
A GPU-BASED INTEGRATED APPROACH TO

SIMULATION FOR DEFORMABLE SURFACE

MESHES

by

Vidya Kotamraju

B.E., Goa University, 2001

THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF ApPLIED SCIENCE

in the School

of

Engineering Science

© Vidya Kotamraju 2008

SIMON FRASER UNIVERSITY

Fall 2008

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name: Vidya Kotamraju

Degree: Master of Applied Science

Title of thesis: A GPU-based Integrated Approach To Simulation for

Deformable Surface Meshes

Examining Committee: Dr. Andrew Rawicz

Professor

Chair

Dr. John Dill

Senior Supervisor

Professor

Dr. Shahram Payandeh

Supervisor

Professor

Dr. Tom Calvert

Internal Examiner

Professor, Graduate Chair

Date Defended!Approved: o 2. - J),£(.. - 200 <6

11

SIMON FRASER UNIVERSITY
LIBRARY

Declaration of
Partial Copyright Licence
The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the "Institutional Repository" link of the SFU Library website
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing
the content, to translate the thesis/project or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and pUblishing the work in whole or in
part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Revised: Fall 2007

Abstract

Surgical techniques have evolved from direct hands-on maneuvers to indirect minimally­

invasive procedures, learning which involves using virtual simulation environments

with standardized exercises typically comprising scene representation, collision-detection,

force feedback, and rendering. Key challenges are the need to improve speed and re­

alism of the simulation while being run on consumer-grade computing platforms.

This thesis aims at overcoming these challenges by developing an algorithm to utilize

the Graphics Processing Unit (GPU) as a parallel processor. The approach presented

consists of three phases: off-line surface wrapping, implicit integration for deforma­

tion, and tactile feedback.

A prototype implementation using the NVIDIA GeForce 7600GS is presented. In­

teractive surface wrapping models a cloth-like surface into a closed mesh while the

deformation phase is a GPU-based parallelized Implicit Euler method. Point-based

haptic interaction with virtual coupling provides tactile feedback. The results show

signicant speedups, upto a factor of 6.5 times, for the GPU-based simulation over the

CPU.

iii

To the Supreme Spirit - the heroic in man.

iv

"Now, here, you see, it takes all the running you can do, to keep in the same place.

If.you want to get somewhere else, you must run at least twice as fast as tl1at!"

- Lewis Carroll, THROUGH THE LOOKING-GLASS AND WHAT ALICE FOUND

THERE, 1871

v

Acknowledgn1.ents

I am grateful to Prof. John Dill and Prof. Shahram Payandeh for introducing me to the

exciting area of Virtual Reality. I thank both of them for their invaluable guidance,

technical insight and support. I also appreciate all their patience during many unpro­

ductive periods of my thesis due to courses, teaching assistantship, a long internship

and a full-time job. A special thanks to Prof.Dill for allowing me to use the SlAT

(Surrey Interactive Arts and Technology) graduate lab facility and to Prof. Payandeh

for providing me the haptic device for my work. Reviewing an unpolished manuscript

is demanding work and doing it under time constraints only makes it harder. I thank

Prof. Dill for reviewing my work over several revisions.

I feel fortunate to have had an opportunity to work in an exciting areas in Computer

Graphics, that of General Purpose GPU (GPGPU). I thank Prof.Payandeh for initi­

ating the idea and Prof.Dill for leading me through it. I thank Prof.Richard Zhang

for his comprehensive course in Computer Graphics which set the foundations of my

understanding of it. I also thank Prof.Tom Calvert for critically reviewing this thesis,

and Prof. Andrew Rawicz for chairing the defense. Thanks also to Raj Pabla and

Judi Fraser, our graduate secretaries, for making the paperwork a cakewalk.

I thoroughly enjoyed my years at Simon Fraser University, made possible by PRE­

CARN Scholars Program and the steadfast support of my supervisors and family. I

thank all my colleagues at the Experimental Robotics Lab and SFU SlAT Graduate

Lab for keeping me company during the long days and nights - Paul, Richard, Mavis,

Fuhan, Haibo, Tai, Yuan and Ai. Special thanks to Nasim Vafai and Shilpi Rao for

VI

being such great friends - I cherish our wonderful times together.

I am indebted to my grand-mom, Sita, and grand-uncle, Narasimha Rao, whose love

and values paved the way for a privileged upbringing and to my parents, Manju and

Rao, for their unconditional love and unflinching support to pursue my goals in life. I

cannot thank my brother Vinay enough for showing me what it is to be a free spirit.

He is also instrumental in inspiring me to bring this thesis to its logical conclusion.

Loads of love to my bestest friend and indulgent husband, Bhushan, for being my

biggest critic and doing all the chores!

vii

Contents

Approval

Abstract

Dedication

Quotation

Acknowledgments

Contents

List of Tables

List of Figures

List of Programs

1 Introduction

1.1 Motivation.

1.2 Contributions

1.3 Outline....

2 Preliminaries and Related Work

2.1 Introduction....

2.2 Surgical Simulation

Vlll

ii

iii

iv

v

VI

viii

xi

xii

xv

1

1

4

6

7

7

8

2.2.1 Surface Meshes .

2.2.2 Modeling of Deformable Objects.

2.2.3 Haptic Interface . .

2.2.4 Force feedback ..

2.2.5 Collision Detection

2.3 Virtual Training Environment

2.3.1 Software Architecture of VTE

2.3.2 Challenges.

2.4 Profiling.

2.5 Discussion

3 Surface Mesh Mapping

3.1 Introduction

3.2 Surface Parameterization .

3.3 Surface Wrapping

3.4 Semi-automated Implementation.

3.5 Issues

3.6 Discussion

4 Graphics Processing Unit

4.1 Introduction .

4.2 The Rendering Pipeline.

4.3 GPU Architecture ..

4.4 Languages and Tools

4.5 Simulations and General-purpose Applications

4.6 Performance Analysis of GPU-based Applications

5 Deformation of Surface Meshes

5.1 Introduction .

5.2 Deformation of Surface Meshes

5.3 Existing Techniques and Issues

5.4 Implicit Euler Integration ...

IX

8

9

10

13

14

14

14

18

19

20

21

21

22

24

25

25

26

27

27

28

31

31

33

36

39

39

40

43

44

5.5 CPU-based Deformation 45

5.6 1mplementation 47

6 Tactile Input and Feedback 52

6.1 Introduction . . . 52

6.2 CPU and Haptics 53

6.3 Virtual Coupling 55

7 Results 57

7.1 Overview. 57

7.2 Simulation snapshots 59

7.3 Performance 60

8 Conclusion 77

8.1 Conclusion. 77

8.2 Future Work. 79

A Surface Wrapping with Autodesk 3DS Max

A.1 Implementation steps

B Collision Detection Algorithm

B.1 Line-Triangle Intersection Test.

B.1.1 Implementation.. . . .

Bibliography

x

81

81

86

86

86

89

List of Tables

4.1 Specifications of NVIDIA 7600 CS 32

7.1 Haptic Update Rate (in Hz) for Each Integration Scheme Against Each

Mesh Size. " 74

7.2 Mean and variance of the time taken (in ms) over 10000 simulation

trials to solve each integration method on the corresponding processor. 75

7.3 Mean and variance of the time taken (in ms) over 10000 simulation

trials to solve each sub-step of CPU-based implicit Euler integration. 76

7.4 Mean and variance of the time taken (in ms) over 10000 simulation

trials to solve sub-steps on the CPU for CPU-based implicit Euler

integration. Variance 2: 10-4 ms is given as O.Broad phase collision de­

tection identifies subsets of objects that may be colliding and excludes

those that definitely are not colliding. Narrow phase collision detection

performs pair-wise intersection tests within these subsets. 76

Xl

List of Figures

1.1 Minimally-invasive surgery in progress. 3

2.1 Schematic of a Surgical Simulator . . . 8

2.2 PHANTOM@ Omni™ Haptic Device 11

2.3 PHANTOM@ DesktopTM Haptic Device 11

2.4 Laparoscopic Impulse Engine™ Haptic Device. 12

2.5 Structural view of the Virtual Training Environment 15

2.6 Functional view of the Virtual Training Environment 17

4.1 Detailed View of the Rendering Pipeline 29

4.2 Rendering of a Set of Triangles 30

4.3 Overview of the system interface. 32

4.4 Heirarchical encoding as in [42]. Each pixel in the higher level buffer

encodes the contents of 16 pixels in the lower level buffer. 37

5.1 Mass-spring system 41

5.2 Diagonal-wise Matrix Computations. 48

5.3 Multi-pass Rendering. 50

5.4 Pseudocode of the CPU implementation 51

6.1 Basic architecture of the simulation system 53

6.2 Detailed view of the haptics and graphics loops with virtual coupling 54

7.1 Flowchart of the Implemented Simulator System. 58

7.2 CUI of the Simulator System. 60

xii

7.3 Initial 256-node Mesh. . 61

7.4 Initial 4096-node Mesh. . 62

7.5 Initial 16384-node Mesh. 63

7.6 Force and Displacement Graphs during Probing (probe tool used to

pull a single mesh node) of a 256-node mesh for GPU-based Implicit

Euler Scheme .. 65

7.7 Force and Displacement Graphs during Probing (probe tool used to

pull a single mesh node) a 4096-node mesh for GPU-based Implicit

Euler Scheme ., 66

7.8 Force and Displacement Graphs during Probing (probe tool used to

pull a single mesh node) a 16384-node mesh for GPU-based Implicit

Euler Scheme .. 67

7.9 Force and Displacement Graphs during Probing (probe tool used to

pull a single mesh node) a 256-node mesh for CPU-based Implicit Euler

Scheme. .. 68

7.10 Force and Displacement Graphs during Probing (probe tool used to

pull a single mesh node) a 4096-node mesh for CPU-based Implicit

Euler Scheme .. 69

7.11 Force and Displacement Graphs during Probing (probe tool used to

pull a single mesh node) a 16384-node mesh for CPU-based Implicit

Euler Scheme .. 70

7.12 Force and Displacement Graphs during Probing (probe tool used to

pull a single mesh node) a 256-node mesh for CPU-based Explicit Euler

Scheme , 71

7.13 Force and Displacement Graphs during Probing (probe tool used to

pull a single mesh node) a 4096-node mesh for CPU-based Explicit

Euler Scheme .. 72

7.14 Force and Displacement Graphs during Probing (probe tool used to

pull a single mesh node) a 16384-node mesh for CPU-based Explicit

Euler Scheme .. 73

Xlll

A.I Initial state of input mesh and closed surface.

A.2 Input mesh set as Cloth object.

A.3 Closed surface set as Collision Object..

A.4 Simulate achieves wrapping.

A.5 Relax Modifier reduces foldovers in mesh..

B.I Line-triangle Intersection .

xiv

82

83

83

84

85

87

Chapter 1

Introduction

This chapter places the work described in this thesis in perspective with previous

research in the area. Motivational arguments and a summary of the forthcoming

chapters are presented.

1.1 Motivation

The philosophy behind this thesis is succinctly summarized in the following quote by

William Osler in the Principles and Practice of Medicine [86],

"To learn medicine without books is to sail an uncharted sea,

While to learn medicine only from books, is to not go to sea at all"

For over a century, medical education has been based on the Halstedian system involv­

ing standard residency programs with learning through real-life patient encounters.

This system bases technical and cognitive performance assessment on the subjective

impression of the assessor. Apart from such informal validation, the efficacy, eco­

nomics, ethics, and extent of responsibility in the system have been subject to scrutiny

[59:1[56.![26][11]. In order to overcome these challenges, medical educators proposed cri­

teria for a competency-based curriculum. It was determined that succesive mastery

1

CHAPTER 1. INTRODUCTION 2

of skills would be needed to develop technical expertise while standardized assessment

tools would enable objective evaluation of performance. Repetitive practice sessions

in a risk-free environment would help the learner develop necessary cognitive skills

[75]. In order to satisfy these criteria, alternate approaches to the residency-based

system were sought.

In addition, since the 1980s, surgical techniques for certain procedures evolved from di­

rect hands-on maneuvers to indirect minimally invasive procedures, involving remote­

control manipulation of minimally invasive instruments like laparoscopes and endo­

scopes with indirect observation of the operating site through video cameras attached

to the instruments (Figure 1.1). Such techniques are known to be considerably less

costly with improved patient recovery rates. The introduction of minimally-invasive

techniques required surgeons to develop dexterity in motor control, hand-eye coordi­

nation and visual perception. However, with medical errors shown to be the third

leading cause of death in North America, and surgery-related errors amounting to

50% of the cases [18], training and performance assessment of such techniques consti­

tuted major challenges in the field of medicine. There is a necessity to train health

professionals to a greater level of skill, experience and knowledge, one way of which

is through training environments.

Simulation environments satisfy many of the criteria for an alternative to the Hal­

stedian approach and therefore are increasingly being used as a valuable addition to

traditional teaching methods in medical education. The narrow visual area, limited

tactile feedback, specialized tools, and video display characteristic of minimally in­

vasive surgeries make them ideally suited to simulation. Simulators are known to

improve the productivity of the trainee by providing unlimited practice and objective

assessment of surgical skills. In addition, patient-specific anatomies can be included

to enable surgical planning, thus reducing risk and operation time. Although, sim­

ulators train for specific surgical skills, they also help develop cognitive skills, like

accurate judgement, in the context of the specific simulation [20].

CHAPTER 1. INTRODUCTION

Figure 1.1: Minimally-invasive surgery in progress.

3

A goal of current simulators is to help surgeons-to-be acquire skills needed to per­

form minimally-invasive surgery [53]. To do this, such simulators typically provide

visual and haptic interaction through virtual training environments with standard­

ized exercises. Simulators must support scene representation, detection of organ-tool

interaction, tactile response, and scene rendering. Simulators need to maintain speed

and realism while being run on consumer-grade computing platforms. For stable in­

teractions, the update rates for graphics (i.e on-screen rendering of virtual models)

need to be 30-60 Hz while the generally accepted goal for haptics (i.e providing sense

of touch to user) is 500Hz-1KHz [64]. Therefore, a key challenge in many simulation

CHAPTER 1. INTRODUCTION 4

environments is to achieve the required computational power to realistically deform

and render the virtual models whilst maintaining stability to calculate forces for hap­

tic feedback.

Accordingly, this thesis describes a study of the use of Craphics Processing Units

(CPUs), a chip in many mid-range graphics cards, to perform the bulk of the sim­

ulation computations in parallel with the CPU. Recent advances in the speed and

programmability of the CPU have enabled high-performance general-purpose and

non-graphics applications [49]. The key for our framework is the suitable formulation

of the training system model, design and development of scalable parallel algorithms,

and efficient usage of the CPU in doing so.

1.2 Contributions

This thesis focuses on the viability of realistic surgical simulations in real-time. The

approach is to exploit the inherent parallelism in the simulation equations using the

CPU, and hence the thesis is

Development of a Surgical Simulation Framework using a Graphics Processing Unit.

Leading from the thesis statement, the hypothesis to test is

A GPU-based parallel framework offers the potential of providing a realistic and dy­

namic tactile simulation experience in real-time.

The main contribution of the thesis is the reformulation of the Implicit Euler inte­

gration method to compute the deformations of the mesh [85] . This method exploits

the inherent parallelism in the resulting reformulated integration equations using the

CPU. A mass-spring based surface mesh models the organ and a sparse, large linear

system solved at each time step of the simulation models the deformations. This linear

system computation involves large matrices in the order of 10000 - 15000 nodes. The

inverse of this large sparse matrix is an approximation, and is computed using the

Neumann-polynomial method[15]. The matrix manipulations to do this calculation

are implemented on the CPU.

CHAPTER 1. INTRODUCTION 5

As a pre-processing step, an interactive surface wrapping algorithm is used to obtain

closed surface meshes from planar square meshes. This pre-processing is needed in

order to extend prior work done by the author on square meshes to surface meshes

over 3D objects while maintaining the structure of the corresponding Hessian matri­

ces used in the integration in [85]. Although accurate methods exist to obtain such

surface meshes [30], we chose a crude approximation using Discreet Autodesk 3DS

Max as working towards an accurate approach is beyond the scope of this thesis. The

crux of the method is to set the 2D mesh as a deformable object and simulate it such

that it falls onto the 3D rigid object in a natural fashion. The method is implemented

in a semi-automated fashion and the results support satisfactorily the above described

GPU-based simulation. Simulation constraints and relaxation techniques are used to

achieve required visual complexity with minimum wrinkles and foldovers.

A three-Degree-of-Freedom haptic device, the PHANTOM@ Omni™, is used to pro­

vide force feedback, for example when a virtual tool contacts a virtual organ. Haptics

rendering includes collision detection, force computation, and bidirectional communi­

cation with the haptic device. Using OpenHaptics' HDAPI, a spring-damper model

is implemented with a point-based collision detection algorithm. Multi-threaded syn­

chronization of the haptics and graphics simulation update cycles enables query of

the device state and performs haptic rendering in conjunction with the GPU-based

graphics thread.

Results of the techniques developed by us as a parallel framework (simulation system

using the CPU and GPU as co-processors) for rendering, deformation, and tactile

feedback are presented. The prime contributions of the thesis are

• Interactive Surface Wrapping

• GPU-based Implicit Euler Integration

• GPU-friendly Haptic Interaction

CHAPTER 1. INTRODUCTION

1.3 Outline

6

This thesis is organized as follows. The next chapter provides a brief introduction

to the surgical simulation environment and challenges encountered with CPU-based

simulators. Chapter 3 discusses the wrapping technique. Chapter 4 describes the

Graphics Processing Unit (GPU) and related work in the area of general-purpose

GPU and GPU-based simulations. Chapter 5 presents techniques developed for im­

plementing deformation equations on the GPU. It also describes in detail the solution

of Implicit Euler equation for simulations. Chapter 6 extends this simulation to one

with haptic interaction, including force-feedback. Chapter 7 presents an in-depth

analysis of performance bottlenecks in the graphics hardware as well as the software

implementation. Finally, Chapter 8 concludes and describes directions for future

work.

Chapter 2

Preliminaries and Related Work

This chapter presents the components of a surgical simulation system. Challenges in

traditional CPU-based simulation systems will also be discussed.

2.1 Introduction

Surgical Simulation combines virtual deformable body motion with visual and haptic

interaction leading to two fundamental challenges: realism and real-time interactions.

Modern simulation systems, though based on geometric representation of anatomical

structures, need to incorporate the corresponding physical phenomena for realism.

This involves combining modeling accuracy with computer efficiency giving rise to a

number of issues including, but not limited to, deformation computation and model­

ing, accuracy of solutions to differential equation systems, real-time collision detection

among rigid and deformable bodies, and real-time force feedback [34].

Despite extensive research focussing on these issues, overcoming them is difficult due

to the need to run the simulation software on consumer-grade computing platforms

like a mid-range desktop PC. Such a cost-efficient yet powerful system is needed as it

will be used by surgeons and we assume that they would not have access to high-end

7

CHAPTER 2. PRELIMINARIES AND RELATED WORK 8

systems like supercomputers. This chapter presents components of traditional CPU­

based simulation systems along with discussion of work related to the research of this

thesis.

2.2 Surgical Simulation

Surgical simulators (Figure 2.1) are components of computer-based training environ­

ments designed to allow physicians-in-training to practice current, and experiment

with new surgical procedures. The environment simulates interactions between surgi­

cal instruments, like graspers or cauteries, and organs or bodies, which are deformable

in nature. Apart from training, such simulators also provide scope for improving the

productivity of physicians through feedback based on validated techniques.

Therefore, a complete simulation system uses many areas of virtual reality. In this

section, we elaborate on the essential software components of a basic framework to

simulate organ deformation.

Figure 2.1: Schematic of a Surgical Simulator

Simulation
........------i Haptic Interface

Visualization

2.2.1 Surface Meshes

In computer graphics, three-dimensional models are created using surface or volumet­

ric mesh representations. Volumetric or solid meshes simulate model interiors but can

CHAPTER 2. PRELIMINARIES AND RELATED WORK 9

get complex with topological modifications - a significant process in surgical simula­

tion. Surface meshes like polygonal meshes, NURBS patches, or subdivision surfaces

are easier to implement and manipulate and are therefore more commonly used. This

thesis makes use of triangular surface meshes to represent both deformable and rigid

models.

2.2.2 Modeling of Deformable Objects

Deformable modeling is a well-studied area in computer graphics and has been ap­

plied to a variety of applications. One of the earliest works on deformable models

is presented in [24]' coining the term and formulating it in terms of a time-varying

partial differential equation.

Deformable modeling can be classified as geometric or physical. Geometric techniques

do not take into account the material of the model being deformed. They are easy

to implement and have relatively low computational demand but do not include the

mass or viscoelastic properties in the model. Splines and patches use a grid of control

points to describe surfaces and are widely used due to their flexibility and efficiency.

Free-form deformation enables smooth deformations with local control for complex

surfaces [70].

For realistic deformations, it is essential to model physical characteristics. Mass­

Spring systems are one such widely used physical technique. These systems are a

structure of mass nodes and linear stretch springs that connect each node to its

immediate neighbors. Springs are associated with a spring constant that generates

restoring forces to bring the model back to equilibrium on application of an external

force to it. Mass-spring systems have low computational complexity, simple imple­

mentation and support for topological manipulations[54][82].

The finite-element method (FEM) is another physical technique that divides the model

into a set of elements and solves a global equilibrium function for each of the elements.

CHAPTER 2. PRELIMINARIES AND RELATED WORK 10

In comparison with mass-spring systems, FEM offers more accuracy but comes with

higher computational cost and need for careful pre-processing and meshing [48].

This thesis makes use of mass-spring systems for deformable modeling. Simulation of

mass-spring models is usually done using explicit integration methods. These meth­

ods, though easy to implement, are limited by needing small time steps for numerical

stability. This problem was overcome in [23] by the use of implicit integration. How­

ever, this method involves solving large linear systems, making them challenging to

implement for real-time interactive applications.

2.2.3 Haptic Interface

The word haptic, originates from the Greek word Hapke and means pertaining to the

sense of touch. Haptics is used widely as an essential component of virtual reality

systems as it can give additional information to its user. Currently, there are several

commercial haptic devices that can add a sense and feel of touch to computer appli­

cations. These devices measure reactive forces that are applied by the user's body

(typically the hand) and provide force feedback to the user.

One such device is the PHANTOM@ Omni™ (Figure 2.2) with a six degree-of­

freedom input and three degree-of-freedom output. Omni™ is one of the most cost­

effective haptic devices.

The PHANTOM@ DesktopTM (Figure 2.3) is a high-precision device that delivers

high fidelity, and lower friction as compared to the Omni™. This device has a six

degree-of-freedom input [35].

The Laparoscopic Impulse Engine™ by Immersion is another high fidelity interface

providing four degrees of-freedom motion (Figure 2.4).

The PHANTOM@ OMNI™ device has been chosen as the haptic interface for

CHAPTER 2. PRELINJINARIES AND RELATED WORK

Figure 2.2: PHANTOM@ Omni™ Haptic Device

Figure 2.3: PHANTOM@ Desktop™ Haptic Device

11

CHAPTER 2. PRELIMINARIES AND RELATED WORK

Figure 2.4: Laparoscopic Impulse Engine™ Haptic Device

12

CHAPTER 2. PRELIMINARIES AND RELATED WORK 13

this thesis due to its cost-effectiveness and availability with the required degrees­

of-freedom.

2.2.4 Force feedback

Over the last decade, there has been significant progress in research for modeling

haptic interactions in virtual environments. Several algorithms have been developed

to compute and display forces for the user to perceive and manipulate virtual objects

through touch. A haptic algorithm in virtual environments typically includes collision

detection and collision response.

Using the haptic device as a probe, the user manipulates the virtual objects. The

change in probe position and orientation causes a collision test to be triggered that

detects object-probe interactions. If a collision is detected, interaction forces are cal­

culated and sent to the haptic device. This force-feedback enables the user to acquire

a sense of touch with the virtual object and its surface.

Collision response can be implemented using one of the three common techniques:

penalty-based techniques, constraint-based techniques, or impulse-based techniques.

Penalty-based techniques apply collision forces based on the interpenetration amount

[58]. Extensive penetration depths can be avoided by using local or pre-contact

penalty methods. However the limitation is that these methods need high stiffness

values which can cause instability. They also cause locality issues with multiple object

interaction and force issues with small or thin objects. Constraint-based techniques

were initiated by [52] [90] that made use of god objects (virtual models of haptic

interface) constrained on contact with a virtual object. The god object location is

computed as a point on the contact-model's surface such that its distance from the

haptic interface point is minimized. This method was extended to virtual proxies

placed on the object surface directly above the penetrated haptic position. Impulse­

based techniques [55] halt the simulation in the event of a collision and resolve contacts

based on impulses. However this method cannot handle multiple collisions in a single

CHAPTER 2. PRELIMINARIES AND RELATED WORK

time step.

2.2.5 Collision Detection

14

Collision detection in haptics is based on two types of interactions: point-based and

ray-based [20]. In point-based interactions, only the tip of the haptic probe is taken

into consideration. Collision tests check for the penetration of the tip into the virtual

object, calculate the depth and corresponding surface point (called the proxy) posi­

tion. This method is basic and cannot simulate more complex tool-object interactions

involving different parts of the tool being in contact with the object. Ray-based inter­

actions, on the other hand, model the tool as a line segment and check for collisions

between the line and the virtual object. This method enables torque interactions and

can be used to model complex tools in terms of multiple line segments[20]. This thesis

makes use of point-based interactions as our virtual environment makes use of a probe

point.

2.3 Virtual Training Environment

The Virtual Training Environment (VTE) [81] is a surgical simulator developed at

Simon Fraser University; containing basic and advanced standardized exercises, aimed

to develop technique, coordination, and precision for minimally-invasive surgeries.

The interactions in the VTE are enabled by one or more haptic devices, which control

the position and movement of the virtual surgery tool. The user is provided with both

visual and haptic feedback - a three-dimensional view to display real-time interactions

of the tool and organ, and force feedback to indicate the precision of the interaction.

2.3.1 Software Architecture of VTE

The VTE has been developed in the C++ language and currently runs on an Intel

2.8 GHz Intel Xeon processor with Microsoft Windows XP.

CHAPTER 2. PRELIMINARIES AND RELATED WORK

Structural View

15

Structural architecture view identifies the high-level components of the system, and

the relationships among them. The VTE framework can be divided into four modules:

Human-computer Interface, Scene management, Tool management, and Scene-tool in­

teraction and is depicted in Figure 2.5.

Figure 2.5: Structural view of the Virtual Training Environment

Scene
Management

Scene-tool
Interaction

1
Human-Computer

Interface

Tool
Management

-

• Human-Computer Interface: The VTE can be integrated with different types

of input: keyboard and mouse, the Laparoscopic Impulse Engine, the Virtual

Laparoscopic Interface, the PHANTOM@ DesktopTM and the Omni™. The

Laparoscopic Impulse Engine is the default input and two or more devices can

be used in tandem with the software.

• Scene Management: This module involves defining and rendering the virtual

scene. A scene contains virtual objects and tools and is defined at initialization

in terms of viewing, lighting, and shading parameters. After initialization, the

scene, based on user-selection parameters, is rendered. Organ-models are mod­

eled as deformable which enables each organ-model to deform on collision with

a tool. A deformable model is represented as a mass-spring system with each

CHAPTER 2. PRELIMINARIES AND RELATED WORK 16

vertex linked to its neighbors by mass-less springs of natural length greater than

zero.

• Tool Management: A tool in a scene is a rigid body representing the input

device. The VTE simulates three surgical instruments: scalpel, grasper, and

cautery hook. This module reads the position of the input device, uses this to

position the device in the scene and subsequently renders the device .

• Tool-Scene Interaction: On contact with a tool, each deformable body goes

through a cycle of two processes; collision detection and collision response.

Based on the type of tool the contact can result in four different kinds of actions:

probing, grasping, cutting, and suturing. Collision detection: A line-triangle in­

tersection method (please refer Appendix B for details of this method) is used

to detect the collision. Initially, a global search (through a list containing the

model primitives) tests the intersection of the deformable object with the tool.

On detection of the first intersection point, the amount of force exerted on the

object surface by the tool is determined. The effect of the force is calculated

for the neighboring vertices to which the force has propagated. The force stops

propagating after a limited number of steps. This limit is controlled in the

system by means of an input value and results in local deformations. Collision

response: The mass spring model used in the VTE is described by a system of

first-order differential equations. Many differential equations cannot be solved

analytically, so an approximation to the solution is used. Numerical techniques

can be used for such approximations. The VTE uses the Explicit Euler's method

for its simplicity and efficiency. Displacement calculation is initiated at the three

vertices of the intersected triangle and is calculated for each of the affected ver­

tices. At each time step, new positions are updated on the screen, while reaction

forces are sent to the input device.

Functional View

This section describes the sequence of events that occur when the user interacts with

the VTE (Figure 2.6). Windows and OpenGL calls are used to define the parameters

CHAPTER 2. PRELIMINARIES AND RELATED WORK 17

for scene creation. The user is then provided with a menu option to select the scene

to be rendered. The menu options are:

• Basic Tasks: Basic tasks include touching a point, tracing a curve, grasping,

and teasing an object.

• Cutting: Cutting a deformable object can be done either along default paths or

through user-defined paths.

• Suturing: Suturing involves tying a knot through a cut on the object with demos

shown for the same.

• Coach: Audio and visual coaches help provide the necessary skills for laparo­

scopic surgeries.

Figure 2.6: Functional view of the Virtual Training Environment

r--- -~~-~--]
I Create Scene

~-. ..•... N .----
Y

I Compute Force

Update ~

I Compute
Disolacement

1-30 ms ".-1 ms
.......... I

Force
Feedback

I

Render •
Scene

----.!'i__~~ y I Exit Jl

On menu selection, the appropriate data structures are created and populated in

preparation for the scene setup. At the next stage, the tools selected by the user are

CHAPTER 2. PRELIMINARIES AND RELATED WORK 18

initialized and connected to the user interface. At this point, the lighting and texture

parameters are set. After the initialization process, a new thread (Task Thread as in

Figure 2.6), to render the scene, is created based on the choice selected by the user.

The choices provided are different types of virtual models (eg. liver model, stom­

ach model etc.) and different types of virtual tools (probe tool, grasper etc.). The

deformable organ in the scene is represented as a mass-spring system [10]. The cur­

rent position of the haptic device is represented graphically in terms of the virtual tool.

A simulation run consists of evenly-spaced time steps. At each time step, the simula­

tion advances in three stages: Initially, a collision detection test (details in Appendix

B) performs contact-check between the tool and the deformable body. Next, on

contact, deformation of the organ is computed in terms of a first-order differential

equation solved by Explicit Euler integration (details of this method are presented in

the next section). Based on the deformed positions, the restoring force is calculated

using Hooke's Law, mapped and sent to the haptic device. The mapping essentially

uses the computed force vectors to provide feedback to the user through the haptic

device. The position of the deformed body is updated. After a few update cycles, the

deformed body is rendered on-screen. The rendering thread can be interrupted at the

invocation of a scene change by the user. This can be done my means of the menu

option.

A menu option in the software provides scene selection that varies based on the specific

virtual model displayed as well as the number of surgical tools that can be used.

2.3.2 Challenges

Consider a three-dimensional mass-spring model of N nodes with corresponding po­

sition vector X = (lx, 2x , ...Nx , l y , 2y , ...N y , l z , 2z , ...N z?, velocity vector V = X, and

spring parameter k. The motion of the mass-spring model, as governed by Newton's

CHAPTER 2. PRELIMINARIES AND RELATED WORK

second law of motion, is given by

19

(2.1)

(2.2)

M,K being the mass and stiffness matrices, and P being the total force vector acting

on the mass-spring model. P is a result of internal (spring parameters like stiffness

and viscosity) and external (gravity) forces. The above equation implies that an

external force acting on a node causes it to deform and move towards an equilibrium

constrained by the stiffness of its springs. Numerical evaluation of the equation 2.1 is

done in the VTE by using the explicit Euler integration method,

Vt+1 = V t + p t * dt,
m

X t+1 = X t + V t+1 * dt.

As can be seen from the Equation 2.2, the position and velocity of affected nodes in a

time-step are determined by forces in the corresponding previous step. This technique

can lead to wild changes in positions and velocities. Also, explicit technique needs to

satisfy the Courant Condition [72]. Else, large time steps can cause instability due to

stiffness of equations with high spring constants. Depending on the complexity of the

computations and the speed of the machine being used, these factors could cause the

simulation to run 10 to 1000 times slower than real-time.

2.4 Profiling

A profiler is a code analysis tool that allows examination of the run-time behavior of

a software application. A profiler helps analyze the performance of the application

such as identifying the functions that consume most of the time, isolating potential

bottlenecks and analyzing memory usage. This helps in determining the efficiency

of the algorithms used. I have used an independent profiler, GlowCode Loader [1],

to analyze the VTE source code. A one-object model was simulated, deformed and

subjected to profiling. Function profiling was done to identify functions that consume

CHAPTER 2. PRELIMINARIES AND RELATED WORK

the most amount of time in the simulation. This helped detect inefficient code.

20

Potential bottlenecks were isolated that include the line-triangle collision detection

algorithm (within Update in Figure 2.6) and the use of a single thread for CPU­

intensive tasks (Task Thread as in Figure 2.6). The collision detection is a major

bottleneck because at each time step, the algorithm performs a global collision test

involving all the nodes of the deformable model. Another major constraint is the

sequential computation of the simulation algorithm on the entire collection of model

nodes. The algorithm runs the same set of instructions sequentially on each model

node. This causes an increase in update time of the simulation, thus decreasing the

rendering frame rate. This computation time can be reduced by distributing the

data, in this case model-nodes, to multiple processors and running the same set of

instructions in parallel on them.

2.5 Discussion

On a parallel computer, the computation can be distributed among different proces­

sors. Surgical simulation can fit a parallel model as it involves implementing a single

instruction on a series of mass nodes of the mass-spring model. As described in the

previous section, the update cycle is implemented on each mass-node of the system.

Using multiple processors, the update cycle can run in parallel on several groups of

mass-nodes, thus reducing the simulation time. Also as the processing power of the

computer increases, model complexity can be increased, thus making a more realistic

scene.

Therefore, the next logical step is to develop a multiprocessor simulation system to

increase the computational power. A master-slave parallel model can be used with the

CPU being responsible for organization and dissemination of tasks, and an additional

processor used for deformation calculation and rendering. The next chapter details

the additional processor chosen to do so.

Chapter 3

Surface Mesh Mapping

Geometry is the science of correct reasoning on incorrect figures.

George Polya

This chapter deals with the issue of wrapping a two-dimensional planar surface mesh

onto a three-dimensional closed surface mesh. Wrapping is ufied here in the context of

deforming a two-dimensional object mesh around a three-dimensional model such that

they are in complete contact with each other. Related parametrization and wrapping

techniques are explored and a semi-automated wrapping method is presented and

discussed.

3.1 Introduction

Most recent simulations use 3D models for realistic visualization. These models can

be represented either as a surface or a volume. Volumetric models can simulate ob­

jects with interior structures but result in complex topological modifications if they

undergo progressive cutting - an essential element of surgical training software. Since

we used surface meshes for modeling, we chose the former for simplicity. Surface mod­

els can be approximated by triangular or quadrilateral primitives, and are generated

21

CHAPTER 3. SURFACE MESH MAPPING 22

using commercial Computer-aided Design (CAD) packages. This thesis makes use of

triangle primitives as they have a single configuration based on their edge lengths,

used since VTE simulations involve deformation with restorative spring forces.

Prior CPU-based integration techniques [85] were implemented for 2D planar meshes.

The details of these techniques will be discussed in chapter 5. These techniques

needed to be extended to 3D closed meshes while maintaining the structure of the

corresponding Hessian matrices used in the integration in [85]. Parametrization and

wrapping techniques were explored to accomplish this.

3.2 Surface Parameterization

Surface parameterization is a one-to-one mapping process of a 2D input domain to

a 3D surface. These mappings are usually piecewise linear and the surfaces are rep­

resented by triangular or quadrilateral primitives. Parameterization methods were

initially developed for texture mapping, which is a technique for adding visual detail

to a three-dimensional surface [79]. Other applications include scattered data fitting

(reconstructing smooth surfaces from scattered data points) [31], modification of CAD

models and surface approximation.

Various kinds of parameterization of mappings are defined in [78]; Isometric mapping,

where the length of any arc on the input surface is preserved in the output surface;

conformal mapping where the intersection angles of any two arcs on the input sur­

face is preserved in the output surface and equi-real mapping where every part of

the input surface is mapped to the output surface preserving the area. The quality

of parametrization is usually characterized by two factors: distortion and validity.

Distortion, intuitively, is a measure of the amount by which the edges are stretched

after the parametrization is applied.

Orthographic projection modifies both angles and areas while stereographic projec­

tion modifies areas but preserves angles. Mercator projection does not preserve areas

CHAPTER 3. SURFACE MESH MAPPING 23

while Lambert projection modifies angles. A parameterization scheme is considered

valid if there are no edge overlaps. Since parameterizations are known to introduce

distortions, most research aims at reducing them.

Texture atlas [67] is one of the earliest approaches to parameterization which involves

partitioning surface into charts (part of the surface associated to a region of the input

image), parameterizing each of them to a plane, and packing them into an atlas. A

stored file describes the coordinate mapping from the textures to the atlas. However

the two main drawbacks in this approach are the introduction of visible surface seams

and complexity in accessing usage information. Barycentric maps were introduced in

[88] in which each vertex is mapped to the barycentric center of its neighbors. Given

a topological disk, the boundary is mapped to a convex polygon on the plane. Floater

[78] extended this method to arbitrary convex combinations using weights to control

the distortions. Another common approach is semi-regular remeshing involving par­

titioning a mesh into charts, and subdividing it before individually parameterizing

them. However, this approach is subject to high distortion and needs extra storage

requirements.

Geometry images was introduced in [89] in which an input arbitrary surface geom­

etry is remeshed into a regular square image grid. The method involved defining a

series of cut-paths to cut the surface and then map the resultant surface to a square

grid. Surface information (normals, color, etc.) are stored in 2D arrays. This method

achieves a seamless parameterization with implicit correspondence between geometry

and grid, thus ruling out storage needs. These images are ideally suited for hardware

rendering as they can be sent to the graphics pipeline in a compressed form just like

square textures. There are several solutions readily available for the parameterization

process, some of which have been explored by the author. An exhaustive survey of

these methods can be found in [78]. However these techniques are constrained by a

priori chartification and heuristic cut paths, which poses optimization problems.

Recently, [7t] proposed to take advantage of the above-defined geometry images to

CHAPTER 3. SURFACE MESH MAPPING 24

flatten deformable models. This was done by means of a multi-layer parameter­

ized representation of unstructured three-dimensional meshes which were resampled

into two-dimensions. With a parameterized representation, the high resolution three­

dimensional models were interactively deformed with a fast free-form deformation

method.

Our simulation system requires genus-zero closed surface meshes, so we needed parametriza­

tion techniques that could be applied to such surfaces. The sphere is the most natural

parametrization domain for such meshes as it does not involve cutting of the surface.

While planar parametrization has been extensively studied, there has been compara­

tively less work in the area of spherical parametrization. One of the first works in the

area was done by [43] in terms of balloon inflation. However, a one-to-one mapping

could not be guaranteed. Another technique was the partitioning of a surface into six

charts, mapping them to cube faces, and then to a sphere [21]. Spherical parametriza-

tion techniques pose two challenges: one, fold-overs are tough to avoid and two, all

parts of highly deformed surfaces (like most organs) are difficult to parameterize.

We were also restricted by the need to parameterize the mesh to a square in order

to conform with the existing Hessian matrix structure which is a sparse symmetric

matrix obtained from the implicit integration technique (details of this technique are

described in Chapter 5).

3.3 Surface Wrapping

Surface wrapping can be viewed as a reverse-engineered approach to surface parametriza­

tion. It was originally developed in automotive modeling for design optimization of

vehicles [77]. It has since been used in diverse areas involving complex geometries

like artery flow modeling, turbine design, external aerodynamics, textile draping etc.

Several processes in the manufacturing industry also use this technique for wrapping

a sheet of material over a 3D surface and as a result several CAD/CAM systems like

Autodesk 3DS Max include a wrapping feature for surfaces. This feature replicates

the movement and deformation of a piece of fabric or clothing on interaction with a

CHAPTER 3. SURFACE MESH MAPPING 25

collision object and an external force, such as gravity or wind. The main benefit of

such a feature is that it provides rapid output of results with reasonably strong control

over the wrapping parameters. Complete control of U and V parameters (values that

define points on a parameterized surface) as well as surface normals enable achieving

the desired 3D shape.

The author also investigated textile wrapping methods as the input mesh can be

assumed as a virtual cloth. An in-depth review of the research done in textile wrapping

has been provided in [39] [40]. Textiles were modeled as particle sets in [27] and

performed several simulations using polynomial approximation and linear fitting with

results compared with physical textiles.

3.4 Semi-automated Implementation

For ease of usage, we chose to make use of the Cloth Modifier tool available in Au­

todesk 3DS Max [3]. Cloth provides a general-purpose physically-based simulation

that progressively models the wrapping of a "cloth-like" input mesh over an arbitrary

closed surface through a sequence of successive approximations. Gravity and collisions

are taken into account to simulate the motion. The simulation is terminated once the

desired shape is achieved. Relaxation techniques are used to ensure minimum wrin­

kles and fold-overs. Input models used varied from 16 vertices to 16384 vertices and

the wrapping times varied from 20s to 120s. Relaxation steps are incorporated during

the wrapping process to keep the input mesh from excessive stretching or folding.

To demonstrate the method, an example surface wrapping simulation is provided in

Chapter A.

3.5 Issues

The issues encountered with this method are summarized as follows: The planar mesh

penetrates the three-dimensional surface model if it has a low polygon count. We ex­

perienced this problem with a 16-vertex model.

CHAPTER 3. SURFACE MESH MAPPING 26

The Cling parameter of the mesh object, defined as the extent to which the mesh

adheres to the collision object, needs to be set very high for it to achieve the desired

shape. In our case, we set it to 500.

This process can also cause mapped vertices to get too close together during the wrap­

ping simulation thereby causing distortion or overlapping. An advanced toolset, Relax

modifier, provides methods and numeric parameters to modify the vertex-spacing and

resolve this problem.

3.6 Discussion

The wrapping system presented can compute the complete trajectory of the mesh

motion. This is useful as it aids in obtaining an accurate wrap through back-stepping

and trail-and-error re-simulations. Various" cloth-like" properties like thickness and

cling values can be adjusted to achieve realistic desired shapes. The effects of external

forces, like gravity, can be modeled accurately. This aided our simulation as we used

gravity force to let the mesh object drop and cling to the collision object. The method

can be extended to meshes of large sizes as well. The clear advantage of this method is

its flexibility making it easy to use with multiple-shaped collision objects and multiple­

sized mesh models. It also as well as its speed, stability, and accuracy. However this

system is part of a professional package and is therefore not a free plugin.

Chapter 4

Graphics Processing Unit

A chain is no stronger than its weakest link.

William James

This chapter introduces the Graphics Processing Unit (GPU) and describes its ar­

chitecture and functionality. A summary of the applications of GPGPU (General­

purpose GPU) in linear algebra and surgical simulation are presented.

4.1 Introduction

A GPU is a graphics rendering device available on commercial off-the-shelf graphics

cards. It implements graphics primitive operations and consists of a series of com­

putational units with data flow between them. The GPU pipeline [62J is based on a

stream programming model, i.e. a data-parallel model where given a set of data, (a

stream), instructional operations can be applied to each data element in the stream.

It thus acts as a data-parallel processor. Current GPUs are programmable through

shader programs - a set of software instructions that run simultaneously on every data

element on the graphics computation units.

27

CHAPTER 4. GRAPHICS PROCESSING UNIT 28

Over the last decade, graphics processing technology has been accelerating at a very

fast pace roughly following Moore's law cubed [33]. The GPU has been traditionally

used to perform graphics operations such as shading and rendering. With modern

GPUs being programmable and supporting floating-point operations, these chips are

increasingly being used to solve general problems. In this thesis, data-parallel pro­

cessing capabilities in the GPU are exploited to overcome the limitations of current

CPU-based simulators for deformations of physics-based surface meshes. We reformu­

late the integration equation for deformation and compute the simulation equations

on the GPU (details of this technique are described in Chapter 5).

The fundamental reason for the performance increase in GPU as compared to the

CPU is due to the differences in architecture. CPUs are designed to deliver high

performance for sequential operations with millions of transistors focussed on speeding

up the execution of a single thread. GPUs, on the other hand, use many more million

transistors on supporting multiple threads concurrently on-chip, facilitating thread

communication and sustained high memory bandwidth.

4.2 The Rendering Pipeline

The rendering pipeline constitutes the stages of graphics hardware to render data

onto the screen. It can be coarsely divided into four conceptual stages: Application,

Geometry, Rasterizer and Shading [14]. Each of these stages is a pipeline itself and

consists of several functional sub-stages. A functional sub-stage performs a specific

task. The update speed of the images i.e the rendering speed is determined by the

slowest stage in the pipeline. This speed is generally expressed in terms of frames per

second (fps) or in terms of frequency (Hz). Figure 4.1 depicts the rendering pipeline.

The application stage is software-based and may contain geometrical algorithms ­

collision detection, acceleration, force feedback etc. Geometric primitives like points,

lines, triangles etc. are the output of this stage.

CHAPTER 4. GRAPHICS PROCESSING UNIT 29

Figure 4.1: Detailed View of the Rendering Pipeline

Texture

Memory

Jib I RASTERIZATION ¢===>
2D ---J Pixels '--------=--

Texture

Verte Shader

¢===> I' GEOMETRY
3D

I APPLICATION

primitives

The geometry stage can be either software or hardware-based and deals with geo­

metric transformations, lighting and projections. This stage performs per-primitive

operations, the primitives being either vertices or polygons. Each mesh model exists

in its own model space which is transformed with its respective model transform to a

common world space. A view transform places the camera at the origin and converts

the models to the camera space based on the position and orientation of a virtual

camera. Based on the lighting sources, a lighting equation is used to compute a color

attribute for the model vertices. A projection method (orthographic or perspective)

transforms the model data to 2D image space, mapping the 3D scene onto a plane as

seen from the virtual camera. The resultant data undergo clipping and are converted

into screen or window coordinates. The resultant data is now in the form of 2D prim­

itives.

The rasterizer stage renders the image based on the data obtained from the previous

stages, i.e. 2D primitives. This stage performs per-pixel operations. It calculates

which pixels are covered by each primitive, and it uses z-culling through the depth

buffer to eliminate pixels that are occluded by objects with a nearer depth value.

Once the visibility is resolved and primitives are converted into resultant pixels, also

called fragments, they are input to the shading stage.

The shading stage is hardware-based and involves applying color and textures to the

CHAPTER 4. GRAPHICS PROCESSING UNIT 30

corresponding primitives. The image can either be rendered on-screen using the frame

buffer or fed back using one, two or three-dimensional rectangular arrays called tex­

tures into an off-screen render target.

Figure 4.2 details the working of this proce::lS on a ::let of triangles.

Figure 4.2: Rendering of a Set of Triangles

fL.~ ~ ~ .lu,.
'.,..

Model
Space

World
Space

Rasterization

Modern graphics cards enable per-vertex and per-pixel operations to be programmable.,

terming the functionality as vertex shader and pixel/fragment shader re::lpectively.

Shader programs can be written u::ling APls like OpenGL [5j and DirectX [4] and

programming languages like GLSL and Cg [73: that have been cU::ltomized for GPU

programming. Thrse programs are run by the GPU which switches between executing

fixed-function and ::lhader program code. A vertex shader can perform simultaneous

per-vertex operations on vertex data to move them, modify their attributes or create

animation::l. Vertices are processed independent of each other and therefore several

vertex shaders can operate on several vertices in parallel thus reducing the total com­

putation time. Output vertices are built into triangle::l and undergo a selection process

that clips and culb pixels that are not visible on the screen. The pixel shader can

perform per-pixel operations on the remainder visible pixels to color or texture map

them. This pixel processing is an independent operation and therefore pixel shaders

can operate on several pixels in parallel.

The rest of this chapter builds upon the rendering pipeline and details some of the

applications that have taken ad vantage of the parallelism in the pipeline.

CHAPTER 4. GRAPHICS PROCESSING UNIT

4.3 GPU Architecture

31

This thesis makes use of the NVIDIA GE Force 7600 GS graphics card for the sim­

ulations. This card is a seventh-generation NVIDIA card based on the GeForce 7

Series of graphics chips. This series supports several advanced features including SLI

(Scalable Link Interface) that allows linking of two or more graphics cards together to

produce a single output, HDR (High Dynamic Range) rendering that creates realistic

scenes using lighting done in a larger dynamic range, and Intellisample that improves

anti-aliasing quality. Table 4.1 provides specifications of 7600GS [2]. The CPU con­

nects to the GPU by means of a graphics connector - AGP. Vertex and pixel shaders

support near-infinite length shader programs as there are minimal hardware-imposed

limitations on these programs. Pixel shaders also support multiple render targets

(MRTs) providing the ability to render to upto four separate output buffers with a

single draw call. For example, photorealistic lighting can be achieved through MRT

that enables deferred shading, a technique where the lighting of a scene can be done

after rendering all of the geometry, eliminating multiple passes through the scene.

This thesis makes use of MRT to achieve high performance, details of which are in

Chapter 5. The texture engine contains upto 16 textures per rendering pass with sup­

port for 16-bit and 32-bit floating point formats and non-power-of-two texture sizes.

The texture and pixel shader operate on squares of four pixels (called quads) at a

time. We use MRT and textures to compute positions and velocities simultaneously

and solve deformation equations in our simulation system (details in Chapter 5). Fig­

ure 4.3 gives an overview of the system interface.

4.4 Languages and Tools

This section gives a brief overview of the languages and tools that can be used to

successfully construct GPU programs.

Shading languages are special high-level programming languages that enable writing

and compiling shader programs into either vertex or pixel shaders. To map onto the

CHAPTER 4. GRAPHICS PROCESSING UNIT

Figure 4.3: Overview of the system interface

32

3.2 GBisec ,..-------,2. 1 GBise

Peripherals

CPU

System
Memory

3.2 GBisec

Bridge

Video
Memory

Features Performance
Graphics Bus Technology AGP 8x
Memory 256 MB
Memory Interface 128-bit
Memory Bandwidth(GB/sec) 12.8 GB/sec
Core Clock Speed 400 MHz
Vertex Shader Units 5
Pixel Shader Units 12

Table 4.1: Specifications of NVIDIA 7600 GS

CHAPTER 4. GRAPHICS PROCESSING UNIT 33

graphics pipeline, these languages have special data types, like color, and generate

image outputs. Currently there are two APIs used in graphics development - DirectX

by Microsoft and OpenGL by ARB (Architecture Review Board). Each of them pro­

vides a C-based shading language, HLSL (High Level Shading Language) and GLSL

(OpenGL Shading Language), respectively while Cg (C for Graphics) can be used

with either API. GLSL has cross-platform compatibility and enables vendor-specific

optimized code constructs. Cg (C for Graphics) has been developed by NVIDIA and

provides API independence and free tools for asset management. HLSL is tightly inte­

grated with DirectX and limited to the Windows operating system. Cg is very similar

to Microsoft's HLSL. All the three languages offer comparable features in terms of

syntax and semantics. However, they differ in terms of hardware and platform sup­

port. For this thesis, we choose to make use of GLSL as it is a core component of the

OpenGL 2.0 specification [44]. It was also chosen due to its language compatibility

with the CPU-based surgical simulation software.

There has been very little support for debugging GPU applications. The Microsoft

Shader debugger [7] is integrated into Visual Studio and provides runtime variable

watches and breakpoints. However, it runs the shader in software emulation rather

than the hardware. GLIntercept [25] and gDEBugger [9] help debug OpenGL pro­

grams. They too provide breakpoints and variable watch but only allow runtime

editing of shaders. This thesis made use of gDEBugger intermittently for software

support.

4.5 Simulations and General-purpose Applications

GPUs were traditionally used to perform computer graphics computations. But with

programmable shaders, these chips are increasingly being used to solve general prob­

lems.

The general-purpose GPU (GPGPU) is a relatively new area in the field of GPU

CHAPTER 4. GRAPHICS PROCESSING UNIT 34

computing that explores the use of graphics hardware for general-purpose computing.

For peak performance in a GPU, the arithmetic intensity, i.e. the ratio of arithmetic

operations to memory access, should be high else memory access latency will limit

computation speeds. Applications with high data-parallelism and involving minimum

CPU-GPU interactions are desirable. Such applications work well on the GPU as a

single kernel program can evaluate multiple data units in parallel. Also, latency due

to downloading data to and reading data from the CPU can be minimized.

In [49], Thompson et al developed a C++ framework for writing general-purpose

programs with vector operations. They applied this framework to a variety of prob­

lems; arithmetic, exponential, factorial and multiplicative operations and compared

the speed of graphics card implementations to CPU implementations with increasing

size of input vector data. The results showed a range of 5 to 16 times faster GPU

implementation for the largest vector size (107 elements) demonstrating the efficiency

of using GPU for vector operations. The paper also showed the importance of using

the GPU for executing a maximal amount of work on each chunk of submitted data.

This has been reiterated in :51] which investigates the efficiency of dense matrix­

matrix multiplications in GPU. The investigation revealed that such computations

involve constant cache access (due to reuse of data) and are therefore inefficient on a

GPU due to current low GPU-cache bandwidths.

The approach in [46] is of relevance to this thesis. The authors validate the ef­

fectiveness of matrix-vector operations by developing a framework for implementing

techniques to solve difference equations on GPUs. In their paper, vectors are repre­

sented as two-dimensional textures and matrices are represented as a set of diagonal

vectors. Arithmetic operations for matrices are performed by specifying multiple ad­

jacent diagonals as multi-textures and combining these textures in a shader program

to evaluate the result. Using this technique, Conjugate-Gradient and Gauss-Seidel

methods have been implemented on the GPU. Similar approaches have been used in

[41] and [65]. A contribution of this thesis is to make use of a similar matrix rep­

resentation for the sparse matrix used in implementing implicit Euler integration on

CHAPTER 4. GRAPHICS PROCESSING UNIT

the CPU (details in Chapter 5).

35

CPUs have also been used for solving computationally intensive collision detection

for deformable bodies. Using Z-buffer depth comparison, object pairs can be tested

for overlap against each other. If overlap occurs, a second pass tests the sub-objects

for overlap. The overlapped sub-objects constitute potential colliding sets (PCS) and

are then tested for collision on the CPU [66]. A similar approach was also taken in

[28] in which the distance information for computing Voronoi diagrams is obtained by

rasterizing distance functions for the geometric primitives. In [22], the authors make

use of graphics hardware for collision detection in surgical simulation. Each scene

is rendered relative to a viewing volume encompassing the tool volume. A collision

check is done on a reduced search space containing parts of the scene that can be

viewed from the viewing volume. This technique is very simple to implement and

runs much faster that traditional bounding box techniques as no pre-computation is

required. CPUs have also been used to detect self-collisions in deformable bodies [42].

In this case, a stencil test is used to reduce the search space for collision checking. The

stencil test conditionally discards a fragment based on the outcome of a comparison

between the value in the stencil buffer and a reference value.

A large particle system simulation was implemented by [69] on the CPU. Their method

included making use of pixel shader programs for sorting particles for collision-pairing

and detecting collisions. Another CPU particle system simulator was implemented by

[12] that performed depth comparisons on the CPU to compute accurate collisions.

Another particle system was implemented entirely on the CPU to visualize steady

flow fields [45]. A dedicated CPU-based surgical simulator was implemented by [47].

In their paper, vector processing capabilities of the CPU were exploited to calculate

the positions of a mass spring system and visualize it. The particles of the mass

spring system were connected either as a regular 3D grid or as an irregular grid with

a separate texture array maintained to store the connectivity for all the particles.

Verlet integration was used for the integration scheme. This method calculates the

position at the next time step from the positions at the previous and current time

CHAPTER 4. GRAPHICS PROCESSING UNIT 36

steps without making use the velocity.In this thesis we chose an alternative integration

scheme, details of which are in Chapter 5

Transferring data from CPU to the CPU is a bottleneck that makes it difficult to

fully exploit the potential computational throughput of the graphics processing unit.

This transfer also introduces overhead that makes applying the CPU to small data

problems inefficient. Communication latency between the CPU and CPU can be re­

duced by using a hierarchical read-back of colliding pairs [42]. Such a structure is

implemented by a set of encoded 2D off-screen buffers containing collision results (as

boolean values) and is shown in Figure ?? The textures are hierarchical i.e. layer of

off-screen buffers encode the original off-screen color buffer. The pixels at each buffer

encode results of the corresponding 4x4 pixels in its lower-level buffer. Pixels are read

from the CPU only when a collision occurs. Another issue in a CPU implementa­

tion is minimizing the communication between CPU and CPU. Packing 4 different

computed values into the RCBA channels of each pixel can be done to save time on

reading pixels from CPU to CPU [87]. This method would however involve writing

onto the same pixel 4 times in the CPU.

Overall, these methods had a speedup in the range of ten to twenty times as compared

to a similar CPU-based system.

4.6 Performance Analysis of GPU-based Applica­

tions

The performance of a CPU application can be improved by locating bottlenecks in the

pipeline. The bottleneck can be eliminated by either trying to reduce the workload of

the bottle-necked stage or by attempting to increase the workload of the other stages

in the pipeline.

CHAPTER 4. GRAPHICS PROCESSING UNIT 37

Figure 4.4: Heirarchical encoding as in [42]. Each pixel in the higher level buffer
encodes the contents of 16 pixels in the lower level buffer.

• Level 3

Lewl2 •Levell

CHAPTER 4. GRAPHICS PROCESSING UNIT 38

There are a few tools available for performance analysis of CPU applications. A

benchmarking approach can help improve performance by running standard tests to

assess the application. CPUBench [37] is one such collection of software tools to eval­

uate the performance of graphics hardware.

NVPerfHUD [6] is a real-time performance analysis tool by NVIDIA that has been

proven to improve application performance by an average of 35% after being used

to tune these applications. It indicates draw-call duration, unit bottlenecks, double­

speed z/stencil and pixel count, thus helping identify bottlenecks.However it can only

be used for Direct3D applications.

Another performance measure is in terms of memory bandwidth, i.e. the rate at which

data is transferred to and from the graphics or system memory and cache efficiency,

i.e. the optimal number of cache hits for an application.

For this thesis, we used CPUBench to analyze the application with respect to the

graphics hardware. We also analyzed the application in terms of the update rates,

computational complexity and bandwidth usage, the results of which are presented

in Chapter 7.

Chapter 5

Deformation of Surface Meslles

Truth is much too complicated to allow anything but approximations.

John von Neumann

In this chapter, existing integration methods for computing mesh deformations are

explored. Implicit Euler's integration is chosen over other methods and implemented

on the GPU with details of the simulation presented and analyzed.

5.1 Introduction

Deformable modeling and simulation have been a constant challenge in the field of

computer graphics. There are two kinds of modeling approaches; geometric and phys­

ical. One of the most common physical approaches is the mass-spring system that

models deformations with low computational complexity, simple implementation and

provides support for topological manipulations [54] [82]. Physically-based deforma­

tions are formulated as time-varying partial differential equations. These equations

are discretized and numerically solved as ordinary differential equations (ODE).

39

CHAPTER 5. DEFORMATION OF SURFACE MESHES 40

For interactive real-time applications like surgical simulation, explicit integration

methods are generally used to solve ODEs as they are fast and easy to implement [38].

However, these methods are known to cause instability and can result in simulations

running slower than real-time. We therefore choose to make use of an implicit integra­

tion technique to achieve stable simulation of deformable anatomical structures. This

integration technique is compute-extensive as it involves solving large linear equations

(see Section 5.5). One way of meeting the computational requirements is to evaluate

if the current algorithm can be parallelized and then develop a system to take ad­

vantage of the inherent parallelism in the Graphics Processing Unit - a chip in many

mid-range graphics cards to solve the equation.

This chapter explains the details of such an implementation.

5.2 Deformation of Surface Meshes

This thesis makes use of mass-spring models to represent the anatomy. As described

earlier, a mass-spring model is a special particle system with fixed topology connect­

ing neighboring particles that constrain the motion of the model by means of internal

forces.

The deformable model in our simulation is represented as a three-dimensional mass­

spring system.

Consider a model of an anatomical structure consisting of N nodes, i E R 3 . These

nodes contain mass m but do not constitute a volume i.e the anatomy is represented as

a three-dimensional surface structure in three-dimensional space. A spring constant

associated with springs cause a restoring force to bring the model to equilibrium when

an external force is applied. The model can be stretched (in-plane deformation) and

bent (out-of-plane deformation). The springs' internal forces are affected by the dis­

tance between their connecting nodes (Figure 5.3).

CHAPTER 5 DEFORMATrON OF SURFACE MESHES

Figure 5.1: Mass-spring system

This internal force vector Fi is computed as follows:

F = k~~(l - r) + j'., ~ Ilij I 7) 7) 7

where

I = -kx

41

(5.1)

(5.2)

k = mesh spring constant,

lij = edge length between neighboring nodes i and j,

rij = rest length of edge between neighboring nodes i and j,

Ii = external force applied on the ith node.

Given the initial system configuration (in terms of Equation 5.1, tij equals rij and Ji
being zero), on applicctcion of external force, the simulator computes the motion of

the system over time. A simple example is the motion of mass, m, on a single spring

as in figure ?? The motion, as governed by Newton's second law, is given by

I=mi (5.3)

f being the force exerted on the mass and i being the acceleration of the spring.

Assuming that the spring in the system follows a simple linear relation, Hooke's Law

CHAPTER 5. DEFORMATION OF SURFACE MESHES 42

states that the amount of deformation in the spring is linearly related to the force

causing the deformation, or

! = -kx (5.4)

k being the spring constant and x being the spring displacement. From 5.3 and 5.4

we get

mx = -kx

or

mx+kx = 0

Extending the above equation to a n-node system we get,

Mx + Kx = !(x,x) or

(5.5)

(5.6)

(5.7)

X being the acceleration vector, ! the external force vector, M the mass matrix and

K the stiffness matrix of the system. In our simulator, the system is 3D so x and

! are vectors of size 3n (n being the total number of nodes) while M and K are

3n x 3n matrices defined as M = diag(mI, mI, ml, m2, m2, m2, ... , m n, m n, m n) and

K = diag(kl , k1 , kI , k2, k2, k2, ... , kn, kn, kn) respectively. Note, diag(al' ... , an) defines

a diagonal matrix whose diagonal entries starting in the upper left corner are aI, ... , an'

Equation 5.7 implies that an external force acting on the system causes it to deform

and move towards an equilibrium constrained by the stiffness of its springs.

Equation 5.7 is a differential equation and can be expressed as two first order differ­

ential equations:

dv 1
dt = M (J (x, x) - kx),

dx
-=v
dt

(5.8)

(5.9)

CHAPTER 5. DEFORMATION OF SURFACE MESHES 4

Formally, we need to solve an initial value problem by integrating a set of ordinary

differential equations in time [17]. There are several existing methods. One way is

to use a first-order Taylor series approximation of the derivatives to propagate the

solution forward in time.

This approximation around initial values of velocity and displacement are given by:

dv
v(t = !),.t) = v(t = 0) +!),.t dt It=o

dx
x(t = !),.t) = x(t = 0) +!),.t dt It=o

(5.10)

(5.11)

Iteratively using the above equation, we can express equations for velocity and dis­

placement at any given time-step, N + 1, as:

(5.12)

(5.13)

(5.14)

(5.15)

Substituting for the derivatives from Equations 5.8 and Equation 5.9, the following

explicit Euler expressions for velocity and displacement can be obtained.
f:,.t

vN + _(pN _ kxN)
M

x N + f:,.tv N

The above equations are explicit as they calculate the state of a system at a later

time (in this case, N + 1) from the state of the system at the current time (in this

case, N).

5.3 Existing Techniques and Issues

As explained in Chapter 2, computing deformations using explicit methods, though

easy and fast, causes the force at a time step N to contribute to node velocities, and

CHAPTER 5. DEFORMATION OF SURFACE MESHES 44

therefore positions, in the subsequent time step, N + 1. As explained in [23], this can

lead to wild changes in positions and velocities. Also, explicit methods need to satisfy

the Courant Condition [72]. Large time steps can cause instability due to stiffness

of equations with high spring constants. Therefore, unless time-steps are very small,

small enough to meet Courant's condition, the simulation will be unstable. However

small time-step means longer computation times, which can cause the simulation to

run much slower than real-time.

5.4 Implicit Euler Integration

The deformable model in this thesis is a three-dimensional mass-spring surface mesh

with linear stretch springs. We us the approach in [23] to reformulate the integration

equations of the surface mesh and have forces at each time step contribute to veloci­

ties in the same time step. This is called the implicit method as it obtains a solution

to the numerical equation by involving both the current state of the system and the

later one. We simulate the surgical task of probing ie. pulling or pushing part of the

model using a surgical probe. This may cause the distance between nodes to change

but their neighborhood connectivity remains fixed.

Numerical evaluation of equation 5.3 can be done by using the implicit Euler integra­

tion method,

VN+1 = VN + FN+l * b..t
M'

X N+1 = X N + V N+1* b..t.

Vt+1 = Vt + Ft+l * dt,
m

Xt+l = X t + V t+1* dt.

(5.16)

(5.17)

(5.18)

CHAPTER 5. DEFORMATION OF SURFACE MESHES 45

(5.19)

(5.20)

The superscript indices indicate the corresponding time-step. This equation stabi­

lizes the simulation as the motion of nodes will always be consistent with the forces

corresponding to its current time-step. However, this technique involves determining

Fn+l without knowing the position values of the nodes at the corresponding time step.

This can be done using Taylor's theorem for linear approximation,

F n+1 = F n + ~~ ,6,n+lx . (5.21)

Using Equation 5.3 and Hooke's law of elasticity, the stiffness matrix K evaluates to

the negated Hessian matrix, H, of the system. The Hessian matrix is a large, sparse

and narrow-banded matrix, the size, number of diagonals, and non-zero element values

of which depend on the structure of the mass-spring model. Substituting Equation

5.21 into Equation 5.16 and using the backward operator, ,6,N+l X = (VN+,6,N+IV)dt,

for the position vector, we get:

,6,N+IV = (I - deHjm)-l(FN + dtHVN)dtjm,

,6,N+l X = x N + V N+1 * dt.

The above equation is a linear system that is solved on the GPU.

5.5 GPU-based Deformation

(5.22)

(5.23)

To solve Equations 5.22 and 5.23 on the GPU, we need to perform matrix and vec­

tor operations, specifically vector additions, matrix inverse, matrix-vector and matrix

CHAPTER 5. DEFORMATION OF SURFACE MESHES 46

products. The Hessian matrix used in equation 5.23 is large, sparse, and narrow­

banded. As shown in [68], it is more efficient to compute the product of two sparse

banded matrices diagonal-wise instead of the traditional column-wise computation

method. This is done by vectorizing the matrices in terms of their diagonals.

For example, using the notation in [68], for C = A x B, the main diagonal is desig­

nated to be the Oth diagonal. The kth diagonal above the main diagonal of C, Ck,

with k 2': 0 is computed by deleting bottom k rows of A and top k rows of B T - the

transpose of B. The resulting (n - k) x n matrices are multiplied diagonal by diagonal

(element-by-element) to form the (n - k) x n matrix Dk . The diagonals of Dk are

added to form the resultant diagonal Ck. The kth diagonal below the main diagonal

of C ,C-k, for k 2': 0 is computed by deleting top k rows of A and bottom k rows of B T

and following the steps as above. Similarly, for a matrix-vector product b = Ax, each

-kth diagonal of A is appended to its kth diagonal to obtain a vector dk of the size

of x. Each of the resulting diagonal vectors is multiplied element-by-element with x

to obtain vectors dk . Summing up these resultant vectors will give b. The algorithms

are explained in detail in [68]. On the CPU, the matrices and vectors are represented

as two-dimensional texture maps and fragment shader programs implement the above

diagonal algorithm on them.

Now, let us consider the inverse component in Equation ?? Let us call this inverse

component as W. W = (I - dt2Hjm). Using the approach in [80], we can use the

Neumann polynomial method to approximate W- 1 as

W- 1 = 2D-1 - D- 1W D-1 (5.24)

where D is a diagonal matrix of W. D is invertible as all its diagonal elements are

non-zero. The diagonal elements of D-1 evaluate to the reciprocal of corresponding

elements of D. This means that the inverse component can be obtained in terms of

matrix-vector computations.

Therefore, Equations 5.22 and 5.23 are now

CHAPTER 5. DEFORMATION OF SURFACE MESHES

.6.N+1V = (2D-1 - D-1(I - dt2H/m)D- 1)(FN + dtHVN)dt/m,

.6.N+1X = X N + V N+1 * dt.

5.6 Implementation

47

(5.25)

(5.26)

As discussed in [45], rendering ID textures is much slower than similar-sized 2D tex­

tures. Current graphic cards provide double the performance for 2D over ID textures.

Also, there are limitations with respect to the maximum size possible with ID tex­

tures. We therefore make use of 2D texture maps in our implementation.

Therefore input data in the CPU are represented as three floating-point texture maps

of size JN/4, N being the number of mesh nodes. The input data that these textures

contain are the positions, velocities, and forces of the mass-spring nodes at each time

step. The NxN hessian matrix is also stored in a 2D texture similar to the approach

in [45]. As explained in the previous section, the non-null diagonals of the matrix are

extracted and each diagonal from the ith column of the first row in the upper-half of

the matrix is appended to its corresponding diagonal from the N - ith row of the first

column in the lower half of the matrix. This allows for a convenient way of performing

matrix vector operations. For ease of understanding, this approach is illustrated in

Figure 5.2.

A single rendering pass can be defined as a general SIMD instruction wherein same

operations are performed simultaneously for all pixels in an object. Equations 5.25

and 5.26 are implemented on the CPU using three rendering passes and using the

diagonal algorithm for matrix-vector products. The matrix H and its inverse are

constructed once for a given mesh and then used throughout the on-line update com­

putation. The subsequent steps in the simulation are evaluated for each time step

over multiple rendering passes. Once the linear equation is solved, a final rendering

pass updates the velocities and positions of the mesh nodes. The result is fed back

CHAPTER 5. DEFORMATION OF SURFACE MESHES

Figure 5.2: Diagonal-wise Matrix Computations

48

(l""-

i\. /LJ
'"Hessian Matrix 10 vector

RGBA Texel

~>~ ..

20 textures

CHAPTER 5. DEFORMATION OF SURFACE MESHES 49

to the position and velocity textures, the input and output textures are swapped and

the next iteration begins (Figure 5.3).

In order to reduce the storage size, 2 x 2 values are packed to a single texel (texel

being defined as a pixel on a texture). Textures are also used for storing intermediate

results of the simulation. The frame-buffer object and ping-pong rendering are used

to feedback values computed in one iteration of the simulation to the next. A one-to­

one mapping between geometry, texture, and pixel coordinates ensure proper control

over the data accessed and computed.

The pseudocode of the GPU implementation is given in Figure 5.4. As can be seen

in 5.4, one rendering pass computes temporary values while the remaining two passes

compute the velocities and positions.

CHAPTER 5. DEFORMATION OF SURFACE MESHES 50

Figure 5.3: Multi-pass Rendering

sitions

elocities

Swap
Po

i
/~Fz:

Ls

Positions

Velocit
Inv
He

CHAPTER 5. DEFORMATION OF SURFACE MESHES 51

procedure ImplicitEuler(X I , VI, F I , m, dt, k, row, col)

1: H ;- hessian(k, row, col) {hessianO computes stiffness matrix of a system with
row*col nodes}

2: W ;- (I - ~ * H)
3: D ;- diagonal (W)
4: W- I ;- 2D- I - D- I * W * D- I

5: n ;- 1
6: while update(graphics) do
7: Temp ;- Fn + H * vn * dt
8: vn+1 ;- W * Temp * ill

m
9: Xn+l ;- X n + V n+1 *dt

10: n ;- n + 1
11: end while{updateO performs screen rendering}

Figure 5.4: Pseudocode of the CPU implementation

Chapter 6

Tactile Input and Feedback

This chapter discusses integration of haptic interface with the GPU.

6 .1 Introduction

The word Haptic pertains to the sense of touch. Haptic interfaces provide a sense

of immersion to virtual reality environments and can enhance the learning process in

surgical simulations [16]. Haptic devices like the PHANTOM@ Omni™ are used as

input devices to provide force-feedback to the user when virtual organs are deformed

in the simulation. Figure 6.1 depicts the basic architecture of the simulation system

and Figure 6.2 details integration of haptics and graphics loops in the system. As

can be seen from the figures, multi-dimensional haptic input causes the mesh model

to deform. This in turn leads to computing the forcs which is used to update the

position of the model. Force is then fedback to the user. As a result, the user obtains

an immersive sense of pushing the mesh model.

52

CHAPTER 6. TACTILE INPUT AND FEEDBACK

Figure 6.1: Basic architecture of the simulation system

53

Haptic
Device

Haptic
Rendering

User

Graphic
Rendering

Simulation System

The haptic cycle in the simulation involves computation of the repulsive forces that

are generated as a result of deformation of the virtual body. This feedback adds

additional challenges to virtual simulation systems as it needs high update cycles

(500-1000 Hz) for realistic user interactions.

6.2 GPU and Haptics

Haptics-based deformation using the GPU has been implemented in [60] [61] using

shape functions that distribute the deformation forces of the neighboring nodes. These

shape functions represent the shape that the surface will assume in the neighbourhood

of the contact point due to deformation by external forces. A GPU-based simulation

with haptic interaction was implemented by [83]. Both probing and grabbing oper­

ations were implemented with force computations being done entirely on the GPU.

This method achieves an overall graphics frame rate of 30 Hz with the haptic frame

rate or simulation rate of 450 Hz.

CHAPTER 6. TACTILE INPUT AND FEEDBACK 54

Figure 6.2: Detailed view of the haptics and graphics loops with virtual coupling

Force Position

CHAPTER 6. TACTILE INPUT AND FEEDBACK 55

This thesis focuses on point-based haptic interaction with local deformation. A point­

based method is implemented as a preliminary framework to include haptic interac­

tion. Probing is the process of touching the virtual organ with a surgical tool. The

haptic interaction in this thesis is provided through probing. The aim of imple­

menting integration equations on the GPU in Chapter 5 was to improve simulation

performance. With haptic interactions, the CPU needs to interface with the device

and care must be taken to avoid bottlenecks in CPU-GPU data transfer.

6.3 Virtual Coupling

Virtual coupling is a technique frequently used to provide stability in interactive

haptic simulations. This technique [74] [50] handles the communication between the

controller of the haptic device and the simulation of the grasped object, enabling bidi­

rectional interaction. Virtual coupling is implemented using a spring damper between

the simulated object and the device (Figure 6.2).

The approach taken in this thesis to realize the software-based interaction was to in­

troduce a damper effect everytime the haptic makes contact with the mesh model. A

virtual positional anchor at the tip of the tool simulates the damper and updates its

position at each time-step of the simulation. The simulation also obtains the haptic

pointer position at each simulation step which is then used to compute the force that

is applied to the virtual mesh model. The graphics loop typically runs at the rate

of 30 Hz, which is quite low in comparison to the haptics loop (1 Khz). This means

that the loops needs to synchronize with each other. This can be done by means of

a synchronization mechanism that updates the positional inputs used by the virtual

coupling. Each loop deals with a sampling of the corresponding damper positions.

The damper used by the haptic device is attached to a virtual anchor that updates its

position every time the graphics loop is stepped. Similarly, the graphics loop samples

the device position before each step so that it can compute an input force to apply

to the simulated body. Interpolation or extrapolation of the anchor position values

CHAPTER 6. TACTILE INPUT AND FEEDBACK 56

prevent jerks. Such vibrations usually occur due to rapid fluctuations in force mag­

nitude or direction.

We now describe the sequence of operations that run at each time-step, N, of the

haptic cycle:

• Read 6 degree-of-freedom input of the haptic device at time tN'

• Obtain the coupling force and torque at time tN-I'

• Obtain the contact force and torque at time tN-I'

• Compute the position of the virtual tool at time tN.

• Compute the coupling force and torque at time tN.

• Send the coupling force and torque to the device at time tN

This sequence of operations is reflected in Figure 6.2.

On the simulation cycle front, the position of the virtual tool is obtained. Collision

detection is then performed. If a collision is detected between the end-effector of

the haptic stylus and the deformable model, the collision response loop computes the

reaction forces that need to be sent to the haptic device.

Chapter 7

Results

Premature optimization is the root of all evil.

Donald Knuth

This chapter presents the results of the GPU-based surgical simulation framework.

Comparison with the traditional CPU-based simulation systems will also be presented.

7.1 Overview

The simulation system was implemented in C++ using GpenGL and GLSL for the

shader programs. Visual C++ was the development environment of choice. The

system flowchart is presented in Figure 7.1. As mentioned previously, the integra­

tion method in VTE was a major bottleneck to real-time performance. To improve

the system performance, explicit integration was replaced by an implicit integration

scheme that was further parallelized using a GPU.

Three different simulation methods were implemented (a) simulation with GPU-based

implicit euler integration, (b) simulation with CPU-based implicit euler integration

and (c) simulation with CPU-based explicit euler. Such an implementation allows us

57

CHAPTER 7. RESULTS

Figure 7.1: Flowchart of the Implemented Simulator System.

Collision? >- -'-'N'-- ~

58

y Change
Integration

ethod?

CHAPTER 7. RESULTS 59

to compare performances of the three different methods and to analyze them. At any

time of the simulation, the user can dynamically change the integration method of

the simulation to qualitatively gauge the performance differences. These differences

are quantitatively captured using various metrics as described later in this chapter.

The system initializes with a virtual instrument (representing the current haptic de­

vice position) and mass-spring model (representing the virtual organ). In what follows

a single computation cycle will be explained.

In a given cycle, the system checks for a collision between the virtual instrument and

the deformable organ. If a collision is detected, as explained in Chapter 2, the total

force based on the mass-spring system equations is computed at the point of defor­

mation. At this point an integration should occur to compute the deformations of

the entire mass-spring system model. As explained earlier, the user is given a choice

of integration scheme and processor for the same (this defaults to CPU-based im­

plicit integration). The user-selected choice guides the integration and the resultant

position and velocities for the mass-spring model causes it to deform. The resultant

repulsive force due to this deformation is sent as feedback to the haptic device. Visual

feedback is then provided through rendering of the model.

In the event of no collision being detected, the system continues to render the mesh

on screen.

7.2 Simulation snapshots

This section describes the user interface and the mesh-model renderings of the simu­

lation software. The user can begin with choosing the size of the mesh-model which

ranges from 16 x 16 nodes to 256 x 256 nodes. In addition, there are two model

rendering options: wireframe and surface. As mentioned earlier, the CUI provides

three integration options to the user, namely "Implicit Integration:CPU", "Implicit

CHAPTER 7. RESULTS 60

Integration: CPU" and" Explicit Integration: CPU". Finally, to navigate through

the scene consisting of the mesh model, transformation controls such as 3D rotation,

translation and scale are provided. These options can be seen in the left panel of the

snapshot in Figures 7.2. Snapshots of various model sizes can be seen in Figures 7.3,

7.4 and 7.5.

...:.

~Q~p;e;;jnimli!liijjfr, "'---t.
,:olrt;4lX4l

(i' Wireframe
r Surface
(i' Implicit Integration GPI.
r ImpllClllnlegralion CPl
r ExpliclllnlegrallOn: CPU

cOIOlI I) I) ~

Trans(orm.atlons - I

~
Rolale

,- r
.... r/

/

Translale XV

Translate. X

-I
/

TranSlatfil: Y

. \
/

Traml.I".2

ScaJe 100125 ~

QUIt I

7.3 Performance

To measure performance of the simulator developed on the CPU, we make use of

several benchmarks. One of them is to compare the integration method with the two

CHAPTER 7. RESULTS 61

Mesh -I
Open ICIOlnl5x16 .:J

(; Wirafr.::l.l11E-
r Surface
(;' ImpllClllnregrallon' GPU
r Imphcitlnlegration· CPU
r Explicit Inlegralion CPU

Color I00 iJ

TransfornlJtluns -I

(
,- r
,... r/

/
Translate XV

Tramlale. X

-r
/

Translate: Y

. \
,/

Tramlate' Z

Scal. 10.03 67487 iJ

QUlI I

Figure 7.3: Initial 256-node Mesh.

CHAPTEH 7. HESULTS

Figure 7.4: Initial 4096-node Mesh.

62

:...IW'Ill -I
Uplinlc ~ .:J

.. W"~ntf

r Sw1><.
r. 1Itp1l~lllnftt;ri110n pu
r .plltlt 1111~ ,ijIIon CPu
r ~'-,J Irlle atlmr CPu

CGIorroo- iJ

Tnm1.1bfm.-t!on.. - I
(r-,

~I

,or
rr-/

/
Tranjial~ xv

-\
/

llWlllliiIKI Z

~c.t·~iJ

QUi!

CPU-based integration schemes: implicit euler and explicit euler integrations. Explicit

Euler method has been taken into account due to its usage on the VTE, Compari­

son of GPU-based implicit Euler with its CPU-based counterpart gives a measure

of GPU speedup over CPU. On the other hand, comparison of CPU-based explicit

Euler with GPU-based implicit Euler gives a measure of the differences between them.

The simulations were run on a 3.0 GHz Pentium 4 CPU with 1.0 GB RAM and an

NVIDIA GeForce 7600 GS. To compute the runtime statistics, simulations were run

over 10000 trials from which the mean runtime and its variance are computed and

presented.

Table 7.2 shows the comparative results of the runtime for the three integration

schemes: explicit euler on the CPU, implicit euler on the CPU and implicit euler

on the GPU. For each of these schemes we report the integration runtime statistics

for model sizes ranging from 16 x 16 nodes to 256 x 256 nodes. It should be noted

CHAPTER 7. RESULTS

Figure 7.5: Init.ial] 6384-node ;vIesh.

63

CHAPTER 7. RESULTS 64

that for meaningful comparison, the GPU-based implicit euler runtime includes data­

transfer overhead time (between CPU and GPU) as well. Details of this breakdown

for the same node-sizes is shown in Table 7.3.

The Frame Buffer Object (FBO) architecture is an extension available in OpenGL

for off-screen rendering. As explained in Chapter 5 this thesis makes use of the FBO

for rendering to textures. The traditional framebuffer is turned off and the off-screen

buffer, framebuffer object, captures the image data being rendered. The velocities and

positions of the data model computed at each simulation are fed-back to the textures.

These values are then read-back from the FBO and are used as input to the next

simulation step, resulting in fast multiple rendering passes. This essentially breaks

down to OpenGL's glReadPixelsO function call. FBO is efficient as it does not use

context switching and can make use of additional buffers like depth and stencil. The

FBO also provides full precision and eliminates clamping issues as in the traditional

framebuffer. Table 7.3 provides the time taken to read/write the position/velocity

data from the GPU at each simulation time-step.

To add further insight into the runtimes of other components of the simulator, we

have provided similar runtime statistics for broad-phase and narrow-phase collision­

detection and the off-line Hessian matrix computation. Broad phase identifies subsets

of objects that may be colliding and excludes those that definitely are not colliding.

Narrow phase performs pair-wise intersection tests within these subsets.

We also evaluated the simulations by acquiring the force and displacement values dur­

ing deformation for each of the three mesh sizes using each of the three integration

schemes. For each simulation, a part of the mesh was probed. Upon deformation,

the magnitude of the force and displacement values of the mesh node closest to the

virtual probe tool were acquired. The results are presented as force-displacement dual

axes graphs i.e. force values along a Y axis, displacement values along another Y axis

and haptic update cycle against the X axis. Figures 7.6, 7.7 and 7.8 depict graphs

plotted using GPU-based Implicit Euler integration scheme. Figures 7.9, 7.10 and

CHAPTER 7. RESULTS 65

7.11 depict graphs plotted using CPU-based Implicit Euler integration scheme and

Figures 7.12, 7.13 and 7.14 depict graphs plotted using CPU-based Implicit Euler

integration scheme. As can be seen from the graphs, the fluctuations in displacement

and force occur at a much faster rate with CPU-based implicit integration than with

their CPU counterparts. Moreover, fluctuations with the CPU-based implicit scheme

occur at a faster rate than with the CPU-based explicit scheme.

Figure 7.6: Force and Displacement Craphs during Probing (probe tool used to pull
a single mesh node) of a 256-node mesh for CPU-based Implicit Euler Scheme

1 ~~

- - - Displacement
- Force

33.5

C
11l
E

33·1
c.
C/)

i:5

14012080 100
Haptic Update Cycle

.. ,\, , , , ,\

i " " " ", " " " ,\ ,"',,' "",'
,'" " " ",,'" " " " , , \, ,

" " " II
\I I, "

" \

604020

",,,,,,,

,,,,,,,
"

o'-----__.l.-- ---'---__---'- '-----__--L-__----'--__----' _

1

z.s
~.5
ou..

Haptic update rate refers to the frequency at which force is computed and sent to

the human user via a haptic device. Our simulation system interfaces the algorithm

with the haptic device and therefore, the haptic update rate is a key parameter that

synchronizes the haptic loop with the graphics loop and influences the simulation

CHAPTER 7. RESULTS 66

Figure 7.7: Force and Displacement Graphs during Probing (probe tool used to pull
a single mesh node) a 4096-node mesh for GPU-based Implicit Euler Scheme

0.1 8.25

1

- - - Displacement I
- Force

"
.. ,

11

"A
I ,
I
, I , , n" I I I , ,

I ' C
Z- It I I~ I

I ,
Q)

I ,
I

, , , I I EE I I ,
Q), , • If"05 ~\ I

I 1 8.2~
I ,

1 1 Q.0 , I , <IJ
LJ.. is, I ,

I I, 1

~\
I

I I I 1.. I
I

I I I ..
I

"
I I I ", I1 I

, I ,I 1

"

fi V

0 8.15
1 20 40 60 80 100 120 140 160 180

Haptic Update Cycle

CHAPTER 7. RESULTS 67

Figure 7.8: Force and Displacement Graphs during Probing (probe tool used to pull
a single mesh node) a 16384-node mesh for GPU-based Implicit Euler Scheme

1 n~

- • - Displacement
- Force

33.5

",,,
z , .. ,\ "E, , , , Q)

-S , , , ,\ E, ,. ,
I , , ~,

33·M~.5 , , , ,
I

, , , ,
"

,
0 , , , , , , c.u. , , , , \ '", , , , Ci, , , , , , , ,

"
, , , , ,

\, ,, , , , , ,, , , , , , ,\' , , ,
I

"
~, "

I 33.3,,
, I

"

0 33.2
1 20 40 60 80 100 120 140 160 180

Haptic Update Cycle

CHAPTER 7. RESULTS 68

Figure 7.9: Force and Displacement Graphs during Probing (probe tool used to pull
a single mesh node) a 256-node mesh for CPU-based Implicit Euler Scheme

0.1 ,...-----,-----,----,------,----.----,---,------,--,------r--.----,

- - - Displacement
- Force

,.
z
.§.

~.05
o

LJ..

" ,, " " ,, • ,I, I
~ ., .,

""".. " " '.,. ,. ,, ~

.\ ..
\ I '.,. - -,. - '-".. - - - - - ",. -

19.75

C
Ql
E
Ql

19.$.J
Q.
(/)

i5

19.25

OL-_--l.-_----l__...l-_---'-__..L-_---"-__..l..-_---'-__.J....-'----L--.I...---=----=-L..::.----=:--J

1 100 200 300 400 SOO . £laD 700 800 900 1000 1100
Ffaptic upaate CyCle

CHAPTER 7. RESULTS 69

Figure 7.10: Force and Displacement Graphs during Probing (probe tool used to pull
a single mesh node) a 4096-node mesh for CPU-based Implicit Euler Scheme

x 10-3

6 r----,----,------,------.------,-----,------,-----,-----r-----,8.21

- - - Displacement I
- Force

5
"

,
I,

I' ,,
I ,

I I
I , ,
I I I'

4
I I '

,,
I ' I 'I , ,,
I , ' I 'I ,

Z I ,\ , ' I
,,

E I I A' ' , " , ,
I

,
~3

, \ , , ,
I I

I I , ,, , , \, , , ,
I

,
0 I ,

LJ.. I I I \, ,
I

,
I

~~
,

I
, ,,

I ,
2 , I , ' .

I • , I ' .,,
, I ' I... ,. '.
, I

,
I,

V

8.205

8.2

", I '\

• , ., .' C
I

, , Ql, , '\ " E, , ,
8.1~I , , , \ , \

,, ,
I , ,

\' .. " a.
I , I , ' '"~ is, ,,

8.19

8.185

o'----__'----__-'----__.L.-__-'-__--'-__-'-__----'-__--'-__---'-__---' 8.18
1 100 200 300 400 500 600 700 800 900 1000

Haptic Update Cycle

CHAPTER 7. RESULTS 70

Figure 7.11: Force and Displacement Graphs during Probing (probe tool used to pull
a single mesh node) a 16384-node mesh for CPU-based Implicit Euler Scheme

0.1 20

- - - Displacement
- Force

19.75

z- I, \
C

S , Ql

I , I , E, , Ql

~.05
, , I,

I 1\ 19.~
0

,
I

, ... c..
LI- I I , , , '.". - -". #II '-" ."., ________ .". • Ul, , , , , isI

, , ,, ,, , I , I
, I , I \, J

19.25

a '-----_--'---_----J.__--'---_--'-__-'----_----'-__-'--_---'-__J.....:....--"----L.-_--"'---------"--' 19
1 100 200 300 400 500 . BOO 700 800 900 1000 1100 1200

~aptic LJpaate CyCle

CHAPTER 7. RESULTS 71

Figure 7.12: Force and Displacement Graphs during Probing (probe tool used to pull
a single mesh node) a 256-node mesh for CPU-based Explicit Euler Scheme

0.15 10.6

- - - Displacement
- Force

,
, I

0.1 I \ 10.4, ,
\

, , I CZ , , , , I Q)

.s , , E
I , Q)

Q) , , (), coe ,
Ci

0 , , , ,
'"u. , Ci, , ,, , , ,

, , , ,
0.05 , ,

\
10.2, ,

\, ,
\,, , ,

\ ,, , ,
\ , ,, , ,

I, , ,
\ ,, I

\'
0 10

1 200 400 ffa~qic Update ~$2e 1000 1200 1400

CHAPTER 7. RESULTS 72

Figure 7.13: Force and Displacement Graphs during Probing (probe tool used to pull
a single mesh node) a 4096-node mesh for CPU-based Explicit Euler Scheme

0.08 5.9

- - - Displacement
- Force

0.06 5.8
,,, ,

z
, ,

"E
S I

,
I Q), E

~.04
, I ,

5.~, I .
,

0 , I a.LL , , I lJ)

I
,

I I is, ,
I ,, , ,, ,

I
,

, ,
I

, ,
\ , ,

I
,

0.02 , 5.6
..., , , ,

I, , ,
I,

I
,

\
, ,

I.. , ,
I

,
oI

\ I..
'5.5

1 100 200 300 400 m~tic tfl,9Pate c~~g 800 900 1000 1100 1200

CHAPTER 7. RESULTS 73

Figure 7.14: Force and Displacement Graphs during Probing (probe tool used to pull
a single mesh node) a 16384-node mesh for CPU-based Explicit Euler Scheme

0.15 10.6

- - - Displacement
- Force

/

I
I

0.1 I 10.4
I ,

\ I , I
CZ I , I , I Q)

.s , I E
I , Q)

uQ) , , I IIIU I
0 ~ I a.

" I
, Ulu. I is\ I ,

\ I , I
\

I
, I

0.05 \ I I 10.2
\ I I

I I
I I

I \ I
I I\ \ I

/ ,
I

~.. , , I
I /, I \

\ /
\ I

\'
0 10

1 200 400 H~Ppqic Update ~$2e 1000 1200 1400

CHAPTER 7. RESULTS 74

Table 7.1: Haptic Update Rate (in Hz) for Each Integration Scheme Against Each
Mesh Size

Integration Scheme 256 nodes 4096 nodes 16384 nodes
CPU-based Implicit Integration 560 504 305
CPU-based Implicit Integration 611 347 212
CPU-based Explicit Integration 597 271 148

performance. Previous research suggests that a minimum update rate of 1 kHz is

required for rendering rigid objects, but lower rates may suffice for deformable ones

[60]. We have computed the haptics update rates for each of the integration methods

and each mesh-model and the results are presented in Table 7.1. As can be seen in the

table, a maximum update rate of 560 Hz was achieved with the CPU-based implicit

integration scheme.

As can be seen from these tables and figures, the general trend is that

• For all node sizes, implicit Euler integration is faster than explicit Euler inte­

gration. This is consistent with previous reports in literature[6JI [84].

• For all node sizes, CPU-based implicit Euler integration is faster than its CPU

counterpart. The maximum speedup achieved is about a factor of 6.5 for model

size of approximately 16000 nodes, which is the node size of the largest simulated

mesh model.

• While table in Figure 7.2 shows that the CPU-based integration is slower than

its CPU counterpart for the 256-node mesh size, a closer inspection of table

in Figure 7.3 reveals that the data latency time causes this delay. The true

integration time on the CPU is in fact faster than that of the CPU. Therefore,

for small mesh sizes, data latency is a huge bottleneck and outweighs the benefits

of CPU-based integration.

• For larger node sizes, CPU-based implicit Euler integration allows faster haptic

update rates over its CPU counterpart. The maximum update rate achieved is

CHAPTER 7. RESULTS 75

Table 7.2: Mean and variance of the time taken (in ms) over 10000 simulation trials
to solve each integration method on the corresponding processor.

Mesh Size
Integration Processor 256 4096 16384

Mean Variance Mean Variance Mean Variance
Explicit Euler CPU 1.48 0.19 5.48 1.88 20.74 0.12
Implicit Euler CPU 0.73 0.001 2.23 0.02 8.88 0.07
Implicit Euler CPU 1.77 0.010 1.98 0.018 3.27 0.071

560 Hz, bringing it closer to the target 1 KHz update rate.

• For each of the integration schemes and processors, runtime increases with in­

crease in node size. This is a result of increase in integration times in general

as well as data transfer times specifically in the case of CPU-based scheme.

• The benefits of parallelism (CPU) increases with increase of node, benefit being

used here to mean the ratio of VTE's CPU-based Explicit Euler runtime to

CPU-based Implicit Euler runtime. This is because small node sizes can be

impeded with overheads of graphic drivers as well as data transfer rate.

• Reading back data from the CPU is slower than sending data to the CPU. This is

due to different openCL calls being made for these operations - glReadBufferO

and glReadPixelsO for reading back CPU data and glTexSubImage2DO for

writing data to the CPU. This is in agreement with established research [19]

and therefore is an important factor to consider in the design of an algorithm

for CPUs.

CHAPTER 7. RESULTS 76

Table 7.3: Mean and variance of the time taken (in ms) over 10000 simulation trials
to solve each sub-step of GPU-based implicit Euler integration.

Sub-step
Mesh Size

256 4096 16384
Mean Variance Mean Variance Mean Variance

Data transfer to GPU 1.18 0.007 1.22 0.011 1.68 0.014
Data transfer from GPU 0.023 0.00017 0.063 0.0011 0.391 0.011

Integration Time 0.57 0.0037 0.703 0.0059 1.20 0.046

Table 7.4: Mean and variance of the time taken (in ms) over 10000 simulation trials
to solve sub-steps on the CPC for GPU-based implicit Euler integration. Variance
2: 10-4 ms is given as O.Broad phase collision detection identifies subsets of objects
that may be colliding and excludes those that definitely are not colliding. Narrow
phase collision detection performs pair-wise intersection tests within these subsets.

Time Taken (ms)
Mesh Size

256 4096 16384
Mean Variance Mean Variance Mean Variance,

Broad Phase 0.001 0 0.001 0 0.002 0
Narrow phase 0.003 0 0.003 0 0.003 0
Implicit Euler 0.11 0 1.28 0 7.29 0.1

Chapter 8

Conclusion

The path comes into existence only when we observe it.

Heisenberg

This chapter concludes this thesis.

8.1 Conclusion

This thesis presents the development and analysis of a CPU-based simulation sys­

tem to counter current performance bottlenecks in the Virtual Training Environment

(VTE) developed at Simon Fraser University.

Specific contributions towards this are:

• Analysis of VTE and identification of its performance bottlenecks. It was shown

that the collision detection algorithm and the use of a single thread for CPU­

intensive tasks were the main bottlenecks.

• Design and development of a CPU-based simulation system using Implicit Euler

integration scheme. This integration scheme was chosen to achieve stable sim­

ulation of deformable anatomical structures, thereby improving the accuracy

77

CHAPTER 8. CONCLUSION 78

of the simulations. To further enhance performance of the simulation, modern

CPU architecture was investigated and its parallel capabilities were exploited.

Further research led to the understanding and use of suitable CPU techniques

such as Framebuffer Objects (FBO), MRT (Multiple Render Targets), Multi­

pass Rendering and Ping-pong Technology.

• Implementation and comparison of three integration schemes for the simulator

viz. CPU-based implicit euler, CPU-based implicit euler, and CPU-based ex­

plicit euler schemes. To quantitatively measure performance gains using the

CPU and implicit integration, we used several metrics, including integration

time and haptic update rate.

• Qualitative comparison showed definite performance gains by the CPU-based

implicit scheme followed by CPU-based implicit scheme over CPU-based explicit

scheme.

• Demonstration of fastest integration time using the CPU-based implicit Euler

scheme with a maximum speedup of 6.5 achieved for model size of approximately

16000 nodes. This speedup was achieved in spite of data-transfer latencies. The

CPU-based system consistently outperformed the CPU-based systems across

multiple mesh-sizes.

• Implementation of CPU-friendly haptic interaction with damper-based virtual

coupling. It was demonstrated that the haptic update rate was the highest for

the CPU-based implicit scheme with the maximum rate achieved being 560 Hz.

The update rate is almost double that of the CPU-based explicit simulation

system.

• Use of a semi-automated surface wrapping algorithm to obtain closed surface

meshes from 2D planar square meshes. Relaxation methods minimize distortion

and overlapping in the closed surface mesh.

From the results, we can conclude that for most simulation systems the limiting factor

will be the cost of CPU-CPU communication (even for systems with small mesh-sizes).

CHAPTER 8. CONCLUSION 79

Following the successful implementation of the integration scheme on the GPU and

having obtained better performance over its CPU counterparts, we expect haptic

update rates of much closer to 1 KHz if the entire simulation is implemented on the

GPU. A higher performance gain is also expected if data latency were reduced or if

multiple GPUs were used as co-processors.

8.2 Future Work

With the proposed GPU-based simulation system, several areas can be explored.

The focus of the thesis was to utilize the GPU and improve the performance time of

the existing explicit euler simulation. Hence, a crude method was used for wrapping a

20 square object mesh around a three-dimensional model. The wrapping method used

in this thesis has the potential to introduce wrinkles and foldovers in the mesh. An

accurate alternative approach would be to reconstruct the three-dimensional model

using 20 surface patches[30]. Although it would be very valuable in the long run for

further extensions to this project, it is not within the scope of this thesis and therefore

was not explored extensively.

The realism in the modeling of deformable bodies can be further extended by import­

ing MRI images of patients into the simulation system [76].

In this thesis, we have only briefly discussed collision detection. As has been shown

in previous work [12], [8] collisions between moving and complex polygonal objects

can be determined quite efficiently on the GPU. In addition, self-collisions can also

be included.

Scalable graphics systems, like CPU clusters, can be used to further performance of

the simulation system. They are advantageous due to their additional hardware ca­

pabilities. A few years ago, NVIDIA and ATI introduced dual-GPU configurations

through SLI(Scalable Link Interface) [8] and Crossfire [29] respectively. However, the

CHAPTER 8. CONCLUSION 80

drawback in using these hardware systems was the lack of reliable software and pro­

gramming models to utilize their capabilities. Also, these systems scaled pixel and

triangle rates but not texture memories posing challenges typical of shared memory

data parallel systems. For example, boiling simulations implemented using multi­

ple GPUs obtained lower performance than their single-GPU counterparts due to in­

creased communications over texture accesses [13]. In [32], the focus of their unsteady

flow visualization implementation was on improving its quality and accuracy and they

achieve frame-rates of a mere additional 10 to 50 frames with dual GPUs. However,

[57] scaled applications using the recently introduced Havok physics API for GPUs.

An entire GPU Card was dedicated to non-gameplay physics calculations obtaining

results 10 times faster than their corresponding CPU implementations. Therefore,

multiple GPU systems can be explored to provide higher performance gains if pro­

vided with strong software support like Havok.

Appendix A

Surface Wrapping with Autodesk

3DS Max

The Cloth Modifier available in Autodesk 3DS Max is used in an interactive fashion

to implement surface wrapping for closed meshes. The details of the implementation

are provided below.

A.I Implementation steps

Step 1:

The scene m Figure A.l contains an imported VRML (Virtual Reality Modeling

Language) organ file (in this case liver model) and a two-dimensional mesh. In this

case, the organ is a triangular closed mesh and of genus zero. The two-dimensional

mesh is of size 4096 nodes.

Step 2:

In Figure A.2, the two-dimensional mesh is selected and a Cloth Modifier is applied

to it from the Modifier list. Object Properties in its corresponding interface panel can

be selected to display and modify the mesh properties. In this case, the thickness,

repulsion, offset and cling parameters are edited. The parameter definitions [3] as

well as values used are as follows:

Thickness: the virtual thickness of a mesh for the purpose of detecting mesh-to-mesh

81

!!' I , • II • a.
-'-

APPENDIX A. SURFACE WRAPPING WITH AUTODESK 3DS MAX 82

Figure A.l: Initial state of input mesh and closed surface.

J.
• • too •• .

1I1~'~1~~: 0-- - ._ ---1......~ .. """;,=_:.:--_- ';"_'1 "-,,. - -'f' r..",

collisions.

Thickness value: 0.2

Repulsion: The amount of force used to repel other mesh objects.

Repulsion value: 2.0

Offset: the amount of distance kept between the mesh and the collision object.

Offset value: 0.5

Cling: the extent to which the mesh adheres to a collision object.

Cling value: 500

Step 3:

In Figure A.3, the mesh describing the 3D object that we "vish to wrap (in this case

a Ii ver) is added to the Cloth Modifier and set as a collision object. This is done by

selecting Cloth radio-button in the Object Properties interface panel.

Step 4:

In Figure A.4, the Simulate button is activated to begin the wrapping process. The

APPENDIX A. SURFACE WRAPPING WITH AUTODESK 3DS MAX 83

Figure A.2: Input mesh set ilS Cloth object.

---"-;,p. ~:
r-~ ..r-I

--'-"---.J'~;:.'--------~~-----

~ ..-

=~ --

r_·~

1_ rrr-- I _ ... on--- ;....-,

1

Figure A.3: Closed surface set as Collis'ion Object.

-"'&-J---­
!l I • lit • • .. ,., ... I<

"lIJ..r;;:;-;~Id"iimlI __ 0-::;-:.._ ... r:;r"~";'

APPENDIX A. SURFACE WRAPPING WITH AUTODESK 3DS MAX 84

first simulation can cause errors due to inappropriate simulation settings. Trial and er­

ror fixing of setting-values can rectify the simulation. In case of erroneous simulation,

Erase Simulation can be activated and the simulation restarted.

Figure A.4: Simulate achieves wrapping.

.
~.

"--------..=..iiL:..l'
n, • " , ., ••

. -

----_1_­
,-

Step 5:

In Figure A.5, relaxation steps can be manually adjusted to achieve desired closed

surface shape. A Relax Parametric Modifier, with Keep Boundary Pts fixed unchecked,

applied to the converted mesh reduces fold-overs.

In conclusion, simulating cloth in 3D can be implemented using 3DS lVlax. However,

it must be noted that trial and error of simulation settings is crucial to obtaining a

visually accurate wrapping.

APPENDIX A. SURFACE WRAPPING 'vVITH AUTODESK 3DS MAX 85

Figure A.5: Relax Modifier reduces foldovers in mesh.

=. I "lW

0- --::-_._. :~:- d
1"t1r'·

Appendix B

Collision Detection Algorithm

The motion of the surgical tool can be tracked as a line segment and the primitives in

the deformable bodies are triangles. Hence, collision detection between the tool and

the body can be achieved using line-triangle intersection test.

B.l Line-Triangle Intersection Test

The test involves finding the intersection between the line, that the segment is part

of, and the plane containing the triangle. The first step is to ensure that the line and

the plane are not parallel to each other. The next step is to determine a point on the

line that lies within the triangle.

B.1.l Implementation

In Figure B.1, PI-P2 represents the line segment while ABC depicts the triangle.

The equation for the line segment can be given as

(B.1)

where P is the intersection point. The equation for the plane is given by

(B.2)

86

APPENDIX B. COLLISION DETECTION ALGORITHM

Figure B.1: Line-triangle Intersection
A

87

----1-----

P

P = P + IJ(P - P)
__1 2__'_

P
2

L---- _

B n x+ny+nz+D=O
x y z

c

(nx,ny,nz) being the normal vector of the plane. The cross-product of any two nor­

malized edge vectors will yield this normal.

(B.3)

D can be found by vertex substitution of above equation into B.2.

Using the above equations, JL can be expressed as

D + nxP1x + nyP1y + nzHzJL=-,------,:=-----=-----,-----,-=---=----,"--:----:-=--:=--:-:-
(nx(P1x - P2x) + ny(P1y - P2y) + nz(P1z - P2z))

(B.4)

(B.5)

If the denominator in B.5 is 0, the line is parallel to the plane and there is no in­

tersection. If JL is between 0 and 1, the intersection point lies on the line segment

[36].

In order to test if the intersection point P lies within the triangle ABC, we need

to compute the sum of the internal angles. If the total sum is 2Jr, P lies inside the

triangle while if the total sum is lower, P lies outside the triangle.

APPENDIX B. COLLISION DETECTION ALGORITHM

If the unit vectors Pi, P2, P3 are as follows:

(A - P)
Pi = I(A _ P)I

(B - P)
P2 = I(B _ P)I

(C - P)
P3 = I(C _ P)I

the angles are

oj = a cos PiP2

a2 = a cos P2P3

a3 = a cos P3Pi

Floating point error of 0.05 is considered for efficiency [36].

88

(B.6)

(B.7)

Bibliography

[1] http://www.glowcode.com.

[2] http://www.nvidia.com.

[3] 3dsmax. http://www.autodesk.com.

[4] Directx. http://msdn.microsoft.com/directx;'

[5] Opengl. http://www.opengl.org.

[6] Perfhud. http://developer.nvidia.com/object/nvperfhud.html.

[7] Microsoft shader debugger. http://msdn.microsoft.com, 2005.

[8] Nvidia gpu programming guide. http://download.nvidia.com/developer/, July
2005.

[9] Graphic remedy gdebugger. http://www.gremedy.com/. 2006.

[10] Cover S. A., Norberto F. E., OBrien J. F., Rowe R., Gadau T., and Palm E. Inter­
actively deformable models for surgery simulation. In IEEE Computer Graphics
and Applications, volume 13, pages 68-75, 1993.

[11] Gates E. A. New surgical procedures: can our patients benefit while we learn?
In Am J Obstet Gynecol, volume 176, page 12931298, 1997.

[12] Kolb A., Latta L., and Rezk salama C. Hardware-based simulation and collision
detection for large particle systems. In Graphics Hardware, pages 123-132, 2004.

[13] Moerschell A. and Owens J.D. Distributed texture memory in a multi-gpu envi­
ronment. In Graphics Hardware, 2006.

[14] Moller T. A. and Haines E. Real-time Rendering. AK Peters, 2005.

[15] Quarteroni A., Sacco R., and Saleri F. Numerical Mathematics. Springer, 2007.

89

BIBLIOGRAPHY 90

[16] Mandayam A.S. and Cagatay B. Haptics in virtual environments: Taxonomy,
research status, and challenges. In Haptic Displays in Virtual Environments and
Computer Graphics in Korea, volume 21, pages 393-404.

[17] U.M. Ascher and L.R. Petzold. Computer Methods for Ordinary Differential
Equations and Differential-Algebraic Equations. Society for Industrial and Ap­
plied Mathematics (SIAM), Philadelphia, PA, 1998.

[18] Starfield B. Is us health really the best in the world? In the journal of the
American Medical Association, volume 284, pages 483-485, 2000.

[19] M. Blom and P. FolIo. Vhf sar image formation implemented on a gpu. Geoscience
and Remote Sensing Symposium, 2005. IGARSS '05. Proceedings. 2005 IEEE
International, 5:3352-3356, July 2005.

[20] Basdogan C. and Srinivasan M.A. Virtual Environments HandBook, chapter
Haptic rendering in virtual environments, pages 117-134. 200l.

[21] Grimm C. Simple manifolds for surface modeling and parametrization. In Shape
Modeling International, 2002.

[22] Lombardo J. C., Gascuel M. P., and Neyret F. Real-time collision detection for
virtual surgery. In Proceedings of Computer Animation, pages 33-39, 1999.

[23] Baraff D. and Witkin A. Large steps in cloth simulation. In Computer Graphics
Proceedings, Annual Conference Series, pages 43-54, 1998.

[24] Terzopoulos D., Platt J.C., Barr A.H., and Fleischer K Elastically deformable
models. In Computer Graphics, volume 21, pages 205-214, 1987.

[25] Trebilco D. Glintercept. http://glintercept.nutty.org, 2006.

[26] Anastakis D.J., Wanzel KR., and Brown M.H. et al. Evaluating the effectiveness
of a 2-year curriculum in a surgical skills center. volume 185, page 378385, 2003.

[27] Breen D. K, House D. H., and Wozny M. J. Predicting the drape of woven
cloth using interacting particles. In SIGGRAPH Conference Proceedings, pages
365--372, 1994.

[28] Hoff K E., Keyser J., Lin M., Manocha D., and Culver T. Fast computation
of generalized voronoi diagrams using graphics hardware. In Computer Graphics
(Annual Conference Series), volume 33, pages 277-286, 1999.

[29] Persson K Programming for crossfire, 2005.

BIBLIOGRAPHY 91

[30] A. Elnagar and A. Basu. From 2d surface patches to 3d reconstructed models:
Theory and applications. PR, 31(10), October 1998.

[31] Cohen F.S., Walid 1., and Chuchart P. Ordering and parameterizing scattered 3d
data for b-spline surface approximation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(6):642-648, 2000.

[32] Li G., Tricoche X., and Hansen C. Gpuflic: Interactive and accurate dense
visualization of unsteady flows. In Eurogmphics, pages 1-6, 2006.

[33] Shen G., Zhu L., Li S., Shum H.Y., and Zhang Y.Q. Accelerating video decoding
using gpu. volume 4, pages 772-775, 2003.

[34] Delingette H. Towards realistic soft tissue modeling in medical simulation. In
Proceedings of the IEEE: Special Issue on Surgery Simulation, pages 512-523,
1998.

[35] Massie T. H. and Salisbury J. K. The phantom interface: A device for probing
virtual objects. In Proc. ASME Winter Annual Meeting, Symposium on Haptic
Interfaces for a virtual environment and teleoperator systems, 1994.

[36] Zhang H. Simulating Tis8ue Dissection for Surgical Training.M.A.Sc. Thesis.
Simon Fraser University, 2004.

[37] Buck 1., Fatahalian K., and Hanrahan P. Gpubench: Evaluating gpu performance
for numerical and scientific applications. In ACM Workshop on General Purpose
Computing on Graphics Processors, 2004.

[38] Rudomin 1. and Castillo J. Realtime clothing: geometry and physics. In Journal
of Winter School of Computer Graphics, pages 45-48, 2002.

[39] Amirbayat J. and Hearle J. W. S. The complex buckling of flexible sheet materi­
als, part i: Theoretical approach. In International Journal of Mechanical Science,
volume 28, pages 339-358, 1986.

[40] Amirbayat J. and Hearle J. W. S. The complex buckling of flexible sheet materi­
als, part ii: Experimental study of three-fold buckling. In International Journal
of Mechanical Science, volume 28, pages 359-370, 1986.

[41] Bolz J., Farmer 1., Grinspun E., and Schroder P. Sparse matrix solvers on the
gpu: conjugate gradients and multigrid. In ACM Transactions on Graphics,
volume 22, pages 917-924, 2003.

BIBLIOGRAPHY 92

[42] Choi Y J., Kim Y J., and Kim M. H. Self-cd: Interactive self-collision detection
for deformable body simulation using gpus. In Asian Simulation Conference,
2005.

[43] Kent J., Carlson W., and Parent R. Shape transformation for polyhedral objects.
In ACM SIGGRAPH, pages 47-54, 1992.

[44] Kessenich J., Baldwin D., and Rost R. OpenGL Shading Language v 1.10. 2004.

[45] Krger J., Kipfer P., Kondratieva P., and Westermann R. A particle system
for interactive visualization of 3d flows. In Transactions on Visualization and
Computer Graphics, volume 11, 2005.

[46] Krger J. and Westermann R. Linear algebra operators for gpu implementation
of numerical algorithms. In A CM Transactions on Graphics, volume 22, pages
908-916, 2003.

[47] Moosegaard J. and Sorensen T.S. Gpu accelerated surgical simulators for complex
morphology. In Proceedings of Virtual Reality, pages 147-153,2005.

[48] Segerlind 1. J. Applied Finite Element Analysis. Wiley, 2nd edition, 1976.

[49] Thompson C. J., Hahn S., and Oskin M. Using modern graphics architectures for
general-purpose computing: a framework and analysis. In Proceedings of the 35th
annual ACM/IEEE international symposium on Microarchitecture, page 306317,
2002.

[50] Colgate J.E. and Schenkel G.G. Passivity of a class of sampled-data systems:
Application to haptic interfaces. 1994.

[51] Fatahalian K., Sugerman J., and Hanrahan P. Understanding the efficiency of
gpu algorithms for matrix-matrix multiplication. In Graphics Hardware, 2004.

[52] Salisbury K., Brock D., Massie T., Swarup N., and Zilles C. Haptic rendering:
Programming touch interaction with virtual objects. In Proceedings of the ACM
Symposium on Interactive 3D Graphics, pages 203-210, 1995.

[53] Dent T. 1. The impact of laparoscopic surgery on health care delivery. the
learning curve: skills and privileges. volume 3, page 247249, 1993.

[54] Lian 1.L. and Chen YR. Haptic surgical simulation: An application to virtual
suture. In Computer-Aided Design and Applications, volume 3, pages 203-210,
2006.

BIBLIOGRAPHY 93

[55] Anitescu M. and Hart G.D. A constraint-based time-stepping approach for rigid
multibody dynamics with joints, contact and friction. volume 60, page 23352371,
2004.

[56] Bridges M. and Diamond D.L. The financial impact of teaching surgical residents
in the operating room. The American Journal of Surgery, 177:28-32(5), January
1999.

[57] Harris M. Gpu physics. In International Conference on Computer Graphics and
Interactive Techniques, 2007.

[58] Moore M. and Wilhelms J. Collision detection and response for computer ani­
mation. In Computer Graphics, volume 22, pages 55-66, 1988.

[59] Paisley A. M., Baldwin P.J., and Paterson-Brown S. Accuracy of medical staff as­
sessment of trainees' operative performance". Medical Teacher, 27(7):634-638(5),
November 2005.

[60] Pascale D. M., Pascale D. G., Prattichizzo D., and Barbagli F. A gpu-friendly
method for haptic and graphic rendering of deformable objects. In Proceedings
of Eurohaptics, pages 44-51, 2004.

[61] Pascale D. M., Sarcuni G., and Prattichizzo D. Real-time softfinger grasping of
physically based quasi-rigid objects. In Proceedings of World Haptics Conference,
pages 545-546, 2005.

[62] Pharr M. and Fernando R. GPU Gems 2: Programming Techniques for High­
Performance Graphics and General-Purpose Computation. Addison-Wesley Pro­
fessional, 2005.

[63] Shinya M. Stabilizing explicit methods in spring-mass simulation. cgi, 00:528­
531, 2004.

[64] Srinivasan M.A. and Basdogan C. Haptics in virtual environments: Taxonomy,
research status, and challenges. In Computers and Graphics, volume 21, pages
393 - 404, 1997.

[65] Goodnight N., Woolley C., Lewin G., Luebke D., and Humphreys G. A multigrid
solver for boundary value problems using programmable graphics hardware. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware, pages 102-111, 2003.

BIBLIOGRAPHY 94

[66] Govindaraju N., Redon S., Lin M., and Manocha D. Cullide: Interactive col­
lision detection between complex models in large environments using graphics
hardware. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Work­
shop on Graphics hardware, volume 32, 2003.

[67] Ray N., Ulysse J., Cavin X., and Lvy B. Generation of radiosity texture atlas
for realistic real-time rendering. In Eurographics, 2003.

[68] Madsen N.K, Rodrigue G.H., and Karush J.1. Matrix multiplication by diagonals
on a vector/parallel processor. In Information Processing Letters, volume 5, pages
41-45, 1976.

[69] Kipfer P., Segal M., and Westermann R Uberflow: A gpu-based particle engine.
In Graphics Hardware, pages 115-122, 2004.

[70] Moore P. and Molloy D. A survey of computer-based deformable models. In
International Machine Vision and Image Processing Conference, pages 55-66,
2007.

[71] Liu Q., Prakash E.C., and Srinivasan M.A. Interactive deformable geometry
maps. In Visual Computing, pages 119-131, 2007.

[72] Courant R, Friedrichs K, and Lewy H. ber die partiellen dierenzengleichungen
der mathematischen physik. volume 100, pages 32-74, 1928.

[73] Mark W. R, Glanville R S., Akeley K, and Kilgard M. J. Cg: A system for
programming graphics hardware in a c-like language. In ACM Transactions on
Graphics, volume 22, pages 896-907, 2003.

[74] Adams RJ. and Hannaford B. A two-port framework for the design of uncondi­
tionally stable haptic interfaces. In Proc. of IEEE/RSJ International Conference
on Intelligent Robots and Systems, 1998.

[75] Sidhu RS., Grober E.D., and Musselman L.J. et al. Assessing competency in
surgery: where to begin? volume 135, page 620, 2004.

[76] Choi S. Towards realistic haptic rendering of surface textures. In PhD. Thesis,
Purdue University, 2003.

[77] Ferguson S., Davison J., and Lewin J. Surface wrapping technology for industrial
cae. World Wide Web electronic publication, 2008.

[78] Floater M. S. and Hormann K Surface parameterization: a tutorial and survey.
In Advances in Multiresolution for Geometric Modelling, pages 157-186. Springer­
Verlag, 2005.

BIBLIOGRAPHY 95

[79] Haker S., Angenent S., Tannenbaum A., Kikinis R., Sapiro G., and Halle M.
Conformal surface parameterization for texture mapping. IEEE Transactions on
Visualization and Computer Graphics, 6(2):181-189, April 2000.

[80] Payandeh S., Dill J., and Cai Z.L. On interacting with physics-based models of
graphical objects. In Robotica, volume 22, pages 223-230, 2004.

[81] Payandeh S., Lomax A. J., Dill J., MacKenzie C.L., and Cao C.L.G. On defining
metrics for assessing laparoscopic surgical skills in a virtual training environment.
In Medicine Meets Virtual Reality, 2002.

[82] Payandeh S. and Azouz N. Finite elements, mass-spring-damper systems and
haptic rendering. In Proceedings of IEEE International Symposium on Compu­
tational Intelligence in Robotics and Automation, pages 224-230, 2001.

[83] Sorensen T. S. and Mosegaard J. Haptic feedback for the gpu-based surgical
simulator. In Medicine meets virtual reality, pages 523-528, 2006.

[84] Eduardo Tejada and Thomas Ertl. Large steps in gpu-based deformable bodies
simulation. pages 703-715, 2005.

[85] Kotamraju V., Payandeh S., and Dill J. Towards a gpu-based simulation frame­
work for deformable surface meshes. In Canadian Conference of Electrical and
Computer Engineering, pages 1349-1352, 2007.

[86] Osler W. The Principles and Practice of Medicine. Bayliss, Toronto,Canada, 4
edition, 1999.

[87] W. S. K. Wong and Baciu G. Gpu-based intrinsic collision detection for de­
formable surfaces. In Computer Animation and Virtual Worlds, volume 16, page
153161, 2005.

[88] Thtte W.T. How to draw a graph. In Proceedings of London Math Soc., volume 13,
page 743768, 1963.

[89] Gu X., Gortler S.J., and Hoppe H. Geometry images. In ACM Transactions on
Graphics, volume 21, pages 355-361, 2002.

[90] C. B. Zilles and J. K. Salisbury. A constraint-based god-object method for haptic
display. pages 146-151, 1995.

