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Abstract

There is a great need for efficient numerical methods when solving interfacial motion prob-

lems involving coupled physical processes. To this end, a fast numerical method is developed

for tracking the motion of an electrically conducting fluid bubble in a Stokes flow subject

to an electric field.

The motion of a two-dimensional bubble immersed in an infinite expanse of viscous fluid

is examined. The Stokes equations governing the fluid dynamics and Laplace’s equation

governing the electrostatics are recast as integral equations. The electrohydrodynamic free

boundary problem is reduced to the solution of integral equations along the bubble interface.

The integral equations are discretized and solved with an iterative solver accelerated by the

fast multipole method. Results from the numerical method are compared with published

results of a simplified, analytical model and are found to be in good agreement.

Key Words: Stokes flows, electrohydrodynamics, fluid interfaces, integral equations, fast

multipole methods.
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Chapter 1

Introduction

Bubbles and drops are common phenomena both in everyday life and in scientific appli-

cations. Due to their ubiquity, there is great interest in understanding how they behave

in various situations. For example, in order to print material onto a page with an ink-jet

printer, an electrically conducting fluid drop is subjected to an electric field. The physical

processes involved in an example such as this are fairly complex. In addition to the fluid

dynamics governing the drop, the electric field adds further complexity by coupling elec-

trostatic effects to the fluid dynamics. This simple example illustrates that the behavior

of a conducting drop within an electrohydrodynamic context is of practical use. A mathe-

matical description of the processes involved is a useful tool in improving understanding of

applications such as this.

In general, electrohydrodynamic bubble and drop problems have been studied for quite

some time. Wilson & Taylor [37] first studied problems involving conducting drops from an

experimental point of view. They found that, in addition to unsteady time-dependent drop

profiles, steady-state equilibrium profiles existed for certain electric field strengths. As sum-

marized in Dubash & Mestel [10], several authors subsequently performed three-dimensional

analytical studies in an attempt to model the equilibrium shape, using spheroidal or axi-

symmetric approximations for the drop profile. In an extension of the work in [37], many

authors experimentally studied the equilibrium behavior for various fluid viscosities and

found that both the electric field strength and the viscosity ratio of the fluids used had a

significant effect on the equilibrium profile. However, these studies dealt mainly with cases

where the drop viscosity was relatively high, and there appear to be no studies that dealt

with inviscid bubbles in viscous fluids.

1



CHAPTER 1. INTRODUCTION 2

The time dependent deformation problem is more challenging. Analytic studies have

focused mainly on bubble deformation without electrostatic effects. Tanveer & Vasconcelos

[33] examined two-dimensional bubbles in a Stokes flow regime under the influence of an

external straining flow, while Siegel [31, 32] extended the work to included surfactants on

the bubble interface. Most recently, Crowdy [8] extended the work of Tanveer & Vasconcelos

to include electrostatic effects in a two-dimensional Stokes flow framework. This appears

to be the only published work dealing with the electrohydrodynamic bubble problem for

two-dimensional Stokes flow. Crowdy’s results show that the bubble achieves steady-state

profiles and non-equilibrium profiles, analogous to the three-dimensional experimental re-

sults reported in Wilson & Taylor.

For the three-dimensional time dependent problem, Sherwood [30] used a numerical ap-

proach based on boundary integrals to study drop deformation of equal viscosity fluids.

It was not until very recently that a three-dimensional numerical study of the electrohy-

drodynamic bubble problem was undertaken by Dubash & Mestel [9, 10, 11]. Their work

considered an inviscid bubble deforming within a viscous fluid in Stokes flow. The study used

a numerical method based on a boundary integral formulation by Pozrikidis [28, 29]. The

simulations showed that the bubble achieved both steady-state profiles and non-equilibrium

profiles as predicted by the original experiments of Wilson & Taylor.

Using numerical methods, there has been progress toward understanding the behavior

of an electrohydrodynamic conducting bubble. However, from the point of view of compu-

tational efficiency, there is still much to be desired from the existing studies. For instance,

the numerical method employed by Dubash & Mestel uses a direct solver for the resulting

system of linear equations obtained from discretization of the boundary integral equations.

As is well known, the number of floating point operations needed to solve a linear sys-

tem via direct methods is O(N3), where N is the number of points used to discretize the

boundary. For most cases, in order to properly resolve a bubble interface, hundreds, if not

thousands, of points are needed. This makes the computational cost of using direct solvers

prohibitively high. If the problem is extended to deal with several bubbles, direct solvers are

completely inadequate due to this high cost. To solve time dependent electrohydrodynamic

bubble problems over long time scales, the need for efficient numerical methods becomes

paramount.

To this end, the goal of this thesis is to develop a fast and efficient numerical method

for tracking the interfacial motion of a fluid bubble subject to an electric field. This thesis



CHAPTER 1. INTRODUCTION 3

builds from the work of Kropinski [20], where fast numerical methods were developed for

solving two-dimensional interfacial Stokes flow problems. These methods make use of in-

tegral equations and solve the linear systems arising from discretization with an iterative

solver accelerated by the fast multipole method. The result is a method that is able to

solve complex interfacial motion problems in O(N) floating point operations. These meth-

ods have been used to compute large-scale, time dependent bubble deformation problems

[19, 20, 21, 24]. They offer tremendous savings in computational cost over direct solvers, and

even standard iterative solvers. Clearly, the power of these numerical methods for solving

interfacial problems is apparent, and they are efficient tools for investigating the behavior

of various interfacial problems.

Specifically, this thesis develops a method for simulating the interfacial motion of a two-

dimensional conducting bubble placed in an infinite expanse of viscous fluid. The bubble

is subject to an externally applied uniform electric field. In Chapter 2, the mathematical

model consisting of the governing equations and boundary conditions are stated in a prim-

itive variable formulation. In Chapter 3, the equations are rewritten in a complex variable

formulation by taking advantage of the two-dimensional nature of the problem. Analytic

function theory is used in an attempt to solve the problem in a more elegant manner. In

Chapter 4, the complex variable statement of the problem is rewritten in terms of inte-

gral equations along the bubble interface. Since the problem is too complicated to admit

an analytic solution, a numerical approach is adopted. These integral equations are more

amenable to solution by numerical methods. In Chapter 5, the equations are discretized and

the procedure used to solve them is discussed. Several test cases are presented to verify the

correct implementation of the solver. In Chapter 6 the numerical solver is used to compute

solutions to the electrohydrodynamic bubble problem. Concluding remarks and suggestions

for future research are discussed in Chapter 7.



Chapter 2

Mathematical Model

2.1 Fluid Dynamical Model

Consider a closed interface in an unbounded expanse of viscous fluid in two-dimensional

space. The interface or bubble encloses a fluid with negligible viscosity and negligible density.

The motion of fluid within the bubble is of no interest. The case of an interface enclosing a

fluid with non-negligible viscosity is called a drop, and is not considered in this study. The

internal pressure of the bubble pb is assumed spatially constant, but may change in time.

The viscosity of the external fluid is constant and given by µ. The unbounded region is

denoted by Ω, while the interface is denoted by ∂Ω.

Ω

∂Ω

n

s

θ

1

Figure 2.1: Geometry Of Bubble

The velocity of the external fluid is given by u(x, t) and the pressure is given by p(x, t).

The external fluid is an incompressible Newtonian fluid and it is assumed that the flow

within Ω is dominated by viscous effects. Therefore, the equations governing the motion of

4



CHAPTER 2. MATHEMATICAL MODEL 5

the fluid within Ω are the Stokes equations and the continuity equation

µ∆u = ∇p (2.1)

∇ · u = 0. (2.2)

Equation (2.2) states that the velocity field is solenoidal in Ω and can be rewritten in terms

of a vector potential, which in two-dimensions is expressed as u = ∇×Ψk̂. The function Ψ =

Ψ(x, t) is the called the stream function. Equation (2.2) implies the following relationship

in R2 between the stream function and the velocity components u(x, t) = u(x, t)̂i + v(x, t)̂j

u =
∂Ψ
∂y

, (2.3)

v = −∂Ψ
∂x

. (2.4)

Note that the stream function identically satisfies the equation of continuity, (2.2). Using

the vector identity ∆u = ∇(∇ · u)−∇×∇× u and (2.2), (2.1) is written as

−µ∇×∇× u = ∇p. (2.5)

Taking the curl of (2.5) and using the above vector identity gives ∆(∇ × u) = 0. Noting

that u = ∇×Ψk̂, and using the vector identity a third time, (2.5) becomes

∆(∆Ψk̂) = 0

=⇒ ∆2Ψ = 0. (2.6)

The Stokes equations for the velocity and pressure become a single scalar partial differential

equation in terms of the stream function, known as the biharmonic equation.

2.2 Electrostatic Model

In addition to the fluid dynamics, a uniform electric field E = E0î is applied to both the

bubble and external fluid simultaneously. It is assumed that the interface between the

bubble and the external fluid, denoted by ∂Ω, is both electrically uncharged and a perfectly

conducting surface. In addition, it is assumed that the fluids carry no electric charge and

are perfectly insulating. The electrostatic behavior of this system is governed by Maxwell’s
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equations. Since there are no charges in either the bubble or the external fluid, Maxwell’s

equations reduce to

∇×E = 0, (2.7)

∇ ·E = 0. (2.8)

Equation (2.7) states that the electric field is irrotational in R2, implying the existence of

a scalar electric potential φ in R2 (and Ω). Physical arguments motivate E = −∇φ as the

definition of the electric potential [7]. According to (2.8), φ satisfies Laplace’s equation in

R2 (and Ω):

∆φ = 0. (2.9)

2.3 Boundary Conditions

Equations (2.1), (2.2) govern the fluid dynamical behavior of the problem and (2.9) governs

the electrostatic behavior of the problem. The processes are coupled through boundary

conditions on the bubble surface.

2.3.1 Dynamic Boundary Condition

The electrostatic effects are coupled to the fluid dynamics through stresses on the bubble

interface, which are described in terms of components normal and tangent to the interface.

In general, pressure, viscous, and electric stresses act on the bubble interface, and these

are balanced by forces due to surface tension. It is assumed that the interface has a vari-

able surface tension coefficient σ = σ(x, t). The normal and tangential stress balances are

combined [29] to give the equation

−(p− pb)ni + [(τij + Tij)− (τij + Tij)b]nj = σκni + sk
∂σ

∂xk
si. (2.10)

The subscript b refers to quantities inside the bubble. Here, si = s is a unit tangent vector

to the interface. The orientation is such that the external domain Ω lies to the left of the

interface, so s moves in a clockwise direction about the bubble. The outward unit normal

vector to the interface is given by ni = n and points into the bubble, as Ω is the domain

of interest. This geometry is illustrated in Figure 2.1. The curvature of the interface at a



CHAPTER 2. MATHEMATICAL MODEL 7

given point is κ, τ is the viscous stress tensor for incompressible Newtonian fluids, and T is

the Maxwell electric stress tensor [15]

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.11)

Tij = ε0

(
EiEj − 1

2δij |E|2
)
. (2.12)

The following conditions apply to the bubble

• The internal bubble pressure is constant and set to zero without loss of generality.

• The fluid in the bubble has negligible viscosity.

• The electric field inside a perfect conductor is zero [7] (i.e., (Tij)b = 0).

Using these conditions, (2.10) simplifies to

−pni + (τij + Tij)nj = σκni + sk
∂σ

∂xk
si. (2.13)

In (2.13) the electric stress term, Tijnj , is rewritten as

Tijnj = ε0

(
EiEj − 1

2δij |E|2
)
nj

= ε0

(
EiEjnj − 1

2 |E|2ni
)

= ε0

(
Ei(E · n)− 1

2 |E|2ni
)

= ε0

(
(E · n)E− 1

2 |E|2n
)
.

The electric field is decomposed tangentially and normally relative to the bubble interface

E = (E · s)s + (E · n)n.

Since the interface is a perfect conductor, the electric field at the bubble surface is everywhere

normal to the surface [7] giving E = (E · n)n for x ∈ ∂Ω. The electric stress becomes

Tijnj = ε0

(
(E · n)E− 1

2 |E|2n
)

= ε0

(
(E · n)2n− 1

2 |(E · n)n|2n
)

=
ε0

2
(E · n)2n.
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The electric field is written in terms of the potential and substituted into the above expres-

sion

Tijnj =
ε0

2
(E · n)2n

=
ε0

2
(−∇φ · n)2n

=
ε0

2

(
∂φ

∂n

)2

n. (2.14)

Equation (2.14) shows that there is no tangential electric field on the bubble surface, so the

only coupling of the electric field to the external fluid is through a normally directed electric

stress. The stress balance at the interface (2.13) is given by

−pni + τijnj +
ε0

2

(
∂φ

∂n

)2

ni = σκni + sk
∂σ

∂xk
si. (2.15)

2.3.2 Kinematic Boundary Condition

As formulated in (2.1) and (2.9), the fluid dynamics and the electrostatic problem are in

steady-state. However, the interface location does change in time due to variations in the

stresses acting on the surface. Therefore, this is a quasi-static free-boundary problem and

the interface evolves according to the kinematic boundary condition at the bubble surface.

The points that make up the interface, x ∈ ∂Ω, move with a velocity equal to the normal

velocity of the interface. Since the interface moves under the influence of the external fluid

only, this condition is given by
dx
dt

= (u · n)n. (2.16)

2.3.3 Far-Field Boundary Condition

The velocity and pressure of the external fluid must satisfy boundary conditions as |x| → ∞.

These conditions are discussed in detail within [14, 24, 33] and repeated here for completeness

only. In the far-field, the velocity is asymptotic to the following

u ∼ u∞ +O
(

1
|x|2

)
, (2.17)

where

u∞ =
1
2

(
α0 β0 − ω∞

β0 + ω∞ −α0

)
· x.



CHAPTER 2. MATHEMATICAL MODEL 9

Here ω∞ is the far-field vorticity of the fluid, while α0, β0 characterize the strain rate of the

flow. For a quiescent external fluid, these constants are all equal to zero. The pressure in

the far-field is given by

p ∼ p∞ +O
(

1
|x|2

)
, (2.18)

where the far-field pressure p∞ is a constant that is determined as part of the solution to

the problem.

2.3.4 Electrostatic Boundary Conditions

Since the interface is perfectly conducting, the electric field inside the bubble is zero [7]. This

implies that the interface is an equi-potential surface and φ = 0 is taken on ∂Ω without loss

of generality. In addition, the presence of the conducting bubble alters the uniform electric

field in the external fluid. However, the bubble has a diminishing influence in the far-field.

Hence, the electric field approaches the uniform field as |x| → ∞, so φ→ −E0x as |x| → ∞.

The electric potential satisfies the following Dirichlet problem in Ω:
∆φ = 0, x ∈ Ω

φ = 0, x ∈ ∂Ω

φ→ −E0x, as |x| → ∞.
(2.19)

To produce a bounded solution in the far-field, (2.19) is rewritten using a disturbance electric

potential, φ̃ = E0x+ φ. This results in the following Dirichlet problem
∆φ̃ = 0, x ∈ Ω

φ̃ = E0x, x ∈ ∂Ω

φ̃→ 0, as |x| → ∞.
(2.20)

Once (2.20) is solved for φ̃, the original potential φ is recovered from φ = φ̃− E0x.

2.4 Dimensionless Problem Formulation

All variables and functions are non-dimensionalized according to the following conventions.

The characteristic length scale R is the length of the region bounded by the interface ∂Ω,

which is taken as the diameter of the bubble. σ0 is a characteristic surface tension coefficient

value, µ0 is a characteristic viscosity value for the external fluid, and E0 is the strength of the
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externally applied electric field. Quantities with hats are dimensional, while those without

are dimensionless and are defined as

xi =
x̂i
R

t =
t̂

µ0R/σ0
∂

∂xi
= R

∂

∂x̂i
σ =

σ̂

σ0

u =
û

σ0/µ0
p =

p̂

σ0/R

φ =
φ̂

E0R
κ = κ̂R

Starting from (2.1) and (2.2), using the above non-dimensionalizations, and dropping the

hats for convenience, the dimensionless fluid dynamical problem is

∆u = ∇p (2.21)

∇ · u = 0. (2.22)

The form of (2.6), the biharmonic equation, is invariant under the non-dimensionalization,

∆2Ψ = 0. (2.23)

From (2.20), the dimensionless modified electrostatic boundary value problem is
∆φ̃ = 0, x ∈ Ω

φ̃ = x, x ∈ ∂Ω

φ̃→ 0, as |x| → ∞.
(2.24)

The original dimensionless potential φ is recovered from φ = φ̃− x.

The non-dimensional form of the viscous stress tensor, (2.11), is simply

τij =
(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.25)

Using (2.25) in (2.15) yields the dimensionless dynamic boundary condition

−pni + τijnj +
β

2

(
∂φ

∂n

)2

ni = σκni + sk
∂σ

∂xk
si. (2.26)

Equation (2.26) contains a single dimensionless parameter, β, given by

β =
ε0E

2
0R

σ0
. (2.27)
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This parameter represents the ratio of electrostatic forces to surface tension forces and it

controls the influence of the electric field on the bubble deformation. This parameter is

discussed at length in later sections.

The kinematic boundary condition, (2.16), is invariant under non-dimensionalization,

dx
dt

= (u · n)n. (2.28)

The far-field boundary condition for velocity, (2.17), becomes

u ∼ u∞ +O
(

1
|x|2

)
, (2.29)

where

u∞ =
Q

2

(
1 (β0 − ω∞)/α0

(β0 + ω∞)/α0 −1

)
x.

Here, Q = Rµα0

σ0
is the capillary number and represents the ratio of viscous forces to sur-

face tension forces. Once again, for a stationary external flow, the straining and vorticity

constants in the above matrix are zero.

The far-field pressure, (2.18), remains invariant under the non-dimensionalization,

p ∼ p∞ +O
(

1
|x|2

)
. (2.30)

Equations (2.21)-(2.30) constitute the mathematical description of the electrohydrodynamic

bubble problem.



Chapter 3

Complex Variable Reformulation

3.1 Fluid Problem Reformulation

Complex variables and analytic function theory are used to rewrite the equations of this

coupled free boundary value problem in a form more suitable for solution by integral equation

methods. Consider the Stokes equation, (2.21). Taking the divergence of the equation,

noting that the laplacian operator commutes with the divergence operator, and invoking

the continuity condition, (2.22), shows that the pressure, p, is harmonic in Ω

∇ · ∇p = ∇ ·∆u

=⇒ ∆p = 0.

From the relationship between the stream function and the velocity components, (2.3), (2.4),

the non-zero component of vorticity in R2, ω = ∇× u = ω(x, t)k̂, is defined in terms of Ψ

∆Ψ =
∂u

∂y
− ∂v

∂x

= −(∇× u) · k̂
= −ω · k̂

=⇒ ∆Ψ = −ω.

The biharmonic equation, (2.23), implies that the vorticity is harmonic in Ω

∆(∆Ψ) = ∆(−ω)

= 0

=⇒ ∆ω = 0.

12
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Using (2.21) and the definition of vorticity, further examination of p and ω yields the fol-

lowing relationships

∂ω

∂x
=

∂p

∂y
,

∂ω

∂y
= −∂p

∂x
. (3.1)

At this point, analytic function theory is invoked. To begin with, note that any point

x = x̂i + yĵ ∈ R2 is equivalent to a corresponding point z = x + iy ∈ C. Therefore,

ω(x, t) = ω(z, t), etc. These notations are interchanged at will and no further distinction is

made between R2 and C. With this in mind, (3.1) is a statement of the Cauchy-Riemann

equations for p and ω. Since both p and ω are harmonic in Ω and satisfy the Cauchy-

Riemann equations, they can be considered as either the real or the imaginary parts of an

analytic function [5]. However, (3.1) shows p and ω are harmonic conjugates in Ω, so they

are written as the real and imaginary parts of the same arbitrary analytic function h(z)

h(z) = ω(z) + ip(z). (3.2)

Here the time dependence of the functions is notationally suppressed, i.e., ω(z) = ω(z, t).

Since the derivative or anti-derivative of an analytic function is also analytic, the function

h(z) in (3.2) is redefined in terms of another analytic function, h(z) = −4f ′(z). Here the

prime notation indicates differentiation with respect to z, f ′(z) = ∂f(z, t)/∂z. The factor

of −4 is chosen for convenience.

Let f(z) =
∫
f ′(z)dz = P (z) + iQ(z) and note that for this analytic function, the

Cauchy-Riemann equations give

∂P

∂x
=

∂Q

∂y
,

∂P

∂y
= −∂Q

∂x
. (3.3)

Now, note that Re(z̄f(z)) = xP + yQ and define G(z) = −Re(z̄f(z)) + Ψ. Then, noting

that P and Q are harmonic functions, and using (3.1) and (3.3) gives

∆G = −∆(xP + yQ) + ∆Ψ

= −4Re(f ′(z))− x∆P − y∆Q+ ∆Ψ

= ω + ∆Ψ

= 0.
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Therefore, G(z) is a harmonic function and is written as the real part of another analytic

function g(z)

−Re(z̄f(z)) + Ψ = Re(g(z))

=⇒ Ψ(z) = Re(z̄f(z) + g(z)). (3.4)

The functions f(z), g(z) are called Goursat functions and serve as complex potentials for

the biharmonic function Ψ. It is easily verified that any function of the form (3.4) satisfies

the biharmonic equation.

With the introduction of these functions, the goal of the problem is no longer to solve

the governing equations (2.21) and (2.22) for velocity and pressure, subject to the boundary

conditions (2.26)-(2.30). Instead, the aim is to determine the potentials f and g such that

appropriate boundary conditions on these functions are satisfied. These boundary conditions

are obtained by reformulating the existing boundary conditions, (2.26)-(2.30), in terms of

the Goursat functions. Using this reformulation, the functions are found from the solution

of a boundary integral equation, which is discussed in a subsequent section. Once f and

g are determined, they are used in (3.4) to obtain the stream function Ψ, which in turn is

used to determine the velocity and pressure.

Note however, that the electrostatic potential is required in the dynamic boundary con-

dition, (2.26), and it is not included in the Goursat reformulation. The potential is obtained

independently of the Goursat functions through the solution of the boundary value problem

(2.24). The resulting solution for φ is incorporated into the reformulation of the dynamic

boundary condition (2.26) which is then used to determine the Goursat functions.

3.2 Boundary Condition Reformulation

3.2.1 Dynamic Boundary Condition Reformulation

Using the Goursat functions, the terms appearing in the dynamic boundary condition,

(2.26), are rewritten in complex variable form [22]. The velocity is given by

i(u+ iv) =
∂Ψ
∂x

+ i
∂Ψ
∂y

= f(z) + zf ′(z) + g′(z). (3.5)

Note the notation f(z) = f̄(z). From (3.2), the pressure is given simply as

p = −4Im(f ′(z)). (3.6)
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The normal vector to Ω, n = n1î + n2ĵ or n = n1 + in2, points into the bubble and is given

by

n =
∂y

∂s
− i∂x

∂s

= −i∂z
∂s
. (3.7)

Here, differentiation is with respect to arclength along the interface. Using (3.6) and (3.7),

the pressure stress term, −pni, in complex form is

−pni = −4Im(f ′(z))
(
−i∂z
∂s

)
= −4

(
f ′(z)− f ′(z)

2i

)(
−i∂z
∂s

)
= 2

(
f ′(z)− f ′(z)

)(∂z
∂s

)
. (3.8)

The viscous stress term, τijnj , is required. From (2.25), note that τ12 = τ21, and by

continuity, (2.22), τ22 = −τ11. The viscous stress is

τijnj =

(
τ11 τ12

τ21 τ22

)(
n1

n2

)

=

(
τ11n1 + τ12n2

τ21n1 + τ22n2

)

=

(
τ11n1 + τ12n2

τ12n1 − τ11n2

)
= (τ11n1 + τ12n2) + i(τ12n1 − τ11n2)

= (τ11 + iτ12)(n1 − in2)

= (τ11 + iτ12)n̄. (3.9)

Using (2.25) and (3.5), τ11 + iτ12 is

τ11 + iτ12 = −2i(zf ′′(z) + g′′(z)).

Therefore, the viscous stress term, (3.9), is

(τ11 + iτ12)n̄ = −2i
(
zf ′′(z) + g′′(z)

)(
i
∂z

∂s

)
= 2

(
zf ′′(z) + g′′(z)

)(∂z
∂s

)
. (3.10)
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The surface tension terms in the dynamic boundary condition are also put into complex

variable form. The curvature, κ, is defined as

κ =
dθ

ds
,

where θ is the angle between the tangent to the interface and horizontal, as illustrated in

Figure 2.1. The curvature term in the dynamic stress boundary condition is

σκni = iσ
dθ

ds

∂z

∂s
. (3.11)

The unit tangent vector, s = s1 + is2 = si is written as

s =
∂x

∂s
+ i

∂y

∂s

=
∂z

∂s
. (3.12)

Using (3.12) and writing
∂z

∂s
= eiθ in polar form, (3.11) becomes

iσ
dθ

ds

∂z

∂s
= σ

dθ

ds

d

dθ

(
eiθ
)

= σ
∂

∂s

(
eiθ
)

= σ
∂2z

∂s2
. (3.13)

The tangential surface tension term is also recast into complex form. Using (3.12), the

tangential surface tension term becomes

sk
∂σ

∂xk
si =

∂σ

∂s

∂z

∂s
. (3.14)

Combining the surface tension terms, (3.13) and (3.14), gives

σ
∂2z

∂s2
+
∂σ

∂s

∂z

∂s
=

∂

∂s

(
σ
∂z

∂s

)
. (3.15)

After substituting (3.8), (3.10), and (3.15) into (2.26) and simplifying, the dynamic bound-

ary condition becomes

−2
∂

∂s

(
f(z)− zf ′(z)− g′(z)

)
=

∂

∂s

(
σ
∂z

∂s

)
+
iβ

2

(
∂φ

∂n

)2 ∂z

∂s
.

Anti-differentiation with respect to arclength, s, gives

f(z)− zf ′(z)− g′(z) = −σ
2
∂z

∂s
− iβ

4

∫ (
∂φ

∂n

)2 ∂z

∂s
ds. (3.16)
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This is the reformulation of the dynamic boundary condition (2.26) in terms of the Goursat

functions f and g. As mentioned earlier, the electrostatic potential, φ, is determined from

the solution of the electrostatic problem (2.24) and ∂φ/∂n is computed for use in (3.16). The

discussion behind the computation of this normal derivative is deferred to a later section.

3.2.2 Kinematic Boundary Condition Reformulation

The kinematic boundary condition, (2.28), is also written in complex form by noting that

a · b = Re(ab̄). Using the Goursat representation of velocity, (3.5), and the complex form

of the normal vector, (3.7), the kinematic boundary condition becomes

dz

dt
= Re(un̄)n

= Re
(
−i(f(z) + zf ′(z) + g′(z))(i∂z/∂s)

)
(−i∂z/∂s)

= −Im
(

(f(z) + zf ′(z) + g′(z))(∂z/∂s)
)

(∂z/∂s). (3.17)

3.2.3 Far-Field Boundary Condition Reformulation

The Goursat functions are used to reformulate the far-field boundary conditions given in

(2.29), (2.30). The details are discussed in [14, 20, 24]. Note that by (2.30) as z →∞, the

pressure tends to a constant. Using the definition of the function f , (3.2), and integrating

with respect to z, an examination of the far-field behavior gives

f(z) ∼ − i
4
p∞(t)z + f∞(z) +B(t). (3.18)

Here, p∞ is determined as part of the solution and is discussed in a later section. B(t) is an

arbitrary function and is also discussed later, while f∞(z) is discussed below.

Using the definition of velocity in terms of Goursat functions, (3.5), the far-field condi-

tions for velocity, (2.29), and (3.18), another integration with respect to z and examination

of the far-field behavior gives

g(z) ∼ g∞(z)− B̄(t). (3.19)

The functions f∞(z), g∞(z) are chosen to satisfy the far-field velocity condition

f∞(z) + zf ′∞(z) + g′∞(z) = i(u∞ + iv∞), (3.20)
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where

u∞ + iv∞ =
Q

2

((
1 + i

β0

α0

)
z̄ + i

ω0

α0
z

)
.

is obtained from (2.29).



Chapter 4

Integral Equation Reformulation

4.1 Fluid Problem

In order to determine the Goursat functions f and g subject to the reformulated boundary

conditions discussed in the previous section, the functions are rewritten using boundary

integral representations. In this case, the reformulated boundary conditions lead to integral

equations that are solved to produce the Goursat functions. These integral equations are

particularly amenable to numerical solution, as discussed in a later section. Further details

regarding integral equations and representations are discussed in [20, 24, 26, 27].

The Goursat functions are rewritten in integral form by using the following representa-

tions [20, 26]

f(z) =
1

2πi

∫
∂Ω

γ(ζ)
ζ − z dζ +

∫
∂Ω
γ(ζ)ds− i

4
p∞(t)z + f∞(z) +B(t), (4.1)

g′(z) =
1

2πi

∫
∂Ω

−γ(ζ)dζ + γ(ζ)dζ̄
ζ − z − 1

2πi

∫
∂Ω

ζ̄γ(ζ)
(ζ − z)2

dζ + g∞(z)− B̄(t). (4.2)

Here ζ, z ∈ C with ζ ∈ ∂Ω. These representations contain Cauchy-type integrals. They

are evaluated along the boundary, ∂Ω, and as such are treated as principal-value integrals,

since the kernels of the integrals are singular along the boundary. In addition, they are

written in terms of an unknown complex density, γ = γ(ζ, t), which must be determined.

This density function is only defined on the boundary ∂Ω. As before, the time dependence

of these functions is notationally suppressed γ(ζ) = γ(ζ, t).

After substitution of (4.1), (4.2) into (3.16), use of the Plemelj formulae for evaluation

of principal value integrals on contours, and simplification, the dynamic boundary condition

19
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becomes the Sherman-Lauricella integral equation for γ

γ(z) +
1

2πi

∫
∂Ω
γ(ζ)

(
dζ

ζ − z −
dζ̄

ζ̄ − z̄

)
+

1
2πi

∫
∂Ω
γ(ζ)

(
dζ

ζ̄ − z̄ −
(z − ζ)dζ̄
(ζ̄ − z̄)2

)
+

∫
∂Ω
γ(ζ)ds = −σ

2
∂z

∂s
− iβ

4

∫
s

(
∂φ

∂n

)2 ∂z

∂s
ds+

i

2
p∞z

−
(
f∞(z)− zf ′∞(z)− g′∞(z)

)
. (4.3)

In this case, the arbitrary function B(t) is given as

B(t) =
1
2

∫
∂Ω
γ(ζ)ds,

and the far-field pressure p∞(t) is chosen as

p∞(t) = − 2
π

Re
(∫

∂Ω

γ(ζ)
(ζ − zc)2

dζ

)
.

This fixes a reference value for the pressure at zc, which is an arbitrary point inside Ωd [20].

As discussed in [24], (4.3) is a Fredholm integral equation of the second kind and is

invertible for γ by the Fredholm alternative. In principle, once γ is determined from (4.3),

it is used to update the velocity. Using (4.1) and (4.2) in (3.5), the velocity is determined

from a boundary integral representation

u+ iv =
1

2πi

∫
∂Ω
γ(ζ)

(
dζ

ζ − z −
dζ̄

ζ̄ − z̄

)
+

1
2πi

∫
∂Ω
γ(ζ)

(
dζ

ζ̄ − z̄ −
(z − ζ)dζ̄
(ζ̄ − z̄)2

)
+ u∞ + iv∞.

(4.4)

The velocity is then used in the kinematic boundary condition, (3.17), to advance the

interface profile by calculating the points along the interface, z.

This completes the overview of the solution process for the fluid problem. The issue of

solving the governing equations for the primitive variables in an infinite domain, subject

to the appropriate boundary conditions is converted into the problem of determining ap-

propriate complex potentials to satisfy given boundary conditions. This task, in turn, is

completed by solving an integral equation along the interface of the bubble. In principle, the

solution to this boundary integral equation exists. Once the solution is obtained, it is used

to calculate the complex potentials. These potentials are used to determine the velocity,

which, in turn, is used to calculate the location of the interface in time. However, in order

to solve the boundary integral equation, the normal derivative of the electrostatic potential,

∂φ/∂n, is required. Once this quantity is calculated, the overall problem can be solved.

Therefore, the discussion now shifts to the determination of the electrostatic potential and

its normal derivative.
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4.2 Electrostatic Boundary Value Problem

The electric potential, φ, is obtained by solving the electrostatic boundary value problem

(2.24), which consists of Laplace’s equation with Dirichlet boundary conditions. There are

a number of well known analytical methods for solving this problem. In keeping with the

theme of the previous section, the solution is formulated as a boundary integral representa-

tion. This approach to solving Laplace’s equation is known as potential theory and is widely

used [16, 18, 23, 29].

4.2.1 Boundary Integral Reformulation

The fundamental solution, Φ, to Laplace’s equation, ∆u = 0, in R2 is given by

Φ(x) = − 1
2π

ln |x|. (4.5)

Here |x| represents the distance from the singularity at x = 0. This solution, however,

does not account for any boundary conditions associated with the equation. Given a region

Γ ⊂ R2, it can be shown [12, 23] that any harmonic function, u(x), x ∈ Γ has the following

boundary integral representation

u(x) =
∫
∂Γ

[
Φ(y − x)

∂u

∂ny
(y)− ∂Φ

∂ny
(y − x)u(y)

]
dsy. (4.6)

Here ∂/∂ny represents the normal derivative with respect to y ∈ ∂Γ in the direction of

the outward normal to Γ, and dsy is the arclength differential used in an integration with

respect to y.

This integral representation is valid for any point x ∈ Γ, but requires information about

u and ∂u/∂n on the boundary ∂Γ. Unfortunately, in most boundary value problems, both

these pieces of information are not known. For example, consider Laplace’s equation in an

unbounded region Γ external to a closed boundary ∂Γ, and subject to Dirichlet boundary

conditions (this problem is analogous to the electrostatic boundary value problem discussed

earlier) {
∆u = 0, x ∈ Γ

u = g, x ∈ ∂Γ.
(4.7)

For brevity, the far-field boundary condition is not included here. Clearly information about

the normal derivative on the boundary ∂Γ is unknown and (4.6) is not a useful representation

of the solution. However, it is possible to obtain another boundary integral representation
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for the Dirichlet problem. By way of introducing a corrector function H that satisfies the

following boundary value problem:{
∆H = 0, x ∈ Γ

H = Φ(y − x), x,y ∈ ∂Γ,

and defining the Green’s function

G(x,y) = Φ(y − x)−H(y), (4.8)

it can be shown [12, 23] that the following boundary integral representation for the Dirichlet

problem (4.7) is valid for any x ∈ Γ

u(x) = −
∫
∂Γ

∂G

∂ny
(x,y)g(y)dsy. (4.9)

Although (4.9) may appear to be an improvement, it is not of much practical use as it is

extremely difficult to find explicit Green’s functions other than for the most basic geometries.

Once again, the boundary integral representation needs to be reformulated for use on a

general boundary ∂Γ. However, (4.9) provides motivation for another useful representation.

The Green’s function for the Laplacian operator, (4.8), is always comprised of the fun-

damental solution (4.5), and an additional harmonic corrector function. Therefore, the

singularity of the Green’s function is always of logarithmic form in R2, regardless of the

geometry of the problem. This motivates an integral representation known as a double-layer

potential [13, 23]:

u(x) = −
∫
∂Γ

∂Φ
∂ny

(y − x)µ(y)dsy

=
1

2π

∫
∂Γ

∂

∂ny
(ln |y − x|)µ(y)dsy. (4.10)

The double-layer potential is rewritten in complex form as

u(z) =
1

2π

∫
∂Γ
µ(ζ)

∂

∂nζ
(log |ζ − z|) dsζ , for ζ ∈ ∂Γ, z ∈ Γ. (4.11)

Here ζ = ζ(s) and log represents the magnitude of the complex logarithm function. It is

equivalent to the real-valued natural logarithm, ln. The unknown function µ = µ(ζ) is a

real-valued density function that plays a role similar to a charge density in electrostatics.

Equation (4.10) has the same mathematical form as the potential induced by a double layer
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of charges of opposite sign and density µ on a sheet ∂Γ [13, 23], giving rise to the name

double-layer potential.

The representation in (4.10) differs from (4.9) in that the normal derivative of the un-

known Green’s function has been replaced with the normal derivative of the fundamental

solution. This is done in an attempt to simplify the expression yet maintain the behavior

of the singularity of the Green’s function. However, this is at the cost of introducing the

unknown density function µ. Before using this type of representation, the answers to several

questions are required:

• Does (4.10) represent a harmonic function?

• If so, does (4.10) satisfy Dirichlet boundary conditions?

• If so, does (4.10) produce a unique solution?

• How is the unknown function µ determined?

These questions are discussed in [23]. It turns out that if it is possible to find a function

µ that is continuous on ∂Γ such that

−µ(z) +
1
π

∫
∂Γ
µ(ζ)

∂

∂nζ
(log |ζ − z|) dsζ = 2g(z), for all ζ, z ∈ ∂Γ, (4.12)

then the double-layer potential, (4.11), solves Laplace’s equation with Dirichlet boundary

conditions, (4.7). Therefore, the solution to (4.7) depends on whether a solution, µ, to the

integral equation in (4.12) exists. As proved in [13, 26], this equation is a Fredholm integral

equation of the second kind, and is uniquely solvable for µ given any function g continuous

on ∂Γ.

When solving the exterior Dirichlet problem, Γ is an unbounded region external to a

boundary ∂Γ and to produced a well-posed problem, (4.7) is supplemented by a far-field

condition. In this case, the solution u is taken to be bounded at infinity. As a result of this

condition, the double-layer potential is modified slightly. As discussed in [16, 26], it can

be shown that the representation in (4.11) decays to zero in the far-field. To capture this

possible bounded constant behavior, (4.11) is modified by adding a constant term

u(z) =
1

2π

∫
∂Γ
µ(ζ)

∂

∂nζ
(log |ζ − z|) dsζ +

1
2π

∫
∂Γ
µ(ζ)dsζ

=
1

2π

∫
∂Γ
µ(ζ)

[
∂

∂nζ
(log |ζ − z|) + 1

]
dsζ , for ζ ∈ ∂Γ, z ∈ Γ. (4.13)
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In some cases, such as the modified electrostatic boundary value problem, (2.24), it may

be true that the far-field behavior does in fact decay to zero, in which case the added

contribution will be identically zero.

With this modification, the integral equation used to determine µ, (4.12), changes to

−µ(z) +
1
π

∫
∂Γ

[
µ(ζ)

∂

∂nζ
(log |ζ − z|) + 1

]
dsζ = 2g(z), for all ζ, z ∈ ∂Γ. (4.14)

The above equation is also uniquely solvable for µ, as proved in [26].

Based on this discussion, the solution to the electrostatic problem, (2.24), is obtained

by using boundary integral representations. The potential, φ, is represented in the external

domain Ω as

φ(z) =
1

2π

∫
∂Ω
µ(ζ)

[
∂

∂nζ
(log |ζ − z|) + 1

]
dsζ , for ζ ∈ ∂Ω, z ∈ Ω. (4.15)

Using the boundary condition in (2.24), the unknown density µ is obtained by solving

−µ(z) +
1
π

∫
∂Ω

[
µ(ζ)

∂

∂nζ
(log |ζ − z|) + 1

]
dsζ = 2Re(z), for all ζ, z ∈ ∂Ω. (4.16)

4.2.2 Dirichlet-Neumann Map

The normal derivative of φ along the interface is required in the dynamic boundary condition,

(4.3). Analytic function theory is used to evaluate this derivative. The electric potential

is given by (4.15). This integral representation is the real part of an analytic function

containing a Cauchy-type integral of the form

Φ(z) =
1

2πi

∫
∂Ω

µ(ζ)dζ
ζ − z +

1
2π

∫
∂Ω
µ(ζ)dsζ . (4.17)

Note that Φ is analytic for ζ 6= z (off of the integration contour). Since dζ/(ζ − z) =

dr/r + idθ, where r = |ζ − z| and θ = arg(ζ − z), Φ is rewritten in terms of its real and

imaginary parts

Φ = φ+ iψ

=
1

2π

∫
∂Ω
µ(ζ)dθ − i

2π

∫
∂Ω
µ(ζ)

dr

r
+

1
2π

∫
∂Ω
µ(ζ)dsζ

=
1

2π

∫
∂Ω
µ(ζ)

∂

∂sζ
(arg|ζ − z|) dsζ −

i

2π

∫
∂Ω
µ(ζ)

∂

∂sζ
(log |ζ − z|) dsζ

+
1

2π

∫
∂Ω
µ(ζ)dsζ . (4.18)
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Here ∂/∂sζ is the tangential derivative with respect to the variable ζ. Noting that log(ζ−z)
is an analytic function for ζ 6= z (off of ∂Ω), the Cauchy-Riemann equations

∂

∂s
(log |ζ − z|) = − ∂

∂n
(arg(ζ − z)) ,

∂

∂n
(log |ζ − z|) =

∂

∂s
(arg(ζ − z)) ,

are used to rewrite the integrand of the real component of (4.18) as

Φ =
1

2π

∫
∂Ω
µ(ζ)

[
∂

∂nζ
(log |ζ − z|) + 1

]
dsζ −

i

2π

∫
∂Ω
µ(ζ)

∂

∂sζ
(log |ζ − z|) dsζ . (4.19)

Here, φ = Re(Φ) is the integral representation (4.15) used for solving the Dirichlet problem

(2.24). The form of the imaginary component is

ψ = Im(Φ) = − 1
2π

∫
∂Ω
µ(ζ)

∂

∂sζ
(log |ζ − z|) dsζ . (4.20)

Since the function Φ = φ + iψ is analytic, by the above Cauchy-Riemann conditions

∂φ/∂n = ∂ψ/∂s. Therefore, the normal component of the potential along the interface

is found by computing the tangential derivative of the harmonic conjugate ψ along the in-

terface. Once the tangential derivative is calculated, it is used in the electric stress term in

the dynamic boundary condition, (2.26) to couple the electrostatic problem to the fluid dy-

namical problem. The electrohydrodynamic problem is now fully represented in boundary

integral form.



Chapter 5

Numerical Methods

The coupled fluid-electric free boundary problem discussed in earlier sections is reformulated

using integral equations, which are in turn solved using numerical methods. In particular,

the fast multipole method is used in conjunction with an iterative solver to rapidly solve

the integral equations given in (4.3) and (4.16). The process is described below.

5.1 Numerical Stokes Flow Solver

An existing computer program written in Fortran77 is used to solve a variety of Stokes flow

problems that do not include electrostatic effects [14, 20, 24]. The electrostatic problem

is solved by supplementing the program with appropriate numerical routines. Since the

electrostatic solver is housed within this existing program, the numerical implementation of

the Stokes flow solver is briefly described below. The implementation is discussed in greater

detail within [20, 24].

5.1.1 Equal Arclength Parameterization

The problem is first reformulated in the equal arclength frame. As discussed in [17, 20, 24],

the interface profile is determined solely by the normal component of the velocity, as seen

from the kinematic boundary condition

dx
dt

= (u · n)n.

Numerically, the grid points making up the interface are advected by the flow and tend to

cluster in regions of high curvature. In turn, this leads to an inadequate interface resolution

26
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and affects the time-stepping stability constraint, as ∆t = O(min(∆si)), where ∆si rep-

resents the non-uniform spacing of the interface grid points. To counteract this clustering

effect, a tangential component is added to the kinematic boundary condition

dx
dt

= (u · n)n + T s. (5.1)

This tangential component T has no effect on the interface location. However, if chosen

correctly, it prevents clustering along the interface by implementing an equal arclength

spacing, ∆s, between grid points, thus maintaining a uniform ∆t = O(∆s) condition.

The equal arclength frame is achieved initially by using Newton’s method to solve a

set of non-linear algebraic equations for the locations of the equally spaced grid points

along the interface. The tangential component T is computed at every time step from

the velocity on the boundary ∂Ω. Further details are provided in [17]. The equi-spaced

locations are embedded into other aspects of the problem through a reparameterization.

Using a parameter α ∈ [0, 2π), points along the interface are assigned to equally spaced

parameter values, αj = 2π
N j, 1 ≤ j ≤ N , where N is the number of grid points along the

interface. These equally spaced points are given in C by z(α, t) = x(α, t) + iy(α, t). The

arclength along the interface is also given in terms of this parameter, s = s(α, t) and ∂s/∂α

is a function of time only.

The Sherman-Lauricella integral equation representing the dynamic boundary condition,

(4.3), is parameterized in terms of α. The unknown density is written as a function of the

new parameter, γ(ζ, t) = γ(ζ(α), t) = γ(α, t)

γ(α) +
∫ 2π

0
γ(ν)K1(z(α), z(ν))dν +

∫ 2π

0
γ(ν)K2(z(α), z(ν))dν

+
∫ 2π

0
γ(ν)

∂s

∂ν
dν = −σ

2
∂z

∂α
/
∂s

∂α
− iβ

4

∫
α

(
∂φ

∂n

)2 ∂z

∂α
dα+

i

2
p∞z(α)

−
(
f∞(z(α))− z(α)f ′∞(z(α))− g′∞(z(α))

)
. (5.2)

As before, the time dependence of the functions is notationally suppressed, γ(α, t) = γ(α).

The kernels K1, K2 are given by

K1(z(α), z(ν)) =
1

2πi

(
∂z/∂ν(ν)
z(ν)− z(α)

− ∂z/∂ν(ν)
z(ν)− z(α)

)
, (5.3)

K2(z(α), z(ν)) =
1

2πi

(
∂z/∂ν(ν)
z(ν)− z(α)

− (z(ν)− z(α))∂z/∂ν(ν)
(z(ν)− z(α))2

)
. (5.4)
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The velocity, (4.4), is given by

u+ iv =
∫ 2π

0
γ(ν)K ′1(z(α), z(ν))dν + i

∫ 2π

0
γ(ν)K2(z(α), z(ν))dν + u∞ + iv∞, (5.5)

where K2 is as in (5.4) and K ′1 is given by

K ′1(z(α), z(ν)) =
1

2π

(
∂z/∂ν(ν)
z(ν)− z(α)

+
∂z/∂ν(ν)
z(ν)− z(α)

)
. (5.6)

Any applicable terms in the electrostatic problem are also reformulated in the equal ar-

clength frame. The electric stress term in (5.2) is represented by the following equivalent

forms

− iβ
4

∫
s

(
∂φ

∂n

)2 ∂z

∂s
ds = − iβ

4

∫
z

(
∂φ

∂n

)2

dz

= − iβ
4

∫
α

(
∂φ

∂n

)2 ∂z

∂α
dα.

As discussed in the previous section, the normal derivative of the electric potential is ob-

tained from the tangential derivative of the harmonic conjugate. This derivative is also

reparameterized with respect to α and written as

∂ψ

∂s
=
∂ψ

∂α
/
∂s

∂α
. (5.7)

5.1.2 Spectral Discretization

Since the interface is a closed curve, it is treated as a 2π-periodic domain and is amenable

to a spectral description. As discussed above, the interface is partitioned into N grid points,

equally spaced in both arclength and α. Here αj = 2π
N j, 1 ≤ j ≤ N represents the parameter

value for the jth grid point along the interface, given by z(αj) = zj = xj + iyj . Similarly,

for any function, f(αj) = fj . Discrete Fourier transforms (DFT) are applied to functions

along the interface to achieve spectral accuracy. In particular, the DFT and inverse DFT

(IDFT) are used

f̂k =
N∑
j=1

fje
−ikαj , for k = −N

2 + 1, . . . , N2 ,

fj =
1
N

N/2∑
k=−N/2+1

f̂ke
ikαj , for j = 1, . . . , N.
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In addition, N is a power of two so that the fast Fourier transform (FFT) is used to compute

the DFT and the IDFT. Using the FFT, differentiation and integration of functions are

performed easily, and to spectral accuracy, in Fourier space

dn

dxn
(fj) =

1
N

N/2∑
k=−N/2+1

(ik)nf̂keikαj , for j = 1, . . . , N,

∫ αj

0
f(αj)dα = f̂0αj +

N/2∑
k=−N/2+1,k 6=0

f̂k
ik
eikαj , for j = 1, . . . , N.

These transforms are applied to spatial variables only. The time behavior of the functions is

not computed spectrally, but instead with standard numerical techniques discussed briefly

in a later section.

5.1.3 Numerical Solution of Integral Equations

The main numerical issue in the Stokes solver is the solution of the integral equation, (5.2).

The integrals in (5.2) are discretized using the trapezoidal rule, which maintains spectral

accuracy on sufficiently smooth boundaries [20, 34]. Using a grid spacing of h = 2π/N , the

discretized form of (5.2) is

γj +
N∑
i=1

K1(zj , zi)γi +
N∑
i=1

K2(zj , zi)γi + h

N∑
i=1

γi

(
∂s

∂α

)
i

+ i
h

2π
zj

N∑
i=1

Re
(
γi (∂z/∂α)i
(zi − zc)2

)
= gj , (5.8)

with

gj = −σj
2

(∂s/∂α)j∣∣∣(∂s/∂α)j
∣∣∣ − iβ

4

(∫
α

(
∂φ

∂n

)2 ∂z

∂α
dα

)
j

−
(
f∞(zj)− zjf ′∞(zj)− g′∞(zj)

)
. (5.9)

The integration in the electric stress term is performed with the Fourier integration method

described earlier. Discussion regarding the numerical computation of ∂φ/∂n is deferred to

a later section. The discretized form of the kernels, K1,K2, are

K1(zj , zi) =
h

2πi

(
(∂z/∂α)i
zi − zj

− (∂z/∂α)i
zi − zj

)
,

K2(zj , zi) =
h

2πi

(
(∂z/∂α)i
zi − zj

− (zi − zj)(∂z/∂α)i
(zi − zj)2

)
.
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Note that the kernels are singular for zi = zj . However, in this case, it can be shown

[20] using Taylor series expansions that the kernels have a continuous limit in terms of the

curvature, κ, of the interface

K1(zj , zj) =
h

2π
κj |(∂z/∂α)j |,

K2(zj , zj) =
h

2π
κj

(∂z/∂α)2
j

|(∂z/∂α)j |
.

The curvature is calculated pseudo-spectrally using Fourier differentiation

κj =
(∂x/∂α)(∂2y/∂α2)− (∂y/∂α)(∂2x/∂α2)

((∂x/∂α)2 + (∂y/∂α)2)3/2
.

Using the above discretization leads to a linear system of equations of the form(
I + K1 + K2 + M1 + M2

)
γ = g. (5.10)

Here I is the N×N identity matrix, K1,K2, M1, and M2 are N×N matrices, with entries

given by

K1ij = K1(zj , zi),

K2ij = K2(zj , zi),

M1ij = h(∂s/∂α),

M2ij = ihzj

2π Re
(
(∂z/∂α)i/(zi − zc)2

)
.

Note that each of these matrices is dense. In addition, γ = (γ1, . . . , γN ) is the vector of

unknowns, and g = (g1, . . . , gN ) is obtained from evaluation of (5.9) at grid points along

the interface.

The system, (5.10), is solved iteratively using the generalized minimum residual method

(GMRES). Since (5.10) is obtained from a Fredholm integral equation of the second kind,

GMRES solves this system in a fixed number of iterations, independent of the system

size N [20, 35]. The floating point operation (flop) cost per iteration is O(N2), with the

majority of the computational working coming from a required matrix-vector multiplication.

While this offers a significant savings over the O(N3) flop count required for direct solution

methods such as Gaussian elimination, it is still computationally expensive to solve this

linear system using GMRES directly. In addition, when using GMRES, the matrix is stored

in computational memory at a storage cost of O(N2) bytes. Although an improvement over
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direct methods, this operation count and storage requirement is prohibitive when solving

systems with large N (≥ 104).

The iterative procedure is accelerated by using the fast multipole method (FMM) [6] to

compute the matrix-vector product in (5.10) in O(N) flops. FMM uses the structure of the

dense matrices in (5.10) to quickly and efficiently compute the matrix-vector product re-

quired in GMRES. When using the FMM, the matrix is never explicitly calculated or stored

in memory, offering a significant savings in both storage requirements and computational

cost.

Once (5.10) is solved for γ, it is used in (5.5) to update the velocity. As in (5.2), the

expression is discretized using the trapezoidal rule to preserve spectral accuracy

(u+ iv)j =
N∑
i=1

K ′1(zj , zi)γi + i
N∑
i=1

K2(zj , zi)γi + (u∞ + iv∞)j .

This results in another matrix-vector product of the form

u + iv = (K
′
1 + K2)γ + (u∞ + iv∞). (5.11)

Here K2 is the matrix defined in (5.10), and K
′
1 is defined based on (5.6)

K ′1(zj , zi) = − h

2π

(
(∂z/∂α)i
zi − zj

+
(∂z/∂α)i
zi − zj

)
. (5.12)

The singular limit of (5.12) is

K ′1(zj , zj) = − h

2π
Re
(

(∂2z/∂α2)j
(∂z/∂α)j

)
.

As discussed in [20], the FMM is used to compute the matrix-vector product in (5.11) in an

O(N) flop count.

5.1.4 Time Discretization

Once the velocity is obtained from the representation in (5.11), the interface location is

updated in time. The modified kinematic boundary condition, (5.1) is discretized in time

using an explicit midpoint second-order Runge-Kutta method. The interface grid points are

evolved in time accordingly. All details are discussed in [20, 24].
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5.2 Numerical Electrostatic Solver

5.2.1 Discretization of Integral Equation

The electrostatic potential, φ, is obtained from the integral representation, (4.15). The

unknown density function, µ, is required in this representation. The integral equation in

(4.16) is numerically solved for µ, and the potential is reconstructed using computed µ

values. To maintain spectral accuracy, (4.16) is discretized using the trapezoidal rule with

N grid points spaced equally in arclength along the boundary ∂Ω. The integrals are then

represented as summations over all grid points along the interface. The discrete form of

(4.16) is

−µi +
h

π

N∑
j=1

µj

[
∂

∂nj
(log |zj − zi|) + 1

]
= 2Re(zi). (5.13)

Here h is the arclength between nodes. As before, the boundary ∂Ω is described parametri-

cally by z(α) = x(α) + iy(α). The normal derivative is rewritten by noting that ∂
∂n = n · ∇

and |zj−zi| =
√

(xj − xi)2 + (yj − yi)2 =
√

(∆xj)2 + (∆yj)2. Writing n = nxî+ny ĵ, (5.13)

becomes

−µi +
h

π

N∑
j=1

µj

[
nxj ∆xj + nyj ∆yj
(∆xj)2 + (∆yj)2

+ 1
]

= 2Re(zi). (5.14)

This equation is valid for i 6= j. In the case where i = j, the normal derivative of the

logarithmic term is equal to half the curvature at zi, κi = κ(zi), as zj → zi, [36] as shown

by a Taylor series expansion of the terms within the expression

∂

∂nj
(log |zj − zi|) =

1
2
|ẋÿ − ẏẍ|

[(ẋ)2 + (ẏ)2]3/2
= κi, as zj → zi. (5.15)

Letting

αj =
nxj ∆xj + nyj ∆yj
(∆xj)2 + (∆yj)2

,

and expanding the summation in (5.14) gives the following equation at the i-th node

h

π

[
(α1 + 1)µ1 + (α2 + 1)µ2 + . . .+

(
−π
h

+
(κi

2
+ 1
))

µi + . . .+ (αN + 1)µN
]

= 2Re(zi).

Repeating this process for each node gives a linear system of N equations for the densities

of the form

(I− κ−C− Re(H))µ = −2g. (5.16)
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Here, I is the N × N identity matrix, κ is an N × N diagonal matrix with the curvature

values on the diagonal:

κ =
1
2


κ1 0 . . . 0

0 κ2 . . . 0

0 0
. . . 0

0 0 . . . κN

 ,

C is an N ×N constant matrix:

C =
h

π


1 1 . . . 1

1 1 . . . 1
...

...
...

...

1 1 . . . 1

 ,

and H is an N ×N Hilbert matrix [6] of the form:

H = − 1
πi



0 1
z1−z2 . . . . . . 1

z1−zN

1
z2−z1 0 . . . . . . 1

z2−zN
...

...
. . .

...
...

1
zj−z1 . . . 0 . . . 1

zj−zN

...
...

. . .
...

...
1

zN−z1
1

zN−z2 . . . . . . 0


,

The Hilbert matrix has zeros along the main diagonal and non-zero entries of the form

Hij = 1
zi−zj

, i 6= j. In addition, µ = (µ1, . . . , µN ) is the vector of discrete unknown density

values, while g = (g1, . . . , gN ) is the vector of discrete values of the right-hand side of (5.13).

The system (5.16) is solved iteratively using GMRES accelerated by the FMM. The

FMM is used to compute only the matrix-vector product Hµ in (5.16), as all the other

matrix-vector products are trivial and are obtained without explicit multiplication. As with

the Stokes solver, the matrices are neither explicitly calculated or stored in computational

memory. The result is a method that solves the Laplace problem in an O(N) flop count.

Once the densities µi are determined, the solution φi = φ(zi) is reconstructed using a discrete

integral representation

φi =
h

2π

N∑
j=1

µj

[
∂

∂nj
(log |zj − zi|) + 1

]
. (5.17)
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When discretized with the trapezoidal rule, this representation has the following matrix-

vector product form and results in a vector of discretized values for the potential, φ =

(φ1, φ2, . . . , φN )

φ = (K + 1
2C)µ. (5.18)

Once again, the matrix-vector product Cµ is trivial to compute, and the product Kµ is

computed via the FMM. As before, the matrices in (5.18) are neither calculated or stored

in memory.

5.2.2 Discretization of Harmonic Conjugate

Once the discrete values of the potential are obtained from (5.18), they are used to compute

the values of the harmonic conjugate, ψi, along the interface. This term is subsequently

used in the computation of the tangential derivative, ∂ψ/∂s. As discussed in an earlier

section, by the Cauchy-Riemann equations, this term is equal to the normal derivative of

the potential, needed for the dynamic boundary condition (4.3).

Using the analytic function Φ from (4.19), the integral representation for ψ is given

by (4.20). However, Φ contains a Cauchy-type integral and instead of discretizing (4.20)

explicitly, the FMM is once again used to evaluate the principal-value integral in (4.19).

The integral is recast into parametric form with respect to α

1
2πi

∫
∂Ω

µ(ζ)dζ
ζ − z =

1
2πi

∫
∂Ω

µ(α) ∂ζ∂αdα
ζ(α)− z . (5.19)

Using the trapezoidal rule in an equi-spaced arclength discretization, (5.19) has the following

discrete form

Φk = (φ+ iψ)k =
h

2πi

N∑
j=1

µj (∂ζ/∂α)j
ζj − zk

. (5.20)

As mentioned, (5.20) is singular on ∂Ω. Unlike in the case of the potential φ in (5.15), there is

no convenient representation that allows the singular limit to be replaced with a continuous

function. Therefore, another approach is adopted for this calculation. The alternating point

trapezoidal method is used to calculate the integral value along the interface [25]. Essentially,

the interface mesh is divided up into odd and even points. For an equi-arclength spacing,

the value of the integral at odd grid points is calculated by using the above discretization at

even points and vice versa. This avoids the singularity and still achieves spectral accuracy

in computations. The alternating point trapezoidal method is efficiently computed by the
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FMM, as the kernel is an expression of the form 1
ζ−z [6]. Once this is calculated, the

imaginary part of the expression is extracted, and its tangential derivative is found using

Fourier differentiation. The resulting term is used in the dynamic boundary condition (4.3).

5.3 Test Cases

The Stokes solver has been tested in various capacities and its correctness verified and

documented [14, 20, 24]. The Laplace solver is a new addition to the program and its

correctness is verified using a series of numerical test cases described below.

5.3.1 Test Case - Calculation of Potential

The Laplace solver is tested against the known solution of an exterior Dirichlet problem

[4]. The integral equation (4.16) is solved in an unbounded domain Γ exterior to the ellipse

∂Γ : R(t) = (a cos t, b sin t), t ∈ [0, 2π]:
∆u = 0, x ∈ Γ

u = e
x

x2+y2 cos
(

y

x2 + y2

)
, x ∈ ∂Γ.

(5.21)

In this test, two sets of values for a and b are used, namely a = 1, b = 2 and a = 1, b = 5.

The solution is computed along a row of points exterior to the ellipse, c(θ) = q(cos θ, sin θ),

where q takes on values q > 3
2 , and θ is the angle of the ray with respect to the x-axis. Each

case has θ = 4π
3 . The geometry and test points are illustrated in Figure 5.1 and Figure 5.2.

−10 −5 0 5 10
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2
 Geometry and Point Locations for Exterior Dirichlet

 x

 y

Figure 5.1: Geometry for Exterior Dirichlet Problem, a = 1, b = 2
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Figure 5.2: Geometry for Exterior Dirichlet Problem, a = 1, b = 5

The exact solution to the problem is

ue(x, y) = e
x

x2+y2 cos
(

y

x2 + y2

)
. (5.22)

A grid convergence study is performed to assess the convergence of the method to the exact

solution. The infinity norm, L∞ = max1≤i≤N |ui−ue|, is used to compute the error between

the computed solution u and the exact solution given in (5.22). The error tolerance for both

the GMRES and FMM are set to 10−13. The results are given in the tables and figures

below.
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Figure 5.3: Errors for Potential Test Case, a = 1, b = 2
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N 32 64 128 256 512 1024 2048 4096
L∞ 2.21e-5 3.37e-9 3.66e-15 1.78e-15 1.18e-15 5.22e-15 4.66e-15 1.80e-14

Ratio - 6.54e3 9.20e5 2.06 1.51 0.23 1.12 0.26

Table 5.1: Errors for Potential Test Case, a = 1, b = 2
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Figure 5.4: Errors for Potential Test Case, a = 1, b = 5

N 32 64 128 256 512 1024 2048 4096
L∞ 8.68e-3 1.49e-3 7.60e-5 2.96e-7 9.306e-12 2.68e-14 3.02e-14 2.60e-14

Ratio - 5.81 19.64 256.64 31,866 347.50 0.89 1.16

Table 5.2: Errors for Potential Test Case, a = 1, b = 5

Both cases converge to the exact result with spectral accuracy, as evidenced by the ratios

of the error norms in Table 5.1 and Table 5.2, and by the plots of the error norms in Figure

5.3 and Figure 5.4. The convergence to machine error is slower for the ellipse with higher

eccentricity. This is an expected result due to the increased deformation in the ellipse.

The above results suggest a successful implementation of the Laplace solver for the exterior

Dirichlet problem.
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5.3.2 Test Case - Principal Value Integrals and Derivative of Harmonic

Conjugate

The implementation of the alternating point trapezoidal method for the Cauchy-type inte-

grals used in the calculation of the harmonic conjugate of the electric potential is investigated

using test cases. As discussed earlier, the harmonic conjugate of the potential is given by

ψ = Im(Φ)

= Im
(

1
2πi

∫
∂Ω

µ(ζ)dζ
ζ − z +

1
2π

∫
∂Ω
µ(ζ)dsζ

)
= Im

(
1

2πi

∫
∂Ω

µ(ζ)dζ
ζ − z

)
.

To evaluate this expression, each test case makes use of the Plemelj formulae [1] for evalu-

ating a principal value integral along a closed contour C

χ±(t) = ±ϕ(t)
2

+
1

2πi

∫
C

ϕ(τ)
t− τ dτ. (5.23)

Here the ± refers to the approach of a point on the contour from either the exterior (−)

or interior (+) of the curve C, respectively. χ± is a sectionally analytic function in either

the interior or exterior, found by evaluating the integral away from the contour in the

corresponding region. This function is computed with complex contour integration, and is

used to rearrange (5.23) for the principal value integral on the contour itself. From above,

the harmonic conjugate ψ is the imaginary component of this integral. Fourier differentiation

is used to obtain the tangential derivative ∂ψ/∂s = (∂ψ/∂α)/(∂s/∂α).

For this test problem, ϕ(τ) = τ + 1
τ , along the contour C : x

2

9 + y2 = 1, giving

1
2πi

∫
C

ϕ(τ)
t− τ dτ =

1
2

(
t− 1

t

)
.

Here the exact harmonic conjugate is

ψe = Im
(

1
2

(
t− 1

t

))
=
y

2

(
1 +

1
x2 + y2

)
.

The exact tangential derivative is given by(
∂ψ

∂s

)
e

= s · ∇ψ

= sx
∂ψ

∂x
+ sy

∂ψ

∂y

= sx

(
− xy

(x2 + y2)2

)
+ sy

(
1
2

(
1 +

1
x2 + y2

)
− y2

(x2 + y2)2

)
.
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The components of the tangent vector are computed by the code for the particular choice

of geometry. The error L∞ is computed by taking the maximum magnitude of the differ-

ence between the computed and exact solutions for both the harmonic conjugate and its

derivative.
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Figure 5.5: Errors for Harmonic Conjugate Test Cases, a = 3, b = 1

N 32 64 128 256 512 1024 2048 4096
L∞ψ 1.55e-1 1.28e-2 1.40e-4 2.44e-8 3.84e-13 1.10e-12 2.68e-12 3.84e-12

Ratio ψ - 12.13 91.62 5,727 63,538 0.35 0.41 0.70
L∞

∂ψ
∂s 3.83e-1 3.69e-2 8.41e-4 5.10e-7 3.96e-11 1.60e-10 7.78e-10 2.72e-9

Ratio ∂ψ
∂s - 10.36 43.90 1,650 12,869 0.25 0.21 0.29

Table 5.3: Error ratios for Harmonic Conjugate Test Cases, a = 3, b = 1

As seen from Figure 5.5 and Table 5.3, the results appear to converge super-algebraically

to the exact solution as the mesh is refined. In general, the harmonic conjugate has a smaller

error than the differentiated conjugate. This expected since Fourier differentiation results

in a loss of accuracy of O(N), where N is the number of points used. In this case, this

means a loss of accuracy 102 − 103 when compared to the harmonic conjugate itself. This

is exactly the behavior present in Figure 5.5 and Table 5.3.

These tests confirm the correct implementation of the Laplace solver into the existing

Stokes solver. The program is now used to deal with the fully coupled fluid-electrostatic

problem.



Chapter 6

Electrohydrodynamic Bubble

Problem

The numerical solver is now applied to the electrohydrodynamic problem described in Chap-

ter 2; namely, a conducting bubble within an unbounded viscous fluid subjected to a uniform

electric field. This problem is the topic of examination of several recent papers. Crowdy

[8] examines the two-dimensional problem discussed within the current study, motivated by

an analogous three-dimensional problem examined in Dubash & Mestel [10]. While Dubash

& Mestel perform a numerical investigation using boundary integral methods, Crowdy uses

an analytical approach based on conformal mapping techniques coupled with a numerical

method based on Laurent series expansions. The behavior of a variety of problems is in-

vestigated, including both compressible and incompressible bubbles in a very viscous flow,

subject to both external electric fields and straining flows.

As discussed in [8], there appear to be no other papers investigating bubble problems

where electrostatic effects are coupled to two-dimensional Stokes flow. Therefore, the current

work aims to introduce a fast numerical method for solving Stokes flow problems coupled

with Laplacian boundary value problems, in addition to verifying the validity of results

presented by Crowdy.

40
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6.1 Analytical Solution Method

The problem in [8] that relates to the current work is the behavior of an incompressible

conducting bubble of fluid in an external unbounded viscous fluid, subject to a uniform

electric field. This problem is described in the current study by (2.21)-(2.30). The approach

taken by Crowdy is to proceed analytically as far as possible using conformal mappings and

Laurent series expansions. A numerical method is resorted to only after all analytical means

have been exhausted. Full details are found in [8], but the approach is briefly outlined here.

Note, as discussed in Crowdy, there is no possibility of the “Stokes Paradox” in this

two-dimensional problem (where the solution of a three-dimensional Stokes flow problem

has no corresponding solution in two-dimensions). Crowdy arrives at this conclusion from

the simple fact that solutions to the two-dimensional problem are obtained numerically,

implying well-posed solutions to the electrohydrodynamic problem actually exist.

6.1.1 Complex Variable Reformulation

The dimensionless governing equations and boundary conditions for the fluid dynamics,

(2.21)-(2.30), are recast into a complex variable formulation. However, Crowdy’s choices in

this reformulation differ from those presented in Chapter 3. First of all, the roles of the

vorticity and pressure are reversed in the definition of the Goursat function f , as compared

to (3.2)

p− iω = 4f ′(z).

The streamfunction is taken as the imaginary part of the function defined in (3.4)

Ψ(z) = Im(z̄f(z) + g(z)),

which leads to the following definitions, analogous to (3.5) and (3.10)

u+ iv = −f(z) + zf ′(z) + g′(z),

τ11 + iτ12 = zf ′′(z) + g′′(z).

As discussed in [22], there is some degree of arbitrariness in the selections made, but any

choices result in an equivalent mathematical description of the problem. For example, the

choices used in [8] are identical to those in [33], whereas the definitions used in Chapter 3

are identical to those presented in [20, 22]. In [20], several results from [33] are reproduced,

showing an equivalence of the different choices.
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Finally, the surface tension along the interface is assumed spatially constant in [8].

However, the approach used in Chapter 3 to describe spatially varying surface tension,

(3.15), is still valid, with minor modification. As discussed in [14], the complex variable form

of the spatially varying surface tension contribution to the dynamic boundary condition is

unchanged from the form of the spatially constant version, save for a factor of σ. Since the

surface tension σ is used for non-dimensionalizing the problem, the dimensionless forms are

identical. Hence, no change is required in (3.15).

The resulting form of the dynamic boundary condition using Crowdy’s notation is

f(z) + zf ′(z) + g′(z) = − iσ
2
∂z

∂s
+
β

4

∫ (
∂φ

∂n

)2 ∂z

∂s
ds. (6.1)

6.1.2 Conformal Mapping

The mathematical treatment of the free boundary in [8] is significantly different than in the

current study. A conformal mapping is introduced to rewrite both the electrostatic boundary

value problem and the fluid problem into a form more amenable for analytic study. The

interior of the unit circle in the complex ζ-plane, |ζ| = 1, is mapped to the unbounded

domain Ω exterior to the bubble interface ∂Ω in the complex z-plane. The mapping has the

form

z(ζ, t) =
a(t)
ζ

+ h(ζ, t). (6.2)

Here, the unknown function a(t) is real-valued and h(ζ, t) is a complex-valued function that

is analytic in the unit circle |ζ| = 1. Therefore, it possesses a Taylor series representation

of the form

h(ζ, t) =
∞∑
n=0

an(t)ζn, for |ζ| = 1. (6.3)

As the precise mathematical form of the boundary ∂Ω is unknown, the functions a(t) and

h(ζ, t) are unknown as well. The coefficients in the mapping, a(t), an(t) are determined as

part of the solution to the problem and are used to reconstruct the interface via (6.2).

The electrostatic boundary value problem is solved in the ζ-plane by writing the bound-

ary value problem (2.24) in terms of ζ. Letting φ = Re(Φ), the solution within the unit disk

ζ ≤ 1 is given in terms of the complex potential Φ

Φ(ζ, t) = a(t)
(

1
ζ
− ζ
)
. (6.4)
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With the introduction of the conformal mapping (6.2), the electrostatic problem is solved

in the ζ-plane. Committing to this approach, the fluid problem is also reformulated in the

ζ-plane. The details of the fluid mapping are discussed in several sources [8, 14, 31, 33] and

only briefly summarized here.

The solution (6.4) is used in the dynamic boundary condition (6.1). Note that since

E = −∇φ in general, and on the bubble interface E = (E · n)n =⇒ |E|2 = (E · n)2, the

electric stress term along the interface is rewritten as

β

2

(
∂φ

∂n

)2

n =
β

2
(∇φ · n)2 n

=
β

2
(E · n)2 n

=
β

2
|E|2n.

Since φ = Re(Φ), use of E = −∇φ and some algebraic manipulations leads to

β

2
|E|2n =

β

2

∣∣∣∣dΦdz
∣∣∣∣2 n. (6.5)

Upon substitution of (6.5) in (6.1), the dynamic boundary condition, evaluated along |ζ| = 1,

becomes

f(z) + zf ′(z) + g′(z) = − iσ
2
∂z

∂s
+
β

4

∫ s
∣∣∣∣dΦdz

∣∣∣∣2 ∂z∂sds
= − iσ

2
∂z

∂s
+
β

4

∫ ζ |dΦ/dζ|2

∂z/∂ζ
dζ

= − iσ
2
∂z

∂s
+
βa2(t)

4

∫ ζ (1 + ζ2)2

ζ2(∂z/∂ζ)
dζ. (6.6)

The remaining terms in (6.6) are rewritten as functions of ζ using the definitions F (ζ) =

f(z(ζ, t), t), G(ζ) = g′(z(ζ, t), t) and the identity

∂z

∂s
=
iζ∂z/∂ζ

|∂z/∂ζ|
which is valid on |ζ| = 1. Following the approach found in [8, 33], (6.6) becomes

2G(ζ)
∂z

∂ζ
= −2F (ζ)

∂z

∂ζ
− z ∂F

∂ζ
+
|∂z/∂ζ|

ζ
+
βa2(t)

2
∂z

∂ζ

∫ ζ (1 + ζ2)2

ζ2∂z/∂ζ
dζ. (6.7)

The kinematic boundary condition, (2.28), is also reformulated in terms of ζ

dz

dt
+ 2F (ζ) = ζ

∂z

∂ζ
I(ζ), (6.8)
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where

I(ζ) =
1

2πi

∮
|ζ′|=1

dζ ′

ζ ′

(
ζ ′ + ζ

ζ ′ − ζ

)[
1

2|∂z/∂ζ| + Re
[

r(ζ ′)
ζ ′∂z/∂ζ

]]
. (6.9)

Here r(ζ) is given by the integral term in (6.6).

The main equations governing the flow are the modified dynamic boundary condition

(6.7) and the kinematic boundary condition (6.8). The equations are too complicated to

admit an analytical solution, so a numerical approach is used instead. The functions F,G

are given series representations within |ζ| ≤ 1. Arguments defining each choice are found in

[14, 33]. The representations are

F (ζ) =
F−1

ζ
+
∞∑
n=0

Fnζ
n,

G(ζ) =
∞∑
n=0

Gnζ
n. (6.10)

In each case the coefficients in (6.10) are unknown. These representations are substituted

into (6.7). As described in [8], the series are then truncated to 64 terms each, leading to a

finite system of equations for the unknown coefficients. The process used to solve for these

coefficients is complicated and not repeated here, but full details are found in [3, 32]. Once

the coefficients are determined, they are used in (6.8) to obtain differential equations for

the evolution of the coefficients of the conformal mapping, a(t), an(t). These coefficients

are evolved forward in time to obtain the location of the interface, thereby solving the

free-boundary value problem.

6.2 Crowdy’s Results

Using the numerical method described above, Crowdy reports the following findings on the

bubble dynamics. Noting that in Crowdy’s notation E2 = β from (2.27), the bubble has two

states, characterized by the dimensionless parameter E =
√
β, and a critical value, Ecrit.

6.2.1 Sub-Critical Case

For E < Ecrit, after an initial transient period, the bubble evolves to reach an essentially

elliptical fixed equilibrium profile. Physically, the externally applied electric field is not

strong enough to overcome the surface tension forces present along the bubble interface. The

dynamics are dominated by surface tension effects and the bubble attains a fixed profile.
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Figure 6.1: Equilibrium bubble profiles evolving from an initially circular profile, showing
E =

√
β = 0.5, 0.65, 0.73.

Through numerical experimentation, Crowdy calculates the aspect ratio of the maximum

steady-state elliptical bubble to be e = 0.455, where e is the ratio of the semi-major axis

to the semi-minor axis. This occurs at a critical parameter value of approximately Ecrit =

0.745.

Based on the results of this equilibrium case, a simplified evolution model for the bubble

profile is derived. According to simulations, the bubble profiles are very nearly elliptical.

Crowdy modifies the conformal mapping, (6.2), to map from the interior of the unit circle

to the exterior of an ellipse

z(ζ, t) =
a(t)
ζ

+ b(t)ζ. (6.11)

This mapping allows the exact evaluation of the integral contribution in the dynamic bound-

ary condition, (6.6), and results in a set of evolution equations for the unknown coefficients

a and b in (6.11). Defining e = b/a, or a = 1/
√

1− e2, b = e/
√

1− e2, a single non-linear

ordinary differential equation is obtained for the time evolution of e

de

dt
=
(

1− e2

1 + e2

)(
β

6
(2− 2e− e2)− 2eÎ0

)
, (6.12)

where Î0 = I0 + βI1 is given by the following integrals

I0 =
1

4πi

∮
|ζ|=1

dζ

ζ

1
|∂z/∂ζ| ,

I1 =
1

2πi

∮
|ζ|=1

dζ

ζ
Re
(

r̃(ζ)
ζ(∂z/∂ζ)

)
.

Using a parametric form on |ζ| = 1 given by ζ = eiν with ν ∈ [0, 2π], the integral I0 is
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rewritten as an elliptic integral of the first kind [2], denoted by the function K

I0 =
1

4πi

∮
|ζ|=1

dζ

ζ

1
|∂z/∂ζ|

=
1
π

√
1− e
1 + e

K

(
4e

(1 + e)2

)
. (6.13)

This result is valid for 0 ≤ e ≤ 1, which is the case for an initially circular bubble being

stretched horizontally by an externally applied electric field.

In I1, the function r̃(ζ) is defined in terms of the integral

r̃(ζ) =
βa2(t)

4

∫ ζ

1

(1 + ζ2)2

ζ2(b− aζ2)
dζ

= −a
4

(
ζ +

a

bζ
+
√
a

b

(a+ b)2

2ab
log

(
1−

√
b/aζ−1

1 +
√
b/aζ−1

))
+ C

= − 1
4
√

1− e2

(
ζ +

1
eζ

+
(1 + e)2

2e3/2
log
(

1−√eζ−1

1 +
√
eζ−1

))
+

1
4
√

1− e2

(
1 +

1
e

+
(1 + e)2

2e3/2
log
(

1−√e
1 +
√
e

))
This model is used to evaluate the shape of the bubble for sub-critical β values. Crowdy

reports no significant difference between the full numerical method and this evolution model

for the sub-critical case. Therefore, it provides a simple way for obtaining solutions in the

sub-critical case.

The evolution model is used to predict the critical E value below which the sub-critical

case exists. By taking the evolution equation (6.12) and solving for the equilibrium solu-

tion, ė = 0, the remaining terms are reorganized to give the field strength in terms of the

parameter e

E2 =
12eI0

(2− 2e− e2)− 12eI1
. (6.14)

This relationship produces the plot in Figure 6.2, which is in turn used to determine the

critical field strength predicted by the evolution model.

As indicated in Figure 6.2, the critical field strength is given by Ecrit = 0.7372. This

differs from the prediction of Ecrit = 0.745 in Crowdy’s full numerical model by O(10−2).

As discussed in [8], this is consistent with the error involved in assuming the conformal

mapping between the exterior of the bubble and the interior of the region in the ζ-plane is

exactly elliptical.



CHAPTER 6. ELECTROHYDRODYNAMIC BUBBLE PROBLEM 47

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 e=b/a

 E
qu

ili
br

iu
m

 F
ie

ld
 S

tr
en

gt
h 

E
2 eq

 Max E
eq

: 0.7372 , Corresponding e: 0.45499

Figure 6.2: Graph of E2 vs. e showing critical equilibrium value of E =
√
β=0.7372.

6.2.2 Super-Critical Case

For E > Ecrit, there is no reported equilibrium profile. The applied electric field is strong

enough to overcome the restorative surface tension forces along the bubble interface. The

electric field acts to continually stretch the bubble until “pinch-off” occurs in the center of

the bubble, effectively splitting it into two segments. The evolution equation (6.12) does

not apply to the super-critical case, as the bubble is no longer elliptical and the conformal

mapping, (6.11), is not valid. In addition, the mathematical model used fails to apply after

pinch-off, as its topology changes to that of a multiply connected region.
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Figure 6.3: Non-equilibrium bubble profile for super-critical case.
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6.3 Numerical Test Cases and Comparison

The numerical solver is used to investigate both the sub-critical and super-critical cases

reported by Crowdy. The results stated above are used as a reference for computed solutions

obtained with the solver.

6.3.1 Sub-Critical Case

For the sub-critical case, the numerical solver is able to reproduce the results presented in

[8] with some notable differences. Mainly, the β values for equilibrium solutions differ from

those reported by Crowdy. As an example, the solver is used to recreate the first image

in Figure 6.1 (E = 0.5) for comparison with the evolution model in (6.12). The result is

illustrated in Figure 6.4.
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Figure 6.4: Comparison of computed profile vs. Crowdy model, E =
√
β = 0.5.

The computed profile disagrees with the evolution model. The solver underpredicts the

horizontal deformation of the bubble, as seen in Figure 6.4. However, the numerical solver

is able to reproduce the correct profile using a different β value, suggesting that there is a

difference in scalings used for the non-dimensionalizations presented in this work and in [8].
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Although defined identically, the values of β and E2 are not equivalent for a given set of

parameters. The difference is explained by noting that in [8], the area of the initial circular

bubble is used in defining the length scale. The radius of the bubble, r, is used as the

characteristic length R in (2.27), giving

E2 =
ε0E

2
0r

σ0
.

However, as discussed in Chapter 2, the characteristic length scale associated with the

numerical solver is based upon the diameter, D = 2r, of the initial circular bubble, giving

β =
ε0E

2
0D

σ0

=
ε0E

2
0(2r)
σ0

.

These scalings lead to a factor of two difference in the value of the parameters E2 and β,

implying that β = 2E2, or
√
β =
√

2E. To verify this, numerical experimentation is used to

compute several pairs of β and E values corresponding to the same bubble profile. These

values are plotted in Figure 6.5.
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Figure 6.5: Scaling relationship between solver and evolution model.
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As seen in Figure 6.5, for β < 0.60 there is excellent agreement between β and E values

and the function E2 = 1
2β. This suggests that the length scale argument correctly accounts

for the difference in the parameter values and bubble profiles for relatively low values of

β. The parameter value used in the numerical solver is modified according to the above

discussion in order to reproduce bubble profiles from the evolution model. This is illustrated

in Figures 6.6, 6.7, and 6.8.
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Figure 6.6: Comparison of Crowdy model, E = 0.40 vs. computed profile,
√
β = 0.566.

There is very good agreement between the results of the numerical solver and the evolu-

tion model. The profiles in Figures 6.6 and 6.7 are nearly indistinguishable, verifying that

the scaling argument discussed above is correct. The profiles deviate slightly in Figure 6.8,

but this is expected as
√
β = 0.849, or β = 0.72, falls in the non-linear region of Figure 6.5.

The deviation is more pronounced the larger the parameter becomes and the closer E is

to Ecrit. This is illustrated in Figure 6.9. The reason for this deviation and the non-linear

behavior in Figure 6.5 is unknown. The numerical solver is able to match profiles produced

by the evolution model in this parameter range, but it is unclear as to why the constant

scaling factor is no longer valid. However, based on these results, the numerical solver is

able to accurately reproduce the results of the sub-critical evolution model presented in [8].



CHAPTER 6. ELECTROHYDRODYNAMIC BUBBLE PROBLEM 51

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Initial
Computed
Crowdy

Figure 6.7: Comparison of Crowdy model, E = 0.50 vs. computed profile,
√
β = 0.707.
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Figure 6.8: Comparison of Crowdy model, E = 0.60 vs. computed profile,
√
β = 0.849.
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Figure 6.9: Comparison of Crowdy model, E = 0.73 vs. computed profile,
√
β = 1.032.

For reference, CPU times for the computation of one time step in the sub-critical case

are listed in Table 6.1. In this table, the time step is ∆t = 0.001 seconds, and an initial

elliptical profile corresponding to E = 0.73 or
√
β = 1.32 is used. This corresponds to an

ellipse with a = 1.44 and b = 0.6942, parameterized as in Chapter 5.3.1.

N 32 64 128 256 512 1024 2048 4096
CPU time (s) 4.063e-1 5.156e-1 7.188e-1 1.250 2.172 3.969 8.250 18.250

Table 6.1: CPU times for elliptical bubble profile, a = 1.44, b = 0.6942, ∆t = 0.001.

Another difference between the solver and the evolution model lies in the ellipticity

assumption made in [8]. Specifically, the validity of the elliptic conformal mapping, (6.11),

is in question. As the value of β increases, the equilibrium profiles begin to deviate from

elliptical. This behavior is evident when comparing the computed results to purely elliptical

profiles. For small β values, there is negligible deviation between the two, as seen in Figures

6.6 and 6.7. However, the profiles deviate further as β increases, and the result is more

pronounced the larger β is increased. This behavior is illustrated by the equilibrium solution

for β = 9.0 in Figure 6.10.
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Figure 6.10: Comparison of computed profile for β = 9.0 and an ellipse.

At higher parameter values there is significant deviation between the computed result

and the elliptic profile. This suggests that the assumption of an elliptical bubble profile is

not valid for equilibrium solutions at higher β values and implies there may be other profile

shapes in the equilibrium regime. This needs to be investigated further.

As a final difference between the current work and the results reported in [8], numerical

experimentation with the solver shows that equilibrium solutions are achieved for parameter

values up to β ≈ 15. In this case, the maximum aspect ratio is e ≈ 0.03, which is well below

the maximum ratio of 0.455 reported by Crowdy. This aspect ratio produces an equilibrium

profile which is far more deformed than the profile corresponding to the maximum aspect

ratio obtained by Crowdy, as illustrated in Figure 6.11.
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Figure 6.11: Comparison of maximum equilibrium profiles. Computed, β = 15.0 vs.
Crowdy, E = 0.7372.



CHAPTER 6. ELECTROHYDRODYNAMIC BUBBLE PROBLEM 54

6.3.2 Super-Critical Case

As discussed in [8], above a given β, the bubble does not achieve an equilibrium profile. The

applied electric field causes the bubble to continually deform until the profile pinches-off.

Crowdy reports that this occurs for E =
√
β > Ecrit ≈ 0.745. As discussed above, the

results of the numerical solver disagree with this value. The bubble profiles exhibit non-

equilibrium behavior for β > 15. The computed profiles are non-elliptical and pinch-off at

the center, as seen in Figure 6.12. This pinch-off occurs for all β values above critical.
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Figure 6.12: Computed profiles showing bubble pinch-off, β = 50, N = 1024.

The result computed in [8] corresponding to Figure 6.3 is for E = 0.80. However, there

is no way of determining the corresponding β value for the numerical solver, so at best there

is only qualitative agreement between the computed solution and the result in [8].

It is worth noting that all computed solutions with β > 15 lead to the same spatial

profile, namely Figure 6.12. This behavior cannot be compared with any results in [8] as

there is no further mention of the bubble dynamics in the super-critical case. For instance,

does the result in [8] corresponding to Figure 6.3 apply for all E > Ecrit, or does the spatial

profile of the bubble change with E? If Crowdy’s model has the same spatial profile for

all E > Ecrit, then there is a quantitative difference in the computed profile in Figure 6.12

and the result corresponding to Figure 6.3. Comparing the profiles, the maximum spatial

extent of the computed bubble profile is x ≈ ±5.5, while in Crowdy’s result, the extent is

x ≈ ±4. This difference may be due to the scaling issue discussed earlier. However, further

investigation is necessary.

These results suggest a successful implementation of the numerical solver. Based on

comparisons to previously reported results, the solver is able to compute full solutions to

the electrohydrodynamic bubble problem.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis develops a fast and efficient numerical method for solving electrohydrodynamic

free boundary problems. Specifically, the method calculates the interfacial profile of a single

two-dimensional electrically conducting bubble within an infinite expanse of viscous fluid.

The bubble and fluid are subjected to an externally applied uniform electric field. The

motion of the bubble is in the creeping flow regime. The governing fluid equations are the

linear Stokes equations, which are amenable to mathematical analysis. The electrostatic po-

tential of the system is governed by Laplace’s equation. The governing equations in the fluid

domain and the appropriate boundary conditions are initially stated in a primitive variable

formulation, then rewritten in terms of complex potential functions. These equations, in

turn, are recast as integral equations along the bubble interface. This approach converts

the solution of the primitive variable equations in an infinite domain into the solution of

integral equations along the bubble boundary.

The integral equations are discretized using a spectrally accurate method and solved

with an iterative solver accelerated by the fast-multipole method. This computes the solu-

tion of the discrete electrohydrodynamic problem in O(N) floating-point operations, where

N is the number of points used to the discretize the interface. The numerical solver is

validated against several analytic results. This method provides a fast and efficient means

of computing free boundary electrohydrodynamic problems.

The solver is used to track the interface of a conducting bubble in a viscous fluid subject

to an electric field. Existing analytic results show that the dynamics of the bubble are

55
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controlled by a single dimensionless parameter, representing the ratio of electric stresses to

surface tension stresses along the bubble interface. In particular, the bubble either reaches

an equilibrium profile for sufficiently small parameter values, or deforms in a non-steady

fashion until a “pinch-off” in the profile occurs for the case of larger parameter values.

The numerical solver reproduces these results; namely a steady-state quasi-elliptic pro-

file, and a transient profile that evolves until “pinch-off”. The computed steady-state

profiles are compared to a simplified analytic evolution model. The computed solutions

reproduce the analytic results, but at different parameter values than those predicted by

the analytic model. The results differ by a scaling factor, due to a difference in the non-

dimensionalizations used in the analytic result and the current study. The non-equilibrium

profiles agree qualitatively with previously reported results, showing the “pinch-off” behav-

ior. Based on these results, the numerical method succeeds in providing a fast and efficient

method for computing free-boundary electrohydrodynamic problems.

7.2 Future Work

In the context of the electrostatic boundary value problem, this study deals only with

the solution of Laplace’s equation subject to Dirichlet boundary conditions. An obvious

generalization of the method is to consider either Neumann boundary conditions or mixed

boundary conditions. This is easily accommodated within the integral equation framework

presented here. However, the integral representations for these cases involve single-layer

potentials. As with the double-layer potential, the kernel of the single-layer potential is

singular along a boundary. Unfortunately, for a single-layer potential, in the limit as the

singular point is approached there is no convenient representation in terms of a continuous

function, as was the case with the double-layer potential and the interface curvature. Further

research is required into how to represent and discretize this case.

Once these alternate boundary conditions are implemented, the numerical solver can be

applied to other problems involving coupled physical processes. For example, a problem of

interest is the motion of a surfactant-laden bubble in a straining Stokes flow with diffusion

of surfactant off of the bubble interface. The diffusion is governed by Laplace’s equation

and a mixed boundary condition is used to couple the surfactant concentration to the fluid

problem at any given time.

The method presented here is applicable to single bubbles only. However, it can be
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modified to deal with multiple bubbles. This modification would require additional terms

in both the fluid and electrostatic models to deal with the multiple interfaces. Regardless

of the number of bubbles, the discrete model would still lead to the solution of a system of

equations and can be dealt with using the existing approach. The new system would simply

be augmented by additional equations. This approach is discussed in [21] for Stokes flow

problems, and [16] for Laplacian boundary value problems.
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