

A TCP-DRIVEN RESOURCE ALLOCATION SCHEME AT

THE MAC LAYER OF A WIMAX NETWORK

by

Yu-shan (Susan) Chiu
B.A.Sc, Simon Fraser University 2005

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

In the
School of Engineering Science

© Yu-shan (Susan) Chiu 2008

SIMON FRASER UNIVERSITY

Fall 2008

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

APPROVAL

Name: Yu-shan Chiu
Degree: Master of Applied Science
Title of Thesis: A TCP-Driven Resource Allocation Scheme at the

MAC Layer of a WiMAX Network

Examining Committee:
 Chair: Shawn Stapleton

Professor of Engineering Science

 Steve Hardy
Senior Supervisor
Professor of Engineering Science

 Tejinder Randhawa
Supervisor
Adjunct Professor of Engineering Science

 Jie Liang
Internal Examiner
Assistant Professor of Engineering Science

Date Defended/Approved: ______________________________________

 ii

ABSTRACT

The paradigm of a traditional wired network protocol stack is a hierarchy of

services provided by each layer, but its ability to handle an error-prone physical

medium is severely compromised in wireless networks. Several approaches,

including cross-layer techniques have been developed to address this problem.

While much cross-layer research endeavour focused on interactions of the lower

layers, in this thesis, I present a TCP to MAC cross-layer technique in a

simulated WiMAX network. Using this cross-layer method, the scarce radio

resource is intelligently distributed among stations, based on the information of

congestion window size passing down from TCP. Both analytical and simulation

models were developed to understand the behavioural dynamics of the proposed

scheme, and quantify the performance gains. My results show that the proposed

algorithm delivers a better performance in average end-to-end delay, file

download time, and throughput when the traffic intensity of the network is

moderate to high.

Keywords: Cross-layer; MAC scheduling; TCP; WiMAX; 802.16

Subject Terms: Wireless metropolitan area networks; IEEE 802.16
(Standards); Broadband communication systems

 iii

ACKNOWLEDGMENTS

I would like to thank Professor Hardy for the support that he has given to

me throughout my Master study. His guidance, patience, and encouraging words

helped me in every step of my path to the completion of this thesis. I would also

like to thank Professor Randhawa for his innovative ideas, help and effort that he

has put in even though he has other commitments. I would also like to thank

Professor Liang for being the internal examiner of my thesis. I am grateful for my

parents’ faith in me, and their patience during my lengthy Undergraduate and

Master study. To my lab mates, thank you all for your help and encouraging

words. Last but not least, to my important friends, in Taiwan, US, UK and

Canada, who have encouraged me. I sincerely thank your earnest ‘add oil’ words.

Truly, when I needed it, they propelled me forward.

 iv

TABLE OF CONTENTS

Approval .. ii
Abstract .. iii
Acknowledgments... iv

Table of Contents ... v

List of Figures... vii
List of Tables .. xii
List of Acronyms ... xiii
Chapter 1 : Introduction... 1

Chapter 2 : Relevant Layers of the Protocol Stack.. 9
2.1 TCP in a Nutshell .. 10

2.1.1 TCP Congestion Window.. 11
2.1.2 TCP Slow Start ... 12
2.1.3 TCP Congestion Avoidance.. 13
2.1.4 The Advertised Window .. 14
2.1.5 Duplicate ACKs – TCP Fast Retransmit ... 15
2.1.6 TCP Fast Recovery... 15
2.1.7 TCP Timeout... 17
2.1.8 Flavours of TCP.. 18

2.2 WiMAX in a Nutshell.. 21
2.2.1 The WiMAX PHY Layer .. 22
2.2.2 The WiMAX MAC Layer .. 27

Chapter 3 : The Proposed Cross-Layer Technique: The Algorithm,
Implementations and Analytical Model .. 36

3.1 Algorithm Overview ... 36
3.1.1 Discussion of Extreme Cases and Limitations of the Proposed

Scheme... 39
3.2 Design Modification of the TCP Segment Format 40
3.3 Design Modifications of the WiMAX MAC Layer Operation....................... 41
3.4 The Analytical Model of the Algorithm ... 44

3.4.1 The Analysis of Queue Service Rate .. 45
3.4.2 The Analysis of Queue Delay.. 56
3.4.3 The Analysis of Round-Trip Time.. 61
3.4.4 Analysis of TCP Sending Rate Incorporating the Service Rate of

the MAC Layer .. 65

 v

Chapter 4 : An Overview and Modifications of the OPNET Models 70
4.1 A Brief Modelling Concept of OPNET Modeler.. 70
4.2 The OPNET WiMAX Model in a Nutshell .. 72

4.2.1 The Architectural Concept of the OPNET WiMAX Model.................... 72
4.3 Implementations in the TCP Model ... 75
4.4 Implementations in the WiMAX Model... 76

4.4.1 Extraction and Storage of Cwnd ... 77
4.4.2 Calculation of the Queue Weight .. 78

4.5 Configurations of the Simulation Parameters .. 81
4.5.1 Configurations of the TCP Parameters ... 82
4.5.2 Configurations of the WiMAX Parameters .. 83

4.6 Validity Check of the Implemented Model ... 85

Chapter 5 : OPNET Simulation Results .. 89
5.1 Two Client Stations Scenario .. 89

5.1.1 2SS – TCP Reno .. 89
5.1.2 2SS – TCP New Reno .. 97
5.1.3 2SS – TCP Reno & SACK .. 102

5.2 Four Client Stations Scenario.. 105
5.2.1 4SS – TCP Reno .. 106
5.2.2 4SS – TCP New Reno .. 109
5.2.3 4SS – TCP Reno & SACK .. 112

5.3 Six Client Stations Scenario .. 116
5.3.1 6SS – TCP New Reno .. 116
5.3.2 6SS – TCP Reno & SACK .. 119

5.4 Eight Client Stations Scenario ... 122
5.4.1 8SS – TCP New Reno .. 123
5.4.2 8SS – TCP Reno and SACK... 126

5.5 Performance with respect to N .. 130
5.5.1 The MAC Layer Delay vs. Number of Stations.................................. 130
5.5.2 FTP File Download Time vs. Number of Stations 136
5.5.3 MAC Throughput vs. Number of Stations ... 140

5.6 Base Station Analysis.. 146
5.7 Weight Variations across Stations... 151

Chapter 6 : A Summary and Future Extensions .. 154

Appendices ... 158
Appendix A: Implementation Steps and Codes Regarding the OPNET

TCP Model ... 158
Appendix B: Implementations of Extraction, Storage and Removal of

Cwnd .. 161
Appendix C: Implementations of the Queue Weight Calculation and

Modified MDRR Queuing Service Discipline 168

Reference List... 177

 vi

LIST OF FIGURES

Figure 2.1: The Internet protocol suite.. 10

Figure 2.2: The sliding window ... 11

Figure 2.3: An illustration of the cwnd growth in TCP slow start and
congestion avoidance phases ... 14

Figure 2.4: An illustration on the behaviour of cwnd and sequence number
during the fast retransmit and fast recovery phases 17

Figure 2.5: The WiMAX OFDMA TDD frame structure 26

Figure 2.6: Packet classification of the service specific convergence
sublayer ... 29

Figure 2.7: The bandwidth request mechanism of an rtPS or an nrtPS
connection in the UL direction ... 34

Figure 3.1: The new TCP segment format.. 41

Figure 3.2: The flowchart of the MDRR queue service discipline and
indications on modifications made... 43

Figure 3.3: An illustration of the MAC queue concept... 45

Figure 3.4: Comparison of the average queue service rate between the
proposed and original scheme with changing values of N while a
is fixed ... 54

Figure 3.5: Comparison of the average queue service rate between the
proposed and original scheme with changing values of a while N
is fixed ... 55

Figure 4.1: A client node of the OPNET WiMAX model and the
corresponding node model .. 71

Figure 4.2: The state machine of the process model of the OPNET WiMAX
processor module .. 72

Figure 4.3: The architectural concept of the OPNET WiMAX model 74

Figure 4.4: The new TCP segment format, with the modification made
circled in red .. 76

Figure 4.5: The newly added attribute (circled in red) of the TCP module.......... 76

Figure 4.6: The process of the cwnd value extraction and storage..................... 78

 vii

Figure 4.7: The concept of the BS scheduling process 81

Figure 4.8: The topology of the simulated network (2 client stations Case)........ 82

Figure 4.9: The comparison between the cwnd ratio and queue weight............. 85

Figure 4.10: The comparison between the congestion window size and
queue weight ... 87

Figure 4.11: The comparison of the queue weights across different
designs .. 88

Figure 5.1: The global average of MAC delay for 2SS scenario, utilizing
Reno.. 91

Figure 5.2: The global average of TCP delay for 2SS scenario, utilizing
Reno.. 91

Figure 5.3: The global average of download time for 2SS scenario,
utilizing Reno... 92

Figure 5.4: The global average of packets dropped for 2SS scenario,
utilizing Reno... 94

Figure 5.5: The global average of MAC throughput for 2SS scenario,
utilizing Reno... 95

Figure 5.6: The global average of TCP throughput for 2SS scenario,
utilizing Reno... 96

Figure 5.7: The global average of MAC delay for 2SS scenario, utilizing
New Reno.. 97

Figure 5.8: The global average of TCP delay for 2SS scenario, utilizing
New Reno.. 98

Figure 5.9: The global average of download time for 2SS scenario,
utilizing New Reno... 98

Figure 5.10: The global average of packets dropped for 2SS scenario,
utilizing New Reno... 99

Figure 5.11: The global average of MAC throughput for 2SS scenario,
utilizing New Reno... 100

Figure 5.12: The global average of TCP throughput for 2SS scenario,
utilizing New Reno... 101

Figure 5.13: The global average of MAC delay for 2SS scenario, utilizing
Reno-SACK... 102

Figure 5.14: The global average of download time for 2SS scenario,
utilizing Reno-SACK .. 103

Figure 5.15: The global average of packets dropped for 2SS scenario,
utilizing Reno-SACK .. 103

 viii

Figure 5.16: The global average of MAC throughput for 2SS scenario,
utilizing Reno-SACK .. 104

Figure 5.17: The global average of MAC delay for 4SS scenario, utilizing
Reno.. 106

Figure 5.18: The global average of download time for 4SS scenario,
utilizing Reno... 107

Figure 5.19: The global average of packets dropped for 4SS scenario,
utilizing Reno... 107

Figure 5.20: The global average of MAC throughput for 4SS scenario,
utilizing Reno... 108

Figure 5.21: The global average of MAC delay for 4SS scenario, utilizing
New Reno.. 109

Figure 5.22: The global average of download time for 4SS scenario,
utilizing New Reno... 110

Figure 5.23: The global average of packets dropped for 4SS scenario,
utilizing New Reno... 110

Figure 5.24: The global average of MAC throughput for 4SS scenario,
utilizing New Reno... 112

Figure 5.25: The global average of MAC delay for 4SS scenario, utilizing
Reno-SACK... 113

Figure 5.26: The global average of download time for 4SS scenario,
utilizing Reno-SACK .. 113

Figure 5.27: The global average of packets dropped for 4SS scenario,
utilizing Reno-SACK .. 114

Figure 5.28: The global average of MAC throughput for 4SS scenario,
utilizing Reno-SACK .. 114

Figure 5.29: The global average of MAC delay for 6SS scenario, utilizing
New Reno.. 117

Figure 5.30: The global average of download time for 6SS scenario,
utilizing New Reno... 117

Figure 5.31: The global average of packets dropped for 6SS scenario,
utilizing New Reno... 118

Figure 5.32: The global average of MAC throughput for 6SS scenario,
utilizing New Reno... 118

Figure 5.33: The global average of MAC delay for 6SS scenario, utilizing
Reno-SACK... 120

Figure 5.34: The global average of download time for 6SS scenario,
utilizing Reno-SACK .. 120

 ix

Figure 5.35: The global average of packets dropped for 6SS scenario,
utilizing Reno-SACK .. 121

Figure 5.36: The global average of MAC throughput for 6SS scenario,
utilizing Reno-SACK .. 121

Figure 5.37: The global average of MAC delay for 8SS scenario, utilizing
New Reno.. 123

Figure 5.38: The global average of download time for 8SS scenario,
utilizing New Reno... 124

Figure 5.39: The global average of packets dropped for 8SS scenario,
utilizing New Reno... 124

Figure 5.40: The global average of MAC throughput for 8SS scenario,
utilizing New Reno... 125

Figure 5.41: The global average of MAC delay for 8SS scenario, utilizing
Reno-SACK... 126

Figure 5.42: The global average of download time for 8SS scenario,
utilizing Reno-SACK .. 127

Figure 5.43: The global average of packets dropped for 8SS scenario,
utilizing Reno-SACK .. 127

Figure 5.44: The global average of MAC throughput for 8SS scenario,
utilizing Reno-SACK .. 128

Figure 5.45: MAC delay vs. number of stations, utilizing Reno 131

Figure 5.46: MAC delay vs. number of station, utilizing New Reno 133

Figure 5.47: MAC delay vs. number of station, utilizing Reno-SACK 135

Figure 5.48: The file download time vs. number of stations, utilizing Reno 137

Figure 5.49: The file download time vs. number of station, utilizing New
Reno.. 138

Figure 5.50: FTP file download time vs. number of station, utilizing Reno
and SACK.. 139

Figure 5.51: MAC throughput vs. number of station, utilizing Reno.................. 141

Figure 5.52: MAC throughput vs. number of station, utilizing New Reno.......... 142

Figure 5.53: MAC throughput vs. number of station, utilizing Reno-SACK....... 143

Figure 5.54: MAC throughput vs. number of station, utilizing Reno (Zoom
In) .. 145

Figure 5.55: MAC throughput vs. number of station, utilizing New Reno
(Zoom In) ... 145

Figure 5.56: MAC throughput vs. number of station, utilizing Reno and
SACK (Zoom In) .. 146

 x

Figure 5.57: Number of burst count of the DL-MAP, utilizing New Reno 147

Figure 5.58: Size of each data burst in the DL-MAP, utilizing New Reno 148

Figure 5.59: DL Data burst usage of a DL subframe, utilizing New Reno......... 150

Figure 5.60: MAP usage of a DL subframe, utilizing New Reno....................... 150

Figure 5.61: MAC queue weights of Station1 to Station6 of the 8SS-
scenario, utilizing Reno-SACK combination and a=1 152

 xi

LIST OF TABLES

Table 2-1: FFT sizes and the corresponding channel bandwidth in WiMAX....... 24

Table 2-2: A summary of types of scheduling services in the WiMAX MAC
layer... 32

Table 5-1: The percentage differences of the global average delay at the
MAC layer of each proposed design compared to the original
design, utilizing Reno .. 132

Table 5-2: The percentage differences of the global average delay at the
MAC layer of each proposed design compared to the original
design, utilizing New Reno .. 134

Table 5-3: The percentage differences of the global average delay at the
MAC layer of each proposed design compared to the original
design, utilizing Reno-SACK ... 136

Table 5-4: The percentage differences of the global average of the file
download time of each proposed design compared to the original
design, utilizing Reno .. 137

Table 5-5: The percentage differences of the global average of the file
download time of each proposed design compared to the original
design, utilizing New Reno .. 138

Table 5-6: The percentage differences of global average of the file
download time of each proposed design compared to the original
design, utilizing Reno-SACK ... 139

Table 5-7: The percentage differences of global average of the MAC
throughput of each proposed design compared to the original
design, utilizing Reno .. 142

Table 5-8: The percentage differences of global average of the MAC
throughput of each proposed design compared to the original
design, utilizing New Reno .. 143

Table 5-9: The percentage differences of global average of MAC
throughput of each proposed design compared to the original
design, utilizing Reno-SACK ... 144

 xii

LIST OF ACRONYMS

ACK acknowledgment

AMC adaptive modulation and coding

ARQ automatic repeat request

ATM asynchronous transfer mode

BE best effort

BER bit error rate

BS base station

BWR bandwidth request

CID connection identifier

CSMA/CA carrier sense multiple access with collision avoidance

cwnd congestion window

DL downlink

ertPS extended real-time polling service

FFT fast Fourier transform

FTP File Transfer Protocol

HARQ hybrid automatic repeat-request

IP Internet Protocol

MAC medium access control

MDRR Modified Deficit Round Robin

 xiii

MSS maximum segment size

nrtPS non-real-time polling service

OFDM orthogonal frequency-division multiplexing

OFDMA orthogonal frequency-division multiple access

OSI Open System Interconnection

PDU protocol data unit

PHY physical (layer)

PMP point-to-multipoint

QoS quality of service

RTG receive/ transmit transition gap

RTO retransmission timeout

rtPS real-time polling service

RTT round-trip time

SACK selective acknowledgment

SDU service data units

SF service flow

SFID service flow identifier

SNR signal-to-noise ratio

SS subscriber station

ssthresh slow start threshold

TCP Transmission Control Protocol

TDD time division duplex

 xiv

ToS type of service

TTG transmit/receive transition gap

UGS unsolicited grant services

UL uplink

VoIP voice over IP

WFQ Weighted Fair Queuing

WiMAX Worldwide Interoperability for Microwave Access

WLAN wireless local area networks

WMAN wireless metropolitan area network

 xv

CHAPTER 1: INTRODUCTION

One of the features that differentiate wireless networks from wired

networks is the scarce radio spectrum and time-varying channel quality. A great

amount of research effort has been expended in attempting to improve the

performance of wireless networks over what is an inherently error-prone medium

for signal propagation. In a traditional network protocol stack, Transmission

Control Protocol (TCP) often acts as the fundamental mechanism to ensure a

reliable link between end-to-end stations. Unfortunately, while the architecture of

TCP enables it to perform well over wired networks, it exhibits serious shortfalls

when deployed over wireless networks.

Several research endeavours have attempted to tackle the challenges that

arise when using TCP over wireless links. Sardar et al. [1] contributed a thorough

and organized survey of various TCP enhancements for last-hop wireless

networks. Cross-layer communication within the protocol stack was a concept

that gradually emerged when researchers began to look beyond TCP or a single

layer itself, and considered the possibilities of communicating among multiple

layers to attain better performance outcomes.

Srivastava et al. [2] presented a definition and illustrated different kinds of

cross-layer designs. A cross-layer design for the protocol stack permits direct

communication and variable sharing between nonadjacent layers in an otherwise

restricted protocol stack model. A cross-layer design could involve creation of

 1

new interfaces, at which the new interface acts as an agent distributing

information back and forth between the nonadjacent layers. However, the

presence of an agent is not mandatory; it is possible to couple two or more layers

during the design phase such that the functionalities of other layers are taken into

account when the protocol operates. Another methodology of achieving cross-

layer design is to merge adjacent layers into a superlayer. Finally, a cross-layer

design can also be achieved by vertical calibration across multiple layers. Both [2]

and [3] summarize a number of strategies to implement cross-layer

communications in a protocol stack.

It is not the intent of this thesis to include all past cross-layer designs.

Instead, I will outline a few in the following paragraphs. Due to the distinctly

unreliable trait of wireless channels, numerous research efforts concentrating on

achieving cross-layer capability have focused on the interaction between the

physical (PHY) layer and higher layers. Thus, this outline will be organized in a

lower layer to upper layer sequence.

Song et al. [4] proposed a dynamic subcarrier assignment scheme in an

orthogonal frequency-division multiplexing (OFDM) wireless broadband network.

Considering the advantages of multiple subcarriers in OFDM and multi-user

diversity in a network cell, certain subcarriers may be in deep fade for one user

but may not simultaneously be in deep fade for other users. The authors

determined the available data rate of each subcarrier based on channel state

information, and dynamically assigned the subcarriers to users according to a

utility function to differentiate quality of services (QoS). The utility function in this

 2

context represents the level of satisfaction of an end-user, which may differ

depending on user-applications.

Toumpis et al. [5] presented a cross-layer power-control scheme for

wireless ad hoc networks, which utilized the mechanism of the ad hoc medium

access control (MAC) layer as the basis for determining the transmission power

of a packet. Nodes that successfully capture the channel will transmit at a

minimum sustainable power as specified by the control packets from the

intended receiver, during the previous contention period. The energy consumed

per packet is thus reduced, in comparison to the Carrier Sense Multiple Access

with Collision Avoidance (CSMA/CA) scheme. In addition, the reduction in

transmission power diminishes the interference experienced by other nodes, thus

increasing the probability of those nodes successfully capturing the channel. The

overall result of this methodology is improvement in throughput at a reduced

transmission power per packet.

Adaptive modulation and coding (AMC) is a technique that has been

demonstrated to successfully deal with the time-varying transmission quality of

the wireless channel. The modulation and coding scheme at the PHY layer

adapts according to the channel state, in order to achieve a designated data rate

within a certain bit error rate (BER) constraint. A number of cross-layer proposals

were built on top of AMC, each of which incorporated an automatic repeat

request (ARQ) mechanism at the MAC layer to improve the spectral efficiency in

terms of bits per transmitted symbol [3]. Similar to AMC, the coding rate of a

video streaming application can adapt depending on the channel condition and/or

 3

the MAC layer performance to attain a QoS determined by an end user or the

application.

Moving back to the upper layers of the network protocol stack, the

problematic performance of TCP when deployed over wireless networks is a

topic of research that attracts much attention. The explicit congestion notification

(ECN) [6] enhancement for TCP captured the essence of the cross-layer concept.

In ECN, a router incorporates active queue management to detect congestion

before the queues of the router overflow. The router then explicitly indicates the

congestion condition during the incipient congestion phase by marking the

header field of a packet which originates from an ECN-capable network. TCP of

the sender then initiates its congestion avoidance mechanism upon the detection

of a marked packet. Consequently, TCP is capable of differentiating between an

error over the wireless link due to degraded channel quality and one due to

network congestion.

Kliazovich et al. [7] introduced a Snoop-alike agent, which was situated in

between TCP and the MAC layer at both sender and receiver nodes. In the IEEE

802.11 Standard, the reliable delivery of data is established using the ARQ

mechanism. The authors argued that in such scenario, the number of

acknowledgments (ACKs) required for a single transmission is three-fold. The

first ACK is the indication of successful delivery of the data packet at the MAC

layer. The second ACK is rooted from the ACK generation of TCP, and the third

ACK originates from the MAC layer to indicate the successful transmission of the

TCP ACK. To eliminate duplicate confirmations of ACKs, their proposed agent

 4

generates a TCP ACK locally at the sending node upon receiving the first

indication of successful delivery of the data packet at the MAC layer. On the

other hand, the agent at the receiving node intercepts the ACK generation by

dropping the TCP ACK. The bandwidth usage is thus economized, but at the

same time, the end-to-end semantic of TCP is violated.

Park et al. [8] introduced a notion of channel access cost, which was

estimated based on the aggregated traffic load and per-station bandwidth usage

evaluated at the MAC layer. A pseudo random number that is uniformly

distributed between zero and one is generated and compared to the access cost.

If the random value is less than the access cost, the high access cost indicator is

set. An upward notification that discourages the participation of the station is

conveyed to TCP to reduce its sending rate. In order to minimize the changes

required to the original protocol stack, the notification is sent to the Internet

Protocol (IP) layer. The ECN mechanism is then utilized to activate the

congestion algorithm of TCP. On the other hand, if the access cost is low, the

station is encouraged to participate more by elevating the sending rate of TCP,

but this scenario was left open for future extension.

Yang et al. [32] proposed an asymmetric link adaptation for TCP-based

applications in a WiMAX network. Due to the asymmetric load of uplink and

downlink traffic of a TCP-based application, an aggressive modulation and

coding scheme is utilized in combination with the ARQ mechanism of the MAC

layer in the downlink to achieve an uncompromised TCP performance in a

wireless network. In the uplink, a conservative modulation and coding scheme is

 5

employed instead, to ensure the robustness and response time of the return ACK

packets. In addition, a scheduler that attempts to maximize the benefit of the

queue weight, data rate, delay, and queue size is dedicated to the best-effort

service type of WiMAX.

Giambene et al. [9] contributed a diverse study on the use of cross-layer

designs in satellite communications. In Section 9.4 of [9], the authors proposed a

novel TCP-driven dynamic resource allocation scheme, where the resource

allocated at the MAC layer is dependent on the condition of TCP. In particular,

they formulated a prediction relating the growth of resource requests on a per

frame basis to the change in congestion window size in TCP. The MAC layer

then reallocates the resources based on this prediction before TCP reacts to this

growth in congestion window size. This traffic prediction is useful in a high

bandwidth-delay product network, such as a satellite network, due to high end-to-

end response time. However, the same prediction process provides only limited

advantages in a terrestrial network.

In this thesis, I have devoted my research effort to an alternative cross-

layer scheme, inspired by the work of Giambene et al. TCP plays a key role in

achieving the best possible level of a predefined end-to-end performance metric.

Nevertheless, TCP operating independently cannot deliver optimum performance

without being supplemented by knowledge from the layers below. In a wireless

environment, lower layers are able to respond better to fast fluctuating channel

states than TCP. To rectify this flaw of restricted sharing of information within the

 6

protocol stack, I propose a scheme that allows TCP to communicate with lower

layers, in particular the MAC layer.

In the proposed scheme, the MAC layer scheduler will adjust its service

resources dedicated to each TCP flow according to the congestion window size

received from TCP. In other words, the MAC scheduler adaptively allocates the

service resources based on the network condition estimated by TCP. The subtle

advantage of incorporating the MAC layer with TCP instead of the PHY layer is

that TCP assesses the network condition at the end-to-end host level, whereas

the PHY layer only evaluates the air-link quality at the last-hop.

The MAC layer technology employed in both [7] and [8] were wireless

local area networks (WLAN). However, since the broadband networks are

evolving to carry expanding numbers of multimedia applications, a cross-layer

optimization specific to a terrestrial network is necessary. WiMAX is chosen as

the wireless network platform for my study because WiMAX is projected to be

one of the contenders for the next generation wireless metropolitan area network

(WMAN). The OFDM and orthogonal frequency-division multiple access (OFDMA)

property of WiMAX allows it to deliver high data rates with great flexibility. In

addition, the WiMAX has a number of QoS parameters defined at the MAC layer,

which allows its scheduler to deliver differentiated services to the clients. The

proposed scheme is specific to TCP-based application but not limit to best-effort

service type of WiMAX. This thesis employed OPNET® WiMAX model as the

simulated model for the WiMAX network.

 7

This thesis introduces background knowledge on the relevant layers (i.e.

TCP and WiMAX) of the network protocol stack in Chapter 2, followed by a

detailed algorithm and analysis on the proposed technique in Chapter 3. Chapter

4 outlines the implementations of the proposed technique in the OPNET models.

The simulation results are presented and discussed in Chapter 5. Finally, the

thesis concludes with a summary of contributions and future extensions in

Chapter 6.

 8

CHAPTER 2: RELEVANT LAYERS OF THE PROTOCOL
STACK

The two protocol stack models that are most widely referenced in

networking are the Open System Interconnection (OSI) model and the Internet

protocol suite, which are commonly referred to as the 7-layer and the 5-layer

model respectively. The OSI model is descended from the Internet protocol suite,

inheriting its original architecture, while possessing additional functionality

defined at the end-host application level. Since the focus of this thesis is on the

cross-layer technique that transfers data across the network, I will be using the 5-

layer Internet protocol suite as the reference model.

The Internet protocol suite consists of five layers from top to bottom:

application, transport, network, data link and physical. The host layers reside on

the end-hosts, which carry out commands issued by end-users, and provide data

transport services at the end-to-end host level. In contrast, the media layers are

mostly distributed in the core of networks, at which they conduct data

transmission in the network core, and physically deliver data across links. Each

layer is assigned a dedicated term as illustrated in Figure 2.1 [10] to represent its

protocol data unit (PDU). This thesis will address the data units at each layer

according to the Figure, and the term ‘packet’ will refer to a general formatted

block of data in a packet-switch network.

 9

Figure 2.1: The Internet protocol suite

Since the proposed cross-layer technique involves modifications only at

TCP and WiMAX, the rest of this chapter will be devoted to providing background

information on these two layers. Most of the material discussed in the TCP

section is based on W. R. Stevens’ TCP/IP book [11] and J. Kurose’s computer

networking book [10].

2.1 TCP in a Nutshell

TCP is the most commonly utilized transport protocol in networks, and it

provides a reliable and connection-oriented data transmission channel between

end-to-end hosts. TCP establishes the reliable end-to-end transport of data by

the use of sequence number and acknowledgment mechanisms. Messages

passing down from the application layer are encapsulated into TCP segments,

each of which is marked with a sequence number. The sequence number

identifies the byte number of the first byte of each application data in the segment.

 10

As multiple segments traverse across the network from sender to receiver, TCP

at the receiver station identifies which segment is received based upon the

sequence number. It then demultiplexes the segments in succession and passes

the assembled message up to the application layer. The receiver in turn

generates acknowledgments (ACKs) back to the sender upon the receiving of

these segments. Consequently, the sender realizes whether a segment has been

successfully transmitted to the destination and in sequence.

2.1.1 TCP Congestion Window

TCP employs a sliding window mechanism to control its sending rate. The

size of the sliding window corresponds to the maximum amount of data that can

be sent into the network before being acknowledged. The window slides across a

stream of sequenced data in an ascending order as acknowledgments are

returned to the sender. Upon receiving these acknowledgments, the window

opens in size to increase its sending rate. Figure 2.2 illustrates the concept of

sliding windows in TCP.

Figure 2.2: The sliding window

In TCP, the parameter representing the size of the sliding window is

denoted as the congestion window (cwnd), and this parameter is possessed and

controlled by TCP on the sending node. The unit of cwnd is maintained in bytes

and is initialized to one maximum segment size (MSS) at the beginning of a

 11

transmission session. The MSS is the largest size of a segment in bytes that

TCP will send, and this information is exchanged between sender and receiver at

the connection-establishment time. The growth of cwnd is dependent on the

number of acknowledgments received, and is divided into two phases: slow start

and congestion avoidance.

2.1.2 TCP Slow Start

TCP begins a data transmission session with the slow start phase. In slow

start, TCP initially assumes that the network is congestion-free, thus aggressively

increasing cwnd exponentially. This is done in the hope achieving the optimum

performance faster. The growth of cwnd in slow start phase is described in

Equation 2.1, where segsize represents the size of one segment in bytes.

returnedACKsofnumbersegsizecwnd ×=∆ (2.1)

Segsize is used instead of MSS to incorporate the possibility of

encountering a smaller maximum transmission unit (MTU) along the transmission

path between sender and receiver. This path MTU could limit the actual segment

size to a smaller value than the MSS that was initially announced by the two end-

hosts.

Consider the possibility that packets are never lost in a network, and the

cwnd is initialized to one segsize at the beginning of a session. Cwnd is

incremented by one segsize as the first segment is successfully transmitted and

acknowledged, resulting in a growth from one to two segsizes. In the second

round, two segments are sent and acknowledged resulting in two segsize

 12

increments in addition to the original 2 segsizes. The process continues, and

consequently results in an exponential rise in cwnd in every round. Despite an

aggressive injection of data during the slow start phase, TCP still takes

precautions to avoid flooding the network. To avoid this possibility, TCP enters

the congestion avoidance phase, and increments cwnd in a more conservative

fashion.

2.1.3 TCP Congestion Avoidance

The slow start and the congestion avoidance phases are differentiated by

the result of a comparison of the cwnd value to a slow start threshold value,

ssthresh. TCP operates in the slow start phase if the value of cwnd is smaller or

equal to ssthresh; it operates in the congestion avoidance phase if otherwise.

The change of cwnd in the congestion avoidance phase is described in Equation

2.2.

⎟
⎠
⎞

⎜
⎝
⎛ ×

⋅
=∆ segsizereturnedACKsofnumber

cwnd
segsizesegsizecwnd 1,min (2.2)

The equation restrains the maximum increment in one round to one

segsize, resulting in an approximately linear growth in cwnd. Figure 2.3 illustrates

the fundamental ideas of TCP slow start and congestion avoidance phases. One

round usually corresponds to one round-trip time (RTT), which is measured from

the time that a segment leaves the sender node to the time an ACK that covers

the segment arrives at the sender.

 13

Figure 2.3: An illustration of the cwnd growth in TCP slow start and congestion avoidance

phases

2.1.4 The Advertised Window

While cwnd continues to grow if no packet drop occurs, TCP on the

sender node can never transmit more segments than the value of a window size

advertised by the receiver. The advertised window indicated by the receiver

represents the maximum buffer space that the receiver station is capable of

sustaining. In the case of a fast server, fast transmission link and a slow client,

this mechanism ensures that the server does not overwhelm the client with

intense traffic, thus avoiding packet loss due to receiver buffer overflow. As a

result, if cwnd is the flow control imposed by the sender, the advertised window

can be viewed as the flow control imposed by the receiver.

 14

2.1.5 Duplicate ACKs – TCP Fast Retransmit

A TCP segment includes an ACK number field to indicate the last

consecutive segment of a data stream that was successfully received. In the

event that one or more segments are missing from a window of transmitted

packets, arriving segments which are sequenced after the first missing segment

cause TCP on the receiver node to generate ACKs with the same ACK number

as the previous one. These ACKs are referred to as duplicate ACKs.

Duplicate ACKs occur when segments are lost or arrive out of order;

however, the number of duplicate ACKs generated due to an out of order arrival

is significantly less than that of a packet loss event. Therefore, TCP utilizes the

number of duplicate ACKs to infer a packet loss in the network. More specifically,

when TCP detects three duplicate ACKs, it immediately retransmits the missing

segment indicated by the duplicate ACKs, in an effort to recover a packet that is

presumably dropped in the network. This mechanism is known as fast retransmit.

In the absence of fast retransmit, TCP receives duplicate ACKs but waits

for a retransmission timer to timeout before resending the missing packet. This

significantly reduces the performance of TCP because the range of a

retransmission timer is typically in seconds as opposed to milliseconds for the

detection of duplicate ACKs.

2.1.6 TCP Fast Recovery

Upon the activation of fast retransmit, TCP initiates the fast recovery

algorithm. In fast recovery, ssthresh is set to one-half of the minimum between

the current cwnd and advertised window values. The lost segment inferred from

 15

the duplicate ACKs is retransmitted, and the new cwnd value is reset to ssthresh

plus 3 times the segment size. Meanwhile, each additional duplicate ACK

increments the cwnd value by one segment size. The motivation of this strategy

is to encourage TCP on the sender node to continue sending data, thus

maintaining the data transmission even during a packet loss event. As the ACK

of the retransmitted segment is returned to the sender, it acknowledges the last

in-order segment that has successfully arrived at the receiver, but queued in the

buffer. After that, the cwnd is restored back to ssthresh plus 3 times the segment

size. As a result, TCP enters congestion avoidance phase after fast retransmit

instead of slow start, hence, the name fast recovery. Figure 2.4 is a figure from

[11] with additional annotations to illustrate the changes in the values of cwnd

and the sequence number of the segments sent during the fast retransmit and

fast recovery phases.

 16

Figure 2.4: An illustration on the behaviour of cwnd and sequence number during the fast

retransmit and fast recovery phases

2.1.7 TCP Timeout

Both fast retransmit and fast recovery are utilized to mitigate the effect of a

packet loss event while TCP is in operation. However, fast retransmit and fast

recovery can only be activated by a sufficient number of duplicate ACKs, in this

case three. When a considerable amount of data in a window is lost, or when

ACKs fail to return, a condition of insufficient duplicate ACKs received arises,

leaving TCP and data transmission to idle. Under these circumstances, TCP

relies on a timer to determine when to retransmit the missing packets, and when

 17

to reactivate the transmission process. This timer is referred to as the

retransmission timeout (RTO).

RTO is a parameter that is critical to TCP performance. A large RTO value

leaves TCP idling longer than desired before retransmission occurs, thus

prolonging the response time of TCP when encountering a loss event. On the

other hand, a small RTO value gives rise to unnecessary retransmissions. TCP

deems timeout to be a more serious consequence of network congestion than

duplicate ACKs. Therefore, TCP throttles the traffic flow by reducing cwnd to one

segment size each time after a retransmission timeout. Small RTO values result

in unnecessary stalls in data transfer, thus degrading the performance of TCP.

The value of RTO is calculated based on estimations of RTT. For more

details on RTT estimation and RTO calculation, please refer to Chapter 21 of [11].

2.1.8 Flavours of TCP

Section 2.1 has so far dealt with the fundamental operations of TCP;

however, over the course of its development, TCP has been modified many

times in attempts to improve the responses towards incidents of segment drops.

These modifications are often referred to as different flavours of TCP. In this sub-

section, I will outline a few selected flavours of TCP.

2.1.8.1 TCP Tahoe

TCP Tahoe was the first version of TCP to incorporate the slow start,

congestion avoidance, and fast retransmit mechanisms. Nevertheless, the lack of

the fast recovery mechanism caused Tahoe to enter the slow start phase every

 18

time a packet is lost in the network, in spite of the fact that a loss is inferred by

either a timeout or triple duplicate ACKs. As a result, Tahoe is not ideal when

packet loss is significant.

2.1.8.2 TCP Reno

In addition to the mechanisms in TCP Tahoe, fast recovery was first

introduced in TCP Reno in an attempt to assess different degrees of congestion

levels in networks. It differentiates between a triple duplicate ACKs and a timeout

event. As previously described in Section 2.1.6, Reno retransmits the lost

segment upon activation of fast retransmit, and cwnd is incremented by one

segment size for each additional duplicate ACK received. In Reno, the increases

in cwnd lead TCP to send new segments during the fast recovery phase. In the

event of a single packet drop in a window of transmitted data, Reno can quickly

recover the dropped segment and keep data flowing. It thus performs better than

Tahoe. However, Reno’s major shortcoming is exposed when it encounters more

than one segment drop in a window of transmitted data.

2.1.8.3 TCP New Reno

New Reno includes all mechanisms in TCP Reno, but the subtle

difference between Reno and New Reno is the interpretation of additional

duplicate ACKs received by the sender node after entering the fast recovery

phase. New Reno assumes that the occurrences of packet drops are correlated.

In other words, packet drops can happen consecutively, which is usually a

legitimate assumption in wireless networks. Instead of proceeding with the

 19

transmission of new segments upon receiving of additional duplicate ACKs in fast

recovery, New Reno retransmits the segment immediately following the

previously transmitted segment that has not yet been acknowledged. This

interpretation becomes particularly useful when consecutive packets are dropped

in a window of transmitted data. As a result, New Reno performs better than

Reno in an environment that exhibits correlated packet drops such as wireless

networks.

2.1.8.4 TCP SACK

The selective acknowledgment (SACK) outlined here is based on RFC

2018 [12]. In SACK, the received data is treated as blocks of data demarcated by

missing segments. In other words, the TCP on the receiver node explicitly

indicates which blocks of data it has received in the SACK option field of a TCP

segment header. A block of data is defined by two edges, left and right, where a

left edge corresponds to the sequence number of the first segment in a block.

The right edge of a block is represented by the sequence number of the first

missing segment immediately following the last received segment of the block.

Provided with this information, TCP on the sender node is capable of

retransmitting only segments that have not yet successfully arrived at the

receiver, instead of wasting resources on retransmitting segments that are

queued in the receiver’s buffer. The SACK option is designed to remedy the flaw

of TCP Reno in the wireless transmission environment, and it avoids

unnecessary retransmissions, as it may be the case for TCP New Reno.

 20

This ends the discussion of TCP in this thesis. The next layer that is

involved in this thesis is known as the WiMAX MAC layer. Materials presented in

the next section are based on three IEEE overview papers [13] [14] [15], the

IEEE 802.16 standard [17] [18], and the OPNET documentation [16] [19].

2.2 WiMAX in a Nutshell

WiMAX is an acronym for Worldwide Interoperability for Microwave

Access; it specifies a high bandwidth broadband technology for a WMAN.

WiMAX is rooted from the IEEE 802.16 standard and is maintained by a non-

profit industrial consortium called the WiMAX Forum®. The major task of the

WiMAX Forum is to develop WiMAX system profiles that are complementary to

the IEEE 802.16 standard, and to ensure that the devices developed based on

these profiles are interoperable across manufacturers. Due to this close

relationship, WiMAX and 802.16 are often referred to interchangeably.

The IEEE 802.16 standard was first drafted in 2001, and was initially

intended to provide high bandwidth communication with line-of-sight for fixed

wireless networks, operating at the 10-66 GHz frequency bands. Nevertheless,

the amendment project that aimed to provide non-line-of-sight wireless

communication, operating at the 2-11 GHz range, received much attention, and

led to the completion of 802.16a-2003. The standard then introduced some

enhancement features in the uplink, and evolved to 802.16-2004 (also known as

802.16d) that specified the technical details of the air interface and the access

scheme of a fixed broadband wireless service. The mobility feature was later

 21

added in the 802.16e-2005 amendment, which included significant antenna

technology enhancements.

WiMAX, too, initially only specified profiles for fixed broadband wireless

services, but it also underwent reviews to address the mobility issue. Hence, the

mobile WiMAX was developed under the 802.16e-2005 specifications to support

full mobility services. This thesis involves only modifications on the WiMAX MAC

layer; however, since WiMAX is highly anticipated as one of the next generation

wireless technologies, I will also outline a few key features of the WiMAX PHY

layer.

2.2.1 The WiMAX PHY Layer

The IEEE 802.16 standard defines five specifications for the PHY layer,

including WirelessMAN-SC, WirelessMAN-SCa, WirelessMAN-OFDM, and

WirelessMAN-OFDMA. The first two specifications are defined based on the

single-carrier technology, whereas the later two are defined based on the OFDM

multi-carrier modulation. Over the course of the wireless development, OFDM is

deemed as a more robust and efficient technology than the legacy single-carrier

techniques for wireless networks. Therefore, WiMAX adopts both WirelessMAN-

OFDM and WirelessMAN-OFDMA designs from the IEEE 802.16 standard,

which are targeted for non-line-of-sight services operating at the frequency bands

below 11 GHz. The flexibility offered by the OFDMA scheme makes it one of the

most appealing features associated with WiMAX.

 22

2.2.1.1 The OFDMA Technology

OFDMA is a multiple access scheme that builds on top of OFDM. Signals

in OFDMA are transmitted with multi-carriers, in which each user is allocated with

a subset of subcarriers for signal transmission and multiple access. The property

of multiple subcarriers provides the OFDMA technology an inherent flexibility for

sub-channelization across sectors in a network cell, and QoS differentiation

among users.

One subchannel consists of a subset of subcarriers, of which the

subcarriers in a subchannel can be distributed across the whole spectrum, or

adjacently allocated as blocks of subcarriers. When subcarriers are adjacently

allocated, it allows the use of AMC to achieve more efficient signal transmission.

The QoS differentiation can be established by assigning a distinct code

spreading factor to each subchannel, thus resulting in different transmission rates

in each subchannel. Furthermore, the possibilities of dynamic subcarrier

assignment and power adaptation depending on the subchannel condition and

the QoS provisions can also be realized in an OFDM-based network.

OFDM is a frequency-division multiplexing technique that allocates

subcarriers that are orthogonal to each other in the frequency spectrum. This

reduces the inter-channel interferences, and allows the subcarriers to be closely

spaced. The OFDM technology utilizes multiple low data-rate narrowband

subcarriers instead of single rapidly modulated wideband carrier. The low data

rate lengthens the symbol time, thus reducing the inter-symbol interference, and

consequently leads to a simpler and more affordable equalization process. These

 23

fundamental properties of OFDM make it robust, spectral efficient, and thus

appealing to be deployed in a severe channel condition such as the wireless

medium. Nevertheless, OFDM has a shortcoming due to its vulnerability towards

Doppler shift effect because of the closely spaced subcarriers. This effect may

become more serious as the mobility support is introduced to the standard.

2.2.1.2 Scalable OFDMA – Dynamic Channel Bandwidth

Scalable OFDMA is a form of OFDMA that has adjustable channel

bandwidth based on the fast Fourier transform (FFT) sizes. The channel

bandwidth changes while the actual subcarrier spacing remains fixed; only the

grouping of subcarriers is changed. Table 2-1 shows the correspondences of the

FFT sizes to channel bandwidth defined in the IEEE 802.16 standard.

Table 2-1: FFT sizes and the corresponding channel bandwidth in WiMAX

FTT Size Channel Bandwidth

128 1.25 MHz

512 5 MHz

1024 10 MHz

2048 20 MHz

 24

2.2.1.3 OFDMA TDD Frame Structure

When implementing a time division duplex (TDD) system in WiMAX, an

OFDMA frame is divided into the downlink (DL) transmission period followed by

the uplink (UL) transmission period. A preamble announces the initiation of a

frame, followed by a transmit/receive transition gap (TTG) in between the DL and

UL transmission periods, and finally a receive/transmit transition gap (RTG) in

between two frames. During the DL transmission period, a downlink map (DL-

MAP) is placed after the preamble to indicate allocations and burst profiles of the

data bursts in the DL subframe. Similarly, an uplink map (UL-MAP), if available,

contains the entire access information for the uplink. The frame structure can be

viewed as two-dimensional space that spans across time (i.e. symbol time) in the

x-axis and across frequency (i.e. subchannel or subcarrier) in the y-axis. Figure

2.5 [18] illustrates the WiMAX OFDMA TDD frame structure.

 25

Figure 2.5: The WiMAX OFDMA TDD frame structure

2.2.1.4 Antenna Technology Options

Beside the intrinsic flexibilities offered by the OFDMA technology, WiMAX

employs many advanced antenna technologies as options to enhance its PHY

layer capability. They include multiple-input and multiple-output (MIMO) [25] and

adaptive antenna system (AAS) [26]-[29] technologies. MIMO is a technique that

uses multiple antennas at both the sender and receiver side to achieve

multiplicative increases in data throughput without extra bandwidth or transmit

power consumption. AAS is a system that utilizes multiple antennas, and

 26

combines the antenna pattern and signal processing to reduce interference, thus

improving the system capacity.

This sub-section has summarized a few key features in the WiMAX PHY

layer. The next sub-section will describe the specifications in the WiMAX MAC

layer.

2.2.2 The WiMAX MAC Layer

The WiMAX MAC layer is divided into three sublayers from top to bottom,

the service specific convergence sublayer, MAC common part sublayer and the

security sublayer. The convergence sublayer supports two types of services; one

is for asynchronous transfer mode (ATM), and the other one is packet service for

packet-switched networks. The common part sublayer provides utilities that are

common to both types of services in the convergence sublayer. The major

functionalities of the common part sublayer include but are not limited to network

entry, connection management, QoS control, air-link control, PDU operation,

mobility and power management, and multicast and broadcast services. This

thesis does not intend to describe the MAC common part sublayer in whole, but

will outline a few key features in the following sub-sections.

The security sublayer is the third sublayer in the MAC layer, which is

immediate above the PHY layer. It is responsible for privacy, authentication and

confidentiality for the subscriber stations in the network. The security sublayer is

not relevant to the discussion of this thesis, thus will not be discussed further in

this thesis.

 27

2.2.2.1 Service Specific Convergence Sublayer

The major task of the convergence sublayer is to transform each higher

layer PDU into a MAC service data unit (SDU), and map it to the appropriate

transport connection according to a set of classification rules. Some examples of

the classification rules includes the matching of IP source/destination addresses,

application source/destination port numbers, and IP type of service (ToS)

specifications. A matched packet is sent to a transport connection, which is

referenced by a connection identifier (CID). A CID identifies a unidirectional

transport connection between a base station (BS) and a subscriber station (SS).

In other words, the CIDs of the DL and UL transport connections between the

same BS and SS pair are unique. Figure 2.6 [17] illustrates the idea of packet

classification in the convergence sublayer. Please note that the classification can

be performed by either the BS or SS, depending on the transmission direction.

 28

Figure 2.6: Packet classification of the service specific convergence sublayer

2.2.2.2 MAC Common Part Sublayer

The IEEE 802.16-2004 specifies two modes of operation in the MAC

common part sublayer; one of which is the point-to-multipoint (PMP) mode, and

the other one is the mesh mode. The PMP mode operates like a typical

centralized network system, where a number of client stations (i.e. SSs) are

connected to and served by a centralized server station (i.e. BS). The downlink

transmission is broadcast in the network, whereas the uplink transmission is

admitted on a demand basis. The frame structure is partitioned into DL and UL

subframes as it is illustrated in Figure 2.5 in Section 2.2.1.3.

The mesh operation mode is organized in a similar fashion as an ad hoc

network, in which each station is allowed to establish direct connection with each

other. The frame structure has no explicit DL and UL subframe separation as in

 29

the PMP mode. Nevertheless, the mesh mode is not the focus of this thesis, thus

the following content will assume the mode of operation is PMP.

2.2.2.2.1 Network Entry

Upon the entry of a client into the network, the SS scans through its

frequency list attempting to synchronize with a BS. The BS performs the

admission control algorithm to decide whether to admit the SS, based on the

QoS requirements requested by the SS and the current resource availability of

the BS. If admitted, the BS generates a set of CIDs and connections, including

the management and transport connections, to associate with the SS. Three

pairs (i.e. DL and UL) of management connections are established for control

packets, and the transport connection is used for data transmission. Along with

the new CIDs, the BS also assigns new service flow identifiers (SFIDs) to the

new data flows associated with the station. A service flow (SF) is a unidirectional

flow of MAC SDUs between a pair of BS and SS, of which is provided with a

specific set of QoS parameters, and an SFID uniquely identifies the service flow.

2.2.2.2.2 QoS Provision (802.16 standard: 6.3.5.2)

If OFDMA is deemed as the most important property of the WiMAX PHY

layer, the QoS provision is perhaps one of the most intriguing features defined in

the WiMAX MAC layer. Due to the association of an SFID with a CID, every

packet arriving in the WiMAX network is related to a set of QoS parameters

supported by the WiMAX scheduler. WiMAX defines five types of uplink

scheduling services: unsolicited grant service (UGS), real-time polling service

 30

(rtPS), extended real-time polling service (ertPS), non-real-time polling service

(nrtPS) and best effort (BE) service.

The UGS is granted a fixed bandwidth allocation for a data stream that

consists of a constant data packet generation in periodic intervals. This service

type is suitable for real-time applications such as voice over IP (VoIP). The rtPS

is issued with periodic transmission opportunities for bandwidth requests. This

type of services is ideal for real-time variable bit rate traffic such as video and

audio streaming. A newly defined scheduling type in 802.16e-2005 is ertPS,

which combines the traits of UGS and rtPS. The ertPS scheduling type is offered

with unsolicited bandwidth grants but at a variable bandwidth. This aims to

support data streams that have variable size data in a periodic interval such as

VoIP with silence suppression.

The nrtPS scheduling type is appropriate for delay-tolerant applications,

such as FTP, but requires a minimum service rate. This scheduling service uses

contention or unicast request opportunities to issue requests for bandwidth.

Finally, the BE scheduling type is served based on demand basis, and it is not

provided with bandwidth reservation or any QoS provision. Table 2-2

summarizes the properties and the QoS parameters associated with each type of

uplink scheduling service in the WiMAX MAC layer.

 31

Table 2-2: A summary of types of scheduling services in the WiMAX MAC layer

Scheduling Traffic Traits Applications QoS Specifications

UGS Real-time periodic

constant bit rate

VoIP Max sustained traffic rate

Max latency, Tolerated jitter

Unsolicited grant interval

rtPS Real-time periodic

variable bit rate

Video/audio

streaming

Min reserved traffic rate

Max sustained traffic rate

Max latency

Unsolicited polling interval

ertPS Real-time periodic

variable bit rate

VoIP with

silence

suppression

Min. reserved traffic rate

Max. sustained traffic rate

Max latency, Tolerated jitter

Unsolicited grant interval

nrtPS Non-real-time variable

bit rate

FTP Max sustained traffic rate

Min reserved traffic rate

BE No QoS requirements Web browsing Max sustained traffic rate

2.2.2.2.3 Bandwidth Allocation and Request (802.16 Standard: 6.3.6)

In UL, when a SS has data to send, it generates requests to inform the BS

the amount of bandwidth it requires. The request is specified in number of bytes,

including the MAC header and payload, and it is polled by the BS at designated

time. When a poll is unicast, the receiving SS is directly allocated with sufficient

 32

bandwidth to make a request. In contrast, if a poll is broadcast or multicast to a

group of subscriber stations, an SS belonging to the polled group contents for an

opportunity to send the request. Based on the QoS specification of the

connection and resource availability, the BS determines which request is

accepted, and generates a grant. A grant is a burst profile embedded in the UL-

MAP, indicating the bandwidth boundaries allocated to the SS in a subframe.

Bandwidth requests are constructed on a per connection basis, but the grants

are issued on a per SS basis. Figure 2.7 illustrates the procedure of an rtPS or

an nrtPS connection requesting for bandwidth for data transmission.

 33

Figure 2.7: The bandwidth request mechanism of an rtPS or an nrtPS connection in the UL

direction

 34

2.2.2.2.4 HARQ Option

The hybrid ARQ (HARQ) is an option defined in the WiMAX MAC common

part sublayer, but it is only supported under the OFDMA PHY profile. HARQ is an

error control mechanism that is based on the stop-and-wait protocol. HARQ

enhances the performance of a connection in a poor channel condition at the

cost of throughput reduction. A corrupted frame is stored and retransmitted.

Upon the retransmission, the receiving node combines the retransmitted and

previously stored corrupted packet to attain a better signal-to-noise (SNR) and

coding gain. The HARQ mechanism can be enabled on a per CID basis.

This ends the material in WiMAX that is included in this thesis. This

chapter has provided background on TCP and WiMAX. The next chapter will

focus on presenting the proposed cross-layer technique involving TCP and the

WiMAX MAC layer.

 35

CHAPTER 3: THE PROPOSED CROSS-LAYER
TECHNIQUE: THE ALGORITHM, IMPLEMENTATIONS
AND ANALYTICAL MODEL

As described in Chapter 2, TCP is one of the host layers that reside on

end-hosts, and the MAC layer is one of the media layers, which operate at the

network core. TCP acts in the fundamental role of controlling the end-to-end data

transport, and injecting data into the network at variable rates, depending on its

assessments of the network condition over the entire transmission path.

Nevertheless, TCP is logically further from the physical transport medium than

the MAC layer; therefore, it is not capable of adapting well to a rapidly changing

wireless link. The MAC layer, which is the bottommost sublayer of the link layer,

is logically situated directly above the physical medium, and it delivers data

across the wireless link. Though TCP and the MAC layer operate concurrently

over the same network condition, they have different perspectives. Instead of

operating independently of each other, it is more beneficial to allow

communication between the two layers to achieve a better comprehension of the

network state.

3.1 Algorithm Overview

TCP utilizes many mechanisms, such as duplicate ACKs and RTT

estimations, in an attempt to infer the network condition. The key parameter that

reflects the consequences of these inferences is the size of congestion window.

 36

This parameter, cwnd, regulates the sending rate of TCP segments; in other

words, it is an implicit indication of how a TCP connection perceives the state of

network congestion over the entire data transmission path. More significantly, it

determines the quantity and the rate of packets arriving at the MAC layer. Since

the wireless band is a scarce resource, it is critical that the scheduler optimizes

its resource allocation to the desired connections. The cwnd provides information

on the packet arrival rate at the MAC layer, and a complementary aspect of the

network condition. Thus, by incorporating the cwnd parameter into the MAC layer,

it is capable of allocating its resources in a more intelligent fashion.

At the WiMAX MAC layer, a connection with a scheduling service type of

UGS, rtPS, ertPS, or nrtPS is assigned a dedicated queue, and the queue is

associated with a specific set of QoS parameters as described in Section 2.2.2.

One of the universally adopted scheduling schemes is Weighted Fair Queuing

(WFQ) [30], [31], which has also been implemented in the OPNET WiMAX model.

Depending on the QoS specification, the weight assigned to each queue can be

different. This weight value essentially determines the amount of resources that

the MAC scheduler agrees to allocate to the queue.

The weight of a queue is resolved according to the QoS requirement of

the queue at the time of admission, and it remains fixed throughout the

connection session. However, the MAC scheduler should be able to adapt the

manner in which it distributes its resources. Thus, I propose that the weight of

each queue should fluctuate with respect to the cwnd values from TCP. More

specifically, I propose that the weight of each queue should vary according to

 37

Equation 3.1, where W represents the original weight assigned to the queue at

admission time, c denotes the cwnd values of the TCP flow associated with the

queue, and a is the coefficient of the weight-adjusting factor. The subscript n

denotes the nth queue, and the subscript t represents the total of a property of all

N queues in the WiMAX network.

∑=+=
N

i
itn

t

n
nn ccwhereW

c
c

aWW ,' (3.1)

The resulting weight is a value that is reflective of the network congestion

condition as perceived by a TCP flow. It grants a queue an extra portion of its

original weight, and the proportion is determined by comparing the cwnd value of

the queue to that of other queues. In other words, a queue is given more

resources if the cwnd value associated with the queue is high, as compared to

other queues. Nevertheless, the extra portion is multiplied by the original weight,

in an effort to reinforce the QoS provisions that were originally promised by the

scheduler.

Therefore, the proposed algorithm still sustains differentiation of QoS

across queues, and at the same time reflects resource distribution in accordance

with the network condition. Within limits, the algorithm favours queues with fair

channel conditions over the entire transmission path, by granting them extra

bandwidth. Finally, the coefficient of the weight-adjusting factor is itself an

adjustable factor that can be manipulated by system designers in order to

establish a more aggressive system. In brief, the weight of the queue is adaptive

according to the cwnd value of TCP.

 38

3.1.1 Discussion of Extreme Cases and Limitations of the Proposed
Scheme

The weight-adjusting factor, cn/ct, is defined as the ratio of the cwnd value

of the nth queue to the sum of that of all N queues in the network. Thus, it can

never be grater than one. As a result, the maximum value of Wn
’ is limited at

(1+a)Wn, and the minimum value of Wn
’ remains as Wn. Consequently, a

connection cannot monopolize the bandwidth consumption, regardless of its fair

channel condition and the resulting high cwnd values. In contrast, a connection is

still provided with a minimum weight of Wn even if it suffers from bad channel

conditions. The proposed scheme maintains fairness across the queues, in the

sense that the resource granted to a data flow is bounded by a minimum and a

maximum that are both determined based on the original queue weight, Wn.

Assuming a total of N TCP flows (i.e. N queues) in the WiMAX network,

the total queue weight admitted to the system is Wt as described in Equation 3.2.

In the proposed scheme, the weight granted to each queue is slightly more than

the original, due to the second term of Equation 3.1. However, the maximum of

total weight granted to the queues in the proposed scheme is bounded as

described in Equation 3.3. The proposed algorithm, though more aggressive than

the original scheme by the virtue of assigning fair quality channels with extra

bandwidth, is still a stable system. The issue of granting of more resources than

originally admitted can be resolved by a conservative admission control algorithm,

such that it considers Equation 3.3 when admitting a queue.

 39

() ()ii

N

i
inewt

N

i
ioldt

WaWW

WW

maxmax ,

,

⋅+=

=

∑

∑

(

(

3.2)

3.3)

One of the constraints of the proposed scheme is its application to TCP

connections only. A transport mechanism such as UDP, which maintains no

estimations of the network condition, cannot utilize this scheme. Another

constraint of the proposed scheme occurs in the situation where a queue

accumulates packets from more than one TCP flow. Extraction of cwnd values

from different data flows may result in the proposed scheme facing problematic

discernment of the network condition. More specifically, the cwnd value extracted

from a packet of a particular TCP data flow of a queue may be mistakenly

interpreted as the congestion assessment made by another TCP data flow of the

same queue. However, this confusion can be resolved by extracting additional

information such as the source/destination IP addresses, and source/destination

port numbers from the header field of a TCP/IP datagram.

3.2 Design Modification of the TCP Segment Format

In order to transport the value of cwnd to the MAC layer, I utilized a portion

of the option field of a standard TCP segment. I denote the name of the field

Cwnd Option, and it is currently set to occupy 32 bits. I embed the cwnd value in

the Cwnd Option field, instead of utilizing explicit messages or an independent

protocol such as the Internet Control Message Protocol (ICMP). A scaled cwnd

value approach can be considered if a smaller option field size is desirable.

 40

Figure 3.1 illustrates a typical TCP header with the newly introduced Cwnd

Option field.

Figure 3.1: The new TCP segment format

3.3 Design Modifications of the WiMAX MAC Layer Operation

Once a packet arrives at a MAC queue, the embedded cwnd value is

extracted from the header, and the weight of the queue is calculated based on

the previously described Equation 3.1. In order to maintain the bandwidth usage

of a queue, the Modified Deficit Round Robin (MDRR) [20] queue service

discipline is employed at the downlink transmission of the BS. The proposed

scheme retains the structure of the MDRR queue service discipline, and it is

implemented as a modified version of the MDRR queue service discipline in the

downlink scheduler.

 41

A queue in an MDRR discipline is defined by two parameters, a weight

value and a deficit counter. When a queue is being served by the scheduler, the

weight value indicates the maximum amount of data that a queue is allowed to

dequeue in one round. The deficit counter accumulates the amount of bandwidth

that has been used up by the queue. The deficit counter is initialized to the

weight value of the queue, and is deducted by the size of the packet that is being

serviced by the scheduler. The scheduler continues to serve a non-empty queue

until its deficit counter reaches zero or below, and then moves on to the next

queue in a round-robin fashion. The deficit counter is replenished with the weight

of the queue when the scheduler loops back to serve the same queue in the next

round. This scheduling discipline ensures that every queue is guaranteed a visit

by the scheduler in one round, and at the same time, it provides differentiation in

QoS.

In my implementation, I retain the fundamental structure of the MDRR

queue service discipline, but I replenish the deficit counter with a custom-

calculated queue weight as described in Equation 3.1. In addition to the cwnd-

dependent weight value (i.e. Wn’), I modify the scheduling discipline to be slightly

more aggressive. The scheduler continues to serve a queue if the number of

packets left in the queue is one, regardless the value of the deficit counter. The

idea of this strategy is to empty a queue when possible, instead of leaving one

packet in the queue waiting to be served in the next round. Figure 3.2 illustrates

the logic of the MDRR queue service discipline, and the gray boxes indicate

changes I made in addition to the original design.

 42

Figure 3.2: The flowchart of the MDRR queue service discipline and indications on

modifications made

 43

As illustrated in the flowchart, the deficit counter in my implementation is

updated with the two different queue weights, depending on the buffer status. If a

queue is non-empty, the regular cwnd-dependent weight value, which is

calculated based on the current cwnd value, is utilized to replenish the deficit

counter. However, when a queue is empty, the cwnd value would be zero due to

no packet being present in the queue, which results in a smaller cwnd-dependent

weight value. The observation of a zero cwnd value misleads the scheduler to

arrive at an inaccurate interpretation on the state of a data flow, where an empty

queue can be due to slow data generation instead of a severe channel condition.

Under such a circumstance, a queue should not lose its achieved status because

of the temporary empty state. To address this problem, I retain a copy of the

cwnd value of the last packet existed in the queue, and I calculate the cwnd-

dependent weight based on this last-valid cwnd value. Hence, the last-valid-cwnd

weight value is utilized when the scheduler refreshes the deficit counter of an

empty queue.

3.4 The Analytical Model of the Algorithm

To understand the effect of the proposed algorithm on the MAC

scheduling scheme, analysis of the queue service rate and queue delay was

conducted. Consider a WiMAX network with a total of N queues, each of which is

associated with an originally assigned weight value of W, a congestion window

size of c, a cwnd-dependent weight value of W’, and a queue size of Q. Figure

3.3 illustrates the concept of the queue system that is utilized to develop the

analytical model.

 44

Figure 3.3: An illustration of the MAC queue concept

3.4.1 The Analysis of Queue Service Rate

The service rate is defined as the amount of data served in a window of

time. In this case, I define the service rate of a queue be the amount of data

served in a queue in one round, and one round corresponds to the amount of

time that is required for the scheduler to loop back to the same queue. Equation

3.4 describes the definition of the queue service rate, and the related notations.

T
d

timearoundwrapscheduler
roundoneinqueueninserveddataqueuenofrateservice n

th
th

n ===µ (3.4)

The amount of data served in each queue in one round of scheduling is

different under three conditions:

a) All Qn packets are scheduled

b) The queue reaches its allowed scheduling limit Wn’

c) Only a residual bandwidth, Br, is left available to schedule a portion of

data in the queue.

As a result, the amount of data served in a queue in one round is Qn, Wn’,

or Br. Case (a) is a condition that happens when Qn is smaller than Wn’, which

implies that the traffic of the queue is light. Case (b) occurs when packets start to

accumulate with increasing number of stations in the network or cwnd values.

 45

The queue size eventually becomes greater than the queue weight, and the

amount of data served in one round is limited to Wn’. Case (c) is a situation that

occurs when a queue is the last queue to be served in a subframe time, and only

residual bandwidth is left available for scheduling. However, it is unlikely that a

queue is always the last queue to be scheduled in every downlink subframe.

Therefore, case (b) can be deemed as the most common case of all three, and it

should be a legitimate representation of the three on the amount of data being

served in one round of scheduling.

After determining the amount of data served per round, the next task is to

formulate the wrap-around time of the scheduler. The time, T, required for the

scheduler to loop through all queues is dependent on the number of queues, the

traffic intensity of the queues, and the bandwidth capacity of the system. The

wrap-around time increases as the number and sizes of queues increase, but

shortens if the network bandwidth capacity is large. This leads to an expression

of the wrap-around time as described in Equation 3.5, where B indicates the

bandwidth capacity of the system, and τ is denoted to represent the time length

of a WiMAX MAC frame, including the preamble and transition time gaps.

()
τ⋅=

∑
B

QW
TtimearoundWrap

N

i
ii ,min '

 (3.5)

The equation indicates that the wrap-around time is only a fraction of a

frame time if the number of queues is few, or the traffic is light (i.e. queue sizes

are small). The scheduler is capable of looping through all queues multiple times

 46

in a frame time. Whereas, if the number of stations is large, or the traffic intensity

of the queues are high, such that the network capacity cannot accommodate all

data at once, the scheduler requires more than one frame time to revisit the

same queue.

Combining the amount of data served per round and the wrap-around time,

the queue service rate of each case is derived as illustrated in Equation 3.6 to

3.8. Note that the minimum of Wi’ and Qi is always Qi in case (a) since case (a)

occurs when the traffic is light. In contrast, the minimum of Wi’ and Qi is Wi’ in

case (b) and (c).

()

()

() ∑∑

∑∑

∑∑

⋅=⋅=

⋅=⋅=

⋅=⋅=

N

i
i

r
N

i
ii

r
n

N

i
i

n
N

i
ii

n
n

N

i
i

n
N

i
ii

n
n

W

BB

QW

BBccase

W

WB

QW

WBbcase

Q

QB

QW

QBacase

''

'

'

'

'

'

,min
)(

,min
)(

,min
)(

ττ
µ

ττ
µ

ττ
µ

(

(

(

3.6)

3.7)

3.8)

The service rate of case (a) is dependent on the queue size, and it implies

that packets arriving at the queue are all served in one round, which is

reasonable when the traffic is light. In contrast, the service rate is regulated by

the weight of a queue in case (b). In case (c), the service rate depends on Br but

always smaller than case (b) (i.e. Br <Wn’). In the original algorithm, the queue

weight is constant (i.e. a=0) throughout the transmission session; however, the

queue weight fluctuates with cwnd values in the proposed design. Assuming that

 47

the original weight of all queues are equal (i.e. Wi = Wn for all i), and substituting

the weight expression of the original and proposed design, the service rates of

case (b) and (c) can be rewritten as in Equation 3.9 to 3.12.

aN
c
c

a
B

aWNW

W
c
c

aW
B

W

WBproposedbcase

N
B

WN
WB

W

WBoriginalbcase

t

n

nn

n
t

n
n

N

i
i

n
newn

n

n
N

i
i

n
oldn

+

+
⋅=

+

+
⋅=⋅=

⋅=⋅=⋅=

∑

∑

1
),(

1),(

'

'

,

'

'

,

τττ
µ

τττ
µ

() n

r

nn

r
N

i
i

r
newn

n

r
N

i
i

r
oldn

WaN
BB

aWWN
BB

W

BBproposedccase

WN
BB

W

BBoriginalccase

+
⋅=

+
⋅=⋅=

⋅=⋅=

∑

∑

τττ
µ

ττ
µ

'
,

'
,

),(

),(

(

(

(

(

3.9)

3.10)

3.11)

3.12)

Comparing the queue service rates of the newly proposed and original

algorithm, comparison equations are resolved as shown in Equation 3.13 and

3.14 for case (b) and (c).

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
=

t

n

oldn

newn

c
c

a
aN

Nequationcomparisonbcase 1),(
,

,

µ
µ

aN
Nequationcomparisonccase

oldn

newn

+
=

,

,),(
µ
µ

(

(

3.13)

3.14)

The comparison equations indicate that the number of queues, N, needs

to be large in order for the new algorithm to reduce the effect of the weight-

adjusting factor coefficient in the denominator. Despite that, the service rate in

 48

case (b) is improved if the term in the bracket of Equation 3.13 can outweigh the

N/(N+a) factor. On the other hand, if the cwnd ratio (i.e. cn/ct) is poor, the service

rate of the proposed scheme can be lower than in the original. This is expected

since the scheduler attempts to allocate resources based on the network

condition assessments. As a result, for a queue with bad-channel condition, the

resources supplied to the queue can be less. Furthermore, a large coefficient, a,

results in a more aggressive resource allocation scheme, but it requires the

number of queues to be even larger, in order for the proposed scheme to deliver

a better queue service rate than the original one.

Without the cwnd ratio term in case (c), the proposed scheme performs

worse than the original because the sum of the cwnd-dependent weight, Wn’, of

all queues is virtually equivalent to admitting an additional queue into the network,

as implied in Equation 3.3. The service rate of a queue in the proposed scheme

relies on cn/ct and a to outperform the original design.

Furthermore, consider the coefficient, a, is fixed in Equation 3.13, the

proposed design performs better with increasing N. However, when N is large

such that the N/(N+a) factor approaches unity, the gain in performance is

bounded by a limit given by [1 + a(cn/ct)]. In addition, consider Equation 3.10, if N

is sufficiently larger than a, the (N+a) term in the denominator is dominated by N.

As a result, the service rate increases with a. However, if a continues to grow

such that a is equally influential as N in the denominator, elevation in a at the

same time dilutes the gain in the numerator. Consequently, the performance of

 49

the proposed scheme increases with N and a, but the gains are bounded at

certain limits.

3.4.1.1 The Expected Value of Queue Service Rate

As previously described, the queue service rates are differentiated into

three occurrences, with case (b) being the most common case. Therefore, the

expected value of queue service rate derived in this sub-section focuses only on

case (b) (i.e. Equation 3.7). The expected value of the queue service rate in case

(b) is determined by the expected value of the queue weight and the sum of

queue weights. The queue weight of the original algorithm is constant while that

of the proposed algorithm fluctuates depending on cwnd values. Thus, the

expected values of queue weight of the original and proposed algorithms are

different as illustrated in Equation 3.15 and 3.16.

[] noldn

noldn

WWE
WWoriginal
=

=

,

,

[] n
t

n
nn

t

n
nnewn

n
t

n
nnewn

W
c
c

EaWW
c
c

aWEWE

W
c
c

aWWproposed

⋅⎥
⎦

⎤
⎢
⎣

⎡
⋅+=⎥

⎦

⎤
⎢
⎣

⎡
+=

+=

,

,

(

(

3.15)

3.16)

From Equation 3.16, the expected value of the queue weight of the

proposed scheme is dependent on the expected value of cwnd ratio. To

determine the expected cwnd ratio, I consider the worst and best possible cases

of a cwnd ratio.

 50

Denoting cmax as the maximum value of cwnd, the smallest cwnd ratio of

the nth queue occurs when cn is equal to one while the congestion windows of all

other queues are equal to cmax. In contrast, the largest cwnd ratio of the nth queue

is cn equals to cmax, and the congestion windows of all other queues equal to one.

The mathematical representation of the smallest and largest cwnd ratios are

expressed in Equation 3.17 and 3.18. The condition of cmax being sufficiently

larger than N is valid since the congestion window size is maintained in bytes,

and the maximum can be in the range of thousands or tens of thousands bytes.

() ()

() Ncif
c
c

cN
c

c
c

cNcNc
c

rgestlat

n

smallestt

n

>>=≅
+−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅−
≅

+−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

max
max

max

max

max

maxmax

1
1

1
1

11
1

(

(

3.17)

3.18)

The distribution of the cwnd ratio can vary across queues. For queues that

constantly enjoy fair channel conditions, their cwnd ratios are likely to be

distributed near the large values range. On the other hand, if a station

continuously suffers from bad channel conditions, its cwnd ratios are likely to be

concentrated at the low values range. Consequently, the distribution of the cwnd

ratio of a queue is highly dependent on the physical channel condition of the

queue. Since the channel condition is equally likely to spread between good and

bad states, I assume the cwnd ratio to be uniformly distributed between the

smallest and largest values. Thus, the expected value of cwnd ratio is calculated

as in Equation 3.19. Substituting the expected cwnd ratio back to Equation 3.16,

 51

the expected value of queue weight of the proposed scheme is shown in

Equation 3.20.

() () ∞→=+≈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⋅−
⋅≅

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅=⎥

⎦

⎤
⎢
⎣

⎡

max
max 2

110
2
11

1
1

2
1

2
1

cas
cN

c
c

c
c

c
c

E
rgestlat

n

smallestt

n

t

n

 [] nnn
t

n
nnewn WaWW

c
c

EaWWE
2, +=⋅⎥

⎦

⎤
⎢
⎣

⎡
⋅+=

(

(

3.19)

3.20)

The next term to be resolved is the expected value of the sum of queue

weights. Given that the minimum of Wn’ and Qn is Wn’ in case (b), and assuming

the original weights of all queues are equal in the network (i.e. Wi = Wn for all i),

the expected values of the sum of queue weights are presented in Equation 3.21

and 3.22.

[]

() nnn

N

i
i

t

i
N

i
i

N

i
i

t

i
i

N

i
newi

nn

N

i
oldi

WaNWaWNW
c
c

EaWE

W
c
c

aWEWE

WNWNEWE

+=⋅+⋅=⎥
⎦

⎤
⎢
⎣

⎡
⋅+⎥

⎦

⎤
⎢
⎣

⎡
=

⎥
⎦

⎤
⎢
⎣

⎡
+=⎥

⎦

⎤
⎢
⎣

⎡

⋅=⋅=⎥
⎦

⎤
⎢
⎣

⎡

∑∑

∑∑

∑

,

,

(

(

3.21)

3.22)

Combining the expected values of queue weight and the sum of the

weights, the average queue service rates for both the original and proposed

scheme can be found in Equation 3.23 and 3.24.

 52

[] []

[] []
() aN

a
B

WaN

WaWB

WE

WEBE

N
B

WN
WB

WE

WEBE

n

nn

N

i
newi

newn
newn

n

n
N

i
oldi

oldn
oldn

+

+
⋅=

⋅+

+
⋅=

⎥
⎦

⎤
⎢
⎣

⎡
⋅=

⋅=
⋅

⋅=

⎥
⎦

⎤
⎢
⎣

⎡
⋅=

∑

∑

2
1

2

1

,

,
,

,

,
,

τττ
µ

τττ
µ

(

(

3.23)

3.24)

The average service rate decreases as N increases in both designs, which

is reasonable since resources are shared by more clients. However, for the

proposed scheme, the service rate does not decrease as fast as the original, and

it decreases even slower as a is larger. Comparing the average service rate of

the proposed to original scheme, a comparison equation can be formulated as

shown in Equation 3.25. In addition, Figure 3.4 illustrates the comparison

equation with respect to increasing values of N while a is fixed in each plot.

[]
[] ⎟

⎠
⎞

⎜
⎝
⎛ +⋅

+
=

2
1

,

, a
aN

N
E
E

oldn

newn

µ
µ

 (3.25)

 53

Average Queue Service Rate Comparison vs. Number of Queues

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 5 10 15 20
Number of Queues

E
[P

ro
po

se
d

S
er

vi
c

R
at

e]
 /

E
[O

rig
in

al
 S

er
vi

ce
 R

at
e]

a = 1
a = 3
a = 4
a = 5

Figure 3.4: Comparison of the average queue service rate between the proposed and

original scheme with changing values of N while a is fixed

The figure depicts that all plots intersect at the point, where N equals to

two, and the comparison ratio equals to one. In other words, when the number of

queues in the network is two, the proposed scheme performs equally well as the

original, independent of the value of the weight-adjusting factor coefficient.

However, the proposed scheme shows its advantage as the number of queues

continues to grow, and the advantage is even more evident as the value of the

coefficient increases.

The graph also indicates that the gain in the proposed scheme with

respect to N is bounded at a certain limit when N is large. This observation is

obvious in the plot of a=1, where the plot is close to horizontal when N is large.

Furthermore, the gain between each value of a (i.e. the vertical gaps between

each plot) reduces with increasing a. This observation suggests that the gain with

respect to a is also limited to a certain bound. These two observations confirm

 54

the conclusions drawn at the end of the derivation of queue service rate. The

comparison equation is plotted with respect to increasing values of a while N is

fixed in each plot, as illustrated in Figure 3.5.

Average Queue Service Rate Comparison
vs.

Coefficient of the Weight-adjusting Factor

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

0 5 10 15 20
Coefficient of the Weight-adjusting Factor, a

E
[P

ro
po

se
d

S
er

vi
c

R
at

e]
 /

E
[O

rig
in

al
 S

er
vi

ce
 R

at
e] N = 1

N = 2
N = 4
N = 6
N = 8
N = 10
N = 12
N =15

Figure 3.5: Comparison of the average queue service rate between the proposed and

original scheme with changing values of a while N is fixed

 The queue service rate of the proposed design is worse than the original

when N is one, independent of the values of coefficients. The advantage of the

proposed design begins to show when N is greater than two. For the same N, the

advantage grows with respect to increasing a, but the gain approaches to a

constant when a is too large compared to N. These observations comply with the

observations made in Figure 3.4. Furthermore, Figure 3.5 demonstrates that the

advantage of large a is more evident when N is large. In other words, large

values of a require the number of queues in the network be sufficiently large to

deliver a more evident performance gain, and if N is small, a small value of a is

sufficient.

 55

3.4.2 The Analysis of Queue Delay

The approach taken in the analysis of queue delay is to first develop an

expression for queue size, and then apply Little’s formula after evaluating the

average queue size to achieve the average queue delay.

The size of a queue varies as packets arrive at the queue, and as they are

served leaving the queue. Thus, the queue size is related to the arrival rate, λ,

and the service rate, µ, as described in Equation 3.26, where q is denoted to

represent the difference between the two. Note that the expression, (t), signifies

the time-varying characteristic of each term.

)()()(tttq µλ −= (3.26)

However, the discrepancy between the arrival and service rate represents

only the changes in queue size, instead of the actual queue size. If a queue is

initially empty, the actual queue size, Q, can be obtained by integrating the

changes in queue size over time as illustrated in Equation 3.27. Taking an

integral over time is equivalent to multiplying by a window of time, ∆t, in the

discrete form, as shown in Equation 3.28. Note that changes in queue size can

be negative; nevertheless, the queue size is subject to a lower bound of zero,

and an upper bound of the buffer size.

 56

∫∫ −==
00

)()()(
tt

dtttdttqQ µλ

() () tttttqQ ∆⋅−=∆⋅=)()(µλ

(

(

3.27)

3.28)

The average queue size is obtained by evaluating the expected value, as

shown in Equation 3.29. For simplicity, the remainder of this sub-section will

focus only on the derivation of the discrete form.

[] [] [] []() ttEtEtttEQE ∆⋅−=∆⋅−=)()()()(µλµλ (3.29)

The equation complies with the fact that if the average arrival rate is

greater than the average service rate in a window of time, the queue size grows

as the time window stretches longer. In contrast, if the average arrival rate is

smaller than the average service rate, the queue size shrinks over time. However,

the overall service rate can never be greater than the overall arrival rate because

the service rate diminishes to zero when no packet exists in the queue. This

logical constraint ensures that the average queue size is never negative.

With an expression for the average queue size, the expected queue delay,

d, can be derived after applying the Little’s formula described in Section 3.2.1 of

[21]. The Little’s formula states that the average queue size is the product of the

average net arrival rate and the average queue delay, as shown in Equation 3.30.

An expression for the average queue delay of the scheme arises from the Little’s

formula, as described in Equation 3.31. For simplicity, the expression of (t) is

dropped in the following equations.

 57

[] [dEratearrivalaveragenetQEFormulasLittle]×=:'

[] [] [] []()
[]

[]
[] t

E
E

E
tEE

ratearrivalnet
QEdE ∆⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

∆⋅−
==

λ
µ

λ
µλ 1

(

(

3.30)

3.31)

The expected value of queue delay is subject to a lower bound of zero

because the average queue size is never negative. In addition, since λ and µ are

never negative, the equation suggests that the maximum expected queue delay

never exceeds ∆t. This is intuitively incorrect because the queue delay should be

able to grow to infinity if the service rate is zero. Nevertheless, this upper bound

of ∆t on the queue delay becomes sensible since the average queue size is

estimated at t0+∆t seconds; therefore, the maximum delay that a packet can

experience from t0 to t0+∆t second is ∆t seconds.

From this perspective, the terms in the bracket of Equation 3.31 can be

interpreted as the fraction of the window of time, ∆t, that a packet experiences as

queue delay. Since the window of time is arbitrary, it can be replaced by the

maximum amount of time that a packet can spend in a queue. Assuming the

service rate is non-zero, the maximum queue delay occurs when a packet is

accepted into a fully occupied queue. Denoting the buffer size of a queue as F,

the maximum queue delay, dmax, can be expressed as in Equation 3.32, and its

expected value in Equation 3.33.

 58

[] [] F
E

dE

Fsizebuffersizeunitpertimeserviced

⋅=

⋅=×=

µ

µ
1

1

max

max

(

(

3.32)

3.33)

The actual delay emerges by replacing the arbitrary window of time with

dmax. Denoting the actual queue delay to D, the average queue delay can be

written as in Equation 3.34.

[] ()[]
()[] []

()[]
()[] ()[] ()[] ()[] F

tEtE
F

tEtE
tE

dE
tE
tEDE

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

λµµλ
µ

λ
µ

1111

1 max

(3.34)

The expected queue delay reduces as the service rate increases, or as

the arrival rate decreases. However, the expected queue delay never falls below

zero because the overall service rate of a queue cannot be greater than the

overall arrival rate. Furthermore, if the arrival rate is large, the queue delay

expression simplifies to dmax, which complies with the fact that a queue is always

full when the arrival rate is infinite.

The average service rate of a queue was derived in Section 3.4.1.1, and

the arrival rate of a MAC queue is approximately equivalent to the sending rate of

its corresponding TCP flow. Assuming the average arrival rates from TCP flows

are identical for each queue, the queue delay depends only on the queue service

rate to differentiate the performance between the original and proposed algorithm.

Substituting the average service rate into the equation of average queue delay,

 59

the queue delays of the original and proposed designs are described in Equation

3.35 and 3.36 respectively.

[] [] [] []

[] [] [] [] F
Ea

aN
B

F
EE

DE

F
E

N
B

F
EE

DE

new
new

old
old

⋅
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−

+

+
=⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

λ
τ

λµ

λ
τ

λµ

1

21
11

111

(

(

3.35)

3.36)

The queue delay of the proposed scheme is smaller than the original if the

service rate of the proposed scheme is higher than that of the original. More

specifically, the number of stations, N, has to be greater than two in order for the

proposed design to show better performance on queue delay. The mathematical

manipulation of this comparison is shown in Equation 3.37.

[] []

2
22

12
1

>⇒>⇒+>+⇒>
+

+

>

NaNaaNNaN
N

B
aN

a
B

EE oldnew

ττ

µµ

(3.37)

The value, two, originates from the expected value of the cwnd ratio in

Equation 3.19 of Section 3.4.1.1. If the channel condition of a queue is not as

ideal, resulting in a worse cwnd ratio such as 1/3, this implies that the queue

requires the number of queues present in the network be more than three, in

order to observe better average service rate and queue delay in the proposed

algorithm. In other words, the degree of improvement in performance of a queue

in the new algorithm depends on the conditions of the channel. Queues with high

cwnd ratio experience higher average service rate and shorter average delay

 60

while bad stations can suffer. This conclusion reflects the idea of adaptively

allocating the scheduling resources to desired connections, depending on the

estimations of the network condition. Moreover, since the queue delay is

dependent on the queue service rate, the improvement in the queue delay of the

proposed scheme is also subject to bounds when an overly aggressive weight-

adjusting factor coefficient is employed or when the number of queues is too

large.

3.4.3 The Analysis of Round-Trip Time

This sub-section is devoted to the study of round-trip delay of a TCP

segment if employing the MDRR scheme at the MAC layer. The RTT estimation

at the TCP level can be split into two parts, the forward sending and the reverse

returning paths, as they are expressed in the top two and bottom three lines of

Equation 3.38 respectively.

pathreverseintimenpropagatio
timeontransmissidelayqueueMACuplink

pathreturntimeresponsegenerationACK
pathforwardintimenpropagatio

pathforwardtimentranmissiodelayqueueMACdownlinkRTT

+
++

+
+

+=

)(

)(

 (3.38)

The transmission time of the forward and return paths can be constant if

assuming the sizes of a data packet and its corresponding ACK are fixed. In

addition, since the radio wave travels at the speed of light and WiMAX is a

WMAN, the propagation times in the forward and reverse path are negligible in

this context. The generation of a TCP ACK depends on the settings of TCP, such

 61

as the number of accumulated ACK and the ACK delay. Assuming the settings

are consistent across the queues and throughout the entire transmission session,

the ACK generation response time can be considered fixed. Furthermore, if the

uplink traffic is light and the size of an ACK is small, an ACK is quickly served

upon arrival. Thus, the queuing delay at the uplink is negligible or consistent,

comparing to the queuing delay at the downlink. With the aforementioned

assumptions, the RTT estimation of a TCP segment can be rewritten as in

Equation 3.39, denoting RTTMAC to represent the sum of all fixed and negligible

terms.

MACRTTdelayqueueMACdownlinkRTT += (3.39)

Substituting the expected queuing delay from Equation 3.34, the expected

RTT is found as in Equation 3.40.

[] [] [] [] MACMAC RTTF
EE

RTTDERTTE +⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=+=

λµ
11 (3.40)

The arrival rate at the MAC layer is equivalent to the sending rate at the

TCP level. The sending rate of TCP is essentially determined by the amount of

data sent in one round-trip time. More specifically, the sending rate of TCP can

be simplified to the congestion window size divided by RTT as expressed in

Equation 3.41. Substituting the sending rate of TCP as the arrival rate of a queue

at the MAC layer, the expected value of RTT can be rewritten as in Equation 3.42.

 62

() () []
[]RTTE

cEE
RTT
cwndt =⇒= λλ

[] []
[]
[]

[] []

1

1

1

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

+⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

cE
FRTT

E
F

RTTF
cE

RTTE
E

RTTE

MAC

MAC

µ

µ

(

(

3.41)

3.42)

Substituting the expected queue service rate of the original and proposed

design in Equation 3.23 and 3.24, the expected values of RTT are expressed in

Equation 3.43 and 3.44.

[] []

[] []
1

1

1
21

1

−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+

+

+
⋅

⋅
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅⎟

⎠
⎞

⎜
⎝
⎛ +⋅

⋅
=

cE
FRTT

a
aN

B
FRTTE

cE
FRTTN

B
FRTTE

MACnew

MACold

τ

τ

(

(

3.43)

3.44)

Considering the expected value of cwnd is identical for the original and

proposed algorithm, the requirement of [] []oldnew RTTERTTE < is illustrated in

Equation 3.45, which is the same result as Equation 3.37 of the queue delay

analysis.

[] []
[] [

2
,,

,,

>⇒

>⇒

<

N
EE

E
F

E
F

oldnnewn

oldnnewn

µµ
µµ

] (3.45)

Based on Equation 3.42, RTT is influenced by the queue service rate at

the MAC layer. Hence, the arrival rates of queues at the MAC layer (i.e. TCP

 63

sending rate) cannot be identical if each queue receives a differentiate service

rate. Substituting the RTT expression back to TCP sending rate equation (i.e.

Equation 3.41), a service-rate-dependent arrival rate is resolved as illustrated in

Equation 3.46.

() []

[] []

[]

[] MACMAC
RTT

E
F

FcE

cE
FRTT

E
F

cEE
+

+
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

= −

µµ

λ 1

1

 (3.46)

Substituting the new arrival rate as λ in the queue delay derivation in

Equation 3.34 of Section 3.4.2, a new queue delay expression is formulated to

reflect the queue-dependent arrival rates, as shown in Equation 3.47.

[] [] [] []
[]

[] F
FcE

RTT
E
F

E
F

EE
DE

MAC

⋅

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+

+
−=⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= µ

µλµ
111

 (3.47)

In order to establish the condition of [] []oldnew DEDE < , the expected queue

service rate of the proposed design needs to be greater than the original. As a

result, the condition required for the new algorithm to perform better than the

original one is the same, regardless whether the arrival rate is assumed identical

or queue-dependent. More specifically, the number of queues present in the

network has to be more than two.

 64

3.4.4 Analysis of TCP Sending Rate Incorporating the Service Rate of the
MAC Layer

This sub-section attempts to formulate an expression for the sending rate

of TCP, which incorporates the service rate at the MAC layer. The formulae of

TCP sending rate utilized in this derivation are referenced from the work of

Padhye et al. in [22]. The sending rate of TCP presented in Padhye’s paper has

two forms. The first form incorporates packet loss indications in TCP that are

inferred by triple-duplicate ACKs exclusively. The second form includes the

timeout mechanism in addition to the triple-duplicate ACKs, and the second form

is split into two parts when limitations on cwnd size are considered.

The two forms, including the modifications noted in the comment paper

[23], are introduced in Equation 3.48 to 3.50. Some of the notations are replaced

by the symbols used in this thesis for consistency. The sending rate of TCP is

denoted as the arrival rate, λ, of a queue at the MAC layer. The subscript, TD,

denotes the triple-duplicate-ACKs loss indication of the first form, and the

subscript, TO, represents the timeout loss indication of the second form. The

symbol, p, indicates the probability that a packet is dropped, and the symbol, b, is

the number of cumulative ACK. The symbol, T0, represents the timeout value of

TCP.

In addition, the notation of expected value is added to both λ and RTT to

signify the average property of the two symbols in [22]. Furthermore, I attach the

TD and TO subscripts to RTT to denote the possibility of having different

expected RTT values in the two forms. In other words, I suggest that the

expected RTT can vary if the sending rate of TCP is modelled differently.

 65

()[]

()

[] ()
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −

+
−

+
+

⋅

⎟
⎠
⎞

⎜
⎝
⎛ −

+
−

+
−

+
−

=
2

2

6
23

3
12

6
83

3
23

3
18

3
231

b
p

pbbRTTE

b
b

bp
p

b
b

p
p

pE

TD

TDλ

()[]
[] []()

[] [] []() () [] max

0 1
ˆ1

2

1
1ˆ1

ccEfor

p
pfTcEQbcEbRTTE

p
cEQcE

p
p

pE
TO

TO <

−
+⎟

⎠
⎞

⎜
⎝
⎛ ++⋅

−
++

−

=λ

()[]
()

[] () ()
otherwise

p
pfTcQb

cp
pcbRTTE

p
cQc

p
p

pE

TO

TO

−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
+

⋅
−

+⋅

−
++

−

=

1
ˆ

4
61

8

1
1ˆ1

0max
max

max

maxmax

λ

(

(

(

3.48)

3.49)

3.50)

The expected value of the congestion window size is given in Equation

3.51. The term represents the probability that a packet lost in a window of

ω is a timeout event. The term

()ωQ̂

()ωQ̂ is presented in Equation 3.52, and the

term is shown in Equation 3.53. For detailed derivation of the formulae,

please refer to [22].

()pf

[] () ()
b

b
b

b
bp

pcE
3

23
9

23
3
18

2

2 −
−

−
+

−
=

() ()() () ()()()
() ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−−
−−−+−−

=
−

ω

ω

ω
p

pppQ
11

111111,1minˆ
333

() 65432 32168421 pppppppf ++++++=

(

(

(

3.51)

3.52)

3.53)

 66

Denoting new symbols to represent the numerator and some terms in the

denominator of Equation 3.48 to 3.50, the sending rate of TCP can be rewritten

to the following forms.

()[] ()
[] ()

()[] ()
[] () () []

()[] ()
[] () () otherwise

pbTcVpbcVRTTE
pcU

pE

ccEfor
pbVpbVRTTE

pbU
pE

pbVRTTE
pbU

pE

TO
TO

TO
TO

TD
TD

,,,,,
,

,,
,
,

,

0max5max4

max3

max
32

2

1

1

+⋅
=

<
+⋅

=

⋅
=

λ

λ

λ

(

(

(

3.54)

3.55)

3.56)

Substituting the above sending rates of TCP above into the expected RTT

equation (i.e. Equation 3.40) derived in Section 3.4.3, the expected RTT can be

expressed as presented in Equation 3.57 to 3.59.

[] []
[]

[]

[] []
[] []

[]

[] []
[]

[] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

⋅
−=

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +⋅
−=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⋅+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⋅
−=

<+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +⋅
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅
−=

−

43

3

3

5

3

54

22

2

2

3

max
2

32

1

1

1

1

1

1

1

1

1

VFU
U

RTT
U

VF
E
F

otherwiseRTTF
U

VVRTTE
E

RTTE

VFU
URTT

U
VF

E
F

ccEforRTTF
U

VVRTTE
E

RTTE

U
VF

RTT
E
F

RTTF
U

VRTTE
E

RTTE

MAC

MAC
TO

TO

MAC

MAC
TO

TO

MAC

MAC
TD

TD

µ

µ

µ

µ

µ

µ

(

(

(

3.57)

3.58)

3.59)

The expected RTT equations above indicate that RTT is affected by the

service rate at the MAC layer, which is reasonable, since the round-trip delay

 67

should decrease if the service rate increases. Substituting the RTT terms into the

sending rate of TCP, Equation 3.54 to 3.56 can be rewritten as shown in

Equation 3.60 to 3.62.

()[]

[]

()[] ()

[] ()
[]

()[] ()

[] ()
otherwise

VUUVVFVURTT
E

F
VFUU

pE

ccEfor
VUUVVFVURTT

E
F

VFUU
pE

VRTT
E

F
VFU

pE

MAC

TO

MAC

TO

MAC

TD

5335443

433

max

3223222

222

1

11

1

1

⋅−⋅+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⋅+
=

<
⋅−⋅+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

⋅+
=

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⋅+
=

µ

λ

µ

λ

µ

λ

(

(

(

3.60)

3.61)

3.62)

The above equations indicate that the service rate at the MAC layer can

affect the sending rate at TCP. More specifically, the sending rate of TCP

increases if the service rate at the MAC layer is higher, which is a sensible

conclusion. However, in order for the service rate at the MAC layer to contribute

an effect on the sending rate of TCP, the term, []µEF , needs to dominate

compared to RTTMAC in Equation 3.60. This condition is also necessary in

Equation 3.61 and 3.62, but it is subject to additional restrictions (i.e. additional

terms) in order for the service rate to be an influential factor in the sending rate.

In other words, the proposed scheduling scheme at the MAC layer has more

effect on the sending rate of TCP in a local or metropolitan area network, where

the RTTMAC can be kept small.

Moreover, the service rate at the MAC layer is influential if the generation

of ACKs is efficient (i.e. properly calibrated settings on the number of cumulative

 68

ACKs and the ACK delay), so the return of an ACK is prompt, thus reducing

RTTMAC. Finally, the term []µEF is the maximum queue delay as described in

Equation 3.33. Based on the mathematical induction, the effect of the MAC

service rate on the sending rate of TCP may be more noticeable for queues with

large buffer sizes.

This chapter has introduced the proposed cross-layer technique, including

the detailed algorithm, limitations, and designs. Analytical models of average

queue service rate, and queue delay were developed to understand the

behavioural dynamics of the proposed scheme. The analytical models suggest

that the gain of the proposed design is more observable when N and a are large.

However, the gain from N and a is bounded. Furthermore, the RTT and sending

rate of TCP, incorporating the service rate at the MAC layer, were analyzed. The

next chapter will discuss the implementations done in the OPNET simulated

model.

 69

CHAPTER 4: AN OVERVIEW AND MODIFICATIONS OF
THE OPNET MODELS

This thesis utilized OPNET Modeler® developed by OPNET Technologies,

Inc. as the simulation tool. The OPNET Modeler is a discrete event simulation

engine that is capable of simulating network performance, incorporating the

complete stack of network protocols. TCP is one of the supported transport

protocols, and WiMAX is one of the MAC layer models that are available in

OPNET Modeler. TCP and its simulated model has been long developed and

commonly used, so this chapter does not intend to mention the OPNET TCP

model in detail, except modifications made for the purpose of this thesis. On the

other hand, WiMAX is a relatively recent technology, and is anticipated to be one

of the contenders for the next generation wireless metropolitan area network. In

addition, the MAC layer specifications of the WiMAX standard were the subject of

core modifications, as described in this thesis. Thus, the OPNET WiMAX model

will be described in more detail. Before introducing the OPNET WiMAX model, a

brief overview of the hierarchical modelling concept of OPNET Modeler is

presented.

4.1 A Brief Modelling Concept of OPNET Modeler

In OPNET Modeler, models are built in hierarchy, with node models being

conceptually above a process model. A node is an object that appears in the

topology of a simulated network, and a node model defines the architectural

 70

modules and the attributes of a node. Modules are components that generate,

consume, or process a packet, in which a processor module is made up of a

process model underlying it. The process model specifies the behavioural and

logical process of a processor module, and it is developed in the Proto-C

language. The Proto-C language consists of a graphical interface of a state

machine, but it retains the computational compatibility with the C and C++

language. Figure 4.1 illustrates the appearance of a client node of WiMAX, and

the module structure of the node model associated with the node, in which the

red ellipse circles the WiMAX processor module of the node model. The process

model of the WiMAX processor module is shown in Figure 4.2.

Figure 4.1: A client node of the OPNET WiMAX model and the corresponding node model

 71

Figure 4.2: The state machine of the process model of the OPNET WiMAX processor

module

4.2 The OPNET WiMAX Model in a Nutshell

The OPNET WiMAX model was under development since May 2005, and

it was released in phases as more features were added. The version of the

WiMAX model utilized in this thesis was the Release 5 of OPNET WiMAX model,

which was available in July 2007. The model was supported in many versions of

OPNET Modeler and operating systems, and the WiMAX model used in this

thesis was the one that was compatible to OPNET Modeler 12.0 of the Solaris

platform. The WiMAX model is still under development, and the most recent

release at the time of writing is the Beta Release, which is bundled with the

software of OPNET Modeler 14.0 and 14.5.

4.2.1 The Architectural Concept of the OPNET WiMAX Model

The architectural concept of WiMAX MAC is divided into two planes,

where the control plane is responsible for management-related tasks, and the

data plane is involved in the processing of data packets. The control plane of a

 72

BS includes functionalities such as admission control and MAP generation. In

comparison, the control plane of a SS is responsible for initial ranging of network

entry and MAP decoding. On the other hand, the data plane acts as the

interfaces between the WiMAX MAC layer and the adjacent layers. More

specifically, the data plane of both BS and SS conveys packets across the MAC

layer, and delivers the packets to the next layer. For example, one of the

responsibilities of the data plane is to classify and associate an arriving MAC

SDU with a CID, and generate a bandwidth request for the transmission of the

SDU. The tasks performed by the data plane are common to both BS and SS.

The OPNET WiMAX model is developed following the same architectural

concept of one common data plane, and distinct control planes for the BS and

SS.

The data plane of the OPNET WiMAX model is known as the WiMAX

MAC root process model, which is composed of functionalities that are common

in the data plane of a BS and SS. The WiMAX MAC root process then spawns a

child process of BS or SS, depending on the role of the station, to deliver the

responsibilities of the control plane. Similar to the root process, the BS and SS

child processes are OPNET process models written in Proto-C language. Figure

4.3 illustrates the conceptual relationship of the root and child processes of the

OPNET WiMAX model.

 73

Figure 4.3: The architectural concept of the OPNET WiMAX model

While a child process is in operation, it often requires information from the

root process in order to perform its functionalities. A parent-to-child shared

memory block is established specifically for the purpose of communications

between the root and child processes. The parent-to-child memory block is

allocated at the creation time of the child process, and is accessible by both the

root and child processes. The parent-to-child memory block stores information

such as CIDs (Section 2.2.2.1), and other parameter specifications that are

associated with the station. The child process retrieves necessary information

from the parent-to-child memory block to accomplish its designated tasks. Upon

the completions of the tasks, the child process stores the processed results in the

shared memory block, and returns the control to the root process.

 74

OPNET Modeler provides another method of communications between

the root and child processes. After the initial spawning of a child process, the

child process is often invoked by the root process when it is necessary. At each

invocation, task-specific information such as the size of a bandwidth request may

be passed to the child process through the use of an argument memory. The

child process can retrieves information from either or both the parent-to-child and

argument memory blocks. Unlike the parent-to-child memory block, the argument

memory block is not persistent, and is created and replaced at every invocation

of the child process.

4.3 Implementations in the TCP Model

This thesis involves two layers of the protocol stack, so modifications were

made in both OPNET TCP and WiMAX models. As previously described in

Section 3.2, a new Cwnd Option field is created in order to establish the cross-

layer communication between the transport and MAC layer. Therefore, I declare

a new TCP packet format to include the 32-bits Cwnd Option field in the header

of a TCP segment. In addition, I introduce a new attribute in the TCP node model,

of which it enables or disables the operation of the Cwnd Option field in the

protocol. Upon enabling of cwnd-option attribute, TCP stores a copy of the most

recent cwnd value to the Cwnd Option field of every TCP segment it creates.

Figure 4.4 and Figure 4.5 are the screen captures of the new packet format and

added attribute of the TCP module, where the modifications made are circled in

red ellipses. Detailed information on the steps and coding of the implementations

is attached in Appendix A.

 75

Figure 4.4: The new TCP segment format, with the modification made circled in red

Figure 4.5: The newly added attribute (circled in red) of the TCP module

4.4 Implementations in the WiMAX Model

As described in Section 3.3, the proposed algorithm is built on top of the

MDRR queue service discipline at the downlink. Therefore, the modifications

made in the OPNET WiMAX model involve only the WiMAX MAC root process

and the BS-control child process.

 76

4.4.1 Extraction and Storage of Cwnd

When a TCP segment traverses across the network and arrives at the

MAC layer, it is enqueued in the buffer of a queue in the order of arrival. A

bandwidth request (BWR) that reflects the size of the PDU required to transmit

the packet is generated. At the same time, the cwnd value embedded in the TCP

header is extracted from the SDU, and the value is stored at the tail end of a list

structure containing integers. As the SDU is served by the scheduler leaving the

queue, the corresponding cwnd entry is removed from the integer list. Therefore,

the integer list structure contains a sequence of cwnd values extracted from the

SDUs, and the order of the list corresponds to the order of SDUs that currently

reside in the queue.

Since the OPNET WiMAX model is divided into the data and control plane,

a packet arriving at the MAC layer is first processed by the root process. The

task of extracting the cwnd value of a packet lies within the root process, and the

cwnd value is passed to the BS-control child process, along with the bandwidth

request size of the packet, in the argument memory block. When the kernel

control shifts from the root to child process, the data packet itself remains in the

data plane. Only necessary information is passed to the BS-control child process

through memory blocks. Upon the invocation of the child process, the BWR is

processed and enqueued in a queue identified by the CID in the BS control plane.

At the same time, the cwnd value is retrieved, and stored in the dedicated list

structure of cwnd values, in the corresponding order of the requests in the queue.

Figure 4.6 depicts the concept of the cwnd extraction and storage procedures

 77

implemented in the OPNET WiMAX model, where modifications are marked in

red, and the code implementation is presented in Appendix B.

Figure 4.6: The process of the cwnd value extraction and storage

4.4.2 Calculation of the Queue Weight

When the BS child process is invoked again during the scheduling phase,

the BS scheduler examines the BWR queues according to the MDRR queue

service discipline, which has been presented in the flowchart of Section 3.3. A

brief recall, the scheduler determines whether to schedule an SDU onto the next

 78

DL subframe based on the value of the deficit counter. If the deficit counter is

positive, the BS dequeues the corresponding request in the BWR queue, and

confirms the transmission of the SDU by generating a grant. In the case when

the deficit counter is zero or negative, the scheduler first replenishes the deficit

counter with the weight of the queue, and examines it again. If the deficit counter

recovers to positive, the scheduler initiates the dequeuing process of the packet.

When a BWR is granted, the deficit counter of the associated queue is updated

to its original value minus the granted size. The scheduler continues to serve the

same queue if the queue is non-empty and the deficit counter remains positive.

On the other hand, if the deficit counter is less than or equal to zero, the

scheduler skips the queue and serves the next queue in line.

Since the weight of a queue fluctuates with the cwnd values in the

proposed scheme, I calculate the weight of each queue before the initiation of the

scheduling process. The first entry of the list structure containing the cwnd values

of each queue is retrieved to determine the total cwnd values, ct, across all

queues. Then, the individual cwnd ratio, cn/ct, is calculated to resolve the cwnd-

dependent queue weight, Wn’. This implementation implies that the scheduler

interprets the path-wide congestion, based on the first packet of a queue. A

different cwnd value from the list may be utilized to provide a different

perspective of the network congestion condition of the flow. For example, the last

entry of the list structure can be beneficial in determining the most recent

congestion assessment made by TCP. Moreover, a mean value of the list

structure may be useful when determining the average congestion condition of

 79

the data flow. However, for the purpose of this thesis, only the first cwnd value of

every list structure is extracted for the calculation of cwnd-dependent queue

weight.

Though the cwnd-dependent queue weights of all queues are calculated

at each round of scheduling, the weight may not necessarily be utilized to

replenish the deficit counter in every round. In other words, the weight of a queue

can be high or low, depending on the cwnd ratios, but the deficit counter only

reflects the value of the weight when it is being replenished. Therefore, the logic

of the scheme is regulated by the proposed algorithm but its behaviour is given a

random nature. This is because the moments at which the deficit counter is being

refreshed are unpredictable. This phenomenon implies that the weight of a queue

is particularly important at the moments when the deficit counter is being

refreshed. Nevertheless, the deficit counter is still bounded by the queue weight.

Figure 4.7 depicts the conceptual process of the aforementioned scheduling

process, and the queue weight calculation, with modifications marked in red. The

code implementation of the algorithm is attached in Appendix C.

 80

Figure 4.7: The concept of the BS scheduling process

Note that at the end of a scheduling round, the BS generates a DL-MAP,

based on the dequeued requests. The DL-MAP contains data burst profiles of the

granted requests, which indicates the boundaries of each data burst in the DL

subframe. After the creation of a DL-MAP, the BS child process returns the

control to the root process. Then, the MAC root process encapsulates the

scheduled SDUs into PDUs for transmission.

4.5 Configurations of the Simulation Parameters

The topology of the simulated network is a typical last-hop wireless

network, where multiple client stations (i.e. SS) are served by a centralized BS,

and the BS is wired connected to a server. Figure 4.8 illustrates an example of

the simulated topologies, where the number of client stations existed in the

WiMAX network is two.

 81

Figure 4.8: The topology of the simulated network (2 client stations Case)

The server station is wire-connected to the BS by a point-to-point duplex

link that supports IP traffic, and the application specified in the server is File

Transfer Protocol (FTP). The client stations are instructed to download a file size

of five million bytes from the server station starting 110 seconds into the

simulation time, and the same request is repeated every 50 seconds until the

termination of the simulation, which is one hour. In addition, the IP ToS of the

traffic is set to three, which corresponds to an excellent service type in IP.

4.5.1 Configurations of the TCP Parameters

At the transport layer, the TCP settings are mostly configured to the most

commonly used values, except for the maximum segment size, buffer size, TCP

flavour, and newly created cwnd-option attribute. At the server station, the cwnd-

option attribute is enabled in order to allow TCP to write cwnd values to the

designated option field. However, this option is not mandatory at the client

stations since TCP at the client nodes only generates ACKs upon receiving of

data. Thus, the cwnd values maintained at the receiver stations never change. In

 82

addition, since the server station includes extra 32 bits of Cwnd Option field in

the header, the maximum segment size of the proposed scheme is modified to

be 32 bits less than the original. The reduction in the maximum segment size is

to avoid undesirable fragmentation at the IP layer due to the newly introduced

Cwnd Option field.

At the client side, the buffer size of each TCP flow is modified to 87600

bytes, which is ten times of the default setting. The purpose of this configuration

is in an attempt to prevent packet loss due to buffer overflow. In other words, I

intend to eliminate the constraint of buffer size on the system performance.

Finally, at both the server and client sides, the TCP flavour is prompted to vary at

simulation run-time. The simulated TCP flavours include Reno, New Reno, and

Reno with SACK combination.

4.5.2 Configurations of the WiMAX Parameters

The scheduling service types supported in the simulated WiMAX network

include rtPS, nrtPS and BE. Nevertheless, the simulation consists of only one

application, FTP; therefore, only the nrtPS scheduling service type is utilized.

Since each SS requests only one download in every 50 seconds, and every

nrtPS connection is granted a dedicated queue, the number of queues at the

MAC layer is the same as the number of client stations in the network.

Furthermore, the nrtPS scheduling service type is associated with a QoS

parameter, which specifies the minimum reserved traffic rate of the connection.

The minimum reserved traffic rate is utilized to determine the original weight of a

queue, Wn. In the simulation, the minimum reserved traffic rates of all

 83

connections are configured to 0.5 Mbps, thus the condition of identical Wn for all

N queues is established in the simulation. The uplink traffic consists of only ACK

packets, but the uplink flows are also configured to be nrtPS scheduling service

type for consistency.

The physical technology specified in the simulated WiMAX network is one

of the OFDMA schemes. More specifically, the simulation utilized 2048

subcarriers with a corresponding channel bandwidth of 20 MHz. The modulation

and coding scheme specified in the simulation is 16-QAM with 3/4 coding rate,

and it is maintained the same for both downlink and uplink. Furthermore, the

ARQ mechanism is not enabled for simplicity though it may be a potentially

beneficial enhancement for transmissions at the MAC layer.

The physical layer condition is configured to be in free-space, which

implies that the physical medium model does not incorporate multipath fading,

shadowing and path loss due to signal reflections. Nevertheless, the signal is still

subjected to path loss in free-space, in which the strength of a signal decays to

the power of two with respect to the distance between the transmitting and

receiving antennas. Moreover, the interferences and background noise are

considered when determining the SNR of a signal. Based on the SNR and

modulation and coding scheme of a transmitted signal, the block error rate is

resolved. A block is the basic unit in a MAC frame space (Figure 2.5). The packet

error rate is calculated based on the block error rate and the size of a packet in

blocks. Then, a uniformly distributed random variable is compared to the packet

error rate to determine whether a packet should be dropped during the wireless

 84

transmission. Therefore, despite the fair channel quality at the PHY layer,

packets are still subject to random drop in the simulation.

4.6 Validity Check of the Implemented Model

Before presenting the simulation results, the implemented model is

verified against a few tests to ensure its validity. In the proposed algorithm, the

cwnd-dependent queue weight is calculated based on the cwnd ratio, thus the

weight of a queue should show a similar trend as the cwnd ratio. Figure 4.9

illustrates the plots of the cwnd ratio and queue weight, which are collected from

1000s to 1300s of the simulation time of a particular simulation run.

Figure 4.9: The comparison between the cwnd ratio and queue weight

 85

One of the reasons for the vertical gap between the green and blue lines

is the unit difference between the cwnd ratio and queue weight; one is unit-free,

and the other one is in symbols. The unit, symbol, incorporates the modulation

and coding schemes that is utilized when transmitting a packet. In other words,

packets of the same size in bytes may be transmitted in different numbers of

symbols, depending on the modulation and coding scheme. Despite the unit

difference, the original weight of a queue is derived from the minimum traffic

reserve rate, instead of the cwnd ratio.

The discontinuities observed in the graph when moving along the time

axis are due to idling of the network, when the download of a file is complete, and

the next download has not been initiated. Nevertheless, the implemented queue

weight follows the fluctuations in the cwnd ratio as desired. Furthermore, while

the queue weight follows the variation of the cwnd ratio, it should also show a

similar trend as the congestion window size, as illustrated in Figure 4.10. Note

that the reasons for the vertical gaps and discontinuities in Figure 4.10 are the

same as that of the graph of cwnd ratio and queue weight.

 86

Figure 4.10: The comparison between the congestion window size and queue weight

In addition, the queue weight of each variation of the proposed design is

different due to the weight-adjusting factor coefficient. Figure 4.11 demonstrates

the queue weight of the same queue, but with different coefficient designs over

the entire course of the simulation.

 87

Figure 4.11: The comparison of the queue weights across different designs

The queue weight of the original design is constant, thus it appears as a

horizontal line at the bottom of the graph. In comparison, the weights of the

proposed designs are fluctuating, each of which varies between different ranges

of y-axis depending on the value of the coefficient.

This chapter has provided an overview on the hierarchical modeling of

OPNET models and the architectural concept of the OPNET WiMAX model. The

implementations made on top of the OPNET models, and the configurations of

the simulated network are outlined. Lastly, the validity of the implemented model

is illustrated before presenting the simulation results in the next chapter.

 88

CHAPTER 5: OPNET SIMULATION RESULTS

Traffic intensity is often an influential factor for network performance, thus

simulations are conducted with respect to various numbers of stations, N, in the

network. The values of N simulated in this thesis include two, four, six, eight, ten,

twelve and fifteen, and each of them is simulated against four values of the

weight-adjusting factor coefficient, including zero (i.e. the original design), one,

three, and five. In addition, since the proposed algorithm incorporates the

congestion window size of TCP, the aforementioned scenarios were simulated

with various TCP flavours, Reno, New Reno, and Reno with SACK combination.

The performance metrics such as delay and throughput were collected at each

station.

5.1 Two Client Stations Scenario

In this section, the number of client stations presented in the WiMAX

network is two, and the simulated results are organized according to the flavours

of TCP. The delay and throughput statistics are collected in each scenario, and

the results are introduced in the order of TCP Reno, New Reno, and Reno with

SACK combination.

5.1.1 2SS – TCP Reno

 The delay of a packet was determined and collected at three layers: the

application, transport, and MAC layers. The delay statistics collected at the

 89

transport and MAC layers are end-to-end delays, which were measured from the

time that a TCP segment or a MAC frame was created to the time it was received

by the transport or MAC layer of the receiving node. On the other hand, the delay

collected at the application layer is defined as the amount of time required to

complete a file download request. In other words, the download time measured

the total delay of multiple packets.

The statistic results presented in this thesis are global averages of each

scenario. A global average was obtained by first evaluating the mean of the data

of all client stations at a given instance, and this aggregated mean of each

instance was then averaged over time to obtain a global average. Thus, the

resulting graph of global average is a cumulative average of the aggregated

mean with respect to the simulation time. This manipulation of data points was

executed on each statistic presented in this chapter, except in Section 5.7.

The global averages of the delay measurements, utilizing TCP Reno as

the transport protocol, are presented in the following, where Figure 5.1 and

Figure 5.2 are the end-to-end delay measured at the MAC and transport layers

respectively. The download time of the requested files measured at the

application layer is presented in Figure 5.3. Note that the rapid changes at the

beginning of the plots are initial transient stages, where the simulations have just

started and the numbers of samples are still small. The number of data points

accumulates as simulations are in progress, and for stable systems, the plots

enter their steady states with less fluctuation.

 90

Figure 5.1: The global average of MAC delay for 2SS scenario, utilizing Reno

Figure 5.2: The global average of TCP delay for 2SS scenario, utilizing Reno

 91

Figure 5.3: The global average of download time for 2SS scenario, utilizing Reno

The graph of MAC layer delay illustrates a close resemblance to the graph

of the TCP delay over the course of the simulation time, except that the delay at

TCP is higher in magnitude. TCP resides at two layers above the MAC layer;

therefore, a segment is created before a frame, and a frame arrives at the MAC

layer before being decapsulated into a segment and passed to the transport layer

at the receiving node. Hence, the end-to-end delay measured at the transport

layer is expected to be higher than at the MAC layer. However, the MAC and

TCP delays of the newly proposed design are higher than the original design.

The analytical model developed in Section 3.4 indicates that the number of

stations, N, is required to be sufficiently large, two in particular, in order to offset

the weight-adjusting factor coefficient, a, in the denominator.

 92

Though the MAC layer and TCP delay of the proposed designs are higher

than the original, the file download time of the proposed designs are better than

the original. The vulnerability of TCP Reno to packet drop events, as discussed

in Section 2.1.8.2, contributes a major factor to unsettle the performance at the

higher layer delay. The number of packets dropped significantly affects the

performance of file download time because of initiations of the timeout

mechanism at TCP. As a result, the performance gain in the lower layer delays

can be offset by the number of packets dropped in the PHY layer, as it is

illustrated in the plots of the original and a=3 designs of the download time graph.

The key difference between the end-to-end delay and file download time is

that the end-to-end delay measures only the delay experienced by a particular

frame or segment once received. A frame or a segment that is lost in the

transmission is not considered. However, the file download time incorporates the

time required to recover lost packets within the downloaded file. Hence, the file

download time exhibits a combined effect of the lower layer end-to-end delays

and the number of packets dropped in the physical medium. The file download

time is a more difficult performance metric to anticipate than the MAC or TCP

delay. Figure 5.4 illustrates the number of packets dropped of each design in the

PHY layer.

 93

Figure 5.4: The global average of packets dropped for 2SS scenario, utilizing Reno

Note that the download time plots more closely resemble the plots of

packets dropped, instead of the plots of low layer delays. This indicates that

when TCP Reno is utilized and the number of stations in the network is two, the

download time is significantly influenced by the condition of the PHY layer. In

other words, the physical channel condition is the dominant factor in file

download time when the traffic intensity of the network is low and the utilized

TCP flavour is Reno.

The throughput statistic of each station is also captured, and it is

measured in bits at the MAC layer, and in bytes at the transport layer.

Throughput is defined as the amount of data that have been received by a node,

and successfully forwarded to the higher layer. Packets that are lost during the

 94

transmission or discarded due to error are excluded in the throughput statistic. As

a result, throughput is a statistic that is affected by the physical channel quality,

as is the file download time statistic. The throughput measured in this thesis is

cumulative, such that the amount of data that has been successfully forwarded to

the higher layer is accumulated. The accumulated value is recorded in periodic

intervals, and the value is reset to zero for the next accumulation after it is

recorded. Figure 5.5 and Figure 5.6 illustrates the global average of the

throughput measured at the MAC and transport layer.

Figure 5.5: The global average of MAC throughput for 2SS scenario, utilizing Reno

 95

Figure 5.6: The global average of TCP throughput for 2SS scenario, utilizing Reno

The throughput measured at the MAC layer shows a close resemblance to

the throughput of TCP, as was observed with the MAC and TCP delay.

Nevertheless, the throughput plots demonstrate similar trends as the plots of file

download time, but in the opposite direction. When throughput is low, the time

required to download a file is prolonged. In contrast, the download time is

reduced if throughput is high. Consequently, the throughput and file download

time plots exhibit similar trends, but in an inverse direction. Though the delays of

the original and a=3 designs are relatively low at the MAC layer, their

throughputs suffer from packet drop events as observed in the graph of file

download time.

 96

5.1.2 2SS – TCP New Reno

The same simulation configurations of the TCP Reno scenario were

simulated again, utilizing TCP New Reno, and the same statistics of delay,

number of packets dropped, and throughput were collected. Figure 5.7, Figure

5.8, and Figure 5.9 illustrate the MAC layer delay, TCP delay, and FTP file

download time respectively.

Figure 5.7: The global average of MAC delay for 2SS scenario, utilizing New Reno

 97

Figure 5.8: The global average of TCP delay for 2SS scenario, utilizing New Reno

Figure 5.9: The global average of download time for 2SS scenario, utilizing New Reno

 98

Similar observations as in the Reno scenario are noted in the New Reno

simulation. The graph of the MAC layer delay closely resembles the delay graph

of TCP, except the magnitude of the TCP delay is slightly higher than the MAC

layer delay. Furthermore, a better end-to-end delay performance in the lower

layers does not guarantee a shorter download time at the application layer. The

number of packets dropped at the PHY layer is illustrated in Figure 5.10.

Figure 5.10: The global average of packets dropped for 2SS scenario, utilizing New Reno

Similar to Reno, the file download time is still affected by the number of

packets dropped at the PHY layer. When the number of stations presented in the

network is two, the file download time plots are still influenced by the number of

packets dropped even though New Reno is more competent than Reno when

dealing with packet drops. However, the download times collected in the New

 99

Reno scenario are distributed at around 12-seconds range, whereas the

download times in Reno are located at about 18-seconds range.

The throughput statics are also captured in the New Reno simulations.

The throughputs measured at the MAC and transport layer are shown in Figure

5.11 and Figure 5.12 respectively.

Figure 5.11: The global average of MAC throughput for 2SS scenario, utilizing New Reno

 100

Figure 5.12: The global average of TCP throughput for 2SS scenario, utilizing New Reno

Again, the graph of throughput at the MAC layer shows a similar trend as

the graph of throughput of TCP, and both statistics are affected by the PHY layer

performance, as discussed in the Reno scenario. In particular, the throughput

performance of the original design is reduced due to the relatively high number of

packets dropped in the PHY layer. However, the average throughput in New

Reno is higher than in Reno because New Reno is more adequate with packet

losses. The simulation confirms that New Reno performs better in terms of

throughput and file download time even if the packet drop rate is higher than

Reno.

 101

5.1.3 2SS – TCP Reno & SACK

The same parameter configurations were simulated utilizing TCP Reno

with SACK combination. Since the MAC layer delay exhibits a very similar trend

as the TCP delay, in the following scenarios, only the graph of MAC layer delay

will be illustrated as the representation of the two. The MAC layer delay graph of

the Reno-SACK combination is shown in Figure 5.13. The file download time

graph is presented in Figure 5.14, and the number of packets dropped in the

PHY layer is illustrated in Figure 5.15.

Similarly, the throughputs measured at the MAC and transport layers

capture overlapping aspects of the network performances. Therefore, in the

following scenarios, only the MAC layer throughput will be illustrated. The MAC

layer throughput of the Reno-SACK combination is shown in Figure 5.16.

Figure 5.13: The global average of MAC delay for 2SS scenario, utilizing Reno-SACK

 102

Figure 5.14: The global average of download time for 2SS scenario, utilizing Reno-SACK

Figure 5.15: The global average of packets dropped for 2SS scenario, utilizing Reno-SACK

 103

Figure 5.16: The global average of MAC throughput for 2SS scenario, utilizing Reno-SACK

For statistics that incorporate the physical channel condition such as the

file download time and throughput, the performances are affected by the number

of packets dropped in the PHY layer. Though the original algorithm demonstrates

a better performance in the MAC layer delay, the gain is offset by the effect of

packet drops at the application layer. Nevertheless, the graph of file download

time in the Reno-SACK combination does not resemble as closely to the graph of

number of packets dropped, as was observed in the Reno and New Reno

scenarios. This implies that the physical channel condition in the Reno-SACK

scenario is even less influential on the download time than in the New Reno

scenario. However, the simulation results indicate that though the Reno-SACK

combination is designed to elevate the resistance of TCP towards packet losses,

 104

the performances of the file download time and throughput are still strongly

affected by the number of packets dropped when the number of stations is two

(i.e. the traffic is light).

The common conclusion that can be drawn from all three flavours of TCP

when N is two is that the proposed scheme does not deliver a better performance

than the original design at low layers delays (i.e. MAC and TCP delay),

regardless of the values of the coefficient. This is anticipated since the benefit of

the proposed scheme is expected to become apparent when N is sufficiently

large, as analyzed in Section 3.4. In fact, if the number of stations is insufficient,

the proposed algorithm performs worse than the original (Figure 3.4 and

Equation 3.14), which is demonstrated in the 2SS-scenarios.

Another observation is that the performances of the file download time and

throughput are dependent on the physical channel condition, thus their

behaviours are more difficult to anticipate than the end-to-end delays. Therefore,

the file download time and throughput are not direct indications on the effect of

the proposed algorithm though they are still important statistics to consider since

they are the QoS perceived by end-users.

5.2 Four Client Stations Scenario

The same simulation sequence and configuration settings are simulated in

the four subscriber stations scenario. In this section and sections further on, only

the MAC layer delay, file download time, number of packets dropped, and MAC

layer throughput will be illustrated.

 105

5.2.1 4SS – TCP Reno

The average of the MAC layer delay, file download time, and number of

packets dropped are illustrated in Figure 5.17 to Figure 5.19.

Figure 5.17: The global average of MAC delay for 4SS scenario, utilizing Reno

 106

Figure 5.18: The global average of download time for 4SS scenario, utilizing Reno

Figure 5.19: The global average of packets dropped for 4SS scenario, utilizing Reno

 107

The MAC layer delays of the proposed designs begin to show

improvements over the original design, but the file download time is again subject

to changes. More specifically, the number of packets dropped at the initial stage

of the original design is much lower relative to the others. Thus, the file download

time at the initial stage of the original design shows a relatively small download

time. As the simulation progresses, the increasing number of packets dropped in

the original design results in an increasing trend in the file download time.

Though the overall file download time of the original design is still relatively lower

than the others, the effect of the physical channel condition on the file download

time is evident. The MAC throughput of this scenario is illustrated next in Figure

5.20.

Figure 5.20: The global average of MAC throughput for 4SS scenario, utilizing Reno

 108

The throughput plots exhibit inverse trends from the file download time

plots, thus throughput is also inversely related to the number of packets dropped.

More specifically, throughput of the original design is comparatively high at the

initial stage, which reflects the small file download time and low number of

packets dropped at the beginning of the simulation. The throughput then

continues to drop as the condition of the physical channel keeps suffering.

5.2.2 4SS – TCP New Reno

This subsection presents the simulation results, utilizing TCP New Reno.

The graphs of the MAC layer delay, file download time and number of packets

dropped at the PHY layer are illustrated in Figure 5.21 to Figure 5.23.

Figure 5.21: The global average of MAC delay for 4SS scenario, utilizing New Reno

 109

Figure 5.22: The global average of download time for 4SS scenario, utilizing New Reno

Figure 5.23: The global average of packets dropped for 4SS scenario, utilizing New Reno

 110

In the New Reno scenario, the MAC layer delay of the proposed algorithm

also shows an improvement over the original algorithm, and the improvement of

each plot is more distinct than in Reno. However, the gain in the MAC layer can

be compromised by significant number of packets dropped at the PHY layer. For

example, the a=3 design shows a smaller delay at the MAC layer than a=1, but

the high number of packets dropped causes the a=3 design to perform worse

than a=1 at the application layer. Nevertheless, if the improvement at the MAC

layer is significant, it can persist to the application layer. Therefore, when N=4,

though the proposed scheme begins to show performance gain in the MAC layer

delay, the improvement is not always significant enough to overcome the PHY

layer condition.

Despite this, the effect of the PHY layer on the file download time is not as

dominant as in the Reno or 2SS scenarios. The throughput of the MAC layer is

illustrated in Figure 5.24, and the graph approximately reflects the trends in the

graphs of file download time, and number of packets dropped but in the opposite

direction.

 111

Figure 5.24: The global average of MAC throughput for 4SS scenario, utilizing New Reno

5.2.3 4SS – TCP Reno & SACK

This subsection includes the simulation results for four client stations,

utilizing TCP Reno and SACK combination. The graphs of the MAC layer delay,

file download time and the number of packets dropped are presented in Figure

5.25 to Figure 5.27. The graph of the MAC layer throughput is illustrated in

Figure 5.28.

 112

Figure 5.25: The global average of MAC delay for 4SS scenario, utilizing Reno-SACK

Figure 5.26: The global average of download time for 4SS scenario, utilizing Reno-SACK

 113

Figure 5.27: The global average of packets dropped for 4SS scenario, utilizing Reno-SACK

Figure 5.28: The global average of MAC throughput for 4SS scenario, utilizing Reno-SACK

 114

Similar to the New Reno simulation, the proposed designs show a smaller

delay at the MAC layer than the original, but the download times do no

necessarily demonstrate the same improvement. Nevertheless, the graph of

number of packets dropped shows less domination on the graph of file download

time than in the Reno and New Reno scenarios. In addition, the performance of

the file download time of the Reno-SACK combination is steadier (i.e. a smaller

variation in the range of the y-axis) than in New Reno and Reno.

One of the conclusions that can be drawn from the three flavours of TCP

when N is four is that the effect of the proposed algorithm becomes observable at

the MAC layer delay. However, the file download time and throughput statistics

are more complicate to anticipate. Nevertheless, if the improvement is significant

and consistent at the low layer, it should be able to persist to higher layers.

As a packet is processed and delivered to the next layer in the hierarchy

of the protocol stack, the performance metric measured in the next layer and

layers afterwards becomes more difficult to enumerate. This is due to increasing

complication on the measurement of a packet as the packet is being manipulated

and influenced by mechanisms of each layer that the packet has visited.

Therefore, the performance measured at the higher layer is more intricate in

nature, in the sense that it exhibits effects of elements inherited from multiple

layers. This consequence results in a problematic discernment on the effect of

the algorithm, particularly for an algorithm implemented at the MAC layer.

On the other hand, though the MAC throughput is measured at the MAC

layer, it is affected by many factors, such as error checking and packet drops.

 115

Thus, throughput is also a complicated statistic to predict, especially in a wireless

context.

5.3 Six Client Stations Scenario

In this section, simulations with six subscriber stations in the network are

conducted. However, to avoid a tedious illustration of the simulated results for

every TCP flavour, only key statistics will be presented to highlight the important

discussions related to this thesis. Since the high-layer performance of TCP Reno

is known to be significantly affected by the channel condition, it does not provide

as clear indications on the effect of the proposed algorithm as New Reno and

Reno-SACK combination. Furthermore, the Reno is generally not a

recommended option to utilize in the wireless networks. Therefore, Reno is

omitted in the detailed scenario-by-scenario illustration in this section, but

overview graphs on the performances of Reno will still be included and discussed

in the later section.

5.3.1 6SS – TCP New Reno

The plots for the MAC layer delay, file download time, number of packets

dropped, and MAC throughput are presented in Figure 5.29 to Figure 5.32.

 116

Figure 5.29: The global average of MAC delay for 6SS scenario, utilizing New Reno

Figure 5.30: The global average of download time for 6SS scenario, utilizing New Reno

 117

Figure 5.31: The global average of packets dropped for 6SS scenario, utilizing New Reno

Figure 5.32: The global average of MAC throughput for 6SS scenario, utilizing New Reno

 118

The graph of the MAC layer delay shows four well-spaced plots of the

original and variations of the proposed design. The graph of the file download

time begins to illustrate a steadier performance at the application layer, and it

starts to reflect the gain at the MAC layer. More specifically, when N=6, the traffic

intensity of the network begins to approach a moderate level, thus leading to a

steady dequeuing process. The steady dequeuing process provokes the queue

service rate to settle at the case (b) of the analysis in Section 3.4 more frequently.

As a result, the weight of a queue becomes the significant factor in queue service

rate, instead of the queue size. The condition of moderate traffic intensity allows

the prediction of the analytical model built in Section 3.4 be more accurate. In

fact, the observations from simulations comply with the analysis, in that the effect

of the proposed algorithm is more evident when the number of stations in the

network is higher.

5.3.2 6SS – TCP Reno & SACK

The plots of the MAC layer delay, file download time, PHY layer packet

drop rate and MAC throughput of the 6SS scenario, utilizing combination of TCP

Reno and SACK, are presented in Figure 5.33 to Figure 5.36.

 119

Figure 5.33: The global average of MAC delay for 6SS scenario, utilizing Reno-SACK

Figure 5.34: The global average of download time for 6SS scenario, utilizing Reno-SACK

 120

Figure 5.35: The global average of packets dropped for 6SS scenario, utilizing Reno-SACK

Figure 5.36: The global average of MAC throughput for 6SS scenario, utilizing Reno-SACK

 121

The observations of the Reno-SACK scenario are similar to New Reno.

The graph of the MAC layer delay consists of four distinct plots, and the plots are

in the order of increasing weight-adjusting factor coefficients from top to bottom.

Moreover, the plots of the file download time observed at the application layer

are steadier, and better separated than in New Reno. At the same time, the

fluctuating transient stage at the beginning of the simulation is shortened, and the

range of the file download time is narrower. The resistance of Reno-SACK

combination towards packet loss events is becoming observable. The plots of the

number of packets dropped no longer dominate the trends or the order of the

plots in the file download time graph.

The conclusion that can be drawn from the 6SS-scenarios is that the

improvement at the MAC layer becomes more evident than in the 4SS and 2SS

scenarios. The overall system reaches a steadier state as greater number of

stations joined in the network, resulting in the traffic load is increased to a

moderate level. The combination of a significant reduction of the MAC layer delay

and steady traffic load leads to an improvement at the application layer. The

number of packets dropped at the PHY layer shows even less influence on the

average performance. Nevertheless, the flavour of TCP still plays an important

role in delivering a decent performance at the application level.

5.4 Eight Client Stations Scenario

The same configurations are simulated with eight subscriber stations in

the network. Like in the 6SS-senario, only simulations of New Reno and Reno-

Sack combination are presented.

 122

5.4.1 8SS – TCP New Reno

The graphs of the MAC layer delay and file download time are presented

in Figure 5.37 and Figure 5.38. The number of packets dropped at the PHY layer

and MAC throughput are illustrated in Figure 5.39 and Figure 5.40 respectively.

Figure 5.37: The global average of MAC delay for 8SS scenario, utilizing New Reno

 123

Figure 5.38: The global average of download time for 8SS scenario, utilizing New Reno

Figure 5.39: The global average of packets dropped for 8SS scenario, utilizing New Reno

 124

Figure 5.40: The global average of MAC throughput for 8SS scenario, utilizing New Reno

The improvement of the proposed design is distinctively illustrated in the

graphs of the MAC layer delay and file download time. The initial transient stage

of the 8SS-New Reno scenario is shorter than the 6SS-New Reno scenario.

However, in both cases, the improvement is more evident with increasing values

of weight-adjusting factor coefficients. Moreover, each plot of the file download

time is spaced further apart in the 8SS-New Reno scenario than in the 6SS-New

Reno scenario, such that each design fluctuates mostly within its own range of y-

values. In addition, the improvement is persistent, regardless of the drop rate at

the physical link. Finally, the throughput plots show improvements across the

designs when N is eight.

 125

5.4.2 8SS – TCP Reno and SACK

The simulation results of eight subscriber stations, which utilize Reno and

SACK combination, are presented in this sub-section. The plots of the MAC layer

delay, file download time, number of packets dropped, and throughput are

illustrated in Figure 5.41 to Figure 5.44.

Figure 5.41: The global average of MAC delay for 8SS scenario, utilizing Reno-SACK

 126

Figure 5.42: The global average of download time for 8SS scenario, utilizing Reno-SACK

Figure 5.43: The global average of packets dropped for 8SS scenario, utilizing Reno-SACK

 127

Figure 5.44: The global average of MAC throughput for 8SS scenario, utilizing Reno-SACK

The Reno-SACK combination demonstrates similar results as in the 8SS-

New Reno case. More specifically, the improvements of the proposed algorithm

are evident in the MAC layer delay, file download time and throughput. The

improvement compared to the original design increases with respect to the

weight-adjusting factor coefficient, but not the growth of the improvement in

between designs. In fact, the improvement from a=3 to a=5 is less than that from

a=1 to a=3. In short, the benefit of the increasing weight-adjusting factor

coefficient diminishes beyond a certain value. This observation complies with the

analysis in Section 3.4, and suggests that the proposed scheme has a maximum

performance benefit at a certain coefficient value. An overly aggressive (i.e. large)

 128

weight-adjusting factor coefficient may result in a decaying and unfair

performance.

Based on the simulation results illustrated in the two, four, six and eight

subscriber stations scenarios, the proposed algorithm shows a better

performance as the number of stations in the network is sufficiently large. The

traffic intensity of the system reaches a moderate level, resulting in a steady

operation in queue service and the resulting performance. A large weight-

adjusting factor coefficient helps to attain a better outcome, but the improvement

is limited to a certain extent.

Another conclusion that can be drawn from the simulations is that the

MAC layer delay is the most sensitive performance measurement that reflects

the effect of the proposed scheme. In particular, the improvement of the MAC

layer delay is observed starting from the 4SS-scenarios, whereas the

improvement of the download time is observed in the 6SS-scenarios and beyond.

The improvement of throughput is also observed in 6SS-scenarios and beyond,

but it only becomes more evident in 8SS-scenarios. This observation is

reasonable since the MAC layer delay is a statistic, which simply measures the

end-to-end delay of every packet received. In contrast, both file download time

and throughput are affected by complicated mechanisms, such as error checking,

packet drops and timeout events, which make them more difficult to reflect the

effect of the proposed design.

The 10-SS, 12-SS and 15-SS scenario simulations were also conducted,

but they are not illustrated in detail as in the 2SS, 4SS, 6SS and 8SS-scenarios.

 129

Instead, the statistics are plotted against various values of N, as it is shown in the

next section.

5.5 Performance with respect to N

This sub-section provides an overview of the results illustrated in Section

5.1 to Section 5.4, and in addition, simulation results of 10-SS, 12-SS and 15-SS

scenarios are included. The performance metrics such as the MAC layer delay,

file download time, and MAC throughput are plotted against various values of N.

These figures portray visualization of the effect of the proposed scheme with

respect to different levels of traffic intensity in the network. The order of the

presentation is arranged in accordance with the TCP flavours as before.

5.5.1 The MAC Layer Delay vs. Number of Stations

The global average of MAC layer delay with various numbers of

subscriber stations, which utilizes Reno as the TCP flavour, is plotted in Figure

5.45.

 130

Figure 5.45: MAC delay vs. number of stations, utilizing Reno

The number of stations that were simulated includes two, four, six, eight,

ten, twelve and fifteen, and the y-axis is the final value of the global average of

the MAC layer delay. The figure shows an increasing trend of the MAC layer

delay with respect to the number of stations. This is anticipated as the resources

of the BS are shared by more stations, thus resulting in an increasing queue

delay. When N equals to two, the MAC layer delay is small but indistinguishable.

In fact, the MAC layer delay of the proposed design is worse than the original

when N equals to two, as illustrated in Section 5.1.1. Though the improvement of

the MAC layer delay is observed when N equals to four in Reno, as

demonstrated in Section 5.2.1, the improvement is small and not significant.

When N is greater or equals to eight, the plots of the proposed designs start to

 131

pull away from the original design. Table 5-1 provides the detailed information on

the percentage difference of each proposed design when comparing to the

original design.

Table 5-1: The percentage differences of the global average delay at the MAC layer of each
proposed design compared to the original design, utilizing Reno

N a = 1 a = 3 a = 5

2 0.21% 0.12% 0.33%

4 -5.41% -2.26% -9.20%

6 -5.56% -3.07% -8.91%

8 -16.02% -24.46% -25.41%

10 -8.13% -20.97% -13.70%

12 -8.84% -11.79% -11.19%

15 -2.65% -4.66% -6.46%

When N is two, the percentages are positive. This indicates that the MAC

layer delays of those scenarios are higher than the original design. When N is

greater than two, the percentage differences become negative, indicating a

smaller MAC layer delay of the proposed designs in those scenarios. The

maximum reduction is 25.41%, which occurs when N is eight, and a is five.

Furthermore, the table again demonstrates that the gain of the proposed design

increases with respect to N and a, but the gains are limited at certain bound.

The MAC layer delay versus the number of stations in the network, which

employs New Reno as the TCP flavour, is illustrated in Figure 5.46.

 132

Figure 5.46: MAC delay vs. number of station, utilizing New Reno

The New Reno scenario also exhibits an increasing trend in the plots of

MAC layer delay with respect to the number of stations. Nevertheless, the plots

are more distinguishable starting when N is six, or even when N is four. For N

greater than four, the MAC layer delays of the proposed designs are consistently

lower than the original, and the differences become more evident when the

number of stations exceeds eight. In addition, the gain of the proposed algorithm

grows with respect to the increasing a. A detailed comparison on the

improvement of each data point is listed in Table 5-2.

 133

Table 5-2: The percentage differences of the global average delay at the MAC layer of each
proposed design compared to the original design, utilizing New Reno

N a = 1 a = 3 a = 5

2 0.46% 0.49% 0.78%

4 -4.59% -16.30% -21.13

6 -6.79% -12.14% -17.96%

8 -8.70% -17.87% -21.93%

10 -4.66% -8.93 -12.26%

12 -3.87% -9.20% -11.51%

15 -5.02% -9.90% -13.46%

When N equals to fifteen, the a=1 design reduces the delay of the original

design by approximately 5%, and the a=5 design delivers a reduction of 13.46%.

Nevertheless, the maximum reduction is 21.93%, which occurs when N is eight

and a is five. The MAC layer delay of the scenarios utilizing the Reno-SACK

combination is presented in Figure 5.47.

 134

Figure 5.47: MAC delay vs. number of station, utilizing Reno-SACK

The proposed designs also exhibit consistent reductions in the MAC layer

delay in the Reno-SACK combination. When N equals to ten, the gains in the a=3

and a=5 cases are not differentiable. When the number of stations increases to

beyond ten, the plot of a=5 design begins to move apart from the plot of a=3.

This behaviour can be explained by the discussion in Section 3.4, in which a

greater a requires a greater N in order to offset the effect of the coefficient at the

denominator. The a=1 delivers a reduction of 4% in the MAC layer delay when N

is fifteen, while in the same scenario, the a=5 design reduces the original design

by 12.6%. Table 5-3 lists the detailed reductions in the MAC layer delay of each

scenario when employing Reno-SACK combination as the TCP flavour.

 135

Table 5-3: The percentage differences of the global average delay at the MAC layer of each
proposed design compared to the original design, utilizing Reno-SACK

N a = 1 a = 3 a = 5

2 0.47% 0.38% 0.23%

4 -12.90% -26.46% -32.24%

6 -9.74% -14.62% -20.04%

8 -6.90% -17.12% -20.22%

10 -4.02% -11.57% -11.89%

12 -3.53% -10.64% -13.27%

15 -4.01% -8.06% -12.63%

5.5.2 FTP File Download Time vs. Number of Stations

This sub-section provides an overview of the performance of file download

time at the application layer with respect to various numbers of stations in the

network. The figures are illustrated in the same fashion as in the MAC layer delay

section. The graphs of the Reno and New Reno scenarios are presented in

Figure 5.48 and Figure 5.49 respectively, and graph of the Reno-SACK

combination is shown in Figure 5.50. Each figure is followed by a table to provide

the detailed information on the percentage difference of each proposed design

compared to the original one.

 136

Figure 5.48: The file download time vs. number of stations, utilizing Reno

Table 5-4: The percentage differences of the global average of the file download time of
each proposed design compared to the original design, utilizing Reno

N a = 1 a = 3 a = 5

2 -1.58% 0.21% -1.08%

4 0.81% 0.73% 1.43%

6 1.01% 0.49% -0.30%

8 -0.25% -1.42% -1.79%

10 -1.66% -3.10% -4.03%

12 -1.40% -2.75% -2.70%

15 -1.39% -1.91% -1.63%

 137

Figure 5.49: The file download time vs. number of station, utilizing New Reno

Table 5-5: The percentage differences of the global average of the file download time of
each proposed design compared to the original design, utilizing New Reno

N a = 1 a = 3 a = 5

2 0.23% -0.54% -2.03%

4 -1.28% -0.53% -1.04%

6 -0.92% -3.53% -3.21%

8 -4.52% -8.37% -8.88%

10 -3.09% -6.51% -6.77%

12 -1.89% -3.96% -5.20%

15 -1.42% -3.09% -3.77%

 138

Figure 5.50: FTP file download time vs. number of station, utilizing Reno and SACK

Table 5-6: The percentage differences of global average of the file download time of each
proposed design compared to the original design, utilizing Reno-SACK

N a = 1 a = 3 a = 5

2 -0.13% -0.41% 0.84%

4 -0.01% 1.08% 0.11%

6 -1.43% -2.82% -4.72%

8 -3.49% -8.69% -9.30%

10 -2.84% -5.97% -6.01%

12 -1.95% -4.15% -4.54%

15 -0.70% -2.28% -3.61%

The file download time is similar to the MAC layer delay, which exhibits a

rising trend when the number of stations in the network increases. Nevertheless,

 139

the reductions in the file download time of the proposed designs are not as

extraordinary as in the MAC layer delay. In particular, the a=3 and a=5 are not

differentiable until N is twelve in New Reno and fifteen in Reno-SACK

combination. Furthermore, the download times of the Reno scenarios are even

more difficult to differentiate than New Reno and Reno-SACK combination. As

previously mentioned, download time is a more complicated statistic to anticipate,

which incorporates many qualities of the mechanisms at the lower layers. In

particular, Reno suffers the worst among the three flavours because Reno is the

most vulnerable scheme of the three when encountering packet drops in the

physical channel.

The percentage gains of the file download time are smaller than 10% in all

scenarios, which is less than the MAC layer delay. When N is equal to fifteen, the

a=1 performs 1.42% better than the original in New Reno, and 0.7% better than

the original in Reno-SACK combination. In comparison, the a=5 design delivers a

reduction of 3.77% in New Reno, and 3.6% in the Reno-SACK combination when

N is fifteen. Therefore, the coefficient of the weight-adjusting factor still makes a

difference. Nevertheless, the largest reduction in the file download time happens

when N equals to eight, where the reduction of the a=5 design in the Reno-SACK

scenario is 9.3%.

5.5.3 MAC Throughput vs. Number of Stations

The throughput plots with different numbers of stations in the network are

presented in this sub-section. In contrast to the delay graphs, the MAC

throughput decreases as the number of stations grows. Since the throughput is a

 140

reducing statistic with increasing N, the figure is cropped at N equal to eight to

better illustrate the comparison of the designs at high values of N (i.e. when the

system performance are more stable with steady traffic load). The throughput

graphs that utilize TCP Reno and New Reno are illustrated in Figure 5.51 and

Figure 5.52 respectively. The throughput graph of the Reno-SACK combination is

presented in Figure 5.53. The detailed comparison of each proposed design to

the original is provided in a table after each figure.

Figure 5.51: MAC throughput vs. number of station, utilizing Reno

 141

Table 5-7: The percentage differences of global average of the MAC throughput of each
proposed design compared to the original design, utilizing Reno

N a = 1 a = 3 a = 5

2 3.32% -0.76% 1.00%

4 -1.18% 0.55% -0.97%

6 0.37% 1.70% 0.78%

8 1.27% 1.36% 2.99%

10 2.06% 4.92% 5.93%

12 2.48% 4.23% 3.22%

15 1.85% 1.62% 2.31%

Figure 5.52: MAC throughput vs. number of station, utilizing New Reno

 142

Table 5-8: The percentage differences of global average of the MAC throughput of each
proposed design compared to the original design, utilizing New Reno

N a = 1 a = 3 a = 5

2 3.74% 4.53% 4.49%

4 -1.30% -0.55% -0.36%

6 0.32% 2.37% 3.61%

8 4.34% 8.04% 7.63%

10 2.33% 4.88% 4.94%

12 1.41% 1.77% 2.33%

15 0.49% 1.10% 1.79%

Figure 5.53: MAC throughput vs. number of station, utilizing Reno-SACK

 143

Table 5-9: The percentage differences of global average of MAC throughput of each
proposed design compared to the original design, utilizing Reno-SACK

N a = 1 a = 3 a = 5

2 0.66% -0.52% -1.59%

4 -0.53% -2.38% 0.76%

6 1.48% 0.14% 1.93%

8 3.77% 9.14% 8.99%

10 2.53% 3.66% 3.48%

12 0.92% 1.49% 2.18%

15 0.85% 1.39% 2.08%

The graphs indicate that the proposed design produces a higher

throughput than the original design. However, from the tables, some scenarios of

the proposed design deliver worse throughput than the original when N is small.

When N is larger, the improvement becomes more distinct. In particular, the

improvement when N equals to eight is 8.04% in New Reno for the a=3 design,

and 9.14% in Reno-SACK for the a=3 design. Nevertheless, the plots of a=3 and

a=5 appear to be indistinguishable, and become more difficult to observe when N

is larger. To better illustrate the throughput when N is large, the slightly enlarged

versions of the above graphs are shown in Figure 5.54 to Figure 5.56.

 144

Figure 5.54: MAC throughput vs. number of station, utilizing Reno (Zoom In)

Figure 5.55: MAC throughput vs. number of station, utilizing New Reno (Zoom In)

 145

Figure 5.56: MAC throughput vs. number of station, utilizing Reno and SACK (Zoom In)

In both New Reno and Reno-SACK scenarios, the a=3 and a=5 designs

are more distinguishable when N is twelve and fifteen. This observation

demonstrates that large coefficients require larger N. Note that the difference

between the throughput and service rate of a queue is that the service rate

counts packets that are sent, but may finally be dropped by the physical link,

whereas the throughput does not. Therefore, the plots of the throughput and

queue service rate are very similar in a fair physical channel condition.

5.6 Base Station Analysis

The other interesting statistics to observe are the MAP-related statistics in

the BS. A DL-MAP is embedded as a portion of the DL subframe (Section

 146

2.2.1.3), and a MAP indicates the number of data bursts and the boundaries of

each data burst located in the frame. A DL data burst contains data dedicated

from the BS to a SS. The statistic of the number of data bursts in a DL subframe

is captured, and it is plotted against various numbers of N as illustrated in Figure

5.57. Due to the high similarity of the graphs utilizing different TCP flavours, only

the New Reno graphs are chosen as the representative in this section.

Figure 5.57: Number of burst count of the DL-MAP, utilizing New Reno

As the number of stations in the network increases, the DL subframe is

divided into more portions in order to deliver data to each station. As a result, the

number of burst count increases with the number of stations. Due to the

additional weight granted to each queue in the proposed scheme, the partitioning

of a MAC frame is not as obvious in the proposed designs as in the original. As

 147

observed in the plots of data burst count, the numbers of data bursts in a DL

subframe of the proposed designs are less than the original. However, as the

number of stations in the network grows larger (i.e. N>8), the increase in the

number of data bursts slows down. This phenomenon implies that the dequeuing

service provided to each station is approaching the minimum QoS specification

of the station. At the same time, a slow increase in burst count also suggests the

BS is slowly approaching its scheduling capacity, such that it cannot

accommodate more data bursts even though the number of clients has increased.

Based on the increasing trend observed in the graph of data burst count,

the size of each data burst should exhibit a decreasing trend since the capacity

of the BS is fixed. The size of each data burst with respect to varying numbers of

stations is shown in Figure 5.58.

Figure 5.58: Size of each data burst in the DL-MAP, utilizing New Reno

 148

The plots of the data burst size confirm that the size of each data burst

decreases with respect to N. With a fixed frame capacity, the burst count and

size have an inverse relationship. However, due to the additional weight granted

to each queue in the proposed scheme, the sizes of the data bursts are relatively

higher in the proposed designs than in the original. When N is greater than eight,

the size of each data burst approaches a steady state. This observation confirms

that the amount of data dequeued at each station is approaching its maximum

allowed limit in one round (i.e. Wn’).

In addition to the burst profile, the utilization of the downlink subframe is

analyzed. The utilization is measured in percentage, which is the percentage of a

DL subframe that is occupied by DL data bursts. The DL data burst usages of a

DL subframe in the New Reno scenarios are illustrated in Figure 5.59. Since the

DL-MAP and the UL-MAP together occupied as a part of the downlink subframe,

the percentage of a DL subframe that is allocated to the MAP usage is also

shown in Figure 5.60.

 149

Figure 5.59: DL Data burst usage of a DL subframe, utilizing New Reno

Figure 5.60: MAP usage of a DL subframe, utilizing New Reno

 150

The utilization of the data burst in the DL subframe is indistinguishable

between the proposed and original designs because the scheduling algorithm of

the BS is greedy, and always attempts to accommodate as much data as

possible. This results in competitive utilization between the two algorithms.

Nevertheless, the occupancies of both data bursts and MAP in the DL subframe

increase as the size of the network expands. The increasing utilization of the DL

subframe is an indication of increasing traffic load in the network.

However, the growth of utilization in both data bursts and MAP slows

down when the number of stations in the network exceeds eight. This

observation confirms that the scheduling resources of the BS are approaching

being fully utilized. More specifically, the combined percentage-occupancy of the

data burst and MAP is approximately 91% of the DL subframe when N is fifteen.

The observation of the network traffic load approaching the capacity of BS also

explains the improvement of the proposed designs when N is fifteen is not as

distinctive as when N is eight. When the traffic load of a network is catching up

with the system capacity, the utilization of the network is fully exploited under

most scheduling strategies. Consequently, an improvement in the system

becomes more difficult to realize, as demonstrated in the plots of Section 5.5.

5.7 Weight Variations across Stations

The proposed design is an algorithm that attempts to differentiate

resource allocation of the BS, based on the network congestion condition

perceived at TCP. In particular, the ratio of the cwnd values of a station

compared to that of other stations is utilized. Despite the equally fair channel

 151

condition configured at each station in the simulation, the proposed algorithm still

demonstrates an improvement over the original design on the average

performance. The reason that differentiates the proposed algorithm from the

original is that the physical channels are equally fair but still subject to random

packet drops. The cwnd values thus vary randomly across stations, resulting in

differentiations in the network condition assessments at a given instance. Since

the cwnd values vary randomly with respect to time and across stations, the

queue weight calculated for each queue fluctuates at different time instance as

demonstrated in Figure 5.61.

Figure 5.61: MAC queue weights of Station1 to Station6 of the 8SS-scenario, utilizing

Reno-SACK combination and a=1

As a result, a queue can experience a temporal high or low service rate,

depending on the cwnd ratio of the queue at the time. This innate adaptive

 152

characteristic of the proposed algorithm allows it to exploit the gain of queue

diversity, thus achieving a more efficient utilization of the bandwidth. Note that

the MAP usage presented at the end of last section (i.e. Figure 5.60) indicates

that when N is between six and twelve, the MAP usage of the proposed algorithm

is less than the original. However, the average performance of the proposed

designs is better than the original when N is between six and twelve. This

indicates that the system performance is improved due to efficient utilization of

the bandwidth.

The gain of queue diversity is a similar concept to the multiuser diversity

gain [24] in a multiple access network. The multiuser diversity gain is an

elevation in user data rates due to an adaptive scheduling algorithm, based on

the physical channel states of the users. Similarly, Figure 5.61 demonstrates the

weight granted to each queue is adaptive to the network congestion state over

the entire transmission path.

Furthermore, the extra bandwidth granted to each queue in the proposed

design can be considered as an attempt to extract more capacity out of the BS

when possible. As long as the BS can sustain the capacity, all queues perform

better, thus a better global performance. In other words, the proposed algorithm

also exploits the system capacity in order to deliver better performance when the

traffic load of the network is moderate to high. However, if the traffic load of the

network approaches to the system capacity, the effect of the proposed design

diminishes, as explained in the last section (Section 5.6).

 153

CHAPTER 6: A SUMMARY AND FUTURE EXTENSIONS

The goal of this research effort is to explore the possibility of cross-layer

optimization in the context of wireless networks. In this thesis, I have proposed a

new cross-layer technique that interconnects the transport and MAC layers in a

WMAN. In particular, the scheduler of WiMAX MAC is made aware of the

congestion condition perceived at TCP. Through the knowledge of cwnd values

provided by TCP, the MAC scheduler is capable of adaptively distributing its

resources to desirable connections. The proposed algorithm is greedy since it

utilizes more capacity of the BS when possible. At the same time, the proposed

scheme exploits the gain of queue diversity, thus improving the transmission

efficiency to attain a better average performance. At the same time, the proposed

algorithm is still a bounded and stable system.

Analytical models were developed to understand the behavioural

dynamics of the proposed model. In particular, the queue service rate (Equation

3.6-3.8) and expected queue delay (Equation 3.34) were developed, with

particular focus on the case of moderate to high traffic intensity (i.e. case (b)).

The analytical models indicate that the gain in both service rate and queue delay

of the proposed scheme grows with respect to increasing N and a, but the gain is

limited at a certain bound. The analytical models were further developed to

analyze the effect of the MDRR queue service discipline on the RTT (Equation

3.42) of a packet. With an expression for RTT, a simple service-rate dependent

 154

arrival rate at a MAC queue (i.e. a primitive TCP send rate model) is derived in

Equation 3.46. Consequently, an arrival-rate dependent MAC queue delay is

derived in Equation 3.47. Finally, by employing the analytical work published in

[22], a more complete TCP send rate model, which incorporates the service rate

at the MAC layer (Equation 3.60 to 3.62), is developed.

To complement the analytical results, the proposed scheme is

implemented and simulated in OPNET Modeler. The simulation results indicate

improvements in the end-to-end delay, file download time and throughput. The

improvement becomes more evident when traffic intensity is moderate to high (i.e.

large N), which complies with the analytical model developed. However, when

the traffic load is approaching the BS capacity, the improvement is not as

observable due to overly large values of N and full utilization of the system

capacity.

Moreover, an increase in numerical value of the weight-adjusting

coefficient (i.e. a) further emphasizes the resource allocation, based on the cwnd

ratios. The simulation confirms that an increased coefficient improves the

average performance of the network but only to an extent. The percentage gain

in performance measures decreases with respect to increasing coefficients.

However, both analytical models and simulation results suggest that a large

coefficient value is more suitable for a large network (i.e. large N). Nevertheless,

large coefficient should be employed with care to avoid an unstable system, and

an unfair resource allocation.

 155

Another contribution of this thesis is the development of the cwnd-

dependent MDRR scheduler of the OPNET WiMAX MAC model. Some of the

most challenging tasks were the understandings of the WiMAX standard and the

implemented architecture of the OPNET WiMAX model. Another challenge of the

thesis was the export of simulation raw data from OPNET for further data

manipulation.

The application of the proposed algorithm is suitable for a network with

diverse channel conditions, and moderate to busy traffic intensity. According to

the analysis of TCP sending rate in Section 3.4.4, the proposed scheme is

beneficial to TCP sending rate in a network of small RTTs. Therefore, a WMAN

such as WiMAX is a network of suitable scale for the scheme. In addition, the

proposed scheduler attempts to dequeue more data out of a queue in one visit,

so the algorithm is ideal for a network with relatively long walk time between the

queues. More specifically, the proposed scheduling algorithm may be more

suitable in UL.

As a result, one of the possible future extensions of the current work is to

implement the proposed design in the UL. Another possible extension is to

develop a credit system, such that a station with temporary unfavourable

transmission condition (i.e. low cwnd) is allowed to accumulate credits for

bandwidth usage. Upon the recovery of the channel condition, the station is

allowed to use the credit built up, and enjoys a temporary boost in bandwidth

allocation to compensate the loss beforehand.

 156

The other possibility is to incorporate HARQ at the MAC scheduler. The

HARQ mechanism should enhance the transmission quality at the link layer. In

addition, HARQ provides further information on the condition of the physical link.

Finally, another possible proposal of future work is to study the distribution of the

stack of cwnd values residing in the packets of a queue. The collection of cwnd

values provides information on the trend of traffic variation of a queue.

 157

APPENDICES

Appendix A: Implementation Steps and Codes Regarding the
OPNET TCP Model

tcp_manager_v3 process model:

1. Declare/Invoke corresponding child process:
a) Declare “tcp_conn_v3_sc3” as the child process
b) Invoke child process “tcp_conn_v3_sc3”

OPEN Enter Execs:
op_pro_create ("tcp_conn_v3_sc3", &tcp_ptc_mem);

2. Declare/Create new Packet Format:
a) Declare “TCP_seg_v2_sc1” as the Packet Format
b) Create Packet Format “TCP_seg_v2_sc1”

Function Block:
 op_pk_create_fmt ("tcp_seg_v2_sc1");

3. Create new attribute, CWND Option, for the process model
a) Add new attribute named “CWND Option” under process model

attributes interface.
b) CWND Option attribute is set to toggle type, where only enabled and

disabled options are available.
c) Include the custom header file “tcp_v3_sc3.h” to incorporate the CWND

Option field in TcpT_Conn_Parameters, and TcpT_Ptc_Mem structure.
New structure names are TcpT_Conn_Parameters_SC and
TcpT_Ptc_Mem_SC.

d) Change declaration of old structure names to the new ones.
TcpT_Conn_Parameters_SC: 1 in State Variable block, 1 in Function
Block
TcpT_Ptc_Mem_SC: 1 in State Variable block

e) Retrieve setting from the node model and store it, Function Block
tcp_mgr_tcp_param_parse().

tcp_conn_v3 process model:

1. Declare Packet Format:
a) Declare “TCP_seg_v2_sc1” as the Packet Format
b) Create Packet Format “TCP_seg_v2_sc1”

Function Block:
 op_pk_create_fmt ("tcp_seg_v2_sc1");

2. Change to process model to recognize the existence of CWND Option field.

 158

a) Include the custom header file “tcp_v3_sc3.h” to incorporate the CWND
Option field in TcpT_Conn_Parameters, and TcpT_Ptc_Mem structure.
New structure names are TcpT_Conn_Parameters_SC and
TcpT_Ptc_Mem_SC.

b) Change declaration of old structure names to the new ones.
TcpT_Conn_Parameters_SC: 1 in State Variable block
TcpT_Ptc_Mem_SC: 1 in Temporary Variable block, 1 in init state Enter
Executives

c) Declare cwnd_enabled in State Variable block and retrieve the value
from ptc_mem (parent-to-child memory) in Function Block
TCP_conn_sv_init().

3. Set cwnd size to the CWND Option field
a) In function tcp_seg_send:

 if (cwnd_enabled)
 {
 if (op_pk_nfd_set (seg_ptr, "CWND Option", cwnd) ==
 OPC_COMPCODE_FAILURE)
 tcp_conn_error ("Unable to set CWND Option in TCP
 segment.", OPC_NIL, OPC_NIL);

 }
b) In function tcp_seg_receive checking if the value that was set in the

CWND Option field
 if (op_prg_odb_ltrace_active ("tcp _cwnd"))
 {
 Char msg [156];
 TcpT_Size cwnd_option;

 if (op_pk_nfd_is_set (seg_ptr, "CWND Option") == OPC_TRUE)
 {
 if (op_pk_nfd_get (seg_ptr, "CWND Option",

 &cwnd_option) == OPC_COMPCODE_FAILURE)
 tcp_conn_error ("Unable to get CWND Option

 from received TCP segment.", OPC_NIL,
 OPC_NIL);

 sprintf (msg, "Successfully retrieve CWND Option

 field [%d].", cwnd_option);
 }
 else
 {
 sprintf (msg, "CWND Option field is not set or an error

 occurs");
 }
 op_prg_odb_print_minor (msg, OPC_NIL);
 }

tcp_v3_sc3.h header file:
1. New structure is introduced to reflect CWND Option field is being added as a

new TCP parameter.

 159

typedef struct
 {…
 Boolean cwnd_option_flag;
 Boolean satisfaction_option_flag;
 } TcpT_Conn_Parameters_SC;

typedef struct
 {…
 //TcpT_Conn_Parameters* tcp_conn_params_ptr;
 TcpT_Conn_Parameters_SC* tcp_conn_params_ptr;
 } TcpT_Ptc_Mem_SC;

 160

Appendix B: Implementations of Extraction, Storage and
Removal of Cwnd

Extraction of cwnd values: (wimax_mac_sc3_wt_adjustable process model)

 The cwnd value is extracted from the data packet arriving at the MAC layer,
in the WiMAX MAC root process.

static void

wimax_support_mac_pk_in_queue_efficiency_off_sc (Packet* pkptr,
WimaxT_Shaper_Queue_Elem* sq_elem_ptr, WimaxT_Service_Flow* service_flow_ptr)

{

……

/* We generate a BWR only when its computed size is positive. */

if (bwr_size_bits > 0)

 {

 /* Susan-code: Retreive CWND size and ready to pass it down to the
 child process */

 cwnd_size = wimax_mac_cwnd_get (pkptr, &frag_status);

 /* Create and insert a new BWR into the bandwidth request */

 /* queue. */

 wimax_support_bw_request_insert_sc (sq_elem_ptr, (int) bwr_size_bits,
 cwnd_size, frag_status);

 }

}

/* Susan-code: This fuction is to extract the CWND Option field in a TCP packet */

int

wimax_mac_cwnd_get (Packet* pkptr, IpT_Pkt_Frag_Info* frag_status_ptr)

{

int cwnd;

FIN (wimax_mac_cwnd_get (pkptr));

/* Check if the ARP sim efficiency is disabled. In that case, the IP packet does */

/* not contain the necessary IP socket information. ARP cannot function */

/* correctly in Wimax, because broadcast is not supported. Warn the user. */

 161

if (OPC_TRUE == ip_arp_sim_eff_sim_attr_get (OPC_FALSE))

 {

 /* Susan-code: Extract the CWND Option field from TCP header. */

 ip_support_ip_pkt_cwnd_extract (pkptr, &cwnd, frag_status_ptr);

 }

else

 {

 /* When PHY pipelines are used, layer 2 broadcast is also */

 /* available. In that case, refrain from ARP warning. */

 if (global_efficiency_less_than_phy)

 {

 /* Warn the user to turn the ARP Sim Efficiency on. */

 wimax_arp_efficiency_disabled_log_write ();

 }

 cwnd = -1;

 }

FRET (cwnd);

}

DLLEXPORT Compcode

ip_support_ip_pkt_cwnd_extract (Packet* pkptr, int* cwnd_ptr, IpT_Pkt_Frag_Info*
frag_status_ptr)

{

IpT_Dgram_Fields* pk_fd_ptr = OPC_NIL;

Boolean cwnd_info_read = OPC_FALSE;

List* parent_pkt_lptr;

Packet* pk_data_ptr = OPC_NIL, *seg_pkptr;

FIN (ip_support_ip_pkt_cwnd_extract (pkptr));

/* Value initialize to invalid values so that we eliminate multiple */

*cwnd_ptr = -1;

*frag_status_ptr = IpC_Pkt_Frag_Not_Available;

/* Get the content of the IP header fields */

if (op_pk_nfd_access (pkptr, "fields", &pk_fd_ptr) == OPC_COMPCODE_FAILURE)

 162

 {

 }

else

 {

 /* For non-tracer packets, socket information is present in the regular location. */

 /* Look at the protocol field and *not* the encap flag. If this is a tracer packet */

/* that is being tunneled through another IP packet, we must return the socket*/

/* information of the outer pkt and *not* the socket information of the tracer. */

 if (pk_fd_ptr->protocol != IpC_Protocol_Basetraf)

 {

 /* Port information can be obtained from packets that are not */

 /* fragments, or from initial fragments. */

 if (!pk_fd_ptr->frag || (pk_fd_ptr->offset == 0))

 {

 if (op_pk_nfd_is_set (pkptr, "data"))

 {

 /* Get the data from the IP-datagram. */

 op_pk_nfd_get (pkptr, "data", &pk_data_ptr);

 /* For fragments, this data is a segment, not the original*/

 /* transport payload. */

 if (pk_fd_ptr->frag)

 {

 seg_pkptr = pk_data_ptr;

 parent_pkt_lptr =
 op_sar_seg_parent_packets_access (seg_pkptr);

 pk_data_ptr = (Packet *) op_prg_list_remove
 (parent_pkt_lptr, OPC_LISTPOS_HEAD);

 /* Parent list should be empty because IP segments
 are not */

 /* comprised of multiple packets. */

 op_prg_mem_free (parent_pkt_lptr);

 /* Susan-code */

 *frag_status_ptr = IpC_Pkt_Frag_Initial;

 }

 else

 163

 {

 *frag_status_ptr = IpC_Pkt_Not_Frag;

 }

 /* Check if the transport protocol is TCP */

 /* to acquire the TCP port number. */

 if (pk_fd_ptr->protocol == IpC_Protocol_Tcp)

 {

 /* Susan-code */

 // Get the CWND Option field from the TCP header

 if (op_pk_nfd_is_set (pk_data_ptr, "CWND Option"))

 {

 op_pk_nfd_access (pk_data_ptr, "CWND
 Option", cwnd_ptr);
 }

 }

 /* If this is a fragment, then destroy the copy transport */

 /* payload. */

 if (pk_fd_ptr->frag)

 {

 op_pk_destroy (pk_data_ptr);

 pk_data_ptr = seg_pkptr;

 }

 /* Set the original payload (segment or actual) payload
 back in the IP datagram. */

 op_pk_nfd_set (pkptr, "data", pk_data_ptr);

 }

 else

 {

 /* The data field is not set */

 }

 }

 else

 {

 /* Susan-code */

 *frag_status_ptr = IpC_Pkt_Frag_Non_Initial;

 164

 /* This is a fragmented packet and not the initial fragment */

 }

 cwnd_info_read = OPC_TRUE;

 }

 }

FRET ((cwnd_info_read) ? OPC_COMPCODE_SUCCESS :
OPC_COMPCODE_FAILURE);

}

Storage of cwnd values: (wimax_bs_control_sc3_wt_adjustable process
model)

 When the bandwidth request invokes the BS control child process, the
request is enqueued in the buffer. Along with the bandwidth request, the
corresponding cwnd value is retrieved and stored in the list structure

/* Susan-code */

static Boolean

wimax_bs_control_sched_bw_req_ps_insert (WimaxT_Bs_Scheduler_Handle*
sched_hdlptr, WimaxT_Request_Element* bwr_ptr, int conn_id, int cwnd_value,
IpT_Pkt_Frag_Info frag_info)

{

WimaxT_Polling_Service_Queue* ps_q_ptr;

int* cwnd_value_ptr;

/** Insert a BW request into the corresponding PS queue based **/

/** on the specified connection ID. **/

FIN (wimax_bs_control_sched_bw_req_ps_insert ());

ps_q_ptr = (WimaxT_Polling_Service_Queue *)
wimax_bs_control_sched_poll_serv_q_access_by_conn_id (sched_hdlptr, conn_id);

/* Insert the incomming BW request. */

oms_buffer_enqueue (ps_q_ptr->buffer, bwr_ptr, OPC_NIL, op_sim_time ());

/* Susan-code: Insert the corresponding CWND size of each request (payload) */

cwnd_value_ptr = (int *) op_prg_mem_alloc (sizeof (int));

if (frag_info == IpC_Pkt_Not_Frag || frag_info == IpC_Pkt_Frag_Initial)

 {

 /* Insert CWND value as it is since this packet is either not fragmented, */

/* or is the initial fragment */

 165

 *cwnd_value_ptr = cwnd_value;

 ps_q_ptr->last_valid_cwnd = cwnd_value;

 }

else

 {

 /* Insert prvious CWND value if this packet is fragmented and not the initial
 fragment, or the fragmentation info is not proper */

 *cwnd_value_ptr = ps_q_ptr->last_valid_cwnd;

 }

 op_prg_list_insert (ps_q_ptr->cwnd_list_ptr, cwnd_value_ptr,
 OPC_LISTPOS_TAIL);

FRET (OPC_TRUE);

}

Removal of cwnd values: (wimax_bs_control_sc3_wt_adjustable process
model)

 The cwnd values are removed when the corresponding bandwidth request is
removed (dequeue) from the queue in BS control plane

static WimaxT_Request_Element*

wimax_bs_control_sched_bw_req_dequeue_from_ps (WimaxT_Bs_Scheduler_Handle*
sched_ptr, int q_index)

{

WimaxT_Polling_Service_Queue* ps_q_info_ptr;

WimaxT_Request_Element* bw_req_ptr;

int* cwnd_list_value_ptr;

/** This function dequeues the next BW request available in **/

/** the PS queue indicated by the q_index. **/

FIN (wimax_bs_control_sched_bw_req_dequeue_from_buffer);

/* Access the PS queue that corresponds to q_index. */

ps_q_info_ptr = (WimaxT_Polling_Service_Queue *)
wimax_bs_control_sched_poll_serv_q_access_by_index (sched_ptr, q_index);

/* Extract the next BW request from the buffer. */

bw_req_ptr = (WimaxT_Request_Element *) oms_buffer_dequeue (ps_q_info_ptr-
>buffer, 0, op_sim_time ());

 166

/* Susan-code: toss away the CWND value of the request upon dequeueing */

cwnd_list_value_ptr = (int *) op_prg_list_remove (ps_q_info_ptr->cwnd_list_ptr,
OPC_LISTPOS_HEAD);

/* Susan-trace */

if (op_prg_odb_ltrace_active ("wimax_cwnd") || op_prg_odb_ltrace_active ("cwnd"))

 {

 char msg [256];

 sprintf (msg, "Dequeue from PS CID[%d]: [%d] bits [%d] symbols, CWND[%d] Q-
 weight[%d], Q-deficit counter[%d]", bw_req_ptr->conn_id, bw_req_ptr-
 >bwr_size_bits, bw_req_ptr->bwr_size_symbols, *cwnd_list_value_ptr,
 ps_q_info_ptr->weight, ps_q_info_ptr->deficit_counter);

 op_prg_odb_print_minor (msg, OPC_NIL);

 }

op_prg_mem_free (cwnd_list_value_ptr);

ps_q_info_ptr->num_elems_dequeued++;

ps_q_info_ptr->num_bits_dequeued += bw_req_ptr->bwr_size_bits;

if (op_prg_odb_ltrace_active ("wimax_sched_deq") || op_prg_odb_ltrace_active
("wimax_deq_stat"))

 {

 char msg [256];

 sprintf (msg, "The scheduler has dequeued CID-%d [%d] requests and [%d] bits,
 so far, in this schedulling round", ps_q_info_ptr->conn_id, ps_q_info_ptr-
 >num_elems_dequeued, ps_q_info_ptr->num_bits_dequeued);

 op_prg_odb_print_minor (msg, OPC_NIL);

 }

FRET (bw_req_ptr);

}

 167

Appendix C: Implementations of the Queue Weight Calculation
and Modified MDRR Queuing Service Discipline

Queue Weight Calculation: (wimax_bs_control_sc3_wt_adjustable process
model)

 The weight of a queue is calculated before the scheduling (dequeue)
process.

static WimaxT_Map*

wimax_bs_control_one_ofdma_map_generate (WimaxT_Bs_Scheduler_Handle*
sched_ptr, int* free_symbols_ptr, int* dl_free_symbols_ptr, int ie_size,

WimaxT_Region type, int* maps_offset_ptr, int num_perennials)

{……

/* Step 1: Take out as many elements as possible from the scheduler */

while (bwr_count > 0)

 {

 /* Susan-code: Obtain CWND values across all queues and refresh the */

 /* queue weight according to the CWND values */

 wimax_bs_control_sched_cwnd_weight_adjust (sched_ptr);

 /* Extract the request. */

 elem_ptr = (WimaxT_Request_Element *)
 wimax_bs_control_sched_bw_req_dequeue (sched_ptr);

 if (elem_ptr == OPC_NIL)

 break;

 ……

 }

……

}

/* Susan-code: Obtain CWND values across all queues and refresh the */

/* queue weight according to the CWND values */

void

wimax_bs_control_sched_cwnd_weight_adjust (WimaxT_Bs_Scheduler_Handle*
sched_ptr)

{

WimaxT_Polling_Service_Queue* ps_q_info_ptr;

 168

int ps_q_count, index = 0;

int *cwnd_size_ptr;

int cwnd_total = 0, last_valid_cwnd_total = 0;

int original_weight = 0, adjust_weight = 0;

FIN (wimax_bs_control_sched_cwnd_weight_adjust());

/* Get the total number of queue count, and get the first queue */

ps_q_count = wimax_bs_control_sched_poll_serv_q_count (sched_ptr);

/* 1. Determine the total of CWND values of the first request in each queue */
for (index=0; index<ps_q_count; index++)

 {

 ps_q_info_ptr = (WimaxT_Polling_Service_Queue *)
 wimax_bs_control_sched_poll_serv_q_access_by_index (sched_ptr, index);

 /* last_valid_cwnd_total calculation */

 last_valid_cwnd_total += ps_q_info_ptr->last_valid_cwnd;

 /* cwnd_total calculation */

 if (op_prg_list_size(ps_q_info_ptr->cwnd_list_ptr) > 0)

 {

 cwnd_size_ptr = (int *) op_prg_list_access (ps_q_info_ptr
 ->cwnd_list_ptr, OPC_LISTPOS_HEAD);

 cwnd_total += *cwnd_size_ptr;

 /* Record the cwnd size statistics */

 wimax_bs_control_sched_cwnd_stat_update (ps_q_info_ptr,
 *cwnd_size_ptr);

 if (op_prg_odb_ltrace_active ("wimax_cwnd") ||
 op_prg_odb_ltrace_active ("cwnd"))

 {

 char msg [256];

 sprintf (msg, "1st request of Q-index[%d] CID[%d} has a last-valid
 CWND[%d] and CWND [%d]", index, ps_q_info_ptr->conn_id,
 ps_q_info_ptr->last_valid_cwnd, *cwnd_size_ptr);

 op_prg_odb_print_minor (msg, OPC_NIL);

 }

 }

 169

 else

 {

 if (op_prg_odb_ltrace_active ("wimax_cwnd") || op_prg_odb_ltrace_active
 ("cwnd"))

 {

 char msg [256];

 sprintf (msg, "\tQ-index[%d] CID[%d] is empty and has last-valid
 CWND[%d]", index, ps_q_info_ptr->conn_id, ps_q_info_ptr->last_valid_cwnd);

 op_prg_odb_print_minor (msg, OPC_NIL);

 }

 }

 }

//check for total CWND value. If 0, set to 1

if (cwnd_total == 0)

 {

 cwnd_total = 1;

 if (op_prg_odb_ltrace_active ("wimax_cwnd") || op_prg_odb_ltrace_active
 ("cwnd"))

 {

 printf ("\nTime[%.6f]: Total CWND value is 0, and is reset to 1. Total Q-
 count is [%d]\n", op_sim_time (),ps_q_count);

 }

 }

if (last_valid_cwnd_total == 0)

 {

 last_valid_cwnd_total = 1;

 if (op_prg_odb_ltrace_active ("wimax_cwnd") || op_prg_odb_ltrace_active
 ("cwnd"))

 {

 printf ("\nTime[%.6f]: Total last-valid-CWND value is 0, and is reset to 1.
 Total Q-count is [%d]\n", op_sim_time (),ps_q_count);

 }

 }

/* 2. Adjust the Q-weight according to the CWND value proportion */
for (index=0; index<ps_q_count; index++)

 170

 {

 ps_q_info_ptr = (WimaxT_Polling_Service_Queue *)
 wimax_bs_control_sched_poll_serv_q_access_by_index (sched_ptr, index);

 original_weight = ps_q_info_ptr->original_weight;

 /* cwnd-adjusted weight calculation */

 if (op_prg_list_size(ps_q_info_ptr->cwnd_list_ptr) > 0)

 {

 cwnd_size_ptr = (int *) op_prg_list_access (ps_q_info_ptr->cwnd_list_ptr,
 OPC_LISTPOS_HEAD);

 adjust_weight = original_weight * (*cwnd_size_ptr) / cwnd_total;
 }

 else

 adjust_weight = 0;

 ps_q_info_ptr->cwnd_weight = adjust_weight;

 //ps_q_info_ptr->weight = original_weight + (1*adjust_weight);

 //ps_q_info_ptr->last_valid_cwnd_weight = 1*(original_weight * ps_q_info_ptr-
 >last_valid_cwnd / last_valid_cwnd_total);

 ps_q_info_ptr->weight = original_weight + (weight_adjust_factor *
 adjust_weight);
 ps_q_info_ptr->last_valid_cwnd_weight = weight_adjust_factor*(original_weight *
 ps_q_info_ptr->last_valid_cwnd / last_valid_cwnd_total);

 if (op_prg_odb_ltrace_active ("wimax_cwnd") || op_prg_odb_ltrace_active
 ("cwnd"))

 {

 char msg1 [256];

 char msg2 [256];

 sprintf (msg1, "Weight adjust: Q[%d] CID[%d]: original weight[%d] +
 weight_adjust_factor[%f] * cwnd-adjusted weight[%d] = final weight [%d]",

 index, ps_q_info_ptr->conn_id, ps_q_info_ptr->original_weight,
 weight_adjust_factor, ps_q_info_ptr->cwnd_weight, ps_q_info_ptr-
 >weight);

 sprintf (msg2, "\tdeficit couter[%d], original weight[%d] + last_valid_cwnd
 adjustweight[%d] = last-valid weight [%d]", ps_q_info_ptr->deficit_counter,
 original_weight, ps_q_info_ptr->last_valid_cwnd_weight, original_weight
 + ps_q_info_ptr->last_valid_cwnd_weight);

 op_prg_odb_print_minor (msg1, msg2, OPC_NIL);

 171

 }

 }

FOUT;

}

Modified MDRR Queuing Service Discipline:
(wimax_bs_control_sc3_wt_adjustable process model)

 This function implements the flowchart of Figure 3.2
static int

wimax_bs_control_sched_mdrr_q_select (WimaxT_Bs_Scheduler_Handle* sched_ptr,
WimaxT_Requests_Queue_Handle* q_hdl_ptr, Boolean force_block_current_queue)

{

int num_queues;

int q_in_service;

WimaxT_Polling_Service_Queue* ps_q_info_ptr;

Boolean ok_to_service;

int last_valid_weight = 0;

/** Based on the MDRR scheduling algorithm, select the next BW request **/

/** queue to be served. MDRR is applied only for rtPS and nrtPS services. **/

FIN (wimax_bs_control_sched_mdrr_q_select ());

/* If none of the queues were in service earlier, start with first queue. */

q_in_service = (q_hdl_ptr->current_q_idx == WIMAXC_Q_INDEX_NONE) ?
WIMAXC_Q_INDEX_FIRST : q_hdl_ptr->current_q_idx ;

ps_q_info_ptr = (WimaxT_Polling_Service_Queue *) prg_list_access (q_hdl_ptr-
>polling_service_q_lptr, q_in_service);

/* Get the number of queues. */

num_queues = prg_list_size (q_hdl_ptr->polling_service_q_lptr);

/* Service a queue until deficit becomes negative or until the queue becomes empty. */

if ((ps_q_info_ptr->deficit_counter > 0) && (!oms_buffer_is_empty (ps_q_info_ptr-
>buffer)) && !force_block_current_queue)

 {

 q_hdl_ptr->current_q_idx = q_in_service;

 FRET (q_in_service);

 }

 172

//else if (oms_buffer_is_empty (ps_q_info_ptr->buffer))

/* Susan-code: If the serving queue has only one request left, it will be */

/* dequeued despite its deficit counter value */

else if (((int) oms_buffer_num_elements_get (ps_q_info_ptr->buffer) == 1)
&& !force_block_current_queue)

 {

 q_hdl_ptr->current_q_idx = q_in_service;

 if (op_prg_odb_ltrace_active ("wimax_sched_deq"))

 {

 char msg [256];

 sprintf (msg, "MDRR: current queue has only 1 request left, serve it
 anyway if space allowed");

 op_prg_odb_print_minor (msg, OPC_NIL);

 }

 FRET (q_in_service);

 }

/* If there are no more packets in any of the PS buffers, quit. */

if (wimax_bs_control_sched_all_ps_queues_num_bwr_get (sched_ptr) <= 0)

 {

 FRET (WIMAXC_Q_INDEX_NONE);

 }

/* Loop to find next candidate queue for service. */

do

 {

 ok_to_service = OPC_TRUE;

 /* Wrap around queues if last else move to next queue. */

 q_in_service = ((q_in_service == num_queues - 1) ? 0 : q_in_service + 1);

 /* Susan-code: Keep track of the number of times that the scheduler has */

 /* wrapped through the last of the queues */

 if (q_in_service == 0)

 q_hdl_ptr->wrap_around_counter++;

 173

 /* Get handle to new queue */

 ps_q_info_ptr = (WimaxT_Polling_Service_Queue *) prg_list_access (q_hdl_ptr-
 >polling_service_q_lptr, q_in_service);

 /* Check if there are pending requests in this buffer. */

 if (oms_buffer_is_empty (ps_q_info_ptr->buffer))

 {

 /* AKP: If in debt add weight */

 //if (ps_q_info_ptr->deficit_counter < ps_q_info_ptr->weight)

 // ps_q_info_ptr->deficit_counter += ps_q_info_ptr->weight;

 last_valid_weight = ps_q_info_ptr->original_weight + ps_q_info_ptr-
 >last_valid_cwnd_weight;

 if (ps_q_info_ptr->deficit_counter < last_valid_weight)
 {

 ps_q_info_ptr->deficit_counter += last_valid_weight;

 if (op_prg_odb_ltrace_active ("wimax_sched_deq"))

 {

 printf (" - queue(%d) (CID-%d) is empty,
 deficit_counter[%d] restores with last_valid_weight to
 [%d].\n", q_in_service, ps_q_info_ptr->conn_id,
 ps_q_info_ptr->deficit_counter - last_valid_weight,
 ps_q_info_ptr->deficit_counter);

 }

 /* Susan-code: update weight statistic */

 wimax_bs_control_sched_weight_stat_update (ps_q_info_ptr,
 last_valid_weight);

 }

 if (op_prg_odb_ltrace_active ("wimax_sched_deq"))

 {

 printf (" - queue(%d) empty => skip it.\n", q_in_service);

 }

 /* Ignore empty queue. */

 ok_to_service = OPC_FALSE;

 }

 174

 else

 {

 /* Check the deficit counter of this queue. */

 if (ps_q_info_ptr->deficit_counter <=0)
 {

 ps_q_info_ptr->deficit_counter += ps_q_info_ptr->weight;

 if (op_prg_odb_ltrace_active ("wimax_sched_deq"))

 {

 printf (" - queue(%d) (CID-%d) is NOT empty,
 deficit_counter[%d] restores with weight to [%d].\n",
 q_in_service, ps_q_info_ptr->conn_id, ps_q_info_ptr-
 >deficit_counter - ps_q_info_ptr->weight, ps_q_info_ptr-
 >deficit_counter);

 }

 /* Susan-code: update weight statistic */

 wimax_bs_control_sched_weight_stat_update (ps_q_info_ptr,
 ps_q_info_ptr->weight);

 }

 /* If deficit counter is still negative skip this queue. */

 if (ps_q_info_ptr->deficit_counter <=0)

 ok_to_service = OPC_FALSE;

 if (op_prg_odb_ltrace_active ("wimax_sched_deq"))

 {

 if (ok_to_service)

 printf (" => service it.\n");

 else

 printf (" => skip it. \n");

 }

 }

 /* Until there is a queue to service. There id at least one BW request */

 /* so this condition must be true at some time. */

 } while (!ok_to_service);

/* Return the index of the queue in service. */

 175

q_hdl_ptr->current_q_idx = q_in_service;

FRET (q_in_service);

}

 176

REFERENCE LIST

[1] B. Sardar and D. Saha, "A survey of TCP enhancements for last-hop
wireless networks," IEEE Commun. Surveys Tuts., vol. 8, pp. 20-34, 3rd
Qtr. 2006.

[2] V. Srivastava and M. Motani, "Cross-layer design: a survey and the road
ahead," IEEE Commun. Mag., vol. 43, pp. 112-119, Dec. 2005.

[3] F. Foukalas, V. Gazis and N. Alonistioti, "Cross-layer design proposals for
wireless mobile networks: a survey and taxonomy," IEEE Commun.
Surveys Tuts., vol. 10, pp. 70-85, First Quarter 2008.

[4] G. Song and Y. Li, "Utility-based resource allocation and scheduling in
OFDM-based wireless broadband networks," IEEE Commun. Mag., vol.
43, pp. 127-134, Dec. 2005.

[5] S. Toumpis and A. J. Goldsmith, "Performance, optimization, and cross-
layer design of media access protocols for wireless ad hoc networks," in
Communications, 2003. ICC '03. IEEE International Conference on, 11-15
May 2003, pp. 2234-2240.

[6] K. Ramakrishnan and S. Floyd, “A proposal to add explicit congestion
notification (ECN) to IP,” RFC 2481, Jan. 1999.

[7] D. Kliazovich and F. Graneill, "A cross-layer scheme for TCP performance
improvement in wireless LANs," in Global Telecommunications
Conference, 2004. GLOBECOM '04. IEEE, Dec. 2004, pp. 840-844.

[8] E. Park, D. Kim, H. Kim and C. Choi, "A cross-layer approach for per-
station fairness in TCP over WLANs," IEEE Trans. Mobile Comput., vol. 7,
pp. 898-911, July 2008.

[9] G. Giambene, Resource Management in Satellite Networks, Optimization
and Cross-Layer Design. New York: Springer Science, 2007, Chapter 9.

[10] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down
Approach Featuring the Internet. ,2nd ed. Boston: Addison Wesley, 2003,
pp. 752.

[11] W. R. Stevens, TCP/IP llustrated: The Protocols. , vol. 1, Boston: Addison
Wesley, 1994, pp. 576.

[12] M. Mathis, J. Mahdavi, S. Floyd and A. Romanow. (1996, October). TCP
selective acknowledgment options. [Online]. Available:
http://www.ietf.org/rfc/rfc2018.txt

 177

http://www.ietf.org/rfc/rfc2018.txt

[13] A. Ghosh, D. R. Wolter, J. G. Andrews and R. Chen, "Broadband wireless
access with WiMax/802.16: current performance benchmarks and future
potential," IEEE Commun. Mag., vol. 43, pp. 129-136, Feb 2005.

[14] A. Yarali and S. Rahman, "WiMAX broadband wireless access technology:
Services, architecture and deployment models," in Electrical and
Computer Engineering, 2008. CCECE 2008. Canadian Conference on, 4-
7 May 2008, pp. 77-82.

[15] B. Li, Y. Qin, C. P. Low and C. L. Gwee, "A survey on mobile WiMAX ,"
IEEE Commun. Mag., vol. 45, pp. 70-75, December 2007.

[16] OPNET Technologies, Inc., "Introduction to WiMAX," presented at the
Technology Tutorials Session 1827 OPNETWORK 2007, Washington, DC,
Aug. 2007.

[17] IEEE 802.16 Working Group on Broadband Wireless Access, “IEEE
Standard for Local and metropolitan area networks: Part 16: Air Interface
for Fixed Broadband Wireless Access Systems,” IEEE Std 802.16-2004,
Oct. 1, 2004

[18] IEEE 802.16 Working Group on Broadband Wireless Access, “IEEE
Standard for Local and metropolitan area networks: Part 16: Air Interface
for Fixed Broadband Wireless Access Systems: Amendment 2: Physical
and Medium Access Control Layers for Combined Fixed and Mobile
Operation in Licensed Bands and Corrigendum 1,” IEEE Std 802.16e-
2005 and IEEE Std 802.16-2004/Cor 1-2005, Feb. 28, 2006

[19] OPNET Technologies, Inc., "Understanding WiMAX Model Internals and
Interfaces,” presented at the Discrete Event Simulation for R&D Session
1571 OPNETWORK 2007, Washington, DC, Aug. 2007.

[20] Cisco Systems, Inc. (2004, Jan.). Understanding and Configuring
MDRR/WRED on the Cisco 12000 Series Internet Router. [Online].
Available: http://www.cisco.com/warp/public/63/mdrr_wred_overview.html

[21] J. F. Hayes and T. V. J. Ganesh Babu, Modeling and Analysis of
Telecommunications Networks. Hoboken, New Jersey: John Wiley & Sons,
Inc., 2004, pp. 69.

[22] J. Padhye, V. Firoiui, D. F. Towsley and J. F. Kurose, "Modeling TCP
Reno performance: a simple model and its empirical validation,"
IEEE/ACM Trans. Netw., vol. 8, pp. 133-145, Apr. 2000.

[23] Z. Chen, T. Bu, M. Ammar and D. Towsley, "Comments on Modeling TCP
Reno performance: a simple model and its empirical validation,"
IEEE/ACM Trans. Netw., vol. 14, pp. 451-453, Apr. 2006.

[24] S. Shakkottai, T. S. Rappaport and P. C. Karlsson, "Cross-layer design for
wireless networks," IEEE Commun. Mag., vol. 41, pp. 74-80, Oct. 2003.

 178

http://www.cisco.com/warp/public/63/mdrr_wred_overview.html

[25] A. J. Paulraj, D. A. Gore, R. U. Nabar and H. BolcskeiI, "An overview of
MIMO communications - a key to gigabit wireless," Proc. IEEE, vol. 92, pp.
198-218, Feb. 2004.

[26] A. Cantoni and L. C. Godara, “Fast algorithm for time domain broadband
adaptive array processing,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-
18, pp. 682-699, Sept. 1982.

[27] D. Johnson and D. Dudgeon, Array Signal Processing: Concepts and
Techniques, Prentice-Hall, Englewood Cliffs, NJ, 1993.

[28] J. C. Liberti and T. S. Rappaport, Smart Antenna for Wireless
Communications: IS-95 and Third Generation CDMA Applications,
Prentice-Hall, Englewood Cliffs, NJ, 1999.

[29] D. Branlund, “Stacked Carrier OFDM: Providing High Spectral Efficiency
with Greater Coverage,” Wireless Communications Association
International 7th annual Technical Symposium, San Jose, CA, Jan. 2001.1

[30] A. Demers, S. Keshav and S. Shenker, "Analysis and Simulation of a Fair
Queuing Algorithm," Internetworking: Research and Experience, Vol. 1,
No. 1, pp. 3-26, 1990

[31] A. Parekh and R. Gallager, "A generalized processor sharing approach to
flow control in integrated services networks: the single-node case,"
IEEE/ACM Trans. Netw., Vol. 1, No. 3, pp. 344-357, June 1993.

[32] X. Yang, M. Venkatachalam and S. Mohanty, “Exploiting the MAC layer
flexibility of WiMAX to systematically enhance TCP performance,” IEEE
Mobile WiMAX Symposium, 2007. 25-29 March 2007, pp. 60-65

1 Contact WCAI at +1(202)452 7823 or sahar@wcai.com to obtain copy.

 179

	: INTRODUCTION
	: RELEVANT LAYERS OF THE PROTOCOL STACK
	TCP in a Nutshell
	TCP Congestion Window
	TCP Slow Start
	TCP Congestion Avoidance
	The Advertised Window
	Duplicate ACKs – TCP Fast Retransmit
	TCP Fast Recovery
	TCP Timeout
	Flavours of TCP
	TCP Tahoe
	TCP Reno
	TCP New Reno
	TCP SACK

	WiMAX in a Nutshell
	The WiMAX PHY Layer
	The OFDMA Technology
	Scalable OFDMA – Dynamic Channel Bandwidth
	OFDMA TDD Frame Structure
	Antenna Technology Options

	The WiMAX MAC Layer
	Service Specific Convergence Sublayer
	MAC Common Part Sublayer
	Network Entry
	QoS Provision (802.16 standard: 6.3.5.2)
	Bandwidth Allocation and Request (802.16 Standard: 6.3.6)
	HARQ Option

	: THE PROPOSED CROSS-LAYER TECHNIQUE: THE ALGORITHM, IMPLEME
	Algorithm Overview
	Discussion of Extreme Cases and Limitations of the Proposed

	Design Modification of the TCP Segment Format
	Design Modifications of the WiMAX MAC Layer Operation
	The Analytical Model of the Algorithm
	The Analysis of Queue Service Rate
	The Expected Value of Queue Service Rate

	The Analysis of Queue Delay
	The Analysis of Round-Trip Time
	Analysis of TCP Sending Rate Incorporating the Service Rate

	: AN OVERVIEW AND MODIFICATIONS OF THE OPNET MODELS
	A Brief Modelling Concept of OPNET Modeler
	The OPNET WiMAX Model in a Nutshell
	The Architectural Concept of the OPNET WiMAX Model

	Implementations in the TCP Model
	Implementations in the WiMAX Model
	Extraction and Storage of Cwnd
	Calculation of the Queue Weight

	Configurations of the Simulation Parameters
	Configurations of the TCP Parameters
	Configurations of the WiMAX Parameters

	Validity Check of the Implemented Model

	: OPNET SIMULATION RESULTS
	Two Client Stations Scenario
	2SS – TCP Reno
	2SS – TCP New Reno
	2SS – TCP Reno & SACK

	Four Client Stations Scenario
	4SS – TCP Reno
	4SS – TCP New Reno
	4SS – TCP Reno & SACK

	Six Client Stations Scenario
	6SS – TCP New Reno
	6SS – TCP Reno & SACK

	Eight Client Stations Scenario
	8SS – TCP New Reno
	8SS – TCP Reno and SACK

	Performance with respect to N
	The MAC Layer Delay vs. Number of Stations
	FTP File Download Time vs. Number of Stations
	MAC Throughput vs. Number of Stations

	Base Station Analysis
	Weight Variations across Stations

	: A SUMMARY AND FUTURE EXTENSIONS

