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Abstract

We study the properties of regular structures of lines, such as equiangular sets of lines

and mutually unbiased bases (MUBs) in a general setting that includes real, complex and

quaternionic spaces. We formulate a common generalization of several results in real and

complex spaces that also hold in the quaternionic space.

A set of lines is called equiangular if the angle between each pair is the same. A set

of MUBs is a collection of orthonormal bases such that the angle between vectors from

different bases is constant. Regular structures of lines have been studied in several fields

such as digital communication, quantum computing, discrete mathematics and analysis.

Our new concept of a multipartite equiangular set of lines is a common generalization

of equiangular lines and MUBs. We prove a bound on the size of such set of lines, which

generalizes the well-known absolute upper bounds.

The existence of d + 1 MUBs in Cd is only known for prime power dimensions. We

study sets of d+ 1 MUBs that are the union of a standard basis and an orbit of the Weyl-

Heisenberg group. As an example, we construct such MUBs in prime power dimensions.

We also show connections between spherical 2-designs and other structures of lines.

Fiducial vectors have been widely used to construct large sets of equiangular lines. A

complex vector is fiducial if its orbit under a Weyl-Heisenberg group is an equiangular set

of d2 lines. We give a new characterization of fiducial vectors, one that simplifies and

significantly reduces the number of equations that must be solved to find a fiducial vector.

We consider some possible classes of fiducial vectors and prove several nonexistence results.

For example, using our new characterization we prove that the construction of fiducial

vectors in small prime dimensions by Appleby (2005) essentially does not generalize.

Finally, we give some methods for constructing equiangular sets of lines in complex and

quaternionic spaces. We also find numerical fiducial vectors with high precision in Cd, d ≤ 21.
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“Once upon a time there was a sensible straight line who was hopelessly in love with a

dot. ‘You’re the beginning and the end, the hub, the core and the quintessence,’ he told

her tenderly, but the frivolous dot wasn’t a bit interested, for she only had eyes for a wild

and unkempt squiggle who never seemed to have anything on his mind at all. All of the

line’s romantic dreams were in vain, until he discovered . . . angles! Now, with newfound

self-expression, he can be anything he wants to be – a square, a triangle, a parallelogram

.... And that’s just the beginning!”

— The Dot and the Line: A Romance in Lower Mathematics, Juster Norton, 1963
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Chapter 1

Introduction

A line in a vector space is a one-dimensional subspace. Each line may be represented by

a unit vector spanning that line and we will often identify a set of lines with a set of unit

vectors that span these lines. The cosine of the angle between two lines is the absolute

value of the inner product of the two vectors that represent the lines. A set of lines is

called equiangular if the angle between each pair is the same. A set of mutually unbiased

bases (MUBs) is a collection of orthonormal bases such that the angle between vectors from

different bases is constant. Finding large sets of lines with few angles between the pairs is

generally a difficult problem. Regular structures of lines, in particular equiangular sets of

lines, have been studied (under various names) in several fields such as discrete geometry,

combinatorics, harmonic analysis, frame theory, the theory of communication sequences,

coding theory and quantum information theory. Unfortunately, due to the usage of different

terminology and the lack of communication between these groups, many results have been

rediscovered independently. In this section, we will give a brief overview of the development

of regular structures of lines in the last 60 years.

1.1 Historical Background

In 1948, Haantjes [43] initiated the investigations of equiangular sets of lines in real spaces,

using the elliptic geometry terminology. In particular, he proved that the 6 main diagonals

of the icosahedron are equiangular and no bigger equiangular set of lines exists in R3 as

well as in R4 (see Figure 1.1). His work was carried on for many years by his student,

Johan Jacob Seidel (1919–2001). In 1966 van Lint and Seidel [78] made more contributions

1
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Figure 1.1: The six main diagonals of the icosahedron are equiangular.

on equiangular sets of lines in real spaces and proved that the maximum number of such

lines in R5,R6 and R7 is 10, 16 and at least 28, respectively. Later, they proved that the

maximum number of such lines in R7 is 28. They also gave an upper bound, known as

the relative bound, on the size of an equiangular set of lines with a predetermined angle.

In 1970s, Seidel and others published important papers on this topic and also gave several

characterizations of equiangular sets of lines in real spaces in terms of switching classes

of graphs and regular two-graphs. They also constructed such sets of lines using strong

and strongly regular graphs, projective and affine planes and residual Steiner triple systems

(a block design obtained from a Steiner triple system by discarding all the triples that

contain a fixed element). We refer the reader to “Geometry and Combinatorics, Selected

Works of J. J. Seidel” [71] for a collection of papers on this topic.

One of the fundamental pieces of work on equiangular sets of lines in real spaces is

the work of Lemmens and Seidel [59]. This paper is a great survey on equiangular sets

of lines in real spaces. Using the point-line incidence matrix of a projective plane, they

proved that, roughly speaking, there are equiangular sets of d3/2 lines in Rd. They also

determined the maximum cardinality of a set of lines in Rd where the absolute value of

the inner product of each pair is 1/3. In general, the size of an equiangular set of lines in

a d-dimensional real (as well as complex and quaternionic) space is O(d2) (see Theorem 2.8).

In 2000, de Caen [26] gave a construction of equiangular sets of 2(d+1)2/9 lines in Rd when

d = 3 · 22t−1 − 1, t ∈ N. This is the only known construction in which the number of lines

is quadratic in the dimension. As a result, this construction gives equiangular sets of Θ(d2)

lines in Rd for all d and solves the problem in real (as well as complex and quaternionic)

spaces asymptotically. Another fundamental article is the work of Delsarte, Goethals, and

Seidel [28] on spherical codes and designs. They explore the connections with spherical

geometry and harmonic analysis.
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The birth of equiangular sets of lines in complex spaces happened in another article of

Delsarte, Goethals, and Seidel [27], where they derived bounds on the cardinality of sets of

lines having a prescribed number of angles. In particular, they proved that the maximum

cardinality of an equiangular set of lines in Cd is d2. They also claimed that this upper

bound is realized for d = 2 and d = 3 without giving any details (they refer the reader to

Mitchell [61] and Coxeter [23] for more details). It is also mentioned in their paper that sets

of lines with few angles that achieve a certain bound sometimes provide a combinatorial

setting for interesting simple groups. In 1981, Hoggar [45] found a quaternionic 4-polytope,

derived from a group generated by reflections. Using a computer calculation he showed that

the vertices of the polytope give rise to an equiangular set of 64 lines in C8. Seventeen

years later, he verified his calculations by hand in a short note [46]. Using difference sets,

König [58] constructed an equiangular set of d2 − d+ 1 lines in Cd with the largest possible

angle when d − 1 is prime. Later, Xia, Zhou, and Giannakis [84] noticed that König’s

construction works whenever d− 1 is a prime power.

After the work of Delsarte, Goethals, and Seidel [27], there seems to be no major progress

on the problem of finding equiangular sets of lines in complex spaces until Zauner [85]

introduced the problem in the quantum information theory setting in his PhD thesis in

1999. He conjectured that equiangular sets of d2 lines exist for every dimension d as an

orbit of a line under a group isomorphic to Zd×Zd. We will precisely describe this method

in Section 1.6. Zauner gave an explicit construction of such orbits for every d ≤ 5. Since

then the problem has attracted a great deal of attention among the quantum information

theorists and it has been widely conjectured that for every d, equiangular sets of d2 lines

in Cd exist. In 2003, Renes, Blume-Kohout, Scott and Caves [66] gave some support for

Zauner’s conjecture by finding numerical solutions for d ≤ 45. It may be argued however

that their numerical solutions, which are floating point numbers with only 10 decimal digits,

are not strong evidence to support the conjecture. They also found all Zd × Zd-orbits of

equiangular sets of lines in Cd for d ≤ 4 and gave the number of such non-isomorphic orbits

of equiangular sets of lines for d ≤ 7 based on numerical methods. In 2005, Appleby [4]

gave an explicit construction of Zd × Zd-orbits of equiangular sets of lines for dimensions 7

and 19. Even though it is not obvious that the given constructions are indeed equiangular

sets of lines, none of the mentioned articles [66, 4] provide a proof. We will investigate these

constructions in more details in Chapter 3 and provide concise proofs.

Another interesting regular structure of lines is a set of mutually unbiased bases (MUBs),
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a union of orthonormal bases in which only 2 angles occur. It can be proved that there are at

most d+1 MUBs in Cd. A set of d+1 MUBs in Cd is called a complete set of MUBs. In 1980,

Alltop [2] was the first to find complete sets of MUBs in every prime dimension and discussed

their usefulness in communication sequences. A year later, Ivanovic [50] independently found

complete sets of MUBs in all prime dimensions in the context of quantum applications. In

1989, Wootters and Fields [83] extended Alltop’s construction to complete sets of MUBs in

all prime power dimensions. Regardless of the appearance of hundreds of articles on MUBs

and their applications, however, up to this date, the existence of d+ 1 MUBs in Cd for any

non-prime power d is unknown. To name a few such articles, we refer to Klappenecker and

Rötteler [54, 55], Grassl [41], Bengtsson et al. [12], Klimov et al. [57], and Aschbacher et

al. [6].

Many authors have also investigated the connections between MUBs and other combina-

torial objects. For example, Calderbank, Cameron, Kantor, and Seidel [17] constructed com-

plete sets of MUBs using symplectic spreads and Kerdock codes; Bandyopadhyay, Boykin,

Roychowdhury, and Vatan [8] constructed complete sets of MUBs using the eigenvectors of

the Weyl-Heisenberg group; and Boykin, Sitharam, Tiep, and Wocjan [16] showed an impor-

tant connection between MUBs and orthogonal decompositions of Lie algebras into Cartan

subalgebras. Recently, Shparlinski and Winterhof [74] constructed approximate complete

sets of MUBs in many non-prime power dimensions based on finite fields and also elliptic

curves. Prior to that article, Klappenecker et al. [56] also constructed several approximate

complete sets of MUBs. They relaxed the definition of MUBs in several different ways. Real

MUBs may not be as interesting as the complex MUBs as there are at most 3 MUBs in

most dimensions (see Boykin, Sitharam, Tarifi, and Wocjan [15]).

Spherical designs are another example of regular structure of lines. Recall that each

line may be presented by a unit vector or equivalently a point on the unit sphere. Let

Sd−1 denote the unit sphere in Rd. A spherical t-design is a finite set L of points on Sd−1

such that the average value of any homogenous polynomial f of degree at most t on L
is equal to the average value of f on the entire sphere Sd−1. If t is the largest integer

for which L is a t-design, it is said that L approximates the sphere with strength t. An

interesting example is a truncated icosahedron, the football, which approximates S2 with

strength 5 [39]. The football comprises 12 regular pentagonal faces (the black faces on the

football) and 20 regular hexagonal faces (the white faces on the football). It has 60 vertices

and 90 edges (see Figure 1.2). In 1981, Goethals and Seidel [39] noted that the football
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Figure 1.2: The football.

does not give the best approximation of the sphere among truncated icosahedrons. They

showed that there exists another truncated icosahedron (whose faces are regular pentagons

and non-regular hexagons) that approximates S2 with strength 9. Generally, given d and t

it is a difficult problem to find a spherical t-design on Sd−1 with a small number of points.

In 1984, Seymour and Zaslavsky [73] proved that given t and d there exists a number N(d, t)

such that for every n ≥ N(d, t) there exists a spherical t-design of n points on Sd−1.

It can be shown [81] that any spherical t-design L minimizes the t-energy defined by

Et(L) =
∑

v,w∈L |〈v,w〉|2t but the converse is generally not true. Recently, Cohn and

Kumar [20] considered a broader class of energies. They noted that many of the previously

known configurations of points on Sd−1 ⊂ Rd that minimize a certain energy function, in

fact, minimize a far broader class of energies. One of their main results is that any spherical

(2m − 1)-design in Rd in which only m distinct inner products occur between the pairs

minimizes any potential energy ∑
v,w∈L,v 6=w

f
(
|v −w|2

)
,

where f : (0, 4]→ [0,∞) is a C∞ mapping that is completely monotonic, i.e. (−1)kf (k)(x) ≥
0 for all x ∈ (0, 4] and k ≥ 0. Note that for any two distinct points v,w ∈ Sd−1, we have

0 < |v − w|2 ≤ (|v| + |w|)2 ≤ 4. An interesting example of such configuration is the set

of points (together with their antipodal points) on the unit sphere in R23 obtained from

the equiangular set of
(
23+1

2

)
= 276 lines in R23 (see [38] for a thorough description of

this set). This is a set of 552 points on the 23-dimensional unit sphere that is a spherical

5-design in which only three inner products occur: −1,±1/5. Other intriguing examples

are: the minimal vectors in the E8 root lattice, a spherical 7-design consisting of 240 points
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on the unit sphere in R8 so that only 4 inner products occur between the pairs; and the

minimal vectors in the Leech lattice, a set of 196560 points on the unit sphere in R24 that is

a spherical 11-design with 6 inner products occurring between the pairs. In another recent

paper, Ballinger et al. [7] report on massive computer experiments to find potential energy

minimizing sets of points on the unit sphere.

A special case of spherical designs that have been widely studied are spherical 1-designs.

In the frame theory, spherical 1-designs are called tight frames with a different, yet equiv-

alent, definition. A set of vectors C in any inner product space V is a frame if there exist

constants A,B > 0 such that A〈w,w〉 ≤
∑

v∈C |〈v,w〉|2 ≤ B〈w,w〉 holds for all w ∈ V .

The set C is a tight frame if A = B in the definition or equivalently
∑

v∈C vv∗ = AI (see

Lemma 2.30). The vertices of the five Platonic solids and the football (Figure 1.2) are ex-

amples of tight frames in R3. As Benedetto and Fickus [11] mention, frames are interesting

objects because they provide decompositions in applications such as signal processing where

bases could be costly and tight frames are valuable to ensure fast convergence of such de-

compositions (see [11] for more details). Frame theory, initiated by Duffin and Schaeffer [29]

in 1952, is a fundamental concept in non-harmonic Fourier series, signal processing, signal

detection, image processing, data compression, sampling theory, and many other applica-

tions. One of the innovative papers in this field is the work of Daubechies, Grossmann and

Meyer [25] in 1986 where they showed the role of the theory of frames in signal process-

ing. Equiangular (tight) frames have also been considered by various authors. The relative

bound is an upper bound on the cardinality of an equiangular set of lines in terms of the

dimension and the common angle. In Section 2.2.2, we will see that an equiangular tight

frame is equivalent to an equiangular set of lines that meets the relative bound. Recently,

Karla [51] studied equiangular cyclic frames. Also, Tropp [77] and Sustik et al. [76] derived

some necessary number theoretic restrictions on n and d for which an equiangular tight

frame of size n in Rd or Cd exists. Zauner [85] proved the existence of an equiangular tight

frame with 2d elements in Cd, when d is a power of 2 or d− 1 is a prime power. Renes [65]

proved the existence of equiangular tight frames of size 2d − 1 in Cd and in Cd−1, when d

is a power of 2 or 2d− 1 is a prime power that is congruent to 3 modulo 4. For a thorough

survey on frame theory, see Casazza [18].
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1.2 Outline of the Thesis

In the rest of this chapter, we present the material that is used throughout this thesis. In

particular, we investigate the required linear algebra over the quaternions. We refer the

reader to Ebbinghaus et al. [30] and Hungerford [47] for more details.

In Chapter 2, we study the properties of equiangular sets of lines and mutually unbiased

bases (MUBs) in a general setting that includes real, complex and quaternionic spaces. We

formulate a common generalization of several results in real and complex spaces that also

hold in the quaternionic space. In Section 2.1, we introduce the new notion of multipartite

equiangular set of lines which is a common generalization of an equiangular set of lines and

a set of mutually unbiased bases. We prove a bound (Theorem 2.3) on the size of such set of

lines, which generalizes the well-known absolute upper bounds. All of these generalizations

are new. In particular, to the best of our knowledge, no contribution on the quaternionic

case was made prior to this work. The existence of d + 1 MUBs in Cd is only known for

prime power dimensions. We study sets of d+1 MUBs that are the union of a standard basis

and an orbit of the (generalized) Weyl-Heisenberg group. We present a characterization of

such sets of MUBs (Theorem 2.54 and Theorem 2.57). As an example, we construct such

sets of MUBs in prime power dimensions, and classify them for d ≤ 5. In Section 2.4, we

show connections between spherical 2-designs and other structures of lines. In particular,

we show how one may search for a tight equiangular set of n lines in Cd for every d ≤ n ≤ d2

by minimizing a certain objective function (Theorem 2.71).

A complex vector is fiducial if its orbit under a Weyl-Heisenberg group of order d3

represents an equiangular set of d2 lines (see Section 1.6 for the details). Several authors

(primarily physicists) have used fiducial vectors to construct large sets of equiangular lines.

In Chapter 3, we thoroughly study fiducial vectors. We give a new characterization of fiducial

vectors (Theorem 3.3). This result significantly reduces the number of equations that must

be solved to find a fiducial vector. In the rest of Chapter 3, we consider some possible

classes of fiducial vectors and use our characterization to prove several nonexistence results.

For example, we prove that the construction of fiducial vectors in small prime dimensions

by Appleby [4] does not generalize to other prime dimensions except for possibly a set with

relative density zero in the set of primes that are congruent to 3 modulo 4 (Theorem 3.11).

Finally, we give some methods for constructing equiangular sets of lines in complex

and quaternionic spaces. In particular, we show how to construct equiangular sets of lines
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using the well-studied conference and Hadamard matrices (Section 4.3) and how the Hopf

mapping (well-known in homotopy theory) can be applied to construct equiangular sets of

lines in the quaternionic space H2 (Section 4.4.3).

1.3 Composition Algebras

In order to work with structures of lines in a general setting that includes real, complex and

quaternionic spaces, we briefly study composition algebras and present Hurwitz’s classical

theorem in this section.

Definition 1.1. A vector space V over R equipped with a multiplication V × V → V ,

(x, y) 7→ xy is said to be an algebra over R or an R-algebra if the two distributive laws

(αx+ βy)z = α(xz) + β(yz), z(αx+ βy) = α(zx) + β(zy)

hold for all α, β ∈ R and all x, y, z ∈ V . In particular, the relations α(xy) = (αx)y = x(αy)

are always valid.

If the associative law x(yz) = (xy)z holds for all x, y, z ∈ V , then the algebra is said

to be associative; if the commutative law xy = yx holds for all x, y ∈ V , then we speak

of a algebra!commutative. Under these definitions an R-algebra is, in general, neither asso-

ciative nor commutative. An element e ∈ V is called an identity element of the algebra, if

xe = ex = x for all x ∈ V . If such an element exists, then it is unique and is denoted by 1V .

The dimension of the R-vector space V is called the dimension of an algebra and is denoted

by dimR V .

Example 1.2. Two R-algebras are presented in this example.

(a) The R-vector space of all real (complex) numbers is a 1- (respectively 2-) dimensional,

associative and commutative R-algebra with an identity element.

(b) For n > 1, the R-vector space of all real (complex) n × n matrices is an n2- (respec-

tively 2n2-) dimensional, associative and non-commutative R-algebra with an identity

element.

Definition 1.3. An R-algebra V 6= {0} with an identity element is called a composition

algebra if it is equipped with a norm | | : V → R satisfying |xy| = |x| |y| for all x and y in V .
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Remark. Generally, in the definition of a composition algebra, the existence of an identity

element is not assumed. Since we only work with composition algebras that have an identity

element, we have assumed its existence in Definition 1.3.

An algebra V is a division algebra if xy 6= 0 for all x and y in V \ {0}. Since |x| > 0

for any x ∈ V \ {0}, it follows that a composition algebra is always a division algebra.

A composition algebra is sometimes called a normed division algebra.

While the definition allows composition algebras to be infinite-dimensional, this, in fact,

does not occur. In 1898, Hurwitz [48] proved that there are only four composition algebras.

This is a classical result that may be found in various articles and books (for example see [22,

page 72]).

Theorem 1.4. (Hurwitz) The only composition algebras (up to isomorphism) are the real

numbers R, the complex numbers C, the quaternions H, and the octonions O.

Here, we look at these four composition algebras in more detail:

(a) The real numbers: The vector space of all real numbers R is a commutative asso-

ciative composition algebra with the ordinary absolute value function as its norm.

(b) The complex numbers: Let C = R(i), where i2 = −1. That is, every element in

C is of the form a + bi, where a, b ∈ R. The conjugate of an element x = a + bi ∈ C
is x = a − bi. The mapping | | : C → R given by |x| = (xx)1/2 =

(
a2 + b2

)1/2 defines

a norm on C. The real part of x is a and it is denoted by <(x). Also, note that {1, i}
is a basis for the R-vector space C. The complex numbers C form a commutative and

associative composition algebra.

(c) The quaternions: Let H be the set of elements of the form a + bj or a1 + a2i +

a3j + a4ij, where i2 = j2 = −1, ij = −ji, a, b ∈ C and a1, a2, a3, a4 ∈ R. The sum

and product of two elements a + bj and a′ + b′j is defined by (a + a′) + (b + b′)j

and (aa′ − bb′) + (ab′ + a′b)j, respectively. The conjugate of an element x = a1 +

a2i + a3j + a4ij ∈ H is x = a1 − a2i − a3j − a4ij, the mapping | | : H → R given by

|x| = (xx)1/2 =
(∑4

i=1 a
2
i

)1/2
defines a norm for H, the real part of x is a1 and it is

denoted by <(x), and {1, i, j, ij} is a basis for the R-vector space H. Every non-zero

x ∈ H has a multiplicative inverse, namely x−1 = x/|x|2, such that xx−1 = x−1x = 1.

The quaternions H form a non-commutative and associative composition algebra.
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(d) The octonions: Let O be the set of elements of the form a+bk or a1+a2j+a3k+a4jk

or b1 +b2i+b3j+b4ij+b5k+b6ki+b7kj+b8k(ij), where i2 = j2 = k2 = −1, ij = −ji,
ik = −ki, kj = −jk, i(jk) = −(ij)k, j(ki) = −(jk)i, k(ij) = −(ki)j, a, b ∈ H,

a1, a2, a3, a4 ∈ C, and b1, . . . , b8 ∈ R. The sum and product of two elements a+bk and

a′+ b′k is defined by (a+a′) + (b+ b′)k and (aa′− bb′) + (ab′+a′b)k, respectively. The

conjugate of an element x = b1 + b2i+ · · ·+ b8k(ij) ∈ O is x = b1− b2i− · · · − b8k(ij),

the mapping | | : O→ R given by |x| = (xx)1/2 =
(∑8

i=1 b
2
i

)1/2
defines a norm on O,

the real part of x is b1 and is denoted by <(x), and {1, i, j, ij, k, ki, kj, k(ij)} is a basis

for the R-vector space O. The octonions O form an 8-dimensional non-commutative

and non-associative composition algebra.

We have the following useful identities that are easy to prove (for example see [30]).

Lemma 1.5. For any x and y in a composition algebra, we have

<(xy) = <(yx), x y = y x, x x = xx = |x|2.

Definition 1.6. Throughout this thesis, A denotes an associative composition algebra. That

is, A stands for R,C or H.

By dimR A we mean the dimension of A as an R-vector space. Notice that dimR R = 1,

dimR C = 2, and dimR H = 4.

1.4 Linear Algebra

In this section, we review the basics of the linear algebra over the reals and the complex

numbers and carefully generalize them to the linear algebra over the quaternions. We were

not able to find a solid reference that specifically concentrates on the linear algebra over the

quaternions. Nevertheless, Hungerford [47] contains most of the results that we need. For

the sake of completeness, we will also provide a proof whenever it is essential.

Notice that Rd and Cd are d-dimensional vector spaces over R and C, respectively. Much

of the linear algebra which works for C can be generalized to the quaternions H. However,

some care must be taken since H is not commutative. Notice that H has all of the properties

of a field except commutativity and it is therefore a division ring. Therefore, to be precise,

we should talk about H-modules rather than H-vector spaces.



CHAPTER 1. INTRODUCTION 11

Definition 1.7. Let A be an associative composition algebra. A (right) A-module is an

additive abelian group M together with a mapping M ×A→M , (m, q) 7→ mq such that for

all q, q′ ∈ A and m,m′ ∈M :

(i) (m+m′)q = mq +m′q, (ii) m(q + q′) = mq +mq′,

(iii) (mq)q′ = m(qq′), (iv) m1A = m.

Notice that R-modules and C-modules are just the familiar vector spaces over R and C,

respectively. In Hungerford [47, Chapter IV, p. 169] R-modules over a division ring R are

called R-vector spaces. This is because the usual facts on independent sets and spanning

sets in vector spaces are valid for modules over division rings. We follow the terminology

and results given in Hungerford [47, Chapter IV], however we will use the term “A-module”

rather than “A-vector space” to emphasize the difference.

In the rest of this thesis, it turns out to be most convenient to define A-modules as

right modules (i.e. applying the scalar multiplication from the right), as we already stated

in Definition 1.7. From now on, “A-module” means “right A-module”. The choice of

a right scalar multiplication will become more apparent once we define linear mappings (see

Definition 1.9) and also when we define the notion of inner product (see Definition 1.14).

We generally consider a vector as a column vector and use vT and v∗ to denote the

transpose and conjugate transpose of a vector v, respectively. The following proposition

follows immediately from Definition 1.7.

Proposition 1.8. For a given integer d ≥ 1 and an associative composition algebra A, the

set of all mappings from {0, . . . , d− 1} to A, denoted Ad, represented by

Ad = {(x0, . . . , xd−1)T : xi ∈ A},

together with the standard vector addition and the action of the scalars given by

(x0, . . . , xd−1)T q = (x0q, . . . , xd−1q)T

for any vector (x0, . . . , xd−1)T ∈ Ad and any scalar q ∈ A, is an A-module.

Let M be an A-module. An A-submodule N of M is an additive subgroup of M such

that mq ∈ N for all m ∈ N and q ∈ A. Note that N itself is an A-module. A subset

X of an A-module M is linearly independent provided that for every m1, . . . ,mk ∈ X and
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q1, . . . , qk ∈ A, we have
∑

imiqi = 0 only if q1 = · · · = qk = 0. A subset {m1, . . . ,mk}
of M spans M if every element of M can be written as

∑
imiqi for some q1, . . . , qk ∈ A.

A basis for M is a linearly independent set that spans M . Every A-module has a basis and

more generally every linearly independent subset of an A-module M is contained in a basis

of M [47, Theorem 2.4]. Any two bases of M have the same cardinality and therefore any

A-module with a basis of size d is isomorphic to Ad [47, Theorem 2.7]. The size of any

basis of an A-module M is called the dimension of M and is denoted by dimAM (in module

theory, this is usually called the rank of M , but due to the potential confusion with the

rank of a matrix that will be often used in this thesis, we will avoid this terminology).

Since O is neither commutative nor associative we will not touch the space Od, even

though it would be an interesting subject by itself. Various properties of sets of lines in real

or complex spaces that have been studied in literature are in fact true in Hd. Therefore,

wherever possible, we present the results for Ad, where A is an associative composition

algebra. However, the main emphasis of this thesis is on complex spaces.

We generally assume n ≥ d ≥ 2 are integers and mostly work with n vectors in Ad.

We use Zd to denote the ring of integers modulo d. If the indices of the coordinates of

a vector z ∈ Ad are not specified, then we are indexing the coordinates by Zd. That is, we

consider Ad as the set of all mappings from Zd to A. When there is no confusion, we will

write (zj) instead of (zj)j∈Zd
to represent z ∈ Ad. The standard basis for Ad is denoted

by {ej : j ∈ Zd}, where (ej)i = 1 if i = j and (ej)i = 0 otherwise. Let δij denote the

Kronecker delta, that is δij = 1 if i = j and δij = 0 otherwise. The d × d identity matrix

and all-ones matrix are denoted by Id and Jd, respectively. The d1 × d2 all-ones matrix is

denoted by Jd1,d2 . The all-zeroes and all-ones vector of dimension d are denoted by 0d and

1d, respetively. Whenever there is no confusion, the index d may be dropped.

Definition 1.9. Let M and M̂ be two S-modules, where S is any associative composition

algebra. An S-homomorphism or S-linear mapping A : M → M̂ is a mapping that satsfies

A(x+ y) = A(x) +A(y) and A(xq) = A(x)q for all x, y ∈M and q ∈ S.

Remark. Any S-linear mapping from M to M̂ can be represented by a d̂×d matrix over

S acting via matrix multiplication on the left, where M and M̂ are S-modules of dimensions

d and d̂, respectively (see Hungerford [47, p. 329]).

Let S ⊆ A be two associative composition algebras such that S = R or S = A. By

restricting the mapping M × A → M to M × S → M in Definition 1.7, any A-module
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M may be considered as an S-module. For example, we may consider Ad′ as an S-module

of dimension d′ · dimS A. This is because if S = R, then we may replace each of the d′

coordinates of a vector in Ad′ with dimR A real coordinates.

Now, consider Sd and Ad′ as two S-modules of dimensions d and d̂ = d′ · dimS A, respec-

tively. Any d′ × d matrix A with entries in A defines an S-linear mapping from Sd to Ad′

by mapping v ∈ Sd to Av ∈ Ad′ . Notice that A can be represented as a d̂× d matrix with

entries in S. For any d′ × d matrix A with entries in A, the kernel or nullspace of A over S
is KerS(A) = {v ∈ Sd : Av = 0} ⊆ Sd and the image or range or column space of A over

S is ImS(A) = {Av : v ∈ Sd} ⊆ Ad′ . See Hungerford [47, Corollary 2.14] for a proof of the

following lemma.

Lemma 1.10. For any d′ × d matrix A with entries in A, the sets KerS(A) and ImS(A)

are S-submodules of Sd and Ad′, respectively, and

dimS KerS(A) + dimS ImS(A) = d.

One may similarly define the row space of A and it can be shown that the dimension

of the row space is equal to dimS ImS(A), the dimension of the column space of A (see

Hungerford [47, Chapter VII, Corollary 2.5]).

Definition 1.11. The S-rank of a matrix A with entries in A, denoted rankS(A), is defined

by dimS ImS(A).

It is a classical fact that rankR(A) for any matrix A with real entries is equal to the

number of non-zero eigenvalues of A. Recall that x denotes the conjugate of an element

x ∈ A. Let AT denote the transpose of a matrix A. The conjugate transpose of a matrix

A with entries in A is denoted by A∗. For any m × n matrix A and n × p matrix B, by

Lemma 1.5, we have (AB)∗ = B∗A∗. We say that matrix A with entries in A is Hermitian

if A∗ = A.

Theorem 1.12. The set of all d × d Hermitian matrices with entries in A is an R-vector

space of dimension d+
(
d
2

)
dimR A.

Proof. For every d × d Hermitian matrix, each entry on the diagonal must be real (d free

parameters) and each of the
(
d
2

)
upper diagonal entries determines the corresponding lower

diagonal entry (
(
d
2

)
dimR A free parameters).
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Definition 1.13. We will denote the R-vector space of d×d Hermitian matrices with entries

in A by HMd(A).

Definition 1.14. The inner product of two vectors v,w ∈ Ad is defined by

〈v,w〉 =
d∑
i=1

viwi = v∗w.

The inner product has the following properties:

〈v,w〉 = 〈w,v〉, 〈vq,w〉 = q〈v,w〉, 〈v,wq〉 = 〈v,w〉q,

where v,w ∈ Ad and q ∈ A. Also 〈v,v〉 is a positive real number for any v 6= 0. The

norm of a vector v ∈ Ad is defined by |v| = 〈v,v〉1/2. For any q ∈ A and v ∈ Ad, we have

|vq| = |v||q|. This is because |vq| = 〈vq,vq〉1/2 = (q〈v,v〉q)1/2 = (〈v,v〉qq)1/2 = |v||q|.
Thus every non-zero vector v ∈ Ad can be normalized to a vector of norm 1 by multiplying

by 1/|v| ∈ A. A unit vector is a vector with norm 1.

A set of vectors {v1, . . . ,vk} in Ad is called orthonormal if 〈vi,vj〉 = δij for all i and j.

It is easy to see that any orthonormal set is linearly independent. Thus, an orthonormal set

of size d is a basis for Ad and is called an orthonormal basis. The familiar Gram-Schmidt

process for Rd and Cd, also holds in Hd [32, Theorem 4.3]. For the sake of completeness, we

give a proof.

Proposition 1.15. Suppose {v1, . . . ,vk} is an orthonormal set in Ad. Then there exist

vk+1, . . . ,vd ∈ Ad such that {v1, . . . ,vd} is an orthonormal basis for Ad.

Proof. We prove it by induction on `, where k ≤ ` ≤ d. Suppose B = {v1, . . . ,v`} is an

orthonormal set in Ad. If B spans Ad, then ` = d and we are done. Otherwise, choose a w

that is not in the span of B. Define the unit vector v`+1 = v̂`+1|v̂`+1|−1, where

v̂`+1 = w −
∑̀
i=1

vi〈vi,w〉 6= 0.

For 1 ≤ j ≤ `, we have 〈vj ,v`+1〉 = 0. This is because 〈vj ,v`+1〉 = 〈vj , v̂`+1〉|v̂`+1|−1 and

〈vj , v̂`+1〉 = 〈vj ,w〉 − 〈vj ,
∑̀
i=1

vi〈vi,w〉〉 = 〈vj ,w〉 −
∑̀
i=1

〈vj ,vi〉〈vi,w〉 = 0.



CHAPTER 1. INTRODUCTION 15

Definition 1.16. A d× d matrix U with entries in A is unitary if UU∗ = U∗U = Id.

Since AB = Id implies BA = Id (see [31, Theorem 2.24] or [86, Proposition 4.1]),

either one of the equations UU∗ = Id or U∗U = Id suffices for U to be unitary. Also,

one may easily prove that U is unitary if and only if it preserves the inner product, that is

〈Uv,Uw〉 = 〈v,w〉 for all v,w ∈ Ad (one direction is easy and to prove the other direction

note that 〈Uei,Uej〉 = 〈ei, ej〉 = δij). Note that the rows of U form an orthonormal basis.

A matrix A is positive semi-definite if A is Hermitian and 〈v,Av〉 ≥ 0 for all v ∈ Ad.

Note that 〈v,Av〉 = v∗Av = v∗A∗v = 〈Av,v〉 = 〈v,Av〉 for any Hermitian matrix A and

v ∈ Ad. Therefore 〈v,Av〉 ∈ R.

Lemma 1.17. Let A be a d × d matrix with entries in A such that 〈v,Av〉 = 0 for all

v ∈ Ad. If A = R, then AT = −A. If A 6= R, then A = 0.

Proof. For every 1 ≤ k ≤ l ≤ d, write the equation 〈v,Av〉 = v∗Av = 0 for v = ek + el.

Since ek∗Aek = el∗Ael = 0, it follows that Akl = ek∗Ael = −el∗Aek = −Alk. That

is AT = −A. If A 6= R, write the equation 〈v,Av〉 = 0 for v = ek + eli. Again, since

ek∗Aek = (eli)∗A(eli) = 0, we get Akli = ek∗A(eli) = −(eli)∗Aek = iAlk = −iAkl.

Hence, if Akl = a1 + a2i+ a3j + a4ij with a1, a2, a3, a4 ∈ R, then a1 = a2 = 0. Similarly, by

writing the equation 〈v,Av〉 = 0 for v = ek + elj and v = ek + elij, respectively, we get

a1 = a3 = 0 and a1 = a4 = 0. Thus Akl = 0.

Since AT = −A and AT = A imply A = 0, we immediately get the following.

Corollary 1.18. Let A be a d×d Hermitian matrix with entries in A such that 〈v,Av〉 = 0

for all v ∈ Ad. Then A = 0.

The trace of a square matrix A is the sum of the entries on its diagonal and is denoted

by Tr (A). The Kronecker product or tensor product of an m × n matrix A = (aij) and

a p× q matrix B is the mp× nq matrix defined by

A⊗B =


a11B · · · a1nB

...
. . .

...

am1B · · · amnB

 .

We write A⊗t to denote

t︷ ︸︸ ︷
A⊗ · · · ⊗A. For any v1,v2,w1,w2 ∈ Cd, we have

〈v1 ⊗ v2,w1 ⊗w2〉 =
∑
i,j

(v1)i(v2)j(w1)i(w2)j = 〈v1,w1〉〈v2,w2〉. (1.4.1)
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Therefore, for any v,w ∈ Cd, we have

〈v⊗t,w⊗t〉 = 〈v,w〉t. (1.4.2)

Note that the above identity is not true in Hd. The Hadamard product or Schur product of

any two m× n matrices A = (aij) and B = (bij) is the matrix

A ◦B = (aijbij).

1.5 Lines

Lines are the main objects of this thesis. In this section, we study two important matrices,

the projection matrix and the Gram matrix, that are associated to a line and a set of lines,

respectively. We also present several lemmas that will be mostly used in Chapter 2. After we

introduce the concept of equiangular set of lines in Section 2.2, we will see further properties

of the projection and Gram matrices in Section 2.2.4.

Let A denote an associative composition algebra. The span of a vector v ∈ Ad \ {0} is

the set [v] = {vq : q ∈ A}. This set is a submodule of Ad of dimension 1. The projective

space APd−1 is the set {[v] : v ∈ Ad,v 6= 0}.

Definition 1.19. A line in Ad is an element in the projective space APd−1, the set of

one-dimensional submodules of Ad.

Each element in APd−1 can be represented by a vector u in Ad with norm 1. Recall that

such a vector is called a unit vector. Note that such a representation is not unique since

any unit vector uλ with |λ| = 1 (λ ∈ A) represents the same line. In this thesis, we only

work with the unit vectors in Ad to represent a line, and we mostly work with lines which

lie in a complex space Cd, unless stated otherwise. The cosine of the angle between the lines

spanned by unit vectors v,w ∈ Ad is defined as |〈v,w〉|, the absolute value of their inner

product.

Definition 1.20. For a non-zero unit vector v ∈ Ad, the projection onto the line spanned

by v is a linear mapping denoted by Pv and given by the matrix Pv = vv∗.

Note that the above definition is well-defined. This is because, by Lemma 1.5, we have

Pvλ = (vλ)(vλ)∗ = v|λ|2v∗ = Pv for any λ ∈ A with |λ| = 1. Thus, the projection onto

a line is independent of the choice of the unit vector spanning that line. In the following
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lemma, we show that the projection matrix of a non-zero unit vector is a Hermitian matrix

with rank 1 and trace 1.

Lemma 1.21. For any non-zero unit vector v ∈ Ad, we have

(i) P2
v = Pv, (ii) P∗v = Pv, (iii) rankA(Pv) = 1, (iv) Tr (Pv) = 1.

Proof. The first two properties are easy to see. To prove (iii), notice that Pvw = 0 if

and only if v∗w = 〈v,w〉 = 0. To see the forward direction, note that Pvw = 0 implies

|v∗w|2 = w∗vv∗w = w∗Pvw = 0 and therefore v∗w = 0. The other direction is trivial.

Now, since dimA{w ∈ Ad : 〈v,w〉 = 0} = d− 1, using Lemma 1.10, we get rankA(Pv) = 1.

Finally, we have Tr (Pv) =
∑d

k=1(vv∗)kk =
∑d

k=1 vkvk =
∑d

k=1 vkvk = 〈v,v〉 = 1.

Lemma 1.22. Let V be a d× n matrix with entries in A. Then
n∑
i=1

Pvi = VV∗,

where vi is the i-th column of V.

Proof. We may write V =
∑

i viei
∗, where {e1, . . . en} is the standard basis for An. Since

ei∗ej = δij , we have VV∗ =
∑

i,j viei∗ejvj∗ =
∑

i vivi
∗ =

∑
i Pvi .

The following lemma is crucial in proving the absolute and relative upper bound on the

size of an equiangular set of lines (Theorem 2.3 and Theorem 2.13).

Lemma 1.23. For all v,w ∈ Ad, we have <(Tr (PvPw)) = |〈v,w〉|2.

Proof. We have

Tr (PvPw) =
d∑

k=1

(vv∗ww∗)kk =
d∑

k=1

(v〈v,w〉w∗)kk =
d∑

k=1

vk〈v,w〉wk.

Since <(ab) = <(ba) for any a, b ∈ A, we get

<

(
d∑

k=1

vk〈v,w〉wk

)
=

d∑
k=1

<(vk〈v,w〉wk) =
d∑

k=1

< (〈v,w〉wkvk)

= <

(
d∑

k=1

〈v,w〉wkvk

)
= <(〈v,w〉〈w,v〉) = <

(
|〈v,w〉|2

)
= |〈v,w〉|2.
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Remark. If v,w ∈ Rd or v,w ∈ Cd, then we simply have Tr (PvPw) = |〈v,w〉|2.

Analogous to the the previous lemma, we have the following.

Lemma 1.24. Given n × n matrices A and B with entries in A, we have < (Tr (AB)) =

< (Tr (BA)).

Proof. We have

< (Tr (AB)) = <
( n∑
i=1

n∑
j=1

Ai,jBj,i

)
=

n∑
i=1

n∑
j=1

< (Ai,jBj,i) ,

and

< (Tr (BA)) = <
( n∑
j=1

n∑
i=1

Bj,iAi,j

)
=

n∑
j=1

n∑
i=1

< (Bj,iAi,j) ,

Since <(ab) = <(ba) for any a, b ∈ A, we get < (Tr (AB)) = < (Tr (BA)).

Here, we present another lemma that will be useful in Chapter 2.

Lemma 1.25. Suppose G is an n×n matrix with entries in A such that G2 = (n/d)G and

<(Tr (G)) = n. Then rankA(G) = d.

Proof. Let rankA(G) = k. Hence ImA(G) is isomorphic to Ak. By Proposition 1.15, assume

{v1, . . . ,vk} is an orthonormal basis for ImA(G). Let U be the matrix whose columns are

v1, . . . ,vk. Since (G − (n/d)In)G = 0, we have ImA(G) = KerA(G − (n/d)In). Hence

Gvi = (n/d)vi for 1 ≤ i ≤ k, that is GU = (n/d)U. It follows that

U∗GU =
n

d
U∗U =

n

d
Ik.

By taking the real part of the trace of both sides and using Lemma 1.24, we get

n = < (Tr (G)) = < (Tr (UU∗G)) = < (Tr (U∗GU)) = <
(

Tr
(n
d

Ik
))

=
n

d
· k.

Hence d = k.

A Gram matrix of a set of vectors in a vector space equipped with an inner product is

a very useful object. We will further discuss the properties of this matrix in Section 2.2.4.

However, since we need its basic properties in the proof of Theorem 2.3, we briefly study its

properties here.
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Definition 1.26. A Gram matrix of a set of vectors {v1, . . . ,vn} in Ad is defined by

G = (〈vi,vj〉)1≤i,j≤n.

Since we work with column vectors, we may write

G = V∗V,

where V is the d× n matrix with the n vectors as its columns.

It follows that G∗ = G and 〈z,Gz〉 = 〈z,V∗Vz〉 = 〈Vz,Vz〉 ≥ 0 for all z ∈ An. Thus G

is a positive semi-definite matrix. The converse is known to be true when A = R or C. That

is, if A is a positive semi-definite matrix with entries in C then there is a matrix B such

that A = B∗B (for example see Godsil and Royle [37, Lemma 8.6.1]). The next theorem

shows that for a general associative composition algebra A the converse is almost true.

Theorem 1.27. Let A be a positive semi-definite matrix with entries in A. Then there is

a matrix B such that A = B2. Furthermore, if A ∈ {R,C} or if A2 = αA for some α ∈ R,

then we may assume B is Hermitian.

Proof. By the definition of a positive semi-definite matrix, A is Hermitian. Thus, there is

a unitary matrix U such that U∗AU = D, where D is a diagonal matrix such that each

entry of D is a complex number a + bi with a, b ≥ 0 (see [32, Theorem 3.3] for a proof).

Hence there is a diagonal matrix C such that C2 = D. Therefore B = UCU∗ has the

desired property. If A = R or C, then it is well-known that the diagonal entries of D are

real and therefore C∗ = C. If A2 = αA, then D2 − αD = U∗(A2 − αA)U = 0. Hence,

every diagonal entry of D is either equal to 0 or α and therefore is real. Thus C∗ = C in

this case as well.

Lemma 1.28. For any matrix V with entries in A, we have rankR(V∗V) = rankR(V).

That is, the dimension of an R-module is equal to the R-rank of the Gram matrix of any set

of vectors spanning that module.

Proof. If V∗Vz = 0 then z∗V∗Vz = 0, which can be written as 〈Vz,Vz〉 = 0. This implies

Vz = 0. On the other hand, Vz = 0 implies V∗Vz = 0. Hence KerR(V∗V) = KerR(V)

and the result follows from Lemma 1.10 and Definition 1.11.
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Corollary 1.29. Let M = {A1, . . . ,An} be a finite subset of the R-vector space HMd(A).

Also, let G be a matrix such that Gij =
∑

kl (Ai)kl(Aj)kl = Tr (Ai
∗Aj). Then the dimen-

sion of the R-subspace spanned by M is equal to rankR(G).

Proof. Consider each Ai as a d2-dimensional column vector and let V be the d2 × n

matrix whose i-th column is Ai. Notice that V∗V = G. By Lemma 1.28, we have

dimR(span(M)) = rankR(V) = rankR(V∗V) = rankR(G).

One may also define a Gram matrix of a set of lines by considering the vectors repre-

senting the lines. A set L of n lines in Ad is sometimes presented by a d×n matrix V whose

columns are n unit vectors in Ad representing L. Notice that if L is a set of lines in Ad,

then its Gram matrix is not unique, as one may choose uλ with |λ| = 1 to represent the

line spanned by u ∈ Ad. Also, recall that a unitary transformation is a linear mapping that

preserves the inner product of two vectors. These facts motivate the following definition.

Definition 1.30. We say that two sets of lines L and L′ in Ad are equivalent if there exists

a permutation matrix P and a diagonal unitary matrix D such that

G′ = D−1P−1GPD

where G and G′ are Gram matrices of L and L′, respectively.

Example 1.31. Let L = {[v1], . . . , [vn]} be a set of lines in Ad with a Gram matrix G.

Let σ be any permutation of {1, . . . , n}. Also, let {λ1, . . . , λn} ⊂ A be such that |λi| = 1

for all i. Then a Gram matrix of L′ = {[vσ(1)λ1], . . . , [vσ(n)λn]} is given by D−1P−1GPD

where P represents the permutation σ and D is the diagonal matrix with Dii = λi. This is

because λ−1
i 〈vσ(i),vσ(j)〉λj = 〈vσ(i)λi,vσ(j)λj〉. Hence L′ and L are equivalent sets of lines.

Example 1.32. Let L = {[v1], . . . , [vn]} be a set of lines in Ad and let U be any d×d unitary

matrix. Then L′ = {[Uv1], . . . , [Uvn]} and L have equal Gram matrices and therefore are

equivalent sets of lines.

1.6 The Weyl-Heisenberg Group

Here, we give the definition of an important group that is used throughout the thesis and

state its properties.
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Let ω denote a primitive d-th root of unity in C. The Pauli matrices for Zd are defined

by their action on the standard basis {ej : j ∈ Zd} of Cd as follows:

X : ej 7→ ej+1,

Y : ej 7→ ωjej .

Since Xd = Yd = Id, we may regard the exponent k in Xk and Yk to be an element of Zd.
Note that Xk maps ej to ej+k and Yk maps ej to ωjkej .

Lemma 1.33. The Pauli matrices X and Y for Zd have the following properties.

(i) YX = ωXY,

(ii) XrYs commutes with Xr′Ys′ if and only if sr′ = s′r in Zd,

(iii) Tr (XrYs) = 0 for all r, s ∈ Zd unless r = s = 0.

Proof. For every j ∈ Zd we have YXej = Yej+1 = ωj+1ej+1 = ωj+1Xej = ωXYej .

Therefore (i) holds. By applying (i) repeatedly we have XrYsXr′Ys′ = ωsr
′
Xr+r′Ys+s′ and

Xr′Ys′XrYs = ωs
′rXr+r′Ys+s′ . Hence XrYs and Xr′Ys′ commute if and only if ωsr

′
= ωs

′r

or equivalently sr′ = s′r in Zd. Finally Tr (XrYs) =
∑

j ejTXrYsej =
∑

j ω
sjejTej+r = 0

unless r = s = 0.

By Lemma 1.33, the group generated by the d×d matrices X and Y, denoted GP(d), is

GP(d) =
{
ωiXjYk : i, j, k ∈ Zd

}
.

This group is usually called the generalized Pauli group or the one-dimensional finite Weyl-

Heisenberg group. For any group G, let Z(G) denote its centre. Assume ωiXjYk ∈
Z(GP(d)). Then XjYk must commute with X. Therefore, by Lemma 1.33 (ii), we get

j · 0 = k · 1, that is k = 0. Similarly, since XjYk must commute with Y, we get j = 0.

Hence Z(GP(d))=〈ωId〉 = {ωiId : i ∈ Zd}. Define

Hd = GP(d)/(Z(GP(d)).

Observe that the quotient group Hd =
{
XjYk〈ωId〉 : j, k ∈ Zd

}
is isomorphic to Zd × Zd.

The group Hd acts on CPd−1, where the action is given by
(
XjYk〈ωId〉, [z]

)
7→
[
XjYkz

]
.

Therefore the orbit of an element [z] ∈ CPd−1 is the set
{[

XjYkz
]

: j, k ∈ Zd
}

. To simplify

the terminology, we refer the following set as the Weyl-Heisenberg orbit of a vector.
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Definition 1.34. The set
{[

XjYkz
]

: j, k ∈ Zd
}
⊂ CPd−1 is called the Weyl-Heisenberg

orbit of z ∈ Cd.

We will discuss the Weyl-Heisenberg orbit and its connection to equiangular sets of lines

in complex spaces in Chapter 3.

1.7 Applications

1.7.1 Real Lines

Equiangular lines in Euclidean spaces have mostly applications in designing geometrical

objects that are optimal in some sense. For example, Mondal, Samanta, and Heath proved

recently that the Voronoi tessellations of the real projective space generated by equiangular

lines are congruent (see [62] for the details). They also mention that an equiangular set of

lines forms the best n-point representation of an isotropically distributed one-dimensional

subspace in terms of mutual information.

1.7.2 Complex Lines

As mentioned before, regular structures of complex lines, such as an equiangular set of lines

and a set of mutually unbiased bases, have important applications in quantum information

theory and signal processing. Like mutually unbiased bases, equiangular lines have been

used in quantum cryptographic protocols (see Fuchs and Sasaki [34]) and in quantum to-

mography (see Caves, Fuchs, and Schack [19]). In this section, we briefly discuss some of

these applications. Before proceeding, we give the basic of quantum mechanics terminol-

ogy in a very simplified form. We warn the reader that the section on quantum mechanics

and the applications following it are for illustration purposes. For more details on the fun-

damtental notions of quantum mechanics, see Kaye, Laflamme and Mosca [52] or Nielsen

and Chuang [63, Chapter 2].

Quantum Mechanics

A pure quantum state is simply a line, represented by a vector v in a complex space Cd.

The density matrix of a state v is the projection matrix Pv = vv∗. Generally a state v is

represented by its density matrix. A mixed state is a collection of pure states {v1, . . . ,vn},
where each vi occurs with a certain probability, say pi. We assume

∑
i pi = 1. Any
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mixed state may be represented by a positive semidefinite Hermitian matrix with trace 1.

Specifically, the mixed state {v1, . . . ,vn} is represented by
∑

i piPvi , the density matrix of

a mixed state. This is because each vi may be represented by the matrix Pvi . Here are the

postulates of quantum mechanics:

Postulate 1. The state of any isolated physical system is described by a pure quantum state.

To be precise, each isolated quantum mechanical system may be represented by a line

in Cd, i.e. the phase of the vector describing the system does not matter. Such a system is

called a quantum mechanical d-level system. An example of a quantum mechanical two-level

system is a single photon that can be found in one of two distinct paths. Another example

is the presence/absence of a photon in a particular location or path. The state of either of

these systems is described by a unit vector in C2.

Postulate 2. The time-evolution in a quantum system is given by a unitary transformation.

In other words, at any given time, the state of a system may be described in terms of

the initial state of the system by a change of basis (which is given by a unitary matrix).

Postulate 3. A quantum system may be measured using a set of measurement matrices.

A measurement is a collection of matrices {Mi}i such that
∑

i M
∗
iMi = I. A positive

operator-valued measurement (POVM) is a set of positive semi-definite matrices which sum

to the identity matrix. Thus {M∗
iMi : i = 1, . . . , n} is a POVM. If each Mi is a projection

on a subspace, we call {M1, . . . ,Mn} a projective measurement.

Postulate 4. Quantum systems are composed using tensor products.

Quantum mechanics Mathematics
(pure) state line
mixed state set of lines

density matrix positive semi-definite matrix with trace 1
measurement a (special) collection of matrices

Table 1.1: Quantum mechanics vs. mathematics vocabulary

Below, we briefly describe some of the connections of equiangular sets of lines and

mutually unbiased bases with quantum mechanics as well as digital communication.
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Quantum Fingerprinting

Suppose we have two public channels available: an expensive authenticated channel and

a cheap unsecured channel. We would like to communicate over these channels in such

a way that the receiver can authenticate the received messages with the highest possible

probability. This is done by sending the message over the cheap channel and a small part

of the message (called fingerprint) over the expensive channel. If the fingerprint matches

to the appropriate part of the original message, the receiver would take the message to be

authentic. Let F be the set of valid fingerprints that will be communicated. We may encode

every message a ∈ F with a pure quantum state va ∈ Cd. The probability of authenticating

b instead of a is |〈va,vb〉|. Thus, the worst-case error probability is

Pwce := max
a6=b∈F

|〈va,vb〉|.

Therefore the goal is to find sets of n pure quantum states in Cd which minimize the worst-

case error probability. Such configurations are called optimal Grassmannian packings (see

Conway, Hardin, and Sloane [21] and Strohmer and Heath [75]). They are also called 2-

uniform (n, d)-frames (see Bodmann and Paulsen [14]). Let |F | = n. Welch [81] proved the

bound

max
a6=b∈F

|〈va,vb〉| ≥

√
n− d
d(n− 1)

,

where equality occurs if and only if n ≤ d2 and |〈va,vb〉| =
√

(n− d)/(d(n− 1)) for all

distinct a, b ∈ F . That is {va : a ∈ F} is an equiangular set of lines meeting the relative

bound. We will discuss the relative bound in Section 2.2.2. Also sets of mutually unbiased

bases (MUBs) give optimal Grassmannian packings (see [83]). If d is a prime power, then

d + 1 MUBs exist and thus we have examples of optimal Grassmannian packings with

n = d2 + d. For more details on quantum fingerprinting, see for example Scott, Walgate,

and Sanders [70].

Quantum Tomography

Tomography is a technique for displaying a representation of a cross section through a

human body or other solid object using X-rays or ultrasound. In Greek, tomos means

slice or section. Quantum tomography or quantum state tomography is the process of

reconstructing the mixed quantum state (or equivalently the density matrix) of a particle or
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particles through a series of measurements in different bases: Suppose we have an unknown

mixed quantum state or equivalently a ρ ∈ Cd×d such that ρ∗ = ρ and Tr (ρ) = 1. Thus ρ is

specified by d2 − 1 free parameters. Any orthonormal basis B for Cd gives a measurement

{Mv = vv∗ : v ∈ B}. Assume that ρ is in state v with probability pv, where v ∈ B.

Therefore ρ =
∑

v∈B pvMv so that
∑

v∈B pv = 1. We may specify the unknown probabilities

by d − 1 free parameters. Hence, at least (d2 − 1)/(d − 1) = d + 1 different measurements

are required to determine ρ completely from measurement statistics. By measuring ρ in

each basis a finite number of times, we find the probabilities pv (approximately) with some

possible error. This error is minimized when the bases are unbiased. Therefore, mutually

unbiased bases are the optimal measurements in terms of statistical error.

Since ρ is specified by d2 − 1 free parameters, using the measurement arising from an

equiangular set of d2 lines in Cd, we may completely reconstruct ρ. In quantum information

theory community, an equiangular set of d2 lines in Cd is called a symmetric informationally

complete positive operator valued measurement (SIC-POVM).

Code Division Multiple Access (CDMA)

A multiple access method allows several terminals connected to the same channel to share

its capacity and communicate over it. A code division multiple access (CDMA) is a method

exploited by several radio communication technologies. For more information on CDMA,

see for example [40]. In signal processing community, a Maximum-Welch-bound-equality

(MWBE) codebook with parameters (n, d) is a set L of n lines in Cd such that

Imax(L) := max
v 6=w∈L

|〈v,w〉| =

√
n− d
d(n− 1)

.

Note that Imax is the same quantity as Pwce that we saw in the section on quantum finger-

printing. As seen before, given an arbitrary set of n lines L in Cd we have Imax(L) ≥
√

n−d
d(n−1)

and equality occurs if and only if n ≤ d2 and |〈v,w〉| =
√

n−d
d(n−1) for every distinct v,w ∈ L,

i.e L is an equiangular set of n lines in Cd meeting the relative bound. If n = d2 + d, the

quantity Imax(L) is minimized when L is represented by a set of mutually unbiased bases

(MUBs). One of the advantages of MUBs over MWBE codebooks in Cd is that when only

d users are active, there is no inter-user interference. MWBE codebooks are used in direct

spread CDMA systems to distinguish among the signals of different users. Sarwate [69]

gives a well rounded treatment of MWBE codebooks.



Chapter 2

Regular Structures of Lines

One of the most challenging problems in algebraic combinatorics is finding large sets of lines

with few angles between the pairs. This includes the problems of finding equiangular sets of

lines and sets of mutually unbiased bases. In this chapter, we work on these two problems.

For the purpose of completeness, in many places in this chapter, we state the results in a

general setting that includes real, complex and quaternionic spaces. In the last section, we

give an overview of spherical designs. This will provide us with a tool to search for large

sets of lines with few angles between the pairs.

2.1 Multipartite Equiangular Sets of Lines

Here we introduce a new notion, which we call a multipartite equiangular set of lines. The

main motivation is to provide a common framework for considering equiangular sets of lines

and mutually unbiased bases (MUBs), which will be discussed in the next sections. The

new object is a common generalization of equiangular set of lines and MUBs. Let A denote

an associative composition algebra. Recall that a line in Ad is an element in the projective

space APd−1, which can be represented by a unit vector u ∈ Ad. Also recall that the cosine

of the angle between the lines spanned by unit vectors v,w ∈ Ad is defined as |〈v,w〉|.

Definition 2.1. Given integers n ≥ 1, k ≥ 1 and d ≥ 2, a set of n lines in Ad is called an

(n, k, d)-multipartite equiangular set of lines or (n, k, d)-MEL in short, if it can be partitioned

into k sets L1, . . . ,Lk with |Li| = n/k such that for all i and j and for every distinct [v] ∈ Li

26
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and [w] ∈ Lj, we have

|〈v,w〉|2 = αij ,

for some constants αij ∈ R.

Example 2.2. Equiangular sets of n lines in Ad are the (n, 1, d)-MELs. We will discuss

these sets in Section 2.2. Mutually unbiased bases (MUBs) are examples of (kd, k, d)-MELs

with αii = 0 and αij = α for some constant α and every i 6= j. We will look at MUBs in

Section 2.3. Notice that any set of n lines in Ad is trivially an (n, n, d)-MEL.

In the following theorem, we find an upper bound on n, the cardinality of an (n, k, d)-

multipartite equiangular set of lines. This theorem is a generalization of the well-known

absolute upper bound on the size of an equiangular set of lines in Ad (see Theorem 2.8) and

also the upper bound on the number of MUBs in Ad (see Theorem 2.34). Also a gen-

eralization of the following theorem (see Theorem 2.6) implies that there are at most(
d
2

)
dimR A + 1 flat equiangular lines in Ad (see Theorem 4.8). Recall that HMd(A) de-

notes the R-vector space of d × d Hermitian matrices with entries in A. Also recall that

dimR(HMd(A)) = d +
(
d
2

)
dimR A (see Theorem 1.12). In the case of multipartite equian-

gular set of lines, the following theorem clearly gives a better bound than the Delsarte,

Goethals and Seidel bound [27].

Theorem 2.3. For any (n, k, d)-multipartite equiangular set of lines in Ad, we have

n ≤ d+
(
d

2

)
dimR A + k − 1.

Proof. Suppose {[v1], . . . , [vn]} is an (n, k, d)-MEL. Let M = {vivi∗ : 1 ≤ i ≤ n} ⊂
HMd(A) be the set of projection matrices of vi’s. Consider the matrix G defined by

Gi,j = Tr
(
viv∗i vjv

∗
j

)
. By Lemma 1.23, we have <(Gi,j) = |〈vi,vj〉|2. Let m = n/k.

Recall that Jm denotes the m × m all-ones matrix and Im denotes the m × m identity

matrix. By the definition of multipartite equiangular set of lines, the real part of the entries

of G is equal to

<(G) =


(1− α11)Im + α11Jm α12Jm · · · α1kJm

α21Jm (1− α22)Im + α22Jm · · · α2kJm
...

...
. . .

...

αk1Jm αk2Jm · · · (1− αkk)Im + αkkJm

 .
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For any i ∈ {1, . . . , n}\{rm : 1 ≤ r ≤ k}, let r ∈ {1, . . . , k} be such that (r−1)m < i < rm.

The vector ei+1 − ei is an eigenvector of <(G) with eigenvalue 1 − αrr. Since αrr 6= 1 for

all r, these vectors account for k(m− 1) = n− k nonzero eigenvalues with sum equal to

k∑
r=1

(m− 1)(1− αrr) = k(m− 1)− (m− 1)
k∑
r=1

αrr = n− k − (m− 1)
k∑
r=1

αrr.

Since Tr (<(G)) = n, it follows that the sum of the remaining k eigenvalues is equal to

k + (m − 1)
∑k

r=1 αrr > 0. Thus there exists at least one other nonzero eigenvalue. It

follows that rankR(G) ≥ rankR(<(G)) ≥ n − k + 1. On the other hand M is a subset of

the R-vector space HMd(A) which has dimension d+
(
d
2

)
dimR A. Now, by Corollary 1.29,

the dimension of the R-subspace spanned by M is equal to rankR(G). Hence

n− k + 1 ≤ rankR(G) = dimR (span(M)) ≤ d+
(
d

2

)
dimR A.

Corollary 2.4. For every (n, 1, d)-multipartite equiangular set L of lines in Ad with n =

d+
(
d
2

)
dimR A, the set {vv∗ : [v] ∈ L} forms a basis for HMd(A).

Proof. Substituting k = 1 in the last inequality in the proof of Theorem 2.3, we have

n ≤ dimR (span(M)) ≤ d+
(
d

2

)
dimR A,

where M = {vv∗ : [v] ∈ L} ⊂ HMd(A). Since dimRHMd(A) = d +
(
d
2

)
dimR A = n, the

set M must be a basis for the R-vector space HMd(A).

The definition of an (n, k, d)-MEL can be generalized so that the sets Li in Definition 2.1

do not necessarily have the same size.

Definition 2.5. Given integers k ≥ 1, d ≥ 2 and a multiset n = {n1; . . . ;nk} of positive

integers, a set of
∑k

i=1 ni lines in Ad is called an (n, k, d)-multipartite equiangular set of

lines if it can be partitioned into k sets L1, . . . ,Lk with |Li| = ni such that for all i and j

and for every distinct [v] ∈ Li and [w] ∈ Lj, we have

|〈v,w〉|2 = αij ,

for some constants αij ∈ R.
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With a similar argument as in the proof of Theorem 2.3 one can prove the following

generalization.

Theorem 2.6. For any ({n1; . . . ;nk}, k, d)-multipartite equiangular set of lines in Ad, we

have
k∑
i=1

ni ≤ d+
(
d

2

)
dimR A + k − 1.

2.2 Equiangular Set of Lines

Definition 2.7. A set of lines in Ad spanned by unit vectors v1, . . . ,vn is equiangular if

there exists a constant α such that |〈vi,vj〉| = α for every 1 ≤ i < j ≤ n.

As mentioned in Example 2.2, an equiangular set of lines is simply a MEL with k = 1.

2.2.1 The Absolute Bound

In this section, we derive a bound on the size of an equiangular set of lines in Ad that is

only dependent on d. The following theorem is a known result, especially when A = R or

C. It is a special case of Theorem 2.3 when k = 1.

Theorem 2.8. An equiangular set of lines in Ad has size at most d+
(
d
2

)
dimR A.

The above bound on the size of an equiangular set of lines in Ad is known as the absolute

bound. As an immediate corollary, since dimR R = 1, we get the following bound for the

real space.

Corollary 2.9. An equiangular set of lines in Rd has size at most
(
d+1
2

)
.

It is proved that an equiangular set of
(
d+1
2

)
lines Rd may only exist if d = 2, 3 or d+ 2

is a square of an odd integer and a construction of such sets is only known for d = 2, 3, 7, 23

(for example, see Godsil and Royle [37]). Recently, it was proved that an equiangular set of(
48
2

)
lines in R47 does not exist [9].

Since dimR C = 2, using Theorem 2.3, we get the following bound for the complex space.

Corollary 2.10. An equiangular set of lines in Cd has size at most d2.

In contrast to the real case, it is widely believed (mostly by physicists) that an equiangu-

lar set of d2 lines in Cd always exists [85, 4, 66, 42, 33]. If an equiangular set of d2 lines in Cd
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exists then we must have α = 1/
√
d+ 1 (see Corollary 2.17). To the best of our knowledge,

the existence of equiangular sets of d2 lines are claimed in [85, 46, 66, 4, 41, 42] for d ≤ 10

and d ∈ {12, 19}. In addition, it is claimed in [33] (with reference to private communication

with Markus Grassl) that such sets also exist for d ∈ {11, 13, 15}. In most of these papers,

the proof that such given sets are equiangular is not published, as it may generally require

pages of tedious algebra to give a complete proof. Nevertheless, the problem is still open

for a general d:

Problem 2.11. For any integer d ≥ 2, does there exist an equiangular set of d2 lines in Cd?

Since dimR H = 4, using Theorem 2.3, we get the following bound for the quaternionic

space.

Corollary 2.12. An equiangular set of lines in Hd has size at most 2d2 − d.

Examples of such lines are even harder to find. In Chapter 4, we will give an explicit

construction of an equiangular set of 6 lines in H2.

2.2.2 The Relative Bound

In this section, we derive a second bound on the size of an equiangular set of lines. This

bound depends both on d and the cosine of the common angle. The following theorem is

known as the relative bound and is proved in various contexts. The proof is a replicate

of Godsil and Royle [37, Lemma 11.4.1] generalized to an arbitrary Ad, where A is an

associative composition algebra.

Theorem 2.13. If there is an equiangular set of n lines in Ad with the cosine of the common

angle equal to α and dα2 < 1, then

n ≤ d− dα2

1− dα2
,

or equivalently

α ≥

√
n− d
d(n− 1)

.

Let the n lines be represented by v1, . . . ,vn, and for every 1 ≤ i ≤ n, let Pvi = viv∗i denote

the projection onto the line spanned by vi. Then equality holds if and only if
n∑
i=1

Pvi =
n

d
Id.
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Proof. Let S =
∑n

i=1 Pvi . Consider B = S− (n/d)Id. Using Lemma 1.23, we have

<
(
Tr
(
B2
))

= <
(

Tr
(

S2 − 2n
d

S +
n2

d2
Id

))
=

∑
i,j

<
(
Tr
(
PviPvj

))
− 2n

d

∑
i

< (Tr (Pvi)) +
n2

d2
· d

=
∑
i,j

|〈vi,vj〉|2 −
2n
d

∑
i

1 +
n2

d

=
(
n+ n(n− 1)α2

)
− n2

d
=
n

d

(
d− dα2 − n(1− dα2)

)
.

Since B is a Hermitian matrix, the result follows from the fact that <
(
Tr
(
B2
))

= Tr
(
B2
)

=

Tr (BB∗) =
∑

i,j |Bij |2 ≥ 0 and equality holds if and only B = 0.

In Section 2.2.4, we will define frames as well as tight frames and discuss their relationship

with equiangular sets of lines. For the time being, we would like to emphasize that any set

of vectors representing a set of lines that meet the relative bound, i.e. satisfy the equality

condition in Theorem 2.13, is called a tight frame:

Definition 2.14. A tight frame is a set of unit vectors v1, . . . ,vn in Ad for which

n∑
i=1

Pvi =
n

d
Id.

Here Pvi = vivi∗ is the matrix of the projection onto the line spanned by vi.

Hence, any equiangular set of lines that meet the relative bound in Theorem 2.13 is

called a tight equiangular set of lines.

Lemma 2.15. If {[v1], . . . , [vn]} is an equiangular set of lines in Ad with the cosine of the

common angle equal to α, then the following are equivalent.

(i) α =
√

n− d
d(n− 1)

,

(ii)
∑n

i=1 Pvi =
n

d
Id,

(iii) Id is an R-linear combination of Pv1 , . . . ,Pvn,

where Pvi = vivi∗ for 1 ≤ i ≤ n.
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Proof. We only need to prove (iii) implies (ii). Write Id =
∑

i ciPvi for some scalars

c1, . . . , cn ∈ R. By taking trace from both sides, and using Lemma 1.21, we get d =∑
i ci. By multiplying both sides by a fixed Pvj and then taking trace, we get Tr

(
Pvj

)
=∑

i ciTr
(
PviPvj

)
. Hence 1 = <(Tr

(
Pvj

)
) =

∑
i ci<(Tr

(
PviPvj

)
) =

∑
i ci|〈vi,vj〉|2, by

Lemma 1.21 and Lemma 1.23. Thus, 1 = (1−α2)cj +α2
∑

i ci = (1−α2)cj +α2d. It follows

that all cj ’s must be equal and since they add up to d they must be equal to d/n.

Corollary 2.16. Suppose we have an equiangular set of d+
(
d
2

)
dimR A lines in Ad with the

cosine of the common angle equal to α, then

α =
1√

d+
2

dimR A

.

Proof. It follows from Corollary 2.4 that the existence of an equiangular set of d+
(
d
2

)
dimR A

lines in Ad implies their projection matrices form a basis for the R-vector space HMd(A).

In particular, Id is an R-linear combination of these projection matrices. The result follows

from Lemma 2.15 by substituting n = d+
(
d
2

)
dimR A.

Corollary 2.17. The cosine of the common angle of an equiangular set of d2 lines in Cd

is equal to 1√
d+1

.

2.2.3 A Lower Bound via Duality

In his PhD dissertation, Zauner [85, Chapter 2.2] uses the notion of coherent duality

(Kohärente Dualität) in Cd to derive a lower bound on the number of lines in a tight

equiangular set. By taking an insight from his work, which is written in German, and gen-

eralizing it to an arbitrary Ad, where A is an associative composition algebra, we present

the notion of duality in this section and derive an analogous lower bound. Before we do so,

we would like to reiterate that the familiar Gram-Schmidt process for Rd and Cd, also holds

in Hd (see Proposition 1.15).

Given a tight equiangular set L = {[v1], . . . , [vn]} of n lines in Ad, recall that V is the

d× n matrix where the i-th column is equal to vi. By Lemma 1.22 and Theorem 2.13, we

have

VV∗ =
∑
i

vivi∗ =
n

d
Id.
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Thus the rows of the matrix
√
d/nV, say u1, . . . ,ud, are d ≤ n orthonormal vectors in An.

By Proposition 1.15, we may extend {u1, . . . ,ud} to an orthonormal basis of An by adding

vectors ud+1, . . . ,un. Let U be the n × n matrix with rows u1, . . . ,ud,ud+1, . . . ,un. The

columns of U may be written as
√
d/n(vi,wi) ∈ Ad×An−d, i = 1, . . . , n. We have UU∗ = I,

i.e. U is a unitary matrix. Therefore U∗U = I or equivalently, 〈vi,vj〉+〈wi,wj〉 = (n/d)δij
for every i, j ∈ {1, . . . , n}. It follows that

|〈wi,wj〉| =


n− d
d

for i = j,

|〈vi,vj〉| for i 6= j.

By letting d∗ = n− d and considering |〈vi,vj〉|2 =
n− d
d(n− 1)

for i 6= j, we get

|〈
√
d/d∗wi,

√
d/d∗wj〉|2 =

d2

(n− d)2
|〈wi,wj〉|2 =


1 for i = j,

n− d∗

d∗(n− 1)
for i 6= j.

Therefore L∗ =
{

[
√
d/d∗w1], . . . , [

√
d/d∗wn]

}
is a tight equiangular set of n lines in Ad∗ .

Notice that we require d∗ > 1, and consequently n > d+ 1, since otherwise n−d∗
d∗(n−1) = 1 and

all the elements in L∗ would be scalar multiples of each other. The set L∗ is called a dual

of the set L, and we have the following useful theorem.

Theorem 2.18. Let n > d+ 1 > 2 be integers. Then there exists a tight equiangular set of

n lines in Ad if and only if there exists a tight equiangular set of n lines in An−d.

As a corollary, we have the following lower bound on the size of a tight equiangular set

of lines in any given dimension.

Corollary 2.19. If there exists a tight equiangular set of n > d+ 1 > 2 lines in Ad, then

n ≥ d+
1 +

√
8d

dimR A
+ 1

2
.

Proof. Since the maximum possible number of lines in an equiangular set of lines in Ad is

d+
(
d
2

)
dimR A, using Theorem 2.18 we must have

n ≤ (n− d) +
(
n− d

2

)
dimR A.

Solving the above inequality for n yields the desired result.
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Corollary 2.20. Let k ≥ 2 be an integer. Then there exists no tight equiangular set of d+k

lines in Ad for d >
(
k
2

)
dimR A.

Proof. If such a set exists, Theorem 2.18 implies the existence of a tight equiangular set of

d+ k lines in Ak. Thus, we must have d+ k ≤ k +
(
k
2

)
dimR A.

2.2.4 The Gram and the Frame Matrices

In Section 1.5, we established the definition of two important matrices associated to a set

of lines and briefly studied their properties. Restricted to equiangular set of lines, we

investigate further properties of these matrices. Recall from Definition 1.26 that the Gram

matrix of a set C of n vectors in Ad is the matrix G = V∗V, where V is the d× n matrix

with the elements of C as its columns. The (i, j)-entry of G is the inner product of the i-th

and j-th vector in C.

Lemma 2.21. Suppose {v1, . . . ,vn} is a tight frame in Ad. Let gi denote the i-th column

of its corresponding Gram matrix. Then

〈
√
d

n
gi,

√
d

n
gj〉 = 〈vi,vj〉

for every i and j.

Proof. We have

〈gi,gj〉 =
d∑

k=1

(gi)∗k(gj)k =
d∑

k=1

〈vi,vk〉〈vk,vj〉

= vi∗(
n∑
k=1

Pvk
)vj =

n

d
〈vi,vj〉.

Recall that a Gram matrix of a set of lines L is the Gram matrix of a set of vectors that

represent L and therefore is not unique.

Corollary 2.22. Suppose L is a tight equiangular set of n lines in Ad. Let L′ be the set

of columns of a Gram matrix of L, normalized by
√
d/n. Then L′ is equivalent to L. In

particular, L′ is also a tight equiangular set of n lines embeddable in Ad.
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Proof. Let G be a Gram matrix of L. Since dimA ImA(G) = rankA(G) ≤ d, the set L′ is

embeddable in Ad. The result follows from Lemma 2.21.

Definition 2.23. Given a set C of n unit vectors in Ad, let V be a d× n matrix with the

elements of C as its columns. Then

S = VV∗

is called a frame matrix of the vectors in C.

It follows that S∗ = S and 〈z,Sz〉 = 〈z,VV∗z〉 = 〈V∗z,V∗z〉 ≥ 0 for all z ∈ Ad. Thus

S is a positive semi-definite matrix.

One may also define a frame matrix of a set of lines by considering the vectors repre-

senting the lines. In contrast to the Gram matrix, notice that the frame matrix of a set of

lines is unique. This is because, by Lemma 1.22, S =
∑

v∈C vv∗ and if [v] = [v′], i.e. v

and v′ represent the same line, then vv∗ = v′v′∗, as we discussed in the comments follow-

ing Definition 1.20. Recall from Definition 2.14 that a tight frame is a set of unit vectors

v1, . . . ,vn ∈ Ad for which
∑n

i=1 Pvi = (n/d)Id, where Pv = vv∗. Due to the uniqueness of

the frame matrix, we may extend the definition of a tight frame to a set of lines:

Definition 2.24. A set of lines {[v1], . . . , [vn]} in Ad is called tight if
∑n

i=1 vivi∗ = (n/d)Id.

Lemma 2.25. Let V be a d × n matrix with entries in A such that rankA(V) = d. Then

the frame matrix of the columns of V is an invertible matrix.

Proof. Let S = VV∗ be the frame matrix of the columns of V. Suppose v ∈ KerA(S).

Then 〈V∗v,V∗v〉 = v∗VV∗v = v∗Sv = 0. Therefore V∗v = 0, that is v ∈ KerA(V∗). It

follows that KerA(S) ⊆ KerA(V∗) and therefore dimA KerA(S) ≤ dimA KerA(V∗). Recall

that the dimensions of the row space and the column space of a matrix are both equal to

the dimension of the row space of the conjugate transpose of that matrix [47, Chapter VII,

Corollary 2.5]). Lemma 1.10 implies that

rankA(S) = dimA ImA(S) ≥ dimA ImA(V∗) = dimA ImA(V) = rankA(V) = d.

Since S is a d×d matrix, we have rankA(S) = d. Thus e1, . . . , ed are in ImA(S) and therefore

there is a matrix S−1 such that SS−1 = Id. It follows that S−1S = Id (see [31, Theorem

2.24] or [86, Proposition 4.1]) and therefore S is invertible.

The following lemma is a variation of Lemma 1.28 that is needed in this section.
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Lemma 2.26. Fix A ∈ {R,C,H}. For a given matrix V with entries in A, we have

rankA(V∗V) = rankA(V). That is, the dimension of an A-module is equal to the A-rank of

the Gram matrix of any set of vectors spanning that module.

Proof. If V∗Vz = 0 then z∗V∗Vz = 0, which can be written as 〈Vz,Vz〉 = 0. This implies

Vz = 0. On the other hand, Vz = 0 implies V∗Vz = 0. Hence KerA(V∗V) = KerA(V)

and the result follows from Lemma 1.10 and Definition 1.11.

A result similar to the following theorem appears in [35, Lemma 6.1] which only deals

with real numbers. The proof of the non-obvious direction seems to be new.

Theorem 2.27. Let V be any d × n matrix with entries in A whose columns are unit

vectors. Let S = VV∗ and G = V∗V. Then the set of columns of V is a tight frame, i.e.

S = (n/d)Id, if and only if

G2 =
n

d
G.

Proof. Suppose S = (n/d)Id. We have VV∗ =
∑

[v]∈LPv = (n/d)Id. Hence G2 =

V∗VV∗V = (n/d)G. To prove the converse, assume G2 = (n/d)G. Hence VG2V∗ =

(n/d)VGV∗. Since G = V∗V, it follows that S2(S− (n/d)Id) = 0. The columns of V are

unit vectors. Hence each diagonal entry of G is equal to 1 and therefore Tr (G) = n. Thus,

by Lemma 1.28 and Lemma 1.25, we get rankA(V) = rankA(G) = d. Now, Lemma 2.25

implies that the matrix S is invertible. Therefore S− (n/d)Id = 0.

As a consequence, we have the following useful criterion to check whether a matrix is

a Gram matrix of a tight equiangular set of n lines in Ad.

Corollary 2.28. An n×n Hermitian matrix G is a Gram matrix of a tight equiangular set

of n lines in Ad if and only if G ◦GT = In + (n− d)/d(n− 1)(Jn − In) and G2 = (n/d)G.

Proof. Let L = {[v1], . . . , [vn]}, and notice that if G is a Gram matrix of L then (G◦GT )ij =

〈vi,vj〉〈vj ,vi〉 = |〈vi,vj〉|2. Now, if G is a Gram matrix of a tight equiangular set of n

lines in Ad then |〈vi,vj〉|2 = (n−d)/d(n−1) and S = (n/d)Id, by Theorem 2.13. Therefore

G2 = (n/d)G, by Theorem 2.27. To prove the converse, since G∗G = G2 = (n/d)G and

Tr (G) = n, it follows from Lemma 1.25 that rankA(G) = d. We also have

〈v,Gv〉 = (d/n)〈v,G∗Gv〉 = (d/n)〈Gv,Gv〉 ≥ 0
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for any v. Therefore G is a positive semi-definite matrix. By Theorem 1.27, there is a matrix

B such that G = B∗B. Hence rankA(B) = rankA(G) = d, by Lemma 1.28. Therefore the

columns of B span a d-dimensional submodule of An and are therefore embedable in Ad.

Also, by Theorem 2.27, we have BB∗ = (n/d)Id. It follows that set of columns of B is

a tight equiangular set of n lines in Ad.

Example 2.29 (Sustik and Tropp [77]). Here is an example of a Gram matrix G of a tight

equiangular set of 9 lines in C3. Let ω = eπi/3 and define G = I9 + (1/2)W, where

W =



0 1 1 1 1 1 1 1 1

1 0 ω ω ω −1 ω ω ω

1 ω 0 ω ω ω ω −1 ω

1 ω ω 0 ω ω ω ω −1

1 ω ω ω 0 ω −1 ω ω

1 −1 ω ω ω 0 ω ω ω

1 ω ω ω −1 ω 0 ω ω

1 ω −1 ω ω ω ω 0 ω

1 ω ω −1 ω ω ω ω 0



.

The interesting feature of the matrix G is that all of the off-diagonal entries are of the

form (1/2)x, where x is a sixth root of unity. One may use Corollary 2.28 to check that G

is in fact a Gram matrix of a tight equiangular set of 9 lines in C3. This example is due to

Sustik and appears in Tropp [77].

As a side note we would like to mention that frame theory is a fundamental concept

in signal processing, image processing, data compression, sampling theory, and many other

applications. Frame theory was initiated by Duffin and Schaeffer [29]. A set of vectors C in

Ad is called a frame (not necessarily a tight frame) for Ad if there exist constants A,B > 0

such that

A〈w,w〉 ≤
∑
v∈C
|〈w,v〉|2 ≤ B〈w,w〉

for all w ∈ Ad. It is not hard to see that if C is a finite set that spans Ad then such A and

B always exist. If A = B then it is called a tight frame. It is not hard to see that when

|C| is finite, this definition coincides with Definition 2.14. It must also be the case that for

tight frames A = n/d, where n = |C|. The following observation is known for Rd and Cd.

For the purpose of completeness, we give a proof for Ad.
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Lemma 2.30. For any set of unit vectors {v1, . . . ,vn} in Ad, the following are equivalent.

(i) There exists a constant A such that
∑n

i=1 |〈w,vi〉|2 = A〈w,w〉 for all w ∈ Ad.

(ii)
∑n

i=1 Pvi = (n/d)Id, where Pv = vv∗.

Proof. Let S =
∑n

i=1 Pvi and consider B = S − AId. Assume (i) holds. Then B is

a Hermitian matrix and w∗Bw = 0 for all w ∈ Ad. By Corollary 1.18, we get B = 0 or

equivalently S = AId. We also have Ad = Tr (AId) = Tr (S) =
∑n

i=1 Tr (Pvi) = n, by

Lemma 1.21. Hence A = n/d. To prove the converse multiply both sides of
∑n

i=1 Pvi =

(n/d)Id by w∗ from the left and by w from the right. We get

n∑
i=1

|〈w,vi〉|2 =
n∑
i=1

w∗vivi∗w = (n/d)〈w,w〉.

Another object equivalent to a tight frame is a spherical 1-design. This is discussed in

Section 2.4. Recall from Lemma 2.25 that the frame matrix S of any set of vectors in Ad that

span Ad is invertible. Since S is a positive semi-definite matrix, so is S−1. This is because

(S−1)∗ = (S∗)−1 = S−1 and 〈v,S−1v〉 = 〈S−1v,S(S−1v)〉 ≥ 0. Hence by Theorem 1.27,

there is a matrix, denoted S−1/2, such that (S−1/2)2 = S−1 and we may assume S−1/2 is

Hermitian if we work over R or C.

Note that any frame for Rd or Cd may be converted to a tight frame as follows. Consider

the matrix V̂ =
√
n/dS−1/2 V and let Ĉ denote the set of column vectors of V̂. We have

V̂V̂∗ = (n/d)S−1/2VV∗(S−1/2)∗ = (n/d)S−1/2S(S−1/2)∗

= (n/d)S−1/2(S−1/2)−2S−1/2 = (n/d)Id.

Thus V̂ is a tight frame. However, note that if L is an equiangular frame then L̂ is not

necessarily equiangular. For a thorough survey on this subject, see Casazza [18]. Also see

Benedetto and Fickus [11].

2.3 Mutually Unbiased Bases

Here we study another regular structure of lines, represented by a union of orthonormal

bases in which only 2 angles occur. We give an upper bound on the size of such a set in Ad,
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where A is an associative composition algebra. Then we only work with complex spaces and

briefly study the known properties of such sets. We explore the possible connection between

such sets and other known combinatorial objects such as orthogonal arrays. Finally, we

propose a new idea for constructing such sets based on the orbit of a complex vector, called

an MUB-fiducial vector, under a Weyl-Heisenberg group. We also give a characterization

on the existence of such MUB-fiducial vectors.

Definition 2.31. Let B = {B1, . . . ,Bk} be a collection of k orthonormal bases in Ad such

that for every i 6= j and v ∈ Bi and w ∈ Bj we have |〈v,w〉| = α for some constant α. Such

a collection of vectors is called a set of k mutually unbiased bases (MUBs) in Ad.

Recall that a d × d matrix U is unitary if U∗U = Id or equivalently if the mapping

v 7→ Uv preserves the inner product. By applying a unitary transformation we may always

assume that B1 is the standard basis. Therefore the absolute value of every coordinate of

every vector in Bj , where j ≥ 2, must be α. Since each vector in Bj is a unit vector, we

must have α = 1/
√
d.

A matrix is flat (or α-flat) if all the entries have the same absolute value (say α). By

writing the vectors of each orthonormal basis as columns of a unitary matrix, we get the

following definition which is equivalent to Definition 2.31.

Definition 2.32. Let B = {B1, . . . ,Bk} be a collection of k d × d unitary matrices with

entries in A such that for every i 6= j, the matrix B∗iBj is α-flat for some constant α. Such

a collection of matrices is called a set of k MUBs.

As before, we may assume B1 = I.

Example 2.33. Here is a set of 3 MUBs in C2:


1 0

0 1

 ,


1√
2

1√
2

1 + i

2
−1 + i

2

 ,


1 + i

2
−1 + i

2

1√
2

1√
2


 .

As mentioned in Example 2.2, the set of lines spanned by the unit vectors of a set of

MUBs is an example of a (kd, k, d)-multipartite equiangular set of lines with αii = 0 and

αij = α for some constant α and every i 6= j. Therefore, we get the following upper bound

on the number of MUBs in Ad.
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Theorem 2.34. For any collection of k MUBs in Ad, we have k ≤ dimR A
2

d+ 1.

Proof. By Theorem 2.3, we have kd ≤ d +
(
d
2

)
dimR A + k − 1. Solving for k yields the

result.

For the rest of this chapter, we will only focus on complex spaces.

2.3.1 Abelian Subspace Decomposition

In [8], Bandyopadhyay, Boykin, Roychowdhury and Vatan developed an interesting equiva-

lence between mutually unbiased bases and commuting bases of orthogonal unitary matrices.

Our main purpose in this section is to investigate this equivalence further. Then, we use

their formulation to explore the possible connection between mutually unbiased bases and

other known combinatorial objects. As an example, in Proposition 2.45, we see why estab-

lishing a possible link between mutually unbiased bases and orthogonal arrays is possibly

a difficult task.

Let Md(C) denote the d2-dimensional C-vector space of all d × d matrices with entries

in C. This vector space is equipped with the standard inner product 〈A,B〉 = Tr (A∗B) =∑
i,j AijBij . By spanC ({A1, . . . ,Ak}) or spanC (A1, . . . ,Ak) we mean the subspace of

Md(C) spanned by the matrices A1, . . . ,Ak. The following is classical result in linear alge-

bra. For example, see Hoffman and Kunze [44] for a proof.

Lemma 2.35. Let {A1, . . . ,Ak} be a set of complex matrices such that AiA∗i = A∗iAi and

AiAj = AjAi for every i 6= j. Then there exists a unitary matrix U such that UAiU∗ is

a diagonal matrix for every i.

A subspace W of Md(C) is said to be abelian if AB = BA for all A,B ∈W . Note that

W is abelian if and only if any basis of W is a set of pairwise commuting matrices. A matrix

A is traceless if Tr (A) = 0.

Definition 2.36. We call any (d− 1)-dimensional abelian subspace of Md(C) nice if it has

an orthogonal basis consisting of traceless unitary matrices. Such a basis is called a nice

basis.

Definition 2.37. Let {M1, . . . ,Mk} be a collection of k nice bases in Md(C) such that for

every i 6= j and A ∈ Mi and B ∈ Mj we have 〈A,B〉 = 0. We call such a collection of

bases a set of k mutually orthogonal nice bases (MONB) in Cd.
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Example 2.38. Let X and Y be the d × d Pauli matrices defined in Section 1.6. By

Lemma 1.33, {M1,M2,M3} is a set of 3 MONBs in Cd, where

M1 = {Y, . . . ,Yd−1},
M2 = {X, . . . ,Xd−1},
M3 = {XY, . . . ,Xd−1Yd−1}.

The following theorem shows that the existence of MUBs is equivalent to the existence

of MONBs. This result is originally due to Bandyopadhyay et. al [8]. For the sake of

completeness, we include the main steps of the proof.

Theorem 2.39. [8] There exist k MUBs in Cd if and only if there exist k MONBs in Cd.

Proof. For any orthonormal basis B = {v0, . . . ,vd−1} of Cd, define φ(B) = {A1, . . . ,Ad−1}
where

Ak =
d−1∑
t=0

ωktvtv∗t .

It is straightforward to show that if {B1, . . . ,Bk} is a collection of k MUBs in Cd then

{φ(B1), . . . , φ(Bk)} is a collection of k MONBs in Cd.

To prove the converse, let M = {A1, . . . ,Ad−1} be a nice basis in Md(C). Let ψ(M) =

{v0, . . . ,vd−1} be the orthonormal basis such that each Aj is a diagonal matrix with respect

to this basis. Such a basis exists due to Lemma 2.35. Again, it is easy to show that if

{M1, . . . ,Mk} is a collection of k MONBs in Cd then {ψ(M1), . . . , ψ(Mk)} is a collection

of k MUBs in Cd.

The following lemma is new.

Lemma 2.40. Let W be a nice subspace of Md(C). Then there exists a unitary matrix U

such that

W = {U∗DU : D is diagonal,Tr (D) = 0}.

Proof. Let {A1, . . . ,Ad−1} be a nice basis of W consisting of commuting traceless unitary

matrices. By Lemma 2.35, there exists a unitary matrix U such that for every i, the matrix

UAiU∗ = Di is diagonal. For every i, we have Tr (Di) = Tr (Ai) = 0. Since Ai = U∗DiU

and any linear combination of traceless diagonal matrices is a traceless diagonal matrix, it

follows that

W ⊆ {U∗DU : D is diagonal,Tr (D) = 0}.
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Let D0 = I. For every i, let vi ∈ Cd be the vector corresponding to the diagonal of

Di. Note that v0 is the all-ones vector. We have 〈vi,vj〉 = 〈Di,Dj〉 = 〈Ai,Aj〉 = 0 for

every 0 ≤ i < j ≤ d − 1. Thus {v0, . . . ,vd−1} is an orthogonal basis for Cd. Given any

diagonal matrix D with Tr (D) = 0, let v be the vector corresponding to its diagonal. Then

〈v,v0〉 = 0. Hence v ∈ spanC (v1, . . . ,vd−1) and therefore D ∈ spanC (D1, . . . ,Dd−1). This

implies that U∗DU ∈W .

In the following new lemma we show that every nice subspace has a nice basis consisting

of powers of a unitary matrix.

Lemma 2.41. Any nice subspace of Md(C) has an orthogonal basis of the form

{A,A2, . . . ,Ad−1}

where A is a unitary matrix such that Tr (As) = 0 for 1 ≤ s ≤ d− 1 and Ad = Id.

Proof. Let Y be the diagonal Pauli matrix, that is Yij = δijω
i where ω is a primitive d-th

root of unity. We have Tr (Ys) =
∑d−1

i=0 ω
si = 0 for every 1 ≤ s ≤ d − 1. Also, Y is

a unitary matrix and Yd = Id. Any d× d diagonal matrix with entries in C can be written

as a C-linear combination of the matrices Y, . . . ,Yd−1,Yd = Id. To see this, let vs be the

vector corresponding to the diagonal of Ys. Then the matrix whose columns are v1, . . . ,vd
is a Vandermonde matrix and is therefore invertible. By Lemma 2.40, any nice subspace

of Md(C) is of the form {U∗DU : D is diagonal,Tr (D) = 0} for some unitary matrix U.

Hence, the matrix A = U∗YU has the desired properties.

It is interesting to note that there are several combinatorial objects that have similar

properties to MUBs and it would be quite intriguing to know whether their existence is

equivalent to the existence of MUBs. One of these combinatorial objects is an orthogonal

array.

An orthogonal array OA(k, d) is a k × d2 array with entries from {1, . . . , d} having the

property that in any two rows, each (ordered) pair of symbols from {1, . . . , d} occurs exactly

once. There are several objects, such as k − 2 mutually orthogonal Latin squares (MOLS)

of order d, that are equivalent to an orthogonal array OA(k, d) (see [1]). As a reminder,

a Latin square of order d is a d × d matrix with entries from the set {1, . . . , d}, such that

each row and each column is a permutation on {1, . . . , d}. Two Latin squares L and L′ of
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order d are orthogonal if {(Lij , L′ij) : 1 ≤ i, j ≤ d} = {(i, j) : 1 ≤ i, j ≤ d}. For a given d, we

denote the maximum k for which an OA(k, d) exists by NOA(d). Note that by the above

remark, NMOLS(d) = NOA(d)−2, where NMOLS(d) denotes the maximum number of Latin

squares in a set of MOLS of order d.

Definition 2.42. For a given integer d ≥ 2, the maximum number of bases in a set of

mutually unbiased bases of Cd is denoted by N(d).

The following theorem is a collection of known results on N(d).

Theorem 2.43. Let d ≥ 2 be an integer. The function N(d) has the following properties.

(a) N(d) ≤ d+ 1.

(b) N(pr) = pr + 1 for any prime p and r ≥ 1.

(c) N(mn) ≥ min{N(m), N(n)} for all m,n ≥ 2.

(d) N(d) ≥ pr + 1, where p is the smallest prime divisor of d and pr|d. In particular,

N(d) ≥ 3 for all d and N(d) ≥ 4 for all odd d.

(e) N(d2) ≥ NOA(d).

Proof. Part (a) follows immediately from Theorem 2.34, since dimR C = 2. To prove

part (b) for r = 1, let M−1 = {Y, . . . ,Yp−1} and Mj = {XYj , . . . ,Xp−1Yj(p−1)} for

every 0 ≤ j ≤ p− 1, where X and Y are the Pauli matrices for Zp. Since Tr (XrYs) = 0

(unless r = s = 0) and YX = ωXY, it follows that {Mj : −1 ≤ j ≤ p − 1} is a col-

lection of p + 1 MONBs and therefore N(p) ≥ p + 1, by Theorem 2.39. Part (a) implies

N(p) = p + 1. The reader may find a proof for r > 1 in Wootters and Fields [83] or

Bandyopadhyay et. al [8]. We will give an independent proof for r > 1 in Section 2.3.5

when p 6= 2, 3. For part (c), let k = min{N(m), N(n)}. For any B ⊆ Cm and B′ ⊆ Cn, let

B ⊗B′ = {v⊗ v′ : v ∈ B,v′ ∈ B′}. If B = {B1, . . . ,BN(m)} is a set of N(m) MUBs in Cm

and B′ = {B′1, . . . ,B′N(n)} is a set of N(n) MUBs in Cn then B = {B1 ⊗ B′1, . . . ,Bk ⊗ B′k} is

a set of k MUBS is in Cmn. This is because, by equation (1.4.1),

|〈v ⊗ v′,w ⊗w′〉|2 = |〈v,w〉|2|〈v′,w′〉|2 =


1
mn

if |〈v,w〉| = 1
m

and |〈v′,w′〉| = 1
n
,

0 if |〈v,w〉| = 0 or |〈v′,w′〉| = 0.
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Part (d) follows immediately from parts (b) and (c). One may prove N(d) ≥ 3 directly as

follows. Let

M−1 = {Y, . . . ,Yd−1},

M0 = {X, . . . ,Xd−1},

M1 = {XY, . . . ,Xd−1Yd−1}.

Then {M−1,M0,M1} is a set of 3 MONBs in Cd and apply Theorem 2.39. Similarly, if d is

odd, let M2 = {XY2, . . . ,Xd−1Y2(d−1)}. Then {M−1,M0,M1,M2} is a set of 4 MONBs

in Cd and apply Theorem 2.39 to get N(d) ≥ 4. Note that M0 and M2 are disjoint if and

only if d is odd. This is because {(r, 2r) : r ∈ Zd \ {0}} ∩ {(r, 0) : r ∈ Zd \ {0}} = ∅ if and

only if d is odd. Part (e) is proved by Wocjan and Beth [82].

Remark. The function NOA(d) satisfies the same conditions as N(d) does in Theo-

rem 2.43. In fact, we know much more about the function NOA(d) and it would be inter-

esting to know whether N(d) also satisfies all of the known properties of NOA(d). As an

example, it is proved that NOA(d) ≥ 4, d 6= 2, 6 (see [79, Theorem 22.7]). It is also proved

that for every d ≥ 2, if there exists an OA(d, d) then it can be extended to an OA(d+ 1, d)

(see [79, page 287]). Equivalently, if there exist d−2 MOLS of order d then there exist d−1

MOLS of order d. The proof of this result is rather easy, however proving a similar result

for N(d) seems to be out of reach at the moment. One may ask the following questions.

Problem 2.44. For every d 6= 2, 6, is it true that N(d) ≥ 4? For every d ≥ 2, is it true

that any set of d MUBs in Cd can be extended to a set of d+ 1 MUBs in Cd? Is it true that

N(d) = NOA(d)?

According to the following proposition, it could be challenging to prove or disprove that

a set of 3 MUBs in C3 can be extended to a set of 4 MUBs in C3. The following proposition

is new.

Proposition 2.45. The following are equivalent.

(i) Any set of 3 MUBs in C3 can be extended to a set of 4 MUBs in C3.

(ii) Let A and B be unitary 3×3 matrices such that A3 = B3 = I3, AB and BA commute

and Tr
(
AiBj

)
= 0 unless i = j = 0. Then (AB)3 = I3.
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Proof. (i)⇒(ii) Let A and B be as given in (ii). Then {M1,M2,M3} is a collection of

3 MONBs in C3, where M1 = {A,A2} and M2 = {B,B2} and M3 = {AB,A2B2}.
By Theorem 2.39, the existence of k MONBs is equivalent to the existence of k MUBs.

Therefore, by (i), there exists an M4 such that {M1,M2,M3,M4} is an MONB in C3.

Now, if AB2 ∈ spanC (M1), then AB2 = c1A + c2A2 for some c1, c2 ∈ C. Since A3 = I3,

by multiplying both sides of this equation by A2 from the left, we get B2 = c1I3 + c2A. It

follows that 0 = Tr
(
B2
)

= c1Tr (I3) + c2Tr (A) = 3c1. Hence B2 is a scalar multiple of A,

that is 0 6= B ∈M1∩M2, which is a contradiction. Hence AB2 /∈ spanC (M1). By applying

a similar technique, we may show that AB2,A2B /∈ spanC (Mi) for i = 1, 2, 3. This means

that AB2,A2B ∈ M4. Since M4 is abelian, we have (AB2)(A2B) = (A2B)(AB2) or

equivalently B2A2 = (AB)2. Multiply both sides by AB from the left to get (AB)3 = I3.

(ii)⇒(i) Suppose there exists a set of 3 MUBs in C3. By Theorem 2.39 there exist 3

MONBs, say M1,M2, and M3, in C3. By Lemma 2.41, we may assume M1 = {A,A2}
and M2 = {B,B2} for some unitary 3× 3 matrices A and B such that A3 = B3 = I3 and

Tr
(
AiBj

)
= 0 unless i = j = 0. Hence AB,AB2,A2B,A2B2 /∈ spanC (M1)∪ spanC (M2).

This is because these four matrices are orthogonal to the matrices spanningM1 andM2. By

symmetry, we may assume AB ∈M3. Now, we consider two cases. Case 1: If A2B ∈M3,

since spanC (M3) is abelian, then (AB)(A2B) = (A2B)(AB) which simplifies to AB =

BA. Thus AB2 and A2B2 commute and therefore by letting M4 = {AB2,A2B2}, we get

a set of 4 MONBs {M1,M2,M3,M4} in C3. Case 2: If A2B2 ∈ M3, since spanC (M3) is

abelian, then (AB)(A2B2) = (A2B2)(AB) which simplifies to (BA)(AB) = (AB)(BA).

Therefore, by (ii), we have (AB)3 = I3. Hence

(AB2)(A2B) = AB2A2(AB)3B = A(AB)2B = (A2B)(AB2).

Thus AB2 and A2B commute. Therefore {M1,M2,M3,M4} is a set of 4 MONBs in C3

with M4 = {AB2,A2B}. In either case, by Theorem 2.39, we get 4 MUBs in C3.

Conjecture 2.46. Any set of d MUBs in Cd can be extended to a set of d+1 MUBs in Cd.

We will give a new proof of the fact that for any prime power q, there exist q+1 MUBs in

Cq. Before we do so, we first study the zero-sum sets on the unit complex circle. Zero-sum

sets are useful in classifying the special MUBs, that will be introduced in Section 2.3.3, in

small dimensions. They are also of an independent interest.
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2.3.2 Zero-sum Sets of Points on the Unit Complex Circle

For a given integer n ≥ 2, consider the n n-th roots of unity. Their sum is zero.

Definition 2.47. We say that a finite subset S ⊂ C is zero-sum if the sum of its elements

is zero and |s| = 1 for each s ∈ S.

Can we find other arrangements of zero-sum set of n points? If so, can we classify them?

Of course, rotating a zero-sum set yields another zero-sum set. Therefore, for simplicity, we

can always assume that the complex number z = 1 is in the zero-sum set. Such a zero-sum

set will be called normalized. Also, the union of any two zero-sum sets is again a zero-sum

set. Hence we only consider indecomposable zero-sum sets, that is zero-sum sets that cannot

be written as the union of two non-empty zero-sum sets.

Question 2.48. How could we arrange n points on the unit complex circle so that their

sum is zero? Find all normalized indecomposable zero-sum sets of n points.

In this section, we answer the above question for n ≤ 5. In the next section, we will

use these results to classify all mutually unbiased bases in Cd with d ≤ 5 that arise from

a Weyl-Heisenberg orbit. Any point z 6= −1 on the unit complex circle may be presented

by

z(t) =
1− t2

1 + t2
+

2t
1 + t2

i,

where t ∈ R. Note that for any point eiθ on the unit circle, t is the tangent of θ/2.

Antipodal pairs of points on the unit complex circle sum to zero. Therefore {−1, 1} is

the only normalized zero-sum set of 2 points. The following theorem shows that there is

a unique normalized zero-sum set of 3 points.

Theorem 2.49. Let ω be a primitive third root of unity. The set {1, ω, ω2} is the unique

normalized zero-sum set of 3 points.

Proof. Let {1, x, y} be a zero-sum set. Clearly x 6= −1, thus let x = z(t) for some t ∈ R.

Since 1 + x = −y is on the unit circle, it follows that(
1 +

1− t2

1 + t2

)2

+
(

0 +
2t

1 + t2

)2

= 1,

which simplifies to t2 − 3 = 0. Thus t = ±
√

3. That is, x = eiθ with tan(θ/2) = ±
√

3 or

equivalently θ = ±2π/3.
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Any zero-sum set of 4 points is the union of two antipodal pairs of points on the unit

complex circle. This is proved in the following theorem.

Theorem 2.50. There is no indecomposable zero-sum set of 4 points.

Proof. Let {1, x, y, u} be a normalized zero-sum set of 4 points. We may assume x 6= −1

and y 6= −1. Write x = z(t) and y = z(s) for some t, s ∈ R. Since 1 + x+ y = −u is on the

unit circle, it follows that(
1 +

1− t2

1 + t2
+

1− s2

1 + s2

)2

+
(

0 +
2t

1 + t2
+

2s
1 + s2

)2

= 1,

which simplifies to ts = −1. By writing x = eiθ and y = eiθ
′
, we have tan(θ/2) tan(θ′/2) =

−1, or equivalently |θ/2− θ′/2| = π/2. Hence, x and y are an antipodal pair of points. This

means x+ y = 0 and therefore u = −1. Thus {1, x, y, u} is decomposable.

One may see that there are infinitely many indecomposable normalized zero-sum sets of

5 points (we will not prove this, but one may imply this from Theorem 2.52). However, we

are only interested in those zero-sum sets in which the product of the elements is equal to 1.

Definition 2.51. We say that a finite subset S ⊂ C is one-product if the product of its

elements is equal to one and |s| = 1 for each s ∈ S.

We are able to characterize indecomposable normalized zero-sum one-product sets of 5

points.

Theorem 2.52. Any indecomposable normalized zero-sum one-product set of 5 points is of

the form {1, x, x, y, y} with <(x+ y) = −1/2 and −1/4 < <(x) < 1/2.

Proof. Let S = {1, x, y, u, v} be a normalized zero-sum one-product set of 5 points. Since

S is indecomposable, we may assume x, y, u, v 6= −1. Write x = z(t), y = z(s), u = z(p) and

v = z(q) for some distinct t, s, p, q ∈ R \ {0}. Since 1 + x+ y + u+ v = 0, we have

1 +
1− t2

1 + t2
+

1− s2

1 + s2
+

1− p2

1 + p2
+

1− q2

1 + q2
= 0,

0 +
2t

1 + t2
+

2s
1 + s2

+
2p

1 + p2
+

2q
1 + q2

= 0,

which may be rewritten as

2(1− ts)(1 + st)
(1 + t2)(1 + s2)

+
2(1− pq)(1 + pq)
(1 + p2)(1 + q2)

= −1, (2.3.1)

(s+ t)(1 + st)
(1 + t2)(1 + s2)

+
(p+ q)(1 + pq)
(1 + p2)(1 + q2)

= 0. (2.3.2)
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Since xyuv = 1, the sum of the arguments of x, y, u and v is an integer multiple of 2π.

Therefore the tangent of the sum of the halves of the arguments of x and y is the negative

of the tangent of the sum of the halves of the arguments of u and v, that is

s+ t

1− st
= − p+ q

1− pq
. (2.3.3)

Substituting 1−pq = −(p+ q)(1− st)/(s+ t) in equation (2.3.1) and multiplying both sides

by s+ t, we get
(s+ t)(1 + ts)
(1 + t2)(1 + s2)

− (p+ q)(1 + pq)
(1 + p2)(1 + q2)

= − (s+ t)
2(1− st)

. (2.3.4)

By adding equations (2.3.4) and (2.3.2), we have

(s+ t)(1 + st)
(1 + t2)(1 + s2)

= − (s+ t)
4(1− st)

,

which can be rewritten as

(s+ t)
(
s2 + t2 − 3s2t2 + 5

)
= 0. (2.3.5)

Similarly, by subtracting equations (2.3.4) and (2.3.2), we get

(p+ q)
(
p2 + q2 − 3p2q2 + 5

)
= 0. (2.3.6)

All of the above arguments were applied to the pair {{s, t}, {p, q}}. Since all of the above

identities are symmetric in s, t, p and q, it follows that all of the mentioned equalities also

hold for the pairs {{s, p}, {t, q}} and {{s, q}, {t, p}}, that is (s+p)
(
s2 + p2 − 3s2p2 + 5

)
= 0,

(s + p)/(1 − sp) = −(t + q)/(1 − tq) and so on. Recall that x = z(s) and u = z(p). Note

that s + p = 0 if and only if u = x. Also, by substituting s2 = (1 − <(x))/(1 + <(x)) and

t2 = (1− <(y))/(1 + <(y)) in s2 + t2 − 3s2t2 + 5, we observe that <(x + y) = −1/2 if and

only of s2 + t2 − 3s2t2 + 5 = 0.

Thus, if any two of the elements in {x, y, u, v}, say x and u, are conjugates then s+p = 0

and therefore t + q = 0 which means y and v are conjugates. Now, since t 6= p, it follows

that s + t 6= 0 and therefore s2 + t2 − 3s2t2 + 5 = 0 or equivalently, <(x + y) = −1/2.

Since x, y 6= −1 and <(x) = −1/2 − <(y) it follows that −1 < <(x) < 1/2. Also notice

that −1/4 < <(x) < 1/2 if and only if −1 < <(y) < 1/2. Therefore, by symmetry, we may

assume −1/4 < <(x) < 1/2.

If no two elements in {x, y, u, v} are conjugates then ±s,±t,±p and ±q are all distinct

and therefore s2 + t2 − 3s2t2 + 5 = 0, s2 + p2 − 3s2p2 + 5 = 0, and so on. This implies that
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<(x + y),<(x + u) and so on are all equal to −1/2. But then <(y − u) = 0 and therefore

<(y) = <(u) = −1/4. But then <(x) = <(u) = −1/4, which means not all of the x, y, u, v

are distinct, a contradiction.

2.3.3 MUBs Arising from the Weyl-Heisenberg Orbit

As mentioned in Chapter 1, there have been several approaches [2, 50, 83, 8, 54] in con-

structing MUBs. Here, we propose a new method for constructing MUBs.

Recall that unitary transformations preserve the inner product, therefore by applying

an appropriate unitary transformation on any complete set {B0,B1, . . . ,Bd} of MUBs in Cd,

we may assume that Bd is the standard basis. In this section, we consider sets of MUBs for

which ∪d−1
i=0Bi is a Weyl-Heisenberg orbit. To the best of our knowledge, this is a new ap-

proach in constructing MUBs (the only other known idea [8] that uses the Weyl-Heisenberg

group to construct MUBs is considering the eigenvectors of the Pauli matrices). We give

a characterization theorem for the existence of such MUBs. Using this characterization, we

show that such MUBs always exist for every prime dimension p. The existence of p+1 MUBs

for any prime p is already known. We will also show that by considering a generalized Weyl-

Heisenberg orbit, such MUBs also exist for a prime power dimension pm,m ≥ 1, p 6= 2, 3.

The construction of pm+1 MUBs in Cpm
due to Klappenecker and Rötteler [54] is essentially

an example of such MUBs.

Definition 2.53. We say that a vector z ∈ Cd is Zd-MUB-fiducial if {B0, . . . ,Bd−1}
together with the standard basis form a complete set of mutually unbiased bases, where

Bi =
{
XiYjz : j ∈ Zd

}
, 0 ≤ i ≤ d− 1.

Note that if z = (zj) is a Zd-MUB-fiducial vector in Cd then we must have |zj | = 1/
√
d

for every j ∈ Zd. We also have

〈XiYjz,XiYj′z〉 = 〈Yjz,Yj′z〉 =
∑
k∈Zd

|zk|2ωk(j
′−j) = δjj′ .

Thus, each Bi is an orthonormal basis by the definition.

Theorem 2.54. A vector z = (zj) ∈ Cd with |zj | = 1/
√
d is Zd-MUB-fiducial if and only

if for every s, t ∈ Zd with 0 < s ≤ t ≤ bd/2c, the following holds:

fs,t (z) :=
∑
j∈Zd

zjzj+szj+tzj+s+t = 0.
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Proof. Fix s ∈ Zd \ {0}. For every k ∈ Zd we have X−sYkz = (zj+sωk(j+s)). Thus

z∗X−sYkz =
∑

j∈Zd
zjzj+sω

k(j+s). This implies that

|z∗X−sYkz|2 =

∑
j∈Zd

zjzj+sω
−k(j+s)

∑
j′∈Zd

zj′zj′+sω
k(j′+s)


=

∑
j,j′∈Zd

zjzj+szj′zj′+sω
k(j′−j)

=
∑
t∈Zd

∑
j∈Zd

zjzj+szj+tzj+t+sω
kt

= fs

(
wk
)
,

where fs(x) =
∑d−1

t=0 fs,t(z)xt. It follows that the vector z with |zj | = 1/
√
d is Zd-MUB-

fiducial if and only if fs
(
ωk
)

= 1/d for every s ∈ Zd \ {0} and k ∈ Zd. This means that

fs(x) − 1/d vanishes on {x ∈ C : xd = 1}. Since fs(x) − 1/d is a polynomial of degree

at most d − 1, this is equivalent to the fact that fs(x) − 1/d is identically equal to zero.

That is fs,t(z) = 0 when s, t ∈ Zd \ {0} (note that fs,0(z) = 1/d for any z = (zj)j∈Zd
with

zj = 1/
√
d). Since fs,t(z) = ft,s(z) and

fs,−t(z) =
∑
j∈Zd

zjzj+szj−tzj+s−t =
∑
j∈Zd

zj+tzj+t+szjzj+s = fs,t(z),

we may assume 0 < s ≤ t ≤ bd/2c.

When d = q is a prime power, we may index the coordinates of a vector in Cq with Fq,
the finite field with q elements, rather than Zq. Equivalently, we may think of Cq as the set

of all mappings from Fq to C. Let p be prime and q = pm,m ≥ 1. The mapping Tr : Fq → Fp
defined by Tr (x) =

∑m−1
i=0 xp

i
is called the absolute trace mapping. It is easy to see that Tr

is a pm−1-to-1 Fp-linear mapping. Let ω denote a primitive p-th root of unity in C. The

Pauli matrices for Fq are defined by their action on the standard basis {ex : x ∈ Fq} as

follows:

X(s) : ex 7→ ex+s,

Y(s) : ex 7→ ωTr(sx)ex,

where s ∈ Fq. Note that X(s)p = Y(s)p = Iq.

Definition 2.55. The set {X(s)Y(k)z : s, k ∈ Fq} ⊂ Cq is called the generalized Weyl-

Heisenberg orbit of z ∈ Cq.



CHAPTER 2. REGULAR STRUCTURES OF LINES 51

For prime p, we may identify Fp with Zp and therefore the generalized Weyl-Heisenberg

orbit of a vector z ∈ Cp is the same as the Weyl-Heisenberg orbit of z.

Definition 2.56. We say that a vector z ∈ Cq is Fq-MUB-fiducial if {Bs : s ∈ Fq}
together with the standard basis form a complete set of mutually unbiased bases, where

Bs = {X(s)Y(k)z : k ∈ Fq}, s ∈ Fq.

As before, if z is an Fq-MUB-fiducial vector in Cq then we must have |zj | = 1/
√
q for

every j ∈ Fq. We also have

〈X(s)Y(k)z,X(s)Y(k′)z〉 = 〈Y(k)z,Y(k′)z〉 =
∑
t∈Fq

|zt|2ωTr(t(k′−k)) = δkk′ .

Thus, each Bs is an orthonormal basis by the definition. The proof of the following theorem

is similar to the proof of Theorem 2.54, but requires more algebraic techniques. Before we

give a proof, we state the preliminary tools. Consider the multiplicative groups F∗q = Fq\{0}
and F∗p = Fp \ {0}. Let Fq:p ⊂ Fq denote a set of coset representatives of F∗p in F∗q . That is,

every element in x ∈ F∗q may be uniquely expressed as ya for some y ∈ Fq:p and a ∈ Fp. For

every k ∈ Fq and a ∈ Fp, define

T (k, a) = {t ∈ F∗q : Tr (kt) = a}.

Since Tr is an Fp-linear mapping, Tr
(
c−1kt

)
= c−1Tr (kt) for every c ∈ F∗p and therefore

T (c−1k, a) = T (k, ac).

Theorem 2.57. A vector z = (zj)j∈Fq ∈ Cq with |zj | = 1/
√
q is Fq-MUB-fiducial if and

only if for every (s, `, a) ∈ F∗q × Fq:p × Fp we have∑
t∈T (`,a)

fs,t(z) = 0,

where fs,t (z) =
∑

j∈Fq
zjzj+szj+tzj+s+t.

Proof. Fix (s, k) ∈ F∗q×Fq. We have X(−s)Y(k)z = (zj+sωTr(k(j+s))). Thus z∗X(−s)Y(k)z =∑
j∈Fq

zjzj+sω
Tr(k(j+s)). This implies that

|z∗X(−s)Y(k)z|2 =

∑
j∈Fq

zjzj+sω
−Tr(k(j+s))

∑
j′∈Fq

zj′zj′+sω
Tr(k(j′+s))


=

∑
j,j′∈Fq

zjzj+szj′zj′+sω
Tr(k(j′−j))

=
∑
t∈Fq

∑
j∈Fq

zjzj+szj+tzj+t+sω
Tr(kt) =

∑
t∈Fq

fs,t(z)ωTr(kt).
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Since fs,0(z) = 1/q for any vector z with |zj | = 1/
√
q, we get

|z∗X(−s)Y(k)z|2 =

1/q +
∑

a∈Fp

∑
t∈T (k,a) fs,t(z)ωa = 1/q + gs,k (ω) if k 6= 0,

1/q +
∑

t∈F∗q fs,t(z) = 1/q + gs,1(1) if k = 0,

where gs,k(x) =
∑

a∈Fp
Fs,k,a(z)xa and Fs,k,a(z) =

∑
t∈T (k,a) fs,t(z). It follows that the

vector z with |zj | = 1/
√
q is Fq-MUB-fiducial if and only if gs,1(1) = 0 and gs,k (ω) = 0 for

every s, k ∈ F∗q . For any c ∈ F∗p, we have

Fs,kc,a(z) =
∑

t∈T (kc,a)

fs,t(z) =
∑

t∈T (k,ac−1)

fs,t(z) = Fs,k,ac−1(z).

Therefore

gs,kc(x) =
∑
a∈Fp

Fs,kc,a(z)xa =
∑
a∈Fp

Fs,k,ac−1(z)xa =
∑
a∈Fp

Fs,k,a(z)xac = gs,k(xc).

Therefore the condition “gs,k (ω) = 0 for every s, k ∈ F∗q” is equivalent to “gs,` (ωc) = 0 for

every (s, `, c) ∈ F∗q × Fq:p × F∗p”. Also note that gs,k(1) = gs,1(1) for every s, k ∈ F∗q . As

a result, a vector z with |zj | = 1/
√
q is Fq-MUB-fiducial if and only if gs,` (ωc) = 0 for every

(s, `, c) ∈ F∗q × Fq:p × Fp. This means that gs,`(x), which is a polynomial of degree at most

p− 1, vanishes on {x ∈ C : xp = 1}. Equivalently, gs,`(x) is identically equal to zero. That

is,
∑

t∈T (`,a) fs,t(z) = 0 for every (s, `, a) ∈ F∗q × Fq:p × Fp.

2.3.4 Classification for d ≤ 5

In this section, we will classify all Zd-MUB-fiducial vectors in Cd for d ≤ 5. Since for any

Zd-MUB-fiducial vector z and θ ∈ R, the vector eiθz is also a Zd-MUB-fiducial vector, we

will always assume that the coordinate corresponding to j = 0 of any Zd-MUB-fiducial

vector z = (zj)j∈Zd
has argument equal to zero, that is z0 = 1/

√
d. Such a Zd-MUB-fiducial

vector is said to be normalized.

Theorem 2.58. A vector z = 1√
2
(1, α)T ∈ C2 is a normalized Z2-MUB-fiducial vector if

and only if α4 = −1, i.e. α ∈ {eπi/4, e3πi/4, e5πi/4, e7πi/4}.

Proof. Using Theorem 2.54, z is a Z2-MUB-fiducial vector in C2 if and only if α2 + α2 = 0

and |α| = 1, which is equivalent to α4 = −1.

Notice that Example 2.33 was established by taking α = eπi/4 in Theorem 2.58.
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Theorem 2.59. A vector z = 1√
3
(1, α, β)T ∈ C3 is a normalized Z3-MUB-fiducial vector if

and only if {α3, β3} = {e2πi/3, e4πi/3}.

Proof. Using Theorem 2.54, z is a Z3-MUB-fiducial vector in C3 if and only if α2β +αβ
2 +

βα = 0 and |α| = 1 and |β| = 1. Dividing by αβ, we may rewrite this as 1+1/α3 +1/β3 = 0

with |α| = 1 and |β| = 1. This means that {1, 1/α3, 1/β3} is a normalized zero-sum set of

3 points on the unit complex circle. By Theorem 2.49, {1, 1/α3, 1/β3} must be the set of

third roots of unity. Hence {α3, β3} = {e2πi/3, e4πi/3}.

Theorem 2.60. There exists no Z4-MUB-fiducial vector in C4.

Proof. Towards a contradiction, assume z = 1
2(1, α, β, γ)T ∈ C4 with |α| = |β| = |γ| = 1 is

a normalized Z4-MUB-fiducial vector. By letting s = t = 1 in Theorem 2.54, we get

0 =
β

α2
+
αγ

β2
+

β

γ2
+ αγ =

β

α2γ2

(
α2 + γ2

)
+
αγ

β2

(
β2 + 1

)
.

Similarly, by letting s = 1 and t = 2 in Theorem 2.54, we get

0 =
γ

αβ
+

α

βγ
+
αβ

γ
+
βγ

α
=

(
α2 + γ2

) (
β2 + 1

)
αβγ

.

The above identities imply that β2 + 1 = 0 and α2 + γ2 = 0. But then by considering

s = t = 2 in Theorem 2.54, we have f2,2(z) = β2 + 1/β2 + (α/γ)2 + (γ/α)2 = −4 6= 0, which

is a contradiction.

Theorem 2.61. A vector z = 1√
5
(1, α, β, γ, δ)T ∈ C5 is a normalized Z5-MUB-fiducial

vector if and only if α = ωa, β = ωb, γ = ωc and δ = ωd with a + b + c + d ≡ 0 (mod 5),

where ω = e2πi/5.

Proof. By Theorem 2.54, z is a Z5-MUB-fiducial vector if and only if |α| = |β| = |γ| = |δ| = 1

and (z, w, t, u) = (α, β, γ, δ) is a solution of

f1,1(z) =
w

z2
+
zt

w2
+
wu

t2
+

t

u2
+ zu = 0,

f1,2(z) =
t

zw
+
zu

wt
+
w

tu
+
zt

u
+
wu

z
= 0,

f2,2(z) =
u

w2
+
z

t2
+
zw

u2
+ wt+

ut

z2
= 0.

By dividing the above equations by zu, wu/z and wt, respectively, we get
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w

z3u
+

t

w2u
+

w

zt2
+

t

u3z
+ 1 = 0, (2.3.7)

t

w2u
+

z2

w2t
+

z

tu2
+

z2t

wu2
+ 1 = 0, (2.3.8)

u

w3t
+

z

wt3
+

z

u2t
+ 1 +

u

z2w
= 0. (2.3.9)

By considering equation (2.3.7), since
w

z3u
· t

w2u
· w
zt2
· t

u3z
· 1 = 1, Theorem 2.52 implies

that one of the following three cases occurs:

Case I.
w

z3u
· t

w2u
= 1 and

w

zt2
· t

u3z
= 1.

We have t = z3wu2 = z−2wu−3. Hence z5u5 = 1. Let I = 〈f1,1(z), f1,2(z), f2,2(z), z5u5−
1, t−z3wu2〉. Using a computer algebra system, such as Maple TM, we may find the Gröbner

basis of I with respect to any ordering is {1} and therefore there is no solution in this case.

Case II.
w

z3u
· w
zt2

= 1 and
t

w2u
· t

u3z
= 1.

We have z4t2u = w2 and zw2u4 = t2. By letting I = 〈f1,1(z), f1,2(z), f2,2(z), z4t2u −
w2, zw2u4 − t2〉, we may find that the Gröbner basis of I with respect to the pure lexico-

graphic monomial order induced by z > w > t > u is {z2, w2, t2, u2}. Hence (z, w, t, u) =

(α, β, γ, δ) is a desired solution if and only if α = β = γ = δ = 0, which is a contradiction

to |α| = |β| = |γ| = |δ| = 1.

Case III.
w

z3u
· t

u3z
= 1 and

t

w2u
· w
zt2

= 1.

We get wt = z4u4 and zwtu = 1. Let I = 〈f1,1(z), f1,2(z), f2,2(z), wt− z4u4, zwtu− 1〉.
By computing the Gröbner bases of I with respect to the pure lexicographic monomial orders

induced by z > w > t > u and u > t > w > z, it follows that if (z, w, t, u) = (α, β, γ, δ) is

a desired solution then α5 = β5 = γ5 = δ5 = 1. Thus, by letting (z, w, t, u) =
(
ωa, ωb, ωc, ωd

)
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with a+ b+ c+ d ≡ 0 (mod 5) (which is equivalent to zwtu = 1), we find that

f1,1(z) = ωb−2a + ωa+c−2b + ωb+d−2c + ωc−2d + ωa+d

= ωa+d
(
ω−3a+b−d + ω−2b+c−d + ω−a+b−2c + ω−a+c−3d + 1

)
= ωa+d

(
ω2(−a+b−2c) + ω−(−a+b−2c) + ω−a+b−2c + ω−2(−a+b−2c) + 1

)
= 0,

and

f1,2(z) = ω−a−b+c + ωa+d−b−c + ωb−c−d + ωa+d−c + ωb+d−a

= ωb+d−a
(
ωa−b+2c + ω2(a−b+2c) + ω−2(a−b+2c) + ω−(a−b+2c) + 1

)
= 0,

and similarly f2,2(z) = 0. This completes the proof.

2.3.5 A Construction for Prime Powers

Recall that for any integer d ≥ 2, the set {XiYjz : i, j ∈ Zd} ⊂ Cd is the Weyl-Heisenberg

orbit of z ∈ Cd. Also for any prime power q, the set {X(a)Y(b)z : a, b ∈ Fq} ⊂ Cq is the

generalized Weyl-Heisenberg orbit of z ∈ Cq. When q is prime, these two orbits are exactly

the same. The following theorem shows the existence of q+1 MUBs in Cq when q is a prime

power other than powers of 2 and 3. This theorem is new, however the construction of the

MUBs that results from this theorem is equivalent to the construction of the MUBs due to

Klappenecker and Rötteler [54].

Theorem 2.62. Let p ≥ 5 be a prime number, q = pm for some m ≥ 1, and ω = e2πi/p.

Then

z =
1
√
q

(
ωTr(x3)

)
x∈GF (q)

is an Fq-MUB-fiducial vector in Cq.

Proof. For every s, t ∈ F∗q , let fs,t(z) be as defined in Theorem 2.57. Since

x3 − (x+ s)3 − (x+ t)3 + (x+ s+ t)3 = 6stx+ 3st(s+ t)
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and Tr is a linear mapping, we get

fs,t(z) = q−2
∑

x∈GF (q)

ωTr(x3)−Tr((x+s)3)−Tr((x+t)3)+Tr((x+s+t)3)

= q−2ωTr(3st(s+t))
∑

x∈GF (q)

ωTr(6stx).

Since the characteristic of the field Fq is neither 2 nor 3, we have 6 6= 0. Hence the

mapping x 7→ Tr (6stx) is a pm−1-to-1 mapping from Fq to Fp. Therefore fs,t(z) =

q−2ωTr(3st(s+t))pm−1
∑

j∈Zp
ωj = 0. The result follows from Theorem 2.57.

The observation that for prime powers q = pm with p 6= 2, 3, there exist q + 1 MUBs,

as we already mentioned, has been known since 1980. We would like to emphasize that

the above theorem provides a construction of such complete set of MUBs that is a union of

a standard basis and an orbit of a (generalized) Weyl-Heisenberg group.

As a side note, we would like to mention that Theorem 2.62 implies the following well-

known result in analytic number theory:

Corollary 2.63 (Quadratic Gauss Sum for Primes). Let p be a prime and ω = e2πi/p. For

any a ∈ Zp \ {0}, we have ∣∣∣ ∑
j∈Zp

ωaj
2
∣∣∣ =
√
p.

Proof. The proof for p = 2 and p = 3 is straightforward. Let us assume p ≥ 5. Let z be as

in Theorem 2.62 with q = p. Note that in GF(p), we have Tr (x) = x. Let r ∈ Zp \ {0} be

such that 3r = a. By Theorem 2.62, we get |〈z,X−rz〉| = 1/
√
p. On the other hand, since

|ωr3/4| = 1 and {j + r/2 : j ∈ Zp} = Zp, we have

|〈z,X−rz〉| = p−1
∣∣∣ ∑
j∈Zp

ω(j+r)3−j3
∣∣∣ = p−1

∣∣∣ω r3

4

∑
j∈Zp

ω3r(j+ r
2)2∣∣∣ = p−1

∣∣∣ ∑
j∈Zp

ωaj
2
∣∣∣.

2.4 Spherical 2-Designs

Spherical designs are another example of regular structure of lines that have been studied

in various fields including frame theory, digital communication and quantum information

theory. In this section, we give a brief survey on spherical designs. We also discuss their
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connection with (tight) equiangular set of lines and mutually unbiased bases. As an intrigu-

ing instance, we give a numerical example of a tight equiangular set of 169 lines in C13 that

we obtained by using this connection. Some of the observations are new.

Let µ be the unique measure on CPd−1 which is invariant under unitary transformations

and normalized so that
∫

CPd−1 dµ(z) = 1. Let t, ` ≥ 1 be integers. Denote Hom(t, `) the

set of polynomials in C[x0, . . . , xd−1, y0, . . . , yd−1] that are homogenous of degree t in the

variables x0, . . . , xd−1 and homogenous of degree ` in the variables y0, . . . , yd−1. To every

p ∈ Hom(t, `) we associate the mapping po(z) = p(z, z∗) for z ∈ Cd. Since p is homogeneous,

we get

po(eiθz) = eiθ(t−`)po(z)

for each θ ∈ R. Therefore, po is a well-defined mapping on CPd−1 only if t = `. Define

Hom(t, t)o = {po : p ∈ Hom(t, t)},

the set of homogenous polynomials in z0, . . . , zd−1, z0, . . . , zd−1 of degree at most t. For

example, given a unit vector w ∈ Cd, the mapping po(z) = |〈z,w〉|2t is an element in

Hom(t, t)o. We refer the reader to [55] for further information.

Definition 2.64. A set L ⊂ CPd−1 is a spherical t-design if∫
CPd−1

f(z)dµ(z) =
1
|L|

∑
[z]∈L

f(z)

for every f ∈ Hom(t, t)o. That is, the average of f over CPd−1 is equal to its average

over L.

Notice that if L is a t-design then L is also a k-design for all 1 ≤ k ≤ t. For a given set

of lines L in CPd−1, we define the t-energy of L by

Et(L) =
∑

[v],[w]∈L

|〈v,w〉|2t.

Recall that for any [v], [w] ∈ CPd−1, the vector v⊗t denotes the tensor product of v with

itself t times. Also, recall from (1.4.2) that 〈v⊗t,w⊗t〉 = 〈v,w〉t. The following lemma is

known.

Lemma 2.65. [55] For any [w] ∈ CPd−1 and integer t ≥ 1,∫
CPd−1

|〈z,w〉|2tdµ(z) =
(
d+ t− 1

t

)−1

.
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Proof. Since µ is invariant under unitary transformations, we may assume w = e0. The

result follows from Rudin [68, Proposition 1.4.9].

The following inequality is known as Welch bound [81].

Theorem 2.66. [81] For any set of n ≥
(
d+t−1
t

)
lines L ⊂ CPd−1, we have

Et(L) ≥ n2(
d+t−1
t

) .
Equality holds if and only if L is a t-design.

Proof. Let v denote the conjugate of v. Write z1 = n−1
∑

[v]∈L(v⊗t ⊗ v⊗t) and z2 =∫
CPd−1 v⊗t ⊗ v⊗tdµ(v). Since

〈v⊗t ⊗ v⊗t,w⊗t ⊗w⊗t〉 = 〈v,w〉t〈v,w〉t = |〈v,w〉|2t,

using Lemma 2.65, we have

〈z1, z1〉 = n−2
∑

[v],[w]∈L

|〈v,w〉|2t,

〈z1, z2〉 = n−1
∑

[v]∈L

∫
CPd−1

|〈v,w〉|2tdµ(w) =
(
d+ t− 1

t

)−1

,

〈z2, z2〉 =
∫ ∫

CPd−1
|〈v,w〉|2tdµ(v)dµ(w) =

(
d+ t− 1

t

)−1

.

Therefore 〈z1 − z2, z1 − z2〉 = n−2
∑

[v],[w]∈L |〈v,w〉|2t−
(
d+t−1
t

)−1
. The result follows from

the fact that 〈z1 − z2, z1 − z2〉 ≥ 0 and equality holds if and only if z1 = z2. By the con-

struction of z1 and z2, this is equivalent to
∫

CPd−1 f(v) = n−1
∑

[v]∈L f(v) for all monomials

(and hence for all polynomials, by linearity) f ∈ Hom(t, t)o. Thus equality holds if and

only if L is a t-design.

Recall that a tight frame (Definition 2.14) and a tight set of lines (Definition 2.24) are

equivalent objects. The following result has been recently observed by the frame theory

community (see [11]) and is also known to quantum information theorists (see [66]).

Corollary 2.67. Let L ⊂ CPd−1 be a set of n ≥ d lines. Then L is tight if and only if it is

a 1-design.
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Proof. Let V be a d×n matrix where the columns represent the n lines in L. Let G = V∗V

be a Gram matrix of L and S = VV∗ be its frame matrix. Let the eigenvalues of S be

λ1, . . . , λd. We have

E1(L) =
∑

[v],[w]∈L

|〈v,w〉|2 = Tr (GG∗) = Tr
(
G2
)

= Tr
(
S2
)

=
d∑
i=1

λi
2

≥ 1
d

(
d∑
i=1

λi

)2

=
1
d

Tr (S)2 =
n2

d
.

By Theorem 2.66, L is a 1-design if and only if E1(L) = n2/d. The above inequality implies

that the latter is equivalent to λ1 = · · · = λd = n/d or equivalently S = (n/d)Id which is

the definition of a tight set of lines.

The following theorem is due to Renes et. al [66].

Theorem 2.68. [66] An equiangular set of d2 lines in Cd is a 2-design. Conversely, any

2-design of size d2 is an equiangular set.

Proof. If L is an equiangular set of n = d2 lines in Cd then |〈v,w〉|2 = 1/(d + 1) for every

distinct [v], [w] ∈ L. Hence E2(L) = n2/
(
d+1
2

)
. Theorem 2.66 implies that L is a 2-design.

Conversely, if L is a 2-design with n = d2 then E2(L) = n2/
(
d+1
2

)
and E1(L) = n2/d.

Therefore in the following inequality

d2(d−1)
d+1 = E2(L)− n =

∑
v 6=w

|〈v,w〉|4

≥ 1
n(n−1)

∑
v 6=w

|〈v,w〉|2
2

= 1
n(n−1) (E1(L)− n)2 = d2(d−1)

d+1 ,

equality holds. Therefore all of the |〈v,w〉|, when v 6= w, are equal.

Corollary 2.69. A set L ⊂ CPd−1 of size d2 is an equiangular set of lines if and only if

E2(L) =
∑

[v],[w]∈L

|〈v,w〉|4 =
2d3

d+ 1
.

Proof. This is an immediate corollary of Theorem 2.68 and Theorem 2.66.

The following observation is new.
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Corollary 2.70. A tight equiangular set of n ≥
(
d+1
2

)
lines in Cd is a 2-design if and only

if n = d2.

Proof. Let L be a tight equiangular set of n lines in Cd. Then |〈v,w〉|4 = (n−d)2/(d(n−1))2

for all distinct [v], [w] ∈ L. Since n ≤ d2, we have

E2(L)− n2(
d+1
2

) =
n2(d− 1)(d2 − n)
d2(d+ 1)(n− 1)

≥ 0,

and equality holds if and only if n = d2. The result follows from Theorem 2.66.

Even though tight equiangular sets of n lines in Cd, with
(
d+1
2

)
≤ n < d2, are not 2-

designs, they are still the optimal solutions to the optimization problem described below.

Notice that the following bound is weaker than the bound given in Theorem 2.66, but it

holds for any set of lines of any size greater than or equal to d. The following theorem

generalizes Theorem 2.68 and Corollary 2.69. To the best of our knowledge, this result is

not documented in the literature.

Theorem 2.71. For any set of n ≥ d lines L ⊂ CPd−1, we have

E2(L) ≥ n+
n(n− d)2

d2(n− 1)
.

Moreover, given d ≤ n ≤ d2, a set L is a tight equiangular set of n lines in Cd if and only if

E2(L) = n+
n(n− d)2

d2(n− 1)
.

Proof. By Theorem 2.66, we have E1(L) ≥ n2/d. Hence

E2(L)− n =
∑
v 6=w

|〈v,w〉|4

≥ 1
n(n− 1)

∑
v 6=w

|〈v,w〉|2
2

=
1

n(n− 1)
(E1(L)− n)2

≥ 1
n(n− 1)

(
n2

d
− n

)2

=
n(n− d)2

d2(n− 1)
.

Therefore, equality holds if and only if |〈v,w〉|2, when v 6= w, are all equal to n−d
d(n−1) .
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Recall from Definition 1.34 that the Weyl-Heisenberg orbit of a vector z ∈ Cd is the set{[
XjYkz

]
: j, k ∈ Zd

}
. If an equiangular set of d2 lines is also the Weyl-Heisenberg orbit

of a vector z ∈ Cd then we may reduce the number of variables in the objective function in

Theorem 2.71 from O(d3) to O(d). This is an immediate corollary of Corollary 2.69.

Corollary 2.72. For a given z ∈ Cd, the set
{[

XjYkz
]

: j, k ∈ Zd
}

is an equiangular set

of d2 lines if and only if
d−1∑
i,j=0

|〈z,XiYjz〉|4 =
2d
d+ 1

.

Using the Minimize command in Maple TM we have found such vectors z ∈ Cd with

high precision up to dimension d = 21. Such a vector z is called a fiducial vector and is

throughly discussed in Chapter 3. Using the PSLQ algorithm, which is built-in in Maple TM,

we have found the minimal polynomial of each coordinate of many of these fiducial vectors.

Let z = reiθ be one of the coordinates of a fiducial vector in Cd. We observed empirically

that the degree of the minimal polynomial of z grows exponentially in d. However, the

minimal polynomials of r and tan θ grow linearly in d. Specifically, the minimal polynomial

of r has only even terms, thus one may consider the minimal polynomial of r2. We also

observed that certain integer multiples of r2 (depending on d) have minimal polynomials

with significantly smaller coefficients. Analogously, the minimal polynomial of tan θ has also

even terms and is ‘almost’ reciprocal.

Example 2.73. Using Corollary 2.72, we observed that there are six non-equivalent (up to

phase shift, conjugation, rotation, and reflection) fiducial vectors in C8. Here is an example

of a minimal polynomial of 12r2, where r is the absolute value of the first coordinate of one

of the six fiducial vectors in C8:

x16 − 32x15 + 468x14 − 4128x13 + 24462x12 − 103088x11

+320288x10 − 751328x9 + 1343683x8 − 1813296x7 + 1789664x6

−1240160x5 + 597150x4 − 229520x3 + 91580x2 − 29792x+ 4049.

Here is the same polynomial for the second coordinate:

x2 − 3x+ 1.

In fact, the minimal polynomial of each of the other coordinates is one of the above. Here

is the minimal polynomial of tan2 θ, where θ is the argument of one of the coordinates of
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one of the six fiducial vectors in C8:

x8 − 408x7 + 7752x6 − 48168x5 + 124578x4 − 144504x3 + 69768x2 − 11016x+ 81.

You may observe that the coefficient of xi, (i = 0, . . . , 4) is equal to the coefficient of x8−i

times 34−i.

Example 2.74. Here is one of the intriguing examples of a numerical fiducial vector that

we have found in C13. Let

r0 = 0.4163985356061205923134288594840803033198213360224314690675...

r1 = r3 = r9 = 0.0897331889102738571880585550872436333745229783358829566022...

r2 = r5 = r6 = 0.2073948270187086052746485599883593449505775964370542355371...

r4 = r10 = r12 = 0.1995430047006255143991518897491555063727034882887289977171...

r7 = r8 = r11 = 0.4297154286935467066334859959398272151445733674545947145119...

and

t0 = 0

t1 = t3 + 8 = t9 − 2 = 4.0218683405433627812389582967255401945674857512162997...

t2 = t5 + 4 = t6 − 4 = 3.8415786253539635994806804791725564859073392522916184...

t4 = t10 + 1 = t12 + 3 = −1.09128661596191010362387365521927573236863049448246...

t7 = t8 = t11 − 2 = 1.6736698662332398954513415700325403447452617621181524...

Then z =
(
rje

2πitj/13
)
∈ C13 satisfies ||〈XjYkz, z〉|2 − 1/14| ≤ 10−30. Notice that r3j = rj

and t3j − tj ∈ Z for all j ∈ Z13.



Chapter 3

Fiducial Vectors

In this chapter, we study the properties of the equiangular sets of lines that form an orbit

under the action of the Weyl-Heisenberg group on CPd−1. It is widely believed by physi-

cists [85, 4, 66, 42, 33] that for every dimension d such an orbit exists. A vector whose

Weyl-Heisenberg orbit produces an equiangular set of lines is called a fiducial vector. We

will consider several types of fiducial vectors such as almost flat, argument Legendre, and

real Legendre. We will also explore the fiducial vectors where the absolute values of their

coordinates take only 2 different values. The argument Legendre fiducial vectors are almost

flat and are discussed by Appleby [4] in specific dimensions. Since the real Legendre fidu-

cial vectors have very similar properties to the argument Legendre ones and also all of the

coordinates of such vectors have the same argument, we have also investigated this class of

fiducial vectors. We will also prove that there is no fiducial vector for which the absolute

values of the coordinates form a periodic sequence. Throughout this chapter, some nontriv-

ial properties of the Legendre symbol are used several times in the proof of the theorems.

We refer the reader to Section 3.6 for more details.

All of the results in this chapter, except the cited ones, are new and are published in [53].

3.1 The Characterizing Identities

In Theorem 3.3, we give a new characterization of fiducial vectors, one that simplifies and

significantly reduces the number of equations that must be solved to find a fiducial vector.

This theorem is new and is extremely useful when proving the rest of the results obtained

in this chapter.

63
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Recall that the Pauli matrices for Zd are defined by their action on the standard basis

{ej : j ∈ Zd} of Cd as follows:

X : ej 7→ ej+1,

Y : ej 7→ ωjej ,

where ω = e2πi/d. Almost all of the known constructions of maximum equiangular sets of

lines are Weyl-Heisenberg orbits. That is, they are of the form
{[

XjYkz
]

: j, k ∈ Zd
}
⊂

CPd−1 for some z ∈ Cd (To the best of our knowledge, the only known exceptions are the sets

of 36 lines in C6 and 64 lines in C8 constructed by Grassl [42] and the set of 64 lines in C8

constructed by Hoggar [46]; Hoggar uses the group Z3
2 instead of Z8). Recall from comments

prior to Definition 1.34 that the quotient group Hd = {XjYk〈ωId〉 : j, k ∈ Zd} acts on

CPd−1, however to simplify the terminology we refer to the set
{[

XjYkz
]

: j, k ∈ Zd
}
⊂

CPd−1 as the Weyl-Heisenberg orbit of z ∈ Cd.

Definition 3.1. A unit vector z ∈ Cd is called fiducial if
{[

XjYkz
]

: j, k ∈ Zd
}
⊂ CPd−1

is an equiangular set of lines.

It is widely believed that for every d there exists a fiducial vector in Cd (for example

see [85, 4, 66, 42, 33]). As an abstract object, the equiangular set of d2 lines in Cd has

been discussed in different contexts. For example, in quantum information theory it is

a symmetric informationally complete positive operator valued measurement (SIC-POVM),

which is composed of d2 rank-one operators all of whose operator inner products are equal.

In the quantum information theory community, there has been notable interest to construct

such SIC-POVMs in every dimension and most of the focus has been on SIC-POVMs which

are invariant under the Weyl-Heisenberg group (i.e. the SIC-POVMs that arise from fiducial

vectors). As we briefly discussed in Section 1.7, equiangular lines have several applications

to quantum information such as quantum fingerprinting [70], quantum tomography [19] and

quantum cryptographic protocols [34]. They also play a role in the Bayesian formulation

of the quantum mechanics [19, 34] where they make nice standard quantum measurements.

Equiangular lines have also been studied in the context of spherical codes and designs [28].

One of the interesting properties of an equiangular set of lines of the form {[gz] : g ∈ G} is

that with certain assumptions on G, instead of checking the equality of
(|G|

2

)
inner products,

one may only need to check |G| of them.
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Lemma 3.2. Let G be a set of d × d complex matrices such that Id ∈ G and for every

A,B ∈ G we have A∗ ∈ G and λAB ∈ G for some λ ∈ C with |λ| = 1. Let z ∈ Cd be a unit

vector. Then {[gz] : g ∈ G} is an equiangular set of lines if and only if |z∗gz| = c for every

g ∈ G \ {Id}. Here c is the cosine of the common angle between the lines.

Note that since Hd, introduced above, is a group, the set {XjYk : j, k ∈ Zd} is closed

under matrix multiplication up to a scalar factor of absolute value 1. It is also closed under

the conjugate transpose operator and contains the identity matrix.

For a given dimension d, by definition, a fiducial vector may be viewed as a solution

of a system of multivariate polynomials in z0, . . . , zd−1, z0, . . . , zd−1 over the field Q(ω).

The following theorem shows that one need only consider Q instead of Q(ω) and it gives

a different characterization of fiducial vectors. The following theorem is new.

Theorem 3.3. A vector z = (zj) ∈ Cd is fiducial if and only if for every (s, t) ∈ Zd × Zd
with 0 ≤ s ≤ t ≤ bd/2c the following identities hold:

fs,t (z) :=
∑
j∈Zd

zjzj+szj+tzj+s+t =
δs0 + δt0
d+ 1

.

Proof. For every k ∈ Zd we have X−sYkz = (zj+sωk(j+s)). Thus, we get z∗X−sYkz =∑
j∈Zd

zjzj+sω
k(j+s). This implies that

|z∗X−sYkz|2 =

∑
j∈Zd

zjzj+sω
−k(j+s)

∑
j′∈Zd

zj′zj′+sω
k(j′+s)


=

∑
j,j′∈Zd

zjzj+szj′zj′+sω
k(j′−j)

=
∑
t∈Zd

∑
j∈Zd

zjzj+szj+tzj+t+sω
kt

= fs

(
wk
)
,

where fs(x) =
∑d−1

t=0 fs,t(z)xt. It follows that the vector z is fiducial if and only if

fs

(
ωk
)

=


1 for (s, k) = (0, 0),

1
d+1 for (s, k) 6= (0, 0).

(3.1.1)

Let Ωd = {x ∈ C : xd = 1}. For s = 0, the above identity holds if and only if f0(x)−1/(d+1)

vanishes on Ωd\{1} and f0(1) = 1, that is
∑

t∈Zd
f0,t(z) = 1. For every s 6= 0, identity (3.1.1)
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holds if and only if fs(x)−1/(d+1) vanishes on Ωd. Since fs(x)−1/(d+1) is a polynomial of

degree at most d−1, this is equivalent to the the fact that fs(x) is identically equal to zero.

That is fs,t(z) = 0 when t 6= 0, and fs,0(z) = 1/(d+1). By combining the above cases, we get

the desired result. Since fs,t(z) = ft,s(z) = fs,−t(z), we may assume 0 < s ≤ t ≤ bd/2c.

Remark. We have noted that the above theorem has also been rediscovered indepen-

dently in [5], a few months after the original submission of [53].

By letting t = 0 in Theorem 3.3, we get the following necessary conditions for a vector

to be fiducial.

Corollary 3.4. Let z = (rjeiθj ), where rj ∈ R and θj ∈ [0, 2π), be a fiducial vector in Cd.

Then the following identities hold: ∑
j∈Zd

r2j r
2
j+s =

1 + δs0
d+ 1

. (3.1.2)

Remark. Note that Corollary 3.4 gives a necessary condition (only using the absolute

values of the coordinates) on whether a vector is fiducial.

A note on equiangular vectors. A set of vectors in Rd is called equiangular if the inner

product between every two distinct vectors in the set is a constant. Note the difference

between equiangular vectors and equiangular lines where we require the absolute value of

the inner products to be a constant. Now, assume that z = (rjeiθj ), where rj ∈ R and

θj ∈ [0, 2π), is a fiducial vector in Cd. Also, let v =
(√

d+1
2 r2j

)
. Then, using Corollary 3.4,

one may observe that S = {X,Xv, . . . ,Xd−1v} is a set of d equiangular vectors on the

unit sphere in Rd with common angle 60◦. Note that the set S is unique up to a unitary

transformation Q. This is because the matrix whose set of columns is S can be decomposed

to QR, where Q is a unitary and R is an upper triangular matrix.

3.2 Almost Flat Fiducial Vectors

In this section, we consider fiducial vectors in which the coordinates take exactly two distinct

absolute values. This is a generalization of a known result that is discussed below.

A vector in Cd is called flat if all its coordinates have the same absolute value. It is

proved [36] that there are at most d2 − d + 1 flat equiangular lines in Cd (and there are
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exactly d2 − d + 1 such lines when d − 1 is a prime power). We will discuss this in more

detail in Section 4.2. In particular, no flat fiducial vectors exist (this can also be concluded

easily from Corollary 3.4). To take it one step further, we say a vector is almost flat if it is

flat except for one coordinate. Appleby [4] constructed fiducial vectors in dimensions 7 and

19 which are almost flat. Using an eigenvalue argument, Roy [67] proved that for almost

flat fiducial vectors in Cd, the absolute values of the coordinates are determined in terms of

d. We provide an alternative proof of this fact here.

Theorem 3.5. [67] Let z be a fiducial vector in Cd such that one coordinate of z has absolute

value b, and all other coordinates have absolute value a. Then

a2 =
1∓ 1/

√
d+ 1

d
, b2 =

1± (d− 1)/
√
d+ 1

d
.

Proof. Since z is a unit vector, we have b2 +(d−1)a2 = 1. By letting s = 0 in Corollary 3.4,

we get b4 + (d− 1)a4 = 2/(d+ 1). Solving for a2 and b2, we get the stated values.

Remark. Note that (a2, b2) = ((1+1/
√
d+ 1)/d, (1− (d−1)/

√
d+ 1)/d) is only possible

for d ≤ 3, since we must have a2, b2 ≥ 0.

In fact, we can prove a stronger result. Namely, the existence of a cyclic difference set in

Zd is a necessary condition for the existence of fiducial vectors in which the coordinates take

exactly two distinct absolute values. Before stating the result, recall that a (d, k, λ)-cyclic

difference set is a set D = {α1, . . . , αk} ⊆ Zd such that each element in Zd \ {0} can be

represented as a difference αi−αj in exactly λ different ways (see for example [13] and [10]).

The following theorem is new.

Theorem 3.6. Let a 6= b be real numbers and k, d be integers such that 0 < k ≤ d/2. Let

z = (zj) ∈ Cd be a fiducial vector such that k coordinates of z have absolute value b, and all

other coordinates have absolute value a. Let D = {j ∈ Zd : |zj | = b}. Then

a2 =
1
d

(
1∓

√
k(d− 1)

(d+ 1)(d− k)

)
, b2 =

1
d

(
1±

√
(d− k)(d− 1)
k(d+ 1)

)
,

and D forms a (d, k, λ)-cyclic difference set in Zd. In particular, d−1 must divide k(k−1).

Proof. By letting s = 0 in Corollary 3.4 and the fact that z is a unit vector, it follows that

kb2 + (d− k)a2 = 1, kb4 + (d− k)a4 = 2/(d+ 1).
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It is easy to see that if k = 0 then no a and b exist. Thus k ≥ 1. Solving for a2 and b2, we

get

a2 =
1
d

(
1∓

√
k(d− 1)

(d+ 1)(d− k)

)
, b2 =

1
d

(
1±

√
(d− k)(d− 1)
k(d+ 1)

)
.

Hence

(a2 − b2)2 =
d− 1

d2(d+ 1)

(
k

d− k
+
d− k
k

+ 2
)

=
d− 1

(d+ 1)(d− k)k
. (3.2.1)

Let Ns(x, y) = |{i ∈ Zd : |zi| = x, |zi+s| = y}|. Since there are k coordinates that have

absolute value b and d− k coordinates that have absolute value a, we have

Ns(b, b) +Ns(b, a) = k = Ns(b, b) +Ns(a, b). (3.2.2)

Ns(a, a) +Ns(a, b) = d− k = Ns(a, a) +Ns(b, a). (3.2.3)

On the other hand, by Corollary 3.4 we have

Ns(a, a)a4 +Ns(b, b)b4 + (Ns(a, b) +Ns(b, a))a2b2 =
1

d+ 1

for every s ∈ Zd \ {0}. Thus, by using identities (3.2.2) and (3.2.3), this can be rewritten

as (Ns(b, b)− k)(a2 − b2)2 = −1/(d+ 1). Substituting identity (3.2.1) implies that

Ns(b, b) = k − (d− k)k
d− 1

=
k(k − 1)
d− 1

:= λ

is independent of s. By definition of D and Ns(b, b), this means that every s ∈ Zd \ {0} can

be represented as a difference of two distinct elements of D in exactly λ different ways.

Note that Theorem 3.5 is a special case (k = 1) of Theorem 3.6.

Remark. Note that the condition (a2, b2) = ((1 +
√
k(d− 1)/(d+ 1)/(d− k))/d, (1 −√

(d− k)(d− 1)/(d+ 1)/k)/d) is only possible for d ≤ 2k + 1.

3.3 Argument Legendre Fiducial Vectors

One of the main results of this section is Theorem 3.11, where we prove that the construction

of fiducial vectors in the specific dimensions 7 and 19 by Appleby [4] essentially does not

generalize. Inspired by his constructions, we introduce the argument Legendre fiducial

vectors.
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Let p denote a prime number. For every j ∈ Zp let
(j
p

)
denote the Legendre symbol,

that is
(j
p

)
is 0 (respectively 1 or −1) if j = 0 (respectively if j is a quadratic or a non-

quadratic residue). The resultant of two polynomials P (x) = A
∏n
i=1(x − αi) and Q(x) =

B
∏m
i=1(x− βi) in C[x] is defined to be the

Res(P,Q) = AmBn
n∏
i=1

m∏
j=1

(αi − βj).

In particular, P (x) and Q(x) have a common root if and only if Res(P,Q) = 0.

Definition 3.7. We say a fiducial vector z = (zj) ∈ Cp is argument Legendre (AL) if there

exist a, b, θ ∈ R such that

zj =

b if j = 0,

ae
i(j

p)θ if j 6= 0.

Note that AL fiducial vectors are almost flat. Thus, by Theorem 3.5 and its succeeding

remark, if p > 3 then we must have a2 = (1−1/
√
p+ 1)/p and b2 = (1 + (p− 1)/

√
p+ 1)/p.

In fact, if an AL fiducial vector exists in Cp, p ≡ 3 (mod 4), then the value of θ is also

determined in terms of p (see Proposition 3.9 below). The case p ≡ 1 (mod 4) is more

complicated and the value of θ is restricted to only four values. This is mainly because

Lemma 3.17 (iii), Lemma 3.18 and Lemma 3.19, which are essential in our calculations, only

hold when p is congruent to 3 modulo 4 and there seems to be no analogous formulation for

primes that are congruent to 1 modulo 4.

Proposition 3.8. Let p ≡ 1 (mod 4). If z ∈ Cp is an AL fiducial vector with parameters

(a, b, θ) then c = cos θ satisfies(
−2 c2 + 4ψ c− 6ψ2 + ψ4 + 1

) (
−2 c2 + 4ψ c− 2ψ2 + ψ4 − 3

)
= 0,

where ψ =
√

2 +
√
p+ 1.

Proof. Let δ =
√
p+ 1. Hence ψ =

√
δ + 2. By Theorem 3.5, we have a = 1/

√
δ(δ + 1) and

b = ψ/
√
δ(δ + 1). By definition, we must have |

∑
j∈Zp

zjzj+1|2 = 1/(p+1). Since
(−1
p

)
= 1,
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using Lemma 3.18, we may rewrite this as

1
p+ 1

=
∣∣∣z0z1 + z−1z0 +

∑
j∈Zp\{0,−1}

zjzj+1

∣∣∣2

=

∣∣∣∣∣ab(e−iθ + eiθ
)

+ a2

( ∑
j∈Zp\{0,−1}

e
i
“
(j

p)−(j+1
p )

”
θ

)∣∣∣∣∣
2

=
∣∣∣∣2ab cos θ + a2

(
1
2

(p− 3) +
1
4

(p− 1) e2iθ +
1
4

(p− 1) e−2iθ

)∣∣∣∣2
=

(
2abc+

a2

2
(
p− 4 + 2c2

))2

.

By making the above substitutions for a, b, p, and δ and factoring out the non-zero terms,

the previous expression can be written as(
−2 c2 + 4ψ c− 6ψ2 + ψ4 + 1

) (
−2 c2 + 4ψ c− 2ψ2 + ψ4 − 3

)
= 0.

Proposition 3.8 shows that when p ≡ 1 (mod 4) the value of θ in an AL fiducial vector

is restricted to only four values, as mentioned above. However, when p ≡ 3 (mod 4), the

value of θ is determined in terms of p. For the rest of this section, we will only work with

primes that are congruent to 3 modulo 4.

Proposition 3.9. Let p > 3 such that p ≡ 3 (mod 4). If z ∈ Cp is an AL fiducial vector

with parameters (a, b, θ) then

θ =

cos−1(1/
√

2 +
√
p+ 1) for p ≡ 3 (mod 8),

cos−1(−
√

2+
√
p+1

p+1 ) for p ≡ 7 (mod 8).
(3.3.1)

Proof. Let c = cos θ, δ =
√
p+ 1, and ψ =

√
δ + 2. By Theorem 3.5, we have a =

1/
√
δ(δ + 1) and b = ψ/

√
δ(δ + 1). By definition, we must have |

∑
j∈Zp

zjzj+1|2 = 1/(p+

1). Using Lemma 3.18 and Lemma 3.19, we may rewrite this as

(2bc+ (p− 1)ac2 − a)2 + 4(1− c2)(b− ac)2 = 1/a2(p+ 1). (3.3.2)

By making the above substitutions for a, b, p, and δ and factoring out the non-zero terms,

the previous expression can be written as

P (c) := (ψc− 1)
(
(ψ2 − 2)c+ ψ

) (
(ψ2 − 2)(ψ2 − 4)c2 + 2ψc+ ψ2 − 6

)
= 0. (3.3.3)
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Let fs,t(z) be as defined in Theorem 3.3. Using Lemma 3.19 and Lemma 3.20, we get

f1,−1(z) =

a4(p− 3)c2(2c2 − 1) + 2a3b(4c3 − 3c) + a2b2 for p ≡ 3 (mod 8)

a4c2(p(2c2 − 1) + 2c2 − 5) + 2a3bc+ a2b2 for p ≡ 7 (mod 8)

Note that f1,−1(z) = 0 by Theorem 3.3. As before, both polynomials on the right hand side

can be factored in R[ψ]. After factoring out the non-zero terms, we get the following: If

p ≡ 3 (mod 8) then

Q1(c) := (ψc− 1)
(
2(ψ2 − 4)c3 + 2ψc2 − (ψ2 − 6)c− ψ

)
= 0. (3.3.4)

The only common root of the equations (3.3.3) and (3.3.4) is c = 1/ψ. This is because the

resultant of P (c)/(ψc− 1) and Q1(c)/(ψc− 1) is equal to

8ψ3(ψ − 1)2(ψ + 1)2(ψ − 2)2(ψ + 2)2 6= 0,

since ψ > 2. Therefore θ = cos−1
(

1/
√

2 +
√
p+ 1

)
, as desired. If p ≡ 7 (mod 8) then

Q2(c) :=
(
(ψ2 − 2)c+ ψ

) (
2(ψ2 − 2)c3 − 2ψc2 − (ψ2 − 4)c+ ψ

)
= 0. (3.3.5)

Again, since the resultant of P (c)/
(
(ψ2 − 2)c+ ψ

)
and Q2(c)/

(
(ψ2 − 2)c+ ψ

)
is

−8 (ψ − 1)2 (ψ + 1)2
(
ψ2 − 6

) (
ψ2 − 2

)5 6= 0,

it follows that the only common root of the equations (3.3.3) and (3.3.5) is c = −ψ/(ψ2−2)

and therefore we must have θ = cos−1

(
−
√

2+
√
p+1

p+1

)
in this case.

Remark. For p > 19 the quadratic factor in equation (3.3.3) is always positive. Therefore

equation (3.3.3) simplifies to (ψc− 1)
(
(ψ2 − 2)c+ ψ

)
= 0 for p > 19.

Remark. The key in the proof of Proposition 3.9 is that equation (3.3.2) factors over R[ψ]

as given in equation (3.3.3). Equation (3.3.2) is also stated in Roy’s PhD dissertation [67,

p. 89].

By using Theorem 3.3 it is easy to check that the vector (
√

2/3, eiπ/3/
√

6, e−iπ/3/
√

6) is

an AL fiducial vector in C3. The construction of AL fiducial vectors in C7 and C19 is given

by Appleby in [4]. However, a proof that the given vectors are in fact fiducial is not given

in his work. One may interpret that the proofs are basic but require some extensive tedious

algebra. We will give a short proof that Appleby’s vectors [4] are fiducial.
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Theorem 3.10. AL fiducial vectors exist for p = 7 and p = 19.

Proof. Let fs,t(z) be as defined in Theorem 3.3. Recall from Theorem 3.3 (and the remark

following it) that an AL fiducial vector z ∈ Cp with parameters a, b, and c = cos θ exists if

and only if the system of equations

f0,0(z)− 2/(p+ 1) = f0,r(z)− 1/(p+ 1) = fs,t(z) = 0,

where 0 < r ≤ bp/2c and 0 < s ≤ t ≤ bp/2c, (3.3.6)

has a solution. If p = 7, we may easily verify that

f0,0(z) = 6a4 + b4,

f0,1(z) = f0,2(z) = f0,3(z) = 5a4 + 2a2b2,

f1,1(z) = f2,2(z) = f3,3(z) = 4a4c2(4c2 − 3) + a2b2 + 2a3bc,

f1,2(z) = f1,3(z) = f2,3(z) = 4a4c2 − a4 + 4a3bc(2c2 − 1).

It is therefore straightforward to check that the system (3.3.6) has a solution for p = 7 when

a =
√

4−
√

2
28 , b =

√
2+3
√

2
14 , c = cos θ = −

√√
2+1
2 .

(the values of a, b, and θ are taken from Theorem 3.5 and Proposition 3.9.)

Analogously for p = 19, we have

f0,0(z) = 18a4 + b4,

f0,r(z) = 17a4 + 2a2b2,

fr,r(z) = 16a4c2(2c2 − 1) + a2b2 + 2a3bc(4c2 − 3),

fr,2r(z) = fr,7r(z) = fr,8r(z) = fr,9r(z) = a4(16c4 − 4c2 + 3) + 4a3bc(2c2 − 1),

fr,3r(z) = fr,4r(z) = fr,5r(z) = fr,6r(z) = 4a4c2 − a4 + 4a3bc(2c2 − 1),

for all r ∈ Z19 such that 1 ≤ r ≤ 9. A direct evaluation at

a =
√

10−
√

5
190 , b =

√
5+9
√

5
95 , c = cos θ =

√√
5−1
8

shows that the system (3.3.6) has a solution for p = 19.

Using Maple TM and equation (3.3.2), Roy [67] confirms (numerically) that there are

no other AL fiducial vectors for any odd p < 400. We conjecture that AL fiducial vectors

only exist for p ∈ {3, 7, 19} (see Conjecture 4.29). Except for a set of primes with density

zero, we are able to confirm this conjecture, as follows.
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Theorem 3.11. For every prime p such that p ≡ 3 (mod 4), there exists no AL fiducial

vector in Cp unless p ∈ P, where P is a set with zero density (in the set of all primes that

are congruent to 3 modulo 4).

In fact, in the proof of Theorem 3.11, we will see that P is the set of primes p > 7 such

that t(p) = −3 and p ≡ 11 or 19 (mod 24), where t(p) denotes the trace of the Frobenius

endomorphism of the elliptic curve y2 = x(x+ 1)(x+ 2)(x+ 3):

t(p) = −
∑
x∈Zp

(
x(x+ 1)(x+ 2)(x+ 3)

p

)
.

The fact that the set P has density zero follows from Theorem 20 in [72].

Proof. Let z = (zj) be an AL fiducial vector in Cp with parameters a, b, c = cos θ. We

already know that such vector exists for p = 3 and p = 7. So assume p > 7. As in the proof

of Proposition 3.9, by letting δ =
√
p+ 1, and ψ =

√
δ + 2 we get a = 1/

√
δ(δ + 1) and

b = ψ a. Also, by Proposition 3.9 we have c = 1/ψ if p ≡ 3 (mod 8) and c = −ψ/(ψ2 − 2)

if p ≡ 7 (mod 8). Now, by letting q = t(p) and using Lemma 3.19 and Lemma 3.20 we get

the following: If p ≡ 23 (mod 24) then

f1,2(z) = (p+ 2− q)a4c4 + 2(q − 3)a4c2 + 4a3bc− qa4

and if p 6≡ 23 (mod 24) then

f1,2(z) = (p− 6− q)a4c4 + 8a3bc3 + 2(q + 1)a4c2 − 4a3bc− qa4.

By Theorem 3.3, we must have f1,2(z) = 0. Since a, b, c and p can be described in terms of

ψ, we can describe f1,2(z) in terms of q and ψ. Solving for q, we get:

q = t(p) =


−3 for p ≡ 11 or 19 (mod 24)

−ψ2(3ψ2 − 8)/(ψ2 − 4)2 for p ≡ 23 (mod 24)

ψ2(5ψ2 − 24)/(ψ2 − 4)2 for p ≡ 7 (mod 24)

For p ≡ 23 (mod 24) we can easily check that q is not an integer (in fact, if p = 24` + 23

and ` > 13 then −4 < q < −3). This is impossible since q = t(p) is an integer by definition.

Similarly, the case p ≡ 7 (mod 24) when p 6= 7 is excluded. Thus the set

P = {p : p is prime, p ≡ 11 or 19 (mod 24), p > 7, t(p) = −3}

has the desired properties. As mentioned before, the fact that the set P has density zero

follows from Theorem 20 in [72].
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Remark. By considering the identity f1,4(z) = 0 in the previous theorem, we may

further restrict the forbidden set P to its proper subset {p ∈ P|t′(p) = −3}, where t′(p) =

−
∑

j∈Zp

(j(j+1)(j+4)(j+5)
p

)
. Since this subset of P is still non-empty and has the same density

as P, namely zero, we have skipped the details.

3.4 Real Fiducial Vectors

We say a fiducial vector z of dimension d is real if z ∈ Rd.

Example 3.12. By Theorem 3.3, a vector z = (a, b, c) ∈ R3 ⊂ C3 is fiducial if and only if

a4 + b4 + c4 − 1/2 = a2b2 + b2c2 + c2a2 − 1/4 = abc(a + b + c) = 0. It is easy to see that

(0, 1/
√

2, 1/
√

2) is a solution to this system and is thus a real fiducial vector.

It seems that real fiducial vectors rarely exist as the assumption z ∈ Rd is rather strong.

On the other hand, searching for such fiducial vectors should be easier since one needs to

deal with fewer variables (see the discussion before Corollary 2.72). In fact, the number of

unknown real variables in a real fiducial vector in Cd is only d compared to the number of

unknown real variables in a general fiducial vector in Cd which is 2d − 1 (we may always

assume z0 ∈ R). Despite this fact, we are able to find real fiducial vectors in dimension 7

and 19 where the coordinates only take 3 distinct values.

It would be quite interesting to know whether real fiducial vectors in dimensions other

than 3, 7, and 19 exist. In this section, we will discuss a special type of real fiducial vectors

(called real Legendre) which have similar characteristics to the argument Legendre fiducial

vectors. The consideration of real fiducial vectors is our idea.

3.4.1 Real Legendre Fiducial Vectors

Let p be a prime number. We call a fiducial vector z = (zj) ∈ Cp real Legendre (RL) if

there exist a, b, c ∈ R such that

zj =


a if j = 0,

b if
(j
p

)
= 1,

c if
(j
p

)
= −1.

In the next two theorems, we will show that real Legendre fiducial vectors exist for p ∈
{7, 19}. Both of the results are new.
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Theorem 3.13. Let {±a} be the set of real roots of 56x4 + 8x2− 1 and let {±b,±c} be the

set of real roots of 3136x8 − 2240x6 + 568x4 − 56x2 + 1 with a < 0 < b, c. Then the RL

vector (a, b, b, c, b, c, c) ∈ R7 is a fiducial vector in C7.

Proof. By Theorem 3.3, a vector z = (α, β, β, γ, β, γ, γ) ∈ R7 is fiducial if and only if (α, β, γ)

satisfies the following system:

f0,0(z) = α4 + 3(β4 + γ4) = 1/4,

f0,1(z) = f0,2(z) = f0,3(z) = α2(β2 + γ2) + β4 + γ4 + 3β2γ2 = 1/8,

f1,1(z) = f2,2(z) = f3,3(z) = (2α(β + γ) + β2 + γ2 + βγ)βγ = 0,

f1,2(z) = f1,3(z) = f2,3(z) = α2βγ + α(β3 + γ3) + βγ(β + γ)2 = 0.

Let I = 〈f0,0(z)−1/4, f0,1(z)−1/8, f1,1(z), f1,2(z)〉. Using a computer algebra system, such

as Maple TM, we may find the Gröbner basis Gγ of I with respect to the pure lexicographic

monomial order induced by α > β > γ. We observe that Gγ = {h(γ), β − f(γ), α − g(γ)},
where

h(x) = 3136x8 − 2240x6 + 568x4 − 56x2 + 1,

f(x) = −8/23x(784x6 − 707x4 + 184x2 − 14),

g(x) = −1/23x(9408x6 − 3976x4 + 276x2 + 39).

Hence, if (α, β, γ) = (a, b, c) is a solution of the mentioned system of equations, we must

have h(c) = 0. Similarly, we get h(b) = 0 and 56 a4 + 8 a2 − 1 = 0. Now, since h(0) = 1 > 0

and h(1/4) < 0, we may assume c ∈ (0, 1/4). On the interval (0, 1/4), we have f(x) > 0

and g(x) < 0. Therefore b = f(c) > 0 and a = g(c) < 0.

Remark. Since every fiducial vector has unit length, we have added the polynomial

α2 + 3β2 + 3 γ2 − 1 to the set of generators of I to reduce the degree of the polynomials in

the Gröbner bases.

Theorem 3.14. Let {±a} be the set of real roots of 76x4 + 10x2 − 5 and let {±b,±c} be

the set of real roots of 144400x8 − 34200x6 + 3640x4 − 160x2 + 1 with b < 0 < a, c. Then

the RL vector in C19 with parameters (a, b, c) is a fiducial vector.

Proof. The given RL vector z ∈ R19 is fiducial if and only if (α, β, γ) = (a, b, c) is a solution
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to the following system:

f0,0(z) = α4 + 9(β4 + γ4) = 1/10,

f0,1(z) = α2(β2 + γ2) + 4(β4 + γ4) + 9β2γ2 = 1/20,

f1,1(z) = abc(α+ β + γ) + 2(β + γ)2(β2 + γ2) = 0,

f1,2(z) = 2αβγ(β + γ) + β4 + 3β3γ + 7β2γ2 + 3βγ3 + γ4 = 0,

f1,3(z) = α(β + γ)(β2 + γ2) + 5βγ(β2 + bγ + γ2) = 0.

The rest of the proof is similar to the the proof of Theorem 3.13.

Remark. As in dimension 7, adding the polynomial α2 + 9β2 + 9 γ2 − 1 to the set of

generators of I would reduce the degree of the polynomials in the Gröbner bases.

The following result is an analogous version of Theorem 3.11 for RL vectors.

Theorem 3.15. For every prime p such that p ≡ 3 (mod 4), there exists no RL fiducial

vector in Cp unless p ∈ P, where P is a set with zero density (in the set of all primes that

are congruent to 3 modulo 4).

Since the proof of the above theorem is similar to that of Theorem 3.11 and only involves

some basic algebra, we have omitted the proof. However, in the proof of the Theorems 3.11

and 3.15, one can see that the exact same set P satisfies the conditions of these two theorems.

This strongly suggests that one may find a one-to-one correspondence between the set of AL

fiducial vectors and the set of RL fiducial vectors. If such a transformation is found then the

proof of one of the mentioned theorems can be skipped. Now let us look at a crucial group

for which a fiducial vector is invariant. We will discuss briefly why such a transformation

(if any) cannot be in this group.

Let C(d) denote the Clifford group, the group of all unitary operations U which normalize

the generalized Pauli group GP(d), i.e. U GP(d) U∗ = GP(d). Let J be the mapping that

maps (zj) ∈ Cd to (zj). The extended Clifford group is the group consisting of C(d) and

all elements of the form JU, where U ∈ C(d). This group is denoted by EC(d). The

relevance of the (extended) Clifford group to the equiangular set of lines arising from GP(d)

has been discussed by several authors (for example see [4, 41]). Note that if z is a fiducial

vector and U ∈ EC(d) then Uz is also a fiducial vector. Therefore EC(d) lies in the

automorphism group of the set of fiducial vectors in Cd. Appleby [4] proves that for odd d

the group EC(d) modulo its centre I(d) is isomorphic to the group ESL(2,Zd) o (Zd × Zd),
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where ESL(2,Zd) denotes the group of all 2× 2 matrices over Zd with determinant equal to

±1 and o denotes the wreath product. On page 17 in [4], Appleby also describes a method

to find the stability group of a given fiducial vector z ∈ Cd, the set of all U ∈EC(d)/I(d)

for which z is eigenvector. Applying the same method, it turns out that the stability group

of the RL fiducial vector in dimension 7 (from Theorem 3.13) is isomorphic to the order 3

subgroup generated by

[

(
−3 0

0 2

)
,

(
−3

0

)
].

But the stability group of the AL fiducial vector in dimension 7 (from Theorem 3.10) is

isomorphic to the order 6 subgroup (see [4]) generated by

[

(
−2 0

0 −3

)
,

(
0

0

)
],

and therefore the two AL and RL fiducial vectors in dimension 7 do not belong to the

same orbit under the action of the extended Clifford group. Therefore, the transformation

discussed in the previous paragraph cannot be found in EC(d). Similar argument shows

that the two AL and RL fiducial vectors in dimension 19 do not belong to the same orbit

under the action of the extended Clifford group. In fact, the stability group of the RL

fiducial vector in dimension 19 (from Theorem 3.14) is isomorphic to the order 9 subgroup

generated by

[

(
9 0

0 −2

)
,

(
11

0

)
],

whereas the stability group of the AL fiducial vector in dimension 19 (from Theorem 3.10)

is isomorphic to the order 18 subgroup (see [4]) generated by

[

(
−9 0

0 −2

)
,

(
0

0

)
].

3.5 Periodic Fiducial Vectors

We say that a sequence (aj)j∈Zd
is periodic if there exists p ∈ Zd \ {0} such that aj+p = aj

for every j ∈ Zd. The smallest such p is called the period of the sequence. The following

result is new.



CHAPTER 3. FIDUCIAL VECTORS 78

Proposition 3.16. There exists no fiducial vector in Cd such that the absolute values of its

coordinates form a periodic sequence.

Proof. Towards a contradiction assume that such a fiducial vector, namely z = (zj), exists.

Let p be the period of the sequence (|zj |2)j∈Zd
and let d = pk for some integer k > 1. For

j = 0 . . . p− 1, let Rj = |zj |2. It follows from Corollary 3.4 that

k ·
p−1∑
j=0

RjRj+s =
1 + δs0
pk + 1

.

We also know that
∑p−1

j=0 Rj = 1/k. By substituting the above values in the identity(∑
j Rj

)2
=
∑

j R
2
j +

∑
i6=j RiRj , we get

1
k2

=
2

k(pk + 1)
+ (p− 1) · 1

k(pk + 1)
.

Simplifying the above equation, we get k = 1, which is a contradiction.

3.6 Number Theory Results

Here, we state some properties of the Legendre symbol that were used in the proof of

theorems in this chapter.

For every j ∈ Zp recall that
(j
p

)
denotes the the Legendre symbol. The basic properties

of the Legendre symbol can be found in almost any introductory number theory textbook

(for example see [3]). Also recall that t(p) denotes the trace of the Frobenius endomorphism

of the elliptic curve y2 = x(x+ 1)(x+ 2)(x+ 3):

t(p) = −
∑
j∈Zp

(
j(j + 1)(j + 2)(j + 3)

p

)
.

The following lemma is quite straightforward, but we include it for the sake of completeness:

Lemma 3.17. For every odd prime p, we have

(i)
∑

j∈Zp

(j
p

)
= 0,

(ii)
∑

j∈Zp

(j(j+s)
p

)
= −1 for every fixed s ∈ Zp \ {0}.

(iii) If p ≡ 3 (mod 4) then
∑

j∈Zp

((j−s)j(j+s)
p

)
= 0 for every fixed s ∈ Zp.
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Proof. Since (−x)2 = x2, there is at least one non-square y ∈ Zp. Since the Legendre symbol

is multiplicative, we get
(yx
p

)
= −

(
x
p

)
. This implies (i), because y is invertible. We have(j2

p

)
= 1. Thus

∑
j∈Zp

(j(j+s)
p

)
=
∑

j∈Zp\{0}
(1+sj−1

p

)
= −

(
1
p

)
= −1 by (i). If p ≡ 3 (mod 4)

we have
(−x
p

)
= −

(
x
p

)
. Since (−j)3 − (−j) = −(j3 − j), we immediately get (iii).

In the next three lemmas, we count the number of fixed points of certain maps on Zp
that involve the Legendre symbol

(j
p

)
. The lemmas are very similar, but none of them quite

implies another one and therefore we have included them all. However, since the proofs are

similar, we have only presented one of the proofs. The key idea in all of them is to count

the number of elements of the set {j ∈ Zp : (
(j
p

)
,
(j+1
p

)
, . . . ,

(j+t−1
p

)
) = C} for every given

constant C ∈ {−1, 1}t. We will do this for t = 2, t = 3, and t = 4, respectively, in the next

three lemmas.

Lemma 3.18. For every odd prime p and s ∈ Zp \ {0} and j ∈ Zp, let

κ(j) =
(
j

p

)
−
(
j + s

p

)
.

Also let K(c) = |{j : κ(j) = c}|. Then

K(0) = 1
2(p− 3), K(2) = 1

4

(
p− 1−

(−s
p

)
+
(
s
p

))
, K(−2) = 1

4

(
p− 1 +

(−s
p

)
−
(
s
p

))
.

Proof. For every α = (α0, α1) ∈ {−1, 1} × {−1, 1}, let

kp(α) =
1
4

∑
j∈Zp\{0,−s}

(
α0

(
j

p

)
+ 1
)(

α1

(
j + s

p

)
+ 1
)
.

By applying Lemma 3.17, we get

4 kp(α) = (p− α0α1)−
(
α1

(
s

p

)
+ 1
)
−
(
α0

(
−s
p

)
+ 1
)

= p− 2− α0α1 − α0

(
−s
p

)
− α1

(
s

p

)
. (3.6.1)

On the other hand, for every δ ∈ {−1, 1} and x 6= 0, the value of the expression

1
2

(
δ

(
x

p

)
+ 1
)

is equal to 1 if
(
x
p

)
= δ and 0 otherwise. Therefore kp(α) = |{j ∈ Zp :

(j
p

)
= α0,

(j+s
p

)
= α1}|.

Hence K(0) = kp(1, 1) + kp(−1,−1), K(2) = kp(1,−1), and K(−2) = kp(−1, 1). The result

follows immediately using (3.6.1).
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Lemma 3.19. For every prime p such that p ≡ 3 (mod 4), and j ∈ Zp, let

µ(j) = 2
(
j

p

)
−
(
j − 1
p

)
−
(
j + 1
p

)
.

Also let M(c) = |{j : µ(j) = c, j 6= 0}|. Then

M(0) =


1
4(p− 3) for p ≡ 3 (mod 8),

1
4(p− 7) for p ≡ 7 (mod 8),

M(2) = M(−2) =
1
4

(p− 3),

M(4) = M(−4) =


1
8(p− 3) for p ≡ 3 (mod 8),

1
8(p+ 1) for p ≡ 7 (mod 8).

Remark. Note that the equality kp(α0, α1) = mp(1, α0, α1) + mp(−1, α0, α1) does not

necessarily hold, where

mp(β, α0, α1) =
1
8

∑
j∈Zp\{0,±1}

(
β

(
j − 1
p

)
+ 1
)(

α0

(
j

p

)
+ 1
)(

α1

(
j + 1
p

)
+ 1
)
.

This is why Lemma 3.18 can not be implied from Lemma 3.19.

Lemma 3.20. For every prime p such that p ≡ 3 (mod 4), and j ∈ Zp, let

ν(j) =
(
j + 3
p

)
−
(
j + 2
p

)
−
(
j + 1
p

)
+
(
j

p

)
.

Also let N(c) = |{j : ν(j) = c}|. Then

N(0) =
1
8

(
3p− 10− 3t(p)− 2

((
2
p

)
+ 1
)((

3
p

)
+ 1
))

,

N(2) = N(−2) =
1
4

(p− 4 + t(p)) ,

N(4) = N(−4) =
1
16

(
p− 6− t(p) + 2

((
2
p

)
+ 1
)((

3
p

)
+ 1
))

,

where

t(p) = −
∑
j∈Zp

(
j(j + 1)(j + 2)(j + 3)

p

)
.



Chapter 4

Constructions of Equiangular Sets

of Lines

In this chapter, we discuss some known constructions of equiangular set of lines in complex

spaces. We also give some new methods for constructing specific equiangular set of lines in

complex and quaternionic spaces.

4.1 The Regular d-Simplex

The most intuitive construction of a tight equiangular set of lines is obtained by considering

an orthonormal basis. This gives d lines in a d-dimensional space for every d. To take this

one step further, one may consider a regular simplex to get a tight equiangular set of d+ 1

lines in a d-dimensional space for every d. We study this object in detail, especially because

we will need it in Section 4.4. Notice that by letting k = 2 in Corollary 2.20, it follows that

there exists no tight equiangular set of d+ 2 lines in Ad for all d > dimR A.

Consider the standard basis B = {ej : j ∈ Zd+1} of Cd+1 and let

m =
1

d+ 1

 ∑
j∈Zd+1

ej

 =
1

d+ 1
1d+1,

where 1d+1 is the all-ones vector of dimension d + 1. If you consider each ej as a point in

the (d + 1)-dimensional complex space, then B is called the regular d-simplex and m may

81
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be considered as its center of mass. Consider the following set of lines:

R =
{[

ej −m
|ej −m|

]
: j ∈ Zd+1

}
. (4.1.1)

Since all of the vectors ej −m are orthogonal to the all-ones vector 1d+1, they all lie in the

d-dimensional subspace 1d+1
⊥ of Cd+1. This means that R is in fact a set of d+ 1 lines in

Cd. We also have

〈ei −m, ej −m〉 = δij −
2

d+ 1
+

d+ 1
(d+ 1)2

= δij −
1

d+ 1
.

Therefore for every distinct v,w ∈ R, we have

〈v,w〉 =
−1/(d+ 1)

1− 1/(d+ 1)
= −1

d
,

which is exactly the relative bound in Theorem 2.13 with n = d + 1. Hence R is a tight

equiangular set of d+ 1 lines in Cd, which is often referred to as the regular d-simplex.

Definition 4.1. The set of lines R given in equation (4.1.1) is called the regular d-simplex.

Let VR denote the (d+ 1)× (d+ 1) matrix with the column vectors (ej −m)/|ej −m|,
where j ∈ Zd+1, as its columns. Then

VR = aId+1 + bJd+1,

where

a =

√
d

d+ 1
, b = − 1√

d(d+ 1)
, (4.1.2)

gives a different but equivalent presentation of the regular d-simplex.

Example 4.2. Here, we give an explicit construction of the regular 5-simplex in R5. Con-

sider the set C of columns of the 6× 6 matrix

VR =
√

5
6I6 − 1√

30
J6 = 1√

30
(5I6 − J6).

For every distinct v,w ∈ C we have 〈v,w〉 = −1/5 and 〈v,v〉 = 1. Since every vector in C

is orthogonal to the all-ones vector 16, we may embed C in R5. To give such an embedding,
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note that the rows of the following matrix are mutually orthogonal:

1 −1 0 0 0 0

1 1 −2 0 0 0

1 1 1 −3 0 0

1 1 1 1 −4 0

1 1 1 1 1 −5

1 1 1 1 1 1


Hence, by normalizing each row of the above matrix we get a 6× 6 unitary matrix U. Since

U preserves the inner product and (Uv)6 = 0 for every v ∈ C, the mapping φ : R6 →
R5 defined by φ(v) = ((Uv)1, (Uv)2, (Uv)3, (Uv)4, (Uv)5)T gives the desired embedding.

That is, the set L = {[φ(v)] : v ∈ C} ⊂ R5 is a regular 5-simplex. The unit vectors

representing the set L are given as the columns of the following matrix (we are stating these

values explicitly as we will need them to give a construction of a tight equiangular set of 6

lines in H2; see Example 4.24):

3/
√

15 −3/
√

15 0 0 0 0

1/
√

5 1/
√

5 −2/
√

5 0 0 0

1/
√

10 1/
√

10 1/
√

10 −3/
√

10 0 0
√

6/10
√

6/10
√

6/10
√

6/10
√

6/10 0

1/5 1/5 1/5 1/5 1/5 −1


For every set of lines L, let VL denote the matrix whose columns span the lines in L.

The following observation shows that among all tight equiangular sets of n > d lines in Cd,

the regular d-simplex is the only set L for which the matrix VL is of the form aIn + bJn for

some a, b ∈ C. One direction of this implication is clear and we will prove the other one.

Theorem 4.3. Let L = {[v1], . . . , [vn]} be a tight equiangular set of n lines in Cd, with

n > d. By embedding Cd in Cn, we may assume that each vi is in Cn. Let VL be the n× n
matrix with the column vectors v1, . . . ,vn as its columns. Then VL = aIn + bJn for some

a, b ∈ C if and only if L and R are equivalent, i.e. n = d+ 1 and L is the regular d-simplex.

Proof. We know VR is of the form aIn + bJn. To prove the other direction, assume VL =

aIn+bJn. The eigenvalues of VL are a (with multiplicity n−1) and a+nb (with multiplicity
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1). Since the columns of VL cannot be the same, it follows that a 6= 0. Therefore, n− 1 ≤
rankC(VL) ≤ d < n. Hence n = d + 1. It also follows that rankC(VL) = d = n − 1 and

therefore a+nb = 0. Since each column of VL is a unit vector, we have |a+b|2+(n−1)|b|2 = 1.

Substituting a = −nb, we get n(n− 1)|b|2 = 1. Therefore

VL∗VL = (aIn + bJn)(aIn + bJn)

= |a|2In + (2<(ab) + n|b|2)Jn

= n2|b|2In − n|b|2Jn

=
n

n− 1
In −

1
n− 1

Jn

= (1 +
1
d

)Id+1 −
1
d
Jd+1

= VR∗VR.

Thus L and R have the same Gram matrix and therefore are equivalent by Definition 1.30.

The following fact is a rather obvious observation, however we are stating it as a propo-

sition since we will need it later on.

Proposition 4.4. For every 2 ≤ n ≤ d+ 1, there exists a set L of n lines in Rd such that

for every distinct [v], [w] ∈ L, we have 〈v,w〉 = −1/(n− 1).

Proof. For every 2 ≤ n ≤ d+ 1, the regular (n− 1)-simplex of n lines in Rn−1 ⊆ Rd has the

desired property.

Example 4.5. Here are 4 lines in R5 satisfying Proposition 4.4:

[
1√
12

(−3, 1, 1, 1, 0)], [
1√
12

(1,−3, 1, 1, 0)], [
1√
12

(1, 1,−3, 1, 0)], [
1√
12

(1, 1, 1,−3, 0)].

4.2 Difference Set Construction

Here we present a known method for constructing tight equiangular set of lines using dif-

ference sets. We also give a generalization of a known upper bound on the number of a flat

equiangular set of lines.

Recall that an (n, d, λ)-cyclic difference set is a set D = {α1, . . . , αd} ⊆ Zn such that

each element in Zn \ {0} can be represented as a difference αi − αj in exactly λ different
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ways. Hence λ(n− 1) = d(d− 1). The existence of a cyclic difference set is known for many

parameters (n, d, λ). We refer the reader to [13, 10] to find a list of such parameters. The

following theorem is a known result that illustrates a connection between difference sets and

equiangular set of lines.

Theorem 4.6. [84] Let D = {α1, . . . , αd} ⊆ Zn be a cyclic (n, d, λ)-difference set and ω be

a primitive n-th root of unity and d ≥ 2. For every r ∈ Zn, define

z(r) =
1√
d

(ωrαj )j∈Zd
.

Then
{[

z(r)
]

: r ∈ Zn
}

is an equiangular set of n lines in Cd with common angle cos−1
(√

d−1
d

)
.

Proof. Recall that δsr denotes the Kronecker delta. We have

d2|〈z(r), z(s)〉|2 = |
d∑
j=1

ωαj(s−r)|2 =
d∑
j=1

d∑
j′=1

ω(αj−αj′ )(s−r).

Since D = {α1, . . . , αd} is a cyclic (n, d, λ)-difference set, we get

d2|〈z(r), z(s)〉|2 = d+
∑

x∈Zn\{0}

λωx(s−r) = d+ δsrλ(n− 1) + (1− δsr)(−1).

Since λ(n− 1) = d(d− 1), we have

d2|〈z(r), z(s)〉|2 = d+ δsrd(d− 1)− (1− δsr) = d− 1 + δsr(d2 − d+ 1).

Thus |〈z(r), z(s)〉| =
√
d− 1/d + δrs(1 −

√
d− 1/d). Therefore {

[
z(r)
]

: r ∈ Zn} is an

equiangular set of n lines in Cd with common angle θ, where cos θ =
√
d−1
d .

We would like to emphasize that the construction given in Theorem 4.6 yields a tight

equiangular set of n lines in Cd if and only if n = d2 − d + 1. This is because if θ is the

common angle then

cos θ =
√
d− 1
d

≥

√
n− d
d(n− 1)

and equality occurs if and only if n = d2 − d+ 1.

An equiangular set of lines is called flat if the absolute values of all the coordinates

of the vectors representing the lines are the same. Note that in the above construction

|z(r)| = 1/
√
d for all r and therefore {

[
z(r)
]

: r ∈ Zn} is a flat equiangular set of lines. The

following construction is due to König [58] for prime q and is due to Xia, et al. [84] for prime

power q.
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Lemma 4.7. [84] For every prime power q, there exists a flat tight equiangular set of

d2 − d+ 1 lines in Cd, where d = q + 1.

Proof. Let n = d2 − d + 1 = q2 + q + 1 and α be a generator of the multiplicative group

Fq3 \ {0}. Let Tr : Fq3 → Fq defined by Tr (x) = x+ xq + xq
2

be the trace mapping. Then

D = {t ∈ Zn : Tr
(
αt
)

= 0} is a cyclic (n, q+ 1, 1) difference set (this is known as the Singer

difference set and may equivalently be constructed using lines in PG(2,q); see [13] for more

details). The result follows from Theorem 4.6.

The following theorem shows that in fact a flat equiangular set of d2 − d+ 1 lines in Cd

is the best possible. This result was given by Roy [67] for Cd. Since the result follows from

Theorem 2.3, we present it for Ad, where A is an associative composition algebra.

Theorem 4.8. There are at most
(
d
2

)
dimR A + 1 flat equiangular lines in Ad.

Proof. Let L be a flat equiangular set of n lines in Ad and let L′ = {[ei] : i ∈ Zd} be the

standard basis for Ad. Then L ∪ L′ is an ({n; d}, 2, d)-multipartite equiangular set of lines.

Hence using Theorem 2.6, we have n+d ≤ d+
(
d
2

)
dimR A + 2−1. Thus n ≤

(
d
2

)
dimR A + 1.

Note that
(
d
2

)
dimR C + 1 = d2 − d+ 1.

4.3 Conference and Hadamard Matrices

Here, we present a general framework for constructing tight equiangular set of lines in

Cd by assuming an extra condition on its corresponding Gram matrix. A construction

of a tight equiangular set of 2d lines in Rd by Zauner [85] and a recent construction of

a tight equiangular set of 2d ± 1 lines in Cd by Renes [65] fall under this framework. We

use the well-known conference and Hadamard matrices to replicate Zauner’s and Renes’

constructions.

A Gram matrix of any set of n lines in Cd can be written in the form

G = In + S + iA,

where S is a real symmetric matrix with zero diagonal and A is a real skew symmetric

matrix with zero diagonal. Recall that an R-algebra is a vector space over R equipped with

multiplication. We only work with the R-algebra of square matrices of a fixed order. Notice
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that the R-algebra spanned by {In,S,A} has dimension at least 3 (unless S = 0 or A = 0).

Using Corollary 2.28, we have the following lemma.

Lemma 4.9. Let S (and A) be real symmetric (and skew symmetric) matrices with zero

diagonal such that the R-algebra spanned by {In,S,A} has dimension 3 (or less when S = 0

or A = 0). Then G = In + S + iA is a Gram matrix of a tight equiangular set of n lines in

Cd if and only if the off-diagonal entries of G have squared absolute value (n− d)/d(n− 1)

and

r − λ+ 1 = t− µ+ 2 = γ + 2 =
n

d
,

where

S2 = rIn + tS, A2 = λIn + µS, SA + AS = γA.

Remark. The assumption that the R-algebra spanned by {In,S,A} has dimension 3, implies

that the matrices S2,A2, and SA + AS must be an R-linear combination of I,S, and A.

Since S is symmetric and A is skew symmetric, it follows that S2 and A2 are symmetric

matrices and SA + AS is a skew symmetric matrix. Therefore, the above matrices are

written in the specific form given in Lemma 4.9.

Theorem 4.10. Let s, a ∈ R. Let S = s(Jn−In) and let A be a real skew symmetric (0,±a)-

matrix with zero diagonal such that the R-algebra spanned by {In,S,A} has dimension 3. If

G = In+S+iA is a Gram matrix of a tight equiangular set of n lines in Cd then |2d−n| ≤ 1

and

s =
2d− n

2d
, a2 =

n− d
d(n− 1)

− s2.

Proof. Suppose a, s and A are such that G is a Gram matrix of a tight equiangular set of

n lines in Cd. We have s2 + a2 = (n − d)/d(n − 1). Write SA + AS = γA or equivalently

s(JnA + AJn) = (γ + 2s)A. If s = 0 then γ = 0 and Lemma 4.9 implies that n = 2d and

we are done. So, we may assume s 6= 0. Since S = s(Jn − In), it follows that the span

of {In,Jn,A} has also dimension 3. If n = 2 then there are only two possibilities for the

2× 2 skew symmetric matrix A and in either case AJ2 + J2A = 0. If n > 2, since AJn has

constant rows and is an R-linear combination of In,Jn and A, we must have AJn = kJn
for some k. This is because in at least one row of the skew symmetric matrix A the values

a and −a each appear at least once. Therefore JnA = −(AJn)T = −kJn. Hence, we get

JnA + AJn = 0 for all n ≥ 2, which implies γ = −2s. Since γ+ 2 = n/d, we get the desired
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value of s. By substituting S = s(Jn − In) in S2 = rIn + tS, we get

s2(n− 2)Jn + s2In = tsJn + (r − ts)In.

By comparing both sides, we get t = (n− 2)s and r = (n− 1)s2. It follows from Lemma 4.9

that λ = (n− 1)s2 + 1− n/d and µ = (n− 2)s+ 2− n/d, where A2 = λIn + µS. Therefore,

one of the eigenvalues of A is
√
λ+ µs(n− 1) = (n/2d)

√
(2d− n)2 − 1. Since A is a skew

symmetric matrix, its eigenvalues are zero or purely imaginary and therefore we must have

|2d− n| ≤ 1.

Given n and d such that n = 2d, if a conference matrix (defined below) of order 2d exists

then we may construct matrices S and A that satisfy the conditions given in Theorem 4.10.

This is also possible for n = 2d±1 if skew-type Hadamard matrices (defined below) of order

2d+ 1±1 exist. Before we state these results formally (Theorems 4.13 and 4.14), let us give

a brief background on conference and skew-type Hadamard matrices.

A conference matrix of order n is an n×n (0,±1)-matrix C with zero diagonal satisfying

CCT = (n − 1)In. Note that n is necessarily even. Multiplying a row or a column of

a conference matrix by −1 yields another conference matrix. A conference matrix is called

normalized if all entries in its first row and first column (except the (1, 1) entry) are 1. The

core of a normalized conference matrix C consists of all the rows and columns of C except the

first row and column. It is well known that the core of every normalized conference matrix of

order n ≡ 0 (mod 4) is skew symmetric and the core of every normalized conference matrix

of order n ≡ 2 (mod 4) is symmetric [49]. It is conjectured [49] that conference matrices of

order n exist for all n ≡ 2 (mod 4) as long as n−1 is a sum of two squares. It is known that

a conference matrix of order n exists when n − 1 is an odd prime power, n = 5(92t+1) + 1

for some integer t ≥ 0 and n < 66 is even and n 6= 22, 34, 58. For more details and more

examples of conference matrices, see [49].

A tournament of order n is a complete digraph on n vertices. It is regular if each vertex

dominates and is dominated by exactly (n − 1)/2 vertices. A special class of tournaments

has been studied in literature under the name of extreme tournaments, doubly regular tour-

naments, and strongly regular tournaments in analogy to the notion of strongly regular

graphs. A tournament is called strongly regular if it is regular and for each vertex v the

set of vertices dominating v also form a regular tournament. It is necessary that n ≡ 3

(mod 4). Therefore we have the following.
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Proposition 4.11. The (0,±1)-adjacency matrix of a strongly regular tournament is a skew

symmetric matrix T that satisfies T2 = −nIn + Jn and TJn = 0.

It follows that the matrix

C =

(
0 1nT

−1n T

)
is a skew symmetric conference matrix of order n+1. Conversely, the core of any conference

matrix of order n + 1 with n ≡ 3 (mod 4) is the adjacency matrix of a strongly regular

tournament. Also note that C is skew symmetric conference matrix of order n + 1 if and

only if H = C + In+1 is a skew-type Hadamard matrix of order n+ 1, that is a matrix H of

order n+1 such that HHT = (n+1)In+1 and H+HT = 2In+1. The equivalence of strongly

regular tournaments and skew-type Hadamard matrices was first discovered by Reid and

Brown [64].

Conjecture 4.12 (Seberry). A skew-type Hadamard matrix of order N exists if and only

if N = 1, 2 or 4|N .

This conjecture is confirmed for N < 188. It also true when N − 1 is a prime power

that is 3 modulo 4. Also, the existence of a skew-type Hadamard matrix of order N implies

the existence of a skew-type Hadamard matrix of order 2tN for all integers t ≥ 0. For

a complete list of known skew-type Hadamard matrices, see [24].

Now, we are ready to give necessary conditions on d such that the converse of Theo-

rem 4.10 is true, in the sense that if |2d− n| ≤ 1 then there is a tight equiangular set of n

lines in Cd that has a Gram matrix G = In + S + iA such that {In,S,A} forms a three

dimensional algebra. The first theorem is due to Zauner [85] and the second one is due to

Renes [65] in a weaker form.

Theorem 4.13. [85] If a conference matrix of order 2d exists, then there exists a tight

equiangular set of 2d lines in Cd.

Proof. Assume C is a conference matrix of order 2d. Choose S = 0 and A = (n− 1)−1/2C

with n = 2d. It is easy to see that the R-algebra spanned by {In,S,A} has dimension 3 and

S and A satisfy the hypotheses of Lemma 4.9 with r = t = µ = 0 and λ = −1. Therefore

G = In + S + iA is a Gram matrix of a tight equiangular set of 2d lines in Cd.

Theorem 4.14. [65] For odd d, if there exists a skew type Hadamard matrix of order 2d+2

then there exists a tight equiangular set of 2d + 1 lines in Cd. For even d, if there exists
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a skew type Hadamard matrix of order 2d then there exists a tight equiangular set of 2d− 1

lines in Cd.

Proof. Write d = 2m − ε and n = 2d + 2ε − 1 where ε ∈ {0, 1}. Assume H is a skew-type

Hadamard matrix of order 4m. Normalize the conference matrix H + I4m and let T be its

core. Choose S = s(Jn − In) and A = aT where s and a are as in Theorem 4.10. Using

Proposition 4.11, we may check that the R-algebra spanned by {In,S,A} has dimension

3 and S and A satisfy the hypotheses of Lemma 4.9 with r = (n − 1)s2, t = (n − 2)s,

λ = (n−1)s2 +1−n/d, µ = (n−2)s+2−n/d and γ = −2s. It follows that G = In+S+ iA

is a Gram matrix of a tight equiangular set of n lines in Cd.

4.4 Equiangular Sets of Lines in Small Dimensions

In this section, we give a summary of known as well as new constructions of equiangular

sets of lines in small dimensions. We discuss various analytic and numerical constructions

and different methods for constructing such lines. Some of the results are new.

4.4.1 Tight Equiangular Sets of Lines in C2

In this part, we discuss several methods for constructing tight equiangular sets of n lines

in C2 with n ≤ 4. The first construction is new and is inspired by the fact that CP1, the

1-dimensional complex projective space, written as

CP1 = {[(z1, z2)] ⊂ C2 : |z1|2 + |z2|2 = 1},

can be identified with S2, the 3-dimensional real unit sphere, written as

S2 = {(a, b, c) ∈ R3 : a2 + b2 + c2 = 1}.

We will thoroughly describe this identification. The identification between S2 and CP1,

especially when it is defined from CP1 to S2, is known as the Hopf mapping and is of great

importance in homotopy theory. See the remark following Theorem 4.17 for some more

details. In the next section, we will generalize this idea to construct equiangular sets of

lines in H2. Recall that by Corollary 2.12 an equiangular set of lines in C2 has size at most

4.
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Definition 4.15. Define ψ : S2 → CP1 by

ψ(a, b, c) =

[(
1√

2(1− c)
(a+ bi),

√
1− c

2

)]
,

when c 6= 1 and ψ(0, 0, 1) = [(1, 0)].

The mapping ψ is well-defined, i.e. ψ(a, b, c) ∈ CP1. This is because for every (a, b, c) ∈ S2,

we have

|ψ(a, b, c)|2 =
|a+ bi|2

2(1− c)
+

1− c
2

=
a2 + b2

2(1− c)
+

1− c
2

=
1− c2

2(1− c)
+

1− c
2

= 1.

The spaces S2 and CP1 are equivalent, both topologically and metrically. In the following

lemma, we give an explicit formula that relates the inner product of any two elements in

S2 with the inner product of their images in CP1. It may seem vague at this point, but the

absence of the absolute value on the right hand side of the formula given in Lemma 4.16, is

particularly useful and crucial for the construction of equiangular sets of lines in C2.

Lemma 4.16. For every v,w ∈ S2, we have

|〈ψ(v), ψ(w)〉|2 =
1 + 〈v,w〉

2
.

Proof. Write v = (a, b, c) and w = (a′, b′, c′) with a2 + b2 + c2 = 1 and a′2 + b′2 + c′2 = 1.

If one of the v or w, say w, is (0, 0, 1) then

|〈ψ(v), ψ(w)〉|2 = |〈ψ(v), (1, 0)〉|2 =
a2 + b2

2(1− c)
=

1− c2

2(1− c)
=

1 + c

2
=

1 + 〈v,w〉
2

.

Thus, we may assume c 6= 1 and c′ 6= 1. We have

2
√

(1− c)(1− c′) 〈ψ(v), ψ(w)〉 = (a− bi)(a′ + b′i) + (1− c)(1− c′)

= α+ (1− c)(1− c′) + β i,

where

α = aa′ + bb′,

β = ab′ − a′b.
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Since α2 + β2 = (a2 + b2)(a′2 + b′2) = (1− c2)(1− c′2) and cc′ + α = 〈v,w〉, we have

4(1− c)(1− c′)|〈ψ(v), ψ(w)〉|2 = (α+ (1− c)(1− c′))2 + β2

= (1− c2)(1− c′2) + 2α(1− c)(1− c′) + (1− c)2(1− c′)2

= (1− c)(1− c′)
(
(1 + c)(1 + c′) + 2α+ (1− c)(1− c′)

)
= (1− c)(1− c′)

(
2 + 2cc′ + 2α

)
= 2(1− c)(1− c′) (1 + 〈v,w〉) .

Theorem 4.17. For every n = 2, 3, 4, there exists a tight equiangular set of n lines in C2.

Proof. Using Proposition 4.4 with d = 3, consider the set L of n lines in R3 such that for

every distinct [v], [w] ∈ L, we have 〈v,w〉 = −1/(n − 1). Since the lines of R3 may be

identified with the points on S2 and the lines of C2 may be identified with the elements of

CP1, the mapping ψ : S4 → CP1 given in Definition 4.15 maps L to a set of lines ψ(L) of

C2. For every [v], [w] ∈ L, by Lemma 4.22, we have

|〈ψ(v), ψ(w)〉|2 =
1 + 〈v,w〉

2
=

1− 1/(n− 1)
2

=
n− 2

2(n− 1)
,

which is exactly the relative bound given in Theorem 2.13 for d = 2.

Remark. The mapping ψ defined in Definition 4.15 is, in a sense, the inverse of the

mapping φ : C2 → C× R given by

φ(z1, z2) =
(

2z1z2
|z1|2 + |z2|2

,
|z1|2 − |z2|2

|z1|2 + |z2|2

)
,

which is known as the Hopf mapping. Notice that for any c ∈ C, φ(cz1, cz2) = φ(z1, z2).

That is, every point on a line in C2 is mapped to the same point in C×R. Hence φ induces

a mapping φ0 : CP1 → S2 given by

φ0(x1 + y1i, x2 + y2i) =
(
2(x1x2 + y1y2), 2(x2y1 − x1y2), x2

1 + y2
1 − x2

2 − y2
2

)
.

This is because |φ0(z1, z2)| = 1, C × R may be identified with R3, and every line in C2,

i.e. a point in CP1, may be represented by (z1, z2) with |z1|2 + |z2|2 = 1. Therefore, to be

precise, the mapping ψ is the inverse of φ0.

The Hopf mapping φ is well-known, especially to algebraic topologist, and is of particular

importance in homotopy theory. We refer the interested reader to Vick [80] and Martin [60].
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Example 4.18. In this example, we give an explicit construction of a tight equiangular set

of 4 lines in C2, using the method described in the proof of Theorem 4.17. First, consider

the regular 3-simplex L in R3. Similar to the construction given in Example 4.2, L may be

given as the columns of the following matrix:
√

6/3 −
√

6/3 0 0
√

2/3
√

2/3 −2
√

2/3 0

1/3 1/3 1/3 −1


For every distinct [v], [w] ∈ L we have 〈v,w〉 = −1/3. By applying the mapping ψ, given

in Definition 4.15, to the columns of the above matrix, we get the following equiangular set

of 4 lines in C2:

L =

{
[

(
r + si

u

)
], [

(
−r + si

u

)
], [

(
−2si

u

)
], [

(
0

1

)
]

}
,

where r =
√

6/3, s =
√

2/3, and u =
√

1/3.

Now, we describe a second approach to construct an equiangular set of 4 lines in C2.

Recall that a unit vector z ∈ C2 is fiducial if {[XiYjz] : i, j ∈ Z2} is an equiangular set of 4

lines in C2, where X and Y are the Pauli matrices for Z2. We say that two fiducial vectors

z and z′ are equivalent if [z′] = [XiYjz] for some i, j ∈ Z2, that is z′ and XiYjz represent

the same line. The following theorem is given in [66] with no proof.

Theorem 4.19. [66] A vector z ∈ C2 is fiducial if and only if, up to equivalence,

z =
1√
6

( √
3 +
√

3

ekπ/4
√

3−
√

3

)
,

where k ∈ {1, 3}.

Proof. Using Theorem 3.3, z =

(
z0

z1

)
∈ C2 is fiducial if and only if

f0,0(z) = |z0|4 + |z1|4 = r40 + r41 = 2
3 ,

f0,1(z) = 2|z0|2|z1|2 = 2r20r
2
1 = 1

3 ,

f1,1(z) = 2<(z2
0z1

2) = 2r20r
2
1 cos(2θ0 − 2θ1) = 0,

where zj = rje
iθj (j = 0, 1). Since z and e−iθ0z are equivalent, we may assume θ0 = 0. Thus,

the third equality is equivalent to θ1 = kπ/4 with k ∈ {1, 3}. Also, since z =
(
r0, r1e

iθ1
)T

and e−iθ1Xz =
(
r1, r0e

−iθ1
)T are equivalent, we may assume r0 > r1. Now, solving the first

two equalities for r0 and r1, we get the desired values.
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4.4.2 The Uniqueness of the Equiangular Set of 4 Lines in C2

Suppose G is a Gram matrix of an equiangular set of 4 lines in C2. Write G = I4 + 1√
3
W.

We may assume that W has the following form:
0 1 1 1

1 0 a b

1 a 0 c

1 b c 0


where |a| = |b| = |c| = 1. We must have G2 = 2G or equivalently W2 = 3I4. This is

equivalent to {
a+ b = a+ c = b+ c = 0,

1 + bc = 1 + ac = 1 + ab = 0.

Solving for a, b, and c, we get (a, b, c) ∈ {(i,−i, i), (−i, i,−i)}.
The set of lines induced by these two solutions are, however, equivalent. This is because

one of the Gram matrices is obtained from the other one by interchanging row 3 and row 4

as well as column 3 and column 4. Thus, we have the following result.

Theorem 4.20. The Gram matrix of any equiangular set of 4 lines in C2, up to equivalence,

is equal to I4 + 1√
3
W where

W =


0 1 1 1

1 0 i −i
1 i 0 i

1 −i i 0

 .

4.4.3 Tight Equiangular Sets of Lines in H2

In this section we give explicit constructions of tight equiangular sets of n lines in H2 with

n ≤ 6. The method is almost identical to the first method described in Section 4.4.1 for

constructing tight equiangular sets of lines in C2. These constructions are new and are

based on the fact that HP1, the 1-dimensional quaternionic projective space, written by

HP1 = {(q1, q2) ∈ H2 : |q1|2 + |q2|2 = 1},

can be identified with S4, the unit sphere in R5, written by

S4 = {(a, b, c, d, e) ∈ R5 : a2 + b2 + c2 + d2 + e2 = 1}.
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We will thoroughly describe this identification. The identification between S4 and HP1 is

once again known as the Hopf mapping. This mapping inspired us to relate the regular

simplices in real spaces with tight equiangular set of lines in quaternionic spaces. Notice

that, by Corollary 2.12, an equiangular set of lines in H2 has size at most 6.

Definition 4.21. Define ψ : S4 → HP1 by

ψ(a, b, c, d, e) =

[(
1√

2(1− e)
(a+ bi+ cj + dij),

√
1− e

2

)]
,

when e 6= 1 and ψ(0, 0, 0, 0, 1) = (1, 0).

The mapping ψ is well-defined, i.e. ψ(a, b, c, d, e) ∈ HP1. This is because for every

(a, b, c, d, e) ∈ S4 we have

|ψ(a, b, c, d, e)|2 =
|a+ bi+ cj + dij|2

2(1− e)
+

1− e
2

=
a2 + b2 + c2 + d2

2(1− e)
+

1− e
2

=
1− e2

2(1− e)
+

1− e
2

= 1.

It is understood that S4 and HP1 are equivalent, both topologically and metrically.

Similar to Lemma 4.16, we give an explicit formula that relates the inner product of any

two elements in S4 with the inner product of their images in HP1. This lemma is crucial

for our constructions.

Lemma 4.22. For every v,w ∈ S4, we have

|〈ψ(v), ψ(w)〉|2 =
1 + 〈v,w〉

2
.

Proof. Write v = (a, b, c, d, e) and w = (a′, b′, c′, d′, e′) with a2 + b2 + c2 + d2 + e2 = 1 and

a′2 + b′2 + c′2 + d′2 + e′2 = 1. If one of the v or w, say w, is (0, 0, 0, 0, 1) then

|〈ψ(v), ψ(w)〉|2 = |〈ψ(v), (1, 0)〉|2 =
a2 + b2 + c2 + d2

2(1− e)
=

1− e2

2(1− e)
=

1 + e

2
=

1 + 〈v,w〉
2

.

Thus, we may assume e 6= 1 and e′ 6= 1. We have

2
√

(1− e)(1− e′) 〈ψ(v), ψ(w)〉 = (a− bi− cj − dij)(a′ + b′i+ c′j + d′ij) + (1− e)(1− e′)

= α+ (1− e)(1− e′) + β i+ γ j + δ ij
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where

α = aa′ + bb′ + cc′ + dd′,

β = ab′ − ba′ − cd′ + dc′,

γ = ac′ + bd′ − ca′ − db′,

δ = ad′ − bc′ + cb′ − da′.

Since α2 + β2 + γ2 + δ2 = (a2 + b2 + c2 + d2)(a′2 + b′2 + c′2 + d′2) = (1 − e2)(1 − e′2) and

ee′ + α = 〈v,w〉, we have

4(1− e)(1− e′)|〈ψ(v), ψ(w)〉|2 = (α+ (1− e)(1− e′))2 + β2 + γ2 + δ2

= (1− e2)(1− e′2) + 2α(1− e)(1− e′) + (1− e)2(1− e′)2

= (1− e)(1− e′)
(
(1 + e)(1 + e′) + 2α+ (1− e)(1− e′)

)
= (1− e)(1− e′)

(
2 + 2ee′ + 2α

)
= 2(1− e)(1− e′) (1 + 〈v,w〉) .

Theorem 4.23. For every 2 ≤ n ≤ 6, there exists a tight equiangular set of n lines in H2.

Proof. Using Proposition 4.4 with d = 5, consider the set L of n lines in R5 such that for

every distinct v,w ∈ L, we have 〈v,w〉 = −1/(n−1). Since the lines of R5 may be identified

with the points on S4 and the lines of H2 may be identified with the elements of HP1, the

mapping ψ : S4 → HP1 given in Definition 4.21 maps L to a set of lines ψ(L) of H2. For

every v,w ∈ L, by Lemma 4.22, we have

|〈ψ(v), ψ(w)〉|2 =
1 + 〈v,w〉

2
=

1− 1/(n− 1)
2

=
n− 2

2(n− 1)
,

which is exactly the relative bound given in Theorem 2.13 for d = 2.

Define φ : H2 → H× R by

φ(q1, q2) =
(

2q1q2
|q1|2 + |q2|2

,
|q1|2 − |q2|2

|q1|2 + |q2|2

)
.

Notice that for any c ∈ H, φ(cq1, cq2) = φ(q1, q2). That is, every point on a line in H2

is mapped to the same point in H × R. Since every line in H2, i.e. a point in HP1 may be
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represented by (q1, q2) with |q1|2 + |q2|2 = 1, φ induces a mapping from φ0 : HP1 to H× R
by

φ0(q1, q2) =
(
2q1q2, |q1|2 − |q2|2

)
.

Since |φ0(q1, q2)| = 1, by identifying the vectors in H × R of norm 1 with S4, the mapping

φ0 can be considered as the inverse of ψ.

Example 4.24. In this example, we give the explicit construction of a tight equiangular set

of 6 lines in H2, using the method described in the proof of Theorem 4.23. First, consider

the regular 5-simplex L in R5. As described in Example 4.2, L may be given as the columns

of the following matrix:

3/
√

15 −3/
√

15 0 0 0 0

1/
√

5 1/
√

5 −2/
√

5 0 0 0

1/
√

10 1/
√

10 1/
√

10 −3/
√

10 0 0
√

6/10
√

6/10
√

6/10
√

6/10
√

6/10 0

1/5 1/5 1/5 1/5 1/5 −1


For every distinct [v], [w] ∈ L we have 〈v,w〉 = −1/5. By applying the mapping ψ, given

in Definition 4.21, to the columns of the above matrix, we get the following equiangular set

of 6 lines in H2:

L = {[

(
r + si+ 1

4j + tij

u

)
], [

(
−r + si+ 1

4j + tij

u

)
], [

(
−2si+ 1

4j + tij

u

)
],

[

(
−3
4 j + tij

u

)
], [

(
−tij
u

)
], [

(
0

1

)
]},

where r =
√

6/4, s =
√

2/4, t =
√

15/20, and u =
√

2/5.

Example 4.25. By Theorem 2.34, there exist at most 5 MUBs in H2. Here we construct

5 MUBs in H2. Consider ψ, given in Definition 4.21, as mapping from S4 to H2. Also,

consider the standard basis {ej : 0 ≤ j ≤ 4} of R5 as a set of points of S4. Then

B = {{ψ(ej), ψ(−ej)} : 0 ≤ j ≤ 4}

is a set of 5 MUBs in H2. This is because, by Lemma 4.22, we have

|〈ψ(±ej), ψ(±ek)〉|2 =
1 + 〈±ej ,±ek〉

2
=

1
2
,
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and

|〈ψ(ej), ψ(−ej)〉|2 =
1 + 〈ej ,−ej〉

2
= 0,

for every distinct 0 ≤ j, k ≤ 4.

4.4.4 Tables of Known Constructions

As before, A stands for any of the associative composition algebras R,C,H. Recall from

Theorem 2.8 that an equiangular set of lines in Ad has size at most d +
(
d
2

)
dimR A. Also,

recall from Corollary 2.19 that if n > d + 1 > 2 and there exists a tight equiangular set of

n lines in Ad, then

n ≥ d+
1 +

√
8d

dimR A + 1

2
.

To be specific, we have the following lower and upper bounds for each of the associative

composition algebras.

Corollary 4.26. If there exists a tight equiangular set of n > d+ 1 > 2 lines in Ad then

d+
1 +
√

8d+ 1
2

≤ n ≤ 1
2d

2 + 1
2d, when A = R,

d+
1 +
√

4d+ 1
2

≤ n ≤ d2, when A = C,

d+
1 +
√

2d+ 1
2

≤ n ≤ 2d2 − d, when A = H.

In the following tables, we give a summary of the existence or non-existence of a tight

equiangular set of n lines in Ad, where A ∈ {R,C,H}. In each cell, corresponding to the

value n and the space Ad, the notation

X means that a tight equiangular set of n lines in Ad exists,

× means that no tight equiangular set of n lines in Ad exists,

[X] means that an approximate tight equiangular set of lines n in Ad exists,

?× means that it is conjectured that no tight equiangular set of lines n in Ad exists.

In the “comments” column, we give a pointer to why a tight equiangular set of n lines in Ad

exists. To avoid repetitions in the tables, we would like to state that for a given n and d,

the non-existence of a tight equiangular set of n lines in Ad is due to Corollary 4.26, unless

explained in the “comments” column. Also, all of the notations ?× and [X] are based on

the extensive numerical evidence that we have gathered.
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d = 2
n Rd Cd Hd comments
2 X standard basis
3 X regular simplex
4 × X W-H orbit (Theorem 4.19), Theorem 4.17
5 × × X Theorem 4.23
6 × × X Theorem 4.23

Table 4.1: The existence of tight equiangular set of n lines in A2, A ∈ {R,C,H}

d = 3
n Rd Cd Hd comments
3 X standard basis
4 X regular simplex
5 × × [X]
6 X icosahedron
7 × X Theorem 4.14
8 × ?× [X]
9 × X W-H orbit [85, 66], Example 2.29

10− 13 × × [X]
14 × × ?×
15 × × [X]

Table 4.2: The existence of tight equiangular set of n lines in A3, A ∈ {R,C,H}
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d = 4
n Rd Cd Hd comments
4 X standard basis
5 X regular simplex
6 × × [X]
7 × X Theorem 4.14
8 × X [43], Theorem 4.13

9− 10 × ?× [X] [43]
11− 12 × ?× [X]

13 × X Lemma 4.7
14− 15 × ?× [X]

16 × X W-H orbit [85, 66]
17− 21 × × [X]
22− 28 × × ?×

Table 4.3: The existence of tight equiangular set of n lines in A4, A ∈ {R,C,H}

d = 5
n Rd Cd Hd comments
5 X standard basis
6 X regular simplex
7 × × ×
8 × ?× [X]
9 ?× ?× [X]
10 X [78]
11 × X [78], Theorem 4.14

12− 15 × ?× [X] [78]
16− 20 × ?× [X]

21 × X Lemma 4.7
22− 24 × ?× [X]

25 × X W-H orbit [85]
26− 28 × × [X]
29− 45 × × ?×

Table 4.4: The existence of tight equiangular set of n lines in A5, A ∈ {R,C,H}
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4.5 A List of Open Problems

In this final section, we list a number of intriguing questions and open problems that are

raised for further studies.

Conjecture 4.27 (Zauner 1999). For every d there exists a fiducial vector in Cd. See [85].

Conjecture 4.28 (Appleby 2005). Every fiducial vector is an eigenvector of an order 3

unitary matrix of a very special form. See [4].

Conjecture 4.29. [Khatirinejad 2007] AL fiducial vectors only exist for p ∈ {3, 7, 19}.
See [53] and Theorem 3.11.

Question 4.30. Given d ≥ 2, are all equiangular sets of d2 lines in Cd a Weyl-Heisenberg

orbit? If not, find such constructions of equiangular set lines.

Question 4.31. Suppose L is a flat (or almost flat) and tight equiangular set of lines. What

can be said about L?

Problem 4.32. Can we generalize the AL fiducial vectors to all prime power dimensions?

Problem 4.33. Could we use any numerical fiducial vector and give an exact proof that it

is in fact a fiducial vector? (Possible method (?): bounding the degree and the coefficients

of the minimal polynomials of the coordinates of the fiducial vector.)

Problem 4.34. Prove the existence of a fiducial vector z ∈ C13 s.t. z3j = zj (∀j). See

Example 2.74.

Problem 4.35. Would an assumption like zf(j) = zj (∀j) for a specific function f make

the search for a fiducial vector z easier?

Problem 4.36. Find Gram matrices where each off-diagonal entry is of the form 1√
d+1

ωk

for some fixed root of unity ω. See Example 2.29.

Problem 4.37. For given d, k, and n1, . . . , nk find an ({n1; . . . ;nk}, k, d)-MEL. See Defini-

tion 2.1.

Question 4.38. Would MELs (other than MUBs) yield a new 2-design?

Question 4.39. What unitary matrices U have the property that map the set of fiducial

vectors to itself? All of the elements of the well-known extended Clifford group do. Anything

else?
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[76] Mátyás A. Sustik, Joel A. Tropp, Inderjit S. Dhillon, and Robert W. Heath, Jr. On the
existence of equiangular tight frames. Linear Algebra Appl., 426(2-3):619–635, 2007.

[77] J. A. Tropp. Complex equiangular tight frames. In Proc. SPIE Wavelets XI, pages
590412.01–11, San Diego, August 2005.

[78] J. H. van Lint and J. J. Seidel. Equilateral point sets in elliptic geometry. Nederl.
Akad. Wetensch. Proc. Ser. A 69=Indag. Math., 28:335–348, 1966.

[79] J. H. van Lint and R. M. Wilson. A course in combinatorics. Cambridge University
Press, Cambridge, second edition, 2001.

[80] James W. Vick. Homology theory, volume 145 of Graduate Texts in Mathematics.
Springer-Verlag, New York, second edition, 1994. An introduction to algebraic topology.

[81] L. R. Welch. Lower bounds on the maximum cross-correlation of signals. IEEE Trans.
Inform. Theory, 20:397–399, 1974.

[82] Pawel Wocjan and Thomas Beth. New construction of mutually unbiased bases in
square dimensions. Quantum Inf. Comput., 5(2):93–101, 2005.

[83] William K. Wootters and Brian D. Fields. Optimal state-determination by mutually
unbiased measurements. Ann. Physics, 191(2):363–381, 1989.



BIBLIOGRAPHY 108

[84] Pengfei Xia, Shengli Zhou, and Georgios B. Giannakis. Achieving the Welch bound
with difference sets. IEEE Trans. Inform. Theory, 51(5):1900–1907, 2005.

[85] Gerhard Zauner. Quantum designs–Foundations of a non-commutative theory of de-
signs (in German). PhD thesis, University of Vienna, 1999.

[86] Fuzhen Zhang. Quaternions and matrices of quaternions. Linear Algebra Appl., 251:21–
57, 1997.



Index

A-submodule, 11
Fq-MUB-fiducial vector, 51
R-algebra, 8
S-homomorphism, 12
S-linear mapping, 12
Zd-MUB-fiducial vector, 49

normalized, 52
t-energy, 57
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equiangular set of lines, 1, 29
equivalent fiducial vectors, 93

equivalent sets of lines, 20
extended Clifford group, 76
extreme tournament, 88

fiducial vector, 63, 64
argument Legendre (AL), 69
real, 74
real Legendre (RL), 74

flat set of lines, 85
frame, 37
frame matrix, 35

generalized Pauli group, 21
generalized Weyl-Heisenberg orbit, 50

Hadamard product, 16
Hopf mapping, 92

image of a linear mapping, 13
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