VHDL IMPLEMENTATION OF
A SECURITY CO-PROCESSOR

by
Scott Wakelin

B.A.Sc., Engineering Science
Simon Fraser University

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE
in the School
of
Engineering Science
© Scott Wakelin 2005
SIMON FRASER UNIVERSITY

Summer 2005

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy
or other means, without permission of the author.

APPROVAL

Name:

Degree:

Title of Thesis:

Examining Committee:

Chair:

Date Defended:

Scott Wakelin

Master of Applied Science

VHDL Implementation of a Security Co-Processor

Dr. Glenn Chapman
Professor of the School of Engineering Science

Dr. Rick Hobson
Senior Supervisor :
Professor of the School of Engineering Science

Dr. Ljiljana Trajkovic
Supervisor
Professor of the School of Engineering Science

Dr. Marek Syrzycki
Internal Examiner
Professor of the School of Engineering Science

SIMON FRASER UNIVERSITY

PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has
granted to Simon Fraser University the right to lend this thesis, project or
extended essay to users of the Simon Fraser University Library, and to make
partial or single copies only for such users or in response to a request from the
library of any other university, or other educational institution, on its own behalf
or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection.

The author has further agreed that permission for multiple copying of this work
for scholarly purposes may be granted by either the author or the Dean of
Graduate Studies.

It is understood that copying or publication of this work for financial gain shall
not be allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly
use, of any multimedia materials forming part of this work, may have been
granted by the author. This information may be found on the separately
catalogued multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by
this author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

W. A. C. Bennett Library
Simon Fraser University
Burnaby, BC, Canada

ABSTRACT

Tradeoffs of speed vs. area that are inherent in the design of a security co-
processor are explored. Encryption, decryption, and key generation engines for AES in
Cipher Block Chaining and Electronic Code Book modes were developed using VHDL.

Two designs are discussed.

The “space-optimised” design required 1454 FPGA CLB slices for the Cipher
implementation (4016 for the complete design) and produced a round delay of ~ 16.75
ns. The throughput in CBC mode was 636.82 Mbps (depending on the FPGA utilized),

which is greater than various published prior works.

The Multi-Session Pipe'linéd approach followed a novel architecture that required
13675 CLB slices total and produééd a round délay of ~ 20 ns. The Multi-Session
Pipelined AES design can obtain an aggregate throughput of ~ 6.40 Gbps and is
capable of operating in CBC mode. The 10x speedup over the “space-optimised” design

required 3.4x the total number of FPGA CLB slices.

iii

DEDICATION

To my wife Stacey and son Evan who provide endless love, support, and inspiration.
And to our new (yet to be born) baby, who perhaps provided the greatest inspiration of
all. Finally, to my Mom and Dad, for without your loving guidance and encouragement

throughout my life, this would not have been possible.

ACKNOWLEDGEMENTS

| would like to give a special thanks to Dr. Hobson whose direction and advice was a
driving force behind this work. Your knowledge and expertise were irreplaceable in the
completion of the Thesis and | hope we can continue to work on our ideas together in

the future.

| would also like thank Dr. Syrzycki for his guidance throughout my entire academic
career (undergraduate and graduate) at Simon Fraser University. | was honoured to be a
student in several of your classes, and look forward to the opportunity to learn from you

again.

| would also like to thank Dr. Trajkovic and Dr. Chapman. It has been a pleasure to learn
from you during my time at Simon Fraser University. | have met few people as dedicated

as you.

I also wish to acknowledge the kihd and generous support of the Science Council of

British Columbia.

Finally, | wish to thank PMC-Sierra for providing all necessary support and assistance in
the completion of my degree. PMC-Sierra is a great company whose strengths are its

people, products and leadership. Thank you all for being such great friends.

TABLE OF CONTENTS

Y o o1 oV T SO S i
Y o X3 - T U PPPPR R il
[0 =Y [o 1 (o) 1 I S iv
Acknowledgements......cccccccemmmeeemmeeeeee et st e s s e e e s e e e s s s s e s s e s a s e s '
Table Of CONtENES.........eeiiiieciiiiesrers s ens et e ae s s s s ase st anansessssenane e nnns vi
LiSt Of FIQUIESccommemrireriicccsiensssssssssisssscssssnnesnmssssssanetinissssssssssesnsescanmannssanmssasnannsannns viii
List of Tablescccemmmmiiiiiiiissssssncneeneeneensenens wamssssEESSsEESESssMSEEEEassasssassssessssssssssesessssesassseess X
List of Abbreviations and ACrONYMScccccccmemmrennsimcrmnisnesissssssssnscnssissssasassnsnsnassnns Xi
Chapter 1 INTRODUCTIONcciceiemmemmmmmmmmmenmmssmssssssssssnssssssssassssssassssssassenssnassensensenss §
Chapter 2 VIRTUAL PRIVATE NETWORKSccoiciiriscmnunnsnsssssssssssnsssssssssnscansennas 3
Chapter 3 INTERNET PROTOCOL SECURITY (IPSEC)....ccccesssessssssnsusassansnsassaranaes 8
3.1 IPSEC ProtoColS.......cccievnumieiiiiiiiiiienin et e s es s 8
3.1.1 IPSeC Protocol MOESocevveeiiiiiieiiieiiicctiiinei s neas s e 9
3.2 IPSec Security Associations and POlICYc...eevicieemeeienininninneneineiniinnne. 12
3.3 [PSEC ProCesSiNgcevveerereereriseeeesr s ssnsssi s sesssses s esssssasssssssnssensans 12
3.3.1 Inbound ProCessing......c.cccevriiiiiiiiiiiieininn e eesssenenns SN 13
3.3.2 Outbound ProCessingcccccreeermirisiimiiiincietirinceeerseessssasnesensssnssssssassenees 14
Chapter 4 ENCRYPTION ALGORITHMS.........cccoccirrcmrmnmmrinsnsenisssssensessssennenssannens 15
4.1 Modes Of OPErationcoceeeeriiiiiiiiininir e s se e 16
4.1.1 Electronic Code Book (ECB) Mode......cccovicmmmeerininiiciinenninsssssecsscsenn 17
4.1.2 Cipher Block Chaining Modecocommniiiiiiniiiienninniesernes s 18
4.2 The Data Encryption Standard (DES)ccceccvviiiniiniininciineinncieneniinneeen. 20
421 Triple-DES (3-DES)ccocertrerrriiiressrtiim i sessase s snnsa s ssenns 23
4.3 The Advanced Encryption Standardcccceevvviiiiiinniiiniineeennessscsscinaenes 24
4.3.1 AES CIPNET..ueiiieeeececeeeeer ettt es e s s e s nn s s s 25
4.3.2 AES INVErse CiPhercccoieiieieiiiiniiiinieesat e 29
4.3.3 AES Key EXpansion......cccccoueeeiiiiinrciineeniennini st 31
Chapter 5 DESIGN AND IMPLEMENTATION OF AEScccscerivvcminicccsvsasnnenennnne 34
51 Architectural OPtioNSc.ccecerremieeree et s asaassesessesssaes 34
5.1.1 PipeliNiNg...ccciiiiiiiiiiciiiniiiiinniie st e s s s s 35
5.1.2 Sub-Pipeliningccooooreeeiiiiiiriiiniinneeens e eeeteeeeretteeseeteeeteneannsnn nnnnnnnarenanannsnns 36
5.1.3 LoOp UNrollingcccccvueriereerreee ittt tte s e s re e 36
5.1.4 Muiti-Session Pipelining.........ccovveerveiieiiiiiieieec e, 40

vi

52 Algorithmic OPLIONS........cciiiiiicee et e ennees 42

5.3 Implementation OPtIONS.........c.ciouiericrcreiere s e e e e ee e 47
Chapter 6 DETAILED DESIGN OF AES. ...t mnrssssnesss s snnmanseas 49
6.1 Space Optimised AES CIpher........ciiiiiceicieeerreerreeerneeevsvnreeeereseesens 49
6.1.1 Input FIFO SUb-MOAUIEccooeeieeeeeeereee ettt 52
6.1.2 Output FIFO Sub-Module..........cuueviieiiiiecriiitinirsennnevsnrraeeeeee s e e s 53
6.1.3 Control SM SUb-MOAUIE.......c.ooeriieieecceeirre e e ae e 54
6.1.4 AES Cipher SUD-MOdUIE......cuuuteeireieiiie e nrees e e eree e s e e e e e 57

6.2 Multi-Session Pipelined AES Ciphercccvvvvieiieniieeneeeenen. eererraeree 60
6.2.1 AES Cipher SUb-MOdUIE.......ccoii ittt e s s 62

6.3 INverse Cipher DESIGNcccveeirieeiriirerirerereeseeriessrsessseesesaessssesnenesasssnnsnns 64
6.4 Key EXpansion DeSIgN.........coccummeiiiiiiniinnrereenieeecceneresenree e n e 65
Chapter 7 AES DESIGN VERIFICATION.........cccocioiriccimreinisnsssanns s snnssnnsnssnssassss 66
71 Space-Optimised AES Testbench Design........ccccceeeereeriririvenenceereressnneeeees 66
2% T T Vo) o 10 B (=T =TT T O PPN 67
7.1.2 OUpUL INTEIACE...... ittt s aa s e s e n e s ae e s nes 68
7.1.3 Key INerface ...ttt e s ae e 69

7.2 Multi-Session Pipelined AES Testbench Designc.cceereeiirivceiiniicnnennen. 70
7.3 AES Cipher Module Verification...........ccveeieueuieerieiinis e eseeeesse s seceneeeeesseennns 70
Chapter 8 AES RESULTS........ccooceiriiccrrcmrcsnens s csssensnrssssesssssasmssessensssssssnans 74
8.1 Space Optimised AES Design Results........cccooeeiiiiiceiiiieeniiesciccceceneeees 74
8.2 Multi-Session Pipelined AES Design ResuUlts...........ccovvevvicimiimiiincinnnnnennee. 77
8.3 FPGA, ASIC and Full Custom Design Results.............ccoveeiecvinininnnne. 79
8.4 Summary of Resultsc.ccccceunenee. et s 81
Chapter9 REALIZATION OF A SECURITY CO-PROCESSOR........cromeererseresnens 82
Chapter 10 CONCLUSION.......ccccttiinrcnneesssssssssnmmimssssssssssssansssanssnansssssssssssanssnnnsmnnsans 84
APPENDIX A — SIMULATION RESULTS.....coiiiieeicicimiscarssrnssssenssnsssmsnsssmsmssssssesnsnsnses 86
APPENDIX B = RTL CODEcouuueeemeisesssssssssmssserssssssssssssnssssssssssssnssssmsssesssssssssssssnseess 95
REFERENCES.........iieiiieecirincemesisin s s nssemsesesassnssss s ss s s s nm s re s samen s nsanaessons snsnsnns 129

Vi

LIST OF FIGURES

Figure 1 Private Leased Line LAN Interconnect (logical VIew)cccceveeeeiiieinnsennnnncnnns 3
Figure 2 Frame Relay Network Alternative to Private Leased Lines (simplified

V1= O P SO 4
Figure 3 Classification of VPN TYPESccccciveririeiiriiitieniicescisnene i s saeees 6
Figure 4 ESP Mode Packet FOrmat.......cccocuiiremiivinmiineieeiencccentans s e cansnns 9
Figure 5 ESP Packet in Tunnel and Transport Mode.........c.ccccciviiiireiiinncinninncnncecaeeen, 10
Figure 6 Tunnel Mode EXample.......ccccvvuiiiiiiiiiienirensiinictene e sesen s sssssseee s ssadei s saneas 11
Figure 7 Transport Mode EXample ..ot 11
Figure 8 Electronic Code BOOk MOdecccoiiiciimirnniniinii e scnssscssane s 17
Figure 9 Cipher Block Chaining mode, Encryption..........cocccoierieiiniiiniccnnicinenennee, .19
Figure 10 Cipher Block Chaining mode, DECTYPHONcowrveveeessssmsreseeeeeesesess 20
Figure 11 DES Structureccceeceriennenne eeteiesssseeteeesesseeteeeeaeteaeaeisiaernetestsesannannaraas 21
Figure 12 DES Round Function OO OO~
FigUIe 13 THPIE-DES . .mereeeeeeeereseeseeeeeeeemeenesnsesses eeeereeeeenen e ees s 24
Figure 14 The AES State........cccccciiiiiiiiiiiircinciee st e et 25
Figure 15 AES CIPhereciiicieieiieiin i iseee s te s s s san e s e e s snesnes 26
Figure 16 AES Round FUNCHIONccoiiicciimiiiiiitintner et csanses e ane s 26
Figure 17 ShiftROWSoeviiiiiticiiticeic s 28
Figure 18 AES INVErse CiPher......occoiiiieiiiieiciire et e s s sme e 29
Figure 19 AES Inverse Cipher Round FUNCHiON.......ccceeeierimnimimrieenicciee et caneen, 30
Figure 20 INVShiftROWSoiiiiiiiinii e tn et 30
Figure 21 AES Key EXPanSiOnc.cccorueiiiiiiiiissisenen e snnees e sessennsssssssane s sssns e 33
Figure 22 Pipeline architecture With K =1oooiiiiiene e 35
Figure 23 Pipelined vs. Loop Unrolled Architecturesccouvriericenniiiicccinnnneee. e 37
Figure 24 Multi-Session Pipeline System Diagramcccvreiriiimiiinseinneceeee a1
Figure 25 AES Cipher Round AIGOrithm ..o, 43
Figure 26 Unbalanced MixColumns implementation............ccceveiinicienniiccinsiiiinenen, 45
Figure 27 AES Cipher Module Block Diagram........cuiiimemennniiiees e, 50
Figure 28 Control SM State Diagram.........cceceeveemiiuemrsnsimnnnniicctsssresee s e 55

viii

Figure 29 AES Cipher Sub-module Block Diagram.........ccccccumeeerieiiicriniciieeereeseccrensinnnn 57

Figure 30 AES Cipher Module Using T-Box ApProachccccceeevrerricenceerserinnsvenennees 60
Figure 31 Multi-Session Pipelined AES Cipher Module...........ccccorreneeeinieniciercenreenee, 61
Figure 32 AES Inverse Cipher in CBC MOde.........uuiveceireeneceeeereeee e s svvene e e 64
Figure 33 Testbench ConnNeCIONS........ccccvviiimmireeeii e s es e e 67
Figure 34 Functional Timing Diagram of the Input Interfaceccccccviiveeiiiccininennnne. 68
Figure 35 Output Interface Functional TIming.......cccceeeeremrreccieirenreesnre e 69
Figure 36 Key Interface FUNCLONAl TIMINGcccveceeerereeeeererererseseiesesssessssesessssaesessnaas 70
Figure 37 AES Cipher ENCIYPHIONcccviiiiiirre e remeste e mess s s e s e s men e s sse e 73
Figure 38 Block Diagram of the Complete AES Processorcccceveereeirnieercnsiinniennnns 83
Figure 39 Simulation Result of the Space Optimised Cipher (Full View)..........cccoeuen...e 87
Figure 40 Simulation Result of the Space Optimised Cipher (ECB Section)................... 88
Figure 41 Simulation Result of the Space Optimised Cipher (CBC Section).................. 89
Figure 42 Simulation Result of the Space Optimised Cipher (CBC Section, Part

72 O RPN 90
Figure 43 Simulation Result of the Multi-Session Pipelined Cipher (Full View)............... 91
Figure 44 Simulation Result of the MuIti-Session Pipelined Cipher (Inputs)......c.cccece..... 92
Figure 45 Simulation Resuit of the Multi-Session Pipelined Cipher (ECB and CBC

(o1011610] =) SN OO sttt e e et 93
Figure 46 Simulation Result of the Multi-Session Pipelined Cipher (Last CBC -

output).....ccereeveeeeennnn. FE PO 94

LIST OF TABLES

Table 1 Round Constant (RCON) Values for Key Expansionccccceeceerrrircceennecssennes 32
Table 2 Speedup achieved by using loop-unrolling............cocoerineeeiinicniniienn e 39
Table 3 Key Physical Implementation Characteristicsc.cccvveeeiiiriiineiieriiiseinreerrnneeenens 47
Table 4 Pin Description of Space Optimised AES Cipher Module................ e 51
Table 5 Pin Description of the Multi-Session Pipeline AES Cipher Module.................... 63
Table 6 Test Vectors used in the verification of AEScoocvvvemrreriiiiiiiniicccnnns T 71
Table 7 Space Optimised AES Design SUMMANYccovviiiiimemmmimmemeeeeeeseneesssssneneeereenens 75
Table 8 Performance Characteristics of the Space Optimised AES Design....... PR (-
Table 9 Performance Characteristics with Same FPGAcccciorriiinieceniccnreecnenes 76
Table 10 Multi-Session Pipelined AES Design Summaryccccevveeeerecveennereccssnennnanas 78
Table 11 Performance Characteristics of the Multi-Sevss'ion"Pipelined AES Design....... 78
Table 12 Comparison of ASIC Speed and Size Requirérhe‘nts 80

LIST OF ABBREVIATIONS AND ACRONYMS

Acronym _ Definition
2547 A type of MPLS-based VPN, defined in RFC-2547.
3-DES Triple DES Encryption
AES Advanced Encryption Standard, defined in Federal Information
Processing Standards Publication 197
AH Authenticating Header, defined in RFC-2402
ASIC Application Specific Integrated Circuit
ATM Asynchronous Transfer Mode
'_BDD Binary Decision Diagram
CBC Cipher Block Chaining
CLB Slice Combinatorial Logic Block. A Xilinx specific term that refers to the

reconfigurable units within each FPGA.

CTR Counter Mode
DES Data Encryption Standard, defined in Federal Information
Processing Standards Publication 46-2
ECB Electronic Code Book
ESP Encapsulating Security Payload, defined in RFC-2406
FIFO First-in, First-out
FPGA Field Programmable Gate Array
FR Frame Relay
GRE Generic Routing Encapsulation
IKE Internet Key Exchange
IP Internet Protocol

xi

IPSec Internet Protocol Security
v Initialisation Vector
L2TP Layer 2 Tunneling Protocol
L2VPN Layer 2 Virtual Private Network
L3VPN Layer 3 Virtual Private Network
LUT Look-up Table
MPLS Multi-Protocol Label Switching
PE Provider Edge
PPP Point to Point Protocol
RCON Round Constant
ROM Read-Only Memory
SA Security Assqqiation
SADB Security Association Data Base
SONET Synchronous Optical Network
SPD Security Policy Data Base
SPI Security Parameter Index
TCP Transmission Control Protocol
VHDL Very High Speed Integrated Circuits Hardware Description
Language
VPLS Virtual Private LAN Service
VPN Virtual Private Network
VPWS Virtual Private Wire Service

XOR

Exclusive-OR

xXii

CHAPTER 1 INTRODUCTION

Over the past two decades, the Internet has evolved from its research-oriented
roots to the ubiquitous network we know today that is accessed daily by hundreds of
millions of people in all corners of the globe. We are all familiar with the most popular

uses of the Internet, from email to web surfing.

Increasingly, the Internet is used as a medium for conducting business, whether
it be E-commerce, or online banking. In addition, businesses are using the Internet as a
~ means to connect often times geographically dispersed sites together, forming what is
known as a Virtual Privaté Network (VPN). Finally, these same businesses require -
scalable énd cost-effective solutions th-at enable their travelling workforce to access the
company. Intrénet. A common elément of all theée new applications is the need for

enhanced security.

A suite of protocols, collectively referred to as IPSec, was developed out of the
need to secure the Internet Protocol (IP). The Internet Protocol suffers from a number of
shortcomings, including the ease with which its header could be forged and payload
snooped or altered. IPSec uses two protocols: the Encapsulating Security Payload
(ESP) and Authenticating Header (AH) to address these shortcomings. AH provides
data integrity, data origin authentication, and anti-replay protection, while ESP offers all

the services provided by AH, and adds confidentiality services {1].

Encryption algorithms, such as the Data Encryption Standard (DES), 3-DES, or

the Advanced Encryption Standard (AES) are used to provide the confidentiality

services. DES, 3-DES, and AES along with their public key counterparts such as RSA
are computationally intensive algorithms that typically are implemented in software for

low data rate applications, and FPGAs or ASICs for high data rate applications.

The goal of this thesis is to understand the issues in the design and
implementation of a scalable and efficient security co-processor capable of supporting
encryption and decryption at OC-12 data rates (622 Mbps). It is not the goal of this
thesis to create the fastest AES implementation, but to provide a design that works in
both CBC and ECB mode that meets the stated performance objective while making
appropriate throughput/area trade-offs. The design is implemented in VHDL, and
targeted for Xilinx FPGAs using Xilinx Foundation Series software. While the topic of
this thesis is the desigh of a security co-processor, the scope of the VHDL

implementation is limited to modules supporting the AES encryption algorithm.

The thesis is organized as follows: Virtual Privaté Networks are introduced and
discussed in Chapter 2. IPSec, with particUlar focus on modes of operation is introduced -
in Chapter 3. Chapter 4 discusses both public-key and symmetric key encryption
algorithms, with particular emphasis on DES and AES and the various modes of
operation. Architectural and algorithmic design considerations are presented in Chapter
5. Detailed design and architectural descriptions of the various modules are presented
in Chapter 6. Chapter 7 introduces the verification strategy of the design. Chapter 8
discusses the testing results for the modules, including a comparison with prior works.
The integration of the modules into a security co-processor is presented in Chapter 9.
Simulation results are contained in Appendix A, while the VHDL code developed for this

Thesis is presented in Appendix B.

CHAPTER 2 VIRTUAL PRIVATE NETWORKS

As the Internet and corporate enterprise networks have evolved, businesses have
sought the productivity and efficiency gains made possible by connecting their own
sometimes geographically dispersed sites togeather, to form what is known as an
Intranet. A corporate Intranet allows users at different sites within the same company to
share information and collaborate in real time. Such flexibility, however, does not come
without a cost. Traditional means for creating a corporate Intranet often meant
purchasing and deploying costly private leased lines, which are dedicated, always on
connections that typically run at T1 rates (1.544 Mbps) and above. Figure 1 shows an
interconnection of 5 corporate sifes in a full mesh of private ieased lines. Note that
Figure 1 only shows a logical view. Typically these leased lines are multiplexed with

other links in access and metro SONET rings. Both are outside the scope of this paper.

Figure 1 Private Leased Line LAN Interconnect (logical view)

Site E Site

Private leased lines, though appropriate in some circumstances, have a number of

important disadvantages most notably [2]:

» Cost: Both in terms of deployment, and operating
» Lack of scalability: Once the private line is in the ground, the bandwidth is

fixed. In addition, as new sites are connected to the Intranet, new leased lines
must be deployed to some or all other existing sites.

To overcome the obvious scalability hurdles inherent in a private leased line network,
many businesses used Frame Relay (FR) or Asynchronous Transfer Mode (ATM)
technology to connect their various sites together in what could be considered the first
Layer-2 VPN. These networks solved the interconnection problem by allowing multiple
virtual circuits to be multiplexed on the same physical link (and port). The service
provider network was then responsibie for ensuring virtual circuits were in place to
create a hub and spoke topology that required fewer physical links. Figure 2 shows a
simplified Frame Relay network alternative to the private leased line approach shown in

Figure 2.~

Figure 2 Frame Relay Network Alternative to Private Leased Lines (simplified view)

gueoa

aoEonR|
I:[EHZII]EII
oooGa|
!
|

Site E

Such a deployment has significant disadvantages, most notably that it does not leverage

the ubiquity of the growing IP-based Service Provider networks. In this case, the Service

Provider must maintain a FR based network in addition to its IP backbone. Furthermore,
although the scalability of the network in Figure 2 is better than that of Figure 1, it does

not offer the scalability inherent in an IP-based network.

Another disadvantage of the described interconnect strategies is that it is cumbersome,
if not impossible, to enable another emerging interconnect strategy, the Extranet. An
Extranet is a business to business model that, for example, allows a supplier to access a
companies inventory database to determine when additional shipments should be made
based on demand and supply levels [2]. It would be economically unfeasible to install

private leased lines to every one of a companies suppliers or customers.

Another evolution in the business and networking environments is the need for individual
users, such as telecommuters, to connect to their corporate networks. Traditional .
approaches used slow and often costly (particularly if long distance charges were :

required) dial-up access.

With all this in mind, network equipment manufacturers and service providers began
searching for solutions that allow scalable site-to-site, business-to-business, and user-to-
site network access that leveraged the ubiquity of the Internet. The result was the

development of the IP-based Virtual Private Network.

A Virtual Private Network (VPN) can be defined as a communication method that utilizes
a segmentation of the existing shared network infrastructure to emulate a private

network [2].

Figure 3 Classification of VPN Types

IP Based Virtual Private Networks

Site to Site Remote Access
PE-Based CE-Based Dial Broadband
| | GRE PPP Cable/DSL
L3VPN L2VPN IPSec L2TP 802.11
I IPSec IPSec
Virtual
2547 Router VPLS VPWS

As shown in Figure 3, there are two general types of IP-Based VPNs: Site-to-Site, and
Remote Access. The main differences between the two is the number of tunnels
required to enable the VPN connectivity and the number of users of each individual

tunnel [3].

Another common VPN classification scheme is based on whether the VPN is trusted or
secure. A trusted VPN is one in which traffic belonging to the VPN stays within the
confines of the VPN and is not mixed with general Internet traffic. MPLS and Frame

Relay based VPNs are typical examples of a trusted VPN [4].

A secure VPN has some combination of encryption and/or authentication is applied to
the traffic belonging to the VPN [3]. IPSec is a suite of security protocols that uses
encryption and/or authentication facilities to protect traffic [1]. Secure, IPSec based

VPNs are typically used for user-to-site and site-to-site connectivity.

Since IPSec implies the use of computationally intensive operations such as encryption
and/or authentication, network devices implementing IPSec must have sufficient

processing power to handle not only the IPSec functionality, but their normal routing and

forwarding roles as well. This often leads to the necessity to have a dedicated security
co-processor. The focus of this Thesis is the design of AES modules, a key component

of a security processor.

CHAPTER 3 INTERNET PROTOCOL SECURITY (IPSEC)

Today’s Internet spans hundreds of millions of users and endpoints, and likely millions of
content and service providers not all of whom can be trusted. Packets transmitted using
the Internet Protocol are open to a wide range of rogue behaviour including: snooping,
forging, modification, and replay. The IPSec protocol suite is an extension of IP designed

to protect the data and authenticate the identity of those involved in the communication.

3.1 IPSec Protocols

IPSec defines two main protocols for securing IP traffic: AH and ESP. Authentication
Header (AH), defined in RFC 2402 [8], provides data integrity, origin authentication, and
anti-replay protection. Encryption services are not provided by AH, therefore, AH will not

be discussed further in this Thesis.

Encapsulating Security Payload (ESP), defined in RFC 2406 [9], adds confidentiality
(encryption) services to those provided by AH. Figure 4 shows the format of an ESP
protocol packet [1]. The Security Parameter Index along with the packets
source/destination address, and IPSec protocol value is used to identify the Security
Association (SA) for a given packet. The SA dictates how security servicés are to be
applied to a packet, including the cryptographic algorithms and associated keys [1], [6].
The sequence number is used to provide anti-replay protection. The variable length
payload data contains the IP/TCP headers as well as the user data (if any) being
transmitted. Padding is added to maintain alignment. Finally, an authentication word is

added to provide data integrity verification. Note that the entire packet (other than the

authentication data) is authenticated. Encryption services are applied to the payload

data, pad, pad length, and next header fields only [1], [6].

Figure 4 ESP Mode Packet Format

32 bit Security Parameter Index (SPI)
32 bit Sequence Number
Initialization Vector (CBC)

T / Variable Length Payload Data / Authenticated

Encrypted

!

|| 0-255pPadding Bytes

Pad Next
Length Header

l

{ Variable Length Authentication Data (

|

Variable Length
Payload Data

IP or TCP Header (Mode Dependent)

Payload Data

The variable length payload data contains an Initialization Vector (1V) when the

encryption services dictate Cipher Block Chaining (CBC) mode should be used [9]. CBC

mode will be discussed in further detail in section 4.1.2. The Initialization Vector may be

any random data. Note that the IV is NOT encrypted [1], [6].

3.1.1

IPSec Protocol Modes

The IPSec protocols may operate in one of two modes: Tunnel or Transport [1], [6]. In

tunnel mode, the entire IP packet is protected by ESP or AH and a second IP header is

added on the outside. In this way, the protected IP packet may be tunnelled through a

network without the network having knowledge of or be required to handle security

services for the packet. Tunnel mode may also be used by a security gateway that

provides security services for a Virtual Private Network. In this arrangement, the
cryptographic endpoint is listed in the outer IP header (the peer that will provide the
security services for the hidden network), while the communications endpoint is

identified in the inner header, and is the one sitting behind the gateway.

Transport mode is used when the cryptographic and communications endpoints are the

same.

Figure 5 shows an ESP packet in Tunnel mode and in Transport Mode [1], [6].

Figure 5 ESP Packet in Tunnel and Transport Mode

IP Header IP Header
Security Parameter Index Security Parameter Index

Sequence Number Sequence Number
Initialization Vector Initialization Vector

IP Header . TCP Header

TCP Header
Data
Data

Pad L::;th Heador Pad L::;th Haader
Authentication Data Authentication Data
A) Tunnel Mode B) Transport Mode

As an example of a tunnel mode arrangement, consider Figure 6. In this case, Host A
wishes to communicate securely with Host B that is inside a corporate Intranet.
Therefore, it must establish a secure connection with the Intranet’s security gateway. As
Figure 6 shows, Host A generates a packet with an IP header indicating the destination

address of the host within the corporate network. This IP packet is then encapsulated

10

with ESP in tunnel mode. The outer IP header is used to route the packet through the
Internet to the security gateway. Once the security gateway receives the packet, it
realizes that it is the destination for the ESP packet and performs inbound IPSec |
processing on it before forwarding it within the corporate network. This example is

typical of the remote user-to-corporate VPN connection.

Figure 6 Tunnel Mode Example

Internet Corporate Intranet

——E — y " ;
Host A K/\/J Secu r|ty Gatews
11141 23.2.2 3.3.3.1
| IPHeader | ESP | PHeader [TCP |

SRC=1.1.1.1 SRC=1.1.1.1
DST=23.2:2 o DST=3.3.32

,-——' Generated by HOST A. ——'l

A transport mode example is shown in Figure 7. This example illustrates a situation

where the communications endpoint is also the cryptographic endpoint.

Figure 7 Transport Mode Example

Internet

5

Host A \/_/J Host B

11141 33.3.2
| IPHeader | ESP

SRC=1.1.1.1
DST =3.3.3.2

Generated
by HOST A

11

3.2 IPSec Security Associations and Policy

The IPSec protocols together indicate what packets to protect, how to protect them, and
with whom the protection is shared. This information is maintained on a peer to peer |
basis by way of a Security Association (SA) which is stored in the SA Database. An SA
is a unidirectional element that maintains the state of the secure link. Each peer must
maintain two SAs for every end-point to which secure communications are desired.
Among other things, the SA indicates the keys to be used with the encryption and
authentication algorithms, the lifetimes of the keys (all keys must expire at some point
otherwise security is undermined), the sequenCe number (for replay protection) as well

as other context information [1], [6], [7]-

As noted previously, the SPI contained in the ESP and AH packets along with the source
and destination addresses, and IPSec protocol ére used aé indexes into the SADB.
Another database, the Security Policy Database (SPD) is used to indicate what
processing should take place with a given packet, including whether or not security
services need to be applied, what security protocol (ESP, AH) to use, and in what mode,

and what encryption/authentication algorithms to use (DES, AES, HMAC-MDS5, etc.).

If policy indicates that security services need to be applied, but no SA exists, the Internet
Key Exchange (IKE) is used to establish the SAs which must be in place to allow traffic
to flow. As part of this process, the keys used by the encryption algorithms such as AES

and 3-DES are established [1], [6].

3.3 IPSec Processing

The following sections describe the basic steps that are followed in the inbound and

outbound direction for ESP packets.

12

3.3.1 Inbound Processing

Upon receipt of an IP packet, the receiver performs the following [1]:

1. Determines whether an SA exists for the packet. If none exists, the packet is

dropped.

2. Assuming an SA eXists, the sequence number is then processed to ensure that it

is valid and not a potential replay packet.

3. The packet is then authenticated using the specified authentication algorithm and
key. The generated authentication result is then compared with the

authentication data in the header. If equal, processing proceeds.

4. The packet is then decrypted using the specified decryption algorithm and key.
The decrypted'result is checked for accuracy (uéually using the pad for

verification purposes).

5. The mode of the packet is then validated against what is expected (tunnel and/or

transport) in the SA and policy. If not correct, the packet is dropped.

6. The IP packet is then re-built, with the ESP header extracted. The port and

protocol of the packet is then validated against policy.

7. Finally, assuming all checks have passed, the IP packet is forwarded to the IP
processing engine which determines the next steps for the packet (whether this

is the destination, or whether it needs to be forwarded to the next hop).

13

3.3.2 Outbound Processing

Before a packet can be transmitted, the following outbound processing is performed [1]:
1. An ESP header is inserted in the proper location for tunnel or transport mode.
2. The appropriate packet fields are encrypted.

3. The appropriate packet fields are authenticated, and the authentication result is

placed in the authentication data field of the ESP trailer.

4. The IP header checksum is re~-computed (if necessary).

14

CHAPTER 4 ENCRYPTION ALGORITHMS

There are two general classes of encryption algorithms [5]:

« Symmetric key
« Public-key

A symmetric key encryption algorithm is one in which both ends of an encrypted
conversation use the same key, for both encrypting and decrypting the data. In other
words, both parties in the conversation must know the key. However, this raises the
important issue of key distribution. If one party wants to use a specific key, how do they
let the other party know the key to use? They cou_ld not simply transmit the key to the
other party, as this allows any person with access to the transmission to receive all .
subsequent data transmitted using that key, thus defeating the purpose of encrypting:
data in the first place. Nor could the key be mailed, telephoned, or faxed to the far end

as all these methods are both insecure, and non-scalable.

The solution to this problem is to use public-key cryptography. In public-key

cryptography, two keys are used [5]:

« Public key: can only be used to encrypt data
« Private key: can only be used to decrypt data

Typically, a users public-key is stored in a public database such as a Certificate
Authority. When user A needs to send a message to user B, user A retrieves B’s public
key from the database, and encrypts the message using the public key. User B can

then decrypt the message using his private key (which only he has access t0).

15

Public-key encryption algorithms are typically used as part of the key distribution process
for the symmetric key algorithm. The public key algorithm is used to encrypt the key for
the symmetric key algorithm prior to transmission to the far end peer. Upon receiving

the message, the far end peer decrypts the symmetric key using his private key.

One may wonder why it is nedessary to use two different encryption algorithms, when
public-key cryptography can be used to encrypt data, and elegantly solves the key
distribution problem. The reason is that public key encryption algorithms rely heavily on
modular exponentiation using large integers [6], which is very computationally intensive
and slow. In fact, public key encryption algorithms can be three orders of magnitude or
more slower than a symmetric key algorithm. For this reason, symmetric key encryption
algorithms are used to protect data, while public key encryption algorithms protect the

key to be used by the symmetric key algorithm [5].

A further classification of symmetric key algoi'ithms is whether the encryption algorithm

(cipher) operates on a fixed sized block of data at a time (block cipher), or on a single bit
at a time (stream cipher) [5]. The Data Encryption Standard (DES) and its replacement,
the Advanced Encryption Standard (AES), are examples of block ciphers, and the focus

of this Thesis.

4.1 Modes of Operation

All block based symmetric key encryption algorithms can be operated in one of two

principal modes [5]:

1. Electronic Code Book (ECB)
2. Cipher Block Chaining (CBC)

16

Other modes, such as Cipher-Feedback (CFB) and Counter (CTR) are possible, though

they are not as commonly implemented, and therefore are outside the scope of this

Thesis.

4.1.1 Electronic Code Book (ECB) Mode

Electronic Code Book mode is the simplest way to operate a block cipher. Blocks of
plaintext are simply run through the cipher without any additional feedback from previous
encryption rounds. In ECB mode, a block of plaintext always encrypts to the same block
of ciphertext (assuming the key is the same) [5]. Figure 8 shows ‘n’ blocks of plaintext
encrypting to ‘n’ blocks of ciphertext. Note that for decryption, a similar drawing can be

made, with ciphertext block #1 decrypting to plaintext block #1 and so on.

Figure 8 Electronic Code Book mode

Plaintext Block #1 Plaintext Block #2 Plaintext Block #n

l | i

Encryption Encryption oo Encryption

l i i

Ciphertext Block #1 Ciphertext Block #2 Ciphertext Block #n

Unfortunately, due to its simplicity, ECB mode is susceptible to attack. Messages

transmitted on the Internet tend to follow a defined format due to the need to abide by

17

various networking protocols, such as IP or TCP. For instance, the messages will all
likely have an |IP header, which has a predefined format that includes certain fields that
either don’t change or don’t change very often for a particular user, such as an IP source
address. If an attacker is able to gain access to IP packets transmitted using ECB
mode, they will quickly be able to determine what key was used during transmission.
The attacker will attempt decryption of the packet using all of the possible different keys,
but only some of these attempts will yield reaéonable, usabie results. All others will be
discarded. For instance, a decryption that yields an IP source address field of
7K*.p@n.uYS.98# will be discarded, while one that yields 233.140.70.4 will be accepted.
In the first case, that value cannot possibly form an IP Source Address, so that key
attempt is obviously incorrect. While the second value could be an IP Source Address,

which means that the key attempted may in fact be the actual key used to transmit the

data. Once a key is known, the attacker could theoretically do anything he wished to the - -

communication, from simply snooping, to injecting false packets.

Another weakness of ECB mode is that it is susceptible to an attack known as block
replay [5]. A block replay attack uses the fact that a block of plaintext always encrypts to
the same block of ciphertext. Using this knowledge, an attacker simply replays certain

blocks of the message multiple times.

One advantage of ECB mode over the other modes is that since no feedback is

involved, the encryption and decryption process can be easily parallelized and pipelined.

4.1.2 Cipher Block Chaining Mode

CBC mode avoids the security holes found in ECB mode by applying feedback to the

encryption and decryption process. The same block of plaintext will no longer encrypt

18

to the same block of ciphertext. With CBC, the encryption of plaintext block ‘n’ depends

on the encryption of plaintext blocks 1 through n-1.

Figure 9 depicts the process. Plaintext block #1 is XOR’ed with an Initialisation Vector
(IV) before being encrypted. An Initialisation Vector is some random value that is used
to kick-start the encryption (decryption) process for the block. All subsequent blocks of
the same message are XOR’ed with the ciphertext result of the previous block. For
instance, plaintext block #2 is XOR’ed with ciphertext block #1, and so on until the end of
the message is reached [5]. Note that the encryption of plaintext block #2 can not

commence until the encryption of plaintext block #1 completes.

Figure 9 Cipher Block Chaining mode, Encryption

Plaintext Block #1 ~ Plaintext Block #2 Plaintext Block #3
Initialisation
Vector
Encryption Encryption Encryption
v v
Ciphertext Block #1 Ciphertext Block #2 Ciphertext Block #3

Figure 10 depicts how CBC mode works when decrypting data. Here, after the first
block of data is processed by the symmetric key algorithm, the result is XOR’ed with the

IV, creating plaintext block #1. For all subsequent blocks of the message, plaintext block

19

#n is found by processing ciphertext block #n with the symmetric key algorithm, and
XOR'ing the result with plaintext block #n-1. Unlike encryption using CBC mode,
decryption can be easily parallelized, allowing decryption of blocks 2 onwards to begin

before block 1 completes.

Figure 10 Cipher Block Chaining mode, Decryption

Ciphertext Block #1 Ciphertext Block #2 Ciphertext Block #3
Decryption Decryption Decryption

" Initialization
Vector

Plaintext Block #1 Plaintext Block #2 Plaintext Block #3

The following two sections describe the design of the two most common symmetric key

algorithms, DES and AES.

4.2 The Data Encryption Standard (DES)

DES [10] was adopted as a U.S. Federal Government standard for encryption in 1976,
and by ANSI for use in the private sector in 1981 [5]. DES is an iterative block cipher,
that uses a block size of 64 bits, and a key size of 64 bits (although every 8th bit of the

key is a parity bit).

20

Figure 11 shows the high level structure of the DES algorithm, along with its key

expansion process [5).

As can be seen, a block of plaintext first goes though an initial permutation block. The
data is then cycled through the same round function 16 times (each time using a new
key from the key expansion process) before going through the inverse permutation

block.

Figure 11 DES Structure

PLAINTEXT KEY
INITIAL PARITY
PERMUTATION COMPRESSION

ROUND1 |[@————| KEY _ROUND1
ROUND 2 KEY_ROUND 2
[] ®
[J ®
[J ®
ROUND 16 KEY_ROUND 16
INVERSE
PERMUTATION
CIPHERTEXT

All 16 rounds of DES have the structure shown in Figure 12 [5), [10]. The input data is
split into two halves, a left half and a right half. The right half of the data goes through an
expansion permutation that expands the data from 32 bits to 48 bits. The data is then |

XOR’ed with the specific key fof this particular round before being passed to the input of

21

the S-BOXs. An S-BOX is a non-linear replacement of one value with another. DES
uses 8 S-BOXs that each take 6 bits as input, and produce a 4 bit output. Therefore,

after the S-BOX function is performed, the data is again 32 bits wide.

Following the S-BOX replacement, the 32 bit data is once again permuted, and then
XOR’ed with the left half of the initial input data. The end result is a new 32 bit string for

the right half of the data.

The left half output is simply equal to the right half input data.

Figure 12 DES Round Function

DATA_IN(1:64) KEY_IN(1:56)
i , [smm | 2
Expansion . i t
Permutation Compression
Permutation

Rl

DATA_OUT(1:64) KEY_OUT(1:56)

As noted previously, the DES algorithm uses an initial key size of 64 bits. Each round of
the algorithm uses a different 48 bit round key that is based on the initial input key. In

other words, the initial input key is used to create 15 additional keys to be used for

22

rounds 2 through 16. The initial input key and the 15 additional round keys are
collectively known as the key schedule, and are created through a key expansion

process.

As an initial step of the key expansion process, the 64 bit input' key is reduced to 56 bits
by removing (and checking) the parity bits. The 56 bit key is then divided into left and
right 28 bit halves, and circularly left shifted by one or two bits. The round number is
used to determine how many bits (1 or 2) to shift by. Following the shift, the key is
compressed and permutated to 48 bits by the compression permutation. The output of
the compression permutation serves as the key to be used for this round, while the

output of the circular shift serves as the input to the next round’s key expansion process.

Note that the above discussion was focussed on the encryption case. For decryption,
the exact same high ievel and round structures can be used. The only differences are
that keys are used in reverse, the keys are expanded using right shifts, and the keys are

shifted a different number of times than in the encryption case.

Specific details of the permutations and the contents of the S-boxes are given [10].

4.2.1 Triple-DES (3-DES)

As computational power has increased over the years, so to has the ability of hackers to
break DES. Due to its short, 56 bit key space, DES can be cracked. Triple-DES was

introduced to address this problem.

Triple encryption is a general technique that can be applied to any symmetric key
algorithm [5]. The end result is increased security via a larger key (Triple-DES uses a

192 bit key). The basic idea is illustrated in Figure 13.

23

Here, an encryption operation is first applied to the data using bits 0 to 63 of the key.
The ciphertext output of the first encryption operation is then fed into a decryption
process that utilizes bits 64 to 127 of the key. Finally, the output of the decryption block
is fed into final encryption block that uses bits 128 to 191 of the key. For 3-DES, the

result is a 48 round process.

Figure 13 Triple-DES

Key (0 to 191)
Key (0 to ss)l Key (64 to 127)l Key (128 to 191)l
Output Data

Input Data . . .
(0t0 63) ——3p» Encryption ——Pp Decryption ——P Encryption ——Pp (0 to 63)

4.3 ‘The Advanced Encryption Standard

As a result of the dual needs for'increasedﬁsecurity, and for an algorithm that can be
implemented efficiently with high throughput in hardware or software, the U.S. National
Institutes of Standards and Technology (NIST) launched a formal competition to define a
replacement algorithm for DES. After a lengthy evaluation process, the RIJNDAEL

algorithm was standardized as the new AES in 2001 [11].

AES is a symmetric key block cipher that uses a block size of 128 bits, and a key size of
128, 192, or 256 bits [11]. The algorithm is iterative, requiring 11, 13, or 15 rounds
(depending on the key size) to produce an output. Unlike DES, the same exact

operations cannot be performed for both encryption and decryption.

24

The following sections describe the AES cipher, inverse cipher, and key expansion in

further detail [11].

4.3.1 AES Cipher

Initially (and for all rounds that follow), the data to be processed by the cipher is
organized into a 4 x 4 matrix called the State. Each element of the State corresponds to
one of the bytes in the input data block. As shown in Figure 14, input byte O (bits 0 to 7
of the input data block), corresponds to the element at row 0, column 0. The cipher

processes the bytes and columns of the state to produce the output state.

Figure 14 The AES State
0 | In4 | Ing | In12 s00 | so1 | so2 | so3 Out0 | Qut4 | Outs | Out12
in1. | In5 | g | In13: -1 s10 | s11 |'s12 | s13 Out! | Qut5 | Owt9 | Out13
2 | In6 | In10 | In14 l—__> S20 | s21 | s22 | sS23 :> Out2 | Outé | Out10 | Outl4
I3 | In7 | In11 | In15 S30 | S31 | S32 | S33 Out3 | Out7 | Out11 | Out15

A high level view of the AES Cipher is shown in Figure 15. In the initial round (round 0),
the plaintext is simply XOR’ed with the input key. The result is then iteratively processed
by the round function for rounds 1 through N. In round N+1, a modified round function
(minus the MixColumns operation) is applied to the output of round N to create the

ciphertext output.

As shown in Figure 16, each of rounds 1 through N in Figure 15 contain the following

four operations:

1. SubBytes

25

2. ShiftRows
3. MixColumns
4. AddRoundKey

The following sections describe each of these operations in further detail.

Figure 15 AES Cipher
‘ Plaintext ’ Key
Round 0 AddRoundKey }:
l Round 1
Rounds Round 2
1toN

’ Round N (9, 11, or 13)

v

[SubBytes l

LIt

I v
Rﬂ:?d ﬁ ShiftRows]

[AddRoundKey ['<

Clphertext l

Figure 16 AES Round Function

Round Data In

v

SubBytes
ShiftRows

MixColumns

AddRoundKey

v

Round Data Out

26

4.3.1.1 SubBytes

SubBytes is a non-linear byte substitution of each individual byte of the State. There are

essentially two approaches for implementing the SubBytes process:

1. Use a look-up table

2. Perform the following calculation, where b, is the result of transforming by,

b, | 1000 11 1 1Th] [1]
b| {1 1000 1 1 1b| |1
b,| {1 11 00 0 1 1|5 |O
by|_{1 1 11000 1)) |0
b,| {11 11100 O0fb| 0]
b| |01 1 1 11 0 0fbs| |1
b,| (001 1 111 0fb| {1
b,] 0001 111 1jb] |0]

As noted above, a look-up table that implements the SubBytes transformation can easily

be found by simply plugging in all 256 possible bytes into the above matrix.

4.3.1.2 ShiftRows

ShiftRows applies a variable number of circular left shifts over each row of the state.
Each row is shifted an amount given by its row number. For instance, row 0 is not
shifted, row 1 is shifted 1 position, and so forth. Figure 17 graphically depicts the

ShiftRows process.

27

Figure 17 ShiftRows

No Rotation S00 | So1 | S02 | S03 S00 | So1 | so2 | so03
Left Rotate By 1 | 810 | S11 | 812 | S13 S11 | 812 | 813 | S10
Left Rotate By 2 | S20 | S21 | S22 | s23 :> S22 | S23 | S20 | S21
Left Rotate By 3| S30 | S31. | 832 | S$33 S33 | 830 | S31 | S32

4.3.1.3 MixColumns

The MixColumns transform multiplies each column of the State by a fixed matrix to

produce a new column. The following equation describes the muitiplication:

Sec| [02 03 01 01]S,,
Sic| {01 02 03 01}S,,
S,c| |01 01 02 03|S,,
S,c| 103 01 01 025,

yielding the following set of equations, where C indicates the column number:

So,c:=2*So,c+3*S1,c+1 *Sz,c+1 *Ss‘c
S1,c'=1 *So,c+2*S1,c+3*Sz,c+1 *Ss,c
Sz,C,=1 *SO,C+1 *S1,c+2*82,c+3*83,c
SS,C =3*SO,C+1 *S1,C+1 *Sz'c+2*83,c

The 1x multiplication is trivial, as the result is simply the input byte. The 2x
mulitiplication can be realized by multiplying the value (for example Sy ¢) by 2, and
checking whether the initial value (Sy¢) is > 127. If so, subtract (using bitwise XOR)
0x1B. If not, the result is already in final form. The 3x multiplication is also trivial, as it

simply is the addition (using bitwise XOR) of the 1x and 2x values.

28

4.3.1.4 AddRoundKey

AddRoundKey simply XORs the State with the particular key for the round.

4.3.2 AES Inverse Cipher

The AES Inverse Cipher has a similar overall structure to the AES Cipher. The primary
differences are that the transforms are the inverse of those used in the AES Cipher, the
keys are used in reverse order (thus the round ordering is reversed), and the specific

order of operation of the individual transforms is altered slightly, as shown in Figure 19.

Figure 18 AES Inverse Cipher

| C|phertext f Key J

Round N+1 ’ AddRoundKey e

[‘ RoundN(Q 11, or 13)

v

T11

Rounds Round N - 1
N down tfo 1
.
. L]
[Round 1
| InvShiftRows |
Round 0 InvSubBytes ‘

1] AddRoundKey }4

Plamtext j

29

Figure 19 AES Inverse Cipher Round Function

Round Data In

‘ InvShiftRows J

v

[InvSubBytes i

v

| AddRoundKey |

v

I InvMixColumns |

v

Round Data Out

The following sections describe the functionality of the InvShiftRows, InvSubBytes, and

InvMixColumns transforms. The AddRoundKey operation is identical to that described in

section 4.3.1.4.

'4.3.2.1 InvShiftRows

InvShiftRows applies a circular right shift to each row of the state. The number of

positions each row is shifted depends on the row number, as illustrated in Figure 20.

Figure 20 InvShiftRows

No Rotation S00 | So1 | S02 | S03

Right Rotate By 1| S10 | S11 | §12 | S13
Right Rotate By 2| S20 | s21 | S22 | S23 E

Right Rotate By 3| S30 | S31 | S32 | S33

30

S00 | So01 §02 | S03
§13 | S10 | SN S§12
S22 | S23 | S20 | S21
S§31 8§32 | 833 | S30

4.3.2.2 InvSubBytes

The InvSubBytes operation is the inverse of the SubBytes procedure. Therefore, an
inverse look-up table can be created to perform this procedure. As an example, an input
byte of 0x00 to the SubBytes procedure will yield an output value of 0x63. Therefore, for

the InvSubBytes look-up table, the value obtained with an input of 0x63 should be 0x00.

4.3.2.3 InvMixColumns

Like the MixColumns operation, the InvMixColumns transform multiplies each column of
the State by a fixed matrix to produce a new column. The following equation describes

the multiplication:

Sec| [OE OB OD 09]S,,
Sic| |09 OE OB OD| S,
S,c| |0D 09 OE OB|S,,
S;c|.|0B OD 09 OE| S,

yielding the following set of equations, where C indicates the column number:

So,c:=E*So,c+B*S1_C+D*Sz,c+9*S3_c
S1,c’=9*So,C+E*S1,C+B*Sz_c+D*S3,C
Sz,c,=D*So,c+9*S1_C+E*Sz,c+B*S3,C
S3,C =B*Solc+D*S1'C+9*SZ,0+E*S3,C

The values 09x, 0Bx, 0Dx and OEx are obtained through successively applying the
multiplication approach described in section 4.3.1.3. For example, the 9x multiplication

is obtained by multiplying by 2x three times, and adding the 1x value.

4.3.3 AES Key Expansion

As noted previously, the AES Cipher and Inverse Cipher require a new key value to be

used for each round. Figure 21 depicts the key expansion operation for a key size of 128

31

bits. The input key is split into 4 32 bit words (words 0 through 3). The RotWord process
takes a 4 byte word (b0, b1, b2, b3) and performs a byte permutation to yield (b1, b2, b3,
b0). Each byte of the word is then replaced using the same S-BOX as described in the

SubBytes transform. The word is then XOR’ed with a constant value that is based on the

round number, as shown in the following table:

Table1 Round Constant (RCON) Values for Key Expansion

Round RCON Value
1 0x01000000
2 0x02000000
3 0x04000000
4 | 0x08000000
5 o ~ 0x10000000
6 o ' 0x20000000
7 0x40000000
8 0x80000000
9 0x1B000000
10 0x36000000

The result of the RCON operation forms word0 of the next key (NWord0). This particular
value is also XOR’ed with word1 of the input key to create NWord1. Word2 is XOR’ed

with NWord1 to create NWord2. Word3 is XOR’ed with NWord2 to create NWord3.

This process creates 10 new key values from the initial 128 bit input key, for a total of 11

round keys. These round keys can be stored in memory to be used as necessary.

32

Figure 21 AES Key Expansion

RCon

Key Memory

Key In
Word0 | Word1 | Word2 | Word3
RotWord
SubBytes
+
3
) 4
—)
Y

NWord0

NWord1 | NWord2

Nword3

Key Out

33

CHAPTER 5 DESIGN AND IMPLEMENTATION OF AES

The design and implementation of AES typically involves making tradeoffs of processing
speed vs. area/power. While some applications such as an Internet core router would
require the fastest possible implementation, other applications such as wireless PDAs

would be more concerned about minimizing area and power consumption.

Design architecture, algorithm implementation, and implementation form factor (FPGA,
ASIC etc.) are three situations where one must be cognizant of the end goal (e.g.

highest possible throughput, lowest possible power or some optimisation in between).

The ways in which the design architecture, algorithmic implementation, and form factor
affect speed and area/power are discussed generally before describing the actual VHDL

implementations chosen for this Thesis.

5.1 Architectural Options

The three most common architectures typically employed when implementing a block

cipher, such as AES, in hardware [12] are:

e Pipelining
« Sub-pipelining
« Loop Unrolling

This Thesis proposes a fourth approach, termed Multi-Session Pipelining, which seeks

to apply the benefits of pipelining to CBC mode in a novel way.

34

5.1.1 Pipelining

In pipelining, registers are inserted between each round that forms the pipeline. The
depth of the pipeline, K, determines how many data blocks can be processed
simultaneously. The architecture is fully pipelined when K equals the number of rounds,

N[12].

Note that with K=1, the architecture becomes that shown in Figure 22. This is the

smallest possible implementation of an N-round algorithm [12].

Figure 22 Pipeline architecture with K= 1

Input Data

‘Register

Output Data

Pipelined architectures are suitable and offer the highest performance for ciphers
operating in non-feedback modes such as ECB, where each block of data is encrypted
(or decrypted) independently of one another. Zhang [12] shows that for non-feedback
modes, both speed and area increase by a factor of K for pipelined architectures over
the basic architecture shown above. Much has been written about extremely fast

pipelined implementations of AES [20] — [24].

However, pipelined architectures are not quite so suitable for ciphers operating in

feedback mode (such as CBC). This is because all rounds of the algorithm must be

35

performed on data block ‘N’ before data block ‘N+1’ from the same packet (and using
the same key) can be processed (due to the block chaining that is in effect). Section
5.1.4 of this Thesis discusses how the pipeline and the external data source can be
modified to enable pipelined architectures to improve the aggregate throughput of the
Cipher when operating in CBC mode. Section 6.2 of this Thesis discusses an AES

Cipher design based on this Multi-Session Pipelined approach.

5.1.2 Sub-Pipelining

In sub-pipelining, registers are actually inserted inside the round function itself, thereby
essentially splitting the round function into two sections. This is essentially the samé
concept as pipelining. For non-feedback modes of operation, Zhang et al. [12] shows
that a sub-pipelined architecture with each round divided into r=2 sections offers a 2*K
improvement in throughput (with K equal to the depth of the main pipeline). The
additional throughput comes at a cost of k*(r'-1): additidnai registers for the sub-pipelining
functionality. Note that as with standard pipelined architectures, sub-pipelining is
generally not suitable for ciphers operating in a feedback mode. In fact, sub-pipelining

may degrade performance when used with CBC mode.

5.1.3 Loop Unrolling

In loop unrolling, the basic architecture of Figure 22 is modified by inserting additional
rounds of combinatorial logic inside the loop, but without the additional expense of
registers. In this architecture, multiple rounds of the algorithm are processed in the
same clock cycle. Since the delay of each round (assumed to be due to combinatorial
logic) is fixed, the clock period must increase to ensure the data is processed by each

round in the same clock cycle. Unlike the pipelined architecture where registers are

36

inserted between each round, these inter-round registers are not present in the loop-

unrolled architecture. Figure 23 shows the difference between a pipelined and loop-

unrolled architecture.

Figure 23 Pipelined vs. Loop Unrolled Architectures

Input Data
Register

Register

Output Data

Pipelined

Input Data

Register

Round 1
Round 2

" Round k

Output Data

Loop-Unrolled

In a loop-unrolled architecture, throughput is increased by eliminating the delay

associated with the pipeline register(s) [12]. If one assumes the minimum clock period

for the basic architecture (pipeline with K=1) is as follows:

T ARCH

= T rounp

37

+ Toy »

where Trouno is the delay associated with the actual round function processing, and Ton
is the overhead delay (setup and propagation) associated with the register(s) and

multiplexers of the chosen architecture. Throughput [12] is then:

S _ 128 128
rous putBAﬂC(K:l) B NR*TARCH - NR*TROUND +NR *TOH ’

where NR is the number of rounds to be processed, and 128 is the number of output bits

produced. For AES operating with 128 bit keys, NR = 10.
Note that the throughput for a fully pipelined (K=1 1) design operating in ECB mode is:

128 128
Throughput pipg (-1 = =

TARCH TROUND + TOH

To calculate the throug’hpuf improvement achievable USihg loop-unrolling, the delay must
first be calculated. This is derived from the following, where K indicates the number of

rounds processed in the same clock cycle:
Turen =K * Troynp + Ton -

Throughput can now be expressed as:

128 128
Throughput,,, = VR = NR
IE * TARCH NR* TROUND + ? * TOH

The speedup achieved by using loop-unrolling can be determined by solving the
following equation:

Throughput,,

SPEEDUP = ;
Throughput g,

38

to yield:

SPEEDUP = 25

1+2
K

where 1 = Ton/Trouno- The following table shows the magnitude of the speedup that can
be achieved by using the loop-unrolling method. If one assumes the overhead
processing delay is 40% of the round processing delay (for a total delay of 14 units), a
fully loop-unrolled architecture where K=10 will only experience a 35% speedup over the
basic architecture. Though significant, this throughput increase will come at the cost of

increased area, on the order of K times that of the basic architecture.

Only K values of 1, 2, 5, and 10 are suitable for the AES algorithm when using 128 bit
keys. Table 2 also shows that for constant T and as K increases, the rate of throughput

increase diminishes. In this example, K=2 appears to present the greatest throughput
increase versus area trade off. Recall that the throughput increase of the pipelined

architecture was nearly K times that of the basic architecture.

Table 2 Speedup achieved by using loop-unrolling

Toh 1 4 9 4 4 4 4
Tround 10 10 10 10 10 10 10
Tau 0.1 0.4 0.9 0.4 0.4 0.4 0.

k 10 10 10 1 2 5 10
SPEEDUP 1.09 1.35 1.74 1.00 1.17 1.30 1.35

The advantage of loop-unrolling is that it is applicable to CBC and other feedback modes

of operation.

39

5.1.4 Multi-Session Pipelining

As mentioned previously, the primary drawback of the standard pipeline approach is that
it is not well suited to feedback-based modes of operation (such as CBC) due to the
need to complete the encryption of block N before block N+1 from the same packet can
be encrypted. [20] describes a method of processing four concurrent 32 bit threads at a
time in order to increase throughput, however, it appears that this approach does not
support CBC mode. Muiti-Session Pipelining is a novel method proposed in this Thesis

for extending the benefits of pipelining to CBC mode.

An important observation is that blocks of data from other packets (using other keys)
could be used to fill the pipeline. Each of the distinct user and key combinations to which

encryption services are being applied are referred to as a session.

In order to allow this Multi-Session Pipeline approach to work for CBC mode, the
scheduling of block data into the pipeline must be modified to ensure that blocks of data
from the same session are always input to the Cipher NR rounds apart, where NR is 11
(owing to the depth of the pipeline, and the number of rounds in the AES Cipher). This
is accomplished by maintaining NR distinct queues and servicing the queues in a round-

robin fashion.

In addition, a feedback path must be created from the output of the last round to the

input of the first round of the algorithm. Figure 24 on the next page shows the proposed

architecture. -

40

Figure 24 Multi-Session Pipeline System Diagram

External Processor Multi-Session Pipeline Design
Session #0
FIFO Queue #0 |—-D
Session #1
FIFO Queue #1]—» »
Session #2 AES AES AES
FIFO Queue #2 |—» Cipher |-+ Cipher | +++ | Cipher [QuioutData
. Round O Round 1 Round 10
Session #10
FIFO Queue #10 — Output Feedback

The External Processor depicted in Figure 24 is designed to handle up to 11 FIFO
queues, which are serviced in a strict round-robin fashion. Data from the same session
is always placed into the same queue. More than 11 sessions may be supported by
populating the queues with multiple sessions, so long as all blocks of data corresponding
to a particular packet/session are placed contiguously in one queue. After all queues are
serviced once, the AES Cipher will be processing 11 uniqué sessions with 11 different

session Keys at any one time (more sessions may be queued externally).

Using the Multi-Session Pipeline architecture, aggregate throughputs comparable to
those achieved with the pipeline approach described in section 5.1.1 are possible. Note

that while the throughput of a fully pipelined design was given as:

128 128
Thmughputrmz(hm = T = T T’
ARCH roUND T 1oy

the aggregate throughput (across all sessions) of a Multi-Session Pipeline design is:

128 128
Throughput 466 s_pire) = T = T T
arcH Lrouwnp Tlon

41

and the throughput for any one of the CBC sessions is the same as for a pipeline with

K=1:

128
NR*Typynp + NR*T,,,

Throughput CBC-Session(MS~PIPE) —

where NR is typically 11.

The Multi-Session Pipeline architecture provides enhanced aggregate throughputs and
space savings over simply instantiating the basic architecture (pipeline with K=1) NR

times.

5.2 Algorithmic Options

The basic round function of the AES cipher algorithm appears below in Figure 25. The
only areas where optimisations can be achieved are in the SubBytes and MixColumns .
operations [12]. Th'e ShiftRows operation is a permutation of bytes and requires no
hardware to implement, while AddRoundKey consists solely of an XOR of one 128 bit

word with another 128 bit word.

42

Figure 25 AES Cipher Round Algorithm

Round Data In

SubBytes

MixColumns

AddRoundKey

Round Data Out

5.2.1.1 SubBytes Optimization

As stated in section 4.3.1.1, SubBytes may be implemented using either a look-up table,

or by implementing the following equation.

5,7 [1 0 0 0 1 11 17p,] 1]
b{ |1 100011 1ip| (1
b,| |11 10001 1b| (O
b |t 111000 1)b] 0
b, [1 11110 0 0|b]| |O
| |01 11110 0)b| |1
byl 10 01 1 1 1 1 0fbg| |1
b, [0 001 1 1 1 1jb| |O]

The look-up table approach offers a throughput advantage, but requires a larger area
[13]. Fo.r the AES Cipher, 16 256x8 LUTs are required for SubBytes (assuming all 128
bits of the block are processed simultaneously. Several ways have been suggested for
improving the throughput of the LUT approach, including using a twisted binary decision
diagram, or going with a full custom approach and optimising the S-BOX at the transistor

level.

43

Several authors [12], [13], [19] — [24] have proposed various methods to reduce the
delay associated with the SubBytes process. The logic minimization and low fanout
decoding approach discussed in [19] appears to offer the best combination of low delay

and low gate/transistor count.

5.2.1.2 MixColumns Optimization

The MixColumns operation requires the implementation of the following equations for

each column of the state:

Soc =2"Soc+3*Sic+1*Sec+ 1" Syc
S1,C'=1 *SO,C+2*S1'C+3*SZ,C+1 *SS,C
Soc=1"Spc+1*Sic+2"8c+3" Sac
Sac =3"Soc+1*Si1c+1"Syc+2"*Sa¢

If one were to implement these equations directly into VHDL without care, the
synthesizer may produce the logic diagrams shown in Figure 26. Note that XTIME left

shifts the input byte by 1 position then XORs the result with 00011011 (0x1B) if the MSB

of the original byte was 1.

By analysing the delays incurred for each of the output bytes, it can be seen that
OutMixByte(0,C) requires up to 5 gate delays to be processed. However,
OutMixByte(2,C) only requires a maximum of 3 gate delays. Therefore, this

implementation is not optimised.

44

Figure 26 Unbalanced MixColumns implementation

$(0,C) $(1,C) $@2,C) $(3,C) $(0,C) $(1,.0) $(2,C) $(3,C)

¥ ! T i 1
rﬁ{ﬁ—} [xTivE | [xnime] XTIME XTIME [xTvE | [xTimE |

+

+)¢

OUTMIXBYTE(0,C) OUTMIXBYTE(1,C)
S(0,C) 8{1,0) s(2,C) S(3,0) S(0,C) S(1,0) 5(2,0) S(3.C)
]]
v v
XTIME XTIME [xTive | [xTIME | [xTIME | [xTimE |
e
OUTMIXBYTE(2,C) "

OUTMIXBYTE(3,C)

-By re-ordering the terms of the input equations to the following, a balanced
implementation will be created that results in all output bytes experiencing a maximum of

3 gate delays.

So'c:=1 *Sz,c+1 *Ss_c+2*so_c+3*S1,C
S1'C.=1 *SO,C+1 *S3vc+2*s1,c+3*82,0
Sz_c'=1 *SO,C+1 *S1,c+2*82,c+3*83,c
Sa,c =1 *S1_c+1 *Sz,c+2*83,c+3*So,c

5.2.1.3 T-BOX Implementation

An alternative to the use of the traditional SubBytes and MixColumns implementations is
that of the T-BOX [12]. A T-BOX is a look up table approach that not only incorporates
SubBytes, but ShiftRows and MixColumns as well. Algebraically, the T-BOX can be

expressed as follows [12]:

45

[S;c] [02 03 01 017 SubBytes(S,.)
Sic| |01 02 03 01| SubBytes(S,c,;)
S,c| |01 01 02 03| SubBytes(S,,;)
| S;c] [03 01 01 02 SubBytes(S; ;)

This matrix can be expressed by the following four equations:

Sy, C 2*SubBytes(Syc) + 3*SubBytes(S1 c.1) + 1*SubBytes(S;c.2) + 1*SubBytes(Ssc.3)
S, c = 1*SubBytes(Syc) + 2*SubBytes(S; ¢.1) + 3*SubBytes(S;c,2) + 1*SubBytes(S;c,3)
Szc = 1*SubBytes(Syc) + 1*SubBytes(Si c.1) + 2*SubBytes(S; c.2) + 3*SubBytes(S;c,3)
Sac = 3*SUbByteS(So C) + 1*SubByteS(S1 C+1) + 1*SUbByteS(Sz C+2) + 2*SUbByteS(Sa C+3)

Equations for all 16 bytes of the state can be generated from this by replacing C with the

column (0 to 3) being operated on. ShiftRows is implemented in these equations by

adding 0, 1, 2, or 3 to the column value C.

A look-up table holding 1x, 2x, and optionally 3x the SubBytes value should be
incorporated. Alternatively, additional ROMs may be used to hold the 2x and 3x values.
When fully implemented, up to 48 256x8 ROMs (fh reezfor each byte of the state) may be
required for one round of the algorithm when using the T-BOX approach. The T-BOX

approach is one of the methods chosen in this Thesis for the “space-optimised” AES

cipher.

The T-BOX approach is meant to reduce or eliminate the following delays associated

with the standard implementation:
o Delay in generating 2x the SubByte value

o Delay associated with the multiple levels of XORing required in the MixColumns

procedure

46

Gate delay is reduced at the cost of increased gate count and net delay, and therefore
area. Whereas the standard AES Cipher implementation requires 16 ROMs or look-up

tables, the T-BOX approach can require up to 48 for each round.

Note that the T-BOX approach is only useful if the savings in gate delay exceed the

increases in net delay.

5.3 Implementation Options

Section 5.1 discussed how, given a value for Trounp, the design architecture affects the
delay of the design. Section 5.2 showed how different algorithmic design choices can
affect Trounp- Trounp iS also affected by the choice of physical implementation. Among
the choices are FPGA, ASIC, or full-custom ASIC, all of which offer advantages over the
others. The decision to pursue one 6ption over‘the others is often driven by‘one or more

of the characteristics listed in Table 3.

Table 3 Key Physical Implementation Characteristics

Characteristic FPGA Standard Cell ASIC Custom ASIC
Initial Time to Market Fastest : Medium Slowest
Development Cost Lowest Medium Highest
Tooling Costs Lowest Medium Highest
Device Cost Highest Lowest Medium
Throughput Lowest Medium Fastest

An FPGA development offers the fastest initial time to market, and lowest development

and tooling costs by saving on physical design, layout, and tape-out expenses

47

associated with ASIC approaches (note that the time to market for a production ready
design is equivalent across all options). However, device costs associated with FPGA-
based designs are high. As an example, a design that may incur a device cost (silicon +
packaging) of $10-$15 may require a $50+ FPGA. A hard-copy FPGA or structured
ASIC program that will lower the device cost to near ASIC levels could be considered.
However, this is at the expense of increased development costs and schedule impact
(structured ASIC programs have costs and schedule impacts similar to those of
traditional chip developments). In addition, the FPGA design may not satisfy the

throughput requirements of the target application.

Another consideration is the anticipated volumes. If the volumes are low, an FPGA
design (despite the higher per device costs) will offer a lower program cost (development
. cost + volume * device costs). However, as volumes increase to a certain level, FPGA

and ASIC program costs will crossover such that the FPGA approach is more expensive.

Finally, ASIC and in particular full-custom ASIC approaches can achieve higher
throughputs than in FPGA-based designs. As an example, most FPGA based designs in
the literature achieve throughputs in the hundreds of Mbps (in CBC mode) and up to 20
Gbps or more in non-feedback mode [20] - [24], while ASIC approaches have achieved

those rates and greater.

48

CHAPTER 6 DETAILED DESIGN OF AES

The AES implementations discussed in this Thesis were designed and verified using

VHDL and Xilinx Synthesis Tools.

Two different AES implementations have been developed for this thesis. The first
implementation, based on the basic or pipeline architecture with K=1 (as shown in Figure
22) is optimised for space. The second, based on the Multi-Session Pipelined

architecture of Figure 24 is optimised for aggregate throughput.

_The following sections describe the detailed design of the AES Cipher for these two

implementations.

6.1 Space Optimised AES Cipher

Figure 27 shows a block diagram of the basic AES Cipher Module. As can be seen, it is
implemented using four sub-modules: Input FIFO, Control State Machine, Output FIFO
and importantly, a single AES Cipher sub-module. The

AES_CIPHER_MODULE_SPACE block implements the top level connections between

each sub-module, as well as the input/output interface to the testbench environment.

49

Figure 27 AES Cipher Module Block Diagram

AES_CIPHER_MODULE_SPACE

input FIFO Control SM OQutput FIFO
data_input(0..83) ——-»{ data_in(0..63) data_out(0..127) |-——={ data_in(0..127) wrb_fito ——» wib data_out{0..63) ——» data_output(0..83)
V_In(0..83) —F—» W_in(0..63) V_out(0..127) [——»] M(0..127) fito_tulth fe——| fultb b I— rdb
context_in(0..15) —L—ﬂ context_in(0..15) context_out(0..15) ——» context(0..15) —» data_in(0..127) emptyb > emptyb
wrb ——» wib rdb ¢——— rdb_frfo
fullb < fullb emptyb F——»{ fio_omptyb
. AES Cipher
resstb ~’—> aes_data_out(0 to 127) OJ—— aes_data_out{0 0 127)
clock ——» aes_data_int(0 0 127) ——» aes_data_in(0 to 127)
roundi{Q to 3) ——» round_num({0 to 3)
—» aes_key_in(0 to 127)
key_s 4) « aes_koy_mem_addresst{0 t0 4)
read_mem read_key_mem
Kkey_In{0 to 127)

The Input FIFO sub-module buffers the write transactions from the testbench and
converts the data width from 64 bits on the testbench to the 128 bit data path required by
the encryption engine. The Input FIFO is also used to buffer the context and initialisation
vectors. Similarly, the Output FIFO sub;module buffers the encryption results from the
encryption engine and converts the 128 bit data path utilized internally to a 64 bit data

path expected by the testbench.

The Control State Machine sub-module controls most operations of the encryption
engine including the reading of data to be encrypted from the Input FIFO and the writing
of encrypted data to the Output FIFO. The sub-module implements a state machine that
governs the operation of the encryption engine for each clock cycle of the encryption

process.

The AES Cipher sub-module implements the actual AES algorithm itself (with the

exception of the key generation logic).

The following table describes the operation of each of the input and output signals on the

top level design.

50

Table 4 Pin Description of Space Optimised AES Cipher Module

Signal Name

Input/Output

Description

data_input(0 to 63)

Input

Supplies the data input to the Cipher module for
encrypting. One half of the 128 bit AES block is
provided on each valid clock cycle.

iv_in(0 to 63)

Input

Supplies the IV input to the Cipher module for
encrypting data in CBC mode. One half of the 128 bit
IV is provided on each valid clock cycle.

context_in(0 to 15)

Input

Provides the Cipher module with knowledge as to
how it should process the associated data. The
encoding of context_in is as follows:

Bit 0: 1’ = Start of Packet. ‘0’ = middle or end of

packet.
Bit 1: “1” = Encryption, ‘0’ = Decryption

Bits 2:3: Indicate the mode the cipher is to operate in.
“01” = ECB mode. “10” = CBC mode. All other values
are ignored. '

Bits 4:15: Indicate the key index to be used.

wrb

input

Indicates the data on data_input, iv_in, and
context_in should be written into the Input FIFO.

fuilb

Qutput

Indicates the status of the input FIFO. ‘0’ indicates
that the Input FIFO is full, and ‘1’indicates that the
Input FIFO has room for at least one more 128 bit
transaction.

key_address(0 to 4)

Output

Provides the key address of the next required key.

read_mem

Output

Provides a read strobe for the associated key
memory.

key_in(0 to 127)

Input

The key to be used in the encryption process for
each round.

data_output(0 to 63)

QOutput

The result of encrypting the input data with the
context information as directed in contex_in, and the
associated key.

rdb

Input

Indicates that the testbench is ready to accept new
data from the output FIFO.

emptyb

Output

Indicates the status of the output FIFO. ‘0’ indicates

51

Signal Name Input/Output Description

that the output FIFO is empty (and therefore no need
to continue asking), and ‘1’indicates that the Output
FIFO has at least one more 128 bit transaction before

going emptyb.

clock input Provides a synchronous signal to all the clocked
elements in the design. Clock is active on the rising
edge.

resetb Input Provides a synchronous reset to all of the clocked

element s in the design.

6.1.1 Input FIFO Sub-module

The Input FIFO sub-module implements three circular buffers of 8 locations each. The
number of locations is configurable depending on the access speeds of the testbench
and the encryption rate of the engine itself. Two of the buffers feature 64 bit wide

locations, v\’(vhile the third buffer uses 16 bit wide Iodations, All buffers share the same

read and write pointer to ensure they are synchf’bnized.

Data to be encrypted is written into the FIFO in 64 bit transactions. Therefore, for AES
applications, two transactions must occur to write the complete 128 bit AES block into
the FIFO. At the same time, the 1V and context information must also be loaded into the
FIFO. Even if ECB mode is being used, the IV field as well as any unused bit locations in

the context field, should be set to 0.

Upon each write from the testbench, the write pointer is incremented one position, and
an internal contents counter is incremented. To protect the FIFO from overrun
conditions, the write pointer is compared with the read pointer. If the write pointer is
within 2 locations of the read pointer, the Input FIFO will assert the fullb signal to the

testbench. The testbench should not attempt to write new data into the FIFO until the

fullb signal is de-asserted.

52

The Control SM block controls reading from the FIFO. Upon each read from the Control
SM block, 2 locations are read from each buffer and concatenated together to form the
128 bit or 32 bit word required by the Control SM sub-module. The read pointer is
incremented by two and compared to the write pointer. If the new read pointer and write
pointer are equal to each other, the FIFO is empty and the emptyb signal is asserted to
the Control SM. To avoid FIFO under-runs, the Control SM must not attempt to read

from the FIFO when emptyb is asserted.

6.1.2 Output FIFO Sub-Module

The Output FIFO sub-module implements one circular buffer of 8 locations. The number
of locations is configurable depending on the access speeds of the testbench and the

encryption rate of the engine itself. The buffer features 64 bit wide locations.

Encrypted data is presented to the FIFO as a 128 bit word. On each write transaction
initiated by the Control SM, two locations are filled. The firét location corresponds to bits
0 to 63 of the encrypted data block, and the second location corresponds to bits 64 to
127. Upon each write from the Control SM, the write pointer is incremented two
positions, and an internal contents counter is incremented. To protect the FIFO from
overrun conditions, the write pointer is compared with the read pointer. If the write
pointer is equal to the read pointer, and the contents counter indicates the FIFO is
holding at least 6 units of data, the Output FIFO will assert the fullb signal to the Control
SM. The Control SM should not attempt to write new data into the FIFO until the fullb
signal is de-asserted. Therefore, the Control SM must go into a holding state until the

Output FIFO is no Io'nger full.

53

The testbench controls reading from the Output FIFO. Upon each read from the
testbench, 1 location is read from the buffer. Therefore, for AES applications, two
transactions must occur to read the complete 128 bit AES block from the Output FIFO.
The read pointer is incremented by one and compared to the write pointer. If the new
read pointer is within one location of the write pointer, the FIFO is empty and the emptyb
signal is asserted to the testbench. To avoid FIFO under-runs, the testbench must not

attempt to read from the FIFO when emptyb is asserted.

6.1.3 Control SM Sub-module

The Control SM (State Machine) sub-module impiements a state machine of 27 states
that controls the operation and sequencing of the cipher. Figure 28 is the state diagram

“for the Control SM. The operation is as follows:

o Initially, the state machine is in the IDLE state and remains so:until the
FIFO_EMPTYB signal from the input FIFO block is ‘1’, indicating that data is in
the FIFO. Once FIFO_EMPTYB is ‘1’, the state machine transitions to the

Get_Context state.

o In the Get_Context state, the state machine reads the context bits to determine
how processing should proceed. If bits 2 and 3 of the context input are equal to
“01”, the state machine transitions to the ECB_ENCRYPT_1 state. If bits 2 and 3

are equal to “10”, the state machine transitions to the CBC_ENCRYPT_1 state.

54

Figure 28 Control SM State Diagram

FIFO_EMPTYB =0

SM_CONTEXT_INPUT I= e
01 or 10" FIFO_EMPTYB ="1

SM_CONTEXT
SM_CONTEXT _INPUT = *10
_INPUT ="01"

ECB_ CBC_
ENCRYPT_1 ENCRYPT_1
FIFO_EMPTYB ='1'
ECB_
ENCRYPT_2

CBC_
ENCRYPT_2

Up FIFO EMPTYB =0
—OPFIFOFULLB =1

i/p FIFO EMPTYB =0
o/p FIFO FULLB =1
T

IdieOut

o/p FIFOFULLB=0 o/p FIFO FULLB =0

ip FIFO = Empty
o/p FIFO 1= FULL

i/p FIFO EMPTYB =1
ofp FIFO FULLB =1

Out_Fifo_Full p FIFO EMPTYB =1

o/p FIFO FULLB =1
o/p FIFO = FULL

i/p FIFO 1= Empty
o/p FIFO I= FULL

Get_ContextOut

o Inthe ECB_ENCRYPT_1 state, the state machine drives the data to be
encrypted to the AES Cipher sub_module. On subsequent clock cycles, the

state machine cycles through states 2 through 10. In states 2 through 10, the

55

controller simply feeds back the output of the previous round to the input of the

next round.

In the ECB_ENCRYPT_11 state, the data is completely encrypted having
traversed through all rounds of the state. In this state, the controller examines
the state of the FIFO_EMPTYB flag from the Input FIFO and the FIFO_FULLB
flag from the Output FIFO. If the FIFO_FULLB flag is ‘0’, the state machine
transitions to the Out_FIFO_Full state. Otherwise if both the FIFO_EMPTYB flag
and FIFO_FULLB flag are ‘1’, the state machine transitions to the
Get_ContextOut state because there is new data available to encrypt and the
output FIFO is empty. If the FIFO_EMPTYB flag is ‘0’ and the FIFO_FULLB flag
is ‘1’, the state machine transitions to the IDLEOUT state due to the fact that

there is no more data to encrypt.

- The functioning of the CBC_ENCRYPT_1 through CBC_ENCRYPT_11 states is
similar to that of the ECB_ENCRYPT_X states. Thé primary difference is that in
CBC_ENCRYPT_1, the input data to be encrypted must be XOR’ed with the IV if
this is the first block of the packet. If not the first block of the packet, the input

data to be encrypted must be XOR’ed with the previous encryption result.

In the Get_ContextOut state, the state machine retrieves the next data, IV and

context information required to encrypt the next block of data.

In the Out_FIFO_Full state, the state machine monitors the setting of the
FIFO_FULLB flag to determine when space is available in the Output FIFO.
When space becomes available, the encrypted data is written into the FIFO, and
the state machine transitions to the IDLEOUT or Get_ContextOut state

depending on whether or not data in the Input FIFO is waiting to be encrypted.

56

o Inthe Get_ContextOut state, the state machine writes the encrypted data into

the Output FIFO and reads the data, 1V and context for the next block of data to

be encrypted.

6.1.4 AES Cipher Sub-module

Two versions of the AES Cipher module have been developed. One version implements
the traditional S-Box approach for SubBytes. A simplified block diagram of this version of

the AES Cipher sub-module is shown in Figure 29.

Figure 29 AES Cipher Sub-module Block Diagram

aes_data_i »aes_data » instate

n
aes_key_in —p—p aes_key_in_R —o(-}-)

16 256x8 SBOX w

Substate

Left Shift +0'

Shiftstate

Shiftstate_2 MixColurms
Corrbinatonal | MixColumns

Logic
shift_data_out

AddRoundKey

128 Bit Register

'°"'::—"" —p—p round_num_R—p

clock —p»r—» clock——m»

v v v v
aes_data_out_round0 aes_data_out_mid aes_data_out_final aes_data out_last

57

Input data to the cipher sub-module is placed into an array named Instate which mimics
the state construct in the AES specification [2]. All 16 byte values of the state are then
used as lookup addresses for 16 ROMSs, the output of which is named Substate. The
Substate signal then takes two paths. One path implements the Shiftrows function only,
and results in a new signal named Shiftstate. The other path left shifts the Substate
signal one position and XORs the result with “000B°B°0B°B®” where B°is the most
significant bit of the Substate signal (prior to left shifting). 1f B®is 0, then the XOR
function has no effect. If B is 1, the left shifted value is then XOR’d with “00011011” or

Ox1B. This process creates a new signal termed Shiftstate_2.

Shiftstate and Shiftstate_2 are used as part of the MixColumns combinatorial logic. The

MixColumns logic implements the following balanced MixColumns equations:

So,c: =1 Sz,c +1"” SS,C +.2 * So_c +3* S1|c
S1,cy =1" SO,C+ 1* Sgyc +2* S1,C +3* Sz,c
Sg,c' =1" SO,C +1* S1,c +2° Sz,c +3* Ss,c
Sa,c =1 *S1,c+1 *Szvc+2*ss,c+3fSo,c)

1*S, . represents the various Shiftstate values, 2*S, . represents the Shiftstate_2 values,
and 3* S, is the result of XORing Shiftstate and Shiftstate_2 for the appropriate row and

column values.

The output of the MixColumns operations is XOR’ed with the AES_KEY_IN value for this
particular round as part of the AddRoundKey function to create the AES Cipher output

for rounds 1 through 9 of the Cipher.
Note that the AES Cipher module provides four possible outputs:

o One output (AES_DATA_OUT_ROUNDO) computes the XOR of the key and

input (for round 0)

58

o One output (AES_DATA_OUT_FINAL) computes the XOR of the key and the

result of SubBytes (for round 10)

o One output (AES_DATA_OUT_MID) computes the XOR of the key and the result

of the MixColumns operation (for rounds 1 through 9)

o One output (AES_DATA_OQUT_LAST) provides a registered version of

AES_DATA_OUT_FINAL

An alternative AES Cipher module was developed that utilized the T-BOX approach
described in Section 5.2.1.3 and [12]. Figure 30 shows the block diagram of this

alternate version of the AES Cipher module.

59

Figure 30 AES Cipher Module Using T-Box Approach

aes_data_in » aes_data —» instate

aes_key_in —»—» aes_key_in_R +

48 256x8 TBOX SubBytes

MixColumns
Combinational MixColymns
Logic

final_round_out

mid_round_ouf]

L_‘\ +
v
E 128 Bit Register
; 128 Bit Register

round_num —»— round_num_R—»

AddRoundKey

128 Bit Register

clock —»+—» clock—————»

v Jy J!

aes_data_out_round0 aes_data_out_mid aes_data_out_last

6.2 Multi-Session Pipelined AES Cipher

The following sections describe the implementation of the Multi-Session Pipelined AES

Cipher module, also referred to as the throughput optimised design.

Figure 31 shows a block diagram of the Multi-Session Pipelined AES Cipher Module.

60

Figure 31 Multi-Session Pipelined AES Cipher Module

data_input(0 o 127)
W_in(oto 127)

aop_in

mode_in

key_indax

>

—>

l—>
data_vakd_in [—# data_vaid

Multi-Session Pipelined AES Cipher

AES Cipher Round 0 AES Cipher Round 1 AES Cipher Last
aes_dala_in{0 10 127) ’
asa_W_in{0to 127} aes_dala_out_mid(0 to 127) [—» = aes_data_in(0l 127)
sop data_out_valid f—] data_vald data_out_vald —% ese —9 data_vakd
mode aes_dala_out_roundO(0to 127) |— aes_data_i{0 16 127) key_index_out —» —>! key_index data_out_vaid
Key, index key__index_ott f——9 key_index aes_data_out_ast(0 to 127)
aea_fb_data_in{0 1o 127)

—9 data_valid_out
data_output(0 to 127)

Rounds 2 through 9 not shown.

There are several high level differences between the design of Figure 31, and that of

section 6.1. These include:

o The top-level interface is changed to support 128 bit wide data paths for the input

data, output data, and IV signals. As well, the Key Interface is removed. Finally,

signals are added to pass mode, key index, start of packet, and data valid

information to the Cipher Module.

o The Input FIFO, Output FIFO and Control SM are removed in order to support a

new 128 bit block of data on every clock cycle (for maximum throughput).

o Finally, a separate AES Cipher round sub-module is instantiated for each round

of the design.

The individual AES Cipher round sub-modules that form the basis of the design store the

pre-computed individual round-keys required for their particular position in the pipeline.

For instance, the round 0 sub-module will only contain round 0 round-keys for the

sessions in use. Likewise, the round 5 sub-module will only contain round 5 round-keys.

The round-key to use will be selected based on the key_index signal. Since the

AddRoundKey function of the AES algorithm is always the last operation to be

61

performed in a round, the key memory will be able to provide the correct session key by
the time it is needed. The value of the key_index signal will propagate with the data
through each sub-module of the design to ensure that the correct key is used on a per

round basis to encrypt the data.

Since the Multi-Session Pipelined AES Cipher will produce a new 128 bit encryption
result on every clock cycle, the data_valid_in signal is provided to qualify the validity of
the input data. When the data on the data_input signal is valid, the data_valid_in signal
will be high. This will propagate through each stage of the pipeline and will inform the

downstream processing block that the output_data signal is valid.

The pin description of the Multi-Session Pipeline AES Cipher is presented in Table 5.

6.2.1 AES Cipher Sub-module

The Multi-Session Pipelined AES Ciphef Module utilizes modified versions of the Cipher
Module shown in Figure 29. For rounds 1 through 10 of the design, the primary
differences are that the sub-module contains the pre-computed round-keys for each of
the supported sessions. In addition, the sub-modules register and pass the key_index

and data_valid signals as they propagate with the data they pertain to.

The AES_Cipher_Round0 sub-module is further modified to check the status of the
mode and SOP signals. If the mode signal ‘0’, the data is to be encrypted using ECB
mode, and is simply XOR’ed with the round-key. If the mode signal is ‘1’, the data is to
be encrypted using CBC mode. In this case, the sub-module also checks the value of
SOP. If SOP is “1’, the block of data corresponds to the start of packet, and the data is

XOR’ed with the IV signal before being XOR’ed with the round-key. If SOP is ‘0’, the

62

data is XOR’ed with the result of encrypting the last block of data on this session before

being XOR’ed with the round-key.

Table 5 Pin Description of the Multi-Session Pipeline AES Cipher Module

Signal Name

Input/Output

Description

data_input(0 to 127)

Input

Supplies the data input to the Cipher module for
encrypting.

iv_in(0 to 127)

Input

Supplies the 1V input to the Cipher module for
encrypting data in CBC mode.

key_index

Input

Provides the Cipher module with knowledge as to -
which round-key to use. May be expanded as needed
to support the required number of sessions.

mode_in

Input

Indicates whether the block should be encrypted
using ECB or CBC mode.

‘O’ = ECB Mode. ‘1’ = CBC Mode.

sop_in

Input

indicates whether the block represents the start-of a
packet or not.’

‘1’ = Start of Packet. ‘0’ = middle or end of packet.

data_valid_in

Input

Indicates that the data presented on the data_input,
iv_in, key_index, mode_in, and sop_in signals are
valid.

data_valid_out

Output

Indicates that the data presented on the data_output
signal is valid.

data_output(0 to 127)

Output

Output data for the Multi-Session Pipelined AES
Cipher.

clock

Input

Provides a synchronous signal to all the clocked
elements in the design. Clock is active on the rising
edge.

resetb

Input

Provides a synchronous reset to all of the clocked
elements in the design.

63

6.3 Inverse Cipher Design

One of the goals of this Thesis was to create a modular design that with minor alteration,
could be re-used for the Inverse Cipher and Key Generation functions. In light of this,
the Input FIFO and Output FIFO are 100% re-used for the Inverse Cipher. Since keys
are used in reverse order with the Inverse Cipher, the Control SM module is altered to
decrement key address and round values. Finally, the Cipher sub-module is necessarily
updated to implement the actual inverse Cipher algorithm as described in Section 4.3.2.
The design of the inverse cipher sub-module is similar to that of the cipher module
depicted in Figure 29 with the exception that an extra register and multiplexer is required
to support CBC mode. The register is used to hold the |V value (for the first block of
data) or the prior block of input data. Figure 32 depicts the general configuration of an

Inverse Cipher in CBC mode.

Figure 32 AES Inverse Cipher in CBC Mode

Ciphertext Block #1 Ciphertext Block #2 Ciphertext Block #3
Decryption Decryption Decryption
Initialization
Vector
Plaintext Block #1 Plaintext Block #2 Plaintext Block #3

64

6.4 Key Expansion Design

The only variation in the design of the Key Expansion module from the AES cipher
module is the Key Expansion sub-module replaces the AES cipher sub-module. The
Input FIFO, Output FIFO and Control SM are 100% re-used from the AES Cipher

design.

65

CHAPTER 7 AES DESIGN VERIFICATION

The AES Cipher was designed using Xilinx Synthesis Tools, and verified using the
Modelsim verification environment. Before discussing test results for the different

implementations, the verification strategy is introduced.
AES design verification is composed of two components:
o Design of the Testbench
o AES Cipher Module Verification

The following sections describe these components in further detail.

7.1 Space-Optimised AES Testbench Design

Figure 33 on the next page shows the connections from the testbench to the space-

optimised AES Cipher Module. The testbench performs three general operations:
1. Operation of the input interface
2. Operation of the output interface

3. Operation of the Key Memory interface

66

Figure 33 Testbench Connections

AES_CIPHER_MODULE_X Testbench

Output UF

Testbench .
input IF data_input(0..63) data_output(0..63)

Iv_In(0..63) rdb
A context_In(0..15) emptyb

wrb

fuilb

Key Memory

key_address(0..4)

read_mem

key_in(0 to 127)

resetb ——» resetb

clock ——» clock

7.1.1 Input Interface

The input interface process controls the sequencing of d_ata, IV, and context information
to the AES Cipher Module. The input interféce initiélly ‘drives the reset signal to the
design. Once out of reset, theﬁtestbench begins monitoring the fullb signal which
indicates whether or not the Input FIFO in the AES Cipher Module has room to accept
data. Transfer of data (including IV and context) from the testbench to the Cipher Module
requires three clock cycles. On the first clock cycle (assuming fullb is high), the
testbench will set the wrb signal to ‘0’. Oh the second clock cycle, the testbench will
continue to assert wrb to ‘0’, and will also drive the data and IV signals with the most
significant 64 bits of the data and IV as well as the most significant 16 bits of the context
information. On the third and final clock cycle, the testbench will de-assert wrb (to ‘1’)
and will drive the least significant bits of the data, IV and context signals. Note that if the
testbench has data available to transfer to the Cipher Module, the testbench may not de-
assert wrb on the third clock cycle. A timing diagram of this basic operation is presented

in Figure 34.

67

Figure 34 Functional Timing Diagram of the Input Interface

clock J

reset

fullb

Data MSB >< Data LSB >
vV MSB >< vV MSB >

Context MSB X Context LSB>

Note that if the fullb signal from the AES Cipher Module is asserted (‘0’), the testbench
will not drive the wrb signal to ‘0’. The data, IV, and con_te'xt signais may be driven to any

value.

7.1.2 Output Interface

The output interface controls the sequencing of data to be read from the AES Cipher
Module. The testbench monitors the setting of the emptyb signal. When the Output
FIFO of the AES Cipher Module is empty, emptyb will be ‘0’, and the testbench will
correspondingly de-assert rdb. Once the output FIFO contains data, the emptyb signal
will be set to ‘1°, at which time the testbench will assert the rdb signal to ‘0’. This will

cause the AES Cipher Module to transfer encrypted data (in 64 bit segments) to the

testbench.

The foliowing figure depicts the functional timing on the Output Interface.

68

Figure 35 Output Interface Functional Timing

Clock —!

Reset

Emptyb

Rdb

Data
(0..63)

DataMSB X DatalSB >

- 7.1.3 Key Interface

The testbench (used with the épace optimised design) maintains a pre-computed Key
Memory database. This database contains all of the round keys the Cipher is expected
to use. The AES Cipher Module drives the read_mem signal into the testbench which,
when set to ‘1°, instructs the testbench to read a location from the key memory and send
the key value read at that location back to the AES Cipher Module. The address into the

Key Memory is formed by a concatenation of the key index and round number.

The following diagram depicts the functional timing on the Key Interface.

69

Figure 36 Key Interface Functional Timing

Clock ’

Reset

Read_Mem

Key_in 4
(0..127)

Round#0 Round #1
Key Key

7.2 Multi-Session Pipelined AES Testbench Design

The testbench for the Multi-Session Pipelined AES Cipher is much simpler than that
used for the space-optimised design. Instead of monitoring the status of the fullb and
emptyb' signals, the testbench now simply updates‘tﬁe data, IV, and associated context
information on each rising clock edge. The testbench is designed to enforce an 11 clock

cycle separation between CBC mode data blocks using the same session/key. |

7.3 AES Cipher Module Verification

Once the design of the AES Cipher Module and associated testbench is complete,
verification of the actual design can commence. The Xilinx FPGA design flow consists of
four steps: Synthesis, Translate, Map, and Place and Route. Simulations may be run
after each step, but for this Thesis, simulations were only run after the Synthesis and
Place and Route steps. Simulations were run after the Synthesis step to catch syntax
and logical errors while simulations were run after the Place and Route step to catch

logical and timing errors in addition to determining the throughput of the design.

70

The AES Specification [11] contains test vectors that can be used to test the completed

design to ensure that the expected results for a known input (data, 1V, key) are obtained.

In addition, RFC 3602 [14] contains test vectors for AES in CBC mode. Table 6 lists the

test vectors utilized in this design as well as the expected and actual results.

As can be seen, the AES Cipher design passes all test vectors. Note that additional test

vectors can and should be run to ensure the design is system ready.

Table 6 Test Vectors used in the verification of AES -

Vector Set #1 Vector Set #2 Vector Set #3
input 32 43 6 a8 88 5a 30 8d 0011223344 5566 77 0001 02 03 04 05 06 07
Data 31 3198 a2 e0 37 07 34 88 99 aa bb cc dd ee ff 08 09 0a Ob Oc 0d Oe Of
| o 1011121314 1516 17
18191a1b1c1d 1e 1f
Key | 2b7e 15 1628 ae d2 a6 000102 03 04 05 06 07 c2 86 69 6d 88 7¢c 9a a0
ab 7 15 88 09 cf 4f 3¢ 08 09 Oa Ob Oc 0d Oe Of 61 1b bb 3e 20 25 a4 5a
v Not applicable Not Applicable 56 2e 17 99 6d 09 3d 28
| | dd b3 ba 69 5a 2e 6f 58
Mode ECB ECB CBC (2 128 bit words)
Expected | 39 02 dc 1925 dc 11 6a 69 c4 e0d8 6a7b04 30 d2 96 cd 94 c2 cc cf 8a
Result 84 09 85 0b 1d fb 97 32 d8 cd b7 80 70 b4 ¢5 5a 3a 86 3028 b5 e1 dc Oa
75 86 60 2d 25 3¢ ff 9
1b 82 66 be a6 d6 1a b1
Actual 3902 dc 1925dc 11 6a 69 c4 e0d8 6a7b 04 30 d2 96 cd 94 c2 cc cf 8a
Result

84 09 85 0b 1d fb 97 32

d8 cd b7 80 70 b4 ¢5 5a

3a 863028 b5e1dc0Oa
75 86 60 2d 25 3¢ ff {9

1b 82 66 be a6 d6 1a b1

71

Figure 37 presents a waveform diagram produced as a result of simulating the AES
Cipher Module design with vector sets 2 and 3. In addition to verifying the design
produces the expected results, it also shows that the design is capable of supporting

both ECB and CBC mode. Additional simulation results are presented in Appendix A.

72

Figure 37 AES Cipher Encryption

=} gz} cellvef ez] eelazf ozl au{ ssf asf[ov] e vil B fisn el o sflvi e =il veffor 3l 3 afl of el ¥] QL i ol Sl v _el_el 1| miuncoTApuspusqisey
| wesmunpusisey
Eéégﬁégggéé ¥oopApUEgISEY
: J Lualu”pee oGS/
[vof eofjzof_10f ____o6] vof_eo] soy_zo)|eo] sof vo fo)jeo) 1o ool vil s st ziflstl i mEi R o8 00| ssauppeAeunieqse)
O 0 T O — 0 T 0 T T 1 ——]00000666000000000000000000000000] Ui Aenipusmisely
I T 1 [| , qpIppLBgIseY
[S . _ I ghidwenjouegissyy
—1—1 w55 org0208:80080 - _ 0000000000000000 EBPOUSRISS/
qnApUESY
[L L | smpueqssy
. £08d] Loozjomvf 1084 ffoos:f LLLL} W RRMOOARIERSOY
£000000000000043) L —[=] uMyaUeqIsEY
0000000000000004) —J === ~ IndureiepnSegsay/

73

CHAPTER 8 AES RESULTS

The following sections discuss the results of the AES designs implemented in this
Thesis. Both size and performance numbers are included for the space-optimised and
Multi-Session Pipelined designs and compared against prior works. Initial design of the
AES Cipher Module utilized the XC2v3000fg676-6 FPGA. Subsequent testing utilized
other FPGAs in order to compare the results of this Thesis with other published

implementations.

8.1 Space Optimised AES Design Results

A design summary of the space optimised AES design is presented in Table 7. Note that
this design utilized 4016 Xilinx FPGA slices with an eqUivaIent gate count of 79K gates.
During the design process, the AES Cipher Sub-modﬁle was found to be the limiting
factor from a performance perspective. The extra overhead of the Input FIFO, Output
FIFO, and Control SM is used to sequence data transfers to/from the design and
provides a common interface to the testbench, but does not directly implement the AES
algorithm. Therefore, for comparison purposes, the size characteristics of the AES

Cipher Sub-module is also included in Table 7.

74

Table 7 Space Optimised AES Design Summary

Parameter Complete AES Cipher AES Cipher Sub-module
256x8-bit ROM 16 16
Number of Slices 4016 1454
Equivalent Gate Count 78,957 N/A

The following table (Table 8) details the performance characteristics of the space
optimised AES design and compares the results with 3 other published works [15], [16],
and [18]. An attempt was made to ensure that the works being compared also
implement CBC mode. As can be seen, this design features a higher throughput than
the other references. However, this comes at a cost of increased FPGA slices. The
FPGA slices of the AES Ciphér sub-module is also shown since it is not clear from the
published results whether the other authors include overhead (such as the Input FIFO in

- this design) that is not directly related to implementing the AES algorithm.

An additional parameter “throughput (in Mbps)/Slice” is added in order to judge the
relative efficiencies of the various designs. As can be seen, the design described in this
Thesis offers the best efficiency. If only the slices in the AES Cipher module are included
in the efficiency calculation, the design in this Thesis offers a significant improvement in

efficiency over all other references in Table 8.

75

Table 8 Performance Characteristics of the Space Optimised AES Design

This Design Reference [15] Reference [16] | Reference [18]

FPGA Type XCV1000EFG XCV1000 XCV1000 XCV600E-
860-8 bg560-4 bg560-6 8BG432
FPGA Slices 4016 (1454) 5302 2902 4681
Clocks/Block 12 6 10 Not Published
Cipher Mode | ECB or CBC CBC ECB or CBC All
Max. Clock 59.70 MHz 14.1 MHz 25.9 MHz Not Published
Frequency
Throughput 636.82 Mbps 300.1 Mbps 331.5 Mbps 310 Mbps
;I:_roughputl 0.159 (0.438) 0.057 0.114 0.066
ice

To eliminate the impact of different FPGAs on the test results, the AES Cipher Module

was}re-simulated with the Xilinx XCVi 000bg560-6 FPGA. The results are listed in Table

9. As can be seen, the design describéd in this Thesis still offers higher throughput and -

greater efficiencies than the cited references.

Table 9 Performance Characteristics with Same FPGA

This Design Reference [15] Reference [16]

FPGA Type XCV1000 XCV1000 XCV1000
bg560-6 bg560-4 bg560-6

FPGA Slices 4016 (1454) 5302 2902
Clocks/Block 12 6 Not Published
Cipher Mode ECB or CBC cBC ECB or CBC
Max. Clock 50.0 MHz 14.1 MHz Not Published
Frequency

76

This Design Reference [15] Reference [16]

Throughput 533.33 Mbps 300.1 Mbps 331.5 Mbps
Throughput/ | 0.133 (0.367) '0.057 0.114
Slice

Note that second version of the space-optimised design utilizing the T-BOX approach
was also completed, however, this version suffered from the fact it required 48 rather
than 16 ROMs. The total number of required slices increased from 4016 to 6185, a 54%
increase. However, this increase in size did not translate into increased throughput. In
fact, throughput decreased to 627.45 Mbps, based on a 17 ns minimum clock period. It
is believed that the throughput decreased with the T-BOX approach (when one would
have expected it to increase) due to the difficulty of optimising delays for 48 ROMs. The
“bbuter'-region” ROMs will have much higher net delays than those closer to the
déstihe{{ion'brocessing blocks. The ROM(s) with the highest delay will dominate the

6vérall Cipher Round delay.

8.2 Multi-Session Pipelined AES Design Results

A design summary of the Multi-Session Pipelined AES design is presented in Table 10.
Note that this design utilized 13675 Xilinx FPGA slices with an equivalent gate count of

262K gates.

77

Table 10 Multi-Session Pipelined AES Design Summary

Parameter Complete AES Cipher
256x8-bit ROM 160
Number of Slices 13675
Equivalent Gate Count | 262,073

Table 11 details the performance characteristics of the Multi-Session Pipelined AES
design and compares the results with the space optimised design as well as other
published results. The 10x speedup over the ‘;space-optimised” design comes at a cost
of 3.4x the total number of FPGA slices. Note that the while the aggregate throughput
across all sessions is 6.4 Gbps, the throughput for any one of the concurrent sessions

(in CBC mode) is 581.8 Mbps.

_Note that Table 11 compares the Multi-Session Pipeline.d design with another design
[23] that is also fully-pipelined, and on the surface offer rﬁuch greater efficiency and
throughput. However, it is important to note that these designs do not appear to support
CBC mode, which is a mandatory mode for any network application using AES with

IPSec [14]. As such, a design that fails to support CBC is of limited practical value.

Table 11 Performance Characteristics of the Multi-Session Pipelined AES Design

This Design This Design Reference [21] | Reference [23]
(Multi-Session (Space)
Pipeline)
FPGA Type XC2V4000- XCV1000 XCV812E- XC2VP20-7
BF957-6 EFG860-8 BG560
FPGA Slices | 13675 (1165 for 4016 (1454) 3046 9446
Rounds 1-10)

78

FPGA 0] 0] 280 of 280 0]

BRAMs

Clocks/Block 1 12 Not Published | Not Published

Cipher Mode ECB or CBC ECB or CBC ECB, CBC is ECB
unknown

Max. Clock 50.0 MHz 59.70 MHz 61 MHz Not Published

Frequency

Aggregate 6.40 Gbps 636.82 Mbps 1.95 Gbps 21.64 Gbps

Throughput

Aggregate 0.468 0.159 (0.438) 0.64 2.29

Throughput/

Slice

Note that in [23], the authors list results for another version which utilized 84 BRAMs and

5177 slices to achieve a throughput of 21.54 Gbps.

8.3 .FPGA, ASIC and Full Custom Design Results

As mentioned previously, the throughput of the Cipher is intimately tied to the logic delay
of each round. Various prior works have shown that the largest component of delay is
caused by the SubBytes substitution [13], and [20] — [24]. Reducing the delay increases
the throughput of the design. The designs produced for this Thesis focused on ROM and
look-up table implementations of SubBytes which are most amenable to FPGA-based
designs. FPGAs and their synthesis tools ‘offer a relatively simple design environment,

but this comes at the cost of reduced flexibility in design approach.

ASIC and Full Custom based implementations have much greater freedom to implement
non-standard cell based approaches that can optimise down to the transistor level if

desired. Implementations in this area have focused on more innovative ways to reduce

79

the delay associated with the SubBytes [13], and [20] — [24] process, including the
Binary Decision Diagram (BDD) and Twisted Binary Decision Diagram (T-BDD)

discussed in [13].

Binary decision diagrams (BDD) have been shown to reduce the delay, but the methods
used incur high fanin/fanout loads [13]. The “Twisted BDD” (TBDD) approach buffers
and shifts the order of inputs to each output bit of the S-BOX. This approach is the

fastest reported so far, but is also the highest gate count method [13].

In [19], we describe a new method known as the L-BOX that uses novel logic
minimization and decoding to reduce fanin and fanout to produce a SubBytes process
that minimizes Nand2 equivalents and delay at the same time. Table 12 compares the
results obtained using the L-Box approach with other SubBytes optimisation

approaches.

Table 12 Comparison of ASIC Speed and Size Requirements

Method Delay (ps) Nand2s
Finite Field [13] 2190 354-406
BDD [13] 680 2426
TBDD [13] 440 2815
L-Box, Singie [19] 460 536
L-Box, Differential [19] 420 738

80

8.4 Summary of Results

The results of section 8.1 indicate that the space optimised AES has a 92% higher

throughput, and the highest efficiency, of the cited work for both ECB and CBC mode.

The Multi-Session Pipelined design discussed in section 8.2 offers a dramatically higher
throughput for both ECB and CBC modes. The Multi-Session Pipelined is capable of an
aggregate throughput of 6.4 Gbps. Note that the throughput in CBC mode for any one of

the concurrent sessions is 581.8 Mbps. Efficiency increased to 0.468.

Other papers [20] — [24] claim extraordinary throughputs using FPGA design
approaches. Typically implemented using fully pipelined architectures, these papers
appear to only support ECB mode, which is a serious shortcoming. Further, mahy of the
comparisons that are being done are across multiple FPGA types and speed grades

which lead to very misleading results.

81

CHAPTER 9 REALIZATION OF A SECURITY CO-
PROCESSOR

The AES Cipher Module, AES Inverse Cipher, and AES Key Generation modules can be
integrated together in order to realize a full AES crypto processor. Figure 38 depicts a

block diagram of such a design.

The input data, output data, clock, and reset signals of all three modules share a
common bus to the external world. The individual rdb, fullb, emptyb, and wrb signals
are kept separate so as to allow individual monitoring and selection of the cipher and

- inverse cipher modules.

The output of the key generation .module is .connected to the cipher and invérse cipher
modules in order to allow th\e round keys to be automatically updated as required. The
key memory in the cipher and inverse cipher should be implemented as a dual port RAM
in order to allow keys that are not in use to be updated while the cipher and inverse

cipher are using other keys.

This co-processor would be capable of supporting CBC and ECB mode for both

encryption and decryption, and would contain the necessary key generation logic.

A device such as the PMC-Sierra RM7000 MIPS-based processor could be used to
implement the IP layer, and the IPSec protocol processing stack. Another option would
be to integrate the security engine with a processor in a System on Chip (SOC) design.
The small size (~79K gates) of the space-optimised design would be ideal as the die

cost of the engine would be insignificant compared to the processor itself. As well, the

82

performance of such an integrated processor would likely be greater than an FPGA-
based design. In general, ASICs offer higher performance than FPGAs (even if using the
same technology, such as 0.18 uM). The VHDL code developed for this thesis is

technology independent, allowing it to be synthesized in any FPGA or ASIC technology.

Figure 38 Block Diagram of the Complete AES Processor

AES Processor

AES_CIPHER_MODULE_X

data_input(0..63) data_input(0..63) data_output(0..63) output{0..63)
iv_in(0..63) iv_in(0..63) rdb « rdb
ct_in(0..63) _in(0..15) ptyb fullb
cipher_wrb wrb key_: ess(0..9) <
cipher_tullb < tullb cipher_select «
clock resetb write_key <«
reset clock
AES_INVERSE_CIPHER_MODULE_X
| data_input(0..63) data_output(0..63)
Iv_in(0..63) rdb « inv_rdb
_In(0..15) 'erﬁptyb Inv_fullb
inv_cipher_wrb wrb key_ (0..9) =
Inv_cipher_fullb < fullb Inv_cipher_select <
resetb write_key <
dock
AES_CIPHER_MODULE_X
data_input(0..63) data_output(0..63)
xt_in{0..15)
key_cipher_wrb wrb
key_cipher_fullb - fullb key_address(0..9)
resetb clpher_select
clock Inv_cipher_select
write_key

83

CHAPTER 10 CONCLUSION

With more and more sensitive information being transmitted electronically over the
Internet, never before has the need for strong cryptographic security been higher. in
addition, as the amount and variety of devices connecting to the Internet increases, so to
does the need for security processors that are tailored to the application. A security
engine in a mobile phone will require vastly different performance and power

specifications than a security engine operating on a core router line card.

This Thesis has explored the driving needs for security, its implementation via IPSec at
the network layer, and the cryptographic protocols that form the heart of the security
engine. The goal of this Thesis was to understand _the issues in the design and
implementation of a scalable and efficient security co-processor capable of supporting

encryption and decryption at OC-12 data rates (622 Mbps). This goal has been met.

AES Cipher, Inverse Cipher (both supporting CBC and ECB mode) and Key Generation
modules were completed, and verified. The code was designed in a technology
independent manner, allowing it to be applied equally effectively to FPGAs or ASICs.
The AES Cipher was studied to reveal somé of the architectural and algorithmic
optimisations that should be considered in order to address the larger speed vs. area
guestion. In addition, a novel architecture was proposed to enable the use of pipelined

architectures in CBC mode.

The space-optimised design was found to require 4016 Xilinx FPGA slices and operated

at 636 Mbps, which was greater than the works cited in this Thesis. The Multi-Session

84

Pipelined AES design utilized a novel pipelined architecture that allowed the throughput

to increase to 6.40 Gbps at the cost of an increase in FPGA slices to 13675.

There are several opportunities for future work as a result of this Thesis. The Multi-
Session Pipelined approach offers multiple optimisation directions, including
incorporating it coupled with a loop-unrolled architecture. As well, additional time may
be spent optimising the SubBytes process, perhaps through the use of Galois field
mathematics to reduce the delay instead of ROMs or LUTs. Finally, [19] describes a
novel logic minimization and decoding technique which could be advanced in the full-

custom arena.

85

APPENDIX A - SIMULATION RESULTS

Figure 39 presents a complete waveform of the space-optimised AES Cipher. The
waveform was generated using the post place and route simulation model. The
simulation is running the test vectors specified in Table 6. The clock is running with a
period of 17 ns. As can be seen, the design produces the correct ciphertext results in 12
clock cycles per vector. This particular design includes the use of the Output FIFO, and
therefore the 128 bit result is output as two 64 bit words. The first of the 64 bit outputs is
only present for one clock cycle, and therefore is difficult to see. Using the rdy_counter
signal as a guide, the ECB vectors are input during rdy_counter cycles 0x4 and 0x5,
while the ECB ciphertext result is outpljt dering cyeles Ox1A and 0x1B. Likewise, the
CBC vectors are input during rdy_counter cycles 0x7-0xA, énd the CBC ciphertext
results are output during cycles 0x26, 0x27, 0x31 and 0x32. Figure 40, Figure 41, and
Figure 42 closer views of the ciphertext results in order to verify correct operation and

timing.

Figure 43 presents the simulation result for the Multi-Session Pipelined design. Using
rdy_counter as a guide, the ECB test vector of Table 6 is transferred to the Cipher during
cycle Ox4. The Cipher produces the result during cycle 0x10. The CBC input vectors are
loaded during cycles 0x7 and 0x12. The encrypted result is presented during cycles
0x13 and Ox1E. Figure 44, Figure 45, and Figure 46, show closer views of the ciphertext

results in order to verify correct operation and timing.

86

Figure 39 Simulation Result of the Space Optimised Cipher (Full View)

nz

sd 69£0uR)

U061 U008 Suonly 8U 0091 8uU 0091 $U 0L SUQOER SU00T suQoll
R L R A N R R RN N A RN N NN KRR RN RN R AR RN AR RRRNEAY
o] wec] ve s och sefrefed) e ef el efaefoef efed] wl e el foef el (e sfoemla He—o&%;a?%_?_.ﬁ??f o] ol ol el vl el e 2 o sl vl el Z[1
;] n
ggggégé Il SEE:HEESEE
1 :) [
00] wjsofsallo] o] sofvolcolzo] Lol 60w eo]ea S?o_ﬂﬂaus_s wy 00 w]m]esefofsifrifei]z] o1] 00
[O T O RS EIIEREEEIINEE
! N) S S —
L I I . Ll T
\aviegevageszsar] § L I vooaiasaszoeosvel T | wasoranosigaosal 0000000000000000
J 1 1]
mam"_“ Looz)=froseferl 2202
888888%“_2 v Jpemeof | e
888888?3“ L1 e I

en |

JBUN0OTApIARULqISaY
saOURRISeY
YoopapuRqisey
wew "peeyousm se);
SRRIPPEASNOUBQIRBY
U Aonpusgse)
qARUEISaY
alidusapjousqssy
“RIEpRIOUBRSSY/
qiingnpusqisay
AMIUBRSH/
U BjuGOADUBgISaY
U AyUBgSEY/
nduiBjep/yoLG S

87

Figure 40 Simulation Result of the Space Optimised Cipher (ECB Section)

_wagp

suU 0¥k Su0gb1 SUSHL SU Orkl SU 0ER) sugzvl Sugiyl
__________ ________________:_ ___________________ ___________________ ____:_:_____::_ _:______________._ ___________________ _____________:____
ol ETH i 61 8l
[[S I | 1 7 1]
0] SO} #0) 0| 20
QIO XIS TR] AIBYELLIOEZ 1264001 0PZER0G110099] SIS I VBAIYSI 9895 420184:12088039 B | D048 3809203p8LZLAIVEATVZSH0300] M0wuaiaidRRsddl Or iy
f
1
wesovaososzgaoeaf ¥IET [okvossvascoavoes JRIT | 0000000000000000
€08
£000000000000040
000000000000000

SU COvE

JBIUN0O"ARIAPUBGISIY
eseIpUBgISeY
%o0ppUSmSey

WALl PRayYILISDY/
SSAPPEAONUIGAISSY
u" Kdapusqsey/
qpIRURGISeY
dadwayouagisel
ndno eleppRUsgSe)
qimgouaqisey
QMAPUGISe)/
UIIXRIOARURISOY
U Ayyouagsay
wduTmeppousqIsel

88

Figure 41 Simulation Result of the Space Optimised Cipher (CBC Section)

sd 2!

sugegl
Prrapinnngyrring

5U 099} Su S¥alL

sugyol
VELEpIag

SLEQL

85U 0col

su gzg)

S 0291 sUg
Thrrprn

Prrprreryerr g

{10 sug
rtevpnen

181

Frreprnng

sUG09L
AN EREN

£Z]

sz),

¥z

T

#0f

€0}

20)¢|

t

EWELY8Q b6 9896 4201844200 H020v6Y
LALZEL

Q04¥11 3809L03¥642100 r%mmmmmummo&

90V651424 31 H0Z09E8301200b8v 308w]

]

—

voaiasaszocoave] AT

Ye40D020PE0a0962d

YGeO¥80408/80080

€084

£000000000000040

000000000000000:4

U001

Jejunoa” Apuspuagisel/
JesaupouequEsy
FoPARUGISSY

wew pesIUAIEs)
gsaippeAaNLaqISY
Ui Amippusqisal
apPUIqISOY
glidwepueqise)
INGNOBIBPAIOUB S/
AmiApUsQsIY
WD SR/

i pRosApIBgIseY
U ApoURGISel/
InduelepLeIS Rl

89

Figure 42 Simulation Result of the Space Optimised Cipher (CBC Section, Part 2)

su 098}

SU GGl

SU 068l SuGygl

SU GBI

Frre et

SU gegl

8U0e8t

su gzZel suQ

26}

zg]

I

|

00,

OUOUODODOUDOK,

[0

tavisaovaasezed il VIR

644

H0eszazossss: T HB woimrwen|

£0000000000000:40

0000000000000004

413

Jepnc”Apiapuaqisel/
JesaipuaqIsey
A0pPULqISaY

WOl PREMIUIGIS)/
ssappeAeyyaaqisey
Ui Aeyapusqisel/
qRIAPUDGISAY
Ghidwensouaqise)/
mane BRpILEqISEY/
qypUogISaY
qrALBGIESY)

U XRIUoIADUSgISEY
u"Ayyousqisay

duEBpRDURgSOY

90

Figure 43 Simulation Result of the Multi-Session Pipelined Cipher (Full View)

________n_c_n.a_o_—_____._________Jc_ea_n_—________:_____J:_n.o_v_r.____________._w_:—an__.___:____________ _________.._____:_w_:_co_—__.________
izf_ozl] v ad o el v et e o el o w ezl vl oi] 4t 3 a6 of &l v e 8 I 9 5y vie saunosTApippusgissy
WsauUeqSeY
L L L L M L L L L L U L L L MU U L LT L LML L L] otomoueaisay
el viae0vEEoeerosesasreoRzarsorall M I —Il ——— K| DI W weinceeprousgisey
1 |- _l,rl_ r N0 PHEA BB RIRYISEY/
L [L 1 woisA eepuousqisay
[L wdosyousgssl/
L L wspowapueqIBaY
i [xepu™Aaxrpuomsoy
wm%m?m%«m@mmamm%m_ segvaeaaa] | ”iﬂ W NpURgISeY
.,.E5852585&@35-«_:o; 1 —J_ wdueeppuegisey

91

Figure 44 Simulation Result of the Multi-Session Pipelined Cipher (Inputs)

sd 1041610

1091} sugyLl suQzi} SUQQlL 84 080} SU 0901
PEELEIE Rty grpinnnsenng Thernirrgpreeiineny Prrrrirrnprrirrrrengrerrter e rervenin terrernye

g 4) 3 ¥ € Jeunod Kuaousgissy
e U B
| l HIFJI‘FIII{I_ PO OUISEY
. i -BEE(o] IR v (R oot YR indino”eoppueqsey
Mo plEA BEp OISOl
I L [wpieneepyousgisey
u”dospoueqsay
L f W epolpUeqisay
[T xepu Aewapueqsay
ARV vEERIRTR wowa0n|_ | waitveoe e o 10000000000000000000000000000000] | = W™ g/t0USQISSY
saaoiemssasmnium] | e) | & i ummwoooogmmngg:@ ——m—— U RERARUGYISOY

92

Figure 45 Simulation Result of the Multi-Session Pipelined Cipher (ECB and CBC outputs)

su (gg}

111t .________________w_:_cc.m_—_______________u_c_Qv_w“._______________m_:_am_n“._______________ﬂJg_nw__________:___m_:_cﬂ_w_v_
4} gl Z} 34 0} F) g JeunodApippuagisay
eseyIUgSHY
— Ll [Tl L L [wommowasy
] (TR momoemen] Y[R wwmenwioenn] IINE VSSO9801082800800F082v98003v050(] | [N st IndinoeipAOUSqISOY
) [| g weTpiea empuouegsey
! I W plieA BEpnousqSe)
I | udospyousisoy
1 [uspowpUBgISaY
Xspu™ Aoyppuadisey
Q%Hmﬁgoénmonﬂéwﬁgﬁ%ﬁma Ay pURqISa)/
A133GIOVEIVIBIBI LIBISIVIELEII 0L nduemp/pUeqsay

93

Figure 46 Simulation Result of the Multi-Session Pipelined Cipher (Last CBC output)

sugial U 0091 su 0691

sU 0ggl suQLgH
R N R N AR N R R RN R AR AN N R RN ERRN RN

Frrrirerrprrvrtrtnprrrrerenrpeerreny

db

3

Gl 8unoo Apiagouaqisay

iesayouaqsay

FROPRUBYSIY

A¢1 BE0VZEO0EEL D09609/900T02I6028 1 8Y1809v3E90268164 &0@«93@0@&& ﬂ!ﬂ oo eanmeson N0 BEPARURQISOY

1

I o PiER BIEpAIBgISEY/

W plEAelepyoueqISe)
W dospoueqsey/

W 9powyseqIsay

Xapu AexApuetissy

854997vS6aVHEA0AE5403ZVE60VHEHAN U AARUSGISSY

e e

AI3LQIDNE —M—w—m—h—w—w—vwmvn— 1101 InduTempapUeqissy

94

APPENDIX B — RTL CODE

This section presents the VHDL code of the space-optimised AES Cipher module.

AES CIPHER MODULE

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use |IEEE.STD_LOGIC_ARITH.ALL;

use [EEE.STD_LOGIC_UNSIGNED.ALL;

entity aes_cipher_module_3 is
Port (

-- iff to input fifo
data_input : in std_logic_vector(0 to 63);
iv_in : in std_logic_vector(0 to 63);
context_in : in std_logic_vector(0 to 15);
wrb : in std_logic;
fullb : out std_logic;

--iff to output fifo
data_output : out std_logic_vector(0 to 63);

emptyb : out std_logic;
rdb : in std_logic;

--iff to key memory
key_in : in std_logic_vector(0 to 127);
key_address : out std_logic_vector(0 to 4);
read_mem : out std_logic;

clock : in std_logic;
reset : in std_logic);

end aes_cipher_module_3;

architecture RTL of aes_cipher_module_3 is
COMPONENT control_sm

Port
(- iff to input fifo

data_in : in std_logic_vector(0 to 127);
iv : in std_logic_vector(0 to 127);
context : in std_logic_vector(0 to 31);
fifo_emptyb : in std_logic;
rdb_fifo : out std_logic;

-- i/f to output fifo

wrb_fifo : out std_logic;
fifo_fullb : in std_logic;

95

-- i/f to cipher block
aes_data_in : out std_logic_vector(0 to 127);
round : out std_logic_vector(0 to 3);
aes_data_out_round0 : in std_logic_vector(0 to 127);
aes_data_out_mid : in std_logic_vector(0 to 127);
aes_data_out_final : in std_logic_vector(0 to 127);
aes_data_out_last : in std_logic_vector(0 to 127);

-- iff to key memory
aes_key_mem_address : out std_logic_vector(0 to 4);
read_key_mem : out std_logic;

clock : in std_logic;
reset : in std_logic);
END COMPONENT;

COMPONENT FIFO
Port (resetb : in std_logic;
clock : in std_logic;
rdb : in std_logic;
wrb : in std_logic;
data_in : in std_logic_vector(0 to 63);
iv_in : in std_logic_vector (0 to 63);
context_in : in std_logic_vector (0 to 15);
emptyb : out std_logic;
fullb : out std_logic;
context_out : out std_logic_vector (0 to 31);
iv_out : out std_logic_vector (0 to 127);
data_out : out std_logic_vector(0 to 127));
END COMPONENT; K

COMPONENT OUT_FIFO
Port (resetb : in std_logic;

clock : in std_logic;
rdb : in std_logic;
wrb : in std_logic;
data_in : in std_logic_vector(0 to 127);
emptyb : out std_logic;
fullb : out std_logic;
data_out : out std_logic_vector(0 to 63));

END COMPONENT;
COMPONENT aes_cipher
Port (aes_data_in : in std_logic_vector(0 to 127); --data block to encrpyt
aes_key_in : in std_logic_vector(0 to 127); --the key to use for this round

round_num: in std_logic_vector(0 to 3);

clock: in std_logic;
reset: in std_logic;

aes_data_out_round0 : out std_logic_vector(0 to 127);
aes_data_out_mid : out std_logic_vector(0 to 127);
aes_data_out_final : out std_logic_vector(0 to 127);

aes_data_out_last : out std_fogic_vector(0 to 127));

END COMPONENT;

signal aes_module_sm_data_in: std_logic_vector (0 to 127);

96

signal aes_module_sm_context: std_logic_vector (0 to 31);
signal aes_module_sm_iv: std_logic_vector (0 to 127);
signal aes_module_sm_read: std_logic;

signal aes_module_sm_empty: std_logic;

signal aes_module_outfifo_wrb: std_logic;
signal aes_module_outfifo_fullb: std_logic;

signal aes_module_cipher_aes_data_in : std_logic_vector(0 to 127);

signal aes_module_cipher_round : std_logic_vector(0 to 3);

signal aes_module_cipher_aes_data_out_roundO : std_logic_vector(0 to 127);
signal aes_module_cipher_aes_data_out_mid : std_logic_vector(0 to 127);
signal aes_module_cipher_aes_data_out_final : std_logic_vector(0 to 127);
signal aes_module_cipher_aes_data_out_last : std_logic_vector(0 to 127);

signal aes_module_clock: std_logic;
signal aes_module_reset: std_logic;

begin

controller: control_sm PORT MAP(
data_in => aes_module_sm_data_in,
iv => aes_module_sm_iv,
context => aes_module_sm_context,
fifo_emptyb => aes_module_sm_empty,
rdb_fifo => aes_module_sm_read,

-- iff to output fifo
wrb_fifo => aes_module_outfifo_wrb,
fifo_fullb => aes_module_outfifo_fullb,

-- iff to cipher block
aes_data_in => aes_module_cipher_aes_data_in,
round => aes_module_cipher_round,
aes_data_out_round0Q => aes_module_cipher_aes_data_out_round0,
aes_data_out_mid => aes_module_cipher_aes_data_out_mid,
aes_data_out_final => aes_module_cipher_aes_data_out_final,
aes_data_out_last => aes_module_cipher_aes_data_out_last,

-- iff to key memory
aes_key_mem_address => key_address,
read_key_mem => read_mem,

clock => aes_module_clock,
reset => aes_module_reset

)

input_fifo: FIFO PORT MAP(
rdb => aes_module_sm_read,
wrb => wrb,
data_in => data_input,
iv_in =>iv_in,
context_in => context_in,
emptyb => aes_module_sm_empty,
fullb => fullb,
context_out => aes_module_sm_context,

97

iv_out => aes_module_sm_iv,
data_out => aes_module_sm_data_in,

clock => aes_module_clock,
resetb => aes_module_reset

)

output_fifo: OUT_FIFO PORT MAP(
rdb => rdb,
wrb => aes_module_outfifo_wrb,
data_in => aes_module_cipher_aes_data_out_last,
emptyb => emptyb,
fullb => aes_module_ouffifo_fulib,
data_out => data_output,
clock => aes_module_clock,
resetb => aes_module_reset

);

cipher: aes_cipher PORT MAP(
aes_data_in => aes_module_cipher_aes_data_in, --data block to encrpyt
aes_key_in =>key_in, --the key to use for this round
round_num => aes_module_cipher_round,
clock => aes_module_clock,
reset => aes_module_reset,
aes_data_out_roundO => aes_module_cipher_aes_data_out_roundo,
aes_data_out_mid => aes_module_cipher_aes_data_out_mid,
aes_data_out_final => aes_module_cipher_aes_data_out_final,
aes_data_out_last => aes_module_cipher_aes_data_out_last

);

aes_module_clock <= clock;
aes_module_reset <= reset;

end RTL;
AES CIPHER - S-BOX Approach
library |IEEE;

use |IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use |IEEE.STD_LOGIC_UNSIGNED.ALL;

entity aes_cipher is
Port (aes_data_in : in std_logic_vector(0 to 127); --data block to encrpyt
aes_key_in : in std_logic_vector(0 to 127); --the key to use
for this round
round_num: in std_logic_vector(0 to 3);
clock: in std_logic;
reset: in std_logic;
aes_data_out_roundO : out std_logic_vector(0 to 127);
aes_data_out_mid : out std_logic_vector(0 to 127);
aes_data_out_final : out std_logic_vector(0 to 127);
aes_data_out_last : out std_logic_vector(0 to 127)); --output block of data
from this round
end aes_cipher;

98

architecture rti of aes_cipher is
signal aes_key_in_R: std_logic_vector (0 to 127);

signal round_num_R: std_logic_vector (0 to 3);
signal aes_data: std_logic_vector (0 to 127);

--signal output_valid_l: std_logic;

type state is array (0 to 15) of std_logic_vector(0 to 7);
signal instate: state;

signal substate; state;

signal shiftstate: state;

signal shiftstate_2: state;

signal outmixState: state;

signal shift_data_out: std_logic_vector(0 to 127);
signal mix_data_out: std_logic_vector(0 to 127);

signal last_round_out: std_logic_vector(0 to 127);
--following is output of MixColumns() (in state format (dbyteROWCOLUMN)

signal OutMixByte00: std_logic_vector(0 to 7);
signal OutMixByte01: std_logic_vector(0 to 7);
signal OutMixByte02: std_logic_vector(0 to 7);
signai OutMixByte03: std_logic_vector(0 to 7);

signal OutMixByte10: std_logic_vector(0 to 7);
signal OutMixByte11: std_logic_vector(0 to 7); -
signal OutMixByte12: std_logic_vector(0 to 7);
signal OutMixByte13: std_logic_vector(0 to 7);

signal OutMixByte20: std_logic_vector(0 to 7);
signal OutMixByte21: std_logic_vector(0 to 7);
signal OutMixByte22: std_logic_vector(0 to 7);
signal OutMixByte23: std_logic_vector(0 to 7);

signal OutMixByte30: std_logic_vector(0 to 7);
signal OutMixByte31: std_logic_vector(0 to 7);
signal OutMixByte32: std_logic_vector(0 to 7);
signal OutMixByte33: std_logic_vector(0 to 7);

subtype S_BOX_FIELD s integer range 0 to 255;
subtype SBOX_INDEX_TYPE is integer range 0 to 15;
type SBOX_TYPE s array (0 to 255) of S_BOX_FIELD;
constant SBOXs : SBOX_TYPE :=(

99, 124, 119, 123, 242, 107,111, 197, 48, 1, 1083, 43, 254, 215, 171, 118,
202, 130, 201, 125, 250, 89, 71, 240, 173, 212, 162, 175, 156, 164, 114, 192,
183, 253, 147, 38, 54, 63, 247,204, 52, 165, 229, 241, 113, 216, 49, 21,
4,199, 35,195, 24,150, 5,154, 7, 18, 128, 226, 235, 39, 178, 117,
9,131, 44, 26, 27,110, 90, 160, 82, 59, 214, 179, 41,227, 47, 132,
83, 209, 0,237, 32,252,177, 91, 106, 203, 190, 57, 74, 76, 88, 207,
208, 239, 170, 251, 67, 77, 51,133, 69,249, 2, 127, 80, 60, 159, 168,
81, 163, 64, 143, 146, 157, 56, 245, 188, 182, 218, 33, 16, 255, 243, 210,

99

205, 12, 19, 236, 95, 151, 68, 23, 196, 167, 126, 61,100, 93, 25, 115,
96, 129, 79, 220, 34, 42,144,136, 70, 238, 184, 20,222, 94, 11,219,
224, 50, 58, 10, 73, 6, 36, 92, 194, 211,172, 98, 145, 149, 228, 121,
231,200, 55,109, 141,213, 78, 169, 108, 86, 244, 234,101, 122, 174, 8,
186, 120, 37, 46, 28, 166, 180, 198, 232, 221, 116, 31, 75, 189, 139, 138,
112, 62,181,102, 72, 3,246, 14, 97, 53, 87, 185, 134, 193, 29, 158,
225, 248, 152, 17,105, 217, 142, 148, 155, 30, 135, 233, 206, 85, 40, 223,
140, 161,137, 13,191,230, 66, 104, 65, 153, 45, 15,176, 84, 187, 22

)i

function ESubBytes (inbyte: std_logic_vector(0 to 7)) return std_logic_vector is
variable return_val: std_logic_vector(0 to 7);
begin

return conv_std_ilogic_vector(SBOXs(conv_integer(inbyte)), 8);
end function;

function DubBytes (inbyte: std_logic_vector(0 to 7)) return std_logic_vector is
begin

case inbyte(0) is
when '0' =>
return inbyte(1 to 7) & '0';
when '"1' => .
return ((inbyte(1 to 7) & '0') xor "00011011");
when others => ,
return "00000000";
end case;
end function;

begin

aes_data <= aes_data_in;
aes_key_in_R <= aes_key_in;
round_num_R <= round_num;

--place the input data in the state, as defined in the AES spec.
instate(0) <= aes_data(0 to 7);

instate(1) <= aes_data(8 to 15);

instate(2) <= aes_data(16 to 23);

instate(3) <= aes_data(24 to 31);

instate(4) <= aes_data(32 to 39);
instate(5) <= aes_data(40 to 47);
instate(6) <= aes_data(48 to 55);
instate(7) <= aes_data(56 to 63);

instate(8) <= aes_data(64 to 71);
instate(9) <= aes_data(72 to 79);
instate(10) <= aes_data(80 to 87);
instate(11) <= aes_data(88 to 95);

instate(12) <= aes_data(96 to 103);

instate(1 3) <= aes_data('] 04 to 11 1);
instate(1 4) <= aes_data(-] 12to 1 19)’

100

instate(15) <= aes_data(120 to 127);
--perform the SubBytes function on all bytes of the state.

substate(0) <= ESubBytes(instate(0));
substate(1) <= ESubBytes(instate(1));
substate(2) <= ESubBytes(instate(2));
substate(3) <= ESubBytes(instate(3));

substate(4) <= ESubBytes(instate(4));
substate(5) <= ESubBytes(instate(5));
substate(6) <= ESubBytes(instate(6));
substate(7) <= ESubBytes(instate(7));

substate(8) <= ESubBytes(instate(8));
substate(9) <= ESubBytes(instate(9));
substate(10) <= ESubBytes(instate(10));
substate(11) <= ESubBytes(instate(11));

substate(12) <= ESubBytes(instate(12));
substate(13) <= ESubBytes(instate(13));
substate(14) <= ESubBytes(instate(14));
substate(15) <= ESubBytes(instate(15));

--perform the ShiftRows function on all rows of the state.

shiftstate(0) <= substate(0);
shiftstate(4) <= substate(4);
shiftstate(8) <= substate(8);
shiftstate(12) <= substate(12);

shiftstate(1) <= substate(5);
shiftstate(5) <= substate(9);
shiftstate(9) <= substate(13);
shiftstate(13) <= substate(1);

shiftstate(2) <= substate(10);
shiftstate(6) <= substate(14);
shiftstate(10) <= substate(2);
shiftstate(14) <= substate(6);

shiftstate(3) <= substate(15);
shiftstate(7) <= substate(3);
shiftstate(11) <= substate(7);
shiftstate(15) <= substate(11);

--for the last round, the output is the xor of the state after shiftrows, and the key,
--so create the last round output word

shift_data_out(0 to 7) <= shiftstate(0);
shift_data_out(8 to 15) <= shiftstate(1);
shift_data_out(16 to 23) <= shiftstate(2);
shift_data_out(24 to 31) <= shiftstate(3);

shift_data_out(32 to 39) <= shiftstate(4);
shift_data_out(40 to 47) <= shiftstate(5);

101

shift_data_out(48 to 55) <= shiftstate(6);
shift_data_out(56 to 63) <= shiftstate(7);

shift_data_out(64 to 71) <= shiftstate(8);
shift_data_out(72 to 79) <= shiftstate(9);
shift_data_out(80 to 87) <= shiftstate(10);
shift_data_out(88 to 95) <= shiftstate(11);

shift_data_out(96 to 103) <= shiftstate(12);

shift_data_out(104 to 111) <= shiftstate(13);
shift_data_out(112 to 119) <= shiftstate(14);
shift_data_out(120 to 127) <= shiftstate(15);

--for mixcolumns, we need to take 1, 2, and 3 times various bytes in the columns
--the following creates the x2. x3 is the xor of x2 and the original (x1) value.

shiftstate_2(0) <= DubBytes(substate(0));
shiftstate_2(4) <= DubBytes(substate(4));
shiftstate_2(8) <= DubBytes(substate(8));
shiftstate_2(12) <= DubBytes(substate(12));

shiftstate_2(1) <= DubBytes(substate(5));
shiftstate_2(5) <= DubBytes(substate(9));
shiftstate_2(9) <= DubBytes(substate(13));
shiftstate_2(13) <= DubBytes(substate(1));

shiftstate_2(2) <= DubBytes(substate(10));
shiftstate_2(6) <= DubBytes(substate(14));
shiftstate_2(10) <= DubBytes(substate(2));
shiftstate_2(14) <=:DubBytes(substate(6));

shiftstate_2(3) <= DubBytes(substate(15));
shiftstate_2(7) <= DubBytes(substate(3));
shiftstate_2(11) <= DubBytes(substate(7});
shiftstate_2(15) <= DubBytes(substate(11));

--Following groups perform the MixColumns operation, as defined in the AES standard
--OutMixByte00, OutMixByte10, OutMixByte20, OutMixByte30
OutMixByte00 <= (shiftstate(2) xor shiftstate(3) xor shiftstate_2(0) xor (shiftstate_2(1) xor

shiftstate(1)));
OutMixByte10 <= (shiftstate(0) xor shiftstate(3) xor shiftstate_2(1) xor (shiftstate_2(2) xor

shiftstate(2)));
OutMixByte20 <= (shiftstate(0) xor shiftstate(1) xor shiftstate_2(2) xor (shiftstate_2(3) xor

shiftstate(3)));
OutMixByte30 <= (shiftstate(1) xor shiftstate(2) xor shiftstate_2(3) xor (shiftstate_2(0) xor

shiftstate(0)));

--OutMixByte01, OutMixByte11, OutMixByte21, OutMixByte31
OutMixByte01 <= (shiftstate(6) xor shiftstate(7) xor shiftstate_2(4) xor (shiftstate_2(5) xor

shiftstate(5)));
OutMixByte11 <= (shiftstate(4) xor shiftstate(7) xor shiftstate_2(5) xor (shiftstate_2(6) xor

shiftstate(6)));
OutMixByte21 <= (shiftstate(4) xor shiftstate(5) xor shiftstate_2(6) xor (shiftstate_2(7) xor

shiftstate(7)));
OutMixByte31 <= (shiftstate(5) xor shiftstate(6) xor shiftstate_2(7) xor (shiftstate_2(4) xor

shiftstate(4)));

102

--OutMixByte02, OutMixByte 12, OutMixByte22, OutMixByte32

OutMixByte02 <= (shiftstate(10) xor shiftstate(11) xor shiftstate_2(8) xor (shiftstate_2(9)
xor shiftstate(9)));

OutMixByte12 <= (shiftstate(8) xor shiftstate(11) xor shiftstate_2(9) xor (shiftstate_2(10)
xor shiftstate(10)));

OutMixByte22 <= (shiftstate(8) xor shiftstate(9) xor shiftstate_2(10) xor (shiftstate_2(11)
xor shiftstate(11)));

OutMixByte32 <= (shiftstate(9) xor shiftstate(10) xor shiftstate_2(11) xor (shifistate_2(8)
xor shiftstate(8)));

--OutMixByte03, OutMixByte13, OutMixByte23, OutMixByte33

OutMixByte03 <= (shiftstate(14) xor shiftstate(15) xor shifistate _2(12) xor
(shiftstate_2(13) xor shiftstate(13)));

OutMixByte13 <= (shiftstate(12) xor shiftstate(15) xor shiftstate_2(13) xor
(shiftstate_2(14) xor shiftstate(14)));

OutMixByte23 <= (shiftstate(12) xor shiftstate(13) xor shiftstate_2(14) xor
(shiftstate_2(15) xor shiftstate(15)));

OutMixByte33 <= (shiftstate(13) xor shiftstate(14) xor shiftstate_2(15) xor
(shiftstate_2(12) xor shiftstate(12)));

--ollowing is the output for rounds 1-9 of the cipher
mix_data_out(0 to 7) <= QutMixByte00;
mix_data_out(8 to 15) <= OutMixByte10;
mix_data_out(16 to 23) <= OutMixByte20;
mix_data_out(24 to 31) <= OutMixByte30;

mix_data_out(32 to 39) <= OutMixByte01;
mix_data_out(40 to 47) <= OutMixByte11;
mix_data_out(48 to 55) <= OutMixByte21;
mix_data_out(56 to 63) <= OutMixByte31;

mix_data_out(64 to 71) <= OutMixByte02;
mix_data_out(72 to 79) <= OutMixByte12;
mix_data_out(80 to 87) <= OutMixByte22;
mix_data_out(88 to 95) <= OutMixByte32;

mix_data_out(96 to 103) <= OutMixByte03;

mix_data_out(104 to 111) <= OutMixByte13;
mix_data_out(112 to 119) <= OutMixByte23;
mix_data_out(120 to 127) <= OutMixByte33;

process (clock)
begin
if (clock'event and clock = '1') then
if (round_num_R ="1011") then
aes_data_out_last <= shift_data_out xor aes_key_in_R;
end if;
end if;
end process;

aes_data_out_roundQ <= aes_data xor aes_key_in_R;
aes_data_out_mid <= mix_data_out xor aes_key_in_R;
aes_data_out_final <= shift_data_out xor aes_key_in_R;

end rtl;

103

AES CIPHER — T-BOX Approach

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity aes_cipher is ‘

Port (aes_data_in : in std_logic_vector(0 to 127); --data block to encrpyt
aes_key_in : in std_logic_vector(0 to 127); --the key to use for this round
round_num: in std_logic_vector(0 to 3);
clock: in std_iogic;
reset: in std_logic;

aes_data_out_round0 : out std_logic_vector(0 to 127);

aes_data_out_mid : out std_logic_vector(0 to 127);

aes_data_out_final : out std_logic_vector(0 to 127);

aes_data_out_iast : out std_logic_vector(0 to 127));
end aes_cipher;

architecture rtl of aes_cipher is

--Registers for inputs
signal aes_key_in_R: std_logic_vector (0 to 127);

signal round_num_R: std_logic_vector (0 to 3);
signal aes_data: std_logic_vector {0 to 127);

type state is array (0 to 15) of std_logic_vector(0 to 7);
signal instate: state; '

signal mid_round_out: std_logic_vector(0 to 127);
signal final_round_out: std_logic_vector(0 to 127);

signal pre1_mid_round_out: std_logic_vector(0 to 127);
signal pre2_mid_round_out: std_logic_vector(0 to 127);

signal aes_data1 : std_logic_vector(0 to 15);
signal aes_data2 : std_logic_vector(0 to 15);
signal aes_data3 : std_logic_vector(0 to 15);
signal aes_data4 : std_logic_vector(0 to 15);
signal aes_datab : std_logic_vector(0 to 15);
signal aes_data6 : std_logic_vector(0 to 15);
signal aes_data7 : std_logic_vector(0 to 15);
signal aes_data8 : std_logic_vector(0 to 15);

subtype S_BOX_FIELD s integer range 0 to 255;
subtype SBOX_INDEX_TYPE is integer range 0 to 15;
type SBOX_TYPE s array (0 to 255) of S_BOX_FIELD;
constant SBOX : SBOX_TYPE :=(

99, 124, 119, 1283, 242, 107, 111, 197, 48, 1, 103, 43, 254, 215, 171, 118,

202, 130, 201, 125, 250, 89, 71, 240, 173, 212, 162, 175, 156, 164, 114, 192,

183, 253, 147, 38, 54, 63, 247, 204, 52, 165, 229, 241, 113, 216, 49, 21,
4,199, 35,195, 24,150, 5,154, 7, 18, 128, 226, 235, 39, 178, 117,

104

213,

9,131, 44, 26, 27,110, 90, 160, 82, 59, 214,179, 41,227, 47,132,
83, 209, 0, 237, 32,252,177, 91, 106, 203, 190, 57, 74, 76, 88, 207,
208, 239, 170, 251, 67, 77, 51,133, 69,249, 2, 127, 80, 60, 159, 168,
81, 163, 64, 143, 146, 157, 56, 245, 188, 182, 218, 33, 16, 255, 243, 210,
205, 12, 19, 236, 95, 151, 68, 23, 196, 167, 126, 61, 100, 93, 25, 115,
96, 129, 79, 220, 34, 42, 144,136, 70, 238, 184, 20,222, 94, 11, 219,
224, 50, 58, 10, 73, 6, 36, 92,194, 211, 172, 98, 145, 149, 228, 121,
231, 200, 55, 109, 141, 213, 78, 169, 108, 86, 244, 234, 101, 122, 174, 8,
186, 120, 37, 46, 28, 166, 180, 198, 232, 221, 116, 31, 75, 189, 139, 138,
112, 62, 181,102, 72, 3,246, 14, 97, 53, 87, 185, 134, 193, 29, 158,
225, 248, 152, 17, 105, 217, 142, 148, 155, 30, 135, 233, 206, 85, 40, 223,
140, 161, 137, 13, 191, 230, 66, 104, 65, 153, 45, 15,176, 84, 187, 22

);

constant SBOX_2 : SBOX_TYPE :=(

198, 248, 238, 246, 255, 214, 222, 145, 96, 2, 206, 86, 231, 181, 77, 236, 143,

31, 137, 250, 239, 178, 142, 251, 65, 179, 95, 69, 35, 83, 228, 155, 117, 225,

61, 76, 108, 126, 245, 131, 104, 81, 209, 249, 226, 171, 98, 42, 8, 149, 70,

157, 48, 55, 10, 47, 14, 36, 27, 223, 205, 78, 127, 234, 18, 29, 88, 52, 54,

220, 180, 91, 164, 118, 183, 125, 82, 221, 94, 19, 166, 185, 0, 193, 64, 227, 121,

182, 212, 141,103, 114, 148, 152, 176, 133, 187, 197, 79, 237, 134, 154, 102, 17,
138, 233, 4, 254, 160, 120, 37, 75, 162, 93, 128, 5, 63, 33, 112, 241, 99, 119, 175,

66, 32, 229, 253, 191, 129, 24, 38, 195, 190, 53, 136, 46, 147, 85, 252, 122, 200, 186,
50, 230, 192, 25, 158, 163, 68, 84, 59, 11, 140, 199, 107, 40, 167, 188, 22, 173, 219,
100, 116, 20, 146, 12, 72, 184, 159, 189, 67, 196, 57, 49, 211, 242, 213, 139, 110, 218,
1,177, 156, 73, 216, 172, 243, 207, 202, 244, 71, 16, 111, 240, 74, 92, 56, 87, 115, 151,
203, 161, 232, 62, 150, 97, 13,.15, 224, 124, 113, 204, 144, 6, 247, 28, 194, 106, 174,
105, 23, 153, 58, 39, 217, 235, 43, 34, 210, 169, 7, 51, 45, 60, 21, 201, 135, 170, 80,
165, 3, 89, 9, 26, 101, 215, 132, 208, 130, 41, 90, 30, 123, 168, 109, 44);

constant SBOX_3 : SBOX_TYPE = (

165, 132, 153, 141, 13, 189, 177, 84, 80, 3, 169, 125, 25, 98, 230, 154, 69, 157, 64,
135, 21, 235, 201, 11, 236, 103, 253, 234, 191, 247, 150, 91, 194, 28, 174, 106, 90,
65, 2,79, 92, 244, 52, 8, 147, 115, 83, 63, 12, 82, 101, 94, 40, 161, 15, 181, 9, 54,
155, 61, 38, 105, 205, 159, 27, 158, 116, 46, 45, 178, 238, 251, 246, 77, 97, 206, 123,
62, 113, 151, 245, 104, 0, 44, 96, 31, 200, 237, 190, 70, 217, 75, 222, 212, 232, 74,
107, 42, 229, 22, 197, 215, 85, 148, 207, 16, 6, 129, 240, 68, 186, 227, 243, 254, 192,
138, 173, 188, 72, 4, 223, 193, 117, 99, 48, 26, 14, 109, 76, 20, 53, 47, 225, 162, 204,
57,87, 242,130, 71, 172, 231, 43, 149, 160, 152, 209, 127, 102, 126, 171, 131, 202, 41,
211, 60, 121, 2286, 29, 118, 59, 86, 78, 30, 219, 10, 108, 228, 93, 110, 239, 166, 168,
164, 55, 139, 50, 67, 89, 183, 140, 100, 210, 224, 180, 250, 7, 37, 175, 142, 233, 24,

136, 111, 114, 36, 241, 199, 81, 35, 124, 156, 33, 221, 220, 134, 133, 144, 66, 196, 170,
216, 5, 1, 18, 163, 95, 249, 208, 145, 88, 39, 185, 56, 19, 179, 51, 187, 112, 137, 167,
182, 34, 146, 32, 73, 255, 120, 122, 143, 248, 128, 23, 218, 49, 198, 184, 195, 176, 119,
17, 203, 252, 214, 58);

function SBOX2SubBytes (inbyte: std_logic_vector(0 to 7)) return std_logic_vector is
variable return_val: std_logic_vector(0 to 7);
begin

return conv_std_logic_vector(SBOX_2(conv_integer(inbyte)), 8);
end function;

function SBOX3SubBytes (inbyte: std_logic_vector(0 to 7)) return std_logic_vector is

105

variable return_val: std_logic_vector(0 to 7);
begin :

return conv_std_logic_vector(SBOX_3(conv_integer(inbyte)), 8);
end function;

function SBOXSubBytes (inbyte: std_logic_vector(0 to 7)) return std_logic_vector is
variable return_val: std_logic_vector(0 to 7);
begin

return conv_std_logic_vector(SBOX(conv_integer(inbyte)), 8);
end function;

begin

aes_datal <= aes_data_in(0 to 15);
aes_data2 <= aes_data_in(16 to 31);
aes_data3 <= aes_data_in(32 to 47);
aes_datad <= aes_data_in(48 to 63);
aes_datab <= aes_data_in(64 to 79);
aes_data6 <= aes_data_in(80 to 95);
aes_data7 <= aes_data_in(96 to 111);
aes_data8 <= aes_data_in(112 to 127);

aes_key_in_R <= aes_key_in;
round_num_R <= round_num;

--place the input data in the state, as defined in the AES spec.
instate(Q) <= aes_datai(0 to 7);

instate(1) <= aes_data1(8 to 15);

instate(2) <= aes_data2(0 to 7);

instate(3) <= aes_data2(8 to 15);

instate(4) <= aes_data3(0 to 7);
instate(5) <= aes_data3(8 to 15);
instate(6) <= aes_data4(0 to 7);
instate(7) <= aes_data4(8 to 15);

instate(8) <= aes_data5(0 to 7);
instate(9) <= aes_data5(8 to 15);
instate(10) <= aes_data6(0 to 7);
instate(11) <= aes_data6(8 to 15);

instate(12) <= aes_data7(0 to 7);
instate(13) <= aes_data7(8 to 15);
instate(14) <= aes_data8(0 to 7);
instate(15) <= aes_data8(8 to 15);

pre1_mid_round_out(0 to 7) <= SBOX2SubBytes(instate(0)) xor
SBOX3SubBytes(instate(5));

pre1_mid_round_out(8 to 15) <= SBOXSubBytes(instate(0)) xor
SBOX2SubBytes(instate(5));

pre1_mid_round_out(16 to 23) <= SBOXSubBytes(instate(0)) xor
SBOXSubBytes(instate(5));

pre1_mid_round_out(24 to 31) <= SBOX3SubBytes(instate(0)) xor
SBOXSubBytes(instate(5));

106

pre1_mid_round_out(32 to 39) <= SBOX2SubBytes(instate(4)) xor
SBOX3SubBytes(instate(9));

pre1_mid_round_out(40 to 47) <= SBOXSubBytes(instate(4)) xor
SBOX2SubBytes(instate(9));

pre1_mid_round_out(48 to 55) <= SBOXSubBytes(instate(4)) xor
SBOXSubBytes(instate(9));

pre1_mid_round_out(56 to 63) <= SBOX3SubBytes(instate(4)) xor
SBOXSubBytes(instate(9));

pre1_mid_round_out(64 to 71) <= SBOX2SubBytes(instate(8)) xor
SBOX3SubBytes(instate(13));

pre1_mid_round_out(72 to 79) <= SBOXSubBytes(instate(8)) xor
SBOX2SubBytes(instate(13));

pre1_mid_round_out(80 to 87) <= SBOXSubBytes(instate(8)) xor
SBOXSubBytes(instate(13));

pre1_mid_round_out(88 to 95) <= SBOX3SubBytes(instate(8)) xor
SBOXSubBytes(instate(13));

pre1_mid_round_out(96 to 103) <= SBOX2SubBytes(instate(12)) xor
SBOX3SubBytes(instate(1));

pre1_mid_round_out(104 to 111) <= SBOXSubBytes(instate(12)) xor
SBOX2SubBytes(instate(1));

pre1_mid_round_out(112 to 119) <= SBOXSubBytes(mstate(12); xor

SBOXSubBytes(instate(1));
pre1_mid_round_out(120 to 127) <= SBOX38ubBytes(|nstate(12)) xor

SBOXSubBytes(instate(1));

pre2_mid_round_out(0 to 7) <= SBOXSubBytes(instate(10)) xor
SBOXSubBytes(instate(15));

pre2_mid_round_out(8 to 15) <= SBOX3SubBytes(instate(10)) xor
SBOXSubBytes(instate(15));

pre2_mid_round_out(16 to 23) <= SBOX2SubBytes(instate(10)) xor
SBOX3SubBytes(instate(15));

pre2_mid_round_out(24 to 31) <= SBOXSubBytes(instate(10)) xor
SBOX2SubBytes(instate(15));

pre2_mid_round_out(32 to 39) <= SBOXSubBytes(instate(14)) xor

SBOXSubBytes(instate(3));
pre2_mid_round_out(40 to 47) <= SBOX3SubBytes(instate(14)) xor

SBOXSubBytes(instate(3));
pre2_mid_round_out(48 to 55) <= SBOX2SubBytes(instate(14)) xor

SBOX3SubBytes(instate(3));
pre2_mid_round_out(56 to 63) <= SBOXSubBytes(instate(14)) xor

SBOX2SubBytes(instate(3));

pre2_mid_round_out(64 to 71) <= SBOXSubBytes(instate(2)) xor

SBOXSubBytes(instate(7));
pre2_mid_round_out(72 to 79) <= SBOX3SubBytes(instate(2)) xor

SBOXSubBytes(instate(7));

107

pre2_mid_round_out(80 to 87) <= SBOX2SubBytes(instate(2)) xor
SBOX3SubBytes(instate(7));

pre2_mid_round_out(88 to 95) <= SBOXSubBytes(instate(2)) xor
SBOX2SubBytes(instate(7));

pre2_mid_round_out(96 to 103) <= SBOXSubBytes(instate(6)) xor
SBOXSubBytes(instate(11));

pre2_mid_round_out(104 to 111) <= SBOX3SubBytes(instate(6)) xor
SBOXSubBytes(instate(11));

pre2_mid_round_out(112 to 119) <= SBOX2SubBytes(instate(6)) xor
SBOX3SubBytes(instate(11));

pre2_mid_round_out(120 to 127) <= SBOXSubBytes(instate(6)) xor
SBOX2SubBytes(instate(11));

mid_round_out(0 to 7) <= pre1_mid_round_out(0 to 7) xor pre2_mid_round_out(0 to 7);

mid_round_out(8 to 15) <= pre1_mid_round_out(8 to 15) xor pre2_mid_round_out(8 to
15);

mid_round_out(16 to 23) <= pre1_mid_round_out(16 to 23) xor pre2_mid_round_out(16
to 23);

mid_round_out(24 to 31) <= pre1_mid_round_out(24 to 31) xor pre2_mid_round_out(24
to 31);

mid_round_out(32 to 39) €= pre1_mid_f6und_out(32 to 39) xor pre2_mid_round_out(32
to 9% mid_round_out(40 to 47) <= pre1_mid_round_o'ut(40 to 47) xor pre2_mid_round_out(40
t0.47) mid_round_out(48 to 55) <= breLm i.d_roﬁnd_out(48 to 55) xor pre2_mid_round_out(48
:O ::’ mid_round_out(56 to 63) <= pre1_mid_round_out(56 to 63) xor pre2_mid_round_out(56
o ;

mid_round_out(64 to 71) <= pre1_mid_round_out(64 to 71) xor pre2_mid_round_out(64

to 71);

mid_round_out(72 to 79) <= pre1_mid_round_out(72 to 79) xor pre2_mid_round_out(72
to 79),

mid_round_out(80 to 87) <= pre1_mid_round_out(80 to 87) xor pre2_mid_round_out(80
to 87);

mid_round_out(88 to 95) <= pre1_mid_round_out(88 to 95) xor pre2_mid_round_out(88
to 95);

mid_round_out(96 to 103) <= pre1_mid_round_out(96 to 103) xor

pre2_mid_round_out(96 to 103);
mid_round_out(104 to 111) <= pre1_mid_round_out(104 to 111) xor

pre2_mid_round_out(104 to 111);
mid_round_out(112 to 119) <= pre1_mid_round_out(112 to 119) xor

pre2_mid_round_out(112 to 119);
mid_round_out(120 to 127) <= pre1_mid_round_out(120 to 127) xor

pre2_mid_round_out(120 to 127);

final_round_out(0 to 7) <= SBOXSubBytes(instate(0));

108

final_round_out(8 to 15) <= SBOXSubBytes(instate(5));
final_round_out(16 to 23) <= SBOXSubBytes(instate(10));
final_round_out(24 to 31) <= SBOXSubBytes(instate(15));

final_round_out(32 to 39) <= SBOXSubBytes(instate(4));
final_round_out(40 to 47) <= SBOXSubBytes(instate(9));
final_round_out(48 to 55) <= SBOXSubBytes(instate(14));
final_round_out(56 to 63) <= SBOXSubBytes(instate(3));

final_round_out(64 to 71) <= SBOXSubBytes(instate(8));
final_round_out(72 to 79) <= SBOXSubBytes(instate(13));
final_round_out(80 to 87) <= SBOXSubBytes(instate(2));
final_round_out(88 to 95) <= SBOXSubBytes(instate(7));

final_round_out(96 to 103) <= SBOXSubBytes(instate(12));
final_round_out(104 to 111) <= SBOXSubBytes(instate(1));
final_round_out(112 to 119) <= SBOXSubBytes(instate(6));
final_round_out(120 to 127) <= SBOXSubBytes(instate(11));

process (clock)
begin
if (clock’event and clock ='1') then
if (round_num_R ="1011") then
aes_data_out_last <= final_round_out xor aes_key_in_R;
end if;
end if; -
end process;

aes_data_out_roundO <= aes_data_in xor aes_key_in_R;

aes_data_out_mid <= mid_round_out xor aes_key_in_R;

aes_data_out final <= final_round_out xor aes_key_in_R;
end rtl;

CONTROL SM

library IEEE;

use [EEE.STD_LOGIC_1164.ALL;

use |[EEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL,;

entity control_sm is
Port (
-- iff to input fifo
data_in : in std_logic_vector(0 to 127);
iv : in std_logic_vector(0 to 127);
context : in std_logic_vector(0 to 31);
fifo_emptyb : in std_logic;
rdb_fifo : out std_logic;

-~ i/f to output fifo
wrb_fifo : out std_logic;
fifo_fullb : in std_logic;

-- iff to cipher block
aes_data_in : out std_logic_vector(0 to 127);

109

round : out std_logic_vector(0 to 3);
aes_data_out_round0 : in std_logic_vector(0 to 127);
aes_data_out_mid : in std_logic_vector(0 to 127);
aes_data_out_final : in std_logic_vector(0 to 127);
aes_data_out_last : in std_logic_vector(0 to 127);

-- i/f to key memory
aes_key_mem_address : out std_iogic_vector(0 to 4);
read_key_mem : out std_logic;

clock : in std_logic;
reset : in-std_logic
);

end control_sm;
architecture RTL of control_sm is

type state_type is (IDLE, IDLEOUT, Get_Context, Get_ContextOut, CBC_Encrypt_11,
ECB_Encrypt_11, ECB_Encrypt_1, ECB_Encrypt_2, ECB_Encrypt_3, ECB_Encrypt_4,
ECB_Encrypt_5, ECB_Encrypt_6, ECB_Encrypt_7, ECB_Encrypt_8, ECB_Encrypt_9,
ECB_Encrypt_10, CBC_Encrypt_1, CBC_Encrypt_2, CBC_Encrypt_3, CBC_Encrypt_4,
CBC_Encrypt_5, CBC_Encrypt_6, CBC_Encrypt_7, CBC_Encrypt_8, CBC_Encrypt_9,
CBC_Encrypt_10, Out_Fifo_Full);

signal ST, nST : state_type;

signal sm_cipher_key_index: std_logic;

signal cipher_input: std_logic_vector(0 to 127);

signal sm_context_input: std_logic_vector (0 to 31);

signal sm_iv_input: std_logic_: vector (0to 127)

signal cclock: std_logic;

begin
sm_context_input(1) <= contexi(1);

cclock <= clock;

cipher_controller: process (clock)

begin

if (clock'event and clock ='1') then
case ST is
when IDLE =>
if (fifo_emptyb ='1') then
rdb_fifo <= '0";
read_key_mem <="'0";
round <= "0000";
aes_data_in <=
"000
000";
aes_key_mem_address <= "00000";
wrb_fifo <="'1";
cipher_input <= data_in;
sm_context_input <= context;
sm_iv_input <= iv;
--sm_cipher_key_index <= '0';
ST <= Get_Context;
else

rdb_fifo <= "1

110

read_key_mem <= "0’

round <= "0000";

aes_data_in <=
“000
000";

aes_key_mem_address <= "00000";

wrb_fifo <="'1";

ST <= IDLE;

end if;

when IDLEOUT =>
if (fifo_emptyb ='1') then
rdb_fifo <="'0";
read_key_mem <="'0";
round <= "0000";
--cipher_output <= aes_data_out_last;
aes_data_in <=
"000
000";
aes_key_mem_address <= "00000";
wrb_fifo <="'0';
cipher_input <= data_in;
sm_context_input <= context;
sm_iv_input <= iv;
8T <= Get_Context;
else . -
- . rdb_fifo <="'1";
read_key_mem <="'0";
round <= "0000";
--cipher_output <= aes_data_out_last;
aes_data_in <=
"000
000";
aes_key_mem_address <= "00000";
wrb_fifo <="0';
ST <= IDLE;
end if;

when Get_Context =>
if (sm_context_input(2 to 3) = "01") then --- ECB Mode

rdb_fifo <="1";

read_key_mem <='1",

round <= "0000";

aes_data_in <=
“000
000*;

sm_cipher_key_index <= sm_context_input(4);

aes_key_mem_address <= sm_context_input(4) &
*0000";

wrb_fifo <="1";

ST <= ECB_Encrypt_1;

elsif (sm_context_input(2 to 3) = "10") then ---CBC mode
rdb_fifo <="1";
read_key_mem <="'1";
round <= "0000";

111

aes_data_in <=
"000
000";

sm_cipher_key_index <= sm_context_input(4);

aes_key_mem_address <= sm_context_input(4) &
||0000n;

wrb_fifo <='1";

ST <= CBC_Encrypt_1;

else)
rdb_fifo <= '1"; --- undefined mode
read_key_mem <="'0’;
round <= "0000";
aes_data_in <=
“000
000";

aes_key_mem_address <= "00000"

wrb_fifo <="'1";

ST <= IDLE;

end if;
when Get_ContextOut =>
if (sm_context_input(2 to 3) = "01") then --- ECB Mode

rdb_fifo <='"1";

read_key_mem <='1";

round <= "0000";

--cipher_output <= aes_data_out_last;

aes_data_in <= .
“000
000";

sm_cipher_key_index <= sm_context_input(4);

aes_key_mem_address <= sm_context_input(4) &
"0000"; '

wrb_fifo <="'1";

ST <= ECB_Encrypt_1;

elsif (sm_context_input(2 to 3) = "10") then ---CBC mode

rdb_fifo <= '1";

read_key_mem <='1",

round <= "0000";

--cipher_output <= aes_data_out_last;

aes_data_in <=
“000
000";

sm_cipher_key_index <= sm_context_input(4);

aes_key_mem_address <= sm_context_input(4) &
"0000";

wrb_fifo <="1";

ST <= CBC_Encrypt_1;

else
rdb_fifo <="1"; --- undefined mode
read_key_mem <='0';
round <= "0000";
--cipher_output <= aes_data_out_last;

112

aes_data_in <=
"000
000";
aes_key_mem_address <= "00000";
wrb_fifo <="'1";
ST <= IDLE;
end if;

when ECB_Encrypt_11 =>

if ((fifo_emptyb ='1') and (fifo_fullb = '1')) then --- ECB Mode
rdb_fifo <='0";
read_key_mem <="1";
round <="1011";
aes_data_in <= aes_data_out_mid;
aes_key_mem_address <= sm_cipher_key_index &

"1010",

wrb_fifo <='0"
cipher_input <= data_in;
sm_context_input <= context;
sm_iv_input <= iv;
ST <= Get_ContextOut;

elsif ((fifo_emptyb = '1") and (fifo_fullb = '0')) then --- ECB Mode
rdb_fifo <="'1"; :
read_key_mem <="0",
round <= "1011";
aes_data_in <= aes_data_out_mid;

. aes_key_mem_address <= sm_cipher_key_index &
"1010"; v : ’
wrb_fifo <= "1"; :
ST <= Out_Fifo_Full;

elsif ((fifo_emptyb = '0') and (fifo_fullb ='0") then --- ECB Mode
rdb_fifo <="1"; _
read_key_mem <='0';
round <= "1011";
aes_data_in <= aes_data_out_mid;
aes_key_mem_address <= sm_cipher_key_index &
"1010";
wrb_fifo <="'1";
ST <= Out_Fifo_Full;

elsif ((fifo_emptyb ='0") and (fifo_fullb = '1')) then --- ECB Mode

rdb_fifo <="'0";

read_key_mem <="'1';

round <="1011";

aes_data_in <= aes_data_out_mid;

aes_key_mem_address <= sm_cipher_key_index &
"1010";

wrb_fifo <='0";

ST <= IDLEOUT;

else
rdb_fifo <='1"; --- undefined mode

read_key_mem <="'0;

113

“000

round <= "0000";
--cipher_output <= aes_data_out_mid;
aes_data_in <=

000";

"0000";

"0001";

0010

"0011"

aes_key_mem_address <= "00000";
wrb_fifo <='1",
ST <= IDLE;

when ECB_Encrypt_1 => --- ECB Mode

rdb_fifo <= '1";

read_key_mem <='1";

round <= "0001";

aes_data_in <= cipher_input;
aes_key_mem_address <= sm_cipher_key_index &

wrb_fifo <="'1';
ST <= ECB_Encrypt_2;

when ECB_Encrypt_2 =>

rdb_fifo <='1";

read_key_mem <="'1";

round <= "0010";

aes_data_in <= aes_data_out_round0;

aes_key. mem_address <= sm_cipher_key_index &

wrb_fifo <="1% . ..
ST <= ECB_Encrypt_3;

when ECB_Encrypt_3 => -

rdb_fifo <="'1";

read_key_mem <="'1";

round <= "0011";

aes_data_in <= aes_data_out_mid;
aes_key_mem_address <= sm_cipher_key_index &

wrb_fifo <="'1";
ST <= ECB_Encrypt_4;

when ECB_Encrypt_4 =>

rdb_fifo <="'1";

read_key_mem <="'1";

round <="0100";

aes_data_in <= aes_data_out_mid;
aes_key_mem_address <= sm_cipher_key_index &

wrb_fifo <="1";
ST <= ECB_Encrypt_5;

when ECB_Encrypt_5 =>

rdb_fifo <="'1";

read_key_mem <= "1’

round <="0101";

aes_data_in <= aes_data_out_mid;

114

aes_key_mem_address <= sm_cipher_key_index &
"0100";

wrb_fifo <= "1

ST <= ECB_Encrypt_6;

when ECB_Encrypt_6 =>

rdb_fifo <="'1";

read_key_mem <='1";

round <= "0110%;

aes_data_in <= aes_data_out_mid;

aes_key_mem_address <= sm_cipher_key_index &
"01 01 Il;

wrb_fifo <="'1";

ST <= ECB_Encrypt_7;

when ECB_Encrypt_7 =>

rdb_fifo <="1";

read_key_mem <="'1";

round <="0111";

aes_data_in <= aes_data_out_mid;

aes_key_mem_address <= sm_cipher_key_index &
'0110"; '

wrb_fifo <= '1"

ST <= ECB_Encrypt_8;

when ECB_Encrypt_8 =>

.. rdb_fifo <="17;
read_key_mem<="'1";

~ round <= "1000";
aes_data_ in <= aes_data_out_mid;
aes_key_mem_address <= sm_cipher_key_index &

||01 1 1 n; .

wrb_fifo <='1";
ST <= ECB_Encrypt_9;

when ECB_Encrypt_9 =>
rdb_fifo <="'1",
read_key_mem <="'1";
round <="1001";
aes_data_in <= aes_data_out_mid;
aes_key_mem_address <= sm_cipher_key_index &
"1000%;
wrb_fifo <="'1";
ST <= ECB_Encrypt_10;

when ECB_Encrypt_10 =>

rdb_fifo <="'1%;

read_key_mem <="'1";

round <= "1010";

aes_data_in <= aes_data_out_mid;

aes_key_mem_address <= sm_cipher_key_index &
"1001";

wrb_fifo <="1"

ST <= ECB_Encrypt_11;

when CBC_Encrypt_11 =>

115

if ((fifo_emptyb = '1") and (fifo_fullb = '1')) then --- ECB Mode
rdb_fifo <="'0";
read_key_mem <="'1
round <="1011";
aes_data_in <= aes_data_out_mid;
aes_key_mem_address <= sm_cipher_key_index &
"1010"%
wrb_fifo <="'0";
cipher_input <= data_in;
sm_context_input <= context;
sm_iv_input <= iv;
ST <= Get_ContextOut;

elsif {(fifo_emptyb = '1') and (fifo_fullb ='0")) then --- ECB Mode

rdb_fifo <="1";

read_key_mem <='0",

round <="1011";

aes_data_in <= aes_data_out_mid;

aes_key_mem_address <= sm_cipher_key_index &
"1010";

wrb_fifo <= '1";

ST <= Out_Fifo_Full;

eisif ((fifo_emptyb ='0") and (fifo_fullb ='0") then --- ECB Mode
. rdb_fifo <="1";
read._key_mem <="'0";
‘round <= "1011";
aes_data_in <= aes_data_out_mid;
-aes key mem address <= sm_cipher_| key_mdex&
"1010%; "
- wrb fIfO <= '1‘
ST <= Out_Fifo FuIl

elsif ((fifo_emptyb = '0") and (fifo_fullb ='1')) then --- ECB Mode

rdb_fifo <= '0";

read_key_mem <= "'1';

round <= "1011";

aes_data_in <= aes_data_out_mid;

aes_key_mem_address <= sm_cipher_key_index &
"1010";

wrb_fifo <="'0";

ST <= IDLEOUT;

else
rdb_fifo <="1"; --- undefined mode

read_key_mem <='0";

round <= "0000";

--cipher_output <= aes_data_out_mid;

aes_data_in <=
"000

000";
aes_key_mem_address <= "00000";
wrb_fifo <="'1";

ST <= IDLE;

end if;

116

packet

aes_data_out_last;

"0000";

ll0001 II;

"0010",

"0011";

“0100";

when CBC_Encrypt_1 => --- CBC Mode
rdb_fifo <= '1";
read_key_mem <="'1";
round <= "0001";
if (sm_context_input(0) = '1’) then -- SOP =1
aes_data_in <= cipher_input xor sm_iv_input;
elsif (sm_context_input(0) = '0') then -- middle or end of

aes_data_in <= cipher_input xor

end if;
aes_key_mem_address <= sm_cipher_key_index &

wrb_fifo <="'1"; .
ST <= CBC_Encrypt_2;

when CBC_Encrypt_2 =>
rdb_fifo <= '1";
read_key_mem <="1"
round <= "0010";
aes_data_in <= aes_data_out_roundO;
aes_key_mem_address <= sm_cipher_key_index &

wrb_fifo <="'1";
ST <= CBC_Encrypt_3;

when CBC_Encrypt: 3 =>
rdb_fifo <="1"; . -
read_key_mem <='1";
round <= "0011";
aes_data_in <= aes_data_out_mid;
aes_key_mem_address <= sm_cipher_key_index &

wrb_fifo <='1";
ST <= CBC_Encrypt_4;

when CBC_Encrypt_4 =>
rdb_fifo <="'1";
read_key_mem <="'1";
round <= "0100";
aes_data_in <= aes_data_out_mid;
aes_key_mem_address <= sm_cipher_key_index &

wrb_fifo <="1";
ST <= CBC_Encrypt_5;

when CBC_Encrypt_5 =>
rdb_fifo <="'1";
read_key_mem <="'1";
round <="0101";
aes_data_in <= aes_data_out_mid;
aes_key_mem_address <= sm_cipher_key_index &

wrb_fifo <="1";
ST <= CBC_Encrypt_6;

117

when CBC_Encrypt_6 =>

rdb_fifo <="'1";

read_key_mem <=1,

round <= "0110";

aes_data_in <= aes_data_out_mid;

aes_key_mem_address <= sm_cipher_key_index &
II01 01 ll;

wrb_fifo <="1",

ST <= CBC_Encrypt_7;

when CBC_Encrypt_7 =>

rdb_fifo <="1";

read_key_mem <="'1',

round <= "0111";

aes_data_in <= aes_data_out_mid;

aes_key_mem_address <= sm_cipher_key_index &
IIO1 1 Oll; .

wrb_fifo <= "1",

ST <= CBC_Encrypt_8;

when CBC_Encrypt_8 =>

rdb_fifo <="'1";

read_key_mem <='1";

round <= "1000";

aes_data_in <= aes_data_out_mid;

aes_key_mem_address <= sm_cipher_key_index &
"0111",

wrb_fifo <="'1";..

ST <= CBC_Encrypt_9;

when CBC_Encrypt_9 =>

rdb_fifo <='1";

read_key_mem <="'1’;

round <="1001";

aes_data_in <= aes_data_out_mid;

aes_key_mem_address <= sm_cipher_key_index &
"1000";

wrb_fifo <="1";

ST <= CBC_Encrypt_10;

when CBC_Encrypt_10 =>

rdb_fifo <='1";

read_key_mem <='1";

round <="1010";

aes_data_in <= aes_data_out_mid;

aes_key_mem_address <= sm_cipher_key_index &
Il1 001 Il;

wrb_fifo <="1";

ST <= CBC_Encrypt_11;

when Out_Fifo_Full =>
if ((fifo_emptyb = '1') and (fifo_fullb = '1'})) then --input FIFO not

empty, output FIFO not FULL
rdb_fifo <="'0";

118

“1011";

read_key_mem <='1";

round <= "1100";

aes_data_in <= aes_data_out_last;
aes_key_mem_address <= sm_cipher_key_index &

wrb_fifo <='0";

cipher_input <= data_in;
sm_context_input <= context;
sm_iv_input <= iv;

ST <= Get_ContextOut;

elsif ((fifo_emptyb = '0") and (fifo_fullb = '1)) then --input FIFO

empty, output FIFO not FULL

rdb_fifo <='0";

read_key_mem <="'1";

round <="1100";

aes_data_in <= aes_data_out_last;
aes_key_mem_address <= sm_cipher_key_index &

"1011";
wrb_fifo <="'0";
ST <= IDLEQOUT;
else
rdb_fifo <='1";
read_key_mem <= '1";
round <= "1100";
aes_data_in <= aes_data_out_last;
_ aes_key_mem_address <= sm_ciptier_key_index &
II1 01 1 II; . .
wrb_fifo <='1";
ST <= Out_Fifo_Full; -
end if; ‘
when others =>
ST <= IDLE;
end case;
end if;
end process;
end RTL;
INPUT FIFO

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity FIFO is
Port (resetb : in std_logic;
clock : in std_logic;
rdb : in std_logic;
wrb : in std_logic;

data_in : in std_logic_vector(0 to 63);

119

iv_in : in std_logic_vector (0 to 63);
context_in : in std_logic_vector (0 to 15);
emptyb : out std_logic;
fullb : out std_logic;
context_out : out std_logic_vector (0 to 31);
iv_out : out std_logic_vector (0 to 127);
data_out : out std_logic_vector(0 to 127));
end FIFO;

architecture RTL of FIFO is

signal read_ptr: std_logic_vector(0 to 2);

signal write_ptr: std_logic_vector (0 to 2);

type data_registerType is array (0 to 7) of std_logic_vector(0 to 63);
signal data_register: data_registerType;

type context_registerType is array (O to 7) of std_logic_vector(0 to 15);
signal context_register: context_registerType;

type iv_registerType is array (0 to 7) of std_logic_vector(0 to 63);
signal iv_register: iv_registerType;

signal write_read: std_logic_vector (0 to 1);

signal fullb_flag: std_logic;

signal emptyb_flag: std_logic;

SIGNAL contents_counter: INTEGER range 0 to 16;

begin
inp_latch: process (clock)
begin

if (clock'event and clock ='1') then
-- if (resetb ='0") then
- write_read <="11";
-- else -
write_read <= wrb & rdb;
-- end if;

end if;
end process;

fifo: process (clock)
begin
if (clock'event and clock = '1') then
if (resetb ='0') then
write_ptr <= "000";
read_ptr <= "000";
fullb_flag <="'1";
emptyb_flag <='0";
contents_counter <= 0;
foriin O to 7 loop
data_register(i) <=
*00";
iv_register(i) <=
"00";
context_register(i) <= "0000000000000000";
end loop;
else

case write_read is

when "00" =>
read_ptr <= read_ptr + 2;

120

data_register(conv_integer(write_ptr)) <= data_in;
iv_register(conv_integer(write_ptr)) <= iv_in;
context_register(conv_integer(write_ptr)) <= context_in;
write_ptr <= write_ptr + 1; ’
contents_counter <= contents_counter - 1;
when "01" =>
contents_counter <= contents_counter + 1;
if (contents_counter > 0) then
emptyb_flag <="1";
else
emptyb_flag <="0';
end if;
if (fullb_flag ='1') then
data_register(conv_integer(write_ptr)) <=
data_in;
iv_register(conv_integer(write_ptr)) <= iv_in;
context_register(conv_integer(write_ptr)) <=
context_in; _
if (write_ptr + 2) = read_ptr then
fullb_flag <= '0",;
end if;
write_ptr <= write_ptr + 1;
end if;
when "10" =>
if (emptyb_flag ='1") then
if (read_ptr + 2) = write_ptr then
emptyb: flag <="0';
end if;
read_ptr <= read_ptr + 2;
contents_counter <= contents_counter - 2;
end if; -
fullb_flag <="1";
when others => null;
end case;
end if;
end if;
end process;
fullb <= fullb_flag;

output: process (clock)
begin
if (clock'event and clock ='1') then
data_out <= data_register(conv_integer(read_ptr)) &
data_register(conv_integer(read_ptr+1));
iv_out <= iv_register(conv_integer(read_ptr)) &
iv_register(conv_integer(read_ptr+1));
context_out <= context_register(conv_integer(read_ptr)) &
context_register(conv_integer(read_ptr+1));
emptyb <= emptyb_flag;
end if;
end process;
end RTL;

OUTPUT FIFO

library |IEEE;

121

use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use |IEEE.STD_LOGIC_UNSIGNED.ALL;

entity OUT_FIFQ is
Port (resetb : in std_logic;
clock : in std_logic;
rdb : in std_logic;
wrb : in std_logic;
data_in : in std_logic_vector(0 to 127);
emptyb : out std_logic; '
fullb : out std_logic;
data_out : out std_logic_vector(0 to 63));
end OUT_FIFO;

architecture RTL of OUT_FIFO is

signal read_ptr: std_logic_vector(0 to 2);

signal write_ptr: std_logic_vector (0 to 2);

type data_registerType is array (0 to 7) of std_logic_vector(0 to 63);
signal data_register: data_registerType;

signal write_read: std_logic_vector (0 to 1);

signal fullb_flag: std_logic;

signal emptyb_flag: std_logic;

SIGNAL contents_counter: INTEGER range 0 to 16;

begin

outp_latch: process (clock)
begin

it (clock'event and clock = '1') then
- if (resetb ='0') then
-- write_read <="11";
-~ else

write_read <= wrb & rdb;

- end if;

end if;
end process;

fifo: process (clock)
begin

if (clock'event and clock ='1') then
if (resetb ='0') then
write_ptr <= "000";
read_ptr <= "000";
--data_out <=
"00";
fullb_flag <="'1";
emptyb_flag <='0";
contents_counter <= 0;
foriin Oto 7 loop
data_register(i) <=
"00";
end loop;
else
case write_read is

122

63);

to 127);

when "00" => :)
data_out <= data_register(conv_integer(read_ptr));
read_ptr <= read_ptr + 1;
data_register(conv_integer(write_ptr)) <= data_in(0 to

data_register(conv_integer(write_ptr + 1)) <= data_in(64

write_ptr <= write_ptr + 2;
contents_counter <= contents_counter + 1;
when "01" =>
emptyb_flag <="'1";
if (fullb_flag ='1") then
data_register(conv_integer(write_ptr)) <=

data_in(0 to 63);

data_register(conv_integer(write_ptr+1)) <=

data_in(64 to 127);

write_ptr <= write_ptr + 2;
contents_counter <= contents_counter + 2;
if (write_ptr = read_ptr) then
if (contents_counter > 6) then
fullb_flag <="'0";
else
fullb_flag <="'1";
end if;
end if;

end if;
‘when "10" =>
if (emptyb_flag = '1') then
if (read_ptr + 1) = write_ptr then
emptyb_flag <="'0";
end if;
data_out <=

data_register(conv_integer(read_ptr));

read_ptr <= read_ptr + 1;
contents_counter <= contents_counter - 1;

end if;
fullb_flag <='1";
when others => null;
end case;
end if;

end if;
end process;

emptyb <= emptyb_flag;

outfif: process (clock)

begin
if (clock'event and clock ='1') then
fullb <= fullb_flag;

end if;
end process;

end RTL;

123

AES MODULE TB

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

USE ieee.numeric_std.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY testbench IS

END testbench;

ARCHITECTURE behavior OF testbench IS

COMPONENT aes_cipher_module_3

PORT(

data_input : IN std_logic_vector(0 to 63);
iv_in : IN std_logic_vector(0 to 63);
context_in : IN std_logic_vector(0 to 15);
wrb : IN std_logic;

rdb : IN std_logic;

key_in : IN std_logic_vector(0 to 127);

clock : IN std_logic;

reset : IN std_logic;

fullb : OUT std_logic;

data_output : OUT std_logic_vector(0 to 63);
emptyb : OUT std_logic;

key_address : OUT std_logic_vector(0 to 4);
read_mem : OUT std_logic

);
END COMPONENT;

SIGNAL data_input : std_logic_vector(0 to 63) :=
"1110111011101110111011101110111011101110111011101110111011101110";
SIGNAL iv_in : std_logic_vector(0 to 63) :=
“1110111011101110111011101110111011101110111011101110111011101110";
SIGNAL context_in : std_logic_vector(0 to 15) :="0111011101110111";
SIGNAL wrb : std_logic :='1";
SIGNAL fullb : std_logic;
SIGNAL data_output : std_logic_vector(0 to 63);
SIGNAL emptyb : std_logic;
SIGNAL rdb : std_logic :="1";
SIGNAL key_in : std_logic_vector(0 to 127);
SIGNAL key_address : std_logic_vector(0 to 4);
SIGNAL read_mem : std_logic;
SIGNAL clock : std_logic :='0";
SIGNAL reset : std_logic :='0";
-- type KeyMemoryType is array (0 to 31) of std_logic_vector(0 to 127);
-- signal KeyMemory : KeyMemoryType;
- SIGNAL rdy_counter: INTEGER range 0 to 16;
SIGNAL rdy_counter: INTEGER :=0;

subtype KEY_BOX_FIELD s std_logic_vector (0 to 127);
subtype KEYBOX_INDEX_TYPE is std_logic_vector (0 to 4);
type KEY_BOX_TYPE s array (0 to 31) of KEY_BOX_FIELD;
constant KEY_BOX : KEY_BOX_TYPE := (

124

"1100001010000110011010010110110110001000011111001001101010100000011000
0100011011101110110011111000100000001001011010010001011010",
"1111110011001111110101111101101001110100101100110100110101111010000101
0110101000111101100100010000110101100011010101001000011110",
"1010001111001111101001010100110011010111011111001110100000110110110000
1011010100000111100111001011110111010110010100110001101100",
"0110110011100110111101010010010010111011100110100001110100010010011110
0101001110000000110110000010001110000101110100111100001100",
"1001010001100010000010110011110100101111111110000001011000101111010101
1010110110000101010100111111011000101000010101101001000011",
"1011011011011100000100010101110010011001001001000000011101110011110011
1110010010000100100011110000010111001100110100100001111111",
"0101010110001110110000111010110011001100101010101100010011011111000000
1100111000110101101110001100010100000010111001111010011100",
“0011111010000101000111010101011011110010001011111101100110001001111100
0100010111000011110110101011100101000111001001000111110110",
“0010001000000100010111111000111111010000001010111000011000000110001000
0100111100100010010110110011000100001000000001100010011010",
"1000111010101001111001111001001101011110100000100110000110010101011111
1110111110111010001111100110111011100111101111000001100011",
"1011001100100101000111000111100111101101101001110111110111101100100100
1000011001100101010001010100101001100001110110010101110110",
“0001001100010001000111010111111111100011100101000100101000010111111100
1100000111101001111000101101001101001010110011000011000101",
“0000000000000001000000100000001100000100000001010000011000000111000010
0000001001000010100000101100001100000011010000111000001111",
"00
00",
"00
00",
“00
00", '

"0000000000000001000000100000001100000100000001010000011000000111000010
0000001001000010100000101100001100000011010000111000001111",
"1101011010101010011101001111110111010010101011110111001011111010110110
1010100110011110001111000111010110101010110111011011111110",
"1011011010010010110011110000101101100100001111011011110111110001101111
1010011011110001010000000001101000001100001011001111111110",
"1011011011111111011101000100111011010010110000101100100110111111011011
0001011001000011001011111100000100011010011011111101000001",
"0100011111110111111101111011110010010101001101010011111000000011111110
0101101100001100101011110011111101000001011000110111111101", '
"0011110010101010101000111110100010101001100111111001110111101011010100
0011110011101011110101011110101101111101100010001010101010",
“0101111000111001000011110111110111110111101001101001001010010110101001
1101010101001111011100000100001010101000110001111101101011",
"0001010011111001011100000001101011100011010111111110001010001100010001
0000001010110111110100110101001110101010011100000000100110",
"0100011101000011100001110011010110100100000111000110010110111001111000
0000010110101110101111010010101110101111110111101011010010",
"0101010010011001001100101101000111110000100001010101011101101000000100
0010010011111011011001110010111110001011001001011101001110",
“0001001100010001000111010111111111100011100101000100101000010111111100
1100000111101001111000101101001101001010110011000011000101",

125

"0001001100010001000111010111111111100011100101000100101000010111111100
1100000111101001111000101101001101001010110011000011000101",
“0000000000000001000000100000001100000100000001010000011000000111000010
0000001001000010100000101100001100000011010000111000001111",
"00
00",
"00
00",
"00
00"

)
BEGIN

uut: aes_cipher_module_3 PORT MAP(
data_input => data_input,
iv_in =>iv_in,
context_in => context_in,
wrb => wrb,
fullb => fullb,
data_output => data_output,
emptyb => emptyb,
rdb => rdb,
key_in => key_in, - -
key_address => key_address,
read_mem => read_mem, .::
clock => clock, K :
reset => reset

)

-- *** Test Bench - User Defined Section ***
tb : PROCESS (clock)
BEGIN
if (clock'event and clock ='1') then
if (rdy_counter = 0) then
reset <="'0' after 1 ns;
rdy_counter <= rdy_counter + 1;
elsif (rdy_counter = 1) then
reset <="'1' after 1 ns;
rdy_counter <= rdy_counter + 1;
elsif (rdy_counter = 2) then
reset <="'1' after 1 ns;
rdy_counter <= rdy_counter + 1;
if (fullb ='1') then
wrb <="'0' after 1 ns;
end if;
elsif (rdy_counter = 3) then
if (fullb ='1") then
wrb <="'0' after 1 ns; --ecb
data_input <=
*0000000000010001001000100011001101000100010101010110011001110111" after 1 ns;
iv_in <=
"00" after 1 ns;
context_in <= "0001100000000000" after 1 ns;
rdy_counter <= rdy_counter + 1 after 1 ns;

126

else
wrb <="'1' after 1 ns;
end if;
elsif (rdy_counter = 4) then
if (fullb =*1") then
wrb <="1' after 1 ns; --ecb, 2
data_input <=
"1000100010011001101010101011101111001100110111011110111011111111" after 1 ns;
iv_in <=
"0001" after 1 ns;
context_in <= "0111100000000001" after 1 ns;
rdy_counter <= rdy_counter + 1 after 1 ns;
else
wrb <="'1" after 1 ns;
end if;
elsif (rdy_counter = 5) then
if (fullb ='1') then
wrb <= '0" after 1 ns; --nothing
: data_input <=
"1000100010011001101010101011101111001100110111011110111011111111" after 1 ns;
v_In <=
"0001" after 1 ns;
context_in <= "0111100000000001" after 1 ns;
rdy_counter <= rdy_counter + 1 after 1 ns;
else
' .. wrb <="1" after 1 ns;
: end if;
elsif (rdy_counter = 6) then
if (fullb ='1") then
: wrb <= '0' after 1 ns; --cbc1, 1
data_input <=
"0000000000000001000000100000001100000100000001010000011000000111" after 1 ns;
v_in <=
“0101011000101110000101111001100101101101000010010011110100101000" after 1 ns;
context_in <= "1010000000000000" after 1 ns;
rdy_counter <= rdy_counter + 1 after 1 ns;
else '
wrb <="1' after 1 ns;
end if;
elsif (rdy_counter = 7) then
if (fullb ='1") then
wrb <="'0' after 1 ns; --cbc1 ,2
data_input <=
"0000100000001001000010100000101100001100000011010000111000001111" after 1 ns;
iv_in <=
"1101110110110011101110100110100101011010001011100110111101011000" after 1 ns;
context_in <= "0010000000000001" after 1 ns;
rdy_counter <= rdy_counter + 1 after 1 ns;
else
wrb <="'1" after 1 ns;
end if;
elsif (rdy_counter = 8) then
if (fullb ='1") then
wrb <= '0' after 1 ns; --cbc2, 1
data_input <=
"0001000000010001000100100001001100010100000101010001011000010111" after 1 ns;

127

iv_in <=
"1101110110110011101110100110100101011010001011100110111101011000" after 1 ns;
context_in <= "0010000000000001" after 1 ns;
rdy_counter <= rdy_counter + 1 after 1 ns;
else
wrb <= "1'after 1 ns;
end if;
elsif (rdy_counter = 9) then
if (fullb ='1') then
wrb <="'1' after 1 ns; --cbc2, 2
data_input <=
"0001100000011001000110100001101100011100000111010001111000011111" after 1 ns;
iv_in <=
"1101110110110011101110100110100101011010001011100110111101011000" after 1 ns;
‘ context_in <= "0010000000000001" after 1 ns;
rdy_counter <= rdy_counter + 1 after 1 ns;

else
wrb <="'1" after 1 ns;

end if;

else
if (fullb = '1') then
data_input <=
"111100" after 1 ns;

iv_in <=

"110011110011" after 1 ns;
context_in <="1111100000000011" after 1 ns;
wrb <="1' after 1 ns;
rdy_counter <= rdy_counter + 1 after 1 ns;

.else
wrb <= '1' after 1.ns;
end if;
endif; -
end if;
END PROCESS;

tb2 : PROCESS (clock)
BEGIN
if (clock'event and clock = '1') then
if (emptyb ='1') then
rdb <="'0' after 1 ns;
else
rdb <="1' after 1 ns;
end if;
end if;
END PROCESS;

with read_mem select
key_in <= KEY_BOX(conv_integer(key_address)) when '1’,

"000
000" when others;

END;

128

REFERENCES

[1] N. Doraswamy and D. Harkins, /PSec. Saddle River, NJ: Prentice Hall PTR, 1999.

[2] R. Venkateswaran, “Virtual Private Networks,” IEEE Potentials, vol. 20, no. 1, pp. 11-
15, Feb-March 2001.

[3] C. Metz, “The Latest in Virtual Private Networks: Part I,” IEEE Internet Computing,
vol. 7, no. 1, pp. 87-91, Jan.-Feb. 2003.

[4] VPN Technologies: Definitions and Requirements. VPN Consortium. Available at:
http://www.vpnc.org/vpn-technologies.html.

[5] B. Schneier, Applied Cryptography, 2nd Ed. New York, NY: John Wiley and Sons,
1996.

[6] C. Davis, IPSec: Securing VPNs. New York. NY: RSA Press, 2001.

[7] S. Kent and R. Atkinson: “Security Architecture for the internet Protocol,” RFC 2401,
“November 1998. ' '

[8] S. Kent and R. Atkinson: “IP Authentication Header,” RFC 2402, November 1998.

[9] S. Kent and R. Atkinson: “IP Encapsulating Security Payload (ESP),” RFC 2406,
November 1998.

[10] “Data Encryption Standard,” Federal Information Processing Standards Publication
46-2, December 30, 1993.

[11] “Advanced Encryption Standard,” Federal Information Processing Standards
Publication 197, November 26, 2001.

[12] X. Zhang, K. K. Parhi, “Implementation approaches for the Advanced Encryption
Standard algorithm, ” IEEE Circuits and Systems Magazine, vol. 2, no. 4, pp. 24-

46, 2002.

[13] S. Morioka, A. Satoh, “A 10Gbps Full-AES Crypto Design with a Twisted-BDD S-
Box Architecture,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 12, no.7, pp.686-691, July 2004.

[14] S. Frankel, R. Glenn, and S. Kelly, “The AES-CBC Cipher Algorithm and Its Use
with IPsec,” RFC 3602, September 2003.

129

[15] A. J. Elbirt, W. Yip, B. Chetwynd, and C. Paar, “An FPGA Implementation and

[16] K.

[17] M.

[18] M.

[19] R.

[20] M.

Performance Evaluation of the AES Block Cipher Candidate Algorithm Finalists,”
The Third AES Conference (AES3), New York. April 2000. Available at
http://csre.nist.gov/encryption/aes/round2/conf3/aes3papers.html.

Gaj and P. Chodowiec, “Comparison of the hardware performance of the AES
candidates using reconfigurable hardware,” The Third AES Conference (AES3),
New York. April 2000. Available at
http://csrc.nist.gov/encryption/aes/round2/conf3/aes3papers.htmi.

Dworkin, SP 800-38A 2001, “Recommendation for Block Cipher Modes of
Operation,” Dec. 2001.

Mcloone and J. V. McCanny, “Generic architectures and semiconductor
intellectual property cores for advanced encryption standards cryptography,” IEE
Proceedings — Computers and Digital Techniques, Vol. 150, no. 4, pp. 239-244,
July 18, 2003.

Hobson and S. Wakelin, “An Area Efficient High Speed S-Box Method,” in
Proceedings of the IEEE Intemational Workshop of System on Chip, 2005.

Alam, W. Badawy, and G. Jullien, “A novel pipelined threads architecture for AES
encryption algorithm,” Proceedings of the IEEE International Conference on
Application-Specific Systems, Architectures and Processors July 17-19, 2002,
pp.-296-302. : :

[21] Jhing-Fa Wang, Sun-Wei Chang, and Po-Chuan Lin, “A novel round function

[22] R.

[23] A.

architecture for AES encryption/decryption utilizing look-up table,” Proceedings of
the IEEE 37th Annual International Carnahan Conference on Security
Technology, Oct. 14-16, 2003, pp. 132-136.

Sever, A. N. Ismailglu, Y. C. Tekmen, M. Askar, and B. Okcan, “A high speed
FPGA implementation of the Rijndael algorithm,” Euromicro Symposium on
Digital System Design, Aug. 31-Sept. 3 2004, pp. 358-362.

Hodjat and I. Verbauwhede, “A 21.54 Gbits/s fully pipelined AES processor on
FPGA,” 12th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, April 20-23 2004, pp 308-309.

[24] X. Zhang and K. K. Parhi, “An efficient 21.56 Gpbs AES implementation on FPGA,”

Conference Record of the Thirty-Eighth Asilomar Conference on Signals,
Systems, and Computers, 2004, Volume 1, pp. 465-470.

130

