
VHDL IMPLEMENTATION OF
A SECURITY CO-PROCESSOR

Scott Wakelin
B.A.Sc., Engineering Science

Simon Fraser University

A THESIS SUBMITED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in the School
of

Engineering Science

O Scott Wakelin 2005

SIMON FRASER UNIVERSITY

Summer 2005

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

APPROVAL

Name:

Degree:

Scott Wakelin

Master of Applied Science

Title of Thesis: VHDL Implementation of a Security Co-Processor

Examining Committee:

Chair: Dr. Glenn Chapman
Professor of the School of Engineering Science

Dr. Rick Hobson
Senior Supervisor
Professor of the School of Engineering Science

Dr. Ljiljana Trajkovic
Supervisor
Professor of the School of Engineering Science

Dr. Marek Syrzycki
Internal Examiner
Professor of the School of Engineering Science

Date Defended:

SIMON FRASER UNIVERSITY

PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has
granted to Simon Fraser University the right to lend this thesis, project or
extended essay to users of the Simon Fraser University Library, and to make
partial or single copies only for such users or in response to a request from the
library of any other university, or other educational institution, on its own behalf
or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection.

The author has further agreed that permission for multiple copying of this work
for scholarly purposes may be granted by either the author or the Dean of
Graduate Studies.

It is understood that copying or publication of this work for financial gain shall
not be allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly
use, of any multimedia materials forming part of this work, may have been
granted by the author. This information may be found on the separately
catalogued multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by
this author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

W. A. C. Bennett Library
Simon Fraser University

Burnaby, BC, Canada

ABSTRACT

Tradeoffs of speed vs. area that are inherent in the design of a security co-

processor are explored. Encryption, decryption, and key generation engines for AES in

Cipher Block Chaining and Electronic Code Book modes were developed using VHDL.

Two designs are discussed.

The "space-optimised" design required 1454 FPGA CLB slices for the Cipher

implementation (401 6 for the complete design) and produced a round delay of - 16.75

ns. The throughput in CBC mode was 636.82 Mbps (depending on the FPGA utilized),

which is greater than various published prior works.

The Multi-Session Pipelined approach followed a novel architecture that required

13675 CLB slices total and produced a round delay of - 20 ns. The Multi-Session

Pipelined AES design can obtain an aggregate throughput of - 6.40 Gbps and is

capable of operating in CBC mode. The 1 Ox speedup over the "space-optimised" design

required 3 . 4 ~ the total number of FPGA CLB slices.

DEDICATION

To my wife Stacey and son Evan who provide endless love, support, and inspiration.

And to our new (yet to be born) baby, who perhaps provided the greatest inspiration of

all. Finally, to my Mom and Dad, for without your loving guidance and encouragement

throughout my life, this would not have been possible.

ACKNOWLEDGEMENTS

I would like to give a special thanks to Dr. Hobson whose direction and advice was a

driving force behind this work. Your knowledge and expertise were irreplaceable in the

completion of the Thesis and I hope we can continue to work on our ideas together in

the future.

I would also like thank Dr. Syrzycki for his guidance throughout my entire academic

career (undergraduate and graduate) at Simon Fraser University. I was honoured to be a

student in several of your classes, and look forward to the opportunity to learn from you

again.

I would also like to thank Dr. Trajkovic and Dr. Chapman. It has been a pleasure to learn

from you during my time at Simon Fraser University. I have met few people as dedicated

as you.

I also wish to acknowledge the kind and generous support of the Science Council of

British Columbia.

Finally, I wish to thank PMC-Sierra for providing all necessary support and assistance in

the completion of my degree. PMC-Sierra is a great company whose strengths are its

people, products and leadership. Thank you all for being such great friends.

TABLE OF CONTENTS

. .
Approval .. 11

...
Abstract .. 111

Dedication ... iv

Acknowledgements ... v

Table of Contents ... vi
...

List of Figures .. VIII

List of Tables .. x

List of Abbreviations and Acronyms .. xi

Chapter 1 INTRODUCTION ... 1

Chapter 2

Chapter 3
3.1

3.1.1
3.2
3.3

3.3.1
3.3.2

Chapter 4

Chapter 5
5.1

5.1.1
5.1.2
5.1.3
5.1.4

VIRTUAL PRIVATE NElWORKS ... 3

INTERNET PROTOCOL SECURITY (IPSEC) ... 8
lPSec Protocols ... 8

... l PSec Protocol Modes 9
... lPSec Security Associations and Policy 12

lPSec Processing .. 12
Inbound Processing ... 13
Outbound Processing .. 14

ENCRYPTION ALGORITHMS ... 15
... Modes of Operation 16

.. Electronic Code Book (ECB) Mode 17
... Cipher Block Chaining Mode 18

The Data Encryption Standard (DES) .. 20
Triple-DES (3-DES) ... 23

.. The Advanced Encryption Standard 24
.. AES Cipher 25

AES Inverse Cipher ... 29
... AES Key Expansion 31

... DESIGN AND IMPLEMENTATION OF AES 34
Architectural Options ... 34

... Pipelining 35
Sub-pipelining .. 36
Loop Unrolling ... 36

... Multi-Session Pipelining 40

5.2
5.3

Chapter 6
6.1

6.1.1
6.1.2
6.1.3
6.1.4

6.2
6.2.1

6.3
6.4

Chapter 7
7.1

7.1.1
7.1.2
7.1.3

7.2
7.3

Chapter 8
8.1
8.2
8.3
8.4

Chapter 9

Algorithmic Options .. 42
Implementation Options ... 47

DETAILED DESIGN OF AES .. 49
Space Optimised AES Cipher .. 49
Input FIFO Sub-module ... 52
Output FIFO Sub-Module ... 53
Control SM Sub-module ... 54
AES Cipher Sub-module .. 57
Multi-Session Pipelined AES Cipher .. 60
AES Cipher Sub-module .. 62
Inverse Cipher Design ... 64
Key Expansion Design .. 65

AES DESIGN VERIFICATION ... 66
Space-Optimised AES Testbench Design .. 66
Input Interface .. 67
Output Interface ... 68
Key Interface ... 69
Multi-Session Pipelined AES Testbench Design .. 70
AES Cipher Module Verification ... 70

AES RESULTS ... 74
Space Optimised AES Design Results ... 74
Multi-Session Pipelined AES Design Results ... 77
FPGA. ASIC and Full Custom Design Results ... 79
Summary of Results .. 81

REALIZATION OF A SECURITY CO-PROCESSOR 82

Chapter 10 CONCLUSION ... 84

APPENDIX A . SIMULATION RESULTS ... 86

APPENDIX B . RTL CODE .. 95

REFERENCES ... 129

LIST OF FIGURES

Figure 1 Private Leased Line LAN Interconnect (logical view) ... 3

Figure 2 Frame Relay Network Alternative to Private Leased Lines (simplified
... view) 4

Figure 3 Classification of VPN Types .. 6

Figure 4 ESP Mode Packet Format ... 9

Figure 5 ESP Packet in Tunnel and Transport Mode ... 10

Figure 6 Tunnel Mode Example .. 11

Figure 7 Transport Mode Example ... 11

Figure 8 Electronic Code Book mode .. 17

Figure 9 Cipher Block Chaining mode. Encryption ... 19

Figure 10 Cipher Block Chaining mode. Decryption .. 20

Figure 11 DES Structure ... 21

Figure 12 DES Round Function .. 22

Figure 13 Triple-DES ... 24

Figure 14 The AES State ... 25

Figure 15 AES Cipher ... 26

Figure 16 AES Round Function ... 26

Figure 17 ShiftRows .. 28

... Figure 18 AES Inverse Cipher 29

Figure 19 AES Inverse Cipher Round Function ... 30

Figure 20 InvShiftRows ... 30

Figure 21 AES Key Expansion .. 33

Figure 22 Pipeline architecture with K = 1 ... 35

Figure 23 Pipelined vs . Loop Unrolled Architectures ... 37

.. Figure 24 Multi-Session Pipeline System Diagram 41

Figure 25 AES Cipher Round Algorithm .. 43

Figure 26 Unbalanced Mixcolumns implementation .. 45

... Figure 27 AES Cipher Module Block Diagram 50

Figure 28 Control SM State Diagram ... 55

viii

.. Figure 29 AES Cipher Sub-module Block Diagram 57

Figure 30 AES Cipher Module Using T-Box Approach .. 60

Figure 31 Multi-Session Pipelined AES Cipher Module ... 61

Figure 32 AES Inverse Cipher in CBC Mode ... 64

Figure 33 Testbench Connections ... 67

Figure 34 Functional Timing Diagram of the Input Interface .. 68

Figure 35 Output Interface Functional Timing .. 69

Figure 36 Key Interface Functional Timing .. 70

Figure 37 AES Cipher Encryption .. 73

Figure 38 Block Diagram of the Complete AES Processor .. 83

Figure 39 Simulation Result of the Space Optimised Cipher (Full View) 87

Figure 40 Simulation Result of the Space Optimised Cipher (ECB Section) 88

Figure 41 Simulation Result of the Space Optimised Cipher (CBC Section) 89

Figure 42 Simulation Result of the Space Optimised Cipher (CBC Section. Part
2) .. 90

Figure 43 Simulation Result of the Multi-Session Pipelined Cipher (Full View) 91

Figure 44 Simulation Result of the Multi-Session Pipelined Cipher (Inputs) 92

Figure 45 Simulation Result of the Multi-Session Pipelined Cipher (ECB and CBC
outputs) ... 93

Figure 46 Simulation Result of the Multi-Session Pipelined Cipher (Last CBC
output) ... 94

LIST OF TABLES

Table 1 Round Constant (RCON) Values for Key Expansion .. 32

Table 2 Speedup achieved by using loop-unrolling .. 39

Table 3 Key Physical Implementation Characteristics ... 47

Table 4 Pin Description of Space Optimised AES Cipher Module 51

Table 5 Pin Description of the Multi-Session Pipeline AES Cipher Module 63

Table 6 Test Vectors used in the verification of AES ... 71

Table 7 Space Optimised AES Design Summary .. 75

Table 8 Performance Characteristics of the Space Optimised AES Design 76

Table 9 Performance Characteristics with Same FPGA .. 76

Table 10 Multi-Session Pipelined AES Design Summary .. 78

Table 1 1 Performance Characteristics of the Multi-Session Pipelined AES Design 78

Table 12 Comparison of ASIC Speed and Size Requirements 80

LIST OF ABBREVIATIONS AND ACRONYMS

I Acronym I Definition

I A type of MPLS-based VPN, defined in RFC-2547.

I Triple DES Encryption

AES Advanced Encryption Standard, defined in Federal lnformation
Processing Standards Publication 197

AH I Authenticating Header, defined in RFC-2402

ASIC I Application Specific Integrated Circuit

ATM I Asynchronous Transfer Mode

I BDD I Binary Decision Diagram ,

CTR

CBC

CLB Slice

I Counter Mode

- --

Cipher Block Chaining

Combinatorial Logic Block. A Xilinx specific term that refers to the
reconfigurable units within each FPGA.

DES Data Encryption Standard, defined in Federal lnformation
Processing Standards Publication 46-2

I ECB I Electronic Code Book

I ESP I Encapsulating Security Payload, defined in RFC-2406

I FPGA (Field Programmable Gate Array

I FR 1 Frame Relay

I GRE I Generic Routing Encapsulation
-

I KE

I P

Internet Key Exchange

Internet Protocol

l PSec L

L3VPN

LUT

MPLS

PE

PPP

RCON

ROM

SA

1 SADB

I SONET

I SPD

I SPI

I TCP

VHDL

I VPN

I VPWS

I XOR

Internet Protocol Security

Initialisation Vector

Layer 2 Tunneling Protocol

Layer 2 Virtual Private Network

Layer 3 Virtual Private Network

Look-up Table

Multi-Protocol Label Switching

Provider Edge

Point to Point Protocol

Round Constant

Read-only Memory

Security Association

Security Association Data Base

Synchronous Optical Network

Security Policy Data Base

Security Parameter Index

Transmission Control Protocol

Very High Speed Integrated Circuits Hardware Description
Language

Virtual Private LAN Service

Virtual Private Network

Virtual Private Wire Service

xii

CHAPTER 1 INTRODUCTION

Over the past two decades, the lnternet has evolved from its research-oriented

roots to the ubiquitous network we know today that is accessed daily by hundreds of

millions of people in all corners of the globe. We are all familiar with the most popular

uses of the Internet, from email to web surfing.

Increasingly, the lnternet is used as a medium for conducting business, whether

it be E-commerce, or online banking. In addition, businesses are using the lnternet as a

means to connect often times geographically dispersed sites together, forming what is

known as a Virtual Private Network (VPN). Finally, these same businesses require

scalable and cost-effective solutions that enable their travelling workforce to access the

company Intranet. A common element of all these new applications is the need for

enhanced security.

A suite of protocols, collectively referred to as IPSec, was developed out of the

need to secure the lnternet Protocol (IP). The lnternet Protocol suffers from a number of

shortcomings, including the ease with which its header could be forged and payload

snooped or altered. IPSec uses two protocols: the Encapsulating Security Payload

(ESP) and Authenticating Header (AH) to address these shortcomings. AH provides

data integrity, data origin authentication, and anti-replay protection, while ESP offers all

the services provided by AH, and adds confidentiality services [I].

Encryption algorithms, such as the Data Encryption Standard (DES), 3-DES, or

the Advanced Encryption Standard (AES) are used to provide the confidentiality

services. DES, 3-DES, and AES along with their public key counterparts such as RSA

are computationally intensive algorithms that typically are implemented in software for

low data rate applications, and FPGAs or ASlCs for high data rate applications.

The goal of this thesis is to understand the issues in the design and

implementation of a scalable and efficient security co-processor capable of supporting

encryption and decryption at OC-12 data rates (622 Mbps). It is not the goal of this

thesis to create the fastest AES implementation, but to provide a design that works in

both CBC and ECB mode that meets the stated performance objective while making

appropriate throughputlarea trade-offs. The design is implemented in VHDL, and

targeted for Xilinx FPGAs using Xilinx Foundation Series software. While the topic of

this thesis is the design of a security co-processor, the scope of the VHDL

implementation is limited to modules supporting the AES encryption algorithm.

The thesis is organized as follows: Virtual Private Networks are introduced and

discussed in Chapter 2. IPSec, with particular focus on modes of operation is introduced

in Chapter 3. Chapter 4 discusses both public-key and symmetric key encryption

algorithms, with particular emphasis on DES and AES and the various modes of

operation. Architectural and algorithmic design considerations are presented in Chapter

5. Detailed design and architectural descriptions of the various modules are presented

in Chapter 6. Chapter 7 introduces the verification strategy of the design. Chapter 8

discusses the testing results for the modules, including a comparison with prior works.

The integration of the modules into a security co-processor is presented in Chapter 9.

Simulation results are contained in Appendix A, while the VHDL code developed for this

Thesis is presented in Appendix B.

CHAPTER 2 VIRTUAL PRIVATE NETWORKS

As the Internet and corporate enterprise networks have evolved, businesses have

sought the productivity and efficiency gains made possible by connecting their own

sometimes geographically dispersed sites together, to form what is known as an

Intranet. A corporate lntranet allows users at different sites within the same company to

share information and collaborate in real time. Such flexibility, however, does not come

without a cost. Traditional means for creating a corporate lntranet often meant

purchasing and deploying costly private leased lines, which are dedicated, always on

connections that typically run at T I rates (1.544 Mbps) and above. Figure 1 shows ar!

interconnection of 5 corporate sites in a full mesh of private leased lines. Note that

Figure 1 only shows a logica! view. Typically these leased lines are multiplexed with

other links in access and metro SONET rings. Both are outside the scope of this paper.

Figure 1 Private Leased Line LAN Interconnect (logical view)

Private leased lines, though appropriate in some circumstances, have a number of

important disadvantages most notably [2]:

. Cost: Both in terms of deployment, and operating

Lack of scalability: Once the private line is in the ground, the bandwidth is
fixed. In addition, as new sites are connected to the Intranet, new leased lines
must be deployed to some or all other existing sites.

To overcome the obvious scalability hurdles inherent in a private leased line network,

many businesses used Frame Relay (FR) or Asynchronous Transfer Mode (ATM)

technology to connect their various sites together in what could be considered the first

Layer-2 VPN. These networks solved the interconnection problem by allowing multiple

virtual circuits to be multiplexed on the same physical link (and port). The service

provider network was then responsible for ensuring virtual circuits were in place to

create a hub and spoke topology that required fewer physical links. Figure 2 shows a

simplified Frame Relay network alternative to the private leased line approach shown in

Figure 2.

Figure Frame Relay Network Alternative to Private

Site B

Site A

Leased Lines

Site C

/

(simplified view)

Site E

Such a deployment has significant disadvantages, most notably that it does not leverage

the ubiquity of the growing IP-based Service Provider networks. In this case, the Service

Provider must maintain a FR based network in addition to its IP backbone. Furthermore,

although the scalability of the network in Figure 2 is better than that of Figure 1, it does

not offer the scalability inherent in an IP-based network.

Another disadvantage of the described interconnect strategies is that it is cumbersome,

if not impossible, to enable another emerging interconnect strategy, the Extranet. An

Extranet is a business to business model that, for example, allows a supplier to access a

companies inventory database to determine when additional shipments should be made

based on demand and supply levels [2]. It would be economically unfeasible to install

private leased lines to every one of a companies suppliers or customers.

Another evolution in the business and networking environments is the need for individual

users, such as telecommuters, to connect to their corporate networks. Traditional

approaches used slow and often costly (particularly if long distance charges were

required) dial-up access.

With all this in mind, network equipment manufacturers and service providers began

searching for solutions that allow scalable site-to-site, business-to-business, and user-to-

site network access that leveraged the ubiquity of the Internet. The result was the

development of the IP-based Virtual Private Network.

A Virtual Private Network (VPN) can be defined as a communication method that utilizes

a segmentation of the existing shared network infrastructure to emulate a private

network [2].

Figure 3 Classification of VPN Types

IP Based Virtual Private Networks

Site to Site Remote Access

PE-Based CE-Based Dial Broadband

I
GRE

I I
PPP CableJDSL

L2VPN lPSec L2TP 802.1 1

A ,--I
lPSec lPSec

Virtual VPLS
2547 Router VPWS

As shown in Figure 3, there are two general types of IP-Based VPNs: Site-to-Site, and

Remote Access. The main differences between the two is the number of tunnels

required to enable the VPN connectivity and the number of users of each individual

tunnel [3].

Another common VPN classification scheme is based on whether the VPN is trusted or

secure. A trusted VPN is one in which traffic belonging to the VPN stays within the

confines of the VPN and is not mixed with general Internet traffic. MPLS and Frame

Relay based VPNs are typical examples of a trusted VPN [4].

A secure VPN has some combination of encryption and/or authentication is applied to

the traffic belonging to the VPN [3]. IPSec is a suite of security protocols that uses

encryption and/or authentication facilities to protect traffic [I]. Secure, lPSec based

VPNs are typically used for user-to-site and site-to-site connectivity.

Since lPSec implies the use of computationally intensive operations such as encryption

andlor authentication, network devices implementing IPSec must have sufficient

processing power to handle not only the lPSec functionality, but their normal routing and

forwarding roles as well. This often leads to the necessity to have a dedicated security

co-processor. The focus of this Thesis is the design of AES modules, a key component

of a security processor.

CHAPTER 3 INTERNET PROTOCOL SECURITY (IPSEC)

Today's lnternet spans hundreds of millions of users and endpoints, and likely millions of

content and service providers not all of whom can be trusted. Packets transmitted using

the lnternet Protocol are open to a wide range of rogue behaviour including: snooping,

forging, modification, and replay. The lPSec protocol suite is an extension of IP designed

to protect the data and authenticate the identity of those involved in the communication.

3.1 lPSec Protocols

lPSec defines two main protocols for securing IP traffic: AH and ESP. Authentication

Header (AH), defined in RFC 2402 [8], provides data integrity, origin authentication, and

anti-replay protection. Encryption services are not provided by AH, therefore, AH will not

be discussed further in this Thesis.

Encapsulating Security Payload (ESP), defined in RFC 2406 [9], adds confidentiality

(encryption) services to those provided by AH. Figure 4 shows the format of an ESP

protocol packet [I]. The Security Parameter Index along with the packets

source/destination address, and IPSec protocol value is used to identify the Security

Association (SA) for a given packet. The SA dictates how security services are to be

applied to a packet, including the cryptographic algorithms and associated keys [I], [6].

The sequence number is used to provide anti-replay protection. The variable length

payload data contains the lP/TCP headers as well as the user data (if any) being

transmitted. Padding is added to maintain alignment. Finally, an authentication word is

added to provide data integrity verification. Note that the entire packet (other than the

authentication data) is authenticated. Encryption services are applied to the payload

data, pad, pad length, and next header fields only [I], [6].

Figure 4 ESP Mode Packet Format

Authenticated

Encrypted
0 - 255 Padding Bytes

Variable Length Authentication Data

Variable Length

paybad r
IP or TCP Header (Mode Dependent) I

Payload Data

The variable length payload data contains an lnitialization Vector (IV) when the

encryption services dictate Cipher Block Chaining (CBC) mode should be used [9]. CBC

mode will be discussed in further detail in section 4.1.2. The Initialization Vector may be

any random data. Note that the IV is NOT encrypted [I], [6].

3.1.1 lPSec Protocol Modes

The lPSec protocols may operate in one of two modes: Tunnel or Transport [I], [6]. In

tunnel mode, the entire IP packet is protected by ESP or AH and a second IP header is

added on the outside. In this way, the protected IP packet may be tunnelled through a

network without the network having knowledge of or be required to handle security

services for the packet. Tunnel mode may also be used by a security gateway that

provides security services for a Virtual Private Network. In this arrangement, the

cryptographic endpoint is listed in the outer IP header (the peer that will provide the

security services for the hidden network), while the communications endpoint is

identified in the inner header, and is the one sitting behind the gateway.

Transport mode is used when the cryptographic and communications endpoints are the

same.

Figure 5 shows an ESP packet in Tunnel mode and in Transport Mode [I], [6].

Figure 5 ESP Packet in Tunnel and Transport Mode

I IP Header

Security Parameter lndex

Sequence Number

Initialization Vector

IP Header

TCP Header

IP Header

Security Parameter lndex
-

Sequence Number

Initialization Vector

TCP Header

I Data
Data

(Authentication Data 1 I Authentication Data

A) Tunnel Mode B) Transport Mode

As an example of a tunnel mode arrangement, consider Figure 6. In this case, Host A

wishes to communicate securely with Host B that is inside a corporate Intranet.

Therefore, it must establish a secure connection with the Intranet's security gateway. As

Figure 6 shows, Host A generates a packet with an IP header indicating the destination

address of the host within the corporate network. This IP packet is then encapsulated

with ESP in tunnel mode. The outer IP header is used to route the packet through the

lnternet to the security gateway. Once the security gateway receives the packet, it

realizes that it is the destination for the ESP packet and performs inbound lPSec

processing on it before forwarding it within the corporate network. This example is

typical of the remote user-to-corporate VPN connection.

Figure 6 Tunnel Mode Example

Corporate lntranet

A

I IP Header 1 ESP I IP Header 1 TCP I
SRC = 1.1.1.1 SRC= 1.1.1.1

DST = 2.3.2:2 DST = 3.3.3.2

Generated by HOST A.

A transport mode example is shown in Figure 7. This example illustrates a situation

where the communications endpoint is also the cryptographic endpoint.

Figure 7 Transport Mode Example

Internet

r"-'7

IP Header (ESP I TCP I
SRC= 1.1.1.1
DST = 3.3.3.2

Generated
by HOST A

3.2 lPSec Security Associations and Policy

The IPSec protocols together indicate what packets to protect, how to protect them, and

with whom the protection is shared. This information is maintained on a peer to peer

basis by way of a Security Association (SA) which is stored in the SA Database. An SA

is a unidirectional element that maintains the state of the secure link. Each peer must

maintain two SAs for every end-point to which secure communications are desired.

Among other things, the SA indicates the keys to be used with the encryption and

authentication algorithms, the lifetimes of the keys (all keys must expire at some point

otherwise security is undermined), the sequence number (for replay protection) as well

as other context information [I], 161, [7].

As noted previously, the SPI contained in the ESP and AH packets along with the source

and destination addresses, and lPSec protocol are used as indexes into the SADB.

Another database, the Security Policy Database (SPD) is used to indicate what

processing should take place with a given packet, including whether or not security

services need to be applied, what security protocol (ESP, AH) to use, and in what mode,

and what encryptionlauthentication algorithms to use (DES, AES, HMAC-MD5, etc.).

If policy indicates that security services need to be applied, but no SA exists, the Internet

Key Exchange (IKE) is used to establish the SAs which must be in place to allow traffic

to flow. As part of this process, the keys used by the encryption algorithms such as AES

and 3-DES are established [I], [6].

3.3 lPSec Processing

The following sections describe the basic steps that are followed in the inbound and

outbound direction for ESP packets.

3.3.1 Inbound Processing

Upon receipt of an IP packet, the receiver performs the following [I]:

1. Determines whether an SA exists for the packet. If none exists, the packet is

dropped.

2. Assuming an SA exists, the sequence number is then processed to ensure that it

is valid and not a potential replay packet.

3. The packet is then authenticated using the specified authentication algorithm and

key. The generated authentication result is then compared with the

authentication data in the header. If equal, processing proceeds.

4. The packet is then decrypted using the specified decryption algorithm and key.

The decrypted result is checked for accuracy (usually using the pad for

verification purposes).

5. The mode of the packet is then validated against what is expected (tunnel andlor

transport) in the SA and policy. If not correct, the packet is dropped.

6. The IP packet is then re-built, with the ESP header extracted. The port and

protocol of the packet is then validated against policy.

7. Finally, assuming all checks have passed, the IP packet is forwarded to the IP

processing engine which determines the next steps for the packet (whether this

is the destination, or whether it needs to be forwarded to the next hop).

3.3.2 Outbound Processing

Before a packet can be transmitted, the following outbound processing is performed [I]:

1. An ESP header is inserted in the proper location for tunnel or transport mode.

2. The appropriate packet fields are encrypted.

3. The appropriate packet fields are authenticated, and the authentication result is

placed in the authentication data field of the ESP trailer.

4. The IP header checksum is re-computed (if necessary).

CHAPTER 4 ENCRYPTION ALGORITHMS

There are two general classes of encryption algorithms [5]:

Symmetric key
Public-key

A symmetric key encryption algorithm is one in which both ends of an encrypted

conversation use the same key, for both encrypting and decrypting the data. In other

words, both parties in the conversation must know the key. However, this raises the

important issue of key distribution. If one party wants to use a specific key, how do they

let the other party know the key to use? They could not simply transmit the key to the

other party, as this allows any person with access to the transmission to receive all

subsequent data transmitted using that key, thus defeating the purpose of encrypting

data in the first place. Nor could the key be mailed, telephoned, or faxed to the far end

as all these methods are both insecure, and non-scalable.

The solution to this problem is to use public-key cryptography. In public-key

cryptography, two keys are used [5]:

Public key: can only be used to encrypt data
Private key: can only be used to decrypt data

Typically, a users public-key is stored in a public database such as a Certificate

Authority. When user A needs to send a message to user B, user A retrieves B's public

key from the database, and encrypts the message using the public key. User B can

then decrypt the message using his private key (which only he has access to).

Public-key encryption algorithms are typically used as part of the key distribution process

for the symmetric key algorithm. The public key algorithm is used to encrypt the key for

the symmetric key algorithm prior to transmission to the far end peer. Upon receiving

the message, the far end peer decrypts the symmetric key using his private key.

One may wonder why it is necessary to use two different encryption algorithms, when

public-key cryptography can be used to encrypt data, and elegantly solves the key

distribution problem. The reason is that public key encryption algorithms rely heavily on

modular exponentiation using large integers [6], which is very computationally intensive

and slow. In fact, public key encryption algorithms can be three orders of magnitude or

more slower than a symmetric key algorithm. For this reason, symmetric key encryption

algorithms are used to protect data, while public key encryption algorithms protect the

key to be used by the symmetric key algorithm [5].

A further classification of symmetric key algorithms is whether the encryption algorithm

(cipher) operates on a fixed sized block of data at a time (block cipher), or on a single bit

at a time (stream cipher) [5]. The Data Encryption Standard (DES) and its replacement,

the Advanced Encryption Standard (AES), are examples of block ciphers, and the focus

of this Thesis.

4.1 Modes of Operation

All block based symmetric key encryption algorithms can be operated in one of two

principal modes [5]:

1. Electronic Code Book (ECB)
2. Cipher Block Chaining (CBC)

Other modes, such as Cipher-Feedback (CFB) and Counter (CTR) are possible, though

they are not as commonly implemented, and therefore are outside the scope of this

Thesis.

4.1.1 Electronic Code Book (ECB) Mode

Electronic Code Book mode is the simplest way to operate a block cipher. Blocks of

plaintext are simply run through the cipher without any additional feedback from previous

encryption rounds. In ECB mode, a block of plaintext always encrypts to the same block

of ciphertext (assuming the key is the same) [5]. Figure 8 shows 'n' blocks of plaintext

encrypting to 'n' blocks of ciphertext. Note that for decryption, a similar drawing can be

made, with ciphertext block #1 decrypting to plaintext block #1 and so on.

Figure 8 Electronic Code Book mode

Plaintext Block #1

Encryption

Ciphertext Block # I

Plaintext Block #2

Encryption

Plaintext Block #n

Encryption

Ciphertext Block #2 Ciphertext Block #n

Unfortunately, due to its simplicity, ECB mode is susceptible to attack. Messages

transmitted on the Internet tend to follow a defined format due to the need to abide by

various networking protocols, such as IP or TCP. For instance, the messages will all

likely have an IP header, which has a predefined format that includes certain fields that

either don't change or don't change very often for a particular user, such as an IP source

address. If an attacker is able to gain access to IP packets transmitted using ECB

mode, they will quickly be able to determine what key was used during transmission.

The attacker will attempt decryption of the packet using all of the possible different keys,

but only some of these attempts will yield reasonable, usable results. All others will be

discarded. For instance, a decryption that yields an IP source address field of

7k*.p@n.uYS.98# will be discarded, while one that yields 233.140.70.4 will be accepted.

In the first case, that value cannot possibly form an IP Source Address, so that key

attempt is obviously incorrect. While the second value could be an IP Source Address,

which means that the key attempted may in fact be the actual key used to transmit the

data. Once a key is known, the attacker could theoretically do anything he wished to the

communication, from simply snooping, to injecting false packets.

Another weakness of ECB mode is that it is susceptible to an attack known as block

replay [5]. A block replay attack uses the fact that a block of plaintext always encrypts to

the same block of ciphertext. Using this knowledge, an attacker simply replays certain

blocks of the message multiple times.

One advantage of ECB mode over the other modes is that since no feedback is

involved, the encryption and decryption process can be easily parallelized and pipelined.

4.1.2 Cipher Block Chaining Mode

CBC mode avoids the security holes found in ECB mode by applying feedback to the

encryption and decryption process. The same block of plaintext will no longer encrypt

to the same block of ciphertext. With CBC, the encryption of plaintext block 'n' depends

on the encryption of plaintext blocks 1 through n-1.

Figure 9 depicts the process. Plaintext block #1 is XOR'ed with an lnitialisation Vector

(IV) before being encrypted. An lnitialisation Vector is some random value that is used

to kick-start the encryption (decryption) process for the block. All subsequent blocks of

the same message are XOR'ed with the ciphertext result of the previous block. For

instance, plaintext block #2 is XOR'ed with ciphertext block #I , and so on until the end of

the message is reached [5]. Note that the encryption of plaintext block #2 can not

commence until the encryption of plaintext block #1 completes.

Figure 9 Cipher Block Chaining mode, E,ncryption

Plaintext Block #I
I

lnitialisation 4 +)
Vector

Encryption

ciphertext Block #I

Plaintext Block #2

4
C

Encryption

ciphertext Block #2

Plaintext Block #3
I

A

Encryption

Ciphertext Block #3

Figure 10 depicts how CBC mode works when decrypting data. Here, after the first

block of data is processed by the symmetric key algorithm, the result is XOR'ed with the

IV, creating plaintext block # l . For all subsequent blocks of the message, plaintext block

#n is found by processing ciphertext block #n with the symmetric key algorithm, and

XOR1ing the result with plaintext block #n-1. Unlike encryption using CBC mode,

decryption can be easily parallelized, allowing decryption of blocks 2 onwards to begin

before block 1 completes.

Figure 10 Cipher Block Chaining mode, Decryption

Ciphertext Block #I .
Decryption

I
Initialization
Vector 3 Plaintext B IOC~ #I

Ciphertext Block #2

Decryption

4
Plaintext Block #2

Ciphertext Block #3

Decryption

-9 Plaintext B I O C ~ #3

The following two sections describe the design of the two most common symmetric key

algorithms, DES and AES.

4.2 The Data Encryption Standard (DES)

DES [I 01 was adopted as a U.S. Federal Government standard for encryption in 1976,

and by ANSI for use in the private sector in 1981 [5]. DES is an iterative block cipher,

that uses a block size of 64 bits, and a key size of 64 bits (although every 8th bit of the

key is a parity bit).

Figure 11 shows the high level structure of the DES algorithm, along with its key

expansion process [5].

As can be seen, a block of plaintext first goes though an initial permutation block. The

data is then cycled through the same round function 16 times (each time using a new

key from the key expansion process) before going through the inverse permutation

block.

Figure 11 DES Structure

I PERMUTATION +I
COMPRESSION

(ROUND 1 h-1 KEY-ROUND 1 I

ROUND 2 KEY-ROUND 2

KEY-ROUND 16

I +
INVERSE

PERMUTATION

I CIPHERTEXT I

All 16 rounds of DES have the structure shown in Figure 12 [5], [I 01. The input data is

split into two halves, a left half and a right half. The right half of the data goes through an

expansion permutation that expands the data from 32 bits to 48 bits. The data is then

XORYed with the specific key for this particular round before being passed to the input of

the S-BOXs. An S-BOX is a non-linear replacement of one value with another. DES

uses 8 S-BOXs that each take 6 bits as input, and produce a 4 bit output. Therefore,

after the S-BOX function is performed, the data is again 32 bits wide.

Following the S-BOX replacement, the 32 bit data is once again permuted, and then

XOR'ed with the left half of the initial input data. The end result is a new 32 bit string for

the right half of the data.

The left half output is simply equal to the right half input data.

Figure 12 DES Round Function

Permutation

As noted previously, the DES algorithm uses an initial key size of 64 bits. Each round of

the algorithm uses a different 48 bit round key that is based on the initial input key. In

other words, the initial input key is used to create 15 additional keys to be used for

rounds 2 through 16. The initial input key and the 15 additional round keys are

collectively known as the key schedule, and are created through a key expansion

process.

As an initial step of the key expansion process, the 64 bit input key is reduced to 56 bits

by removing (and checking) the parity bits. The 56 bit key is then divided into left and

right 28 bit halves, and circularly left shifted by one or two bits. The round number is

used to determine how many bits (1 or 2) to shift by. Following the shift, the key is

compressed and permutated to 48 bits by the compression permutation. The output of

the compression permutation serves as the key to be used for this round, while the

output of the circular shift serves as the input to the next round's key expansion process.

Note that the above discussion was focussed on the encryption case. For decryption,

the exact same high level and round structures can be used. The only differences are

that keys are used in reverse, the keys are expanded using right shifts, and the keys are

shifted a different number of times than in the encryption case.

Specific details of the permutations and the contents of the S-boxes are given [I 01.

As computational power has increased over the years, so to has the ability of hackers to

break DES. Due to its short, 56 bit key space, DES can be cracked. Triple-DES was

introduced to address this problem.

Triple encryption is a general technique that can be applied to any symmetric key

algorithm [5]. The end result is increased security via a larger key (Triple-DES uses a

192 bit key). The basic idea is illustrated in Figure 13.

Here, an encryption operation is first applied to the data using bits 0 to 63 of the key.

The ciphertext output of the first encryption operation is then fed into a decryption

process that utilizes bits 64 to 127 of the key. Finally, the output of the decryption block

is fed into final encryption block that uses bits 128 to 191 of the key. For 3-DES, the

result is a 48 round process.

Figure 13 Triple-DES

Key (0 to 191)

Key (0 to 63) Key (64 to 127)

Input Data Encryption (0'0 a) -q DecrwtiOn

Key (128 A!- to 191)

4.3 The Advanced Encryption Standard

As a result of the dual needs for increased security, and for an algorithm that can be

implemented efficiently with high throughput in hardware or software, the U.S. National

Institutes of Standards and Technology (NIST) launched a formal competition to define a

replacement algorithm for DES. After a lengthy evaluation process, the RIJNDAEL

algorithm was standardized as the new AES in 2001 [I I] .

AES is a symmetric key block cipher that uses a block size of 128 bits, and a key size of

128, 192, or 256 bits [I I]. The algorithm is iterative, requiring 1 1, 13, or 15 rounds

(depending on the key size) to produce an output. Unlike DES, the same exact

operations cannot be performed for both encryption and decryption.

The following sections describe the AES cipher, inverse cipher, and key expansion in

further detail [l 11.

4.3.1 AES Cipher

Initially (and for all rounds that follow), the data to be processed by the cipher is

organized into a 4 x 4 matrix called the State. Each element of the State corresponds to

one of the bytes in the input data block. As shown in Figure 14, input byte 0 (bits 0 to 7

of the input data block), corresponds to the element at row 0, column 0. The cipher

processes the bytes and columns of the state to produce the output state.

Figure 14 The AES State

A high level view of the AES Cipher is shown in Figure 15. In the initial round (round 0),

Out0

Out1

Out2

Ou13

the plaintext is simply XOR'ed with the input key. The result is then iteratively processed

by the round function for rounds 1 through N. In round N+1, a modified round function

Out4

Out5

Out6

Out7

(minus the MixColumns operation) is applied to the output of round N to create the

ciphertext output.

Out8

Out9

Out10

Outll

As shown in Figure 16, each of rounds 1 through N in Figure 15 contain the following

Out12

Out13

Out14

Out15

four operations:

2. ShiftRows
3. MixColumns
4. AddRoundKey

The following sections describe each of these operations in further detail.

Figure 15 AES Cipher

Plaintext

Rounds
1 to N

Round N (9,1l, or 13) +lk
AddRoundKey

Ciphertext

Figure 16 AES Round Function

Round Data In

+
Round Data Out

4.3.1.1 SubBytes

SubBytes is a non-linear byte substitution of each individual byte of the State. There are

essentially two approaches for implementing the SubBytes process:

1. Use a look-up table

2. Perform the following calculation, where b,' is the result of transforming b,.

As noted above, a look-up table that implements the SubBytes transformation can easily

be found by simply plugging in all 256 possible bytes into the above matrix.

4.3.1.2 ShiftRows

ShiftRows applies a variable number of circular left shifts over each row of the state.

Each row is shifted an amount given by its row number. For instance, row 0 is not

shifted, row 1 is shifted 1 position, and so forth. Figure 17 graphically depicts the

ShiftRows process.

Figure 17 ShiftRows

M o t a t i o n

Left Rotate By 1 slo

Left Rotate By 2 S2o

Left Rotate By 3 S30

4.3.1.3 MixColumns

The MixColumns transform multiplies each column of the State by a fixed matrix to

produce a new column. The following equation describes the multiplication:

yielding the following set of equations, where C indicates the column number:

The 1 x multiplication is trivial, as the result is simply the input byte. The 2x

multiplication can be realized by multiplying the value (for example Soot) by 2, and

checking whether the initial value (SoVc) is > 127. If so, subtract (using bitwise XOR)

0x1 B. If not, the result is already in final form. The 3x multiplication is also trivial, as it

simply is the addition (using bitwise XOR) of the 1x and 2x values.

4.3.1.4 AddRoundKey

AddRoundKey simply XORs the State with the particular key for the round.

4.3.2 AES lnverse Cipher

The AES Inverse Cipher has a similar overall structure to the AES Cipher. The primary

differences are that the transforms are the inverse of those used in the AES Cipher, the

keys are used in reverse order (thus the round ordering is reversed), and the specific

order of operation of the individual transforms is altered slightly, as shown in Figure 19.

Figure 18 AES lnverse Cipher

t
Round N+l

t Rounds

N down to 1

I

Add Round Key
I

Round N - 1 I

Figure 19 AES Inverse Cipher Round Function

Round Data In
I

+
lnvSu bBytes +

AddRoundKey

+
Round Data Out

The following sections describe the functionality of the InvShiftRows, InvSubBytes, and

InvMixColumns transforms. The AddRoundKey operation is identical to that described in

section 4.3.1.4.

InvShiftRows applies a circular right shift to each row of the state. The number of

positions each row is shifted depends on the row number, as illustrated in Figure 20.

Figure 20 InvShiftRows

No Rotation

Right Rotate By 1

Right Rotate By 2

Right Rotate By 3

SO0

S13

S22

S31

So0

Slo

S2o

S30

So1

SIO

S23

532

Sol

S l l

S21

S3l

So2

SII

s20

S33

SO3

s12

s21

s30

So2

Sin

S22

S32

SO3

Sl3

S23

S33

4.3.2.2 InvSubBytes

The InvSubBytes operation is the inverse of the SubBytes procedure. Therefore, an

inverse look-up table can be created to perform this procedure. As an example, an input

byte of 0x00 to the SubBytes procedure will yield an output value of 0x63. Therefore, for

the InvSubBytes look'-up table, the value obtained with an input of 0x63 should be 0x00.

Like the Mixcolumns operation, the lnvMixColumns transform multiplies each column of

the State by a fixed matrix to produce a new column. The following equation describes

the multiplication:

yielding the following set of equations, where C indicates the column number:

The values 09x, OBx, ODx and OEx are obtained through successively applying the

multiplication approach described in section 4.3.1.3. For example, the 9x multiplication

is obtained by multiplying by 2x three times, and adding the I x value.

4.3.3 AES Key Expansion

As noted previously, the AES Cipher and Inverse Cipher require a new key value to be

used for each round. Figure 21 depicts the key expansion operation for a key size of 128

bits. The input key is split into 4 32 bit words (words 0 through 3). The RotWord process

takes a 4 byte word (bO, b l , b2, b3) and performs a byte permutation to yield (bl , b2, b3,

bO). Each byte of the word is then replaced using the same S-BOX as described in the

SubBytes transform. The word is then XOR'ed with a constant value that is based on the

round number, as shown in the following table:

The result of the RCON operation forms word0 of the next key (NWordO). This particular

value is also XOR'ed with word1 of the input key to create NWordl. Word2 is XOR'ed

with NWordl to create NWord2. Word3 is XOR'ed with NWord2 to create NWord3.

Table 1 Round Constant (RCON) Values for Key Expansion

This process creates 10 new key values from the initial 128 bit input key, for a total of 11

round keys. These round keys can be stored in memory to be used as necessary.

Round

1

RCON Value

0x01 000000

Figure 21 AES Key Expansion

Key Memory

CHAPTER 5 DESIGN AND IMPLEMENTATION OF AES

The design and implementation of AES typically involves making tradeoffs of processing

speed vs. aredpower. While some applications such as an Internet core router would

require the fastest possible implementation, other applications such as wireless PDAs

would be more concerned about minimizing area and power consumption.

Design architecture, algorithm implementation, and implementation form factor (FPGA,

ASIC etc.) are three situations where one must be cognizant of the end goal (e.g.

highest possible throughput, lowest possible power or some optimisation in between).

The ways in which the design architecture, algorithmic implementation, and form factor

affect speed and aredpower are discussed generally before describing the actual VHDL

implementations chosen for this Thesis.

5.1 Architectural Options

The three most common architectures typically employed when implementing a block

cipher, such as AES, in hardware [12] are:

Pipelining
Sub-pipelining
Loop Unrolling

This Thesis proposes a fourth approach, termed Multi-Session Pipelining, which seeks

to apply the benefits of pipelining to CBC mode in a novel way.

5.1 .I Pipelining

In pipelining, registers are inserted between each round that forms the pipeline. The

depth of the pipeline, K, determines how many data blocks can be processed

simultaneously. The architecture is fully pipelined when K equals the number of rounds,

Note that with K=l, the architecture becomes that shown in Figure 22. This is the

smallest possible implementation of an N-round algorithm [12].

Figure 22 Pipeline architecture with K = 1

Input Data r

Round 1

t
Output Data

Pipelined architectures are suitable and offer the highest performance for ciphers

operating in non-feedback modes such as ECB, where each block of data is encrypted

(or decrypted) independently of one another. Zhang [I 21 shows that for non-feedback

modes, both speed and area increase by a factor of K for pipelined architectures over

the basic architecture shown above. Much has been written about extremely fast

pipelined implementations of AES [20] - [24].

However, pipelined architectures are not quite so suitable for ciphers operating in

feedback mode (such as CBC). This is because all rounds of the algorithm must be

performed on data block 'N' before data block 'N+ll from the same packet (and using

the same key) can be processed (due to the block chaining that is in effect). Section

5.1.4 of this Thesis discusses how the pipeline and the external data source can be

modified to enable pipelined architectures to improve the aggregate throughput of the

Cipher when operating in CBC mode. Section 6.2 of this Thesis discusses an AES

Cipher design based on this Multi-Session Pipelined approach.

5.1.2 Sub-pipelining

In sub-pipelining, registers are actually inserted inside the round function itself, thereby

essentially splitting the round function into two sections. This is essentially the same

concept as pipelining. For non-feedback modes of operation, Zhang et al. [12] shows

that a sub-pipelined architecture with each round divided into r=2 sections offers a 2*K

improvement in throughput (with K equal to the depth of the main pipeline). The

additional throughput comes at a cost of k*(r-1) additional registers for the sub-pipelining

functionality. Note that as with standard pipelined architectures, sub-pipelining is

generally not suitable for ciphers operating in a feedback mode. In fact, sub-pipelining

may degrade performance when used with CBC mode.

5.1.3 Loop Unrolling

In loop unrolling, the basic architecture of Figure 22 is modified by inserting additional

rounds of combinatorial logic inside the loop, but without the additional expense of

registers. In this architecture, multiple rounds of the algorithm are processed in the

same clock cycle. Since the delay of each round (assumed to be due to combinatorial

logic) is fixed, the clock period must increase to ensure the data is processed by each

round in the same clock cycle. Unlike the pipelined architecture where registers are

inserted between each round, these inter-round registers are not present in the loop-

unrolled architecture. Figure 23 shows the difference between a pipelined and loop-

unrolled architecture.

Figure 23 Pipelined vs. Loop Unrolled Architectures

lnput Data
I I

Register e-7
Round 1 A
Register

Round 2

Output Data

Pipelined

lnput Data

I /

Register r - l
Round 1 r - 5

I Round 2 (

. t
Output Data

Loop-Unrolled

In a loop-unrolled architecture, throughput is increased by eliminating the delay

associated with the pipeline register(s) [12]. If one assumes the minimum clock period

for the basic architecture (pipeline with K=l) is as follows:

where TRoUND is the delay associated with the actual round function processing, and TOH

is the overhead delay (setup and propagation) associated with the register(s) and

multiplexers of the chosen architecture. Throughput [I 21 is then:

where NR is the number of rounds to be processed, and 128 is the number of output bits

produced. For AES operating with 128 bit keys, NR = 10.

Note that the throughput for a fully pipelined (K=l1) design operating in ECB mode is:

To calculate the throughput improvement achievable using loop-unrolling, the delay must

first be calculated. This is derived from the following, where K indicates the number of

rounds processed in the same clock cycle:

Throughput can now be expressed as:

Throughput ,, = - -
NR NR
- * T m c H K NR * T R o u N D + - * To, K

The speedup achieved by using loop-unrolling can be determined by solving the

following equation:

Throughput ,,
SPEEDUP = -

Throughput BASIC '

to yield:

1 + z
SPEEDUP = -

where 7 = TonROUND. The following table shows the magnitude of the speedup that can

be achieved by using the loop-unrolling method. If one assumes the overhead

processing delay is 40% of the round processing delay (for a total delay of 14 units), a

fully loop-unrolled architecture where K=10 will only experience a 35% speedup over the

basic architecture. Though significant, this throughput increase will come at the cost of

increased area, on the order of K times that of the basic architecture.

Only K values of 1, 2, 5, and 10 are suitable for the AES algorithm when using 128 bit

keys. Table 2 also shows that for constant 7 and as K increases, the rate of throughput

increase diminishes. In this example, K=2 appears to present the greatest throughput

increase versus area trade off. Recall that the throughput increase of the pipelined

architecture was nearly K times that of the basic architecture.

Table 2 Speedup achieved by using loop-unrolling

The advantage of loop-unrolling is that it is applicable to CBC and other feedback modes

of operation.

4 4 4 4
10 10 10 10

0.4 0.4 0.4 0.4
1 2 5 10

1 .OO 1.17 1.30 1.35

Toh
Tround
Tau
k

SPEEDUP

1 4 9
10 10 10

0.1 0.4 0.9
10 10 10

1.09 1.35 1.74

5.1.4 Multi-Session Pipelining

As mentioned previously, the primary drawback of the standard pipeline approach is that

it is not well suited to feedback-based modes of operation (such as CBC) due to the

need to complete the encryption of block N before block N+1 from the same packet can

be encrypted. [20] describes a method of processing four concurrent 32 bit threads at a

time in order to increase throughput, however, it appears that this approach does not

support CBC mode. Multi-Session Pipelining is a novel method proposed in this Thesis

for extending the benefits of pipelining to CBC mode.

An important observation is that blocks of data from other packets (using other keys)

could be used to fill the pipeline. Each of the distinct user and key combinations to which

encryption services are being applied are referred to as a session.

In order to allow this Multi-Session Pipeline approach to work for CBC mode, the

scheduling of block data into the pipeline must be modified to ensure that blocks of data

from the same session are always input to the Cipher NR rounds apart, where NR is 11

(owing to the depth of the pipeline, and the number of rounds in the AES Cipher). This

is accomplished by maintaining NR distinct queues and servicing the queues in a round-

robin fashion.

In addition, a feedback path must be created from the output of the last round to the

input of the first round of the algorithm. Figure 24 on the next page shows the proposed

architecture.

Figure 24 Multi-Session Pipeline System Diagram

External Processor
Session #O

FIFO Queue #O HA
Session #I

-xGGm-+/ \
Session #2

FlFO Queue #2

4

Session #I0

FIFO Queue # lo k

Multi-Session Pipeline Design

AES AES - Cipher -+ Cipher
Round 0 Round 1

t

The External Processor depicted in Figure 24 is designed to handle up to 11 FlFO

queues, which are serviced in a strict round-robin fashion. Data from the same session

is always placed into the same queue. More than 11 sessions may be supported by

populating the queues with multiple sessions, so long as all blocks of data corresponding

to a particular packetlsession are placed contiguously in one queue. After all queues are

serviced once, the AES Cipher will be processing 11 unique sessions with 11 different

session keys at any one time (more sessions may be queued externally).

I

Using the Multi-Session Pipeline architecture, aggregate throughputs comparable to

those achieved with the pipeline approach described in section 5.1.1 are possible. Note

that while the throughput of a fully pipelined design was given as:

Output Feedback I

the aggregate throughput (across all sessions) of a Multi-Session Pipeline design is:

and the throughput for any one of the CBC sessions is the same as for a pipeline with

K=l :

where NR is typically 11.

The Multi-Session Pipeline architecture provides enhanced aggregate throughputs and

space savings over simply instantiating the basic architecture (pipeline with K=l) NR

times.

5.2 Algorithmic Options

The basic round function of the AES cipher algorithm appears below in Figure 25. The

only areas where optimisations can be achieved are in the SubBytes and MixColumns

operations [12]. The ShiftRows operation is a permutation of bytes and requires no

hardware to implement, while AddRoundKey consists solely of an XOR of one 128 bit

word with another 128 bit word.

Figure 25 AES Cipher Round Algorithm

Round Data In

AddRoundKey s *
Round Data Out

5.2.1.1 SubBytes Optimization

As stated in section 4.3.1 .I, SubBytes may be implemented using either a look-up table,

or by implementing the following equation.

The look-up table approach offers a throughput advantage, but requires a larger area

[I 31. For the AES Cipher, 16 256x8 LUTs are required for SubBytes (assuming all 128

bits of the block are processed simultaneously. Several ways have been suggested for

improving the throughput of the LUT approach, including using a twisted binary decision

diagram, or going with a full custom approach and optimising the S-BOX at the transistor

level.

Several authors [I 21, [I 31, [I 91 - [24] have proposed various methods to reduce the

delay associated with the SubBytes process. The logic minimization and low fanout

decoding approach discussed in [I 91 appears to offer the best combination of low delay

and low gateltransistor count.

5.2.1.2 MixColumns Optimization

The MixColumns operation requires the implementation of the following equations for

each column of the state:

If one were to implement these equations directly into VHDL without care, the

synthesizer may produce the logic diagrams shown in Figure 26. Note that XTlME left

shifts the input byte by 1 position then XORs the result with 0001 101 1 (0x1 5) if the MSB

of the original byte was 1.

By analysing the delays incurred for each of the output bytes, it can be seen that

OutMixByte(0,C) requires up to 5 gate delays to be processed. However,

OutMixByte(2,C) only requires a maximum of 3 gate delays. Therefore, this

implementation is not optimised.

Figure 26 Unbalanced MixColumns implementation

By re-ordering the terms of the input equations to the following, a balanced

implementation will be created that results in all output bytes experiencing a maximum of

3 gate delays.

5.2.1.3 T-BOX Implementation

An alternative to the use of the traditional SubBytes and MixColumns implementations is

that of the T-BOX [12]. A T-BOX is a look up table approach that not only incorporates

SubBytes, but ShiftRows and MixColumns as well. Algebraically, the T-BOX can be

expressed as follows [I 21:

This matrix can be expressed by the following four equations:

Equations for all 16 bytes of the state can be generated from this by replacing C with the

column (0 to 3) being operated on. ShiftRows is implemented in these equations by

adding 0, 1, 2, or 3 to the column value C.

A look-up table holding Ix, 2x, and optionally 3x the SubBytes value should be

incorporated. Alternatively, additional RBMs may be used to hold the 2x and 3x values.

When fully implemented, up to 48 256x8 ROMs (three for each byte of the state) may be

required for one round of the algorithm when using the T-BOX approach. The T-BOX

approach is one of the methods chosen in this Thesis for the "space-optimised" AES

cipher.

The T-BOX approach is meant to reduce or eliminate the following delays associated

with the standard implementation:

o Delay in generating 2x the SubByte value

o Delay associated with the multiple levels of XBRing required in the Mixcolumns

procedure

Gate delay is reduced at the cost of increased gate count and net delay, and therefore

area. Whereas the standard AES Cipher implementation requires 16 ROMs or look-up

tables, the T-BOX approach can require up to 48 for each round.

Note that the T-BOX approach is only useful if the savings in gate delay exceed the

increases in net delay.

5.3 Implementation Options

Section 5.1 discussed how, given a value for T R ~ ~ ~ ~ , the design architecture affects the

delay of the design. Section 5.2 showed how different algorithmic design choices can

affect TROUND. TROUND is also affected by the choice of physical implementation. Among

the choices are FPGA, ASIC, or full-custom ASIC, all of which offer advantages over the

others. The decision to pursue one option over the others is often driven by one or more

of the characteristics listed in Table 3.

Device Cost I Highest I Lowest 1 Medium

Table 3 Key Physical lmplementation Characteristics

Throughput I Lowest I Medium I Fastest

Characteristic

Initial Time to Market

Development Cost

Tooling Costs

An FPGA development offers the fastest initial time to market, and lowest development

and tooling costs by saving on physical design, layout, and tape-out expenses

FPG A

Fastest

Lowest

Lowest

Standard Cell ASIC

Medium

Medium

Medium

Custom ASIC

Slowest

Highest

Highest

associated with ASlC approaches (note that the time to market for a production ready

design is equivalent across all options). However, device costs associated with FPGA-

based designs are high. As an example, a design that may incur a device cost (silicon +

packaging) of $1 0-$15 may require a $50+ FPGA. A hard-copy FPGA or structured

ASlC program that will lower the device cost to near ASlC levels could be considered.

However, this is at the expense of increased development costs and schedule impact

(structured ASlC programs have costs and schedule impacts similar to those of

traditional chip developments). In addition, the FPGA design may not satisfy the

throughput requirements of the target application.

Another consideration is the anticipated volumes. If the volumes are low, an FPGA

design (despite the higher per device costs) will offer a lower program cost (development

cost + volume * device costs). However, as volumes increase to a certain level, FPGA

and ASlC program costs will crossover such that the FPGA approach is more expensive.

Finally, ASlC and in particular full-custom ASlC approaches can achieve higher

throughputs than in FPGA-based designs. As an example, most FPGA based designs in

the literature achieve throughputs in the hundreds of Mbps (in CBC mode) and up to 20

Gbps or more in non-feedback mode [20] - [24], while ASlC approaches have achieved

those rates and greater.

CHAPTER 6 DETAILED DESIGN OF AES

The AES implementations discussed in this Thesis were designed and verified using

VHDL and Xilinx Synthesis Tools.

Two different AES implementations have been developed for this thesis. The first

implementation, based on the basic or pipeline architecture with K=l (as shown in Figure

22) is optimised for space. The second, based on the Multi-Session Pipelined

architecture of Figure 24 is optimised for aggregate throughput.

The following sections describe the detailed design of the AES Cipher for these two

implementations.

6.1 Space Optimised AES Cipher

Figure 27 shows a block diagram of the basic AES Cipher Module. As can be seen, it is

implemented using four sub-modules: Input FIFO, Control State Machine, Output FIFO

and importantly, a single AES Cipher sub-module. The

AES-CIPHER-MODULE-SPACE block implements the top level connections between

each sub-module, as well as the inputloutput interface to the testbench environment.

Figure 27 AES Cipher Module Block Diagram

I AES-CIPHER-MODULE-SPACE I
Input FIFO Output FIFO

data_in(O..gl) dale~ou1(0..127) data_ouq0..63)

The lnput FlFO sub-module buffers the write transactions from the testbench and

converts the data width from 64 bits on the testbench to the 128 bit data path required by

the encryption engine. The lnput FIFO is also used to buffer the context and initialisation

vectors. Similarly, the Output FIFO sub-module buffers the encryption results from the

encryption engine and converts the 128 bit data path utilized internally to a 64 bit data

path expected by the testbench.

The Control State Machine sub-module controls most operations of the encryption

engine including the reading of data to be encrypted from the lnput FlFO and the writing

of encrypted data to the Output FIFO. The sub-module implements a state machine that

governs the operation of the encryption engine for each clock cycle of the encryption

process.

The AES Cipher sub-module implements the actual AES algorithm itself (with the

exception of the key generation logic).

The following table describes the operation of each of the input and output signals on the

top level design.

Table 4 Pin Description of Space Optimised AES Cipher Module

Signal Name I
lnput

lnput

lnput

I

1 wrb I Input

fullb Output

key-in(0 to 127) Input

data-output(0 to 63) Output 0
lnput

Description
- -

Supplies the data input to the Cipher module for
encrypting. One half of the 128 bit AES block is
provided on each valid clock cycle.

Supplies the IV input to the Cipher module for
encrypting data in CBC mode. One half of the 128 bit
IV is provided on each valid clock cycle.

Provides the Cipher module with knowledge as to
how it should process the associated data. The
encoding of context-in is as follows:

Bit 0: '1' = Start of Packet. '0' = middle or end of

packet.

Bit 1 : "1' = Encryption, '0' = Decryption

Bits 2:3: lndicate the mode the cipher is to operate in.
"01" = ECB mode. "1 0 = CBC mode. All other values
are ignored.

Bits 4:15: Indicate the key index to be used.

lndicates the data on data-input, ivin, and
context-in should be written into the lnput FIFO.

lndicates the status of the input FIFO. '0' indicates
that the lnput FlFO is full, and 'l'indicates that the
lnput FlFO has room for at least one more 128 bit
transaction.

Provides the key address of the next required key.

Provides a read strobe for the associated key
memory.

The key to be used in the encryption process for
each round.

The result of encrypting the input data with the
:ontext information as directed in contex-in, and the
associated key.

lndicates that the testbench is ready to accept new
jata from the output FIFO.

ndicates the status of the output FIFO. '0' indicates

I Signal Name I InpuVOutput I Description I
that the output FlFO is empty (and therefore no need
to continue asking), and 'I'indicates that the Output
FlFO has at leastone more 128 bit transaction before
going emptyb.

clock lnput Provides a synchronous signal to all the clocked
elements in the design. Clock is active on the rising
edge.

6.1 .I lnput FlFO Sub-module

resetb

The lnput FlFO sub-module implements three circular buffers of 8 locations each. The

number of locations is configurable depending on the access speeds of the testbench

Input

and the encryption rate of the engine itself. Two of the buffers feature 64 bit wide

locations, while the third buffer uses 16 bit wide locations, All buffers share the same

Provides a synchronous reset to all of the clocked
element s in the design.

read and write pointer to ensure they are synchronized.

Data to be encrypted is written into the FlFO in 64 bit transactions. Therefore, for AES

applications, two transactions must occur to write the complete 128 bit AES block into

the FIFO. At the same time, the IV and context information must also be loaded into the

FIFO. Even if ECB mode is being used, the IV field as well as any unused bit locations in

the context field, should be set to 0.

Upon each write from the testbench, the write pointer is incremented one position, and

an internal contents counter is incremented. To protect the FlFO from overrun

conditions, the write pointer is compared with the read pointer. If the write pointer is

within 2 locations of the read pointer, the lnput FlFO will assert the fullb signal to the

testbench. The testbench should not attempt to write new data into the FlFO until the

fullb signal is de-asserted.

The Control SM block controls reading from the FIFO. Upon each read from the Control

SM block, 2 locations are read from each buffer and concatenated together to form the

128 bit or 32 bit word required by the Control SM sub-module. The read pointer is

incremented by two and compared to the write pointer. If the new read pointer and write

pointer are equal to each other, the FlFO is empty and the emptyb signal is asserted to

the Control SM. To avoid FlFO under-runs, the Control SM must not attempt to read

from the FlFO when emptyb is asserted.

6.1.2 Output FlFO Sub-Module

The Output FlFO sub-module implements one circular buffer of 8 locations. The number

of locations is configurable depending on the access speeds of the testbench and the

encryption rate of the engine itself. The buffer features 64 bit wide locations.

Encrypted data is presented to the FlFO as a 128 bit word. On each write transaction

initiated by the Control SM, two locations are filled. The first location corresponds to bits

0 to 63 of the encrypted data block, and the second location corresponds to bits 64 to

127. Upon each write from the Control SM, the write pointer is incremented two

positions, and an internal contents counter is incremented. To protect the FlFO from

overrun conditions, the write pointer is compared with the read pointer. If the write

pointer is equal to the read pointer, and the contents counter indicates the FIFO is

holding at least 6 units of data, the Output FlFO will assert the fullb signal to the Control

SM. The Control SM should not attempt to write new data into the FlFO until the fullb

signal is de-asserted. Therefore, the Control SM must go into a holding state until the

Output FIFO is no longer full.

The testbench controls reading from the Output FIFO. Upon each read from the

testbench, 1 location is read from the buffer. Therefore, for AES applications, two

transactions must occur to read the complete 128 bit AES block from the Output FIFO.

The read pointer is incremented by one and compared to the write pointer. If the new

read pointer is within one location of the write pointer, the FlFO is empty and the emptyb

signal is asserted to the testbench. To avoid FlFO under-runs, the testbench must not

attempt to read from the FlFO when emptyb is asserted.

6.1.3 Control SM Sub-module

The Control SM (State Machine) sub-module implements a state machine of 27 states

that controls the operation and sequencing of the cipher. Figure 28 is the state diagram

for the Control SM. The operation is as follows:

o Initially, the state machine is in the IDLE state and remains so until the

FIFO-EMPTY6 signal from the input FlFO block is 'l', indicating that data is in

the FIFO. Once FIFO-EMPTYB is 'I1, the state machine transitions to the

Get-Context state.

o In the Get-Context state, the state machine reads the context bits to determine

how processing should proceed. If bits 2 and 3 of the context input are equal to

"01 ", the state machine transitions to the ECB-ENCRYPT-1 state. If bits 2 and 3

are equal to "lon, the state machine transitions to the CBC-ENCRYPT-1 state.

Figure 28 Control SM State Diagram

SM-CONTEXT
-INPUT = '10'

-INPUT = '01'

Get-Context

FIFO-EL

i/p FIFO EMPTY0 =1 /
olp FIFO FULL0 =1 ilp FIFO E M W B =1

d p FlFO FULL0 =I

d p FlFO = FULL

Get-Contextout

o In the ECB-ENCRYPT-1 state, the state machine drives the data to be

encrypted to the AES Cipher sub-module. On subsequent clock cycles, the

state machine cycles through states 2 through 10. In states 2 through 10, the

controller simply feeds back the output of the previous round to the input of the

next round.

o In the ECB-ENCRYPT-11 state, the data is completely encrypted having

traversed through all rounds of the state. In this state, the controller examines

the state of the FIFO-EMPTYB flag from the lnput FIFO and the FIFO-FULLB

flag from the Output FIFO. If the FIFO-FULLB flag is 'O', the state machine

transitions to the Out-FIFO-Full state. Otherwise if both the FIFO-EMPTYB flag

and FIFO-FULLB flag are '1 ', the state machine transitions to the

Get-Contextout state because there is new data available to encrypt and the

output FlFO is empty. If the FIFO-EMPTYB flag is '0' and the FIFO-FULLB flag

is '1 ', the state machine transitions to the IDLEOUT state due to the fact that

there is no more data to encrypt.

o The functioning of the CBC-ENCRYPT-1 through CBC-ENCRYPT-11 states is

similar to that of the ECB-ENCRYPT-X states. The primary difference is that in

CBC-ENCRYPT-1, the input data to be encrypted must be XOR'ed with the IV if

this is the first block of the packet. If not the first block of the packet, the input

data to be encrypted must be XOR'ed with the previous encryption result.

o In the Get-Contextout state, the state machine retrieves the next data, IV and

context information required to encrypt the next block of data.

o In the Out-FIFO-Full state, the state machine monitors the setting of the

FIFO-FULLB flag to determine when space is available in the Output FIFO.

When space becomes available, the encrypted data is written into the FIFO, and

the state machine transitions to the IDLEOUT or Get-Contextout state

depending on whether or not data in the lnput FlFO is waiting to be encrypted.

o In the Get-Contextout state, the state machine writes the encrypted data into

the Output FIFO and reads the data, IV and context for the next block of data to

be encrypted.

6.1.4 AES Cipher Sub-module

Two versions of the AES Cipher module have been developed. One version implements

the traditional S-Box approach for SubBytes. A simplified block diagram of this version of

the AES Cipher sub-module is shown in Figure 29.

Figure 29 AES Cipher Sub-module Block Diagram

aes-data-i -
n

aes-key-in -

round-nu -
rn

clock -

L w a e s - d a t a instate

I
I 4 1 -

r Left shift +'o' I Substate

+
Shiftstate

shift-data-out

round-num-R4

clock-

Input data to the cipher sub-module is placed into an array named Instate which mimics

the state construct in the AES specification [2]. All 16 byte values of the state are then

used as lookup addresses for 16 ROMs, the output of which is named Substate. The

Substate signal then takes two paths. One path implements the Shiftrows function only,

and results in a new signal named Shiftstate. The other path left shifts the Substate

signal one position and XORs the result with " 0 0 0 ~ ~ 6 ~ 0 6 ~ ~ ~ " where %'is the most

significant bit of the Substate signal (prior to left shifting). If 6' is 0, then the XOR

function has no effect. If 6' is 1, the left shifted value is then XOR'd with "0001 101 1" or

0x1 6. This process creates a new signal termed Shiftstate-2.

Shiftstate and Shiftstate-2 are used as part of the MixColumns combinatorial logic. The

MixColumns logic implements the following balanced MixColumns equations:

1 *S,, represents the various Shiftstate values, 2*S,, represents the Shiftstate-2 values,

and 3* S,, is the result of XORing Shiftstate and Shiftstate-2 for the appropriate row and

column values.

The output of the MixColumns operations is XOR'ed with the AES-KEY-IN value for this

particular round as part of the AddRoundKey function to create the AES Cipher output

for rounds 1 through 9 of the Cipher.

Note that the AES Cipher module provides four possible outputs:

o One output (AES-DATA-OUT-ROUNDO) computes the XOR of the key and

input (for round 0)

o One output (AES-DATA-OUT-FINAL) computes the XOR of the key and the

result of SubBytes (for round 10)

o One output (AES-DATA-OUT-MID) computes the XOR of the key and the result

of the Mixcolumns operation (for rounds 1 through 9)

o One output (AES-DATA-OUT-LAST) provides a registered version of

AES-DATA-OUT-FI NAL

An alternative AES Cipher module was developed that utilized the T-BOX approach

described in Section 5.2.1.3 and [I 21. Figure 30 shows the block diagram of this

alternate version of the AES Cipher module.

Figure 30 AES Cipher Module Using T-Box Approach

aes-data-in -

aes-key-In -

round-num -

clock ---I

- aes-data b instate

Combinational

final-round-out
mid-round-out 7

128 Bit Register

+ round-num-R--+

-b clock-

6.2 Multi-Session Pipelined AES Cipher

The following sections describe the implementation of the Multi-Session Pipelined AES

Cipher module, also referred to as the throughput optimised design.

Figure 31 shows a block diagram of the Multi-Session Pipelined AES Cipher Module.

Figure 31 Multi-Session Pipelined AES Cipher Module

I Muh-Session Pipelined AES Cipher

There are several high level differences between the design of Figure 31, and that of

section 6.1. These include:

o The top-level interface is changed to support 128 bit wide data paths for the input

data, output data, and IV signals. As well, the Key Interface is removed. Finally,

signals are added to pass mode, key index, start of packet, and data valid

information to the Cipher Module.

o The Input FIFO, Output FIFO and Control SM are removed in order to support a

new 128 bit block of data on every clock cycle (for maximum throughput).

o Finally, a separate AES Cipher round sub-module is instantiated for each round

of the design.

The individual AES Cipher round sub-modules that form the basis of the design store the

pre-computed individual round-keys required for their particular position in the pipeline.

For instance, the round 0 sub-module will only contain round 0 round-keys for the

sessions in use. Likewise, the round 5 sub-module will only contain round 5 round-keys.

The round-key to use will be selected based on the key-index signal. Since the

AddRoundKey function of the AES algorithm is always the last operation to be

performed in a round, the key memory will be able to provide the correct session key by

the time it is needed. The value of the key-index signal will propagate with the data

through each sub-module of the design to ensure that the correct key is used on a per

round basis to encrypt the data.

Since the Multi-Session Pipelined AES Cipher will produce a new 128 bit encryption

result on every clock cycle, the data-valid-in signal is provided to qualify the validity of

the input data. When the data on the data-input signal is valid, the data-valid-in signal

will be high. This will propagate through each stage of the pipeline and will inform the

downstream processing block that the output-data signal is valid.

The pin description of the Multi-Session Pipeline AES Cipher is presented in Table 5.

6.2.1 AES Cipher Sub-module

The Multi-Session Pipelined AES Cipher Module utilizes modified versions of the Cipher

Module shown in Figure 29. For rounds 1 through 10 of the design, the primary

differences are that the sub-module contains the pre-computed round-keys for each of

the supported sessions. In addition, the sub-modules register and pass the key-index

and data-valid signals as they propagate with the data they pertain to.

The AES-Cipher-Round0 sub-module is further modified to check the status of the

mode and SOP signals. If the mode signal 'O', the data is to be encrypted using ECB

mode, and is simply XOR'ed with the round-key. If the mode signal is 'I ', the data is to

be encrypted using CBC mode. In this case, the sub-module also checks the value of

SOP. If SOP is 'I ', the block of data corresponds to the start of packet, and the data is

XOR'ed with the IV signal before being XOR'ed with the round-key. If SOP is 'O', the

data is XOR'ed with the result of encrypting the last block of data on this session before

being XOR'ed with the round-key.

Table 5 Pin Description of the Multi-Session Pipeline AES Cipher Module

I Signal Name Input/Output Description

lnput Supplies the data input to the Cipher module for
encrypting.

lnput Supplies the IV input to the Cipher module for
encrypting data in CBC mode.

key-index lnput Provides the Cipher module with knowledge as to
which round-key to use. May be expanded as needed
to support the required number of sessions.

mode-in lnput lndicates whether the block should be encrypted
using ECB or CBC mode.

I '0' = ECB Mode. '1' = CBC Mode.

sop-in lnput lndicates whether the block represents the start of a
packet or not.

1 '1' = Start of Packet. '0' = middle or end of packet.

data-valid-in

data-valid-out

lnput

Output

Output

lndicates that the data presented on the data-input,
iv-in, key-index, mode-in, and sop-in signals are
valid.

- - -- - - - --

Indicates that the data presented on the data-output
signal is valid.

Output data for the Multi-Session Pipelined AES
Cipher.

clock

resetb

lnput

lnput

Provides a synchronous signal to all the clocked
elements in the design. Clock is active on the rising
edge.

- -

Provides a synchronous reset to all of the clocked
elements in the design.

6.3 lnverse Cipher Design

One of the goals of this Thesis was to create a modular design that with minor alteration,

could be re-used for the lnverse Cipher and Key Generation functions. In light of this,

the Input FlFO and Output FlFO are 100% re-used for the lnverse Cipher. Since keys

are used in reverse order with the lnverse Cipher, the Control SM module is altered to

decrement key address and round values. Finally, the Cipher sub-module is necessarily

updated to implement the actual lnverse Cipher algorithm as described in Section 4.3.2.

The design of the inverse cipher sub-module is similar to that of the cipher module

depicted in Figure 29 with the exception that an extra register and multiplexer is required

to support CBC mode. The register is used to hold the IV value (for the first block of

data) or the prior block of input data. Figure 32 depicts the general configuration of an

lnverse Cipher in CBC mode.

Figure 32 AES Inverse Cipher in CBC Mode

Ciphertext Block #I

Decryption 0
Initialization
Vector

f
Plaintext Block #1

Ciphertext Block #2

I

Decryption [I
9 Plaintext B IOC~ #2

Ciphertext Block #3

I
Decryption

*
Plaintext Block #3

6.4 Key Expansion Design

The only variation in the design of the Key Expansion module from the AES cipher

module is the Key Expansion sub-module replaces the AES cipher sub-module. The

Input FIFO, Output FIFO and Control SM are 100% re-used from the AES Cipher

design.

CHAPTER 7 AES DESIGN VERIFICATION

The AES Cipher was designed using Xilinx Synthesis Tools, and verified using the

Modelsim verification environment. Before discussing test results for the different

implementations, the verification strategy is introduced.

AES design verification is composed of two components:

o Design of the Testbench

o AES Cipher Module Verification

The following sections describe these components in further detail.

7.1 Space-Optimised AES Testbench Design

Figure 33 on the next page shows the connections from the testbench to the space-

optimised AES Cipher Module. The testbench performs three general operations:

1. Operation of the input interface

2. Operation of the output interface

3. Operation of the Key Memory interface

Figure 33 Testbench Connections

resetb ---*/ resetb I
clock clock

Testbench
Input VF

-
Key Memory

7.1 .I lnput Interface

The input interface process controls the sequencing of data, IV, and context information

AES-CIPHER-MODULE-X

data_input(0..63) data-output(0..63)

lv-ln(0..63) rdb

context_ln(o..l5) empW

wrb

tullb

key_address(O..4)

read-mem

key-ln(0 to 127)

b

-b

b

4

b

to the AES Cipher Module. The input interface initially drives the reset signal to the

design. Once out of reset, the testbench begins monitoring the fullb signal which

C

4 -

indicates whether or not the lnput FIFO in the AES Cipher Module has room to accept

Testbench
output UF

P

data. Transfer of data (including IV and context) from the testbench to the Cipher Module

requires three clock cycles. On the first clock cycle (assuming fullb is high), the

testbench will set the wrb signal to '0'. On the second clock cycle, the testbench will

continue to assert wrb to 'O', and will also drive the data and IV signals with the most

significant 64 bits of the data and IV as well as the most significant 16 bits of the context

information. On the third and final clock cycle, the testbench will de-assert wrb (to '1')

and will drive the least significant bits of the data, IV and context signals. Note that if the

testbench has data available to transfer to the Cipher Module, the testbench may not de-

assert wrb on the third clock cycle. A timing diagram of this basic operation is presented

in Figure 34.

Figure 34 Functional Timing Diagram of the Input Interface

clock c
reset I
fullb

iv
(0..63)

context
(0..15)

Note that if the fullb signal from the AES Cipher Module is asserted ('O'), the testbench

will not drive the wrb signal to '0'. The data, IVY and context signals may be driven to any

value.

7.1.2 Output Interface

The output interface controls the sequencing of data to be read from the AES Cipher

Module. The testbench monitors the setting of the emptyb signal. When the Output

FlFO of the AES Cipher Module is empty, emptyb will be 'O', and the testbench will

correspondingly de-assert rdb. Once the output FlFO contains data, the emptyb signal

will be set to '1 ', at which time the testbench will assert the rdb signal to '0'. This will

cause the AES Cipher Module to transfer encrypted data (in 64 bit segments) to the

testbench.

The following figure depicts the functional timing on the Output Interface.

Figure 35 Output Interface Functional Timing

Clock c
Reset

7.1.3 Key Interface

The testbench (used with the space optimised design) maintains a pre-computed Key

Memory database. This database contains all of the round keys the C~pher is expected

to use. The AES Cipher Module drives the read-mem signal into the testbench which,

when set to '1 ', instructs the testbench to read a location from the key memory and send

the key value read at that location back to the AES Cipher Module. The address into the

Key Memory is formed by a concatenation of the key index and round number.

The following diagram depicts the functional timing on the Key Interface.

Figure 36 Key Interface Functional Timing

Clock c
Reset

Read-Mem I

7.2 Multi-Session Pipelined AES Testbench Design

The testbench for the Multi-Session Pipelined AES Cipher is much simpler than that

used for the space-optimised design. Instead of monitoring the status of the fullb and

emptyb signals, the testbench now simply updates the data, IV, and associated context

information on each rising clock edge. The testbench is designed to enforce an 11 clock

cycle separation between CBC mode data blocks using the same sessionlkey.

7.3 AES Cipher Module Verification

Once the design of the AES Cipher Module and associated testbench is complete,

verification of the actual design can commence. The Xilinx FPGA design flow consists of

four steps: Synthesis, Translate, Map, and Place and Route. Simulations may be run

after each step, but for this Thesis, simulations were only run after the Synthesis and

Place and Route steps. Simulations were run after the Synthesis step to catch syntax

and logical errors while simulations were run after the Place and Route step to catch

logical and timing errors in addition to determining the throughput of the design.

The AES Specification [ll] contains test vectors that can be used to test the completed

design to ensure that the expected results for a known input (data, IV, key) are obtained.

In addition, RFC 3602 [14] contains test vectors for AES in CBC mode. Table 6 lists the

test vectors utilized in this design as well as the expected and actual results.

As can be seen, the AES Cipher design passes all test vectors. Note that additional test

vectors can and should be run to ensure the design is system ready.

Table 6 Test

Input
Data

Key

IV

Mode

Expected
Result

Actual
Result

Vectors used in the verification

Vector Set #I

32 43 f6 a8 88 5a 30 8d

31 31 98 a2 eO 37 07 34

2b7e151628aed2a6

abf7 158809cf 4f 3c

Not applicable

ECB

39 02 dc 19 25 dc 1 1 6a

840985Obldfb9732

3902dc1925dc116a

840985Ob 1dfb9732

of AES

Vector Set #2

0011223344556677

88 99 aa bb cc dd ee ff

0001 020304050607

0809OaObOcOdOeOf

Not Applicable

ECB

69 c4 eO d8 6a 7b 04 30

d8cdb78070b4c55a

69c4eOd86a7b0430

d8cdb78070b4c55a

Vector Set #3

0001 020304050607

0809OaObOcOdOeOf

10 11 12 13 14 15 16 17

18 19 l a l b l c l d l e l f

c286696d887c9aaO

61 lbbb3e2025a45a

562e 1799 6d 093d28

dd b3 ba 69 5a 2e 6f 58

CBC (2 128 bit words)

d2 96 cd 94 c2 cc cf 8a

3a863028b5eldcOa

75 86 60 2d 25 3c ff f9

1b8266bea6d61abl

d296cd94c2cccf8a

3a863028b5el dcOa

75 86 60 2d 25 3c ff f9

l b8266 bea6d6 l a b l

Figure 37 presents a waveform diagram produced as a result of simulating the AES

Cipher Module design with vector sets 2 and 3. In addition to verifying the design

produces the expected results, it also shows that the design is capable of supporting

both ECB and CBC mode. Additional simulation results are presented in Appendix A.

CHAPTER 8 AES RESULTS

The following sections discuss the results of the AES designs implemented in this

Thesis. Both size and performance numbers are included for the space-optimised and

Multi-Session Pipelined designs and compared against prior works. Initial design of the

AES Cipher Module utilized the XC2v3000fg676-6 FPGA. Subsequent testing utilized

other FPGAs in order to compare the results of this Thesis with other published

implementations.

8.1 Space Optimised AES Design Results

A design summary of the space optimised AES design is presented in Table 7. Note that

this design utilized 401 6 Xilinx FPGA slices with an equivalent gate count of 79M gates.

During the design process, the AES Cipher Sub-module was found to be the limiting

factor from a performance perspective. The extra overhead of the Input FIFO, Output

FIFO, and Control SM is used to sequence data transfers tolfrom the design and

provides a common interface to the testbench, but does not directly implement the AES

algorithm. Therefore, for comparison purposes, the size characteristics of the AES

Cipher Sub-module is also included in Table 7.

Table 7 Space Optimised AES Design Summary

I Parameter / Complete AES Cipher I AES Cipher Sub-module 1
I 256x8-bit ROM I 16 I 16 I

The following table (Table 8) details the performance characteristics of the space

optimised AES design and compares the results with 3 other published works [I 51, [I 61,

and [I 81. An attempt was made to ensure that the works being compared also

implement CBC mode. As can be seen, this design features a higher throughput than

Number of Slices

Equivalent Gate Count

the other references. However, this comes at a cost of increased FPGA slices. The

FPGA slices of the AES Cipher sub-module is also shown since it is not clear from the

published results whether the other authors include overhead (such as the Input FIFO in

this design) that is not directly related to implementing the AES algorithm.

An additional parameter "throughput (in Mbps)/Slicen is added in order to judge the

relative efficiencies of the various designs. As can be seen, the design described in this

Thesis offers the best efficiency. If only the slices in the AES Cipher module are included

in the efficiency calculation, the design in this Thesis offers a significant improvement in

efficiency over all other references in Table 8.

401 6

78,957

1454

N/A

To eliminate the impact of different FPGAs on the test results, the AES Cipher Module

Table 8 Performance Characteristics of the Space Optimised AES Design

was re-simulated with the Xilinx XCV1000bg560-6 FPGA. The results are listed in Table

9. As can be seen, the design described in this Thesis still offers higher throughput and

greater efficiencies than the cited references.

FPGA Type

FPGA Slices

Clocks/Block

Cipher Mode

Max. Clock
Frequency

Throughput

Throughput1
Slice

Table 9 Performance Characteristics with Same FPGA

I I This Design I Reference [l5] I Reference 1161 1

This Design

XCV1 OOOEFG
860-8

401 6 (1 454)

12

ECB or CBC

59.70 MHz

636.82 Mbps

0.1 59 (0.438)

FPGA Type I XCVlOOO 1 XCVlOOO
bg560-6 bg560-4 / XCvlooo bg560-6 /

I FPGA Slices 1 401 6 (1454) 1 5302 1 2902 1

Reference [I 51

XCV1000
bg560-4

5302

6

CBC

14.1 MHz

300.1 Mbps

0.057

1 ClocksIBlock I 12 1 6 I Not Published (

Reference [I 61

XCVI 000
bg560-6

2902

10

ECB or CBC

25.9 MHz

331.5 Mbps

0.1 14

Reference [I 81

XCV6OOE-
8BG432

468 1

Not Published

All

Not Published

310 Mbps

0.066

Cipher Mode

Max. Clock
Frequency

ECB or CBC

50.0 MHz

CBC

14.1 MHz

ECB or CBC

Not Published

1 Throughput 1 533.33 Mbps 1 300.1 Mbps 1 331.5 Mbps I
This Design

Note that second version of the space-optimised design utilizing the T-BOX approach

was also completed, however, this version suffered from the fact it required 48 rather

than 16 ROMs. The total number of required slices increased from 401 6 to 61 85, a 54%

increase. However, this increase in size did not translate into increased throughput. In

fact, throughput decreased to 627.45 Mbps, based on a 17 ns minimum clock period. It

is believed that the throughput decreased with the T-BOX approach (when one would

have expected it to increase) due to the difficulty of optimising delays for 48 ROMs. The

"outer-region" ROMs will have much higher net delays than those closer to the

destination processing blocks. The ROM(s) with the highest delay will dominate the

overall Cipher Round delay.

Reference [I 51

Throughput1
Slice

8.2 Multi-Session Pipelined AES Design Results

Reference [I 61

A design summary of the Multi-Session Pipelined AES design is presented in Table 10.

Note that this design utilized 13675 Xilinx FPGA slices with an equivalent gate count of

262K gates.

0.1 33 (0.367) 0.057 0.1 14

Table 11 details the performance characteristics of the Multi-Session Pipelined AES

Table 10 Multi-Session Pipelined AES Design Summary

design and compares the results with the space optimised design as well as other

Parameter

256x8-bit ROM

Number of Slices

Equivalent Gate Count

published results. The 1 Ox speedup over the "space-optimised design comes at a cost

Complete AES Cipher

160

13675

262,073

of 3 . 4 ~ the total number of FPGA slices. Note that the while the aggregate throughput

across all sessions is 6.4 Gbps, the throughput for any one of the concurrent sessions

(in CBC mode) is 581.8 Mbps.

Note that Table 11 compares the Multi-Session Pipelined design with another design

[23] that is also fully-pipelined, and on the surface offer much greater efficiency and

throughput. However, it is important to note that these designs do not appear to support

CBC mode, which is a mandatory mode for any network application using AES with

lPSec [14]. As such, a design that fails to support CBC is of limited practical value.

Table 11 Performance Characteristics of the Multi-Session Pipelined AES Design

FPGAType 1 XC2V4000- 1 XCVlOOO / XCV812E- 1 XC2VP20-7 1
BF957-6 EFG860-8 BG560

This Design
(Multi-Session

Pipeline)

This Design
(Space)

FPGA Slices 13675 (1 165 for / 4016 (1454) 1 3046 1 9446 1
Rounds 1-1 0)

Reference [21] Reference [23]

280 of 280
BRAMs
FPGA I I O I
Clocks/Block

Cipher Mode

Max. Clock
Frequency

Aggregate
Throughput

Note that in [23], the authors list results for another version which utilized 84 BRAMs and

1

ECB or CBC

50.0 MHz

Aggregate
Throughput1
Slice

51 77 slices to achieve a throughput of 21.54 Gbps.

6.40 Gbps

8.3 FPGA, ASlC and Full Custom Design Results

12

ECB or CBC

59.70 MHz

0.468

As mentioned previously, the throughput of the Cipher is intimately tied to the logic delay

of each round. Various prior works have shown that the largest component of delay is

caused by the SubBytes substitution [I 31, and [20] - [24]. Reducing the delay increases

the throughput of the design. The designs produced for this Thesis focused on ROM and

look-up table implementations of SubBytes which are most amenable to FPGA-based

designs. FPGAs and their synthesis tools offer a relatively simple design environment,

but this comes at the cost of reduced flexibility in design approach.

636.82 Mbps

ASlC and Full Custom based implementations have much greater freedom to implement

non-standard cell based approaches that can optimise down to the transistor level if

desired. Implementations in this area have focused on more innovative ways to reduce

Not Published

ECB, CBC is
unknown

61 MHz

0.1 59 (0.438)

Not Published

ECB

Not Published

1.95 Gbps 21.64 Gbps

0.64 2.29

the delay associated with the SubBytes [1 31, and [20] - [24] process, including the

Binary Decision Diagram (BDD) and Twisted Binary Decision Diagram (T-BDD)

discussed in [1 31.

Binary decision diagrams (BDD) have been shown to reduce the delay, but the methods

used incur high faninlfanout loads [I 31. The 'Twisted BDD (TBDD) approach buffers

and shifts the order of inputs to each output bit of the S-BOX. This approach is the

fastest reported so far, but is also the highest gate count method [1 31.

In [1 91, we describe a new method known as the L-BOX that uses novel logic

minimization and decoding to reduce fanin and fanout to produce a SubBytes process

that minimizes Nand2 equivalents and delay at the same time. Table 12 compares the

results obtained using the L-Box approach with other SubBytes optimisation

approaches.

- ,

Table 12 Comparison of ASIC Speed and Size Requirements

I Method I Delay (ps) I Nand2s

I Finite Field [1 31 1 2190 1 354-406

1 BDD [I 31 1 680 1 2426

I TBDD [13] 1 440 1 2815

I L-Box, Single [I 91 1 460 1 536

I L-Box, Differential [1 91 1 420 1 738

8.4 Summary of Results

The results of section 8.1 indicate that the space optimised AES has a 92% higher

throughput, and the highest efficiency, of the cited work for both ECB and CBC mode.

The Multi-Session Pipelined design discussed in section 8.2 offers a dramatically higher

throughput for both ECB and CBC modes. The Multi-Session Pipelined is capable of an

aggregate throughput of 6.4 Gbps. Note that the throughput in CBC mode for any one of

the concurrent sessions is 581.8 Mbps. Efficiency increased to 0.468.

Other papers [20] - [24] claim extraordinary throughputs using FPGA design

approaches. Typically implemented using fully pipelined architectures, these papers

appear to only support ECB mode, which is a serious shortcoming. Further, many of the

comparisons that are being done are across multiple FPGA types and speed grades

which lead to very misleading results.

CHAPTER 9 REALIZATION OF A SECURITY CO-
PROCESSOR

The AES Cipher Module, AES Inverse Cipher, and AES Key Generation modules can be

integrated together in order to realize a full AES crypto processor. Figure 38 depicts a

block diagram of such a design.

The input data, output data, clock, and reset signals of all three modules share a

common bus to the external world. The individual rdb, fullb, emptyb, and wrb signals

are kept separate so as to allow individual monitoring and selection of the cipher and

inverse cipher modules.

The output of the key generation module is connected to the cipher and inverse cipher

modules in order to allow the round keys to be automatically updated as required. The

key memory in the cipher and inverse cipher should be implemented as a dual port RAM

in order to allow keys that are not in use to be updated while the cipher and inverse

cipher are using other keys.

This co-processor would be capable of supporting CBC and ECB mode for both

encryption and decryption, and would contain the necessary key generation logic.

A device such as the PMC-Sierra RM7000 MIPS-based processor could be used to

implement the IP layer, and the IPSec protocol processing stack. Another option would

be to integrate the security engine with a processor in a System on Chip (SOC) design.

The small size (-79K gates) of the space-optimised design would be ideal as the die

cost of the engine would be insignificant compared to the processor itself. As well, the

performance of such an integrated processor would likely be greater than an FPGA-

based design. In general, ASlCs offer higher performance than FPGAs (even if using the

same technology, such as 0.1 8 uM). The VHDL code developed for this thesis is

technology independent, allowing it to be synthesized in any FPGA or ASIC technology.

Figure 38 Block Diagram of the Complete AES Processor

dataataInput(0..63) -
iv-ln(a.63) -

context-in(0..63) -

cipher-wrb -
cipher-tullb -

dock -

reset -

key-cipher-wrb

key-dpher-fullb

---+I tullb Inv-cipher-select 4-

AES-CIPHER-MODULE2

c datadatalnput(0..63) data-outpvt(0..63) -
c cont&-ln(Q.15)

c Wrb

. fullb key_address(0..9) r

c reDetb clpher-select L F

CHAPTER 10 CONCLUSION

With more and more sensitive information being transmitted electronically over the

Internet, never before has the need for strong cryptographic security been higher. In

addition, as the amount and variety of devices connecting to the Internet increases, so to

does the need for security processors that are tailored to the application. A security

engine in a mobile phone will require vastly different performance and power

specifications than a security engine operating on a core router line card.

This Thesis has explored the driving needs for security, its implementation via lPSec at

the network layer, and the cryptographic protocols that form the heart of the security

engine. The goal of this Thesis was to understand the issues in the design and

implementation of a scalable and efficient security co-processor capable of supporting

encryption and decryption at OC-12 data rates (622 Mbps). This goal has been met.

AES Cipher, Inverse Cipher (both supporting CBC and ECB mode) and Key Generation

modules were completed, and verified. The code was designed in a technology

independent manner, allowing it to be applied equally effectively to FPGAs or ASICs.

The AES Cipher was studied to reveal some of the architectural and algorithmic

optimisations that should be considered in order to address the larger speed vs. area

question. In addition, a novel architecture was proposed to enable the use of pipelined

architectures in CBC mode.

The space-optimised design was found to require 401 6 Xilinx FPGA slices and operated

at 636 Mbps, which was greater than the works cited in this Thesis. The Multi-Session

Pipelined AES design utilized a novel pipelined architecture that allowed the throughput

to increase to 6.40 Gbps at the cost of an increase in FPGA slices to 13675.

There are several opportunities for future work as a result of this Thesis. The Multi-

Session Pipelined approach offers multiple optimisation directions, including

incorporating it coupled with a loop-unrolled architecture. As well, additional time may

be spent optimising the SubBytes process, perhaps through the use of Galois field

mathematics to reduce the delay instead of ROMs or LUTs. Finally, [I 91 describes a

novel logic minimization and decoding technique which could be advanced in the full-

custom arena.

APPENDIX A - SIMULATION RESULTS

Figure 39 presents a complete waveform of the space-optimised AES Cipher. The

waveform was generated using the post place and route simulation model. The

simulation is running the test vectors specified in Table 6. The clock is running with a

period of 17 ns. As can be seen, the design produces the correct ciphertext results in 12

clock cycles per vector. This particular design includes the use of the Output FIFO, and

therefore the 128 bit result is output as two 64 bit words. The first of the 64 bit outputs is

only present for one clock cycle, and therefore is difficult to see. Using the rdy-counter

signal as a guide, the ECB vectors are input during rdy-counter cycles 0x4 and 0x5,

while the ECB ciphertext result is output during cycles OxlA and 0x1 B. Likewise, the

CBC vectors are input during rdy-counter cycles 0x7-OxA, and the CBC ciphertext

results are output during cycles 0x26, 0x27, 0x31 and 0x32. Figure 40, Figure 41, and

Figure 42 closer views of the ciphertext results in order to verify correct operation and

timing.

Figure 43 presents the simulation result for the Multi-Session Pipelined design. Using

rdy-counter as a guide, the ECB test vector of Table 6 is transferred to the Cipher during

cycle 0x4. The Cipher produces the result during cycle 0x1 0. The CBC input vectors are

loaded during cycles 0x7 and 0x12. The encrypted result is presented during cycles

0x1 3 and 0x1 E. Figure 44, Figure 45, and Figure 46, show closer views of the ciphertext

results in order to verify correct operation and timing.

Figure 39 Simulation Result of the Space Optimised Cipher (Full View)

Figure 41 Simulation Result of the Space Optimised Cipher (CBC Section)

Figure 42 Simulation Result of the Space Optimised Cipher (CBC Section, Part 2)

Figure 43 Simulation Result of the Multi-Session Pipelined Cipher (Full View)

Figure 44 Simulation Result of the Multi-Session Pipelined Cipher (Inputs)

Figure 45 Simulation Result of the Multi-Session Pipelined Cipher (ECB and CBC outputs)

APPENDIX B - RTL CODE

This section presents the VHDL code of the space-optimised AES Cipher module.

AES CIPHER MODULE

library IEEE;
use IEEE.STD-LOGIC-1164.ALL;
use IEEE.STD-LOGIC-ARITH.ALL;
use IEEE.STD-LOGIC-UNSIGNED.ALL;

entity aes-cipher-module-3 is
Port (

-- i/f to input fifo
data-input : in std-logic-vector(0 to 63);
iv-in : in std-logic-vector(0 to 63);
context-in : in std-logic-vector(0 to 15);
wrb : in std-logic;
fullb : out std-logic;

--i/f to output fifo
data-output : out std-logic-vector(0 to 63);
emptyb : out std-logic;
rdb : in std-logic;

--i/f to key memory
key-in : in std-logic-vector(0 to 127);
key-address : out std-logic-vector(0 to 4);
read-mem : out std-logic;

clock : in std-logic;
reset : in std-logic);

end aes-cipher-module-3;

architecture RTL of aes-cipher-module-3 is
COMPONENT control-sm

Port (
-- i/f to input fifo
data-in : in std-logic-vector(0 to 127);

iv : in std-logic-vector(0 to 127);
context : in std-logic-vector(0 to 31);
fifo-emptyb : in std-logic;
rdb-fifo : out std-logic;

-- i/f to output fifo
wrbfifo : out std-logic;
fifo-fullb : in std-logic;

-- i/f to cipher block
aes-data-in : out std-logic-vector(0 to 127);
round : out std-logic-vector(0 to 3);
aes-data-out-round0 : in std-logic-vector(0 to 127);

aes-data-out-mid : in std-logic-vector(0 to 127);
aesdata-out-final : in std-logic-vector(0 to 127);

aes-data-out-last : in std-logic-vector(0 to 127);

-- i/f to key memory
aes-key-mem-address : out std-logic-vector(0 to 4);
read-key-mem : out std-logic;

clock : in std-logic;
reset : in std-logic);

END COMPONENT;

COMPONENT FIFO
Port (resetb : in std-logic;

clock : in std-logic;
rdb : in std-logic;
wrb : in std-logic;
data-in : in std-logic-vector(0 to 63);

iv-in : in std-logic-vector (0 to 63);
context-in : in std-logic-vector (0 to 15);

emptyb : out std-logic;
fullb : out std-logic;

context-out : out std-logic-vector (0 to 31);
iv-out : out std-logic-vector (0 to 127);

data-out : out std-logic-vector(0 to 127));
END COMPONENT;

COMPONENT OUT-FIFO
Port (resetb : in std-logic;

clock : in std-logic;
rdb : in std-logic;
wrb : in std-logic;
data-in : in std-logic-vector(0 to 127);
emptyb : out std-logic;
fullb : out std-logic; .
data-out : out std-logic~vector(0 to 63));

END COMPONENT;

COMPONENT aes-cipher
Port (aes-data-in : in std-logic-vector(0 to 127); --data block to encrpyt

aes-key-in : in std-logic-vector(0 to 127); --the key to use for this round
round-num: in std-logic-vector(0 to 3);

clock: in std-logic;
reset: in std-logic;

aes-data-out-round0 : out std-logic-vector(0 to 127);
aes-data-out-mid : out std-logic-vector(0 to 127);
aes-data-out-final : out std-logic-vector(0 to 127);

aes-data-out-last : out std-logic-vector(0 to 127));
END COMPONENT;

signal aes-module-sm-data-in: std-logic-vector (0 to 127);

signal aes-module-sm-context: std-logic-vector (0 to 31);
signal aes-module-sm-iv: std-logic-vector (0 to 127);
signal aes-module-sm-read: std-logic;
signal aes-module-sm-empty: std-logic;

signal aes-module-outfifo-wrb: std-logic;
signal aes-module-outfifo-fullb: std-logic;

signal aes-module-cipher-aes-data-in : std-logic-vector(0 to 127);
signal aes-module-cipher-round : std-logic-vector(0 to 3);
signal aes~module~cipher~aes~data~out~roundO : std-logic-vector(0 to 127);
signal aes-module-cipher-aes-data-out-mid : std-logic-vector(0 to 127);
signal aes-module-cipher-aes-data-out-final : std-logic-vector(0 to 127);
signal aes-module-cipher-aes-data-out-last : std-logic-vector(0 to 127);

signal aes-module-clock: std-logic;
signal aes-module-reset: std-logic;

begin

controller: control-sm PORT MAP(
data-in => aes-module-sm-data-in,

iv => aes-module-sm-iv,
context => aes-module-sm-context,
fifo-emptyb => aes-module-sm-empty,
rdbfifo => aes-module-sm-read,

-- i/f to output fifo
wrb-fifo => aes-module-outfifo-wrb,
fifo-fullb => aes-module-outfifo-fullb,

-- i/f to cipher block
aes-data-in => aes-module~ipher-aes-data-in,
round => aes-module-cipher-round,
aes-data-out-round0 => aes~module~cipher~aes~data~out~round0,

aes-data-out-mid => aes-module-cipher-aes-data-out-mid,
aes-data-out-final=> aes-module-cipher-aesdata-outfinal,
aes-data-out-last => aes-module-cipher-aes-data-out-last,

-- i/f to key memory
aes-key-mem-address => key-address,
read-key-mem => read-mem,

clock => aes-module-clock,
reset => aes-module-reset

1;

input-fifo: FIFO PORT MAP(
rdb => aes-module-sm-read,
wrb => wrb,
data-in => data-input,

iv-in => iv-in,
context-in => context-in,

emptyb => aes-module-sm-empty,
fullb => fullb,

context-out => aes~module~sm~context,

iv-ou t => aes-module-sm-iv,
data-out => aes-module-sm-data-in,

clock => aes-module-clock,
resetb => aes-module-reset

1;

output-fifo: OUT-FIFO PORT MAP(
rdb => rdb,
wrb => aes~module~outfifo~wrb,

data-in => aes~module~cipher~aes~data~out~last,
emptyb => emptyb,
fullb => aes~module~outfifo~fuIlb,
data-out => data-output,

clock => aes-module-clock,
resetb => aes-module-reset

);

cipher: aes-cipher PORT MAP(
aes-data-in => aes-module-cipher-aes-data-in, --data block to encrpyt

aes-key-in => key-in, --the key to use for this round
round-num => aes-module-cipher-round,
clock => aes-module-clock,
reset => aes-module-reset,

aes-data-out-round0 => aes~module~~ipher~aes~data~out~round0,
aes-data-out-mid => aes~module~cipher~aes~data~out~mid,
aes-data-out-final=> aes-module-cipher-aes-data-out-final,
aes-data-out-last => aes~module~cipher~aes~data~out~last

);

aes-module-clock <= clock;
aes-module-reset <= reset;

end RTL;

AES CIPHER - S-BOX Approach

library IEEE;
use IEEE.STD-LOGIC-1164.ALL;
use IEEE.STD-LOGIC-ARITH.ALL;
use IEEESTD-LOGIC-UNSIGNED.ALL;

entity aes-cipher is
Port (aes-data-in : in std-logic-vector(0 to 127); --data block to encrpyt

aes-key-in : in std-logic-vector(0 to 127); --the key to use
for this round

round-num: in std-logic-vector(0 to 3);
clock: in std-logic;
reset: in std-logic;
aes-data-out-round0 : out std-logic-vector(0 to 127);
aes-data-out-mid : out std-logic-vector(0 to 127);
aes-data-out-final : out std-logic-vector(0 to 127);

aes-data-out-last : out std-logic-vector(0 to 127)); --output block of data
from this round

end aes-cipher;

architecture rtl of aes-cipher is

signal aes-key-in-R: std-logic-vector (0 to 127);

signal round-num-R: std-logic-vector (0 to 3);
signal aes-data: std-logic-vector (0 to 127);

--signal output-valid-I: std-logic;

type state is array (0 to 15) of std-logic-vector(0 to 7);
signal instate: state;
signal substate: state;
signal shiftstate: state;
signal shiftstate-2: state;
signal outmixstate: state;

signal shift-data-out: std-logic-vector(0 to 127);
signal mix-data-out: std-logic-vector(0 to 127);

signal last-round-out: std-logic-vector(0 to 127);

--following is output of MixColumns() (in state format (dbyteROWCOLUMN)

signal OutMixByte00: std-logic-vector(0 to 7); ,
signal OutMixByte01: std-logic-vector(0 to 7);
signal OutMixByteO2: std~logic~vector(0 to 7);
signal OutMixByte03: std-logic-vector(0 to 7);

signal OutMixByte10: std-logic-vector(0 to 7);
signal OutMixBytel 1 : std-logic-vector(0 to 7);
signal OutMixBytel2: std~logic~vector(0 to 7);
signal OutMixBytel3: std-logic-vector(0 to 7);

signal OutMixByte20: std-logic-vector(0 to 7);
signal OutMixByte21: std-logic-vector(0 to 7);
signal OutMixByte22: std-logic-vector(0 to 7);
signal OutMixByte23: std-logic-vector(0 to 7);

signal OutMixByte30: std-logic-vector(0 to 7);
signal OutMixByte31: std-logic-vector(0 to 7);
signal OutMixByte32: std-logic-vector(0 to 7);
signal OutMixByte33: std-logic-vector(0 to 7);

subtype S-BOX-FIELD is integer range 0 to 255;
subtype SBOX-INDEX-TYPE is integer range 0 to 15;
type SBOX-TYPE is array (0 to 255) of S-BOX-FIELD;
constant SBOXs : SBOX-TYPE := (

function ESubBytes (inbyte: std-logic-vector(0 to 7)) return std-logic-vector is
variable return-val: std-logic-vector(0 to 7);
begin

return conv~std~logic~vector(SBOXs(conv~integer(inbyte)), 8);
end function;

function DubBytes (inbyte: std-logic-vector(0 to 7)) return std-logic-vector is
beg in

case inbyte(0) is
when '0' =>

return inbyte(1 to 7) & '0';
when '1 ' =>

return ((inbyte(1 to 7) & '0') xor "0001 101 1 ");
when others =>

return "00000000";
end case;

end function;

begin

aes-data <= aes-data-in;
aes-key-in-R <= aes-key-in;
round-num-R <= round-num;

--place the input data in the state, as defined in the AES spec.
instate(0) <= aes-data(0 to 7);
instate(1) <= aes-data(8 to 15);
instate(2) <= aes-data(l6 to 23);
instate(3) <= aes-data(24 to 31);

--perform the SubBytes function on all bytes of the state.

--perform the ShiftRows function on all rows of the state.

--for the last round, the output is the xor of the state after shiftrows, and the key,
--so create the last round output word

--for mixcolumns, we need to take 1, 2, and 3 times various bytes in the columns
--the following creates the x2. x3 is the xor of x2 and the original (xl) value.

--Following groups perform the Mixcolumns operation, as defined in the AES standard
--0utMixByte00,OutMixByte10,OutMixByte20,OutMixByte30
OutMixByteOO <= (shiftstate(2) xor shiftstate(3) xor shiftstate-2(0) xor (shiftstate-2(1) xor

shiftstate(1)));
OutMixByte10 <= (shiftstate(0) xor shiftstate(3) xor shiftstate-2(1) xor (shiftstate-2(2) xor

shiftstate(2)));
OutMixByte20 <= (shiftstate(0) xor shiftstate(1) xor shiftstate-2(2) xor (shiftstate-2(3) xor

shiftstate(3)));
OutMixByte30 <= (shiftstate(1) xor shiftstate(2) xor shiftstate-2(3) xor (shiftstate-2(0) xor

shiftstate(0)));

-0utMixByte01, OutMixBytel1,OutMixByte21,OutMixByte31
OutMixByte01 <= (shiftstate(6) xor shiftstate(7) xor shiftstate-2(4) xor (shiftstate-2(5) xor

shiftstate(5)));
OutMixBytel1 <= (shiftstate(4) xor shiftstate(7) xor shiftstate-2(5) xor (shiftstate-2(6) xor

shiftstate(6)));
OutMixByte21 <= (shiftstate(4) xor shiftstate(5) xor shiftstate-2(6) xor (shiftstate-2(7) xor

shiftstate(7)));
OutMixByte31 <= (shiftstate(5) xor shiftstate(6) xor shiftstate-2(7) xor (shiftstate-2(4) xor

shiftstate(4)));

--OutMixByte02,OutMixBytel2,OutMixByte22,OutMixByte32
OutMixByte02 <= (shiftstate(l0) xor shiftstate(l1) xor shiftstate-2(8) xor (shiftstate-2(9)

xor shiftstate(9)));
OutMixBytel2 <= (shiftstate(8) xor shiftstate(l1) xor shiftstate-2(9) xor (shiftstate-2(lO)

xor shiftstate(l0)));
OutMixByte22 <= (shiftstate(8) xor shiftstate(9) xor shiftstate-2(10) xor (shiftstate-2(11)

xor shiftstate(l1)));
OutMixByte32 <= (shiftstate(9) xor shiftstate(l0) xor shiftstate-2(11) xor (shiftstate-2(8)

xor shiftstate(8)));

-0utMixByte03, OutMixBytel3,OutMixByte23,OutMixByte33
OutMixByte03 <= (shiftstate(l4) xor shiftstate(l5) xor shiftstate-2(12) xor

(shiftstate-2(13) xor shiftstate(l3)));
OutMixBytel3 <= (shiftstate(l2) xor shiftstate(l5) xor shiftstate-2(13) xor

(shiftstate-2(14) xor shiftstate(l4)));
OutMixByte23 <= (shiftstate(l2) xor shiftstate(l3) xor shiftstate-2(14) xor

(shiftstate-2(15) xor shiftstate(l5)));
OutMixByte33 <= (shiftstate(l3) xor shiftstate(l4) xor shiftstate-2(15) xor

(shiftstate-2(12) xor shiftstate(l2)));

--ollowing is the output for rounds 1-9 of the cipher
mix-data-out(0 to 7) <= OutMixByte00;
mix-data-out(8 to 15) <= OutMixByte10;
mix-data-out(l6 to 23) <= OutMixByte20;
mix-data-out(24 to 31) <= OutMixByte30;

process (clock)
begin
if (clock'event and clock = ' I ') then

if (round-num-R = "1 01 1 ") then
aes-data-out-last <= shift-data-out xor aes-key-in-R;

end if;
end if;
end process;

aes-data-out-round0 <= aes-data xor aes-key-in-R;
aes-data-out-mid <= mix-data-out xor aes-key-in-R;
aes-data-out-final <= shift-data-out xor aes-key-in-R;

end rtl;

AES CIPHER - T-BOX Approach

library IEEE;
use IEEE.STD-LOG IC-1164.ALL;
use IEEE.STD-LOGIC-ARITH.ALL;
use IEEE.STD-LOGIC-UNSIGNED.ALL;

entity aes-cipher is
Port (aes-data-in : in std-logic-vector(0 to 127); --data block to encrpyt

aes-key-in : in std-logic-vector(0 to 127); --the key to use for this round
round-num: in std-logic-vector(0 to 3);
clock: in std-logic;
reset: in std-logic;

aes-data-out-round0 : out std-logic-vector(0 to 127);
aes-data-out-mid : out std-logic-vector(0 to 127);
aes-data-out-final : out std-logic-vector(0 to 127);
aes-data-out-last : out std-logic-vector(0 to 1 27));

end aes-cipher;

architecture rtl of aes-cipher is

--Registers for inputs
signal aes-key-in-R: std-logic-vector (0 to 127);

signal round-num-R: std-logic-vector (0 to 3);
signal aes-data: std-logic-vector (0 to 127);

type state is array (0 to 15) of std-logic-vector(0 to 7);
signal instate: state;

signal mid-round-out: std-logic-vector(0 to 127);
signal final-round-out: std-logic-vector(0 to 127);

signal prel-mid-round-out: std-logic-vector(0 to 127);
signal pre2-mid-round-out: std-logic-vector(0 to 127);

signal aes-data1 : std-logic-vector(0 to 15);
signal aes-data2 : std-logic-vector(0 to 15);
signal aes-data3 : std-logic-vector(0 to 15);
signal aes-data4 : std-logic-vector(0 to 15);
signal aes-data5 : std-logic-vector(0 to 15);
signal aes-data6 : std-logic-vector(0 to 15);
signal aes-data7 : std-logic-vector(0 to 15);
signal aes-data8 : std-logic-vector(0 to 15);

subtype S-BOX-FIELD is integer range 0 to 255;
subtype SBOX-INDEX-TYPE is integer range 0 to 15;
type SBOX-TYPE is array (0 to 255) of S-BOX-FIELD;
constant SBOX : SBOX-TYPE := (

constant SBOX-2 : SBOXJYPE := (
198,248,238,246,255,214,222, 145,96, 2, 206, 86, 231, 181,77,236, 143,
31, 137,250,239,178, 142,251, 65, 179, 95, 69, 35, 83,228,155, 1 17,225,
61, 76, 108, 126,245, 131, lO4,8l, 209,249,226, l71,98,42,8,149,7O,
157, 48, 55, 10, 47, 14, 36,27,223, 205, 78, 127,234, 18,29, 88,52, 54,
220, 180,91, 164,118, 183, 125,82,221, 94, 19, 166, 185, 0,193, 64,227, 121,
182,212, 141,103,114,148,152,176,133,187,197,79,237,134,154,102,17,
138, 233, 4, 254, 160, 120, 37, 75, 162, 93, 128,5, 63, 33, 112,241, 99, 119, 175,
66, 32,229,253, 191, 129,24,38, 195, 190, 53, 136,46, 147,85,252, 122,200, 186,
50,230, 192,25, 158,163, 68, 84,59, 1 1, 140, 199, 107,40, 167,188,22, 173,219,
100, 116,20, 146, 12,72, 184, 159, 189, 67, 196,57, 49,211,242,213, 139, 110,218,
1, 177, 156, 73,216,172,243,207,202,244, 71, 16, 1 1 1,240,74,92,56,87, 11 5,151,
203, 1 61,232, 62, 150, 97, 13, 15,224, 124, 1 13,204, 144, 6,247,28, 194,106, 1 74,
105, 23, 153, 58,39,217,235,43, 34,210, 169,7, 51, 45,60,21,201,135, 170,80,
165, 3,89,9,26, 101,215, 132,208, 130,41, 90,30, 123, 168,109,44);

constant SBOX-3 : SBOX-TYPE := (
165, 132, 153, 141, 13, 189, 177,84, 80, 3, 169, 125,25, 98,230, 154, 69, 157,64,
135, 21, 235,201, 11,236, 103,253,234, 191,247, 150,91, 194,28, 174, 106, 90,
65,2,79,92,244,52,8, 147, 115,83,63, 12,82, 101,94,40, 161, 15, 181,9,54,
155, 61, 38, 105,205, 1 59,27,158, 1 1 6, 46,45, 178,238,251,246,77,97,206, 123,
62, 113, 151,245, 104, 0,44,96,31,200,237, 190,70,217, 75,222, 212,232, 74,
107, 42, 229,22,197,215, 85, 148,207, 16, 6, 129,240, 68, 186,227,243,254, 192,
138, 173, 188,72,4,223, 193, 11 7, 99,48,26, 14, 109, 76,20,53, 47,225, 162,204,
57,87,242, 130, 71, 172,231,43, 149, 160,152, 209,127, 102, 126, 171, 131,202,41,
211, 60, 121,226,29, 118,59,86, 78,30,219, 10, 108,228, 93, 110,239, 166,168,
164, 55,139,50, 67,89, 183,140, 100, 210,224, 180,250, 7,37, 175, 142,233,24,

21 3,
136, 111, l l4,36,24l, l99,8l, 35, 124, 156, 33,221,220, 134, 133,144,66, 196, 170,
216, 5, 1, 18, 163,95,249,208, 145, 88, 39, 185, 56, 19, 179,51, 187, 112,137, 167,
182, 34, 146,32, 73,255,120, 122, 143,248, 128,23,218, 49, 198, 184, 195, 176, 11 9,
17, 203,252,214,58);

function SBOX2SubBytes (inbyte: std-logic-vector(0 to 7)) return std-logic-vector is
variable return-val: std-logic-vector(0 to 7);
begin

return conv~std~logic~vector(SBOX~2(conv~integer(inbyte)), 8);
end function;

function SBOX3SubBytes (inbyte: std-logic-vector(0 to 7)) return std-logic-vector is

variable return-val: std-logic-vector(0 to 7);
begin

return conv~std~logic~vector(SBOX~3(conv~integer(inbyte)), 8);
end function;

function SBOXSubBytes (inbyte: std-logic-vector(0 to 7)) return std-logic-vector is
variable return-val: std-logic-vector(0 to 7);
begin

return conv~std~logic~vector(SBOX(conv~integer(inbyte)), 8);
end function;

beg in

aes-key-in-R c= aes-key-in;
round-num-R <= round-num;

--place the input data in the state, as defined in the AES spec.
instate(0) <= aes-datal(0 to 7);
instate(1) <= aes-datal(8 to 15);
instate(2) c= aes_data2(0 to 7);
instate(3) <= aes_data2(8 to 15);

prel-mid-round-out(0 to 7) <= SBOX2SubBytes(instate(O)) xor
SBOX3SubBytes(instate(5));

prel-mid-round-out(8 to 15) <= SBOXSubBytes(instate(0)) xor
SBOX2SubBytes(instate(5));

prel-mid-round-out(l6 to 23) <= SBOXSubBytes(instate(0)) xor
SBOXSubBytes(instate(5));

prel-mid-round-out(24 to 31) <= SBOX3SubBytes(instate(O)) xor
SBOXSubBytes(instate(5));

prel-mid-round-out(32 to 39) <= SBOX2SubBytes(instate(4)) xor
SBOX3SubBytes(instate(9));

prel-mid-round-out(40 to 47) <= SBOXSubBytes(instate(4)) xor
SBOX2SubBytes(instate(9));

prel-mid-round-out(48 to 55) <= SBOXSubBytes(instate(4)) xor
SBOXSubBytes(instate(9));

prel-mid-round-out(56 to 63) <= SBOX3SubBytes(instate(4)) xor
SBOXSubBytes(instate(9));

pre1.-mid-round-out(64 to 71) <= SBOX2SubBytes(instate(8)) xor
SBOX3SubBytes(instate(l3));

prel-mid-round-out(72 to 79) <= SBOXSubBytes(instate(8)) xor
SBOX2SubBytes(instate(l3));

prel-mid-round-out(80 to 87) <= SBOXSubBytes(instate(8)) xor
SBOXSubBytes(instate(13));

prel-mid-round-out(88 to 95) <= SBOX3SubBytes(instate(8)) xor
SBOXSubBytes(instate(13));

prel-mid-round-out(96 to 103) <= SBOX2SubBytes(instate(1 2)) xor
SBOX3SubBytes(instate(l));

prel -mid-round-out(l04 to 1 1 1) <= SBOXSubBytes(instate(12)) xor
SBOX2SubBytes(instate(1));

prel-mid-round.-out(l12 to 1 19) <= SBOXSubBytes(instate(12)) xor
SBOXSubBytes(instate());

prel-mid-round-out(l20 to 127) <= SBOX3SubBytes(instate(12)) xor
SBOXSubBytes(instate(1));

pre2-mid-round-out(0 to 7) <= SBOXSubBytes(instate(l0)) xor
SBOXSubBytes(instate(15));

pre2-mid-round-out(8 to 15) <= SBOX3SubBytes(instate(lO)) xor
SBOXSubBytes(instate(15));

pre2-mid-round-out(l6 to 23) <= SBOX2SubBytes(instate(lO)) xor
SBOX3SubBytes(instate(l5));

pre2-mid-round-out(24 to 31) <= SBOXSubBytes(instate(10)) xor
SBOX2SubBytes(instate(l5));

pre2-mid-round-out(32 to 39) <= SBOXSubBytes(instate(14)) xor
SBOXSubBytes(instate(3));

pre2-mid-round-out(40 to 47) <= SBOX3SubBytes(instate(l4)) xor
SBOXSubBytes(instate(3));

pre2-mid-round-out(48 to 55) <= SBOX2SubBytes(instate(l4)) xor
SBOX3SubBytes(instate(3));

pre2-mid-round-out(56 to 63) <= SBOXSubBytes(instate(14)) xor
SBOX2SubBytes(instate(3));

pre2-mid-round-out(64 to 71) <= SBOXSubBytes(instate(2)) xor
SBOXSubBytes(instate(7));

pre2-mid-round-out(72 to 79) c= SBOX3SubBytes(instate(2)) xor
SBOXSubBytes(instate(7));

pre2-mid-round-out(80 to 87) <= SBOX2SubBytes(instate(2)) xor
SBOX3SubBytes(instate(7));

pre2-mid-round-out(88 to 95) <= SBOXSubBytes(instate(2)) xor
SBOX2SubBytes(instate(7));

pre2-mid-round-out(96 to 103) <= SBOXSubBytes(instate(6)) xor
SBOXSubBytes(instate(11));

pre2-mid-round-out(l04 to 11 1) <= SBOX3SubBytes(instate(6)) xor
SBOXSubBytes(instate(11));

pre2-mid-round-out(l12 to 1 19) <= SBOX2SubBytes(instate(6)) xor
SBOX3SubBytes(instate(ll));

pre2-mid-round-out(l20 to 127) <= SBOXSubBytes(instate(6)) xor
SBOX2SubBytes(instate(ll));

mid-round-out(0 to 7) <= prel-mid-round-out(0 to 7) xor pre2-mid-round-out(0 to 7);
mid-round-out(8 to 15) <= prel-mid-round-out(8 to 15) xor pre2-mid-round-out(8 to

mid-round-out(l6 to 23) <= prel-mid-round-out(l6 to 23) xor pre2-mid-round-out(16

mid-round-out(24 to 31) <= prel-mid-round-out(24 to 31) xor pre2-mid-round-out(24

mid-round-out(32 to 39) <= prel-mid-round-out(32 to 39) xor pre2-mid-round-out(32

mid-round-out(40 to 47) <= prel-mid-round-out(40 to 47) xor pre2-mid-round-out(40

mid-round-out(48 to 55) <= prel-mid-round-out(48 to 55) xor pre2-mid-round-out(48

mid-round-out(56 to 63) <= pre 1 -mid-round-out(56 to 63) xor pre2-mid-round-out(56

mid-round-out(64 to 71) <= prel-mid-round-out(64 to 71) xor pre2-mid-round-out(64

mid-round-out(72 to 79) <= prel-mid-round-out(72 to 79) xor pre2-mid-round-out(72

mid-round-out(80 to 87) <= prel-mid-round-out(80 to 87) xor pre2-mid-round-out(80

mid-round-out(88 to 95) <= prel-mid-round-out(88 to 95) xor pre2-mid-round-out(88

mid-round-out(96 to 103) <= prel-mid-round-out(96 to 103) xor
pre2-mid-round-out(96 to 103);

mid-round-out(l04 to 1 1 1) <= prel -mid-round-out(l04 to 1 1 1) xor
pre2-mid-round-out(l04 to 1 1 1);

mid-round-out(ll2 to 1 19) <= prel -mid-round-out(l12 to 11 9) xor
pre2-mid-round-out(l12 to 1 19);

mid-round-out(l20 to 127) <= prel -mid-round-out(l20 to 127) xor
pre2-mid-round-out(l20 to 127);

process (clock)
begin
if (clock'event and clock = '1') then

if (round-num-R = "1 01 1 ") then
aes-data-out-last <= final-round-out xor aes-key-in-R;

end if;
end if;
end process;

aes-data-out-round0 <= aes-data-in xor aes-key-in-R;
aes-data-out-mid <= mid-round-out xor aes-key-in-R;
aes-data-out-final <= final-round-out xoa aes-key-in-R;

end rtl;

CONTROL SM

library IEEE;
use IEEE.STD-LOGIC-1164.ALL;
use IEEE.STD-LOGIC-ARITH.ALL;
use IEEE.STD-LOGIC-UNSIGNED.ALL;

entity control-sm is
Port (

-- ilf to i n ~ u t fifo
data-in : in std-logic-vector(0

iv : in std-logic-vector(0 to 127);
context : in std-logic-vector(0 to 31);
fifo-emptyb : in std-logic;
adbfifo : out std-logic;

-- ilf to output fifo
wab-fifo : out std-logic;
fifo-fullb : in std-logic;

-- ilf to cipher block
aes-data-in : out std-logic-vector(0 to 127);

round : out std-logic-vector(0 to 3);
aes-data-out-round0 : in std-logic-vector(0 to 127);

aes-data-out-mid : in std-logic-vector(0 to 127);
aes-data-out-final : in std-logic-vector(0 to 127);

aes-data-out-last : in std-logic-vector(0 to 127);

-- ilf to key memory
aes-key-mem-address : out std-logic-vector(0 to 4);
read-key-mem : out std-logic;

clock : in std-logic;
reset : in std-logic
1;

end control-sm;

architecture RTL of controlsm is

type state-type is (IDLE, IDLEOUT, Get-Context, Get-Contextout, CBC-Encrypt-11,
ECB-Encrypt-11, ECB-Encrypt-1, ECB-Encrypt-2, ECB-Encrypt-3, ECB-Encrypt-4,
ECB-Encrypt-5, ECB-Encrypt-6, ECB-Encrypt-7, ECB-Encrypt-8, ECB-Encrypt-9,
ECB-Encrypt-10, CBC-Encrypt-1, CBC-Encrypt-2, CBC-Encrypt-3, CBC-Encrypt-4,
CBC-Encrypt-5, CBC-Encrypt-6, CBC-Encrypt-7, CBC-Encrypt-8, CBC-Encrypt-9,
CBC-Encrypt-10, Out-Fifo-Full);

signal ST, nST : state-type;
signal sm-cipher-key-index: std-logic;
signal cipher-input: std-logic-vector(0 to 127);
signal sm-context-input: std-logic-vector (0 to 31);
signal sm-iv-input: std-logic-vector (0 to 127);
signal cclock: std-logic;

begin

cclock <= clock;
cipher-controller: process (clock)
begin

if (clock'event and clock = '1') then
case ST is

when IDLE =>
if (fifo-emptyb = '1 ') then

rdb-fifo <= '0';
read-key-mem <= '0';
round <= "0000";
aes-data-in <=

"000
000";

aes-key-mem-address <= "00000";
wrb-fifo <= '1 ';
cipher-input <= data-in;
sm-context-input <= context;
sm-iv-input <= iv;
--sm-cipher-key-index <= '0';
ST <= Get-Context;

else
rdb-fifo <= '1 ';

read-key-mem <= '0';
round <= "0000";
aes-data-in <=

"000
000";

aes-key-mem-address <= "00000";
wrb-fifo <= ' I ';
ST <= IDLE;

end if;

when IDLEOUT =>
if (fifo-emptyb = '1 ') then

rdb-fifo <= '0';
read-key-mem <= '0';
round <= "0000";
--cipher-output <= aes-data-out-last;
aes-data-in <=

"000
000";

aes-key-mem-address <= "00000";
wrb-fifo <= '0';
cipher-input <= data-in;
sm-context-input <= context;
sm-iv-input <= iv;
ST <= Get-Context;

else
rdb-fifo <= 'I ';
read-key-mem <= '0';
round <= "0000";
--cipher-output <= aes-data-out-last;
aes-data-in <=

"000
000";

aes-key-mem-address <= "00000";
wrb-f ifo <= '0';
ST <= IDLE;

end if;

when Get-Context =>
if (sm-context-input(2 to 3) = "01 ") then --- ECB Mode

rdb-fifo <= ' I ';
read-key-mem <= '1 ';
round <= "0000";
aes-data-in <=

"000
000";

sm-cipher-key-index <= sm-contextJnput(4);
aes-key-mem-address <= sm-context-input(4) &

"0000";
wrb-fifo <= ' I ';
ST <= ECB-Encrypt-l ;

elsif (sm-context-input(2 to 3) = "10") then ---CBC mode
rdb-fifo <= ' I ';
read-key-mem <= '1 ';
round <= "0000";

aes data in <=

sm-cipher-key-index <= sm-context-input(4);
aes-key-mem-address c= sm-context-input(4) &

wrb-fifo <= '1 ';
ST c= CBC-Encrypt-l ;

else
rdb-fifo <= '1 '; --- undefined mode
read-key-mem <= '0';
round <= "0000";
aes-data-in <=

"000
000";

aes-key-mem-address <= "00000";
wrb-fifo <= '1 ';
ST <= IDLE;

end if;
when Get-Contextout =>

if (sm-context-input(2 to 3) = "01 ") then --- ECB Mode
rdb-fifo <= '1 ';
read-key-mem <= '1 ';
round c= "0000";
--cipher-output <= aes-data-out-last;
aes-data-in c=

"000
000";

sm-cipher-key-index c= sm-context-input(4);
aes-key-mem-address <= sm-contextlinpufi4) &

"0000";
wrb-fifo <= '1 ';
ST <= ECB-Encrypt-l ;

elsif (sm-contextJnput(2 to 3) = "1 0") then ---CBC mode
rdb-fifo c= '1 ';
read-key-mem <= '1 ';
round <= "0000";
--cipher-output <= aes-data-out-last;
aes-data-in <=

"000
000";

sm-cipher-key-index c= sm-context-input(4);
aes-key-mem-address <= sm-context-input(4) &

"0000";
wrb-fifo <= '1 ';
ST <= CBC-Encrypt-l ;

else
rdb-fifo <= '1 '; --- undefined mode
read-key-mem <= '0';
round <= "0000";
--cipher-output <= aes-data-out-last;

aes-data-in <=
"000
000";

aes-key-mem-address <= "00000";
wrb-fifo <= ' I ';
ST <= IDLE;

end if;

when ECB-Encrypt-l l =>
if ((fifo-emptyb = ' I ') and (fifo-fullb = '1 ')) then --- ECB Mode

rdb-fifo <= '0';
read-key-mem <= ' I ';
round <= "1 01 1 ";
aes-data-in <= aes-data-out-mid;
aes-key-rnern-address <= sm-cipher-key-index &

wrb-fifo <= '0';
cipher-input <= data-in;
srn-context-input <= context;
sm-iv-input <= iv;
ST <= Get-Contextout;

elsif ((fifo-emptyb = '1') and (fifo-fullb = '0')) then --- ECB Mode
rdb-fifo <= ' I ';
read-key-mem <= '0';
round <= "101 1 ";
aes-data-in <= aes-data-out-mid;
aes-key-mem-address <= sm-cipher-key-index &

wrb-fifo <= '1';
ST <= Out-Fifo-Full;

elsif ((fifo-ernptyb = '0') and (fifo-fullb = '0')) then --- ECB Mode
rdb-fifo <= ' I ';
read-key-mem <= '0';
round <= "1 01 1 ";
aes-data-in <= aes-data-out-mid;
aes-key-rnem-address <= sm-cipher-key-index &

wrb-fifo <= '1 ';
ST <= Out-Fifo-Full;

elsif ((fifo-emptyb = '0') and (fifofullb = '1')) then --- ECB Mode
rdb-fifo <= '0';
read-key-mem <= '1 ';
round <= "1 01 1 ";
aes-data-in <= aes-data-out-mid;
aes-key-rnem-address <= sm-cipher-key-index &

wrb-fifo <= '0';
ST <= IDLEOUT;

else
rdb-fifo <= '1 '; --- undefined mode
read-key-mem <= '0';

round <= "0000";
--cipher-output <= aes-data-out-mid;
aes-data-in <=

"00~000000000000000000000000000
000";

aes-key-mem-address <= "00000";
wrb-fifo <= ' I I ;

ST <= IDLE;

end if;

when ECB-Encrypt-1 => --- ECB Mode
rdb-fifo <= '1 ';
read-key-rnern <= '1 ';
round <= "0001 ";
aes-data-in <= cipher-input;
aes-key-rnem-address <= sm-cipher-key-index &

wrb-fifo <= ' I ';
ST <= ECB-Encrypt-2;

when ECB-Encrypt-2 =>
rdb-fifo <= ' I ';
read-key-mem <= '1 ';
round <= "001 0";
aes-data-in <= aes-data-out-round0;
aes-key-rnem-address <= srn-cipher-key-index &

wrb-fifo <= .'I ';
ST <= ECB-Encrypt-3;

when ECB-Encrypt-3 =>
rdbfifo <= '1 ';
read-key-mem <= '1 I;
round <= "001 1 ";
aes-data-in <= aes-data-out-mid;
aes-key-mern-address <= srn-cipher-key-index &

wrb-fifo <= ' I ';
ST <= ECB-Encrypt-4;

when ECB-Encrypt-4 =>
rdbfifo c= ' I ';
read-key-mern c= '1 ';
round <= "01 00";
aes-data-in <= aes-data-out-mid;
aes-key-rnem-address <= srn-cipher-key-index &

wrb-fifo <= 'I ';
ST <= ECB-Encrypt-5;

when ECB-Encrypt-5 =>
rdb-fifo c= '1 ';
read-key-rnern <= '1 ';
round <= "01 01 ";
aes-data-in <= aes-data-out-mid;

aes-key-rnern-address <= srn-cipher-key-index &

wrbfifo <= '1 ';
ST <= ECB-Encrypt-6;

when ECB-Encrypt-6 =>
rdbfifo <= '1 ';
read-key-mem <= '1 ';
round <= "01 10";
aes-data-in <= aes-data-out-mid;
aes-key-mem-address <= sm-cipher-key-index &

wrbfifo <= ' I I;
ST <= ECB-Encrypt-7;

when ECB-Encrypt-7 =>
rdbfifo <= '1 ';
read-key-mem <= '1 ';
round <= "01 1 1 ";
aes-data-in <= aes-data-out-mid;
aes-key-mem-address <= srn-cipher-key-index &

wrbfifo <= '1 ';
ST <= ECB-Encrypt-8;

when ECB-Encrypt-8 =>
rdb-fifo <= '1 ';
read-key-mem <= '1 ';

. round <= "1 000";
aes-data~in <= aes-data-out-mid;
aes-key-mem-address <= srn-cipher-key-index &

wrbfifo <= '1 ';
ST <= ECB-Encrypt-9;

when ECB-Encrypt-9 =>
rdb-fifo <= '1 ';
read-key-mem <= '1 ';
round <= "1 001 ";
aes-data-in <= aes-data-out-mid;
aes-key-mem-address <= sm-ciphetkey-index &

wrbfifo <= '1 ';
ST <= ECB-Encrypt-10;

when ECB-Encrypt-lo =>
rdb-fifo <= '1 ';
read-key-mem <= '1 ';
round <= "1 01 0";
aes-data-in <= aes-data-out-mid;
aes-key-mem-address <= sm-cipher-key-index &

wrbfifo <= ' I ';
ST <= ECB-Encrypt-l l ;

when CBC-Encrypt-l l =>

if ((fifo-emptyb = '1') and (fifo-fullb = '1')) then --- ECB Mode
rd b-f ifo <= '0';
read-key-mem <= '1 ';
round <= "1 01 1 ";
aes-data-in <= aes-data-out-mid;
aes-key-mem-address <= sm-cipher-key-index &

wrb-fifo <= '0';
cipher-input <= data-in;
sm-context-input <= context;
sm-iv-input <= iv;
ST <= Get-Contextout;

elsif ((fifo-emptyb = '1') and (fifo-fullb = '0')) then --- ECB Mode
rdb-fifo <= '1 ';
read-key-mem <= '0';
round <= "1 01 1 ";
aes-data-in <= aes-data-out-mid;
aes-key-mem-address <= sm-cipher-key-index &

wrbfifo <= '1 ';
ST <= Out-Fifo-Full;

elsif ((fifo-emptyb = '0') and (fifo-fullb = '0')) then --- ECB Mode
rdbfifo <= '1 ';
read-key-mem <= '0';
round <F "1 01 1 ";
aes-data-in <= aes-data-out-mid;
aes-key-mem-address <= sm-cipher-key-index &

wrbfifo <= '1 ';
ST <= Out-Fifo-Full;

elsif ((fifo-emptyb = '0') and (fifo-fullb = '1 I)) then --- ECB Mode
rdb-f if o <= '0';
read-key-mem <= ' I ';
round <= "1 01 1 ";
aes-data-in <= aes-data-out-mid;
aes-key-mem-address <= sm-cipher-key-index &

wrbfifo <= '0';
ST <= IDLEOUT;

else
rdb-fifo <= '1 '; --- undefined mode
read-key-mem <= '0';
round <= "0000";
--cipher-output <= aes-data-out-mid;
aes-data-in <=

aes-key-mem-address <= "00000";
wrbfifo <= '1 ';
ST <= IDLE;

end if;

packet

aes-data-out-last;

when CBC-Encrypt-1 => --- CBC Mode
rdb-fifo <= '1';
read-key-mem <= '1 ';
round <= "0001 ";
if (sm-context-input(0) = '1') then -- SOP = 1

aes-data-in <= cipher-input xor sm-iv-input;
elsif (sm-contextjnput(0) = '0') then -- middle or end of

aes-data-in <= ciphe~input xor

end if;
aes-key-mem-address <= sm-ciphetkey-index &

wrb-fifo <= '1 ';
ST <= CBC-Encrypt-2;

when CBC-Encrypt-2 =>
rdb-fifo <= '1 ';
read-key-mem <= '1 ';
round <= "001 0";
aes-data-in <= aes-data-out-round0;
aes-key-mem-address <= sm-cipher-key-index &

wrb-fifo <= '1 ';
ST <= CBC-Encrypt-3;

when CBC-Encrypt13 =>
rdb-fifo <= '1.';
read-key-mem <= '1 ';
round <= "001 1 ";
aes-data-in <= aes-data-out-mid;
aes-key-mem-address <= sm-cipher-key-index &

wrb-fifo <= '1 ';
ST <= CBC-Encrypt-4;

when CBC-Encrypt-4 =>
rdb-fifo <= '1 ';
read-key-mem <= '1 ';
round <= "01 00";
aes-data-in <= aes-data-out-mid;
aes-key-mem-address <= sm-cipher-key-index &

wrb-fifo <= ' I ';
ST <= CBC-Encrypt-5;

when CBC-Encrypt-5 =>
rdb-fifo <= '1 ';
read-key-mem <= '1 ';
round <= "01 01 ";
aes-data-in <= aes-data-out-mid;
aes-key-mem-address <= sm-cipher-key-index &

wrb-fifo <= ' I ';
ST <= CBC-Encrypt-6;

when CBC-Encrypt-6 =>
rdb-fifo <= '1';
read-key-mem <= '1 ';
round <= "01 10";
aes-data-in <= aes-data-out-mid;
aes-key-mem-address <= sm-cipher-key-index &

wrbfifo <= ' I I;
ST <= CBC-Encrypt-7;

when CBC-Encrypt-7 =>
rdb-fifo <= '1';
read-key-mem <= '1 ';
round <= "01 1 1 ";
aes-data-in <= aes-data-out-mid;
aes-key-mem-address <= sm-cipher-key-index &

wrbfifo <= '1 ';
ST <= CBC-Encrypt-8;

when CBC-Encrypt-8 =>
rdbfifo <= '1 ';
read-key-mem <= '1 ';
round <= "1 000";
aes-data-in <= aesdata.-out-mid;
aes-key-mem-address <= sm-cipher-key-index &

wrb-fifo <= ' I ';
ST <= CBC-Encrypt-9;

when CBC-Encrypt-9 =>
rdb-fifo <= '1 ';
read-key-mem <= '1 ';
round <= "1 001 ";
aes-data-in <= aes-data-out-mid;
aes-key-mem-address <= sm-cipher-key-index &

wrbfifo <= '1 ';
ST <= CBC-Encrypt-10;

when CBC-Encrypt-10 =>
rdbfifo <= '1 ';
read-key-mem <= '1 ';
round <= "1 01 0";
aes-data-in <= aes-data-out-mid;
aes-key-mem-address <= sm-cipher-key-index &

wrb-fifo <= '1 ';
ST <= CBC-Encrypt-11;

when Out-Fifo-Full=>
if ((fifo-emptyb = '1') and (fifofullb = '1')) then --input FlFO not

empty, output FlFO not FULL
rdb-fifo <= '0';

read-key-mem <= '1 ';
round <= "1 100";
aes-data-in <= aes-data-out-last;
aes-key-mem-address <= sm-cipher-key-index &

wrb-fifo <= '0';
cipher-input <= data-in;
sm-context-input <= context;
sm-iv-input <= iv;
ST <= Get-Contextout;

elsif ((fifo-emptyb = '0') and (fifo-fullb = '1')) then --input FlFO
empty, output FlFO not FULL

rdb-fifo <= '0';
read-key-mem <= '1 ';
round <= "1 100";
aes-data-in <= aes-data-out-last;
aes-key-mem-address <= sm-cipher-key-index &

wrb-fifo <= '0';
ST <= IDLEOUT;

else
rdb-fifo <= ' I ';
read-key-mem <= '1 ';
round <= "1 100";
aesdata-in <= aes-data-out-last;
aes-key-mem-address <= sm-cipher-key.--index &

wrb-fifo <= ' I ';
ST <= Out-Fifo-Full;

end if;

when others =>
ST <= IDLE;

end case;
end if;

end process;

end RTL;

INPUT FlFO

library IEEE;
use 1EEE.STD-LOG IC-1164.ALL;
use IEEESTD-LOGIC-ARITH.ALL;
use IEEE.STD-LOGIC-UNSIGNED.ALL;

entity FlFO is
Port (resetb : in std-logic;

clock : in std-logic;
rdb : in std-logic;
wrb : in std-logic;
data-in : in std-logic-vector(0 to 63);

iv-in : in std-logic-vector (0 to 63);
context-in : in std-logic-vector (0 to 15);

emptyb : out std-logic;
fullb : out std-logic;

context-out : out std-logic-vector (0 to 31);
iv-out : out std-logic-vector (0 to 127);

data-out : out std-logic-vector(0 to 127));
end FIFO;

architecture RTL of FIFO is
signal read-ptr: std-logic-vector(0 to 2);
signal write-ptr: std-logic-vector (0 to 2);
type data-registerType is array (0 to 7) of std-logic-vector(0 to 63);
signal data-register: data-registerType;
type context-registerType is array (0 to 7) of std-logic-vector(0 to 15);
signal context-register: context-registerType;
type iv-registerType is array (0 to 7) of std-logic-vector(0 to 63);
signal iv-register: iv-registerType;
signal write-read: std-logic-vector (0 to 1);
signal fullb-flag: std-logic;
signal emptybflag: std-logic;
SIGNAL contents-counter: INTEGER range 0 to 16;

begin
inp-latch: process (clock)
begin

if (clock'event and clock = ' I I) then
-- if (resetb = '0') then
-- write-read <= "1 1 "; -- else

write-read <= wrb & rdb;
-- end if;

end if;
end process;

fifo: process (clock)
begin

if (clock'event and clock = '1') then
if (resetb = '0') then

write-ptr <= "000";
read-ptr <= "000";
fullb-flag <= '1 I;
emptyb-flag <= '0';
contents-counter <= 0;
for i in 0 to 7 loop

data-register(i) <=
"00";

iv-register(i) <=
"00";

context-register(i) <= "0000000000000000";
end loop;

else

case write-read is
when "00" =>

read-ptr <= read-ptr + 2;

data-register(conv-integer(write-ptr)) <= data-in;
iv-register(conv-integer(write-ptr)) <= iv-in;
context~register(conv~integer(write~ptr)) <= context-in;
write-ptr <= wri tej tr + 1 ;
contents-counter <= contents-counter - 1 ;

when "01" =>
contents-counter <= contents-counter + 1 ;

if (contents-counter > 0) then
emptyb-flag <= '1';

else
emptyb-flag <= '0';

end if;
if (fullb-flag = '1 ') then

data-register(conv-integer(write-ptr)) <=
data-in;

context-in;

iv-register(conv-integer(write-ptr)) <= iv-in;
context-register(conv-integer(write-ptr)) <=

if (write-ptr + 2) = read-ptr then
fullb-flag <= '0';

end if;
write-ptr <= write-ptr + 1 ;

end if;
when "1 0" =>

if (emptyb-flag = '1') then
if (read-ptr + 2) = write-ptr then

emptvb-flag <= '0';
end if;
read-ptr <= read-ptr + 2;
contents-counter <= contents-counter - 2;

end if;
fullb-flag <= '1';

when others => null;
end case;

end if;
end if;

end process;
fullb <= fullb-flag;

output: process (clock)
begin

if (clock'event and clock = '1 ') then
data-out <= data-register(conv-integer(read-ptr)) &

data-register(conv-integer(read-ptr+l));
iv-out <= iv-register(conv-integer(read-ptr)) &

iv-reg ister(conv-integer(read-ptr+l));
context-out <= context-register(conv-integer(read-ptr)) &

context_register(conv-integer(read-ptr+l));
emptyb <= emptyb-flag;

end if;
end process;

end RTL;

OUTPUT FIFO

library IEEE;

use 1EEE.STD-LOGIC-1164.ALL;
use 1EEE.STD-LOGIC-ARITH.ALL;
use 1EEE.STD-LOGIC-UNSIGNED.ALL;

entity OUT-FIFO is
Port (resetb : in std-logic;

clock : in std-logic;
rdb : in std-logic;
wrb : in std-logic;
data-in : in std~logic~vector(0 to 127);
emptyb : out std-logic;
fullb : out std-logic;
data-out : out std-logic-vector(0 to 63));

end OUT-FIFO;

architecture RTL of OUT-FIFO is
signal read-ptr: std-logic-vector(0 to 2);
signal write-ptr: std-logic-vector (0 to 2);
type data-registerType is array (0 to 7) of std-logic-vector(0 to 63);
signal data-register: data-registerType;
signal write-read: std~logic~vector (0 to 1);
signal fullb-flag: std-logic;
signal emptyb-flag: std-logic;
SIGNAL contents-counter: INTEGER range 0 to 16;

begin

outp-latch: process (clock)
begin

if (clock'event and clock = '1') then
-- if (resetb = '0') then -- write-read <= "1 1 "; -- else

write-read <= wrb & rdb;
-- end if;

end if;
end process;

fifo: process (clock)
begin

if (clock'event and clock = '1') then
if (resetb = '0') then

write-ptr <= "000";
read-ptr <= "000";
--data-out <=

"00";
fullb-flag <= '1';
emptyb-flag <= '0';
contents-counter <= 0;
for i in 0 to 7 loop

data-register(i) <=
"00";

end loop;
else
case write-read is

when "00" =>
data-out c= data-register(conv-integer(read-ptr));
read-ptr c= read-ptr + 1 ;
data-register(conv-integer(write-ptr)) <= data-in(0 to

write-ptr c= write-ptr + 2;
contents-counter <= contents-counter + 1 ;

when "01" =>
emptyb-flag <= '1 ';
if (fullb-flag = '1') then

data-register(conv-integer(write-ptr)) <=

write-ptr <= write-ptr + 2;
contents-counter c= contents-counter + 2;
if (write-ptr = read-ptr) then

if (contents-counter > 6) then
fullb-flag <= '0';

else
fullb-flag <= '1 ';

end if;
end if;

end if;
when "1 0" =>

if (emptyb-flag = '1') then
if (read-ptr + 1) = write-ptr then

emptyb-flag <= '0';
end if;
data-out c=

read-ptr c= read-ptr + 1 ;
contents-counter c= ~ontents~counter - 1 ;

end if;

fullb-flag <= '1 ';
when others => null;

end case;
end if;

end if;
end process;

emptyb <= emptyb-flag;

outfif: process (clock)
begin

if (clock'event and clock = '1') then
fullb <= fullb-flag;

end if;
end process;

end RTL;

LIBRARY ieee;
USE ieee.std-logic-1164.ALL;
USE ieee.numeric-std.ALL;
use IEEE.STD-LOGIC-ARITH.ALL;
use IEEE.STD-LOGIC-UNSIGNED.ALL;

ENTITY testbench IS
END testbench;

ARCHITECTURE behavior OF testbench IS

COMPONENT aes-cipher-module-3
PORT(

data-input : IN std-logic-vector(0 to 63);
iv-in : IN std-logic-vector(0 to 63);
context-in : IN std-logic-vector(0 to 15);
wrb : IN std-logic;
rdb : IN std-logic;
key-in : IN std-logic-vector(0 to 127);
clock : IN std-logic;
reset : IN std-logic;
fullb : OUT std-logic;
data-output : OUT std-logic-vector(0 to 63);
emptyb : OUT std-logic;
key-address : OUT std-logic-vector(0 to 4);
read-mem : OUT std-logic
);

END COMPONENT;

SIGNAL data-input : std-logic-vector(0 to 63) :=
"1110111011101110111011101110111011101110111011101110111011101110";

SIGNAL iv-in : std-logic-vector(0 to 63) :=
"1110111011101110111011101110111011101110111011101110111011101110";

SIGNAL context-in : std-logic-vector(0 to 15) := "01 1 101 1 101 11 01 1 1 ";
SIGNAL wrb : std-logic := '1 ';
SIGNAL fullb : std-logic;
SIGNAL data-output : std-logic-vector(0 to 63);
SIGNAL emptyb : std-logic;
SIGNAL rdb : std-logic := '1';
SIGNAL key-in : std-logic-vector(0 to 127);
SIGNAL key-address : std-logic-vector(0 to 4);
SIGNAL read-mem : std-logic;
SIGNAL clock : std-logic := '0';
SIGNAL reset : std-logic := '0';

-- type KeyMemoryType is array (0 to 31) of std-logic-vector(0 to 127);
-- signal KeyMemory : KeyMemoryType;
-- SIGNAL rdy-counter: INTEGER range 0 to 16;

SIGNAL rdy-counter: INTEGER :=O;

subtype KEY-BOX-FIELD is std-logic-vector (0 to 127);
subtype KEYBOX-INDEX-TYPE is std-logic-vector (0 to 4);
type KEY-BOX-TYPE is array (0 to 31) of KEY-BOX-FIELD;
constant KEY-BOX : KEY-BOX-TYPE := (

0

S

0

S

-
0

0
 2

0

S
 2

g

z
-
'
-
'

O
A

g
S

-
'
A

0
 0

8
2

A

-
'

O
-
'

0
 0

2
2

-
'
0

A

-
'

S
 2

S

 2

-
'
0

-
'
0

-
'
0

-
'
-
'

2
 S

A

-
'

2
 8

O
-
'

0
 0

2
 S

2
 S

o
2

2
;

O
-
'

A

0

8
2

2

 2

0
 0

2
 - '

2

0

0

0

S

S

A

-
'
A

-
'
-
'
A

0

0

0

0

0

0

0

-
S

0
0

8
2

0
0

0
0

0
 0

8
2

g

s

0
0

0
0

0
0

0
0

g
s

8

2

O
-
'

0
0

0
0

0
0

8
2

0
-

0
0

0
0

0
0

0
0

0
0

8
2

O
-
'

8
2

0
 0

0
0

0
0

8
s

O
-
'

0
 A

0
0

0
0

0
0

0
0

g
s

O
-
'

O
-
'

O
-
'

0
"
 =

0

0

0

0

0

0

0

8

0

0

0

0

0

0

0

0

0

-
'
-
'

0

0

0

0

0
 2

O
-
'

O
-
'

O
-
'

8
s

0
 0

8
2

O
-
'

O
-
'

O
-
'

0
 0

0
 0

2
 2

8

2

O
-
'

8
2

0
0

S
S

O
-
'

8
"-

0
0

8
2

2
 S

00
"-

O
-
'

0
 0

2
 S

O
-
'

0
 0

0
 0

0
 0

8
2

S

 s

0
 0

"0
0-

8

2

0
"
'

2

-
'

0

0

0

0

0

2

-
'
-
'

0

0

0

2

0

else
wrb <= '1 ' after 1 ns;

end if;
elsif (rdy-counter = 4) then

if (fullb = '1') then
wrb <= '1' after 1 ns; --ecb, 2

data-input <=
"1000100010011001101010101011101111001100110111011110111011111111" after 1 ns;

iv-in <=
"0001" after1 ns;

context-in <= "01 1 1 100000000001 " after 1 ns;
rdy-counter <= rdy-counter + 1 after 1 ns;

else
wrb <= '1 ' after 1 ns;

end if;
elsif (rdy-counter = 5) then

if (fullb = '1') then
wrb <= '0' after 1 ns; --nothing

data-input <=
"1000100010011001101010101011101111001100110111011110111011111111" after 1 ns;

iv-in <=
"0001" after1 ns;

context-in <= "01 1 1 1 00000000001 " after 1 ns;
rdy-counter <= rdy-counter + 1 after 1 ns;

else
wrb <= 'I ' after 1 ns;

end if;
elsif (rdy-counter = 6) then

if (fullb = 'I ') then
wrb <= '0' after 1 ns; --cbcl, 1

data-input <=
"0000000000000001 0000001 00000001 1000001 00000001 01 000001 10000001 1 1 " after 1 ns;

iv-in <=
"01 0101 10001 01 1 100001 01 1 1 1001 100101 101 101 00001 001 001 1 1 101 001 01 000" after 1 ns;

context-in <= "1 01 0000000000000" after 1 ns;
rdy-counter <= rdy-counter + 1 after 1 ns;

else
wrb <= '1 ' after 1 ns;

end if;
elsif (rdy-counter = 7) then

if (fullb = '1 ') then
wrb <= '0' after 1 ns; --cbcl ,2

data-input <=
"00001 00000001 001 00001 01 000001 01 100001 10000001 101 00001 1 1000001 1 1 1 " after 1 ns;

iv-in <=
"1101110110110011101110100110100101011010001011100110111101011000"after 1 ns;

context-in <= "001 0000000000001 " after 1 ns;
rdy-counter <= rdy-counter + 1 after 1 ns;

else
wrb <= '1 ' after 1 ns;

end if;
elsif (rdy-counter = 8) then

if (fullb = '1') then
wrb <= '0' after 1 ns; --cbc2, 1

data-input <=
"0001 00000001 0001 0001 001 00001 001 10001 01 000001 01 01 0001 01 100001 01 1 1 " after 1 ns;

iv-in <=
"1101110110110011101110100110100101011010001011100110111101011000" after 1 ns;

context-in <= "001 0000000000001 " after 1 ns;
rdy-counter <= rdy-counter + 1 after 1 ns;

else
wrb <= '1 'after 1 ns;

end if;
elsif (rdy-counter = 9) then

if (fullb = '1 ') then
wrb <= '1' after 1 ns; --cbc2,2
data-input <=

"0001 10000001 1001 0001 101 00001 101 10001 1 1000001 1 101 0001 1 1 100001 1 1 1 1 " after 1 ns;
iv-in <=

"1101110110110011101110100110100101011010001011100110111101011000" after 1 ns;
context-in <= "001 0000000000001 " after 1 ns;
rdy-counter <= rdy-counter + 1 after 1 ns;

else
wrb <= '1 ' after 1 ns;

end if;
else

if (fullb = '1 ') then
data-input <=

"111100000000000000000000OO"after1 ns;
iv-in <=

"110011110011" after1 ns;
context-in <= "1 11 1 10000000001 1 " after 1 ns;
wrb <= '1 ' after 1 ns;
rdy-counter <= rdy-counter + 1 after 1 ns;

else
wrb <= '1 ' after 1 ns;

end if;
end if;

end if;
END PROCESS;

tb2 : PROCESS (clock)
BEGIN

if (clock'event and clock = '1') then
if (emptyb = '1 ') then

rdb <= '0' after 1 ns;
else

rdb <= '1 ' after 1 ns;
end if;

end if;
END PROCESS;

with read-mem select
key-in <= KEY-BOX(conv-integer(key-address)) when '1 ',

"000
00000000000000000000OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO"when others;

END;

REFERENCES

[I] N. Doraswamy and D. Harkins, IPSec. Saddle River, NJ: Prentice Hall PTR, 1999.

[2] R. Venkateswaran, "Virtual Private Networks," IEEE Potentials, vol. 20, no. 1, pp. 11 -
15, Feb-March 2001.

[3] C. Metz, "The Latest in Virtual Private Networks: Part I," IEEE Internet Computing,
vol. 7, no. 1, pp. 87-91, Jan.-Feb. 2003.

[4] VPN Technologies: Definitions and Requirements. VPN Consortium. Available at:
http://www.vpnc.org/vpn-technologies.html.

[5] B. Schneier, Applied Cryptography, 2nd Ed. New York, NY: John Wiley and Sons,
1996.

[6] C. Davis, IPSec: Securing VPNs. New York. NY: RSA Press, 2001.

[7] S. Kent and R. Atkinson: "Security Architecture for the internet Protocol," RFC 2481,
November 1998.

[8] S. Kent and R. Atkinson: "IP Authentication Header," RFC 2402, November 1998.

[9] S. Kent and R. Atkinson: "IP Encapsulating Security Payload (ESP)," RFC 2406,
November 1998.

[I 01 "Data Encryption Standard," Federal lnformation Processing Standards Publication
46-2, December 30, 1993.

[I 11 "Advanced Encryption Standard," Federal lnformation Processing Standards '

Publication 197, November 26, 2001.

[12] X. Zhang, K. K. Parhi, "Implementation approaches for the Advanced Encryption
Standard algorithm, " IEEE Circuits and Systems Magazine, vol. 2, no. 4, pp. 24-
46, 2002.

[I 31 S. Morioka, A. Satoh, "A 10Gbps Full-AES Crypto Design with a Twisted-BDD S-
Box Architecture," IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 12, no.7, pp.686-691, July 2004.

1141 S. Frankel, R. Glenn, and S. Kelly, "The AES-CBC Cipher Algorithm and Its Use
with IPsec," RFC 3602, September 2003.

[15] A. J. Elbirt, W. Yip, B. Chetwynd, and C. Paar, "An FPGA Implementation and
Performance Evaluation of the AES Block Cipher Candidate Algorithm Finalists,"
The Third AES Conference (AES3), New York. April 2000. Available at
http://csrc.nist.nov/encn/~tion/aes/round~conf3laes3papers.html.

[I 61 K. Gaj and P. Chodowiec, "Comparison of the hardware performance of the AES
candidates using reconfigurable hardware," The Third AES Conference (AES3),
New York. April 2000. Available at
http:llcsrc.nist.govlencrvption/aes/round~conf3laes3pa~ers. html.

[I 71 M. Dworkin, SP 800-38A 2001, "Recommendation for Block Cipher Modes of
Operation," Dec. 2001.

[I 81 M. Mcloone and J. V. McCanny, "Generic architectures and semiconductor
intellectual property cores for advanced encryption standards cryptography," IEE
Proceedings - Computers and Digital Techniques, Vol. 150, no. 4, pp. 239-244,
July 18, 2003.

[I 91 R. Hobson and S. Wakelin, "An Area Efficient High Speed S-Box Method," in
Proceedings of the IEEE International Workshop of System on Chip, 2005.

1201 M. Alam, W. Badawy, and G. Jullien, "A novel pipelined threads architecture for AES
encryption algorithm," Proceedings of the IEEE International Conference on
Application-Specific Systems, Architectures and Processors, July 1 7-1 9: 2002,
pp. 296-302.

[21] Jhing-Fa Wang, Sun-Wei Chang, and Po-Chuan Lin, "A novel round function
architecture for AES encryptionldecryption utilizing look-up table," Proceedings of
the IEEE 37th Annual International Carnahan Conference on Security
Technology, Oct. 14-1 6,2003, pp. 132-1 36.

[22] R. Sever, A. N. Ismailglu, Y. C. Tekmen, M. Askar, and B. Okcan, "A high speed
FPGA implementation of the Rijndael algorithm," Euromicro Symposium on
Digital System Design, Aug. 31 -Sept. 3 2004, pp. 358-362.

[23] A. Hodjat and I. Verbauwhede, "A 21.54 Gbitsls fully pipelined AES processor on
FPGA," 12th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, April 20-23 2004, pp 308-309.

[24] X. Zhang and K. K. Parhi, "An efficient 21.56 Gpbs AES implementation on FPGA,"
Conference Record of the Thirty-Eighth Asilomar Conference on Signals,
Systems, and Computers, 2004, Volume 1 , pp. 465-470.

