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ABSTRACT 

Tradeoffs of speed vs. area that are inherent in the design of a security co- 

processor are explored. Encryption, decryption, and key generation engines for AES in 

Cipher Block Chaining and Electronic Code Book modes were developed using VHDL. 

Two designs are discussed. 

The "space-optimised" design required 1454 FPGA CLB slices for the Cipher 

implementation (401 6 for the complete design) and produced a round delay of - 16.75 

ns. The throughput in CBC mode was 636.82 Mbps (depending on the FPGA utilized), 

which is greater than various published prior works. 

The Multi-Session Pipelined approach followed a novel architecture that required 

13675 CLB slices total and produced a round delay of - 20 ns. The Multi-Session 

Pipelined AES design can obtain an aggregate throughput of - 6.40 Gbps and is 

capable of operating in CBC mode. The 1 Ox speedup over the "space-optimised" design 

required 3 . 4 ~  the total number of FPGA CLB slices. 



DEDICATION 

To my wife Stacey and son Evan who provide endless love, support, and inspiration. 

And to our new (yet to be born) baby, who perhaps provided the greatest inspiration of 

all. Finally, to my Mom and Dad, for without your loving guidance and encouragement 

throughout my life, this would not have been possible. 



ACKNOWLEDGEMENTS 

I would like to give a special thanks to Dr. Hobson whose direction and advice was a 

driving force behind this work. Your knowledge and expertise were irreplaceable in the 

completion of the Thesis and I hope we can continue to work on our ideas together in 

the future. 

I would also like thank Dr. Syrzycki for his guidance throughout my entire academic 

career (undergraduate and graduate) at Simon Fraser University. I was honoured to be a 

student in several of your classes, and look forward to the opportunity to learn from you 

again. 

I would also like to thank Dr. Trajkovic and Dr. Chapman. It has been a pleasure to learn 

from you during my time at Simon Fraser University. I have met few people as dedicated 

as you. 

I also wish to acknowledge the kind and generous support of the Science Council of 

British Columbia. 

Finally, I wish to thank PMC-Sierra for providing all necessary support and assistance in 

the completion of my degree. PMC-Sierra is a great company whose strengths are its 

people, products and leadership. Thank you all for being such great friends. 



TABLE OF CONTENTS 

. . 
Approval ........................................................................................................................ 11 

... 
Abstract ........................................................................................................................ 111 

Dedication ..................................................................................................................... iv 

Acknowledgements ....................................................................................................... v 

Table of Contents ......................................................................................................... vi 
... 

List of Figures ............................................................................................................ VIII 

List of Tables .................................................................................................................. x 

List of Abbreviations and Acronyms .......................................................................... xi 

Chapter 1 INTRODUCTION ..................................................................................... 1 

Chapter 2 

Chapter 3 
3.1 

3.1.1 
3.2 
3.3 

3.3.1 
3.3.2 

Chapter 4 

Chapter 5 
5.1 

5.1.1 
5.1.2 
5.1.3 
5.1.4 

VIRTUAL PRIVATE NElWORKS ........................................................... 3 

INTERNET PROTOCOL SECURITY (IPSEC) ......................................... 8 
lPSec Protocols ........................................................................................... 8 

................................................................................. l PSec Protocol Modes 9 
..................................................... lPSec Security Associations and Policy 12 

lPSec Processing ...................................................................................... 12 
Inbound Processing ................................................................................... 13 
Outbound Processing ................................................................................ 14 

ENCRYPTION ALGORITHMS ............................................................... 15 
................................................................................... Modes of Operation 16 

............................................................ Electronic Code Book (ECB) Mode 17 
..................................................................... Cipher Block Chaining Mode 18 

The Data Encryption Standard (DES) ........................................................ 20 
Triple-DES (3-DES) ................................................................................... 23 

.......................................................... The Advanced Encryption Standard 24 
................................................................................................ AES Cipher 25 

AES Inverse Cipher ................................................................................... 29 
................................................................................... AES Key Expansion 31 

......................................... DESIGN AND IMPLEMENTATION OF AES 34 
Architectural Options ................................................................................. 34 

................................................................................................... Pipelining 35 
Sub-pipelining ............................................................................................ 36 
Loop Unrolling ........................................................................................... 36 

............................................................................. Multi-Session Pipelining 40 



5.2 
5.3 

Chapter 6 
6.1 

6.1.1 
6.1.2 
6.1.3 
6.1.4 

6.2 
6.2.1 

6.3 
6.4 

Chapter 7 
7.1 

7.1.1 
7.1.2 
7.1.3 

7.2 
7.3 

Chapter 8 
8.1 
8.2 
8.3 
8.4 

Chapter 9 

Algorithmic Options .................................................................................... 42 
Implementation Options ............................................................................. 47 

DETAILED DESIGN OF AES ................................................................ 49 
Space Optimised AES Cipher .................................................................... 49 
Input FIFO Sub-module ............................................................................. 52 
Output FIFO Sub-Module ........................................................................... 53 
Control SM Sub-module ............................................................................. 54 
AES Cipher Sub-module ............................................................................ 57 
Multi-Session Pipelined AES Cipher .......................................................... 60 
AES Cipher Sub-module ............................................................................ 62 
Inverse Cipher Design ............................................................................... 64 
Key Expansion Design .............................................................................. 65 

AES DESIGN VERIFICATION ............................................................... 66 
Space-Optimised AES Testbench Design .................................................. 66 
Input Interface ............................................................................................ 67 
Output Interface ......................................................................................... 68 
Key Interface ............................................................................................. 69 
Multi-Session Pipelined AES Testbench Design ........................................ 70 
AES Cipher Module Verification ................................................................. 70 

AES RESULTS ................................................................................. 74 
Space Optimised AES Design Results ....................................................... 74 
Multi-Session Pipelined AES Design Results ............................................. 77 
FPGA. ASIC and Full Custom Design Results ........................................... 79 
Summary of Results .................................................................................. 81 

REALIZATION OF A SECURITY CO-PROCESSOR ............................. 82 

Chapter 10 CONCLUSION ....................................................................................... 84 

APPENDIX A . SIMULATION RESULTS ..................................................................... 86 

APPENDIX B . RTL CODE .......................................................................................... 95 

REFERENCES ..................................................................................................... 129 



LIST OF FIGURES 

Figure 1 Private Leased Line LAN Interconnect (logical view) ......................................... 3 

Figure 2 Frame Relay Network Alternative to Private Leased Lines (simplified 
............................................................................................................... view) 4 

Figure 3 Classification of VPN Types .............................................................................. 6 

Figure 4 ESP Mode Packet Format ................................................................................. 9 

Figure 5 ESP Packet in Tunnel and Transport Mode ..................................................... 10 

Figure 6 Tunnel Mode Example .................................................................................. 11 

Figure 7 Transport Mode Example ............................................................................... 11 

Figure 8 Electronic Code Book mode ............................................................................ 17 

Figure 9 Cipher Block Chaining mode. Encryption ......................................................... 19 

Figure 10 Cipher Block Chaining mode. Decryption ...................................................... 20 

Figure 11 DES Structure ............................................................................................... 21 

Figure 12 DES Round Function .................................................................................... 22 

Figure 13 Triple-DES ..................................................................................................... 24 

Figure 14 The AES State ............................................................................................... 25 

Figure 15 AES Cipher ................................................................................................... 26 

Figure 16 AES Round Function ..................................................................................... 26 

Figure 17 ShiftRows ...................................................................................................... 28 

....................................................................................... Figure 18 AES Inverse Cipher 29 

Figure 19 AES Inverse Cipher Round Function ............................................................. 30 

Figure 20 InvShiftRows ................................................................................................. 30 

Figure 21 AES Key Expansion ...................................................................................... 33 

Figure 22 Pipeline architecture with K = 1 ..................................................................... 35 

Figure 23 Pipelined vs . Loop Unrolled Architectures ..................................................... 37 

........................................................ Figure 24 Multi-Session Pipeline System Diagram 41 

Figure 25 AES Cipher Round Algorithm ........................................................................ 43 

Figure 26 Unbalanced Mixcolumns implementation ...................................................... 45 

............................................................... Figure 27 AES Cipher Module Block Diagram 50 

Figure 28 Control SM State Diagram ............................................................................. 55 

viii 



........................................................ Figure 29 AES Cipher Sub-module Block Diagram 57 

Figure 30 AES Cipher Module Using T-Box Approach .................................................. 60 

Figure 31 Multi-Session Pipelined AES Cipher Module ................................................. 61 

Figure 32 AES Inverse Cipher in CBC Mode ............................................................... 64 

Figure 33 Testbench Connections ................................................................................. 67 

Figure 34 Functional Timing Diagram of the Input Interface .......................................... 68 

Figure 35 Output Interface Functional Timing ................................................................ 69 

Figure 36 Key Interface Functional Timing .................................................................... 70 

Figure 37 AES Cipher Encryption .................................................................................. 73 

Figure 38 Block Diagram of the Complete AES Processor ............................................ 83 

Figure 39 Simulation Result of the Space Optimised Cipher (Full View) ........................ 87 

Figure 40 Simulation Result of the Space Optimised Cipher (ECB Section) .................. 88 

Figure 41 Simulation Result of the Space Optimised Cipher (CBC Section) .................. 89 

Figure 42 Simulation Result of the Space Optimised Cipher (CBC Section. Part 
2) .................................................................................................................. 90 

Figure 43 Simulation Result of the Multi-Session Pipelined Cipher (Full View) .............. 91 

Figure 44 Simulation Result of the Multi-Session Pipelined Cipher (Inputs) ................... 92 

Figure 45 Simulation Result of the Multi-Session Pipelined Cipher (ECB and CBC 
outputs) ......................................................................................................... 93 

Figure 46 Simulation Result of the Multi-Session Pipelined Cipher (Last CBC 
output) ........................................................................................................... 94 



LIST OF TABLES 

Table 1 Round Constant (RCON) Values for Key Expansion ........................................ 32 

Table 2 Speedup achieved by using loop-unrolling ........................................................ 39 

Table 3 Key Physical Implementation Characteristics ................................................... 47 

Table 4 Pin Description of Space Optimised AES Cipher Module .................................. 51 

Table 5 Pin Description of the Multi-Session Pipeline AES Cipher Module .................... 63 

Table 6 Test Vectors used in the verification of AES ..................................................... 71 

Table 7 Space Optimised AES Design Summary .......................................................... 75 

Table 8 Performance Characteristics of the Space Optimised AES Design ................... 76 

Table 9 Performance Characteristics with Same FPGA ................................................ 76 

Table 10 Multi-Session Pipelined AES Design Summary .............................................. 78 

Table 1 1 Performance Characteristics of the Multi-Session Pipelined AES Design ....... 78 

Table 12 Comparison of ASIC Speed and Size Requirements ...................................... 80 



LIST OF ABBREVIATIONS AND ACRONYMS 

I Acronym I Definition 

I A type of MPLS-based VPN, defined in RFC-2547. 

I Triple DES Encryption 

AES Advanced Encryption Standard, defined in Federal lnformation 
Processing Standards Publication 197 

AH I Authenticating Header, defined in RFC-2402 

ASIC I Application Specific Integrated Circuit 

ATM I Asynchronous Transfer Mode 

I BDD I Binary Decision Diagram , 

CTR 

CBC 

CLB Slice 

I Counter Mode 

- -- 

Cipher Block Chaining 

Combinatorial Logic Block. A Xilinx specific term that refers to the 
reconfigurable units within each FPGA. 

DES Data Encryption Standard, defined in Federal lnformation 
Processing Standards Publication 46-2 

I ECB I Electronic Code Book 

I ESP I Encapsulating Security Payload, defined in RFC-2406 

I FPGA ( Field Programmable Gate Array 

I FR 1 Frame Relay 

I GRE I Generic Routing Encapsulation 
- 

I KE 

I P 

Internet Key Exchange 

Internet Protocol 



l PSec L 

L3VPN 

LUT 

MPLS 

PE 

PPP 

RCON 

ROM 

SA 

1 SADB 

I SONET 

I SPD 

I SPI 

I TCP 

VHDL 

I VPN 

I VPWS 

I XOR 

Internet Protocol Security 

Initialisation Vector 

Layer 2 Tunneling Protocol 

Layer 2 Virtual Private Network 

Layer 3 Virtual Private Network 

Look-up Table 

Multi-Protocol Label Switching 

Provider Edge 

Point to Point Protocol 

Round Constant 

Read-only Memory 

Security Association 

Security Association Data Base 

Synchronous Optical Network 

Security Policy Data Base 

Security Parameter Index 

Transmission Control Protocol 

Very High Speed Integrated Circuits Hardware Description 
Language 

Virtual Private LAN Service 

Virtual Private Network 

Virtual Private Wire Service 

xii 



CHAPTER 1 INTRODUCTION 

Over the past two decades, the lnternet has evolved from its research-oriented 

roots to the ubiquitous network we know today that is accessed daily by hundreds of 

millions of people in all corners of the globe. We are all familiar with the most popular 

uses of the Internet, from email to web surfing. 

Increasingly, the lnternet is used as a medium for conducting business, whether 

it be E-commerce, or online banking. In addition, businesses are using the lnternet as a 

means to connect often times geographically dispersed sites together, forming what is 

known as a Virtual Private Network (VPN). Finally, these same businesses require 

scalable and cost-effective solutions that enable their travelling workforce to access the 

company Intranet. A common element of all these new applications is the need for 

enhanced security. 

A suite of protocols, collectively referred to as IPSec, was developed out of the 

need to secure the lnternet Protocol (IP). The lnternet Protocol suffers from a number of 

shortcomings, including the ease with which its header could be forged and payload 

snooped or altered. IPSec uses two protocols: the Encapsulating Security Payload 

(ESP) and Authenticating Header (AH) to address these shortcomings. AH provides 

data integrity, data origin authentication, and anti-replay protection, while ESP offers all 

the services provided by AH, and adds confidentiality services [I]. 

Encryption algorithms, such as the Data Encryption Standard (DES), 3-DES, or 

the Advanced Encryption Standard (AES) are used to provide the confidentiality 



services. DES, 3-DES, and AES along with their public key counterparts such as RSA 

are computationally intensive algorithms that typically are implemented in software for 

low data rate applications, and FPGAs or ASlCs for high data rate applications. 

The goal of this thesis is to understand the issues in the design and 

implementation of a scalable and efficient security co-processor capable of supporting 

encryption and decryption at OC-12 data rates (622 Mbps). It is not the goal of this 

thesis to create the fastest AES implementation, but to provide a design that works in 

both CBC and ECB mode that meets the stated performance objective while making 

appropriate throughputlarea trade-offs. The design is implemented in VHDL, and 

targeted for Xilinx FPGAs using Xilinx Foundation Series software. While the topic of 

this thesis is the design of a security co-processor, the scope of the VHDL 

implementation is limited to modules supporting the AES encryption algorithm. 

The thesis is organized as follows: Virtual Private Networks are introduced and 

discussed in Chapter 2. IPSec, with particular focus on modes of operation is introduced 

in Chapter 3. Chapter 4 discusses both public-key and symmetric key encryption 

algorithms, with particular emphasis on DES and AES and the various modes of 

operation. Architectural and algorithmic design considerations are presented in Chapter 

5. Detailed design and architectural descriptions of the various modules are presented 

in Chapter 6. Chapter 7 introduces the verification strategy of the design. Chapter 8 

discusses the testing results for the modules, including a comparison with prior works. 

The integration of the modules into a security co-processor is presented in Chapter 9. 

Simulation results are contained in Appendix A, while the VHDL code developed for this 

Thesis is presented in Appendix B. 



CHAPTER 2 VIRTUAL PRIVATE NETWORKS 

As the Internet and corporate enterprise networks have evolved, businesses have 

sought the productivity and efficiency gains made possible by connecting their own 

sometimes geographically dispersed sites together, to form what is known as an 

Intranet. A corporate lntranet allows users at different sites within the same company to 

share information and collaborate in real time. Such flexibility, however, does not come 

without a cost. Traditional means for creating a corporate lntranet often meant 

purchasing and deploying costly private leased lines, which are dedicated, always on 

connections that typically run at T I  rates (1.544 Mbps) and above. Figure 1 shows ar! 

interconnection of 5 corporate sites in a full mesh of private leased lines. Note that 

Figure 1 only shows a logica! view. Typically these leased lines are multiplexed with 

other links in access and metro SONET rings. Both are outside the scope of this paper. 

Figure 1 Private Leased Line LAN Interconnect (logical view) 

Private leased lines, though appropriate in some circumstances, have a number of 

important disadvantages most notably [2]: 



. Cost: Both in terms of deployment, and operating 

Lack of scalability: Once the private line is in the ground, the bandwidth is 
fixed. In addition, as new sites are connected to the Intranet, new leased lines 
must be deployed to some or all other existing sites. 

To overcome the obvious scalability hurdles inherent in a private leased line network, 

many businesses used Frame Relay (FR) or Asynchronous Transfer Mode (ATM) 

technology to connect their various sites together in what could be considered the first 

Layer-2 VPN. These networks solved the interconnection problem by allowing multiple 

virtual circuits to be multiplexed on the same physical link (and port). The service 

provider network was then responsible for ensuring virtual circuits were in place to 

create a hub and spoke topology that required fewer physical links. Figure 2 shows a 

simplified Frame Relay network alternative to the private leased line approach shown in 

Figure 2. 

Figure Frame Relay Network Alternative to Private 

Site B 

Site A 

Leased Lines 

Site C 

/ 

(simplified view) 

Site E 

Such a deployment has significant disadvantages, most notably that it does not leverage 

the ubiquity of the growing IP-based Service Provider networks. In this case, the Service 



Provider must maintain a FR based network in addition to its IP backbone. Furthermore, 

although the scalability of the network in Figure 2 is better than that of Figure 1, it does 

not offer the scalability inherent in an IP-based network. 

Another disadvantage of the described interconnect strategies is that it is cumbersome, 

if not impossible, to enable another emerging interconnect strategy, the Extranet. An 

Extranet is a business to business model that, for example, allows a supplier to access a 

companies inventory database to determine when additional shipments should be made 

based on demand and supply levels [2]. It would be economically unfeasible to install 

private leased lines to every one of a companies suppliers or customers. 

Another evolution in the business and networking environments is the need for individual 

users, such as telecommuters, to connect to their corporate networks. Traditional 

approaches used slow and often costly (particularly if long distance charges were 

required) dial-up access. 

With all this in mind, network equipment manufacturers and service providers began 

searching for solutions that allow scalable site-to-site, business-to-business, and user-to- 

site network access that leveraged the ubiquity of the Internet. The result was the 

development of the IP-based Virtual Private Network. 

A Virtual Private Network (VPN) can be defined as a communication method that utilizes 

a segmentation of the existing shared network infrastructure to emulate a private 

network [2]. 



Figure 3 Classification of VPN Types 

IP Based Virtual Private Networks 
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As shown in Figure 3, there are two general types of IP-Based VPNs: Site-to-Site, and 

Remote Access. The main differences between the two is the number of tunnels 

required to enable the VPN connectivity and the number of users of each individual 

tunnel [3]. 

Another common VPN classification scheme is based on whether the VPN is trusted or 

secure. A trusted VPN is one in which traffic belonging to the VPN stays within the 

confines of the VPN and is not mixed with general Internet traffic. MPLS and Frame 

Relay based VPNs are typical examples of a trusted VPN [4]. 

A secure VPN has some combination of encryption and/or authentication is applied to 

the traffic belonging to the VPN [3]. IPSec is a suite of security protocols that uses 

encryption and/or authentication facilities to protect traffic [I]. Secure, lPSec based 

VPNs are typically used for user-to-site and site-to-site connectivity. 

Since lPSec implies the use of computationally intensive operations such as encryption 

andlor authentication, network devices implementing IPSec must have sufficient 

processing power to handle not only the lPSec functionality, but their normal routing and 



forwarding roles as well. This often leads to the necessity to have a dedicated security 

co-processor. The focus of this Thesis is the design of AES modules, a key component 

of a security processor. 



CHAPTER 3 INTERNET PROTOCOL SECURITY (IPSEC) 

Today's lnternet spans hundreds of millions of users and endpoints, and likely millions of 

content and service providers not all of whom can be trusted. Packets transmitted using 

the lnternet Protocol are open to a wide range of rogue behaviour including: snooping, 

forging, modification, and replay. The lPSec protocol suite is an extension of IP designed 

to protect the data and authenticate the identity of those involved in the communication. 

3.1 lPSec Protocols 

lPSec defines two main protocols for securing IP traffic: AH and ESP. Authentication 

Header (AH), defined in RFC 2402 [8], provides data integrity, origin authentication, and 

anti-replay protection. Encryption services are not provided by AH, therefore, AH will not 

be discussed further in this Thesis. 

Encapsulating Security Payload (ESP), defined in RFC 2406 [9], adds confidentiality 

(encryption) services to those provided by AH. Figure 4 shows the format of an ESP 

protocol packet [I]. The Security Parameter Index along with the packets 

source/destination address, and IPSec protocol value is used to identify the Security 

Association (SA) for a given packet. The SA dictates how security services are to be 

applied to a packet, including the cryptographic algorithms and associated keys [I], [6]. 

The sequence number is used to provide anti-replay protection. The variable length 

payload data contains the lP/TCP headers as well as the user data (if any) being 

transmitted. Padding is added to maintain alignment. Finally, an authentication word is 

added to provide data integrity verification. Note that the entire packet (other than the 



authentication data) is authenticated. Encryption services are applied to the payload 

data, pad, pad length, and next header fields only [I], [6]. 

Figure 4 ESP Mode Packet Format 

Authenticated 

Encrypted 
0 - 255 Padding Bytes 

Variable Length Authentication Data 

Variable Length 

paybad r 
IP or TCP Header (Mode Dependent) I 

Payload Data 

The variable length payload data contains an lnitialization Vector (IV) when the 

encryption services dictate Cipher Block Chaining (CBC) mode should be used [9]. CBC 

mode will be discussed in further detail in section 4.1.2. The Initialization Vector may be 

any random data. Note that the IV is NOT encrypted [I], [6]. 

3.1.1 lPSec Protocol Modes 

The lPSec protocols may operate in one of two modes: Tunnel or Transport [I], [6]. In 

tunnel mode, the entire IP packet is protected by ESP or AH and a second IP header is 

added on the outside. In this way, the protected IP packet may be tunnelled through a 

network without the network having knowledge of or be required to handle security 

services for the packet. Tunnel mode may also be used by a security gateway that 



provides security services for a Virtual Private Network. In this arrangement, the 

cryptographic endpoint is listed in the outer IP header (the peer that will provide the 

security services for the hidden network), while the communications endpoint is 

identified in the inner header, and is the one sitting behind the gateway. 

Transport mode is used when the cryptographic and communications endpoints are the 

same. 

Figure 5 shows an ESP packet in Tunnel mode and in Transport Mode [I], [6]. 

Figure 5 ESP Packet in Tunnel and Transport Mode 
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As an example of a tunnel mode arrangement, consider Figure 6. In this case, Host A 

wishes to communicate securely with Host B that is inside a corporate Intranet. 

Therefore, it must establish a secure connection with the Intranet's security gateway. As 

Figure 6 shows, Host A generates a packet with an IP header indicating the destination 

address of the host within the corporate network. This IP packet is then encapsulated 



with ESP in tunnel mode. The outer IP header is used to route the packet through the 

lnternet to the security gateway. Once the security gateway receives the packet, it 

realizes that it is the destination for the ESP packet and performs inbound lPSec 

processing on it before forwarding it within the corporate network. This example is 

typical of the remote user-to-corporate VPN connection. 

Figure 6 Tunnel Mode Example 

Corporate lntranet 

A 

I IP Header 1 ESP I IP Header 1 TCP I 
SRC = 1.1.1.1 SRC= 1.1.1.1 

DST = 2.3.2:2 DST = 3.3.3.2 

Generated by HOST A. 

A transport mode example is shown in Figure 7. This example illustrates a situation 

where the communications endpoint is also the cryptographic endpoint. 

Figure 7 Transport Mode Example 
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3.2 lPSec Security Associations and Policy 

The IPSec protocols together indicate what packets to protect, how to protect them, and 

with whom the protection is shared. This information is maintained on a peer to peer 

basis by way of a Security Association (SA) which is stored in the SA Database. An SA 

is a unidirectional element that maintains the state of the secure link. Each peer must 

maintain two SAs for every end-point to which secure communications are desired. 

Among other things, the SA indicates the keys to be used with the encryption and 

authentication algorithms, the lifetimes of the keys (all keys must expire at some point 

otherwise security is undermined), the sequence number (for replay protection) as well 

as other context information [I], 161, [7]. 

As noted previously, the SPI contained in the ESP and AH packets along with the source 

and destination addresses, and lPSec protocol are used as indexes into the SADB. 

Another database, the Security Policy Database (SPD) is used to indicate what 

processing should take place with a given packet, including whether or not security 

services need to be applied, what security protocol (ESP, AH) to use, and in what mode, 

and what encryptionlauthentication algorithms to use (DES, AES, HMAC-MD5, etc.). 

If policy indicates that security services need to be applied, but no SA exists, the Internet 

Key Exchange (IKE) is used to establish the SAs which must be in place to allow traffic 

to flow. As part of this process, the keys used by the encryption algorithms such as AES 

and 3-DES are established [I], [6]. 

3.3 lPSec Processing 

The following sections describe the basic steps that are followed in the inbound and 

outbound direction for ESP packets. 



3.3.1 Inbound Processing 

Upon receipt of an IP packet, the receiver performs the following [I]: 

1. Determines whether an SA exists for the packet. If none exists, the packet is 

dropped. 

2. Assuming an SA exists, the sequence number is then processed to ensure that it 

is valid and not a potential replay packet. 

3. The packet is then authenticated using the specified authentication algorithm and 

key. The generated authentication result is then compared with the 

authentication data in the header. If equal, processing proceeds. 

4. The packet is then decrypted using the specified decryption algorithm and key. 

The decrypted result is checked for accuracy (usually using the pad for 

verification purposes). 

5. The mode of the packet is then validated against what is expected (tunnel andlor 

transport) in the SA and policy. If not correct, the packet is dropped. 

6. The IP packet is then re-built, with the ESP header extracted. The port and 

protocol of the packet is then validated against policy. 

7. Finally, assuming all checks have passed, the IP packet is forwarded to the IP 

processing engine which determines the next steps for the packet (whether this 

is the destination, or whether it needs to be forwarded to the next hop). 



3.3.2 Outbound Processing 

Before a packet can be transmitted, the following outbound processing is performed [I]: 

1. An ESP header is inserted in the proper location for tunnel or transport mode. 

2. The appropriate packet fields are encrypted. 

3. The appropriate packet fields are authenticated, and the authentication result is 

placed in the authentication data field of the ESP trailer. 

4. The IP header checksum is re-computed (if necessary). 



CHAPTER 4 ENCRYPTION ALGORITHMS 

There are two general classes of encryption algorithms [5]: 

Symmetric key 
Public-key 

A symmetric key encryption algorithm is one in which both ends of an encrypted 

conversation use the same key, for both encrypting and decrypting the data. In other 

words, both parties in the conversation must know the key. However, this raises the 

important issue of key distribution. If one party wants to use a specific key, how do they 

let the other party know the key to use? They could not simply transmit the key to the 

other party, as this allows any person with access to the transmission to receive all 

subsequent data transmitted using that key, thus defeating the purpose of encrypting 

data in the first place. Nor could the key be mailed, telephoned, or faxed to the far end 

as all these methods are both insecure, and non-scalable. 

The solution to this problem is to use public-key cryptography. In public-key 

cryptography, two keys are used [5]: 

Public key: can only be used to encrypt data 
Private key: can only be used to decrypt data 

Typically, a users public-key is stored in a public database such as a Certificate 

Authority. When user A needs to send a message to user B, user A retrieves B's public 

key from the database, and encrypts the message using the public key. User B can 

then decrypt the message using his private key (which only he has access to). 



Public-key encryption algorithms are typically used as part of the key distribution process 

for the symmetric key algorithm. The public key algorithm is used to encrypt the key for 

the symmetric key algorithm prior to transmission to the far end peer. Upon receiving 

the message, the far end peer decrypts the symmetric key using his private key. 

One may wonder why it is necessary to use two different encryption algorithms, when 

public-key cryptography can be used to encrypt data, and elegantly solves the key 

distribution problem. The reason is that public key encryption algorithms rely heavily on 

modular exponentiation using large integers [6], which is very computationally intensive 

and slow. In fact, public key encryption algorithms can be three orders of magnitude or 

more slower than a symmetric key algorithm. For this reason, symmetric key encryption 

algorithms are used to protect data, while public key encryption algorithms protect the 

key to be used by the symmetric key algorithm [5]. 

A further classification of symmetric key algorithms is whether the encryption algorithm 

(cipher) operates on a fixed sized block of data at a time (block cipher), or on a single bit 

at a time (stream cipher) [5]. The Data Encryption Standard (DES) and its replacement, 

the Advanced Encryption Standard (AES), are examples of block ciphers, and the focus 

of this Thesis. 

4.1 Modes of Operation 

All block based symmetric key encryption algorithms can be operated in one of two 

principal modes [5]: 

1. Electronic Code Book (ECB) 
2. Cipher Block Chaining (CBC) 



Other modes, such as Cipher-Feedback (CFB) and Counter (CTR) are possible, though 

they are not as commonly implemented, and therefore are outside the scope of this 

Thesis. 

4.1.1 Electronic Code Book (ECB) Mode 

Electronic Code Book mode is the simplest way to operate a block cipher. Blocks of 

plaintext are simply run through the cipher without any additional feedback from previous 

encryption rounds. In ECB mode, a block of plaintext always encrypts to the same block 

of ciphertext (assuming the key is the same) [5]. Figure 8 shows 'n' blocks of plaintext 

encrypting to 'n' blocks of ciphertext. Note that for decryption, a similar drawing can be 

made, with ciphertext block #1 decrypting to plaintext block #1 and so on. 

Figure 8 Electronic Code Book mode 
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Unfortunately, due to its simplicity, ECB mode is susceptible to attack. Messages 

transmitted on the Internet tend to follow a defined format due to the need to abide by 



various networking protocols, such as IP or TCP. For instance, the messages will all 

likely have an IP header, which has a predefined format that includes certain fields that 

either don't change or don't change very often for a particular user, such as an IP source 

address. If an attacker is able to gain access to IP packets transmitted using ECB 

mode, they will quickly be able to determine what key was used during transmission. 

The attacker will attempt decryption of the packet using all of the possible different keys, 

but only some of these attempts will yield reasonable, usable results. All others will be 

discarded. For instance, a decryption that yields an IP source address field of 

7k*.p@n.uYS.98# will be discarded, while one that yields 233.140.70.4 will be accepted. 

In the first case, that value cannot possibly form an IP Source Address, so that key 

attempt is obviously incorrect. While the second value could be an IP Source Address, 

which means that the key attempted may in fact be the actual key used to transmit the 

data. Once a key is known, the attacker could theoretically do anything he wished to the 

communication, from simply snooping, to injecting false packets. 

Another weakness of ECB mode is that it is susceptible to an attack known as block 

replay [5]. A block replay attack uses the fact that a block of plaintext always encrypts to 

the same block of ciphertext. Using this knowledge, an attacker simply replays certain 

blocks of the message multiple times. 

One advantage of ECB mode over the other modes is that since no feedback is 

involved, the encryption and decryption process can be easily parallelized and pipelined. 

4.1.2 Cipher Block Chaining Mode 

CBC mode avoids the security holes found in ECB mode by applying feedback to the 

encryption and decryption process. The same block of plaintext will no longer encrypt 



to the same block of ciphertext. With CBC, the encryption of plaintext block 'n' depends 

on the encryption of plaintext blocks 1 through n-1. 

Figure 9 depicts the process. Plaintext block #1 is XOR'ed with an lnitialisation Vector 

(IV) before being encrypted. An lnitialisation Vector is some random value that is used 

to kick-start the encryption (decryption) process for the block. All subsequent blocks of 

the same message are XOR'ed with the ciphertext result of the previous block. For 

instance, plaintext block #2 is XOR'ed with ciphertext block #I ,  and so on until the end of 

the message is reached [5]. Note that the encryption of plaintext block #2 can not 

commence until the encryption of plaintext block #1 completes. 

Figure 9 Cipher Block Chaining mode, E,ncryption 
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Figure 10 depicts how CBC mode works when decrypting data. Here, after the first 

block of data is processed by the symmetric key algorithm, the result is XOR'ed with the 

IV, creating plaintext block # l .  For all subsequent blocks of the message, plaintext block 



#n is found by processing ciphertext block #n with the symmetric key algorithm, and 

XOR1ing the result with plaintext block #n-1. Unlike encryption using CBC mode, 

decryption can be easily parallelized, allowing decryption of blocks 2 onwards to begin 

before block 1 completes. 

Figure 10 Cipher Block Chaining mode, Decryption 
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The following two sections describe the design of the two most common symmetric key 

algorithms, DES and AES. 

4.2 The Data Encryption Standard (DES) 

DES [ I  01 was adopted as a U.S. Federal Government standard for encryption in 1976, 

and by ANSI for use in the private sector in 1981 [5]. DES is an iterative block cipher, 

that uses a block size of 64 bits, and a key size of 64 bits (although every 8th bit of the 

key is a parity bit). 



Figure 11 shows the high level structure of the DES algorithm, along with its key 

expansion process [5]. 

As can be seen, a block of plaintext first goes though an initial permutation block. The 

data is then cycled through the same round function 16 times (each time using a new 

key from the key expansion process) before going through the inverse permutation 

block. 

Figure 11 DES Structure 
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All 16 rounds of DES have the structure shown in Figure 12 [5], [ I  01. The input data is 

split into two halves, a left half and a right half. The right half of the data goes through an 

expansion permutation that expands the data from 32 bits to 48 bits. The data is then 

XORYed with the specific key for this particular round before being passed to the input of 



the S-BOXs. An S-BOX is a non-linear replacement of one value with another. DES 

uses 8 S-BOXs that each take 6 bits as input, and produce a 4 bit output. Therefore, 

after the S-BOX function is performed, the data is again 32 bits wide. 

Following the S-BOX replacement, the 32 bit data is once again permuted, and then 

XOR'ed with the left half of the initial input data. The end result is a new 32 bit string for 

the right half of the data. 

The left half output is simply equal to the right half input data. 

Figure 12 DES Round Function 
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As noted previously, the DES algorithm uses an initial key size of 64 bits. Each round of 

the algorithm uses a different 48 bit round key that is based on the initial input key. In 

other words, the initial input key is used to create 15 additional keys to be used for 



rounds 2 through 16. The initial input key and the 15 additional round keys are 

collectively known as the key schedule, and are created through a key expansion 

process. 

As an initial step of the key expansion process, the 64 bit input key is reduced to 56 bits 

by removing (and checking) the parity bits. The 56 bit key is then divided into left and 

right 28 bit halves, and circularly left shifted by one or two bits. The round number is 

used to determine how many bits (1 or 2) to shift by. Following the shift, the key is 

compressed and permutated to 48 bits by the compression permutation. The output of 

the compression permutation serves as the key to be used for this round, while the 

output of the circular shift serves as the input to the next round's key expansion process. 

Note that the above discussion was focussed on the encryption case. For decryption, 

the exact same high level and round structures can be used. The only differences are 

that keys are used in reverse, the keys are expanded using right shifts, and the keys are 

shifted a different number of times than in the encryption case. 

Specific details of the permutations and the contents of the S-boxes are given [I 01. 

As computational power has increased over the years, so to has the ability of hackers to 

break DES. Due to its short, 56 bit key space, DES can be cracked. Triple-DES was 

introduced to address this problem. 

Triple encryption is a general technique that can be applied to any symmetric key 

algorithm [5]. The end result is increased security via a larger key (Triple-DES uses a 

192 bit key). The basic idea is illustrated in Figure 13. 



Here, an encryption operation is first applied to the data using bits 0 to 63 of the key. 

The ciphertext output of the first encryption operation is then fed into a decryption 

process that utilizes bits 64 to 127 of the key. Finally, the output of the decryption block 

is fed into final encryption block that uses bits 128 to 191 of the key. For 3-DES, the 

result is a 48 round process. 

Figure 13 Triple-DES 
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4.3 The Advanced Encryption Standard 

As a result of the dual needs for increased security, and for an algorithm that can be 

implemented efficiently with high throughput in hardware or software, the U.S. National 

Institutes of Standards and Technology (NIST) launched a formal competition to define a 

replacement algorithm for DES. After a lengthy evaluation process, the RIJNDAEL 

algorithm was standardized as the new AES in 2001 [ I  I ] .  

AES is a symmetric key block cipher that uses a block size of 128 bits, and a key size of 

128, 192, or 256 bits [ I  I]. The algorithm is iterative, requiring 1 1, 13, or 15 rounds 

(depending on the key size) to produce an output. Unlike DES, the same exact 

operations cannot be performed for both encryption and decryption. 



The following sections describe the AES cipher, inverse cipher, and key expansion in 

further detail [ l  11. 

4.3.1 AES Cipher 

Initially (and for all rounds that follow), the data to be processed by the cipher is 

organized into a 4 x 4 matrix called the State. Each element of the State corresponds to 

one of the bytes in the input data block. As shown in Figure 14, input byte 0 (bits 0 to 7 

of the input data block), corresponds to the element at row 0, column 0. The cipher 

processes the bytes and columns of the state to produce the output state. 

Figure 14 The AES State 
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the plaintext is simply XOR'ed with the input key. The result is then iteratively processed 

by the round function for rounds 1 through N. In round N+1, a modified round function 
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ciphertext output. 
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As shown in Figure 16, each of rounds 1 through N in Figure 15 contain the following 
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four operations: 



2. ShiftRows 
3. MixColumns 
4. AddRoundKey 

The following sections describe each of these operations in further detail. 

Figure 15 AES Cipher 
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4.3.1.1 SubBytes 

SubBytes is a non-linear byte substitution of each individual byte of the State. There are 

essentially two approaches for implementing the SubBytes process: 

1. Use a look-up table 

2. Perform the following calculation, where b,' is the result of transforming b,. 

As noted above, a look-up table that implements the SubBytes transformation can easily 

be found by simply plugging in all 256 possible bytes into the above matrix. 

4.3.1.2 ShiftRows 

ShiftRows applies a variable number of circular left shifts over each row of the state. 

Each row is shifted an amount given by its row number. For instance, row 0 is not 

shifted, row 1 is shifted 1 position, and so forth. Figure 17 graphically depicts the 

ShiftRows process. 



Figure 17 ShiftRows 

M o t a t i o n  

Left Rotate By 1 slo 

Left Rotate By 2 S2o 

Left Rotate By 3 S30 

4.3.1.3 MixColumns 

The MixColumns transform multiplies each column of the State by a fixed matrix to 

produce a new column. The following equation describes the multiplication: 

yielding the following set of equations, where C indicates the column number: 

The 1 x multiplication is trivial, as the result is simply the input byte. The 2x 

multiplication can be realized by multiplying the value (for example Soot) by 2, and 

checking whether the initial value (SoVc) is > 127. If so, subtract (using bitwise XOR) 

0x1 B. If not, the result is already in final form. The 3x multiplication is also trivial, as it 

simply is the addition (using bitwise XOR) of the 1x and 2x values. 



4.3.1.4 AddRoundKey 

AddRoundKey simply XORs the State with the particular key for the round. 

4.3.2 AES lnverse Cipher 

The AES Inverse Cipher has a similar overall structure to the AES Cipher. The primary 

differences are that the transforms are the inverse of those used in the AES Cipher, the 

keys are used in reverse order (thus the round ordering is reversed), and the specific 

order of operation of the individual transforms is altered slightly, as shown in Figure 19. 

Figure 18 AES lnverse Cipher 
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Figure 19 AES Inverse Cipher Round Function 
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The following sections describe the functionality of the InvShiftRows, InvSubBytes, and 

InvMixColumns transforms. The AddRoundKey operation is identical to that described in 

section 4.3.1.4. 

InvShiftRows applies a circular right shift to each row of the state. The number of 

positions each row is shifted depends on the row number, as illustrated in Figure 20. 

Figure 20 InvShiftRows 
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4.3.2.2 InvSubBytes 

The InvSubBytes operation is the inverse of the SubBytes procedure. Therefore, an 

inverse look-up table can be created to perform this procedure. As an example, an input 

byte of 0x00 to the SubBytes procedure will yield an output value of 0x63. Therefore, for 

the InvSubBytes look'-up table, the value obtained with an input of 0x63 should be 0x00. 

Like the Mixcolumns operation, the lnvMixColumns transform multiplies each column of 

the State by a fixed matrix to produce a new column. The following equation describes 

the multiplication: 

yielding the following set of equations, where C indicates the column number: 

The values 09x, OBx, ODx and OEx are obtained through successively applying the 

multiplication approach described in section 4.3.1.3. For example, the 9x multiplication 

is obtained by multiplying by 2x three times, and adding the I x  value. 

4.3.3 AES Key Expansion 

As noted previously, the AES Cipher and Inverse Cipher require a new key value to be 

used for each round. Figure 21 depicts the key expansion operation for a key size of 128 



bits. The input key is split into 4 32 bit words (words 0 through 3). The RotWord process 

takes a 4 byte word (bO, b l  , b2, b3) and performs a byte permutation to yield (bl , b2, b3, 

bO). Each byte of the word is then replaced using the same S-BOX as described in the 

SubBytes transform. The word is then XOR'ed with a constant value that is based on the 

round number, as shown in the following table: 

The result of the RCON operation forms word0 of the next key (NWordO). This particular 

value is also XOR'ed with word1 of the input key to create NWordl. Word2 is XOR'ed 

with NWordl to create NWord2. Word3 is XOR'ed with NWord2 to create NWord3. 

Table 1 Round Constant (RCON) Values for Key Expansion 

This process creates 10 new key values from the initial 128 bit input key, for a total of 11 

round keys. These round keys can be stored in memory to be used as necessary. 

Round 

1 

RCON Value 

0x01 000000 



Figure 21 AES Key Expansion 
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CHAPTER 5 DESIGN AND IMPLEMENTATION OF AES 

The design and implementation of AES typically involves making tradeoffs of processing 

speed vs. aredpower. While some applications such as an Internet core router would 

require the fastest possible implementation, other applications such as wireless PDAs 

would be more concerned about minimizing area and power consumption. 

Design architecture, algorithm implementation, and implementation form factor (FPGA, 

ASIC etc.) are three situations where one must be cognizant of the end goal (e.g. 

highest possible throughput, lowest possible power or some optimisation in between). 

The ways in which the design architecture, algorithmic implementation, and form factor 

affect speed and aredpower are discussed generally before describing the actual VHDL 

implementations chosen for this Thesis. 

5.1 Architectural Options 

The three most common architectures typically employed when implementing a block 

cipher, such as AES, in hardware [12] are: 

Pipelining 
Sub-pipelining 
Loop Unrolling 

This Thesis proposes a fourth approach, termed Multi-Session Pipelining, which seeks 

to apply the benefits of pipelining to CBC mode in a novel way. 



5.1 .I Pipelining 

In pipelining, registers are inserted between each round that forms the pipeline. The 

depth of the pipeline, K, determines how many data blocks can be processed 

simultaneously. The architecture is fully pipelined when K equals the number of rounds, 

Note that with K=l, the architecture becomes that shown in Figure 22. This is the 

smallest possible implementation of an N-round algorithm [12]. 

Figure 22 Pipeline architecture with K = 1 
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Pipelined architectures are suitable and offer the highest performance for ciphers 

operating in non-feedback modes such as ECB, where each block of data is encrypted 

(or decrypted) independently of one another. Zhang [ I  21 shows that for non-feedback 

modes, both speed and area increase by a factor of K for pipelined architectures over 

the basic architecture shown above. Much has been written about extremely fast 

pipelined implementations of AES [20] - [24]. 

However, pipelined architectures are not quite so suitable for ciphers operating in 

feedback mode (such as CBC). This is because all rounds of the algorithm must be 



performed on data block 'N' before data block 'N+ll from the same packet (and using 

the same key) can be processed (due to the block chaining that is in effect). Section 

5.1.4 of this Thesis discusses how the pipeline and the external data source can be 

modified to enable pipelined architectures to improve the aggregate throughput of the 

Cipher when operating in CBC mode. Section 6.2 of this Thesis discusses an AES 

Cipher design based on this Multi-Session Pipelined approach. 

5.1.2 Sub-pipelining 

In sub-pipelining, registers are actually inserted inside the round function itself, thereby 

essentially splitting the round function into two sections. This is essentially the same 

concept as pipelining. For non-feedback modes of operation, Zhang et al. [12] shows 

that a sub-pipelined architecture with each round divided into r=2 sections offers a 2*K 

improvement in throughput (with K equal to the depth of the main pipeline). The 

additional throughput comes at a cost of k*(r-1) additional registers for the sub-pipelining 

functionality. Note that as with standard pipelined architectures, sub-pipelining is 

generally not suitable for ciphers operating in a feedback mode. In fact, sub-pipelining 

may degrade performance when used with CBC mode. 

5.1.3 Loop Unrolling 

In loop unrolling, the basic architecture of Figure 22 is modified by inserting additional 

rounds of combinatorial logic inside the loop, but without the additional expense of 

registers. In this architecture, multiple rounds of the algorithm are processed in the 

same clock cycle. Since the delay of each round (assumed to be due to combinatorial 

logic) is fixed, the clock period must increase to ensure the data is processed by each 

round in the same clock cycle. Unlike the pipelined architecture where registers are 



inserted between each round, these inter-round registers are not present in the loop- 

unrolled architecture. Figure 23 shows the difference between a pipelined and loop- 

unrolled architecture. 

Figure 23 Pipelined vs. Loop Unrolled Architectures 
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In a loop-unrolled architecture, throughput is increased by eliminating the delay 

associated with the pipeline register(s) [12]. If one assumes the minimum clock period 

for the basic architecture (pipeline with K=l) is as follows: 



where TRoUND is the delay associated with the actual round function processing, and TOH 

is the overhead delay (setup and propagation) associated with the register(s) and 

multiplexers of the chosen architecture. Throughput [I 21 is then: 

where NR is the number of rounds to be processed, and 128 is the number of output bits 

produced. For AES operating with 128 bit keys, NR = 10. 

Note that the throughput for a fully pipelined (K=l1) design operating in ECB mode is: 

To calculate the throughput improvement achievable using loop-unrolling, the delay must 

first be calculated. This is derived from the following, where K indicates the number of 

rounds processed in the same clock cycle: 

Throughput can now be expressed as: 

Throughput ,, = - - 
NR NR 
- * T m c H  K NR * T R o u N D  + - * To, K 

The speedup achieved by using loop-unrolling can be determined by solving the 

following equation: 

Throughput ,, 
SPEEDUP = - 

Throughput BASIC ' 



to yield: 

1 + z 
SPEEDUP = - 

where 7 = TonROUND. The following table shows the magnitude of the speedup that can 

be achieved by using the loop-unrolling method. If one assumes the overhead 

processing delay is 40% of the round processing delay (for a total delay of 14 units), a 

fully loop-unrolled architecture where K=10 will only experience a 35% speedup over the 

basic architecture. Though significant, this throughput increase will come at the cost of 

increased area, on the order of K times that of the basic architecture. 

Only K values of 1, 2, 5, and 10 are suitable for the AES algorithm when using 128 bit 

keys. Table 2 also shows that for constant 7 and as K increases, the rate of throughput 

increase diminishes. In this example, K=2 appears to present the greatest throughput 

increase versus area trade off. Recall that the throughput increase of the pipelined 

architecture was nearly K times that of the basic architecture. 

Table 2 Speedup achieved by using loop-unrolling 

The advantage of loop-unrolling is that it is applicable to CBC and other feedback modes 

of operation. 
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5.1.4 Multi-Session Pipelining 

As mentioned previously, the primary drawback of the standard pipeline approach is that 

it is not well suited to feedback-based modes of operation (such as CBC) due to the 

need to complete the encryption of block N before block N+1 from the same packet can 

be encrypted. [20] describes a method of processing four concurrent 32 bit threads at a 

time in order to increase throughput, however, it appears that this approach does not 

support CBC mode. Multi-Session Pipelining is a novel method proposed in this Thesis 

for extending the benefits of pipelining to CBC mode. 

An important observation is that blocks of data from other packets (using other keys) 

could be used to fill the pipeline. Each of the distinct user and key combinations to which 

encryption services are being applied are referred to as a session. 

In order to allow this Multi-Session Pipeline approach to work for CBC mode, the 

scheduling of block data into the pipeline must be modified to ensure that blocks of data 

from the same session are always input to the Cipher NR rounds apart, where NR is 11 

(owing to the depth of the pipeline, and the number of rounds in the AES Cipher). This 

is accomplished by maintaining NR distinct queues and servicing the queues in a round- 

robin fashion. 

In addition, a feedback path must be created from the output of the last round to the 

input of the first round of the algorithm. Figure 24 on the next page shows the proposed 

architecture. 



Figure 24 Multi-Session Pipeline System Diagram 
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The External Processor depicted in Figure 24 is designed to handle up to 11 FlFO 

queues, which are serviced in a strict round-robin fashion. Data from the same session 

is always placed into the same queue. More than 11 sessions may be supported by 

populating the queues with multiple sessions, so long as all blocks of data corresponding 

to a particular packetlsession are placed contiguously in one queue. After all queues are 

serviced once, the AES Cipher will be processing 11 unique sessions with 11 different 

session keys at any one time (more sessions may be queued externally). 

I 

Using the Multi-Session Pipeline architecture, aggregate throughputs comparable to 

those achieved with the pipeline approach described in section 5.1.1 are possible. Note 

that while the throughput of a fully pipelined design was given as: 

Output Feedback I 

the aggregate throughput (across all sessions) of a Multi-Session Pipeline design is: 



and the throughput for any one of the CBC sessions is the same as for a pipeline with 

K=l : 

where NR is typically 11. 

The Multi-Session Pipeline architecture provides enhanced aggregate throughputs and 

space savings over simply instantiating the basic architecture (pipeline with K=l) NR 

times. 

5.2 Algorithmic Options 

The basic round function of the AES cipher algorithm appears below in Figure 25. The 

only areas where optimisations can be achieved are in the SubBytes and MixColumns 

operations [12]. The ShiftRows operation is a permutation of bytes and requires no 

hardware to implement, while AddRoundKey consists solely of an XOR of one 128 bit 

word with another 128 bit word. 



Figure 25 AES Cipher Round Algorithm 
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5.2.1.1 SubBytes Optimization 

As stated in section 4.3.1 .I, SubBytes may be implemented using either a look-up table, 

or by implementing the following equation. 

The look-up table approach offers a throughput advantage, but requires a larger area 

[ I  31. For the AES Cipher, 16 256x8 LUTs are required for SubBytes (assuming all 128 

bits of the block are processed simultaneously. Several ways have been suggested for 

improving the throughput of the LUT approach, including using a twisted binary decision 

diagram, or going with a full custom approach and optimising the S-BOX at the transistor 

level. 



Several authors [ I  21, [ I  31, [ I  91 - [24] have proposed various methods to reduce the 

delay associated with the SubBytes process. The logic minimization and low fanout 

decoding approach discussed in [ I  91 appears to offer the best combination of low delay 

and low gateltransistor count. 

5.2.1.2 MixColumns Optimization 

The MixColumns operation requires the implementation of the following equations for 

each column of the state: 

If one were to implement these equations directly into VHDL without care, the 

synthesizer may produce the logic diagrams shown in Figure 26. Note that XTlME left 

shifts the input byte by 1 position then XORs the result with 0001 101 1 (0x1 5) if the MSB 

of the original byte was 1. 

By analysing the delays incurred for each of the output bytes, it can be seen that 

OutMixByte(0,C) requires up to 5 gate delays to be processed. However, 

OutMixByte(2,C) only requires a maximum of 3 gate delays. Therefore, this 

implementation is not optimised. 



Figure 26 Unbalanced MixColumns implementation 

By re-ordering the terms of the input equations to the following, a balanced 

implementation will be created that results in all output bytes experiencing a maximum of 

3 gate delays. 

5.2.1.3 T-BOX Implementation 

An alternative to the use of the traditional SubBytes and MixColumns implementations is 

that of the T-BOX [12]. A T-BOX is a look up table approach that not only incorporates 

SubBytes, but ShiftRows and MixColumns as well. Algebraically, the T-BOX can be 

expressed as follows [I 21: 



This matrix can be expressed by the following four equations: 

Equations for all 16 bytes of the state can be generated from this by replacing C with the 

column (0 to 3) being operated on. ShiftRows is implemented in these equations by 

adding 0, 1, 2, or 3 to the column value C. 

A look-up table holding Ix, 2x, and optionally 3x the SubBytes value should be 

incorporated. Alternatively, additional RBMs may be used to hold the 2x and 3x values. 

When fully implemented, up to 48 256x8 ROMs (three for each byte of the state) may be 

required for one round of the algorithm when using the T-BOX approach. The T-BOX 

approach is one of the methods chosen in this Thesis for the "space-optimised" AES 

cipher. 

The T-BOX approach is meant to reduce or eliminate the following delays associated 

with the standard implementation: 

o Delay in generating 2x the SubByte value 

o Delay associated with the multiple levels of XBRing required in the Mixcolumns 

procedure 



Gate delay is reduced at the cost of increased gate count and net delay, and therefore 

area. Whereas the standard AES Cipher implementation requires 16 ROMs or look-up 

tables, the T-BOX approach can require up to 48 for each round. 

Note that the T-BOX approach is only useful if the savings in gate delay exceed the 

increases in net delay. 

5.3 Implementation Options 

Section 5.1 discussed how, given a value for T R ~ ~ ~ ~ ,  the design architecture affects the 

delay of the design. Section 5.2 showed how different algorithmic design choices can 

affect TROUND. TROUND is also affected by the choice of physical implementation. Among 

the choices are FPGA, ASIC, or full-custom ASIC, all of which offer advantages over the 

others. The decision to pursue one option over the others is often driven by one or more 

of the characteristics listed in Table 3. 

Device Cost I Highest I Lowest 1 Medium 

Table 3 Key Physical lmplementation Characteristics 

Throughput I Lowest I Medium I Fastest 

Characteristic 

Initial Time to Market 

Development Cost 

Tooling Costs 

An FPGA development offers the fastest initial time to market, and lowest development 

and tooling costs by saving on physical design, layout, and tape-out expenses 

FPG A 

Fastest 

Lowest 

Lowest 

Standard Cell ASIC 

Medium 

Medium 

Medium 

Custom ASIC 

Slowest 

Highest 

Highest 



associated with ASlC approaches (note that the time to market for a production ready 

design is equivalent across all options). However, device costs associated with FPGA- 

based designs are high. As an example, a design that may incur a device cost (silicon + 

packaging) of $1 0-$15 may require a $50+ FPGA. A hard-copy FPGA or structured 

ASlC program that will lower the device cost to near ASlC levels could be considered. 

However, this is at the expense of increased development costs and schedule impact 

(structured ASlC programs have costs and schedule impacts similar to those of 

traditional chip developments). In addition, the FPGA design may not satisfy the 

throughput requirements of the target application. 

Another consideration is the anticipated volumes. If the volumes are low, an FPGA 

design (despite the higher per device costs) will offer a lower program cost (development 

cost + volume * device costs). However, as volumes increase to a certain level, FPGA 

and ASlC program costs will crossover such that the FPGA approach is more expensive. 

Finally, ASlC and in particular full-custom ASlC approaches can achieve higher 

throughputs than in FPGA-based designs. As an example, most FPGA based designs in 

the literature achieve throughputs in the hundreds of Mbps (in CBC mode) and up to 20 

Gbps or more in non-feedback mode [20] - [24], while ASlC approaches have achieved 

those rates and greater. 



CHAPTER 6 DETAILED DESIGN OF AES 

The AES implementations discussed in this Thesis were designed and verified using 

VHDL and Xilinx Synthesis Tools. 

Two different AES implementations have been developed for this thesis. The first 

implementation, based on the basic or pipeline architecture with K=l (as shown in Figure 

22) is optimised for space. The second, based on the Multi-Session Pipelined 

architecture of Figure 24 is optimised for aggregate throughput. 

The following sections describe the detailed design of the AES Cipher for these two 

implementations. 

6.1 Space Optimised AES Cipher 

Figure 27 shows a block diagram of the basic AES Cipher Module. As can be seen, it is 

implemented using four sub-modules: Input FIFO, Control State Machine, Output FIFO 

and importantly, a single AES Cipher sub-module. The 

AES-CIPHER-MODULE-SPACE block implements the top level connections between 

each sub-module, as well as the inputloutput interface to the testbench environment. 



Figure 27 AES Cipher Module Block Diagram 
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The lnput FlFO sub-module buffers the write transactions from the testbench and 

converts the data width from 64 bits on the testbench to the 128 bit data path required by 

the encryption engine. The lnput FIFO is also used to buffer the context and initialisation 

vectors. Similarly, the Output FIFO sub-module buffers the encryption results from the 

encryption engine and converts the 128 bit data path utilized internally to a 64 bit data 

path expected by the testbench. 

The Control State Machine sub-module controls most operations of the encryption 

engine including the reading of data to be encrypted from the lnput FlFO and the writing 

of encrypted data to the Output FIFO. The sub-module implements a state machine that 

governs the operation of the encryption engine for each clock cycle of the encryption 

process. 

The AES Cipher sub-module implements the actual AES algorithm itself (with the 

exception of the key generation logic). 

The following table describes the operation of each of the input and output signals on the 

top level design. 



Table 4 Pin Description of Space Optimised AES Cipher Module 

Signal Name I 
lnput 

lnput 

lnput 

I 

1 wrb I Input 

fullb Output 

key-in(0 to 127) Input 

data-output(0 to 63) Output 0 
lnput 

Description 
- - 

Supplies the data input to the Cipher module for 
encrypting. One half of the 128 bit AES block is 
provided on each valid clock cycle. 

Supplies the IV input to the Cipher module for 
encrypting data in CBC mode. One half of the 128 bit 
IV is provided on each valid clock cycle. 

Provides the Cipher module with knowledge as to 
how it should process the associated data. The 
encoding of context-in is as follows: 

Bit 0: '1' = Start of Packet. '0' = middle or end of 

packet. 

Bit 1 : "1' = Encryption, '0' = Decryption 

Bits 2:3: lndicate the mode the cipher is to operate in. 
"01" = ECB mode. "1 0 = CBC mode. All other values 
are ignored. 

Bits 4:15: Indicate the key index to be used. 

lndicates the data on data-input, ivin, and 
context-in should be written into the lnput FIFO. 

lndicates the status of the input FIFO. '0' indicates 
that the lnput FlFO is full, and 'l'indicates that the 
lnput FlFO has room for at least one more 128 bit 
transaction. 

Provides the key address of the next required key. 

Provides a read strobe for the associated key 
memory. 

The key to be used in the encryption process for 
each round. 

The result of encrypting the input data with the 
:ontext information as directed in contex-in, and the 
associated key. 

lndicates that the testbench is ready to accept new 
jata from the output FIFO. 

ndicates the status of the output FIFO. '0' indicates 



I Signal Name I InpuVOutput I Description I 
that the output FlFO is empty (and therefore no need 
to continue asking), and 'I'indicates that the Output 
FlFO has at leastone more 128 bit transaction before 
going emptyb. 

clock lnput Provides a synchronous signal to all the clocked 
elements in the design. Clock is active on the rising 
edge. 

6.1 .I lnput FlFO Sub-module 

resetb 

The lnput FlFO sub-module implements three circular buffers of 8 locations each. The 

number of locations is configurable depending on the access speeds of the testbench 

Input 

and the encryption rate of the engine itself. Two of the buffers feature 64 bit wide 

locations, while the third buffer uses 16 bit wide locations, All buffers share the same 

Provides a synchronous reset to all of the clocked 
element s in the design. 

read and write pointer to ensure they are synchronized. 

Data to be encrypted is written into the FlFO in 64 bit transactions. Therefore, for AES 

applications, two transactions must occur to write the complete 128 bit AES block into 

the FIFO. At the same time, the IV and context information must also be loaded into the 

FIFO. Even if ECB mode is being used, the IV field as well as any unused bit locations in 

the context field, should be set to 0. 

Upon each write from the testbench, the write pointer is incremented one position, and 

an internal contents counter is incremented. To protect the FlFO from overrun 

conditions, the write pointer is compared with the read pointer. If the write pointer is 

within 2 locations of the read pointer, the lnput FlFO will assert the fullb signal to the 

testbench. The testbench should not attempt to write new data into the FlFO until the 

fullb signal is de-asserted. 



The Control SM block controls reading from the FIFO. Upon each read from the Control 

SM block, 2 locations are read from each buffer and concatenated together to form the 

128 bit or 32 bit word required by the Control SM sub-module. The read pointer is 

incremented by two and compared to the write pointer. If the new read pointer and write 

pointer are equal to each other, the FlFO is empty and the emptyb signal is asserted to 

the Control SM. To avoid FlFO under-runs, the Control SM must not attempt to read 

from the FlFO when emptyb is asserted. 

6.1.2 Output FlFO Sub-Module 

The Output FlFO sub-module implements one circular buffer of 8 locations. The number 

of locations is configurable depending on the access speeds of the testbench and the 

encryption rate of the engine itself. The buffer features 64 bit wide locations. 

Encrypted data is presented to the FlFO as a 128 bit word. On each write transaction 

initiated by the Control SM, two locations are filled. The first location corresponds to bits 

0 to 63 of the encrypted data block, and the second location corresponds to bits 64 to 

127. Upon each write from the Control SM, the write pointer is incremented two 

positions, and an internal contents counter is incremented. To protect the FlFO from 

overrun conditions, the write pointer is compared with the read pointer. If the write 

pointer is equal to the read pointer, and the contents counter indicates the FIFO is 

holding at least 6 units of data, the Output FlFO will assert the fullb signal to the Control 

SM. The Control SM should not attempt to write new data into the FlFO until the fullb 

signal is de-asserted. Therefore, the Control SM must go into a holding state until the 

Output FIFO is no longer full. 



The testbench controls reading from the Output FIFO. Upon each read from the 

testbench, 1 location is read from the buffer. Therefore, for AES applications, two 

transactions must occur to read the complete 128 bit AES block from the Output FIFO. 

The read pointer is incremented by one and compared to the write pointer. If the new 

read pointer is within one location of the write pointer, the FlFO is empty and the emptyb 

signal is asserted to the testbench. To avoid FlFO under-runs, the testbench must not 

attempt to read from the FlFO when emptyb is asserted. 

6.1.3 Control SM Sub-module 

The Control SM (State Machine) sub-module implements a state machine of 27 states 

that controls the operation and sequencing of the cipher. Figure 28 is the state diagram 

for the Control SM. The operation is as follows: 

o Initially, the state machine is in the IDLE state and remains so until the 

FIFO-EMPTY6 signal from the input FlFO block is 'l', indicating that data is in 

the FIFO. Once FIFO-EMPTYB is 'I1, the state machine transitions to the 

Get-Context state. 

o In the Get-Context state, the state machine reads the context bits to determine 

how processing should proceed. If bits 2 and 3 of the context input are equal to 

"01 ", the state machine transitions to the ECB-ENCRYPT-1 state. If bits 2 and 3 

are equal to "lon, the state machine transitions to the CBC-ENCRYPT-1 state. 



Figure 28 Control SM State Diagram 
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o In the ECB-ENCRYPT-1 state, the state machine drives the data to be 

encrypted to the AES Cipher sub-module. On subsequent clock cycles, the 

state machine cycles through states 2 through 10. In states 2 through 10, the 



controller simply feeds back the output of the previous round to the input of the 

next round. 

o In the ECB-ENCRYPT-11 state, the data is completely encrypted having 

traversed through all rounds of the state. In this state, the controller examines 

the state of the FIFO-EMPTYB flag from the lnput FIFO and the FIFO-FULLB 

flag from the Output FIFO. If the FIFO-FULLB flag is 'O', the state machine 

transitions to the Out-FIFO-Full state. Otherwise if both the FIFO-EMPTYB flag 

and FIFO-FULLB flag are '1 ', the state machine transitions to the 

Get-Contextout state because there is new data available to encrypt and the 

output FlFO is empty. If the FIFO-EMPTYB flag is '0' and the FIFO-FULLB flag 

is '1 ', the state machine transitions to the IDLEOUT state due to the fact that 

there is no more data to encrypt. 

o The functioning of the CBC-ENCRYPT-1 through CBC-ENCRYPT-11 states is 

similar to that of the ECB-ENCRYPT-X states. The primary difference is that in 

CBC-ENCRYPT-1, the input data to be encrypted must be XOR'ed with the IV if 

this is the first block of the packet. If not the first block of the packet, the input 

data to be encrypted must be XOR'ed with the previous encryption result. 

o In the Get-Contextout state, the state machine retrieves the next data, IV and 

context information required to encrypt the next block of data. 

o In the Out-FIFO-Full state, the state machine monitors the setting of the 

FIFO-FULLB flag to determine when space is available in the Output FIFO. 

When space becomes available, the encrypted data is written into the FIFO, and 

the state machine transitions to the IDLEOUT or Get-Contextout state 

depending on whether or not data in the lnput FlFO is waiting to be encrypted. 



o In the Get-Contextout state, the state machine writes the encrypted data into 

the Output FIFO and reads the data, IV and context for the next block of data to 

be encrypted. 

6.1.4 AES Cipher Sub-module 

Two versions of the AES Cipher module have been developed. One version implements 

the traditional S-Box approach for SubBytes. A simplified block diagram of this version of 

the AES Cipher sub-module is shown in Figure 29. 

Figure 29 AES Cipher Sub-module Block Diagram 
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Input data to the cipher sub-module is placed into an array named Instate which mimics 

the state construct in the AES specification [2]. All 16 byte values of the state are then 

used as lookup addresses for 16 ROMs, the output of which is named Substate. The 

Substate signal then takes two paths. One path implements the Shiftrows function only, 

and results in a new signal named Shiftstate. The other path left shifts the Substate 

signal one position and XORs the result with " 0 0 0 ~ ~ 6 ~ 0 6 ~ ~ ~ "  where %'is the most 

significant bit of the Substate signal (prior to left shifting). If 6' is 0, then the XOR 

function has no effect. If 6' is 1, the left shifted value is then XOR'd with "0001 101 1" or 

0x1 6. This process creates a new signal termed Shiftstate-2. 

Shiftstate and Shiftstate-2 are used as part of the MixColumns combinatorial logic. The 

MixColumns logic implements the following balanced MixColumns equations: 

1 *S,, represents the various Shiftstate values, 2*S,, represents the Shiftstate-2 values, 

and 3* S,, is the result of XORing Shiftstate and Shiftstate-2 for the appropriate row and 

column values. 

The output of the MixColumns operations is XOR'ed with the AES-KEY-IN value for this 

particular round as part of the AddRoundKey function to create the AES Cipher output 

for rounds 1 through 9 of the Cipher. 

Note that the AES Cipher module provides four possible outputs: 

o One output (AES-DATA-OUT-ROUNDO) computes the XOR of the key and 

input (for round 0) 



o One output (AES-DATA-OUT-FINAL) computes the XOR of the key and the 

result of SubBytes (for round 10) 

o One output (AES-DATA-OUT-MID) computes the XOR of the key and the result 

of the Mixcolumns operation (for rounds 1 through 9) 

o One output (AES-DATA-OUT-LAST) provides a registered version of 

AES-DATA-OUT-FI NAL 

An alternative AES Cipher module was developed that utilized the T-BOX approach 

described in Section 5.2.1.3 and [ I  21. Figure 30 shows the block diagram of this 

alternate version of the AES Cipher module. 



Figure 30 AES Cipher Module Using T-Box Approach 

aes-data-in - 

aes-key-In - 

round-num - 

clock ---I 

- aes-data b instate 

Combinational 

final-round-out 
mid-round-out 7 

128 Bit Register 

+ round-num-R--+ 

-b clock- 

6.2 Multi-Session Pipelined AES Cipher 

The following sections describe the implementation of the Multi-Session Pipelined AES 

Cipher module, also referred to as the throughput optimised design. 

Figure 31 shows a block diagram of the Multi-Session Pipelined AES Cipher Module. 



Figure 31 Multi-Session Pipelined AES Cipher Module 
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There are several high level differences between the design of Figure 31, and that of 

section 6.1. These include: 

o The top-level interface is changed to support 128 bit wide data paths for the input 

data, output data, and IV signals. As well, the Key Interface is removed. Finally, 

signals are added to pass mode, key index, start of packet, and data valid 

information to the Cipher Module. 

o The Input FIFO, Output FIFO and Control SM are removed in order to support a 

new 128 bit block of data on every clock cycle (for maximum throughput). 

o Finally, a separate AES Cipher round sub-module is instantiated for each round 

of the design. 

The individual AES Cipher round sub-modules that form the basis of the design store the 

pre-computed individual round-keys required for their particular position in the pipeline. 

For instance, the round 0 sub-module will only contain round 0 round-keys for the 

sessions in use. Likewise, the round 5 sub-module will only contain round 5 round-keys. 

The round-key to use will be selected based on the key-index signal. Since the 

AddRoundKey function of the AES algorithm is always the last operation to be 



performed in a round, the key memory will be able to provide the correct session key by 

the time it is needed. The value of the key-index signal will propagate with the data 

through each sub-module of the design to ensure that the correct key is used on a per 

round basis to encrypt the data. 

Since the Multi-Session Pipelined AES Cipher will produce a new 128 bit encryption 

result on every clock cycle, the data-valid-in signal is provided to qualify the validity of 

the input data. When the data on the data-input signal is valid, the data-valid-in signal 

will be high. This will propagate through each stage of the pipeline and will inform the 

downstream processing block that the output-data signal is valid. 

The pin description of the Multi-Session Pipeline AES Cipher is presented in Table 5. 

6.2.1 AES Cipher Sub-module 

The Multi-Session Pipelined AES Cipher Module utilizes modified versions of the Cipher 

Module shown in Figure 29. For rounds 1 through 10 of the design, the primary 

differences are that the sub-module contains the pre-computed round-keys for each of 

the supported sessions. In addition, the sub-modules register and pass the key-index 

and data-valid signals as they propagate with the data they pertain to. 

The AES-Cipher-Round0 sub-module is further modified to check the status of the 

mode and SOP signals. If the mode signal 'O', the data is to be encrypted using ECB 

mode, and is simply XOR'ed with the round-key. If the mode signal is 'I ', the data is to 

be encrypted using CBC mode. In this case, the sub-module also checks the value of 

SOP. If SOP is 'I ', the block of data corresponds to the start of packet, and the data is 

XOR'ed with the IV signal before being XOR'ed with the round-key. If SOP is 'O', the 



data is XOR'ed with the result of encrypting the last block of data on this session before 

being XOR'ed with the round-key. 

Table 5 Pin Description of the Multi-Session Pipeline AES Cipher Module 

I Signal Name Input/Output Description 

lnput Supplies the data input to the Cipher module for 
encrypting. 

lnput Supplies the IV input to the Cipher module for 
encrypting data in CBC mode. 

key-index lnput Provides the Cipher module with knowledge as to 
which round-key to use. May be expanded as needed 
to support the required number of sessions. 

mode-in lnput lndicates whether the block should be encrypted 
using ECB or CBC mode. 

I '0' = ECB Mode. '1' = CBC Mode. 

sop-in lnput lndicates whether the block represents the start of a 
packet or not. 

1 '1' = Start of Packet. '0' = middle or end of packet. 

data-valid-in 

data-valid-out 

lnput 

Output 

Output 

lndicates that the data presented on the data-input, 
iv-in, key-index, mode-in, and sop-in signals are 
valid. 

- - -- - - - -- 

Indicates that the data presented on the data-output 
signal is valid. 

Output data for the Multi-Session Pipelined AES 
Cipher. 

clock 

resetb 

lnput 

lnput 

Provides a synchronous signal to all the clocked 
elements in the design. Clock is active on the rising 
edge. 

- - 

Provides a synchronous reset to all of the clocked 
elements in the design. 



6.3 lnverse Cipher Design 

One of the goals of this Thesis was to create a modular design that with minor alteration, 

could be re-used for the lnverse Cipher and Key Generation functions. In light of this, 

the Input FlFO and Output FlFO are 100% re-used for the lnverse Cipher. Since keys 

are used in reverse order with the lnverse Cipher, the Control SM module is altered to 

decrement key address and round values. Finally, the Cipher sub-module is necessarily 

updated to implement the actual lnverse Cipher algorithm as described in Section 4.3.2. 

The design of the inverse cipher sub-module is similar to that of the cipher module 

depicted in Figure 29 with the exception that an extra register and multiplexer is required 

to support CBC mode. The register is used to hold the IV value (for the first block of 

data) or the prior block of input data. Figure 32 depicts the general configuration of an 

lnverse Cipher in CBC mode. 

Figure 32 AES Inverse Cipher in CBC Mode 
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6.4 Key Expansion Design 

The only variation in the design of the Key Expansion module from the AES cipher 

module is the Key Expansion sub-module replaces the AES cipher sub-module. The 

Input FIFO, Output FIFO and Control SM are 100% re-used from the AES Cipher 

design. 



CHAPTER 7 AES DESIGN VERIFICATION 

The AES Cipher was designed using Xilinx Synthesis Tools, and verified using the 

Modelsim verification environment. Before discussing test results for the different 

implementations, the verification strategy is introduced. 

AES design verification is composed of two components: 

o Design of the Testbench 

o AES Cipher Module Verification 

The following sections describe these components in further detail. 

7.1 Space-Optimised AES Testbench Design 

Figure 33 on the next page shows the connections from the testbench to the space- 

optimised AES Cipher Module. The testbench performs three general operations: 

1. Operation of the input interface 

2. Operation of the output interface 

3. Operation of the Key Memory interface 



Figure 33 Testbench Connections 
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7.1 .I lnput Interface 

The input interface process controls the sequencing of data, IV, and context information 
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to the AES Cipher Module. The input interface initially drives the reset signal to the 

design. Once out of reset, the testbench begins monitoring the fullb signal which 
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indicates whether or not the lnput FIFO in the AES Cipher Module has room to accept 
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P 

data. Transfer of data (including IV and context) from the testbench to the Cipher Module 

requires three clock cycles. On the first clock cycle (assuming fullb is high), the 

testbench will set the wrb signal to '0'. On the second clock cycle, the testbench will 

continue to assert wrb to 'O', and will also drive the data and IV signals with the most 

significant 64 bits of the data and IV as well as the most significant 16 bits of the context 

information. On the third and final clock cycle, the testbench will de-assert wrb (to '1') 

and will drive the least significant bits of the data, IV and context signals. Note that if the 

testbench has data available to transfer to the Cipher Module, the testbench may not de- 

assert wrb on the third clock cycle. A timing diagram of this basic operation is presented 

in Figure 34. 



Figure 34 Functional Timing Diagram of the Input Interface 
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Note that if the fullb signal from the AES Cipher Module is asserted ('O'), the testbench 

will not drive the wrb signal to '0'. The data, IVY and context signals may be driven to any 

value. 

7.1.2 Output Interface 

The output interface controls the sequencing of data to be read from the AES Cipher 

Module. The testbench monitors the setting of the emptyb signal. When the Output 

FlFO of the AES Cipher Module is empty, emptyb will be 'O', and the testbench will 

correspondingly de-assert rdb. Once the output FlFO contains data, the emptyb signal 

will be set to '1 ', at which time the testbench will assert the rdb signal to '0'. This will 

cause the AES Cipher Module to transfer encrypted data (in 64 bit segments) to the 

testbench. 

The following figure depicts the functional timing on the Output Interface. 



Figure 35 Output Interface Functional Timing 
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7.1.3 Key Interface 

The testbench (used with the space optimised design) maintains a pre-computed Key 

Memory database. This database contains all of the round keys the C~pher is expected 

to use. The AES Cipher Module drives the read-mem signal into the testbench which, 

when set to '1 ', instructs the testbench to read a location from the key memory and send 

the key value read at that location back to the AES Cipher Module. The address into the 

Key Memory is formed by a concatenation of the key index and round number. 

The following diagram depicts the functional timing on the Key Interface. 



Figure 36 Key Interface Functional Timing 
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7.2 Multi-Session Pipelined AES Testbench Design 

The testbench for the Multi-Session Pipelined AES Cipher is much simpler than that 

used for the space-optimised design. Instead of monitoring the status of the fullb and 

emptyb signals, the testbench now simply updates the data, IV, and associated context 

information on each rising clock edge. The testbench is designed to enforce an 11 clock 

cycle separation between CBC mode data blocks using the same sessionlkey. 

7.3 AES Cipher Module Verification 

Once the design of the AES Cipher Module and associated testbench is complete, 

verification of the actual design can commence. The Xilinx FPGA design flow consists of 

four steps: Synthesis, Translate, Map, and Place and Route. Simulations may be run 

after each step, but for this Thesis, simulations were only run after the Synthesis and 

Place and Route steps. Simulations were run after the Synthesis step to catch syntax 

and logical errors while simulations were run after the Place and Route step to catch 

logical and timing errors in addition to determining the throughput of the design. 



The AES Specification [ll] contains test vectors that can be used to test the completed 

design to ensure that the expected results for a known input (data, IV, key) are obtained. 

In addition, RFC 3602 [14] contains test vectors for AES in CBC mode. Table 6 lists the 

test vectors utilized in this design as well as the expected and actual results. 

As can be seen, the AES Cipher design passes all test vectors. Note that additional test 

vectors can and should be run to ensure the design is system ready. 

Table 6 Test 

Input 
Data 

Key 

IV 

Mode 

Expected 
Result 

Actual 
Result 

Vectors used in the verification 

Vector Set #I 

32 43 f6 a8 88 5a 30 8d 

31 31 98 a2 eO 37 07 34 

2b7e151628aed2a6 

abf7 158809cf 4f 3c 

Not applicable 

ECB 

39 02 dc 19 25 dc 1 1 6a 

840985Obldfb9732 

3902dc1925dc116a 

840985Ob 1dfb9732 

of AES 

Vector Set #2 

0011223344556677 

88 99 aa bb cc dd ee ff 

0001 020304050607 

0809OaObOcOdOeOf 

Not Applicable 

ECB 

69 c4 eO d8 6a 7b 04 30 

d8cdb78070b4c55a 

69c4eOd86a7b0430 

d8cdb78070b4c55a 

Vector Set #3 

0001 020304050607 

0809OaObOcOdOeOf 

10 11 12 13 14 15 16 17 

18 19 l a  l b  l c  l d  l e  l f  

c286696d887c9aaO 

61 lbbb3e2025a45a 

562e 1799 6d 093d28 

dd b3 ba 69 5a 2e 6f 58 

CBC (2 128 bit words) 

d2 96 cd 94 c2 cc cf 8a 

3a863028b5eldcOa 

75 86 60 2d 25 3c ff f9 

1b8266bea6d61abl 

d296cd94c2cccf8a 

3a863028b5el dcOa 

75 86 60 2d 25 3c ff f9 

l b8266  bea6d6 l a  b l  



Figure 37 presents a waveform diagram produced as a result of simulating the AES 

Cipher Module design with vector sets 2 and 3. In addition to verifying the design 

produces the expected results, it also shows that the design is capable of supporting 

both ECB and CBC mode. Additional simulation results are presented in Appendix A. 





CHAPTER 8 AES RESULTS 

The following sections discuss the results of the AES designs implemented in this 

Thesis. Both size and performance numbers are included for the space-optimised and 

Multi-Session Pipelined designs and compared against prior works. Initial design of the 

AES Cipher Module utilized the XC2v3000fg676-6 FPGA. Subsequent testing utilized 

other FPGAs in order to compare the results of this Thesis with other published 

implementations. 

8.1 Space Optimised AES Design Results 

A design summary of the space optimised AES design is presented in Table 7. Note that 

this design utilized 401 6 Xilinx FPGA slices with an equivalent gate count of 79M gates. 

During the design process, the AES Cipher Sub-module was found to be the limiting 

factor from a performance perspective. The extra overhead of the Input FIFO, Output 

FIFO, and Control SM is used to sequence data transfers tolfrom the design and 

provides a common interface to the testbench, but does not directly implement the AES 

algorithm. Therefore, for comparison purposes, the size characteristics of the AES 

Cipher Sub-module is also included in Table 7. 



Table 7 Space Optimised AES Design Summary 

I Parameter / Complete AES Cipher I AES Cipher Sub-module 1 
I 256x8-bit ROM I 16 I 16 I 

The following table (Table 8) details the performance characteristics of the space 

optimised AES design and compares the results with 3 other published works [ I  51, [ I  61, 

and [ I  81. An attempt was made to ensure that the works being compared also 

implement CBC mode. As can be seen, this design features a higher throughput than 

Number of Slices 

Equivalent Gate Count 

the other references. However, this comes at a cost of increased FPGA slices. The 

FPGA slices of the AES Cipher sub-module is also shown since it is not clear from the 

published results whether the other authors include overhead (such as the Input FIFO in 

this design) that is not directly related to implementing the AES algorithm. 

An additional parameter "throughput (in Mbps)/Slicen is added in order to judge the 

relative efficiencies of the various designs. As can be seen, the design described in this 

Thesis offers the best efficiency. If only the slices in the AES Cipher module are included 

in the efficiency calculation, the design in this Thesis offers a significant improvement in 

efficiency over all other references in Table 8. 

401 6 

78,957 

1454 

N/A 



To eliminate the impact of different FPGAs on the test results, the AES Cipher Module 

Table 8 Performance Characteristics of the Space Optimised AES Design 

was re-simulated with the Xilinx XCV1000bg560-6 FPGA. The results are listed in Table 

9. As can be seen, the design described in this Thesis still offers higher throughput and 

greater efficiencies than the cited references. 

FPGA Type 

FPGA Slices 

Clocks/Block 

Cipher Mode 

Max. Clock 
Frequency 

Throughput 

Throughput1 
Slice 

Table 9 Performance Characteristics with Same FPGA 

I I This Design I Reference [l5] I Reference 1161 1 

This Design 

XCV1 OOOEFG 
860-8 

401 6 (1 454) 

12 

ECB or CBC 

59.70 MHz 

636.82 Mbps 

0.1 59 (0.438) 

FPGA Type I XCVlOOO 1 XCVlOOO 
bg560-6 bg560-4 / XCvlooo bg560-6 / 

I FPGA Slices 1 401 6 (1454) 1 5302 1 2902 1 

Reference [I 51 

XCV1000 
bg560-4 

5302 

6 

CBC 

14.1 MHz 

300.1 Mbps 

0.057 

1 ClocksIBlock I 12 1 6 I Not Published ( 

Reference [I 61 

XCVI 000 
bg560-6 

2902 

10 

ECB or CBC 

25.9 MHz 

331.5 Mbps 

0.1 14 

Reference [I 81 

XCV6OOE- 
8BG432 

468 1 

Not Published 

All 

Not Published 

310 Mbps 

0.066 

Cipher Mode 

Max. Clock 
Frequency 

ECB or CBC 

50.0 MHz 

CBC 

14.1 MHz 

ECB or CBC 

Not Published 



1 Throughput 1 533.33 Mbps 1 300.1 Mbps 1 331.5 Mbps I 
This Design 

Note that second version of the space-optimised design utilizing the T-BOX approach 

was also completed, however, this version suffered from the fact it required 48 rather 

than 16 ROMs. The total number of required slices increased from 401 6 to 61 85, a 54% 

increase. However, this increase in size did not translate into increased throughput. In 

fact, throughput decreased to 627.45 Mbps, based on a 17 ns minimum clock period. It 

is believed that the throughput decreased with the T-BOX approach (when one would 

have expected it to increase) due to the difficulty of optimising delays for 48 ROMs. The 

"outer-region" ROMs will have much higher net delays than those closer to the 

destination processing blocks. The ROM(s) with the highest delay will dominate the 

overall Cipher Round delay. 

Reference [I 51 

Throughput1 
Slice 

8.2 Multi-Session Pipelined AES Design Results 

Reference [I 61 

A design summary of the Multi-Session Pipelined AES design is presented in Table 10. 

Note that this design utilized 13675 Xilinx FPGA slices with an equivalent gate count of 

262K gates. 

0.1 33 (0.367) 0.057 0.1 14 



Table 11 details the performance characteristics of the Multi-Session Pipelined AES 

Table 10 Multi-Session Pipelined AES Design Summary 

design and compares the results with the space optimised design as well as other 

Parameter 

256x8-bit ROM 

Number of Slices 

Equivalent Gate Count 

published results. The 1 Ox speedup over the "space-optimised design comes at a cost 

Complete AES Cipher 

160 

13675 

262,073 

of 3 . 4 ~  the total number of FPGA slices. Note that the while the aggregate throughput 

across all sessions is 6.4 Gbps, the throughput for any one of the concurrent sessions 

(in CBC mode) is 581.8 Mbps. 

Note that Table 11 compares the Multi-Session Pipelined design with another design 

[23] that is also fully-pipelined, and on the surface offer much greater efficiency and 

throughput. However, it is important to note that these designs do not appear to support 

CBC mode, which is a mandatory mode for any network application using AES with 

lPSec [14]. As such, a design that fails to support CBC is of limited practical value. 

Table 11 Performance Characteristics of the Multi-Session Pipelined AES Design 

FPGAType 1 XC2V4000- 1 XCVlOOO / XCV812E- 1 XC2VP20-7 1 
BF957-6 EFG860-8 BG560 

This Design 
(Multi-Session 

Pipeline) 

This Design 
(Space) 

FPGA Slices 13675 (1 165 for / 4016 (1454) 1 3046 1 9446 1 
Rounds 1-1 0) 

Reference [21] Reference [23] 



280 of 280 
BRAMs 
FPGA I I O I 
Clocks/Block 

Cipher Mode 

Max. Clock 
Frequency 

Aggregate 
Throughput 

Note that in [23], the authors list results for another version which utilized 84 BRAMs and 

1 

ECB or CBC 

50.0 MHz 

Aggregate 
Throughput1 
Slice 

51 77 slices to achieve a throughput of 21.54 Gbps. 

6.40 Gbps 

8.3 FPGA, ASlC and Full Custom Design Results 

12 

ECB or CBC 

59.70 MHz 

0.468 

As mentioned previously, the throughput of the Cipher is intimately tied to the logic delay 

of each round. Various prior works have shown that the largest component of delay is 

caused by the SubBytes substitution [I 31, and [20] - [24]. Reducing the delay increases 

the throughput of the design. The designs produced for this Thesis focused on ROM and 

look-up table implementations of SubBytes which are most amenable to FPGA-based 

designs. FPGAs and their synthesis tools offer a relatively simple design environment, 

but this comes at the cost of reduced flexibility in design approach. 

636.82 Mbps 

ASlC and Full Custom based implementations have much greater freedom to implement 

non-standard cell based approaches that can optimise down to the transistor level if 

desired. Implementations in this area have focused on more innovative ways to reduce 

Not Published 

ECB, CBC is 
unknown 

61 MHz 

0.1 59 (0.438) 

---- 

Not Published 

ECB 

Not Published 

1.95 Gbps 21.64 Gbps 

0.64 2.29 



the delay associated with the SubBytes [1 31, and [20] - [24] process, including the 

Binary Decision Diagram (BDD) and Twisted Binary Decision Diagram (T-BDD) 

discussed in [1 31. 

Binary decision diagrams (BDD) have been shown to reduce the delay, but the methods 

used incur high faninlfanout loads [I 31. The 'Twisted BDD (TBDD) approach buffers 

and shifts the order of inputs to each output bit of the S-BOX. This approach is the 

fastest reported so far, but is also the highest gate count method [1 31. 

In [1 91, we describe a new method known as the L-BOX that uses novel logic 

minimization and decoding to reduce fanin and fanout to produce a SubBytes process 

that minimizes Nand2 equivalents and delay at the same time. Table 12 compares the 

results obtained using the L-Box approach with other SubBytes optimisation 

approaches. 

- ,  

Table 12 Comparison of ASIC Speed and Size Requirements 

I Method I Delay (ps) I Nand2s 

I Finite Field [1 31 1 2190 1 354-406 

1 BDD [I 31 1 680 1 2426 

I TBDD [13] 1 440 1 2815 

I L-Box, Single [I 91 1 460 1 536 

I L-Box, Differential [1 91 1 420 1 738 



8.4 Summary of Results 

The results of section 8.1 indicate that the space optimised AES has a 92% higher 

throughput, and the highest efficiency, of the cited work for both ECB and CBC mode. 

The Multi-Session Pipelined design discussed in section 8.2 offers a dramatically higher 

throughput for both ECB and CBC modes. The Multi-Session Pipelined is capable of an 

aggregate throughput of 6.4 Gbps. Note that the throughput in CBC mode for any one of 

the concurrent sessions is 581.8 Mbps. Efficiency increased to 0.468. 

Other papers [20] - [24] claim extraordinary throughputs using FPGA design 

approaches. Typically implemented using fully pipelined architectures, these papers 

appear to only support ECB mode, which is a serious shortcoming. Further, many of the 

comparisons that are being done are across multiple FPGA types and speed grades 

which lead to very misleading results. 



CHAPTER 9 REALIZATION OF A SECURITY CO- 
PROCESSOR 

The AES Cipher Module, AES Inverse Cipher, and AES Key Generation modules can be 

integrated together in order to realize a full AES crypto processor. Figure 38 depicts a 

block diagram of such a design. 

The input data, output data, clock, and reset signals of all three modules share a 

common bus to the external world. The individual rdb, fullb, emptyb, and wrb signals 

are kept separate so as to allow individual monitoring and selection of the cipher and 

inverse cipher modules. 

The output of the key generation module is connected to the cipher and inverse cipher 

modules in order to allow the round keys to be automatically updated as required. The 

key memory in the cipher and inverse cipher should be implemented as a dual port RAM 

in order to allow keys that are not in use to be updated while the cipher and inverse 

cipher are using other keys. 

This co-processor would be capable of supporting CBC and ECB mode for both 

encryption and decryption, and would contain the necessary key generation logic. 

A device such as the PMC-Sierra RM7000 MIPS-based processor could be used to 

implement the IP layer, and the IPSec protocol processing stack. Another option would 

be to integrate the security engine with a processor in a System on Chip (SOC) design. 

The small size (-79K gates) of the space-optimised design would be ideal as the die 

cost of the engine would be insignificant compared to the processor itself. As well, the 



performance of such an integrated processor would likely be greater than an FPGA- 

based design. In general, ASlCs offer higher performance than FPGAs (even if using the 

same technology, such as 0.1 8 uM). The VHDL code developed for this thesis is 

technology independent, allowing it to be synthesized in any FPGA or ASIC technology. 

Figure 38 Block Diagram of the Complete AES Processor 
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CHAPTER 10 CONCLUSION 

With more and more sensitive information being transmitted electronically over the 

Internet, never before has the need for strong cryptographic security been higher. In 

addition, as the amount and variety of devices connecting to the Internet increases, so to 

does the need for security processors that are tailored to the application. A security 

engine in a mobile phone will require vastly different performance and power 

specifications than a security engine operating on a core router line card. 

This Thesis has explored the driving needs for security, its implementation via lPSec at 

the network layer, and the cryptographic protocols that form the heart of the security 

engine. The goal of this Thesis was to understand the issues in the design and 

implementation of a scalable and efficient security co-processor capable of supporting 

encryption and decryption at OC-12 data rates (622 Mbps). This goal has been met. 

AES Cipher, Inverse Cipher (both supporting CBC and ECB mode) and Key Generation 

modules were completed, and verified. The code was designed in a technology 

independent manner, allowing it to be applied equally effectively to FPGAs or ASICs. 

The AES Cipher was studied to reveal some of the architectural and algorithmic 

optimisations that should be considered in order to address the larger speed vs. area 

question. In addition, a novel architecture was proposed to enable the use of pipelined 

architectures in CBC mode. 

The space-optimised design was found to require 401 6 Xilinx FPGA slices and operated 

at 636 Mbps, which was greater than the works cited in this Thesis. The Multi-Session 



Pipelined AES design utilized a novel pipelined architecture that allowed the throughput 

to increase to 6.40 Gbps at the cost of an increase in FPGA slices to 13675. 

There are several opportunities for future work as a result of this Thesis. The Multi- 

Session Pipelined approach offers multiple optimisation directions, including 

incorporating it coupled with a loop-unrolled architecture. As well, additional time may 

be spent optimising the SubBytes process, perhaps through the use of Galois field 

mathematics to reduce the delay instead of ROMs or LUTs. Finally, [I 91 describes a 

novel logic minimization and decoding technique which could be advanced in the full- 

custom arena. 



APPENDIX A - SIMULATION RESULTS 

Figure 39 presents a complete waveform of the space-optimised AES Cipher. The 

waveform was generated using the post place and route simulation model. The 

simulation is running the test vectors specified in Table 6. The clock is running with a 

period of 17 ns. As can be seen, the design produces the correct ciphertext results in 12 

clock cycles per vector. This particular design includes the use of the Output FIFO, and 

therefore the 128 bit result is output as two 64 bit words. The first of the 64 bit outputs is 

only present for one clock cycle, and therefore is difficult to see. Using the rdy-counter 

signal as a guide, the ECB vectors are input during rdy-counter cycles 0x4 and 0x5, 

while the ECB ciphertext result is output during cycles OxlA and 0x1 B. Likewise, the 

CBC vectors are input during rdy-counter cycles 0x7-OxA, and the CBC ciphertext 

results are output during cycles 0x26, 0x27, 0x31 and 0x32. Figure 40, Figure 41, and 

Figure 42 closer views of the ciphertext results in order to verify correct operation and 

timing. 

Figure 43 presents the simulation result for the Multi-Session Pipelined design. Using 

rdy-counter as a guide, the ECB test vector of Table 6 is transferred to the Cipher during 

cycle 0x4. The Cipher produces the result during cycle 0x1 0. The CBC input vectors are 

loaded during cycles 0x7 and 0x12. The encrypted result is presented during cycles 

0x1 3 and 0x1 E. Figure 44, Figure 45, and Figure 46, show closer views of the ciphertext 

results in order to verify correct operation and timing. 



Figure 39 Simulation Result of the Space Optimised Cipher (Full View) 





Figure 41 Simulation Result of the Space Optimised Cipher (CBC Section) 



Figure 42 Simulation Result of the Space Optimised Cipher (CBC Section, Part 2) 



Figure 43 Simulation Result of the Multi-Session Pipelined Cipher (Full View) 



Figure 44 Simulation Result of the Multi-Session Pipelined Cipher (Inputs) 



Figure 45 Simulation Result of the Multi-Session Pipelined Cipher (ECB and CBC outputs) 





APPENDIX B - RTL CODE 

This section presents the VHDL code of the space-optimised AES Cipher module. 

AES CIPHER MODULE 

library IEEE; 
use IEEE.STD-LOGIC-1164.ALL; 
use IEEE.STD-LOGIC-ARITH.ALL; 
use IEEE.STD-LOGIC-UNSIGNED.ALL; 

entity aes-cipher-module-3 is 
Port ( 

-- i/f to input fifo 
data-input : in std-logic-vector(0 to 63); 
iv-in : in std-logic-vector(0 to 63); 
context-in : in std-logic-vector(0 to 15); 
wrb : in std-logic; 
fullb : out std-logic; 

--i/f to output fifo 
data-output : out std-logic-vector(0 to 63); 
emptyb : out std-logic; 
rdb : in std-logic; 

--i/f to key memory 
key-in : in std-logic-vector(0 to 127); 
key-address : out std-logic-vector(0 to 4); 
read-mem : out std-logic; 

clock : in std-logic; 
reset : in std-logic); 

end aes-cipher-module-3; 

architecture RTL of aes-cipher-module-3 is 
COMPONENT control-sm 

Port ( 
-- i/f to input fifo 
data-in : in std-logic-vector(0 to 127); 

iv : in std-logic-vector(0 to 127); 
context : in std-logic-vector(0 to 31 ); 
fifo-emptyb : in std-logic; 
rdb-fifo : out std-logic; 

-- i/f to output fifo 
wrbfifo : out std-logic; 
fifo-fullb : in std-logic; 



-- i/f to cipher block 
aes-data-in : out std-logic-vector(0 to 127); 
round : out std-logic-vector(0 to 3); 
aes-data-out-round0 : in std-logic-vector(0 to 127); 

aes-data-out-mid : in std-logic-vector(0 to 127); 
aesdata-out-final : in std-logic-vector(0 to 127); 

aes-data-out-last : in std-logic-vector(0 to 127); 

-- i/f to key memory 
aes-key-mem-address : out std-logic-vector(0 to 4); 
read-key-mem : out std-logic; 

clock : in std-logic; 
reset : in std-logic); 

END COMPONENT; 

COMPONENT FIFO 
Port ( resetb : in std-logic; 

clock : in std-logic; 
rdb : in std-logic; 
wrb : in std-logic; 
data-in : in std-logic-vector(0 to 63); 

iv-in : in std-logic-vector (0 to 63); 
context-in : in std-logic-vector (0 to 15); 

emptyb : out std-logic; 
fullb : out std-logic; 

context-out : out std-logic-vector (0 to 31 ); 
iv-out : out std-logic-vector (0 to 127); 

data-out : out std-logic-vector(0 to 127)); 
END COMPONENT; 

COMPONENT OUT-FIFO 
Port ( resetb : in std-logic; 

clock : in std-logic; 
rdb : in std-logic; 
wrb : in std-logic; 
data-in : in std-logic-vector(0 to 127); 
emptyb : out std-logic; 
fullb : out std-logic; . 
data-out : out std-logic~vector(0 to 63)); 

END COMPONENT; 

COMPONENT aes-cipher 
Port ( aes-data-in : in std-logic-vector(0 to 127); --data block to encrpyt 

aes-key-in : in std-logic-vector(0 to 127); --the key to use for this round 
round-num: in std-logic-vector(0 to 3); 

clock: in std-logic; 
reset: in std-logic; 

aes-data-out-round0 : out std-logic-vector(0 to 127); 
aes-data-out-mid : out std-logic-vector(0 to 127); 
aes-data-out-final : out std-logic-vector(0 to 127); 

aes-data-out-last : out std-logic-vector(0 to 127)); 
END COMPONENT; 

signal aes-module-sm-data-in: std-logic-vector (0 to 127); 



signal aes-module-sm-context: std-logic-vector (0 to 31); 
signal aes-module-sm-iv: std-logic-vector (0 to 127); 
signal aes-module-sm-read: std-logic; 
signal aes-module-sm-empty: std-logic; 

signal aes-module-outfifo-wrb: std-logic; 
signal aes-module-outfifo-fullb: std-logic; 

signal aes-module-cipher-aes-data-in : std-logic-vector(0 to 127); 
signal aes-module-cipher-round : std-logic-vector(0 to 3); 
signal aes~module~cipher~aes~data~out~roundO : std-logic-vector(0 to 127); 
signal aes-module-cipher-aes-data-out-mid : std-logic-vector(0 to 127); 
signal aes-module-cipher-aes-data-out-final : std-logic-vector(0 to 127); 
signal aes-module-cipher-aes-data-out-last : std-logic-vector(0 to 127); 

signal aes-module-clock: std-logic; 
signal aes-module-reset: std-logic; 

begin 

controller: control-sm PORT MAP( 
data-in => aes-module-sm-data-in, 

iv => aes-module-sm-iv, 
context => aes-module-sm-context, 
fifo-emptyb => aes-module-sm-empty, 
rdbfifo => aes-module-sm-read, 

-- i/f to output fifo 
wrb-fifo => aes-module-outfifo-wrb, 
fifo-fullb => aes-module-outfifo-fullb, 

-- i/f to cipher block 
aes-data-in => aes-module~ipher-aes-data-in, 
round => aes-module-cipher-round, 
aes-data-out-round0 => aes~module~cipher~aes~data~out~round0, 

aes-data-out-mid => aes-module-cipher-aes-data-out-mid, 
aes-data-out-final=> aes-module-cipher-aesdata-outfinal, 
aes-data-out-last => aes-module-cipher-aes-data-out-last, 

-- i/f to key memory 
aes-key-mem-address => key-address, 
read-key-mem => read-mem, 

clock => aes-module-clock, 
reset => aes-module-reset 

1; 

input-fifo: FIFO PORT MAP( 
rdb => aes-module-sm-read, 
wrb => wrb, 
data-in => data-input, 

iv-in => iv-in, 
context-in => context-in, 

emptyb => aes-module-sm-empty, 
fullb => fullb, 

context-out => aes~module~sm~context, 



iv-ou t => aes-module-sm-iv, 
data-out => aes-module-sm-data-in, 

clock => aes-module-clock, 
resetb => aes-module-reset 

1; 

output-fifo: OUT-FIFO PORT MAP( 
rdb => rdb, 
wrb => aes~module~outfifo~wrb, 

data-in => aes~module~cipher~aes~data~out~last, 
emptyb => emptyb, 
fullb => aes~module~outfifo~fuIlb, 
data-out => data-output, 

clock => aes-module-clock, 
resetb => aes-module-reset 

); 

cipher: aes-cipher PORT MAP( 
aes-data-in => aes-module-cipher-aes-data-in, --data block to encrpyt 

aes-key-in => key-in, --the key to use for this round 
round-num => aes-module-cipher-round, 
clock => aes-module-clock, 
reset => aes-module-reset, 

aes-data-out-round0 => aes~module~~ipher~aes~data~out~round0, 
aes-data-out-mid => aes~module~cipher~aes~data~out~mid, 
aes-data-out-final=> aes-module-cipher-aes-data-out-final, 
aes-data-out-last => aes~module~cipher~aes~data~out~last 

); 

aes-module-clock <= clock; 
aes-module-reset <= reset; 

end RTL; 

AES CIPHER - S-BOX Approach 

library IEEE; 
use IEEE.STD-LOGIC-1164.ALL; 
use IEEE.STD-LOGIC-ARITH.ALL; 
use IEEESTD-LOGIC-UNSIGNED.ALL; 

entity aes-cipher is 
Port ( aes-data-in : in std-logic-vector(0 to 127); --data block to encrpyt 

aes-key-in : in std-logic-vector(0 to 127); --the key to use 
for this round 

round-num: in std-logic-vector(0 to 3); 
clock: in std-logic; 
reset: in std-logic; 
aes-data-out-round0 : out std-logic-vector(0 to 127); 
aes-data-out-mid : out std-logic-vector(0 to 127); 
aes-data-out-final : out std-logic-vector(0 to 127); 

aes-data-out-last : out std-logic-vector(0 to 127)); --output block of data 
from this round 

end aes-cipher; 



architecture rtl of aes-cipher is 

signal aes-key-in-R: std-logic-vector (0 to 127); 

signal round-num-R: std-logic-vector (0 to 3); 
signal aes-data: std-logic-vector (0 to 127); 

--signal output-valid-I: std-logic; 

type state is array (0 to 15) of std-logic-vector(0 to 7); 
signal instate: state; 
signal substate: state; 
signal shiftstate: state; 
signal shiftstate-2: state; 
signal outmixstate: state; 

signal shift-data-out: std-logic-vector(0 to 127); 
signal mix-data-out: std-logic-vector(0 to 127); 

signal last-round-out: std-logic-vector(0 to 127); 

--following is output of MixColumns() (in state format (dbyteROWCOLUMN) 

signal OutMixByte00: std-logic-vector(0 to 7); , 
signal OutMixByte01: std-logic-vector(0 to 7); 
signal OutMixByteO2: std~logic~vector(0 to 7); 
signal OutMixByte03: std-logic-vector(0 to 7); 

signal OutMixByte10: std-logic-vector(0 to 7); 
signal OutMixBytel 1 : std-logic-vector(0 to 7); 
signal OutMixBytel2: std~logic~vector(0 to 7); 
signal OutMixBytel3: std-logic-vector(0 to 7); 

signal OutMixByte20: std-logic-vector(0 to 7); 
signal OutMixByte21: std-logic-vector(0 to 7); 
signal OutMixByte22: std-logic-vector(0 to 7); 
signal OutMixByte23: std-logic-vector(0 to 7); 

signal OutMixByte30: std-logic-vector(0 to 7); 
signal OutMixByte31: std-logic-vector(0 to 7); 
signal OutMixByte32: std-logic-vector(0 to 7); 
signal OutMixByte33: std-logic-vector(0 to 7); 

subtype S-BOX-FIELD is integer range 0 to 255; 
subtype SBOX-INDEX-TYPE is integer range 0 to 15; 
type SBOX-TYPE is array (0 to 255) of S-BOX-FIELD; 
constant SBOXs : SBOX-TYPE := ( 



function ESubBytes (inbyte: std-logic-vector(0 to 7)) return std-logic-vector is 
variable return-val: std-logic-vector(0 to 7); 
begin 

return conv~std~logic~vector(SBOXs(conv~integer(inbyte)), 8); 
end function; 

function DubBytes (inbyte: std-logic-vector(0 to 7)) return std-logic-vector is 
beg in 

case inbyte(0) is 
when '0' => 

return inbyte(1 to 7) & '0'; 
when '1 ' => 

return ((inbyte(1 to 7) & '0') xor "0001 101 1 "); 
when others => 

return "00000000"; 
end case; 

end function; 

begin 

aes-data <= aes-data-in; 
aes-key-in-R <= aes-key-in; 
round-num-R <= round-num; 

--place the input data in the state, as defined in the AES spec. 
instate(0) <= aes-data(0 to 7); 
instate(1) <= aes-data(8 to 15); 
instate(2) <= aes-data(l6 to 23); 
instate(3) <= aes-data(24 to 31); 



--perform the SubBytes function on all bytes of the state. 

--perform the ShiftRows function on all rows of the state. 

--for the last round, the output is the xor of the state after shiftrows, and the key, 
--so create the last round output word 



--for mixcolumns, we need to take 1, 2, and 3 times various bytes in the columns 
--the following creates the x2. x3 is the xor of x2 and the original (xl) value. 

--Following groups perform the Mixcolumns operation, as defined in the AES standard 
--0utMixByte00,OutMixByte10,OutMixByte20,OutMixByte30 
OutMixByteOO <= (shiftstate(2) xor shiftstate(3) xor shiftstate-2(0) xor (shiftstate-2(1) xor 

shiftstate(1))); 
OutMixByte10 <= (shiftstate(0) xor shiftstate(3) xor shiftstate-2(1) xor (shiftstate-2(2) xor 

shiftstate(2))); 
OutMixByte20 <= (shiftstate(0) xor shiftstate(1) xor shiftstate-2(2) xor (shiftstate-2(3) xor 

shiftstate(3))); 
OutMixByte30 <= (shiftstate(1) xor shiftstate(2) xor shiftstate-2(3) xor (shiftstate-2(0) xor 

shiftstate(0))); 

-0utMixByte01, OutMixBytel1,OutMixByte21,OutMixByte31 
OutMixByte01 <= (shiftstate(6) xor shiftstate(7) xor shiftstate-2(4) xor (shiftstate-2(5) xor 

shiftstate(5))); 
OutMixBytel1 <= (shiftstate(4) xor shiftstate(7) xor shiftstate-2(5) xor (shiftstate-2(6) xor 

shiftstate(6))); 
OutMixByte21 <= (shiftstate(4) xor shiftstate(5) xor shiftstate-2(6) xor (shiftstate-2(7) xor 

shiftstate(7))); 
OutMixByte31 <= (shiftstate(5) xor shiftstate(6) xor shiftstate-2(7) xor (shiftstate-2(4) xor 

shiftstate(4))); 



--OutMixByte02,OutMixBytel2,OutMixByte22,OutMixByte32 
OutMixByte02 <= (shiftstate(l0) xor shiftstate(l1) xor shiftstate-2(8) xor (shiftstate-2(9) 

xor shiftstate(9))); 
OutMixBytel2 <= (shiftstate(8) xor shiftstate(l1) xor shiftstate-2(9) xor (shiftstate-2(lO) 

xor shiftstate(l0))); 
OutMixByte22 <= (shiftstate(8) xor shiftstate(9) xor shiftstate-2(10) xor (shiftstate-2(11) 

xor shiftstate(l1))); 
OutMixByte32 <= (shiftstate(9) xor shiftstate(l0) xor shiftstate-2(11) xor (shiftstate-2(8) 

xor shiftstate(8))); 

-0utMixByte03, OutMixBytel3,OutMixByte23,OutMixByte33 
OutMixByte03 <= (shiftstate(l4) xor shiftstate(l5) xor shiftstate-2(12) xor 

(shiftstate-2(13) xor shiftstate(l3))); 
OutMixBytel3 <= (shiftstate(l2) xor shiftstate(l5) xor shiftstate-2(13) xor 

(shiftstate-2(14) xor shiftstate(l4))); 
OutMixByte23 <= (shiftstate(l2) xor shiftstate(l3) xor shiftstate-2(14) xor 

(shiftstate-2(15) xor shiftstate(l5))); 
OutMixByte33 <= (shiftstate(l3) xor shiftstate(l4) xor shiftstate-2(15) xor 

(shiftstate-2(12) xor shiftstate(l2))); 

--ollowing is the output for rounds 1-9 of the cipher 
mix-data-out(0 to 7) <= OutMixByte00; 
mix-data-out(8 to 15) <= OutMixByte10; 
mix-data-out(l6 to 23) <= OutMixByte20; 
mix-data-out(24 to 31) <= OutMixByte30; 

process (clock) 
begin 
if (clock'event and clock = ' I  ') then 

if (round-num-R = "1 01 1 ") then 
aes-data-out-last <= shift-data-out xor aes-key-in-R; 

end if; 
end if; 
end process; 

aes-data-out-round0 <= aes-data xor aes-key-in-R; 
aes-data-out-mid <= mix-data-out xor aes-key-in-R; 
aes-data-out-final <= shift-data-out xor aes-key-in-R; 

end rtl; 



AES CIPHER - T-BOX Approach 

library IEEE; 
use IEEE.STD-LOG IC-1164.ALL; 
use IEEE.STD-LOGIC-ARITH.ALL; 
use IEEE.STD-LOGIC-UNSIGNED.ALL; 

entity aes-cipher is 
Port ( aes-data-in : in std-logic-vector(0 to 127); --data block to encrpyt 

aes-key-in : in std-logic-vector(0 to 127); --the key to use for this round 
round-num: in std-logic-vector(0 to 3); 
clock: in std-logic; 
reset: in std-logic; 

aes-data-out-round0 : out std-logic-vector(0 to 127); 
aes-data-out-mid : out std-logic-vector(0 to 127); 
aes-data-out-final : out std-logic-vector(0 to 127); 
aes-data-out-last : out std-logic-vector(0 to 1 27)); 

end aes-cipher; 

architecture rtl of aes-cipher is 

--Registers for inputs 
signal aes-key-in-R: std-logic-vector (0 to 127); 

signal round-num-R: std-logic-vector (0 to 3); 
signal aes-data: std-logic-vector (0 to 127); 

type state is array (0 to 15) of std-logic-vector(0 to 7); 
signal instate: state; 

signal mid-round-out: std-logic-vector(0 to 127); 
signal final-round-out: std-logic-vector(0 to 127); 

signal prel-mid-round-out: std-logic-vector(0 to 127); 
signal pre2-mid-round-out: std-logic-vector(0 to 127); 

signal aes-data1 : std-logic-vector(0 to 15); 
signal aes-data2 : std-logic-vector(0 to 15); 
signal aes-data3 : std-logic-vector(0 to 15); 
signal aes-data4 : std-logic-vector(0 to 15); 
signal aes-data5 : std-logic-vector(0 to 15); 
signal aes-data6 : std-logic-vector(0 to 15); 
signal aes-data7 : std-logic-vector(0 to 15); 
signal aes-data8 : std-logic-vector(0 to 15); 

subtype S-BOX-FIELD is integer range 0 to 255; 
subtype SBOX-INDEX-TYPE is integer range 0 to 15; 
type SBOX-TYPE is array (0 to 255) of S-BOX-FIELD; 
constant SBOX : SBOX-TYPE := ( 



constant SBOX-2 : SBOXJYPE := ( 
198,248,238,246,255,214,222, 145,96, 2, 206, 86, 231, 181,77,236, 143, 
31, 137,250,239,178, 142,251, 65, 179, 95, 69, 35, 83,228,155, 1 17,225, 
61, 76, 108, 126,245, 131, lO4,8l, 209,249,226, l71,98,42,8,149,7O, 
157, 48, 55, 10, 47, 14, 36,27,223, 205, 78, 127,234, 18,29, 88,52, 54, 
220, 180,91, 164,118, 183, 125,82,221, 94, 19, 166, 185, 0,193, 64,227, 121, 
182,212, 141,103,114,148,152,176,133,187,197,79,237,134,154,102,17, 
138, 233, 4, 254, 160, 120, 37, 75, 162, 93, 128,5, 63, 33, 112,241, 99, 119, 175, 
66, 32,229,253, 191, 129,24,38, 195, 190, 53, 136,46, 147,85,252, 122,200, 186, 
50,230, 192,25, 158,163, 68, 84,59, 1 1, 140, 199, 107,40, 167,188,22, 173,219, 
100, 116,20, 146, 12,72, 184, 159, 189, 67, 196,57, 49,211,242,213, 139, 110,218, 
1, 177, 156, 73,216,172,243,207,202,244, 71, 16, 1 1 1,240,74,92,56,87, 11 5,151, 
203, 1 61,232, 62, 150, 97, 13, 15,224, 124, 1 13,204, 144, 6,247,28, 194,106, 1 74, 
105, 23, 153, 58,39,217,235,43, 34,210, 169,7, 51, 45,60,21,201,135, 170,80, 
165, 3,89,9,26, 101,215, 132,208, 130,41, 90,30, 123, 168,109,44); 

constant SBOX-3 : SBOX-TYPE := ( 
165, 132, 153, 141, 13, 189, 177,84, 80, 3, 169, 125,25, 98,230, 154, 69, 157,64, 
135, 21, 235,201, 11,236, 103,253,234, 191,247, 150,91, 194,28, 174, 106, 90, 
65,2,79,92,244,52,8, 147, 115,83,63, 12,82, 101,94,40, 161, 15, 181,9,54, 
155, 61, 38, 105,205, 1 59,27,158, 1 1 6, 46,45, 178,238,251,246,77,97,206, 123, 
62, 113, 151,245, 104, 0,44,96,31,200,237, 190,70,217, 75,222, 212,232, 74, 
107, 42, 229,22,197,215, 85, 148,207, 16, 6, 129,240, 68, 186,227,243,254, 192, 
138, 173, 188,72,4,223, 193, 11 7, 99,48,26, 14, 109, 76,20,53, 47,225, 162,204, 
57,87,242, 130, 71, 172,231,43, 149, 160,152, 209,127, 102, 126, 171, 131,202,41, 
211, 60, 121,226,29, 118,59,86, 78,30,219, 10, 108,228, 93, 110,239, 166,168, 
164, 55,139,50, 67,89, 183,140, 100, 210,224, 180,250, 7,37, 175, 142,233,24, 

21 3, 
136, 111, l l4,36,24l, l99,8l, 35, 124, 156, 33,221,220, 134, 133,144,66, 196, 170, 
216, 5, 1, 18, 163,95,249,208, 145, 88, 39, 185, 56, 19, 179,51, 187, 112,137, 167, 
182, 34, 146,32, 73,255,120, 122, 143,248, 128,23,218, 49, 198, 184, 195, 176, 11 9, 
17, 203,252,214,58); 

function SBOX2SubBytes (inbyte: std-logic-vector(0 to 7)) return std-logic-vector is 
variable return-val: std-logic-vector(0 to 7); 
begin 

return conv~std~logic~vector(SBOX~2(conv~integer(inbyte)), 8); 
end function; 

function SBOX3SubBytes (inbyte: std-logic-vector(0 to 7)) return std-logic-vector is 



variable return-val: std-logic-vector(0 to 7); 
begin 

return conv~std~logic~vector(SBOX~3(conv~integer(inbyte)), 8); 
end function; 

function SBOXSubBytes (inbyte: std-logic-vector(0 to 7)) return std-logic-vector is 
variable return-val: std-logic-vector(0 to 7); 
begin 

return conv~std~logic~vector(SBOX(conv~integer(inbyte)), 8); 
end function; 

beg in 

aes-key-in-R c= aes-key-in; 
round-num-R <= round-num; 

--place the input data in the state, as defined in the AES spec. 
instate(0) <= aes-datal(0 to 7); 
instate(1) <= aes-datal(8 to 15); 
instate(2) c= aes_data2(0 to 7); 
instate(3) <= aes_data2(8 to 15); 

prel-mid-round-out(0 to 7) <= SBOX2SubBytes(instate(O)) xor 
SBOX3SubBytes(instate(5)); 

prel-mid-round-out(8 to 15) <= SBOXSubBytes(instate(0)) xor 
SBOX2SubBytes(instate(5)); 

prel-mid-round-out(l6 to 23) <= SBOXSubBytes(instate(0)) xor 
SBOXSubBytes(instate(5)); 

prel-mid-round-out(24 to 31) <= SBOX3SubBytes(instate(O)) xor 
SBOXSubBytes(instate(5)); 



prel-mid-round-out(32 to 39) <= SBOX2SubBytes(instate(4)) xor 
SBOX3SubBytes(instate(9)); 

prel-mid-round-out(40 to 47) <= SBOXSubBytes(instate(4)) xor 
SBOX2SubBytes(instate(9)); 

prel-mid-round-out(48 to 55) <= SBOXSubBytes(instate(4)) xor 
SBOXSubBytes(instate(9)); 

prel-mid-round-out(56 to 63) <= SBOX3SubBytes(instate(4)) xor 
SBOXSubBytes(instate(9)); 

pre1.-mid-round-out(64 to 71) <= SBOX2SubBytes(instate(8)) xor 
SBOX3SubBytes(instate(l3)); 

prel-mid-round-out(72 to 79) <= SBOXSubBytes(instate(8)) xor 
SBOX2SubBytes(instate(l3)); 

prel-mid-round-out(80 to 87) <= SBOXSubBytes(instate(8)) xor 
SBOXSubBytes(instate(13)); 

prel-mid-round-out(88 to 95) <= SBOX3SubBytes(instate(8)) xor 
SBOXSubBytes(instate(13)); 

prel-mid-round-out(96 to 103) <= SBOX2SubBytes(instate(1 2)) xor 
SBOX3SubBytes(instate(l)); 

prel -mid-round-out(l04 to 1 1 1) <= SBOXSubBytes(instate(12)) xor 
SBOX2SubBytes(instate(1 )); 

prel-mid-round.-out(l12 to 1 19) <= SBOXSubBytes(instate(12)) xor 
SBOXSubBytes(instate( )); 

prel-mid-round-out(l20 to 127) <= SBOX3SubBytes(instate(12)) xor 
SBOXSubBytes(instate(1)); 

pre2-mid-round-out(0 to 7) <= SBOXSubBytes(instate(l0)) xor 
SBOXSubBytes(instate(15)); 

pre2-mid-round-out(8 to 15) <= SBOX3SubBytes(instate(lO)) xor 
SBOXSubBytes(instate(15)); 

pre2-mid-round-out(l6 to 23) <= SBOX2SubBytes(instate(lO)) xor 
SBOX3SubBytes(instate(l5)); 

pre2-mid-round-out(24 to 31) <= SBOXSubBytes(instate(10)) xor 
SBOX2SubBytes(instate(l5)); 

pre2-mid-round-out(32 to 39) <= SBOXSubBytes(instate(14)) xor 
SBOXSubBytes(instate(3)); 

pre2-mid-round-out(40 to 47) <= SBOX3SubBytes(instate(l4)) xor 
SBOXSubBytes(instate(3)); 

pre2-mid-round-out(48 to 55) <= SBOX2SubBytes(instate(l4)) xor 
SBOX3SubBytes(instate(3)); 

pre2-mid-round-out(56 to 63) <= SBOXSubBytes(instate(14)) xor 
SBOX2SubBytes(instate(3)); 

pre2-mid-round-out(64 to 71) <= SBOXSubBytes(instate(2)) xor 
SBOXSubBytes(instate(7)); 

pre2-mid-round-out(72 to 79) c= SBOX3SubBytes(instate(2)) xor 
SBOXSubBytes(instate(7)); 



pre2-mid-round-out(80 to 87) <= SBOX2SubBytes(instate(2)) xor 
SBOX3SubBytes(instate(7)); 

pre2-mid-round-out(88 to 95) <= SBOXSubBytes(instate(2)) xor 
SBOX2SubBytes(instate(7)); 

pre2-mid-round-out(96 to 103) <= SBOXSubBytes(instate(6)) xor 
SBOXSubBytes(instate(11)); 

pre2-mid-round-out(l04 to 11 1) <= SBOX3SubBytes(instate(6)) xor 
SBOXSubBytes(instate(11)); 

pre2-mid-round-out(l12 to 1 19) <= SBOX2SubBytes(instate(6)) xor 
SBOX3SubBytes(instate(ll)); 

pre2-mid-round-out(l20 to 127) <= SBOXSubBytes(instate(6)) xor 
SBOX2SubBytes(instate(ll)); 

----- 
mid-round-out(0 to 7) <= prel-mid-round-out(0 to 7) xor pre2-mid-round-out(0 to 7); 
mid-round-out(8 to 15) <= prel-mid-round-out(8 to 15) xor pre2-mid-round-out(8 to 

mid-round-out(l6 to 23) <= prel-mid-round-out(l6 to 23) xor pre2-mid-round-out(16 

mid-round-out(24 to 31) <= prel-mid-round-out(24 to 31) xor pre2-mid-round-out(24 

mid-round-out(32 to 39) <= prel-mid-round-out(32 to 39) xor pre2-mid-round-out(32 

mid-round-out(40 to 47) <= prel-mid-round-out(40 to 47) xor pre2-mid-round-out(40 

mid-round-out(48 to 55) <= prel-mid-round-out(48 to 55) xor pre2-mid-round-out(48 

mid-round-out(56 to 63) <= pre 1 -mid-round-out(56 to 63) xor pre2-mid-round-out(56 

mid-round-out(64 to 71) <= prel-mid-round-out(64 to 71) xor pre2-mid-round-out(64 

mid-round-out(72 to 79) <= prel-mid-round-out(72 to 79) xor pre2-mid-round-out(72 

mid-round-out(80 to 87) <= prel-mid-round-out(80 to 87) xor pre2-mid-round-out(80 

mid-round-out(88 to 95) <= prel-mid-round-out(88 to 95) xor pre2-mid-round-out(88 

mid-round-out(96 to 103) <= prel-mid-round-out(96 to 103) xor 
pre2-mid-round-out(96 to 103); 

mid-round-out(l04 to 1 1 1) <= prel -mid-round-out(l04 to 1 1 1) xor 
pre2-mid-round-out(l04 to 1 1 1 ); 

mid-round-out(ll2 to 1 19) <= prel -mid-round-out(l12 to 11 9) xor 
pre2-mid-round-out(l12 to 1 19); 

mid-round-out(l20 to 127) <= prel -mid-round-out(l20 to 127) xor 
pre2-mid-round-out(l20 to 127); 



process (clock) 
begin 
if (clock'event and clock = '1') then 

if (round-num-R = "1 01 1 ") then 
aes-data-out-last <= final-round-out xor aes-key-in-R; 

end if; 
end if; 
end process; 

aes-data-out-round0 <= aes-data-in xor aes-key-in-R; 
aes-data-out-mid <= mid-round-out xor aes-key-in-R; 
aes-data-out-final <= final-round-out xoa aes-key-in-R; 

end rtl; 

CONTROL SM 

library IEEE; 
use IEEE.STD-LOGIC-1164.ALL; 
use IEEE.STD-LOGIC-ARITH.ALL; 
use IEEE.STD-LOGIC-UNSIGNED.ALL; 

entity control-sm is 
Port ( 

-- ilf to i n ~ u t  fifo 
data-in : in std-logic-vector(0 

iv : in std-logic-vector(0 to 127); 
context : in std-logic-vector(0 to 31); 
fifo-emptyb : in std-logic; 
adbfifo : out std-logic; 

-- ilf to output fifo 
wab-fifo : out std-logic; 
fifo-fullb : in std-logic; 

-- ilf to cipher block 
aes-data-in : out std-logic-vector(0 to 127); 



round : out std-logic-vector(0 to 3); 
aes-data-out-round0 : in std-logic-vector(0 to 127); 

aes-data-out-mid : in std-logic-vector(0 to 127); 
aes-data-out-final : in std-logic-vector(0 to 127); 

aes-data-out-last : in std-logic-vector(0 to 127); 

-- ilf to key memory 
aes-key-mem-address : out std-logic-vector(0 to 4); 
read-key-mem : out std-logic; 

clock : in std-logic; 
reset : in std-logic 
1; 

end control-sm; 

architecture RTL of controlsm is 

type state-type is (IDLE, IDLEOUT, Get-Context, Get-Contextout, CBC-Encrypt-11, 
ECB-Encrypt-11, ECB-Encrypt-1, ECB-Encrypt-2, ECB-Encrypt-3, ECB-Encrypt-4, 
ECB-Encrypt-5, ECB-Encrypt-6, ECB-Encrypt-7, ECB-Encrypt-8, ECB-Encrypt-9, 
ECB-Encrypt-10, CBC-Encrypt-1, CBC-Encrypt-2, CBC-Encrypt-3, CBC-Encrypt-4, 
CBC-Encrypt-5, CBC-Encrypt-6, CBC-Encrypt-7, CBC-Encrypt-8, CBC-Encrypt-9, 
CBC-Encrypt-10, Out-Fifo-Full); 

signal ST, nST : state-type; 
signal sm-cipher-key-index: std-logic; 
signal cipher-input: std-logic-vector(0 to 127); 
signal sm-context-input: std-logic-vector (0 to 31); 
signal sm-iv-input: std-logic-vector (0 to 127); 
signal cclock: std-logic; 

begin 

cclock <= clock; 
cipher-controller: process (clock) 
begin 

if (clock'event and clock = '1') then 
case ST is 

when IDLE => 
if (fifo-emptyb = '1 ') then 

rdb-fifo <= '0'; 
read-key-mem <= '0'; 
round <= "0000"; 
aes-data-in <= 

"00000000000000000000000000000000000000000000000000000000000000000000000000000 
000000000000000000000000000000000000000000000000000"; 

aes-key-mem-address <= "00000"; 
wrb-fifo <= '1 '; 
cipher-input <= data-in; 
sm-context-input <= context; 
sm-iv-input <= iv; 
--sm-cipher-key-index <= '0'; 
ST <= Get-Context; 

else 
rdb-fifo <= '1 '; 



read-key-mem <= '0'; 
round <= "0000"; 
aes-data-in <= 

"00000000000000000000000000000000000000000000000000000000000000000000000000000 
000000000000000000000000000000000000000000000000000"; 

aes-key-mem-address <= "00000"; 
wrb-fifo <= ' I  '; 
ST <= IDLE; 

end if; 

when IDLEOUT => 
if (fifo-emptyb = '1 ') then 

rdb-fifo <= '0'; 
read-key-mem <= '0'; 
round <= "0000"; 
--cipher-output <= aes-data-out-last; 
aes-data-in <= 

"00000000000000000000000000000000000000000000000000000000000000000000000000000 
000000000000000000000000000000000000000000000000000"; 

aes-key-mem-address <= "00000"; 
wrb-fifo <= '0'; 
cipher-input <= data-in; 
sm-context-input <= context; 
sm-iv-input <= iv; 
ST <= Get-Context; 

else 
rdb-fifo <= 'I '; 
read-key-mem <= '0'; 
round <= "0000"; 
--cipher-output <= aes-data-out-last; 
aes-data-in <= 

"00000000000000000000000000000000000000000000000000000000000000000000000000000 
000000000000000000000000000000000000000000000000000"; 

aes-key-mem-address <= "00000"; 
wrb-f ifo <= '0'; 
ST <= IDLE; 

end if; 

when Get-Context => 
if (sm-context-input(2 to 3) = "01 ") then --- ECB Mode 

rdb-fifo <= ' I  '; 
read-key-mem <= '1 '; 
round <= "0000"; 
aes-data-in <= 

"00000000000000000000000000000000000000000000000000000000000000000000000000000 
000000000000000000000000000000000000000000000000000"; 

sm-cipher-key-index <= sm-contextJnput(4); 
aes-key-mem-address <= sm-context-input(4) & 

"0000"; 
wrb-fifo <= ' I  '; 
ST <= ECB-Encrypt-l ; 

elsif (sm-context-input(2 to 3) = "10") then ---CBC mode 
rdb-fifo <= ' I  '; 
read-key-mem <= '1 '; 
round <= "0000"; 



aes data in <= 

sm-cipher-key-index <= sm-context-input(4); 
aes-key-mem-address c= sm-context-input(4) & 

wrb-fifo <= '1 '; 
ST c= CBC-Encrypt-l ; 

else 
rdb-fifo <= '1 '; --- undefined mode 
read-key-mem <= '0'; 
round <= "0000"; 
aes-data-in <= 

"00000000000000000000000000000000000000000000000000000000000000000000000000000 
000000000000000000000000000000000000000000000000000"; 

aes-key-mem-address <= "00000"; 
wrb-fifo <= '1 '; 
ST <= IDLE; 

end if; 
when Get-Contextout => 

if (sm-context-input(2 to 3) = "01 ") then --- ECB Mode 
rdb-fifo <= '1 '; 
read-key-mem <= '1 '; 
round c= "0000"; 
--cipher-output <= aes-data-out-last; 
aes-data-in c= 

"00000000000000000000000000000000000000000000000000000000000000000000000000000 
000000000000000000000000000000000000000000000000000"; 

sm-cipher-key-index c= sm-context-input(4); 
aes-key-mem-address <= sm-contextlinpufi4) & 

"0000"; 
wrb-fifo <= '1 '; 
ST <= ECB-Encrypt-l ; 

elsif (sm-contextJnput(2 to 3) = "1 0") then ---CBC mode 
rdb-fifo c= '1 '; 
read-key-mem <= '1 '; 
round <= "0000"; 
--cipher-output <= aes-data-out-last; 
aes-data-in <= 

"00000000000000000000000000000000000000000000000000000000000000000000000000000 
000000000000000000000000000000000000000000000000000"; 

sm-cipher-key-index c= sm-context-input(4); 
aes-key-mem-address <= sm-context-input(4) & 

"0000"; 
wrb-fifo <= '1 '; 
ST <= CBC-Encrypt-l ; 

else 
rdb-fifo <= '1 '; --- undefined mode 
read-key-mem <= '0'; 
round <= "0000"; 
--cipher-output <= aes-data-out-last; 



aes-data-in <= 
"00000000000000000000000000000000000000000000000000000000000000000000000000000 
000000000000000000000000000000000000000000000000000"; 

aes-key-mem-address <= "00000"; 
wrb-fifo <= ' I  '; 
ST <= IDLE; 

end if; 

when ECB-Encrypt-l l => 
if ((fifo-emptyb = ' I  ') and (fifo-fullb = '1 ')) then --- ECB Mode 

rdb-fifo <= '0'; 
read-key-mem <= ' I  '; 
round <= "1 01 1 "; 
aes-data-in <= aes-data-out-mid; 
aes-key-rnern-address <= sm-cipher-key-index & 

wrb-fifo <= '0'; 
cipher-input <= data-in; 
srn-context-input <= context; 
sm-iv-input <= iv; 
ST <= Get-Contextout; 

elsif ((fifo-emptyb = '1') and (fifo-fullb = '0')) then --- ECB Mode 
rdb-fifo <= ' I  '; 
read-key-mem <= '0'; 
round <= "101 1 "; 
aes-data-in <= aes-data-out-mid; 
aes-key-mem-address <= sm-cipher-key-index & 

wrb-fifo <= '1'; 
ST <= Out-Fifo-Full; 

elsif ((fifo-ernptyb = '0') and (fifo-fullb = '0')) then --- ECB Mode 
rdb-fifo <= ' I  '; 
read-key-mem <= '0'; 
round <= "1 01 1 "; 
aes-data-in <= aes-data-out-mid; 
aes-key-rnem-address <= sm-cipher-key-index & 

wrb-fifo <= '1 '; 
ST <= Out-Fifo-Full; 

elsif ((fifo-emptyb = '0') and (fifofullb = '1')) then --- ECB Mode 
rdb-fifo <= '0'; 
read-key-mem <= '1 '; 
round <= "1 01 1 "; 
aes-data-in <= aes-data-out-mid; 
aes-key-rnem-address <= sm-cipher-key-index & 

wrb-fifo <= '0'; 
ST <= IDLEOUT; 

else 
rdb-fifo <= '1 '; --- undefined mode 
read-key-mem <= '0'; 



round <= "0000"; 
--cipher-output <= aes-data-out-mid; 
aes-data-in <= 

"000000000000000000000000000000000000000000000000~000000000000000000000000000 
000000000000000000000000000000000000000000000000000"; 

aes-key-mem-address <= "00000"; 
wrb-fifo <= ' I  I ;  

ST <= IDLE; 

end if; 

when ECB-Encrypt-1 => --- ECB Mode 
rdb-fifo <= '1 '; 
read-key-rnern <= '1 '; 
round <= "0001 "; 
aes-data-in <= cipher-input; 
aes-key-rnem-address <= sm-cipher-key-index & 

wrb-fifo <= ' I  '; 
ST <= ECB-Encrypt-2; 

when ECB-Encrypt-2 => 
rdb-fifo <= ' I  '; 
read-key-mem <= '1 '; 
round <= "001 0"; 
aes-data-in <= aes-data-out-round0; 
aes-key-rnem-address <= srn-cipher-key-index & 

wrb-fifo <= .'I '; 
ST <= ECB-Encrypt-3; 

when ECB-Encrypt-3 => 
rdbfifo <= '1 '; 
read-key-mem <= '1 I; 
round <= "001 1 "; 
aes-data-in <= aes-data-out-mid; 
aes-key-mern-address <= srn-cipher-key-index & 

wrb-fifo <= ' I  '; 
ST <= ECB-Encrypt-4; 

when ECB-Encrypt-4 => 
rdbfifo c= ' I  '; 
read-key-mern c= '1 '; 
round <= "01 00"; 
aes-data-in <= aes-data-out-mid; 
aes-key-rnem-address <= srn-cipher-key-index & 

wrb-fifo <= 'I '; 
ST <= ECB-Encrypt-5; 

when ECB-Encrypt-5 => 
rdb-fifo c= '1 '; 
read-key-rnern <= '1 '; 
round <= "01 01 "; 
aes-data-in <= aes-data-out-mid; 



aes-key-rnern-address <= srn-cipher-key-index & 

wrbfifo <= '1 '; 
ST <= ECB-Encrypt-6; 

when ECB-Encrypt-6 => 
rdbfifo <= '1 '; 
read-key-mem <= '1 '; 
round <= "01 10"; 
aes-data-in <= aes-data-out-mid; 
aes-key-mem-address <= sm-cipher-key-index & 

wrbfifo <= ' I  I; 
ST <= ECB-Encrypt-7; 

when ECB-Encrypt-7 => 
rdbfifo <= '1 '; 
read-key-mem <= '1 '; 
round <= "01 1 1 "; 
aes-data-in <= aes-data-out-mid; 
aes-key-mem-address <= srn-cipher-key-index & 

wrbfifo <= '1 '; 
ST <= ECB-Encrypt-8; 

when ECB-Encrypt-8 => 
rdb-fifo <= '1 '; 
read-key-mem <= '1 '; 

. round <= "1 000"; 
aes-data~in <= aes-data-out-mid; 
aes-key-mem-address <= srn-cipher-key-index & 

wrbfifo <= '1 '; 
ST <= ECB-Encrypt-9; 

when ECB-Encrypt-9 => 
rdb-fifo <= '1 '; 
read-key-mem <= '1 '; 
round <= "1 001 "; 
aes-data-in <= aes-data-out-mid; 
aes-key-mem-address <= sm-ciphetkey-index & 

wrbfifo <= '1 '; 
ST <= ECB-Encrypt-10; 

when ECB-Encrypt-lo => 
rdb-fifo <= '1 '; 
read-key-mem <= '1 '; 
round <= "1 01 0"; 
aes-data-in <= aes-data-out-mid; 
aes-key-mem-address <= sm-cipher-key-index & 

wrbfifo <= ' I  '; 
ST <= ECB-Encrypt-l l ; 

when CBC-Encrypt-l l => 



if ((fifo-emptyb = '1') and (fifo-fullb = '1')) then --- ECB Mode 
rd b-f ifo <= '0'; 
read-key-mem <= '1 '; 
round <= "1 01 1 "; 
aes-data-in <= aes-data-out-mid; 
aes-key-mem-address <= sm-cipher-key-index & 

wrb-fifo <= '0'; 
cipher-input <= data-in; 
sm-context-input <= context; 
sm-iv-input <= iv; 
ST <= Get-Contextout; 

elsif ((fifo-emptyb = '1') and (fifo-fullb = '0')) then --- ECB Mode 
rdb-fifo <= '1 '; 
read-key-mem <= '0'; 
round <= "1 01 1 "; 
aes-data-in <= aes-data-out-mid; 
aes-key-mem-address <= sm-cipher-key-index & 

wrbfifo <= '1 '; 
ST <= Out-Fifo-Full; 

elsif ((fifo-emptyb = '0') and (fifo-fullb = '0')) then --- ECB Mode 
rdbfifo <= '1 '; 
read-key-mem <= '0'; 
round <F "1 01 1 "; 
aes-data-in <= aes-data-out-mid; 
aes-key-mem-address <= sm-cipher-key-index & 

wrbfifo <= '1 '; 
ST <= Out-Fifo-Full; 

elsif ((fifo-emptyb = '0') and (fifo-fullb = '1 I)) then --- ECB Mode 
rdb-f if o <= '0'; 
read-key-mem <= ' I  '; 
round <= "1 01 1 "; 
aes-data-in <= aes-data-out-mid; 
aes-key-mem-address <= sm-cipher-key-index & 

wrbfifo <= '0'; 
ST <= IDLEOUT; 

else 
rdb-fifo <= '1 '; --- undefined mode 
read-key-mem <= '0'; 
round <= "0000"; 
--cipher-output <= aes-data-out-mid; 
aes-data-in <= 

aes-key-mem-address <= "00000"; 
wrbfifo <= '1 '; 
ST <= IDLE; 

end if; 



packet 

aes-data-out-last; 

when CBC-Encrypt-1 => --- CBC Mode 
rdb-fifo <= '1'; 
read-key-mem <= '1 '; 
round <= "0001 "; 
if (sm-context-input(0) = '1') then -- SOP = 1 

aes-data-in <= cipher-input xor sm-iv-input; 
elsif (sm-contextjnput(0) = '0') then -- middle or end of 

aes-data-in <= ciphe~input xor 

end if; 
aes-key-mem-address <= sm-ciphetkey-index & 

wrb-fifo <= '1 '; 
ST <= CBC-Encrypt-2; 

when CBC-Encrypt-2 => 
rdb-fifo <= '1 '; 
read-key-mem <= '1 '; 
round <= "001 0"; 
aes-data-in <= aes-data-out-round0; 
aes-key-mem-address <= sm-cipher-key-index & 

wrb-fifo <= '1 '; 
ST <= CBC-Encrypt-3; 

when CBC-Encrypt13 => 
rdb-fifo <= '1.'; 
read-key-mem <= '1 '; 
round <= "001 1 "; 
aes-data-in <= aes-data-out-mid; 
aes-key-mem-address <= sm-cipher-key-index & 

wrb-fifo <= '1 '; 
ST <= CBC-Encrypt-4; 

when CBC-Encrypt-4 => 
rdb-fifo <= '1 '; 
read-key-mem <= '1 '; 
round <= "01 00"; 
aes-data-in <= aes-data-out-mid; 
aes-key-mem-address <= sm-cipher-key-index & 

wrb-fifo <= ' I  '; 
ST <= CBC-Encrypt-5; 

when CBC-Encrypt-5 => 
rdb-fifo <= '1 '; 
read-key-mem <= '1 '; 
round <= "01 01 "; 
aes-data-in <= aes-data-out-mid; 
aes-key-mem-address <= sm-cipher-key-index & 

wrb-fifo <= ' I  '; 
ST <= CBC-Encrypt-6; 



when CBC-Encrypt-6 => 
rdb-fifo <= '1'; 
read-key-mem <= '1 '; 
round <= "01 10"; 
aes-data-in <= aes-data-out-mid; 
aes-key-mem-address <= sm-cipher-key-index & 

wrbfifo <= ' I  I; 
ST <= CBC-Encrypt-7; 

when CBC-Encrypt-7 => 
rdb-fifo <= '1'; 
read-key-mem <= '1 '; 
round <= "01 1 1 "; 
aes-data-in <= aes-data-out-mid; 
aes-key-mem-address <= sm-cipher-key-index & 

wrbfifo <= '1 '; 
ST <= CBC-Encrypt-8; 

when CBC-Encrypt-8 => 
rdbfifo <= '1 '; 
read-key-mem <= '1 '; 
round <= "1 000"; 
aes-data-in <= aesdata.-out-mid; 
aes-key-mem-address <= sm-cipher-key-index & 

wrb-fifo <= ' I  '; 
ST <= CBC-Encrypt-9; 

when CBC-Encrypt-9 => 
rdb-fifo <= '1 '; 
read-key-mem <= '1 '; 
round <= "1 001 "; 
aes-data-in <= aes-data-out-mid; 
aes-key-mem-address <= sm-cipher-key-index & 

wrbfifo <= '1 '; 
ST <= CBC-Encrypt-10; 

when CBC-Encrypt-10 => 
rdbfifo <= '1 '; 
read-key-mem <= '1 '; 
round <= "1 01 0"; 
aes-data-in <= aes-data-out-mid; 
aes-key-mem-address <= sm-cipher-key-index & 

wrb-fifo <= '1 '; 
ST <= CBC-Encrypt-11; 

when Out-Fifo-Full=> 
if ((fifo-emptyb = '1') and (fifofullb = '1')) then --input FlFO not 

empty, output FlFO not FULL 
rdb-fifo <= '0'; 



read-key-mem <= '1 '; 
round <= "1 100"; 
aes-data-in <= aes-data-out-last; 
aes-key-mem-address <= sm-cipher-key-index & 

wrb-fifo <= '0'; 
cipher-input <= data-in; 
sm-context-input <= context; 
sm-iv-input <= iv; 
ST <= Get-Contextout; 

elsif ((fifo-emptyb = '0') and (fifo-fullb = '1')) then --input FlFO 
empty, output FlFO not FULL 

rdb-fifo <= '0'; 
read-key-mem <= '1 '; 
round <= "1 100"; 
aes-data-in <= aes-data-out-last; 
aes-key-mem-address <= sm-cipher-key-index & 

wrb-fifo <= '0'; 
ST <= IDLEOUT; 

else 
rdb-fifo <= ' I  '; 
read-key-mem <= '1 '; 
round <= "1 100"; 
aesdata-in <= aes-data-out-last; 
aes-key-mem-address <= sm-cipher-key.--index & 

wrb-fifo <= ' I  '; 
ST <= Out-Fifo-Full; 

end if; 

when others => 
ST <= IDLE; 

end case; 
end if; 

end process; 

end RTL; 

INPUT FlFO 

library IEEE; 
use 1EEE.STD-LOG IC-1164.ALL; 
use IEEESTD-LOGIC-ARITH.ALL; 
use IEEE.STD-LOGIC-UNSIGNED.ALL; 

entity FlFO is 
Port ( resetb : in std-logic; 

clock : in std-logic; 
rdb : in std-logic; 
wrb : in std-logic; 
data-in : in std-logic-vector(0 to 63); 



iv-in : in std-logic-vector (0 to 63); 
context-in : in std-logic-vector (0 to 15); 

emptyb : out std-logic; 
fullb : out std-logic; 

context-out : out std-logic-vector (0 to 31); 
iv-out : out std-logic-vector (0 to 127); 

data-out : out std-logic-vector(0 to 127)); 
end FIFO; 

architecture RTL of FIFO is 
signal read-ptr: std-logic-vector(0 to 2); 
signal write-ptr: std-logic-vector (0 to 2); 
type data-registerType is array (0 to 7) of std-logic-vector(0 to 63); 
signal data-register: data-registerType; 
type context-registerType is array (0 to 7) of std-logic-vector(0 to 15); 
signal context-register: context-registerType; 
type iv-registerType is array (0 to 7) of std-logic-vector(0 to 63); 
signal iv-register: iv-registerType; 
signal write-read: std-logic-vector (0 to 1); 
signal fullb-flag: std-logic; 
signal emptybflag: std-logic; 
SIGNAL contents-counter: INTEGER range 0 to 16; 

begin 
inp-latch: process (clock) 
begin 

if (clock'event and clock = ' I  I) then 
-- if (resetb = '0') then 
-- write-read <= "1 1 "; -- else 

write-read <= wrb & rdb; 
-- end if; 

end if; 
end process; 

fifo: process (clock) 
begin 

if (clock'event and clock = '1') then 
if (resetb = '0') then 

write-ptr <= "000"; 
read-ptr <= "000"; 
fullb-flag <= '1 I; 
emptyb-flag <= '0'; 
contents-counter <= 0; 
for i in 0 to 7 loop 

data-register(i) <= 
"0000000000000000000000000000000000000000000000000000000000000000"; 

iv-register(i) <= 
"0000000000000000000000000000000000000000000000000000000000000000"; 

context-register(i) <= "0000000000000000"; 
end loop; 

else 

case write-read is 
when "00" => 

read-ptr <= read-ptr + 2; 



data-register(conv-integer(write-ptr)) <= data-in; 
iv-register(conv-integer(write-ptr)) <= iv-in; 
context~register(conv~integer(write~ptr)) <= context-in; 
write-ptr <= wri tej tr  + 1 ; 
contents-counter <= contents-counter - 1 ; 

when "01" => 
contents-counter <= contents-counter + 1 ; 

if (contents-counter > 0) then 
emptyb-flag <= '1'; 

else 
emptyb-flag <= '0'; 

end if; 
if (fullb-flag = '1 ') then 

data-register(conv-integer(write-ptr)) <= 
data-in; 

context-in; 

iv-register(conv-integer(write-ptr)) <= iv-in; 
context-register(conv-integer(write-ptr)) <= 

if (write-ptr + 2) = read-ptr then 
fullb-flag <= '0'; 

end if; 
write-ptr <= write-ptr + 1 ; 

end if; 
when "1 0" => 

if (emptyb-flag = '1') then 
if (read-ptr + 2) = write-ptr then 

emptvb-flag <= '0'; 
end if; 
read-ptr <= read-ptr + 2; 
contents-counter <= contents-counter - 2; 

end if; 
fullb-flag <= '1'; 

when others => null; 
end case; 

end if; 
end if; 

end process; 
fullb <= fullb-flag; 

output: process (clock) 
begin 

if (clock'event and clock = '1 ') then 
data-out <= data-register(conv-integer(read-ptr)) & 

data-register(conv-integer(read-ptr+l )); 
iv-out <= iv-register(conv-integer(read-ptr)) & 

iv-reg ister(conv-integer(read-ptr+l )); 
context-out <= context-register(conv-integer(read-ptr)) & 

context_register(conv-integer(read-ptr+l )); 
emptyb <= emptyb-flag; 

end if; 
end process; 

end RTL; 

OUTPUT FIFO 

library IEEE; 



use 1EEE.STD-LOGIC-1164.ALL; 
use 1EEE.STD-LOGIC-ARITH.ALL; 
use 1EEE.STD-LOGIC-UNSIGNED.ALL; 

entity OUT-FIFO is 
Port ( resetb : in std-logic; 

clock : in std-logic; 
rdb : in std-logic; 
wrb : in std-logic; 
data-in : in std~logic~vector(0 to 127); 
emptyb : out std-logic; 
fullb : out std-logic; 
data-out : out std-logic-vector(0 to 63)); 

end OUT-FIFO; 

architecture RTL of OUT-FIFO is 
signal read-ptr: std-logic-vector(0 to 2); 
signal write-ptr: std-logic-vector (0 to 2); 
type data-registerType is array (0 to 7) of std-logic-vector(0 to 63); 
signal data-register: data-registerType; 
signal write-read: std~logic~vector (0 to 1); 
signal fullb-flag: std-logic; 
signal emptyb-flag: std-logic; 
SIGNAL contents-counter: INTEGER range 0 to 16; 

begin 

outp-latch: process (clock) 
begin 

if (clock'event and clock = '1') then 
-- if (resetb = '0') then -- write-read <= "1 1 "; -- else 

write-read <= wrb & rdb; 
-- end if; 

end if; 
end process; 

fifo: process (clock) 
begin 

if (clock'event and clock = '1') then 
if (resetb = '0') then 

write-ptr <= "000"; 
read-ptr <= "000"; 
--data-out <= 

"0000000000000000000000000000000000000000000000000000000000000000"; 
fullb-flag <= '1'; 
emptyb-flag <= '0'; 
contents-counter <= 0; 
for i in 0 to 7 loop 

data-register(i) <= 
"0000000000000000000000000000000000000000000000000000000000000000"; 

end loop; 
else 
case write-read is 



when "00" => 
data-out c= data-register(conv-integer(read-ptr)); 
read-ptr c= read-ptr + 1 ; 
data-register(conv-integer(write-ptr)) <= data-in(0 to 

write-ptr c= write-ptr + 2; 
contents-counter <= contents-counter + 1 ; 

when "01" => 
emptyb-flag <= '1 '; 
if (fullb-flag = '1') then 

data-register(conv-integer(write-ptr)) <= 

write-ptr <= write-ptr + 2; 
contents-counter c= contents-counter + 2; 
if (write-ptr = read-ptr) then 

if (contents-counter > 6) then 
fullb-flag <= '0'; 

else 
fullb-flag <= '1 '; 

end if; 
end if; 

end if; 
when "1 0" => 

if (emptyb-flag = '1') then 
if (read-ptr + 1) = write-ptr then 

emptyb-flag <= '0'; 
end if; 
data-out c= 

read-ptr c= read-ptr + 1 ; 
contents-counter c= ~ontents~counter - 1 ; 

end if; 

fullb-flag <= '1 '; 
when others => null; 

end case; 
end if; 

end if; 
end process; 

emptyb <= emptyb-flag; 

outfif: process (clock) 
begin 

if (clock'event and clock = '1') then 
fullb <= fullb-flag; 

end if; 
end process; 

end RTL; 



LIBRARY ieee; 
USE ieee.std-logic-1164.ALL; 
USE ieee.numeric-std.ALL; 
use IEEE.STD-LOGIC-ARITH.ALL; 
use IEEE.STD-LOGIC-UNSIGNED.ALL; 

ENTITY testbench IS 
END testbench; 

ARCHITECTURE behavior OF testbench IS 

COMPONENT aes-cipher-module-3 
PORT( 

data-input : IN std-logic-vector(0 to 63); 
iv-in : IN std-logic-vector(0 to 63); 
context-in : IN std-logic-vector(0 to 15); 
wrb : IN std-logic; 
rdb : IN std-logic; 
key-in : IN std-logic-vector(0 to 127); 
clock : IN std-logic; 
reset : IN std-logic; 
fullb : OUT std-logic; 
data-output : OUT std-logic-vector(0 to 63); 
emptyb : OUT std-logic; 
key-address : OUT std-logic-vector(0 to 4); 
read-mem : OUT std-logic 
); 

END COMPONENT; 

SIGNAL data-input : std-logic-vector(0 to 63) := 
"1110111011101110111011101110111011101110111011101110111011101110"; 

SIGNAL iv-in : std-logic-vector(0 to 63) := 
"1110111011101110111011101110111011101110111011101110111011101110"; 

SIGNAL context-in : std-logic-vector(0 to 15) := "01 1 101 1 101 11 01 1 1 "; 
SIGNAL wrb : std-logic := '1 '; 
SIGNAL fullb : std-logic; 
SIGNAL data-output : std-logic-vector(0 to 63); 
SIGNAL emptyb : std-logic; 
SIGNAL rdb : std-logic := '1'; 
SIGNAL key-in : std-logic-vector(0 to 127); 
SIGNAL key-address : std-logic-vector(0 to 4); 
SIGNAL read-mem : std-logic; 
SIGNAL clock : std-logic := '0'; 
SIGNAL reset : std-logic := '0'; 

-- type KeyMemoryType is array (0 to 31) of std-logic-vector(0 to 127); 
-- signal KeyMemory : KeyMemoryType; 
-- SIGNAL rdy-counter: INTEGER range 0 to 16; 

SIGNAL rdy-counter: INTEGER :=O; 

subtype KEY-BOX-FIELD is std-logic-vector (0 to 127); 
subtype KEYBOX-INDEX-TYPE is std-logic-vector (0 to 4); 
type KEY-BOX-TYPE is array (0 to 31) of KEY-BOX-FIELD; 
constant KEY-BOX : KEY-BOX-TYPE := ( 
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else 
wrb <= '1 ' after 1 ns; 

end if; 
elsif (rdy-counter = 4) then 

if (fullb = '1') then 
wrb <= '1' after 1 ns; --ecb, 2 

data-input <= 
"1000100010011001101010101011101111001100110111011110111011111111" after 1 ns; 

iv-in <= 
"0000000000000000000000000000000000000000000000000000000000000001" after1 ns; 

context-in <= "01 1 1 100000000001 " after 1 ns; 
rdy-counter <= rdy-counter + 1 after 1 ns; 

else 
wrb <= '1 ' after 1 ns; 

end if; 
elsif (rdy-counter = 5) then 

if (fullb = '1') then 
wrb <= '0' after 1 ns; --nothing 

data-input <= 
"1000100010011001101010101011101111001100110111011110111011111111" after 1 ns; 

iv-in <= 
"0000000000000000000000000000000000000000000000000000000000000001" after1 ns; 

context-in <= "01 1 1 1  00000000001 " after 1 ns; 
rdy-counter <= rdy-counter + 1 after 1 ns; 

else 
wrb <= 'I ' after 1 ns; 

end if; 
elsif (rdy-counter = 6) then 

if (fullb = 'I ') then 
wrb <= '0' after 1 ns; --cbcl, 1 

data-input <= 
"0000000000000001 0000001 00000001 1000001 00000001 01 000001 10000001 1 1 " after 1 ns; 

iv-in <= 
"01 0101 10001 01 1 100001 01 1 1  1001 100101 101 101 00001 001 001 1 1 101 001 01 000" after 1 ns; 

context-in <= "1 01 0000000000000" after 1 ns; 
rdy-counter <= rdy-counter + 1 after 1 ns; 

else 
wrb <= '1 ' after 1 ns; 

end if; 
elsif (rdy-counter = 7) then 

if (fullb = '1 ') then 
wrb <= '0' after 1 ns; --cbcl ,2 

data-input <= 
"00001 00000001 001 00001 01 000001 01 100001 10000001 101 00001 1 1000001 1 1 1 " after 1 ns; 

iv-in <= 
"1101110110110011101110100110100101011010001011100110111101011000"after 1 ns; 

context-in <= "001 0000000000001 " after 1 ns; 
rdy-counter <= rdy-counter + 1 after 1 ns; 

else 
wrb <= '1 ' after 1 ns; 

end if; 
elsif (rdy-counter = 8) then 

if (fullb = '1') then 
wrb <= '0' after 1 ns; --cbc2, 1 

data-input <= 
"0001 00000001 0001 0001 001 00001 001 10001 01 000001 01 01 0001 01 100001 01 1 1 " after 1 ns; 



iv-in <= 
"1101110110110011101110100110100101011010001011100110111101011000" after 1 ns; 

context-in <= "001 0000000000001 " after 1 ns; 
rdy-counter <= rdy-counter + 1 after 1 ns; 

else 
wrb <= '1 'after 1 ns; 

end if; 
elsif (rdy-counter = 9) then 

if (fullb = '1 ') then 
wrb <= '1' after 1 ns; --cbc2,2 
data-input <= 

"0001 10000001 1001 0001 101 00001 101 10001 1 1000001 1 101 0001 1 1 100001 1 1 1 1 " after 1 ns; 
iv-in <= 

"1101110110110011101110100110100101011010001011100110111101011000" after 1 ns; 
context-in <= "001 0000000000001 " after 1 ns; 
rdy-counter <= rdy-counter + 1 after 1 ns; 

else 
wrb <= '1 ' after 1 ns; 

end if; 
else 

if (fullb = '1 ') then 
data-input <= 

"111100000000000000000000OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO"after1 ns; 
iv-in <= 

"1100111100000000000000000000000000000000000000000000000000000011" after1 ns; 
context-in <= "1 11 1 10000000001 1 " after 1 ns; 
wrb <= '1 ' after 1 ns; 
rdy-counter <= rdy-counter + 1 after 1 ns; 

else 
wrb <= '1 ' after 1 ns; 

end if; 
end if; 

end if; 
END PROCESS; 

tb2 : PROCESS (clock) 
BEGIN 

if (clock'event and clock = '1') then 
if (emptyb = '1 ') then 

rdb <= '0' after 1 ns; 
else 

rdb <= '1 ' after 1 ns; 
end if; 

end if; 
END PROCESS; 

with read-mem select 
key-in <= KEY-BOX(conv-integer(key-address)) when '1 ', 

"00000000000000000000000000000000000000000000000000000000000000000000000000000 
00000000000000000000OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO"when others; 

END; 
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