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ABSTRACT

This thesis proposes the joint decoding of JPEG2000 bitstreams and

Reed-Solomon codes in the context of unequal loss protection. Using error

resilience features of ..IPEG2000 bitstreams, the joint decoder helps to restore

the erased symbols when the Reed-Solomon decoder fails to retrieve them on its

own. The proposed joint decoding technique can deliver signi'f!cant quality gain,

though the process is often computationally exhaustive. To reduce the extra

decoding time, we provide three solutions. The first two solutions employ smaller

codeblocks and sub-coding-pass error localization to accelerate the process.

Furthermore, we show how transmitting a relatively small amount of side

information with high reliability may help the joint decoder by reducing the size of

the search space and bypassing some of the JPEG2000 decoding iterations

needed to verify the correctness of the restored source information. The

improved joint decoder can perform significantly faster than the basic one.

Keywords: Unequal Loss Protection; ..IPEG2000; Reed-Solomon code; Joint
Source-Channel Decoding
Subject Terms: Image Transmission; Coding Theory
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CHAPTER 1: INTRODUCTION

Aiming for improvements in the delivered quality, robust transmission of

multimedia information over lossy channels has been a topic of intense research

for years. By introduction of scalable image and video coding standards, such as

.JPEG2000 [1] and H.264/SVC [2], transmission of the fragile scalable bitstreams

has gained more attention in the research community. The progressive nature of

scalable bitstreams makes them sensitive to error propagation; in fact, the first

erroneous or erased bit in these bitstreams can damage all the information

carried by the remainder of the bitstream. Therefore, Unequal Error Protection

(UEP) and Unequal Loss Protection (ULP) schemes have been developed for

protecting scalable bitstreams against errors and erasures, respectively.

There are many different frameworks proposed for transmission of

scalable images with UEP or ULP [3-8]. In the procedure explained in [3], for

instance, the source-coded bitstream is first divided into blocks of the same

length. Each of these blocks is then encoded, perhaps at different code rates, by

a Rate-Compatible Punctured Convolutional (RCPC) code for UEP or a Reed­

Solomon (RS) code for ULP. The optimal code-rates are chosen using a dynamic

programming algorithm, which maximize the expected Peak-Signal-to-Noise­

Ratio (PSNR) of the decoded image with respect to the limited transmission rate

budget. Unlike many other UEP or ULP schemes, which can start decoding only

after the whole transmission is finished, these methods can decode the source



information blocks "progressively" upon their arrival at the receiver (i.e., the intact

source blocks that come before the first unrecoverable block can be decoded on

the fly).

Furthermore, different decoding techniques aiming at robust

communications have been proposed and analyzed in the literature. In [9] a

maximum a posteriori (MAP) decoder is proposed for decoding of variable length

codes transmitted through noisy channels. Corresponding to the transmitted

source bitstream, this joint source-channel decoder finds the bitstream that

minimizes the error between the transmitted and received source information.

This technique operates solely based on the source and channel statistics

available at the decoder, and it is not involved with channel coding. However,

other analyzed approaches for error resilient decoding promote joint decoding of

source codes and channel codes. In [10], the authors present Joint Source­

Channel Decoding (JSCD) of JPEG2000 bitstreams and LDPC codes over error­

prone Additive White Gaussian Noise (AWGN) channels. Similarly, a soft

decoding algorithm, similar to the BCJR algorithm [11], for decoding arithmetic

codes with a "forbidden symbol," is presented in [12]. The authors have

evaluated the efficiency of their approach, in particular, by iterative decoding of a

JPEG2000 bitstream, which is transmitted through an AWGN channel, using the

concatenation of the soft-input-soft-output-adapted ..IPEG2000 decoder and a

convolutional decoder. Although the sensitivity of the arithmetic code to bit errors

is the fundamental idea used in similar iterative decoding algorithms, soft

decoders of JPEG2000 bitstreams might not be directly beneficial for correcting

2



erasures, since no soft information is available at the receiver when erasures

occur.

Throughout this thesis, we have focused on transmission of JPEG2000

images over packet-based networks, where packet loss is the dominant form of

channel impairment; therefore, the ULP structure is chosen as the protection

framework. To protect scalable bitstreams in ULP schemes with erasure

correction codes, several approaches have been proposed in [13-15], among

others. In these schemes, assuming a known erasure probability distribution of

the channel, first a quality measure is formulated (e.g., expected distortion, or

expected PSNR of the received bitstream). Then, this measure is optimized as

an objective function to find a good feasible solution for optimal allocation of

parity symbols to different segments of the bitstream. This optimization is usually

performed by one of the various optimization algorithms such as local search or

hill climbing, under a constraint on the rate budget (i.e., total number of bits

allocated for the transmission) [13-15].

A well-optimized ULP structure is able to deliver all source bits to the

receiver most of the time, provided that accurate channel state information is

available at the transmitter. If this is not the case, for example when channel

conditions change rapidly, some of the transmitted source bits may be rendered

undecodable. In [16] we proposed a JSCD technique which restores some of the

transmitted JPEG2000 bits that cannot be recovered by conventional decoding.

To the best of our knowledge, the proposed technique is the first of its kind that

introduces a joint decoder for JPEG2000 bitstreams and RS codes where
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erasure correction is the main concern. By means of the JPEG2000 Error

Resilience (ER) features, JSCD technique could help to extract source

information from the received ULP packets beyond what the plain ULP decoding

can achieve. Depending on the amount of restored source information, JSCD

can yield significant quality improvement.

Since the basic JSCD algorithm of [16] is often very time-consuming, we

proposed three solutions to speed up the joint decoding process. One way is

fairly straightforward and involves using smaller ~IPEG2000 codeblocks. In fact,

short coding passes of smaller codeblocks result in better error localization,

which is crucial for JSCD. The second solution is to locate not only the coding

pass in which the ~'PEG2000 detects an error, as the basic JSCD does, but also

locate the symbol in that particular coding pass, at which the decoding is

interrupted. Later in the thesis, we explain how this slightly improved error

localization is particularly useful in decoding of the coding passes that are

relatively long, and potentially perpetuate the joint decoding. In contrast to the

previous solutions, which completely rely on the JPEG2000 features, the third

speedup method relies on the use of "auxiliary bits" which are transmitted as side

information, and which reduce the search space of the joint decoder. These

auxiliary bits also have a parity-like function, which helps to reduce the number of

calls to the JPEG2000 decoder drastically and, consequently, save a significant

amount of time. Some solutions to limit the number of bits spent on the side

information are also prOVided.
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This thesis contains materials from our previous works presented in [16­

18]; the last two are under review and have not been pUblished yet. The thesis is

organized as follows. Chapter 2 provides the required background knowledge,

which includes a brief description of JPEG2000 and some of its features, and an

overview of the ULP technique. In Chapter 3, basic JSCD is explained. This

chapter also contains the results that demonstrate the quality improvement that

JSCD can offer. The accelerated JSCD processes are detailed in Chapters 4.

The complexity model, which estimates the effect of the auxiliary bits on the

JSCD, is introduced and analyzed in Chapter 5. Conclusions are presented in

Chapter 6. Finally, Appendices A and B provide descriptions of the

implementation issues and the user guide, respectively.
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CHAPTER 2: BACKGROUND

This chapter provides the required background knowledge about the

components of the JSCD. Structure and features of JPEG2000, the scalable

source coder that we chose for the JSCD, are concisely described in the next

section. Section 2.2 explains the ULP and the way it functions.

2.1. JPEG2000

2.1.1. STRUCTURE

JPEG2000 is an image compression standard developed based on

Discrete Wavelet Transform (DWT) [1], [19]. After applying the colour

transforms on the raw image, the resulting matrices can be optionally cut up

into rectangular tiles to be compressed separately. Multiple tiles are generally

used for large images.

The low-pass and high-pass filtering along with the sUb-sampling by the

DWT, result in several subbands in the transformed tile-components. As

illustrated in Figure 2-1, in the JPEG2000 hierarchical structure, in each tile­

component, each set of subbands within a common frequency band are

referred to as a resolution. With the exception of the lowest resolution,

subbands in resolution #n are labelled by HLn, LHn or HHn, depending on

whether they are low-pass filtered or high-pass filtered in the horizontal and
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~HHI Resolution #0

III Resolution #1

l<! Resolution #2

D Resolution #3

subband

/
code-block

/
precinct

Figure 2-1. Structure of a typical JPEG2000 tile-component

vertical directions. The LLo subband, or in fact resolution #0, contains most of

the information in smooth areas of the tile-component. The information of

each resolution level provides the details required to be added to the

information of the previous resolution levels to produce a higher resolution

image.

Subbands are further partitioned into rectangular-shaped segments named

codeblocks, which are the smallest units in the ~IPEG2000 standard encoded

independently. Each dimension of these codeblocks should be a power of two

not less than four, and the total area that a codeblock covers must be less

than or equal to 4096 samples. Furthermore, there are virtual rectangular
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subdivisions of the resolutions, called precincts, each of which includes a

whole number of codeblocks. In all resolution levels except resolution #0,

width (height) of the codeblocks would be the smaller number between the

maximum width (height) assigned to the codeblock and half the width (height)

of the precinct that contains the codeblock. This restriction implies that each

precinct outside of the LLo subband contains at least two codeblocks both

vertically and horizontally. The precincts are basically employed to organize

the compressed bitstream of the codeblocks in the JPEG2000 bitstream. For

each precinct, there is a packet of the entropy-coded data in the final

JPEG2000 bitstream. The headers of these packets not only include the

spatial information of the precinct and the codeblocks it contains, but also they

can contain some markers that are helpful for error detection. Nonetheless,

precincts do not have a direct role in the compression process.

2.1.2. FEATURES

2.1.2.i) Scalability

One of the important parts of the JPEG2000 standard is bit-plane

coding. Using the MQ-coder, a context-adaptive binary arithmetic coder,

the bit-plane coder encodes the information bits carried by the quantized

wavelet samples in each codeblock from the most significant bits level

(most significant bit-plane) to the least significant one, consecutively [1].

This encoding process is performed in three coding passes for each bit­

plane: the significance propagation pass, the magnitude refinement pass,

and the cleanup pass. A sample is called "significant", if its most

8



significant non-zero bit has been previously scanned. In the significance

propagation pass, the current "insignificant" sample bit is encoded, if at

least one of its eight immediate spatially adjacent samples is significant.

Note that the sign bit of a sample is coded following the encoding of the

most significant non-zero bit of that sample. The magnitude refinement

pass involves the encoding of the remaining samples in the current bit­

plane that are significant and have not been encoded in the previous

pass. Finally, the cleanup pass encodes all the remaining samples in the

current bit-plane, which are insignificant and have not been included in

the previous passes.

The bit-plane coding mechanism generates an embedded

compressed bitstream for each codeblock in the image. By different

ordering of the generated coding pass segments from all of the

codeblocks, the JPEG2000 encoder can produce bitstreams with specific

scalability properties. These scalability features include quality (layer),

resolution, position, and (color) component scalabilities. A quality-scalable

bitstream, for instance, is organized such that the quality of the resulting

image improves progressively as the decoding continues. Figure 2-2

illustrates an example of this quality improvement when the number of

decoded "quality layers" increases. High frequency patterns such as the

sharp edges and the textures with many details would be more visible

when the quality layers corresponding to higher source rates are

decoded.
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Since in our proposed JSCO technique, coding passes of a

codeblock should not be scattered throughout the bitstream, we have

used resolution-scalable ~IPEG2000 bitstreams to keep the information of

each codeblock contiguous in the bitstream. As Figure 2-3 depicts,

truncation of the information of higher OWT levels from resolution­

scalable ~IPEG2000 bitstreams results in lower resolution images.

2.1.2.ii) Error Resilience Features

Since entropy coders are usually imperfect in terms of

compression, some residual redundancy always remains in the bitstream

that they generate, which can be exploited for error detection by the

decoder [20]. For example, in Huffman codes, bit errors may result in

invalid codewords, which are recognizable to the decoder. In contrast,

arithmetic codes are more susceptible to error propagation because they

do not have any intrinsic resynchronization capability [21]. Nonetheless,

the JPEG2000 standard provides some additional means by which its

arithmetic coder, the MQ-coder, can be manipulated to generate

bitstreams that are more error-sensitive. On decoding failures, the

remaining section of the codeblock's bitstream would be partially decoded

or completely discarded. The reaction of the decoder to an error depends

on the features used at the encoder side. For instance, when the RESET

mode of Kakadu encoder ['I] is enabled, the context states used by the

MQ coder would be reset at the beginning of each coding pass. Although

some compression efficiency may be lost with this encoding constraint,

12



the ~IPEG2000 decoder can now tolerate the errors in the generated

bitstream to some extent. In fact, based on the type of the coding pass

where the first error is detected, the decoder can decide which parts of

the remained codeblock bitstream are still decodable. In [22], this error

resilient decoding technique of JPEG2000 images is investigated along

with several others.

In this thesis, we use the basic ER feature based on two coding

modes, namely ERTERM and RESTART, because they fit well with the

constraints of our JSCD technique. With these two modes switched on,

inter-codeblock error propagation is prevented. The activated RESTART

mode forces the MQ-coder to restart at the beginning of each coding

pass, and causes the length of the coding passes to be saved up in their

corresponding packet headers. As a result, each coding pass obtains a

separate arithmetic codeword segment. Note that the RESTART mode

does not initialize the context states, therefore the coding passes are not

independently decodable unless RESET mode is also utilized. In addition,

the ERTERM switch decides on the predictable termination policies for

each MQ and/or raw codeword segment. When encoding is performed in

the RESTART mode, these policies help to interrupt the decoding with

high probability within only a few coding passes after the first corrupted

coding pass. In other words, the mentioned decoding modes together

provide a reliable tool for error localization in the JPEG2000 bitstreams.

Some statistical results on the efficiency of this error-resilient decoding

13



method for error localization are presented in [10]. For example, by

assuming a residual bit error rate of 5.81 x1 0-4 in the test JPEG2000

images which have 32x32 codeblocks, they have reported only 0.49%

failure of detecting the first corrupt coding pass of the codeblocks. In

addition, they have mentioned that 90% of these detection failure cases

occurred when the first corrupt coding pass of a codeblock was its last

coding pass.

2.2. UNEQUAL LOSS PROTECTION

Scalable source encoders, such as JPEG2000, are designed such that the

earlier parts of the bitstreams that they generate carry the more important data,

and the following parts of the bitstream can append the details as their

importance decreases gradually. Ultimately, there are fully embedded bitstreams

for which even one more decoded bit can result in noticeable difference in the

outcome. Therefore, when it comes to channel coding of scalable bitstreams, it is

reasonable to spend a larger fraction of the parity symbols on the earlier parts of

the compressed bitstream compared to parts that come later. ULP schemes are

developed based on this unequal distribution of the parity symbols to provide

better protection for scalable bitstreams against packet erasures. As shown in

Figure 2-4, a ULP structure can be represented by a simple matrix. The packets,

which will be transmitted through the channel, are represented by the rows of this

matrix.
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of K source symbols; all of the symbols in the resulting codewords belong to the

same finite field, which should contain at least N different symbols. The important

property of these codes is that the number of positions in which any pair of them

have different symbols (i.e., the Hamming distance between the two codewords)

is greater than N-K. In other words, the RS codes can restore the message if the

number of erased symbols does not exceed N-K.

The RS encoders that use oversampling do not generate systematic

codewords. Note that different encoding/decoding techniques for RS codes,

which are more efficient computationally and/or able to work with systematic

codes, have been developed, but they are not theoretically as simple as the

original oversampling algorithm proposed in [24]. However, for a given message

length and codeword length, the codewords that these encoders create have the

same minimum distance, and consequently the same error and erasure

correction capability [23].

To achieve the best outcome of using ULP, it is necessary to find the

optimal distribution of the parity symbols among the columns of the ULP matrix.

Given the operational distortion-rate curve of the image that will be transmitted,

the expected distortion, which is the objective function of the required

optimization, can be written as:

16



(2.1 )

where D(.) is the operational distortion-rate function, m is the number of bits per

each symbol, N is the number of packets, ~ is the number of parity symbols used

in the j-th column, L is the packet length (i.e., the number of symbols in each

packet), and Pi is the probability of having exactly i erasures. Since the rate

budget for transmission is limited, this is a constrained optimization. It is common

to apply the rate constraint by fixing the number of packets (N) and their length

(L) [13-15].

Under these conditions, the optimization algorithm in [15], which uses local

search, provides competitive results with low computational cost. In this algorithm

the search begins from a rate-optimal pattern in which f1 = f2 = f2 = ... = fL and the

objective function attains its minimum. Then, starting from the leftmost column in

a consecutive order, the algorithm increases ~'s by one. At each step, if the value

of the objective function is reduced, then the best value found so far will be

updated by evaluation of the objective function for the generated pattern. This

process continues until further changes in the number of parity symbols do not

improve the best value found so far. The final pattern and the corresponding

value of the objective function form an approximate solution for the global

optimization problem. We used this algorithm in our simulations to find the

number of parity symbols in each column of the ULP matrix; though, instead of

17



minimizing the expected distortion, the same algorithm is used to maximize the

expected PSNR as the objective function.

For 1::; j::; L , let.0~ be the number of parity symbols that is assigned to the

j-th column by the optimization algorithm. If k j = N -.0~ represents the number of

source symbols in the j-th column, then for each j from 1 to L, kj symbols are

read from the JPEG2000 bitstream and encoded by an RS(N,kj ) encoder. The j­

th column in the ULP matrix is then filled with the generated RS codeword and

the process continues for the remaining columns.

Suppose that after transmission, e packets are erased from the ULP

matrix. Then, at the decoder side, only RS codewords with .0. ~ e can be

successfully decoded. Once these codewords are decoded, the task of the ULP

scheme is over and the information part of the decoded codewords is ready to be

decoded by a ~'PEG2000 decoder. However, ER features of JPEG2000 can be

exploited to decode the bitstream beyond this point, and thus obtain an image

with higher quality. In the next chapter we explain how this can be done.
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CHAPTER 3: JOINT SOURCE-CHANNEL DECODING

This chapter describes the JSCO technique that we proposed in [16]. In

the following section, the joint decoding process is explained after the motivation

for using the JSCO is briefly discussed. The simulation results are presented in

Section 3.2.

3.1. THE JOINT DECODING PROCEDURE

Most ULP schemes, such as those in [13-15], try to minimize the expected

distortion or alternatively maximize the expected quality (PSNR) of the received

image. Hence, they deliver fairly good image quality on the average, when the

actual channel model matches the one assumed in the optimization. However,

when this is not the case, significant quality degradation can occur. Even when

the channel model assumption is correct, worst-case performance may be

significantly lower than the average performance, because some channel

realizations may suffer from much higher loss (burst loss) than the average loss

rate. Image quality degradations caused by these effects can be alleviated by our

proposed JSCO method.

In the JSCO technique presented in [1 0], the ER features of JPEG2aaa

are utilized to accelerate the convergence of the LOPC soft decoder in an

iterative fashion. Analogously, in our JSCO for ULP, ..IPEG2aaa ER features are
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Figure 3-1.

exploited to help the decoder decode more columns from the ULP matrix, as

explained below.

As mentioned in Chapter 2, each column of the ULP matrix is an RS

codeword. Therefore, it can be decoded as long as the number of erased

symbols (i.e., the number of lost packets) is not greater than the number of their

parity symbols. Consider an RS(N,k) codeword, and suppose that e = N-k+d

packets are lost during transmission (d ~ 1). If we guess the values of d of the

erased symbols in this codeword, the RS decoder can fill the remaining erasure

locations. Correctness of the guessed symbols and the corresponding restored

symbols can be verified by the ER features of JPEG2000. Once the guessing

iteration is finished and the RS decoder fills all of the erasure locations, we try to

decode the information portion of the RS codeword by the ~IPEG2000 decoder. If

the ~'PEG2000 decoder complains, we modify the guesses and repeat the

procedure. Figure 3-1, illustrates a simplified block diagram of the JSCD.

__----error Det8Cted,-- __

Load Next RS Guess++ RS Decoder JPEG2000
Codeword I---IJoI }----"l t-----"l Decoder

·~-----Successful Decoding-----~

Simplified block diagram of the basic JSCD.

Note that each of the guess values applied to a column of the ULP matrix

leads to a valid RS codeword, but only one results in the correct JPEG2000

bitstream. To prove this statement, we first show that the number of RS(N,k)
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codewords that all coincide at the same k-d positions is equal to 2mxd
. Let /, and

/2 be two disjoint sets, which contain k-d and d indices of positions in the RS

codewords, respectively. Furthermore, let u(C) =(u,(C), U2(C)) be a k-tuple in

which u,(C) and U2(C) represent the symbols of the RS codeword C at positions

indicated by /, and /2, respectively. If there are more than 2mxd different codeword

C's with the same u,(C), then, since the number of possible choices for U2(C) is

2mxd
, at least two of them would have the same U2(C) which contradicts the fact

that the minimum distance between these codewords is N-k+1. Therefore, if for

each (k-d)-tuple u we denote the number of codewords C with u,(C) = u by s(u),

we have:

(3.1 )

Then we can write the following inequality:

Total number of the RS codewords = II = I I 1
C u c:u1(C)=u

=I s(u) ;$; 2m(k-d) x 2mxd =2mxk •

u
(3.2)

On the other hand, there are exactly 2mxk different RS codewords with k message

symbols each of which has m bits. Therefore, the inequality in (3.2) never

becomes strict and for any u we should have s(u) = 2mxd
. In other words, when

u,(C) =u is known, each of the 2mxd possible values that U2(C) can take (Le., the

guess values) results in a valid RS codeword, which means that the RS decoding

on its own cannot help to identify the correct bitstream.
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To explain the joint decoding procedure in more detail, let f; 's be the

solution to the optimization problem discussed in Chapter 2. Let fCS =maxf/ be
e>,t

the number of parity symbols in those columns where the number of parity

symbols is just less than e, the number of erasures. The superscript CS stands

for critical segment, a part of the ULP matrix that consists of columns that have

exactly fCS parity symbols. To retrieve the information portion of a critical

segment, it is sufficient to find the correct value of d =e - fCS erased symbols in

each of its columns; the remaining erased symbols in the critical segment will be

'filled in by the RS decoder.

To ensure the validity of a repaired column of the critical segment, we let

JPEG2000 decoder attempt to decode the information portion of that column.

Due to ~IPEG2000 ERfeatures, an invalid segment in the bitstream would cause

the decoder to complain (with high probability); in that case, the incorrect guess

is discarded and another guess is made. Since JPEG2000 ER features cannot

guarantee detection of all errors, some wrong guesses will go by undetected, but

such cases are relatively rare in practice [10]. The pseudocode presented in

Figure 3-2 outlines the main steps of the proposed JSCD. A mechanism that we

considered to moderate the time spent on JSCD is also included in the

pseudocode. When all possible guesses for the present column are made

unsuccessfully, this mechanism prevents the joint source-channel decoder from

returning to the columns before the past rmax columns to correct the undetected

wrong guesses.
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identify the CS;
{rl<r2<...<re } +- indices of the erased packets;
Cl +- the l-th column of the ULP structure;
CP(x,y) +- index of the coding pass which contains the y-th
symbol of the x-th column (cx);
i +- index of the first column of the CS;

LOOP1:
i* +- i;
while CP(i+l,rl) :S;CP(i*,rd)

i++;
i ** +- i;

LOOP2:
while no unverified guess for Ci remains
{

reset Ci;
RS: decode Ci;
i--;

}

if i ** - i ~ rrnax
terminate;

take the next unverified value as the guess for
column i;

RS: decode Ci;

J2K: decode the coding passes contained in Ci through
Ci

if J2K decoder complained
{

i +- i **
goto LOOP2;

}

else
{

if end of the CS is reached
terminate;

i +- i**+l;
goto LOOP1;

Figure 3-2. Simplified pseudocode of the JSCD.
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3.2. RESULTS

We tested our JSCD algorithm on several standard 512x512 gray-scale

images: Lena, Barbara, Gold Hill, and Boat. The simulation setup was as follows.

The ULP matrix consists of 255 packets, each 100 bytes long. This results in the

total rate budget of 0.7782 bits per pixel (bpp). Test images were encoded at this

rate using the Kakadu implementation of ..IPEG2000 [1], with three different

codeblock sizes (16x16, 32x32, and 64x64), 128x128 precincts, and ERTERM

and RESTART switches turned on. Although SOP and EPH markers, which

indicate the start and the end of a JPEG2000 packets (not to be confused with

the network packets), do not affect our simulation results, they were also

activated. Then, we derived operational PSNR-rate curves from the encoded

images and found the optimal ULP protection levels using the algorithm from [15]

for each image at 10%, 20%, and 30% mean loss rates. The resulting patterns

for ULP are reported in Tables 3-1 to 3-IV.

For convenient integration with Kakadu, 8-bit symbols (i.e., bytes) were

used as the RS symbols; in our implementation, channel encoding and decoding

is performed by Phil Karn's RS codec [25]. Also, to limit the decoding time, we

only considered cases where just one symbol (byte) needs to be guessed in

each column of the critical-segment (i.e., d =1). Since any of the erased symbols

can be chosen for guessing, in our implementation, we simply choose the first

erased symbol in each of the critical segment columns to be guessed.
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TABLE 3-1. PATrERN OFTHE ULP MATRICES FOR LENA

10%
column 1 2-7 8-18 19-33 34-73 74-100

# of parity symbols 45 43 41 40 39 38
Q)

iii column 1 2 3-4 5-8 9 10-21 22-83 84-100c::: 20%

I~
# of parity symbols 75 73 72 71 70 69 67 66

30% column 1 2 3-5 6-10 11-24 25 26-98 99 100
# of parity symbols 104 103 101 100 98 97 96 95 94

TABLE 3-11. PATTERN OF THE ULP MATRICES FOR BARBARA

10%
column 1 2 3-4 5-6 7 8-100

# of parity symbols 44 43 41 40 39 38
Q)

iii column 1 2 3-4 5-7 8-100c::: 20%
In
In # of parity symbols 73 71 69 67 66
0
~

30% column 1-2 3-5 6-8 9 10-13 14-21 22-100
# of parity symbols 102 98 97 95 94 93 92

TABLE 3-1/1. PATTERN OF THE ULP MATRICES FOR GOLDHILL

J column 1 2 3-6 7-10 11-16 17-25 26-100
1

10% # of parity symbols 46 45 43 42 41 40 39
$
III column 1 2 3 4-7 8-11 12-18 19-29 30-84 85-98 99-100c::: 20%
In
In # of parity symbols 77 76 74 73 72 71 70 68 67 66
0
~

1

30%
column 1-23-5 6-8 9-13 14-33 34 35-97 98-99 100

# of parity symbols 105 101 100 99 97 96 95 94 93i

TABLE 3-IV. PATTERN OF THE ULP MATRICES FOR BOAT

column 1 2-3 4 5-9 10-16 17-73 74-100
10%

# of parity symbols 45 43 42 41 40 39 38
Q)

iii column 1 2 3-4 5-11 12-100c::: 20%
In
In # of parity symbols 102 98 97 95 94
0
-l

30% column 1-2 3-5 6 7-32 33-98 99 100

# of parity symbols 102 99 98 97 96 95 94
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Figures 3-3 to 3-8 illustrate the theoretical expected gain in PSNR that the

JSCD can deliver versus mean packet loss rate, for different images. Given the

pattern of ULP, the expected PSNR that is achievable without JCSD can be

calculated using (2.1), except that the distortion-rate function should be replaced

by PSNR-rate function (i.e., PSNR(.)). Similarly, when JSCD by guessing up to d

erased symbols per RS codeword is also performed, the expected PSNR can be

formulated as:

(3.3)

which helps to find the expected PSNR gain aC~lieved by using JSCD. As the

graphs show, when the mean loss rate of the channel coincides with the loss rate

for which we optimized the ULP matrices, the expected gain never exceeds a few

hundredths of a dB. However, channel mismatch can increase the probability of

having a CS; consequently, expected PSNR gain can rise to a noticeable level

(e.g., Fig 3-3 shows near 1.4 dB gain when the ULP matrix is optimized for 10%

mean loss rate, but the channel loss rate is roughly 17%). The peaks on the

curves indicate the channel loss rates at which it is more likely to have a CS. The

number and the location of these peaks depend not only on d, but also on the

utilized ULP patterns. If the number of parity symbols changes from one column

to the next column of a ULP matrix in smaller steps, fewer peaks can be seen in

its corresponding graph. The effect of d on variation of the expected gain is not

reflected on the graphs because only the case of d = 1 is considered.
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Figure 3-9. Cumulative distribution of PSNR gain provided by JSCD for
Barbara at different mean loss rates, where no channel mismatch
occurs.

Although JSCD cannot improve the expected PSNR gain when there is a

little or no mismatch between the channel and its model, it is still possible to

obtain higher quality images by using the proposed JSCD. Figure 3-9 exemplifies

the gain of using JSCD at different mean loss rates when there is no channel

mismatch. The graphs show that it is very unlikely to have a noticeable PSNR

gain from JSCD, though large PSNR gains are not completely impossible to

occur. For example, in the case where the mean channel loss rate is supposed to

be 20%, the probability of having less than 2 dB gain is just below 99.7%, which

means more than 0.3% of the times the gain is 2 dB or more. Therefore, in a

scenario where the image .is broadcasted to 1000 users through a channel with
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the same conditions, three users can be expected to gain 2 dB or more by using

the JSCD compared to the case where receivers do not perform the joint

decoding.

Tables 3-V to 3-VIII show the average PSNR based on outcomes of 100

simulations, when JSCD is not applied (PSNR), and when basic JSCD is

performed (PSNRo), both in dB, for different tested images using different

codeblock sizes. Similar quantities are reported in Tables 3-IX to 3-XII providing

some examples of the performance of JSCD at different transmission rate

bUdgets (i.e., 255 packets of 50 bytes (0.3891 bpp) and 255 packets of 150 bytes

(1.1673 bpp)). The loss rate column in the tables represents the mean channel

loss rate used by the parity level optimization algorithm [15]. The experiments are

carried out for the last three possible critical segments, which are represented in

the tables by CS#1, CS#2 and CS#3. The width of each critical segment is also

reported in the tables.

The results show that JSCD has the potential to improve the received

image quality significantly. For sufficiently wide critical segments, the proposed

JSCD demonstrates remarkable improvement in the PSNR (e.g., Table 3-VI,

PSNRo at CS#1 , 64x 64 codeblock size, and 10% loss rate), while for narrow

critical segments (e.g., those with one or two columns), JSCD causes marginal

PSNR improvement, if any. For further illustration, Figures 3-10 and 3-11

demonstrate the visual improvement in the quality of the decoded image for two
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TABLE 3-V. AVERAGE PSNR BEFORE JSCD (PSNR), AVERAGE PSNR AFTER PERFORMING

JSCD (PSNRo), AND WIDTH OF THE LAST THREE CRITICAL SEGMENTS FOR

LENA.

W ~ CS#1 CS#2 CS#3
I- 0

~
0
..JW
ION

(/) We;; 2: 2: 2:(/) c --
PSNRa

-- --
PSNRa0 PSNR a PSNR PSNRa a PSNR a

0 ~ ~ ~..J 0

16x16 30.6 37.5 24.6 30.0 23.8 24.3

10% 32x32 32.5 37.1 27 26.9 32.3 40 26.2 26.8 15

64x64 32.8 37.0 29.6 32.7 27.6 29.5

16x16 30.2 33.8 23.9 30.0 23.4 23.7

20% 32x32 32.2 33.5 17 26.2 32.1 62 24.3 26.2 12

64x64 32.7 35.6 27.6 32.6 24.3 27.5

16x16 30.0 30.1 30.0 30.0 23.8 30.0

30% 32x32 32.3 32.4 1 32.1 32.3 1 26.2 32.1 73

64x64 32.7 32.7 32.7 32.7 27.5 32.6

TABLE 3-VI. AVERAGE PSNR BEFORE JSCD (PSNR), AVERAGE PSNR AFTER PERFORMING

JSCD (PSNRo), AND WIDTH OF THE LAST THREE CRITICAL SEGMENTS FOR

BARBARA.

W ~ CS#1 CS#2 CS#3
I- 0

~ gw
ION

(/) w- 2: 2: 2:(/) c(/) -- --
PSNRa

--
PSNRa0 PSNR PSNRa a PSNR a PSNR a

0 ~ ~ ~..J 0

16x16 22.2 32.0 21.7 21.8 21.1 21.6

10% 32x32 22.2 31.6 93 22.0 22.0 1 21.0 22.0 2

64x64 22.1 32.1 22.0 22.0 21.0 22.0

16x16 21.7 29.4 20.9 21.6 20.0 20.9

20% 32x32 22.0 29.0 93 20.8 22.0 3 20.0 20.8 2

64x64 22.0 28.3 20.8 22.0 20.0 20.8

16x16 22.5 27.5 22.0 22.5 21.7 22.0

30% 32x32 23.3 27.2 79 22.5 23.3 8 22.0 22.5 4

64x64 23.4 27.0 22.5 23.4 22.0 22.5
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TABLE 3-VII. AVERAGE PSNR BEFORE JSCD (PSNR), AVERAGE PSNR AFTER PERFORMING

JSCD (PSNRo), AND WIDTH OF THE LAST THREE CRITICAL SEGMENTS FOR

GOLDHILL.

W ~ CS#1 CS#2 CS#3
I- 0

~
0
-JW
mNen W- 2: 2: 2:en C

en --
PSNRo

--
PSNRo

--
PSNRo0 PSNR a PSNR a PSNR a

0 $ $ $-J 0

16x16 24.7 33.4 23.9 24.3 23.7 23.8

10% 32x32 26.5 33.0 75 25.9 26.4 9 25.3 25.9 6

64x64 27.6 32.1 26.3 27.5 25.2 26.3

16x16 30.6 31.1 29.3 30.6 24.4 29.2

20% 32x32 31.2 31.4 2 30.4 31.2 14 26.4 30.3 55

64x64 31.9 32.1 30.5 31.7 27.5 29.8

16x16 29.3 29.4 29.2 29.3 24,3 29.1

30% 32x32 30.4 30.5 1 30.2 30.4 2 26.4 30.1 63

64x64 30.6 30,6 30.5 30.6 27.5 29.0

TABLE 3-VIII. AVERAGE PSNR BEFORE JSCD (PSNR), AVERAGE PSNR AFTER

PERFORMING JSCD (PSNRo), AND WIDTH OF THE LAST THREE CRITICAL

SEGMENTS FOR BOAT.

W ~ CS#1 CS#2 CS#3
I- 0

~ 9w
m!::::!en wen 2: 2: 2:en -- -- --

0 C PSNR PSNRo a PSNR PSNRo a PSNR PSNRo a
0 $ $ $-J 0

16x16 29.3 33.5 22.6 29.0 21.9 22.1

10% 32x32 29.0 33.0 27 23,9 28.8 57 22.8 23.8 7

64x64 28.9 32.8 24.3 28.7 22.8 24.3

16x16 22.1 30.5 21.1 21.9 19.5 21.0

20% 32x32 22.8 31.5 89 21.0 22.8 7 19.5 21,0 2

64x64 22.8 30,3 21.0 22.8 19.5 21.0

16x16 29.0 29.0 28.9 29.0 22.8 28.9

30% 32x32 28.9 29.1 1 28.8 28.9 1 24.5 28,8 66

64x64 28,9 28.9 28.8 28.9 25,5 28.4
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TABLE 3-IX.AvERAGE PSNR BEFORE JSCD (PSNR), AVERAGE PSNR AFTER PERFORMING

JSCD (PSNRa), AND WIDTH OF THE LAST THREE CRITICAL SEGMENTS FOR

LENA WHEN ULP MATRICES CONSIST OF 255 PACKETS OF 50 BYTES.

I

w ~ CS#1 CS#2 CS#3
I- u

~
0...Jw

I
I I ~

mNen we;; 2: 2:en -- --
0 c PSNR PSNRa a PSNR I PSNRa ~ PSNR PSNRa a

0 ~ ~...J (,)

16x16 32.2 32.5 25.4 32.2 24.2 25.2

10% 32x32 32.3 32.4 1 27.0 32.3 13 26.3 26.9 9

64x64 33.4 33.6 29.4 33.4 27.5 29.3

16x16 29.7 29.7 24.5 29.7 24.3 24.4

20% 32x32 31.5 31.6 1 26.9 31.5 21 26.7 26.8 3

64x64 31.9 31.9 28.8 31.9 28.3 28.8

16x16 25.4 29.2

117

24.4 25.4 24.2

I

24.4

30% 32x32 27.0 30.6 26.9 27.0 2 26.3 26.9 9

64x64 29.3 30.6 I 29.0 29.3 27.5 29.0

TABLE 3-X. AVERAGE PSNR BEFORE JSCD (PSNR), AVERAGE PSNR AFTER PERFORMING

JSCD (PSNRa ), AND WIDTH OF THE LAST THREE CRITICAL SEGMENTS FOR

BARBARA WHEN ULP MATRICES CONSIST OF 255 PACKETS OF 50 BYTES.

w ~ CS#1 CS#2 CS#3
I- u

~ 9w
mNen we;; 2: 2: 2:en -- -- --

0 c PSNR PSNRa a PSNR PSNRa a PSNR PSNRa a
0 ~ ~ ~...J u

16x16 21.9 28.0 20.9

I

21.8 20.5 20.9

10% 32x32 22.1 27.7 43 20.8 22.0 3 20.4 20.8 1

64x64 22.0 27.6 20.8 22.0 20.4 20.8

16x16 25.5

I

26.8

1
11

21.8 25.4 20.7 21.7

20% 32x32 25.3 26.7 22.0 25.3 31 20.7 22.0 4

64x64 25.3 26.6 22.0 25.3 20.7 22.0

16x16 23.6 24.3 23.4 23.6 22.9 23.4

30% 32x32 24.5 24.6 1 24.4 24.5 2 23.9 24.4
I 9

64x64 24.7 24.8 24.6 24.7 24.0 24.6 i
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TABLE 3-XI. AVERAGE PSNR BEFORE JSCD (PSNR), AVERAGE PSNR AFTER PERFORMING

JSCD (PSNRo), AND WIDTH OF THE LAST THREE CRITICAL SEGMENTS FOR

LENA WHEN ULP MATRICES CONSIST OF 255 PACKETS OF 150 BYTES.

w :::c:: CS#1 CS#2 CS#3
I- u
~ gw

lIlNrn we;; ~ ~ ~rn c --
PSNRo

--
PSNRo

--
PSNRo0 PSNR a PSNR a PSNR a

0 S S S....I u

16x16 24.0 36.3 23.3 23.7 23.1 23.3

10% 32x32 26.2 36.0 130 24.3 26.1 11 24.3 24.3 1

64x64 27.5 35.4 24.3 27.4 24.3 24.3

16x16 29.4 29.5 29.3 29.4 29.3 29.3

20% 32x32 29.8 29.9 1 29.4 29.8 1 29.4 29.4 1

64x64 31.0 31.0 31.0 31.0 31.0 31.0

16x16 29.1 29.1 29.0 29.1 29.0 29.0

30% 32x32 28.5 28.5 1 28.5 28.5 1 28.4 28.5 1

64x64 31.0 31.0 31.0 31.0 31.0 31.0

TABLE 3-XII. AVERAGE PSNR BEFORE JSCD (PSNR), AVERAGE PSNR AFTER

PERFORMING JSCD (PSNRo), AND WIDTH OF THE LAST THREE CRITICAL

SEGMENTS FOR BARBARA WHEN ULP MATRICES CONSIST OF 255 PACKETS OF

150 BYTES.

w ~ CS#1 CS#2 CS#3
I- U
« gw0::: lIlNrn we;; ~ ~ ~rn c --

PSNRo
--

PSNRo
--

PSNRo0 PSNR a PSNR a PSNR a
0 S S S....I U

16x16 30.3 30.4 22.7 30.2 21.7 22.6

10% 32x32 30.1 30.1 1 23.6 30.0 119 22.0 23.5 22

64x64 28.8 29.3 23.8 28.8 22.0 23.7

16x16 28.4 28.5 28.4 28.4 23.4 28.4

20% 32x32 27.8 27.9 1 27.7 27.9 1 24.6 27.7 69

64x64 27.3 27.4 27.3 27.3 25.0 27.1

16x16 25.9 26.0 25.8 25.9 25.8 25.8

30% 32x32 25.8 25.8 1 25.8 25.8 1 25.7 25.8 1

64x64 25.8 25.8 25.7 25.8 25.5 25.7
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examples, when JSCD is applied compared to separate source and channel

decoding. Note that the PSNR values reported for some of the ULP matrices

designed for lower mean loss rates are lower than the corresponding PSNR

values at higher mean loss rate (e.g., Table 3-VI, CS#2, loss rate at 20% and

30%). One may find these results unreasonable by missing the fact that the

compared CS's may contain different parts of the JPEG2000 bitstream because

their corresponding ULP matrices are different.

Furthermore, as the tables present, in contrast with the fact that the quality

of decoded JPEG2000 images at a given source rate should ideally increase

using larger codeblocks [1], in a few cases (e.g., Table 3-VI, CS#1 at 20% loss

rate) the trend does not conform to the expectation. These abrupt fluctuations

have two reasons. The first reason is the effect of the restriction we imposed on

the algorithm to prevent the decoder from correcting the undetected wrong

guesses far back in the bitstream. As we mentioned earlier in this chapter, the

joint decoder is only allowed to correct the wrong guesses located just a few

columns (e.g., three columns) before the current column. If it becomes necessary

to correct a wrong guess beyond this boundary, the joint decoding will be

terminated. Although this constraint could be advantageous for controlling the

execution time, in occasional cases where it terminates the JSCD process too

early in the CS, most of the source information in that segment will remain

corrupted. As a result, the ultimate image quality that JSCD could deliver will not

be achieved. The second reason is that JSCD is more prone to leave undetected

wrong guesses in the images with larger codeblocks. Both of these
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circumstances are less likely to happen when smaller codeblocks are used;

because smaller codeblocks produce shorter coding passes, which essentially

reduce the chance of missing the wrong guess, by providing better error

localization [10].

When the joint decoder has to search through numerous candidates

among the RS codewords, the basic JSCD can become extremely time­

consuming. Our simulations on a standard desktop PC show that, to restore a

relatively wide critical segment, the joint decoder may need even more than five

minutes, much longer than an ordinary image decoding time. In the next chapter,

we address this downside and provide some solutions to speed up the process.
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CHAPTER 4: SPEED IMPROVEMENTS

Although the basic JSCD described in the previous chapter is able to

deliver significant quality improvements in some cases, the search for the correct

values of the erased symbols can be very time-consuming. In this chapter, we

describe how the search process may be accelerated. The work presented in this

chapter is also described in [17] and [18].

4.1. SOLUTIONS

4.1.1. USING SMALLER CODEBLOCKS

One possible method to accelerate JSCD is to use smaller codeblocks,

which in turn causes shorter coding passes. These shorter coding passes are

less likely to spread into more than one column of the ULP matrix. Moreover,

JPEG2000 ER features work better for smaller codeblocks because the

arithmetic decoder is resynchronized more frequently [22]. As a result, when

the JSCD of the next RS codeword begins, a wrong guess value can rarely

remain undetected. However, it is important to notice that smaller codeblocks

cause reduction in compression efficiency and lead to lower image quality for

a given bit budget, as shown in tables 3-1 to 3-IV. In fact, this quality

degradation is the cost we pay to speed up the proposed JSCD procedure.

40





this coding pass depends on the values of multiple erased symbols. Suppose

that the first row of the erased symbols are guessed during the JSCD. If the

JPEG2000 decoding failure occurs on or after the second guessed symbol,

the guess values in either of the columns might be wrong, so the decoder may

need to change both. But if the decoder complains of an error before it passes

the second guessed symbol, further verification of the possible guess values

for this symbol is unnecessary since it is known that the guess value in the

first column is incorrect.

4.1.3. AUXILIARY BITS

As shown in Section 3.1, by filling any set of d erased symbols in a critical

segment column with arbitrary values, the RS decoder is able to fill the other

erased locations and generate a complete and valid RS codeword. Therefore,

the information carried by non-erased symbols is not helpful to reduce the

number of possible guesses. Consequently, accelerating the JSCD beyond

what the previous approaches can offer requires some extra information being

available at the decoder side. Some side information transmitted from the

encoder side, which requires only a relatively small additional bit budget, can

be used to facilitate the joint decoding at the receiver.

One possible choice for this side information is a collection of bit values

from the RS symbols, for example, the first few most significant bits of each

symbol. When transmitted error-free, by reducing the number of bits that need

to be guessed, these auxiliary bits can help to shrink the search space for

JSCD, and hence accelerate the process. Using only one auxiliary bit per
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symbol, for instance, can reduce the number of possible guesses by a factor

of 2d
. Furthermore, auxiliary bits from different symbols in a particular RS

codeword can be used to verify the validity of the guesses without performing

the JPEG2000 decoding, which is the most time-consuming part of the

guessing iterations.

Figure 4-2 illustrates a schematic diagram of the joint decoder which

exploits auxiliary bits. As the diagram shows, in the improved JSCD the time-

consuming JPEG2000 decoding is performed subsequent to the RS decoding

only if the result of auxiliary bit verification is positive. If there are erased

symbols which have received auxiliary bits, excluding the guessed symbol(s),

any mismatch between their auxiliary bits and the corresponding bits of their

restored values indicates that the guess values have been wrong, and there is

no need to further call the ...IPEG2000 decoder to verify the guess.

Consequently, the overall computational load of the JSCD would be

significantly reduced.

______ -J

___rror Oeteeted _

AuxlUary
Bits

RS Decoder .--~Guess+..

~----;I----..guccessful Decdoing-...L-----­
I
I
I
~-----

Load Next RS
Codeword

Figure 4-2. Simplified diagram of the joint decoder when auxiliary bits are
available.
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The auxiliary bits are helpful to decrease the extra decoding time required

for JSCD significantly; however, we should also consider the cost of using

them. For example, if we use the common RS(255, k) codes in the ULP

scheme, each RS symbol is 8 bits Jong. Assigning even one auxiliary bit to

each of these symbols would result in 12.5% increase in the total number of

transmitted bits. Using such a large number of auxiliary bits might be

questionable because not only it would be difficult to guarantee their error-free

transmission, but also, part of this bit bUdget could have been spent on parity

symbols in the first place. Therefore, it is necessary to assign the auxiliary bits

selectively.

We can choose to assign auxiliary bits only to the first few packets,

because, for a given number of packet erasures, the 'first few erasures that

erase the symbols whose values we should later guess, are more likely to

occur during the first few packet transmissions rather than later transmissions.

For a precise explanation, suppose that there are e erasures among N

packets. Then, the probability of having t erased packets in the first ko packets

is:

(4.1)

Depending on the desirable value of t, one can choose ko such that the

probability of having at least t erasures in the first ko packets (i.e.,

FN,ko,e(t)= IT~tQN,ko,e(T)) is above a safe threshold. The cases where t>1
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are also considered because they show how often there are multiple erased

symbols among the first ko symbols, and thus it is possible to detect the

incorrect guess values by comparing the available auxiliary bits and their

corresponding bits in the restored symbols. Figure 4-3 shows how F varies by

changing ko and t, for e = 39 and N = 255. For instance, the probability of

having at least one erased packet in the first 20 packets is more than 95%.

Since auxiliary bits are used only when their corresponding symbols are

erased, and the probability of the first erased packet being within the first few

packets is high, placing auxiliary bits in this way ensures that they will be used

with high probability and there would be no

o:t
0.8

0.7

iii j I I

t =;.6 .

Figure 4-3. Trends of the probability function, F, for different values of t and ko
when e = 39 of the total of N = 255 packets are erased.
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need to place them elsewhere. This way, we can approach the performance

obtained when auxiliary bits are assigned to all symbols, but without using as

many bits.

We can further reduce the number of auxiliary bits by assigning them only

to the symbols that belong to coding passes whose decoding takes a longer

time. In Figure 4-1, suppose that symbols in one of the erased packets (say

the first erased packet) are chosen to be guessed. Depending on the number

of columns in the critical segment that contain erased symbols of a certain

coding pass, the joint decoder may have to generate guess values for multiple

erased symbols which belong to. different columns. For example, to decode

coding pass #i in Figure 4-1 perfectly, the joint decoder should fill in both of

the erased symbols in the first erased packet with correct values. In such

cases, concatenation of these multiple symbols is considered as a longer

binary word whose value the joint decoder guesses sequentially, starting from

zero. If one of the corresponding erased symbols is filled with a wrong guess,

an unsuccessful search may be perpetuated through all of the possible values

that the less significant part of the binary word can take. Therefore, on

average, it can be expected that in these cases, the decoding time of the

coding pass rises sharply.

Since the decoding time is highly dependent on JPEG2000 error detection

performance, there is no simple way to identify all of the coding passes that

require more time to be decoded. However, we can argue that coding passes

that have more than one symbol in the first erased packet are more likely to
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lengthen the JSCD. Therefore, for each coding pass, we choose to assign

auxiliary bits only to the symbols that are adjacent to another symbol from the

same coding pass located in the same network packet. For example, in Figure

4-1, some auxiliary bits would be assigned for the symbols of coding pass #i

in the third and the fourth row, but the symbols of the same coding pass in the

sixth row would not receive any auxiliary bits. This policy provides a

compromise between improving the decoding speed and the number of extra

bits required. Therefore, by distributing auxiliary bits only among these

particular kinds of coding passes, the required extra bit budget would be

reduced substantially, while the joint decoding speed still shows significant

improvements.

If P denotes the ratio of the required auxiliary bit budget to the main bit

budget, we have the following upper bound:

(4.2)

in which ;\ is the proportion of columns in the ULP matrix that contain the

coding passes chosen to receive auxiliary bits, a is the number of auxiliary bits

assigned to each symbol, m is the number of bits in each RS symbol, and

emax is the maximum number of erasures that can be recovered by the JSCD.

Note that in (4.2) we have also included the cost of protecting the auxiliary bits

by assigning RS codes of rate (N-emax)/N to them. Therefore, the entire

required extra bit budget is counted in this upper bound.
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4.2. RESULTS

The setup settings that we mentioned in Section 3.2, such as bitrate of

0.7782 bpp, the ERTERM+RESTART encoding mode, and use of SOP and EPH

markers, are also used for simulations of this chapter. In addition, in the

accelerated JSCD method we considered one, two, and three auxiliary bits for

the symbols which need it. The numbers reported in tables 4-V to 4-VIII are

average outcomes of 100 simulations run on a desktop PC with an Intel® Core™

2 Duo 2.13 GHz CPU and 2GB of RAM.

The auxiliary bits and the other improvement tools mentioned in Section

4.1 are essentially exploited to boost the speed of JSCD; however, using these

techniques can also deliver a small extra quality enhancement. These minor

improvements occur when a coding pass, especially the last coding pass, of a

particular codeblock contains a wrong guess, but JPEG2000 decoder fails to

detect it during the basic JSCD and finishes decoding the codeblock.

Consequently, the source decoder would eventually complain for an error

induced by RS decoding to the next codeblock(s). However, due to the

restrictions that Kakadu [1] imposes, in our implementation, we cannot simply

decode a coding pass of an already-decoded codeblock. As a result, the

decoded codeblock will remain corrupted, even if we find the correct value that

corresponds to the last undetected error, using the information of the next

codeblock. Nonetheless, wherever the auxiliary bits are applied, they can reduce

the chance of having undetected wrong guesses, by shrinking the set of all

possible guesses. For example, suppose that the original value of an erased
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symbol is 135. Also, assume that there is a wrong guess for this symbol with a

value of less than 128, which JPEG2000 cannot detect. In this case, even by

using only one auxiliary bit, the wrong undetectable guess will be skipped

because the search begins at 128. Hence, the auxiliary bits can slightly improve

the quality of the output.

The simulation results in tables 4-1 to 4-IV show that in most cases,

especially when codeblock size is smaller than 64x64, the accelerated JSCD,

which fully exploits the error detection information and the auxiliary bits, does not

increase the PSNR of the decoded image. However, because of the reasons

mentioned above, in a few cases there is up to 1.4 dB gain in the PSNR when

the improved JSCD is applied (e.g., Table 4-111, CS#3, 64x64 codeblock size, at

30% loss rate).

In tables 4-V to 4-VIII, the average time costs of basic JSCD (~To ) and

improved JSCD with different number of auxiliary bits (~T' (a)'5) are reported in

seconds, with one decimal point precision. The average time that the separate

source and channel decoding requires (f) was equal to 0.1 s consistently. Note

that we reported these numbers in one decimal point precision because limited

number of simulations for each case, and the fluctuations in the computer's

memory and CPU usage caused by background programs cause errors with

magnitUde of hundredths of a second.
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TABLE 4-1. AVERAGE PSNR PERFORMANCE (IN dB) OF BASIC JSCD, AND IMPROVED JSCD
WITH a = 0, 1,2 AND 3 AUXILIARY BITS ON LENA.

CS#1 CS#2 CS#3
W ~

I- ()

~
0 -- -- --
...JW PSNR* (a) PSNR* (a) PSNR*(a)rnN -- -- --en w- PSNRo PSNRo PSNRoen oen

0 0...J () a=O a=l a=2 a=3 a=O a=l a=2 a=3 a=O a=l a=2 a=3

16x16 37.5 37.5 37.5 37.5 37.5 30.0 30.0 30.0 30.0 30.0 24.3 24.3 24.3 24.3 24.3

10%32x32 37.1 37.1 37.1 37.1 37.1 32.3 32.3 32.3 32.3 32.3 26.8 26.8 26.8 26.8 26.8

~4x64 37.0 37.0 37.1 37.1 37.1 32.7 32.7 32.7 32.7 32.7 29.5 29.5 29.5 29.5 29.5

16x16 33.8 33.8 33.8 33.8 33.8 30.0 30.0 30.0 30.0 30.0 23.7 23.7 23.7 23.7 23.7

20%32x32 33.5 33.5 33.5 33.5 33.5 32.1 32.1 32.1 32.1 32.1 26.2 26.2 26.2 26.2 26.2

64x64 35.6 35.6 35.6 35.6 35.6 32.6 32.6 32.7 32.7 32.7 27.5 27.5 27.5 27.5 27.5

16x16 30.1 30.1 30.1 30.1 30.1 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0

30%32x32 32.4 32.4 32.4 32.4 32.4 32.3 32.3 32.3 32.3 32.3 32.1 32.1 32.1 32.1 32.1

64x64 32.7 32.7 32.7 32.7 32.7 32.7 32.7 32.7 32.7 32.7 32.6 32.6 32.6 32.6 32.7

TABLE 4-11. AVERAGE PSNR PERFORMANCE (IN dB) OF BASIC JSCD, AND IMPROVED JSCD
WITH a = 0, 1,2 AND 3 AUXILIARY BITS ON BARBARA.

CS#1 CS#2 CS#3
w ~

I- ()

or:( gw -- --
PSNR*(a)0::: PSNR*(a) PSNR* (a)

rn~ -- -- --en wen PSNRo PSNRo PSNRoen 00 0...J () a=O a=l a=2 a=3 a=O a=l a=2 a=3 a=O a=l a=2 a=3

16x16 32.0 32.0 32.0 32.0 32.0 21.8 21.8 21.8 21.8 21.8 21.6 21.6 21.6 21.6 21.6

10%32x32 31.6 31.61 31 .6 31.6 31.6 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0

64x64 32.1 32.1 32.1 32.1 32.1 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0

16x16 29.4 29.4 29.4 29.4 29.4 21.6 21.6 21.6 21.6 21.6 20.9 20.9 20.9 20.9 20.9

~O%32x32 29.0 29.0 29.0 29.0 29.0 22.0 22.0 22.0 22.0 22.0 20.8 20.8 20.8 20.8 20.8

~4x64 28.3 28.3 28.4 28.4 28.4 22.0 22.0 22.0 22.0 22.0 20.8 20.8 20.8 20.8 20.8

16x16 27.5 27.5 27.5 27.5 27.5 22.5 22.5 22.5 22.5 22.5 22.0 22.0 22.0 22.0 22.0

30%32x32 27.2 27.2 27.2 27.2 27.2 23.3 23.3 23.3 23.3 23.3 22.5 22.5 22.5 22.5 22.5

64x64 27.0 27.0 27.1 27.1 27.1 23.4 23.4 23.4 23.4 23.4 22.5 22.5 22.5 22.5 22.5
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TABLE 4-111. AVERAGE PSNR PERFORMANCE (IN dB) OF BASIC JSCD, AND IMPROVED JSCD
WITH 0 =0, 1,2 AND 3 AUXILIARY BITS ON GOLDHILL.

CS#1 CS#2 CS#3
UJ ~

I
I- 0

~ gUJ --
PSNR' (0)

--
PSNR' (0) PSNR' (0)mN --

PSN~I
--en UJ- PSN~ PSN~en C

en
0 0-I 0 a=O a=1 a=2 a=3 a=O a=1 a=2 a=3 a=O a=l a=2 a=3

16x16 33.4 33.4 33.4 33.4 33.4 24.3 24.3 24.3 24.3 24.3 23.8 23.8 23.8 23.8 23.8

10%32x32 33.0 33.0 33.0 33.0 33.0 26.4 26.4 26.4 26.4 26.4 25.9 25.9 25.9 25.9 25.9

64x64 32.1 32.1 33.0 33.2 33.3 27.5 27.5 27.5 27.5 27.5 26.3 26.3 26.3 26.3 26.3

16x16 31.1 31.1 31.1 31.1 31.1 30.6 30.6 30.6 30.6 30.6 29.2 29.2 29.2 29.2 29.2

120%32x32 31.4 31.4 31.4 31.4 31.4 31.2 31.2 31.2 31.2 31.2 30.3 30.3 30.3 30.3 30.3

164x64 32.1 32.1 32.1 32.1 32.1 31.7 31.7 31.9 31.9 31.9 29.8 29.8 30.4 30.5 30.5

16x16 29.4 29.4 29.4 29.4 29.4 29.3 29.3 29.3 29.3 29.3 29.1 29.1 29.1 29.1 29.1

30%32x32 30.5 30.5 30.5 30.5 30.5 30.4 30.4 30.4 30.4 30.4 30.1 30.1 30.1 30.1 30.1

64x64 30.6 30.6 30.6 30.6 30.6 30.6 30.6 30.6 30.6 30.6 29.0 29.0 30.3 30.3 30.4

TABLE 4-IV.AvERAGE PSNR PERFORMANCE (IN dB) OF BASIC JSCD, AND IMPROVED JSCD
WITH 0 =0, 1,2 AND 3 AUXILIARY BITS ON BOAT.

CS#1 CS#2 CS#3
w ~

I- 0

~ gw -- -- --
mN -- PSNR' (0) -- PSNR' (0) -- PSNR' (0)

en we;; PSN~ PSN~ PSN~en C0 0-I 0 a=O a=l a=2 0=3 0=0 a=1 a=2 a=3 a=O 0=1 a=2 a=3

16x16 33.5 33.5 33.5 33.5 33.5 29.0 29.0 29.0 29.0 29.0 22.1 22.1 22.1 22.1 22.1

10%32x32 33.0 33.0 33.0 33.0 33.0 28.8 28.8 28.8 28.8 28.8 23.8 23.8 23.8 23.8 23.8

64x64 32.8 32.8 32.9 33.0 33.0 28.7 28.7 28.8 28.8 28.8 24.3 24.3 24.3 24.3 24.3

16x16 30.5 30.5 30.5 30.5 30.5 21.9 21.9 21.9 21.9 21.9 21.0 21.0 21.0 21.0 21.0

\20% 32x32 31.5 31.5 31.5 31.5 31.5 22.8 22.8 22.8 22.8 22.8 21.0 21.0 21.0 21.0 21.0

164x64 30.3 30.3 30.9 31.0 31.1 22.8 22.8 22.8 22.8 22.8 21.0 21.0 21.0 21.0 21.0

16x16 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 28.9 28.9 28.9 28.9 28.9

30%32x32 29.1 29.1 29.1 29.1 29.1 28.9 28.9 28.9 28.9 28.9 28.8 28.8 28.8 28.8 28.8

164x64 28.9 28.9 28.9 28.9 28.9 28.9 28.9 28.9 28.9 28.9 28.4 28.4 28.8 28.8 28.8
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The results show that the speedup techniques can reduce the time

required for the JSCD by up to two orders of magnitude, even for 64x64

codeblocks (e.g., Table 4-VII, CS#3, 64x64 codeblock size, at 20% loss rate).

However, to achieve such acceleration, the amount of increase in the assigned

bit budget due to the addition of the auxiliary bits must be affordable. Also, note

that the JSCD still takes much more time than separate source and channel

decoding (T =O.ls).

As stated earlier, using smaller codeblocks can cause fast joint decoding,

but complexity reduction brought by this approach may be offset by the reduction

in PSNR. For most of the cases reported in tables 4-V to 4-VIII the joint decoding

speed increases with the decrease in the size of the codeblocks, except for some

of the very narrow critical segments (e.g., Table 4-V, CS#1 at 30% loss rate). In

these cases, the JSCD takes longer time when smaller codeblocks are used

because the critical segment is just large enough to accommodate a fraction of

the bitstream of a large codeblock, but perhaps bitstreams of a few smaller

codeblocks can be placed in the critical segment. Therefore, for larger

codeblocks, only one undetected wrong guess can cause early termination of the

joint decoding. If smaller codeblocks are used, however, there is more chance

that a complete search for the correct guess values would be conducted; hence,

the decoded image may end up with a higher PSNR than when larger

codeblocks are used.
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TABLE 4-V. EXTRA DECODING TIME (IN SECONDS) IN CASE OF LENA FOR BASIC JSCD, AND
IMPROVED JSCD WITH a =0, 1,2 AND 3 AUXILIARY BITS.

CS#1 CS#2 CS#3
W ~

I- 0 - - -
~ 9w llT* (a) llT* (a) llT* (a)mN - - -en Wen llTo llTo llToen c
0 0...J 0 a=O a=1 a=2 a=3 a=O a=1 a=2 a=3 a=O a=1 a=2 a=3

16x16 0.5 0.5 0.5 0.5 0.5 0.8 0.8 0.8 0.8 0.8 0.3 0.3 0.3 0.3 0.3
10% 32x32 0.6 0.6 0.6 0.6 0.6 0.9 0.9 0.9 0.9 0.9 0.3 0.3 0.3 0.3 0.3

64x64 1.5 1.0 0.8 0.8 0.8 10.9 6.7 1.6 1.5 1.4 0.6 0.6 0.6 0.6 0.6

16x16 0.7 0.7 0.7 0.7 0.7 2.8 2.7 2.7 2.7 2.7 0.5 0.5 0.5 0.5 0.5

20% 32x32 0.7 0.7 0.7 0.7 0.7 2.8 2.8 2.8 2.8 2.8 0.5 0.5 0.5 0.5 0.5

64x64 1.7 1.3 1.0 0.9 0.9 62.3 34.2 5.8 3.6 3.2 0.6 0.6 0.6 0.6 0.6

16x16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 5.1 5.0 5.0 5.0 5.0

30% 32x32 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 5.2 5.3 5.3 5.3 5.2

~4x64 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 124.8 68.0 7.3 6.5 6.3

TABLE 4-VI. EXTRA DECODING TIME (IN SECONDS) IN CASE OF BARBARA FOR BASIC JSCD,
AND IMPROVED JSCD WITH a = 0, 1, 2 AND 3 AUXILIARY BITS.

CS#1 CS#2 CS#3
W ~

I- 0 - - -
~ 9w llT* (a) llT* (a) llT* (a)mN - - -en Wen llTo llTo llToen c
0 0...J 0 a=O a=1 a=2 a=3 a=O a=1 a=2 a=3 a=O a=1 a=2 a=3

16x16 1.9 1.9 1.8 1.9 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10% 32x32 2.0 2.0 2.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

64x64 34.1 24.8 5.8 4.3 4.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

16x16 3.9 3.8 3.8 3.8 3.8 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

20% 32x32 4.0 3.9 3.9 3.9 4.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

64x64 53.4 40.7 8.0 7.4 7.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

16x16 5.5 5.5 5.5 5.5 5.5 0.6 0.6 0.6 0.6 0.6 0.3 0.3 0.3 0.3 0.3

30% 32x32 5.7 5.7 5.7 5.7 5.7 0.6 0.6 0.6 0.6 0.6 0.2 0.2 0.2 0.2 0.2

64x64 93.3 69.2 11.9 7.4 6.3 22.8 14.3 0.6 0.5 0.5 0.2 0.2 0.2 0.2 0.2
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TABLE 4-VII. EXTRA DECODING TIME (IN SECONDS) IN CASE OF GOLDHILL FOR BASIC
JSCD, AND IMPROVED JSCD WITH a = 0, 1,2 AND 3 AUXILIARY BITS.

~
CS#1 CS#2 CS#3

w
I- U
< 0 - - -

a:: ...JW ~T· (a) ~T· (a) ~T· (a)mN - - -
CIJ wCi) ~To ~To ~ToCIJ c
0 0...J U a=O a=1 a=2 a=3 a=O a=1 a=2 a=3 a=O a=1 a=2 a=3

16x16 1.5 1.5 1.5 1.5 1.5 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1

10%32x32 1.7 1.7 1.7 1.7 1.7 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1

~4x64 52.5 28.9 5.3 3.1 2.7 12.5 7.4 0.9 0.4 0.3 0.2 0.2 0.2 0.2 0.2

16x16 0.1 0.1 0.1 0.1 0.1 0.6 0.6 0.6 0.6 0.6 2.3 2.3 2.3 2.3 2.3

120%32x32 0.1 0.1 0.1 0.1 0.1 0.6 0.6 0.6 0.6 0.6 2.6 2.5 2.5 2.5 2.5

~4x64 0.1 0.1 0.1 0.1 0.1 34.3 29.1 1.1 0.6 0.5 339.7 72.6 7.1 3.2 2.7

16x16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 4.6 4.6 4.7 4.6 4.6

30%32x32 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.1 0.1 0.1 4.7 4.7 4.7 4.7 4.7

64x64 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2 233.5 151.4 6.9 5.3 5.0

TABLE 4-VIII. EXTRA DECODING TIME (IN SECONDS) IN CASE OF BOAT FOR BASIC JSCD,
AND IMPROVED JSCD WITH a = 0,1,2 AND 3 AUXILIARY BITS.

CS#1 CS#2 CS#3
w ::.::
~ 0 - - -
~ 9w ~T· (a) ~T· (a) ~T· (a)mN - - -
en w(i.j ~To ~To ~Toen c
0 0...I 0 a=O a=1 a=2 a=3 a=O a=1 a=2 a=3 a=O a=1 a=2 a=3

16x16 0,5 0.5 0.5 0.5 0.5 1.2 1.2 1.2 1.2 1.2 0.2 0.2 0.2 0.2 0.2

10% 32x32 0.6 0.6 0.6 0.6 0.6 1.3 1.3 1.3 1.3 1.3 0.2 0.2 0.2 0.2 0.2

64x64 13.6 10.9 2.9 2.3 2.2 12.7 8.3 3.2 2.5 2.4 0.2 0.2 0.2 0.2 0.2

16x16 3.8 3.7 3.7 3.7 3.7 0.3 0.3 0.3 0.3 0.3 0.1 0.1 0.1 0.1 0.1

20% 32x32 3.8 3.8 3.8 3.8 3.8 0.3 0.3 0.3 0.3 0.3 0.1 0.1 0.1 0.1 0.1

64x64 80.3 39.8 9.5 7.0 6.5 0.3 0.3 0.3 0.3 0.3 0.1 0.1 0.1 0.1 0.1

16x16 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 4.9 4.9 4.9 4.9 4.9

30% 32x32 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 5.1 5.1 5.1 5.1 5.1

64x64 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 151.5 99.1 15.7 11.7 10.6
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Since JPEG2000 decoding consumes most of the joint decoding time, the

average number of times that the JPEG2000 decoder detects an error can be

used as a measure of the complexity of the proposed JSCD methods. This is

shown in Figure 4-4, where the height of each bar indicates how much reduction

in the average number of JPEG2000 error detections is ac~lieved compared to

basic JSCD. The number of auxiliary bits used in the improved JSCD is shown

on the horizontal axis under each group of bars. Evidently, utilization of auxiliary

bits has significantly reduced the number of error detections by the JPEG2000

decoder, up to 99% in some cases. However, when this number becomes

sufficiently close to a certain threshold, further use of auxiliary bits cannot bring

much improvement. For example, we can see in Figure 4-4 that the difference

between the results at a = 1, 2 and 3 is relatively small. In the case of Lena,

auxiliary bits have not improved the speed as much as they have in other cases.

The moderate improvement in this particular case is because most of the error

detections by JPEG2000 decoder are due to the errors occurring in the symbols

that have not received auxiliary bits. Therefore, adding to the number of auxiliary

bits would not reduce the size of the search space significantly. Nevertheless, the

trends imply that the improved JSCD methods often avoid many of the wrong

guesses which are examined by ,JPEG2000 decoder in the basic JSCD.

The test cases shown in Figure 4-4 suggest that using more than one

auxiliary bit does not seem to offer further significant acceleration of the JSCD.

Hence, to estimate the auxiliary bit budget needed for reasonable JSCD

acceleration, we set a = 1 to compute the upper bound provided by (4.2). Also for
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CHAPTER 5: COMPLEXITY MODEL

To aid the JSCD design, we develop a model to estimate the number of

guesses verified during JSCD. The number of required verifications is a crucial

design factor, which provides a measure of trade-off between the speed of the

JSCD, and the number of auxiliary bits spent. Note that the proposed complexity

model only takes the availability of the auxiliary bits into account. In other words,

intricate effects of using finer error localization and checking for mismatch in

auxiliary bits, explained in sections 4.1.2 and 4.1.3, are excluded in order to

obtain a tractable model. Also it is assumed that the first erased packet is always

among the first few packets among which the auxiliary bits are distributed. This

chapter covers part of our work in [17].

5.1. THE MODEL

For a given pattern of coding passes in the ULP matrix, and a given

location for the first erasure, say the i-th packet, denote the set of all symbols of

the coding pass c in the i-th row of the existing critical segment by

V; (e) = {Vi,l (e), vi,2(e), ...} , where vi,/e) is the j-th leftmost element of V; (e), with

respect to its location in the ULP structure. Figure 5-1 shows how the elements of

the set V; (e) can be determined. Obviously, this set might be empty for many

choices of c and i. In the following, we assume that the JPEG2000 decoder can

detect errors caused by a wrong guess inside a coding pass, before it begins to
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symbol along with the a auxiliary bits (i.e., the a most significant bits of the

original symbol), would constitute the guess value. Therefore, by combining the

contribution of all elements of ~ (c), there are

(5.1 )

guesses that should be verified, where 'i,/c) is the remainder of the division of

Vi,j(c) by 2m
-a. Consequently, the total number of verifications would be

(5.2)

The expected number of required verifications is then equal to

(5.3)

where K is the number of source symbols in each column of the critical segment,

and qi is the probability of the first erasure occurring at the i-th packet.

5.2. RESULTS

In Figure 5-2, the estimated number of verifications, based on the model

presented in the previous section, and the average number of verifications,

obtained by 1000 simulations, for four different cases of images with 64x64

codeblocks are illustrated as a function of the number of auxiliary bits. Standard

deviations of the simulation results are also depicted on the graphs, by vertical
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bars. For this specific series of simulations, we used neither the ability of the

JPEG2000 decoder to signal the bytes in which errors are detected, nor the

accelerating capacity described in section 4.1.3 that mismatching auxiliary bits

provide. Therefore, those behaviours of the joint decoder that are difficult to

predict are excluded, and the proposed complexity model can be analysed more

fairly. In each graph, trends of the simulation and the estimation curves are

similar, and the estimates lie within one standard deviation of their corresponding

simulation averages; however, there are a few discrepancies that show the

inaccuracy of the estimation, noticeably in the case of the Boat im~ge. These

discrepancies are, basically, the results of the simplifying assumption, which we

adopted when formulating the expected number of verifications.
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Figure 5-2. Number of verifications (derived by simulation and the complexity
model) vs. Number of auxiliary bits, for four different cases.
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The bottom-right graph in Figure 5-2 shows that when auxiliary bits are not

used (Le., a = 0), the calculated average has noticeably exceeded the simulation

average. Some coding passes, which most of the time are located at the tail of

their codeblock, have less error resilience than the other coding passes because

there are not enough checkpoints left in the codeblock bitstream letting the

JPEG2000 decoder detect possible errors [10]. The evident overestimation

occurs when some of these coding passes contain more than one symbol of the

first erased packet, because these coding passes might be decoded and

passed by much earlier than what we counted in the estimation formula. The last

coding pass of the codeblock pointed to by a black arrow (Le., the 41 st

codeblock) is an example of such coding passes. As mentioned before, the effect

of these coding passes is diminished by increasing the number of auxiliary bits.

There is yet another type of inaccuracy which becomes dominant as the

effect of the first inaccuracy fades by increasing the number of auxiliary bits. This

time, due to late error detection, corruption of some coding passes might not be

detected within the same column(s) of the ULP matrix in which they are located.

Therefore, to restore their correct values during the JSCD, these coding passes

should be decoded together with other coding passes in the following column(s).

For example, the last two coding passes of the codeblock pointed to by a white

arrow (Le., the 43rd codeblock), potentially, need to be decoded together. In fact,

compared to other cases, errors in the first coding pass are more likely to trigger

a decoding complaint at the second coding pass. Since such complaints are

indistinguishable from the complaints generated when only the second coding
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pass is corrupted, correctness of the first coding pass is highly uncertain unless

the second coding pass is also decoded successfully. Nonetheless, coupled

decoding of such distinct coding passes is not considered in the estimation

formula, and depending on the original values of the erased symbols, we may

underestimate the number of verifications significantly. In our example, if the

combined coding passes have not received auxiliary bits, increasing the number

of auxiliary bits would not reduce this type of inaccuracy either. Negligible change

in the standard deviations also confirms this observation.
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CHAPTER 6: CONCLUSIONS

In this thesis, we have presented a JSCD algorithm for ULP schemes,

which assists in decoding beyond the limit of separate source and channel

decoding of ULP packets. If the number of erasures happens to be more than the

maximum number of erasures that the employed ULP matrix can completely

recover, the proposed JSCD technique can retrieve the lost data partially. The

results imply that, depending on the amount of information restored by the joint

decoding process, the proposed JSCD can noticeably increase the PSNR.

However, our simulations show that the basic JSCD can be undesirably time­

consuming.

To accelerate the JSCD process, we examined a combination of

techniques. First, we investigated the effect of using different size of codeblocks

on the JSCD speed. The results show the JSCD performs much faster for

smaller codeblocks; however, some quality loss in return can be expected. Since

this quality reduction may be intolerable, other solutions are also considered to

tackle the slow joint decoding problem.

The basic joint decoder is designed to verify all of the possible guess

values for a coding pass consecutively, until it finds the correct value for the

erased symbols. In the second acceleration technique that we proposed, part of

the consecutive guessing iterations can be skipped, using the ability of the

JPEG2000 decoder to indicate where in the bitstream of corrupted coding passes
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the decoding is interrupted. Given the location of decoding interruption, the joint

decoder may sooner correct the wrong guess values it has left undetected, and

thus avoid several unsuccessful guessing iterations. The simulation results show

that this acceleration technique can speed up the process to some extent, but

this amount of acceleration may still be inadequate for reducing the joint

decoding time below a desirable level.

Furthermore, we considered another speed-up technique in which some

extra information, the auxiliary bits, help the decoder to reduce the number of

trials during the joint decoding. This approach is advantageous in two ways. First,

when these auxiliary bits are available, several guess values can be eliminated

from the search space in the first place. Second, by comparing the available

auxiliary bits with their corresponding values generated after an RS decoding, the

incorrect guessed values could be detected without calling the time-consuming

"IPEG2000 decoding procedure. The results show that even one auxiliary bit per

symbol increases the speed of JSCD signi'f1cantly. The number of transmitted

auxiliary bits, however, must be relatively small; therefore, we proposed two

policies to assign the auxiliary bits only to a selection of symbols, which

potentially affect the basic JSCD execution time more than the other symbols.

While this selective utilization of auxiliary bits keeps the additional bit budget

relatively low, it provides a speed improvement comparable to that when the

auxiliary bits are assigned to every symbol.

Finally, we provided a simplified model for evaluating the complexity of the

algorithm. We exclude some the improved JSCD attributes from the model
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because they are difficult to interpret theoretically. The simulation results

obtained using the reduced version of the improved joint decoder show that the

complexity model often provides a passable estimate of the expected execution

time; though it may present inaccurate estimates on less likely cases where

JPEG2000's error detection mechanisms perform poorly.
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APPENDIX A IMPLEMENTATION ISSUES

Implementation of the proposed JSCD algorithm using the Kakadu

software [1] imposes some limitations that should be mentioned. First, the order

by which the codeblock decoder procedure of Kakadu is called does not conform

to the order of codeblocks information in the JPEG2000 bitsream. In fact, the

codeblocks are decoded in a pre-determined order. Therefore, codeblocks of a

resolution-scalable image and a quality-scalable image, for instance, are

decoded in the same order. Although this implementation of the codeblock

decoder might be beneficial for code optimization purposes, it can negatively

affect the developed JSCD. Since we implemented most of the JSCD algorithm

inside the codeblock decoder function of Kakadu, the joint decoding may suffer

from inappropriate order of the codeblocks mentioned before. For instance, as

Figure A-1 illustrates, Kakadu decodes several codeblocks in resolution #3 of the

image after decoding some of the codeblocks in resolution #4. This problem

results in the underestimation of the expected quality improvement that proposed

JSCD can achieve, because with this implementation, some codeblocks that

have less contribution in the total quality improvement might be decoded during

JSCD, and instead, other more crucial codeblocks might be simply discarded. In

terms of the joint decoding speed, however, improvements cannot be

guaranteed, but we can expect roughly the same decoding times.
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improved JSCD technique explained in Chapter 4 is very likely to prevent these

events.
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APPENDIX B USER GUIDE

The CD-ROM attached forms a part of this work.

The results file can be opened with MSExcel or other spreadsheet

program. In addition to the executable files of the JSCD implementation, a

MATLAB code (m-file) is also included to run the simulations automatically.

Data Files:
• Simulation Results

results.xls
• ULP Patterns (directory)

C Source Codes:
• mdfec (directory)

133 KB
3.53 KB

3.00 MB

Executable Files:
• Separate Source and Channel Decoder

• sscd.exe 284 KB
• Basic Joint Source-Channel Decoders

• jscd_aO.exe 316 KB
• jscd_a1.exe 320 KB
• jscd_a2.exe 320 KB
• jscd_a3.exe 320 KB

• Improved Joint Source-Chanel Decoders
• enh_dec_aO.exe 320 KB
• enh dec a1.exe 320 KB
• enh=dec=a2.exe 320 KB
• enh dec a3.exe 320 KB- -

MATLAB File:
• Automatic Simulator

• autosim.m
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The following steps show how to reproduce the simulation results:

• COMPRESSING THE RAW IMAGE INTO ERROR RESILIENT JPEG2000

FILES:

The following command line exemplifies how we generated

the JPEG2000 files for the simulations using Kakadu encoder:

kdu_compress -i lena.pgm -0 lena.j2c -rate .778

Cuse_sop=yes Cuse_eph=yes "Crnodes={ERTERMIRESTART}"

Cprecincts={128,128} Cblk={64,64}

This command produces a JPEG2000 file ('lena.j2c') at 0.778 bpp

source rate from the raw image 'Iena.pgm'. Cuse_sop and

Cuse_eph arguments indicate the use of the start of packet (SOP)

and the end of packet header (EPH) markers, which are designed

for detecting errors in the header information of the JPEG2000

bitstream; however, these markers are optional and do not have

any positive effect on our proposed JSCD. The ERTERM and

RESTART modes of the encoder are also switched on using the

Cmode argument to provide the required error resilience of the

bitstream. In this particular example, the precinct size and the

maximum codeblock size are set to 128x128 and 64x64 using the

Cprecincts and Cblk arguments, respectively; the first and the

second numerical elements in each of these fields correspond to

height and width of the division (Le., precinct or codeblock) in that

order.
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• GENERATING OPERATIONAL DISTORTION-RATE FUNCTION:

Before the optimization step, we need to produce a file

containing the operational PSNR-Rate or Distortion-Rate function of

the compressed image. Data should be stored in a two-column text

file, in which the first column contains the number of source bits

decoded, with 8-bit steps, and the second column shows the

corresponding quality measure. To produce the necessary

information, we truncate the ..IPEG2000 bitstream at 100

equidistant rates, and decode the truncated files to find the

corresponding PSNR's. Then the remaining points on the PSNR­

Rate curve are generated by linear interpolation of the available

points.

• OPTIMIZATION OF THE NUMBER OF PARITY SYMBOLS:

The original Microsoft® Visual C++ project for the

optimization algorithm introduced in [15] is included under the folder

\mdfec\mdf_stankovic in the CD-ROM. The text file produced in the

previous step is used as the input of this program to find a sub­

optimal solution to the parity symbol allocation problem of ULP.

Note that some initial information should be determined manually in

the C code of the algorithm. This information include the name of

the PSNR-Rate text file, the number of samples (i.e., the length of

the JPEG2000 file in bits), number and length of the packets, and

the presumed average channel loss rate.
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• JOINT SOURCE-CHANNEL DECODING:

The outcome of the previous step is a text file ('Ievels.txt')

that contains the (c1ose-to-) optimal number of parity symbols in

each column of the ULP matrix, from the leftmost column to the

rightmost. This file is used as an input for the JSCD. There are

eight executable files used for simulation of the JSCD with different

number of auxiliary bits. The files named jscd_8*.exe are the

implementations of the basic JSCD. These joint decoders perform

the JSCD explained in Chapter 3; however, they can also use

auxiliary bits to simply reduce the number of possible values for the

first erased symbol. Furthermore, enh_dec_8*.exe files are the

accelerated joint decoders with the improvements proposed in

Chapter 4. In both of these sets of files the number in place of the *

indicates the number of auxiliary bits used for the JSCD. We also

included another executable file called 'sscd.exe', which is the

implementation of the separate source and channel decoding, in

the CD-ROM.

It is necessary to have a realization of the channel erasures

before beginning the JSCD of the compressed image. The channel

erasure pattern should be written in a text file named 'e_pattern.txt'.

This file is only a sorted list from the index of the erased packets.

Since we limited the joint decoding to the cases where the value of
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one symbol only should be guessed, the number of erasures

reflected in the erasure pattern file should be one more than one of

the numbers stored in the 'Ievels.txt' file. Otherwise, an error

message might be received following the attempt for joint decoding.

Note that the 'Ievels.txt' and 'e_pattern.txt' files must be in

the same directory that the joint decoder and the compressed

image are. The following command line is an example that shows

how to use the joint decoder:

jscd_aO.exe -i lena.j2c -0 test.pgm -resilient

The resilient argument is necessary to force the decoder to use the

ER features of the bitstream for error detection.

To facilitate the simulations we used a MATLAB code ('autosim.m') to run

the joint decoders, automatically. This code runs all of the JSCD executables as

well as the separate source and channel decoder for the last three critical

segments of an image encoded with 16x16, 32x32, and 64x64 maximum

codeblock size. Note that the name of the target image would be determined by

the variable img_name in the M-file, and all of the three versions of that image

should be placed in the same location as the executable files are. Moreover, the

filename of the test JPEG2000 images should contain the maximum width/height

of their codeblocks as a postfix. For example, the test JPEG2000 images created

from the raw Lena image would be 'lena16.j2c', 'lena32.j2c', and 'lena64.j2c'

which have 16x16, 32x32, and 64x64 maximum codeblock size, respectively. At

the end of each simulation, the MATLAB code writes the resulting average
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execution times and the average PSNR's in an excel file ('results. xis') under a

worksheet labelled by the image name. The mean and standard deviation of the

number of times that the JPEG2000 decoder detects errors during the JSCD will

also be written in the same worksheet under the headings I.J and cr, respectively.

Each worksheet contains the results of the basic JSCD and the improved JSCD.
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