundrum, an intuition of 'measuring infinity' can be seen in arguments that connect to 

the different rates of ping-pong balls that are placed into and removed from the barrel. In 

this context, the rate of in-going ping-pong balls is measured relative to the rate of out­

going balls, with the faster rate accumulating a 'larger' infinite number of balls. An 

intuition of 'measuring infinity', with respect to line segments, as Tall suggests, and also 

regarding rates, can be interpreted as an attempt to familiarize the unfamiliar by basing 

arguments on known relationships, and might develop as a consequence of learners' 

attempts to lower the level of abstraction of comparing infinite cardinalities. 

5.1.2 Coping with the Unfamiliar 

In addition to relying on familiar entities to reduce the level of abstraction of novel ones, 

)
Hazzan (1999) observed that learners' use of personal language, as well as the 

complexity of the entities with which they choose to deal, are also indicative of attempts 

to reduce levels of abstraction. With respect to personal language, Hazzan interprets 

"students' personalization of formal expressions and logical arguments by using first­
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person language" as an attempt to reduce the level of abstraction of that expression. For 

instance, language such as "I can find" or "1 want to find" (Hazzan, 1999, p.80), indicate, 

in Hazzan's perspective, ways that a student may cope with unfamiliar terminology and 

concepts. In the context of abstract algebra and relating to the complexity of 

mathematical entities, Hazzan builds on the assumption that "the more compound an 

entity is, the more abstract it is" (1999, p.82). For example, she describes a set of groups 

as being more compound, and hence more complex and abstract, an entity than a single 

group. As such, a student may attempt to reduce the level of abstraction of that compound 

entity, say a set of groups, by examining only one element, one group, in that set. An 

analogous attempt to reduce the level of abstraction might occur with respect to infinity 

through the generalization of properties of a finite cardinality to draw conclusions about 

an infinite cardinality. 

Hazzan (1999) relates her framework of reducing levels of abstraction to the 

APOS (Action, Process, Object, Schema) Theory of Dubinsky and McDonald (2001) 

through the observation that process conceptions of a mathematical entity may be 

considered on a lower level of abstraction than their corresponding conceptions as 

objects. She also argues that a learner's attempt to reduce the level of abstraction of a 

mathematical entity through, for instance, the use of first-person language, or by working 

with canonical procedures when problem solving, indicate that the learner holds a process 

(rather than object) conception of that entity. Process and object conceptions are in the 

centre of the third framework considered in this study, that of the APOS (Action, Process, 

Object, Schema) Theory (Dubinsky & McDonald, 2001). 
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5.2 APOS Theory 

The APOS Theory postulates a framework for interpreting learners' understanding of 

tertiary mathematics. Through the mechanisms of internalisation and encapsulation the 

learner is said to construct meaning for mathematical entities that are conceptualised with 

the' structures' of the APOS Theory: actions, processes, objects, and schemas (Dubinsky 

& McDonald, 2001). In the terminology of the APOS Theory, an understanding of a 

mathematical entity begins with an action conception of that entity. Action conceptions 

are recognised by an individual's need for an explicit expression to manipulate or 

evaluate. Eventually, an action may be interiorised as a mental process. That is, once an 

action has been interiorised, the individual can imagine performing an action without 

having to directly execute each and every step. A process conception is recognised by 

qualitative descriptions which may describe actions though not execute them. If the 

individual realises the process as a completed totality, then encapsulation of that process 

to an object is said to have occurred. Encapsulation of a process is a sophisticated step in 

an individual's conceptualisation. It requires appreciating the mathematical entity as a 

completed object that can be acted upon. In other words, the entity is conceived of as an 

object upon which transformations or operations may be applied. These three structures 

of the APOS Theory - the action, process, and object - describe how the idea of a single 

mathematical entity may develop. However, it is possible that a mathematical concept 

may be composed of more than one entity, involving several actions, processes, and 

objects that must be coordinated into a mental schema. It is then this schema that 

"provides an individual with a way of deciding which mental structures to use in dealing 
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with a mathematical problem situation" (Dubinsky, Weller, McDonald, & Brown, 2005a, 

p.339). 

5.2.1 Infinity as Process and Object 

Dubinsky, Weller, McDonald, and Brown (2005a) proposed an APOS analysis of two 

conceptions of infinity: actual and potential. They suggested that interiorising infinity to a 

process corresponds to an understanding of potential infinity, that is, infinity is imagined 

as performing an endless action, though without imagining the implementation of each 

step. Encapsulating this endless process to a completed object, in tum, corresponds to a 

conception of actual infinity. Relating this distinction to the appearances of infinity 

explored in the up-coming studies, one may consider geometric representations of infinity 

as either processes or objects. For instance, a conception of potential infmity, with respect 

to points on a line segment, might correspond to a process of marking or 'creating' points 

on a line segment that is imagined to continue indefinitely. While actual infinity might be 

illustrated by the idea that the infinite number of points on a line segment exists as a 

completed entity, without needing to be marked. Further, the process-object duality of 

infinity may also be instantiated in certain paradoxes of the infinite. In the case of the 

Ping-Pong Ball Conundrum, the action of cutting the remaining time in half can be 

imagined to continue indefinitely, and would thus describe potential infinity. Whereas 

actual infinity would entail the completed infmite process of halving time intervals, and 

would describe the set of time intervals as a completed entity, where each interval exists 

within the 60 seconds. Similarly, in Hilbert's Grand Hotel paradox, the hotel itself 

corresponds to actual infinity - it is a completed, infinite entity. On the contrary, a 

62� 

with a mathematical problem situation" (Dubinsky, Weller, McDonald, & Brown, 2005a,

p.339).

5.2.1 Infinity as Process and Object

Dubinsky, Weller, McDonald, and Brown (2005a) proposed an APOS analysis of two

conceptions of infinity: actual and potential. They suggested that interiorising infinity to a

process corresponds to an understanding of potential infinity, that is, infinity is imagined

as performing an endless action, though without imagining the implementation of each

step. Encapsulating this endless process to a completed object, in tum, corresponds to a

conception of actual infinity. Relating this distinction to the appearances of infinity

explored in the up-coming studies, one may consider geometric representations of infinity

as either processes or objects. For instance, a conception of potential infmity, with respect

to points on a line segment, might correspond to a process of marking or 'creating' points

on a line segment that is imagined to continue indefinitely. While actual infinity might be

illustrated by the idea that the infinite number of points on a line segment exists as a

completed entity, without needing to be marked. Further, the process-object duality of

infinity may also be instantiated in certain paradoxes of the infinite. In the case of the

Ping-Pong Ball Conundrum, the action of cutting the remaining time in half can be

imagined to continue indefinitely, and would thus describe potential infinity. Whereas

actual infinity would entail the completed infmite process of halving time intervals, and

would describe the set of time intervals as a completed entity, where each interval exists

within the 60 seconds. Similarly, in Hilbert's Grand Hotel paradox, the hotel itself

corresponds to actual infinity - it is a completed, infinite entity. On the contrary, a

62



potentially infinite hotel might be one that can continually create new rooms in order to 

accommodate new guests. 

As in the more general case, encapsulation of infinity is considered to have 

occurred once the learner is able to think of infinite quantities "as objects to which 

actions and processes (e.g., arithmetic operations, comparison of sets) could be apphed" 

(Dubinsky et aI., 2005a, p.346). Dubinsky et ai. also observed that "in the case of an 

infinite process, the object that results from encapsulation transcends the process, in the 

sense that it is not associated with nor is it produced by any step of the process" (2005a, 

p.354). Brown, McDonald, and Weller (in press) introduced this possibility, and termed 

the encapsulated object of infinity a transcendent object. An object which transcends any 

individual step of its corresponding process may require, in Dubinsky et al. 's perspective, 

"a radical shift in the nature of one's conceptualisation" (2005a, p.347). 

Dubinsky et al. (2005a) suggested further that the conceptions of infinity as a 

process or an object and the relationship between them contributes to the individual's 

infinity schema. In the context of the previous examples, an infinity schema that 

coordinates object and process conceptions of infinity would help the individual identify 

that the paradoxes and infinite cardinalities are normatively accepted as instances of 

actual infinity, rather than potential infinity. Dubinsky, Weller, McDonald, and Brown 

recommend that pedagogical strategies "should focus on helping students to interiorize 

actions repeated without end, to reflect on seeing an infinite process as a completed 

totality, and to encapsulate the process to construct the state at infinity, with an 

understanding that the resulting object transcends the process" (2005b, p.264). 
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As previously mentioned, the frameworks that guided this dissertation - Hazzan's 

theory of reducing levels of abstraction, Tall's 'measuring infinity', and the APOS 

Theory - are interrelated. Hazzan's theory aims to identify the techniques with which 

learners attempt to make sense of novel and abstract mathematical ideas - e.g. through 

the use of familiar concepts or personal language. Tall's framework is interpreted as a 

special case of reducing the level of abstraction of those mathematical ideas by applying 

familiar measuring techniques to cope with properties of infinite quantities. The APOS 

Theory presents a hierarchical framework that decomposes how those mathematical ideas 

are understood - e.g. as process, or objects - and is connected to the aforementioned 

perspectives by Hazzan's observation that a "process conception of a mathematical 

concept can be interpreted as on a lower level of abstraction than its conception as an 

object" (1999, p.79). 

Extending these ideas, the studies presented in the following chapters interpret 

university students' na'ive and informed ideas, as well as their attempts to reduce the level 

of abstraction of infinity. Chapter 6 provides an account of participants' emergent 

conceptions as they engaged in a series of geometric tasks designed to elicit personal 

reflection and provoke cognitive conflict. Chapters 7 and 8 use the lens of paradoxes to 

interpret participants' conflict resolution. In Chapter 7, participants' engagement with 

Hilbert's Grand Hotel paradox and the Ping-Pong Ball Conundrum sparked cognitive 

dissonance, while in Chapter 8 the Ping-Pong Ball Conundrum and a variation of it, 

confronted participants with different conceptual challenges. In particular, Chapter 8 

takes a closer look at the relationship between 'encapsulation' of infinity, as described by 

the APOS Theory, and the conceptual accommodation of actual infinity. 
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CHAPTER 6:� 

INTUITIONS OF 'INFINITE NUMBERS': INFINITE 

MAGNITUDE VS. INFINITE REPRESENTATION 

This study explores the naive and emerging conceptions of university students as they 

address properties of cardinal infinity and transfinite arithmetic, and as they attempt to 

coordinate intuition and reflection with formal instruction. In what follows, participants' 

engagement with geometric representations of infinity are described and used as a lens to 

their understanding of infinity and 'infinite numbers'. In particular, participants' 

conceptions as they attended to the number of points 'missing' from the shorter of two 

line segments are of interest. In addition, this study explores what sort of connection, if 

any, participants made between a geometric representation of infinity and a numeric one. 

The following specific research questions are addressed: 1) What connections do 

participants make between geometric and numeric representations of infinity, i.e. 

between points on a line and real numbers? 2) What can be learned about participants' 
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conceptions as they confront a bound infinity? 3) What can be learned about participants' 

conceptions of infinity as they address properties of transfinite subtraction? 

6.1 Setting and Methodology 

The participants in this study were 24 undergraduate university students in an applied 

science program. They were enrolled in "Foundations of Analytic and Quantitative 

Reasoning", a course which I taught and which was designed to develop students' 

mathematical thinking through inquiry and problem solving. The class met twice a week 

for two-hour seminars in which fundamental topics and concepts of mathematics were 

reviewed. Topics were explored through problem solving and small group activities, and 

included ideas related to patterns and numbers, properties of fractions and decimals, and 

properties of lines. One of the objectives of the course was to provide an opportunity for 

students to engage in critical analysis and personal reflection regarding some of the 

fundamental ideas in mathematics that were novel to them. The topic of infinity was 

included as one of these fundamental ideas. 

Data collection relied on three main sources: (i) individual written responses to 

'reflection activities', (ii) arguments presented during class discussions, about which field 

notes were taken that were summarized immediately after class observations, and (iii) 

follow up interviews with two of the participants. The 'reflection activities' consisted ofa 

series of written questionnaires administered over the span of the course that were 

designed to elicit participants' nai've conceptions and then to encourage them to 

reconsider, develop, and critique the underlying ideas through further individual 

questioning. This form of questioning echoed the general atmosphere of the class: 

participants were regularly challenged to critique, explain, and justify their ideas. The 
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reflection activities were used on several occasions throughout the term on a variety of 

topics, not all of which are within the scope of this study. Tasks were formulated based 

on participants' previous responses, as well as the common themes which emerged from 

the class. Participants' familiarity with this method of questioning contributed to the 

reliabil ity of their responses. 

It was important, both for research and instructional purposes, that participants' 

responses were not affected by seemingly correct solutions or the desire to appease their 

instructor. The reflections were not judged for grades, but rather, were used to develop 

discussion in subsequent classes. In order to avoid swaying participants' responses, very 

little instruction was provided initially, and it was made clear that there was no one 
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are provided following an exploration of participants' responses to the reflection 

activities. Data was also collected from follow up interviews which were conducted with 

two participants, Lily and Jack. The interviews further explored their emerging and 

lasting conceptions of infinity, and also probed the inconsistencies that surfaced in their 

responses to discussion topics and previous questionnaires. 

The interactive design of this study does not follow the typical fonnat of research 

reports. As such, the majority of the specific tasks addressed by participants are presented 

in the body of the Results and Analysis section. The study began with a two-part 

question, Qo (below). This task set the stage for exploring participants' connection 

between numeric and geometric representations of infinity. 

Qo- (a) How many fractions can you find between the numbers -T9 and -h? How do 

you know? (b) How many points are there on a line segment? How do you know? 

Later questionnaires developed in response to participants' reactions to Qo and its follow­

ups, and focused on the sets of points on line segments of varying lengths. They were 

intended to investigate ideas regarding 'infinite numbers' as well as 'infinite number' 

properties. 

6.2 Results and Analysis 

In the spirit of capturing emerging conceptions of infinity, the data presented in this 

section follows an atypical fonnat. The story of participants' engagement in this study is 

unfolded much as it occurred: as a journey of developing understanding. This section is 

organised into four parts beginning with participants' initial reactions, and ending with 

their infonned reflections after months of engagement. Between these two ends lies an 

analysis of the themes which surfaced in participants' emergent conceptions of infinity. 
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In particular, three main threads weave through the following sections. The first thread 

speaks to participants' reluctance to engage with the idea of infinity - realistic experience 

and practical needs were persuasive factors in some participants' reasoning. A second 

thread is recognised in participants' inconsistent intuitions and approaches toward infmity 

- one such example that surfaced involves participants' conflicting notions of potential 

and 'measuring' infinity. A third thread relates to an observed disconnect in participants' 

conceptions of real numbers and their geometric representation as points on a line. 

6.2.1 Bound Infinity: Numbers and Points 

From the early stages of the study, a clear disconnect in participants' conceptions of 

numbers and points on a real number line was observed. Typical arguments to item Qo(a), 

which concerned the number of fractions between /9 and -T7' are exemplified by the 

following two responses: 

"Infinite. Because there are endless numbers that can be put into the numerator or 

the denominator and still making sure the fraction is larger than T9 and smaller than 

T7"; and "You can find an infinite amount of fractions in between T7 and 19 because 

you can continue to add digits after the decimal point forever (e.g. fg, ~'~, 1.~~25, etc.) 

making the fractions a little bigger or smaller." 

A common idea in these responses is that of potential infinity. The notions of "endless 

numbers" or adding "digits after the decimal point forever" imply infinity is conceived of 

as a process. The idea of changing the numerator or denominator corresponds to an action 

that is imagined to continue "forever", and is consistent with Fischbein et al. 's (1981) 

suggestion that infinity is intuitively thought of as inexhaustible. 
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Of the responses to item Qo(a), only two of the 24 described an inconsistency with 

an 'endless' infinite existing within a bound. Robbie described a conflict between an 

'endless' infinite contained in a 'finite' interval, and refused the possibility of infinitely 

many numbers between T9 and 17 "because otherwise [[19 ] will be the only number in the 

universe." Similarly, Neil also objected to a bound infinite: he expressed difficulty with 

the idea of "getting to" the end of the interval since the process of adding decimal digits 

has "no stopping point". Instead, he suggested the quantity of numbers depended on the 

"real life situation". For instance, Neil remarked, "If you're counting like, atoms or 

something, then ... you're allowed to go really small in the decimal place. But, let's say 

you're counting computers, you're not going to have 0.1 or 0.2 computers." He explained 

further that it was possible to attain the end of the interval "when you have restrictions, 

such as you're only allowed to go to a certain number of decimal places." Through his 

idea of restrictions, Neil distinguished between "real life" possibilities and mathematical 

or "theoretical" ones. He suggested that "theoretically" there could be infinitely many 

numbers but "in terms of life there isn't, because life has restrictions on it," and "in real 

life situations, I don't really see it being necessary. Like, even if it was there, it's not 

necessary because it just confuses things." Neil seemed to resist engaging with infinity in 

the "theoretical" realm of mathematics because of its impracticality, suggesting he prefers 

"just kind of ignoring it [infinity], kind of, to make the situation easier." 

In response to item Qo(b), regarding the number of points on a line segment, the 

majority of participants (17 out of 24) indicated that points were either the places that a 

line segment begins and ends, or else they were markers that partition a line segment into 

equal units. These responses were surprising in light of participants' responses to item 
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Qo(a), and their ideas regarding the infinite quantity of numerical 'values' on any line 

segment. Participants' arguments supporting an infinite number of 'values' on a line 

segment were similar in nature to their arguments regarding item Qo(a) above. They 

described processes of finding "as many values as we want", however they distinguished 

between the finite number of points that 'existed' on a line segment and the infinite 

number of points that could be "given a value" or "labelled", Participants suggested that 

until points were "labelled" on a line segment they were not there. As before a process 

conception of infinity is recognised in participants' responses. Further, the idea of 

'finding values', or 'creating points' by assigning them numerical values, may be 

interpreted as an attempt to reduce the level of abstraction of an infinite yet bounded 

quantity to a finite number of 'marked' points. 

Participants' distinction between 'point' and 'value' prompted a class discussion 

regarding the geometry of points and lines in order to establish a shared understanding (to 

use the term loosely) of the infinite magnitude of points (rather than 'values') on a line 

segment. As participants attempted to accommodate this possibility some initial 

resistance was observed. Some participants suggested that the word 'infinity' in this 

context was used as a way to identify the unknown, claiming "it is not humanly possible 

to figure out the number of points ... so it is said to be infinite." Similarly, Jim proposed 

the possibility that 'infinity' was a label attributed to unknown quantities for which there 

does not exist a means of measurement. He related the conversation to a radio discussion 

he had heard: 

"They were talking about miracles on the radio today, and how people put the label 

'miracle' on something that's wonderful but that they don't understand necessarily, 

and it helps us to kind of put it into a category that our brains can then figure out. 
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And that might be something the same with the word 'infinity', where something 

that keeps going past any way that we can measure, we put this word onto it 

because then it's settled and we can push it out of the way and move on with our 

lives." 

Jim's suggestion that using 'infinity' as a label for immeasurable quantities as a way of 

settling controversy and to "push it out of the way and move on with our lives" resonates 

with Neil's suggestion of "ignoring" actual infinity "to make things easier." In both 

cases, participants attempted to cope with the cognitive conflict elicited by 

counterintuitive properties of infinity by avoiding engaging with the "theoretical" realm 

of mathematics and restricting their attention to the "realistic" domain of "measurable" 

entities. 

Other participants attempted to accommodate the idea of an infinite number of 

points on a line segment by shifting the process of an infinite extension (e.g. 'adding' or 

'creating' points) to a process of infinite zoom by introducing the notion of point size. 

For instance, Lily remarked, "In a line, there can be many points present because the size 

of the points have no limit. It could be an extremely big point or a microscopic size 

point." Similarly, Hank reasoned that "there should be able to be an infinite number of 

points on a line segment as you hypothetically zoom in infinitely", suggesting that "there 

is no end to how far you can zoom in at a microscopic, atomic, or subatomic level and 

beyond". Hank was reluctant to commit to the idea that infinitely many points existed on 

a line segment "because of the lack of research [he had] done in this area." His reluctance 

is further illustrated by the comment that "there should be able to be an infinite number of 

points", rather than 'there are an infinite number'. 
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The idea of 'microscopic' or 'subatomic' sized points might have developed as an 

extrapolation of scientific knowledge pertaining to the composition of physical entities, 

such as atoms from subatomic particles. Tall (1980) also suggested the notion of point 

size might develop from physical knowledge, noting that "[p]hysical points have size 

when they are marked with the stroke of a pen" (p.272). Alternatively, some participants' 

ideas of point size stemmed from an association that participants were making between 

point and number. This perspective was exemplified in Dylan's statement: 

"0, 1,2 those would be big points, or you could have 0,0.5, 1, 1.5, then those would 

be smaller points. And you could go smaller or bigger depending on what you want 

to do." 

Thus, a microscopic point might be associated with the number 0.00 ... 001, whereas "big 

points" were associated with whole numbers; much as the gradients on a ruler distinguish 

between whole measures and fractional measures with marks of different sizes. 

The association between point size and numeric value, although different from the 

conventional one, was nevertheless an early connection between real numbers and their 

representation on the number line. Further, it seemed to indicate a change in participants' 

conceptions as they had begun to connect geometric and numeric representations of 

infinity. However, subsequent questionnaires revealed that participants' point-number 

correspondence was flawed and inconsistent, if it was made at all. 

The questionnaire following this discussion related to the number of points on 

line segments of different lengths, and prompted participants to reflect on the number of 

points 'missing' from the shorter of the two segments. The following specific question 

was posed: 
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Qt. Consider line segments A and C again. Suppose that the length of A is equal to 

the length of C + x, where x is some number greater than zero, as depicted below. 

What can you say about the number of points on the portion of A whose length is x') 

A --- _ 

(' -------­
.~. 

x 

As in previous questionnaires, participants offered process-oriented responses to QJ, such 

as Levon's argument that the segment with length x "has an infinite amount of points ... 

because you can put as many points as you wish on that tiny portion." Participants 

reasoned that even a very small line segment was composed of an infinite number of 

points: "Although the portion of x is small, it still contains an infinite number of points 

within it", and "there are an infinite number of points between the start and end point. .. 

Regardless oflength". In order to investigate both participants' rationale when comparing 

the number of points on line segments of different lengths, and also participants' 

intuitions regarding subtracting infinite quantities, Q2 (below) presented their conclusions 

with a slight twist. 

6.2.2 Subtracting Infinity: Intuition of 'Measuring Infinity' 

Q2. On a previous question, you reasoned that two line segments A and C both have 

infinitely many points. 

A----------­
C 

x 

Suppose that the length of A is equal to the length of C + x, where x is some number 

greater than zero. You also previously suggested that the segment with length x has 

infinitely many points. That is, the 00 points on A minus the 00 points on C leaves an 

00 number of points on the segment with length x. Put another way, CIJ - 00 = 00. Do 

you agree with this statement? Please explain. 
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Participants' responses to Q2 revealed inconsistencies in their conceptions, as well 

as a strong intuitive resistance to the idea of subtracting infinite quantities. Jack, for 

example, experienced a conflict as a conception of infinity emerged that contrasted his 

intuition. Previously, Jack had described infinity as a "hypothetical number" that is "the 

biggest number you can get", and for which "you'd have to count your whole life and 

you still would never get there." Intuitively, Jack seemed to conceive of infinity as an 

unattainable extension of 'very big'. His comment that counting your whole life "still 

would never get [you] there" typifies a process conception of infinity. However, this 

fundamental notion of infinity was challenged by the visual representation of the two line 

segments. In response to Q2 Jack explicitly acknowledged his confusion, and wrote: 

"What I'm thinking is that if you got infinite points on A and if you got infinite on 

C, well, you're seeing that they're not equal. So how can you say that infinite points 

are equal? Like, visually, you're seeing that A is bigger, so therefore the infinite 

number has to be bigger on A than the infinite number on C. But then again, infinite 

is the largest you can get, so that's kind of confusing." 

Jack observed that the two line segments are not equal in length, and thus 

concluded that the two could not have an equal amount of infinite points despite his 

insistence that infinity is "the largest you can get." The conflict in Jack's conceptions 

might be attributed to an attempt to extrapolate everyday experiences with finite 

measurements, where length and quantity are often directly proportional. Using familiar 

experiences to make sense of novel situations is considered by Hazzan (1999) as an 

attempt to reduce the level of abstraction of the new concept. In the case of infinity, 

extrapolating experiences with measurement can be deemed as a conception of 

'measuring infinity' (Tall, 1980). Jack's conception of 'measuring infinity' was 
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inconsistent with his intuition of a single, never-ending infinity, and his recognition of 

this created a cognitive conflict that he was unable to resolve. 

The notion of •measuring infinity' surfaced in several participants' responses to 

Q2, however most participants neglected the inconsistency between it and their intuition 

of potential infinity. This is exemplified in Rosemary's response. Rosemary rationalized 

the expression "00 - 00 = 00" by arguing that while any line segment will have infinitely 

many points, a longer segment would have a larger infinite number of points. She also 

claimed that subtracting an infini te quan ti ty from another (albeit "larger") infini te 

quantity would leave "a lot of points ... extending into infinity" and "it will take forever" 

to count them. The discrepancy between her process conception of infinity, as exhibited 

by Rosemary's description of "extending into infinity" and taking "forever", and her 

measuring conception of a "larger" infinity went unnoticed. 

In addition to the contextual influence of considering 'measurable' entities such 

as line segments, part of the intuitive appeal of 'measuring intinity' may be attributed to 

participants' understanding of subtraction. An intuition of 'measuring infinity' is not only 

consistent with the extrapolation of finite measurement to conclude longer segments must 

have more points, but also it is consistent with participants' experiences subtracting 

nonnegative numbers. As Nina noted, "an infinite number subtracted by itself will equal 

o because anything subtracted by itself will be zero." The possibility that subtracting 

infinite quantities is different from subtracting finite ones only occurred to one 

participant, Levon, who suggested that "although mathematically it should equal zero, 

points on a line do not follow math reasoning." Levon reasoned that since "every line has 

infinite points ... when you subtract infinite from infinite you will still get infinite." 
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Although Levon seemed to consider "math reasoning" as restricted to finite entities, his 

statement suggested a dawning awareness of a distinction between arithmetic properties 

of numbers and transfinite numbers. Conversely, Nina and the majority of participants 

did not consider the possibility that an arithmetic operation might have different 

properties when applied to infinity. Rather, Nina's intuition that "anything subtracted by 

itself will be zero" was coercive, and may have encouraged expanding her notion of 

infinity to include the idea of 'measuring infinity'. 

Of the various responses to Q2, Lily's was unique. In her response, she disagreed 

with the possibility that 00 - 00 = 00. She wrote: 

"1 disagree with this statement. For example, JI is an infinite (on going) number. If 

we subtract JI - JI the answer is 0, NOT 00. But, if there is a restriction that says we 

can't subtract by the same number it could still be an infinite number, but just a 

smaller value. For example, JI - 2JI = -JI, is still an infinite number, only negative." 

Lily appeared to conceive of infinity as potential - her use of the qualifier "on going" to 

describe her notion of an "infinite number" corresponds to a process conception of 

infinity. However, the on-going process m Lily's conception is applied, not to the 

magnitude of her "infinite number", but to its infinite decimal representation. Lily's 

objection to Q2 seems to stem from confusion between an infinite magnitude, such as the 

number of points on a line segment, and the infinite number of digits in the decimal 

representation of JI. Her use of JI to justify claims about infinite magnitudes is indication 

of a disconnect between points on a line and real numbers - Lily seemed not to associate 

JI with an individual point on the number line. 

Another interesting aspect of Lily's response was her use of "restrictions." She 

proposed that the difference between two 'infinite numbers' might be another 'infinite 

77 

Although Levon seemed to consider "math reasoning" as restricted to finite entities, his

statement suggested a dawning awareness of a distinction between arithmetic properties

of numbers and transfinite numbers. Conversely, Nina and the majority of participants

did not consider the possibility that an arithmetic operation might have different

properties when applied to infinity. Rather, Nina's intuition that "anything subtracted by

itself will be zero" was coercive, and may have encouraged expanding her notion of

infinity to include the idea of 'measuring infinity'.

Of the various responses to Q2, Lily's was unique. In her response, she disagreed

with the possibility that 00 - 00 = 00. She wrote:

"1 disagree with this statement. For example, JI is an infinite (on going) number. If

we subtract JI - JI the answer is 0, NOT 00. But, if there is a restriction that says we

can't subtract by the same number it could still be an infinite number, but just a

smaller value. For example, JI - 2JI = -JI, is still an infinite number, only negative."

Lily appeared to conceive of infinity as potential - her use of the qualifier "on going" to

describe her notion of an "infinite number" corresponds to a process conception of

infinity. However, the on-going process m Lily's conception is applied, not to the

magnitude of her "infinite number", but to its infinite decimal representation. Lily's

objection to Q2 seems to stem from confusion between an infinite magnitude, such as the

number of points on a line segment, and the infinite number of digits in the decimal

representation of JI. Her use of JI to justify claims about infinite magnitudes is indication

of a disconnect between points on a line and real numbers - Lily seemed not to associate

JI with an individual point on the number line.

Another interesting aspect of Lily's response was her use of "restrictions." She

proposed that the difference between two 'infinite numbers' might be another 'infinite

77



number' if there are appropriate restrictions placed on the quantities. By restricting the 

'values of infinity' she reasoned that it is possible to attain "an infinite number, it [will] 

just be a smaller value." Appending "restrictions" allowed Lily to conceive of 'infinite 

numbers' with different sizes, despite the cont1ict with her description of infinity as "on 

going". The notion of infinities with 'different values' is eonsistent with an intuition of 

measuring infinity (Tall, J980), and serves as an example of reducing the level of 

abstraction. According to Hazzan, this can be seen as another case of using familiar 

procedures to cope with novel and abstract concepts: Lily applies the familiar procedure 

of subtracting real numbers to cope with the concept of subtracting transfinite ones. 

6.2.3 'Infinite Numbers ': On-going Decimals 

Lily's confusion between an infinite number of clements and an infinite number of digits 

in one particular element emphasised the disconnect observed in the early stages of the 

study between numeric and geometric representations of infinity. Lily's attempt to 

formulate an argument that was consistent with her experiences and intuitions about 

number and magnitude prompted a follow up to Q2. This follow up questionnaire (Q3) 

recalled Q2, presented Lily's argument verbatim, as well as a similar one, and asked 

participants to elaborate on whether or not they agreed with the arguments. 

Q3' Recall [Q2 as quoted above]. 

Student X: [Lily's response as quoted above] 

Student Y: I disagree with this statement. You can subtract two infinite numbers and 

NOT end up with 00. For example, ~ is an infinite number, but t- t = 0, NOT 00. 

Also, ~ and i are both infinite (on going) numbers, but if we subtract ~ - i = %= ~ = 

0.5, which is not an infinite number. But sometimes it's possible to subtract two 
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infinite numbers and get an infinite number. For example, t- f, = i, which is infinite 

and smaller than ~. So, sometimes 00 - 00 = 00, but usually not. 
~ 

What may appear as a rather provocative line of questioning was a part of the 

class milieu where many ideas were challenged by offering controversial examples for 

participants' critique. The rationale for this question was to identify whether Lily's ideas 

associating magnitude and decimal representation were recognised by participants as 

inaccurate, or whether they were readily taken up. The intent was also to investigate if 

participants were connecting real numbers with their representations as points on a line, 

and to distinguish between potential confusion with the magnitude of irrational numbers 

and the magnitude rational numbers. 

Most participants (22 out of 24) agreed with at least one of the arguments in Q2, 

which came as a surprise in light of the common description of infinity as the "largest 

you can get". Confusion between infinite magnitude and infinite decimal representation 

revealed two distinct interpretations of 'infini te numbers', and also confirmed a 

disconnect in participants' conceptions of geometric and numeric representations of 

infinity. For the participants who agreed with both arguments, confusion between 

magnitude and representation was broad: they ignored the finite magnitude of both 

rational and irrational numbers. For instance, Janis wrote: 

~ and i are both infinite (on going) numbers but when subtracting them your result is 

~ which is not infinite. This proves that an infinite number subtracting by another 

infinite number is not always another infinite number. As a result the statement 00 ­

00 = 00 is not true because sometimes the result is infinite but a different value and 

other times the result is not infinite. 
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In her response, Janis readily accepted the arguments of students X and Y, neglecting the 

differences between a particular (finite) value and an infinite quantity. Janis used the 

infinity symbol to represent numbers of different magnitudes, and as such, exemplified 

participants' notions that infinity has no 'specific value'. The dynamic nature of this 

conception can be interpreted as an attempt to reduce the level of abstraction of an entity 

that is beyond the realm of her imagination. Janis's attempt to extrapolate her experiences 

with fjnite quantities, and also to use them explicitly (though perhaps unknowingly) to 

justify her notions of infinity, is further indication of an attempt to reduce the level of 

abstraction of the expression '00 - 00'. 

Other participants held a slightly different conception of 'infinite number' - they 

recognised rational numbers as finite quantities and associated them with points on a 

number line, but did not make the same association with irrational numbers, considering 

them infinite quantities. This interpretation was exemplified in Rosemary's response to 

Q3. When addressing student X, Rosemary remarked: 

1t - IT = 0 that is correct because one is taking away the same amount of points from 

what they initially began with will give 0, but in the line segment question, the 

amount of points in x (which is r:;I) amount) is much less than the amount of points in 

A and C. Which because of this, I agree with Student X's second statement of how 

there should be restrictions. In this case, points in x are less than points in A or C. 

As in Q2, Rosemary's response is consistent with the idea of 'measuring infinity', using 

Lily's notion of 'restrictions' to accommodate the possibility that a longer segment will 

have a greater number of points. Further, Rosemary identified with Lily's argument 

regarding IT - IT, alluding to the possibility of a line segment having 1t-many points. Her 

remark that IT - IT = 0 is correct because "one is taking away the same amount of points 
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from what the initially began with" suggests she imagined the magnitude of TC as 

analogous to the quantity of points on the segment and exemplifies participants' general 

confusion regarding the magnitude of irrational numbers and their geometrie 

representation as points on a number line. 

Additional evidence of Rosemary's attempts to reduce the level of abstraction of 

subtracting transfinite numbers is seen in her response to student Y: 

Student Y states: ~ - i = i (which is an 00 number) but ~ - i = %(which is only 0.5 

and not an 00 number). Well, when we represent these numbers on a number line 

[drew two line segments, one from 0 to 15 and one from 0 to ~, and labelled the 

segments A and B, respective~yJ then won't both line segments have 00 points? (But 

of course segment B will have more than segment A) 

Once again, Rosemary appealed to her intuition of 'measuring infinity' as she related 

student Y's numeric example to its geometric representation. In contrast to her use of 7I, 

Rosemary distinguished rational numbers from infinite quantities. Although she stated 

that i was an "infinite number," she observed its specific value on the number line. 

Similarly, she remarked that though ~ was not infinite itself (it "is only OS'), when 

represented on a number line she acknowledged there were still infinitely many points 

between a and ~. This distinct handling of rational and irrational numbers suggests a 

misconception about real numbers: whereas rational numbers were associated with 

points, irrational numbers were not. Worthy of note is Rosemary's use of the words 

"infinite number": both to represent a number with infinitely many (nonzero) digits in a 

decimal representation, as well as to represent the infinite quantity of points on a line 
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segment. It would be interesting to see if Rosemary's measuring conception would be so 

persuasive had she not applied the same terminology to two different notions. 

6.2.4 After Instruction: Robbie and Grace 

At the end of the course, a class discussion was held on equivalences of infinite sets, as 

well as on the distinction between an infinite decimal expansion and an infinite quantity. 

The instructional discussion regarding correspondences included the following well­

known geometric construction of a bijection between two line segments AB and CD. The 

construction begins by connecting the endpoints of AB and CD with line segments that 

extended past the endpoints of CD to meet at a point labelled p, as depicted in Figure 6.1. 

p 

C D 

A B 

Figure 6.1: Triangle Construction 

An arbitrary point, w, can be labelled on AB and connected to the point p by a line 

segment. The connecting segment will intersect CD at a point r, as depicted in Figure 6.2. 

p 

A L.-__~__...:::,.B 

Figure 6.2: Coupling Points 

With this construction, it is possible to pair up each point on AB with exactly one point 

on CD. Conversely, a ray from p to any point on CD can be extended to meet a point on 

AB in a unique way. In this manner, every point on CD is paired with exactly one point 

on AB. Thus a one-to-one correspondence is constructed between the set of points on AB 
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and the set of points on CD. Most participants easily followed the construction, though 

there was significant intuitive resistance to the idea that the longer line segment would 

not have more points. Lily, for example, suggested that "maybe it would look like it [the 

ray from pta AB] touched every point in that line, but if we zoom in, maybe there would 

be one point that it didn't touch" since the segment "could have holes" or there "might be 

some kind of minor error" in the correspondence construction. 

Participants who accepted the argument did so by focusing on the process of 

constructing the correspondence. Robbie, who had consistently described infinity as 

'endless', reasoned: 

"We can draw as many lines as we want from p to B [AB], and each time each line 

will only intersect with one point on lines [CD] and [AB]. When that happens, they 

paired up to make a set coordinate." 

Similarly, Grace remarked: 

"There is a one-to-one ratio of points on each of the line segments and since each 

line segment has an infinite number of points, the one-to-one ratio will stay constant 

forever." 

Both Robbie and Grace were comfortable with the correspondence argument and 

accepted it as the means for comparing these sets of points. Establishing one-to-one 

correspondences between infinite sets is seen by Dubinsky et a!. (2005a) as 'acting' on 

those sets and, as such, indicates an object conception of infinity. While Robbie and 

Grace were able to 'act' on the two sets, they nevertheless referred to ideas related to 

potential infinity, such as the process of "drawing as many lines as we want", and the 

suggestion that the "ratio will stay constant forever". Rather than treating the sets as 
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completed objects, Robbie and Grace attributed the infinite process in their conceptions 

to the bijection - shifting the process from one aspect of the sets to another. 

6.2.5 After Instruction: Lily and Jack 

After the end of the course, follow up interviews were conducted with two participants: 

Lily and Jack. Lily and Jack were chosen for interviews because of their enthusiasm 

toward engaging with, and critiquing, notions of infinity. Both participants were vocal 

during discussions, and were comfortable sharing their intuitions and explaining their 

reasoning in the written portion of the study. In addition, Lily and Jack exhibited a desire 

to clarify their thinking, and were eager to continue exploring properties of infinity 

through further questioning and conversation. 

The interview with Lily readdressed her conception of n as an 'infinite number' 

after she had been instructed on the distinction between infinite magnitude and infinite 

representation, as well as on the finite value of n. Since it was the number of decimal 

digits that gave n its infinite quality, Lily was asked to speculate on the number of 

decimal digits of a rational scalar of 'IT. She reasoned, "if we times it [n] by 3 it'll just be a 

bigger number, with more digits." As with the line segments, Lily expressed ideas 

consistent with' measuring infinity': she associated "bigger" with "more," believing that 

3n would be infinite but a "bigger infinite" with "more digits" than n. 

Lily's perception of the "infinite size" of n persisted despite instruction and also 

in conflict with her ideas regarding 3.14 as an approximation of n. She claimed that 3n 

was "3 times a number that's really big." To detemline the magnitude of 31[, Lily used the 

familiar number 3.14, yet she was surprised to calculate that triple this number was only 

about 9: "let's say 'IT is 3.14, then times 3 is going to be big. Well, not big, but (pause) 
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well, kind of triple?" Notwithstanding Lily's attempts to reduce the level of abstraction of 

n by working with 3.14, it seemed difficult for her to accept n as a small number. When 

asked about the possibility of measuring a length of n em, she claimed that one would 

need "a really big ruler" with huge spaces between each whole number calibration to 

accommodate all of n's decimal digits. She argued that since n's expansion was infinite 

and never-ending, then any segment of length n would have to be "really long, until, if 

possible, there's an end to it." Lily seemed to ignore the actual magnitude of each of n's 

decimal digits, which, together with her process conception of a never-ending infinite, 

might have contributed to her notion of n as very large, despite the relatively small 

magnitude ofJ.14. 

The struggle to accommodate conflicting ideas, such as Lily faced with her 

conceptions of n, also surfaced in the interview with Jack. In his written responses, Jack 

had toiled with his competing conceptions of potential and measuring infinity. Following 

instruction, Jack continued to express inconsistent notions of infinity as he attempted to 

reconcile his naIve understanding with a nonnative one. The interview with Jack began 

by recalling class instruction on the correspondence between points on line segments of 

different lengths. 

Jack was easily able to recreate the bijective argument presented above. However, 

he insisted, "that A [AB] is bigger, so therefore the infinite number has to be bigger on A 

[AB] than the infinite number on C [CD]". Jack's conception of measuring infinity was 

compelling, and he continued to struggle with the conflict between it and his intuition 

that infinity "is the largest you can get" and is "never-ending". In an attempt to challenge 

his intuition of a 'larger' infinite number of points on segment CD, Jack was asked to 

85 

well, kind of triple?" Notwithstanding Lily's attempts to reduce the level of abstraction of

n by working with 3.14, it seemed difficult for her to accept n as a small number. When

asked about the possibility of measuring a length of n em, she claimed that one would

need "a really big ruler" with huge spaces between each whole number calibration to

accommodate all of n's decimal digits. She argued that since n's expansion was infinite

and never-ending, then any segment of length n would have to be "really long, until, if

possible, there's an end to it." Lily seemed to ignore the actual magnitude of each of n's

decimal digits, which, together with her process conception of a never-ending infinite,

might have contributed to her notion of n as very large, despite the relatively small

magnitude ofJ.14.

The struggle to accommodate conflicting ideas, such as Lily faced with her

conceptions of n, also surfaced in the interview with Jack. In his written responses, Jack

had toiled with his competing conceptions of potential and measuring infinity. Following
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he insisted, "that A [AB] is bigger, so therefore the infinite number has to be bigger on A

[AB] than the infinite number on C [CD]". Jack's conception of measuring infinity was

compelling, and he continued to struggle with the conflict between it and his intuition

that infinity "is the largest you can get" and is "never-ending". In an attempt to challenge

his intuition of a 'larger' infinite number of points on segment CD, Jack was asked to
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consider the number of points on two circles of different circumference. He claimed there 

were an infinite number of points because "drawing a line from the centre to the side 

[drew the radius of the circle], you can draw infinite of them." He noted that the circles 

would have the same number of points because "you're not caring about the length of the 

radius, which makes your circle bigger or smaller. You're caring about the 360 degrees," 

that is, the number of radii, which is the same in both circles. As Jack attended to the 

number of points on a circle, a strong analogy emerged between his approach in this 

context and his approach with line segments. In both cases, Jack extrapolated his 

experience with measurement. Consequently, Jack's 'measuring' conception of infinity 

seemed to be influenced by the measurable entity itself - line segment or circle - and the 

manner in which that entity is typically measured. Whereas lengths of segments are 

determined by measuring from start to end, circumferences of circles are typically 

calculated in terms of radii. Interestingly, while the approach was the same in both 

contexts, Jack's conclusions were not: he concluded that the line segments had 'different' 

infinite quantities of points, while the circles did not. Further, when applied to the 

number of points on circles of different radii, Jack's conception of 'measuring infinity' 

did not conflict with his conception of infinity as "the largest you can get", which seemed 

to reinforce Jack's certainty of an 'endless', unsurpassable infinite. 

In an attempt to draw to Jack's attention the inconsistencies stemming from his 

intuition of 'measuring infinity', we then proceeded to 'cut open' and 'flatten' each 

circle, as in Figure 6.3 below. 
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Figure 6.3: Flattening the Circle 

Jack judged that even though the shape of the circles was now different, the number of 

points had not changed I . Jack reasoned that the two 'flattened circles' would still have an 

equinumerous set of points because "you still have that imaginary [cen treJpoint, and all 

the [radii] connecting to it." This construction is essentially the same as the triangle 

argument above: the point p corresponds to the 'imaginary centre point', and the rays 

extending from p, which correspond to the radii, intersect with the longer and shorter line 

segments an equal amount of times. The visual representation of this construction had a 

significant effect on Jack's perceptions. Comparing and equating the number of radii of 

two circles was canonical, even when they were flattened. However, Jack noted "if you 

go back to this [lines AB and CD], still, if you look at it this way it still doesn't make 

sense. The circle way kind of does. Well, not kind of, it actually does." Surprisingly, 

despite the attempt to bring to the forefront the analogy between Jack's 'measuring' 

approaches in both cases, he did not recognise it. Although Jack was troubled by the 

discrepancies he observed in his reasoning, he did not find problematic the intuition of 

'measuring infinity', which yielded the inconsistencies. Rather, when his 'measuring' 

intuition was in agreement with his intuition of potential infinity Jack was able to 

overlook visual cues that otherwise prompted conflict, as in the case with 'flattened' 

I Topologically, the line segment and circle do differ: an open line segment is isomorphic to S1\ {N}, for 
some point N. However, since the goal was to compare two circles in their 'new fonn' and not to compare 
the line segment with the circle, this fact was not addressed at that moment in the conversation. 
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circles. Eventually, lack accepted that line segments of different lengths may have the 

same quantity of points, stating it was "hard to believe, but it makes sense." 

6.3 Discu ssion 

Understanding the connection between different representations of a mathematical entity 

can be problematic for learners. Peled and Hershkovitz (1999), for instance, noted 

difficulties in learners' appreciation of different representations of irrational numbers. 

Similarly, Sirotic and Zazkis observed that the "geometric representation of irrational 

numbers was strangely absent" (2007, pA79) from the conceptualisations of many pre­

service teachers who participated in their research. In resonance with these findings, the 

undergraduate students who participated in this study had difficulty identifying specific 

numbers, both rational and irrational, as points on a number line. Further, confusion 

between the infinite magnitude of points on a line segment and the infinite decimal 

representation of numbers was identified as an obstacle to a conventional understanding 

of mathematical infinity. Participants' use of finite quantities to explain phenomena of 

transfinite ones misguided their emerging conceptions of infinity, and illustrated a 

disconnect in their conceptions of numeric and geometric representations of infinity. 

As participants addressed first numeric and then geometric presentations of 

infinity, a difference in their approaches was observed. Whereas participants drew mainly 

on an intuition of potentia I infinity to describe the process of constructing infinitely many 

rational numbers, they were more likely to conjure an image of measuring infinity when 

addressing the number of points on a line segment. As participants grappled with 

different properties and presentations of infinity, a struggle emerged between competing 

and inconsistent notions of endlessness and a large, unknown number. Participants' 
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responses support the argument that infinity is conceived of intuitively as an 

inexhaustible process, an endless potential. However, the conception of measuring 

infinity, which also emerged spontaneously during participants' comparison of infinite 

sets of points, was a persuasive factor in their reasoning, and at times overshadowed the 

association of infinity with endlessness. The conflict between coexisting intuitions of 

potential and measuring infinities, along with the seeming incompatibility of intuitive and 

normative approaches to infinity emerged as a common theme during participants' 

engagement with geometric tasks, as well as with paradoxes (Chapters 7 and 8), and will 

be addressed in detail in Chapter 9: Cognitive Leaps Toward Understanding Infinity. 

This study shed new light on participants' emerging conceptions of infinity as 

manifested in their engagement with geometric tasks. In particular, it contributed new 

insight on participants' conceptions of infinity by explicitly addressing the questions of 

participants' strategies when confronted with a bound infinite set and with properties of 

transfinite subtraction - two important questions which invited continued investigations 

in Chapters 7 and 8. As participants were challenged to accommodate the possibility that 

an infinite, 'endless' quantity of points could be bound within a finite length - or that an 

infinite number of decimal digits could be bound within a finite number - two approaches 

were observed: either participants denied the possibility of a bound infinite, or else they 

avoided dealing with the bound altogether. Participants who avoided the bound 

demonstrated a resistance toward the idea of the uniform and 'infinitely small' size of 

points. Instead, they introduced the idea of an 'infinite zoom', and thereby were able to 

focus on an infinite process without explicitly acknowledging the bound. Attributing 

different sizes to points enabled participants to imagine an infinite which continued 
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indefinitely, though not as an extension of the idea of 'very big', but as an extension of 

'very small'. Interestingly, although some participants attributed magnitudes of 

increasingly smaller size to points with the idea of' infinite zoom', they did not make the 

same association for the place value of decimal digits of irrational numbers. 

An important contribution of this study relates to uncovering participants' naiVe 

and emergent conceptions of transfinite subtraction. The indeterminacy of transfinite 

subtraction was problematic for most participants. In particular, resistance toward the 

possibility that 'co - co = co' surfaced despite participants' previous assertions that the 

number of points on a segment was infinite "regardless of length". As a means to cope 

with the indeterminacy of transfinite subtraction, the intuition of 'measuring infinity' 

emerged. Participants were more readily able to introduce the idea of infinities of 

'different sizes' than they were to conceive of an arithmetic operation whose properties 

cont1icted with their prior understanding of subtraction. This study offers a first glimpse 

at learners' attempts to make sense of arithmetic properties of 'infinite numbers'. It also 

opens the door for further investigation regarding the specific conceptual challenges of 

transfinite subtraction, which are considered in Chapter 9: Cognitive Leaps toward 

Understanding Injinity. 
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CHAPTER 7: 

PARADOXES AS A WINDOW TO INFINITY 

This study examines approaches to infinity of two groups of university students with 

different mathematical background: undergraduate students in liberal arts programs and 

graduate students in a mathematics education master's program. Data are drawn from 

participants' engagement with two paradoxes - Hilbert's Grand Hotel and the Ping-Pong 

Ball Conundrum - the results of which have been presented in part in Mamo10 and 

Zazkis (2008). 

Paradoxes of infinity have provoked controversy and discussion since Zeno of 

Elea began speculating on the possibility of infinite subdivisions of space. The discussion 

and debate provoked by mathematical paradoxes, such as those of Zeno, can be used by 

educators as an important instructional tool to help bridge the gap between mathematics 

and education, and to offer an opportunity for participants to develop their mathematical 

thinking (Movshovitz-Hadar & Hadass, 1990). A helpful instructional tool can be also 
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used as a research tool (Zazkis & Leikin, 1987). As such, this study uses paradoxes as a 

research tool to investigate participants' intuitive and emerging understanding of infinity. 

Participants' responses to paradoxes regarding infinity reveal potential cognitive conflicts 

- situations in which inconsistencies in reasoning are noticed by the instructor but not yet 

by the individual (Zazkis & Chernoff, 2008). 

This study attends to learners' conceptions before and after instruction, as we!.l as 

their methods for addressing the (potential) cognitive conflict invoked by Hilbert's Grand 

Hotel and the Ping-Pong Ball Conundrum. The following three questions are addressed: 

(1) What can be learned about participants' conceptions of infinity by considering their 

responses to the paradoxes? (2) In what ways do responses differ with mathematical 

background? (3) What specific features of the paradoxes are challenging for participants? 

7.1 Setting and Methodology 

7. J. J Paradoxes 

The two paradoxes considered in this study are presented below. They were selected 

because of their varying level of difficulty, and for the different qualities of infinity 

involved in each: while Hilbert's Grand Hotel engages participants in conceiving of the 

infinitely large, the Ping-Pong Ball Conundrum requires coordinating three infinite sets, 

one of which encompasses the infinitesimally small. The normative resolutions to both 

Hilbert's Grand Hotel and the Ping-Pong Ball Conundrum are found in Chapter 3. 

Hilbert's Paradox: The Grand Hotel 

The Grand Hotel has infinitely many rooms and no vacancy. If only one 

person is allowed per room, how can the hotel accommodate a new guest? 
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The Ping-Pong Ball Conundrum 

An infinite set of numbered ping-pong balls and a very large barrel are 

instruments in the following experiment. which lasts 60 seconds. In 30 

seconds. the task is to place the first 10 balls into the barrel and remove the 

ball numbered 1. In half of the remaining time, the next 10 balls are placed 

in the barrel and ball number 2 is removed. Again. in half the remaining 

time (and working more and more quickly), balls numbered 21 to 30 are 

placed in the barrel, and ball number 3 is removed, and so on. After the 

experiment is over, at the end of the 60 seconds, how many ping-pong balls 

remain in the barrel? 

7.1.2 Participants 

Thirty-six university students participated in this study. Group 1 (Gl) consisted of 16 

practicing high school mathematics teachers enrolled in a master's program 10 

mathematics education. These participants held Bachelor's degrees in mathematics or 

science, but had no prior formal exposure to Cantorian set theory. The graduate students 

were enrolled in 'Foundations of Mathematics', a course for practicing teachers that was 

taught by an instructor in the Faculty of Education. The course explored some of the 

foundations of mathematics and mathematical thought, and focused on 'big ideas' and 

'great theorems'. Cantor's theory of transfinite numbers was one of the 'big ideas' 

presented in the course, following the 'great theorem' establishing that the rational 

numbers have the same cardinality as the natural numbers. 

Group 2 (G2) consisted of 20 undergraduate students in liberal arts and social 

sciences who had no mathematical background beyond high school. The undergraduate 

students were enrolled in a course that I taught called 'Foundations of Academic 

Numeracy', which was designed to develop quantitative reasoning and critical analysis. 

The topic of infinity was included in order to introduce participants to some of the 

fundamental ideas in mathematics. In both groups, the paradoxes were used to elicit 
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participants' ideas and to provoke discussion about some of the surprising qualities of 

mathematical infinity. Though, understandably, the subsequent mathematical discussion 

and the level of fonnalism in the presented material varied significantly, a similar 

approach of engaging participants with the paradoxes was used in both groups. 

7.1.3 Data Collection 

Data are drawn from two main sources: I) individual written responses before and after 

instruction, and 2) arguments presented during class discussions, about which field notes 

were taken that were summarized immediately after class observations. Regular meetings 

with the instructor of the graduate course were held in order to develop tasks, and for 

debriefmg purposes after those tasks were carried out. In order to access the data, the 

study began by presenting participants with Hilbert's Grand Hotel and asking them to 

record their ideas individually. Group and class discussions followed, during which 

participants' resolutions, and the nonnative mathematical solution, were presented. 

Following the instructional discussion, participants readdressed the paradox and were 

asked to explain why they agreed or disagreed with the nonnative resolution. 

A similar method of data collection was used when participants were presented 

the Ping-Pong Ball Conundrum. After participants recorded their initial responses, group 

and class discussion included fonnal instruction on cardinality and infinite sets. The 

instructional tasks included comparing infinite countable sets using one-to-one 

correspondence, or 'coupling', and the conventional mathematical resolution presented in 

Chapter 3 was explained. Participants then were asked to readdress in writing the original 

question - At the end of the experiment, how many ping-pong balls are left in the barrel? 

The analysis focused on identifying common threads in participants' individual written 
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responses as well as their arguments presented during the discussion. In what follows the 

themes that emerged are presented and exempllfied with excerpts from participants' 

work. The excerpts chosen were the most illustrative ones that exemplified the common 

themes emergent in both groups; they came mostly from the liberal arts students who 

were a very expreSSIve group. 

7.2 Results and Analysis 

7.2.1 Hilbert's Grand Hotel 

Despite the varied levels of mathematical background and skill amongst the participants, 

initial reactions to Hilbert's Grand Hotel paradox were fairly consistent throughout. Both 

groups of participants provided nai've responses that were strongly influenced by practical 

experiences. An underlying theme involved the conceptual difficulties associated with the 

hotel's lack of vacancy. 

Participants' responses before instruction: holding on to reality 

The leap of imagination necessary for conceiving of an infinite hotel and for resolving the 

paradox was difficult for a significant number of participants to make. Nearly half of the 

participants in both Gland G2 initially provided responses that reflected practical 

expenence, but which avoided resolving the mathematics. Such responses included 

recommending the new guest sleep in the lobby, having the manager vacate his own 

room, or putting 2 or more guests in the same room, despite the fact that this contradicted 

the 'givens' of the problem, that is, accommodating the new guest in a personal room and 

allowing only one occupant per room. 

Participants' realistic experiences also influenced their thinking as they 

considered the premise of the paradox, objecting, for example, to the feasibility of 
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infinitely many guests since "the world only has a couple billion people [sic]." One G2 

student reasoned, "In order for every room to be full there would have to be infinite 

guests, which is impossible." 

Other participants looked for loopholes, such as the possibility that the rooms are 

occupied, but not by guests. For instance, Jinuny (G2) argued: 

"I don't understand how infinitely many rooms could be full. The manager says 

they are full, but full of what? Maybe they are filled with boxes or furniture and the 

manager could clear one of them out for [the guest] ... It just doesn't make sense 

that if there are infinitely many rooms that they all could be full. It defies logic!" 

Interestingly, although participants criticized the idea of infinitely many guests, they did 

not object to an infinite number of rooms in the hotel. This may be attributed in part to 

the possibility that participants could conceptualise a hotel that extends into space 

without attending to the actual amount of space such a hotel would encompass. However, 

the idea of a full hotel was problematic for many participants due to the conceptual 

challenges associated with/Wing the hotel. 

Participants' responses before instruction: filling the hotel 

A common difficulty that arose for both groups of participants - those with a formal 

mathematical background and those without - was the idea of completely filling an 

infinite hotel. Several participants accused the manager of false advertising (some even 

threatened to sue). They insisted if "there are infinitely many rooms, you can never really 

be completely full, 00 + I is still 00" or "if all the rooms are full there's a set number of 

rooms." Typical responses from both groups also included remarks such as, "Infinity is 

an always increasing number, so there should be a room available." These remarks 

suggest infinity is conceived of as a dynamic entity, an "always increasing number" that 
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is never attained, supporting the similar proposition of Fischbein (2001). Furthennore, 

participants attributed the quality of completion to a finite entity or "set number", and 

some could not address the question of accommodating a new guest, as they were unable 

to overcome the perceived impossibility of filling the hotel. Resistance to a completed 

infinite entity highlights participants' difficulty in accepting the idea of actual infinity 

embraced in a 'full' or 'completely filled' hotel. Further, the attention to filling the hotel 

demonstrates participants' process conceptions corresponding to potential infinity. 

An argument given by the liberal arts students relating to the 'completed', full 

hotel suggested they had difficulty separating philosophical beliefs with mathematics. 

Some participants reasoned that if a hotel could have infinitely many rooms, then the new 

guest would already have a room because they "must be part of the infinite." These 

participants seemed to associate infinity with an all-encompassing entity - a conception 

that has yet to be expressed explicitly in participants' reasoning regarding the infinite of 

numbers or points, yet which may have a tacit influence on their resistance toward 

encapsulating actual infinity as an object. The all-encompassing infinite was a persuasive 

line of reasoning, and was, for some, the preferred argument even after instruction. 

Participants' responses after instruction: an endless shift 

Overall, the mathematics education students readily accepted the normative resolution, 

which involves shifting the set of guests by one room to free up a space. They were also 

able to extend the argument to variations of the paradox that included accommodating 

arbitrary finite numbers of guests into the hotel, such as accommodating The Beatles or 

the Vancouver Canucks. Further, the graduate students could extend their reasoning to 

the 'Infinite Towers' variation, which involves accommodating a countably infinite 
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number of guests after a fire causes an evacuation of one of the two towers. In contrast, 

the liberal arts students, even those who accepted the normative resolution, were more 

resistant to it. Their responses after instruction tended to be based on their struggles to 

make sense of the mathematics, as well as on the 'real life ' practicality of the situation. 

A process conception of infinity is recognized in typical responses of both Gland 

G2 participants that accepted the normative solution in their references to "shifting over" 

rooms, which would "never stop since there's an infinite amount of people." These 

participants described an endless "chain reaction" that was set in motion when the guest 

in the first room displaced his neighbour - a notion that is further consistent with a 

process conception of infinity. Such responses can also be interpreted as attempts to 

reduce the level of abstraction of operating on infinitely many objects. Rather than 

applying the transformation of shifting rooms to the entire set of guests, participants 

applied the transformation guest by guest. This "chain reaction" coincides with Hazzan's 

(1999) observation that students will attempt to reduce the level of abstraction of set 

transformations by operating on a single element in a set rather than the entire set. 

After participants were exposed to the normative solution, a struggle emerged 

between conflicting notions of infinity as inexhaustible and also as a large, unknown, 

number. Some G2 participants questioned what would happen to the 'last' guest, while at 

the same time acknowledging there could not be a 'last' guest since infinity was never 

ending. Eric, a liberal arts student, expressed difficulty with the paradox, and initially 

reasoned that the "rooms would go on forever" and "you could keep on adding people 

forever to fill them." After reflecting on the nonnative resolution, Eric remarked: 

"This works because although the infinite rooms are infinitely full, it makes space 

for you by making one of those rooms free. I was first troubled by the idea of one 
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'last' person not having a room, but then I realized that the last person would ask 

me to shift rooms, and so on, so there would be a constant rotation." 

Eric's descriptions of "rooms that go on forever," "adding people forever to fill them," 

and the "constant rotation" of switching rooms correspond to a process conception of 

infinity. At first, he imagined a hotel that extends indefinitely and to which new guests 

can always be added to the next empty room in sequence. Analogous to conceiving of the 

natural numbers as infinite because it is always possible to add one more to the last 

number, a fundamental aspect of Eric's initial image of an infinite hotel seems to be 

linked to the possibility (and process) of always adding one more guest. As Eric tried to 

incorporate the nonnative solution, a cognitive conflict emerged between the idea of a 

completed "infinitely full" hotel and the process-conception of "adding people forever." 

In an attempt to resolve the conflict, Eric introduced the idea of an infinite "rotation" ­

the infinite process in Eric's conception shifted from the process of adding guests to the 

process of moving them. Attributing a cyclical structure to the hotel may be Eric's 

attempt to reduce the level of abstraction of a completed, yet endless, entity. 

While the majority of both groups of participants acknowledged the nonnative 

solution on some level, G2 students continued to question and criticize the impracticality 

and inconvenience of moving so many people. For instance, Stan (G2) wrote: 

"Although I understand and agree to an extent the idea of switching rooms to make 

room #1 available, I don't think it is logical because I know that I wouldn't want to 

move rooms (call me "high maintenance") ... In all reality, I would just like to move 

on to another hotel, where I can settle in for my length of stay and not be bothered 

by moving at any given point in time." 

Similarly, Clyde (G2) explained: 
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"Well, mathematically, that answer works but realistically, the suggestion IS 

unfeasible. However, I guess this isn't a realistic scenario anyway so that answer 

does satisfy the question. I just get a funny mental image of the guest getting sound 

sleep while everyone else has to continue to shift rooms infinitely." 

The reluctance to let go of 'realistic' responses illustrates the resilience and coerciveness 

of intuitions described by Fischbein et a1. (1979). Clyde's "funny mental image" of a 

continuous room shift is similar to Eric's "constant rotation" in that the infinite process is 

attributed to the transformation of moving guests, despite the fact that each guest's 

transformation is actually finite - each guest moves only once, but there is an infinite 

amount of guests who move. Clyde's recognition that the paradox "isn't a realistic 

scenario" and that the "answer works" suggest he has realized a gap between his intuitive 

understanding of infinity and a formal one, and he is able to clarify this distinction. 

Following the relative ease with which G I participants accepted the normative 

resolution of Hilbert's Grand Hotel paradox, a more challenging task was sought. The 

Ping-Pong Ball Conundrum provided such an engagement and was presented to both 

groups in the fashion described above. 

7.2.2 Ping-Pong Ball Conundrum 

Striking similarities were found in the responses of both groups of participants regarding 

the Ping-Pong Ball Conundrum that persisted throughout their engagement. Participants' 

initial solutions to the possible number of balls remaining in the barrel at the end of the 

60 seconds can be clustered around two main themes, focusing on the rates of change and 

the possibility of ending the experiment, respectively: 

"There are infinitely many balls left in the barrel;" and 
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"The process is impossible since the time interval is halved infinitely many times, 

so the 60 seconds never ends." 

Participants' responses before instruction: rates of infinity 

The argument that infinitely many balls remain in the barrel was most frequently justified 

by appealing to the different rates of in-going and out-going balls: at each time interval 

10 balls go into the barrel, but only one is removed. Nine out of 20 liberal arts and 13 out 

of 16 mathematics education students reasoned that the number of balls remaining in the 

barrel must be a multiple of nine or "900." The typical response being: 

"There is 9x more balls in the barrel than out of the barrel at all times. At the end of 

the 60 seconds there are 900 balls in and 00 balls out." 

Sheila (G 1) elaborated on the effect of rates: 

"Every time the remaining time is halved, the equivalent change (+10 - 1) = 9 balls 

are added. So there will be an infinite of balls in the basket. Some may say that an 

infinite amount of balls have been taken out of the basket, which is true, but it is not 

an equivalent infinity to what is put in ... There will be 9 times as many in the 

basket as you took out." 

The notion of different rates of infinities seems to extrapolate common (finite) 

experiences with rates of change. As many participants correctly observed, at every n-th 

time interval, 91'2 balls remain in the barrel. This is consistent with the observation that 

participants' conceptions of infinity tend to arise by reflecting on their knowledge of 

finite concepts and extending these familiar properties to the infinite case (Dubinsky et 

al., 2005; Dreyfus & Tsamir, 2004; Fischbein, 2001). Experience with finite rates of 

change and realistic possibilities also surfaced in comments such as Jimmy's (G2), who 

observed that the experiment was "definitely outside the realm of possibility!" Similarly, 
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Timmy (G I) recognised an inconsistency with his finite experiences and his conclusion 

regarding the remaining number of ping-pong balls. He reasoned: 

"There are infinitely many time periods, therefore infinitely many times during 

which 10 balls are put in and one thrown out. So - there are an infinite number of 

balls in the basket as well as an infinite number thrown out. It doesn't make sense to 

have this result, but there it is." 

Attending to the different rates of in-going and out-going ping-pong balls is an 

approach which instantiates the use of familiar procedures to cope with novel and 

abstract concepts. According to Hazzan (1999), such an approach occurs as a method of 

reducing the level of abstraction. The rate argument might also be a consequence of a 

process-oriented approach to resolving the Ping-Pong Ball Conundrum, as the argument 

focuses on iterating individual steps indefinitely. In fact, as mentioned, the argument that 

the total number of in-going balls is nine times larger than the number of out-going balls 

holds at every point in time; it fails only at the completion of the process at infinity - a 

concept that was, in itself, problematic for participants. 

Participants' responses before instruction: an endless 60 seconds 

Another conception of infinity surfaced as participants addressed the possibility of a 

'completed 60 seconds,' arguing that the experiment could never end. As Quine (1966) 

noted, during a person's attempts to resolve certain paradoxes regarding infinity, a 

"fallacy emerges [which is] the mistaken notion that an infinite succession of intervals of 

time has to add up to all eternity" (1966, p.5). This' fallacy' highlights the distinction 

between potential and actual infinity. In terms of the ping-pong balls, conceiving of an 

inexhaustible experiment corresponds to potential infinity - a process, which at every 

instant is finite but which goes on forever. Whereas, actual infinity describes a complete 
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and existing entity of time intervals within 60 seconds, and which encompasses what was 

potential. The' fallacy,' to use Quine's term, lies not in the conception of an endless 

infinite, but rather in conceiving of potential infinity when the entity is actually infinite. 

The process conception of infinity expressed by the idea of an inexhaustible 60 

seconds surfaced in the initial responses of three out of 16 graduate students and 15 out of 

20 undergraduate students. Participants reasoned that since the intervals of time could be 

continually divided to smaller and smaller amounts without reaching zero, the experiment 

would never end. This argument is exemplified in Kenny's (G2) statement: 

"Even with 1 second left we can still divide this amount of time into infinitely small 

amounts oftime (if physics does not apply). Therefore, the experiment will continue 

into eternity and the number of [ping-pong] balls will be infinite in the barrel." 

There are at least two points of interest in Kenny's remark. The first is related to limits 

and series. Series and the limits of their corresponding sequences are fundamentally 

interconnected: limits are used in order to determine convergence, and convergence can 

be used in order to determine limits. A series ao + a, + ... + an + ... is defined as 

convergent if the sequence of its partial sums {sn}, where Sri = ao + al + ... + an, is 

convergent and the limit as n tends to infinity of {Sri} exists as a real number. Otherwise, 

the series diverges. In Kenny's argument a confusion is identified between the 

convergent series of "infinitely small amounts of time" that sum to 60 seconds and a 

divergent series that "will continue into eternity." This confusion might stem from an 

informal understanding of limits as unreachable - a common conception of college 

students (Williams, 1991), and one that is linked to a process conception of infinity 

(Cottrill et aI., 1996). 
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The second interesting aspect of Kenny's argument lies in his conclusion that the 

barrel should be infmitely full. If the experiment were to go on endlessly, then at no 

moment will the barrel contain infinitely many balls; instead it will always (endlessly) 

contain a finite quantity of balls - 9n balls. Kenny seems to hold an inconsistent 

conception of infinity: on one hand, infinity is viewed as endless, yet on the other hand, it 

is used to describe a large unknown quantity. These competing notions of infinity, that 

surfaced also in G I and G2 participants' responses to Hilbert's Grand Hotel, present a 

potential cognitive conflict, and support the suggestion that an understanding of infinity 

depends both on "conjectural and contextual influence" (Fischbein et a1., 1979, p.32). 

Partie ipants' responses after ins truction.' rates of infinity 

As mentioned, the instruction included the idea of set comparison via one-to-one 

correspondence. Also, the normative resolution to the Ping-Pong Ball Conundrum was 

presented as an alternative for consideration. Recalling the resolution presented in 

Chapter 3, correspondences exist between the sets of in-going balls, out-going balls, time 

intervals, and the natural numbers. As such, and as a consequence of the order in which 

the out-going balls were removed, the barrel ends up empty at the completion of the 

experiment. This resolution was problematic for the majority of participants. Indeed, the 

number of G2 participants who appealed to the rate argument in their responses increased 

by four participants after discussion. G 1 students also found the argument for different 

rates coercive. Roughly two thirds of them maintained this conception despite instruction. 

Resistance toward the normative resolution was, for some participants, quite 

strong. The result of an empty barrel conflicted with participants' experiences as well as 

their expectations, and as a consequence, there were participants in both GI and G2 who 
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refused to accept the resolution as a logically consistent possibility. For instance, Randy 

(G2) persisted with the rate argument, stating: 

"I can't agree with 0 balls remaining. You put in more number of balls than you 

take out. I still think my original answer is correct!" 

Similarly, Sheila (GI) insisted: 

"I will not accept a logical argument that the basket is empty. Such an argument 

would be flawed." 

Other participants took a more moderate approach to the nonnative resolution. Shelly 

(G2), for example, also continued to argue in favour of the rate argument, though she 

reflected on the normative resolution: ''I'm sure it makes sense if you're comfortable with 

the concept of infinity." 

As part of the instructional conversation, participants were challenged to name a 

ball remaining in the barrel if indeed the barrel was not empty. This challenge was given 

in order to shift the focus away from the process of inserting and removing balls, and 

toward a final result. However, both groups of participants continued to demonstrate an 

overwhelming intuitive resistance to the possibility of an empty barrel. As Kyle (G2) 

explained: 

"There is an infinite number of balls in the barrel, however it is impossible to name 

a specific ball. As soon as a number is chosen, it is possible to detennine the exact 

time ... that ball was removed ... I can't name a numbered ball that remains but then 

1 also couldn't tell you how many balls we began with because there were infinity. 

Since you are always adding more than you are taking out, you can move at 

lightning speed, and you have infinity time intervals, 1 believe the task never ends." 
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With regard to the quantity of ping-pong balls, Kyle exemplified the typical conceptions 

that emerged in participants regardless of their mathematical sophistication. Kyle seemed 

to treat infinity as a large unknown number that could be scaled, but that would always 

remain large and unknown, and hence "infinite." Kyle also concluded that experiment 

"never ends," that is, by imagining the experiment being carried out, "infinite" is 

perceived as synonymous with "never ending." 

Following instruction on cardinality equivalences, a quarter of the liberal arts 

participants and the majority of the mathematics education students were able to 

explicitly construct a one-to-one correspondence between in-going and out-going balls. 

Yet, none of the G2 participants understood the correspondence to mean the barrel would 

be empty - instead ideas of an infinitely full barrel persisted. For instance, Wendy wrote: 

"There are still infinitely many balls left in the barrel, because even though there is 

a one to one correspondence between the sets {I, 2, 3,4, ... }, {9, 18,27,36, ... }, 

the rate at which you are putting in is more than you are taking out. So even if there 

are just as many numbers in each set, they will never even out, because the process 

continues infinitely and you continue to put more in than you take out." 

The inherent contradiction in Wendy's and similar responses went unnoticed. 

Only 4 participants in G 1 (out of 36 participants) suggested that the number of 

balls in the barrel was zero after instruction, but added a comment that pointed to the 

distinction between what they "learned" and what they "believed". Timmy (G 1), for 

example, conceded: 

"I can now entertain the idea that there are no balls in the basket, but 1don't like it." 

Likewise, Leopold (G 1) commented, 
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"There are conflicting views and now I am not sure whether there is none or infinite 

balls in the basket. My gut feeling seems to want to say that there are an infinite 

number but there seems to be none as well." 

7.3 Discussion 

Paradoxes have played an important role in the history of mathematics and mathematical 

thought. The cognitive conflict elicited by a paradox can be difficult for a learner to 

resolve, particularly, as observed, when the resolution depends on notions that defy 

intuition, experience, and reality. Nevertheless, the impulse to resolve a paradox can be 

powerful motivation for a learner to refine his or her understanding of the concepts 

involved (Movshovitz-Hadar & Hadass, 1990). 

As participants responded to Hilbert's Grand Hotel paradox and the Ping-Pong 

Ball Conundrum, cognitive conflicts emerged between competing naiVe conceptions of 

infinity as endless or as a large number, and also between intuitions and nonnative 

solutions. Interestingly, while participants could conceive of infinitely many ping-pong 

balls within a barrel, they expressed difficulty with the idea of filling the hotel with 

infinitely many guests. This observation illustrates how the novel lens of paradoxes can 

help identify specific difficulties inherent in conceiving of actual infmity. This study 

invites a more refined account of participants accommodating the idea of actual infinity, 

which is the focus of the follow up study presented in Chapter 8: Accommodating the 

Idea ofActual Infinity. 

This study offers new insight on the question of how learners' responses to 

Hilbert's Grand Hotel paradox and the Ping-Pong Ball Conundrum differ with 

mathematical background. Data revealed that despite different levels of mathematical 

sophistication, both groups of participants attended to, and were challenged by, similar 
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features of the paradoxes. Responses of participants in both groups to the Ping-Pong Ball 

conundrum were surprisingly similar before, during, and after instruction, while the 

mathematics education (G 1) students, unlike the liberal arts (G2) students, found the 

resolution of Hilbert's Grand Hotel paradox unproblematic. Further, both groups of 

participants expressed notions corresponding to a process conception of infinity; however 

G2 participants were more likely to find problematic the idea of a bounded infinite set, 

such as infinitely many time intervals within a minute. This difficulty exemplifies the 

resistance towards the idea of actual infinity and may also be attributed to specific 

conceptual challenges regarding the 'infinitely small', in comparison to infinity as an 

extension of the idea of 'very big'. 

Three distinct trends were observed in the data: 

(i)� Participants dismissed the normative solution and found refuge in non­

mathematical considerations. Attending to the practical impossibility of the 

presented problems served as a cognitive conflict resolution, or, more likely, 

cognitive conflict avoidance. 

(ii) Participants attempted to� reconcile the normative solution with their naive 

conceptions. For these participants the cognitive conflict was apparent and 

presented a considerable frustration. 

(iii) Participants� distinguished between their intuitive tendency and formal 

knowledge. The cognitive conflict resolution for these participants consisted 

of separation rather than reconciliation. 

Fischbein et al. (1981) suggested that the intuition of infinity might be so deeply 

rooted that it may be extremely difficult to produce a lasting effect on it through 
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instruction. However, through participants' engagement with paradoxes, some changes in 

their intuitive approach to resolving infinity-related problems were observed, and their 

challenges have been articulated. Furthermore, participants who acknowledged the gap 

between their intuitive and formal understandings of infinity may have taken an 

important first step toward encapsulating infinity as an object. The ability to separate 

intuitive from formal understanding will be discussed in further detail in Chapter 9: 

Cognitive Leaps Toward Understanding Infinity. 

Several researchers have asserted that paradoxes offer a fruitful lens for 

investigating conceptions of infinity (e.g. Dubinsky et aI., 2005a); however reported 

research using paradoxes is limited (e.g. Mamolo & Zazkis, 2008). By considering the 

question of participants' responses to paradoxes, this study has confirmed the findings of 

prior research related to process conceptions of infinity and inconsistency in participants' 

reasoning. In addition, this study has shed new light on conceptions that might influence 

an understanding of actual infinity in broader contexts as well. For instance, the 

philosophical belief connecting infinity with an all-encompassing entity, and the 

challenges connected to the idea of a bounded infinite, are conceptions which have not 

been exposed by more conventional set comparison tasks, but which may nevertheless 

influence learners' responses in these contexts. Hilbert's Grand Hotel paradox and the 

Ping-Pong Ball Conundrum served as beneficial research tools for eliciting participants' 

ideas, provoking cognitive conflict, and identifying perceptions and intuitions that might 

present obstacles in adopting a 'conventional' understanding of actual infinity. 
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CHAPTER 8: 

ACCOMMODATING THE IDEA OF ACTUAL 

INFINITY 

This third and final study developed from the premise that an lil1derstanding of actual 

infinity goes beyond the basic requirements of encapsulation. In Dubinsky et al.'s 

(2005a) perspective, encapsulation is recognised by a leamer's treatment of infinite sets 

as completed entities upon which bijections can be applied to detennine cardinalities. 

Without doubt, these aspects are necessary, however they alone do not appear to be 

sufficient in accommodating the idea of actual infinity - a concept for which our 

intuitions and experience offer no consistent guidance. As illustrated in Chapters 6 and 7, 

participants were able to act on infinite sets and establish correspondences while still 

describing notions that were consistent with process conceptions of infinity. For instance, 

Robbie (Chapter 6) corresponded the sets of points on two line segments by expressing a 

way to 'couple' points and imagining the coupling process to continue indefinitely. 

Similarly, Clyde (Chapter 7) understood and accepted the normative resolution to 
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Hilbert's Grand Hotel paradox, yet described an 'endless chain reaction' to explain the 

transformation of shifting guests, which was in fact a finite transformation. These two 

cases offered an early indication that the manner in which participants operated on 

infinite sets - how they acted on the objects - was significant. 

Designed as a follow up to Paradoxes as a Window to Infinity (Chapter 7), this 

study delves into the conceptions of mathematics majors, graduates, and doctoral 

candidates with the intent to shed light on the mental constructs and cognitive leaps that 

are necessary and sufficient to establish meaning about actual infinity. The Ping-Pong 

Ball Conundrum and its variation, recalled from Chapter 3, are used as a lens to identify 

specific features involved in accommodating the idea of actual infinity. Specifically, this 

study identifies three main themes relating to cognitive leaps, cardinality, and how 

infinite cardinals are dealt with, and addresses their roles in participants' conceptions of 

infinity. In particular, this study explores the question: What are the necessary and 

sufficient features of accommodating actual infinity? 

8.1 Setting and Methodology 

8.1.1 Participants 

Data for this study were collected from eight participants with advanced mathematical 

backgrounds. Each of the participants had prior experience with Cantor's theory of 

transfinite numbers through formal instruction during upper level undergraduate 

mathematics courses. In particular, they were familiar with comparing infinite sets via 

one-to-one correspondence, such as corresponding the sets of natural numbers and 

rational numbers, and also with Cantor's diagonal argument establishing the set of real 
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numbers as having larger cardinality than the set of natural numbers. These ideas were 

outlined previously in Chapter 2. Participants also had substantial experience with 

infinity in calculus. The participants that were questioned in this study included students 

enrolled in undergraduate degrees in mathematics, as well as participants who had 

completed at least a master's degree in mathematics or mathematics education. 

•� Jan was a mathematics major in a south eastern state university in the USA. She 

was in her final year of the program and was very interested in the concept of 

infmity both from a mathematical and philosophical point of view. In addition to 

her background with cardinal infinity, she had informally explored aspects of 

Robinson's 'nonstandard infinity' (Chapter 2). Jan anticipated pursuing a graduate 

degree in mathematics. 

•� Maria was a classmate of Jan's in the mathematics program. Her familiarity with 

Cantor's theory included an awareness of the Continuum Hypothesis (Chapter 2), 

as well as some properties of transfinite ordinal numbers. 

•� Joey was in his fourth year of an undergraduate degree III mathematics and 

physics at a university in eastern Canada. Joey had taken upper year courses in set 

theory and analysis, both of which touched on Cantor's theory. Since his 

participation in this study, Joey had completed his degree and was searching for 

employment in industry. 

•� Marc was a doctoral student in mathematics at large south eastern university in 

the USA. His research interests included aspects of algebraic topology. He was 

also interested in mathematical logic, and was familiar with the idea of a 'super­

task' (Chapter 3). 
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•� Vince was a doctoral candidate in mathematics at a university in eastern Canada. 

Since his participation in this study, he had completed his degree, and began a 

professional research career in cryptography. 

•� Jenny was a doctoral candidate in mathematics education at a university in eastem 

Canada. Her area of research was in didactiques des mathematics, and her 

scholarly background included an undergraduate degree in mathematics and 

physics. 

•� Dion was an instructor at a university ID eastern Canada. He held a master's 

degree in mathematics education and a bachelor's degree in mathematics Dion 

taught prospective secondary school teachers in mathematics and didactiques, the 

curriculum for which included aspects of Cantor's theory, such as establishing a 

bijection between the sets of natural and even numbers. 

•� Veronica was a mathematics instructor at a private secondary school in eastern 

Canada. She had recently completed a master's degree in applied mathematics. 

8.1.2 Data Collection 

For the data collection, interviews were conducted with three of the participants, while 

data from the other five participants were collected through email correspondence. The 

two methods of data collection provided different information regarding participants' 

conceptions. Whereas the interviews offered responses that were more spontaneous, 

email correspondence offered participants the opportunity to put their thoughts in writing, 

which contributed to more precise and balanced responses. Emails were exchanged with 

the two doctoral candidates in mathematics - Marc and Vince - and also with the three 

undergraduate mathematics students - Jan, Maria, and Joey. Interviews were conducted 

113 

• Vince was a doctoral candidate in mathematics at a university in eastern Canada.

Since his participation in this study, he had completed his degree, and began a

professional research career in cryptography.

• Jenny was a doctoral candidate in mathematics education at a university in eastem

Canada. Her area of research was in didactiques des mathematics, and her

scholarly background included an undergraduate degree in mathematics and

physics.

• Dion was an instructor at a university ID eastern Canada. He held a master's

degree in mathematics education and a bachelor's degree in mathematics Dion

taught prospective secondary school teachers in mathematics and didactiques, the

curriculum for which included aspects of Cantor's theory, such as establishing a

bijection between the sets of natural and even numbers.

• Veronica was a mathematics instructor at a private secondary school in eastern

Canada. She had recently completed a master's degree in applied mathematics.

8.1.2 Data Collection

For the data collection, interviews were conducted with three of the participants, while

data from the other five participants were collected through email correspondence. The

two methods of data collection provided different information regarding participants'

conceptions. Whereas the interviews offered responses that were more spontaneous,

email correspondence offered participants the opportunity to put their thoughts in writing,

which contributed to more precise and balanced responses. Emails were exchanged with

the two doctoral candidates in mathematics - Marc and Vince - and also with the three

undergraduate mathematics students - Jan, Maria, and Joey. Interviews were conducted

113



with Dion and Veronica - the two instructors - as well as with Jenny, the doctoral 

candidate in mathematics education. 

Both methods of data collection began by presenting participants with the Ping-

Pong Ball Conundrum, which is recalled below. As in the previous study (Chapter 7), 

participants were asked to determine how many ping-pong balls remained in the barrel at 

the end of the 60-second experiment, and to explain their reasoning. The Ping-Pong Ball 

Conundrum waS chosen because of its level of complexity, its amenability to variations, 

and also because of the necessity to address a bound infinite set in the paradox resolution. 

In order to probe what aspects beyond set comparison might influence an understanding 

of actual infinity, the Ping-Pong Ball Variation (also recalled below) was presented to 

three of the participants. Jan, Dion, and Veronica were eager to engage in further 

problems regarding infinity, and as such were presented with the Ping-Pong Ball 

Variation after discussing the normative resolution to the Ping-Pong Ball Conundrum. 

The Ping-Pong Ball Conundrum 

An infinite set of numbered ping-pong balls and a very large barrel are 

instruments in the following experiment, which lasts 60 seconds. In 30 

seconds, the task is to place the first 10 balls into the barrel and remove the 

ball numbered I. In half of the remaining time, the next 10 balls are placed 

in the barrel and ball number 2 is removed. Again, in half the remaining 

time (and working more and more qUickly), balls numbered 21 to 30 are 

placed in the barrel, and ball number 3 is removed, and so on. After the 

experiment is over, at the end of the 60 seconds, how many ping-pong balls 

remain in the barrel? 

The Ping-Pong Ball Variation 

An infinite set of numbered ping-pong balls and a very large barrel are 

instruments in the following experiment. which lasts 60 seconds. In 30 

seconds, the task is to place the first 10 balls into the barrel and remove the 

ball numbered 1. In half of the remaining time, the next 10 balls are placed 
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in the barrel and ball number 11 is removed. Again, in half the remaining 

time, balls numbered 21 to 30 are placed in the barrel, and ball number 21 
is removed, and so on. At the end of the 60 seconds, how many ping-pong 

balls remain in the barrel? 

Both the Ping-Pong Ball Conundrum and the Ping-Pong Ball Variation invite a thought 

experiment in which infinitely many balls are place into, and removed from, a barrel. The 

difference between the two thought experiments is a subtle matter of which balls get 

removed - balls numbered 1, 2, 3, ... in the first experiment, and ba lls numbered I, 11, 

21, ... in the second experiment. The consequence of this distinction is that although both 

experiments essentially involve the same task - inserting and removing infinitely many 

ping-pong balls - the results are quite different. Whereas the Ping-Pong Ball Conundrum 

ends with an empty barrel, the Ping-Pong Ball Variation ends with infinitely many balls 

in the barrel. As mentioned in Chapter 3 (where a more detailed account of the 

paradoxes' normative resolutions can be found), the two thought experiments illustrate 

the indeterminacy of transfinite subtraction. It will be argued that awareness of this 

property 1S one of the important elements to accommodating the idea of actual infinity. 

8.2 Results and Analysis 

Surprisingly, despite the sophisticated mathematical knowledge of participants, only 

three - Jan, Marc, and Dion - provided a resolution to the Ping-Pong Ball Conundrum 

that was consistent with the normative one. Indeed, as participants attempted to reconcile 
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infinite cardinality with 'how many', and (3) the manner in which transfinite cardinals are 

acted upon. Each of the following subsections identifies and examines one of these 

integral steps to accommodating the idea of actual infinity. 

8.2.1 Leaps of Imagination 

Conceiving of actual infinity exemplifies mathematical thinking that "extrapolates 

beyond the practical experience of the individual" (Tall, 1980, p.l). As such, problems 

addressing infinity require a leap of imagination away from practical experience. In 

resonance with observations made in Chapter 7, participants resisted extrapolating 

beyond their practical or realistic experiences when addressing the ping-pong 

experiments. Letting go of realistic considerations was problematic for participants 

despite their considerable experience with advanced and abstract mathematics ­

mathematics that is inaccessible to the five senses (Edwards et al., 2005) and that lacks an 

intuitive basis (Tall, 1992). The inability to take the cognitive leap into the realm of 

mathematical infinity manifested in participants' responses in striking similarity to the 

reactions of participants in Chapter 7, despite significant differences in mathematical 

sophistication. There were those who were unable to 'leap', others who recognised the 

need to 'leap' but resisted, and some who could 'leap' to work within the realm of 

mathematics and clarify a separation between 'real' possibilities and mathematical truth. 

The inability to leap toward the imaginative surfaced in participants' reluctance to 

distance themselves from practical or realistic concerns such as physical possibilities and 

constraints. For instance, Vince, a doctoral student in mathematics, objected to the 

feasibility of the experiment, and refuted the possibility of completing the experiment. He 

remarked that the "first thing that comes to mind is that the problem is not really that 
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well-defined as the time left, 1/2n, never reaches zero". Vince went on to consider the 

processes of inserting and removing ba lis, and concluded that: 

"You'll have lots of balls in the barrel when you reach 0 (end of the experiment], 

which you won't. And this is clearly a ridiculous answer if you consider the whole 

thing to be something that could take place. So my final answer is 136." 

Vince's desire to consider the experiment as "something that could take place" suggests a 

reluctance to engage with the thought experiment in the Ping-Pong Ball Conundrum, 

which 1s by no means an experiment that could actually take place. Vince's resistance to 

let go of practical experience is also recognised in his comment that "lots of balls in the 

barrel" is "clearly a ridiculous answer", which suggest he was unable or unwilling to 

conceive of a barrel that could contain infinitely many balls. Also, Vince's notion of an 

endless experiment corresponds to a conception of potential infinity and is suggestive of 

a process conception, in terms of the APOS Theory. A conception of potential infinity, 

together with resilient practical concerns, seemed to prevent Vince from considering the 

infin1te sets of balls or time intervals as completed objects. 

Imagining the experiment being carried out also influenced Joey, an 

undergraduate student in mathematics. Joey's response began by describing the physical 

items in the paradox - such as the barrel and the balls - and speculating on the outcome if 

he were to actually perform the experiment. Joey wrote: 

"Well, at first I'm thinking about a massive collection of white ping-pong balls. 

And an actual wooden barrel. Clearly thinking about actually performing the 

experiment and then realising there is no way I can actually move that fast in real 

life so I realise the final ping-pong ball count would be finite. However thought 

experiment ... so.. mathematically ... " 
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Joey's instinct was to consider the experiment in a 'realistic' way, and like Vince, 

he initially approached the paradox as though it were an experiment that he could 

perform. Once Joey realised that the physical constraints of reality restricted his solution 

to a finite "count", he distinguished between what was possible practically versus 

mathematically. This distinction suggests Joey was, to a degree, aware of a conflict 

between practical experiences and the realm of infinity. Nevertheless, Joey's realistic 

approach of "thinking about actually performing the experiment" seemed to influence his 

deliberations even as he addressed the thought experiment "mathematically". For 

instance, he continued to describe the experiment as though it were being carried out: 

"Since I keep halving the time I add and remove ping-pong balls, I will never reach 

60 seconds. So the experiment should never end, really. Meaning I have an infinite 

number of ping-pong balls, and yet there are more in the barrel. Since infinity is not 

an actual number, you can't say I have infinity here, but 9 times infinity there." 

Joey maintained a personal connection to the experiment, and described his own 

involvement in terms of the actions he would take and the outcomes he would face. The 

use of personal language to cope with an abstract concept is, in Hazzan's (1999) 

perspective, an attempt to reduce the level of abstraction of that concept, and as such is 

indication of a process conception of infinity. Further, Joey's description of infinity as 

"more like a destination, an indication of an unlimited amount", and his remark that the 

"experiment should never end", are consistent with a process conception of infinity. 

A use of personal language was also identified in Jenny's response, as she too 

resisted letting go of 'practical' concerns. Jenny, a doctoral candidate in mathematics 

education, also commented on physical limitations regarding the experiment. She found 

the issues of speed and time problematic, suggesting, "there is not enough time to work 
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so fast". She also noted that "the fastest speed is light speed" and that if she could work at 

the speed of light then time would slow down and there would be "infinity time, so there 

will never be a last ball". She described herself as being stuck in an endless experiment, 

left to insert and remove ping-pong balls for eternity, lamenting "but I don't want to do 

that with my life". 

The cognitive leap from the 'realistic' to the realm of mathematics was a source 

of difficulty for Vince, Joey, and Jenny. Their resistance to engage with the realm of 

imagination and mathematics noticeably impacted each of their resolutions, and in the 

case of Vince prevented him from resolving the paradox beyond giving an arbitrary 

number as his solution. Other students attempted to bridge their realistic concerns with 

the surreal thought experiment by introducing assumptions. These students reconciled 

reality and infinity by assuming the impossible was possible. For instance, Maria, an 

undergraduate student in mathematics, reasoned there would be an infinite number of 

ping-pong balls remaining in the barrel at the end of the experiment "assuming the barrel 

has an infinite volume and can house an infinite number of ping-pong balls". Maria 

imagined an infinite iterative process, noting that "per iteration, the barrel gains an 

additional 9 ping pong balls than it had previously ... so to determine the number of ping 

pong balls in the barrel at the end of the experiment, we can simply determine the number 

of iterations and then multiply this by 9." Maria seemed to treat infinity as a very large 

number, and as such, needed to assume that the physical constructs could accommodate 

this 'infinite size'. Interestingly, Maria did not assume the existence of infinitely many 

ping-pong balls, only that they could be housed in the barrel. Recalling the normative 
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solution, Maria's assumption is superfluous as the barrel at no moment contains infinitely 

many ping-pong balls. 

Marc, a doctoral candidate in mathematics, was also compelled to introduce 

assumptions before addressing the paradox. As will be discussed in the following section, 

Marc reasoned through two different approaches to the paradox before settling on the 

normative resolution, which he observed was the only way to produce a consistent result. 

Marc preceded his responses by "assuming that it's [the experiment is] physically 

possible, i.e. assuming that time is continuous and that you can work fast enough". 

Despite Marc's eventual discovery of the normative solution to the paradox, his initial 

approach was process-oriented as he described "the overall rate growth of the partial 

sum" of ping-pong balls, as well as his own actions of inserting and removing balls. 

In accordance with Chapter 7, participants who resisted distancing themselves 

from reality by clinging to practical concerns or by introducing capricious assumptions 

tended to approach the paradox in intuitive, process-oriented ways, such as focusing on 

infinite iterations. As Fischbein (1987) observed, properties of actual infinity contradict 

the finiteness of mental schemas and intuitions. In contrast, the ability to take a leap of 

imagination away from the realistic or the intuitive corresponds to an ability to engage 

effectively in advanced mathematical thinking - thinking which lacks "intuitive bases 

founded on experience" (Tall, 1992, p.495). Clarifying the limitations that finite 

experience has on an understanding of infinity seems to be a fundamental aspect of 

accommodating properties of actual infinity - properties which by all means lack 

intuitive bases founded on practical experience. 
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Distinguishing between an intuitive and a formal understanding of infinity was 

suggested previously to be an important first step to accommodating the idea of actual 

infinity. Such a distinction was an essential aspect in Jan's reasoning as she addressed 

both the Ping-Pong Ball Conundrum and the Ping-Pong Ball Variation, the latter of 

which required an understanding that went beyond recognising infinite sets as completed 

entities, and will be discussed in subsection 8.2.3. Jan, an undergraduate mathematics 

student was one of the three participants who came up with the normative resolution to 

the paradox, and she was the only participant to clarify a separation between her realistic 

intuitions and her mathematical thinking. Jan's solution is discussed in detail in the 

following section, however it is worth noting now that her awareness of the limitations of 

intuition seemed to contribute significantly to her understanding of actual infinity. After 

discussing her solution, Jan reflected, "Intuitively, it seems that the number of balls 

SHOULD blow up to infinity (though intuition frequently fails us when it comes to the 

infinite)". Her willingness to distinguish between intuitive and formal understandings can 

be linked to her ability to take the leap of imagination necessary for accommodating 

actual infinity. Indeed, holding on to realistic, finite experiences and intuitions seemed to 

hinder the encapsulation of a process for which there is no final step, but for which a 

completed totality does exist. A discussion of further aspects involved in accommodating 

the idea of actual infinity - which involves encapsulating infinity to a completed object ­

continues in the following two sections. The next subsection focuses on the importance of 

distinguishing between formal understandings of infinity and their applicability to 

different areas of mathematics, such as potential infinity in calculus, non-standard infinity 

in nonstandard analysis, and cardinal infinity in set theory. 
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8.2.2 Cardinal Infinity as 'How Much' 

Fischbein (200 1) suggested, "intuitively, there is only one kind, one level of infinity" 

(p.324), that of potential infinity - the inexhaustible. While it may be that our intuition 

knows only one infinite, within mathematics there are several. A glimpse of different 

infinities was offered in Chapter 2 through an exploration of properties of cardinal 

infinity in set theory, non-standard infinity in nonstandard analysis, and potential infinity 

in calculus. Identifying the infinity with which the Ping-Pong Ball Conundrum deals is an 

important step in accommodating its normative resolution, and one that only three 

participants were able to make. 

Marc was one of the participants who distinguished between different views of 

infinity, and who was able supply the normative resolution to the paradox. He identified 

two ways to think about the Ping-Pong Ball Conundrum: 

"So there are two ways to think about it. .. The different ways of dealing with it, 

involving different concepts of infinity, that have different properties, and so give 

different answers." 

In his response, Marc not only recognised different concepts of infinity, but he also 

distinguished between their respective properties, and acknowledged how the distinct 

lnterpretations affected the paradox resolution. Marc's first approach was to consider the 

paradox from the perspective of limits and serles: 

"One way is to think of the balls as actual numbers, having magnitudes, and when 

you throw in a bunch of balls into the barrel, you are forming a partial sum in a 

series. And when you take away a ball, you are subtracting from that partial sum. So 

if you check the overall rate growth of the partial sum, it is always increasing, and 

so the series diverges and you get an infini te number of balls in the barrel." 
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Marc described an action of throwing in and removing balls that he then imagined 

as a process whose "overall rate growth ... is always increasing". These notions are 

consistent with potential infinity, and though potential infinity has a distinguished place 

in mathematics, it does not help resolve this paradox. The normative resolution, which 

was presented in Chapter 3, relies on an understanding of cardinal infinity and set 

comparison. Recalling the solution, the Ping-Pong Ball Conundrum ends with an empty 

barrel, in part because there exists a one-to-one correspondence between each of the 

infinite sets involved and the set of natural numbers. Marc's approach using series and 

partial sums lead to inconsistencies, as he observed: 

"But something feels wrong about this, for every number, shouldn't you have a ball 

outside the barrel with that number on it, and so shouldn't every ball be outside the 

barrel? This makes me feel that this is the wrong way to think about it." 

Marc identified a problem with his approach using series and partial sums and, after 

reflecting on it, considered a "second way of thinking about it, which is in terms of set 

theory." In Marc's set theoretic approach to the paradox resolution, he reasoned that 

"from this point of view, there should be no balls in the barrel. Because if you look at the 

set of balls that you have to remove, it is the set of all balls." 

With Marc's second resolution came a second way of describing infinity: in terms 

of completed entities. Marc considered the "set of balls that you have to remove" as a 

totality when he compared it with the "set of all balls" and concluded that they were the 

same. By identifying the two sets as equivalent, Marc recognised the existence of a 

correspondence between the set of out-going balls and the entire set of balls. Further, his 

means of treating each set as a totality is consistent, in terms of the APOS Theory, with 

an object conception of infinity (Dubinsky et al., 2005a). Accommodating the idea of 
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actual infinity involves, in Dubinsky et a1. 's point of view, encapsulating infinity to an 

object, which is said to occur once the individual is able to think of infinite quantities as 

completed entities, or "as objects to which actions and processes (e.g., arithmetic 

operations, comparison of sets) could be applied" (2005a, p.346). Marc's set theoretic 

resolution to the Ping-Pong Ball Conundrum indicates he has taken this important step 

towards encapsulation. 

As will be discussed III the following subsection, treating an infinite set as a 

completed object upon which one may act is a necessary, but not sufficient, aspect of 

accommodating actual infinity. The aspects of accommodating actual infinity that go 

beyond Dubinsky et al.'s (2005a) description of encapsulation are illustrated in Dion's 

response to the Ping-Pong Ball Variation, as he grappled with how to act on the object of 

an infinite set. Dion, a university instructor in mathematic education, had concisely and 

easily resolved the Ping-Pong Ball Conundrum by establishing the appropriate one-to-one 

correspondences between sets of balls and time intervals (see Chapter 3 for the normative 

resolution). Dion recognised immediately that the paradox dealt with infinite sets and 

appealed to his knowledge of Cantor's theory of transfinite numbers to identify 

equivalent cardinalities. 

Similar features to Marc's and Dion's replies were observed in Jan's response, as 

she too was able to identify that the paradox dealt with cardinal infinity. She remarked: 

"The question was 'how many', which is a question of cardinality, and equal 

cardinality of two sets is entirely determined by the existence or non-existence of a 

bijection between the two sets in question." 
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Jan drew on her formal understanding of cardinal infinity in her response to the paradox, 

stating the conditions that must be met to determine 'how many' and then addressing 

those conditions by explicitly constructing a bijection between the sets of balls: 

"So, first note that every ball that is put into the barrel is removed. For example, if a 

ball is placed in the barrel in the nth step, then it is removed in one of the steps IOn 

- 9, IOn - 8, .,., IOn - I, IOn. So if a ball is placed in the barrel during the minute, 

it will be taken out. Conversely, if a ball was taken out of the barrel, it must have 

been put in at some point during the minute ... This establishes a bijection between 

the balls put in the barrel and those taken out. More concretely, we can assume that 

some ball does remain after the minute is up, and without loss of generality, let's 

say it's the nth ball. But we know that this ball is taken out during one of the steps 

IOn - 9, IOn - 8, ... , IOn - 1, lOn, and all of these steps occur within one minute 

due to the fact that the series: (Sum from k = I to k = infinity of (V2l ) converges to 

I. But then the aforementioned ball is NOT in the barrel at the end of the minute, 

which contradicts our original assumption that it was. Therefore there are no balls 

left in the barrel at the end of the minute." 

Jan's response began by considering the sets of in-going and out-going balls. 

Once a one-to-one correspondence between the sets was established, she addressed the 

set of time intervals, describing a correspondence between the set of out-going balls and 

the set of time intervals by noting that "all of these steps occur within one minute" due to 

the convergence of the corresponding series. By constructing bijections and describing 

the behaviour of all the balls by the behaviour of the nth ball, Jan acted upon totalities ­

she treated infinite sets "statically" (Dubinsky et a\., 2005b, p.257) as cognitive objects. 

The ability to conceive of an infinite process "as a totality, a whole capable of being 

acted upon" (ibid) is indicative, in terms of the APOS Theory, of an object conception of 

infinity. Jan's response offered further indication of an object conception of infinity when 
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she observed that the resulting set after the completion of the experiment was not simply 

a generalization of an individual step: 

"We seem to have obtained a strictly increasing function (namely, the number of 

balls as a function of the number of time steps) that is bounded below by zero, but 

that is 'discontinuous at infinity', and somehow equals zero 'at infinity'." 

As mentioned prevlously, Dubinsky et al. suggest encapsulation of infinity 

requires a realisation "that the state at infinity is not directly produced by any step of the 

process. Instead ... the state at infinity ref1ects the totality of the process rather than any of 

its individual aspects" (2005b, p.260). In their opinion, an object conception of infinity 

"stands apart from or transcends the process" (ibid). Jan's acknowledgement of the 

"discontinuity at infinity" speaks to this transcendence. 

8.2.3 Acting on Actual Infinity 

Dubinsky et al.'s proposition that encapSUlation has occurred once "the notion of 

potentiality is transformed into an instance of actual infinity, a mathematical entity to 

which actions can be applied" (2005a, p.346), takes for granted how actions might be 

applied to infinite sets. In this section, it will be argued that an understanding of the 

particular properties of transfinite actions, in particular transfinite subtraction, and the 

ways in which those properties differ compared to their corresponding finite actions is a 

necessary aspect of accommodating the idea of actual infinity. This section considers 

three participants' engagement with the Ping-Pong Ball Variation and interprets their 

reactions to properties of transfinite subtraction. 

As mentioned, three participants - Dion, Veronica, and Jan - engaged with the 

Ping-Pong Ball Variation after responding to the Ping-Pong Ball Conundrum and 
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discussing its nonnative resolution. Recall that Dion and Jan provided resolutions that 

were consistent with the normative solution, while Veronica did not. During their 

engagement with the Ping-Pong Variation, Dion and Veronica, the two instructors, as 

well as Jan addressed the issue of remaining ping-pong balls when the experiment called 

for the removal of balls numbered I, II, 21, 31, ... Dion, who was familiar with Cantor's 

theory, having taught aspects of it to prospective teachers in the past, easily recognised 

the similarities between the Ping-Pong Ball Conundrum and the variation, and he 

commented on the relevance of Cantor's theory to his solution. When addressing the 

Ping-Pong Variation, Dion reasoned that, as before, there existed bijections between the 

sets of ping-pong balls and the set of time intervals. He concluded that the variant and the 

"ordered case" should yield the same result: an empty barrel. 

Dion's observations regarding the one-to-one correspondences between sets of 

balls and time intervals were correct: the infinite set of ping-pong balls removed from the 

barrel can be put in a one-to-one correspondence with the natural numbers, as can the set 

of in-going balls, and the set of time intervals. However, in this thought experiment only 

the balls numbered 1, 11, 21, 31, ... were removed. As a result, there is no time interval 

for which the balls numbered 2 to 10, 12 to 20,22 to 30, and so on, are removed - thus 

leaving a barrel containing infinitely many balls. Dion, however, argued that the barrel 

would be empty because "after you go [remove] 1, 11, 21, 31, ... , 91, etc, you go back to 

2". He described a "strong leaning to Cantor's theorem" (i.e. Cantor's theory of 

transfinite numbers), and although he insisted "at some point we'll get back to 2", he 

could not justify the claim. During the interview, Dion grappled with the possibility of a 

nonempty barrel, stating "if ball number 2 is there, so is 2 to 10, etc ... so, infinite balls 
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there? I have trouble with that". Dion went on to observe that while "on one hand infinite 

minus infinite equals 0, on the other it's infinite" - a property of transfinite arithmetic 

that was absent in his prior knowledge. Engaging with the two paradoxes contributed to 

Dion's discovery of the indeterminacy of transfinite subtraction. Eventually, Dion 

conceded he was "convinced" of the nonnative solution to the Ping-Pong Ball Variation. 

Dion's "strong leaning to Cantor's theorem" and his ready acknowledgement of 

bijections between relevant sets, suggests he had developed secondary intuitions (in the 

sense of Fischbein, 1987) with respect to correspondences and infinite cardinality 

problems. However when faced with a problem that required going beyond simply 

constructing correspondences, Dion was unable to apply his understanding of "Cantor's 

theorem" in an appropriate way. In order to make sense of the problem, Dion seemed to 

fall back on his intuition, not of infinity, but of subtraction. His insistence that "at some 

point we'll get back to 2" may be attributed to his experiences with arithmetic: in the case 

of finite quantities, subtracting a quantity from itself will yield zero - something which is 

not so when dealing with infinite quantities. Extrapolating properties of finite subtraction 

to properties of transfinite subtraction serves as an example of reducing abstraction ­

Dion applied a familiar concept to cope cognitively with a novel situation. Dion's 

revelation that "on one hand infmite minus infinite equals 0, on the other it's infinite" 

suggests that accommodating actual infinity goes beyond the ability to act on an object, 

and includes an understanding of how to act on that object. 

In contrast to Dion's response was Veronica's approach to the Ping-Pong Ball 

Conundrum and the Ping-Pong Variation. In both cases, Veronica appealed to an intuitive 

understanding of infinity as potential. When addressing the Ping-Pong Ball Conundrum, 
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Veronica reasoned that since the rate of in-going balls was greater than the rate of out­

going balls, the barrel must contain infinitely many balls at the end of the experiment. 

Veronica connected the concept of infinity with "eternity", and had difficulty accepting 

the argument that the one-to-one correspondences between sets of in-going balls, out­

going balls, and time intervals, guaranteed the barrel would end up empty. After some 

discussion, Veronica reflected that "if you don't think. about one-to-one correspondences, 

the instinct is there are 9 left every time you take one out, so it's 9 infinity". The 

normative resolution to the Ping-Pong Ball Variation came much more easily to 

Veronica, who readily acknowledged there would be balls left in the barrel- although her 

instinct was that there would be a "bigger" infinity of balls remaining in, than removed 

from, the barrel. Veronica's resolutions are indicative ofa process conception of infinity. 

Veronica's intuitive approach to the two paradoxes contributed both to her 

resistance and acceptance of the normative resolutions of the Ping-Pong Ball Conundrum 

and the Ping-Pong Ball Variation, respectively. Similarly (and conversely!), Dion's 

learned approach contributed to his acceptance and resistance to the normative 

resolutions of the Ping-Pong Ball Conundrum and the Ping-Pong Ball Variation, 

respectively. These two cases illustrate the importance of separating intuitive reasoning 

from formal reasoning when dealing with actual infinity. Indeed, as mentioned earlier, 

the participant who seemed to have the most success accommodating the idea of actual 

infinity was able to distinguish between intuitive and formal approaches both when 

considering correspondences and when considering properties of transfinite subtraction. 

Jan realised that intuitions she developed with respect to subtracting finite quantities did 

not extend to infinite ones. When addressing the Ping-Pong Ball Variation, she remarked: 
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"So at first, one might guess that 'the infinity of balls put in is somehow greater 

than the infinity of balls removed'. However! Here we get into the indeterminacy of 

the 'quantity' infinity minus infinity. That is, transfinite cardinal arithmetic doesn't 

work exactly like finite cardinal arithmetic." 

Jan was further able to connect her understanding of correspondences between 

infinite sets to explain the indeterminacy of transfinite subtraction: 

"Even though there is a bijection between the set of balls put into the barrel and the 

set of balls removed, there are still an infinite number of balls left in the barrel after 

the minute is up! This is because N [the set of balls] is ... equinumerous with a 

proper subset of itself. To show that there are infinitely many balls left after the 

minute is up, we can easily create an infinite sequence of balls that are not removed, 

namely: 2, 12, 22, 32, ... = {lOn +2 I n=O,l ,2, ... }. This set is clearly infinite, and 

represents a subset of the balls left after the minute. Since the set of all balls left 

after the minute contains an infinite subset, it too must be infinite." 

Jan's awareness that what "one might guess" was not sufficient to address problems 

regarding infinity, and her ability to deduce the consequences stemming from a set being 

equinumerous with one of its proper subsets contributed to her understanding of the 

indeterminacy of transfinite subtraction. Jan went on to reflect again on the relationship 

between intuition and actual infinity, as well as on her experiences with the paradoxes: 

"So, if we think about both the original question [the Ping-Pong Ball Conundrum] 

and its variation, we seem to have done the exact same thing (physically) in both 

cases, but due to some arbitrary numbering system that we have imposed upon the 

set of balls removed, we have changed the remaining number from zero to infinity! 

But why should numbering matter? We seem to have done the same thing in both 

cases. This is another case where the intuition we've learned from the physical 

world fails us when it comes to the infinite." 
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Jan also remarked, "it is nearly impossible to talk about it [actual infinity] 

informally for too long without running into entirely too much weirdness". Her ability to 

distinguish between intuitive and formal responses, in addition to her extrapolation of the 

formal structure of infinite cardinal ities to make sense of properties of transfmite 

arithmetic contributed to a profound understanding of actual infmity. 

8.3 Discu ssion 

This study extended prior research regarding the use of paradoxes as a lens to learners' 

conceptions of infmity. In Chapter 7, the Ping-Pong Ball Conundrum and Hilbert's Grand 

Hotel paradox were found to be effective tools in eliciting cognitive conflict and 

encouraging a refinement of participants' understanding of infinity. In this follow up 

study, the Ping-Pong Ball Conundrum and the Ping-Pong Ball Variation were used as a 

lens to ascertain a more refined account of the necessary and sufficient aspects of 

accommodating the idea of actual infinity. In particular, participants' engagement with 

both paradoxes revealed thc important factors beyond conceiving of an infinite set as a 

completed entity, which contributed to an understanding of actual infinity. 

Acknowledging the distinction between how actions, such as arithmetic operations, 

behave differently when applied to transfinite entities versus fmite entities was an integral 

part of Jan's accommodation of actual infinity. Other key factors in accommodating 

actual infinity included the ability to distinguish between intuitive and formal knowledge, 

to understand infinite cardinality as 'how many', and to deduce the indeterminacy of 

transfinite subtraction from the formal definition of an infinite set. Identifying these key 

factors can be seen as the main contributions of this study. A detailed discussion of these 

factors and their corresponding challenges is reserved for Chapter 9: Cognitive Leaps. 
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CHAPTER 9:� 

COGNITIVE LEAPS TOWARD UNDERSTANDING 

INFINITY 

This chapter explores some of the common themes which emerged in participants' 

responses, transcended the individual studies, and created obstacles to the understanding 

of actual infinity. Overcoming an epistemological obstacle "means that the student will 

have to rise above his convictions, to analyse from outside the means he had used to 

solve problems in order to fonnulate the hypotheses he had admitted taCitly so far, and 

become aware of the possible rival hypotheses" (Sierpinska, 1987, p.374). In some 

instances, the only way to overcome an obstacle - to rise, as Sierpinska wrote, above 

convictions, prior experience, and intuition - is through a cognitive leap. The themes and 

obstacles explored in this chapter are framed in terms of the cognitive leaps required to 

overcome them. The cognitive leaps facing an individual as he or she attempts to develop 

an understanding of actual infinity include a leap from the philosophical to the 

mathematical (section 9.1), a leap from the intuitive to the formal (section 9.2), and a leap 
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toward accommodating transfinite arithmetic (section 9.3). The term 'philosophical' IS 

used in this thesis in a broad sense to include emotions, beliefs, or personal worldview. 

9.1 The Mathematical Entity of Infinity 

An early cognitive leap that is required for developing an understanding of actual infinity 

involves accepting infinity as a mathematical entity. Throughout history, the concept of 

infinity has been tied to the philosophical and the theological. Aczel (2000) described the 

connection between God and infinity that the Kabbalah, a mystic sect of Judaism, 

established centuries ago. Aczel summarized the Kabbalists' view of the infinite light of 

"the great entity that is God" (2000, p.34). He wrote: 

"That entity [of God] is so large, so supreme, so far beyond description, that it is 

given the only name the Kabbalists could possibly use to describe it: Ein So! The 

two words mean Infinity. God is infinite" (Aczel, 2000, p.34, emphasis in original). 

Throughout my research, participants expressed ideas in line with the philosophical and 

theological perspectives exemplified in Aczel's interpretation of Ein So! A more precise 

literal translation of ein sol is "endless" (Zazkis, personal communication). However, 

when considering the tasks of this research, the perspectives that may relate infinity to 

God and endlessness, diverge from the mathematical conception of actual infinity. As 

such, in order to develop an understanding of actual infinity, a leap away from the 

philosophical is necessary. Once distinction between the philosophical and mathematical 

is made, and infinity is conceived of as an entity with mathematical properties, another 

leap toward recognising that there are several infinities within mathematics, which also 

differ from just that which is "far beyond description" (Aczel, 2000, p.34), is important. 
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This section considers the philosophical notions of infinity that emerged across 

my three studies. These notions emerged in conflict with the normative mathematical 

properties of actual infinity, and created obstacles in participants' understanding. Section 

9.1.1 identifies the philosophical perspective that infinity is an impossibility that should 

not be of concern to mathematics. Section 9.1.2 discusses participants' confusion 

between the infinite and the unknown, while section 9.1.3 explores the beliefs that 

infinity is all encompassing and eternal. 

9.1.1 The Impossibility of Infinity 

Across the three studies, resistance toward imagining an entity that was infinite 

manifested in participants' resilient realistic considerations. The reluctance to extrapolate 

beyond the physically or practically possible surfaced in the responses of both nai've and 

mathematically sophisticated participants. For some participants, disbelief in the 

existence of an infinite entity surfaced as a response to the premise of the task and 

prevented participants' acceptance or acknowledgment of normative facts. 

In resonance with Sierpinska's (1987) identification of an epistemological 

obstacle relating to learners' belief that mathematics should concern itself only with the 

finite, many participants who addressed Hilbert's Grand Hotel paradox in Chapter 7, 

restricted their attention to realistic 'resolutions'. Both the liberal arts undergradua tes and 

the mathematics education graduate students avoided tackling the idea of infinitely many 

full rooms. Instead, they preferred to offer the new guest accommodation in the lobby or 

a shared room. Some of the liberal arts students clarified that their recommendation 

stemmed from an inability to imagine a hotel with infinitely many guests. Jimmy, for 
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example, expressed his confusion that "it just doesn't make sense that if there are 

infinitely many rooms that they all could be full. It defies logic!" 

Further evidence of participants' resistance toward conceiving of an infInite entity 

surfaced in Chapter 6 as they addressed the number of fractions in a closed interval. Neil, 

for instance, reasoned that while "theoretically" there could be infinitely many fractions 

within the bound, "in tenns of life there isn't". Neil also believed that such a "theoretical" 

possibility was "not necessary because it just confuses things" and that it was better "just 

kind of ignoring it [infinity]". 

9.1.2 Infinite is Unknown 

In a similar vein to the belief that infinity is impossible is the view that infinity is an 

entity that is impossible to know - or in Aczel's words "far beyond description" (2000, 

p.34). For many participants, an infmite quantity corresponded to an unknown quantity, 

and one which was beyond human means to determine. For instance, Kyle, a liberal arts 

student whose response to the Ping-Pong Ball Conundrum was discussed in Chapter 7, 

reasoned that he "couldn't tell you how many balls we began with because there were 

infinity". Similarly, Joey, who in Chapter 8 tried to clarify his ideas regarding the 

quantity of ping-pong balls, described infinity as a "count" that is so large it is 

"impossible to write down". He opined that infinity might be "A number so large it could 

not be verified. Thus escaping our perception. Perhaps infinity is a veil draped over that 

which we do not know. Something that we cannot perceive." 

Joey's philosophical speculation is echoed in Jim's proposition from Chapter 6 

that the term 'infinity' is simply a label attributed to unknown quantities for which there 

does not exist a means of measurement. In Jim's consideration of the quantity of points 
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on a line segment, he suggested that labelling something as 'infinite' was a way "to kind 

of put it into a category that our brains can then figure out." Akin to Kyle and Joey, Jim 

imagined infinity as "something that keeps going past any way that we can measure, [so] 

we put this word onto it because then it's settled and we can push it out of the way and 

move on with our lives." 

For those participants who believed that if "it is not humanly possible to figure 

out the number. .. it is said to be infinite", the distinction between large finite quantities 

that are 'too large to perceive' and infinite quantities went unnoticed. Further, these 

participants displayed a tendency to describe infinite quantities as entities that' could go 

on forever' or 'could end' but it was unknown. Although it is impossible to enumerate an 

infinite quantity of elements, that quantity is still 'known' to be infinite. Appreciating this 

distinction is an important leap toward understanding actual infinity. 

9.1.3 A n Eternal or All-encompassing Entity 

Participants' engagement with Hilbert's Grand Hotel paradox and the Ping-Pong Ball 

Conundrum brought to light some philosophical conceptions that, though they are not 

made explicit, may influence learners' consideration of infmity in other contexts as well. 

The idea that infinity is an all-encompassing entity surfaced in the responses of liberal 

arts students to Hilbert's Grand Hotel paradox. Participants argued against the need to 

accommodate a 'new' guest since every current and future guest would already have a 

room because they "must be part of the infinite". These participants believed that as soon 

as a new guest asked for a room his pre-assigned room would be instantly available. The 

belief in an all-encompassing infinite was coercive and resilient. Not only did it persist 

despite instruction, but it also swayed other participants' ideas. 
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An analogous philosophical perspective that emerged in the data links the idea of 

infinity with eternity. This connection emerged as participants attended to the 60-second 

experiment in the Ping-Pong Ball Conundrum. It also influenced how they addressed the 

infinite quantity of ping-pong balls. For example, Veronica, one of the participants in 

Chapter 8, described a connection between her ideas of infinity and 'eternity'. This 

association hindered her understanding of the one-to-one correspondence method of 

comparison when it yielded the counter-intuitive result of an empty barrel. Further, it 

suggests that Veronica's conception of infinity is related to endless tlme. A conception of 

infinity that is restricted by a temporal component limits an individual to a process­

oriented conception of infinity, and obstructs understanding 'completed' infinite sets. 

9.2 Separating the Intuitive from the Formal 

Fischbein et a1. (1981) suggested that intuitive interpretations are active during 

individuals' attempts to solve, understand, or create in mathematics. However primary 

intuitions, which are generally rooted in everyday life and prevl0us practical experience, 

often hinder students' functioning in a new mathematical field (Tsamir, 1999). Tsamir 

suggested "instructors should be attentive to the relations among formal and intuitive 

knowledge and to the conflicts which may arise in the mismatching applications of these 

different types of knowledge" (1999, p.231-2). Dubinsky and Yiparaki (2000) suggested 

that using 'real life' intuitive context to teach evaluation of mathematical statements can 

be more harmful than helpful. They observed that "the conventional wisdom to teach by 

making analogies to the real world can fail dramatically", and advised, "to remain in the 

mathematical realm" (2000, p.283). Relating this advice to infmity - a concept for which 

no 'real world' analogy can do justice ~ my research suggests that the ability to clarify a 
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separation between intuitive and formal knowledge IS an important leap toward 

accommodating the idea of actual infinity. FisChbein (1987) observed that intuitive 

knowledge is coercive, intrinsically certain, and resolute. As such, emotional conflicts, in 

addition to cognitive ones, were observed in participants' reactions to actual infinity. 

However, emotions connected to the concept of infinity are out of the scope of my 

dissertation as I am interested primarily in the cognitive aspect. 

This section begins with a review of participants' intuitions of infinity and the 

representations that elicited them (9.2.1). It also examines some of the struggles 

participants faced in trying to bridge their intuitions with formal properties (9.2.2). The 

section concludes by presenting an argument in support of encouraging learners to take 

the leap that separates their intuitive from their formal knowledge when addressing 

properties of actual infinity (9.2.3). 

9.2.1 Intuitions of Infinity 

The naIve ideas and intuitive strategies that emerged during participants' engagement in 

my research are consistent with those observed in prior research (e.g. Fischbein et aI., 

1981; Tall, 1980). Participants related the idea of infinity to endlessness, relied on prior 

experience with number and measurement, and remained in most cases unaware of the 

inconsistencies between competing intuitions and also between naiVe and formal notions. 

Connecting the idea of infinity to an 'endless', 'on-going' entity was prevalent in 

participants' responses to each of the paradoxes and geometrical tasks. The intuition of 

'endlessness' corresponds to the idea of potential infinity - a process which is finite at 

every instant, but which goes on indefinitely. Describing infinite entities in terms of the 

process required to establish those entities surfaced in the responses of participants 

138 

separation between intuitive and formal knowledge IS an important leap toward

accommodating the idea of actual infinity. Fischbein (1987) observed that intuitive

knowledge is coercive, intrinsically certain, and resolute. As such, emotional conflicts, in

addition to cognitive ones, were observed in participants' reactions to actual infinity.

However, emotions connected to the concept of infinity are out of the scope of my

dissertation as I am interested primarily in the cognitive aspect.

This section begins with a review of participants' intuitions of infinity and the

representations that elicited them (9.2.1). It also examines some of the struggles

participants faced in trying to bridge their intuitions with formal properties (9.2.2). The

section concludes by presenting an argument in support of encouraging learners to take

the leap that separates their intuitive from their formal knowledge when addressing

properties of actual infinity (9.2.3).

9.2.1 Intuitions of Infinity

The naIve ideas and intuitive strategies that emerged during participants' engagement in

my research are consistent with those observed in prior research (e.g. Fischbein et aI.,

1981; Tall, 1980). Participants related the idea of infinity to endlessness, relied on prior

experience with number and measurement, and remained in most cases unaware of the

inconsistencies between competing intuitions and also between naiVe and formal notions.

Connecting the idea of infinity to an 'endless', 'on-going' entity was prevalent in

participants' responses to each of the paradoxes and geometrical tasks. The intuition of

'endlessness' corresponds to the idea of potential infinity - a process which is finite at

every instant, but which goes on indefinitely. Describing infinite entities in terms of the

process required to establish those entities surfaced in the responses of participants

138



regardless of their level of mathematical sophistication. For instance, in Chapter 6, the 

undergraduate students who addressed infinite subsets of the set of real numbers 

described processes when those subsets were presented both numerically and 

geometrically. As participants attended to the quantity of fractions in the interval [/9' T7], 

they imagined a process in which "endless numbers can be put into the numerator or the 

denominator". Similarly, when attending to a geometric presentation - the number of 

points on a line segment - participants imagined 'finding' or 'creating' an unlimited 

quantity of points in order to account for their infinite number. 

In Chapter 7, intuitions of potential infinity emerged, for example, in participants' 

descriptions of a Grand Hotel with "an always increasing number" of rooms, and in their 

resistance to the idea of a 'completely filled' hotel. Responses to the Ping-Pong Ball 

Conundrum, in Chapters 7 and 8, also focused on endless processes, such as halving the 

time intervals. Both liberal arts undergraduate students and doctoral candidates in 

mathematics objected to the time limit of 60 seconds because they imagined that "since 

the time interval is halved infinitely many times.,. the 60 seconds never ends", 

As participants attended to the comparison of two or more infinite sets, an 

intuition of infinity that extrapolated measuring properties of numbers emerged. Tall 

(I980) introduced the idea of 'measuring infinity' as a metaphor to describe learners' 

intuition that a longer line segment would have more (infinitely many) points than a 

shorter segment. Tall speculated that when presented with measurable entities, such as 

geometric objects, learners would intuitively appeal to the idea of 'measuring infinity', 

extrapolating ideas such as 'longer means more'. In Chapter 6, participants confronted 

properties of infinity through the geometric context of comparing line segments of 
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different lengths. As participants reasoned about the number of points on line segments of 

different lengths and the number of points 'missing' from the shorter segment, many 

appealed to an intuition of 'measuring infinity'. As Rosemary summarised: "The amount 

of points in A is greater than C, even though each line has infinite amount of points." 

Intuitions of 'measuring infinity' also appeared in participants' responses to the 

Ping-Pong Ball Conundrum and the Ping-Pong Ball Variation, in Chapters 7 and 8, as 

they attended to the different rates of in-going and out-going ping-pong balls. A common 

resolution to the Ping-Pong Ball Conundrum suggested that "the process of putting balls 

in at a higher rate than taking balls out" would result in a barrel that contained infinitely 

many balls and from which a 'smaller' infinite number of balls was removed. Attending 

to the different rates of in-going and out-going balls evoked arguments of a "bigger 

infinity" since there are "9x more balls in the barrel than out of the barrel at all times. At 

the end of the 60 seconds there are 900 balls in and CI) balls out." Attending to the 

measurable entity of a rate of change and deducing from it ideas of "larger" and 

"smaller" infinities serves as an example of an intuition of 'measuring infinity'. 

The intuitions of potential infinity and of measuring infinity surfaced as 

competing ideas in participants' responses to both geometric tasks and paradoxes, despite 

the inconsistency of a 'never-ending' entity that may be 'smaller' or 'larger' than another 

'never-ending' entity. A common trend in participants' conceptions is illustrated in 

Rosemary's comparison of the number of points on line segments of different lengths; 

task Q2 from Chapter 6. As she addressed this task, Rosemary reached the contradictory 

conclusion that although infinity "keeps going and going", the longer of the two line 

segments would have a "larger" infinite number of points. 
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As mentioned, the conflict between potential and measuring infinities usually was 

not recognised by participants. For instance, Joey, one of the mathematics majors who 

addressed the Ping-Pong Ball Conundrum from Chapter 8, reasoned inconsistently that an 

infinlte number of time intervals is endless, but an infinite number of ping-pong balls 

could be exceeded by a larger infinite amount. He wrote: 

"1 will never reach 60 seconds. So the experiment should never end, really. Meaning 

I have an infinite number of ping-pong balls, and yet there are more in the barrel." 

Similarly, Kenny, a liberal arts student from Chapter 7, argued that the ping-pong bali 

experiment "will continue into eternity and the number of [ping-pong] balls will be 

infinite in the barrel". With respect to time, Kenny imagined an endless, potential infinite, 

however, with respect to measuring the amount of balls, Kenny imagined a large, 

unknown number. The flexible use of these incompatible notions, which were elicited by 

different presentations of equinumerous infinite sets, illustrates a hazard of relying on an 

intuitive understanding of a counterintuitive concept, and motivates the significance of a 

leap away from the intuitive. 

9.2.2 Attempts to Coordinate Intuitive and Formal Knowledge 

As participants' naive conceptions were challenged by directing their attention to some of 

the formal properties of actual infinity, the conflict between an intuitive understanding of 

potential or measuring infinity, and the normative properties of actual infinity was 

realised by some participants. A trend that emerged as a consequence of this realisation 

involved participants' attempts to appreciate fonnal properties on an intuitive level, and 

thus 'bridge the gap'. In resonance with observations by Fischbein (1987), participants 

141� 

As mentioned, the conflict between potential and measuring infinities usually was

not recognised by participants. For instance, Joey, one of the mathematics majors who

addressed the Ping-Pong Ball Conundrum from Chapter 8, reasoned inconsistently that an

infinlte number of time intervals is endless, but an infinite number of ping-pong balls

could be exceeded by a larger infinite amount. He wrote:

"1 will never reach 60 seconds. So the experiment should never end, really. Meaning

I have an infinite number of ping-pong balls, and yet there are more in the barrel."

Similarly, Kenny, a liberal arts student from Chapter 7, argued that the ping-pong bali

experiment "will continue into eternity and the number of [ping-pong] balls will be

infinite in the barrel". With respect to time, Kenny imagined an endless, potential infinite,

however, with respect to measuring the amount of balls, Kenny imagined a large,

unknown number. The flexible use of these incompatible notions, which were elicited by

different presentations of equinumerous infinite sets, illustrates a hazard of relying on an

intuitive understanding of a counterintuitive concept, and motivates the significance of a

leap away from the intuitive.

9.2.2 Attempts to Coordinate Intuitive and Formal Knowledge

As participants' naive conceptions were challenged by directing their attention to some of

the formal properties of actual infinity, the conflict between an intuitive understanding of

potential or measuring infinity, and the normative properties of actual infinity was

realised by some participants. A trend that emerged as a consequence of this realisation

involved participants' attempts to appreciate fonnal properties on an intuitive level, and

thus 'bridge the gap'. In resonance with observations by Fischbein (1987), participants

141



who attempted to reconcile intuitive and formal understandings tended to adapt the 

formal notions to establish consistency with their intuitions. 

The common strategy in participants' attempts toward reconciliation involved 

what I refer to as 'shifting the process'. Shifting the process occurs when there is a 

change in aspect, or quality, of infinity to which participants attribute a process. This is 

recognised, for example, in Eric's consideration of Hilbert's Grand Hotel paradox. Eric 

initially reasoned that "you could keep on adding people forever to fill" Hilbert's Grand 

Hotel because the rooms in the hotel "would go on forever". When this conception was 

challenged by the normative resolution to the paradox, Eric refined his idea of the hotel. 

In his attempt to reconcile the intuition of an endless process with the idea of a 

completely full hotel, Eric explained: 

"Although the infinite rooms are infinitely full, it makes space for you by making 

one of those rooms free. I was first troubled by the idea of one 'last' person not 

having a room, but then I realized that the last person would ask me to shift rooms, 

and so on, so there would be a constant rotation." 

The conflict in a hotel that should 'go on forever' but that is 'full' was resolved for Eric 

through his introduction of the idea of an infinite "rotation" of guests. The infinite 

process in Eric's conception shifted from adding guests to the process of moving them. 

Similarly, Clyde's approach to Hilbert's Grand Hotel demonstrated a shift in processes, 

when he reasoned that the new guest would get "sound sleep while everyone else has to 

continue to shift rooms infinitely." As Clyde addressed the normative resolution to the 

paradox, the infinite process in his conception was shifted to the transformation of 

moving guests, despite the fact that each guest moves only once. Clyde's response is also 

interesting because in addition to attempting to bridge intuition with fonnal properties, he 
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discerned that the problem was 'unrealistic' and that the solution was reasonable despite 

his intuitions. Such discernment is important; it will be explored further in Section 9.2.3. 

Other instances which revealed a shift in the process of participants' conceptions 

emerged in Chapter 6 as participants addressed the geometric construction corresponding 

the sets of points on line segments of different lengths. As participants attempted to make 

sense of the one-to-one argument, they attended to the process of constructing the 

correspondence. For instance, participants reasoned that between the segments it was 

possible to "draw as many lines as we want", and that the "one-to-one ratio [of points] 

will stay constant forever." Participants' description of the process of establishing a one­

to-one correspondence is seen as a shift from prior notions that drew on the possibility of 

"creating as many [points] as you want" to account for the equipotence of two sets. 

Attempts to reconcile an intuition of measuring infinity with formal properties 

was also recognised in participants' responses to correspondence arguments. This was 

particularly apparent in the conversation with Jack, in Chapter 6, which took place after 

instruction. Jack understood the idea of corresponding points through 'coupling', and was 

easily able to recreate the geometric construction that established the bijection, however 

he struggled with the discrepancy between it and his intuition. He stated that "visually, 

you're seeing that A [line segment AB in the construction] is bigger, so therefore the 

infinite number has to be bigger on A [AB] than the infinite number on C [line segment 

CD]." In contrast, when Jack was presented with an analogous construction using circles, 

his intuition of measuring infinity yielded a result that was consistent with the normative 

one. Until Jack could make a connection between the normative result and his measuring 

intuition, he could not accept that the two sets of points were equinumerous. 
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Using the same measuring approach yielded inconsistent solutions when applied 

by Jack to different entities. When the inference from measuring infinity was consistent 

with the nonnative result, Jack was at ease. However, when it was inconsistent, Jack 

experienced considerable frustration. Despite the inconsistent implications of Jack's 

approach, he continued to rely on his intuition of measuring infinity, which would 

inevitably lead to further conflict. Jack's eventual recognition that the nonnative 

resolution was "hard to believe, but it makes sense" suggests a dawning realisation that 

intuition is wrreliable with respect to infinity. 

9.2.3 Separating the Intuitive from the Formal 

Aczel (2000) shared the story of Rabbi Ben 20ma, a rabbi who strove through meditation 

to witness the robed figure of God as He had appeared to Moses. As Rabbi Ben Zoma 

achieved his goal, his experience was so intense that he allegedly "glanced at the infinite 

light of God's robe and lost his mind, for he could not reconcile ordinary life with his 

vision" (2000, p.27). Although none of the participants of my studies lost their minds (to 

the best of my knowledge), they did face considerable frustration trying to reconcile the 

intuitions stemming from 'ordinary life' with an understanding of infinity, and in the end 

were unable to do so in a way that would yield consistent conclusions. 

The concept of actual infinity is so far removed from our experiences that relying 

on intuition can be treacherous, even when those intuitions develop from experience with 

Cantor's theory; that is, even when the reliance is on what Fischbein (1987) termed 

'secondary intuitions'. A case in point is Dion's attempt to resolve the Ping-Pong Ball 

Variation, in Chapter 8. Dion had demonstrated a solid understanding of corresponding 

infinite sets, however when he instinctively applied this knowledge to the Ping-Pong Ball 
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Variation it resulted in a conflict. As discussed in section 9.3, part of Dion's conflict 

emerged because of intuitions regarding subtraction and their inapplicability to transfinite 

numbers. Dion's experience with these paradoxes exemplifies a situation where an 

appropriate formal understanding might still be led astray by the influence of intuition. 

The one participant who consistently resisted being led astray by intuition was Jan 

- an undergraduate student in mathematics from Chapter 8. Jan demonstrated a very 

profound understanding of actual infinity, and an important idea that she often returned to 

regarded the separation of intuition and formal knowledge. When addressing the Ping­

Pong Ball Conundrum, Jan realised that through the experiment 

"we seem to have obtained a strictly increasing function (namely, number of balls as 

a function of number of time steps) that is bounded below by zero, but that is 

'discontinuous at infinity', and somehow equals zero 'at infmity'." 

She observed that "intuitively, it seems that the number of balls SHOULD blow up to 

infinity (though intuition frequently fails us when it comes to the infinite)". 

Similarly, when considering the Ping-Pong Ball Variation, Jan clarified a 

distinction between her intuition that "the infinity of balls put in is somehow greater than 

the infinity of the balls removed" and the normative property of "the indeterminacy of the 

'quantity' infinity minus infinity". She went on to reflect that the indeterminacy of 

transfinite arithmetic "is another case where the intuition we've learned from the physical 

world fails us when it comes to the infinite". Jan's sophisticated understanding of actual 

infinity seemed to hinge on her awareness that "it is nearly impossible to talk about it 

[infinity] informally for too long without running into entirely too much weirdness ... The 

subject literally seems to force itself into an Axiom System." 
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9.3 Transfinite Arithmetic 

This section addresses conceptions of transfinite arithmetic, in particular addition and 

subtraction, which were of interest in Chapter 6 as participants attended to the number of 

points 'missing' from the shorter of two line segments, and in Chapters 7 and 8 as 

participants engaged with the Ping-Pong Ball Conundrum and the Ping-Pong Ball 

Variation. From both a mathematical and an educational perspective, this section 

contemplates the cognitive leaps required for an understanding of transfinite arithmetic. 

Recalling part of the discussion from Chapter 2, arithmetic on the class of 

transfinite numbers emerges in part as an extension of arithmetic on the set of natural 

numbers. Natural numbers may be identified with cardinalities of finite sets, and as such 

one definition of addition over the natural numbers involves determining the cardinality 

of the union of two disjoint sets. More formally, if A and B are two disjoint sets with 

cardinalities a, b in N, then the sum of the two natural numbers a + b is equal to the 

cardinality of the union set of A and B - the set (AvB). An analogous definition extends 

to transfinite numbers, with the difference that at least one of the cardinalities of A, B is a 

transfinite number. There is, however, an important difference between [mite and 

transfinite cardinal arithmetic. As explained in Chapter 2, there are non-unique sums 

when adding transfinite numbers, and this has significant consequences for transfinite 

subtraction. Recall, for instance Figure 2.3, which demonstrated the correspondence 

between the two sets Nand (N, ~), and which illustrated the property ~o + 1 = ~o. 

1 2 3 4 ... n 

I I I I I� 
P 23 ... n .) 

Figure 2.3: Corresponding Nand (N, ~) 
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By extending this construction, it is possible to illustrate the property that t-\ 0 + 2 = t-\ 0, 

and similarly t-\o + 3 = ~o, and ~o + 4 = ~o, and so on. Consequently, ~o - t-\o is 

indeterminate, since it could be equal to 1, or 2, or 3, or 4, ... The indeterminacy of 

transfinite subtraction emerges in sharp contrast to subtraction on the set of natural 

numbers, which is well defined. Subtraction on the set of natural numbers can be 

considered simply as the opposite of addition, however transfinite subtraction does not 

have an analogous and well-defined structure, precisely because of the non-unique sums. 

Despite the many parallels in the definitions of natural number and transfinite 

arithmetic, the two are distinct. A source of confusion is that both addition of natural 

numbers and of transfinite numbers use the same symbol: "+"; similarly for subtraction. 

In order to distinguish between natural number and transfinite arithmetic, it is useful to 

introduce some notation: the symbols +N and ~ will be used to represent addition and 

subtraction, respectively, over the set of natural numbers, and the symbols +00 and -DO will 

be used to represent addition and subtraction, respectively, over the class of transfinite 

(cardinal) numbers. The following two subsections examine some of the conceptual 

difficultics of transfinite arithmetic: section 9.3.1 takes a look at participants' conceptions 

regarding domain dependence of arithmetic, and in particular the exprcssion "00 - 00", 

while section 9.3.2 considers the expression '00 + 1'. 

9.3.1 Domain Dependence 

The operations of addition and subtraction can be considered as multivariable functions, 

and as such their definitions depend on the domain to which they apply. As participants 

addressed the expression '00 - 00 = 00' in the context points missing from the shorter of 

two line segments (Chapter 6), the majority did not consider the possibility that an 
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arithmetic operation might have different properties when applied to different domains; 

that is, when applied to infinite quantities rather than finite ones. This came as a surprise 

in light of participants' typical assertions that 'infinity is not really a number'. Further, 

participants' resistance toward the possibility that '00 - 00 = 00' surfaced despite the 

geometric presentation of the line segments and participants' previous assertions that the 

number of points on a line segment was infinite "regardless of length". When faced with 

the expression '00 - 00 = 00', participants seemed to fall back on their intuitions of ~ and 

-N, reasoning as Nina did, that "an infinite number subtracted by itself will equal 0 

because anything subtracted by itself will be zero." Interestingly, an intuition of -N 

seemed to be more coercive than the basic intuition of potential infinity, as participants 

were more likely to accommodate the idea of 'infinities with different sizes' than to 

conceive of a domain-specific arithmetic operation, such as -00. Indeed, it was in response 

to the expression '00 - 00 = 00' that participants formulated the notion of 'measuring 

infinity' . 

The tacit influence of the intuition of -N also emerged during participants' 

attempts to resolve the Ping-Pong Ball Conundrum and the Ping-Pong Ball Variation in 

Chapter 8. For instance, as mentioned in the previous section, Dion, who had a 

sophisticated background in mathematics, experienced a conflict as he address the Ping­

Pong Ball Variation. Dion recognised that the quantity of balls removed from the barrel 

was equal to the quantity of balls placed into the barrel, and resisted the idea that there 

could be an equally infinite quantity of balls remaining in the barrel. He argued that "after 

you go (remove] 1, 11, 21, 31, ... , 91, etc, you go back to 2", insisting without 

justification that "at some point we'll get back to 2". Dion, like Nina, seemed to think 
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that' anything' subtracted by itself should be zero, and had self-described "trouble" with 

the idea that infinitely many balls would remain in the barrel. With much resistance, Dion 

eventually accepted that "on one hand infinite minus infinite equals 0, on the other it's 

infmite". In spite of Dion's prior understanding of transfinite cardinals and the theory 

behind infinite set comparison, when he was faced with a non-routine problem that 

addressed transfinite subtraction, Dion resorted to an intuition of -N, and struggled with 

the indeterminacy of -"". 

The conceptual challenges associated with properties of transfinite arithmetic may 

be attributed to several factors. One factor relates to participants' inconsistent and 

informal notions of infinity. It may be expected that learners who conceive of infinity as a 

'big number', would use +N and -N as the default operation for 'infinite numbers'. 

However, reluctance to conceive of a domain specific operation that would have different 

properties than ~ and -N was wide spread. Participants who distinguished properties of 

infinity from properties of natural numbers were nonetheless disinclined to imagine that 

transfinite arithmetic would be distinct as well. This observation suggests that another 

contributing factor to participants' difficulties with the normative properties of transfinite 

arithmetic may be credited to the fact that prior experiences with different domains did 

not introduce inconsistencies. For example, 3 +N 2 is equal to 3.0 +0 2.0, where +0 

represents addition over the set of rational numbers. Although participants might realise 

that the rational number 3.0 has distinct properties from the natural number 3, and that 

arithmetic algorithms are different for rational numbers and natural numbers, addition 

and subtraction over the two domains nevertheless yield consistent sums and differences, 
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respectively. Furthcr, it is also possible that confusion regarding transfinite arithmetic 

stems from the inherent ambiguity of expressions such as '00 + 1', or '~o + 1'. 

9.3.2 The Creature' 00 + 1 } 

The conceptual challenges with the issue of arithmetic being domain dependent are 

further confounded when considering the creature '00 + I', or '~o + 1'. From a naIve 

perspective, it would seem that the expression '00 + l' involves summands which belong 

to two distinct domains - '00' belongs to the domain of 'infinite numbers' and 1 to the 

domain of natural numbers. With this naIve perspective, the question of how to evaluate 

an expression where the two summands are conceived of as belonging to different 

domains would rise as a difficult conceptual challenge to overcome, and one for which an 

individual may lack prior experience. 

Mathematically, the entity '00 + 1" or more formally '~o + l' (for example), is 

seen as a sum of two cardinal numbers, numbers which quantify the sizes of sets. 

Recalling ideas discussed in Chapter 2, the cardinal number ~o is considered the 

cardinality of a set with ~o elements, and the cardinal number I is considered the 

cardinality of a set with one element. As such, the two summands are not elements of 

different domains, but are both considered cardinalities of sets. Thus, the sum '~o + I ' is 

also considered the cardinality of a set: it is the cardinality of the disjoint union of a set 

with ~o elements and a set with I element. 

Conceptually, the entity '00 + l' may be quite different from the mathematical 

description. The intuitions connected to the number I, to addition, to infinity, and the 

imagery elicited by that symbolic representation might contribute to an understanding far 

removed� and incompatible with the normative one. The relevance of understanding 
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transfinite arithmetic to accommodating the idea of actual infinity was motivated 1ll 

Chapter 8, however as of yet, what learners' conceptions are of the creature '00 + l' 

remains an open question. 

The cognitive leaps that were outlined in this chapter were presented as ways to 

overcome epistemological obstacles related to philosophical beliefs, intuitions, and 

arithmetic properties of actual infinity. These obstacles emerged during participants' 

engagement with the tasks and paradoxes presented in Chapters 6, 7, and 8. They 

transcended the different appearances of infinity, and stalled participants with both nai've 

and sophisticated mathematical backgrounds. The considerable frustration faced by 

participants who were not able to overcome these obstacles by reconciling their 

understanding of infinity with a normative one, motivates the need for a cognitive leap to 

imagine beyond conviction, intuition, and prior experience, and toward an 

accommodation of actual infinity. 
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CHAPTER 10:� 

CONCLUSION 

The renowned mathematician David Hilbert wrote: 

"From time immemorial, the infinite has stirred men's emotions more than any 

other question. Hardly any other idea has stimulated the mind so fruitfully" (J 925, 

p.136, emphasis in the original). 

In resonance with Hilbert's observation, the idea of infinity stirred the emotions and 

stimulated the imaginations of participants with naIve or sophisticated understanding of 

mathematics. As participants endeavoured to make sense of the counterintuitive and 

abstract nature of actual (cardinal) infinity, the persuasive philosophical beliefs and prior 

mathematical knowledge that influenced their conceptions emerged in contrast to the 

normative properties. Many participants experienced considerable cognitive conflict as 

they attempted to reduce the level of abstraction of actual infinity to make accessible the 

inaccessible. Participants' resolute attempts to reconcile finite reality with the infinite 
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emphasised thelr desire to appreciate on an intuitive level an entity which is totally 

beyond the reach of our finite intuitions. In contrast, participants who were able to clarify 

a separation between their intuitive and fonnal knowledge achieved what many minds 

throughout history have strived for: a glimpse of the deep and mysterious nature of 

infinity. 

10.1 Summary of Results and Contributions 

The journey of my research began with an investigation of learners' emergent 

conceptions of infinity. Whereas much research has focused on stable or persistent 

conceptions of infinity, my research attended to the developing ideas of university 

students. A guiding theme in my investigations extended beyond the focus of what an 

individual knows about infinity, to what an individual can or is willing to learn about 

infinity. As such, one of the overarching research questions that motivated each of the 

individual studies presented in Chapters 6, 7, and 8, related to identifying the emergent 

conceptions of participants as they engaged in situations or activities through which their 

ideas and intuitions about infinity could be challenged and developed. 

In Chapter 6, undergraduate applied science students' naIve and emergent 

conceptions of infinity were explored via their engagement with a series of geometrical 

tasks. The tasks were designed in response to participants' developing understandlng, and 

delved into their conceptions of infinity, transfinite ari thmetic, and real numbers. The 

interactive design of the questionnaires offered a fresh approach to data collection and 

serves as one of the methodological contributions of my research. Throughout 

participants' engagement with the tasks, surfaced a disconnect between numeric and 

geometric representations of infinity, as well as confusion between the infinite magnitude 
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of entities and the infinite representation of non-terminating decimals. The conceptual 

challenges that participants faced regarding comparisons of infinite sets, bound infinite 

sets, and transfinite subtraction were exemplified by Lily's struggle to reconcile her 

understanding of the real number 1t with observed properties of infinite quantities and 

with her understanding of the decimaI3.14. One of the specific contributions of this study 

relates to Lily's confusion regarding magnitude and representation, and her resistance 

toward the idea that an infinite number of decimal digits could be 'bound within a finite 

number'. Clarifying the associations, analogies, and confusions upon which participants 

relied and struggled is an important contribution that will inform instructional choices in 

the future. This study also offered a first glimpse at learners' attempts to make sense of 

arithmetic properties of 'infinite numbers', which set the stage for the subsequent 

investigation presented in Chapter 8. 

Chapters 7 and 8 introduced the use of paradoxes as a research tool for 

investigating conceptions of infinity. In Chapter 7, undergraduate liberal arts students and 

graduate students in a mathematics education master's program addressed Hilbert's 

Grand Hotel paradox and the Ping-Pong Ball Conundrum. During their engagement, 

participants were confronted with the indeterminacy of transfmite subtraction and with 

the idea of a bound and completed infinite entity - such as the completely filled hotel, or 

the set of infinitely many time intervals bound within 60 seconds. Surprisingly, despite 

the different levels of mathematical sophistication, both the liberal arts students and the 

mathematics education students attended to, and were challenged by, similar features of 

the paradoxes. One of the contributions of this study was in identifying paradoxes as 

beneficial research tools for eliciting participants' ideas, provoking cognitive conflict, 
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and clarifying perceptions and intuitions that might present obstacles in adopting a 

'conventional' understanding of actual infinity. Through the use of paradoxes, a refined 

understanding of learners' intuitions was achieved, extending prior knowledge regarding 

the tacit influences that contribute to learners' conceptions of infinity. 

In addition to identifying emergent conceptions of infinity, my research also 

sought to clarify the specific features involved in accommodating the idea of actual 

infinity. Along this line, the studies in Chapters 6 - 8 were intended to delve 

progressively deeper into the intricacies of understanding actual infinity. In particular, the 

investigation presented in Chapter 8, which explored the conceptions of mathematics 

majors, graduates, and doctoral candidates as they attended to the Ping-Pong Ball 

Conundrum and one of its variations, offered a refined account of the necessary and 

sufficient aspects of accommodating the idea of actual infinity. One of the main 

contributions of this study is in the identification of features which go beyond the APOS 

description of encapsulation. One important feature involves a leap of imagination away 

from the 'realistic' and the intuitive. The need for such a leap surfaced in the previous 

studies as well, and prompted the realisation that accommodating the idea of actual 

infinity seems to rely on the ability to separate the intuitive from the formal. In addition, 

understanding actual infinity as a cardinal includes conceiving of a completed object that 

describes 'how many', and which may be acted upon in the sense of the APOS Theory. A 

subtlety related to acting on infinity was brought to light by Dion's and Jan's responses to 

the Ping-Pong Ball Conundrum and its variation. Although Dion had 'leapt' to the realm 

of mathematics and could conceive of infinity as 'how many', his understanding of 

infinity nevertheless lacked one of the fundamental features that contributed to Jan's 
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profound understanding: the knowledge of how infinite cardinals are dealt with. An 

important contribution of this study identifies the necessity of understanding properties of 

transfinite arithmetic in order to accommodate the idea of actual infinity. Furthermore, 

my research lays the foundation for an extension to the theoretical framework of the 

APOS Theory. The APOS Theory connects a learner's ability to apply actions to a 

mathematical entity to his or her encapsulation of that entity as an object. However, this 

framework overlooks the different ways in which actions may be applied. It also neglects 

to consider what, if anything, can be inferred about an individual's conceptualisation 

based on how that individual applies actions and which actions are applied. My research 

suggests a refinement of the APOS Theory which includes a consideration of how actions 

are applied, and it opens the door to future investigations regarding the extent to which 

this refinement may be appropriate. 

The third question that guided my research considered the cognitive leaps 

connected to the idea of mathematical infinity. As discussed in Chapter 9, an important 

leap toward understanding actual infinity involves a willingness to consider infinity as a 

mathematical entity. A leap away from the philosophical toward the mathematical was 

recognised as a way to overcome the epistemological obstacles corresponding to the ideas 

that (i) infinity is impossible and therefore should not be of concern to mathematics, (ii) 

infinity is 'impossible to know' and the term 'infinite' serves a label to describe the 

unknown, and (iii) infinity is eternal or all-encompassing. Once infinity is accepted as a 

mathematical entity, a distinction between an intuitive understanding of infinity and a 

formal one is needed. A leap away from the intuitive toward the formal is suggested as a 

way to rise above inconsistencies between competing intuitions of potential and 

156 

profound understanding: the knowledge of how infinite cardinals are dealt with. An

important contribution of this study identifies the necessity of understanding properties of

transfinite arithmetic in order to accommodate the idea of actual infinity. Furthermore,

my research lays the foundation for an extension to the theoretical framework of the

APOS Theory. The APOS Theory connects a learner's ability to apply actions to a

mathematical entity to his or her encapsulation of that entity as an object. However, this

framework overlooks the different ways in which actions may be applied. It also neglects

to consider what, if anything, can be inferred about an individual's conceptualisation

based on how that individual applies actions and which actions are applied. My research

suggests a refinement of the APOS Theory which includes a consideration of how actions

are applied, and it opens the door to future investigations regarding the extent to which

this refinement may be appropriate.

The third question that guided my research considered the cognitive leaps

connected to the idea of mathematical infinity. As discussed in Chapter 9, an important

leap toward understanding actual infinity involves a willingness to consider infinity as a

mathematical entity. A leap away from the philosophical toward the mathematical was

recognised as a way to overcome the epistemological obstacles corresponding to the ideas

that (i) infinity is impossible and therefore should not be of concern to mathematics, (ii)

infinity is 'impossible to know' and the term 'infinite' serves a label to describe the

unknown, and (iii) infinity is eternal or all-encompassing. Once infinity is accepted as a

mathematical entity, a distinction between an intuitive understanding of infinity and a

formal one is needed. A leap away from the intuitive toward the formal is suggested as a

way to rise above inconsistencies between competing intuitions of potential and

156



'measuring' infinities, and also between naIve and formal notions. Unsuccessful attempts 

to coordinate intuitive and formal knowledge, and the frustration encountered by 

participants who tried, speak to the significance that a leap toward the formal has on the 

realisation of a normative understanding of infinity. Further to this end, my research 

presents a first look at the conceptual challenges regarding transfinite arithmetic, and the 

cognitive leaps that may be required to establish a normative understanding of adding and 

subtracting infinite cardlnals. One important leap is connected to the understanding of 

addition and subtraction as a multivariable functions whose properties depend on the 

domain to which they apply. The intuitive resistance regarding the idea that properties of 

arithmetic are domain-dependent created a serious obstacle toward appreciating, and even 

acknowledging, the indetenninacy of transfinite subtraction. 

10.2 Limitations 

I briefly note limitations of this research, relating to methodology. Foremost, a limitation 

of my research stems from my sample of participants. The samples were convenience 

samples, particularly with respect to the undergraduate participants of the studies 

presented in Chapters 6 and 7. The applied science and liberal arts students were chosen 

because of availability, rather than for a purpose directly connected to the parameters of 

the studies. In addition, a limitation regarding the choice of research tools is noteworthy. 

The Ping-Pong Ball Conundrum offered a paradox that requlred conceptualising infinity 

as a completed object, yet which presented the experiment as a process. The language of 

the paradox lnvited participants to imagine themselves engaged in the infinite process of 

insert.ing and removing balls from a barrel. Thus on some level it is not surprising that the 

paradox elicited process oriented responses and conceptions. However, based on the 
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ubiquity of process oriented responses, particularly with respect to presentations of 

infinity that did not suggest any process, it seems unlikely that a phrasing which 

described a completed experiment would have a significant impact on participants' 

conceptions. 

10.3 Future Directions 

My research invites future investigation in several directions. Relating to methodology, 

the use of paradoxes as effective instructional tools in mathematics has been well 

documented (e.g. Movshovitz-Hadar & Hadass, 1990), however the usc of paradoxes as 

research tools is limited. The design of methodology for which mathematical paradoxes 

are integral data collection instruments may offer researchers new insight on learners' 

conceptions of various mathematical concepts relevant to school and university curricula. 

Pertaining to content, my research suggests a need for further investigation into 

learners' conceptions of both transfinite arithmetic, and the domain-dependence of 

arithmetic operations. A possible extension of my research includes investigating the 

specific conceptual challenges associated with the indeterminacy of transfinite 

subtraction. This study compared the conceptions of participants with different levels of 

mathematical sophistication and found surprisingly similar approaches to the tasks. I 

would be interested to see if the same is also true when participants address issues related 

to transfinite subtraction. 

Another extension of my research that is of interest involves learners' conceptions 

of the expression '00 + 1', as well as the epistemological obstacles associated with that 

entity. As discussed in Chapter 9, it is possible that learners might see '00 + I' as the 

addition of two incompatible summands. If so, an area of investigation relates to how 
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learners cope with such a situation, and if they alter their conceptions of infinity or 

addition in order to make sense of that sum. 

A more whimsical avenue for future research might be an investigation of the 

coerciveness of certain intuitions. In Chapter 6, for example, the intuition of 'measuring 

infinity' at times overshadowed the basic intuition of infinity as endless, and it would be 

interesting to explore in the direction of what contributes to the coerciveness of one 

intuition over another. 

With respect to the domain dependence of arithmetic, this study revealed learners' 

reluctance to imagine subtraction as dependent on the set of entities upon which it 

operates. Whether learners' reluctance to consider arithmetic as domain-dependent occurs 

in other instances as well, such as with arithmetic over the rational numbers or over a 

polynomial ring, remains an open question that invites future investigation. 
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