
FUNDAMENTALS OF SUTURING SIMULATION

IN SURGICAL TRAINING ENVIRONMENT

by

Hans Fuhan Shi

B.Sc, Shandong University, China 1996

a thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Applied Science

in the School

of

Engineering Science

c© Hans Fuhan Shi 2008

SIMON FRASER UNIVERSITY

Fall, 2008

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name: Hans Fuhan Shi

Degree: Master of Applied Science

Title of thesis: Fundamentals of Suturing Simulation in Surgical Train-

ing Environment

Examining Committee: Dr. John Jones

Chair

Dr. Shahram Payandeh, Senior Supervisor

Dr. Hao Zhang, Supervisor

Dr. Ghassan Hamarneh, Examiner

Date Approved:

ii

Abstract

This thesis presents a knotting and suturing model based on the Virtual Training

Environment (VTE). We introduce a mechanics-based approach to real-time simula-

tion of deformable linear objects (DLOs) with visual and force feedback, which can

represent the mechanical properties of a real thread, such as stretching, compressing,

bending, and twisting. We also present how forces propagate along the suture when

the user pulls it with one or two hands.

The user can practice the basic suturing techniques on the simulator presented

in this thesis. The pre-wound suturing target is modeled as a modified mass-spring

system. The tools involved in the live suturing procedures are also simulated. Colli-

sions between the soft tissue and the needle, between the soft tissue and the suture

are analyzed. In addition, the tissue tearing is also studied in this thesis.

Furthermore, this thesis addresses the GPU application in simulating deformable

objects.

iii

To my wife Lucia, whose support, patience, and encouragement helped make this

thesis a reality. To the family who taught and encouraged me to follow my dreams

and passions. And to my adorable son Noah.

iv

Acknowledgments

Thanks to my senior supervisor Dr. Shahram Payandeh for the advice and support

throughout this thesis work. This work would not be possible without his enthusiasm

and knowledge of inter-disciplinary research.

Thanks to my supervisor Dr. Hao Zhang for his support and to Dr. Ghassan

Hamarneh for examining this thesis.

Also thanks to Dr. John Jones for chairing my defence.

I thank everybody who works at Experiment Robotics Lab. I would never be

graduating without your support.

v

Contents

Approval ii

Abstract iii

Dedication iv

Acknowledgments v

Contents vi

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Motivation . 1

1.2 VTE System Overview . 4

1.2.1 VTE Tasks . 5

1.2.2 Haptic Feed-back . 7

1.3 Related Work . 11

1.3.1 Knotting and Unknotting . 11

1.3.2 Suturing . 13

1.3.3 GPU Application in Deformable Object Simulation 16

1.4 Contribution . 17

1.4.1 Knotting and Unknotting . 17

vi

1.4.2 Suturing Simulation . 17

1.4.3 GPU Application . 18

1.5 Dissertation Road Map . 18

2 Models for Suturing 20

2.1 Suture Model . 20

2.1.1 Explicit Euler Method . 21

2.1.2 External Forces . 22

2.1.3 Internal Forces . 26

2.2 Deformable Model . 31

2.2.1 Mass Spring Model . 31

2.2.2 Deformation Computation . 32

2.2.3 Deformation Post-Step Constraint Enforcement 32

2.3 Tools model . 33

2.3.1 Needle Driver Model . 33

2.3.2 Needle Model . 34

3 Suturing Simulation 37

3.1 Introduction . 37

3.2 Collision Detection and Management 38

3.2.1 Collisions between Needle Drivers and the Needle 38

3.2.2 Collisions between the Needle and the Soft Tissue 39

3.2.3 Collisions between the Suture and the soft tissue 39

3.3 The process of suturing . 41

3.4 Stitch Evaluation . 42

3.4.1 Tissue Tearing . 42

3.5 Haptic Force Feed-back . 45

3.6 Experiment Results . 46

3.6.1 Suturing . 46

3.6.2 Knotting . 47

3.6.3 Tearing . 47

vii

4 Knotting and Unknotting 52

4.1 Introduction . 52

4.2 Force Propagation Along the Suture 53

4.2.1 Condition A - no propagation 53

4.2.2 Condition B - one-hand pulling 53

4.2.3 Condition C - two-hand pulling 54

4.3 Collision Detection and Management 55

4.4 Haptic Force Feedback . 58

4.5 Experiment . 62

4.5.1 Setup . 62

4.5.2 Experiment of Knotting . 67

4.5.3 Experiment of Unknotting . 71

5 GPU in Deformable Object Simulation 73

5.1 Introduction . 73

5.2 Deformable Linear Object (DLO) Simulation with GPU 74

5.2.1 GPU Cg Implementation . 75

5.3 Cloth Simulation with CUDA . 78

5.3.1 Explicit Method vs Implicit Method 79

5.3.2 CUDA Implementation . 82

5.3.3 Haptic Force Feedback . 86

5.3.4 Comparison between GPU and CPU implementation of the

cloth model . 86

6 Conclusion and Future Works 89

6.1 Conclusion . 89

6.2 Future work . 90

A PHANTOM Omni Specifications 92

B The process of suturing 94

B.1 The process of suturing . 94

viii

B.1.1 Piercing the deformable mesh 94

B.1.2 Slipping on the Needle . 95

B.1.3 Slipping on the Suture . 96

B.1.4 Suture Tension . 98

C Explicit and Implicit Euler Integration 100

C.1 Introduction . 100

C.2 Differential Equations . 102

C.2.1 Initial Value Problems . 102

C.2.2 Numerical Solutions . 103

C.3 Explicit Method . 104

C.3.1 Eulers Method . 104

C.3.2 Midpoint Method . 105

C.3.3 Adaptive Stepsizes . 107

C.4 Implicit Method . 108

C.4.1 Example Stiff ODE . 108

C.4.2 Solving Stiff ODEs - Backward Euler’s Method 110

C.4.3 Solving Second-Order Equations 112

Bibliography 115

ix

List of Tables

4.1 Suture Parameter Setting . 67

5.1 GPU and CPU performance comparison of the suture model 78

5.2 GPU and CPU performance comparison of the cloth model 87

A.1 Phantom Omni Specifications . 93

x

List of Figures

1.1 A user is practicing knotting skills with the VTE 4

1.2 Laparoscopic Impulse Engine . 9

1.3 Virtual Laparoscopic Interface . 10

1.4 SensAble PHANTOM Omni R© . 10

1.5 SensAble PHANTOM R© DesktopTM 11

2.1 Suture model. Pi is the ith mass point. All mass points are connected

through segments. 21

2.2 Virtual Coupling. P ′
i is the point of the haptic device end-effector. Pi

is virtually grasped point. vi is the velocity of point Pi. fi is the net

force acting on point Pi. fh is the user input force from virtual coupling. 23

2.3 Two suture segments PaPb and PcPd are sliding on each other, where

point C is the contact point; va, vb, vc, and vd are the velocities of

points Pa, Pb, Pc, and Pd respectively. 25

2.4 Intersection of the two contact segments. Point C and E are contact

points. s is the distance between the center lines of two contact seg-

ments. r is radius of the suture segment. 25

2.5 Linear Spring. Point Pi and Pi+1 are two mass points. lr is the rest

length of the spring. li is the current length of the spring. 27

2.6 Linear Damper. Point Pi and Pi+1 are two mass points. vi and vi+1

are the velocities of Point Pi and Pi+1 respectively. vi+1 and vi are the

norms of the components of the velocity of vi and vi+1 on the direction

of PiPi+1 . 27

xi

2.7 Torsional Spring. êi−1 and êi are the unit vectors with directions from

point, Pi−1 to Pi, and from Pi to Pi+1, respectively. t̂i−1 and t̂i+1 are the

unit vectors with directions the same as the torsional force applied at

the two endpoints and therefore, orthogonal to êi−1 and êi respectively

and in the plane formed by segment Pi−1Pi and PiPi+1 28

2.8 Swivel Damper. The linear damper and the torsional damper are work-

ing in the plane formed by Pi−1Pi and PiPi+1. The swivel damper is

orthogonal to the linear damper and the torsional damper. 31

2.9 (a) A needle hold by a needle driver. (b) A needle driver commonly

used in the surgery. 34

2.10 The model of the needle driver. Triangle AOB is the open triangle of

the needle driver. 34

2.11 Needle model - arc TE represents the needle during simulation. Point

O is the needle arc center. Point T and E are the tip point and the

end point of the needle respectively. r is the radius of the arc TE. ŷ

is the unit tangent vector of arc TE at point T 35

2.12 A suture is attached on the end ponit of a needle during the simulation 36

3.1 Needle model - arc TE represents the needle during simulation. Point

O is the needle arc center. Point T and E are the tip point and the

end point of the needle respectively. r is the radius of the arc TE. ŷ

is the unit tangent vector of arc TE at point T 38

3.2 Bounding box of the needle tip . 39

3.3 Schematic of a suturing pattern. Node C and N are top constraints.

Node D and E are bottom constraints 40

3.4 Collisions between suture and soft tissue 40

3.5 (a) Triangles before subdivisions. (b) Triangles after subdivisions . . 41

3.6 (a) Tear-into the soft tissue. C is the top start constraint and D is a

groove constraint (b) Tear-through the soft tissue. C is the top start

constraint and D is the bottom start constraint. 43

xii

3.7 (a) Start state of the first tearing polygon. (b) Terminiation state of

the last tearing polygon . 43

3.8 Map the surface to XZ plane to find out the intersection points . . . 44

3.9 Surface polygon subdivision in tear-into condition where the tearing

path is not across the wound . 45

3.10 Plot about the force acting on a pierced node when the suture tears

the tissue from this node . 46

3.11 Before the needle pierces tissue. (a) Screen shot (b) Wire frame . . . 47

3.12 After the needle pierces the tissue. (a) Screen shot (b) Wire frame . . 47

3.13 Constraint slipping on the needle. (a) Screen shot (b) Wire frame . . 48

3.14 Constraint slipping on the suture. (a) Screen shot (b) Wire frame . . 48

3.15 A simple continuous pattern. (a) Screen shot (b) Wire frame 49

3.16 A single stitch with a knot. (a) Screen shot (b) Wire frame 49

3.17 Tear-into - tearing path not across the wound. (a) Before tearing (b)

After tearing . 50

3.18 Tear-into - tearing path across the wound. (a) Before tearing (b) After

tearing . 50

3.19 Tear-through - tearing path across the wound. (a) Before tearing (b)

After tearing . 51

3.20 Tear-through - tearing path not across the wound. (a) Before tearing

(b) After tearing . 51

4.1 Linear Spring. Point Pi and Pi+1 are two consecutive mass points. li

is the current segment length between Pi and Pi+1. lmin and lmax are

the minimum and maximum length of the spring. 53

4.2 Condition A - no force propagation. Point Pi and Pi+1 are two consec-

utive mass points. Pi+1 is the grasped point. li is the current segment

length between Pi and Pi+1. fh is the user haptic input force. 54

xiii

4.3 Condition B - pulling one point. Point Pi and Pi+1 are two consecutive

mass points. Pi+1 is the grasped point. lmax is the max segment length

between Pi and Pi+1. fh is the user haptic input force. fp is the force

that be propagated. fm is the force creating the movtion. 55

4.4 Condition C - pulling two points. Pk and Pi are the two grasped points.

fhk and fhi are the user haptic input forces. fpk and fpi are the forces

that be propagated. fmk and fmi are the forces creating the movtion. . 56

4.5 Bounding-Volume Hierarchy . 57

4.6 Collision management of two suture segments. d is the distance be-

tween the center lines of the two contact segments. r is the radius of

the segment. ε is the adjust constant. 57

4.7 Two suture segments PaPb and PcPd are sliding on each other, where

point C is the contact point; va, vb, vc, and vd are the velocities of

points Pa, Pb, Pc, and Pd respectively. 58

4.8 Virtual coupling. Point P is the real position of the end factor and

point Q is the grabbed point. K is the spring. B is the damper

working against the spring. 59

4.9 Plot of the spring force acting on one mass node 59

4.10 Plot of the spring damper acting on one mass node 60

4.11 Plot of the torsional spring acting on one mass node 60

4.12 Plot of the torsional damper acting on one mass node 61

4.13 Plot of the swivel damper acting on one mass node 61

4.14 Screen shot of suture colliding. The user is gasping the suture and

making it collide over itself. This is to demonstrate how friction force

changes when the friction constant is changed. 62

4.15 Friction plot when µ = 0.1 . 63

4.16 Friction plot when µ = 0.5 . 63

4.17 Friction plot when µ = 1.0 . 64

4.18 Friction plot when µ = 2.0 . 64

4.19 Screen shot of one-hand pulling . 65

4.20 Output force plot of one-hand pulling 65

xiv

4.21 Screen shot of knotting . 66

4.22 Output force plot of left hand when pulling the suture with two Phan-

tom Omis . 66

4.23 Output force plot of right hand when pulling the suture with two Phan-

tom Omis . 66

4.24 Suture model 1. Left: the user is manipulating the suture with one

Phantom Omin. Right: the user is tying a know with two Phantom

Omnis. 68

4.25 Suture model 2. Left: the user is manipulating the suture with one

Phantom Omin. Right: the user is tying a knot with two Phantom

Omnis. 68

4.26 Suture model 3. Left: the user is manipulating the suture with one

Phantom Omin. Right: the user is tying a know with two Phantom

Omnis. 69

4.27 Suture model 4. Left: the user is manipulating the suture with one

Phantom Omin. Right: the user is tying a know with two Phantom

Omnis. 70

4.28 Suture model 5. Left: the user is manipulating the suture with one

Phantom Omin. Right: the user is tying a know with two Phantom

Omnis. 70

4.29 Success unknotting . 71

4.30 Unsuccessful unknotting . 72

5.1 1-D Suture Model . 74

5.2 Flow chart of main program . 76

5.3 Flow chart of GPU part . 77

5.4 Cloth Model . 81

5.5 Initial configuration . 84

5.6 the model starts colliding with the obstacle 85

5.7 The 2D model is colliding on the sphere 85

5.8 Force plot when the user grabs the cloth 88

xv

B.1 Subdivision process when a portion of the mesh is pierced by the needle.

a) Original mesh. b) After initial subdivision by being pierced by the

needle at the highlighted point. c) After final subdivision of original

triangles edges. Note the new vertices in c) are moved a short distance

away from the pierced vertex. 95

B.2 Calculating the slip; gray indicates the suture, with arrows showing the

magnitude and direction of the tension (a missing arrowhead indicates

zero tension). Black indicates the shape of the mesh and the arrow

shows the vector representing the summed mesh force. In a), the suture

will not slip, because the tensions are equal in each direction, and the

mesh force agrees equally with each direction of the suture. Part b)

shows a normal case where one end of the suture is being pulled by the

user while the other has no force; both the mesh force and the tension

difference will cause the pierced vertex to slip away from the tensioned

suture. Part c) shows a case where the mesh force will cause little effect

on slippage, due to the directions of the suture being nearly identical;

the suture will slip due to the difference in tension magnitude in each

direction only . 97

B.3 Calculation of tension . 99

xvi

Chapter 1

Introduction

1.1 Motivation

Virtual reality (VR) has been attracting an increasing interest in computing and sci-

ence research fields. It is a substantial and ubiquitous technology by which humans

can interact with computer-generated virtual environments in such a way that simu-

lates real life and engages all the senses. It comes across applications for education,

learning, and training. In virtual reality, the user is placed in a three-dimensional

environment. With the assistance of haptic devices, the user not only can see the vir-

tual objects, but also can feel and manipulate them and experience the consequences.

Although the entertainment industry is VR’s most widely known application, the real

engagement of virtual reality lies in such fields as medicine engineering, and military.

By virtual reality, scientists can triple the rate of oil discovery, pilots can practice

flying techniques in virtual military training environment, and surgeons can improve

their surgical skills on virtual objects instead of real patients.

There are usually three main components in one typical virtual training environ-

ment: The visual interface which might be a video screen, a computer monitor, or

one of a variety of head-mounted displays (HMD), depending upon the visual require-

ments of the task being trained. The haptic interface which can provide tactile and

force feedback; and the tracking system which will detect interaction between the

virtual instruments and tissues. These three components, working in conjunction, are

1

CHAPTER 1. INTRODUCTION 2

capable of producing a compelling impression that the trainee is interacting with the

real tissue.

In the medical area, developing virtual surgical training environments has become

one of the most practical topics of interest. The virtual training environments offer

many benefits compared to the traditional training methods, including cost reduction,

decreasing patient risk, flexibility, and the possibility of self-placed learning. Surgical

training is traditionally performed in a master-and-apprentice model which requires

the skilled surgeons to spend much time. The novice surgeon in training watches an

expert surgeon performing an operation on the real patients. After sufficient expe-

rience, he or she may perform operations under the expert guidance. After enough

practice the trainee then becomes an expert surgeon. Plastic models are the com-

mon models used in the traditional training methods, which can only demonstrate a

limited range of anatomy and cannot reflect the mechanical properties of the living

tissue, though they are relatively less expensive and can be used many times. Further

more, not only do different procedures require different models, which will increase

the cost, not all the required models are available. For practicing the cutting and

stitching tasks, plastic models must often be replaced. Animals such as live pigs

are anatomically similar to humans, however, they do not always reflect the human

anatomy and are expensive. Cadavers present the most realistic anatomy, but the tis-

sue responses are affected by preserving technologies. In addition, there is a limited

supply of cadavers for the surgical training and they are generally more expensive.

Simulations trying to mimic the entire operation frequently fail because of lacking

fidelity in some of the component tasks. However, in any operation, there are always

some critical procedures that the trainee must master, which will result in compli-

cations that can impair the outcome of the operation or even endanger the patients,

if it is performed incorrectly. Virtual training systems can significantly lessen the

probability of morbidity by exposing the trainee to the potentially critical procedure

in a safe and structured environment. Just as pilots train for emergency conditions

on simulators, surgeons can train for the unanticipated complication and prepare for

it. First, the virtual training systems are able to provide different training scenarios

easily, such as different anatomy, pathologies, and operating environment. Secondly,

CHAPTER 1. INTRODUCTION 3

a virtual environment may also recreate unusual situations which seldom occur in the

operating room. Thirdly, the trainee can practice on the same scenario as many times

as needed without introducing any additional cost, which will likely accelerate the

acquisition of basic surgical skills. In addition, the virtual training environment can

objectively quantify the performance and simulate the result of an operation and will

be no harm or risk to any animals or real patients. Further more, in order to solve

new problems that keep popping up in real surgical procedures, new instruments are

being created every day. Virtual reality systems are uniquely situated as a test bed

of new instruments or procedures because they can provide immediate feedback on

the effectiveness, limitations, and problems of introducing new instruments or im-

plementing new procedures. With the improvements of computer technology, when

virtual models can eventually represent the actual surgical environment with the same

physical properties, texture, and complexities, computer-based simulators can be an

optimal approach for the surgical training.

Recently many surgical training systems have been designed and put into market,

such as, Bronchoscope Training Simulator from Fifth Dimension Technologies, Virtual

Clinic from Cine-Med, CathSim and Endoscopy AccuTouch R© Simulator from Immer-

sion etc. Unfortunately, there is few such complete systems available and almost all

haptic surgical simulators have their own limit applications. This thesis focuses on

a training simulator for suturing, knotting, and unknotting procedures. All of these

works are built on the Virtual Training Environment (VTE) which has been developed

at Experimental Robotics lab, Simon Fraser University for many years.

In this thesis, we primarily focus on the laparoscopic surgery (also known as mini-

mally invasive surgery, or MIS). MIS has been developing very rapidly in recent years

and is in an intensive development phase of its life cycle. It makes surgery less trau-

matic to the patient. Rather than cutting large incisions in the patient to easily

access the operating target, only a few small incisions are made. Instruments, such

as grasping forceps, scissors, cautery hooks, and staplers, are inserted into the body

through these small holes. The operating site is viewed through a laparoscope which

is also inserted through a small incision. The trauma caused by the operation is

small compared to open surgery, which will speed the recovery and reduce the patient

CHAPTER 1. INTRODUCTION 4

discomfort. However, the surgical skill requirements are greatly increased. While

performing an operation, surgeons cannot rely on traditional eye-hand coordination

since they see a 2D image rather than the real operating site directly. In addition,

camera views of the operating site can be unusual and unnatural compared to the

open surgery, which makes the operation even more demanding.

1.2 VTE System Overview

The VTE overcomes most of those obstacles of traditional training methods by cre-

ating a software and hardware simulator where trainees may practice repeatedly with

feedback from the program. It brings together visual models and force-feedback (hap-

tic) devices to offer virtual surgical training in real-time to medical practitioners.

Figure 1.1 shows a trainee using the VTE practicing knotting skills.

Figure 1.1: A user is practicing knotting skills with the VTE

CHAPTER 1. INTRODUCTION 5

1.2.1 VTE Tasks

Surgical procedures can be decomposed into tasks, subtasks and motions. Most

computer-based surgical trainers use such component tasks rather than a whole pro-

cedure to train. The training tasks in those simulators use component tasks to train

specific skills and expect that trainee to combine a set of specific skills and apply

them on a more complex task. The current version of VTE provides ten tasks which

can be classified into two categories, Elementary Tasks and Complex Tasks. These

tasks are simple to understand and vary in the level of difficulty. The tasks have been

designed in consultation with medical practitioners with the aim to develop essential

skills needed to perform surgical operations.

Elementary tasks, such as touch and grasp, train basic eye-hand coordination and

basic instrument manipulation, and are relatively simple to implement. However, once

the trainee has gained basic skills, they need to practise on a higher-level task, which

is more complex, such as dissection and suturing. Such training tasks not only require

a great deal of knowledge and skill from the trainee; they are also more difficult to

develop technically. The tasks of of the current VTE include:

Point and Touch Task

In this task, the user is required to touch each of the red spheres, so-called target

sphere, on the surface of the textured sphere. The target spheres appear at different

positions every time this task is selected. When the tip of the probe contacts any

target sphere, it disappears. Once the target disappears, a message box pops up

displaying the time taken to touch all the targets. The timer starts when the first

target sphere is contacted, and stops when the last target sphere is contacted.

Tracing Curve Task

This task is meant to help the user practice the fine and smooth control of the probe.

The user is required to slide the tip of the probe and draw a curve on the surface of

mesh following the previous path. The user may use two or more probes to do the

tracing task. Each tracing path of a probe has a different color so that the user may

CHAPTER 1. INTRODUCTION 6

tell the tracing belongs to which probe with ease. The idea is to draw a curve with

one probe and then to use the other probe to follow the previous path.

Grasp and Pluck Task

Once the user has mastered the interactions in the previous simple tasks, the relative

complexity of the grasp/pluck task will be more manageable. The grasp/pluck task

is more challenging. The user must grasp each of the smaller target spheres and drop

them into the cylindrical receptacle in the front right corner of the visual field. It is

quite difficult to align the gripper with a target sphere using the keyboard interface.

In any case, it does work in the haptic version, and once all the targets have been

removed from the surface of the textured sphere, a message box pops up indicating

the elapsed time and the number of target spheres that missed the receptacle.

Teasing Away Task

The Teasing tasks are considered as the most challenging task among the four basic

tasks, where the user is required to grasp any part of the target thread and tease

it away from the surface of the deformable mesh. The use may feel a continuous

force while he or she is pulling the thread away. This force is due to both the tissue

between the target thread and the deformable mesh, and the tissue inside the thread.

Once the tissue between target threads and the deformable mesh is broken, this force

will suddenly disappear, and only the force inside the thread remains. The user may

choose to use two probes to grasp the thread, in this case, the user may feel force feed

back from both devices if force feedback is enabled.

Cutting Task

Cutting Task is one of the complex tasks of the current VTE. In this task, soft tissue

is modeled with a surface-based mass-spring model. The surface mesh, which models

the outer surface of the tissue, is composed of triangles. Collision detection between

instruments and models is carried out by intersection checking of a line segment

representing the instrument and triangles of the object mesh. Scalpel, cautery hook

CHAPTER 1. INTRODUCTION 7

and grasper are implemented as cutting tools. Progressive cutting of a deformable

object is included in this task. Users can also create a new mesh object by cutting

through the objects.

1.2.2 Haptic Feed-back

Another important part of the VTE is the haptic feedback. Visual and haptic feed-

backs are essential to interacting with surgery simulators. Haptic refers to manual

interactions with environments and is concerned with being able to touch, feel, and

manipulate virtual objects in the environment. Haptic feedback can be categorized as

tactile feedback or force feedback. Tactile feedback is sensed by receptors close to the

skin, especially in the fingertips. Tactile feedback is useful for presenting information

about texture, local compliance, and local shape. The sense of touch is critical for

example when surgeons palpate the skin to check for suspicious masses.

Haptic interface has been developing rapidly in recent years. The electro-mechanical

training box is one of the earliest haptic devices, which is nothing more than a labo-

ratory prototype. Now the haptic devices are so sophisticated that they can not only

incorporate real laparoscopic instruments but also simulate the patient’s external and

internal anatomy.

Haptic rendering has also evolved from including only collision detection to realistic

force-reflecting tissue response. Haptics is now the science of incorporating the sense

of touch and control into computer applications through not only force (kinesthetic)

but also tactile feedback. Collision detection provides the user with information that

the virtual organs has been contacted; while force-reflecting tissue response provides

tactile information about the response of the virtual organ to palpation, clamping,

and suturing.

During simulations, the 3D virtual models of target tissues and the laparoscopic

tools are displayed on a 2D monitor. Force feedback is provided by the haptic interface

when the virtual probe encounters the virtual soft tissue. When the virtual forceps or

retractors interact with the tissue in more complex maneuvers, torques are provided.

Another kind of feedback - tactile feedback is based on the material properties of

CHAPTER 1. INTRODUCTION 8

virtual tissues, which could produce tactile cues that the trainee can use to assess the

precise location of the laparoscopic tool. The calculations of tactile feedback are com-

puter intensive, which involves tissue parameters such as visco-elasticity, anisotropy,

and nonlinearity.

Particle-based methods such as Mass-Spring System (MSS) and Finite-Element

Method (FEM) are two principal approaches to developing force-reflecting organ mod-

els. In particle-based models, the organ’s particles - mass nodes - are connected with

springs and dampers. All the particles have their own positions, velocities, and accel-

eration characteristics and are moving under the influence of the implied forces of the

surgical tools. In FEM, the geometric model of an organ can be divided into either

surface or volumetric elements. The properties of each element are calculated and all

the elements are assembled into a working model to computer the deformation of the

organ under the applied forces. FEM relies on modeling the behavior of compliant

biological tissues by differential equations and thus could provide more realistic tissue

dynamics than MSS, although it needs more intensive computation.

A key issue in integrating force feedback into surgical simulators is the high update

rate of haptic rendering required to achieve a stable feel. Real-time surgical simulation

often requires computing the deformation of visco-elastic human tissue and generating

both graphic and haptic feedbacks. Simulating the deformations involves calculating

the tissue successive shape over time. Reaction forces result from the interactions be-

tween the virtual instruments, which are controlled by the haptic devices, and tissue

models. To satisfy the requirement that virtual tissue models must look and behave

realistically, the models must be based on physical laws governing the dynamic behav-

ior of deformable objects. To update the new positions of physics-based deformable

models, it usually requires solving a set of differential equations which is very com-

putationally demanding. The visual display only needs the shape of the models to

be updated at (a minimum of) 30Hz. However, the reaction forces sent to the haptic

interface should be updated at a rate around 1000Hz for high fidelity.

Several commercial force feedback devices are currently available for the surgi-

cal simulation. One of the most commonly used devices is the SensAble PHAN-

TOM Omni R© from Sensable Technologies, Inc. (PHANTOM, PHANTOM Desktop,

CHAPTER 1. INTRODUCTION 9

PHANTOM Omni, SensAble, and SensAble Technologies, Inc. are trademarks or reg-

istered trademarks of SensAble Technologies, Inc.), which is a point contact device.

Another popular force feedback device is the Laparoscopic Impulse Engine (LapIE)

from Immersion Corporation, which mimics tools used in laparoscopic surgery.

The input devices which the VTE supports are Laparoscopic Impulse Engine (see

Figure 1.2) and Virtual Laparoscopic Interface (see Figure 1.3) from Immersion, Sens-

Able PHANTOM Omni R© (see Figure 1.4) and SensAble PHANTOM R© DesktopTM

(see Figure 1.5) from SensAble Technologies, Inc..

Figure 1.2: Laparoscopic Impulse Engine

The essence of the simulator operation is supporting the interactions between the

models of one or more tissue objects and the virtual instruments. In order to make

it easy to define various shapes for the users and experimenters, we chose the Virtual

Reality Modeling Language (VRML) file format as the means of representing geomet-

ric shapes external to our program. VRML is an open standard for virtual reality and

there are many free VRML models available on the Internet. Though VRML mod-

els have many properties, such as material and texture, we only use geometry and

CHAPTER 1. INTRODUCTION 10

Figure 1.3: Virtual Laparoscopic Interface

Figure 1.4: SensAble PHANTOM Omni R©

CHAPTER 1. INTRODUCTION 11

Figure 1.5: SensAble PHANTOM R© DesktopTM

topology information, i.e. vertices coordinates and how they are connected together.

Therefore, we can use any version of VRML files, no matter VRML 1, 2 or 97. A

VRML model can be composed of arbitrary planar polygons, e.g. triangle, rectangle

etc. However, since our progressive subdivision algorithm to simulate cutting is based

on triangle, we only use VRML models composed of triangles.

1.3 Related Work

1.3.1 Knotting and Unknotting

There are a number of works which have made some contributions to the develop-

ment of Deformable Linear Object (DLO) simulations. Most of these previous models

can be categorized as geometry-based models or mechanics-based models. Geometric

models are slightly less accurate because they only simulate relative visual displace-

ments. Mechanics-based models are often more accurate, although, for the virtual

CHAPTER 1. INTRODUCTION 12

reality simulation, they may shift continuously until converge to equilibrium points,

which makes them difficult for users to manipulate. In our training systems, because

the purpose is to enable users to feel the force feedback when they manipulate the

suture, especially during knotting and unknotting, to make it more realistic, we need

to consider both external and internal forces to determine the force output. Thus

geometric models are obviously inappropriate.

Some researchers have been focusing on knotting manipulation by robots. In

[1], Wakamatsu, Arai and Hirai established a model of DLOs based on an extension

of differential geometry, and proposed a planning method for knotting/unknotting

of DLOs based on the knot theory. If the initial and the objective states of the

linear object are given, all possible knotting/unknotting plans can be derived and

be executed by their system. However, their proposed models can not simulate the

DLOs dynamically in 3D space. In addition, their system does not allow any user

interaction, and can not simulate the knotting/unknotting procedure in real-time. [2]

describes a 2D DLOs dynamic model based on the differential geometry coordinates

with the minimum number of parameters. Based on the description in this paper,

the static deformation of a linear object have been formulated using the differential

geometry coordinates, but the dynamic deformation has not been investigated. First,

the dynamic 2D deformation of an inextensible linear object is formulated based on a

differential geometry coordinate system. Second, simulation results is presented using

the proposed modeling technique. Next, the proposed dynamic modeling is applied to

the control of a flexible link. In [3], a knot planning from observation(KPO) system is

described. First, this system observes the procedure of tying a knot by a human as a

sequence of movement primitives. Then, by repeating the sequence, it can tie a similar

knot. The topological information of a knot is represented in a P-data representation.

A knot-tying task is converted into a sequence of movement primitives which have

been defined in this paper. In [4], a topological motion planner for manipulating

DLOs and tying knots using two cooperating robot arms was introduced based on

Probabilistic RoadMaps (PRMs). The planner described in this paper takes a model

as input, in the form of a state transition function and constructs a probabilistic

roadmap in the configuration space of the DLO. The effectiveness are demonstrated

CHAPTER 1. INTRODUCTION 13

by tying commonly used knots like bowline, neck-tie, bow (shoe-lace), and stun-sail.

In [5] [6] [7], Cosserat approaches of modeling DLOs based on the Cosserat theory

of elastic rods have been introduced. Cosserat model is well suited for real-time

applications because it needs less computation compared to finite elements models

and provides a clear delineation between basic physical principles, material properties

and mathematical approximations. However, in return, it yields a set of ordinary

differential equations to be solved. If two end points or multiple points along the

length of a suture are specified (as in the procedure of knotting or unknotting with

two hands), it is significantly more difficult to solve these equations. In addition, the

”shooting” technique which is mentioned in [5] makes it very difficult to integrate

external forces [8].

A particle-based model of a rope is represented in [9] by overlapping spheres rep-

resenting mass-points, which are connected by simple springs. Each mass-point can

collide with other mass points as in the instantaneous elastic collision model, but the

author only considers the linear spring forces and does not allow any user interaction.

In [10], inner bending force and the gravity are taken into consideration. In [11], the

author mentioned gravity, stretch/compression force, forces from bending and twist-

ing, dissipative friction, and contact forces with environment or to self-collision, but

there is no detail about how to compute those forces.

A mass-spring model for suture in surgical training system has been built in [12].

Torsional spring, torsional damper, and viscous damper are modeled in this paper,

but, the author did not use them in the simulation due to the complex computation.

Further more, there is no discussion about collision detection and force propagation

for haptic interaction between the user and the suture model.

1.3.2 Suturing

Suturing is one of the most fundamental tasks common to almost every surgery pro-

cedure used by surgeons worldwide. It can be used in from helping simple wound

closure to complex tissue movements. Poor suturing techniques can cause traumatic

negative influences on patients, such as slow healing, infection, and cosmetics. Before

CHAPTER 1. INTRODUCTION 14

novice surgeons or medical school students could actually work on real patients, they

must practise such skills on plastic models or virtual training systems to potentially

improve their techniques.

Suturing simulations integrate various techniques from different areas, such as

deformable object modeling, collision detection, and haptic rendering. Deformability

of the object, difficulty of collision detection, and high demanding of haptic rendering

make this topic very difficult to model and to solve. Recently many surgical simulators

have been designed with or without using haptic devices.

A geometry-based suture model is presented in [13] with a outline of modeling a

suture simulation. [14] describes a haptic simulation for teaching basic suturing skills

for simple wound closure. During the simulation, needle holders, needle, sutures,

and virtual skin are displayed and updated at real-time. An actual needle holder is

attached at the stylus of a haptic device to make users feel more realistic.

[15] and [16] present a 3 DOF haptic based suturing simulator operating on mass-

spring surface meshes. The suture is built as a geometry model and the method

of ”following the leader” is used to simulate displacements of suture nodes at each

time step. A knot planner is also presented to let users tie a knot after the suturing.

However, geometry models are less accurate and less realistic for dynamic simulations.

Furthermore, the authors did not study the scenario about the tissue tearing when

the stitches get over stretched, which is a key metric to evaluate the suturing skills of

the user.

In [17] and [18], J. Berkley etc. show that real-time Finite Element Method (FEM)

can be used to simulate suturing in surgical training systems. The authors present

a new real-time methodology based on linear FEM analysis and prove the constraint

approach is well suitable for suturing simulations. The suturing task is broken down

into 9 steps in [17]. However, not all of these steps are implemented. Moreover, the

computational model based on FEM is quite CPU intensive.

In [19], M. LeDuc et al present their initial works on simulating suturing using

mass-spring models. Their suturing simulator shows that a wound could be closed by

the suturing. However, it does not have any haptic interactions and the model does

not allow the placement of arbitrary incision points around the wound. In addition, no

CHAPTER 1. INTRODUCTION 15

models for the tissue reaction to excessive suture pulling forces are presented, which

can result in tissue being ripped.

By comparing the performances of skillful surgeons to medical students on the

same simple suturing task, [20] demonstrates that a surgical simulator can measure

and develop surgical skills if that simulator has sufficient realism to emulate critical

aspects of live surgical procedures. But they only focus on the penetration of the

virtual needle, and the entire suturing procedure is not implemented.

A virtual suturing simulator with haptic feedback is presented in [21], in which

the deformable tissue is modeled as a multi-layer mass spring system. The authors

show that their simulator could suture a pre-wound soft tissue. However, there is no

knotting part in their simulation, which is a key element in suturing. Once again, the

study about how the suture tears the soft tissue is not conducted.

A user study about a suturing simulator is reported in [22]. A real needle holder is

attached on the stylus of Phantom desktop haptic device. The user is asked to insert

the needle approximately 2cm off the edge of the incision. Force application, time to

task completion, length and straightness of the suture have been measured to discuss.

Performance has been shown to improve over training. However, there is no details

about how they modeled the deformable tissue and the suture, and how the suturing

simulation is implemented.

Deformable objects can be built based on either physics-based model or geometry-

based model. In [23], the authors have pointed out the advantages of using physics-

based modeling. Among all the physics-based models, Finite Element Method (FEM)

as in [17] [18] [24] [25] and Mass Spring System (MSS) as in [15] [16] [19] [26] [27]

[28] are two commonly used models for representing deformable objects. In [29], S.

Payandeh et al present an overview of haptic rendering using FEM and MSS. In [21],

L.L. Lian has argued the benefits of using MSS in surgical simulations with haptic

feedback.

CHAPTER 1. INTRODUCTION 16

1.3.3 GPU Application in Deformable Object Simulation

In the past, there have been a number of proposal to address issues related compu-

tational efficiency in the haptic rendering pipe-line. Majority of the proposed ap-

proaches can be categorized into three groups: Model simplification of deformable

objects in order achieve a fast computational algorithms; Virtual coupling technique

by introducing a spring-damper system between virtual objects and the end factor of

the haptic device; Creating a approximate model for deformable object with which

haptic interaction can be computed at high servo rates. There also have been a num-

ber of proposal for addressing the efficient utilization of Graphics Processing Unit

(GPU) within the haptic rendering pipe-line. Such utilization can eventually lead to

more realistic computational models which can be simulated on a standard desk-top

computational environment.

[30] presents a GPU based model, in which the deformable object is simulated

based on the notion of point-based mechanics. The deformation propagation of the

object is computed through the use of ”force fields” for both geometrically and dy-

namically point-based modeling. Multiple contact points deformation is also model

and demonstrated in this paper.

[31] proposes a computationally inexpensive and efficient GPU based methodology

to simulate complex deformable objects without compromising the haptic feedback.

In this paper Gaussian function is used to compute the distribution of the deformation

when the object is interacting with other objects. A GPU vertex shader is used to

calculate the displacement of each vertex in parallel while the CPU computes the

haptic force feedback.

[32] presents a GPU based mass-spring system for surgical simulation and gives

the details of the calculation of the spring-mass system effectively in terms of the

hardware accelerated features of the GPU.

An efficient method of haptic interaction with the GPU based surgical simulator

is presented in [33].

[34] presents an approach for real time, progressive cutting of a complex iso surface

model using a haptic device without the need to pre-compute a tetrahedrization of

CHAPTER 1. INTRODUCTION 17

the volume. A GPU-based marching tetra cutting algorithm is also discussed.

1.4 Contribution

1.4.1 Knotting and Unknotting

Knotting and unknotting are the most challenging parts of the suturing simulation

which is essential to today’s surgical training systems. In this thesis, we present a

mechanics-based approach to the real-time simulation of deformable linear objects

(DLOs) with the visual and force feedback. In our suture model which can represent

the mechanical properties of a real thread such as stretching, compressing, bending,

and twisting, we simulate not only the external forces, but also the internal forces

including the friction force during knotting and unknotting. We also present how

forces propagate along the suture when the user pulls it with one or two hands. We

developed a simulator to allow users to grasp and smoothly manipulate a virtual

thread, and to tie an arbitrary knot. Our Suture model is built based on all the force

definition given in [12], and we provide a user-interface to allow users tie an arbitrary

knot. With the virtual coupling technique [35], we can provide very smooth force

feedback to the user.

1.4.2 Suturing Simulation

We also present a physics-based haptic simulation designed to teach basic suturing

techniques for the simple skin or soft tissue wound closure. The pre-wound suturing

target, skin or deformable tissue, is modeled as a modified mass-spring system. The

suturing material is designed as a mechanics-based deformable linear object. Tools

involved in the live suturing procedures are also simulated. Collisions between the soft

tissue and the needle, the soft tissue and the suture are analyzed. In addition to the

detail steps of one typical suturing procedure, modeling approaches on the evaluation

of a stitch are also discussed. For example, if needle insertion points are too close

from each other or too close to the edge of the wound, the suture will tear the soft

tissue instead of suturing the incision together when the tension applied on the pierced

CHAPTER 1. INTRODUCTION 18

nodes beyond a pre-set threshold. Experiment results show that our simulator can

run on a standard personal computer and allow users to perform different suturing

patterns with smooth haptic feedback.

1.4.3 GPU Application

In addition, we studied the GPU application in the deformable object simulation. We

all know that one of the most challenging aspects of developing haptic interactive

applications is to guarantee the haptic rendering rate of 1000Hz. This requirements

in general can offer the user a smooth haptic sensation. With the demand of creating

more complex and realistic scenes for the user interaction, there exists opportunities

for the haptic system engineers to design and experiment with new computational

environment which can blend the traditional computational mechanics models with

more dedicated hardware utilities. In this thesis, we present some results regarding

utilizing GPU processing units for computing the deformation of two experimental

objects - a suture simulation model with GPU and a 2D deformable cloth model

with nVidia CUDA techniques. We conducted experimental studies to compare the

GPU-based suture models and with the CPU implementation. We also experimented

with the implicit model of the 2D mesh which offer similar computational challenges

associated with any Finite-Element modeling approaches. We proposed a method

for computing the inverse of a matrix with truncated Nuemann series and nVidia

CUDA technology. From the experimental results associated with the suture and the

cloth, it can be seen that the GPU implementation did not effect the update rate

very much with increasing the number of the segments. As such, by implementing

the computational model of such deformable object at the GPU level, we can keep

the update rate and be able to maintain the desired haptic frame rate.

1.5 Dissertation Road Map

The remainder of this dissertation is organized as follows: Chapter 2 of this thesis

covers the description of all the models used in this research. Chapter 3 describes

CHAPTER 1. INTRODUCTION 19

the knotting and unknotting procedure. Chapter 4 covers the suturing simulation.

Chapter 5 describes the GPU application in the deformable object simulation, and

Chapter 6 gives the conclusion and discusses about the future work.

Chapter 2

Models for Suturing

In this research, we simulate a section of skin or soft tissue, one suture, one needle,

and two needle drivers. Each model is simplified to allow for faster computational

environment, and to increase the haptic feedback rate in the virtual training envi-

ronment. Rapid simulation of simple mechanics offers a more stable interaction in a

discontinuous dynamical environment than more complex models. All the models are

explained in details in the following subsections:

2.1 Suture Model

Geometry-based models and mechanics-based models are commonly used by most

researches today in simulating deformable linear objects. The geometry approach

directly models the motion of a suture by geometric means. ”Following the leader”

method is usually used to simulate the motion of the suture. Collisions are handled

geometrically: if two segments overlap, they are moved apart until they do not over-

lap. On the other hand, mechanics-based suture models attempt to model reality by

modeling each of the forces acting on a length of flexible material. External contact,

twist, stiffness, and self-collision are each handled by applying forces to points along

the suture.

We model our suture as a mass-spring system which consists of a sequence of mass

points laying on the centreline of the suture. (see Figure 2.1).

20

CHAPTER 2. MODELS FOR SUTURING 21

Figure 2.1: Suture model. Pi is the ith mass point. All mass points are connected
through segments.

In order to simulate the mechanical properties of a suture, such as stretching,

compressing, bending, and twisting, we calculate not only external forces such as

gravity, user input force, and contact forces with obstacles, but also internal forces

including the friction force, linear spring, linear damper, torsional spring, torsional

damper, and swivel damper. This model also allows the user to tie any kinds of

knots with the interactions of haptic devices which will be explained in the next two

chapters.

During graphical rendering, we use cylinders as suture segments connecting two

successive points. We use the explicit Euler method to calculate the shape of our

suture.

2.1.1 Explicit Euler Method

The differential equation of this 1D mass spring system is:

f = ma

where f is the force, m is the mass of the particle, a is the acceleration. Because the

forces can depend on the particle’s position, velocity, or time, we rewrite the above

equation as:

ẍ =
f(x, ẋ, t)

m

CHAPTER 2. MODELS FOR SUTURING 22

where x is the position of a mass point.

We add a new variable, v, to convert it to a pair of coupled 1st order equations:

ẋ = v (2.1)

v̇ =
f

m
(2.2)

To simulation such a system, the explicit Euler integration scheme is as follows:

vn+1
i = vn

i + fni
dt

m
(2.3)

xn+1
i = xn

i + vn+1
i dt (2.4)

where i is the discrete mass point;n and n + 1 indicate the nth and the (n + 1)th time

steps.

Based on the above equations, first we compute the total force acting at each

point, Pi, and then update its position based on the computed force. Once the total

force at each of the nodes has been calculated, with the interval time dt, we can obtain

the velocity and position of each point.

The following part of this section explains the forces we simulate in our simulator.

We can use various combinations of these forces to build different models. The springs

and dampers both contribute some force to the net force f at each point. Different

springs and dampers all behave differently and we calculate their force contributions

using their own particular equations.

2.1.2 External Forces

The external forces include the gravitational force, the user input forces through haptic

devices, the friction forces during knotting or unknotting, as well as the contact force

with obstacles:

Gravity

fg = Gm. where G = 9.8N/kg, and m is the mass of one mass point.

CHAPTER 2. MODELS FOR SUTURING 23

User Input Force

Allowing the user to provide both input and output to the simulation in the form of

forces, positions, and velocity etc, a haptic device becomes a natural interface for a

dynamic simulation. However, a position controlled impedance style haptic device,

such as SensAble PHANTOM Omni R© and SensAble PHANTOM R© DesktopTM from

SensAble Technologies Inc., forces are not directly available as input variables into

the model. Furthermore, the mechanical characterization and digital nature of the

haptic device make the operation of directly incorporating the device as part of the

simulation more challenging. We use virtual coupling technique [35] to overcome these

difficulties, which introduces a indirect layer of interaction between the mechanical

device and the simulation by employing a spring-damper between a simulated body

and the device end-effector (see Figure 2.2).

Figure 2.2: Virtual Coupling. P ′
i is the point of the haptic device end-effector. Pi is

virtually grasped point. vi is the velocity of point Pi. fi is the net force acting on
point Pi. fh is the user input force from virtual coupling.

All haptic devices have limits for the output forces. For example, SensAble PHAN-

TOM Omni R©, the maximum exertable force at nominal (orthogonal arms)position is

0.75 lbf (3.3 N) (See Appendix A). Before we output the force to the device, we must

multiply it by an appropriate constant to make sure the output force not beyond the

limits. Another advantage of virtual coupling is that we can use different constants

for computing the output force for the device versus the input force for the simulated

CHAPTER 2. MODELS FOR SUTURING 24

body, which makes the forces appropriate for both the haptic device and the dynamic

simulation.

Friction Force

In this research, we use Coulomb model to simulate the friction forces during the

procedure of knotting and unknotting. To simplify the computation, we only consider

kinetic friction forces and will not compute any static frictions.

Coulomb friction is a model to describe friction forces. It is described by the

following equation:

ff = µfn

where ff is either the force exerted by friction, or, in the case of equality, the max-

imum possible magnitude of this force; µ is the coefficient of friction, which is an

empirical property of the contacting materials; fn is the normal force exerted between

the surfaces

For surfaces at rest relative to each other µ = µs, where µs is the coefficient of

static friction. For surfaces in relative motion µ = µk, where µk is the coefficient of

kinetic friction. The Coulomb friction is equal to ff , and the frictional force on each

surface is exerted in the direction opposite to its motion relative to the other surface.

During the simulation, we consider each suture segment as rigid body. From

Coulomb’s observations we know that: kinetic frictional force is approximately inde-

pendent of contact area and velocity magnitude of the object; Coefficient of friction

depends on pairs of materials. During knotting or unknotting procedure, suppose

there are only two segments colliding with each other (see Figure 2.3).

We use linear interpolation to compute the velocity of a point on the segment.

For example (see Figure 4.7), velocities of point C and E can be computed by the

following equation:

vc = (1− a)va + avb (2.5)

ve = (1− b)vc + bvd (2.6)

where a is the fraction of point C along segment
−−→
PaPb; b is the fraction of point E

along segment
−−→
PcPd.

CHAPTER 2. MODELS FOR SUTURING 25

Figure 2.3: Two suture segments PaPb and PcPd are sliding on each other, where point
C is the contact point; va, vb, vc, and vd are the velocities of points Pa, Pb, Pc, and
Pd respectively.

Then the relative velocity can be obtained by:

vr = vc − ve (2.7)

Figure 2.4: Intersection of the two contact segments. Point C and E are contact
points. s is the distance between the center lines of two contact segments. r is radius
of the suture segment.

Let n̂ be the unit vector from point E to point C (see Figure 2.4), then,

n̂ =

−−→
PePc

||−−→PePc||
The friction direction vector ê is computed as follows:

ê =
(vr · n̂)n̂− vr

||(vr · n̂)n̂− vr|| . (2.8)

CHAPTER 2. MODELS FOR SUTURING 26

Let n be the force of repulsion. To calculate the repulsion force n, we introduce a

spring-damper between the contact point C and the end point E.

n = (krsd− krd(vr · n̂))n̂, (2.9)

d = 2r − s. (2.10)

where krs is a spring constant for the repulsion force, r is the radius of the rope

model, d is the distance between contact point C to point E (of Figure 4.7), s is the

distance between the two centers of the contact cylinder, krd is the damper constant

for the repulsion force, vr is the relative velocity of point C with respect to point E.

The friction ff can be described in vector format as:

ff = µ||n||ê. (2.11)

2.1.3 Internal Forces

Linear spring force

The linear spring force is computed by comparing the current segment length, li,

between point, Pi and Pi+1, with the rest length of the segment lr, and by projecting

the resulting difference on the direction from point Pi to Pi+1 (See Figure 2.5). Then,

li = ||Pi+1 − Pi||, (2.12)

∆l =
li − lr

lr
. (2.13)

where lr is the rest length between point Pi and Pi+1.

Let êi be the unit vector from point Pi to Pi+1, then,

êi =
Pi+1 − Pi

||Pi+1 − Pi|| , (2.14)

fs = kl∆lêi. (2.15)

where kl is the linear spring constant.

CHAPTER 2. MODELS FOR SUTURING 27

Figure 2.5: Linear Spring. Point Pi and Pi+1 are two mass points. lr is the rest length
of the spring. li is the current length of the spring.

Linear damper

We simulate all the factors that try to stop the spring as it moves as one constant

called the damping factor, kd. It models all the frictions working against the motion

of the moving mass points. This force opposes the direction of movement and is

proportional to the velocity of the moving mass (See Figure 2.6).

Figure 2.6: Linear Damper. Point Pi and Pi+1 are two mass points. vi and vi+1

are the velocities of Point Pi and Pi+1 respectively. vi+1 and vi are the norms of the
components of the velocity of vi and vi+1 on the direction of PiPi+1

When the system is at rest (v = 0), no linear damping force is involved. The

linear damper fd can be computed by:

fd = kd(vi+1 − vi)êi. (2.16)

where kd is the linear damper constant; vi+1 and vi are the norms of the components

CHAPTER 2. MODELS FOR SUTURING 28

of the velocity of point Pi+1 and Pi on the direction êi.

vi+1 = vi+1 · êi, (2.17)

vi = vi · êi. (2.18)

Torsional spring

With only the linear spring and the linear damper, tow connected suture segments

can easily bend to any angles, which is not true in the real world. To overcome this

problem, we introduced the third internal force - the torsional spring which is derived

from the angle, α, between two connected segments of the suture (See Figure 2.7).

Figure 2.7: Torsional Spring. êi−1 and êi are the unit vectors with directions from
point, Pi−1 to Pi, and from Pi to Pi+1, respectively. t̂i−1 and t̂i+1 are the unit vectors
with directions the same as the torsional force applied at the two endpoints and
therefore, orthogonal to êi−1 and êi respectively and in the plane formed by segment
Pi−1Pi and PiPi+1

The basic idea is to model each two connected segments as a triangle with a spring

as the hypothesis pushing the end points to the full expanded position. The length of

the two connected segments remain unchanged. Only the force component orthogonal

to the segments is used for the end points.

Let êi−1 and êi be the unit vectors with directions from point, Pi−1 to Pi, and from

Pi to Pi+1, respectively. Let t̂i−1 and t̂i+1 be the unit vectors with directions the same

as the torsional force applied at the two endpoints and therefore, orthogonal to êi−1

CHAPTER 2. MODELS FOR SUTURING 29

and êi respectively and in the plane formed by segment
−−−−→
Pi−1Pi and

−−−−→
PiPi+1. Then,

t̂i+1 = êi × (êi−1 × êi), (2.19)

t̂i−1 = êi−1 × (êi−1 × êi). (2.20)

If êi−1 · êi = 0,

α = arcsin(||êi−1 × êi||). (2.21)

If êi−1 · êi < 0,

α = π − arcsin(||êi−1 × êi||). (2.22)

The common equation used to calculate the torsional spring force is:

P = K ∗ Deg

M

where P is the force exerted on spring (lbs); M is the moment arm (inch); Deg is the

deflection in (degrees); k is the spring constant (in-lbs/Deg).

We use the ratio of α
π

to replace the Deg and revise the above equation. The

torsional spring force then can be computed as follows:

fi−1 = kts
α

π||Pi−1 − Pi|| t̂i−1, (2.23)

fi+1 = kts
α

π||Pi+1 − Pi|| t̂i+1, (2.24)

fi = −(fi−1 + fi+1). (2.25)

where kts is the torsional spring constant.

Torsional damper

The torsional damper works against the torsional spring to prevent any harmonic

motion from accumulating. Similar to the linear damper, it also models the internal

friction that resists bending in regular objects. Let vi−1, vib, be the norms of the

velocity components of vi−1, and, vi, on the direction of t̂i−1, and let vi+1, via be the

CHAPTER 2. MODELS FOR SUTURING 30

norms of the velocity components of vi+1, and vi, on the direction of, t̂i+1. We can

get t̂i−1 and t̂i+1 from the previous section. Then,

vi−1 = vi−1 · t̂i−1, (2.26)

vib = vi · t̂i−1, (2.27)

vi+1 = vi+1 · t̂i+1, (2.28)

via = vi · t̂i+1. (2.29)

Then, the torsional damper on the points Pi−1, Pi and Pi+1 can be computed by:

fi−1 = (
(vi−1 − vib)

||Pi−1 − Pi|| +
(vi+1 − via)

||Pi+1 − Pi||)
ktdt̂i−1

||Pi−1 − Pi|| , (2.30)

fi+1 = (
(vi−1 − vib)

||Pi−1 − Pi|| +
(vi+1 − via)

||Pi+1 − Pi||)
ktdt̂i+1

||Pi+1 − Pi|| , (2.31)

fi = −(fi−1 + fi+1). (2.32)

where ktd is torsional damper constant.

Swivel damper

Point Pi−1 has a velocity relative to the center point Pi. So far, two components of that

relative velocity have been dampened. There still remains a component perpendicular

to those two. Without the dampening, point Pi−1 could infinitely orbit the line formed

by extending the edge connecting point Pi+1 and point Pi (See Figure 2.8).

Let ŝ be the unit vector of the swivel dampers of point Pi−1 and Pi+1, then,

ŝ = êi−1 × êi. (2.33)

The swivel dampers can be computed by:

fi−1 = ksw
(vi−1 − vi) · ŝ
||Pi−1 − Pi|| ŝ, (2.34)

fi+1 = ksw
(vi+1 − vi) · ŝ
||Pi+1 − Pi|| ŝ, (2.35)

fi = −(fi−1 + fi+1). (2.36)

where ksw is the swivel damper constant.

CHAPTER 2. MODELS FOR SUTURING 31

Figure 2.8: Swivel Damper. The linear damper and the torsional damper are working
in the plane formed by Pi−1Pi and PiPi+1. The swivel damper is orthogonal to the
linear damper and the torsional damper.

2.2 Deformable Model

2.2.1 Mass Spring Model

A Mass Spring System (MSS) can be applied to either volumetric elements such

as tetrahedral, or polygonal surface elements such as triangles. In order to reduce

computation load during the real-time simulation, we choose a surface mass-spring

model based on the model described in [27]. As presented in this paper, the deformable

model consists of a triangular surface mesh made of nodes and springs. The vertices

are mass nodes, and each edge is a simple linear spring.

Many spring-mass models provide the internal structure of the model by adding

some explicit extra springs to model the interior of the model and to provide resistance

when the model is compressed. We add one extra spring, home spring, to each node,

connecting the node from its current position to its original position at the start of

the simulation. This home spring ensures that the mesh will return to its original

position if all forces are removed, and provides the illusion of an interior to the mesh

with a minimum of computation. All springs are generated with a natural length that

is 0.8 of the length of the edge. Combined with home-springs, this puts tension on

the mesh, causing it to open naturally when it is cut.

Although a home spring has been added to each node to maintain the shape of the

deformable object, the adjacent edges in small triangles still could bend to any angle

CHAPTER 2. MODELS FOR SUTURING 32

if their common node is dragged by the needle or suture. We add a torsional spring

and torsional damper as described in the previous sections to each pierced vertex in

our model to solve this issue.

We build our 3D models of pre-wound skin or soft tissue in 3D graphics applications

such as Autodesk 3ds max, and then export out the model as VRML file. Our

simulator imports these VRML files to build the virtual objects. In this way, we can

simulate different kinds of cuts for suturing tasks.

2.2.2 Deformation Computation

To reduce the computation load at most to satisfy the high demand of haptic ren-

dering, we select the simple iterative explicit Euler method to update the states of

the soft tissue and the suture. Although the explicit method has some drawbacks

comparing to the implicit method, our experiment results show that we can make

the simulator stable enough by restricting the integration time step dt to be inversely

proportional to the square root of the stiffness.

If the node i is the pierced node and is also dragged by the needle or suture, in

order to make the soft tissue deformation more smooth, we add torsional spring and

torsional damper to it. Details about how to add such springs and dampers will be

covered in the following section.

We use the method described in the previous section to calculate the torsional

spring and torsional damper acting on the pierced mass node.

After we obtain the force acting on each node, we can use Equ. ?? and Equ. ??

to calculate the new velocity and then new position of each node.

2.2.3 Deformation Post-Step Constraint Enforcement

Springs are certainly not a perfect physical model for real cloth or other real de-

formable objects because their elongation is proportional to the force applied, which

may result in implausibly large deformations. The common force-deformation curve

for a material is nonlinear. So we must modify the behavior of our mass-spring system

to make it more realistic. One way to achieve this is to add a post-correction phase

CHAPTER 2. MODELS FOR SUTURING 33

after a time step. We choose the post-step constraint enforcement process after each

time step computation to eliminate the large stretch as defined in [36].

The essential idea and implementation are the following: We set a threshold for

each spring and add a post-step process after each deformation computation. We

define a normalized threshold lmax = βlrest for each spring, where β is a constant, lrest

is the rest length of the spring. Each time when a spring is overstretched, we bring

the two mass nodes at endpoints of the spring together along the axis while preserving

the position of the center point of the spring. For the case when one of the two node

is grabbed by the user, or slipping on the needle or the suture, we only move the other

node to insure the appropriate elongation. We iterate over any overstretched springs

and shrink them.

We can have several ways to determine when to end the iteration: we can chose

to terminate it after a predefined number of loops, until convergence is reached, or

time is up. The predefined number is shown to be sufficient for our case. Because

this process is only about displacements and no forces are involved, stability is not an

issue.

2.3 Tools model

Tools involved in a real suturing surgery include needles, needle drivers, scissors, and

tweezers. We only simulate the needle and the needle driver to this stage.

2.3.1 Needle Driver Model

Figure 2.9 shows a needle hold by a needle driver and one typical needle driver used

in the surgery.

The needle drivers in the simulation are represented by three line segments: one

for the shaft and one for each jaw for the graspers (See Figure 2.10). As shown in

the above picture, triangle AOB is the open triangle of the needle driver. The colli-

sion volume consists of lozenges about these lines. The tools are controlled by haptic

CHAPTER 2. MODELS FOR SUTURING 34

(a) (b)

Figure 2.9: (a) A needle hold by a needle driver. (b) A needle driver commonly used
in the surgery.

Figure 2.10: The model of the needle driver. Triangle AOB is the open triangle of
the needle driver.

devices such as Virtual Laparoscopic Interface, Laparoscopic Impulse Engine (Im-

mersion Corporation), SensAble PHANTOM Omni R©, and SensAble PHANTOM R©
DesktopTM.

2.3.2 Needle Model

In order to simulate different kinds of needles used in the real surgery, same as for the

soft tissue model, we chose to use VRML to build our needle model. In this way, we

can create different needle models in 3D graphics applications such as Autodesk 3ds

max, and then export out the models as VRML files. Our simulator imports these

CHAPTER 2. MODELS FOR SUTURING 35

VRML files to implement the virtual objects.

Figure 2.11 shows the needle model in our simulation. We use arc TE to represent

the needle. Point O is the needle arc center and also is the origin of local coordinate

of the needle. Point T and E are the tip point and the end point of the needle

respectively. r is the radius of the arc TE. ŷ is the unit tangent vector of arc TE at

point T .

Figure 2.11: Needle model - arc TE represents the needle during simulation. Point
O is the needle arc center. Point T and E are the tip point and the end point of the
needle respectively. r is the radius of the arc TE. ŷ is the unit tangent vector of arc
TE at point T .

For any point P on the needle, we can obtain it’s position if the angle α from tip

to p is given.
−→
OP can be derived from the following equation:

−→
OP =

−→
OT cos(α) + r sin(α)ŷ. (2.37)

where

ŷ =
(
−→
OT ×−−→OE)×−→OT

||−−→OE||||−→OT ||||−→OT ||
Figure 2.12 shows a needle is grabbed by the needle driver in the simulation.

We use the following method to determine the position and orientation of the need

when grasped by the needle driver: after the needle is grabbed, we use gimbal angles of

SensAble PHANTOM Omni R© as explained in [37] and [38] to identify the orientation

of the needle. Once we map all the gimbal angles to OpenGL coordinate angles, we

use ZXY convention of fixed angle rotations to computer the needle rotation matrix

CHAPTER 2. MODELS FOR SUTURING 36

Figure 2.12: A suture is attached on the end ponit of a needle during the simulation

following the right-hand rule. rule as in Equ. 2.38.

RZXY (γ,β,α)

= RY (α)RX(β)RZ(γ) (2.38)

=

cα 0 sα

0 1 0

−sα 0 cα

1 0 0

0 cβ −sβ

0 sβ cβ

cγ −sγ 0

sγ cγ 0

0 0 1

Chapter 3

Suturing Simulation

3.1 Introduction

Suturing is the most difficult task in surgery, which requires fine manipulation and

close coordination of both hands. Virtual surgery training environments offer many

benefits comparing to traditional training methods, including cost reduction, decreas-

ing patient risk, flexibility, and the possibility of self-placed learning. Unfortunately,

there is few such complete systems available and almost all haptic surgical simula-

tors have their own limit applications. Sensory feedback including visual feedback

and force feedback is a crucial requirement to make surgery simulations more realis-

tic. Mechanical knowledge of the soft tissue and the suture is required to compute

feedback forces.

In this chapter, we present a suturing simulator based on the suture model de-

scribed in the previous chapters. We model both the soft tissue and the suture material

based on physics models. With the assistance of two Phantom Omnis, our simulator

can provide smooth force feedback and allow the user to perform different suturing

patterns during the training.

Section 3.2 covers the collision detection and management. Section 3.3 describes

the process of suturing. Section 3.4 illustrates the stitch evaluation. Section 3.5 gives

the experiment results.

37

CHAPTER 3. SUTURING SIMULATION 38

3.2 Collision Detection and Management

Collision detection and collision management are two of the most important and

challenging components for almost all dynamic simulations, especially for deformable

objects such as the soft tissue or the suture in our case.

3.2.1 Collisions between Needle Drivers and the Needle

Haptic devices are implemented as two needle drivers in our virtual environment.

To specify an object in 3D space, we need it’s both position and orientation. The

needle should follow the stylus of the haptic device when it is grabbed. To make

the collision detection easier, we decompose the needle arc into six connected line

segments. Suppose line segment AB is one of these needle segments (See Figure 3.1

again):

Figure 3.1: Needle model - arc TE represents the needle during simulation. Point O
is the needle arc center. Point T and E are the tip point and the end point of the
needle respectively. r is the radius of the arc TE. ŷ is the unit tangent vector of arc
TE at point T .

First, we check needle driver’s open triangle with each needle segment to see if

there is an interaction. If an intersection happens, we assume the intersection point

is point G on the needle instead of point H during simulation. We can easily get the

point G by β which is the angle between
−→
OT and

−−→
OH.

CHAPTER 3. SUTURING SIMULATION 39

3.2.2 Collisions between the Needle and the Soft Tissue

We build a bounding box around the needle tip using the length of the longest spring

of the soft tissue plus a pre-set threshold as the dimension of the box. We can get the

length of the longest spring when we read the model of the soft tissue from VRML

file. (See Figure 3.2).

Figure 3.2: Bounding box of the needle tip

This bounding box is always following the movement of the needle. Whenever a

mesh node (vertex) is found inside the bounding box, we put all it’s adjacent polygons

as candidates to detect if they are colliding with the needle tip. The collision detection

tests the straight-line path of the needle tip during a single time step against each

triangle.

3.2.3 Collisions between the Suture and the soft tissue

The pierced node on the soft tissue should follow the movements of the suture if

the spring force acting on that node is less than the suture friction force (which is a

pre-defined constant), otherwise, it will be sliding along the suture. We call each of

these new pierced node as a soft constraint. Three kinds of soft constraints for the

suture are defined based on the location of the pierced node: Top Constraint, Bottom

Constraint, and Groove Constraint. Figure 3.3 shows the schematic of a suturing

pattern. Node C and N are top constraints. Node D and E are bottom constraints.

CHAPTER 3. SUTURING SIMULATION 40

Figure 3.3: Schematic of a suturing pattern. Node C and N are top constraints. Node
D and E are bottom constraints

We name the constraints in a numerical order along the suture. More than one

constraints are not allowed to reside on the same suture node at the same time. To

implement the collision detection between the suture and the soft tissue, first we need

to find out if the suture nodes should be inside or outside of the soft tissue. We

achieve this by counting how many constraints have passed this suture node because

all constraints start from the needle and have to pass from the needle to the suture

in order. If the number is even, the suture node should be outside the soft tissue.

Otherwise, it should be inside.

Figure 3.4: Collisions between suture and soft tissue

For example, node A and B are two mass node of a suture. Figure 3.4 shows that

two constraints have passed the suture node A, therefore, A should be outside of the

tissue. There are three constraints which have passed node B, so B should be inside.

Using this method, we know that suture node C should be outside, therefore we must

CHAPTER 3. SUTURING SIMULATION 41

move node C to the outside of the soft tissue during the collision management.

3.3 The process of suturing

Based on what is presented in [15], we divide one whole suturing procedure into the

following five steps: needle pierces the object, soft constraints slid on the needle, soft

constraints slid on the suture, apply the suture tension to close the wound or incision

and knotting (See Appendix B). During the first procedure, the needle pierces the

object, to prevent any two connected springs from bending easily to any undesirable

angle, we have added torsional springs and dampers to each of these newly created

springs (See Figure 3.5).

(a) (b)

Figure 3.5: (a) Triangles before subdivisions. (b) Triangles after subdivisions

The needle is an independent object held by a needle driver under the user control

as described in chapter 2. When the needle tip collides with a triangle, the pierced

triangle is subdivided simply into three triangles, with a new vertex at the piercing

point, and then the pierced triangles original edges are subdivided using the edge mask

in the loop subdivision scheme. When the mesh is pierced, a new vertex is generated

at the point where it is pierced; this new vertex is the pierced vertex. When the

pierced vertex is on the needle, it cannot move except to slide on the needle. Once

CHAPTER 3. SUTURING SIMULATION 42

the vertex has been passed to the suture, the mesh will pull the suture and slide along

the suture .

Because the torsional spring and the damper should be configured on two con-

nected springs as a pair, we have to deal with two connected springs at the same

time. From Figure 3.5 (b), for example, suppose point O is the pierced node on the

soft tissue surface. We add torsional springs and dampers to spring FO and OR as a

pair, and the same to spring DO and OP , spring EO and OQ.

3.4 Stitch Evaluation

3.4.1 Tissue Tearing

To make the suturing simulation more realistic, we need to simulate not only normal

situations, but also unwanted scenarios. Tissue ripping is one of these unwanted

circumstances that always happens to novice surgeons or medical students. It is also

one of the key metrics to evaluate the trainee’s performance during the training.

Based on the assumption that the stitch goes through from the top surface to

the bottom surface of the soft tissue, we define two types of tearing: Tear-Into and

Tear-Through which are similar to the cut-into and the cut-through described in [27].

We also define Top Start Constraint to be the constraint where the tearing starts

on the top surface, and Top End Constraint to be the constraint where the tearing

ends on the top surface. For tear-through case, we define Bottom Start Constraint

and Bottom End Constraint with the same idea. The constraint on the groove or the

bottom surface is called Groove Constraint

Figure 3.6 (a) shows that point C is a top start constraint in tear-into case, point

D is a groove constraint. Figure 3.6 (b) shows that point C is a top start constraint,

point D is a bottom start constraint.

Tear-Into

To simulate the tearing, we use the same cutting subdivision algorithms as described

in [27] and [28].

CHAPTER 3. SUTURING SIMULATION 43

(a) (b)

Figure 3.6: (a) Tear-into the soft tissue. C is the top start constraint and D is a
groove constraint (b) Tear-through the soft tissue. C is the top start constraint and
D is the bottom start constraint.

First, we divide the tearing of one polygon into two state: Start State and Termi-

nation State. Two cases are also defined to each of these two states: Tear Through

Vertex and Tear Through Edge depends on the intersection point between the tearing

path and the teared polygon. For our case, the start state of first tearing polygon and

the termination state of the last tearing polygon are always tear through vertex (See

Figure 3.7).

(a) (b)

Figure 3.7: (a) Start state of the first tearing polygon. (b) Terminiation state of the
last tearing polygon

Secondly, to determine the middle polygons’ states along the tearing path, we need

CHAPTER 3. SUTURING SIMULATION 44

to find out the intersection points between each of these polygons and the tearing path.

In order to get rid of the side affect of the deformability of soft tissue, we simply map

the home positions of each mass node on the top surface to the XZ plane to find

out the intersections points between the mapped tearing path and each mapped edge,

then map the virtual intersection points back to the real surface. Figure 3.8 shows

that C is the top start constraint and N is the top end constraint. C ′ and N ′ are the

mapped nodes to C and N respectively.

Figure 3.8: Map the surface to XZ plane to find out the intersection points

There are two cases should be considered in this condition depends on if the tearing

path crosses the wound or not. Figure 3.6 (a) shows half part of a tearing across the

wound. Figure3.9 shows the polygon subdivision of a tearing not across the wound.

For the former case, we use the groove constraint to set the depth of the tearing groove

(point D in Figure 3.6 (a)). For the case not cross the wound, we just manually set

a default tearing depth.

Tear-Through

In this condition, we must find out both the bottom intersection points along the

bottom tearing path and the top intersection point along the top tearing path. We

use the same mapping method as in tear into case to map the top surface and the

bottom surface of the soft tissue separately. Then subdivide the bottom surface and

the top surface at the same time. After the subdivision, we use groove polygons to

CHAPTER 3. SUTURING SIMULATION 45

Figure 3.9: Surface polygon subdivision in tear-into condition where the tearing path
is not across the wound

connect the bottom and the top up. Figure 3.6 (b) shows a tear-through case.

3.5 Haptic Force Feed-back

During the development of the high reliable surgery training environments, haptic

feedback plays an very important role. In order to study the details of the forces

propagation along the suture, between the suture and the soft tissue, and inside the

soft tissue, we need to track the forces acting on each soft constraint in the suturing

procedure. [16] has studied the forces when the needle pierces the deformable meshes.

In this section, we only present force changes of the pierced mass node when the

suture tears the soft tissue from this node.

Figure 3.10 is a plot of the changes of the force acting a the pierced node in

different update frames. The tearing threshold is set to be 40N . As you can see from

the figure, the force steps down suddenly after reaches the threshold, which means a

tearing procedure happens at that point.

CHAPTER 3. SUTURING SIMULATION 46

Figure 3.10: Plot about the force acting on a pierced node when the suture tears the
tissue from this node

3.6 Experiment Results

We did our experiment on a standard personal computer with Intel(R) Pentium(R)

4 3.00GHz CPU and 1G Ram. Two haptic devices we were using are SensAble

PHANTOM Omni R©s from SensAble Technologies Inc.

3.6.1 Suturing

The following scenarios show the details of different steps in one suturing procedure.

Figure 3.11 to Figure 3.12 show the changes of the soft tissue surface before the needle

pierces the surface and the after. As you can see from the wireframe pictures, polygon

changes show the subdivision algorithm discussed in the following sections.

Figure 3.13 to Figure 3.14 show the scenes when the constraint is sliding on the

needle and on the suture.

Figure 3.15 shows a simple continuous suture pattern implemented in our simula-

tor.

CHAPTER 3. SUTURING SIMULATION 47

(a) (b)

Figure 3.11: Before the needle pierces tissue. (a) Screen shot (b) Wire frame

(a) (b)

Figure 3.12: After the needle pierces the tissue. (a) Screen shot (b) Wire frame

3.6.2 Knotting

Knotting is always a key component for suturing, which will be discussed in details

in Chapter 4. Figure 3.16 shows a simple suturing pattern with a knot.

3.6.3 Tearing

For the tearing experiments, we manually set the end point of the suture to be always

outside of the suture to prevent the suture from sliding out the soft tissue from the

insertion points.

Figure 3.17 and Figure 3.18 are screen shots of tear-into case. Figure 3.17 shows

CHAPTER 3. SUTURING SIMULATION 48

(a) (b)

Figure 3.13: Constraint slipping on the needle. (a) Screen shot (b) Wire frame

(a) (b)

Figure 3.14: Constraint slipping on the suture. (a) Screen shot (b) Wire frame

that two needle insertion are too close from each other and the tearing path does not

cross the wound. Figure 3.18 shows that the needle insertion points are too close to

the edge of the wound, and the tearing path crosses the wound.

Figure3.19 and Figure3.20 are screen shots of tear-through case. Figure 3.19 shows

that tearing path crosses the wound. Figure 3.20 shows that tearing path does not

cross the wound.

CHAPTER 3. SUTURING SIMULATION 49

(a) (b)

Figure 3.15: A simple continuous pattern. (a) Screen shot (b) Wire frame

(a) (b)

Figure 3.16: A single stitch with a knot. (a) Screen shot (b) Wire frame

CHAPTER 3. SUTURING SIMULATION 50

(a) (b)

Figure 3.17: Tear-into - tearing path not across the wound. (a) Before tearing (b)
After tearing

(a) (b)

Figure 3.18: Tear-into - tearing path across the wound. (a) Before tearing (b) After
tearing

CHAPTER 3. SUTURING SIMULATION 51

(a) (b)

Figure 3.19: Tear-through - tearing path across the wound. (a) Before tearing (b)
After tearing

(a) (b)

Figure 3.20: Tear-through - tearing path not across the wound. (a) Before tearing
(b) After tearing

Chapter 4

Knotting and Unknotting

4.1 Introduction

The application of knots can ascend to the Paleolithic era. We use all kinds knots in

our everyday lives such as fastening our shoes or clothes, wrapping gifts, animal han-

dling, fishing, sailing, climbing, carving, and even for decoration etc. In the medical

field, they are essential to the suturing in today’s surgery procedures. The real-time

simulation of deformable linear objects (DLOs) is required in many areas, such as sur-

gical training systems and rock climbing or sailing training systems to teach users how

to tie and untie a knot. It also related to the cloth-like deformable objects simulation,

an area has attracted much attention in Computer Graphics recently.

As described in Chapter 2, first we compute the total force acting at each point,

which is the sum of the friction force, the linear spring, the linear damper, the torsional

spring, the torsional damper, and the swivel damper. Secondly, once the total force

at each of the nodes has been calculated, with the interval time dt, we can obtain

the velocity and position of each point. Knotting and unknotting procedures are all

about how to deal with collision detection and collision management. The remainder

of the chapter is as the follows: Section 4.2 covers how the force propagates along

the suture. Section 4.3 illustrates the collision detection and managements methods

used in this research. Section 4.4 describes the haptic feed-back during knotting and

unknotting. Section 4.5 covers the experiments of knotting and unknotting.

52

CHAPTER 4. KNOTTING AND UNKNOTTING 53

4.2 Force Propagation Along the Suture

To prevent the suture from being stretched too long or compressed too short, we set

lmax and lmin as the maximum and minimum length of one suture segment respectively

(see Figure 4.1).

Figure 4.1: Linear Spring. Point Pi and Pi+1 are two consecutive mass points. li is
the current segment length between Pi and Pi+1. lmin and lmax are the minimum and
maximum length of the spring.

Let li be the segment length between Pi and Pi+1. To analyze the force propagation

when the user grasps the suture, we need to compute the forces acting at each point

from the grabbed point to the start point and to the end point of the suture. We

define different scenarios as follows:

4.2.1 Condition A - no propagation

Assume the user grasps point Pi+1 with one hand. If lmin < li < lmax. There is no

propagation of the user input force fh from point Pi+1 to Pi. All the user input force

has been converted to the internal forces along the suture (see Figure 4.2).

4.2.2 Condition B - one-hand pulling

Assume the user grasps the suture Pi+1 at a single point. If the expected segment

length l′i > lmax or l′i < lmin, we need to adjust the segment length to lmax or lmin (see

Figure 4.3).

CHAPTER 4. KNOTTING AND UNKNOTTING 54

Figure 4.2: Condition A - no force propagation. Point Pi and Pi+1 are two consecutive
mass points. Pi+1 is the grasped point. li is the current segment length between Pi

and Pi+1. fh is the user haptic input force.

Let fp be the component of the input force fh along the segment direction, and fp

is the input force propagated to point Pi from point Pi+1. fp and fm can be obtained

from the following equations:

fp = (fh · êi)êi, (4.1)

fm = (fh · êm)êm. (4.2)

where

êm =
êi × fh
||êi × fh|| × êi.

êi can be obtained from equation 2.14. Using the same method as above, we can

derive the user input force propagated at each point of the suture.

4.2.3 Condition C - two-hand pulling

In this condition, we assume the user is pulling two points,Pk and Pi, of the suture.

The method is almost the same as in condition B. But we need to compute twice the

propagation of the input forces, first starting from point Pi, and then starting from

point Pk (see Figure 4.4).

CHAPTER 4. KNOTTING AND UNKNOTTING 55

Figure 4.3: Condition B - pulling one point. Point Pi and Pi+1 are two consecutive
mass points. Pi+1 is the grasped point. lmax is the max segment length between Pi

and Pi+1. fh is the user haptic input force. fp is the force that be propagated. fm is
the force creating the movtion.

4.3 Collision Detection and Management

Collision detection and management is always the most difficult part in deformable

object simulations. In this thesis, we use the similar to the one proposed in [39].

First, we build a bounding-volume hierarchy (BVH) from the bottom-up representing

the shape of the suture at successive levels of detail (see Figure 4.5). To find the

self-collisions of the suture, we explore two copies of the BVH from the top down.

Whenever two BVHs (one from each copy) are found to not overlap, we know that

they cannot contain colliding segments, and hence, we do not explore their contents.

When two leaf spheres overlap, the distance between the two centers of the nodes

is computed. If it is less than the node diameter, 2r, then the two segments are

reported to collide. However, no node is ever considered to be in collision with itself

or its immediate neighbors along the suture chain.

To find the collisions between the suture and grippers, we consider the gripper as

a triangle between two jaws which are line segments with a given radius, and check if

the BHV of the suture has any overlap with this triangle. If intersection happened,

compute the intersection point which will be the grab point.

For self-collison of the suture(see Figure 4.6), when two suture segments are de-

CHAPTER 4. KNOTTING AND UNKNOTTING 56

Figure 4.4: Condition C - pulling two points. Pk and Pi are the two grasped points. fhk

and fhi are the user haptic input forces. fpk and fpi are the forces that be propagated.
fmk and fmi are the forces creating the movtion.

tected to be at a distance d < 2r from each other, then, an equal (but opposite)

displacement vector is applied to each segment along. This displacement is just long

enough to take the segments out of collision, with a slight ”safety margin”. Hence,

each node is shifted away by r − d/2 + ε/2.

If a collision occurred, during real time simulation, we need to compute new ve-

locities of mass points which are involved in the collision. Similarly to the method

presented in [40], we apply impulses to the end points of these two segments. Let’s

take a look again at the picture of two contact segments (See Figure 4.7). Let assume

point C with relative position a along the segment
−−→
PaPb interacts with point E with

relative position b along the segment
−−→
PcPd. Let i be the impulse, then, i = n∆t.

where n is the repulsion force that we can obtain from equation 2.9. Then we can

CHAPTER 4. KNOTTING AND UNKNOTTING 57

Figure 4.5: Bounding-Volume Hierarchy

Figure 4.6: Collision management of two suture segments. d is the distance between
the center lines of the two contact segments. r is the radius of the segment. ε is the
adjust constant.

CHAPTER 4. KNOTTING AND UNKNOTTING 58

Figure 4.7: Two suture segments PaPb and PcPd are sliding on each other, where point
C is the contact point; va, vb, vc, and vd are the velocities of points Pa, Pb, Pc, and
Pd respectively.

compute the new velocities as follows:

i′ =
2||i||

(a2 + b2 + (1− a)2 + (1− b)2)
, (4.3)

vnew
a = va + (1− a)

i′

m
n̂, (4.4)

vnew
b = vb + a

i′

m
n̂, (4.5)

vnew
c = vc − (1− b)

i′

m
n̂, (4.6)

vnew
d = vd − b

i′

m
n̂. (4.7)

where m is the mass of each mass point Pa, Pb, Pc, and Pd; n̂ is the unit vector from

point E to point C.

4.4 Haptic Force Feedback

In the previous section, we have discussed to calculate the user input force by intro-

ducing virtual coupling technique (see Figure 4.8).

Change the direction of the input force to the opposite, we can get the output

force which we need to feed the haptic device. Point P is the real position of the end

factor and point Q is the grabbed point. By employing a spring-damper between a

simulated body and the device end-effector, we can make the output force as smooth

CHAPTER 4. KNOTTING AND UNKNOTTING 59

Figure 4.8: Virtual coupling. Point P is the real position of the end factor and point
Q is the grabbed point. K is the spring. B is the damper working against the spring.

as possible. We can also adjust the K and B to satisfy the out put requirements for

different haptic devices.

In order to study the details inside our suture model, we took the 15th node as an

example and plot the spring force, spring damper, torsional spring, torsional damper,

and swivel damper acting on it when the suture swings freely (see Figure 4.9 to Figure

4.13).

Figure 4.9: Plot of the spring force acting on one mass node

CHAPTER 4. KNOTTING AND UNKNOTTING 60

Figure 4.10: Plot of the spring damper acting on one mass node

Figure 4.11: Plot of the torsional spring acting on one mass node

CHAPTER 4. KNOTTING AND UNKNOTTING 61

Figure 4.12: Plot of the torsional damper acting on one mass node

Figure 4.13: Plot of the swivel damper acting on one mass node

CHAPTER 4. KNOTTING AND UNKNOTTING 62

To demonstrate how the friction force changes when the friction constant is changed,

we plot the friction forces when the suture is colliding itself and changed the friction

constant (see Figure 4.14). Figure4.15 to Figure 4.18 are the friction force plots when

µ = 0.1, 0.5, 1.0, 2.0

Figure 4.14: Screen shot of suture colliding. The user is gasping the suture and
making it collide over itself. This is to demonstrate how friction force changes when
the friction constant is changed.

Because the maximum exertable face for PHANTOM Omni is 0.75lbf (3.3N), we

can not output the forces to the Haptic devices from virtual coupling spring directly.

Therefore, we chose a constant equal to 0.003 to scale the forces before we feed them

to PHANTOM Omnis. We plot the forces which we send to PHANTOM Omni during

each haptic update frame for one-hand pulling and two-hand knotting cases. Taking

the magnitudes of the forces as y-axis and each haptic update frame as x-axis, we

obtain the forces plots as in Fig. 4.19 to Fig 4.23

4.5 Experiment

4.5.1 Setup

Our simulation was implemented on a PC with dual 3.2G IntelrPentiumr4 CPUs

and 512 MB memory. For physics-based models, the most challenging part is how to

determine its parameters. If parameters are inappropriate, it may impact the whole

CHAPTER 4. KNOTTING AND UNKNOTTING 63

Figure 4.15: Friction plot when µ = 0.1

Figure 4.16: Friction plot when µ = 0.5

CHAPTER 4. KNOTTING AND UNKNOTTING 64

Figure 4.17: Friction plot when µ = 1.0

Figure 4.18: Friction plot when µ = 2.0

CHAPTER 4. KNOTTING AND UNKNOTTING 65

Figure 4.19: Screen shot of one-hand pulling

Figure 4.20: Output force plot of one-hand pulling

CHAPTER 4. KNOTTING AND UNKNOTTING 66

Figure 4.21: Screen shot of knotting

Figure 4.22: Output force plot of left hand when pulling the suture with two Phantom
Omis

Figure 4.23: Output force plot of right hand when pulling the suture with two Phan-
tom Omis

CHAPTER 4. KNOTTING AND UNKNOTTING 67

system’s stability or even over its limits. After many experiments, we chose our suture

parameters as in Table 4.1:

Table 4.1: Suture Parameter Setting

Parameter Value Remarks
N 20 ∼ 50 Number of Points
l 0.5m Length of the suture
r 0.005m Radius of the suture
m 0.05kg mass of one point
G 9.8N/kg Gravity
kh 1200 Virtual coupling spring constant
s 0.003 Scale factor for output force
µ 10 Friction constant
krs 100 Repulse spring constant
krd 5 Repulse spring damper constant
kl 800 Linear spring constant
kd 1 Linear damper constant
kts 10 Torsional spring constant
ktd 0.05 Torsional damper constant
ksw 0.2 Swivel damper constant

With the parameters above, we can obtain around 500Hz ∼ 1000Hz update rate

for both Phantom Omnis. Users can feel the output forces of smooth quality.

4.5.2 Experiment of Knotting

We build five different models with various combinations of forces models described

in chapter 2. With two PHANTOM Omni haptic devices, users can tie an arbitrary

knot about the suture which is hung up on one fixed frame.

Model 1

This model contains only a linear spring and a linear damper. It is the least realistic

model. The two connected segments can bend to any angle effortlessly (see Figure

4.24).

CHAPTER 4. KNOTTING AND UNKNOTTING 68

Figure 4.24: Suture model 1. Left: the user is manipulating the suture with one
Phantom Omin. Right: the user is tying a know with two Phantom Omnis.

Model 2

This model is almost the same as model 1, but also contains a torsional spring. The

torsional spring adds a lot more realistic behaviour to the suture, but also, because it

uses a nonlinear function ‘acos’, it creates some harmonic wave motions (see Figure

4.25).

Figure 4.25: Suture model 2. Left: the user is manipulating the suture with one
Phantom Omin. Right: the user is tying a knot with two Phantom Omnis.

CHAPTER 4. KNOTTING AND UNKNOTTING 69

Model 3

Compared to model 2, a torsional damper has been added to this model. This damper

stops the harmonic motion presented in model 2. But this model creates another

class of instability where it is very sensitive to the suture and creates a self-excitation

phenomenon (see Figure 4.26).

Figure 4.26: Suture model 3. Left: the user is manipulating the suture with one
Phantom Omin. Right: the user is tying a know with two Phantom Omnis.

Model 4

This model includes a ‘swivel’ damper to fix the problem of perpetual orbiting (the

self excitation mentioned in the above). The result is a suture that looks more like a

real suture (see Figure 4.27).

Model 5

This model has all the components of model 4. The only difference is that the linear

spring’s force computed quadratically on the difference between its current length

and rest length, instead on linearly. This makes the suture appear a lot less stretchy,

which is more realistic since the real sutures stretch very little. The suture’s non-

linear response also makes it a lot more responsive to movements (see Figure 4.28).

CHAPTER 4. KNOTTING AND UNKNOTTING 70

Figure 4.27: Suture model 4. Left: the user is manipulating the suture with one
Phantom Omin. Right: the user is tying a know with two Phantom Omnis.

Figure 4.28: Suture model 5. Left: the user is manipulating the suture with one
Phantom Omin. Right: the user is tying a know with two Phantom Omnis.

CHAPTER 4. KNOTTING AND UNKNOTTING 71

Comparing the results from above five different models, we can draw a conclusion

that model 4 is the most ideal model for our surgical training environment.

4.5.3 Experiment of Unknotting

Same as the knotting experiment, the suture is hung up on one fixed frame. Also,

to make knotting and unknotting easier, we set up a surface under the suture model

to let part of the suture lay on the desk. In order to untie a knot successfully, we

have to pick up the right point, otherwise the knot could be more tightening instead

of loosening. This is part of the unknotting planning algorithm which will not be

discussed here. Figure 4.29 show the successful unknotting of a over-hand knot and a

figure-of-eight knot. Figure 4.30 shows if you grab the wrong point, the knot can not

be untied.

Figure 4.29: Success unknotting

CHAPTER 4. KNOTTING AND UNKNOTTING 72

Figure 4.30: Unsuccessful unknotting

Chapter 5

GPU in Deformable Object

Simulation

5.1 Introduction

In simulating complex interaction betweem deformable objects, such as the one used

in a typical surgical simulators, achieving the smooth force feedback through haptic

devices has been a challenging task. To offer the user a smooth haptic sensation, we

have to guarantee the haptic rendering rate to be around 1000Hz. In most cases,

the main issue associated with the unstable behavior is due to the computational

demand associated with the model of deformable objects. Such models offer compu-

tational complexities which then render the overall system to a low servo rate and

a computational time delay. Regardless of the mechanical bandwidth of the haptic

device, in most cases, the computational overhead has been a key factor in defining

the upper bound for the fast haptic rendering system. With the demand of creating

more complex and realistic scenes for the user interaction, there exists opportunities

for the haptic system engineers to design and experiment new computational envi-

ronment which can blend the traditional computational mechanics models with more

dedicated hardware utilities.

In this chapter, we present some results regarding utilizing GPU processing units

73

CHAPTER 5. GPU IN DEFORMABLE OBJECT SIMULATION 74

for computing the deformation of two experimental objects. We present a suture sim-

ulation model with GPU and a 2D deformable cloth model with the nVidia CUDA

techniques. In all of these models, a simplified concentrated system has been used.

Both of these models were implemented and numerical solved at CPU and then GPU

level. We conducted experimental studies to compare the GPU-based suture models

and the CPU implementation. We experimented with the implicit model of the 2D

mesh which offer similar computational challenges associated with any Finite-Element

modeling appraoches. We also proposed a method for computing the inverse of a ma-

trix with truncated Numan series and the nVidia CUDA technology. The experiments

results show that we could take advantages of GPU’s tremendous parallel computa-

tional power in performing vector and matrix algebra, and make it possible to achieve

high sampling rate and smooth haptic feedback when considering complex interaction

with deformable objects.

5.2 Deformable Linear Object (DLO) Simulation

with GPU

A novel mechanics-based DLO suture model is presented in Chapter 2, which is based

on the modified version of linear finite element model (See Figure 5.1).

Figure 5.1: 1-D Suture Model

This model consists of a sequence of lumped points laying on the centerline of the

CHAPTER 5. GPU IN DEFORMABLE OBJECT SIMULATION 75

suture. This model can represent the mechanical properties of a real object, such as

stretching, compressing, bending, and twisting. Not only external forces including the

friction force, the gravity, and the user input force, can be included in this model, but

also the model can include the internal forces including the linear spring, the linear

damper, the torsional spring, the torsional damper, and the swivel damper.

One important issue about the dynamic simulation in the context of haptic ren-

dering is the real time efficiency. However, one of the computational challenges is the

increased number of vector and scalar products to increase the mechanics-based real-

ism in the haptic rendering. In addition, to increase the realism in the mechanics-based

representation, one also needs to increase a number of the linear elements associated

with the suture model. As a result, even for inclusion of a single model of the suture

in the scene, it can be seen that a desirable haptic rate can not be guaranteed and

the user can feel the output force feedback to be less smooth. Here, We utilize a GPU

implementation for addressing the computational issues of the suture that offers a

suitable parallel matrix and vector computation capabilities.

5.2.1 GPU Cg Implementation

We developed two fragment shaders using nVidia Cg shading language to simulate the

suture dynamically: velocity() - to calculate the velocity of each mass point; position()

- to calculate the position of each mass point.

Figure 5.2 is the flow char of the main program. It is based on the Virture Training

Environment which has been developed at Experimental Robotics Lab.

The initialization of Cg and Glew and creating texture happen after the initializa-

tion of object. Activating the fragment shaders to complete the computation is inside

the function Modify Objects. The detail flow charts of these two parts are as follows

(See Figure 5.3):

The following experiment was conducted on a MacBook Pro (Core 2 Duo, 2G

RAM, ATI Mobility Radeon X1600 256M) with Microsoft Windows XP platform.

The whole program is developed with Microsoft Visual Studio VC++6. Glew extension

library and the Cg Toolkit are also required.

CHAPTER 5. GPU IN DEFORMABLE OBJECT SIMULATION 76

Figure 5.2: Flow chart of main program

CHAPTER 5. GPU IN DEFORMABLE OBJECT SIMULATION 77

Figure 5.3: Flow chart of GPU part

CHAPTER 5. GPU IN DEFORMABLE OBJECT SIMULATION 78

By changing the number of segment (element) of the suture, we record the expected

computational time. We implemented the same computational implementation on

both CPU-based and GPU-based environment. To compare the performance, we

recorded the time for each computation cycle. Because the variable response time

at every cycle and other related implementation overheads we have recorded both

the maximum and minimum update rates during a sample haptic manipulation of

the suture. In all of these experiments, the suture is held and manipulated by the

user with a haptic device from SensAble Technologies Inc. (Omni device). Table 5.1

demonstrate sample results of this experiment for different number of suture elements:

Table 5.1: GPU and CPU performance comparison of the suture model

Segment Number GPU Max GPU Min CPU Max CPU Min
(ms) (ms) (ms) (ms)

10 0.424 0.265 0.153 0.088
20 0.453 0.276 0.284 0.167
30 0.463 0.263 0.408 0.224
40 0.435 0.262 0.534 0.296
50 0.428 0.261 0.637 0.362
60 0.427 0.263 0.765 0.445
70 0.433 0.256 0.888 0.505
80 0.436 0.258 1.017 0.575
90 0.430 0.259 1.130 0.640
100 0.436 0.258 1.670 0.717

5.3 Cloth Simulation with CUDA

Generally speaking, the big part of the dynamic simulation is about how to solve the

differential equations, which describe the relationship between an unknown function

and its derivatives. Most of those methods used by today’s researchers could be put

into two categories: explicit method and implicit method. This section will give out

CHAPTER 5. GPU IN DEFORMABLE OBJECT SIMULATION 79

the introduction of explicit and implicit methods. Explicit methods, such as Euler’s

method or the midpoint method, face some implementation difficulties with some

classes of ordinary differential equations (ODEs). In some cases, an ODE can become

”stiff”, in which case explicit methods can results in instability. On the other hand,

the implicit method can offer stable solution to general class of ODEs but with the

added computational complexities. More details please see Appendix C.

[41] presents an implicit Euler’s method to simulate cloth-like objects. It proposes

an approach to finding a balance between system stability and efficiency and therefore

enables robust interactive animation or real-time design and seeming of cloth. Un-

fortunately, the method requires computation of the inverse of a large sparse matrix.

If the configuration of the cloth changes during the each cycle of simulation (i.e. a

time variant model), we need to compute the inverse of the matrix in real-time, which

can result in a very computationally intensive procedure especially for a very large

2D model of the cloth or shell type objects. In this section, we also present a method

using the truncated Nuemann series to approximate the inverse of a very large matrix,

and then implement it on nVidia CUDA technology.

5.3.1 Explicit Method vs Implicit Method

In real time dynamic simulations, system stability is one of the most important issues.

It is really frustrating that your simulation crashes because your simulation step size

is too big. In some cases such as deformable object simulations in surgical training

systems or cloth simulations in game developments, which demand very high com-

putation, there is no place left at all because you the step size is already so small.

Therefore we must find a new simulation scheme which both could guarantee system

stability and is not limited by simulation step size.

The basic idea of explicit integration is that the integrators are written in a way

that all unknown values (e.g., all particle velocities, positions) can be updated in a

loop independently. Let’s take an example as in the case of cloth simulations, the

particle positions are treated as being decoupled and are not considered to affect each

other. But in the real word, it is apparently not so: the particles in a cloth are

CHAPTER 5. GPU IN DEFORMABLE OBJECT SIMULATION 80

coupled and connected together by the cloth. The motion of one particle is always

affected by all the others. For a given time step, explicit integrators actually move

the particles out-of-sync with each other, and put each particle slightly in the wrong

place. However, they do become coupled again when the forces and constraints are set

up prior to the next physics step. The forces and constraints are also slightly wrong

because the particles are in the wrong place, which will cause a small correction

during the next physics step. This small correction is to try to put the particles in

the right place. But in this viscious cycle, the next physics step overcorrects and

the particles again are in the wrong place. Then, the cycle repeats. Explicit method

guarantees a certain order of accuracy, but loses stability. The possible size of time

step is restricted, which will result in a loss of computational efficiency.

In some cases, this viscious cycle actually runs well and the simulation doesn’t

crash, although the results are always wrong. In other cases (e.g., stiff ODEs), the

cycle doesn’t work at all. The corrective forces work against the overshot positions,

which will cause an unstable simulation. once particle positions and velocities grow

without limit, overflow happens in just a few physics steps.

On the other hand, implicit integrators treat the unknown variables as coupled,

which are solved together as a system at each time step. The big advantage is that

implicit schemes are stable for any time step size. However, they require the solution

of a generally non-linear set of equations at each time step.

Implicit methods is based on taking a backward Euler step. As it is highligted in

[41] and [42] the main computational form can be written as:

(I− dt2

m
H)4n+1v = (Fn + dtHvn)

dt

m
. (5.1)

where: I is the identity matrix; m is the mass of each mass node; H = ∂F
∂x

is actually

the negated Hessian matrix of the system.

We simulate the 2D surface model as a lumped mesh system shown in Figure

5.4 For implicit Euler’s method, we need to calculate the inverse of the stiff matrix

which is also a negative Hessian matrix. For example, according to the connectivity

CHAPTER 5. GPU IN DEFORMABLE OBJECT SIMULATION 81

Figure 5.4: Cloth Model

relationship between nodes, the Hessian matrix of figure 5.4 can be written as:

H = k

−2 1 0 0 1 0 0 0 . 0 0 0 0 0 0 0 0

1 −5 1 0 1 1 1 0 . 0 0 0 0 0 0 0 0

0 1 −3 1 0 0 1 0 . 0 0 0 0 0 0 0 0

.

0 0 0 0 0 0 0 0 . 0 1 0 0 1 −3 1 0

0 0 0 0 0 0 0 0 . 0 1 1 1 0 1 −5 1

0 0 0 0 0 0 0 0 . 0 0 0 1 0 0 1 −2

(5.2)

The computationally challenging part of any implicit deformation modeling is to cal-

culate the inverse matrix. For example, in our case the matrix is defined as shown in

Eq. C.11:

W = (I− dt2

m
H)−1

Let us define A = (I − dt2

m
H), then we can show A is symmetric positive definite

matrix. We write A as:

A = D − L− LT (5.3)

where D is a diagonal matrix, the minus signs before L and LT are just a technical

CHAPTER 5. GPU IN DEFORMABLE OBJECT SIMULATION 82

convenience. Then, we symmetrically scale A by its diagonal,

A = D
1
2 (I −D− 1

2 (L + LT)D− 1
2)D

1
2 (5.4)

A−1 = D− 1
2 (I −D− 1

2 (L + LT)D− 1
2)−1D− 1

2 (5.5)

We note that:

D− 1
2 (L + LT)D− 1

2 = I −D− 1
2 AD− 1

2 (5.6)

ρ(I −D− 1
2 AD− 1

2) = ρ(I −D−1A) (5.7)

If ρ(I −D−1A) < 1, then we can expand (I −D− 1
2 AD− 1

2) in Neumann series.

Let’s define ρ(A) to be the spectral radius of A, such that,

ρ(A) = max
1≤i≤n

|λi|

where λi are the eigenvalues of A. We note that:

D− 1
2 (L + LT)D− 1

2 = I −D− 1
2 AD− 1

2

and

ρ(I −D− 1
2 AD− 1

2) = ρ(I −D−1A)

If ρ(I−D−1A) < 1, then we can expand (I−D− 1
2 AD− 1

2) in Neumann series. One ap-

proach to generate a polynomial pre-conditioner is to use a few terms of the Neumann

series. In this thesis, we only use the first order Neumann polynomial:

W ≈ D−1 + D−1(L + LT)D−1 (5.8)

= 2D−1 −D−1AD−1 (5.9)

5.3.2 CUDA Implementation

CUDA is an extension to the C programming language. The goal of the CUDA

programming interface is to provide a relatively simple interface for users familiar

with the C programming language to easily write programs for execution by the

device. To specify if the functions run on the device or on the host, CUDA defines

CHAPTER 5. GPU IN DEFORMABLE OBJECT SIMULATION 83

“Function Type Qualifiers” as: device qualifier which declares a function is executed

on the device and callable from the device only; global qualifier which declares a

function as being a kernel which is executed on the device and callable from the host

only; host qualifier which declares a function is executed on the host and callable

from the host only.

The complete computation can be divided into two parts: the first part is to

calculate the inverse of the Hessian matrix; second part is to compute the velocity

and position of each node. Since for a given physical construction of the cloth, the

construction of the Hessian matrix remains unchanged, (we discard the non-linear part

of the force during the simulation), we can pre-calculate the inverse of the Hessian

matrix off-line. The remaining of the computation is done by GPU at real-time.

We developed two CUDA kernels for the implicit computation: inverseMatrix() -

to calculate the inverse of the Hessian matrix; implicitDeformation() - to compute the

force, velocity, and position of each mass node. The flow chart of the main program

is the same as Figure 5.2. The flow chart of how to call inerseMatrix() is shown as

the follows:

Computation of the inverse of hessian matrix

1. Build H matrix of the cloth according the mass-node relationship

2. Computer A = I− dt2

m
H

3. Computer D−1 where D is the diagonal matrix of W

4. Allocate device memory for matrices H, W , and D−1

5. Copy host memory to device memory

6. Set up CUDA execution parameters

7. Execute the kernel to calculate W = A−1 = 2D−1 −D−1AD−1

8. Copy device memory to host memory

9. Clean up device memory

The flow chart of how to call implicitDeformation() is shown as the follows:

CHAPTER 5. GPU IN DEFORMABLE OBJECT SIMULATION 84

Implicit deformation at each time step

1. Load node data and spring data to GPU

2. Set barycenter to zero xG = 0

3. Set angular momentum to zero δτ = 0

4. Force clear

5. Compute the force acting on each mass node

6. Filter the force with the inverse of the Hessian matrix

7. Post correction of angular momentum

8. Post-step process

9. Collision detection and management

10. Copy device memory to host memory

11. Clean up device memory

Figure 5.5 shows a typical experiment. The sphere is a obstacle placed on the

floor. When the simulation starts, the cloth will fall down because gravity and collide

with the sphere. Figure 5.6 shows when the cloth starts colliding with the obstacle.

Figure 5.7 shows the cloth is sliding on the sphere.

Figure 5.5: Initial configuration

CHAPTER 5. GPU IN DEFORMABLE OBJECT SIMULATION 85

Figure 5.6: the model starts colliding with the obstacle

Figure 5.7: The 2D model is colliding on the sphere

CHAPTER 5. GPU IN DEFORMABLE OBJECT SIMULATION 86

5.3.3 Haptic Force Feedback

Haptic rendering is still done by CPU. We use virtual coupling technique as discussed

in [43] to compute the haptic force feedback when the cloth is manipulated by the

user. This is due to the fact that the input variables to our cloth simulation model is

a force vector which is then resolved to define the resultant cloth nodal displacements

vector. In our studies, we have utilized a SensAble PHANTOM Omni R© device where

its position is mapped to the resultant force vector between its tip and the contact

node on the cloth through the virtual coupling.

The flow chart of haptic rendering is shown as the follows:

Haptic rendering at each time step

1. Collision detection - if the cloth is grabbed by the user

2. Calculate the user input force with virtual coupling technique

3. Update the velocity and position of the grabbed node

4. Scale the user input force and output it to the haptic device

Figure 5.8 (a) shows the screen shot when the cloth is manipulated over a sphere

object. Figure 5.8 (b) shows a typical plot of haptic force feedback.

5.3.4 Comparison between GPU and CPU implementation

of the cloth model

Similar to the previous experiment, we are able to change the number of nodes associ-

ated with the cloth model and collect some statistical data regarding the performance

of the simulation running only on CPU or GPU implementations. By changing the

number of the mass nodes of the cloth, we can record the resultant time associated

with various total number of nodes and compare the result between CPU and GPU.

Table 5.2 shows the maximum and minimum modify time with different node number:

CHAPTER 5. GPU IN DEFORMABLE OBJECT SIMULATION 87

Table 5.2: GPU and CPU performance comparison of the cloth model

Node Number GPU Max GPU Min CPU Max CPU Min
(ms) (ms) (ms) (ms)

16 * 16 4.01 3.94 58.10 57.37
32 * 16 5.50 5.18 121.66 119.87
32 * 32 10.19 9.83 237.50 234.68
48 * 32 16.33 15.95 370.52 369.71
48 * 48 27.49 27.21 590.31 586.52
64 * 48 42.37 41.72 750.31 742.37
64 * 64 78.47 77.05 5045.23 5042.98

CHAPTER 5. GPU IN DEFORMABLE OBJECT SIMULATION 88

(a) Screen shot

(b) Force Plot

Figure 5.8: Force plot when the user grabs the cloth

Chapter 6

Conclusion and Future Works

6.1 Conclusion

In this thesis, we developed a knotting and suturing model based on the VTE. we

present a physics-based approach to real-time simulation of DLOs with visual and

force feedback. In our suture model, which can represent the mechanical properties

of a real thread such as stretching, compressing, bending, and twisting, we simulate

not only external forces, but also internal forces including the friction force during

knotting and unknotting. We also present how forces propagate along the suture when

the user pulls it with one or two hands. We developed a simulator to allow users to

grasp and smoothly manipulate a virtual thread, and to tie an arbitrary knot.

We also present a physics-based haptic simulation designed to teach basic sutur-

ing techniques for simple skin or soft tissue wound closure. The pre-wound suturing

target, skin or deformable tissue, is modeled as a modified mass-spring system. The

suturing material is designed as a physics-based deformable linear object. Tools in-

volved in the live suturing procedures are also simulated. Collisions between the soft

tissue and the needle, and between the soft tissue and the suture are analyzed. In

addition to the detail steps of one typical suturing procedure, modeling approaches

on the evaluation of a stitch are also discussed. For example, if the needle insertion

points are too close from each other or from the edge of the wound, the suture will tear

the soft tissue instead of suturing the incision together when the tension applied on

89

CHAPTER 6. CONCLUSION AND FUTURE WORKS 90

the pierced nodes beyond a pre-set threshold. Experiment results show that our sim-

ulator can run on a standard personal computer and allow users to perform different

suturing patterns with smooth haptic feedback.

In addition, we did a study of GPU application in deformable object simulation.

We all know that one of the most challenging aspects of developing haptic interactive

applications is to guarantee the haptic rendering rate of 1000Hz. This requirements

in general can offer the user a smooth haptic sensation. With the demand of creating

more complex and realistic scenes for the user interaction, there exists opportunities

for the haptic system engineers to design and experiment new computational envi-

ronment which can blend the traditional computational mechanics models with more

dedicated hardware utilities. In this thesis, we present some results regarding utilizing

GPU processing units for computing the deformation of two experimental objects. We

present a suture simulation model with GPU and a 2D deformable cloth model with

nVidia CUDA techniques. We conducted experimental studies to compare the GPU-

based suture models and with the CPU implementation. We experimented with the

implicit model of the 2D mesh which offer similar computational challenges associated

with any Finite-Element modeling approaches. Here, we have proposed a method for

computing the inverse of a matrix with truncated Numan series and nVidia CUDA

technology.

6.2 Future work

The experiment results show that our simulator could suture a pre-wound soft tissue

together with smooth force feedback and also allow the user to tie a knot. However,

there are still several issues need to be considered for the future work.

First, as mentioned in chapter 2, we did not consider the static friction for our

suture model, the next step is to study the static forces when the user is trying to tie

a knot tightly and untie a tight knot.

Secondly, implicit Euler’s method offers many more benefits compared to the ex-

plicit methods. In the future, we might need to simulate the soft tissue using the

implicit method to increase the system stability;

CHAPTER 6. CONCLUSION AND FUTURE WORKS 91

Thirdly, the current subdivision method can cause many unwanted small triangles

if the user put the needle back and forth through the soft tissue at the same area,

which will tremendously impact the stability of the system. To solve this, we may

need to keep track of the topology of the movements of the needle, for example, if

the user pull the needle back, the subdivided triangle should go back to its original

un-subdivided configuration. Also using the edge flipping technique might be another

solution.

Fourthly, although a lot of surgical training system have been designed out, how to

evaluate these virtual training system is still an issue. Could virtual training system

be used to measure surgical skills and could trainees really improve their surgical

skill after such training are still two questions need to be answered. For the suturing

simulator developed in this thesis, we still need to continue the research on how to

evaluate the user’s suture skills during the training and how to evaluate the correctness

and robustness of this system. To solve this, a user study may need to be considered

in the future.

Finally, for the GPU application in the deformable object simulation, one of the

promising areas that such distributed computational power can have a greater impact

is the utilization of point-based haptic rendering and the notion of Level-of-Details

[44] [45]. For example, in the study of this thesis, the Hessian matrix can be very

large sparse matrix. One approach for saving memory is to implement the matrix as

doubly-linked lists. However, the challenge is on how to construct doubly-linked lists

suitable for GPU parallel computing can be a subject of future studies. Self-collision

detection for the cloth is not done in this project. As a result, the cloth behaviors

can be on various cases not realistic because all the triangles could intersect with

each other. Self collision detection can be another possibility where GPU may offer

a benefit. In our study, we have discarded the non-linear part of the force filter and

used a post correction of angular momentum. In addition, we have assumed that the

matrix H does not change during simulation. However, if the 2D model of the cloth

configuration changes during cutting or tearing, one needs to compute the inverse

matrix calculation as the cloth configuration changes. This can be another topic of

future investigation.

Appendix A

PHANTOM Omni Specifications

92

APPENDIX A. PHANTOM OMNI SPECIFICATIONS 93

Table A.1: Phantom Omni Specifications

Nominal Position >450 dpi v 0.055 mm
Resolution
Workspace ∼ 6.4 w x 4.8 h > 160 w x 120 h

x 2.8 d in x 70 d mm
Backdrive Friction < 1 oz < 0.26 N

Maximum Exertable 0.75 lbf 3.3 N
Force

Continuous Exertable > 0.2 lbf > 0.88 N
Force (24 hrs)

Stiffness X axis > 7.3 lbs./in X axis > 1.26 N/ mm
Y axis > 13.4 lbs./in Y axis > 2.31 N/mm
Z axis > 5.9 lbs./in Z axis > 1.02 N/mm

Inertia (apparent ∼ 0.101 lbm ∼ 45 g
mass at tip)
Footprint ∼ 6 5/8 w x 8 d in ∼ 168 w x 203 d mm
Weight 3 lbs 15 oz ∼ 1.47 kg

Operating Temperature 50◦ to 95◦F 10◦ to 35◦C
Storage Temperature −40◦ to 149◦F −40◦ to 65◦C
Relative Humidity 20% to 80% (noncondensing)

Force Feedback 3 degrees of freedom (x, y, z)
Position Sensing x, y, z (digital encoders)

Pitch, roll, yaw (3% Pitch, roll, yaw (5%
linearity potentiometers) linearity potentiometers)

Interface IEEE-1394 FireWire port
Input Voltage 100-240 VAC (Use supplied power

supply only AD-740-1180)
Input Frequency 50-60 Hz
Input Current 1 A

Appendix B

The process of suturing

B.1 The process of suturing

Paul Marshall etc. divided the whole suturing process into four steps in [15]. In this

appendix, we give a brief overview for each of these steps. The only difference is,

we are using mass-spring based suture model in this thesis, while Paul Marshall used

geometry-based suture model.

When the mesh is pierced, a new vertex is generated at the point where it is

pierced; this new vertex is the pierced vertex. When the pierced vertex is on the

needle (controlled by the user), it cannot move except to slide on the needle. Once

the vertex has been passed to the suture, though, the mesh will pull the suture and

slide along the suture.

B.1.1 Piercing the deformable mesh

The needle held by a needle driver is an independent object under the user’s control.

Collision detection tests the straight-line path of the needle tip during a single timestep

against each triangle. When the needle tip collides with a triangle, the pierced triangle

is subdivided simply into three triangles, with a new vertex at the piercing point, and

then the pierced triangles original edges are subdivided using the edge mask in the

Loop subdivision scheme (See Figure B.1)

94

APPENDIX B. THE PROCESS OF SUTURING 95

Figure B.1: Subdivision process when a portion of the mesh is pierced by the needle.
a) Original mesh. b) After initial subdivision by being pierced by the needle at the
highlighted point. c) After final subdivision of original triangles edges. Note the new
vertices in c) are moved a short distance away from the pierced vertex.

When the edges are subdivided, the subdivision scheme ensures that the new ver-

tices are a short distance from the edge, away from the piercing point. This prevents

the newly-created triangles from being too small. Without the edge subdivision, a

triangle pierced too close to one of the edges will look highly unrealistic in large de-

formations. The spring lengths of the new edges are 0.9 times the length of the edge

at creation, to place the mesh under tension. The spring constants of the new edges

are:

k =
lmax

ledge

kmesh

lmax is the longest edge in the mesh (computed at initialization), ledge is the length of

the new edge, and kmesh is the spring constant of the mesh. For simulation purposes,

the spring constant is limited to a range from kmesh to 4 ∗ kmesh, for stability. The

mass of each vertex in the mesh is unity, so the new vertices also have a mass of unity.

B.1.2 Slipping on the Needle

Once a newly-generated vertex has been pierced by the needle, it can slip in either

direction on the needle. The needle, held by the user, is represented by displacement

rather than forces so the only factors that count in slippage on the needle are the

tangent of the needle at the point where the vertex is pierced, and the summed spring

APPENDIX B. THE PROCESS OF SUTURING 96

forces on the vertex. The slip is calculated as

a ∗ (nt ·mf)

where mf is the summed spring forces of the mesh at the vertex, and nt is the tangent

of the needle at that point. The term a is a constant chosen to balance the mesh force

against the distance traveled on the needle. A constant friction force is applied to the

slip. This equation uses the quasi-static assumption also used in the mesh: distance

moved is proportional to the force applied in that timestep. Once a pierced vertex

has passed the end of the needle, it is passed to a point on the suture very close to

the needle.

Vertices slipping off of the tip from their initial position on the needle ignore

friction: our model subdivides a triangle immediately when the needle touches the

deformable model, but a normal needle would not actually pierce the surface of tissue

until some force has been applied. Therefore, we allow a vertex to slip off the tip of

the needle very easily if it has not yet slid farther onto the needle, in the same way

that a needle that has not yet pierced tissue does not drag the tissue around.

Pierced vertices cannot slip past each other on the needle. A list of pierced vertices,

sorted by location on the needle, is kept in the needle. If a vertex is about to slip past

another vertex, the slipping vertex is not moved, and the interdicting vertex adds the

slip value to its next slip calculation.

B.1.3 Slipping on the Suture

Once the deformable model has been pierced by the needle, and then slipped off the

end of the needle onto the suture, it will slide along the suture as forces are applied.

The analysis of tissue sliding along thread shows three force components acting at

the interface between the suture and the deformable model: tension in each direction

of the pierced point, and the summed internal spring forces of the mesh. Sliding occurs

when the net force tangential to the suture overcomes the friction at the piercing point.

Force that exceeds friction follows a quasi-static model: distance slipped is force times

a constant. The suture bends as it passes through the tissue, so calculating these forces

APPENDIX B. THE PROCESS OF SUTURING 97

precisely is difficult. A close approximation is

a ∗ (ptlength − ntlength) + b ∗ (ptdirection − ntdirection) ·mf

Where pt is the previous tension and nt is the next tension, expressed as vectors,

and mf is the summed spring forces at that vertex. The first term is comparing the

tension on either side of the pierced tissue: if there is greater tension on one side, then

the suture is being pulled in that direction and the tissue will slide the other way. The

second term is comparing the direction of the suture on each side of the constraint

with the internal mesh forces at the pierced point. If the suture doubles back on itself

through the pierced point, the difference between the two suture directions is small

and likely in a direction nearly perpendicular to the summed mesh force, reducing

the second term to almost zero. This matches with real-world experience: if a thread

passes through an object and doubles back on itself, it is more difficult to pull through

material than if the thread goes straight through.

Figure B.2: Calculating the slip; gray indicates the suture, with arrows showing the
magnitude and direction of the tension (a missing arrowhead indicates zero tension).
Black indicates the shape of the mesh and the arrow shows the vector representing
the summed mesh force. In a), the suture will not slip, because the tensions are equal
in each direction, and the mesh force agrees equally with each direction of the suture.
Part b) shows a normal case where one end of the suture is being pulled by the user
while the other has no force; both the mesh force and the tension difference will cause
the pierced vertex to slip away from the tensioned suture. Part c) shows a case where
the mesh force will cause little effect on slippage, due to the directions of the suture
being nearly identical; the suture will slip due to the difference in tension magnitude
in each direction only

APPENDIX B. THE PROCESS OF SUTURING 98

The terms a and b are constants chosen to balance the spring constants in the

mesh against the tension value of the suture. A positive slip indicates sliding along

the suture away from the needle. Soft constraints may not slip through each other

or through hard constraints (since pierced pieces of tissue cannot slip through each

other); if this happens, the moving constraint is not moved, and its slip value is

added to the interdicting constraints next slip calculation, to move the interdicting

constraint out of the way. Soft constraints exist at any point between the discrete

nodes of the suture, so slipping is smooth in all cases.

B.1.4 Suture Tension

When a suture is stretched, tension naturally acts to restore the rest length of the

suture. In most rope-like models, tension is simple to calculate due to the inherent

forces within the model. The suture model used in this simulation is based in ge-

ometry. Since there is no internal model of the tension forces within the suture, a

tension model is added separately. To handle interaction between the suture and the

deformable model, as well as haptic rendering, we have created a quasi-spring method

for calculating the tension of the suture. The links will stretch when multiple con-

straints are pulling the suture in different ways, and tension is calculated from this

stretch in following equation:

T = (
k∑

i=j

li)− l0(k − j)

Where T is tension, l0 is the standard link length, li is the length of link i, j is the

index of the left constraint, and k is the index of the right constraint.

Tension is calculated along each section of rope between soft or hard constraints.

The tension is applied in the direction of the suture at the constraints. Each constraint

can have different tension values in each direction, and the summed tension at the

constraint is applied to any object the constraint is attached to, such as the needle or

deformable model.

This method is similar to computing tension as a spring-like force, but the tension

is not proportional to the actual strain of the suture, but rather the total distance

APPENDIX B. THE PROCESS OF SUTURING 99

Figure B.3: Calculation of tension

it has been stretched between two contacts of interest. This is the closest the model

can approach modeling stiff suture material: true suture material is quite stiff, and

effectively does not stretch at all. Using this model, when the trainee pulls a suture

a given amount, the suture will achieve a particular tension, which will pull in a

predictable manner.

A pierced vertex on the suture is simulated the same as any other mesh node,

by integrating the forces from each edge spring and the home spring, but with two

additional forces: the tension force on the suture in each direction at the pierced

vertex. In most cases, the tension force will be moderate or small, because the suture

will slip further through the pierced vertex if the tension is large. But if the suture is

blocked from slipping through the vertex or both ends of the suture are being pulled,

the tension forces can pull the pierced vertex a significant distance. The user can pull

a cut closed with a taut suture. The soft constraint on the suture is moved to the

pierced vertexs new location after the vertex is simulated.

Appendix C

Explicit and Implicit Euler

Integration

C.1 Introduction

In real time dynamic simulations, system stability is one of the most important issues.

It is really frustrating that your simulation crashes because your simulation step size

is too big. In some cases such as deformable object simulations in surgical training

systems or cloth simulations in game developments, which demand very high com-

putation, there is no place left at all because you the step size is already so small.

Therefore we must find a new simulation scheme which both could guarantee system

stability and is not limited by simulation step size.

Generally speaking, the big part of the dynamic simulation is about how to solve

the differential equations, which describe the relationship between an unknown func-

tion and its derivatives. Most of those methods used by today’s researchers could be

put into two categories: explicit method and implicit method. This section will give

out the introduction of explicit and implicit methods. More details will be discussed

in the following sections.

The basic idea of explicit integration is that the integrators are written in a way

that all unknown values (e.g., all particle velocities, positions) can be updated in a

loop independently. Let’s take an example as in the case of cloth simulations, the

100

APPENDIX C. EXPLICIT AND IMPLICIT EULER INTEGRATION 101

particle positions are treated as being decoupled and are not considered to affect each

other. But in the real word, it is apparently not so: the particles in a cloth are coupled

and connected together by the cloth. The motion of one particle is always affect by all

of others. For a given time step, explicit integrators actually move the particles out-

of-sync with each other, and put each particle slightly in the wrong place. However,

they do become coupled again when the forces and constraints are set up prior to

the next physics step. The forces and constraints are also slightly wrong because

the particles are in wrong place, which will cause a small correction during the next

physics step. This small correction is to try to put the particles in the right place. But

in this viscious cycle, the next physics step overcorrects and the particles again are in

the wrong place. Then, the cycle repeats. Explicit method guarantees a certain order

of accuracy, but loses stability. The possible size of time step is restricted, which will

result in a loss of computational efficiency.

In some cases, this viscious cycle actually runs well and the simulation doesn’t

crash, although the results are always wrong. In other cases (e.g., stiff ODEs), the

cycle doesn’t work at all. The corrective forces work against the overshot positions,

which will cause an unstable simulation. once particle positions and velocities grow

without limit, overflow happens in just a few physics steps.

On the other hand, implicit integrators treat the unknown variables as coupled,

which are solved together as a system at each time step. The big advantage is that

implicit schemes are stable for any time step size. However, they require the solution

of a generally non-linear set of equations at each time step.

The equation of motion for the system can be represented by a matrix equation:

MA + CV + KX = Fexternal

where: Fexternal is external forces such as the user input force, the weight of object,

an explosion blast force due to pressure, etc.

M is the system mass matrix,

C is the damping matrix,

K is the stiffness matrix which represents the connection of mass points as in

spring-mass cloth systems,

APPENDIX C. EXPLICIT AND IMPLICIT EULER INTEGRATION 102

A is the acceleration vector for the particles,

V is the velocity vector for the particles,

X is the position vector for the particles.

The implicit solver works by computing M , C, K, then using a matrix solver or

iterative (Jacobi, Gauss-Siedel, SOR) solver to compute new values of A, V , and X

at the same time for all of the particles. By solving the particles as a coupled system,

the implicit method gets rid of the potential for instability and the simulator almost

always works without instabilities and blow-ups.

The result of implicit methods still has error (Taylor-series truncation error), so it

is still imperfect.

C.2 Differential Equations

C.2.1 Initial Value Problems

A differential equation is a mathematical equation for an unknown function of one or

several variables which relates the values of the function itself and of its derivatives of

various orders. Differential equations play a prominent role in engineering, physics,

economics, and other disciplines. In classical mechanics, the motion of a body is

described by its position and velocity as the time varies. Initial value problems is

one class of problems of differential equations. To solve a differential equation is to

find a function that satisfies the relation and some additional conditions as well. In

initial value problems, the initial condition (specified value) of the unknown function

at a given point in the domain of the solution is given. The behavior of the system is

described by an ordinary differential equation (ODE). In mathematics, an ordinary

differential equation is a relation that contains functions of only one independent

variable, and one or more of its derivatives with respect to that variable. For example:

ẋ = f(x, t),

where: x(t) is a moving point,

f is a known function,

APPENDIX C. EXPLICIT AND IMPLICIT EULER INTEGRATION 103

f(x, t) is x’s velocity,

x is the state of the system,

ẋ is x’s time derivative.

The equation above defines a vector field over x. Typically, for initial value prob-

lems, we are given x(t0) = x0 at some starting time t0, and wish to follow x over time

thereafter.

In 2D case, for example. x(t) draws out a curve that describes the motion of a

point p in the plane. At any point x, the function f can be evaluated to provide a

2-vector, therefore, f defines a vector field on the plane. The moving point p must

have velocity vector ẋ when it moves through point x.

The function f is written of both x and t, but the derivative function may or may

not depend directly on time. If it does, then not only the point p but the the vector

field itself moves, so that p’s velocity depends not only on where it is, but on when it

arrives there. In that case, the derivative ẋ depends on time in two ways: first, the

derivative vectors themselves wiggle, and second, the point p, because it moves on a

trajectory x(t), sees different derivative vectors at different times.

C.2.2 Numerical Solutions

Standard way to solve differential equations focuses on symbolic solutions, in which

the functional form for the unknown function is to be guessed. For example, the

differential equation:

ẋ = −kx,

where ẋ denotes the time derivative of x.

This equation is satisfied by:

x = e−kx,

Numerical solutions take discrete time steps starting from the initial value x(t0).

To take a step, we use the derivative function f to calculate an approximate change

∆x in x over a time interval ∆t, then increment x by ∆x to obtain the new value.

In this procedure, the derivative function f is considered as a black box: we provide

numerical values for x and t, receiving in return a numerical value for ẋ. Numerical

APPENDIX C. EXPLICIT AND IMPLICIT EULER INTEGRATION 104

methods operate by performing one or more of these derivative evaluations at each

time step.

C.3 Explicit Method

C.3.1 Eulers Method

Eulers method is one of the simplest numerical methods for solving differential equa-

tions. First of all, let us denote the initial value for x by x0 = x(t0) and the estimate

value of x at a later time t0 +h by x(t0 +h); where h is a step size parameter. Eulers

method simply computes x(t0 + h) by taking a step in the derivative direction:

x(t0 + h) = x0 + hẋ(t0) (C.1)

We can imagine a picture of a 2D vector field to visualize Euler’s method. The moving

point p will follow a polygonal path instead of the real integral curve in the vector

field. Each segment of the polygonal path is determined by evaluating the function f

at the beginning, and scaling by h.

The advantage of Euler’s method is that it is simple and very easy to implement,

but it is not accurate and will cause unstable problems in some cases. Consider the

case of a 2D function f whose integral curves are concentric circles. The moving point

p governed by f is supposed to orbit forever on whichever circle it started on. Instead,

with each Euler step, p will move on a straight line to a circle of larger radius, so

that its path will follow an outward spiral. Reducing the step size will slow the rate

of this outward drift, but will never eliminate it.

To demonstrate its un-stability, let us take an example of a 1D function:

f = −kx,

which should make the moving point p decay exponentially to zero. For sufficiently

small step sizes we can get reasonable behavior, but when h > 1/k, we have |∆x| > |x|,
so the solution oscillates about zero. Beyond h = 2/k, the oscillation diverges, and

the system blows up.

APPENDIX C. EXPLICIT AND IMPLICIT EULER INTEGRATION 105

Finally, Euler’s method has low efficiency. Derivative evaluation is pretty much

CPU-time consuming, which will eat up almost all of CPU-time for most numerical

solution methods. Therefore the computational cost per step is determined by the

number of evaluations per step. Although Euler’s method only requires one evaluation

per step, in order to keep the system stability and accuracy, we must restrict the step

size to very small, that means we must increase the number of simulation for a given

time interval. More sophisticated methods, even some requiring as many as four or

five evaluations per step, can greatly outperform Euler’s method because their higher

cost per step is more than offset by the larger step sizes they allow.

To improve on Euler’s method, we need to look more closely at the error that it

produces. The key to understanding it is the Taylor series: Assuming x(t) is smooth,

we can approximate its value as an infinite sum involving the value and derivatives

at the start point:

x(t0 + h) = x(t0) + hẋ(t0) +
h2

2!
ẍ(t0) + ... +

hn

n!

∂nx

∂tn
+ ... (C.2)

Comparing equation C.1 and C.2, we can get that the Euler formula is the first two

terms of Taylor series. This means that Euler’s method would be correct only if all

derivatives beyond the first were zero, i.e. if x(t) were linear. The error term, the

difference between the Euler step and the full, un-truncated Taylor series, is dominated

by the leading term, h2

2!
ẍ(t0). Therefore, we can describe the error as O(h2). The error

is proportional to the square root of time step size. If we decrease the step size to

h/2, it will produces only about one fourth the error comparing with a step size of h.

Theoretically, we can compute x with as little error as want by choosing a suitable

small h. This could be not practical as a great many time steps night be required.

C.3.2 Midpoint Method

Let’s take a look at the Taylor series again:

x(t0 + h) = x(t0) + hẋ(t0) +
h2

2!
ẍ(t0) + O(h3) (C.3)

If we were able to evaluate ẍ as well as ẋ, we could achieve O(h3) accuracy instead

APPENDIX C. EXPLICIT AND IMPLICIT EULER INTEGRATION 106

of O(h2) simply by retaining the term of h2

2!
ẍ(t0). Recall that:

ẋ = f(x(t), t) (C.4)

For simplicity in what follows, we will assume that the derivative function f does

depend on time only indirectly through x, so that ẋ = f(x(t)). The chain rule then

gives:

ẍ =
∂f

∂x
ẋ = f ′f (C.5)

Evaluating f ′ would often be complicated and expensive. we only approximate the

second-order term just in terms of f , and substitute the approximation into equation

C.3, which will give us with O(h3) error. To do this, we perform another Taylor

expansion of the function of f ,

f(x0 + ∆x) = f(x0) + ∆xf ′(x0) + O(∆x2).

We first introduce ẍ into this expression by choosing

∆x =
h

2
f(x0)

so that

f(x0 +
h

2
f(x0)) = f(x0) +

h

2
f(x0)f

′(x0) + O(h2) = f(x0) +
h

2
ẍ(t0) + O(h2).

where x0 = x(t0).

Multiply both sides by h (turning the O(h2) term into O(h3)) and rearrange, yielding:

h2

2
ẍ + O(h3) = h(f(x0 +

h

2
f(x0))) ≈ f(x)

Substituting the right hand side into equation C.3 gives the update formula:

x(t0 + h) = x(t0) + h(f(x0 +
h

2
f(x0)))

This formula first evaluates an Euler step, then performs a second derivative evalu-

ation at the midpoint of the step, using the midpoint evaluation to update x. The

midpoint method is correct to within O(h3), but requires two evaluations of f .

APPENDIX C. EXPLICIT AND IMPLICIT EULER INTEGRATION 107

By evaluating f a few more times, we can eliminate higher and higher orders of

derivatives. The most popular procedure for doing this is a method called Runge-

Kutta of order 4 and has an error per step of O(h5). (The Midpoint method could be

called Runge-Kutta of order 2.) The formula for computing x(t0 + h) is listed below:

k1 = hf(x0, t0) (C.6)

k2 = hf(x0 +
k1

2
, t0 +

h

2
) (C.7)

k3 = hf(x0 +
k2

2
, t0 +

h

2
) (C.8)

k4 = hf(x0 + k3, t0 + h) (C.9)

x(t0 + h) = x0 +
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4 (C.10)

C.3.3 Adaptive Stepsizes

In the numerical integration, no matter what the underlying method you chose, a

major problem is how to determine a good step size. Ideally, we want to choose h as

large as possible to save CPU-time, but not so large as to give us an unreasonable

amount of error, or to induce instability. If we choose a fixed step size, we can only

proceed as fast as the ”worst” sections of x(t) will allow. What we would like to do is

to vary h as we march forward in time. We should increase h whenever will not incur

too much error. We should decrease h if we want to avoid excessive error. This is the

idea of adaptive stepsizing: varying h over the course of solving the ODE.

The basic idea of adaptive stepsizing for Euler’s method is as follows: Lets assume

we have a given stepsize h, and we want to know how much we can consider changing

it. Suppose we compute two estimates for x(t0 + h):

1. xa - we take an Euler step of size h from t0 to t0 + h

2. xb - we take two Euler steps of size h/2, from t0 to t0 + h.

Both xa and xb differ from the true value of x(t0 + h) by O(h2). That means that xa

and xb differ from each other by O(h2). As a result, we can write that a measure of

the current error e is:

e = |xa − xb|

APPENDIX C. EXPLICIT AND IMPLICIT EULER INTEGRATION 108

This gives us a convenient estimate to the error in taking an Euler step of size h.

Suppose that we are willing to have an error of as much as 10−4 per step, and that the

current error is only 10−8. Since the error goes up as h2, we can increase the stepsize

to

(
10−4

10−8
)

1
2 h = 100h

Conversely, if we currently had an error of 10−3, and could only tolerate an error of

10−4, we would have to decrease the stepsize to

(
10−4

10−3
)

1
2 h = 0.316h

Adaptive stepsizing is a highly recommended technique.

C.4 Implicit Method

Explicit methods such as Eulers method, or the midpoint method, have a difficult

time with some types of ODEs. Sometimes an ODE can become ”stiff”, in which case

explicit methods do not do a very good job of solving them.

C.4.1 Example Stiff ODE

In more complex systems which have more than one spring, step size is limited by the

largest k. One stiff spring can screw the whole system up for everyone else. Systems

that have some big ks mixed in are called stiff systems.

To understand what the meaning and cause of stiff equations is, lets first consider

an example that arises frequently in dynamics. Suppose that we have a particle,

with position (x(t), y(t)), and we want the y-coordinate to always be zero. Or in

other words, we have a particle p in a plane, the user is trying to pull the point with

the interactive ”dragging” force (fx, fy). And we try to keep the point p on the x

coordinate (which means we want the y-coordinate to always be zero). One way of

doing this is to add a component −ky(t) to ẏ(t) where k is a large positive constant.

That means we add a penalty force (0, ky) trying to keep p on the x-axis. If k is

APPENDIX C. EXPLICIT AND IMPLICIT EULER INTEGRATION 109

large enough, then the particle will never move too far away from y(t) = 0, since the

−ky(t) term always brings y(t) back towards zero.

Lets assume that there is no restriction on the x-coordinate, and that we want the

user to be able to pull the particle arbitrarily along the x-axis. So lets suppose our

differential equation over time interval is:

Ẋ(t) =
d

dt

(
x(t)

y(t)

)
=

(
−x(t)

−ky(t)

)
(C.11)

We also assume that the particle does not start exactly with y0 = 0.

Whats happening here is that the particle is strongly attracted to the line y = 0, and

less strongly towards x = 0. If we solve the ODE far enough forward in time, we

expect the particles location to converge towards (0, 0) and then stay there once it

arrives.

Now suppose we use Eulers method to solve the equation. If we take a step of size h,

we get

Xnew = X0 + hẊ(t0) =

(
x0

y0

)
+ h

(
−x0

−ky0

)
(C.12)

This yields

Xnew =

(
x0 − hx0

y0 − hky0

)
=

(
(1− h)x0

(1− hk)y0

)
(C.13)

If we look at the y component of the above equation, we see that:

ynew = (1− hk)y0

if |1− hk| > 1 then,

|ynew| > |y0|
In other words, if |1 − hk| > 1, Eulers method will not converge to an answer: each

step will result in a larger value of ynew than the last. Technically, Eulers method is

unstable for |1− hk| > 1. Thus, we better have 1− hk > −1 or hk < 2 if we hope to

converge. The largest step we can hope to take is less than 2/k.

APPENDIX C. EXPLICIT AND IMPLICIT EULER INTEGRATION 110

Now, if k is a large number, we will have to take very small steps. This means that

the particle slides towards (0, 0) excruciatingly slowly. Even though the particle may

nearly satisfy y0 = 0, we have to take such small steps that the particles progress

along the x-axis is pretty much nonexistent. Thats the embodiment of a stiff ODE.

In this case, the stiffness arises from making k very large in order to keep the particle

close to the line y = 0. Even if we use a more sophisticated explicit method such as

fourth-order Runge-Kutta, we may do a little better in the size of our steps, but we

will still have major problems.

C.4.2 Solving Stiff ODEs - Backward Euler’s Method

As we discussed in above sections, explicit methods have stiff ODE’s problem. We

have to turn to implicit methods for solutions, which is based on taking an Euler step

”backwards”.

Given a differential equation:

d

dt
X(t) = f(X(t)), (C.14)

The explicit Euler update would be:

Xnew = X0 + hf(X(t0)), (C.15)

This advances the system forward h in time.

For a stiff problem though, we change the update to be

Xnew = X0 + hf(Xnew), (C.16)

That is, we are going to evaluate f at the point we are aiming at, rather than where

we came from. So, we are looking for a Xnew such that f points directly back at

where we came from. Unfortunately, we can not in general solve for Xnew, unless f

happens to be a linear function. To cope with this, we will replace f(Xnew) with a

linear approximation, again based on f ’s Taylor series.

Lets define ∆X by ∆X = Xnew −X0 and rewrite equation C.16 as:

X0 + ∆X = X0 + hf(X0 + ∆X). (C.17)

APPENDIX C. EXPLICIT AND IMPLICIT EULER INTEGRATION 111

or just

∆X = hf(X0 + ∆X). (C.18)

Next, lets approximate f(X0 + ∆X) by

f(X0) + f ′(X0)∆X. (C.19)

(Note that since f(X0) is a vector, the derivative f ′(X0) is a matrix). Using this

approximation, we can approximate ∆X with

∆X = h(f(X0) + f ′(X0)∆X) (C.20)

or

∆X − hf ′(X0)∆X = h(f(X0) (C.21)

Rewriting this as

(
I

h
− f ′(X0))∆X = f(X0) (C.22)

where I is the identity matrix, we can solve for ∆X as

∆X = (
I

h
− f ′(X0))

−1f(X0) (C.23)

Computing Xnew = X0 + ∆X is clearly more work than using an explicit method,

since we have to solve a linear system at each step. For many types of problems, the

matrix f ′ will be sparse for example, if we are simulating a spring-lattice, f ′ will have

a structure which matches the connectivity of the particles. As a result, it is usually

possible to solve equation C.23 in linear time (i.e. time proportional to the dimension

of X).

Lets apply the implicit method to equation C.11. We have that f(X(t)) is

f(X(t)) =

(
−x(t)

−ky(t)

)
. (C.24)

Differentiating with respect to X yields

f ′(X(t)) =
∂

∂X
f(X(t)) =

(
−1 0

0 −k

)
. (C.25)

APPENDIX C. EXPLICIT AND IMPLICIT EULER INTEGRATION 112

Then the matrix I
h
− f ′(X0) is

I

h
− f ′(X0) =

(
1
h

+ 1 0

0 1
h

+ k

)
=

(
1+h

h
0

0 1+hk
h

)
(C.26)

Inverting this matrix, and multiplying by f(X0) yields

∆X =

(
1+h

h
0

0 1+hk
h

)−1 (
−x0

−ky0

)
(C.27)

=

(
h

1+h
0

0 h
1+hk

)(
−x0

−ky0

)
(C.28)

= −
(

h
1+h

x0

h
1+hk

ky0

)
(C.29)

What is the limit on the stepsize in this case? The answer is: there is no limit! In

this case, if we let h grow to infinity, we get

lim
h−>∞

∆X = lim
h−>∞

−
(

h
1+h

x0

h
1+hk

ky0

)
= −

(
x0

1
k
ky0

)
= −

(
x0

y0

)
. (C.30)

This means that we achieve Xnew = X0 + (−X0) in a single step! For a general stiff

ODE, we won’t be able to take steps of arbitrary size, but we will be able to take

much larger steps using an implicit method than using an explicit method. The extra

cost of solving a linear equation is more than made up by the time saved by taking

large timesteps.

C.4.3 Solving Second-Order Equations

Most dynamics problems are written in terms of a second-order differential equation

as follows:

ẍ(t) = f((x)(t), ẋ(t)). (C.31)

This equation can be easily converted to a first-order differential equation by adding

new variables. If we define v = ẋ, then we can rewrite above equation as:

APPENDIX C. EXPLICIT AND IMPLICIT EULER INTEGRATION 113

d

dt

(
x(t)

v(t)

)
=

(
v(t)

f(x(t),v(t))

)
. (C.32)

which is a first-order system. However, applying the backward Euler method to above

equation results in a linear system of size 2n × 2n where n is the dimension of x. A

fairly simple transformation allows us to reduce the size of the problem to solving an

n×n linear system instead. We can do this simply by introducing more variables. The

n × n system that needs to be solved is derived as follows. Let us simplify notation

by writing x0 = x(t0) and v0 = v(t0). We also define ∆x = x(t0 + h) − x(t0) and

∆v = v(t0 +h)−v(t0). The backward Euler update, applied to equation C.32, yields:

(
∆x

∆v

)
= h

(
v0 + ∆v

f(x0 + ∆x,v0 + ∆v)

)
. (C.33)

Applying a Taylor series expansion to f which in this context is a function of both

x and v yields the first-order approximation:

f(x0 + ∆x,v0 + ∆v) = f0 +
∂f

∂x
∆x +

∂f

∂v
∆v (C.34)

In this equation, the derivative ∂f
∂x

is evaluated for the state (x0,v0) and similarly for
∂f
∂v

. Substituting this approximation into equation C.33 yields the linear system:

(
∆x

∆v

)
= h

(
v0 + ∆v

f0 + ∂f
∂x

∆x + ∂f
∂v

∆v

)
. (C.35)

Taking the bottom row of equation C.35 and substituting ∆x = h(v0 + ∆v)yields

∆v = h(f0 +
∂f

∂x
h(v0 + ∆v) +

∂f

∂v
∆v) (C.36)

Letting I denote the identity matrix, and regrouping, we obtain

(I− h
∂f

∂v
− h2 ∂f

∂x
)∆v = h(f0 + h

∂f

∂x
v0) (C.37)

which we then solve for ∆v. Given ∆v, we trivially compute ∆x = h(v0 + ∆v).

APPENDIX C. EXPLICIT AND IMPLICIT EULER INTEGRATION 114

The above discussion assumes that the function f has no direct dependence on time;

in the case that f varies directly with time (for example, if f describes time-varying

external forces, or references moving points or coordinate frames that are not variables

of x) then equation C.37 needs an additional term to account for this dependence:

(I− h
∂f

∂v
− h2 ∂f

∂x
)∆v = h(f0 + h

∂f

∂x
v0 +

∂f

∂t
) (C.38)

Bibliography

[1] H. Wakamatsu, E. Arai, and S. Hirai. Knotting/unknotting manipulation of
deformable linear objects. International Journal of Robotics Research, 25:371–
395, 2006.

[2] H. Wakamatsu, K. Takahashi, and S. Hirai. Dynamic modeling of linear object
deformation based on differential geometry coordinates. In Proceedings of the
2005 IEEE International Conference on Robotics and Automation, pages 1028–
1033, 2005.

[3] J. Takamatsu, T. Morita, K. Ogawara, H. Kimura, and K. Ikeuchi. Representa-
tion for knot-tying tasks. In IEEE Transactions on Robotics, volume 22, pages
65–78, 2006.

[4] M. Saha and P. Isto. Motion planning for robotic manipulation of deformable
linear objects. In Proceedings 2006 IEEE International Conference on Robotics
and Automation, pages 2478–2484, 2006.

[5] D. Pai. Strands: Interactive simulation of thin solids using cosserat models. In
Proceedings of Eurographics’02, pages 347–352, 2006.

[6] C. Wang, A.M.D. Richardson, D. Liu, R. Rosing, R. Tucker, and B. De Masi.
Construction of nonlinear dynamic mems component models using cosserat the-
ory. In Proc. SPIE Design, Test, Integration & Packaging of MEMS Symposium,
pages 131–136, 2003.

[7] D. Q. Cao, D. Liu, and C. H.-T. Wang. Three dimensional nonlinear dynamics
of slender structures: Cosserat rod element approach. International Journal of
Solids and Structures, 43:760–783, 2006.

[8] M. Grégoire and E. Schömer. Interactive simulation of one-dimensional flexi-
ble parts. In Proceedings of the 2006 ACM symposium on Solid and physical
modeling, pages 95–103, 2006.

115

BIBLIOGRAPHY 116

[9] J. Phillips, A. Ladd, and L.E. Kavraki. Simulated knot tying. In IEEE Interna-
tional Conference on Robotics and Automation, pages 841–846, 2002.

[10] B. Kahl and D. Henrich. Manipulation of deformable linear objects: Force-based
simulation approach for haptic feedback. In 12th International Conference on
Advanced Robotics (ICAR 2005), 2005.

[11] F. Wang, E. Burdet, A. Dhanik, T. Poston, and C. L. Teo. Dynamic thread for
real-time knot-tying. In Proceedings of the First Joint Eurohaptics Conference
and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator
Systems, 2005.

[12] M. LeDuc, S. Payandeh, and J. Dill. Toward modeling of a suturing task. In
Graphics Interface (GI), pages 273–279, 2003.

[13] J. Brown, K. Montgomery, J-C. Latombe, and M. Stephanides. A microsurgery
simulation system. In Medical Image Computing and Computer Aided Interven-
tions, 2001.

[14] R.W. Webster, D.I. Zimmerman, B.J. Mohler, M.G. Melkonian, and R.S. Haluck.
A prototype haptic suturing simulator. In J.D. Westwood, H.M. Hoffman, G.T.
Mogel, and D. Stredney, editors, Medicine Meets Virtual Reality, pages 567–569,
2001.

[15] P. Marshall, S. Payandeh, and J. Dill. Suturing for surface meshes. In Proceedings
of the 2005 IEEE International Conference on Control Applications, pages 25–30,
2005.

[16] P. Marshall, S. Payandeh, and J. Dill. A study on haptic rendering in a simu-
lated surgical training environment. In Proceedings of the Symposium on Haptic
Interfaces for Virtual Environment and Teleoperator Systems (HAPTICS’06),
volume 00, page 35, 2006.

[17] J. Berkley, G. Turkiyyah, D. Berg, M. Ganter, and S. Weghorst. Real-time finite
element modeling for surgery simulation: An application to virtual suturing. In
IEEE Transactions on Visualization and Computer Graphics, volume 10, pages
314–325, 2004.

[18] J. Berkley, S. Weghorst, H. Gladstone, G. Raugi, D. Berg, and M. Ganter.
Banded matrix approach to finite element modeling for soft tissue simulation.
Virtual Reality: Research, Development,and Application, 4:203–212, 1999.

[19] M. LeDuc, S. Payandeh, and J. Dill. Toward modeling of a suturing task. In In
Graphics Interface’03 Conference, pages 273–279, 2003.

BIBLIOGRAPHY 117

[20] R. V O’toole, R. R Playter, T. M. Krummer, W. C. Blank, N. H. Conelius,
W. R Roberts, W. J Bell, and M. Raibert. Measuring and developing suturing
technique with a virtual reality surgical simulator. Journal of the American
College of Surgeons, pages 114–127, 1999.

[21] L. L. Lian and Y. H. Chen. Haptic surgical simulation: An application to virtual
suture. In Computer-Aided Design & Applications, volume 3, pages 203–210,
2006.

[22] L. Moody, C. Baber, and T.N. Arvanitis. The role of haptic feedback in the
training and assessment of surgeons using a virtual environment. In EuroHaptics
2001, 2001.

[23] D. Terzopoulos and K. Waters. Physically-based facial modeling, analysis, and
animation. Journal of Visualization and Computer Animation, pages 73–80,
1990.

[24] D. T. Chen and D. Zeltzer. Pump it up: Computer animation of a biome-
chanically based model of muscle using the finite element method. In Computer
Graphics, volume 2, pages 89–98, 1992.

[25] M. Bro-Nielsen and S. Cotin. Real-time volumetric deformable models for surgery
simulation using finite element and condensation. In EUROGRAPHICS’96, vol-
ume 15, pages 57–66, 1996.

[26] D. Hutchinson, M. Preston, and T. Hewitt. Adaptive refinement for mass/spring
simulation. In In 7th Eurographics Workshop on Animation and Simulation,
pages 31–45, 1996.

[27] H. Zhang, S. Payandeh, and J. Dill. On cutting and dissection of virtual
deformable objects. In Proceedings 2004 IEEE International Conference on
Robotics and Automation (ICRA ’04), pages 3908–3913, 2004.

[28] J.J. Cha and S. Payandeh. Interactive cross cutting. In 2007 IEEE International
Conference on Robotics and Automation (ICRA ’07), pages 2576–2581, 2007.

[29] S. Payandeh and N. Azouz. Finite elements, mass-spring-damper systems and
haptic rendering. In Proceedings of IEEE International Symposium on Compu-
tational Intelligence in Robotics and Automation, pages 224–230, 2001.

[30] M. de Pascale, G. de Pascale, D. Prattichizzo, and F. Barbagli. A gpu-friendly
method for haptic and graphic rendering of deformable objects. In Proceedings
of Eurohaptics 2004, 2004.

BIBLIOGRAPHY 118

[31] C. J. Luciano, P. P. Banerjee, and S. H. R. Rizzi. Gpu-based elastic-object
deformation for enhancement of existing haptic applications. In Proceedings of the
3rd Annual IEEE Conference on Automation Science and Engineering Scottsdale,
2007.

[32] J. Mosegaard, P. Herborg, and T.S. Srensen. A gpu accelerated spring-mass
system for surgical simulation. In Medicine Meets Virtual Reality 13, 2005.

[33] T. S. SÿRENSEN and J. Mosegaard. Haptic feedback for the gpu-based surgical
simulator. In Medicine Meets Virtual Reality 14, 2006.

[34] E. Moncls, I. Navazo, and Pere-Pau Vzquez. Mtcut: Gpu-based marching tetra
cuts. In Ik Soo Lim and David Duce, editors, EG UK Theory and Practice of
Computer Graphics, 2007.

[35] J.E. Colgate, M.C. Stanley, and J.M. Brown. Issues in the haptic display of tool
use. In Intelligent Robots and Systems 95, 1995.

[36] X. Provot. Deformation constraints in a mass-spring model to describe rigid cloth
behavior. In Graphics Interface ’95, pages 147–154, 1995.

[37] Inc. SensAble Technologies. Open haptics toolkit version 2.0 programmer’s guide,
2005.

[38] Inc. SensAble Technologies. Openhaptics toolkit version 2.0 api reference, 2005.

[39] J.Brown, J.Latombe, and K.Montgomery. Real-time knot tying simulation. The
Visual Computer: International Journal of Computer Graphics, pages 165–179,
2004.

[40] R. Bridson, R. Fedkiw, and J. Anderson. Robust treatment of collisions, contact
and friction for cloth animation. In Proceedings of the 29th annual conference on
Computer graphics and interactive techniques, pages 594–603, 2002.

[41] M. Meyer, G. Debunne, M. Desbrun, and A. H. Barr. Interactive animation of
cloth-like objects for virtual realiy. The Journal of Visualization and Computer
Animation, 2001.

[42] S. Payandeh, J. Dill, and Z. Cai. On interacting with physics-based models of
graphical objects. In Robotica, volume 22, pages 223–230, 2004.

[43] H. F. Shi and S. Payandeh. Real-time knotting and unknotting. In 2007 IEEE
International Conference on Robotics and Automation (ICRA ’07), pages 2570–
2575, 2007.

BIBLIOGRAPHY 119

[44] M. Gross and H. Pfister. Point-based graphics. In The Morgan Kaufmann Pub-
lishing, 2005.

[45] S. Payandeh, J. Dill, and J. Zhang. A study of level-of-detail in haptic rendering.
In ACM transaction for Applied Perception, volume 2, pages 15–34, 2005.

[46] H. F. Shi and S. Payandeh. Gpu in haptic rendering of deformable objects.
In Haptics: Perception, devices and scenarios, Proceedings of 6th International
Conference, Eurohaptics 2008, pages 163–168, 2008.

[47] H. F. Shi and S. Payandeh. On suturing simulation with haptic feedback. In Hap-
tics: Perception, devices and scenarios, Proceedings of 6th International Confer-
ence, Eurohaptics 2008, pages 599–608, 2008.

