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Abstract

The inverse protein folding (IPF) problem is that of designing an amino acid sequence which

folds into a prescribed conformation/structure. This problem arises in drug design where a

particular structure is necessary to ensure proper protein-protein interactions.

Our goal here is to solve the structure approximating IPF problem in 2D and 3D in

HP models. As for the 2D case, we consider a subclass of linear constructible structures

designed by Gupta et. al 2004. These structures, called wave structures, are rich enough to

approximate (although more coarsely) any given structure. We formally prove that protein

sequence of any wave structure is stable under the HPC model. To prove the stability of

wave structures we developed a computational tool, called 2DHPSolver, which we used to

perform the large case analysis required for the proofs. 2DHPSolver can be used to prove

the stability of any design in 2D square lattice.

For the 3D case we introduce a robust class of protein structures, called tubular struc-

tures for 3D hexagonal prism lattice. These structures are capable of approximating target

3D shapes. Interestingly, the main building block of tubular structures, a tube, consists of

six parallel “alpha helix”-like structures. Similar designs appear in nature as a coiled coil

structural motif in which 2–6 alpha-helices are coiled together. We show that the tubular

structures are native for their proteins and we prove that a basic but infinite class of tubu-

lar structures consisting of a connector and three tubes of arbitrary length are structurally

stable under the HPC model. Despite the tremendous amount of work on protein design for

2D lattices, to the best of our knowledge, this is the first general design of arbitrary long

stable proteins for a 3D lattice.
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Chapter 1

Introduction

1.1 Motivation

A protein is a polymer of tens to thousands of amino acids. There are 20 types of naturally

existing amino acids that chain together via peptide bonds to form polypeptides molecules

commonly know as proteins.

Proteins play a vital role in the activities within cells of living organisms. The protein

functionality covers a broad range including but not limited to catalyzing the biochemical

reactions necessary for life (the enzyme proteins), providing structural or mechanical func-

tions that helps give cells integrity and shape, and providing means of communication within

a cell and between cells (hormone proteins). Proteins can also bind and carry substances.

For instance hemoglobin carries oxygen from the lungs to other parts of body and myoglobin

stores oxygen in muscle tissue until it is used.

It has long been known that protein interactions depend on their native three-dimensional

(3D) fold and understanding the folding processes and determining these folds is a long

standing problem in molecular biology. Naturally occurring proteins fold so as to minimize

total free energy. However, it is not known how a protein can choose the minimum energy

fold amongst all possible folds [42]. Many forces act on the protein which contribute to

changes in free energy including hydrogen bonding, van der Waals interactions, intrinsic

propensities, ion pairing, disulfide bridges and hydrophobic interactions.

The native fold of proteins can be experimentally determined using X-ray crystallo-

graphic and/or nuclear magnetic resonance (NMR) methods. However, such methods are

1
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very costly, highly labor intensive, and limited in many ways [152]. For instance, the ef-

fectiveness of the X-ray crystallographic is severely dependent on the availability of the

appropriate crystals for analysis [28]. Such crystals can be difficult to produce for certain

proteins (for instance, the intrinsic membrane proteins [105]). This has lead the scientists to

attempt to predict the native 3D structures of the proteins using computational methods.

Despite the large amount of effort expended in the prediction of protein structures during

the past 30 years, this problem remains largely unsolved.

1.2 Inverse protein folding

In many applications such as drug design and nanotechnology, we are interested in the

complement problem to protein folding: inverse protein folding (IPF) or protein design.

The IPF problem involves starting with a prescribed target fold and designing an amino acid

sequence whose native fold is the target (positive design). A major challenge in designing

proteins that attain a specific native fold is to avoid proteins that have multiple native folds

(negative design). The inverse and forward protein folding (protein folding prediction) are

highly related, in the sense that any achievement in one will help better understand the

other.

The success of the inverse and forward protein folding methods is highly dependent on

the modeling of the protein folding process and choice of appropriate energy function. Such

models and functions could range from very high resolution molecular dynamics models

in which the Newton’s laws of motion on smaller molecules are numerically solved, to the

very abstract lattice models in which the placement of the amino acids is limited to the

vertices of the underlying lattice model. Although the molecular dynamic models have

contributed much to our understanding of the protein folding process [111], finding the

minimum energy conformation of protein molecules in these models is beyond the computing

power of today’s computers [19]. Thus, exploring the relationships of amino acids sequences

to native structures requires simplified models that average out the effects of the sequence,

and atomic-resolution molecular dynamic simulations. This has led scientists to introduce

simplified models in which the amino acids are represented as very simple components that

can have a limited number of states in a protein conformation. Two major simplified models

are side-chain rotamer (SCR) and hydrophobic-polar (HP) models. The great advantage of

such simplified models is that we can solve the problem exactly, at least for short proteins,
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by enumerating all possibilities. In SCR models only a discrete set of amino acids states

and side-chain orientation relative to the target backbone structure is optimized according

to a scoring function. The side-chain conformations that are considered in SCR models

are the ones that most likely occur in low energy protein folds. These discrete side-chain

conformations are called rotamers.

The HP model, introduced by Dill [41], is based on the assumption that a major con-

tribution to the free energy of the native conformation of a protein is due to interactions

between hydrophobic amino acids. In HP model the 20 amino acids from which proteins are

formed are replaced by two types of monomers: hydrophobic (H or ‘1’) or polar (P or ‘0’)

depending on their affinity to water. The hydrophobic amino acids are non-polar and thus

prefer other neutral molecules and non-polar solvents. When a protein is placed in water the

hydrophobic monomers tend to form clusters to minimize their contact surface with water,

while the majority of polar monomers move to the surface of the protein. The HP model is

often defined with respect to an underlying lattice where proteins are laid out on vertices

of the lattice with each monomer occupying exactly one vertex and neighboring monomers

occupying neighboring vertices. The free energy is minimized when the maximum number

of pairs of hydrophobic monomers that are not consecutive in the protein sequence, are

adjacent in the lattice (such pairs are called HH contacts). Therefore, the “native” folds are

those with the maximum number of such HH contacts.

In natural proteins, sulfide bridges between two cysteine monomers play an important

role in the stability of the protein structure [73]. Based on this, we extend the HP model

by considering a third type of monomer, cysteines (C or ‘2’), and incorporating disulfide

bridges between two cysteines into the energy model. We call this model the hydrophobic-

polar-cysteine (HPC) model. The cysteine monomers in the HPC model are hydrophobic,

but in addition two neighboring cysteines can form a sulfide-sulfide bridge to further reduce

the energy of the fold. We formally prove that adding disulfide bridges to designed protein

sequences indeed helps in stabilizing them.

Despite the simplicity of the HP model, the folding process in the model have behavioral

similarities with the folding process of actual proteins. Although the HP model is the

simplest model for protein folding, computationally it is an NP-hard problem for both the

2D [27] square and the 3D [7] cubic lattices. The hardness of the inverse protein folding

under the standard definition of the HP model is still unknown but it is conjectured to

also be NP-hard. Several heuristic based algorithms have been described that attempt
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to solve IPF problem but none of them guarantee that the designed sequences achieve

their minimum energy when fold into the target conformations (positive design criteria)

and that they have unique minimum energy conformations (negative design criteria). These

heuristic methods can be classified into two categories. The methods in the first category use

observations about the properties of proteins to justify algorithms that design sequences [82,

166]. The second category of heuristic methods are those in which an alternative formulation

of IPF, a heuristic sequence design (HSD), is considered [40, 92, 145, 155, 66, 9]. Two

HSD problems, in the canonical and the grand canonical models, were introduced in [145]

and [155], respectively. The HSD problems look for protein sequence with the smallest

energy when folded into the target conformation. In the canonical model the number of

hydrophobic monomers that can be used in a protein sequence is limited by fixing the

maximum ratio between hydrophobic and hydrophilic amino acids. This condition is needed

because the conformational energy can be minimized simply by using the sequence of all

hydrophobic monomers, but this sequence is unlikely to achieve its lowest energy with the

given target conformation. In the grand canonical model [155], the number of hydrophobic

monomers is limited by adjusting the energy function instead. For instance, a simplified

formulation of the grand canonical model used in [66] assumes that every hydrophobic

contact contributes -2 to the total energy, every solvent accessible site of a hydrophobic

amino acid contributes 1, and all other interactions do not contribute to the total energy.

Since the hydrophobic monomers are penalized for their exposure to solvent, this contact

potential implicitly limits the number of hydrophobic monomers in the sequence. It has been

shown that the protein sequence design problem can be solved in polynomial time in the

grand canonical model for both 2D and 3D square lattices, cf. [66], and in polynomial time

for 2D lattices while the problem is NP-hard for 3D square lattice in the canonical model,

cf. [9]. Note however, that the designed heuristic sequences under these two models are not

guaranteed to satisfy the two criteria (positive and negative design) of the IPF problem.

In [60], the IPF problem was studied from a different perspective. Instead of design-

ing a sequence directly for the target fold and relaxing conditions on the sequence the

authors introduced a design method in 2D square lattice under the HP model that can

approximate any target conformation and showed that approximated structures, called con-

structible structures, are native for designed proteins (positive design). They conjectured

that the assigned sequences are also stable (i.e., have unique native folds) but only proved

it for an infinite class of very basic structures (arbitrary long “I” and “L” shapes), as well
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as computationally tested for over 48,000 structures (including all structures with up to 9

tiles). Design of stable proteins of arbitrary lengths in the HP model was also studied by

[1] (for 2D square lattice) and by [101] (for 2D triangular lattice), motivated by a popular

paper of Brian Hayes [68].

1.3 Our contributions

Contributions in this dissertation are two fold. First we introduce a rich subclass of con-

structible structures that is able to approximate any given shape in the 2D square lattice.

We formally prove that the designed proteins are stable under the HPC model. Our result

partially confirms the conjecture proposed in [60].

(a) (b) (c)

Figure 1.1: An example of (a) a connector (H and P monomers are depicted by black and white
beads, respectively); (b) a tube; (c) a coiled coil structure formed by 6 alpha-helices in protein gp41.
Figure (c) is taken from wikipedia (http://en.wikipedia.org/wiki/Image:Gp41_coiled_coil_
hexamer_1aik_sideview.png) and is used by permission of WillowW.

Our second contribution is the study of the structure approximating inverse protein

folding in a 3D setting. A very important consideration is the choice of the most appropriate

type of 3D lattice. This question was thoroughly studied in [112]. Based on the analysis of

selected protein structures from Protein Data Bank (PDB) [136] the authors found that the

ideal IPF lattice should have uniform edge lengths of 3.8Å, minimum distance between any

two vertices of 3.8Å, mainly 90 and 120 angles and have periodic structure. As an initial step

in IPF in 3D HP model, they chose a simple lattice out of the good candidates, the hexagonal

prism lattice and proposed a basic building tile. Based on this we first introduce an infinite

class of protein structures in hexagonal prism lattice called the tubular structures. The

building blocks of tubular structures are tubes and connectors. An example of a connector



CHAPTER 1. INTRODUCTION 6

and a tube is shown in Figure 1.1(a)-(b), respectively, where hydrophobic monomers are

depicted with black beads, and polar ones with white beads. A tube consists of six parallel

“alpha helix”-like structures and interestingly similar designs appear in nature as a coiled coil

structural motif in which 2–6 alpha-helices are coiled together, cf. Figure 1.1(c). Many coiled

coil type proteins are involved in important biological functions such as the regulation of

gene expression, e.g., transcription factors [165, 109]. Two tubes and a tube and a connector

can be connected by overlapping the bottom loop of one of the tubes and the top loop of

the second tube/connector. Figure 1.2 depicts an example of a tubular structure consists

of three tubes and a connector. We show that each protein of a tubular structure folds into

the corresponding tubular structure, and that the proteins for the tubular structures with

three tubes and a connector, arranged as in Figure 1.2, are structurally stable under the

HPC model. Notice that this class contains an infinite number of protein sequences as the

tubes can be arbitrary large.

C
C

C
C

C
C

T1

T2

T3

Figure 1.2: An example of a tubular structure with 3 tubes attached to the connector.

The tubular structures are sufficiently robust to roughly approximate any given shape.

For a protein for each of our structures, it is guaranteed that the designed structure is

one of the native folds of the protein under HPC model. We conjecture that the proteins

of our tubular structures are structurally stable, i.e., our designed proteins fold uniquely

up to the structures into designed conformations. We are able to prove this formally for

infinite subclasses of the simple structures (consisting of one connector and three tubes, cf.

Figure 1.2). We assume that each of three tubes is sufficiently long. In addition, we assume

that our proteins are closed chains of monomers, a similar assumption as used in [1], i.e.,
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that the beginning and the end of the sequence are adjacent in the lattice.

1.4 Organization

The rest of this dissertation is organized as follows. In chapter 2, we present some basic

background knowledge on the proteins and their structures. In chapter 3, we review some

of the main models and methods for the inverse protein folding problem. In chapter 4, we

introduce our structure approximating design in 2D square lattice and prove the stability

of our designed proteins under the HPC model. We introduce our structure approximating

design in 3D hexagonal prism lattice in chapter 5 and prove the stability of a simple but

infinite subclass of the designed proteins in HPC model. Finally in chapter 6, we state some

interesting open problems.



Chapter 2

Background

In this chapter we present some basic knowledge on proteins and their structures. More

detail can be found in [2, 15, 162, 10, 13, 43, 49, 77].

2.1 From Sequences to Structures

Heredity is a central part of the definition of life. Each species reproduces itself faithfully

by handing down information specifying, in extraordinary detail, the characteristics that

the offspring shall have. Such detailed characteristics are encoded in a linear chemical code,

called DNA, that exists in each cell of a living organism. DNA is a double-stranded polymer

consisting of simple subunits called nucleotide. There are four distinct nucleotides labeled

as A, G, C, and T .

The characteristics and the functions of a living cell are expressed by the proteins and

in fact every activity carried out by living cells uses one or more proteins. Proteins, like

DNA, are polymer chains of simple chemical compounds. The chemical compounds that

make proteins are called amino acids. There are 20 natural amino acids. Therefore, one

can represent the proteins as strings over a 20 letter alphabet.

The cell uses the information encoded in its DNA to synthesize proteins. Protein syn-

thesis is a two step process: in the first step, called transcription, segments of the DNA

sequence are used to guide the synthesis of molecules of RNA called messenger RNA or

mRNA. Unlike DNA, RNA is a single stranded polymer. The building units of RNA are the

same as those of DNA except that the T unit is replaced by a different monomer called U . In

the second step, called translation, the synthesized mRNA molecules are used to guide the

8
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synthesis of molecules of protein. The information in the sequence of an mRNA molecule is

read out in groups of tree nucleotides at a time: each triple nucleotides, referred to as codon,

determines a unique amino acid in the corresponding protein sequence. Since there are 64

possible codons but only 20 amino acids, there are cases in which several codons encode

the same amino acid. The DNA segments that will be eventually translated to proteins are

called genes.

2.2 From Structures to Functions

Protein are the machinery of life, constitute most of a cell’s dry mass and in fact every

activity within a living cell involves one or more proteins. Some proteins act as catalysts

to facilitate chemical reactions inside the cells (enzyme proteins), some carry substances

including oxygen and food to designated parts of living organism, some provide means of

communication between cells (such as hormones) and others provide structural and mechan-

ical functions that gives the cell its shape and integrity. Alisa Z. Machalek, describes the

importance of protein in life as follows [106]:

“If genes are the recipes for life, then proteins are the culinary result the very stuff of

life. Proteins form our bodies and direct its systems. They digest our food, help us fight

infections, control our body chemistry, and in general keep us and every other living organism

running smoothly. But proteins that twist into the wrong shape, have missing parts, or don’t

make it to their job site can cause diseases that range from cystic fibrosis to cancer and

Alzheimer’s.”

When a protein is exposed to its natural environment, it will fold into a unique three di-

mensional conformation known as native fold. The folded conformation is stabilized mainly

by non-covalent interactions between different parts of the protein sequence. These inter-

actions include: hydrogen bonding, van der Waals interactions, intrinsic propensities, ion

pairing, disulfide bridges and hydrophobic interactions. Except for disulfide bridges, all of

these interactions are non-covalent. The protein folds so as to minimize its free energy,

therefore the native fold of a protein is sometimes called the minimum energy conforma-

tion. A protein can be unfolded by treatment with certain solvents. When the denaturing

solvent is removed, the protein often refolds spontaneously into its original conformation.

This indicates that the native fold of a protein is unique and determined by its amino acid

sequence.
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The native conformation of a protein greatly determines its functionality. Most bio-

logical mechanisms at the protein level are based on shape-complementarity. This means

that the proteins present particular concavities and convexities that allow them to bind

to each other and other molecules to carry out the designated tasks including transferring

substances, catalyzing reactions, or forming complex structures to support the shape of the

cells. Therefore, determining the three dimensional native conformation of proteins is a

fundamental step in studying them.

The native fold of a protein can be described in terms of several different levels ranging

from local structures to complex structural interactions with other protein structures. We

overview these levels briefly.

Figure 2.1: The primary structure of a protein. The sidechain groups R’s, are attached to the
backbone of the protein. Figure is taken from wikipedia (http://en.wikipedia.org/wiki/Image:
Peptidformationball.svg) and is used by the permission of YassineMrabet

Primary structure

An amino acid consists of an amino group (-NH2) which is also called N-terminal, an

α-carbon atom, denoted by Cα, in its center, a hydrogen atom (-H), a carboxyl group (-

COOH), and a side-chain group R. The twenty standard amino acids only differ in their

R group. The amino acids in a protein sequence are connected through peptide bonds. A

peptide bond is formed by a chemical reaction in which a water molecule is removed and

the C in the carboxyl group of one amino acid is linked directly to the N atom in the amino

group of the other amino acid. Several amino acids can linearly chain together in this way

to form a polypeptide (protein). The formation of a succession of peptide bonds generates

a main chain or backbone, from which project the various side-chains (cf. Figure 2.1).

The primary structure of a protein describes the linear order of the amino acids contained

in it. All the information needed to form the native spatial structure of a protein sequence
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is encoded in its primary structure.

(a) (b)

Figure 2.2: Secondary structures of proteins: (a) alpha helix (b) beta sheet. Figures (a) and
(b) are taken from wikipedia (http://en.wikipedia.org/wiki/Image:Myoglobin.png and http:

//en.wikipedia.org/wiki/Image:Beta_sheet_bonding_parallel-color.svg) and they are used
by the permissions of National Institutes of Health and Fvasconcellos, respectively.

Secondary structures

Proteins fold up to complex structures due to the bonds formed between the side-chains.

Due to the flexibility of the peptide bonds, the side-chains that are far away can also form

strong bonds to contribute to the native structure of the protein sequence. The bonds that

are formed between nearby side-chains along the primary sequence are called local or short-

range interactions while those which are formed between side-chains that are far away are

called nonlocal or long-range. The substructures of the protein’s overall structure that only

contain short-range interactions are called secondary structures. The secondary structures

constitute the regular features of the protein structures. Two common types of secondary

structures are α-helix and the β-sheet (cf. Figure 2.2) which can be attached together

through various types of loops.
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Figure 2.3: Tertiary structure of phospholipase A2 sPLA2 the bee venom. The alpha helices and
beta sheets are represented by spiral and arrow ribbons, respectively. Figure is taken from wikipedia
(http://en.wikipedia.org/wiki/Image:1poc.png) and is used by the permission of Biophys.

Tertiary structures

Due to the non-local interactions, the secondary structures in a protein can interact with

each other to form a complex spatial structure called the tertiary structure or the native

fold. The tertiary structure is the overall shape of a single protein molecule that is formed

by the spatial relationship of the secondary structures to one another. It describes the

way in which the elements of the protein’s secondary structure are arranged in space (cf.

Figure 2.3).

The protein folding problem is studying the process of folding a protein into its native

tertiary structure.

Quaternary structures

Several protein structures can interact to form a multi-subunit complex called the quaternary

structure. A fairly large number of proteins has the quaternary structure. Hemoglobin, DNA

polymerase, and ion channels are examples of proteins with quaternary structure.

A protein can be divided into several different domains. A domain is defined as a

protein sequence or subsequence that can fold independently into a stable tertiary structure.
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Domains are also units of function. The number of domains in a protein range from a

single domain to as many as several dozen domains. The average length of a domain is

approximately 140 amino acids. Domains are formed by different combinations of secondary

structures and motifs. The number of such combinations is limited and some combinations

are structurally favored among others.

2.3 Protein folding prediction

Knowledge of the native fold of a protein is a prerequisite for the proper understanding of

its functions. In 1958 the tertiary structure of a protein, the myoglobin, was determined

using x-ray crystallographic techniques for the first time and it came as a shock to those

who had hoped for simple, general principles of protein structure analogous to the simple

and regular double helix DNA structure [10]. Since then the structure of many proteins has

been determined using the experimental approaches mostly x-ray crystallography [44] and

the nuclear magnetic resonance (NMR) technique [17]. The Protein Data Bank (PDB) [136]

is a repository for tertiary structural data of proteins. The PDB currently contains the

tertiary structure of 50,000 proteins and is estimated that it will triple to 150,000 structures

by the year 2014 [136].

Unfortunately, the determination rate of protein structures using the experimental tech-

niques is much slower than the rate of accumulation of amino acid sequence data [164]. This

is because the experiments to determine the tertiary structures and functions are much more

difficult and time-consuming than the experiments to determine the primary structures of

the proteins. Over five million protein sequences have been determined [123] so far, while

only the tertiary structure of 50,000 (less than one percent) of them are known experimen-

tally. It has been estimated that there may be as many as 26 billion protein sequences in

the biosphere [156] and with the anticipated rate of the sequence versus structure determi-

nation, the need for alternative methods for determining the tertiary structure is clear. The

class of computational methods for predicting the structure of the proteins from their linear

amino acid sequences is the most widely used alternative to experimental structure determi-

nation methods. Such computational methods are referred to as protein folding prediction

methods. Despite the vast study on the protein folding prediction problem over the past 30

years it still remains the most challenging open problem in proteomics (the large-scale study

of proteins, particularly their structures and functions) and perhaps computational biology.
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In this section we review some of the most successful protein folding prediction methods.

The amino acid sequence of a protein contains all the information needed to determine

its native conformation therefore, it is feasible to predict the tertiary structure of a protein

from its amino acid sequence [6]. Most of the protein prediction approaches use a basic ther-

modynamic hypothesis: proteins tend to fold into a global minimum free energy state [163].

Based on this, researchers predict protein structures in two phases: first, design a scoring

function to simulate the relationships between the amino acids in the native conformation,

and second design efficient algorithms to find conformations that minimize the scoring func-

tion. The scoring function, sometimes referred to as energy function, can be constructed in

two ways: from the physico-chemical principles of protein folding, or alternatively from a

knowledge-based potential function, measuring the probability distribution of the possible

folds of a protein.

The computational protein folding prediction methods can be divided into three cate-

gories: homology modeling, fold recognition (protein threading) and ab initio (new fold)

methods. The first two methods are template-based while the third one predicts the protein

structures without relying on any structural template.

2.3.1 Homology modeling

A set of proteins are called homologous if their genes have evolved from a common ancestral

gene. Two proteins are considered homologous when they have identical amino acids in a

significant number of sequential positions along the polypeptide chains [10]. The homology

modeling methods rely on the fact that the structures and functions of homologous proteins

are more conserved than their amino acid sequences [22, 126]. Homology modeling is widely

used for protein folding prediction [108, 157, 67, 100, 65, 16, 119].

The homology modeling method consists of the following phases [163]:

• Homologue (template) Selection: The first step in a homology-based folding

prediction method is identifying the target’s homologous sequences from the structure

database and determining their sequence similarity. The simplest methods for this

step rely on pairwise sequence alignment of the target sequence and the database

sequences. Several tools have been developed to carry out this step among which

FASTA [103], BLAST [4] and PSI-BLAST [5] are used more often.

• Sequence alignment: In this step a multiple sequence alignment between the target
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sequence and the selected templates from step one is built. The multiple alignment

reveals the conserved regions in the sequences. Choosing an appropriate algorithm

and scoring function are key factors in this step. For pairwise alignment, a dynamic

programming algorithm such as Smith-Waterman [151] and Needleman-Wunsch [122]

can be used. But if multiple templates are available no polynomial-time algorithm is

known [76] therefore heuristic based methods must be used.

• Core determination: In this step the most conserved regions and variable segments

in the sequence alignment is identified. The conserved regions are the cores of the

homologous proteins and they are generally located in the secondary structures; the

variable segments are treated as loops.

• Core modeling: The coordinates of the backbone atoms of the cores determined in

the previous step are predicted by copying from those of the aligned backbone atoms

of one homologous protein. A rotamer library is used to generate the coordinates of

the side-chains for the cores [143, 99]. A rotamer is one of a set of conformers arising

from restricted rotation about one single bond.

• Loop modeling: If a loop in one homologous protein is found as a suitable model for

one loop in the sequence, then its coordinates from the homologous protein is copied

to the target sequence; otherwise, the existing fragment database is searched to find

a best fit fragment for the loop [80, 138, 154].

• Refinement and Evaluation: When the coordinates of the atoms of the target

sequence are generated, the resulting structure is evaluated and refined. A commonly

used methods is to tune the coordinates of some atoms through minimizing certain

energy functions. The quality of the constructed model is also checked using some

tools such as WHATIF [160] and PROCHECK [118, 95]

2.3.2 Fold Recognition (protein threading)

It is quite possible that two proteins with very different primary structures (non-homologous)

have similar tertiary structures. The fold recognition, also called protein threading, is a

template base method suitable for the target sequences that have similar folds as proteins of

known structures but do not have homologies with them [163]. Protein threading predicts

protein structure using the knowledge of the relationship between the structure and the
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sequence. The basic idea behind the threading method is that the target sequence is threaded

(i.e., placed and aligned) through the backbone structures of the proteins in a fold library

and a fitness score is calculated for each sequence-structure alignment. This fitness score is

normally derived form an empirical energy function, based on statistics derived for known

protein structures. After the best-fit template is chosen, the structural model of the sequence

is built based upon the alignment with the selected template. The protein threading method

relies on the belief that the number of different protein folds in nature is limited, mostly as a

result of evolution but also due to constraints imposed by the basic physics and chemistry of

polypeptide chains. The protein threading methods can be broadly divided into two classes:

first, methods that derive a one dimensional profile for each structure in the fold database

and align the target sequence to these profiles and second, methods that consider the overall

three dimensional structure of the protein template.

2.3.3 Ab initio folding

The tertiary structure of a target protein is built from scratch in an ab initio structure pre-

diction method. In other words the structural model of a protein sequence is constructed

from the primary sequence alone, without resorting to any parent structural template. The

ab initio methods can be divided into two classes: one is the class of methods that predict

the structural models by simulating the protein’s folding pathway and the other are meth-

ods that directly predict the most probable structure of a protein by searching the entire

conformation space of the sequence.

If we know the physical environment where the protein folds, then theoretically we

can simulate the folding pathway by implementing the physical laws for atomic interac-

tions [110, 159, 45]. Although there has been progress in the use of full-atom simulations with

explicit and implicit solvent models to predict the folding of small protein sequences [61],

the success rate of such methods are very limited because of two reasons. First, there is

no complete and clear understanding of the underlying mechanisms of protein folding yet.

Second, these approaches involve simulating the interactions of all the atoms in a system of

many thousands of atoms for dozens of microseconds, at a time step of femtoseconds. These

computational requirements are beyond the power of today’s computers [45].

Unlike the simulation based approaches, the methods that search the conformation space

directly have been more successful. The software package, Rosetta [147], is an outstand-

ing example. However, the exhaustive search of the conformation space is still formidable
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because of its huge size. Several techniques have been adopted to cope with this problem

such as simplifying the representation of the proteins (minimalist models) or restraining the

conformation space.

In all search based ab initio methods, some optimization technique must be used to

minimize the energy function to find the most probable conformation. The commonly used

techniques include Monte Carlo sampling, simulated annealing, and genetic algorithms [147,

79, 149]. Even though the ab initio prediction methods have been extensively researched in

the past three decades [64], they are not as successful as the homology modeling and fold

prediction methods due to their very low accuracies.



Chapter 3

Inverse protein folding

3.1 Introduction

The inverse protein folding (IPF) or computational protein design (CPD) arises in applica-

tion such as drug design, nano-technology or other industrial applications such as designing

enzymes. The inverse protein folding is the complement of the protein folding problem.

The input to the IPF problem is a target structure (a protein-like structure) and the output

is a protein sequence that satisfies the following three criteria [40, 166]. First the protein

sequence should fold to the target conformation. This means that the native fold of the

sequence should be the target conformation. This criteria is often called positive design.

Second, the target conformation should be the only native fold of the sequence. This cri-

teria is referred to as negative design. Third, there should be a large gap in the energy of

the native (target) fold of the sequence and the energy of any other fold of the sequence. In

some applications the second criteria is relaxed and sequences with a few native folds are

also considered.

Protein design is important for two reasons [86]. First it gives an insight to the protein

folding process. Although substantial experimental and theoretical progresses have been

made in understanding the basic physical and chemical laws that define a protein structure,

as well as towards unraveling the steps of the folding process itself, solving the protein folding

problem remains the “holy grail” for computational structural biology. An alternative route

that could lead indirectly to this goal is to study the inverted problem (IPF). Second novel

proteins can be synthesized that exhibit novel activities. An example is the chemical addition

of a toxin to antibodies specific for cancer cells so as to enable more efficient, targeted

18
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treatment of tumors [128, 25, 89].

The folding problem and the inverse folding problem are related as the physical laws

that govern folding also stipulate the protein sequence. However, protein design is different

in that the inverse folding problem usually does not provide a unique sequence as an answer.

The key question to be answered is: how many, and which sequences can fold into a given

conformation? This involves a search in sequence space for sequences that make the native

structure both stable and unique.

Historically, proteins have been designed by applying rules observed from natural pro-

teins, or by employing selection and evolution experiments in which a particular function is

used to separate the desired sequences from the pool of largely undesirable sequences. The

first successes in protein design were based on manual inspection and heuristics gleaned

from examining naturally occurring proteins [34, 33]. It was noticed early on that many of

these designs differed from naturally occurring proteins in that they did not contain well-

packed side-chains in their interior [12]. In fact, most of the present experimental approaches

enjoyed only limited success, providing proteins that in most cases fold into compact but

mostly disordered conformations of molten-globule-like species [137]. The limitations in ex-

perimental design seems to be the result of a relatively low synergism between experiment

and theory [144].

Recently, computational methods have been proven to be effective in designing proteins

with enhanced specificity and stability. These methods use algorithms to search combina-

tions of side-chains and identify those that pack together most efficiently within the context

of a given backbone conformation. These algorithms have been successful and have been

used to stabilize proteins, solubilize membrane proteins, redesign protein-protein interac-

tions, create new enzymes, and design novel protein structures [57, 47, 90, 107, 150]. The

computational and experimental methods can be used in combination to produce successful

designs. An important success story based on such synergism of theory and experiment is

given in [31].

Computational design methods has been mostly used to redesign already existing protein

structures. While this is an important problem and novel functional proteins have been

created with this approach [47, 104], in the long run it will be advantageous to create

proteins of novel structures. Designing novel protein structures is referred to as de novo

protein design and is intrinsically more difficult than protein redesign because a priori it is

not known if the target structure is designable.
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Since the emergence of the protein design problem, several models have been introduced

in the literature that focus on specific design aspects of the protein structures such as the

design of hydrophobic cores [134, 69, 36, 63, 32], the design of the surface and inter-facial

residues [32, 130], the design of metal Ion-Binding sites for functional proteins [70, 26] or the

design of secondary and super secondary structures [142, 83]. The design methods special-

ized for subclasses of protein structures such as globular [54, 141, 158, 91] and fibrous [124]

proteins have also been proposed.

Clearly, the overview of all of these models and methods is beyond the limits of this

dissertation. Therefore, we will only review two major models: the SCR and the HP models.

3.2 Side-Chain Rotamer (SCR) model

The protein design problem can be formally stated as follows: Given a target conformation

C, specified by the atomic coordinates of a backbone structure, find an amino acid sequence

S that will fold to that structure. Since, there may be many structures that adopt the

fold, to increase the chances of success, we will try to find one of the most stable sequences

by minimizing the quantity ∆Gfold = Gfolded − Gunfold where Gfolded is the energy of the

folded state of the protein and Gunfolded is the energy of the unfolded state. Any attempt

to solve this problem will face two major challenges. First there are astronomically many

possible sequences and in general these cannot be enumerated exhaustively. Second to

evaluate ∆Gfold for a sequence we need to know the energy in the folded and unfolded

states. Even by knowing the backbone structure and the sequence of amino acids it is not

easy to calculate the energy of the conformation as the side-chain of amino acids can assume

different orientations which affects the energy of the fold. In fact determining the correct

orientation of the side-chains given the coordinates of the target backbone and the sequence

of the protein is a major sub-problem of protein structure prediction.

Therefore, in most computational protein design methods only a discrete set of amino

acid states and side-chain orientations (called rotamers), relative to the target backbone

structure, is optimized according to a scoring function [88]. The rotamers represent the

statistically dominant orientations of amino acid side-chains in naturally occurring pro-

teins [74, 135, 46]. We call this formulation of the problem the Side-Chain Rotamer (SCR)

model.

Choosing one rotamer at each position defines the global conformation of all the atoms
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in the system and implicitly specifies an amino acid sequence. Different conformations are

ranked using an empirical potential function that attempts to quantify the free energy of

the system [132]. Most of the time, for simplicity, the potential function is assumed to

contain only pairwise terms, which may be used to describe van der Waals, electrostatic

and hydrogen bonding interactions, as well as solvent exposure [58]. Therefore, the energy

of a sequence folded into a target structure can be expressed as:

Efolded = Et′ + ΣiE(ir) + ΣiΣj,j<iE(ir, js) (3.1)

where Et′ is the template self energy (i.e., backbone energies or energies of rigid regions of

the protein not subject to rotamer-based modeling), E(ir) is the rotamer/backbone energy

for rotamer r of residue i and E(ir, js) is the rotamer/rotamer energy of rotamers r and s

of residues i and j, respectively. However, by assuming that the energy between rotamers

is pairwise as in equation 3.1, certain non-additive energy contributions cannot be treated

exactly, such as a surface area-based solvation potential [153]. Finding a set of rotamers that

minimizes equation 3.1 is called side-chain positioning (SCP) problem. Pierce and Winfree

in [132] proved that SCP is NP-hard and Chazelle and Kingsford showed that it is even

hard to approximate the SCP problem [21].

The computational protein design methods have been extensively reviewed in the litera-

ture [48, 141, 158, 35, 161, 75, 133, 52, 127, 12]. We will briefly review the major components

of these methods in the following subsections.

3.2.1 Choosing the target conformation

The first step in protein design is defining the target conformation. This might be a naturally

occurring protein fold (in case we need to redesign a natural protein), a novel fold, or a new

protein-protein interaction. In lattice simulations, many different sequences fold into the

same low-energy structure, whereas other possible folds are rarely if ever found to represent

the lowest-energy structures for any sequence [144, 20]. This indicates that most randomly

generated protein structures are not designable [12], therefore it is very important that the

target structure poses many of the defining characteristics of naturally occurring proteins.

Clearly if the target conformation is an existing protein fold this would not be an issue.

However for novel structures much attention must be spent to make sure that it is designable.

If the target conformation is a naturally existing fold, the coordinates of its crystal-

lographic or NMR structure are used. However, in de novo design, we need to create a
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set of coordinates for a novel conformation. This may be done using a rigorous mathe-

matical parametrization of target conformations that mostly contain small units of protein

secondary structure such as, 222-symmetric 4-helix bundles [71, 51], β-sheets [140, 24], β-

hairpins [94], TIM barrels [120, 23], or coiled coils [62]. Alternatively, a backbone structure

may be assembled from libraries of folded structures [148].

3.2.2 Designing sequences for target backbones.

Once the backbone of the target conformation has been selected, the next step involves

inverse design that is finding a sequence that will fold into the target structure. Several

computational methods have been developed for solving this problem (for a review see [75]).

All of these methods share two common components: (a) an energy function for evaluating

the fitness of a particular sequence for a particular structure and (b) an algorithm for

searching for low-energy sequences. The common energy functions and search protocols for

protein design have been reviewed previously [58, 75, 113, 127, 133, 52].

3.2.3 Energy functions

Describing the interactions in a protein accurately is a key element to protein design. Energy

functions for protein design must be fast and accurate, yet not oversensitive to the fixed

backbone approximations and discreteness of the rotamer library [133]. The energy functions

for CPD problem contain several terms that reflect the interactions of amino acid/amino

acid and amino acid/solvent molecules. These interactions include van der Waals forces,

hydrophobic interactions, and electrostatic interactions such as hydrogen bonding and salt

bridges.

In general, protein design energy functions are constructed to favor close packing be-

tween amino acids, satisfy hydrogen-bonding potential, partition hydrophobic amino acids

to the core of a protein and polar amino acids to the surface, and favor low-energy tor-

sion angles [12]. Although accuracy of energy functions is an important requirement, fairly

simple functions have worked well for designing protein cores. The reason is that cores

are the easiest part of the protein to describe energetically if one restricts the composition

to hydrophobic residues. Packing is often evaluated with a Lennard-Jones (LJ) potential.

Lennard-Jones potential has a mild attractive term and a strong repulsive term. The at-

tractive portion of the LJ potential models van der Waals forces and draws atoms near each
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other. The repulsive portion of the potential ensures that the atoms do not become too

close.

Despite the van der Waals energies that are described quite well by molecular mechanics

force fields, electrostatics, solvation, and hydrophobic/polar interactions are hard to model

by molecular mechanics force fields [48]. One reason is that, water itself is an extremely

complicated substance to model and parametrize because of its polarizability, interactions

with polar groups, and entropic contributions due to the hydrophobic effect [133]. The

hydrophobic effect is usually modeled by assuming that the penalty for exposing non-polar

groups to water is dependent on the surface area [50] and the solvation energy is calculated

from the change in solvent accessible surface area, multiplied by an atom-dependent atomic

solvation parameter. These solvation parameters are typically derived from transfer free

energies of amino acids between water and vacuum or some organic solvent.

Hydrogen bonding interactions play an important role in stabilizing secondary struc-

tures and imparting specificity to proteins. Hydrogen bonds are taken into account with

an explicit hydrogen bonding term in some force fields, such as DREIDING or they are

accounted for through the electrostatics and van der Waals energies in other force fields

such as AMBER, OPLS, and CHARMm [133].

Other terms such as secondary structure propensities have also been incorporated in

energy models for sequence design [29, 117, 116].

3.2.4 Searching methods

Although discretizing the side-chain rotation configurations makes the search space discrete

and computationally feasible the sequence/structure space is still large. For a 100-residue

protein in which all 20 amino acids are permitted at every position, with only two rotatable

bonds and five conformations each, there are 500100 sequence/structure solutions [133].

Clearly, exhaustive search of the solutions space is not an option even for moderate size

protein sequences. Therefore, several methods have been developed to selectively search the

sequence/structure space for finding near optimal solutions. The strengths and weaknesses

of various search algorithms is reviewed in [35], and implementations of these algorithms

are evaluated quantitatively in [161].

These methods can be divided into two categories: Stochastic and Deterministic meth-

ods. Stochastic methods such as Monte Carlo (MC) and genetic algorithms (GA) semi-

randomly sample solutions and then move from one possible solution to another in a manner
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that depends on both the nature of the energy landscape and the algorithm-specific rules for

movement. While these algorithms can be applied to the design of long protein sequences

that have virtually an infinite number of possible solutions, there is no guarantee that they

will explore solutions near the global energy minimum.

In contrast, methods that fall into the second category, the deterministic methods, are

intended to be functionally equivalent to an exhaustive search therefore, they ensure that the

global minimum energy configuration (GMEC) is identified when they converge. However,

since truly exhaustive searches are possible only for very small search spaces, deterministic

algorithms prune the search space by applying rejection criteria in order to eliminate the vast

majority of combinatorial possibilities without actually considering them formally. Clearly,

the robustness of these methods depends both on how finely the conformational space is

represented and on the criteria used for rejection but they are mostly slow and are not

suitable for designing long proteins.

3.2.5 Stochastic methods

Stochastic methods that are applied in protein design explore the solution space by altering

side-chain identity, side-chain orientation and backbone structure. The simplest type of

stochastic methods is the Monte Carlo (MC) method. The general strategy of MC algorithms

is to iteratively propose a modification to the current solution and then decide whether or

not the proposed modification should be accepted. The most common way of deciding

whether to accept a proposed modification is to use the Metropolis criterion [114]. The

initial solution is constructed by randomly choosing the rotamers for a sequence. Then,

a rotamer substitution is made at a randomly picked residue in the sequence. Rotamers

of different amino acids are treated equally, so a rotamer substitution can be either the

same amino acid or a new one. A new energy Enew is calculated and if this energy is lower

than the previous energy Eold, the modification is accepted. If the energy is higher, the

modification is accepted with the Boltzman probability

p = e−β(Enew−Eold), β =
1

kT
(3.2)

where k is Boltzman’s constant. The role of the temperature T is to avoid being trapped

in multiple local minima in the energy landscape by allowing the trajectory to surmount

energy barriers. To strengthen this effect, an initial temperature is selected and annealed.

The temperature is then cyclically raised and lowered over the course of a single run between
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a designated high and low temperature. The MC methods have been used extensively in

protein design because of their simplicity and satisfactory performance on difficult energy

landscapes [72, 69, 30, 55, 91].

GA methods are similar to MC methods in the sense that they also propose modifica-

tions to the intermediate solutions and mostly accept those which result in better solutions.

The major distinction is that instead of modifying one intermediate solution in each step,

a population of solutions is evolved throughout the genetic operators, such as recombina-

tion, that create new solutions from existing ones. GA methods are reported to be efficient

due to the implicit parallelism contained within protein design problems; different segments

of the structure are optimized in parallel and selective recombination between models will

sometimes bring two of the optimized segments together into the same model [35]. GA

methods have been applied to a wide range of problems, including protein structure pre-

diction [129] and protein design [78, 36, 98]. The advantages of GA methods are that the

population dynamics can handle local minima problem more efficiently by making moves

in solutions space that are larger than the moves typically made by MC methods. In ad-

dition, beneficial mutations can be combined onto a single solution, increasing the number

of paths that circumvent local minima. As a disadvantage, GA methods do not perform

well on highly coupled systems where crossover disruption is problematic, as is expected

for side-chain systems. Furthermore, residues that are close in sequence are not necessarily

close structurally, making it difficult for the algorithm to find clean crossover points [161].

Both the MC and GA are relatively straightforward to be incorporated in protein design

algorithms however, they require an intensive optimization of the parameters to control the

convergence properties of the algorithm, with respect to the system being studied.

Other stochastic methods have been developed to be used in protein design among

which FASTER [39, 3] is the most important. While the deterministic methods are overly

cautious in the elimination of rotamers and other stochastic methods may be too crude for

the combinatorial nature of the problem, FASTER is designed to perform in the middle

spectrum.

3.2.6 Deterministic methods

The most commonly used pruning idea currently used in the design of protein sequences

is based on the application of the dead end elimination (DEE) theorem [37]. In simple

terms, the DEE theorem allows individual side-chain rotamers to be strictly designated
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as being incompatible with the global energy minimum. DEE is fundamentally based on

the following physical concept. Consider two rotamers, ir and it, at residue i and the set

of all other rotamer configurations S at all residues excluding i of which rotamer js is a

member. If the pairwise energy contributed between ir and js is higher than the pairwise

energy between it and js for s ∈ S for all S, then ir cannot exist in the GMEC and can be

eliminated. This notion is expressed mathematically by the inequality:

∀s ∈ S E(ir) + Σj 6=iE(ir, js) > E(it) + Σj 6=iE(it, js) (3.3)

If the above condition holds, the rotamer r at residue i can be ignored because it cannot be

part of the GMEC. The inequality 3.3 is not computationally tractable because, to make

an elimination, it is required that the entire sequence/rotamer space be enumerated. To

simplify the problem we can reformulate it as follows:

E(ir) + Σj 6=i min
s

E(ir, js) > E(it) + Σj 6=i max
s

E(it, js)∀{S} (3.4)

Using an analogous argument, equation 3.4 can be extended to the elimination of pairs of

rotamers inconsistent with the GMEC [161] as follows.

ǫ(ir, js) + Σk 6=i,j min
t

ǫ(ir, js, kt) > ǫ(iu, jv) + Σk 6=i,j max
t

ǫ(iu, jv , kt) (3.5)

where ǫ is the combined energies for rotamer pairs:

ǫ(ir, js) = E(ir) + E(js) + E(ir, js) (3.6)

and

ǫ(ir, js, kt) = E(ir, kt) + E(js, kt) (3.7)

The singles and doubles DEE criteria in their original form may fail to discover special

conditions that lead to the determination of more dead ending rotamers. For instance, if

the energy contribution of rotamer it is always lower than ir without the maximum of it

being below the minimum of ir the criteria imposed by inequality 3.4 cannot capture the

dead ending of rotamer r at residue i. To address this problem, Goldstein [56] presented a

modification of the criteria as follows:

E(ir) − E(it) + Σj 6=i min
s

{E(ir, js) − E(it, js)} > 0 (3.8)

The calculation time of the double eliminations is significantly more than the single

eliminations. To accelerate the process, efficient methods have been developed to predict



CHAPTER 3. INVERSE PROTEIN FOLDING 27

the doubles calculations that will be the most productive [59]. These modifications, referred

to as fast doubles, significantly improved the speed and effectiveness of DEE.

Several additional modifications collectively enhance DEE further. For instance in [38,

56] rotamers from multiple residues are combined into so-called super-rotamers to achieve

further eliminations. This way multiple rotamers can be eliminated in a single step. In

addition, it was shown that “splitting” the conformational space between rotamers improves

the efficiency of DEE [131].

The DEE based methods find the GMEC if they converge, however in most applications it

is very hard, if not impossible, to devise efficient DEE criteria that eliminate all non optimal

sequence/rotamer conformations. As a post-processing step the conformations that survive

DEE will be energy-minimized, in such cases. When energy minimization is performed

after pruning with DEE, the combined protein design process becomes heuristic, and is no

longer provably accurate. In [53] the dead-end criterion was extended to apply to continuous

deformation of rotamers through redefining each rotamer as representing a continuous voxel

in a local conformational space.

Self-consistent mean field (SCMF) method is another deterministic algorithm used to

search the sequence/rotamer conformation space in protein design problem. SCMF uses a

mean-field description of the rotamer interactions to alter the energy landscape which in

turn is used to determine the probabilities of each rotamer in each position. The method

iteratively develops a probabilistic description of the relative population of each possible

rotamer at each position. The probability of a given structure is defined as a function of the

probabilities of its individual rotamer components. The most probable structure is returned

as the GMEC when the updating cycle is terminated. Although SCMF uses a probabilistic

description to determine the optimal configuration, it is in fact a deterministic method as

it always converges to the same solution given a set of run parameters.

The mean-field energy for rotamer ir at residue i is defined as follows [85]:

Emf (ir) = E(ir) + ΣN
j 6=iΣ

Kj

s=1E(ir, js)V (js) (3.9)

where Kj is the total number of rotamers at residue j, V (js) is the conformational probability

vector which is normalized to unity. The first term in equation 3.9 is the contribution due

to the interaction between the rotamer and the backbone, and the second term describes all

the inter-rotamer pairwise interactions weighted by the probability of that rotamer existing

in the GMEC. The conformational probability vector can be independently calculated by
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Gibb’s ensemble as follows [161]:

V (js) =
1

qj

eβEmf (js) (3.10)

where qi is the partition function:

qj = Σ
Kj

s=1e
βEmf (js) (3.11)

This equation smooths the landscape and avoid the problem of multiple local minima,

making it relatively simple to locate the minimum of the mean-field energy landscape. The

mean-field energy is minimized using an annealing method explained in [99]. The initial

temperature for the annealing process is set to a high value (ofter more than 20, 000K)

and the probability vector V (js) is set to 1/Kj , thereby assigning equal probability to each

rotamer. When the initialization is done, the mean-field potential Emf (ir) is calculated

from equation 3.9 for each residue and rotamer. These energies are used to calculate the

probabilities using Gibb’s equations. The algorithm iterates between equations 3.9 and 3.10

until the energy converges and self-consistency is achieved. A convergence criterion of 0.0001

for V (js) is used in [85] to define self-consistency. The temperature is then lowered in linear

increments of 100K and the procedure repeated. When the final temperature is reached

(100K), the conformational vector represents the probability of each rotamer at a given

residue position. The best solution is determined as the collection of rotamers that have

the highest probability at each position [161].

Unfortunately, there is no guarantee that the minimum of the mean-field landscape cor-

responds with the true GMEC. However, the advantage of SCMF is that the computational

time scales linearly with the number of residues, making it possible to obtain solutions for

proteins unattainable by DEE based methods.

3.3 Inverse Protein Folding in HP models.

A critical step in the folding pathway of globular proteins is the formation of a tightly

packed hydrophobic core. This core is formed due to hydrophobic interactions that draw

the hydrophobic (water repelling) amino acids together and drive the hydrophilic (water

attracting ) amino acids to the surface of the protein. It is believed that hydrophobic

interactions are the major driving forces in determining the native tertiary conformation

of proteins. Based on this, Dill [41] introduced the simplified model of hydrophobic-polar
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(HP) for protein prediction and design problems. Two major simplifying assumptions are

made in the HP model: first the 20 amino acids from which proteins are made are replaced

by two types of monomers: hydrophobic (H, “1”) and polar (P, “0”). Second the protein

sequence is laid out on a spatial lattice with each monomer occupying exactly one vertex

of the lattice and neighboring monomers occupy neighboring vertices such that the chain of

monomers makes a self avoiding walk in the lattice.

Although the HP models are very simplistic they are known to adequately describe

proteins at the coarse-grained level with the advantage that the native states can be deter-

mined exactly [97, 18, 42, 125, 11, 14]. Furthermore, they provide a controlled setting for

theoretical analysis and rigorous testing of concepts and ideas for future use in studies on

real proteins [115, 167]. The importance of the minimalist models and their applications in

forward and inverse protein problems has been extensively reviewed in [87].

In the standard HP model [96, 97, 18] the energy of a sequence S in a lattice conformation

G is simply given by the negative of the number of contacts between adjacent pairs of H

monomers which are not consecutive in the chain. This contact energy function can be

formally defined as follows: let a target conformation be described by a graph G = (V,E)

with vertices V , that correspond to amino acids, and edges E ⊂ V × V , that define a self-

avoiding walk on a 2D or 3D lattice. We construct a contact graph Ḡ = (V, Ē) induced by

G, where an edge (u, v) is in Ē if u, v ∈ V , (u, v) /∈ E and (u, v) is an edge in the lattice.

We call Ē the contacts set. For a sequence S, let E(G,S) be the conformational energy of

S when the vertices of G are labeled with the sequence of amino acids defined by S. Then

E(G,S) = −|Ê| where Ê = {(u, v) ∈ Ē| u and v are labeled with H }. The edges in Ê are

called HH contacts.

Given an input protein sequence S the goal of protein prediction problem is to find a

conformation G∗ that produces the minimum value for E(G,S) in the HP model settings.

This problem is known to be NP-hard in 2D square [27] and 3D cubic lattices [7].

The input to the inverse protein problem is a target conformation G and the goal is to

find a sequence S∗ that first has the minimum energy in G (positive design) and second,

the sequence does not fold to (too many) other conformations (negative design). The IPF

can be defined more precisely as follows [66]. Let SG be the set of sequences that achieve

their lowest energy in the target conformation G. Formally,

SG = {S ∈ {H,P}n | E(G,S) ≤ E(G′, S),∀G′ ∈ Gn} (3.12)
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where n = |V | and Gn be the set of all target conformations for which the length of the chain

is n. We say that a sequence S folds to G if S ∈ SG. The degeneracy of a sequence refers to

the number of conformations for which the sequence assumes its lowest energy. Formally,

d(S) = |{G ∈ Gn | E(G,S) ≤ E(G′, S),∀G′ ∈ Gn}| (3.13)

The sequences with degeneracy of one are called stable proteins. Let δG = minS∈SG
d(S);

this is the minimal degeneracy possible for a sequence S that folds to G. Now given a

conformation G = (V,E) embedded in a 2D or 3D lattice, the goal in IPF is to find a

protein sequence S ∈ {H,P}n, n = |V |, such that S ∈ SG and d(S) = δG.

Note that although proteins are generally assumed to have a unique lowest energy con-

formation (be stable), this formulation of IPF explicitly recognizes that for a given target

conformation it may not be possible to find a stable sequence that folds to the target con-

formation. For instance the degeneracy of any sequence that folds into a conformation with

empty set of contacts is 2n where n is the size of the conformation. For conformations with

non-stable solutions, the most reasonable goal is to find a sequence with minimal degeneracy.

Unlike the protein prediction problem, the complexity of the IPF as defined above is

not known but it is conjectured that the problem is NP-hard [8]. Several heuristic based

algorithms have been introduced for solving the IPF problem in HP model [40, 93, 155, 82,

146, 166]. Although these methods do not guarantee to produce the exact solution, they

attempt to capture the positive and negative design aspects of the IPF.

The heuristic methods can be divided into two categories: first, those that use observa-

tions about the properties of proteins to justify algorithms that design sequences [82, 166].

The second category of heuristic methods are those in which an alternative formulation of

IPF is proposed [40, 93, 146, 155]. These alternative formulations attempt to capture the

positive and negative design issues by defining a heuristic sequence design (HSD) problem.

An implicit assumption of this approach is that a sequence that satisfies the HSD problem

is likely to solve IPF. Ideally the proposed HSD problems should be solvable efficiently,

however as we will see later this is not always the case.

We will review two major HSD problems the canonical [146] and the grand canoni-

cal [155] models.
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3.3.1 Canonical model

The canonical model was introduced by Shahknovich and Gutin in [146]. They observe that

for any target conformation the conformational energy can be minimized simply by choosing

hydrophobic monomers for all positions. However, this sequence is unlikely to achieve its

lowest energy with the target conformation. Therefore, to deal with this they limit the

number of hydrophobic monomers that can be used in a protein sequence. Hart formulated

this HSD problem in [66] as follows: Given a target conformation G(V,E) in a 2D or 3D

lattice L, the protein design in canonical model is the problem of minimizing E(G,S) subject

to the constraint that no more than [λn] hydrophobic monomers be used to design S, where

λ is a real value less than 1. Shahknovich and Gutin used [146] a stochastic Monte Carlo

based method to solve the protein design in 3D cubic lattice under the canonical model.

The complexity of IPF under canonical model was investigated in [66] and it was shown

that the problem is NP-hard in both 2D and 3D cubic lattices. However, Berman and et

al. [8] showed that the reduction that was used in [66] to prove the NP-completeness of

the problem on 2D lattice was incorrect. They devise an efficient algorithm for solving the

problem on 2D square lattice. They also showed that the canonical IPF is indeed NP-hard

in 3D cubic lattice however, a polynomial time approximation scheme was designed for the

problem.

The canonical IPF problem is in fact a special case of the Densest Subgraph (DS) problem

defined as follows. Given a graph G = (V,E) and a positive integer K as inputs, find a

V ′ ⊆ V with |V ′| ≤ K that maximizes |{(u, v) ∈ E : u, v ∈ V ′}|. Clearly, the canonical IPF

problem can be reduced to DS problem by setting K = [λn] and G to the contact graph of

the target conformation. The DS problem in its general form is NP-hard however, it can be

solved in O(K|V (G)|) when the input graph is the contact graph of a target conformation

in 2D square lattice [8].

The canonical IPF in 3D cubic lattice was shown to be NP-complete by a reduction from

the maximum clique problem to the DS problem on general graphs [8]. The challenging part

is to make sure that the reduction works for the special topology of the input contact graph

and that such a contact graph can in fact be realized by a 3D sequence.
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3.3.2 Grand Canonical model

In the grand canonical (GC) model, introduced in [155], the number of hydrophobic monomers

is limited by adjusting the energy function instead. For instance, in [66] a lattice based for-

mulation of the GC model was considered in which every hydrophobic contact contributes

−2 to the total energy, every solvent accessible site of a hydrophobic amino acid contributes

1, and all other interactions do not contribute to the total energy. Since the hydrophobic

monomers are penalized for their exposure to solvent, this contact potential implicitly limits

the number of hydrophobic monomers in the sequence. Hart [66] gave an optimal O(n2)

algorithm for solving the IPF in GC model based on this formulation.

In the generalized formulation of the GC model the energy function is defined by the

following equation [84]:

E(G,S) = αΣi,j∈SH ,i<j−2g(dij) + βΣi∈SH
si (3.14)

where SH denotes the set of positions in S that contain H monomers , α < 0 and β > 0 are

scaling parameters, si is the area of the solvent-accessible contact surface for residue i, dij

is the distance between the residues i and j (in Å) and

g =

{

1/[1 + exp(dij − 6.5)] when dij ≤ 6.5

0 when dij > 6.5
(3.15)

is a sigmoidal function.

The scaling parameters α and β have default values −2 and 1
3 , respectively. Notice that

the conformations in this formulation are not limited to the vertices of a lattice. Kleinberg

in [84] gave an optimal solution for this problem that runs in O(n2 log n). Furthermore, he

investigated an extension to the GC model by allowing fractional hydrophobicity for the

amino acids with the hope that it provides an interesting contrast to the discrete HP model.

In this definition each residue at position i is allowed to specify a hydrophobicity value zi,

where zi is an arbitrary real number in the interval [0, 1]. Thus, a protein sequence in this

model would be a sequence S of n real numbers, each between 0 and 1. The penalty for

exposing residue i to solvent could be scaled by the hydrophobicity zi, and the reward for

a pairwise hydrophobic contact between i and j could be scaled by a product of the form

zizj . Taking these into account he redefined the energy function as follows:

E′(G,S) = αΣi<j−2zizjg(dij) + βΣi∈SH
si (3.16)
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Note the standard GC model is precisely the case in which each zi is required to be

either 0 or 1. Surprisingly, it turned out that this extension will not add any contrast to

the discrete HP model as it was shown that for any target structure, with associated fitness

function E′(G,S), there exists an optimal sequence S in which each zi takes the value 0 or

1.

When this extension failed, Kleinberg [84] considered a different extension in which a

finite alphabet of amino acids {a0, a1, . . . , ak} is considered, where a0 is designated as the

most polar residue type and ak the most hydrophobic residue type. The energy function in

this model is define as:

E′′(G,S) = αΣi<j−2ǫtitjg(dij) + βΣi∈SH
δtisi (3.17)

where ti is the residue at position i, ǫtitj is the contact parameter that indicates the reward

for having a contact between residues of type ti and tj and δti is the solvation parameter that

indicates the penalty for exposing residue of type ti to solvent. The IPF problem is proved to

be NP-hard for general set of parameters under this formulation however, Kleinberg showed

that it is possible to design optimal sequences efficiently with respect to a large class of

parameter sets [84].

Note that the definition of canonical and grand canonical model do not grantee either

positive or negative design criteria.



Chapter 4

Structure approximating IPF in 2D

square lattice

4.1 Introduction

Although the canonical and grand canonical models are defined to capture the positive

and negative aspects of protein design, none of them actually guarantee that the designed

sequences satisfy the negative and positive criteria. In Gupta et al. [60], the IPF problem

was studied from a different perspective. Instead of designing a sequence directly for the

target fold and relaxing conditions on the sequence, they introduced a design method in

2D square lattice under the HP model that can approximate any target conformation and

showed that approximated structures, called constructible structures, are native for designed

proteins (positive design). However the main challenge that is to prove the stability of the

designed proteins (negative design) remained largely unsolved. They conjectured that the

constructible structures are stable and proved it for two very simple but infinite subclasses

of constructible structures, namely for L0 (“I”-shape) and L1 (“L”-shape) structures (cf.

Figure 4.4).

Our goal is to solve the conjecture for a subclass of constructible structures that is rich

enough to approximate (although more coarsely) any given shape. The major difficulty of

this task is the analysis of a large number of cases that arises in the proof process. As

an evidence the stability proof of L0 and L1 structures presented in [60] requires 2 and 6

pages of case analysis, respectively, although they are very simple subclasses of constructible

34
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structures. We attempt to overcome this problem first by incorporating additional effective

forces in the folding process into the HP model and second by developing a program (2DHP-

Solver) for semi-automatic analysis of the cases that arise in the proof process. Along these

lines, we extend the HP model by adding a third type of monomers, the cysteines, in the

designed protein sequences and incorporating disulfide bridges between cysteine monomers

in the energy function. We call this model the Hydrophobic-Polar-Cysteine (HPC) model.

In the following sections we show that these two strategies are enough to prove the

stability of a rich subclass of constructible structures namely the wave structures. As a

first step we introduce a rich subclass of constructible structures called snake structures

and prove that the proteins of snake structures are stable under the strong HPC model, an

artificial version of the HPC model. We then prove the stability of the wave structures a

subclass of snake structures under the proper HPC model.

4.2 Constructible structures

The constructible structures are formed by a sequence of tiles. There are two types of

tiles: a starting tile in the shape of “+”, and a regular tile in the shape of “⊢”, depicted in

Figure 4.1(a). Both tiles have three ligands depicted with black lines, two of which are side

ligands marked with “S” and one forward ligand marked with “F”. In addition, the regular

tile has one receptor, depicted with a gray line.

(a) (b)

Figure 4.1: (a) The starting tile (left) and the regular tile (right) for constructible structures (b) An
example of constructible structure: a tree built from basic tiles.

A constructible structure is a partial tiling of the 2D square lattice L obtained by the
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following procedure:

1. Place the starting tile into the square lattice.

2. Place a regular tile into the square lattice so that its receptor is attached to a ligand

of a tile already in the square lattice and it does not overlap with any other tile.

3. Continue with step 2., or end the procedure.

An example of a constructible structure is shown in Figure 4.1(b). A constructible

structure is called linear if it is constructed such that every regular tile is attached to the

ligand of the last placed tile. Therefore a linear structure can be represented as as sequence

of tiles < t1, t2, ..., tn >, where ti is attached to two tiles ti−1 and ti+1 for i ∈ [2, n− 1] while

t1 and tn are attached to the tiles t2 and tn−1, respectively.

Figure 4.2 depicts two linear constructible structures. In a linear constructible structure

a tile ti for i ∈ [1, n − 1] is called a bending tile if it is attached to ti+1 thorough one of

its side ligands. We can classify the linear structures by the number of bending tiles they

contain such that Li represents the class of linear structures with exactly i bending tiles.

(a) (b)

Figure 4.2: Two linear constructible structures.

After a constructible structure is formed to cover a target shape, a protein sequence is

assigned to it by filling the constructing tiles with appropriate HP subsequences as follows.

To each regular tile we assign an HP subsequence containing 4 hydrophobics surrounded

by 6 polar monomers and to a starting tile we assign a subsequence with 4 hydrophobics

surrounded by 8 polar monomers (cf. Figure 4.3). The resulting protein sequence has a

native fold that exactly fills the corresponding constructible structure.
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(a) (b)

Figure 4.3: (a) Assigning sequences to tiles. (b) An example of constructible structure with assigned
protein sequence.

The proteins of constructible structures have a special property that makes it much

easier to prove their stability. Every hydrophobic monomer in a protein of a constructible

structure has two HH contacts which is the maximum number of contacts a hydrophobic

monomer can make in any fold of the protein. Therefore, the constructible structures has

the minimum possible energy with respect to the number of hydrophobic monomers. Such

conformations are called saturated conformations. Clearly, the saturated conformations are

native (positive design) and any native conformation must be saturated.

Gupta et al. [60] conjectured that the constructible structures are stable. The proof

of the stability of any constructible structure is extremely hard. Thus they only proved

that the proteins of two very simple subclasses of linear structures, namely L0 and L1

structures (cf. Figure 4.4) are stable. The stability of over 48,000 structures (including all

structures with up to 9 tiles) was computationally tested as well. The stability proof of

L0 and L1 structures is based on the induction on the rectangular boundaries that enclose

all the hydrophobic amino acids of the saturated conformations of an L0 or L1 structure.

Furthermore, they conjectured that it might be easier to prove the stability of the linear

constructible structures.

(a) (b)

Figure 4.4: (a) An example of “I”-shaped constructible structure. (b) An example of “L”-shaped
constructible structure.
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Design of stable proteins of arbitrary lengths in the HP model was also studied by

Aichholzer et al. [1] (for 2D square lattice) and by Li et al. [101] (for 2D triangular lattice),

motivated by a popular paper of Brian Hayes [68].

4.3 Hydrophobic-polar-cysteine (HPC) model

Cysteine is a hydrophobic amino acid [121] which contains a thiol group that can bind

with the thiol group of another cysteine and form a disulfide bond or bridge. Disulfide

bridges are the other significant forces in the folding process of the proteins which play

an important role in the stability of the protein structure [73, 81]. We extended the HP

model by adding a third type of monomers, cysteines (C or ‘2’), to the designed protein

sequences and incorporating disulfide bridges between two cysteines into the energy model.

We call this model the hydrophobic-polar-cysteine (HPC) model. We represent a protein

chain in HPC model as a sequence p = p1p2 . . . p|p| in {0, 1, 2}∗, where “0” represents a polar

monomer, “1” a hydrophobic non-cysteine monomer and “2” a cysteine monomer.

In the HP model only hydrophobic interactions between two adjacent hydrophobic

monomers which are not consecutive in the protein sequence (hydrophobic contacts) are

considered in the energy model, with each contact contributing −1 to the total energy. In

the HPC model cysteines act as hydrophobic monomers and contribute in the hydrophobic

contacts. In addition, two adjacent non-consecutive cysteines can form a disulfide bridge

contributing with another −1 to the total energy. However, each cysteine can be involved

in at most one bridge. More formally, any two adjacent non-consecutive cysteines form a

potential disulfide bridge and the disulfide-bridge energy is equal to −1 times the number

of pairs in the maximum matching in the graph of potential disulfide bridges. The total

energy of the fold is calculated as −1 times the number of contacts plus −1 times the num-

ber of bridges. For example, the energy of the fold in Figure 4.5(b) is −5 − 1 = −6. Our

results show that adding cysteine in the protein sequences can indeed help in stabilizing the

designed structures (see Chapter 5).

4.4 Snake structures

In this section we introduce a rich subclass of linear constructible structures called the snake

structures. The snake structures are linear constructible structures in which every odd tile
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is a bending tile. The hydrophobic monomers of the bending tiles and the terminal tiles are

set to be cysteines, and all other hydrophobic monomers are non-cysteines, cf. Figure 4.5(a).

(a) (b)

Figure 4.5: (a) An example of a snake structure. The bending tiles use cysteines (black squares
marked with C). (b) An example of energy calculation of a fold in the HPC model. There are 5
contacts between hydrophobic monomers, thus the contact energy is −5. There are three potential
sulfide bridges sharing a common vertex, hence only one can be formed. Thus the sulfide bridge
energy is −1 and the total energy is −5 − 1 = −6. The energy of this fold under the strong HPC
model is −7 as it has one non-cysteine bridge.

Note that the snake structures can still approximate any given shape, although more

coarsely than the linear structures. The idea of approximating a given shape with a lin-

ear structure is to draw a non-intersecting curve consisting of horizontal and vertical line

segments. Each line segment is a linear chain of basic tiles depicted in Figure 4.1(a). At

first glance, the snake structures seem more restricted than linear structures, as the line

segments they use are very short and have the same size (3 tiles long). However, one can

simulate arbitrary long line segments with snake structures forming a zig-zag pattern, cf.

Figure 4.6.

4.4.1 The strong HPC model

We conjecture that the proteins of snake structures are stable in the HPC model, and

furthermore it can be proved with techniques that we will present in the following sections.

Figure 4.6: Simulation of a straight line segment with a snake structure.
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As an evidence to the correctness of this conjecture, we present the proof that the snake

proteins are stable in an artificial variant of the HPC model called strong HPC model. In

this model, the energy function consists of three parts (first two are the same as in the

HPC model): (i) the contact energy, (ii) the SS bridge energy and (iii) non-cysteine bridge

energy. The last part is equal to −1 times the number of pairs in the maximum matching

of the graph of potential non-cysteine bridges. There is a potential non-cysteine bridge

between any two adjacent ordinary hydrophobic monomers. Thus, the fold in Figure 4.5(b)

has energy −5−1−1 = −7 in the strong HPC model. This energy model can be interpreted

as follows: we assume that we have two types of cysteine-like hydrophobic monomers each

forming bridges, but no bridges are possible between cysteines and hydrophobic non-cysteine

monomers.

In the snake structures, approximately 40% of all monomers are hydrophobic and half

of those are cysteines. Thus approximately 20% of all monomers are cysteines. Although,

most of the naturally occurring proteins have much smaller frequency of cysteines, there are

some with the same or even higher ratios: 1EZG (antifreeze protein from the beetle [102])

with 19.5% ratio of cysteines and the protein isolated from the chorion of the domesticated

silkmoth [139] with 30% ratio.

4.5 Wave structures

Despite the fact that the snake structures are more restricted, the proof of their stability

under the strong HPC model still required the analysis of a huge number of cases and this

number rapidly increases in the proper HPC model. Therefore, we consider a subclass of the

snake structures, called the wave structures and formally prove that they are stable under

the proper HPC model.

The wave structures are instances of the snake structures that do not contain an occur-

rence of the four forbidden motifs in Figure 4.7. The wave structures can be constructed

using a set of four super-tiles and their flipped versions (cf. Figure 4.8). Each super-tile has

at most one position called ”receptor”, which connects to the next super-tile and at most

two positions called ”ligands”, which can connect to the previous super-tile. The starting

super-tile has one receptor and consists of two basic tiles (Figure 4.8(a)), the terminating

super-tile has one ligand and consists of 5 basic tiles (Figure 4.8(b)), the bending super-tile

has one ligand and one receptor and consists of two tiles (Figure 4.8(c)), and finally the
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terminal core

Figure 4.7: Forbidden motifs in wave structures.

(a) (b) (c)

U

D

U

D

(d)

Figure 4.8: Super-tiles used to construct wave structures: (a) starting super-tile; (b) non-flipped
and flipped versions of terminating super-tile; (c) bending super-tile; and (d) flipped and non-flipped
versions of regular tile. The receptors are depicted with white ovals and ligands with black ovals.
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regular super-tile has two ligands (”U” and ”D”) and one receptor and consists of 16 basic

tiles (Figure 4.8(d)). The receptor of one super-tile can connect to the ligand of another one

however, a regular super-tile must only connect through one of its ligands. A wave structure

is a partial tiling of the 2D square lattice obtained by the following procedure.

1. Place the starting super-tile into the square lattice and place a regular super-tile into

the square lattice so that its ”U” ligand is attached to the receptor of the starting

gadget.

2. Let the last placed super-tile be a (flipped) regular super-tile R; either place a (flipped)

regular super-tile so that its ”U” ligand is attached to the receptor of R and continue

with step 4 or place a (flipped) bending super-tile such that its ligand is attached to

receptor of R and continue with step 3.

3. Let the last placed super-tile be a bending super-tile B. If B is a flipped tile at-

tach a new regular super-tile otherwise attach a flipped regular super-tile to B. The

new super-tile can be attached either with ”U” or ”D” ligand depending on intended

direction of the bend.

4. Continue with step 2 or end the structure by attaching a (flipped) terminating super-

tile to the last placed (flipped) regular super-tile.

In the above procedure the super-tiles are placed into the square lattice such that they

do not overlap. An example of a wave structure is depicted in Figure 4.9. As snake struc-

tures, wave structures can approximate (although more coarsely) any given shape using line

segments depicted in Figure 4.10.

4.6 Proof techniques

In this section we explain the concepts and techniques we use to prove the stability of

snake and wave proteins. We also introduce 2DHPSolver, a semi-automated proving tool

developed to analyze the huge number of cases required for the proofs.
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Figure 4.9: An example of a wave structure. It consists of 8 super-tiles. The borders between
super-tiles are marked by the change of underlying color of the core tiles.

Figure 4.10: Simulation of a straight line segment with a wave structure.
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4.6.1 Saturated folds in (strong) HPC model

In saturated folds under the (strong) HPC model all parts of energy function produce

minimum possible values. This means: (i) every hydrophobic monomer (cysteine or non-

cysteine) has two contacts with other monomers; (ii) every cysteine is involved in disulfide

bridge (iii) in addition, in strong HPC model every non-cysteine hydrophobic monomer is

involved in a non-cysteine bridge. Clearly, a saturated fold of a protein must be native, and

furthermore, if there is a saturated fold of a protein, then all native folds of this protein

must be saturated. Notice that the snake and wave structures are saturated. This property

greatly simplifies the stability proof of the snake and wave structures. Before we present

the proof we introduce some notations and definitions in the following paragraph that we

will use in the proof.

Let F be a fold of a snake or wave protein p in 2D square lattice L. Define a path in

F as a sequence of vertices such that no vertex appears twice and any pair of consecutive

vertices in the path are connected by peptide bonds. A cycle is a path whose start and

end vertices are connected by a peptide bond. Note that F has only one cycle which is the

entire sequence p. For i ∈ {0, 1, 2}, an i-vertex in the fold F is a lattice vertex (square)

containing a monomer i. For instance, a square containing a cysteine monomer in F is

called a 2-vertex. An H-vertex is a vertex which is either 1-vertex or 2-vertex. Define an

H-path in F to be a sequence of H-vertices such that each H-vertex appears once and any

pair of consecutive hydrophobic (1 or 2) monomers form an HH contact. An H-cycle in F

is an H-path whose first and last vertices form an HH contact. An H-cycle of length 4 is

called a core in F . Clearly, every H-path in a saturated fold is part of an H-cycle.

4.6.2 2DHPSolver: a semi-automatic prover

We have developed a tool 2DHPSolver, for proving the uniqueness of a protein design in 2D

square lattice under the HP, HPC or strong HPC models. 2DHPSolver is not specifically

designed to analyze the wave structures or even the constructible structures. It can be used

to prove the stability of any design in 2D HP models. We use induction on the boundaries

of diagonal rectangle surrounding the folds to first prove some properties of native folds and

then use them to prove the uniqueness of the folds. We use 2DHPSolver in the following

scenario; for any integer i, we define two boundaries SWi and SEi as the set of lattice

vertices {[x, y];x + y = i} and {[x, y];x − y = i}, respectively. Then we prove a property Π
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(for instance, every H-monomer belongs to a core) of all native conformations of designed

proteins using induction on the boundary indices. To do this, we assume that the property

Π holds for the part of the conformation that lies on boundary SWk (SEk) for any k < i

(the induction hypothesis) and prove that Π holds for the part of the conformation that lies

on SWi (SEi). In what follows we explain how 2DHPSolver can be used to assist in the

proof process. More details can be found in the help document in the software package (see

below for download information).

2DHPSolver has three sets of inputs: the design rules, the initial configuration, and the

run-time parameters. The design rules are the set of rules that specifies the properties of

the designed sequence. For instance, the subsequences that cannot be part of any designed

sequence are included in the design rules (these are called forbidden subsequences).

2DHPSolver maintains a list of current configurations. Initially this list contains only

the initial configuration which is normally just a hydrophobic monomer on a SW (SE)

boundary. Each configuration that 2DHPSolver stores and processes is in fact part of a

potential saturated configuration of a designed protein. The proof process is completed when

the list only contains configurations that satisfy the property Π. In each iteration, one of the

current configurations is replaced by all possible extensions at one square in the configuration

specified by the user. Note that in displayed configurations red 1 represents a cysteine

monomer, blue 1 a non-cysteine hydrophobic monomer, and uncolored 1 is hydrophobic

monomer, but it is not known whether it is a cysteine or not. The following types of

extensions are used in 2DHPSolver:

• extending a path;

• extending an H-path;

• coloring an uncolored H monomer.

Since a path and a 1-path can continue in 3 directions there are 6 ways to extend a path

(with a 0 or 1 at each direction) and 3 ways to extend a 1-path. Furthermore, there are 2

ways to color an uncolored H monomer. For each of these possibilities, 2DHPSolver creates

a new configuration which is then checked to see if it violates the rules of the design. Those

which do not violate the design rules will replace the original configuration.

However, this approach will result in producing too many configurations, which makes

it hard for the user to keep track of. Therefore, 2DHPSolver contains utilities for auto-

matically finding extending sequences for each configuration which either leads to no valid
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configurations, in which case the configuration is automatically removed, or to only one

valid configuration, in which case the configuration is replaced by the new more-completed

configuration. This process is referred to as a self-extension. The time required for searching

for such extending sequence depends on the depth of the search, which can be specified by

user through two parameters ”depth” and ”max-extensions”. Thus, leaving the whole pro-

cess of proving to 2DHPSolver by setting the parameters to high values is not practical as it

could take enormous amount of time. Note that the search space is infinite, and thus cannot

be searched completely automatically. Instead, the user should set run-time parameters to

moderate values and use intuition in choosing the next extension point when 2DHPSolver is

unable to automatically find self-extending sequences. These parameters can be changed at

any time during the use of the program by the user. Figure 4.11 depicts the interface menu

of the 2DHPSolver. The pseudo code algorithm of 2DHPSolver is presented in appendix A.

Figure 4.11: A snapshot of 2DHPSolver interface.

2DHPSolver is written in C++ and its source code is freely available under the GNU

Public License (GPL). For more information and to access the source codes please visit

http://www.sfu.ca/~ahadjkho/2dhpsolver/.
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4.7 Proof of stability of the snake structures in the strong

HPC model.

In this section we prove that the protein of any snake structure is stable under the strong

HPC model. Let Ss be a snake structure (fold), ps its protein and let Fs be an arbitrary

native (i.e., saturated) fold of ps.

(a) (b)

Figure 4.12: Correctly aligned cores (a) and T -aligned cores (b).

A core c is called monochromatic if either all its H-vertices are cysteines or all of them

are non-cysteines. Let c1 and c2 be two cores in Fs. We say, c1 and c2 are adjacent if there

is a path containing 0-vertices of length 2 or 3 between an H-vertex of c1 and an H-vertex

of c2. We say c1 and c2 are correctly aligned if they are adjacent in one of the forms in

Figure 4.12(a) and we say that they are T -aligned if they are two of the three cores in

Figure 4.12(b). Notice that T -aligned cores can only contain cysteine monomers because

otherwise we get a forbidden subsequence. The set of forbidden subsequences that we used

to prove the stability of snake structures are listed in appendix B.

In what follows we prove that every H-vertex in Fs belongs to a monochromatic core

and the cores are correctly aligned. We start by proving the following lemma.

Lemma 1. Every H-vertex in Fs belongs to a monochromatic core and all the cores are

correctly aligned, or there are three T -aligned cores and all other cores are correctly aligned.

Proof. Let m be the largest number such that SWi, i < m does not contain any H-vertex

and let n be the smallest number such that SWi, i > n does not contain any H-vertex, i.e.,

SWm and SWn are two parallel boundaries of the smallest diagonal rectangle enclosing all

the H-vertices of Fs.

We prove the lemma by a two phase induction on the SWi boundaries (cf. Figure 4.13).

Let i be an integer greater than m. Assume that for any H-vertex v on SWk where m < k < i,
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SWi

SEj

Figure 4.13: SWi and SEj boundaries.

v belongs to a monochromatic core c and if c is adjacent to core c′ which has a H-vertex on

SWk′ , k′ < i, then c and c′ are correctly aligned or T -aligned. This is in fact the induction

hypothesis. Now we prove the following claim which is the induction conclusion.

Claim 1. If there is an H-vertex w on SWi, then

(1) w is on a monochromatic core c; and

(2) if c is adjacent to core c′ which has an H-vertex, on SWj, j < i, then c and c′ are

either correctly aligned or T -aligned.

Proof. We show that if (1) or (2) does not hold for w then the configuration violates at least

one the properties of the snake structures (for instance, it contains a forbidden subsequence

or it is not a saturated fold). This is done by enumerative case analysis of all possible

extensions of this configuration and showing that each branch will end in a configuration

that violates one of the properties of the snake structures.

This process requires the analysis of many configurations which is very hard and time

consuming to do manually. Therefore, we used 2DHPSolver to assist in analyzing the

resulting configurations. The program generated proof of this step of the induction can be

found on our website at http://www.sfu.ca/~ahadjkho/2dhpsolver/snake.htm. Please

be advised that this is a PDF document containing 2707 pages and 16543 images.

If Claim 1 holds for any i > m in a such way that c and c′ are correctly aligned then the

proof of Lemma 1 is complete. Therefore, assume that there exists an integer i > m such

that the cores c and c′ in Claim 1 are T -aligned. We stop the induction here and start the

second induction from the opposite direction. Due to the symmetry there exists an integer

j < n such that the two possibly new cores d and d′ are T -aligned while all H-vertices on any
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SWk where k > j belong to correctly aligned cores. Notice that a T -aligned configuration

introduce two occurrences of the subsequence es = (020)4 (cf. Figure 4.12(b)), and since

ps contains exactly two occurrences of e therefore there can be at most one T -aligned

configuration in Fs. It follows that i = j which completes the proof of Lemma 1.

Lemma 2. Every H-vertex in Fs belongs to a monochromatic core and all the cores are

correctly aligned.

Figure 4.14: The corresponding graph of a saturated fold of a snake structure with three t-aligned
cores c, c′, and c′′.

Proof. By Lemma 1, every H-vertex is in a core. Consider a graph G defined as follows.

For every core c of Fs, let xc be a vertex in G. Furthermore, two vertices xc, and xc′

are connected in G if and only if cores c and c′ are adjacent in Fs. We show that G is

acyclic. To the contrary, assume that C is a cycle in G. It is easy to see that if all the

cores corresponding to vertices of C in Fs are correctly aligned, we get a closed subsequence

which is not the entire ps, a contradiction. Thus C contains vertex xc corresponding to a

core c which is T -aligned with two other cores c′ and c′′ (cf. Figure 4.12(b)). Note that, by
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Lemma 1, all other cores in Fs are correctly aligned. Since c is connected to at least one

core other than c′ and c′′, vertex xc has degree at least three in G. If C is of length more

than three then it can only contain one of the cores c′ and c′′ and the rest of its cores are

correctly aligned. However, in this case we also get a close subsequence which is not the

entire ps. Thus C only contains the three vertices xc, x′
c and x′′

c . Furthermore G cannot

have any cycle other than C because there is at most one T -aligned configuration in Fs.

Since xc, x′
c and x′′

c are all of degree at least 3 and there is only one cycle in G, there are

at least 3 vertices of degree 1 in G (cf. Figure 4.14). These vertices correspond to cores

in Fs that contain an occurrence of e = (020)4, which implies that Fs contains at least 5

occurrences of e, a contradiction. It follows that, G is acyclic.

Theorem 1. Let Fs be an arbitrary saturated fold of a snake protein ps that folds into a

snake structure S. Fs = Ss (i.e, ps is stable).

Proof. By Lemma 2 every H-vertex in Fs belongs to a monochromatic core and all the cores

are correctly aligned. Construct graph G from the cores in Fs as described in the proof of

Lemma 2. By a similar argument used in Lemma 2 G is acyclic. Furthermore G does not

have any vertex of degree more than 2 as otherwise there would be at least three vertices

of degree 1 in G and hence at least three occurrences of e in Fs, a contradiction. Thus G is

a path which implies that Fs is a linear constructible structure. Now the first core c1 in Fs

(c1 is adjacent to exactly one core) corresponds to t1 of Ss. By comparing the sequence of

ps in core ci of Fs and core ti of S, for i > 1, it follows by induction that Fs has the same

structure as Ss. Thus, ps is stable.

4.8 Stability of the wave structures in the HPC model

In this section we prove that the wave structures are stable in the HPC model. Let Sw be a

wave structure, pw its protein and let Fw be an arbitrary native (i.e., saturated) fold of pw.

Similar to the proof of the stability of snake structures we first prove that every H-

vertex in Fw belongs to a monochromatic core and the cores are correctly aligned. The set

of forbidden subsequences that we used to prove the stability of wave structures are listed

in appendix C.
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Lemma 3. Every H-vertex in Fw belongs to a monochromatic core and either all the cores

are correctly aligned or there are three cores in Fw which are T -aligned while all other cores

are correctly aligned.

Proof. We start by proving the following claim.

Claim 2. Every H-vertex in Fw belongs to a monochromatic core.

Proof. We prove the claim by induction on SWi. More specifically we prove that for every

i and every H-vertex v on SWi, v is in a monochromatic core. For the base case, consider

largest m such that for any j < m, there is no H-vertex on SWj . Then the claim is trivially

true. For the induction step, assume that the claim is true for every H-vertex on SWk for

any k < i, it is enough to show that the claim is true for any H-vertex on SWi. Similar to

Claim 1, we use the 2DHPSolver to prove the induction step.

http://www.sfu.ca/~ahadjkho/2dhpsolver/core-monochromatic-proof.

Next, we prove the following claim using the 2DHPSolver tool.

Claim 3. Let c1 and c2 be two adjacent monochromatic cores in Fw. Then c1 and c2 are

either aligned correctly or T -aligned.

The program generated proof of this claim can be found on our website at

http://www.sfu.ca/~ahadjkho/2dhpsolver/core-alignment-proof.

The main result follows from Lemma 3, Lemma 2 and a similar argument to the proof

of Theorem 1.

Theorem 2. Every H-vertex in Fw belongs to a monochromatic core and all the cores are

correctly aligned. Hence, Fw = Sw, i.e., all wave structures are stable.



Chapter 5

Structure approximating IPF in 3D

hexagonal lattice

5.1 Introduction

In this chapter we extend the IPF design and introduce the first robust class of protein

design in a 3D setting. We use the 3D hexagonal prism lattice as the underlying design

lattice. The hexagonal prism lattice is composed by stacking horizontal hexagonal grids

(“honeycomb nets”) on top of each other, cf. Figure 5.1. Two facts about this lattice are

useful to us in our construction. First these lattices have a relatively low degree (the number

of neighbors of a vertex) of 5. The cubic lattice, for example, had a degree of 6. This lower

degree simplifies our designs. At the same time, we show that relative to its degree this

lattice is remarkably good at representing a large class of natural protein structures.

Figure 5.1: An example of hexagonal prism lattice.

We design a class of structures (called tubular structures) and corresponding proteins in

52
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(a) (b)

Figure 5.2: (a) Illustration of a tube with a hydrophobic core of height 8 — the wavy lines at the
top and dashed lines at the bottom represents loops. (b) Illustration of a connector.

the 3D hexagonal prism lattice and show that each protein folds into the corresponding tubu-

lar structure. The building blocks of tubular structures are tubes and connectors shown in

Figure 5.2(a) and (b), respectively, where hydrophobic monomers (cysteine or non-cysteine)

are depicted with black beads and polar ones with white beads. The hydrophobic core of

the connector consists of 2 layers of two adjacent hexagons. The connector can be attached

to 4 tubes (one per top/bottom of each hexagon). An example, with 3 tubes attached to the

connector is shown in Figure 5.4. Such design is sufficiently robust to roughly approximate

any given shape.

Figure 5.3: A coiled coil structure formed by 6 alpha-helices in protein gp41. Figure
is taken from wikipedia (http://en.wikipedia.org/wiki/Image:Gp41_coiled_coil_hexamer_
1aik_sideview.png) used by permission of WillowW.

Interestingly, a tube consists of six parallel “alpha helix”-like structures. Similar designs

appear in nature as a coiled coil structural motif in which 2–6 alpha-helices are coiled

together, cf. Figure 5.3. Many coiled coil type proteins are involved in important biological

functions such as the regulation of gene expression e.g. transcription factors [165, 109].



CHAPTER 5. STRUCTURE APPROX. IPF IN 3D HEX. LATTICE 54

C
C

C
C

C
C

T1

T2

T3

Figure 5.4: An example of a tubular structure showing the ability to branch (on the left). Polar,
hydrophobic and cysteine monomers are depicted as empty circles, squares and triangles, respectively.
Hydrophobic cores of 3 tubes and a connector are highlighted.

We show that a tubular structure is one of the native folds of its protein under HPC

model. We conjecture that the proteins of the tubular structures are structurally stable,

i.e., all the native folds of a protein from tubular structures are completely similar to each

other.

We are able to prove this formally for infinite subclass of the simple structures (consisting

of one connector and three tubes, cf. Figure 5.4) under the assumption that each of three

tubes is sufficiently long. In addition, we assume that our proteins are closed chains of

monomers, a similar assumption as used in [1], i.e., that the beginning and the end of the

sequence are adjacent in the lattice. Note that tubular structures from this subclass are not

stable under the HP model, thus our results show that using disulfide bridges in our designs

helps to stabilize them.

Despite the tremendous amount of work on protein design for 2D lattices, as far as we

know, this is the first general design of arbitrary long stable proteins for the 3D lattice.

Given that 3D is the realistic setting, we believe that this work could eventually help in

designing proteins with applications to drug design and nanotechnology.
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5.2 Preliminaries

In this section we will review the 3D hexagonal HPC model and introduce some terminology

used in the chapter.

5.2.1 3D Hexagonal HPC model

The HPC model in 3D hexagonal lattice is a straight forward extension of the HPC model

in 2D square lattice we defined in section 4.3. A protein in HPC model is represented as

a string p = p1p2 . . . p|p| in {0, 1, 2}∗ , where “0” represents a polar monomer (depicted in

figures as empty circles), “1” a hydrophobic-non-cysteine (depicted as black squares) and

“2” a cysteine monomer (depicted as black triangles). We use H to represent a monomer

which could be either 1 or 2 (depicted in figures as a black circle). The proteins are folded

onto the regular lattice. A fold of a protein p is embedding of a path of length n into the

lattice.

The vertices adjacent to a vertex are called the neighbors of that vertex. As depicted

in Figure 5.1(a), each vertex has 5 neighbors: 3 horizontal neighbors lying in the same

hexagonal grid and 2 vertical neighbors lying above and below the vertex in the parallel

hexagonal grids.

A protein will fold into a conformation with the minimum free energy, also called a

native fold. The energy function in the HPC model consists of two parts: hydrophobic

interactions and disulfide bridges. The hydrophobic monomers which are not consecutive in

the protein but are adjacent in the lattice form contacts. Each contact contributes −1 to the

total energy. The cysteines act as hydrophobic monomers for this part of energy function.

In addition to hydrophobic interactions a pair of cysteines which are not consecutive in

the protein but are adjacent in the lattice form disulfide bridges and further reduce the

energy of the fold. Unlike the hydrophobic interactions in which a hydrophobic monomer

can take part in several contacts, a cysteine can only participate in one disulfide bridge.

Therefore, the number of disulfide bridges contributing to the energy of a fold is equal to

the number of pairs in the maximum matching in the graph of potential disulfide bridges.

Each disulfide bridge contributes −1 to the total energy. Hence, a fold with the lowest free

energy corresponds to a fold with the largest number of HH contacts and disulfide bridges.
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(a) (b)

Figure 5.5: Two native folds of the substring t = (0100110010)6. These two folds are similar.

5.2.2 Structural stability

Every protein and its fold define a mapping from the lattice vertices to the set {0, 1, 2,W},

where W represents “water” or an empty unoccupied position. We say that two folds of

the same protein are similar if they define the same mapping. If all native folds of a given

protein are similar to each other, then the protein is called structurally stable. Note that all

native folds of a structurally stable protein have exactly the same shape (from outside they

appear as the same fold). For instance, the string t = (0100110010)6 is structurally stable,

but not stable. Figure 5.5 depicts both native folds of this string. It is easy to see that the

mappings defined by t and its two folds are identical, i.e., the folds are similar.

5.2.3 Terminology

A lattice vertex containing an X ∈ {0, 1, 2} monomer is called an X-vertex. An H-vertex

is either a 1-vertex or a 2-vertex. A neighbor of a vertex v which is an X-vertex is called

X-neighbor.

Consider a fold F . A path in F is a sequence of vertices (x1, x2, . . . , xk) such that

consecutive vertices are connected by peptide bonds. We say that F contains an occurrence

of substring w1, w2, . . . , wk if there is a path (x1, x2, . . . , xk) in F such that xi is a wi-vertex.

We number hexagonal grids of the lattice (also referred to as planes) with integer numbers,

and denote the i-th grid by Hi. Consider vertex x ∈ Hi. We denote the vertical neighbor of

x in Hi+1 (above x) by x1, and recursively, the vertical neighbor of xj in Hi+j+1 by xj+1.

Similarly, we denote the neighbor of x in Hi−1 by x−1, and the neighbor of x−j in Hi−j−1

by x−j−1.
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Let Gx be the graph of all H-vertices in Hi which are reachable from x by a path of

H-vertices in Hi. Let G be a set of vertices in Hi. Then for j ≥ 1, let Gj be the graph of

all vertices in Hi+j which have a neighbor in Gj−1, and G−j be the graph of all vertices in

Hi−j which have a neighbor in G−j+1, i.e., Gj and G−1, j 6= 0, are vertical copies of the set

G. Note that Gx is a planar graph (as Hi is as well). The degree of a vertex in Gx is called

a plane degree. Let Bx be the boundary cycle of Gx, i.e., the set of vertices of Gx which lie

on the outer face of Gx. A component in a fold F is a maximal set of H-vertices for which

there is a path of H-vertices between any pair of them.

Let C be a component that lies in the planes Hj+1 to Hj+r. Let layer Ci be a graph of

all vertices of C in plane Hj+i+1. We say that projections of layers Ci and Ck are the same

(Ci is subset of Ck ) if Ck−i
i = Ck (Ck−i

i ⊆ Ck). In this case we write Ci ≃ Ck (Ci

∼
⊂ Ck).

The plane containing Ci will be denoted by H(Ci).

5.2.4 Saturated folds in 3D hexagonal HPC model

Similar to the proteins we used in our 2D design, the proteins we use in this chapter are

saturated, i.e, the number of possible contacts and disulfide bridges of their native folds

is maximal with respect to the number of hydrophobic “1” and cysteine “2” monomers

contained in the protein. The following useful observation characterizes native folds of such

proteins.

Observation 1 (Saturated folds). Let p ∈ 0{0, 1, 2}∗0 be a protein, and F be the fold of p.

If for every H-vertex v, three out of five edges incident with v are contacts and in addition if

v is a cysteine it belongs to a maximum matching in the graph of potential disulfide bridges,

then (a) F is a native fold of p; and (b) any other native fold of p satisfies these properties.

We will call a fold satisfying these properties a saturated fold.

The proof of the observation follows by a simple argument that any hydrophobic vertex v

can have at most three contacts since it is connected to exactly two neighbors with a peptide

bond and furthermore any cysteine monomer can be involved in at most one disulfide bridge.

Note that not every protein has a saturated fold.
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5.3 Tubular structures and their proteins

The first basic building block of our tubular structures is a tube, depicted in Figure 5.2(a).

A tube consists of 6 identical “alpha helix”-like subfolds of the substring pn = (H00H)n

forming a 2 × 2n vertical zig-zag pattern (“plate”).

The plates are connected to each other with 6 short loops (3 at the top and 3 at the

bottom), each consisting of only two polar monomers. Thus, the hydrophobic core is com-

pletely surrounded by polar monomers, i.e., the fold is saturated. The complete protein

string for the tube is tn = (0pn0)6. We assign the first and the second H monomer of one

of the plates of each tube to cysteine monomers 2. We represent the fold of tn by Tn. The

height of the hydrophobic core of the tube Tn is 2n.

The second building block of our tubular structures is a connector, depicted in Fig-

ure 5.2(b). A connector can be formed by overlapping two very short tubes (with height of

hydrophobic core 2). Two tubes or a tube and a connector can be connected to one protein

structure in two ways as follows. First, one top loop of the first tube is overlapped with a

bottom loop of the second tube/connector, vice versa, and the peptide bonds between two

polar monomers of each loop are disconnected. This way of connecting two components is

called vertical connection. Tubes T1 and T2 in Figure 5.4 are vertically connected to the

connector. In the second way, called horizontal connection, the tubes or the tube and the

connector are placed beside each other such that they have H-vertices in exactly one common

plane Hi and exactly two H-vertices of the first component are connected to two H-vertices

of the other component each through one 0-vertex. Tube T3 in Figure 5.4 is horizontally

attached to the connector. The class of tubular structures contains all structures formed

by connecting tubes and connectors (such that no space violation occurs). We choose to

vertically or horizontally connect a tube to a component in a tubular structure such that

no pair of H-vertices in the same plane and in middle layers of different tubes are at distant

three of each other. Since, there is no substring 000 in the protein of any tubular structure,

this condition ensures that the tubes in a tubular structures do not directly connect to each

other through the H-vertices in their middle layers. This will greatly simplifies the stability

proof of the structures.

Since, the folds of tubular structures are saturated, by Observation 1, they are native

folds to corresponding proteins (which can be easily reconstructed from the folds).
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5.4 Stability of tubular structures

In what follows we will show that the proteins of a basic class of tubular structures C

are structurally stable. The structures in class C are built from one connector and three

tubes, cf. Figure 5.4. We will assume that three tubes Tk1
,Tk2

,Tk3
used to construct these

structures are sufficiently long. In particular, we will assume that k1, k2, k3 ≥ 712. We

conjecture that this structure is structurally stable also for other values of k1, k2, k3 and

that all tubular structures are structurally stable. Let q be a protein string of a structure

in C and Q be its original fold.

Definition 1 (sparse protein). We say that a protein is sparse if does not contain HHH as

a substring and does not start or end with H.

5.4.1 Types of H-vertices

Let F be a saturated fold of a sparse protein. Then each H-vertex has exactly three contacts,

i.e., it has at least three H-neighbors and the remaining two neighbors are connected (via a

peptide bond) and at most one of the two is an H-vertex. We can classify every H-vertex x

of F to one of the five types based on the position of its 0-neighbor(s), cf. Figure 5.6:

(a) vh-type: x has one vertical 0-neighbor (on top or below) and one horizontal 0-neighbor

(in the same hexagonal grid);

(b) vv-type: x has two vertical 0-neighbors;

(c) hh-type: x has two horizontal 0-neighbors;

(d) h-type: x has one horizontal 0-neighbor;

(e) v-type: x has one vertical 0-neighbor.

x x

(a)

x

(b)

x

(c)

x

(d)

x x

(e)

Figure 5.6: Five types of possible neighborhood of an H-vertex x: S-vertices: (a) vh, (b) vv, (c) hh;
and D-vertices: (d) h and (e) v. For S-vertices x is connected to two 0 neighbors by peptide bonds,
while for D-vertices x is connected to the 0-neighbor and one of the H-neighbors.
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For every X ∈ {vv, hh, h, v} an H-vertex of type X, will be called X-vertex. Furthermore,

any H-vertex with two 0-neighbors is called a S-vertex and an H-vertex with one 0-neighbor

is called a D-vertex.

Definition 2 (connections). Let u, v ∈ {0, 1, 2,H,S,D, vv, hh, h, v} and s ∈ {0, 1, 2,H}+ .

We say that two vertices x and y are s-connected if there is a path x, v1, v2, . . . , vk, y in the

lattice such that vi is an si-vertex. If x is a u-vertex and y is a v-vertex, this path is called

an usv-connection. If the end points x and y are H-vertices and belong to two different

components, we say that these components are usv-connected. If s = 00 and u, v 6= 0, we

will shorten this notation as (u ≍ v)-connection. In particular, we will be interested in

H0H-connections and (S ≍ h)-connections.

A usv-connection with end points x and y is called internal, if x and y are in the same

component, and otherwise it is called external. We say that two usv-connections with end

points at x, y and x′, y′, respectively, are parallel if x (y) is directly above/below x′ (y′),

i.e., x′ = xi and y′ = yj, for some integers i, j, and all vertices between x and x′ (y and y′)

are H-vertices. Note that it is also possible that x and y′ are u-vertices and x′ and y are

v-vertices.

We have the following observations:

Observation 2. Let F be an arbitrary saturated fold of q. Then F contains 6 H0H-

connections, 52 S-vertices, the number of D-vertices is 4 modulo 6 and it contains 36

(S ≍ D)-connections. F does not contain HHH, 000, H0H0H and H0HH, but it does contain

one occurrence of 20100101.

Observation 3. Let F be a saturated fold of a sparse protein. Then every H-vertex of F is

either a vh-vertex, vv-vertex, hh-vertex, h-vertex or v-vertex. Furthermore, any neighboring

0-vertex and H-vertex are connected by a peptide bond.

Claim 4. Let F be a saturated fold of a sparse protein with no H0HH as a substring. Then

no v-vertex in F can connect directly to an h-vertex.

Proof. Consider a v-vertex x. Without loss of generality assume that its 0-neighbor is x1.

Assume to the contrary that x connects to an h-vertex. Two cases are possible: first,

x connects to its horizontal h-neighbor z cf., Figure 5.7(a). Then z1, x1, x, z form the

substring H0HH, a contradiction. Second, x connects x−1 which is an h-vertex. Let z be the
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horizontal 0-neighbor of x−1. Then z1, z, x−1, x form the substring H0HH, a contradiction

cf., Figure 5.7(b).

Claim 5. Let F be a saturated fold of a sparse protein. No v-vertex can connect to an

h-vertex via two 0-vertices.

Proof. Consider a v-vertex x. Without loss of generality assume that its 0-neighbor is x1.

Assume to the contrary that x1 connects to an h-vertex via one 0-vertex y. If y is a horizontal

neighbor of x1 then it would connect down to a horizontal neighbor of x which is not an

h-vertex. Hence, y = x2. Furthermore, x2 should connect to an h-vertex, hence it cannot

connect to x3. Therefore it must connect to one of its horizontal neighbor z. Since, z is an

h-vertex, z−1 is an H-vertex. However, this a contradiction, as x1 would have to connect to

three vertices: x, x2 and z−1 Figure 5.7(c).

zx

(a)

x
z

(b)

x

z

(c)

Figure 5.7: Case analysis showing that a vh-vertex cannot directly (a) and (b); or via two 0-vertices
(c) connect to an h-vertex

The above two claims imply the following lemma.

Lemma 4. Let F be a saturated fold of a sparse protein with no H0HH as a substring. Any

occurrence of substring (00HH)k in F contains either only v-vertices or only h-vertices.

5.4.2 Types of components

In this section we study all possible components that can arise in saturated folds of q. We

first classify all components to three categories and then study which of these can appear

in saturated folds of q.

Let F be a saturated fold of a sparse protein and C a component in F . Assume that

C lies in the planes Hs, . . . ,He. Note that any H-vertex of plane degree one in the first or

last layer of C is adjacent to at least three 0-vertices, a contradiction. Hence, we have the

following observation.
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Observation 4. Let F be a saturated fold of a sparse protein and let C be a component in

F . Then all vertices of the first or last layer of C have plane degree 2 or 3.

The following definition defines several types of components.

Definition 3 (tube, simple tube, 2-layer component, wall, and complex component). A tube

is a component such that all its layers are identical and each layer contains only vertices of

plane degree two (a cycle). A simple tube is a tube with only one hexagon in each layer.

A 2-layer component is a component with two identical layers which have no vertex with

plane degree 1 and at least one vertex with plane degree 3. A wall is a component such that

all its layers are identical and each layer is a single path. Finally, a complex component is a

component C such that there is some i for which Ci and Ci+1 are different.

We have the following observations.

Observation 5. Any component C in a saturated fold of a sparse protein is one of the

following three types: a tube, a 2-layer component or a complex component.

(a) (b) (c)

Figure 5.8: One layer of (a) the smallest non-simple tube; (b) the smallest non-simple tube without
occurrences of H0H; and (c) the smallest non-simple tube with one occurrence of H0H per layer.

Observation 6. Let F be a saturated fold of a sparse protein. If F contains a tube then

the height (number of layers) of this tube is at least 2. One layer of the smallest non-simple

tube is depicted in Figure 5.8(a). It contains two occurrences of H0H per layer, i.e., at least

4 such occurrences. One layer of the smallest non-simple tube with no occurrences of H0H

is depicted in Figure 5.8(b). One layer of the smallest tube with one occurrence of H0H per

layer is depicted in Figure 5.8(c).
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5.4.3 Different types of complex components

In what follows we further classify different types of complex components which can occur

in saturated folds of sparse proteins with at most six occurrences of substring H0H.

Complex components with a vv-vertex

x1

y6

x2

y1

x3

y2

x4

y3

x5

y4

x6

y5

z1

z2

Figure 5.9: Part of a complex component with a vv-vertex. The arrows are pointing at six vv-vertices.

Lemma 5. Let F be a saturated fold of a sparse protein with no occurrences of substrings

H0HH and H0H0H and at most six occurrences of substring H0H. Consider a complex

component C of F containing a vv-vertex. Then C has 6 vv-vertices forming a hexagon, lies

in two layers which are almost identical, except for the six vv-vertices which are replaced with

0-vertices in the other layer, and neither layer contains a vertex of plane degree 1. We will

call such a complex component, a vv-component. A vv-component contains 6 occurrences of

H0H.

Proof. Any vv-vertex must be adjacent to at least two other vv-vertices in its plane, oth-

erwise, either there is a 0-vertex connected to three H-vertices (with a peptide bond), or

we get a substring H0H0H which cannot occur in F . Therefore, any set of vv-vertices in a

plane forms a graph with no vertices of plane degree 1. Each vv-vertex on the boundary of

this graph is adjacent to one non-vv-vertex which creates a distinct H0H substring. Since

there are only 6 occurrences of H0H in F , the boundary of this graph must be a hexagon,

i.e., C contains exactly 6 vv-vertices x1, . . . , x6 located on a single hexagon, cf. Figure 5.9.

Furthermore, C does not contain a vertex with plane degree 1. Assume to the contrary

that v is a vertex with plane degree 1 and let k be the smallest number such that vk is a
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vertex with plane degree more than 1 (note that such a k exists). Let w be a horizontal

H-neighbor of vk. Now, the path (w,w−1, vk−1) is an H0H-connection which is different

from the H0H-connections containing the vv-vertex of F , a contradiction.

For i = 1, . . . , 6, let yi be the non-vv horizontal neighbor of xi. Consider y1. One of its

vertical neighbor is an H-vertex while the other is a 0-vertex, cf. Figure 5.9. Without loss of

generality assume y1
1 is an H-vertex. Let z1 be the horizontal neighbor of y1 which is closer

to y2. Since C does not contain any vertex of plane degree 1, all the horizontal neighbors of

y1
1 except x1

1, are H-vertices. In addition, y2
1 must be a 0-vertex otherwise, F would contain

the substring H0HH, a contradiction. It follows that z1 is an H-vertex and z−1
1 and z2

1 are

0-vertices otherwise, we get additional H0H-connections, a contradiction.

Next, we show that y1
2 is an H-vertex. Let z2 be the common neighbor of z1 and

y2. Clearly, z2 is an H-vertex otherwise we get another H0H-connection, a contradiction.

Similarly, z−1
2 and z2

2 are 0-vertices and z1
2 is an H-vertex. It follows that y1

2 is an H-vertex.

By similar arguments, we can show that for every i = 1, . . . , 6, y1
i is an H-vertex and y−1

i

and y2
i are 0-vertices. Since there is no other occurrence of H0H in F , it is easy to see

that the whole component lies in two layers (the layers containing yi’s and y1
i ’s) which are

almost identical with exception that 6 vv-vertices in lower layer replaced with 0-vertices in

the upper layer.

Note that a vv-component is essentially a 2-layer component which is missing vertices of

one hexagon in one of the two layers.

Complex components without a vv-vertex

u v

C1 · · ·
C2 · · ·

(a)

u v
· · ·C ′

s
· · ·C ′

s−1

(b)

v

u

(c)

Figure 5.10: Analysis of a complex component without a vv-vertex: (a) the case in which C′

2 6= C1;
(b) the case in which C′

i is not a subset of C1; (c) the case when C′

s is not a subset of V 2,2,2.

Lemma 6. Let F be a saturated fold of a sparse protein with no H0HH as a substring. Let

C be a complex component of F without a vv-vertex and C1, . . . , Cr its layers. Let V 2,2,2 be
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the set of all H-vertices in F with plane degree 2 such that both its horizontal H-neighbors

have plane degree 2 as well.

(a) For k ≥ 1, let C ′
k be a subset of Ck consisting of components of Ck which are inter-

secting projection of C1. Let s be the smallest integer such that layer C ′
s is different

from C1. Then s > 2 and C ′
s is a collection of paths where each path is a subset of

C1 ∩ V 2,2,2.

(b) For k ≤ r, let C ′′
k be a subset of Ck consisting of components of Ck which are inter-

secting projection of Cr. Let e be the largest integer such that layer C ′′
e is different

from Cr. Then e < r − 1 and C ′′
e is a collection of paths where each path is a subset

of Cr ∩ V 2,2,2.

Proof. We prove only part (a) of the lemma, part (b) follows by symmetry. Since there

is no vv-vertex in C, C2 and hence, also C ′
2 is a superset of the C1. We show that these

two layers are identical. To the contrary assume that C ′
2 contains a vertex w such that its

vertical neighbor in the plane H(C1) is a 0-vertex. Since, C ′
2 is intersecting projection C1,

there must be a shortest path connecting w to some vertex u of C1
1 . Note that u ∈ C ′

2 and

u−1 ∈ C1. Let v be the neighbor of u on this paths, i.e., v is an H-vertex in C2 and v−1 is

a 0-vertex. Since, the plane degree of u−1 is at least 2, its horizontal neighbors other than

v−1 are H-vertices. Since, C1
∼
⊂ C ′

2, all horizontal neighbors of u are H-vertices, i.e., u is a

v-vertex. Therefore, u1 is a 0-vertex. Furthermore, since there is no vv-vertex in F , v1 is an

H-vertex, cf. Figure 5.10(a). Since, u is a D-vertex, it is connected to one of its H-neighbors,

say z. Then, v1, u1, u, z form the substring H0HH, a contradiction. Hence, C1 = C ′
2.

Let s be the smallest integer such that C ′
s is different from C1. Since C1 ≃ C ′

2, it follows

that s > 2. Next, we show that C ′
s is a subset of C1 ≃ C ′

s−1. Assume the contrary. Since

C ′
s is intersecting projection of C1 ≃ C ′

s−1, there exists an H-vertex v and its horizontal

H-neighbor u in C ′
s such that v−1 is a 0-vertex and u−1 is a H-vertex in C ′

s−1. Since

C ′
s−1 ≃ C ′

s−2 ≃ C1, the plane degree of u−1 is 2 and u−2 is an H-vertex, cf. Figure 5.10(b).

Hence, u−1 is a D-vertex, i.e., it is connected to some H-vertex z. Then v, v−1, u−1, z form

the substring H0HH, a contradiction.

Finally, note that any vertex with plane degree 3 in C ′
s−1 must have a 0-neighbor in the

plane H(Cs), as otherwise it would have five H-neighbors. Since, C ′
s is a subset of C1 ∩ V 2,

where V 2 is the set of all H-vertices in F with plane degree two, C ′
s is a collection of paths.
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Finally, let us prove that each path in C ′
s lies in V 2,2,2. Assume the contrary. Then

the end point v of such a path in C ′
s has a 0-neighbor u such that u−1 is an H-vertex of

plane degree 3 in C ′
s−1. Hence, u−1 is a v-vertex and we have an occurrence of H0HH (cf.

Figure 5.10(c)), a contradiction.

Lemma 7. Let F be a saturated fold of a sparse protein with no occurrences of the substring

H0HH, and at most six occurrences of the substring H0H. Let C be a complex component

of F without a vv-vertex and C1, . . . , Cr be its layers. Let s̄ > 2 (ē < r − 1) be the smallest

(largest) integer such that Cs̄ (Cē) is different from C1 (Cr). Then both Cs̄ and Cē contain

a single path, and each of the layers C1, . . . , Cs̄, Cē, . . . , Cr is connected. Furthermore, each

complex component creates at least four occurrences of the substring H0H in F , two between

layers Cs̄−1 and Cs̄ and other two between layers Cē and Cē+1.

Proof. Let C ′
k, C

′′
k be the sets and s, e the integers defined in Lemma 6. By this lemma, both

C ′
s and C ′′

e are collections of paths. Each path in C ′
s and C ′′

e creates two new occurrences of

substring H0H. Therefore, the total number of paths in C ′
s and C ′′

e is either 2 or 3.

First, assume that C ′
s and C ′′

e contain 2 paths in total. It is enough to show that for

every k = 2, . . . , s, C ′
k ≃ Ck and for every k = e, . . . , r − 1, C ′′

k ≃ Ck. Assume that there

is l ∈ {2, . . . , s} such that C ′
l 6= Cl and assume that l is the smallest such integer. Then

Cl contains another component K which does not intersect projection of C1 = C ′
l . Note

that we can apply Lemma 6 on K as well, i.e., there will be a level l′ > l + 1 such that all

components of Cl′ intersecting K are paths. Since, each such path will create 2 occurrences

of H0H, there is only one such path P . Note that there is no other occurrence of H0H in

F . It is easy to see that for all s < k < e, C ′
k ≃ Cs, as any change would introduce a

new occurrence of H0H. Similarly, for any l′ < k < e, there is only one component of Ck

intersecting K, P . Now, the layer Ce−1 contains two paths and Ce only one path. Thus,

the change from Ce−1 to Ce introduces new occurrences of H0H, a contradiction. Hence,

for every k = 2, . . . , s, C ′
k = Ck and for every k = e, . . . , r − 1, C ′′

k = Ck. This implies that

s̄ = s and ē = e. The lemma follows.

Second, assume that C ′
s and C ′′

e contain 3 paths in total. Without loss of generality

assume that C ′
s contains 2 paths and C ′′

e has only 1 path. This will create 6 occurrences

of H0H in F . Therefore, as before, Ce−1 contains two paths and Ce only one path, a

contradiction.
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u

· · ·Cs = Ce

Figure 5.11: A complex component: the case when layers Cs and Ce are identical.

Observation 7. Let F be a saturated fold of a sparse protein with no occurrences of the

substrings H0HH and H0H0H, and at most six occurrences of the substring H0H. Let C be

a complex component without a vv-vertex. Let s > 2 (e < r − 1) be the smallest (largest)

integer such that Cs (Ce) is different from C1 (Cr). Then s 6= e, i.e, the middle part of a

complex component without a vv-vertex (layers Cs, . . . , Ce) contains at least 4 S-vertices.

Proof. First, notice that if s = e then the end point of the path u in Cs ≃ Ce belongs to two

different occurrences of H0H. If these two occurrences share a 0-vertex v then v connects to

three vertices, a contradiction. Otherwise, we have an occurrence of substring H0H0H, cf.

Figure 5.11, again a contradiction.

Basic complex component

Definition 4 (basic complex component). Let F be a saturated fold of a sparse protein

with no H0HH as a substring. Let C be a complex component of F without a vv-vertex

with layers C1, . . . , Cr. Let s be the smallest integer such that Cs is different from C1 and

let e be the largest integer such that Ce is different from Cr. If Cs is a path and for any

i ∈ s + 1, . . . , e, Ci is identical to Cs then we call C a basic complex component.

Note that a basic complex component consists of three parts stacked vertically on each

other: (1) a tube or 2-layer component; (2) a wall; and (3) a tube or 2-layer component.

Observation 8. Let F be a saturated fold of a sparse protein with no H0HH as a substring.

Any basic complex component of F contains at least 20 S-vertices (the lower and upper part

at least 8 each and the wall at least 4) and at least 4 occurrences of substring H0H.

Appendix components

In this subsection, we show that if a complex component C without vv-vertices is not basic,

then its layers change exactly four times, i.e., it consists of five parts stacked on top of each
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other: (1) a 2-layer component or a tube; (2) a wall; (3) a pseudo 2-layer component with

exactly one vertex with plane degree 1 in each of two layers; (4) another wall; and (5) a

2-layer component or a tube. The part in the middle (3) will be called an appendix, and such

a complex component will be called an appendix component. An example of an appendix

component is in Figure 5.12(a). Let us start with the formal definition of an appendix

component.

Ce

Cm+1

Cm

Cs

(a)

. . .

. . .
. . .
. . .

. . .

. . .

. . .

. . .
. . .
. . .

p1 pt

pi

pj

pℓ

q1

q2

q′ℓ

Cm . . .
Cm−1 . . .

(b)

Figure 5.12: (a) An example of an appendix component and the six occurrences of H0H contained
in it. (b) Illustration what happens if Cm−1 is not a subset of Cm.

Definition 5 (appendix component). Let F be a saturated fold of a sparse protein with

no occurrence of the substring H0HH. Let C be a complex component of F without a vv-

vertex with layers C1, . . . , Cr. Let s be the smallest integer such that Cs is different from

C1 and let e be the largest integer such that Ce is different from Cr. Assume that both

Cs and Ce contain only one path, and that there is an integer s < m < e − 1 such that

Cs ≃ Cs+1 ≃ · · · ≃ Cm−1, Cm ≃ Cm+1, Cm+2 ≃ Cm+3 ≃ · · · ≃ Cs, and Cs and Ce are

subsets of Cm. Furthermore, assume that Cm has exactly one vertex with plane degree 1

and this vertex is an end point of the paths in Cs and Ce. Such a complex component will

be called an appendix component and the layers Cm and Cm+1 we be called an appendix.
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Consider a path in Cm (Cm+1) starting at the vertex with plane degree 1 and ending before

the first vertex with plane degree 3. These paths in Cm and Cm+1 will be called the arm of

the appendix.

Note that an appendix without its arm is a proper 2-layer component or a tube with

two layers.

Lemma 8. Let F be a saturated fold of a sparse protein with no occurrence of the sub-

string H0HH, and at most six occurrences of the substring H0H. Every non-basic complex

component without a vv-vertex in F is an appendix component.

Proof. Consider a complex component C in F without vv-vertices with layers C1, . . . , Cr.

Assume that C is not a basic complex component. Let s (e) be the smallest (largest) integer

such that Cs (Ce) is different from C1 (Cr). By Lemma 7, both Cs and Ce contain only one

path. Let m be the smallest integer such that s < m < e and Cm is different from Cs.

First, we will prove that Cs is a subset of Cm. Since, Cs ≃ Cm−1, Cm−1 is a path

P = (p1, . . . , pℓ). Clearly, p1
1 and p1

ℓ are H-vertices. Assume to the contrary that Cm is not

a superset of Cm−1. Let pi (pj) be the first (last) vertex on path P such that p1
i (p1

j) is a

0-vertex. Clearly, i 6= j, hence, we have two new occurrences of H0H. There are no other

occurrences of H0H. Therefore, Cm ≃ Cm+1 ≃ · · · ≃ Ce, i.e., Cm is a path. Thus, there is a

path in Cm connecting paths (p1
1, . . . , p

1
i−1) and (p1

j+1, . . . , p
1
ℓ). Let (q1, . . . , qℓ′) be a shortest

such path. Then q1 = p1
t for some t ∈ {1, . . . , i − 1} and q−1

2 does not lie on P , i.e., it is a

0-vertex. Then the paths pt, q
−1
2 , q2 forms another occurrence of H0H, a contradiction, cf.

Figure 5.12(b).

Let m′ be the largest integer such that s < m′ < e and Cm′ is different from Ce. By

symmetry, we have that Cm′ is a superset of Ce. Obviously, m ≤ m′ + 1. We will show that

m ≤ m′, i.e., that there are at least two changes between layers Cs and Ce. Assume to the

contrary that m = m′ + 1. Then Cs ≃ Cm−1 ≃ Cm′

∼
⊂ Cm and Ce ≃ Cm′+1 ≃ Cm

∼
⊂ Cm′ ,

i.e., Cm ≃ Cm′ . However, this is a contradiction with the fact that C is not a basic complex

component, since we have Cs ≃ · · · ≃ Cm−1 ≃ Cm′ ≃ Cm ≃ Cm′+1 ≃ · · · ≃ Ce.

Since there are at least two changes from layer Cs to layer Ce and each change will

introduce at least one new occurrence of H0H, each of the two changes can create only one

occurrence of H0H and there are no other changes. Therefore, there is exactly one vertex z

in Cm which is a horizontal neighbor of some p1
i such that z−1 is a 0-vertex. If i 6= 1, ℓ then

we get an occurrence of H0HH. Hence, Cm extends the copy of path P in the plane H(Cm)
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at one of its ends. Similarly, Cm′ extends a copy of the path in layer Cm′+1 at one of its

ends. Furthermore, since there are no other changes Cm ≃ Cm+1 ≃ · · · ≃ Cm′ .

It remains to show that m′ = m + 1 and that Cm has exactly one vertex with plane

degree 1. The extended part of Cm (Cm′) does not have a vertex of plane degree one because

otherwise it will be an H-vertex with three 0-neighbors. The number of vertices with odd

plane degree in Cm (Cm′) is even. Since, there is only one vertex with plane degree one

in Cm (Cm′), there is an odd number of vertices with plane degree 3, which implies there

is at least one such a vertex, say w ∈ Cm. Now, if m′ > m + 1 then w1 ∈ Cm+1 has five

H-neighbors, a contradiction. Second, if m′ = m then z is a vv-vertex, a contradiction.

Hence, m′ = m+1, i.e, the complex component C has a pseudo 2-layer component between

two walls. It follows that C is an appendix component.

The following observation follows by a careful examination of Figure 5.12(a).

Observation 9. Let F be a saturated fold of a sparse protein with no occurrences of the

substrings H0HH. Let C be an appendix component and Cs, Cm and Ce be the layers after

the first, after the second and before the last change, respectively. Then m ≥ s + 2 and

e ≥ m + 3. Each wall (layers Cs, . . . , Cm−1 and Cm+2, . . . , Cs) contains at least 4, the arm

of appendix of C at least 4 and the appendix without arm at least 10 S-vertices. Thus layers

Cs, . . . , Ce contain at least 22 S-vertices.

5.4.4 Counting in one plane

Consider a set S of vertices in a hexagonal plane. Set S naturally induces a graph in the

plane in which any two neighboring vertices are connected by an edge. In the following S

will represent both the set of vertices and the graph induced by this set. Assume that each

vertex of S has a degree at least 2. We say that S is complete if every vertex which lies

inside the boundary of S, denoted as B(S), is in S as well. Let K7(S) be the number of

hexagons which lie inside the boundary B(S), K2(S) the number of vertices of degree 2 of

S and K3(S) the number of vertices of degree 3. Our goal is to lower bound K3(S) by some

function of K2(S). We will do that in two steps.

Lemma 9. Let S be any set of vertices in a hexagonal plane such that each vertex of S has

a degree at least 2. We have K3(S) ≤ 2K7(S) − 2c, where c is the number of connected

components of S.
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Proof. First, assume that S is a complete 2-connected set. We proceed by induction on

K7(S). If K7(S) = 1 then the lemma trivially holds. There must be a hexagon H in S

sharing at least two sides with the boundary B(S) such that all its boundary sides form a

single path P . Consider a set S′ obtained from S by removing inner vertices of path P .

Set S′ contains all hexagons contained in S besides H. Thus S′ is a complete 2-connected

set and the number of hexagons K7(S′) is K7(S) − 1. At the same time, S′ must have

two vertices of degree 3 less than S (end points of P become vertices of degree 2 and other

vertices on P which were removed when constructing S′ must have had degree 2). By

induction hypothesis, K3(S)−2 = K3(S
′) ≤ 2K7(S′)−2 = 2(K7(S)−1)−2. This implies

that K3(S) ≤ 2K7(S) − 2.

Second, assume that S is just a 2-connected set. Let S̄ be a set constructed from S by

adding all vertices which lies inside the boundary B(S). Note that B(S̄) = B(S) and S̄ is

complete. Furthermore, the number of vertices of degree 3 of S̄ could only increase when

adding vertices to S. Therefore, K3(S) ≤ K3(S̄) ≤ 2K7(S̄) − 2 = 2K7(S) − 2.

Third, assume that S is connected and let S1, . . . , Sl be 2-connected components of S.

Contracting every 2-connected component to a single vertex we obtain a tree T . Every

vertex of T of degree 1 or higher than 3 must be a contracted vertex and the number of

contracted vertices is l. Let nd be the number of all vertices of degree d and let n′
d the

number of all contracted vertices of degree d. Note that for d = 1 and d ≥ 4, n′
d = nd and

that
∑

d≥1 n′
d = l. Set S has three types of vertices of degree 3: (i) vertices of degree 3 from

2-connected components; (ii) vertices of degree 3 created by edges attached to 2-connected

components; and (iii) n3 − n′
3 of vertices of degree 3 which are not part of any 2-connected

component. Note that a contracted vertex of degree d in T corresponds to d vertices of

degree 3 of type (ii). Therefore,

K3(S) =
l

∑

i=1

K3(Si) +
∑

d≥1

d · n′
d + n3 − n′

3 =
l

∑

i=1

K3(Si) + 2l +
∑

d

(d − 2)nd .

It can be easily shown by induction that for any tree,
∑

d(d − 2)nd = −2. We know that

the lemma holds for every 2-connected component, i.e., for every i = 1, . . . , l, K3(Si) ≤

2K7(Si) − 2. Plugging these two facts into formula for K3 we obtain

K3(S) ≤ 2

l
∑

i=1

K7(Si) − 2l + 2l − 2 = 2K7(S) − 2 .
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Finally, by summing the bound for each connected component of S, we obtain the desired

bound for any S.

Figure 5.13: Example of a pseudohexagonal shape with sides 3,3,3,2,4,2.

Lemma 10. Let S be any set of vertices in a hexagonal plane such that each vertex of S

has a degree at least 2. We have K7(S) ≤ 1
12(K2(S)2 + K2(S) − 30).1

Proof. First, assume that S is complete and 2-connected, and that its boundary does not

have two consecutive concave angles, i.e., the boundary forms a pseudohexagonal shape,

cf. Figure 5.13. We will show that lemma holds for any such pseudohexagonal shape by

induction on K2(S), which is now equal to the sum of its six sides (measured in the number

of hexagons on the particular side). It is easy to verify that the lemma holds in the base

case when there are two neighboring sides equal to one. Indeed, in this case hexagonal

shape is formed by a linear chain of t hexagons and the number of vertices of degree 2 is

2t + 4. Assume it is not a base case and let s be the shortest side of the hexagonal shape

S. Observe that the neighboring sides to s are longer than 1. Consider a hexagonal shape

S′ obtained from S by removing a row of hexagons on the side s. The number of hexagons

K7(S′) is K7(S) − s and since side s was prolonged by 1, while the neighboring sides

shortened by 1, K2(S
′) = K2(S) − 1. By induction hypothesis, K7(S) − s = K7(S′) ≤

1
12(K2(S

′)(K2(S
′) + 1) − 30) = 1

12 (K2(S)(K2(S) − 1) − 30). Since, s is the shortest side of

S, K2(S) ≥ 6s, and hence

K7(S) ≤ s + 1
12 (K2(S)(K2(S) − 1) − 30)

≤ 1
6K2(S) + 1

12 (K2(S)2 − K2(S) − 30) = 1
12 (K2(S)2 + K2(S) − 30) .

Second, assume that S is complete and 2-connected. We will transform S to a new set

S′ by repeating the following process until possible: if there are two or three consecutive

1Note that this is not a tight bound. We conjecture that the following bound holds K7(S) ≤ 1

12
(K2(S)2 −

6K2(S) + 12).
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concave angles on the boundary add the vertices of the hexagon they are part of, to S. It

is easy to see that this process must stop (we will never go outside of any hexagonal shape

enclosing S). Note that in each step K7 increases by 1 and K2 either stays the same or

decreases by 1. Thus K7(S) ≤ K7(S′) and K2(S
′) ≤ K2(S). Since, S′ is a hexagonal

shape and complete, the lemma holds for it. Thus it holds for S as well: K7(S) ≤ K(S′) ≤
1
12(K2(S

′)2 + K2(S
′) − 30) ≤ 1

12(K2(S)2 + K2(S) − 30).

Third, assume that S is 2-connected, but not complete. Let S̄ be the completion of

S as in the proof of Lemma 9. Note all vertices of degree 2 in S̄ are on the boundary

B(S̄) = B(S) and they must be vertices of degree 2 in S as well. Hence, K7(S) = K7(S̄)

and K2(S) ≥ K2(S̄). Since S̄ is complete and 2-connected, it satisfies the lemma. It follows

that S satisfies the lemma as well.

Finally, we prove that any set S satisfies the lemma by induction on the number of

2-connected components. Let S′ be a 2-connected component of S with at most one edge to

S − S′. Clearly, such a component exists. If S′ is not connected to S − S′, let S′′ = S − S′.

Otherwise, let P = (x, . . . , y) be the path such that x is the only vertex of P in S′, all

inner vertices I(P ) of P have degree 2 and y has degree 3. Then let S′′ = S − S′ − I(P ).

Note that K7(S) = K7(S′) + K7(S′′) and K2(S) ≥ K2(S
′) + K2(S

′′) − 2. Furthermore,

S′′ satisfies the lemma by induction hypothesis and S′ as well, since it is a 2-connected set.

Easy calculations and the fact that K2(S
′),K2(S

′′) ≥ 6 show that S satisfies the lemma as

well.

Corollary 1. Let S be any set of vertices in a hexagonal plane such that each vertex of S

has a degree at least 2. We have K3(S) ≤ 1
6(K2(S)2 + K2(S) − 30) − 2c, where c is the

number of connected components of S.

5.4.5 Limiting certain types of connections and vertices

In this subsection we limit certain types of connections and vertices that occur in a saturated

fold F of q. We first prove that there are at most 4 v-vertices in F .

Claim 6. Let F be a saturated fold of q and assume it contains a complex component C

without a vv-vertex. Let s be the smallest integer such that Cs is different from C1 and let

e be the largest integer such that Ce is different from Cr. Let w1 be the length of the path in

Cs and w2 the length of the path in Ce. Then w1 + w2 ≤ 40.
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Proof. First, note that w1 and w2 are well-defined, as by Lemma 8, Cs and Ce contain

only one path. Let (p1, . . . , pw1
) be the path in Cs. Obviously, vertices p−1

1 , . . . , p−1
w1

are

h-vertices. Let p−1
0 (p−1

w1+1) be the other neighbor of p−1
1 (p−1

w1
). Both, p−1

0 and p−1
w1+1, are

vh-vertices, otherwise we have an occurrence of substring H0HH. Similarly, all vertices,

p−s+1
0 , p−s+1

1 , . . . , p−s+1
w1+1, are vh-vertices. Therefore, in layers C1 and Cs we have at least

w1 + 4 S-vertices. Similarly, in layers Ce and Cr we have at least w2 + 4 S-vertices. Hence,

by Observation 7, C contains at least w1 +w2 +12 S-vertices. Since q contains 52 S-vertices

, the claim follows.

Lemma 11. Let F be a saturated fold of q. No v-vertex can be part of substring (00HH)356.

Consequently, there are at most 4 v-vertices in F .

. . .

Figure 5.14: An example of extending the wall’s end in layer eliminating vertices with horizontal
degree 1.

Proof. Note that since each complex component introduces at least 4 occurrences of H0H,

there is at most one complex component in F . Assume to the contrary that the substring

(00HH)356 contains a v-vertex. By Lemma 4, the substring contains only v-vertices. Let

P1, . . . , Pk be all hexagonal planes containing these v-vertices and let Si be the set of H-

components in the plane Pi which contain at least one of these v-vertices and let S be

the union of S1, . . . , Sk. Since every component is either a tube, a 2-layer component,

a complex component with six vv-vertices, a basic complex component or an appendix

complex component, we have the following observations:

• The set S contains only layers of 2-layer components, complex components with vv-

vertices, the lower and upper parts of a complex components without vv-vertices if they

are 2-layer components and layers of appendix of appendix components. Since all these

layers come in identical pairs with exception of a vv-component in which 2-layers differ

in 6 vertices, we will consider only one layer in the pair. From each pair select only

one layer, for the vv-component select the layer with vv-vertices. Let J ⊆ {1, . . . , k}

be the set of the selected layers and let M = ∪i∈JSi. We have K2(M) ≤ K2(S) and

K3(M) ≥ 1
2K3(S).
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• All vertices have horizontal degree 2 or 3 with exception of the wall and (possibly)

appendix of a complex component without vv-vertices. The layer of a wall without

appendix contains two vertices with horizontal degree 1, but no vertex with horizontal

degree 3, hence, it is not included in M . On the other hand, a layer containing the

appendix contains exactly one vertex with horizontal degree 1. Let us extend the

path ending in this vertex in its layer until we join another H-vertex, see an example

in Figure 5.14. There is always a way to do this which introduces at most 4 new

vertices with horizontal degree 2, and eliminates at least one such vertex. Let M ′

be the set M extended by these elements and S′
i either Si or Si extended by these

elements if Si was the component containing the appendix. Hence, since there is at

most one complex component and it contains at most two layers with appendix, we

have K2(M
′) ≤ K2(M) + 3 and K3(M

′) ≥ K3(M).

By Corollary 1, we have

K3(M) ≤ K3(M
′) =

∑

i∈J

K3(S
′
i) ≤

1

6

∑

i∈J

(K2(S
′
i)

2 + K2(S
′
i)) − 7k

≤
1

6
(K2(M

′)2 + K2(M
′)) − 7 ≤

1

6
(K2(M)2 + 7K2(M)) − 5 . (5.1)

It remains to upper bound the number of vertices with horizontal degree 2. Such vertices

are either vh-vertices or h-vertices. By Observation 2, there is at most 52 vh-vertices. If we

examine all possible components, we can see that h-vertices are in the inner layers of tubes

or in the last (first) layer of the lower (upper) part of the complex components which are

directly attached to the walls. However, the component in the inner layer of tube contains

only vertices with horizontal degree 2, hence, it does not belong to S. Since we have at

most one complex component, by Claim 6, we have at most 40 h-vertices which are in S.

At most half of these vertices are in M , hence, K2(M) ≤ (52 + 40)/2 = 46. By (5.1), we

have

K3(S) ≤ 2K3(M) ≤
1

3
(462 + 7 × 46) − 10 < 711 .

Since, every v-vertex has horizontal degree 3, by the assumption, we have K3(S) ≥ 2×356 =

712, a contradiction.

(S ≍ h)-connections

Corollary 2. Let F be a saturated fold of q. Then F contains 36 (S ≍ h)-connections.
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Proof. By Observation 2, F contains 36 (S ≍ D)-connections. Each D-vertex in such a

connection is part of the substring (00HH)356 , hence, by Lemma 11, is an h-vertex.

v
ux

y

(a)

v

u x

y

(b)

y

x
u = w

v

(c)

y

w x
v u

(d)

Figure 5.15: (a-c) Illustration of an external horizontal (S ≍ h)-connection. Contradictory cases:
(a) the case when v = u1, (b) the case where x and y are on the same hexagon. The only possible
configuration in (c). (d) Illustration of a vertical external (S ≍ h)-connection.

We define two types of (S ≍ h)-connections. Assume that S-vertex x is (S ≍ h)-

connectedand to y. We say that this (S ≍ h)-connection is horizontal is x and y are

on the same plane (cf. Figure 5.15(c)) and it is vertical if x and y are on two consecutive

planes (cf. Figure 5.15(d)).

Claim 7. Let F be a saturated fold of q. Let x be a vh-vertex and y be an h-vertex in

two different components W1 and W2. Then all (S ≍ h)-connections are either horizontal

or vertical. Furthermore, a vertical (S ≍ h)-connection creates an H0H-connection between

x and a vertical neighbor of y. Finally, if W1 and W2 are non-complex, there is at most

one parallel (S ≍ h)-connection with (x, u, v, y) and in the vertical case the two components

share only one layer.

Proof. Let x be on plane Hi. Without loss of generality assume that x1 is a 0-vertex and

let w be the horizontal 0-neighbor of x. Clearly, u is either x1 or w. We consider each case

separately.

Case 1 (u = w). If v = u1 then y must be a horizontal neighbor of v and thus, u is adjacent

to the H-vertex y−1, a contradiction (cf. Figure 5.15(a)). Furthermore, if v = u−1 then

y = x−1 and it follows that x and y are in the same component, a contradiction. Therefore,

v is a horizontal neighbor of u and y is a horizontal neighbor of v. Note that y must be the

horizontal neighbor of v that is not on the same hexagon with x otherwise, x and y would be

in the same component, a contradiction, cf. Figure 5.15(b). Hence, x and y are on the same

plane (horizontal (S ≍ h)-connection), cf. Figure 5.15(c). Next, assume that (xi, ui, vi, yi)

and (xj , uj , vj , yj) are two parallel (S ≍ h)-connections with (x, u, v, y). Obviously, i, j < 0,
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and let i < j. Since (x, u, v, y) and (xi, ui, vi, yi) are parallel connections, all vertices between

x and xi (y and yi) are H-vertices, i.e., neither xj nor yj is an vh-vertex. If the components

they are contained in are non-complex, they must be D-vertices, a contradiction.

Case 2 (u = x1). By a similar argument used in the first case we can show that v 6= u1.

Therefore, v is a horizontal neighbor of u. Since y is an h-vertex, none of its vertical neighbors

can be a 0-vertices hence, v = w1. It follows that y is a horizontal neighbor of v and it is on

plane Hi+1, cf. Figure 5.15(d). This type of (S ≍ h)-connection is called a vertical (S ≍ h)-

connection. Furthermore, in this setting (y−1, w, x) form an H0H-connection. Second, note

that y−1 is an S-vertex. If the component containing y−1 is non-complex, then it is a vh-

vertex, i.e., y−2 is 0-vertex and the two components can share only one layer. Consequently,

there is at most one parallel (S ≍ h)-connection to (x, u, v, y).

H0H-connections

Definition 6. We say that an H0H-connection is horizontal, vertical if both peptide edges

of the connection are horizontal, vertical, respectively.

We have the following simple observation.

Observation 10. Let F be a saturated fold of a sparse protein of length at least 5. Then

every H0H-connection connecting two different components is either horizontal or vertical.

Proof. Assume that H0H-connection (x, y, z) is neither horizontal nor vertical. Without loss

of generality, assume that the edge (x, y) is vertical, let y = x1, and (y, z) is horizontal. If

z−1 is a 0-vertex then we have a closed path of length 4. If z−1 is an H-vertex then x and

y belong to the same component.

Claim 8. Let F be a saturated fold of q and let C be a component of F . Assume that Ci

is a layer in F that does not contain any vertex of plane degree 1. Then there is no H0H-

connection with both end points in Ci. Consequently, there is no internal H0H-connection

in a tube or a 2-layer component.

Proof. To the contrary assume that x and y have a common horizontal 0-neighbor z. We

remark that component C cannot be a vv-component since such a component already con-

tains 6 H0H-connections which are different type than (x, z, y). Clearly one of the vertical
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(a)

x
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(b)

Figure 5.16: Horizontal H0H-connection (x, z, y): (a) the case where y−1 is 0-vertex, (b) the case
where y1 is 0-vertex.

neighbors of x has to be a 0-vertex otherwise F contains an occurrence of H0HH as a sub-

string. Without loss of generality assume that x1 is a 0-vertex. Similarly one of the vertical

neighbors of y has to be a 0-vertex. First assume that y−1 is a 0-vertex, cf. Figure 5.16(a).

Note that in this case, layers Ci−1, Ci and Ci+1 are different which cannot happen in any

component of F . Therefore, x and y are in different components, a contradiction.

Second assume that y1 is a 0-vertex. It follows that y−1 is an H-vertex. Note that x−2

and y−2 are 0-vertices, otherwise F would contain H0HH as a substring cf. Figure 5.16(b).

Moreover, all horizontal neighbors of y1, y−2, x1 and x−2, except z1 and z−1 are 0-vertices,

otherwise F would contain an occurrence of the substring H0H0H. Next consider the H0H

connection (x, z, y). One of the vertices x and y has to connect to a D-vertex w via two

0-vertices u and v. By Lemma 11, w must be an h-vertex. It is easy to see that u = x1 and

v = x2. Now w must be a horizontal neighbor of x2 which is not possible.

Corollary 3. Let F be a saturated fold of q. Then the smallest non-simple tube contains 7

hexagons and 36 S-vertices, cf. Figure 5.8(b).

Lemma 12. Let F be a saturated fold of q. Consider an H0H-connection (x, y, z) connecting

two non-complex components W1 and W2. If this connection is horizontal then at least one

of the two components is a tube with more than two layers, they share only one plane and

they are configured as in Figure 5.17(b). If this connection is vertical then they do not share

any plane.

Proof. First, assume that (x, y, z) is a horizontal H0H-connection. It is easy to see that

W1 and W2 make another horizontal H0H-connection (x′, y′, z′), cf. Figure 5.17(a). By the

properties of q one of the vertices x or z must connect to a D-vertex w through two 0-vertices



CHAPTER 5. STRUCTURE APPROX. IPF IN 3D HEX. LATTICE 79

z y

x

x′y′

z′
u
v wW1

W2

(a)

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

z y

x
u

vw
z′

y′ x′

W1

W2

(b)

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

(c)

Figure 5.17: Situation when two non-complex components are connected with a horizontal H0H-
connection: (a) x is connected to an h-vertex w away from the other component; (b) w belongs to
the other component. (c) An example of two non-complex components connected with a vertical
H0H-connection.

u and v. Without loss of generality, let it be x. Obviously, x is a vh-vertex. Without loss

of generality, assume that u = x1. By Lemma 11, w must be an h-vertex, therefore, w is a

horizontal neighbor of v. Now, if v = u1 then u will be adjacent to the H-vertex w−1 (cf.

Figure 5.17(a)), a contradiction. Hence, v is a horizontal neighbor of u and it is easy to

see that v = y1 and w = z1. The configuration of parts of two components is depicted in

Figure 5.17(b). Since, the h-vertex w belongs to W2, W2 must be a tube with height more

than 2 layers and since these two components are non-complex, they can only share one

plane.

Second, assume that (x, y, z) is a vertical H0H-connection. Obviously, the two com-

ponents do not share any plane, and all H0H-connections between them are vertical. An

example of configuration in which two non-complex component are vertically H0H-connected

is depicted in Figure 5.17(c).

5.4.6 Limiting the possible configurations of complex components

In this subsection we show that only a limited number of configurations are possible for a

complex component. This will greatly simplify our analysis in the later sections. In the

following arguments we say that a path has length k if it contains k vertices.

Lemma 13. Let F be a saturated fold of q. Then F does not contain any vv-component.

Proof. Let C be a vv-component. Consider any of the H0H-paths in C for example (x1, x
1
1, y

1
1),

cf. Figure 5.9. Notice that this path has to continue with substring (00HH)ki at one end.

By Lemma 11, all H-vertices in this substring are h-vertices, i.e., either y1
1 or x−1

1 has to
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00-connect to an h-vertex. It is easy to check that none of these connections is possible, a

contradiction.

Lemma 14. Let F be a saturated fold of q and let C be a complex component in F with

layers C1, C2, . . . , Cr. Layer C1 and similarly Cr is either one hexagon or consists of two

hexagons attached by one edge or connected by a path (cf. Figure 5.19).

(a) (b)

Figure 5.18: (a) The second smallest cycle without H0H occurrences. (b) The smallest possible layer
C1 of a complex component with the lower part being a 2-layer component containing a large cycle.

(a)

. . .

. . .

(b)

(c)

Figure 5.19: Possible configurations for the upper and lower part of a complex component.

Proof. By Lemma 13, C does not contain any vv-vertex. We prove the claim for Cr, the

proof for C1 follows by symmetry. By Lemma 8, Cr does not contain any horizontal H0H-

connection. Furthermore, Cr cannot contain more than 2 vertices of plane degree 3 because

otherwise we get more than 4 v-vertices, a contradiction by Lemma 11. Hence, Cr has one

of the three topologies depicted in Figure 5.19. In principle, each hexagon could be replaced

with larger cycle; we will show that this does not happen.

The smallest possible component layer with no vertex of plane degree 3 other than a

simple hexagon is a cycle containing 7 hexagons inside, cf. Figure 5.18(a) and the smallest



CHAPTER 5. STRUCTURE APPROX. IPF IN 3D HEX. LATTICE 81

possible layer with exactly two vertices of plane degree 3 and at least three hexagons is

depicted in Figure 5.18(b). We prove that Cr cannot be the cycle in Figure 5.18(a) by

computing the lower bound on the number of S-vertices in F . Clearly C will have more

S-vertices if Cr has two vertices of degree 3 as in Figure 5.18(b).

Assume the contrary. We will consider two cases: C is either a basic or an appendix

complex component.

Case 1. Let C be a basic complex component. Note that the number of S-vertices in C is

minimized when the wall width is maximized and the wall height is minimized. The lower

part of C is either a simple tube or the second smallest tube similar to Cr. Figure 5.20(a)-

(b) depicts these configurations with the smallest number of S-vertices. The width of the

wall can be at most 4 and 16 in the first and second configurations, respectively. However,

in both of these configurations the number of S-vertices is at least 44 which happens when

the height of the wall is 2. In addition, notice that C only contains 4 H0H-connections,

therefore, F must contain another component which brings the total number of S-vertices

up to at least 44 + 12 = 56, a contradiction by Observation 2.

Case 2. Let C be an appendix component and let w1 and w2 be the lower and the upper

wall width of C, respectively cf. Figure 5.20(c). Similar to case 1, the lower part of C is

either a simple tube or the second smallest tube. If it is the second smallest tube then

the minimum number of S-vertices will be (18 + 2) · 2 (vertices in lower and upper part) +

22 (vertices in appendix and wall ends) = 62, a contradiction. Hence, assume that the C1

consists of one hexagon. Note that w1 ≤ 4 and w2 ≤ 16. The minimum number of S-vertices

in different layers of C is as follows:

• vertices in Cr: 18

• vertices in the first layer of upper part: 18 − w2

• vertices on wall ends: 8

• vertices of the appendix: the appendix without the arm contains at least 10 S-vertices,

the arm on its ends contain 4 and if the walls have different widths, then on the side of

the shorter wall the arm has additional |w2 −w1| S-vertices. Hence, in total appendix

has at least 14 + |w2 − w1| S-vertices.

• vertices of the first layer of the upper part: 6 − w1
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• vertices in C1: 6

Hence, the total number of S-vertices is at least 70−w1−w2+|w2−w1|. Now, if w1 ≤ w2

then the minimum number of S-vertices is 70 − w1 − w2 + |w2 − w1| = 70 − 2w1 ≥ 62, a

contradiction. If 4 ≥ w1 > w2 it is 70 − w1 − w2 + |w2 − w1| = 70 − 2w2 ≥ 62, also a

contradiction.
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Figure 5.20: (a) A basic complex component with the second smallest tube as upper part and a
simple tube as the lower part. (b) A basic complex component with the second smallest tube as
upper and lower part. (c) An appendix component with the second smallest tube as upper part and
a simple hexagon as lower part.

Lemma 15. Let F be a saturated fold of q and let C be a complex component in F . Then

the lower and upper part of C are simple tubes.

Proof. By Lemma 14, the upper part of C is either a simple tube or one of the 2-layer

components depicted in Figure 5.19(b)-(c). Suppose that one of the parts is not a simple
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tube, say the upper part. First notice that either of the 2-layer components in Figure 5.19(b)

and Figure 5.19(c) contain 4 v-vertices therefore, by Lemma 11, C cannot have an appendix,

and the lower part must be a simple tube as well. Therefore, C only contains 4 H0H

connections, and hence, F must contain at least one other component T . Furthermore, T

has to be a simple tube because if it is a 2-layer component, a complex component or a

large tube then F would contain more than 4 v-vertices, more than 6 H0H-connections or

more than 52 S-vertices, respectively.

Next we consider two cases for the shape of the upper part of C:

Case 1. Assume that the upper part of C is a connector. By Lemma 6, the width of the

wall is 2. Now independent of the height of the wall in C the number of D-vertices modulo

6 in F is 2, a contradiction.

Case 2. Assume that the upper part of C consists of two hexagons connected by a path,

cf. Figure 5.19(c). The wall part of C can either attach to one of the hexagons or the path

P connecting the two hexagons, cf. Figure 5.21. Similar to the previous case if the width

of the wall is 2 the number of D-vertices modulo 6 in F is 2 independent of height or the

location of the wall, a contradiction. Furthermore, if the wall is attached to one of the

hexagons then by Lemma 6, the width of the wall can be at most 3. Figure 5.21(a) depicts

this configuration with wall width equal to 3. Let x, y and z be the vertices on the last

layer of the wall. Each of the vertices x1 and z1 must connect to a D-vertex via a peptide

bond. The only D-vertex in their neighborhood is y1 thus, x1 and z1 must both connect to

y1 which is not possible. Using a similar argument we can show that the width of the wall

cannot be 3 for the case where it is attached to the path P . Since the lower part is a simple

tube the only case remaining for analysis is the configuration in which the wall is attached

to P and its width is 4. By Lemma 6, the smallest length of P is 6 and by Observation 7, the

smallest height of the wall is 4. Note that such a component would have 40 S-vertices (28

upper part, 4 wall and 8 lower part), and with the extra component at least 52 S-vertices.

Increasing either the length of the path or the height of the wall would increase this number

hence, Figure 5.21(b) depicts the only possible configuration of the complex component.

We show that this configuration is also impossible by determining the maximum number of

(S ≍ h)-connections possible. Note that at most 12 internal (S ≍ h)-connections are possible

across the vertices of C and T , respectively. Therefore, by Corollary 2 we need to create

at least 12 external (S ≍ h)-connections between the S-vertices of C and h-vertices of T .

However, at least 10 of these (S ≍ h)-connections must be horizontal because each vertical
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(S ≍ h)-connection create an H0H-connection, by Claim 7. Since a horizontal (S ≍ h)-

connection between C and T is possible only when the H-vertices in the connection are on

the same plane, C and T must have at least 5 connections per plane which is easy to see it

is not possible given the shape of C.
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Figure 5.21: Examples of complex components with a 2-layer component consists of two hexagons
connected by a path as the upper part: (a) wall is attached to one of the hexagons; (b) wall is
attached to the path connecting hexagons.

Lemma 16. Let F be a saturated fold of q and let C be a complex component in F . The

width of the wall in C is either 2 or 4.

Proof. By Lemma 13, C does not contain any vv-vertex and by Lemma 15, its lower and

upper part are simple tubes. Assume that the lower wall starts at layer Cs of C. First

observe that the wall width cannot be 1 or 5 otherwise, we get an H-vertex with three

0-neighbors or a 0-vertex with three H-neighbors, respectively, both contradictions.

Therefore, it is enough to show that the wall width cannot be 3. Let x, y, z be the path

of the wall in layer Cs (attached to the tube component). Note the number of D-vertices

in this layer and above is odd. Since they have to form pairs, y−1 has to connect to y, and

hence, x and z have to connect to x1 and z1, respectively. Let us look at patterns of vertical

connections between consecutive layers of a tube. It can be shown by induction (from the



CHAPTER 5. STRUCTURE APPROX. IPF IN 3D HEX. LATTICE 85

top of the tube) that only the patterns depicted in Figure 5.22(a) are possible. However,

the pattern required to realize connections xx1 and zz1, depicted in Figure 5.22(b) cannot

be obtained, a contradiction.

(a) (b)

Figure 5.22: (a) All possible patterns (up to rotation) for vertical connections between two consec-
utive layers of a simple tube. The ”x” means vertical connection is not present, arrow means it is
present. (b) Pattern required to connect to the last layer of a simple tube which is connected to a
path of length 3.

5.4.7 There is no appendix component

Consider an appendix component C in a saturated fold F of q. By Lemma 15, the upper

and lower part of C are simple tubes. Let Ca and Ca+1 be the layers of C that contain the

appendix part. Observe that Ca and similarly Ca+1 contains an odd number of vertices of

plane degree 3 (such vertices correspond to v-vertices in C). Therefore, C contains 4k − 2

v-vertices for some positive integer k. By Lemma 11, F contains at most 4 v-vertices hence,

the appendix part of C contains one hexagon.

Observation 11. Let F be a saturated fold of q. Let C be an appendix component in F .

Then C contains exactly 2 v-vertices.

Lemma 17. Let F be a saturated fold of q. Then F does not contain any appendix compo-

nent.

Proof. Assume that F contains an appendix component C. First we show that F can only

contain simple tubes. By Observation 9 and Corollary 3, F cannot contain a non-simple

tube, otherwise we have too many S-vertices. If F contains another complex component,

then we have at least 10 H0H substrings, which is not possible. If it contains a 2-layer

component, then F contains at least 6 v-vertices, two in C and 4 in the 2-layer component,

a contradiction. Hence, all other components of F are simple tubes. Let Nt be the number

of simple tubes.
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Figure 5.23: A part of (a) an appendix component with wall of width 4 all along; (b) an appendix
component with wall of width 4 and 2 on different sides of appendix.

Let w1 (h1) be the width (height) of the lower wall of C and w2 (h2) the width (height)

the upper wall. Let a be the lengths of the arm. We will calculate the number of D-

vertices modulo 6 and the number of S-vertices in C and F . The lower (upper) part of C (a

tube) contains w1 mod 6 (w2 mod 6) D-vertices modulo 6, the lower (upper) wall (w1−2)h1

((w2 − 2)h2), the arm of appendix w1 − 1 + w2 − 1 and the remaining part of the appendix,

by Observation 11, 2 D-vertices. That is

2(w1 + w2) + (w1 − 2)h1 + (w2 − 2)h2 mod 6 (5.2)

D-vertices modulo 6 in C, and since all other component are simple tubes, the same number

in F . The number of S-vertices is 12 − w1 (12 − w2) in the lower (upper) part, 2h1 (2h2)

in the lower (upper) wall, 2a − w1 − w2 + 2 in the arm and at least 10 in the remaining

part of the appendix. That is at least 36 + 2(h1 + h2 + a − w1 − w2) S-vertices in C, and

36 + 2(h1 + h2 + a − w1 − w2) + 12Nt in F .

By Lemma 16, both w1 and w2 are either 2 or 4, hence, we will consider the following 3

cases (without loss of generality, we assume that w1 ≤ w2).

Case 1. w1 = w2 = 2. By the above formula, the number of D-vertices modulo 6 in F is 2,

a contradiction with Observation 2.

In the remaining two cases, we will first show that C is the only component, i.e., that

Nt = 0.

Case 2. w1 = w2 = 4, cf. Figure 5.23(a). By the above formula, the number of D-vertices
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in F is 4+2(h1 +h2) mod 6. Since, by Observation 2, this number is 4, we have h1 +h2 ≡ 0

mod 3. Since, by Observation 9, h1, h2 ≥ 2, we have h1 + h2 ≥ 6. Also note that a ≥ 5.

Hence, the number of S-vertices is at least 36 + 2 × 3 + 12Nt. Since this number should be

52, we have Nt = 0.

Case 3. w1 = 2 and w2 = 4, cf. Figure 5.23(b). The number of D-vertices modulo 6 in F is

2h2 mod 6. Hence, h2 ≥ 3. And since w2 = 4, we have again a ≥ 5. Therefore, the number

of S-vertices in F is at least 36 + 2 × 5 + 12Nt. Hence, again Nt = 0.

We will determine the maximum number of (S ≍ h)-connections in F . Notice that in any

of the configurations the S-vertices in the wall except for the end vertices on the first and

the last layers cannot connect to any h-vertex, so there are at most 4 (S ≍ h)-connections

involving the S-vertices of the wall components. Furthermore, the S-vertices in the appendix

part and its arm can only connect to the h-vertices in the wall that are in the same plane

with them otherwise, we get additional H0H-connections, a contradiction. Therefore, there

can be at most 4 (S ≍ h)-connections involving the S-vertices of the appendix part and its

arm. The last (S ≍ h)-connections that we can get in F are through vh-vertices of the lower

and upper tubes, which are 16 in the first configuration and 18 in the second configuration.

Two more (S ≍ h)-connections are possible in the second configuration through vh-vertices x

and y in Figure 5.23 (b). Therefore, in total F can contain at most 28 (S ≍ h)-connections,

a contradiction, by Corollary 2.

No other type of possible components can introduce 6 occurrences of H0H, hence, a

saturated fold of F contains at least two components. On other hand, since any of possible

components has at least 12 S-vertices, we have the following corollary.

Corollary 4. Any saturated fold of q has at least 2 and at most 4 components.

In what follows we will analyze all three possibilities. But first, let us have a closer look

at tubes.

5.4.8 Tubes

Lemma 18. Let F be a saturated fold of q. Any tube in F has either 12 or at least 36

S-vertices.

Proof. Obviously, any cycle in a hexagonal plane has at least 6 vertices, i.e., a smallest

possible tube will have at least 12 S-vertices. Furthermore, by Claim 8, there is no H0H
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with both ends in the same tube. The smallest cycle larger than a hexagon such that no

two non-adjacent vertices are at distance two contains 7 hexagons inside. Thus, the second

smallest tube has 36 S-vertices.

Lemma 19. Let F be a saturated fold of q. Two H0H-connected tubes in F are both simple

and furthermore, they make exactly two H0H-connections.
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Figure 5.24: (a) A shortest possible collection of paths connecting the parts of cycle of T2 that make
6 horizontal H0H-connections with a simple tube T1. (b) Six vertical H0H-connections between two
simple tubes.

Proof. Let T1 and T2 be two tubes in F . By Corollary 3, one of them, assume T1, must be

a simple tube. First note that if T2 is not a simple tube it must make 6 H0H-connections

with T1 since F cannot have another component. Assume that there is an H0H-connection

(x, y, z) such that x and z are H-vertices in T1 and T2, respectively. By Observation 10,

there are two cases:

Horizontal H0H-connection (x, y, z). By Lemma 12, T1 and T2 share only one plane Hi

and create at least two H0H-connections as depicted in Figure 5.17(b). We will show that

T2 must also be a simple tube. Assume the contrary. Since T2 has at least 36 S-vertices,

there are no other components in F , and hence, T2 must make 6 H0H-connections with T1.

Moreover, since T1 and T2 share a plane Hi no vertex of T1 can be directly above/below any

vertex of T2, i.e, all the H0H-connections are horizontal and they are on plane Hi. Therefore,

the only way how to make 6 horizontal H0H-connections is when the large cycle C2 of T2 on

plane Hi contains 3 parts depicted in Figure 5.24(a) with thick lines. The shortest collection

of 3 disjoint paths which do not create H0H-connection and connecting these parts to one
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cycle is shown with dashed lines. Note that C2 would contain at least 30 vertices and hence,

T2 would have more than 60 vh-vertices, a contradiction.

Vertical H0H-connections. Assume that x, y and z are on three consecutive planes Hi,

Hi+1 and Hi+2, respectively. In this case, T1 and T2 do not share any plane and hence,

all the H0H-connections between them must be vertical and in the same planes. Note that

if T2 is not a simple tube then its projection can overlap with with the projection of T1

on at most 3 edges creating at most 4 H0H-connections, a contradiction since there are no

other components in F . Clearly, projections of two simple tubes could overlap either on 1

or 6 edges creating 2 or 6 H0H-connections, respectively. We show that two simple tubes

cannot make 6 vertical H0H-connections. Assume the contrary. Figure 5.24(b) depicts two

H0H-connected simple tubes with 6 H0H-connections. Note that no pair of H0H-connections

in this configuration can connect through two 0-vertices. Therefore, F does not contain the

substring H0H00H0H which is in q, a contradiction.

5.4.9 2 components

Lemma 20. Let F be a saturated fold of q. Fold F cannot have only 2 components.

Proof. Assume there are two components in F . Six cases are possible.

Case 1. Assume they are both tubes. By Lemma 19, they can only make two H0H-

connections, a contradiction.

Case 2. Assume they are both 2-layer components. By Lemma 11, we have no occurrence

of substring (00HH)ki , a contradiction.

Case 3. Assume they are both basic complex components. Then we have 8 occurrences of

H0H, a contradiction.

Case 4. Assume one component is a tube T and the other a 2-layer component C. By

Lemma 11 and Lemma 18, there are only two configurations with 52 S-vertices. The first

configuration consists of a connector and a tube that is the second smallest tube with 7

hexagons inside of its boundary on each layer (16 + 36 = 52). The second configuration

consists of a 2-layer component with two simple tubes connecting by a path of length 11

and a simple tube (40 + 12 = 52). Note that in both configurations the two components

must make 6 H0H-connections. In the first configuration it is easy to see that at most two

horizontal H0H-connections can be created between the tube and connector. Therefore,

all the H0H-connections must be vertical. However, in this case a v-vertex of the 2-layer
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component will be part of an H0H-connection creating the substring H0HH, a contradiction.

We show that the second configuration is not possible by showing that the maximum number

of (S ≍ h)-connections in F is less than 36. Notice that at most two h-vertices of each side of

the tube can make (S ≍ h)-connections with vh-vertices of the 2-layer component and hence,

we can obtain at most 12 external (S ≍ h)-connections between the 2-layer component and

the tube. Considering the 12 internal (S ≍ h)-connections in the tube, the total number of

(S ≍ h)-connections in this configuration is at most 24, a contradiction by Corollary 2.

Case 5. Assume one component is a tube and the other a basic complex component.

Obviously, the tube must be a simple tube. By Lemma 15, the lower and upper parts of

the complex component are both simple tubes. Let w be the width of the wall and h its

height. The number of S-vertices is 12 + 24 − 2w + 2h = 52, so we have h = w + 8. On the

other hand, the number of D-vertices modulo 6 is 2w + (w− 2)h. By Lemma 16, w is either

2 or 4. For, w = 4 the number of D-vertices modulo 6 is 2, a contradiction. Thus, the only

possibility is w = 2 and h = 10. Note that if the tube does not connect (through one or two

0-vertices) to an end of the wall then, a substring (00H)9 is created which does not occur in

q. Hence, the tube has to connect to both ends of the wall. Figure 5.25 (a) and (b) depict

a schematic view at the connection of the wall and a tube (numbered positions) through

one and two 0-vertices, respectively. Notice that if the wall connects to tube through two

0-vertices the first two connections have to be horizontal. If the third connection is vertical

then we get the configuration in Figure 5.25(a) in one layer above or below. Clearly, the

only way that a tube can be connected to both ends of the wall is when it is in position 2

in Figure 5.25(a). Notice that in this case tube is connected to both ends of wall through

one 0-vertex creating an H0H-connection on each end. Furthermore, there will be at least

one parallel H0H-connection on each end and in total at least 4 additional H0H-connection,

a contradiction.

Case 6. Assume one component is a 2-layer component W , and the other a basic complex

component C. We show that the maximum number of (S ≍ h)-connections in this configu-

ration is less than 36. First we count the internal (S ≍ h)-connections in C. All h-vertices

in F appear inside the wall and the lower and the upper part of C. The S-vertices of the

wall except for the S-vertices on its first and last layers cannot connect to any h-vertex.

Therefore, there are at most 4 (S ≍ h)-connections with the S-vertices of the wall. There

are at most 12 − w S-vertices in the upper (lower) part of C, where w is the wall width.

Since w ≥ 2, there are at most 20 internal (S ≍ h)-connections with the S-vertices of these
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Figure 5.25: A schematic view at the connection of the wall and a tube through one 0-vertex (a)
and two 0-vertices (b).

parts. Therefore, there has to be at least 12 external (S ≍ h)-connections between C and

W . It is easy to verify that at most two h-vertices of each side of C can 00-connect to an

S-vertex of W . Hence, W has to 00-connect to C from each side. However, one can easily

show that for this to happen W must have at least 28 S-vertices in each layer and at least

56 in total, a contradiction.

5.4.10 3 components

Lemma 21. Let F be a saturated fold of q. Then F cannot contain 3 components where

none of them is a complex component.

Proof. Since the second smallest tube has 36 S-vertices, all tubes must be simple. Note that

F does not contain a complex component and by Lemma 11, F can contain at most one

2-layer component, hence, to obtain 52 S-vertices, F must have two tubes T1 and T2, and a

2-layer component W with two hexagons connected by a path of length 5 in each layer.

By Claim 8, there is no H0H-connection with both ends in W . Therefore, at least

one of the tubes, say T1, must H0H-connect to W . Furthermore, notice that S-vertices

of T1 and T2 can only provide 24 (S ≍ h)-connections, so we need to create 12 external

(S ≍ h)-connections between the S-vertices of W and h-vertices of T1 and T2. By Claim 7,

these connections are either horizontal or vertical. If W and one of the tubes are vertically

(S ≍ h)-connected then we have configuration in Figure 5.26(a). Notice that although

in this configuration two (S ≍ h)-connections are created between the tube and W , we
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Figure 5.26: Two possible configurations when a tube Ti and a 2-layer component W are (S ≍ h)-
connected: with (a) a vertical (S ≍ h)-connection, (b) a horizontal (S ≍ h)-connection.

lose two (S ≍ h)-connections across the tube. Therefore, there are 12 horizontal (S ≍ h)-

connections between the tubes and W . The only way to create these connections is depicted

in Figure 5.26(b).

Furthermore, since T1 and W are H0H-connected, by Lemma 12, none of the h-vertices of

T1 is on the same plane as the vh-vertices of W , and hence, they cannot make any horizontal

(S ≍ h)-connections. Therefore, all of the 12 (S ≍ h)-connections must be made between W

and T2. This requires that W connects to T2 from every side which is not possible since the

path connecting two hexagons of W has length only 5.

Lemma 22. Let F be a saturated fold of q. Then F cannot contain 3 components where

one of them is a complex component.

Proof. Assume that F contains a complex component B. By Lemma 13 and Lemma 17 B

is a basic complex component. By Lemma 15, B does not have a 2-layer part. Therefore,

the number of S-vertices and the number of D-vertices modulo 6 of B are 24− 2w + 2h and

2w + (w − 2)h mod 6, respectively where h is the height and w is the width of the wall of

B. By Lemma 16, two values are possible for w: w = 2 or w = 4. We will consider each

case separately.

Case 1. (w = 4) Since F contains at most one 2-layer component, one of the three

components in F must be a tube T . Furthermore, B has at least 20 S-vertices, therefore,



CHAPTER 5. STRUCTURE APPROX. IPF IN 3D HEX. LATTICE 93

the third component can have at most 20 S-vertices. Hence, it can be either another tube

T2, a connector C or a 2-layer component W that consists of two hexagons connected by

one edge in each layer. The values for h are 6, 4 and 2 when the third component is T2, C

or W , respectively. For h = 6, 4 the number of D-vertices modulo 6 is 2, a contradiction.

Therefore, the only possible configuration is the one in which the third component of F is

W and h = 2.
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Figure 5.27: (a) A part of a basic complex component with h = 2 and w = 4. (b) A configuration
with a tube T , a 2-layer component W and a basic complex component B.

The basic complex component B is depicted in Figure 5.27(a). It has 20 S-vertices, out

of which 8 are part of H0H-connections. Notice that only one of the two S-vertices involved

in an H0H-connection (such as x and y) can 00-connect to an h-vertex, otherwise F will

contain the substring HH00H0H00HH which does not occure in q. Therefore, the maximum

number of possible (S ≍ h)-connections with S-vertices vertices of B and T is 16 + 12 = 28.

Hence, we need to create 8 external (S ≍ h)-connections with the S-vertices of W and h-

vertices of B or T . Figure 5.27(b) depicts the only possible configuration to make 8 of such

connections. Notice that in this configuration the components are far away to make any

H0H-connections with each other so the total number of H0H-connections possible is 4, a

contradiction.

Case 2. (w = 2) The number of D-vertices modulo 6 of B is 4 independent of the value of
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h. Therefore, the only possibility for the other two components in F is that they are both

simple tubes, say T and T ′. To have right number of S-vertices in F the height h must be

4.

Note that an H-vertex from one side of the wall cannot connect to an H-vertex from the

other side of the wall through one or two 0-vertices. Therefore, if the wall is not connected

to any vertices of T or T ′ through one or two 0-vertices, then the two H0H-connections on

the same side of wall has to connect through a subsequence containing only S-vertices. This

creates a substring which does not occur in q, a contradiction. Therefore, at least one vertex

on each side of the wall must connect to a tube.

y

x

y′

wvT

T ′

Figure 5.28: H0H-connections between the tube T and a wall of complex component with w = 2 and
h = 4.

First, we show that the wall cannot 0-connect to a tube. To the contrary assume that

a vertex v of tube T is connected to a vertex x of the wall through a 0-vertex w. Vertex

x cannot be located on the first or the fourth level of the wall otherwise, F would contain

the substring H0H0H, a contradiction. Assume that v is in the hexagon that touches that

wall. In this case we get another H0H-connection between other side of the wall and T in

the same plane. This situation repeats in the plane above or below. Hence, there are at

least 4 new H0H-connections, a contradiction. Now, assume that v is not on the hexagon

that touches the wall. The vertex v is a vh-vertex otherwise, F would contain a substring

H0HH. Without loss of generality assume v1 is a 0-vertex. One of the vertices v or x must

00-connect to an h-vertex. It is easy to verify that it cannot be v. Therefore, assume that x

connects to an h-vertex of T ′ through 0-vertices y and y′. The only position of T ′ is shown

in Figure 5.28. However, in this configuration the right side of the wall cannot connect to
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neither of the tubes, a contradiction. Therefore, each side of the wall is 00-connected to a

vertex of a tube.
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Figure 5.29: (a) One possible attachment of two tubes to the wall of complex component. (b)
H0H-connections of tube T and basic complex component B.

Notice that it is not possible to 00-connect both sides of the wall to the same tube and

hence, one side of the wall is 00-connected to T while the other side is 00-connected to T ′,

e.g., Figure 5.29(a).

There are two ways to 00-connect a tube to the wall, cf. Figure 5.30. Note that we

need to have two more H0H-connections in F . First, we show that no H0H-connections

can be made between B and one of the tubes, say T . Since T cannot H0H-connect to the

wall, it would have to connect to the lower or the upper part of B. This is not possible

given the relative position of wall of B and T depicted in Figure 5.30(a). If the relative

position of the wall of B and T is as depicted in Figure 5.30(b), there is only one possible

configuration which is depicted in Figure 5.29(b). However, this configuration contains the

substring H0H0H, a contradiction.



CHAPTER 5. STRUCTURE APPROX. IPF IN 3D HEX. LATTICE 96

T

B
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Figure 5.30: Possible configurations of connecting tube T to the wall of the complex component
through two 0-vertices. Gray hexagons represent the locations of T ′ that can H0H-connect to T and
is not too far from the wall.

Therefore, the H0H-connections must be made between T and T ′. The gray hexagons in

Figure 5.30 depicts the possible positions for T ′. Clearly, T ′ cannot 00-connect to the other

side of the wall in any of these positions, a contradiction.

5.4.11 4 components

So far we have proved that any saturated fold F of q must have exactly four components. In

this section we prove that the fold F is similar to the designed fold, i.e., that q is structurally

stable. First, we show that the components in F are the same as the components in the

designed fold.

Theorem 3. Let F be a saturated fold of q, then F has three simple tubes and a connector.

This is true even if the HP model is considered.

Proof. Since the smallest component other the tube with one hexagon contains at least 16

S-vertices and F contains exactly four components, F must have three simple tubes and

one component other than a tube. The three tubes together have 36 S-vertices, therefore,

the forth component in F must have 16 S-vertices. The only component with 16 S-vertices

is the connector. Therefore, the components in F are the same as the components in the

designed fold.

Next, we prove that in the HPC model the components in F must connect the same way

as in the designed fold.

In Lemma 19, two tubes in F can connect with at most two H0H-connections. We will

show the same for a tube and connector.
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Claim 9. Let F be a saturated fold of q. A tube and a connector in F can create at most

two H0H-connections.

Proof. Assume that the connector C and a tube T are H0H-connected. By Observation 10,

this connection is either horizontal or vertical. If the connection is horizontal, by Lemma 12,

C and T share only one plane, cf. Figure 5.17(b). Obviously, all other S-vertices of C and

T are too far from each other to create more H0H-connections than the two depicted in the

figure.

Second, assume there is a vertical H0H-connection between C and T . Then C and T do

not share any plane and H0H-connections are created if an edge of C is directly above/below

an edge of T . If projections of C and T overlap on more than one edge, then there is a

D-vertex of C directly above/below a vertex of T , which would create a substring H0HH in

F , a contradiction. Hence, projections of C and T overlap on only one edge, and hence,

create exactly two H0H-connections.

Claim 10. Let F be a saturated fold of q. Assume that a vertex x of connector C and a a

vertex y of a tube T are horizontally (S ≍ h)-connected in F . Then there are at most two

external (S ≍ h)-connections between them and T is missing at least two internal (S ≍ h)-

connections.

Proof. By Claim 7, we have the configuration depicted in Figure 5.15(d). Vertex x−1 is an S-

vertex of C and it cannot be part of a parallel (S ≍ h)-connection, because y−1 is an S-vertex

as well. Also note that S-vertex y−1 of T cannot be part of internal (S ≍ h)-connection.

Since, horizontal neighbors of y−1 and x are H-vertices we have another H0H-connection

between these two neighbors and we lose another internal (S ≍ h)-connection. Similarly,

there is at most one (S ≍ h)-connection between C and T parallel to this H0H-connection.

Considering the layout of C and T , it is clear that they cannot (S ≍ h)-connect at any other

point. Hence, the claim follows.

Observation 12. Let F be a saturated fold of q. Assume that two tubes T1 and T2 are

(S ≍ h)-connected. Then the number of missing internal (S ≍ h)-connections in T1 and T2

minus the number of external (S ≍ h)-connections between them is at least zero.

Claim 11. Let F be a saturated fold of q. Assume that two tubes T1 and T2 are H0H-

connected. Then the number of missing internal (S ≍ h)-connections in T1 and T2 minus

the number of external (S ≍ h)-connections between them is at least two.
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Proof. If T1 and T2 are vertically H0H-connected then at most one endpoint of each of

two H0H-connections is 00-connected to an h-vertex, since there is no HH00H0H00HH in q.

Therefore, we lose at least two internal (S ≍ h)-connections and gain no external (S ≍ h)-

connections between T1 and T2.

If T1 and T2 are horizontally H0H-connected we have the configuration depicted in Fig-

ure 5.17(b). Vertices x, x′, z, z′ are S-vertices of the tubes which cannot be part of internal

(S ≍ h)-connections, hence we lose at least four (S ≍ h)-connections. Furthermore, all

possible external (S ≍ h)-connections between T1 and T2 are (x, u, v, w), (z, z−1, y−1, x−1),

(x′, x′1, y′1, z′1) and (z′, z′−1, y′−1, x′−1). However, first two and last two cannot be present

at the same time, otherwise we have HH00H0H00HH in q. Hence, there are at most two

such connections.

Lemma 23. Let F be a saturated fold of q. The tubes in F have more than 3 layers.

Proof. Assume that one of the tubes, say T1, has two or three layers. We prove this lemma

by counting the number of possible (S ≍ h)-connections in F . If T1 has 2 layers, then it does

not contain any internal (S ≍ h)-connections, since it has no h-vertices. If it has 3 layers

then it contains 6 h-vertices, but since they are connected to each other with a peptide

bond and there are only two occurrence of substring 0H00HH00H0 in q which occur in the

connector, at most one in each pair can be involved in an (S ≍ h)-connection. Hence, T1

has at most 3 internal (S ≍ h)-connections. There should be 36 (S ≍ h)-connections in

F , and the remaining two tubes have at most 24 internal (S ≍ h)-connections. Hence, F

must contain at least 9 external (S ≍ h)-connections. By Claim 10, any external vertical

(S ≍ h)-connection eliminates at least one internal (S ≍ h)-connection. Hence, there has to

be at least 9 external horizontal (S ≍ h)-connections.

Consider an external horizontal (S ≍ h)-connection (x, u, v, y) connecting components

W1 and W2, cf. Figure 5.15(c). By Lemma 19 and Claim 9, any pair of components in F

can create at most two H0H-connections, i.e, at least three pairs of components are H0H-

connected. Since these pairs cannot be horizontally (S ≍ h)-connected, there are at most

three pairs of horizontally (S ≍ h)-connected components. Hence, by Claim 2, there are at

most 6 horizontal (S ≍ h)-connections, a contradictions.

We proceed by proving the following lemma.
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Lemma 24. Let F be a saturated fold of q. Any component in F must be H0H-connected

to at least one other component.

Proof. By Lemma 18 and Claim 9, there are at most two H0H-connections between any two

components of F . Since F contains 6 H0H-connections it is enough to show that there is

no cycle of length 3 of H0H-connected components. Let components W1,W2,W3 form such

a cycle. By Lemmas 12 and 19 and Claim 9, two H0H-connected components are either in

the configuration depicted in Figure 5.17(b) or Figure 5.17(c), i.e., they share exactly one

plane or they share no planes and there is one plane in between them. Assume that W1

is the topmost component in planes Hi,Hi+1, . . . ,Hj. If both W2 and W3 share one plane

with W1 (or none of them share any plane with W1) then they share at least two layers,

i.e., they cannot be H0H-connected. Hence, assume that W2 shares plane Hi with W1, i.e.,

it is located in planes Hi,Hi−1, . . . and W3 does not share any plane, i.e., it is located in

planes Hi−2,Hi−3, . . . . Then W2 and W3 can share zero or one plane only if W2 has either

one or three layers. Obviously, the first case is not possible. In the second case, W2 must

be a tube, but by Lemma 23, it cannot have 3 layers, a contradiction.

We proceed by proving the following important lemma:

Lemma 25. Let F be a saturated fold of q. Two tubes in F cannot be H0H-connected.

Consequently, two tubes cannot be vertically (S ≍ h)-connected.

Proof. To the contrary assume that two tubes are H0H-connected. By Claim 10, we need

at least two external (S ≍ h)-connections, and by Claim 10 and Observation 12, there are

at most two horizontal (S ≍ h)-connections between the connector C and a tube T1.

T1

C

2

1

3

Figure 5.31: The schematic view at horizontally (S ≍ h)-connected connector C and tube T1. The
numbers show all possible locations of tube T2 which is H0H-connected to both T1 and C.

Figure 5.31 shows a schematic view at the horizontal (S ≍ h)-connections between T1

and C. Notice that T1 and C cannot be H0H-connected. Therefore, by Lemma 24, T1 must
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H0H-connect to another tube T2. We will show that T2 cannot be H0H-connected to C.

Assume the contrary. The tube T2 must be located in one of the three numbered positions

in Figure 5.31.

T1

C

T2

(a)

T1

T2

v

(b)

C

T1

T2

v

u

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

(c)

Figure 5.32: Three possible configurations when connector C is horizontally (S ≍ h)-connected to
T1, and T2 is H0H-connected to both C and T1.

Figure 5.32 depicts configurations for all three positions of T2. Clearly, in the first

configuration T2 cannot make any H0H-connections with C (cf. Figure 5.32(a)). Consider

vertex v in Figure 5.32(b) depicting the second configuration. It is H0H-connected to v−2

which is part of an (S ≍ h)-connection. Since there is no substring HH00H0H00HH in q, v

cannot be part of any (S ≍ h)-connection. Therefore, we lose one more internal (S ≍ h)-

connection in T2 which needs to be replaced by an external (S ≍ h)-connection between

C and a tube. By Claim 10, any external vertical (S ≍ h)-connection eliminates at least
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one internal (S ≍ h)-connection, therefore, the replaced connection must be a horizontal

(S ≍ h)-connection. Clearly, T2 cannot make any horizontal (S ≍ h)-connections with C

and furthermore, T1 cannot make any new horizontal (S ≍ h)-connections with C. Hence,

T3 must make at least one horizontal (S ≍ h)-connection which in this case T3 cannot

be H0H-connected to C. Therefore, T3 must H0H-connect to T1 or T2. In this case we

lose at least two additional internal (S ≍ h)-connections which cannot be replaced by any

external horizontal (S ≍ h)-connections. Finally, we show that the third configuration is

contradictory. Consider the v-vertex v in Figure 5.32(c). If it is 00-connected to w or x it

follows that v is a part of the substring (00HH)k , a contradiction by Lemma 11. Therefore,

v is 00-connected to u. However in this case, F contains the substring HH00H00HH which

does not occur in q, a contradiction.

It follows that T2 and C are not H0H-connected. Therefore, by Lemma 24, T3 must

H0H-connect to C and to have 6 H0H-connections in F , T3 must also H0H-connect to T1

or T2. However, in this case we lose at least two additional internal (S ≍ h)-connections

which by Claim 10, must be replaced by horizontal (S ≍ h)-connections between C and

a tube. Clearly, T3 cannot make such connections with C. Furthermore, T1 cannot make

new horizontal (S ≍ h)-connections with C. Thus, T2 must make two horizontal (S ≍ h)-

connections with C. Let Hi and Hi+1 be the layers of C. Without loss of generality assume

that T2 is above T1. Since C and T1 make horizontal (S ≍ h)-connections the top most

layer Hj of T1 is above Hi+1. Let Hl be be the lowest layer of T2. Since T1 and T2 are

H0H-connected, l ≥ j > i+1. Therefore, C and T2 do not share any layer and hence, cannot

be (S ≍ h)-connected, a contradiction.

Corollary 5. Let F be a saturated fold of q. All tubes in F must be H0H-connected to the

connector.

Proof. We consider three cases. If the connection is between two h-vertices then clearly

all edges of the connection must be horizontal. Second the case when the connection is

between h- and S-vertices follows by Lemma 25. Finally, if the connection is between two

S-vertices, we lose two internal (S ≍ h)-connections which can be only replaced by horizontal

(S ≍ h)-connection between connector and a tube. By Corollary 5, this is not possible.

So far we have shown that all tubes must H0H-connect to C. We prove the final theorem.

Theorem 4. The protein string q is structurally stable.
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Figure 5.33: Two possible configurations that contain the substring t = 10100102002, given that one
of the H0H-connections in t is horizontal.

Proof. Let F be a saturated fold of q. By Theorem 3 and Corollary 5, F contains three simple

tubes which are H0H-connected to a connector C. Note that there are no H0H-connections

between tubes. Note that F must contain one occurrence of the substring t = 10100102002.

The substring t contains two H0H-connections that are 00-connected. We show that these

H0H-connections are vertical and they belong to two tubes T1 and T2 where T1 is connected

to the top and T2 is connected to the bottom of C. To the contrary, assume that one of

the H0H-connections (u, v,w) in t is horizontal, where u and w are H-vertices in C and

T1, respectively, and v is a 0-vertex. Note that C and T1 make another H0H-connection

(u′, v′, w′) where u′ and v′ are horizontal neighbors of u and v respectively. Vertex u or w

(respectively, u′ or w′) must 00-connect to an h-vertex. It is easy to see that w (w′) cannot

00-connect to an h-vertex and the only h-vertex that u (u′) can 00-connect to is w1 (w′1).

Therefore, w must 00-connect to an H0H-connection.

Two configurations are possible in this case. In the first configuration w is 00-connected

to w′, cf. Figure 5.33(a), and hence, exactly one of the pairs of vertices (u,w1) or (u′, w′1)
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contains 2-vertices. Since T1 makes H0H-connections only with C and every 2-vertex is

either a part of H0H-connection or is 00-connected to an H0H-connection, w1 (respectively,

w′1) cannot be paired with a 2-vertex, a contradiction. In the second configuration w is

00-connected to u−1 and C is vertically H0H-connected to another tube T2 at u−1 and its

horizontal neighbor (cf. Figure 5.33(b)). Note that T3 must connect to the hexagon of

C that does not contain u and u−1 otherwise, F would contain the substring (00H)6, a

contradiction. Therefore, T1 is too far from T2 and T3 to 00-connect to either of them.

Hence, w1 is p-connected to w′1 by a path p which lies completely in T1 and its 0-vertices

(0-vertices surrounding T1). Consequently, p does not contain any H0H as a substring.

Since H0H-connection (w, v, u) is 00-connected to H0H-connection (u−1, u−2, u−3), based on

the properties of q, it follows that exactly one of the pairs (u, w1) or (u′, w′1) contains 2-

vertices, depending on the direction of the substring t. Clearly, w1 (respectively, w′1) cannot

be paired with any other 2-vertex, a contradiction. Therefore, both H0H-connections in t

are vertical.
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C

u

v

C
C

C
C

C
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.
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Figure 5.34: The only possible configuration that contains the substring t = 10100102002, given that
the H0H-connections in t are vertical.

Let (u, u1, u2) be one of the H0H-connections in t where u and u2 are H-vertices in C and

T1, respectively, and u1 is a 0-vertex. Without loss of generality assume that T1 is connected

to the top of C. Note that T1 and C make another vertical H0H-connection (v, v1, v2), where

v is a horizontal neighbor of u. Clearly, u cannot 00-connect to an h-vertex, therefore, it

must 00-connect to another vertical H0H-connection. The only possibility is that u is 00-

connected to u−1. Therefore, C vertically H0H-connect to another tube T2 at the vertex u−1
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and one of its horizontal neighbors. If this second connection is (v−1, v−2, v−3) then F would

contain another occurrence of the substring t through vertices v2, v1, v, ∗, ∗, v−1 , v−2, v−3, a

contradiction. It follows that T1 and T2 are H0H-connected to C as in the original fold. It

is easy to see that the last tube T3 must horizontally H0H-connect to the other side of C as

in the original fold (cf. Figure 5.34).

Finally, notice that T1, T2 and T3 are far away from each other to make any 00-

connections. Therefore, the pair of H0H-connections in each tube are p-connected by a

path p that lies completely in that tube and its 0-vertices. This implies that the length of

the tubes must be the same as the length of the tubes in the original fold and hence, q is

structurally stable.



Chapter 6

Conclusions and future works

6.1 Conclusions

In this dissertation we study the design of robust classes of stable proteins under 2D and

3D HP model. The HP model was introduced by Dill [41] over two decades ago and the

protein folding problems (forward and inverse) have been studied under this model since.

We extended this model by using a third type of amino acid, the cysteine, in the designed

proteins and incorporating the disulfide bridges between two cysteines in the energy model.

One of the interesting problems in protein design initiated by Gupta el al [60] is the design

of classes of stable proteins that can approximate target shapes. In this thesis we solve

this problem in 2D square lattice and introduce a robust class of 3D protein structures,

called tubular structures, and give evidence that they are stable under the HPC model. In

particular we prove that an infinite class of basic tubular structures consisting of a connector

and three tubes of arbitrary lengths are stable under the HPC model.

The linear constructible structures were proposed in [60] as a good candidate for proving

their stability. We introduce two robust subclasses of linear constructible structures, the

snake and wave structures, that are capable of approximating any given 2D shape. We

refine these structures for the HPC model and proved that the proteins of snake structures

are stable under an artificial variant of the HPC model called the strong HPC model and

that the proteins of wave structures are stable under the biologically motivated HPC model.

The stability proof of the wave structures partially confirms the conjecture stated in [60].

We extend the results in 2D and solve the shape-approximating inverse protein folding

problem under the HP model in 3D. We design tubular proteins using two basic building

105
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blocks: a tube and a connector. These blocks can be interconnected to roughly approximate

any given shape. We showed that a simple subclass of the structures built in this way is

structurally stable in the HPC model. Showing that all these structures are structurally

stable is a very challenging problem. The first task in solving this problem is to choose

which of the hydrophobic monomers are cysteines. The second is to prove that all folds are

similar to the designed one. This gets more difficult with the higher number of building

blocks (tubes and connectors) used, as each additional building block adds two particular

substrings to the protein sequence, which increase the variety and the number of possible

components in the fold.

While the techniques presented here will not allow for the direct construction of pro-

teins, they represent a starting point for this process. In particular, we believe that these

techniques can be used to form the basis of an actual protein — we specify, at each point

of the chain whether a cysteine, other hydrophobic or polar monomer is required and a

designer can use this information to choose amino acids from set of all 20 amino acids. The

choice of actual amino acid would depend on other desired molecular interactions and finer

details about the protein structure.

6.2 Future works

The complexity of the inverse protein folding problem is a long standing open problem in

proteomics. Other complexity questions related to forward protein folding are (a) complexity

of determining whether the sequence is stable; (b) whether it has a saturated fold (each

hydrophobic amino acid has the maximum possible number of contacts); (c) whether a

contact map is realizable in a lattice used; etc. Answers to these questions could help us

building computational tools for simplifying and extending the designs we introduce in this

dissertation. As a continuation to our work in 2D and 3D lattices, we are interested in

investigating designing tiles for various types of lattices (mainly 3D) which can be used to

build stable proteins approximating any given shape. Such successful designs could be later

extended to actual sequences of amino acids (replacing H and P letters with amino acids)

based on the database of bond and torsion angles of C-alpha atoms in backbones of existing

proteins.

Other motivated problems are proving the stability proof of more general classes of

constructible structures and tubular structures.
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Protein interactions often exhibit a “hand-in-glove” fit since this facilitates specific chem-

ical reactions and helps to build protein complexes. By these means, chemically assembled

proteins with appropriate surface and binding properties can attach to specific targets and

modify their functions. In protein-drug interaction designs, we are interested in exactly such

surface properties of synthetic proteins. An interesting research direction is to apply our

techniques for IPF to this new problem and aid in the design of proteins that will bind to a

specific target. An intermediate goal is to understand the dynamics of the problem in the

lattice context and to design stable binding proteins for a class of simple targets in the 2D

and 3D HP models.



Appendix A

2DHPSolver pseudo code

Input: designRules, initialFiled, depth

vector FIELD Fields;

Fields.insert(initialField);

activeFiled=0;

while Fileds.size() > 0 do
display(Fileds, activeField);

userExtension=getUserExtension();

applyExtension(Fields, activeField, userExtension, designRules, depth);

end

Algorithm 1: 2DHPSolver
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Input: userExtension, Fields, activeField, designRules, depth

if userExtension.type = change activeField then
activeField = get a new index;

return;

end

FIELD current=Fields.remove(activeField);

foreach possible userExtension.type E at userExtension.point P do
newField = apply E at P to current;

if newField does not violate the designRules then
(result, resultField)=selfExtend(newField, designRules, depth,

maxExtension);

if result 6= DELETE then
Fields.insert(resultField);

end

end

end

Algorithm 2: applyUserExtension
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Input: field, designRules, depth, maxExtension

Output: result, extendedField

changed=FALSE;

for i=1 to maxExtension do

foreach possible extension point P of field do
(result, tmpField)=selfExtendAtOnePoint(field, P, designRules, depth,

maxExtension);

if result=EXTEND then
changed=TRUE;

field=tmpField;

break;

end

if result=DELETE then
return;

end

end

end

extendedField=field;

if changed=TRUE then
result=EXTEND;

else
result=NOCHANGE;

end

return
Algorithm 3: selfExtend
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Input: field, P, depth, designRules

Output: result, extendedField

validFields=0;

foreach possible extension E at point P do
tmpField = apply E at P to field;

if depth = 1 then

if tmpField does not violate designRules then

if validFields > 0 then
result=NOCHANGE;

return;

end

validFields ++;

extendedField=tmpField;

end

else
(tmpResult, tmpExtendedField)=selfExtend(tmpField, designRules, depth-1,

maxExtension);

if tmpResult 6= DELETE then

if validFields > 0 then
result=NOCHANGE;

return;

end

validFields ++;

extendedField=tmpExtendedField;

end

end

end

if validFields = 0 then
result=DELETE;

else
result=EXTEND;

end

Algorithm 4: selfExtendAtOnePoint



Appendix B

Snake’s forbidden subsequences

0: Polar, 1: Hydrophobic, R: Cysteine, B: Hydrophobic non-cysteine

11

1010101

00100100100

000

R0R

B0B

B00R

R00B

10B01

B00B00

00B00B

10R00R01

1010100101010010101

0010010100101001001010010100100

00100100 this subsequence occurs at most twice in a snake structure.

001010010100101

101001010010100

1010100101001001001010010101

0010100101001001001010010100
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Wave’s forbidden subsequences

11

000

R0R

B0B

B00R

10B01

B00B00

1010101

00100100100

10R00R01

00100100 this subsequence occurs at most twice in a wave structure.

1010100101010010101

1010010010100101001001010010100100101

001010010100101

1010100101001001001010010101

100101001010010010010100101001

00R00R00R0B00B0R0B00B0R00

00R00R00R0B00B0R00R00R0B00B0R0B

B0R0B00B0R0B00B0R00R00R0B00B0R00

B0R0B00B0R00R00R0B00B0R0B00B0R00R00R0B00B0R0B

B0R00R00R0B00B0R0B00B0R00R00R0B00B0R0B00B0R00

B0R00R00R0B00B0R00R00R0B00B0R0B00B0R00R00R0B00B0R00
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