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ABSTRACT 

The paradigm of a traditional wired network protocol stack is a hierarchy of 

services provided by each layer, but its ability to handle an error-prone physical 

medium is severely compromised in wireless networks. Several approaches, 

including cross-layer techniques have been developed to address this problem. 

While much cross-layer research endeavour focused on interactions of the lower 

layers, in this thesis, I present a TCP to MAC cross-layer technique in a 

simulated WiMAX network. Using this cross-layer method, the scarce radio 

resource is intelligently distributed among stations, based on the information of 

congestion window size passing down from TCP. Both analytical and simulation 

models were developed to understand the behavioural dynamics of the proposed 

scheme, and quantify the performance gains. My results show that the proposed 

algorithm delivers a better performance in average end-to-end delay, file 

download time, and throughput when the traffic intensity of the network is 

moderate to high. 
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CHAPTER 1: INTRODUCTION 

One of the features that differentiate wireless networks from wired 

networks is the scarce radio spectrum and time-varying channel quality. A great 

amount of research effort has been expended in attempting to improve the 

performance of wireless networks over what is an inherently error-prone medium 

for signal propagation. In a traditional network protocol stack, Transmission 

Control Protocol (TCP) often acts as the fundamental mechanism to ensure a 

reliable link between end-to-end stations. Unfortunately, while the architecture of 

TCP enables it to perform well over wired networks, it exhibits serious shortfalls 

when deployed over wireless networks. 

Several research endeavours have attempted to tackle the challenges that 

arise when using TCP over wireless links. Sardar et al. [1] contributed a thorough 

and organized survey of various TCP enhancements for last-hop wireless 

networks. Cross-layer communication within the protocol stack was a concept 

that gradually emerged when researchers began to look beyond TCP or a single 

layer itself, and considered the possibilities of communicating among multiple 

layers to attain better performance outcomes. 

Srivastava et al. [2] presented a definition and illustrated different kinds of 

cross-layer designs. A cross-layer design for the protocol stack permits direct 

communication and variable sharing between nonadjacent layers in an otherwise 

restricted protocol stack model. A cross-layer design could involve creation of 
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new interfaces, at which the new interface acts as an agent distributing 

information back and forth between the nonadjacent layers. However, the 

presence of an agent is not mandatory; it is possible to couple two or more layers 

during the design phase such that the functionalities of other layers are taken into 

account when the protocol operates. Another methodology of achieving cross-

layer design is to merge adjacent layers into a superlayer. Finally, a cross-layer 

design can also be achieved by vertical calibration across multiple layers. Both [2] 

and [3] summarize a number of strategies to implement cross-layer 

communications in a protocol stack. 

It is not the intent of this thesis to include all past cross-layer designs. 

Instead, I will outline a few in the following paragraphs. Due to the distinctly 

unreliable trait of wireless channels, numerous research efforts concentrating on 

achieving cross-layer capability have focused on the interaction between the 

physical (PHY) layer and higher layers. Thus, this outline will be organized in a 

lower layer to upper layer sequence. 

Song et al. [4] proposed a dynamic subcarrier assignment scheme in an 

orthogonal frequency-division multiplexing (OFDM) wireless broadband network. 

Considering the advantages of multiple subcarriers in OFDM and multi-user 

diversity in a network cell, certain subcarriers may be in deep fade for one user 

but may not simultaneously be in deep fade for other users. The authors 

determined the available data rate of each subcarrier based on channel state 

information, and dynamically assigned the subcarriers to users according to a 

utility function to differentiate quality of services (QoS). The utility function in this 
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context represents the level of satisfaction of an end-user, which may differ 

depending on user-applications. 

Toumpis et al. [5] presented a cross-layer power-control scheme for 

wireless ad hoc networks, which utilized the mechanism of the ad hoc medium 

access control (MAC) layer as the basis for determining the transmission power 

of a packet. Nodes that successfully capture the channel will transmit at a 

minimum sustainable power as specified by the control packets from the 

intended receiver, during the previous contention period. The energy consumed 

per packet is thus reduced, in comparison to the Carrier Sense Multiple Access 

with Collision Avoidance (CSMA/CA) scheme. In addition, the reduction in 

transmission power diminishes the interference experienced by other nodes, thus 

increasing the probability of those nodes successfully capturing the channel. The 

overall result of this methodology is improvement in throughput at a reduced 

transmission power per packet. 

Adaptive modulation and coding (AMC) is a technique that has been 

demonstrated to successfully deal with the time-varying transmission quality of 

the wireless channel. The modulation and coding scheme at the PHY layer 

adapts according to the channel state, in order to achieve a designated data rate 

within a certain bit error rate (BER) constraint. A number of cross-layer proposals 

were built on top of AMC, each of which incorporated an automatic repeat 

request (ARQ) mechanism at the MAC layer to improve the spectral efficiency in 

terms of bits per transmitted symbol [3]. Similar to AMC, the coding rate of a 

video streaming application can adapt depending on the channel condition and/or 
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the MAC layer performance to attain a QoS determined by an end user or the 

application. 

Moving back to the upper layers of the network protocol stack, the 

problematic performance of TCP when deployed over wireless networks is a 

topic of research that attracts much attention. The explicit congestion notification 

(ECN) [6] enhancement for TCP captured the essence of the cross-layer concept. 

In ECN, a router incorporates active queue management to detect congestion 

before the queues of the router overflow. The router then explicitly indicates the 

congestion condition during the incipient congestion phase by marking the 

header field of a packet which originates from an ECN-capable network. TCP of 

the sender then initiates its congestion avoidance mechanism upon the detection 

of a marked packet. Consequently, TCP is capable of differentiating between an 

error over the wireless link due to degraded channel quality and one due to 

network congestion. 

Kliazovich et al. [7] introduced a Snoop-alike agent, which was situated in 

between TCP and the MAC layer at both sender and receiver nodes. In the IEEE 

802.11 Standard, the reliable delivery of data is established using the ARQ 

mechanism. The authors argued that in such scenario, the number of 

acknowledgments (ACKs) required for a single transmission is three-fold. The 

first ACK is the indication of successful delivery of the data packet at the MAC 

layer. The second ACK is rooted from the ACK generation of TCP, and the third 

ACK originates from the MAC layer to indicate the successful transmission of the 

TCP ACK. To eliminate duplicate confirmations of ACKs, their proposed agent 
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generates a TCP ACK locally at the sending node upon receiving the first 

indication of successful delivery of the data packet at the MAC layer. On the 

other hand, the agent at the receiving node intercepts the ACK generation by 

dropping the TCP ACK. The bandwidth usage is thus economized, but at the 

same time, the end-to-end semantic of TCP is violated. 

Park et al. [8] introduced a notion of channel access cost, which was 

estimated based on the aggregated traffic load and per-station bandwidth usage 

evaluated at the MAC layer. A pseudo random number that is uniformly 

distributed between zero and one is generated and compared to the access cost. 

If the random value is less than the access cost, the high access cost indicator is 

set. An upward notification that discourages the participation of the station is 

conveyed to TCP to reduce its sending rate. In order to minimize the changes 

required to the original protocol stack, the notification is sent to the Internet 

Protocol (IP) layer. The ECN mechanism is then utilized to activate the 

congestion algorithm of TCP. On the other hand, if the access cost is low, the 

station is encouraged to participate more by elevating the sending rate of TCP, 

but this scenario was left open for future extension. 

Yang et al. [32] proposed an asymmetric link adaptation for TCP-based 

applications in a WiMAX network. Due to the asymmetric load of uplink and 

downlink traffic of a TCP-based application, an aggressive modulation and 

coding scheme is utilized in combination with the ARQ mechanism of the MAC 

layer in the downlink to achieve an uncompromised TCP performance in a 

wireless network. In the uplink, a conservative modulation and coding scheme is 
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employed instead, to ensure the robustness and response time of the return ACK 

packets. In addition, a scheduler that attempts to maximize the benefit of the 

queue weight, data rate, delay, and queue size is dedicated to the best-effort 

service type of WiMAX. 

Giambene et al. [9] contributed a diverse study on the use of cross-layer 

designs in satellite communications. In Section 9.4 of [9], the authors proposed a 

novel TCP-driven dynamic resource allocation scheme, where the resource 

allocated at the MAC layer is dependent on the condition of TCP. In particular, 

they formulated a prediction relating the growth of resource requests on a per 

frame basis to the change in congestion window size in TCP. The MAC layer 

then reallocates the resources based on this prediction before TCP reacts to this 

growth in congestion window size. This traffic prediction is useful in a high 

bandwidth-delay product network, such as a satellite network, due to high end-to-

end response time. However, the same prediction process provides only limited 

advantages in a terrestrial network. 

In this thesis, I have devoted my research effort to an alternative cross-

layer scheme, inspired by the work of Giambene et al. TCP plays a key role in 

achieving the best possible level of a predefined end-to-end performance metric. 

Nevertheless, TCP operating independently cannot deliver optimum performance 

without being supplemented by knowledge from the layers below.  In a wireless 

environment, lower layers are able to respond better to fast fluctuating channel 

states than TCP. To rectify this flaw of restricted sharing of information within the 
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protocol stack, I propose a scheme that allows TCP to communicate with lower 

layers, in particular the MAC layer. 

In the proposed scheme, the MAC layer scheduler will adjust its service 

resources dedicated to each TCP flow according to the congestion window size 

received from TCP. In other words, the MAC scheduler adaptively allocates the 

service resources based on the network condition estimated by TCP. The subtle 

advantage of incorporating the MAC layer with TCP instead of the PHY layer is 

that TCP assesses the network condition at the end-to-end host level, whereas 

the PHY layer only evaluates the air-link quality at the last-hop. 

The MAC layer technology employed in both [7] and [8] were wireless 

local area networks (WLAN). However, since the broadband networks are 

evolving to carry expanding numbers of multimedia applications, a cross-layer 

optimization specific to a terrestrial network is necessary. WiMAX is chosen as 

the wireless network platform for my study because WiMAX is projected to be 

one of the contenders for the next generation wireless metropolitan area network 

(WMAN). The OFDM and orthogonal frequency-division multiple access (OFDMA) 

property of WiMAX allows it to deliver high data rates with great flexibility. In 

addition, the WiMAX has a number of QoS parameters defined at the MAC layer, 

which allows its scheduler to deliver differentiated services to the clients. The 

proposed scheme is specific to TCP-based application but not limit to best-effort 

service type of WiMAX. This thesis employed OPNET® WiMAX model as the 

simulated model for the WiMAX network. 
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This thesis introduces background knowledge on the relevant layers (i.e. 

TCP and WiMAX) of the network protocol stack in Chapter 2, followed by a 

detailed algorithm and analysis on the proposed technique in Chapter 3. Chapter 

4 outlines the implementations of the proposed technique in the OPNET models. 

The simulation results are presented and discussed in Chapter 5. Finally, the 

thesis concludes with a summary of contributions and future extensions in 

Chapter 6. 
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CHAPTER 2: RELEVANT LAYERS OF THE PROTOCOL 
STACK 

The two protocol stack models that are most widely referenced in 

networking are the Open System Interconnection (OSI) model and the Internet 

protocol suite, which are commonly referred to as the 7-layer and the 5-layer 

model respectively. The OSI model is descended from the Internet protocol suite, 

inheriting its original architecture, while possessing additional functionality 

defined at the end-host application level. Since the focus of this thesis is on the 

cross-layer technique that transfers data across the network, I will be using the 5-

layer Internet protocol suite as the reference model. 

The Internet protocol suite consists of five layers from top to bottom: 

application, transport, network, data link and physical. The host layers reside on 

the end-hosts, which carry out commands issued by end-users, and provide data 

transport services at the end-to-end host level. In contrast, the media layers are 

mostly distributed in the core of networks, at which they conduct data 

transmission in the network core, and physically deliver data across links. Each 

layer is assigned a dedicated term as illustrated in Figure 2.1 [10] to represent its 

protocol data unit (PDU). This thesis will address the data units at each layer 

according to the Figure, and the term ‘packet’ will refer to a general formatted 

block of data in a packet-switch network. 
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Figure 2.1: The Internet protocol suite 

Since the proposed cross-layer technique involves modifications only at 

TCP and WiMAX, the rest of this chapter will be devoted to providing background 

information on these two layers. Most of the material discussed in the TCP 

section is based on W. R. Stevens’ TCP/IP book [11] and J. Kurose’s computer 

networking book [10]. 

2.1 TCP in a Nutshell 

TCP is the most commonly utilized transport protocol in networks, and it 

provides a reliable and connection-oriented data transmission channel between 

end-to-end hosts. TCP establishes the reliable end-to-end transport of data by 

the use of sequence number and acknowledgment mechanisms. Messages 

passing down from the application layer are encapsulated into TCP segments, 

each of which is marked with a sequence number. The sequence number 

identifies the byte number of the first byte of each application data in the segment. 
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As multiple segments traverse across the network from sender to receiver, TCP 

at the receiver station identifies which segment is received based upon the 

sequence number. It then demultiplexes the segments in succession and passes 

the assembled message up to the application layer. The receiver in turn 

generates acknowledgments (ACKs) back to the sender upon the receiving of 

these segments. Consequently, the sender realizes whether a segment has been 

successfully transmitted to the destination and in sequence. 

2.1.1 TCP Congestion Window 

TCP employs a sliding window mechanism to control its sending rate. The 

size of the sliding window corresponds to the maximum amount of data that can 

be sent into the network before being acknowledged. The window slides across a 

stream of sequenced data in an ascending order as acknowledgments are 

returned to the sender. Upon receiving these acknowledgments, the window 

opens in size to increase its sending rate. Figure 2.2 illustrates the concept of 

sliding windows in TCP. 

 
Figure 2.2: The sliding window 

In TCP, the parameter representing the size of the sliding window is 

denoted as the congestion window (cwnd), and this parameter is possessed and 

controlled by TCP on the sending node. The unit of cwnd is maintained in bytes 

and is initialized to one maximum segment size (MSS) at the beginning of a 
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transmission session. The MSS is the largest size of a segment in bytes that 

TCP will send, and this information is exchanged between sender and receiver at 

the connection-establishment time. The growth of cwnd is dependent on the 

number of acknowledgments received, and is divided into two phases: slow start 

and congestion avoidance. 

2.1.2 TCP Slow Start 

TCP begins a data transmission session with the slow start phase. In slow 

start, TCP initially assumes that the network is congestion-free, thus aggressively 

increasing cwnd exponentially. This is done in the hope achieving the optimum 

performance faster. The growth of cwnd in slow start phase is described in 

Equation 2.1, where segsize represents the size of one segment in bytes. 

returnedACKsofnumbersegsizecwnd ×=∆  (2.1)

Segsize is used instead of MSS to incorporate the possibility of 

encountering a smaller maximum transmission unit (MTU) along the transmission 

path between sender and receiver. This path MTU could limit the actual segment 

size to a smaller value than the MSS that was initially announced by the two end-

hosts. 

Consider the possibility that packets are never lost in a network, and the 

cwnd is initialized to one segsize at the beginning of a session. Cwnd is 

incremented by one segsize as the first segment is successfully transmitted and 

acknowledged, resulting in a growth from one to two segsizes. In the second 

round, two segments are sent and acknowledged resulting in two segsize 
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increments in addition to the original 2 segsizes. The process continues, and 

consequently results in an exponential rise in cwnd in every round. Despite an 

aggressive injection of data during the slow start phase, TCP still takes 

precautions to avoid flooding the network. To avoid this possibility, TCP enters 

the congestion avoidance phase, and increments cwnd in a more conservative 

fashion. 

2.1.3 TCP Congestion Avoidance 

The slow start and the congestion avoidance phases are differentiated by 

the result of a comparison of the cwnd value to a slow start threshold value, 

ssthresh. TCP operates in the slow start phase if the value of cwnd is smaller or 

equal to ssthresh; it operates in the congestion avoidance phase if otherwise. 

The change of cwnd in the congestion avoidance phase is described in Equation 

2.2. 

⎟
⎠
⎞

⎜
⎝
⎛ ×

⋅
=∆ segsizereturnedACKsofnumber

cwnd
segsizesegsizecwnd 1,min  (2.2)

The equation restrains the maximum increment in one round to one 

segsize, resulting in an approximately linear growth in cwnd. Figure 2.3 illustrates 

the fundamental ideas of TCP slow start and congestion avoidance phases. One 

round usually corresponds to one round-trip time (RTT), which is measured from 

the time that a segment leaves the sender node to the time an ACK that covers 

the segment arrives at the sender. 
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Figure 2.3: An illustration of the cwnd growth in TCP slow start and congestion avoidance 

phases 

2.1.4 The Advertised Window 

While cwnd continues to grow if no packet drop occurs, TCP on the 

sender node can never transmit more segments than the value of a window size 

advertised by the receiver. The advertised window indicated by the receiver 

represents the maximum buffer space that the receiver station is capable of 

sustaining. In the case of a fast server, fast transmission link and a slow client, 

this mechanism ensures that the server does not overwhelm the client with 

intense traffic, thus avoiding packet loss due to receiver buffer overflow. As a 

result, if cwnd is the flow control imposed by the sender, the advertised window 

can be viewed as the flow control imposed by the receiver. 
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2.1.5 Duplicate ACKs – TCP Fast Retransmit 

A TCP segment includes an ACK number field to indicate the last 

consecutive segment of a data stream that was successfully received. In the 

event that one or more segments are missing from a window of transmitted 

packets, arriving segments which are sequenced after the first missing segment 

cause TCP on the receiver node to generate ACKs with the same ACK number 

as the previous one. These ACKs are referred to as duplicate ACKs. 

Duplicate ACKs occur when segments are lost or arrive out of order; 

however, the number of duplicate ACKs generated due to an out of order arrival 

is significantly less than that of a packet loss event. Therefore, TCP utilizes the 

number of duplicate ACKs to infer a packet loss in the network. More specifically, 

when TCP detects three duplicate ACKs, it immediately retransmits the missing 

segment indicated by the duplicate ACKs, in an effort to recover a packet that is 

presumably dropped in the network. This mechanism is known as fast retransmit. 

In the absence of fast retransmit, TCP receives duplicate ACKs but waits 

for a retransmission timer to timeout before resending the missing packet. This 

significantly reduces the performance of TCP because the range of a 

retransmission timer is typically in seconds as opposed to milliseconds for the 

detection of duplicate ACKs. 

2.1.6 TCP Fast Recovery 

Upon the activation of fast retransmit, TCP initiates the fast recovery 

algorithm. In fast recovery, ssthresh is set to one-half of the minimum between 

the current cwnd and advertised window values. The lost segment inferred from 
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the duplicate ACKs is retransmitted, and the new cwnd value is reset to ssthresh 

plus 3 times the segment size. Meanwhile, each additional duplicate ACK 

increments the cwnd value by one segment size. The motivation of this strategy 

is to encourage TCP on the sender node to continue sending data, thus 

maintaining the data transmission even during a packet loss event. As the ACK 

of the retransmitted segment is returned to the sender, it acknowledges the last 

in-order segment that has successfully arrived at the receiver, but queued in the 

buffer. After that, the cwnd is restored back to ssthresh plus 3 times the segment 

size. As a result, TCP enters congestion avoidance phase after fast retransmit 

instead of slow start, hence, the name fast recovery. Figure 2.4 is a figure from 

[11] with additional annotations to illustrate the changes in the values of cwnd 

and the sequence number of the segments sent during the fast retransmit and 

fast recovery phases. 
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Figure 2.4: An illustration on the behaviour of cwnd and sequence number during the fast 

retransmit and fast recovery phases 

2.1.7 TCP Timeout 

Both fast retransmit and fast recovery are utilized to mitigate the effect of a 

packet loss event while TCP is in operation. However, fast retransmit and fast 

recovery can only be activated by a sufficient number of duplicate ACKs, in this 

case three. When a considerable amount of data in a window is lost, or when 

ACKs fail to return, a condition of insufficient duplicate ACKs received arises, 

leaving TCP and data transmission to idle. Under these circumstances, TCP 

relies on a timer to determine when to retransmit the missing packets, and when 
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to reactivate the transmission process. This timer is referred to as the 

retransmission timeout (RTO). 

RTO is a parameter that is critical to TCP performance. A large RTO value 

leaves TCP idling longer than desired before retransmission occurs, thus 

prolonging the response time of TCP when encountering a loss event. On the 

other hand, a small RTO value gives rise to unnecessary retransmissions. TCP 

deems timeout to be a more serious consequence of network congestion than 

duplicate ACKs. Therefore, TCP throttles the traffic flow by reducing cwnd to one 

segment size each time after a retransmission timeout. Small RTO values result 

in unnecessary stalls in data transfer, thus degrading the performance of TCP. 

The value of RTO is calculated based on estimations of RTT. For more 

details on RTT estimation and RTO calculation, please refer to Chapter 21 of [11]. 

2.1.8 Flavours of TCP 

Section 2.1 has so far dealt with the fundamental operations of TCP; 

however, over the course of its development, TCP has been modified many 

times in attempts to improve the responses towards incidents of segment drops. 

These modifications are often referred to as different flavours of TCP. In this sub-

section, I will outline a few selected flavours of TCP. 

2.1.8.1 TCP Tahoe 

TCP Tahoe was the first version of TCP to incorporate the slow start, 

congestion avoidance, and fast retransmit mechanisms. Nevertheless, the lack of 

the fast recovery mechanism caused Tahoe to enter the slow start phase every 
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time a packet is lost in the network, in spite of the fact that a loss is inferred by 

either a timeout or triple duplicate ACKs. As a result, Tahoe is not ideal when 

packet loss is significant. 

2.1.8.2 TCP Reno 

In addition to the mechanisms in TCP Tahoe, fast recovery was first 

introduced in TCP Reno in an attempt to assess different degrees of congestion 

levels in networks. It differentiates between a triple duplicate ACKs and a timeout 

event. As previously described in Section 2.1.6, Reno retransmits the lost 

segment upon activation of fast retransmit, and cwnd is incremented by one 

segment size for each additional duplicate ACK received. In Reno, the increases 

in cwnd lead TCP to send new segments during the fast recovery phase. In the 

event of a single packet drop in a window of transmitted data, Reno can quickly 

recover the dropped segment and keep data flowing. It thus performs better than 

Tahoe. However, Reno’s major shortcoming is exposed when it encounters more 

than one segment drop in a window of transmitted data. 

2.1.8.3 TCP New Reno 

New Reno includes all mechanisms in TCP Reno, but the subtle 

difference between Reno and New Reno is the interpretation of additional 

duplicate ACKs received by the sender node after entering the fast recovery 

phase. New Reno assumes that the occurrences of packet drops are correlated. 

In other words, packet drops can happen consecutively, which is usually a 

legitimate assumption in wireless networks. Instead of proceeding with the 
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transmission of new segments upon receiving of additional duplicate ACKs in fast 

recovery, New Reno retransmits the segment immediately following the 

previously transmitted segment that has not yet been acknowledged. This 

interpretation becomes particularly useful when consecutive packets are dropped 

in a window of transmitted data. As a result, New Reno performs better than 

Reno in an environment that exhibits correlated packet drops such as wireless 

networks. 

2.1.8.4 TCP SACK 

The selective acknowledgment (SACK) outlined here is based on RFC 

2018 [12]. In SACK, the received data is treated as blocks of data demarcated by 

missing segments. In other words, the TCP on the receiver node explicitly 

indicates which blocks of data it has received in the SACK option field of a TCP 

segment header. A block of data is defined by two edges, left and right, where a 

left edge corresponds to the sequence number of the first segment in a block. 

The right edge of a block is represented by the sequence number of the first 

missing segment immediately following the last received segment of the block. 

Provided with this information, TCP on the sender node is capable of 

retransmitting only segments that have not yet successfully arrived at the 

receiver, instead of wasting resources on retransmitting segments that are 

queued in the receiver’s buffer. The SACK option is designed to remedy the flaw 

of TCP Reno in the wireless transmission environment, and it avoids 

unnecessary retransmissions, as it may be the case for TCP New Reno. 
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This ends the discussion of TCP in this thesis. The next layer that is 

involved in this thesis is known as the WiMAX MAC layer. Materials presented in 

the next section are based on three IEEE overview papers [13] [14] [15], the 

IEEE 802.16 standard [17] [18], and the OPNET documentation [16] [19]. 

2.2 WiMAX in a Nutshell 

WiMAX is an acronym for Worldwide Interoperability for Microwave 

Access; it specifies a high bandwidth broadband technology for a WMAN. 

WiMAX is rooted from the IEEE 802.16 standard and is maintained by a non-

profit industrial consortium called the WiMAX Forum®. The major task of the 

WiMAX Forum is to develop WiMAX system profiles that are complementary to 

the IEEE 802.16 standard, and to ensure that the devices developed based on 

these profiles are interoperable across manufacturers. Due to this close 

relationship, WiMAX and 802.16 are often referred to interchangeably. 

The IEEE 802.16 standard was first drafted in 2001, and was initially 

intended to provide high bandwidth communication with line-of-sight for fixed 

wireless networks, operating at the 10-66 GHz frequency bands. Nevertheless, 

the amendment project that aimed to provide non-line-of-sight wireless 

communication, operating at the 2-11 GHz range, received much attention, and 

led to the completion of 802.16a-2003. The standard then introduced some 

enhancement features in the uplink, and evolved to 802.16-2004 (also known as 

802.16d) that specified the technical details of the air interface and the access 

scheme of a fixed broadband wireless service. The mobility feature was later 
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added in the 802.16e-2005 amendment, which included significant antenna 

technology enhancements. 

WiMAX, too, initially only specified profiles for fixed broadband wireless 

services, but it also underwent reviews to address the mobility issue. Hence, the 

mobile WiMAX was developed under the 802.16e-2005 specifications to support 

full mobility services. This thesis involves only modifications on the WiMAX MAC 

layer; however, since WiMAX is highly anticipated as one of the next generation 

wireless technologies, I will also outline a few key features of the WiMAX PHY 

layer. 

2.2.1 The WiMAX PHY Layer 

The IEEE 802.16 standard defines five specifications for the PHY layer, 

including WirelessMAN-SC, WirelessMAN-SCa, WirelessMAN-OFDM, and 

WirelessMAN-OFDMA. The first two specifications are defined based on the 

single-carrier technology, whereas the later two are defined based on the OFDM 

multi-carrier modulation. Over the course of the wireless development, OFDM is 

deemed as a more robust and efficient technology than the legacy single-carrier 

techniques for wireless networks. Therefore, WiMAX adopts both WirelessMAN-

OFDM and WirelessMAN-OFDMA designs from the IEEE 802.16 standard, 

which are targeted for non-line-of-sight services operating at the frequency bands 

below 11 GHz. The flexibility offered by the OFDMA scheme makes it one of the 

most appealing features associated with WiMAX. 
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2.2.1.1 The OFDMA Technology 

OFDMA is a multiple access scheme that builds on top of OFDM. Signals 

in OFDMA are transmitted with multi-carriers, in which each user is allocated with 

a subset of subcarriers for signal transmission and multiple access. The property 

of multiple subcarriers provides the OFDMA technology an inherent flexibility for 

sub-channelization across sectors in a network cell, and QoS differentiation 

among users. 

One subchannel consists of a subset of subcarriers, of which the 

subcarriers in a subchannel can be distributed across the whole spectrum, or 

adjacently allocated as blocks of subcarriers. When subcarriers are adjacently 

allocated, it allows the use of AMC to achieve more efficient signal transmission. 

The QoS differentiation can be established by assigning a distinct code 

spreading factor to each subchannel, thus resulting in different transmission rates 

in each subchannel. Furthermore, the possibilities of dynamic subcarrier 

assignment and power adaptation depending on the subchannel condition and 

the QoS provisions can also be realized in an OFDM-based network. 

OFDM is a frequency-division multiplexing technique that allocates 

subcarriers that are orthogonal to each other in the frequency spectrum. This 

reduces the inter-channel interferences, and allows the subcarriers to be closely 

spaced. The OFDM technology utilizes multiple low data-rate narrowband 

subcarriers instead of single rapidly modulated wideband carrier. The low data 

rate lengthens the symbol time, thus reducing the inter-symbol interference, and 

consequently leads to a simpler and more affordable equalization process. These 
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fundamental properties of OFDM make it robust, spectral efficient, and thus 

appealing to be deployed in a severe channel condition such as the wireless 

medium. Nevertheless, OFDM has a shortcoming due to its vulnerability towards 

Doppler shift effect because of the closely spaced subcarriers. This effect may 

become more serious as the mobility support is introduced to the standard. 

2.2.1.2 Scalable OFDMA – Dynamic Channel Bandwidth 

Scalable OFDMA is a form of OFDMA that has adjustable channel 

bandwidth based on the fast Fourier transform (FFT) sizes. The channel 

bandwidth changes while the actual subcarrier spacing remains fixed; only the 

grouping of subcarriers is changed. Table 2-1 shows the correspondences of the 

FFT sizes to channel bandwidth defined in the IEEE 802.16 standard. 

Table 2-1: FFT sizes and the corresponding channel bandwidth in WiMAX 

FTT Size Channel Bandwidth 

128 1.25 MHz 

512 5 MHz 

1024 10 MHz 

2048 20 MHz 
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2.2.1.3 OFDMA TDD Frame Structure 

When implementing a time division duplex (TDD) system in WiMAX, an 

OFDMA frame is divided into the downlink (DL) transmission period followed by 

the uplink (UL) transmission period. A preamble announces the initiation of a 

frame, followed by a transmit/receive transition gap (TTG) in between the DL and 

UL transmission periods, and finally a receive/transmit transition gap (RTG) in 

between two frames. During the DL transmission period, a downlink map (DL-

MAP) is placed after the preamble to indicate allocations and burst profiles of the 

data bursts in the DL subframe. Similarly, an uplink map (UL-MAP), if available, 

contains the entire access information for the uplink. The frame structure can be 

viewed as two-dimensional space that spans across time (i.e. symbol time) in the 

x-axis and across frequency (i.e. subchannel or subcarrier) in the y-axis. Figure 

2.5 [18] illustrates the WiMAX OFDMA TDD frame structure. 
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Figure 2.5: The WiMAX OFDMA TDD frame structure 

2.2.1.4 Antenna Technology Options 

Beside the intrinsic flexibilities offered by the OFDMA technology, WiMAX 

employs many advanced antenna technologies as options to enhance its PHY 

layer capability. They include multiple-input and multiple-output (MIMO) [25] and 

adaptive antenna system (AAS) [26]-[29] technologies. MIMO is a technique that 

uses multiple antennas at both the sender and receiver side to achieve 

multiplicative increases in data throughput without extra bandwidth or transmit 

power consumption. AAS is a system that utilizes multiple antennas, and 
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combines the antenna pattern and signal processing to reduce interference, thus 

improving the system capacity. 

This sub-section has summarized a few key features in the WiMAX PHY 

layer. The next sub-section will describe the specifications in the WiMAX MAC 

layer. 

2.2.2 The WiMAX MAC Layer 

The WiMAX MAC layer is divided into three sublayers from top to bottom, 

the service specific convergence sublayer, MAC common part sublayer and the 

security sublayer. The convergence sublayer supports two types of services; one 

is for asynchronous transfer mode (ATM), and the other one is packet service for 

packet-switched networks. The common part sublayer provides utilities that are 

common to both types of services in the convergence sublayer. The major 

functionalities of the common part sublayer include but are not limited to network 

entry, connection management, QoS control, air-link control, PDU operation, 

mobility and power management, and multicast and broadcast services. This 

thesis does not intend to describe the MAC common part sublayer in whole, but 

will outline a few key features in the following sub-sections. 

The security sublayer is the third sublayer in the MAC layer, which is 

immediate above the PHY layer. It is responsible for privacy, authentication and 

confidentiality for the subscriber stations in the network. The security sublayer is 

not relevant to the discussion of this thesis, thus will not be discussed further in 

this thesis. 
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2.2.2.1 Service Specific Convergence Sublayer 

The major task of the convergence sublayer is to transform each higher 

layer PDU into a MAC service data unit (SDU), and map it to the appropriate 

transport connection according to a set of classification rules. Some examples of 

the classification rules includes the matching of IP source/destination addresses, 

application source/destination port numbers, and IP type of service (ToS) 

specifications. A matched packet is sent to a transport connection, which is 

referenced by a connection identifier (CID). A CID identifies a unidirectional 

transport connection between a base station (BS) and a subscriber station (SS). 

In other words, the CIDs of the DL and UL transport connections between the 

same BS and SS pair are unique. Figure 2.6 [17] illustrates the idea of packet 

classification in the convergence sublayer. Please note that the classification can 

be performed by either the BS or SS, depending on the transmission direction. 
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Figure 2.6: Packet classification of the service specific convergence sublayer 

2.2.2.2 MAC Common Part Sublayer 

The IEEE 802.16-2004 specifies two modes of operation in the MAC 

common part sublayer; one of which is the point-to-multipoint (PMP) mode, and 

the other one is the mesh mode.  The PMP mode operates like a typical 

centralized network system, where a number of client stations (i.e. SSs) are 

connected to and served by a centralized server station (i.e. BS). The downlink 

transmission is broadcast in the network, whereas the uplink transmission is 

admitted on a demand basis. The frame structure is partitioned into DL and UL 

subframes as it is illustrated in Figure 2.5 in Section 2.2.1.3. 

The mesh operation mode is organized in a similar fashion as an ad hoc 

network, in which each station is allowed to establish direct connection with each 

other. The frame structure has no explicit DL and UL subframe separation as in 
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the PMP mode. Nevertheless, the mesh mode is not the focus of this thesis, thus 

the following content will assume the mode of operation is PMP. 

2.2.2.2.1 Network Entry 

Upon the entry of a client into the network, the SS scans through its 

frequency list attempting to synchronize with a BS. The BS performs the 

admission control algorithm to decide whether to admit the SS, based on the 

QoS requirements requested by the SS and the current resource availability of 

the BS.  If admitted, the BS generates a set of CIDs and connections, including 

the management and transport connections, to associate with the SS. Three 

pairs (i.e. DL and UL) of management connections are established for control 

packets, and the transport connection is used for data transmission. Along with 

the new CIDs, the BS also assigns new service flow identifiers (SFIDs) to the 

new data flows associated with the station. A service flow (SF) is a unidirectional 

flow of MAC SDUs between a pair of BS and SS, of which is provided with a 

specific set of QoS parameters, and an SFID uniquely identifies the service flow. 

2.2.2.2.2 QoS Provision (802.16 standard: 6.3.5.2) 

If OFDMA is deemed as the most important property of the WiMAX PHY 

layer, the QoS provision is perhaps one of the most intriguing features defined in 

the WiMAX MAC layer. Due to the association of an SFID with a CID, every 

packet arriving in the WiMAX network is related to a set of QoS parameters 

supported by the WiMAX scheduler. WiMAX defines five types of uplink 

scheduling services: unsolicited grant service (UGS), real-time polling service 
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(rtPS), extended real-time polling service (ertPS), non-real-time polling service 

(nrtPS) and best effort (BE) service. 

The UGS is granted a fixed bandwidth allocation for a data stream that 

consists of a constant data packet generation in periodic intervals. This service 

type is suitable for real-time applications such as voice over IP (VoIP). The rtPS 

is issued with periodic transmission opportunities for bandwidth requests. This 

type of services is ideal for real-time variable bit rate traffic such as video and 

audio streaming. A newly defined scheduling type in 802.16e-2005 is ertPS, 

which combines the traits of UGS and rtPS. The ertPS scheduling type is offered 

with unsolicited bandwidth grants but at a variable bandwidth. This aims to 

support data streams that have variable size data in a periodic interval such as 

VoIP with silence suppression. 

The nrtPS scheduling type is appropriate for delay-tolerant applications, 

such as FTP, but requires a minimum service rate. This scheduling service uses 

contention or unicast request opportunities to issue requests for bandwidth. 

Finally, the BE scheduling type is served based on demand basis, and it is not 

provided with bandwidth reservation or any QoS provision. Table 2-2 

summarizes the properties and the QoS parameters associated with each type of 

uplink scheduling service in the WiMAX MAC layer. 
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Table 2-2: A summary of types of scheduling services in the WiMAX MAC layer 

Scheduling  Traffic Traits Applications QoS Specifications 

UGS Real-time periodic 

constant bit rate 

VoIP Max sustained traffic rate

Max latency, Tolerated jitter

Unsolicited grant interval 

rtPS Real-time periodic 

variable bit rate 

Video/audio 

streaming 

Min reserved traffic rate

Max sustained traffic rate

Max latency

Unsolicited polling interval 

ertPS Real-time periodic 

variable bit rate 

VoIP with 

silence  

suppression 

Min. reserved traffic rate

Max. sustained traffic rate

Max latency, Tolerated jitter

Unsolicited grant interval 

nrtPS Non-real-time variable 

bit rate 

FTP Max sustained traffic rate

Min reserved traffic rate 

BE No QoS requirements Web browsing Max sustained traffic rate 

 

2.2.2.2.3 Bandwidth Allocation and Request (802.16 Standard: 6.3.6) 

In UL, when a SS has data to send, it generates requests to inform the BS 

the amount of bandwidth it requires. The request is specified in number of bytes, 

including the MAC header and payload, and it is polled by the BS at designated 

time. When a poll is unicast, the receiving SS is directly allocated with sufficient 
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bandwidth to make a request. In contrast, if a poll is broadcast or multicast to a 

group of subscriber stations, an SS belonging to the polled group contents for an 

opportunity to send the request. Based on the QoS specification of the 

connection and resource availability, the BS determines which request is 

accepted, and generates a grant. A grant is a burst profile embedded in the UL-

MAP, indicating the bandwidth boundaries allocated to the SS in a subframe. 

Bandwidth requests are constructed on a per connection basis, but the grants 

are issued on a per SS basis. Figure 2.7 illustrates the procedure of an rtPS or 

an nrtPS connection requesting for bandwidth for data transmission. 
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Figure 2.7: The bandwidth request mechanism of an rtPS or an nrtPS connection in the UL 

direction 
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2.2.2.2.4 HARQ Option 

The hybrid ARQ (HARQ) is an option defined in the WiMAX MAC common 

part sublayer, but it is only supported under the OFDMA PHY profile. HARQ is an 

error control mechanism that is based on the stop-and-wait protocol. HARQ 

enhances the performance of a connection in a poor channel condition at the 

cost of throughput reduction. A corrupted frame is stored and retransmitted. 

Upon the retransmission, the receiving node combines the retransmitted and 

previously stored corrupted packet to attain a better signal-to-noise (SNR) and 

coding gain. The HARQ mechanism can be enabled on a per CID basis. 

This ends the material in WiMAX that is included in this thesis. This 

chapter has provided background on TCP and WiMAX. The next chapter will 

focus on presenting the proposed cross-layer technique involving TCP and the 

WiMAX MAC layer. 
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CHAPTER 3: THE PROPOSED CROSS-LAYER 
TECHNIQUE: THE ALGORITHM, IMPLEMENTATIONS 
AND ANALYTICAL MODEL 

As described in Chapter 2, TCP is one of the host layers that reside on 

end-hosts, and the MAC layer is one of the media layers, which operate at the 

network core. TCP acts in the fundamental role of controlling the end-to-end data 

transport, and injecting data into the network at variable rates, depending on its 

assessments of the network condition over the entire transmission path. 

Nevertheless, TCP is logically further from the physical transport medium than 

the MAC layer; therefore, it is not capable of adapting well to a rapidly changing 

wireless link. The MAC layer, which is the bottommost sublayer of the link layer, 

is logically situated directly above the physical medium, and it delivers data 

across the wireless link. Though TCP and the MAC layer operate concurrently 

over the same network condition, they have different perspectives. Instead of 

operating independently of each other, it is more beneficial to allow 

communication between the two layers to achieve a better comprehension of the 

network state. 

3.1 Algorithm Overview 

TCP utilizes many mechanisms, such as duplicate ACKs and RTT 

estimations, in an attempt to infer the network condition. The key parameter that 

reflects the consequences of these inferences is the size of congestion window. 
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This parameter, cwnd, regulates the sending rate of TCP segments; in other 

words, it is an implicit indication of how a TCP connection perceives the state of 

network congestion over the entire data transmission path. More significantly, it 

determines the quantity and the rate of packets arriving at the MAC layer. Since 

the wireless band is a scarce resource, it is critical that the scheduler optimizes 

its resource allocation to the desired connections. The cwnd provides information 

on the packet arrival rate at the MAC layer, and a complementary aspect of the 

network condition. Thus, by incorporating the cwnd parameter into the MAC layer, 

it is capable of allocating its resources in a more intelligent fashion. 

At the WiMAX MAC layer, a connection with a scheduling service type of 

UGS, rtPS, ertPS, or nrtPS is assigned a dedicated queue, and the queue is 

associated with a specific set of QoS parameters as described in Section 2.2.2. 

One of the universally adopted scheduling schemes is Weighted Fair Queuing 

(WFQ) [30], [31], which has also been implemented in the OPNET WiMAX model. 

Depending on the QoS specification, the weight assigned to each queue can be 

different. This weight value essentially determines the amount of resources that 

the MAC scheduler agrees to allocate to the queue. 

The weight of a queue is resolved according to the QoS requirement of 

the queue at the time of admission, and it remains fixed throughout the 

connection session. However, the MAC scheduler should be able to adapt the 

manner in which it distributes its resources. Thus, I propose that the weight of 

each queue should fluctuate with respect to the cwnd values from TCP. More 

specifically, I propose that the weight of each queue should vary according to 
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Equation 3.1, where W represents the original weight assigned to the queue at 

admission time, c denotes the cwnd values of the TCP flow associated with the 

queue, and a is the coefficient of the weight-adjusting factor. The subscript n 

denotes the nth queue, and the subscript t represents the total of a property of all 

N queues in the WiMAX network. 
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The resulting weight is a value that is reflective of the network congestion 

condition as perceived by a TCP flow. It grants a queue an extra portion of its 

original weight, and the proportion is determined by comparing the cwnd value of 

the queue to that of other queues. In other words, a queue is given more 

resources if the cwnd value associated with the queue is high, as compared to 

other queues. Nevertheless, the extra portion is multiplied by the original weight, 

in an effort to reinforce the QoS provisions that were originally promised by the 

scheduler. 

Therefore, the proposed algorithm still sustains differentiation of QoS 

across queues, and at the same time reflects resource distribution in accordance 

with the network condition. Within limits, the algorithm favours queues with fair 

channel conditions over the entire transmission path, by granting them extra 

bandwidth. Finally, the coefficient of the weight-adjusting factor is itself an 

adjustable factor that can be manipulated by system designers in order to 

establish a more aggressive system. In brief, the weight of the queue is adaptive 

according to the cwnd value of TCP. 
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3.1.1 Discussion of Extreme Cases and Limitations of the Proposed 
Scheme 

The weight-adjusting factor, cn/ct, is defined as the ratio of the cwnd value 

of the nth queue to the sum of that of all N queues in the network. Thus, it can 

never be grater than one. As a result, the maximum value of Wn
’ is limited at 

(1+a)Wn, and the minimum value of Wn
’ remains as Wn. Consequently, a 

connection cannot monopolize the bandwidth consumption, regardless of its fair 

channel condition and the resulting high cwnd values. In contrast, a connection is 

still provided with a minimum weight of Wn even if it suffers from bad channel 

conditions. The proposed scheme maintains fairness across the queues, in the 

sense that the resource granted to a data flow is bounded by a minimum and a 

maximum that are both determined based on the original queue weight, Wn. 

Assuming a total of N TCP flows (i.e. N queues) in the WiMAX network, 

the total queue weight admitted to the system is Wt as described in Equation 3.2. 

In the proposed scheme, the weight granted to each queue is slightly more than 

the original, due to the second term of Equation 3.1. However, the maximum of 

total weight granted to the queues in the proposed scheme is bounded as 

described in Equation 3.3. The proposed algorithm, though more aggressive than 

the original scheme by the virtue of assigning fair quality channels with extra 

bandwidth, is still a stable system. The issue of granting of more resources than 

originally admitted can be resolved by a conservative admission control algorithm, 

such that it considers Equation 3.3 when admitting a queue. 
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One of the constraints of the proposed scheme is its application to TCP 

connections only. A transport mechanism such as UDP, which maintains no 

estimations of the network condition, cannot utilize this scheme. Another 

constraint of the proposed scheme occurs in the situation where a queue 

accumulates packets from more than one TCP flow. Extraction of cwnd values 

from different data flows may result in the proposed scheme facing problematic 

discernment of the network condition. More specifically, the cwnd value extracted 

from a packet of a particular TCP data flow of a queue may be mistakenly 

interpreted as the congestion assessment made by another TCP data flow of the 

same queue. However, this confusion can be resolved by extracting additional 

information such as the source/destination IP addresses, and source/destination 

port numbers from the header field of a TCP/IP datagram. 

3.2 Design Modification of the TCP Segment Format 

In order to transport the value of cwnd to the MAC layer, I utilized a portion 

of the option field of a standard TCP segment. I denote the name of the field 

Cwnd Option, and it is currently set to occupy 32 bits. I embed the cwnd value in 

the Cwnd Option field, instead of utilizing explicit messages or an independent 

protocol such as the Internet Control Message Protocol (ICMP). A scaled cwnd 

value approach can be considered if a smaller option field size is desirable. 
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Figure 3.1 illustrates a typical TCP header with the newly introduced Cwnd 

Option field. 

 
Figure 3.1: The new TCP segment format 

3.3 Design Modifications of the WiMAX MAC Layer Operation 

Once a packet arrives at a MAC queue, the embedded cwnd value is 

extracted from the header, and the weight of the queue is calculated based on 

the previously described Equation 3.1. In order to maintain the bandwidth usage 

of a queue, the Modified Deficit Round Robin (MDRR) [20] queue service 

discipline is employed at the downlink transmission of the BS. The proposed 

scheme retains the structure of the MDRR queue service discipline, and it is 

implemented as a modified version of the MDRR queue service discipline in the 

downlink scheduler. 
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A queue in an MDRR discipline is defined by two parameters, a weight 

value and a deficit counter. When a queue is being served by the scheduler, the 

weight value indicates the maximum amount of data that a queue is allowed to 

dequeue in one round. The deficit counter accumulates the amount of bandwidth 

that has been used up by the queue. The deficit counter is initialized to the 

weight value of the queue, and is deducted by the size of the packet that is being 

serviced by the scheduler. The scheduler continues to serve a non-empty queue 

until its deficit counter reaches zero or below, and then moves on to the next 

queue in a round-robin fashion. The deficit counter is replenished with the weight 

of the queue when the scheduler loops back to serve the same queue in the next 

round. This scheduling discipline ensures that every queue is guaranteed a visit 

by the scheduler in one round, and at the same time, it provides differentiation in 

QoS. 

In my implementation, I retain the fundamental structure of the MDRR 

queue service discipline, but I replenish the deficit counter with a custom-

calculated queue weight as described in Equation 3.1. In addition to the cwnd-

dependent weight value (i.e. Wn’), I modify the scheduling discipline to be slightly 

more aggressive. The scheduler continues to serve a queue if the number of 

packets left in the queue is one, regardless the value of the deficit counter. The 

idea of this strategy is to empty a queue when possible, instead of leaving one 

packet in the queue waiting to be served in the next round. Figure 3.2 illustrates 

the logic of the MDRR queue service discipline, and the gray boxes indicate 

changes I made in addition to the original design. 
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Figure 3.2: The flowchart of the MDRR queue service discipline and indications on 

modifications made 
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As illustrated in the flowchart, the deficit counter in my implementation is 

updated with the two different queue weights, depending on the buffer status. If a 

queue is non-empty, the regular cwnd-dependent weight value, which is 

calculated based on the current cwnd value, is utilized to replenish the deficit 

counter. However, when a queue is empty, the cwnd value would be zero due to 

no packet being present in the queue, which results in a smaller cwnd-dependent 

weight value. The observation of a zero cwnd value misleads the scheduler to 

arrive at an inaccurate interpretation on the state of a data flow, where an empty 

queue can be due to slow data generation instead of a severe channel condition. 

Under such a circumstance, a queue should not lose its achieved status because 

of the temporary empty state. To address this problem, I retain a copy of the 

cwnd value of the last packet existed in the queue, and I calculate the cwnd-

dependent weight based on this last-valid cwnd value. Hence, the last-valid-cwnd 

weight value is utilized when the scheduler refreshes the deficit counter of an 

empty queue. 

3.4 The Analytical Model of the Algorithm 

To understand the effect of the proposed algorithm on the MAC 

scheduling scheme, analysis of the queue service rate and queue delay was 

conducted. Consider a WiMAX network with a total of N queues, each of which is 

associated with an originally assigned weight value of W,  a congestion window 

size of c, a cwnd-dependent weight value of W’, and a queue size of Q. Figure 

3.3 illustrates the concept of the queue system that is utilized to develop the 

analytical model. 
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Figure 3.3: An illustration of the MAC queue concept 

3.4.1 The Analysis of Queue Service Rate 

The service rate is defined as the amount of data served in a window of 

time. In this case, I define the service rate of a queue be the amount of data 

served in a queue in one round, and one round corresponds to the amount of 

time that is required for the scheduler to loop back to the same queue. Equation 

3.4 describes the definition of the queue service rate, and the related notations. 

T
d

timearoundwrapscheduler
roundoneinqueueninserveddataqueuenofrateservice n

th
th

n ===µ  (3.4)

The amount of data served in each queue in one round of scheduling is 

different under three conditions: 

a) All Qn packets are scheduled 

b) The queue reaches its allowed scheduling limit Wn’ 

c) Only a residual bandwidth, Br, is left available to schedule a portion of 

data in the queue. 

As a result, the amount of data served in a queue in one round is Qn, Wn’, 

or Br. Case (a) is a condition that happens when Qn is smaller than Wn’, which 

implies that the traffic of the queue is light. Case (b) occurs when packets start to 

accumulate with increasing number of stations in the network or cwnd values. 
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The queue size eventually becomes greater than the queue weight, and the 

amount of data served in one round is limited to Wn’. Case (c) is a situation that 

occurs when a queue is the last queue to be served in a subframe time, and only 

residual bandwidth is left available for scheduling. However, it is unlikely that a 

queue is always the last queue to be scheduled in every downlink subframe. 

Therefore, case (b) can be deemed as the most common case of all three, and it 

should be a legitimate representation of the three on the amount of data being 

served in one round of scheduling. 

After determining the amount of data served per round, the next task is to 

formulate the wrap-around time of the scheduler. The time, T, required for the 

scheduler to loop through all queues is dependent on the number of queues, the 

traffic intensity of the queues, and the bandwidth capacity of the system. The 

wrap-around time increases as the number and sizes of queues increase, but 

shortens if the network bandwidth capacity is large. This leads to an expression 

of the wrap-around time as described in Equation 3.5, where B indicates the 

bandwidth capacity of the system, and τ is denoted to represent the time length 

of a WiMAX MAC frame, including the preamble and transition time gaps. 
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The equation indicates that the wrap-around time is only a fraction of a 

frame time if the number of queues is few, or the traffic is light (i.e. queue sizes 

are small). The scheduler is capable of looping through all queues multiple times 
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in a frame time. Whereas, if the number of stations is large, or the traffic intensity 

of the queues are high, such that the network capacity cannot accommodate all 

data at once, the scheduler requires more than one frame time to revisit the 

same queue. 

Combining the amount of data served per round and the wrap-around time, 

the queue service rate of each case is derived as illustrated in Equation 3.6 to 

3.8. Note that the minimum of Wi’ and Qi is always Qi in case (a) since case (a) 

occurs when the traffic is light. In contrast, the minimum of Wi’ and Qi is Wi’ in 

case (b) and (c). 

( )

( )

( ) ∑∑

∑∑

∑∑

⋅=⋅=

⋅=⋅=

⋅=⋅=

N

i
i

r
N

i
ii

r
n

N

i
i

n
N

i
ii

n
n

N

i
i

n
N

i
ii

n
n

W

BB

QW

BBccase

W

WB

QW

WBbcase

Q

QB

QW

QBacase

''

'

'

'

'

'

,min
)(

,min
)(

,min
)(

ττ
µ

ττ
µ

ττ
µ

 

(

(

(

3.6)

3.7)

3.8)

The service rate of case (a) is dependent on the queue size, and it implies 

that packets arriving at the queue are all served in one round, which is 

reasonable when the traffic is light. In contrast, the service rate is regulated by 

the weight of a queue in case (b). In case (c), the service rate depends on Br but 

always smaller than case (b) (i.e. Br <Wn’). In the original algorithm, the queue 

weight is constant (i.e. a=0) throughout the transmission session; however, the 

queue weight fluctuates with cwnd values in the proposed design. Assuming that 
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the original weight of all queues are equal (i.e. Wi = Wn for all i), and substituting 

the weight expression of the original and proposed design, the service rates of 

case (b) and (c) can be rewritten as in Equation 3.9 to 3.12. 
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Comparing the queue service rates of the newly proposed and original 

algorithm, comparison equations are resolved as shown in Equation 3.13 and 

3.14 for case (b) and (c). 
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The comparison equations indicate that the number of queues, N, needs 

to be large in order for the new algorithm to reduce the effect of the weight-

adjusting factor coefficient in the denominator. Despite that, the service rate in 
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case (b) is improved if the term in the bracket of Equation 3.13 can outweigh the 

N/(N+a) factor. On the other hand, if the cwnd ratio (i.e. cn/ct) is poor, the service 

rate of the proposed scheme can be lower than in the original. This is expected 

since the scheduler attempts to allocate resources based on the network 

condition assessments. As a result, for a queue with bad-channel condition, the 

resources supplied to the queue can be less. Furthermore, a large coefficient, a, 

results in a more aggressive resource allocation scheme, but it requires the 

number of queues to be even larger, in order for the proposed scheme to deliver 

a better queue service rate than the original one. 

Without the cwnd ratio term in case (c), the proposed scheme performs 

worse than the original because the sum of the cwnd-dependent weight, Wn’, of 

all queues is virtually equivalent to admitting an additional queue into the network, 

as implied in Equation 3.3. The service rate of a queue in the proposed scheme 

relies on cn/ct and a to outperform the original design. 

Furthermore, consider the coefficient, a, is fixed in Equation 3.13, the 

proposed design performs better with increasing N. However, when N is large 

such that the N/(N+a) factor approaches unity, the gain in performance is 

bounded by a limit given by [1 + a(cn/ct)]. In addition, consider Equation 3.10, if N 

is sufficiently larger than a, the (N+a) term in the denominator is dominated by N. 

As a result, the service rate increases with a. However, if a continues to grow 

such that a is equally influential as N in the denominator, elevation in a at the 

same time dilutes the gain in the numerator. Consequently, the performance of 
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the proposed scheme increases with N and a, but the gains are bounded at 

certain limits. 

3.4.1.1 The Expected Value of Queue Service Rate 

As previously described, the queue service rates are differentiated into 

three occurrences, with case (b) being the most common case. Therefore, the 

expected value of queue service rate derived in this sub-section focuses only on 

case (b) (i.e. Equation 3.7). The expected value of the queue service rate in case 

(b) is determined by the expected value of the queue weight and the sum of 

queue weights. The queue weight of the original algorithm is constant while that 

of the proposed algorithm fluctuates depending on cwnd values. Thus, the 

expected values of queue weight of the original and proposed algorithms are 

different as illustrated in Equation 3.15 and 3.16. 
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From Equation 3.16, the expected value of the queue weight of the 

proposed scheme is dependent on the expected value of cwnd ratio. To 

determine the expected cwnd ratio, I consider the worst and best possible cases 

of a cwnd ratio. 
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Denoting cmax as the maximum value of cwnd, the smallest cwnd ratio of 

the nth queue occurs when cn is equal to one while the congestion windows of all 

other queues are equal to cmax. In contrast, the largest cwnd ratio of the nth queue 

is cn equals to cmax, and the congestion windows of all other queues equal to one. 

The mathematical representation of the smallest and largest cwnd ratios are 

expressed in Equation 3.17 and 3.18. The condition of cmax being sufficiently 

larger than N is valid since the congestion window size is maintained in bytes, 

and the maximum can be in the range of thousands or tens of thousands bytes. 
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The distribution of the cwnd ratio can vary across queues. For queues that 

constantly enjoy fair channel conditions, their cwnd ratios are likely to be 

distributed near the large values range. On the other hand, if a station 

continuously suffers from bad channel conditions, its cwnd ratios are likely to be 

concentrated at the low values range. Consequently, the distribution of the cwnd 

ratio of a queue is highly dependent on the physical channel condition of the 

queue. Since the channel condition is equally likely to spread between good and 

bad states, I assume the cwnd ratio to be uniformly distributed between the 

smallest and largest values. Thus, the expected value of cwnd ratio is calculated 

as in Equation 3.19. Substituting the expected cwnd ratio back to Equation 3.16, 
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the expected value of queue weight of the proposed scheme is shown in 

Equation 3.20. 
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The next term to be resolved is the expected value of the sum of queue 

weights. Given that the minimum of Wn’ and Qn is Wn’ in case (b), and assuming 

the original weights of all queues are equal in the network (i.e. Wi = Wn for all i), 

the expected values of the sum of queue weights are presented in Equation 3.21 

and 3.22. 
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Combining the expected values of queue weight and the sum of the 

weights, the average queue service rates for both the original and proposed 

scheme can be found in Equation 3.23 and 3.24. 
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The average service rate decreases as N increases in both designs, which 

is reasonable since resources are shared by more clients. However, for the 

proposed scheme, the service rate does not decrease as fast as the original, and 

it decreases even slower as a is larger. Comparing the average service rate of 

the proposed to original scheme, a comparison equation can be formulated as 

shown in Equation 3.25. In addition, Figure 3.4 illustrates the comparison 

equation with respect to increasing values of N while a is fixed in each plot. 
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Average Queue Service Rate Comparison vs. Number of Queues
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Figure 3.4: Comparison of the average queue service rate between the proposed and 

original scheme with changing values of N while a is fixed 

The figure depicts that all plots intersect at the point, where N equals to 

two, and the comparison ratio equals to one. In other words, when the number of 

queues in the network is two, the proposed scheme performs equally well as the 

original, independent of the value of the weight-adjusting factor coefficient. 

However, the proposed scheme shows its advantage as the number of queues 

continues to grow, and the advantage is even more evident as the value of the 

coefficient increases. 

The graph also indicates that the gain in the proposed scheme with 

respect to N is bounded at a certain limit when N is large. This observation is 

obvious in the plot of a=1, where the plot is close to horizontal when N is large. 

Furthermore, the gain between each value of a (i.e. the vertical gaps between 

each plot) reduces with increasing a. This observation suggests that the gain with 

respect to a is also limited to a certain bound. These two observations confirm 
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the conclusions drawn at the end of the derivation of queue service rate. The 

comparison equation is plotted with respect to increasing values of a while N is 

fixed in each plot, as illustrated in Figure 3.5. 

Average Queue Service Rate Comparison
vs.

Coefficient of the Weight-adjusting Factor

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

0 5 10 15 20
Coefficient of the Weight-adjusting Factor, a

E
[P

ro
po

se
d 

S
er

vi
c 

R
at

e]
  /

E
[O

rig
in

al
 S

er
vi

ce
 R

at
e] N = 1

N = 2
N = 4
N = 6
N = 8
N = 10
N = 12
N =15

 
Figure 3.5: Comparison of the average queue service rate between the proposed and 

original scheme with changing values of a while N is fixed 

  The queue service rate of the proposed design is worse than the original 

when N is one, independent of the values of coefficients. The advantage of the 

proposed design begins to show when N is greater than two. For the same N, the 

advantage grows with respect to increasing a, but the gain approaches to a 

constant when a is too large compared to N. These observations comply with the 

observations made in Figure 3.4. Furthermore, Figure 3.5 demonstrates that the 

advantage of large a is more evident when N is large. In other words, large 

values of a require the number of queues in the network be sufficiently large to 

deliver a more evident performance gain, and if N is small, a small value of a is 

sufficient. 
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3.4.2 The Analysis of Queue Delay 

The approach taken in the analysis of queue delay is to first develop an 

expression for queue size, and then apply Little’s formula after evaluating the 

average queue size to achieve the average queue delay. 

The size of a queue varies as packets arrive at the queue, and as they are 

served leaving the queue. Thus, the queue size is related to the arrival rate, λ, 

and the service rate, µ, as described in Equation 3.26, where q is denoted to 

represent the difference between the two. Note that the expression, (t), signifies 

the time-varying characteristic of each term. 

)()()( tttq µλ −=  (3.26)

However, the discrepancy between the arrival and service rate represents 

only the changes in queue size, instead of the actual queue size. If a queue is 

initially empty, the actual queue size, Q, can be obtained by integrating the 

changes in queue size over time as illustrated in Equation 3.27. Taking an 

integral over time is equivalent to multiplying by a window of time, ∆t, in the 

discrete form, as shown in Equation 3.28. Note that changes in queue size can 

be negative; nevertheless, the queue size is subject to a lower bound of zero, 

and an upper bound of the buffer size. 
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The average queue size is obtained by evaluating the expected value, as 

shown in Equation 3.29. For simplicity, the remainder of this sub-section will 

focus only on the derivation of the discrete form. 

[ ] [ ] [ ] [ ]( ) ttEtEtttEQE ∆⋅−=∆⋅−= )()()()( µλµλ  (3.29)

The equation complies with the fact that if the average arrival rate is 

greater than the average service rate in a window of time, the queue size grows 

as the time window stretches longer. In contrast, if the average arrival rate is 

smaller than the average service rate, the queue size shrinks over time. However, 

the overall service rate can never be greater than the overall arrival rate because 

the service rate diminishes to zero when no packet exists in the queue. This 

logical constraint ensures that the average queue size is never negative. 

With an expression for the average queue size, the expected queue delay, 

d, can be derived after applying the Little’s formula described in Section 3.2.1 of 

[21]. The Little’s formula states that the average queue size is the product of the 

average net arrival rate and the average queue delay, as shown in Equation 3.30. 

An expression for the average queue delay of the scheme arises from the Little’s 

formula, as described in Equation 3.31. For simplicity, the expression of (t) is 

dropped in the following equations. 
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The expected value of queue delay is subject to a lower bound of zero 

because the average queue size is never negative. In addition, since λ and µ are 

never negative, the equation suggests that the maximum expected queue delay 

never exceeds ∆t. This is intuitively incorrect because the queue delay should be 

able to grow to infinity if the service rate is zero. Nevertheless, this upper bound 

of ∆t on the queue delay becomes sensible since the average queue size is 

estimated at t0+∆t seconds; therefore, the maximum delay that a packet can 

experience from t0 to t0+∆t second is ∆t seconds. 

From this perspective, the terms in the bracket of Equation 3.31 can be 

interpreted as the fraction of the window of time, ∆t, that a packet experiences as 

queue delay. Since the window of time is arbitrary, it can be replaced by the 

maximum amount of time that a packet can spend in a queue. Assuming the 

service rate is non-zero, the maximum queue delay occurs when a packet is 

accepted into a fully occupied queue. Denoting the buffer size of a queue as F, 

the maximum queue delay, dmax, can be expressed as in Equation 3.32, and its 

expected value in Equation 3.33. 
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The actual delay emerges by replacing the arbitrary window of time with 

dmax. Denoting the actual queue delay to D, the average queue delay can be 

written as in Equation 3.34. 
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(3.34)

The expected queue delay reduces as the service rate increases, or as 

the arrival rate decreases. However, the expected queue delay never falls below 

zero because the overall service rate of a queue cannot be greater than the 

overall arrival rate. Furthermore, if the arrival rate is large, the queue delay 

expression simplifies to dmax, which complies with the fact that a queue is always 

full when the arrival rate is infinite. 

The average service rate of a queue was derived in Section 3.4.1.1, and 

the arrival rate of a MAC queue is approximately equivalent to the sending rate of 

its corresponding TCP flow. Assuming the average arrival rates from TCP flows 

are identical for each queue, the queue delay depends only on the queue service 

rate to differentiate the performance between the original and proposed algorithm. 

Substituting the average service rate into the equation of average queue delay, 
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the queue delays of the original and proposed designs are described in Equation 

3.35 and 3.36 respectively. 

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] F
Ea

aN
B

F
EE

DE

F
E

N
B

F
EE

DE

new
new

old
old

⋅
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−

+

+
=⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

λ
τ

λµ

λ
τ

λµ

1

21
11

111

 

(

(

3.35)

3.36)

The queue delay of the proposed scheme is smaller than the original if the 

service rate of the proposed scheme is higher than that of the original. More 

specifically, the number of stations, N, has to be greater than two in order for the 

proposed design to show better performance on queue delay. The mathematical 

manipulation of this comparison is shown in Equation 3.37. 
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(3.37)

The value, two, originates from the expected value of the cwnd ratio in 

Equation 3.19 of Section 3.4.1.1. If the channel condition of a queue is not as 

ideal, resulting in a worse cwnd ratio such as 1/3, this implies that the queue 

requires the number of queues present in the network be more than three, in 

order to observe better average service rate and queue delay in the proposed 

algorithm. In other words, the degree of improvement in performance of a queue 

in the new algorithm depends on the conditions of the channel. Queues with high 

cwnd ratio experience higher average service rate and shorter average delay 
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while bad stations can suffer. This conclusion reflects the idea of adaptively 

allocating the scheduling resources to desired connections, depending on the 

estimations of the network condition. Moreover, since the queue delay is 

dependent on the queue service rate, the improvement in the queue delay of the 

proposed scheme is also subject to bounds when an overly aggressive weight-

adjusting factor coefficient is employed or when the number of queues is too 

large. 

3.4.3 The Analysis of Round-Trip Time  

This sub-section is devoted to the study of round-trip delay of a TCP 

segment if employing the MDRR scheme at the MAC layer. The RTT estimation 

at the TCP level can be split into two parts, the forward sending and the reverse 

returning paths, as they are expressed in the top two and bottom three lines of 

Equation 3.38 respectively. 

pathreverseintimenpropagatio
timeontransmissidelayqueueMACuplink

pathreturntimeresponsegenerationACK
pathforwardintimenpropagatio

pathforwardtimentranmissiodelayqueueMACdownlinkRTT

+
++

+
+

+=

)(

)(

 (3.38)

The transmission time of the forward and return paths can be constant if 

assuming the sizes of a data packet and its corresponding ACK are fixed. In 

addition, since the radio wave travels at the speed of light and WiMAX is a 

WMAN, the propagation times in the forward and reverse path are negligible in 

this context. The generation of a TCP ACK depends on the settings of TCP, such 
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as the number of accumulated ACK and the ACK delay. Assuming the settings 

are consistent across the queues and throughout the entire transmission session, 

the ACK generation response time can be considered fixed. Furthermore, if the 

uplink traffic is light and the size of an ACK is small, an ACK is quickly served 

upon arrival. Thus, the queuing delay at the uplink is negligible or consistent, 

comparing to the queuing delay at the downlink. With the aforementioned 

assumptions, the RTT estimation of a TCP segment can be rewritten as in 

Equation 3.39, denoting RTTMAC to represent the sum of all fixed and negligible 

terms. 

MACRTTdelayqueueMACdownlinkRTT +=  (3.39)

Substituting the expected queuing delay from Equation 3.34, the expected 

RTT is found as in Equation 3.40. 
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The arrival rate at the MAC layer is equivalent to the sending rate at the 

TCP level. The sending rate of TCP is essentially determined by the amount of 

data sent in one round-trip time. More specifically, the sending rate of TCP can 

be simplified to the congestion window size divided by RTT as expressed in 

Equation 3.41. Substituting the sending rate of TCP as the arrival rate of a queue 

at the MAC layer, the expected value of RTT can be rewritten as in Equation 3.42. 
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Substituting the expected queue service rate of the original and proposed 

design in Equation 3.23 and 3.24, the expected values of RTT are expressed in 

Equation 3.43 and 3.44. 

[ ] [ ]

[ ] [ ]
1

1

1
21

1

−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+

+

+
⋅

⋅
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅⎟

⎠
⎞

⎜
⎝
⎛ +⋅

⋅
=

cE
FRTT

a
aN

B
FRTTE

cE
FRTTN

B
FRTTE

MACnew

MACold

τ

τ

 

(

(

3.43)

3.44)

Considering the expected value of cwnd is identical for the original and 

proposed algorithm, the requirement of [ ] [ ]oldnew RTTERTTE < is illustrated in 

Equation 3.45, which is the same result as Equation 3.37 of the queue delay 

analysis. 
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Based on Equation 3.42, RTT is influenced by the queue service rate at 

the MAC layer. Hence, the arrival rates of queues at the MAC layer (i.e. TCP 
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sending rate) cannot be identical if each queue receives a differentiate service 

rate. Substituting the RTT expression back to TCP sending rate equation (i.e. 

Equation 3.41), a service-rate-dependent arrival rate is resolved as illustrated in 

Equation 3.46. 
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Substituting the new arrival rate as λ in the queue delay derivation in 

Equation 3.34 of Section 3.4.2, a new queue delay expression is formulated to 

reflect the queue-dependent arrival rates, as shown in Equation 3.47. 
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In order to establish the condition of [ ] [ ]oldnew DEDE < , the expected queue 

service rate of the proposed design needs to be greater than the original. As a 

result, the condition required for the new algorithm to perform better than the 

original one is the same, regardless whether the arrival rate is assumed identical 

or queue-dependent. More specifically, the number of queues present in the 

network has to be more than two. 
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3.4.4 Analysis of TCP Sending Rate Incorporating the Service Rate of the 
MAC Layer 

This sub-section attempts to formulate an expression for the sending rate 

of TCP, which incorporates the service rate at the MAC layer. The formulae of 

TCP sending rate utilized in this derivation are referenced from the work of 

Padhye et al. in [22]. The sending rate of TCP presented in Padhye’s paper has 

two forms. The first form incorporates packet loss indications in TCP that are 

inferred by triple-duplicate ACKs exclusively. The second form includes the 

timeout mechanism in addition to the triple-duplicate ACKs, and the second form 

is split into two parts when limitations on cwnd size are considered. 

The two forms, including the modifications noted in the comment paper 

[23], are introduced in Equation 3.48 to 3.50. Some of the notations are replaced 

by the symbols used in this thesis for consistency. The sending rate of TCP is 

denoted as the arrival rate, λ, of a queue at the MAC layer. The subscript, TD, 

denotes the triple-duplicate-ACKs loss indication of the first form, and the 

subscript, TO, represents the timeout loss indication of the second form. The 

symbol, p, indicates the probability that a packet is dropped, and the symbol, b, is 

the number of cumulative ACK. The symbol, T0, represents the timeout value of 

TCP. 

In addition, the notation of expected value is added to both λ and RTT to 

signify the average property of the two symbols in [22]. Furthermore, I attach the 

TD and TO subscripts to RTT to denote the possibility of having different 

expected RTT values in the two forms. In other words, I suggest that the 

expected RTT can vary if the sending rate of TCP is modelled differently. 
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The expected value of the congestion window size is given in Equation 

3.51. The term  represents the probability that a packet lost in a window of 

ω is a timeout event. The term 

( )ωQ̂

( )ωQ̂  is presented in Equation 3.52, and the 

term  is shown in Equation 3.53. For detailed derivation of the formulae, 

please refer to [22]. 
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Denoting new symbols to represent the numerator and some terms in the 

denominator of Equation 3.48 to 3.50, the sending rate of TCP can be rewritten 

to the following forms. 
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Substituting the above sending rates of TCP above into the expected RTT 

equation (i.e. Equation 3.40) derived in Section 3.4.3, the expected RTT can be 

expressed as presented in Equation 3.57 to 3.59. 
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The expected RTT equations above indicate that RTT is affected by the 

service rate at the MAC layer, which is reasonable, since the round-trip delay 
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should decrease if the service rate increases. Substituting the RTT terms into the 

sending rate of TCP, Equation 3.54 to 3.56 can be rewritten as shown in 

Equation 3.60 to 3.62. 
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The above equations indicate that the service rate at the MAC layer can 

affect the sending rate at TCP. More specifically, the sending rate of TCP 

increases if the service rate at the MAC layer is higher, which is a sensible 

conclusion. However, in order for the service rate at the MAC layer to contribute 

an effect on the sending rate of TCP, the term, [ ]µEF , needs to dominate 

compared to RTTMAC in Equation 3.60. This condition is also necessary in 

Equation 3.61 and 3.62, but it is subject to additional restrictions (i.e. additional 

terms) in order for the service rate to be an influential factor in the sending rate. 

In other words, the proposed scheduling scheme at the MAC layer has more 

effect on the sending rate of TCP in a local or metropolitan area network, where 

the RTTMAC can be kept small. 

Moreover, the service rate at the MAC layer is influential if the generation 

of ACKs is efficient (i.e. properly calibrated settings on the number of cumulative 
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ACKs and the ACK delay), so the return of an ACK is prompt, thus reducing 

RTTMAC. Finally, the term [ ]µEF  is the maximum queue delay as described in 

Equation 3.33. Based on the mathematical induction, the effect of the MAC 

service rate on the sending rate of TCP may be more noticeable for queues with 

large buffer sizes. 

This chapter has introduced the proposed cross-layer technique, including 

the detailed algorithm, limitations, and designs. Analytical models of average 

queue service rate, and queue delay were developed to understand the 

behavioural dynamics of the proposed scheme. The analytical models suggest 

that the gain of the proposed design is more observable when N and a are large. 

However, the gain from N and a is bounded. Furthermore, the RTT and sending 

rate of TCP, incorporating the service rate at the MAC layer, were analyzed. The 

next chapter will discuss the implementations done in the OPNET simulated 

model. 
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CHAPTER 4: AN OVERVIEW AND MODIFICATIONS OF 
THE OPNET MODELS 

This thesis utilized OPNET Modeler® developed by OPNET Technologies, 

Inc. as the simulation tool. The OPNET Modeler is a discrete event simulation 

engine that is capable of simulating network performance, incorporating the 

complete stack of network protocols. TCP is one of the supported transport 

protocols, and WiMAX is one of the MAC layer models that are available in 

OPNET Modeler. TCP and its simulated model has been long developed and 

commonly used, so this chapter does not intend to mention the OPNET TCP 

model in detail, except modifications made for the purpose of this thesis. On the 

other hand, WiMAX is a relatively recent technology, and is anticipated to be one 

of the contenders for the next generation wireless metropolitan area network. In 

addition, the MAC layer specifications of the WiMAX standard were the subject of 

core modifications, as described in this thesis. Thus, the OPNET WiMAX model 

will be described in more detail. Before introducing the OPNET WiMAX model, a 

brief overview of the hierarchical modelling concept of OPNET Modeler is 

presented. 

4.1 A Brief Modelling Concept of OPNET Modeler 

In OPNET Modeler, models are built in hierarchy, with node models being 

conceptually above a process model. A node is an object that appears in the 

topology of a simulated network, and a node model defines the architectural 
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modules and the attributes of a node. Modules are components that generate, 

consume, or process a packet, in which a processor module is made up of a 

process model underlying it. The process model specifies the behavioural and 

logical process of a processor module, and it is developed in the Proto-C 

language. The Proto-C language consists of a graphical interface of a state 

machine, but it retains the computational compatibility with the C and C++ 

language. Figure 4.1 illustrates the appearance of a client node of WiMAX, and 

the module structure of the node model associated with the node, in which the 

red ellipse circles the WiMAX processor module of the node model. The process 

model of the WiMAX processor module is shown in Figure 4.2. 

 
Figure 4.1: A client node of the OPNET WiMAX model and the corresponding node model 

 71



 

 
Figure 4.2: The state machine of the process model of the OPNET WiMAX processor 

module 

4.2 The OPNET WiMAX Model in a Nutshell 

The OPNET WiMAX model was under development since May 2005, and 

it was released in phases as more features were added. The version of the 

WiMAX model utilized in this thesis was the Release 5 of OPNET WiMAX model, 

which was available in July 2007. The model was supported in many versions of 

OPNET Modeler and operating systems, and the WiMAX model used in this 

thesis was the one that was compatible to OPNET Modeler 12.0 of the Solaris 

platform. The WiMAX model is still under development, and the most recent 

release at the time of writing is the Beta Release, which is bundled with the 

software of OPNET Modeler 14.0 and 14.5. 

4.2.1 The Architectural Concept of the OPNET WiMAX Model 

The architectural concept of WiMAX MAC is divided into two planes, 

where the control plane is responsible for management-related tasks, and the 

data plane is involved in the processing of data packets. The control plane of a 
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BS includes functionalities such as admission control and MAP generation. In 

comparison, the control plane of a SS is responsible for initial ranging of network 

entry and MAP decoding. On the other hand, the data plane acts as the 

interfaces between the WiMAX MAC layer and the adjacent layers. More 

specifically, the data plane of both BS and SS conveys packets across the MAC 

layer, and delivers the packets to the next layer. For example, one of the 

responsibilities of the data plane is to classify and associate an arriving MAC 

SDU with a CID, and generate a bandwidth request for the transmission of the 

SDU. The tasks performed by the data plane are common to both BS and SS. 

The OPNET WiMAX model is developed following the same architectural 

concept of one common data plane, and distinct control planes for the BS and 

SS. 

The data plane of the OPNET WiMAX model is known as the WiMAX 

MAC root process model, which is composed of functionalities that are common 

in the data plane of a BS and SS. The WiMAX MAC root process then spawns a 

child process of BS or SS, depending on the role of the station, to deliver the 

responsibilities of the control plane. Similar to the root process, the BS and SS 

child processes are OPNET process models written in Proto-C language. Figure 

4.3 illustrates the conceptual relationship of the root and child processes of the 

OPNET WiMAX model. 
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Figure 4.3: The architectural concept of the OPNET WiMAX model 

While a child process is in operation, it often requires information from the 

root process in order to perform its functionalities. A parent-to-child shared 

memory block is established specifically for the purpose of communications 

between the root and child processes. The parent-to-child memory block is 

allocated at the creation time of the child process, and is accessible by both the 

root and child processes. The parent-to-child memory block stores information 

such as CIDs (Section 2.2.2.1), and other parameter specifications that are 

associated with the station. The child process retrieves necessary information 

from the parent-to-child memory block to accomplish its designated tasks. Upon 

the completions of the tasks, the child process stores the processed results in the 

shared memory block, and returns the control to the root process. 
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OPNET Modeler provides another method of communications between 

the root and child processes. After the initial spawning of a child process, the 

child process is often invoked by the root process when it is necessary. At each 

invocation, task-specific information such as the size of a bandwidth request may 

be passed to the child process through the use of an argument memory. The 

child process can retrieves information from either or both the parent-to-child and 

argument memory blocks. Unlike the parent-to-child memory block, the argument 

memory block is not persistent, and is created and replaced at every invocation 

of the child process. 

4.3 Implementations in the TCP Model 

This thesis involves two layers of the protocol stack, so modifications were 

made in both OPNET TCP and WiMAX models. As previously described in 

Section 3.2, a new Cwnd Option field is created in order to establish the cross-

layer communication between the transport and MAC layer. Therefore, I declare 

a new TCP packet format to include the 32-bits Cwnd Option field in the header 

of a TCP segment. In addition, I introduce a new attribute in the TCP node model, 

of which it enables or disables the operation of the Cwnd Option field in the 

protocol. Upon enabling of cwnd-option attribute, TCP stores a copy of the most 

recent cwnd value to the Cwnd Option field of every TCP segment it creates. 

Figure 4.4 and Figure 4.5 are the screen captures of the new packet format and 

added attribute of the TCP module, where the modifications made are circled in 

red ellipses. Detailed information on the steps and coding of the implementations 

is attached in Appendix A. 
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Figure 4.4: The new TCP segment format, with the modification made circled in red 

 
Figure 4.5: The newly added attribute (circled in red) of the TCP module 

4.4 Implementations in the WiMAX Model 

As described in Section 3.3, the proposed algorithm is built on top of the 

MDRR queue service discipline at the downlink. Therefore, the modifications 

made in the OPNET WiMAX model involve only the WiMAX MAC root process 

and the BS-control child process. 
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4.4.1 Extraction and Storage of Cwnd 

When a TCP segment traverses across the network and arrives at the 

MAC layer, it is enqueued in the buffer of a queue in the order of arrival. A 

bandwidth request (BWR) that reflects the size of the PDU required to transmit 

the packet is generated. At the same time, the cwnd value embedded in the TCP 

header is extracted from the SDU, and the value is stored at the tail end of a list 

structure containing integers. As the SDU is served by the scheduler leaving the 

queue, the corresponding cwnd entry is removed from the integer list. Therefore, 

the integer list structure contains a sequence of cwnd values extracted from the 

SDUs, and the order of the list corresponds to the order of SDUs that currently 

reside in the queue. 

Since the OPNET WiMAX model is divided into the data and control plane, 

a packet arriving at the MAC layer is first processed by the root process. The 

task of extracting the cwnd value of a packet lies within the root process, and the 

cwnd value is passed to the BS-control child process, along with the bandwidth 

request size of the packet, in the argument memory block. When the kernel 

control shifts from the root to child process, the data packet itself remains in the 

data plane. Only necessary information is passed to the BS-control child process 

through memory blocks. Upon the invocation of the child process, the BWR is 

processed and enqueued in a queue identified by the CID in the BS control plane. 

At the same time, the cwnd value is retrieved, and stored in the dedicated list 

structure of cwnd values, in the corresponding order of the requests in the queue. 

Figure 4.6 depicts the concept of the cwnd extraction and storage procedures 
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implemented in the OPNET WiMAX model, where modifications are marked in 

red, and the code implementation is presented in Appendix B. 

 
Figure 4.6: The process of the cwnd value extraction and storage 

4.4.2 Calculation of the Queue Weight 

When the BS child process is invoked again during the scheduling phase, 

the BS scheduler examines the BWR queues according to the MDRR queue 

service discipline, which has been presented in the flowchart of Section 3.3. A 

brief recall, the scheduler determines whether to schedule an SDU onto the next 
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DL subframe based on the value of the deficit counter. If the deficit counter is 

positive, the BS dequeues the corresponding request in the BWR queue, and 

confirms the transmission of the SDU by generating a grant. In the case when 

the deficit counter is zero or negative, the scheduler first replenishes the deficit 

counter with the weight of the queue, and examines it again. If the deficit counter 

recovers to positive, the scheduler initiates the dequeuing process of the packet. 

When a BWR is granted, the deficit counter of the associated queue is updated 

to its original value minus the granted size. The scheduler continues to serve the 

same queue if the queue is non-empty and the deficit counter remains positive. 

On the other hand, if the deficit counter is less than or equal to zero, the 

scheduler skips the queue and serves the next queue in line. 

Since the weight of a queue fluctuates with the cwnd values in the 

proposed scheme, I calculate the weight of each queue before the initiation of the 

scheduling process. The first entry of the list structure containing the cwnd values 

of each queue is retrieved to determine the total cwnd values, ct, across all 

queues. Then, the individual cwnd ratio, cn/ct, is calculated to resolve the cwnd-

dependent queue weight, Wn’. This implementation implies that the scheduler 

interprets the path-wide congestion, based on the first packet of a queue. A 

different cwnd value from the list may be utilized to provide a different 

perspective of the network congestion condition of the flow. For example, the last 

entry of the list structure can be beneficial in determining the most recent 

congestion assessment made by TCP. Moreover, a mean value of the list 

structure may be useful when determining the average congestion condition of 

 79



 

the data flow. However, for the purpose of this thesis, only the first cwnd value of 

every list structure is extracted for the calculation of cwnd-dependent queue 

weight. 

Though the cwnd-dependent queue weights of all queues are calculated 

at each round of scheduling, the weight may not necessarily be utilized to 

replenish the deficit counter in every round. In other words, the weight of a queue 

can be high or low, depending on the cwnd ratios, but the deficit counter only 

reflects the value of the weight when it is being replenished. Therefore, the logic 

of the scheme is regulated by the proposed algorithm but its behaviour is given a 

random nature. This is because the moments at which the deficit counter is being 

refreshed are unpredictable. This phenomenon implies that the weight of a queue 

is particularly important at the moments when the deficit counter is being 

refreshed. Nevertheless, the deficit counter is still bounded by the queue weight. 

Figure 4.7 depicts the conceptual process of the aforementioned scheduling 

process, and the queue weight calculation, with modifications marked in red. The 

code implementation of the algorithm is attached in Appendix C. 

 80



 

 
Figure 4.7: The concept of the BS scheduling process 

Note that at the end of a scheduling round, the BS generates a DL-MAP, 

based on the dequeued requests. The DL-MAP contains data burst profiles of the 

granted requests, which indicates the boundaries of each data burst in the DL 

subframe. After the creation of a DL-MAP, the BS child process returns the 

control to the root process. Then, the MAC root process encapsulates the 

scheduled SDUs into PDUs for transmission. 

4.5 Configurations of the Simulation Parameters 

The topology of the simulated network is a typical last-hop wireless 

network, where multiple client stations (i.e. SS) are served by a centralized BS, 

and the BS is wired connected to a server. Figure 4.8 illustrates an example of 

the simulated topologies, where the number of client stations existed in the 

WiMAX network is two. 
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Figure 4.8: The topology of the simulated network (2 client stations Case) 

The server station is wire-connected to the BS by a point-to-point duplex 

link that supports IP traffic, and the application specified in the server is File 

Transfer Protocol (FTP). The client stations are instructed to download a file size 

of five million bytes from the server station starting 110 seconds into the 

simulation time, and the same request is repeated every 50 seconds until the 

termination of the simulation, which is one hour. In addition, the IP ToS of the 

traffic is set to three, which corresponds to an excellent service type in IP. 

4.5.1 Configurations of the TCP Parameters 

At the transport layer, the TCP settings are mostly configured to the most 

commonly used values, except for the maximum segment size, buffer size, TCP 

flavour, and newly created cwnd-option attribute. At the server station, the cwnd-

option attribute is enabled in order to allow TCP to write cwnd values to the 

designated option field. However, this option is not mandatory at the client 

stations since TCP at the client nodes only generates ACKs upon receiving of 

data. Thus, the cwnd values maintained at the receiver stations never change. In 
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addition, since the server station includes extra 32 bits of Cwnd Option field in 

the header, the maximum segment size of the proposed scheme is modified to 

be 32 bits less than the original. The reduction in the maximum segment size is 

to avoid undesirable fragmentation at the IP layer due to the newly introduced 

Cwnd Option field. 

At the client side, the buffer size of each TCP flow is modified to 87600 

bytes, which is ten times of the default setting. The purpose of this configuration 

is in an attempt to prevent packet loss due to buffer overflow. In other words, I 

intend to eliminate the constraint of buffer size on the system performance. 

Finally, at both the server and client sides, the TCP flavour is prompted to vary at 

simulation run-time. The simulated TCP flavours include Reno, New Reno, and 

Reno with SACK combination. 

4.5.2 Configurations of the WiMAX Parameters 

The scheduling service types supported in the simulated WiMAX network 

include rtPS, nrtPS and BE. Nevertheless, the simulation consists of only one 

application, FTP; therefore, only the nrtPS scheduling service type is utilized. 

Since each SS requests only one download in every 50 seconds, and every 

nrtPS connection is granted a dedicated queue, the number of queues at the 

MAC layer is the same as the number of client stations in the network. 

Furthermore, the nrtPS scheduling service type is associated with a QoS 

parameter, which specifies the minimum reserved traffic rate of the connection. 

The minimum reserved traffic rate is utilized to determine the original weight of a 

queue, Wn. In the simulation, the minimum reserved traffic rates of all 
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connections are configured to 0.5 Mbps, thus the condition of identical Wn for all 

N queues is established in the simulation. The uplink traffic consists of only ACK 

packets, but the uplink flows are also configured to be nrtPS scheduling service 

type for consistency. 

The physical technology specified in the simulated WiMAX network is one 

of the OFDMA schemes. More specifically, the simulation utilized 2048 

subcarriers with a corresponding channel bandwidth of 20 MHz. The modulation 

and coding scheme specified in the simulation is 16-QAM with 3/4 coding rate, 

and it is maintained the same for both downlink and uplink. Furthermore, the 

ARQ mechanism is not enabled for simplicity though it may be a potentially 

beneficial enhancement for transmissions at the MAC layer. 

The physical layer condition is configured to be in free-space, which 

implies that the physical medium model does not incorporate multipath fading, 

shadowing and path loss due to signal reflections. Nevertheless, the signal is still 

subjected to path loss in free-space, in which the strength of a signal decays to 

the power of two with respect to the distance between the transmitting and 

receiving antennas. Moreover, the interferences and background noise are 

considered when determining the SNR of a signal. Based on the SNR and 

modulation and coding scheme of a transmitted signal, the block error rate is 

resolved. A block is the basic unit in a MAC frame space (Figure 2.5). The packet 

error rate is calculated based on the block error rate and the size of a packet in 

blocks. Then, a uniformly distributed random variable is compared to the packet 

error rate to determine whether a packet should be dropped during the wireless 
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transmission. Therefore, despite the fair channel quality at the PHY layer, 

packets are still subject to random drop in the simulation. 

4.6 Validity Check of the Implemented Model 

Before presenting the simulation results, the implemented model is 

verified against a few tests to ensure its validity. In the proposed algorithm, the 

cwnd-dependent queue weight is calculated based on the cwnd ratio, thus the 

weight of a queue should show a similar trend as the cwnd ratio. Figure 4.9 

illustrates the plots of the cwnd ratio and queue weight, which are collected from 

1000s to 1300s of the simulation time of a particular simulation run. 

 
Figure 4.9: The comparison between the cwnd ratio and queue weight 
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One of the reasons for the vertical gap between the green and blue lines 

is the unit difference between the cwnd ratio and queue weight; one is unit-free, 

and the other one is in symbols. The unit, symbol, incorporates the modulation 

and coding schemes that is utilized when transmitting a packet. In other words, 

packets of the same size in bytes may be transmitted in different numbers of 

symbols, depending on the modulation and coding scheme. Despite the unit 

difference, the original weight of a queue is derived from the minimum traffic 

reserve rate, instead of the cwnd ratio. 

The discontinuities observed in the graph when moving along the time 

axis are due to idling of the network, when the download of a file is complete, and 

the next download has not been initiated. Nevertheless, the implemented queue 

weight follows the fluctuations in the cwnd ratio as desired. Furthermore, while 

the queue weight follows the variation of the cwnd ratio, it should also show a 

similar trend as the congestion window size, as illustrated in Figure 4.10. Note 

that the reasons for the vertical gaps and discontinuities in Figure 4.10 are the 

same as that of the graph of cwnd ratio and queue weight. 

 86



 

 
Figure 4.10: The comparison between the congestion window size and queue weight 

In addition, the queue weight of each variation of the proposed design is 

different due to the weight-adjusting factor coefficient. Figure 4.11 demonstrates 

the queue weight of the same queue, but with different coefficient designs over 

the entire course of the simulation. 
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Figure 4.11: The comparison of the queue weights across different designs 

The queue weight of the original design is constant, thus it appears as a 

horizontal line at the bottom of the graph. In comparison, the weights of the 

proposed designs are fluctuating, each of which varies between different ranges 

of y-axis depending on the value of the coefficient. 

This chapter has provided an overview on the hierarchical modeling of 

OPNET models and the architectural concept of the OPNET WiMAX model. The 

implementations made on top of the OPNET models, and the configurations of 

the simulated network are outlined. Lastly, the validity of the implemented model 

is illustrated before presenting the simulation results in the next chapter. 
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CHAPTER 5: OPNET SIMULATION RESULTS 

Traffic intensity is often an influential factor for network performance, thus 

simulations are conducted with respect to various numbers of stations, N, in the 

network. The values of N simulated in this thesis include two, four, six, eight, ten, 

twelve and fifteen, and each of them is simulated against four values of the 

weight-adjusting factor coefficient, including zero (i.e. the original design), one, 

three, and five. In addition, since the proposed algorithm incorporates the 

congestion window size of TCP, the aforementioned scenarios were simulated 

with various TCP flavours, Reno, New Reno, and Reno with SACK combination. 

The performance metrics such as delay and throughput were collected at each 

station. 

5.1 Two Client Stations Scenario 

In this section, the number of client stations presented in the WiMAX 

network is two, and the simulated results are organized according to the flavours 

of TCP. The delay and throughput statistics are collected in each scenario, and 

the results are introduced in the order of TCP Reno, New Reno, and Reno with 

SACK combination. 

5.1.1 2SS – TCP Reno 

  The delay of a packet was determined and collected at three layers: the 

application, transport, and MAC layers. The delay statistics collected at the 
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transport and MAC layers are end-to-end delays, which were measured from the 

time that a TCP segment or a MAC frame was created to the time it was received 

by the transport or MAC layer of the receiving node. On the other hand, the delay 

collected at the application layer is defined as the amount of time required to 

complete a file download request. In other words, the download time measured 

the total delay of multiple packets. 

The statistic results presented in this thesis are global averages of each 

scenario. A global average was obtained by first evaluating the mean of the data 

of all client stations at a given instance, and this aggregated mean of each 

instance was then averaged over time to obtain a global average. Thus, the 

resulting graph of global average is a cumulative average of the aggregated 

mean with respect to the simulation time. This manipulation of data points was 

executed on each statistic presented in this chapter, except in Section 5.7. 

The global averages of the delay measurements, utilizing TCP Reno as 

the transport protocol, are presented in the following, where Figure 5.1 and 

Figure 5.2 are the end-to-end delay measured at the MAC and transport layers 

respectively. The download time of the requested files measured at the 

application layer is presented in Figure 5.3. Note that the rapid changes at the 

beginning of the plots are initial transient stages, where the simulations have just 

started and the numbers of samples are still small. The number of data points 

accumulates as simulations are in progress, and for stable systems, the plots 

enter their steady states with less fluctuation. 
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Figure 5.1: The global average of MAC delay for 2SS scenario, utilizing Reno 

 
Figure 5.2: The global average of TCP delay for 2SS scenario, utilizing Reno 

 91



 

 
Figure 5.3: The global average of download time for 2SS scenario, utilizing Reno 

The graph of MAC layer delay illustrates a close resemblance to the graph 

of the TCP delay over the course of the simulation time, except that the delay at 

TCP is higher in magnitude. TCP resides at two layers above the MAC layer; 

therefore, a segment is created before a frame, and a frame arrives at the MAC 

layer before being decapsulated into a segment and passed to the transport layer 

at the receiving node. Hence, the end-to-end delay measured at the transport 

layer is expected to be higher than at the MAC layer. However, the MAC and 

TCP delays of the newly proposed design are higher than the original design. 

The analytical model developed in Section 3.4 indicates that the number of 

stations, N, is required to be sufficiently large, two in particular, in order to offset 

the weight-adjusting factor coefficient, a, in the denominator. 
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Though the MAC layer and TCP delay of the proposed designs are higher 

than the original, the file download time of the proposed designs are better than 

the original. The vulnerability of TCP Reno to packet drop events, as discussed 

in Section 2.1.8.2, contributes a major factor to unsettle the performance at the 

higher layer delay. The number of packets dropped significantly affects the 

performance of file download time because of initiations of the timeout 

mechanism at TCP. As a result, the performance gain in the lower layer delays 

can be offset by the number of packets dropped in the PHY layer, as it is 

illustrated in the plots of the original and a=3 designs of the download time graph. 

The key difference between the end-to-end delay and file download time is 

that the end-to-end delay measures only the delay experienced by a particular 

frame or segment once received. A frame or a segment that is lost in the 

transmission is not considered. However, the file download time incorporates the 

time required to recover lost packets within the downloaded file. Hence, the file 

download time exhibits a combined effect of the lower layer end-to-end delays 

and the number of packets dropped in the physical medium. The file download 

time is a more difficult performance metric to anticipate than the MAC or TCP 

delay. Figure 5.4 illustrates the number of packets dropped of each design in the 

PHY layer. 
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Figure 5.4: The global average of packets dropped for 2SS scenario, utilizing Reno 

Note that the download time plots more closely resemble the plots of 

packets dropped, instead of the plots of low layer delays. This indicates that 

when TCP Reno is utilized and the number of stations in the network is two, the 

download time is significantly influenced by the condition of the PHY layer. In 

other words, the physical channel condition is the dominant factor in file 

download time when the traffic intensity of the network is low and the utilized 

TCP flavour is Reno. 

The throughput statistic of each station is also captured, and it is 

measured in bits at the MAC layer, and in bytes at the transport layer. 

Throughput is defined as the amount of data that have been received by a node, 

and successfully forwarded to the higher layer. Packets that are lost during the 
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transmission or discarded due to error are excluded in the throughput statistic. As 

a result, throughput is a statistic that is affected by the physical channel quality, 

as is the file download time statistic. The throughput measured in this thesis is 

cumulative, such that the amount of data that has been successfully forwarded to 

the higher layer is accumulated. The accumulated value is recorded in periodic 

intervals, and the value is reset to zero for the next accumulation after it is 

recorded. Figure 5.5 and Figure 5.6 illustrates the global average of the 

throughput measured at the MAC and transport layer. 

 
Figure 5.5: The global average of MAC throughput for 2SS scenario, utilizing Reno 
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Figure 5.6: The global average of TCP throughput for 2SS scenario, utilizing Reno 

The throughput measured at the MAC layer shows a close resemblance to 

the throughput of TCP, as was observed with the MAC and TCP delay. 

Nevertheless, the throughput plots demonstrate similar trends as the plots of file 

download time, but in the opposite direction. When throughput is low, the time 

required to download a file is prolonged. In contrast, the download time is 

reduced if throughput is high. Consequently, the throughput and file download 

time plots exhibit similar trends, but in an inverse direction. Though the delays of 

the original and a=3 designs are relatively low at the MAC layer, their 

throughputs suffer from packet drop events as observed in the graph of file 

download time. 
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5.1.2 2SS – TCP New Reno 

The same simulation configurations of the TCP Reno scenario were 

simulated again, utilizing TCP New Reno, and the same statistics of delay, 

number of packets dropped, and throughput were collected. Figure 5.7, Figure 

5.8, and Figure 5.9 illustrate the MAC layer delay, TCP delay, and FTP file 

download time respectively. 

 
Figure 5.7: The global average of MAC delay for 2SS scenario, utilizing New Reno 
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Figure 5.8: The global average of TCP delay for 2SS scenario, utilizing New Reno 

 
Figure 5.9: The global average of download time for 2SS scenario, utilizing New Reno 
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Similar observations as in the Reno scenario are noted in the New Reno 

simulation. The graph of the MAC layer delay closely resembles the delay graph 

of TCP, except the magnitude of the TCP delay is slightly higher than the MAC 

layer delay. Furthermore, a better end-to-end delay performance in the lower 

layers does not guarantee a shorter download time at the application layer. The 

number of packets dropped at the PHY layer is illustrated in Figure 5.10. 

 
Figure 5.10: The global average of packets dropped for 2SS scenario, utilizing New Reno 

Similar to Reno, the file download time is still affected by the number of 

packets dropped at the PHY layer. When the number of stations presented in the 

network is two, the file download time plots are still influenced by the number of 

packets dropped even though New Reno is more competent than Reno when 

dealing with packet drops. However, the download times collected in the New 
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Reno scenario are distributed at around 12-seconds range, whereas the 

download times in Reno are located at about 18-seconds range.  

The throughput statics are also captured in the New Reno simulations. 

The throughputs measured at the MAC and transport layer are shown in Figure 

5.11 and Figure 5.12 respectively. 

 
Figure 5.11: The global average of MAC throughput for 2SS scenario, utilizing New Reno 
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Figure 5.12: The global average of TCP throughput for 2SS scenario, utilizing New Reno 

Again, the graph of throughput at the MAC layer shows a similar trend as 

the graph of throughput of TCP, and both statistics are affected by the PHY layer 

performance, as discussed in the Reno scenario. In particular, the throughput 

performance of the original design is reduced due to the relatively high number of 

packets dropped in the PHY layer. However, the average throughput in New 

Reno is higher than in Reno because New Reno is more adequate with packet 

losses. The simulation confirms that New Reno performs better in terms of 

throughput and file download time even if the packet drop rate is higher than 

Reno. 
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5.1.3 2SS – TCP Reno & SACK 

The same parameter configurations were simulated utilizing TCP Reno 

with SACK combination. Since the MAC layer delay exhibits a very similar trend 

as the TCP delay, in the following scenarios, only the graph of MAC layer delay 

will be illustrated as the representation of the two. The MAC layer delay graph of 

the Reno-SACK combination is shown in Figure 5.13. The file download time 

graph is presented in Figure 5.14, and the number of packets dropped in the 

PHY layer is illustrated in Figure 5.15. 

Similarly, the throughputs measured at the MAC and transport layers 

capture overlapping aspects of the network performances. Therefore, in the 

following scenarios, only the MAC layer throughput will be illustrated. The MAC 

layer throughput of the Reno-SACK combination is shown in Figure 5.16. 

 
Figure 5.13: The global average of MAC delay for 2SS scenario, utilizing Reno-SACK 
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Figure 5.14: The global average of download time for 2SS scenario, utilizing Reno-SACK 

 
Figure 5.15: The global average of packets dropped for 2SS scenario, utilizing Reno-SACK 
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Figure 5.16: The global average of MAC throughput for 2SS scenario, utilizing Reno-SACK 

For statistics that incorporate the physical channel condition such as the 

file download time and throughput, the performances are affected by the number 

of packets dropped in the PHY layer. Though the original algorithm demonstrates 

a better performance in the MAC layer delay, the gain is offset by the effect of 

packet drops at the application layer. Nevertheless, the graph of file download 

time in the Reno-SACK combination does not resemble as closely to the graph of 

number of packets dropped, as was observed in the Reno and New Reno 

scenarios. This implies that the physical channel condition in the Reno-SACK 

scenario is even less influential on the download time than in the New Reno 

scenario. However, the simulation results indicate that though the Reno-SACK 

combination is designed to elevate the resistance of TCP towards packet losses, 
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the performances of the file download time and throughput are still strongly 

affected by the number of packets dropped when the number of stations is two 

(i.e. the traffic is light). 

The common conclusion that can be drawn from all three flavours of TCP 

when N is two is that the proposed scheme does not deliver a better performance 

than the original design at low layers delays (i.e. MAC and TCP delay), 

regardless of the values of the coefficient. This is anticipated since the benefit of 

the proposed scheme is expected to become apparent when N is sufficiently 

large, as analyzed in Section 3.4. In fact, if the number of stations is insufficient, 

the proposed algorithm performs worse than the original (Figure 3.4 and 

Equation 3.14), which is demonstrated in the 2SS-scenarios. 

Another observation is that the performances of the file download time and 

throughput are dependent on the physical channel condition, thus their 

behaviours are more difficult to anticipate than the end-to-end delays. Therefore, 

the file download time and throughput are not direct indications on the effect of 

the proposed algorithm though they are still important statistics to consider since 

they are the QoS perceived by end-users. 

5.2 Four Client Stations Scenario 

The same simulation sequence and configuration settings are simulated in 

the four subscriber stations scenario. In this section and sections further on, only 

the MAC layer delay, file download time, number of packets dropped, and MAC 

layer throughput will be illustrated. 
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5.2.1 4SS – TCP Reno 

The average of the MAC layer delay, file download time, and number of 

packets dropped are illustrated in Figure 5.17 to Figure 5.19. 

 
Figure 5.17: The global average of MAC delay for 4SS scenario, utilizing Reno 
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Figure 5.18: The global average of download time for 4SS scenario, utilizing Reno 

 
Figure 5.19: The global average of packets dropped for 4SS scenario, utilizing Reno 
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The MAC layer delays of the proposed designs begin to show 

improvements over the original design, but the file download time is again subject 

to changes. More specifically, the number of packets dropped at the initial stage 

of the original design is much lower relative to the others. Thus, the file download 

time at the initial stage of the original design shows a relatively small download 

time. As the simulation progresses, the increasing number of packets dropped in 

the original design results in an increasing trend in the file download time. 

Though the overall file download time of the original design is still relatively lower 

than the others, the effect of the physical channel condition on the file download 

time is evident. The MAC throughput of this scenario is illustrated next in Figure 

5.20. 

 
Figure 5.20: The global average of MAC throughput for 4SS scenario, utilizing Reno 
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The throughput plots exhibit inverse trends from the file download time 

plots, thus throughput is also inversely related to the number of packets dropped. 

More specifically, throughput of the original design is comparatively high at the 

initial stage, which reflects the small file download time and low number of 

packets dropped at the beginning of the simulation. The throughput then 

continues to drop as the condition of the physical channel keeps suffering. 

5.2.2 4SS – TCP New Reno 

This subsection presents the simulation results, utilizing TCP New Reno. 

The graphs of the MAC layer delay, file download time and number of packets 

dropped at the PHY layer are illustrated in Figure 5.21 to Figure 5.23. 

 
Figure 5.21: The global average of MAC delay for 4SS scenario, utilizing New Reno 
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Figure 5.22: The global average of download time for 4SS scenario, utilizing New Reno 

 
Figure 5.23: The global average of packets dropped for 4SS scenario, utilizing New Reno 
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In the New Reno scenario, the MAC layer delay of the proposed algorithm 

also shows an improvement over the original algorithm, and the improvement of 

each plot is more distinct than in Reno. However, the gain in the MAC layer can 

be compromised by significant number of packets dropped at the PHY layer. For 

example, the a=3 design shows a smaller delay at the MAC layer than a=1, but 

the high number of packets dropped causes the a=3 design to perform worse 

than a=1 at the application layer. Nevertheless, if the improvement at the MAC 

layer is significant, it can persist to the application layer. Therefore, when N=4, 

though the proposed scheme begins to show performance gain in the MAC layer 

delay, the improvement is not always significant enough to overcome the PHY 

layer condition. 

Despite this, the effect of the PHY layer on the file download time is not as 

dominant as in the Reno or 2SS scenarios. The throughput of the MAC layer is 

illustrated in Figure 5.24, and the graph approximately reflects the trends in the 

graphs of file download time, and number of packets dropped but in the opposite 

direction. 
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Figure 5.24: The global average of MAC throughput for 4SS scenario, utilizing New Reno 

5.2.3 4SS – TCP Reno & SACK 

This subsection includes the simulation results for four client stations, 

utilizing TCP Reno and SACK combination. The graphs of the MAC layer delay, 

file download time and the number of packets dropped are presented in Figure 

5.25 to Figure 5.27. The graph of the MAC layer throughput is illustrated in 

Figure 5.28. 
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Figure 5.25: The global average of MAC delay for 4SS scenario, utilizing Reno-SACK 

 
Figure 5.26: The global average of download time for 4SS scenario, utilizing Reno-SACK 
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Figure 5.27: The global average of packets dropped for 4SS scenario, utilizing Reno-SACK 

 
Figure 5.28: The global average of MAC throughput for 4SS scenario, utilizing Reno-SACK 
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Similar to the New Reno simulation, the proposed designs show a smaller 

delay at the MAC layer than the original, but the download times do no 

necessarily demonstrate the same improvement. Nevertheless, the graph of 

number of packets dropped shows less domination on the graph of file download 

time than in the Reno and New Reno scenarios. In addition, the performance of 

the file download time of the Reno-SACK combination is steadier (i.e. a smaller 

variation in the range of the y-axis) than in New Reno and Reno. 

One of the conclusions that can be drawn from the three flavours of TCP 

when N is four is that the effect of the proposed algorithm becomes observable at 

the MAC layer delay. However, the file download time and throughput statistics 

are more complicate to anticipate. Nevertheless, if the improvement is significant 

and consistent at the low layer, it should be able to persist to higher layers. 

As a packet is processed and delivered to the next layer in the hierarchy 

of the protocol stack, the performance metric measured in the next layer and 

layers afterwards becomes more difficult to enumerate. This is due to increasing 

complication on the measurement of a packet as the packet is being manipulated 

and influenced by mechanisms of each layer that the packet has visited. 

Therefore, the performance measured at the higher layer is more intricate in 

nature, in the sense that it exhibits effects of elements inherited from multiple 

layers. This consequence results in a problematic discernment on the effect of 

the algorithm, particularly for an algorithm implemented at the MAC layer. 

On the other hand, though the MAC throughput is measured at the MAC 

layer, it is affected by many factors, such as error checking and packet drops. 
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Thus, throughput is also a complicated statistic to predict, especially in a wireless 

context. 

5.3 Six Client Stations Scenario 

In this section, simulations with six subscriber stations in the network are 

conducted. However, to avoid a tedious illustration of the simulated results for 

every TCP flavour, only key statistics will be presented to highlight the important 

discussions related to this thesis. Since the high-layer performance of TCP Reno 

is known to be significantly affected by the channel condition, it does not provide 

as clear indications on the effect of the proposed algorithm as New Reno and 

Reno-SACK combination. Furthermore, the Reno is generally not a 

recommended option to utilize in the wireless networks. Therefore, Reno is 

omitted in the detailed scenario-by-scenario illustration in this section, but 

overview graphs on the performances of Reno will still be included and discussed 

in the later section. 

5.3.1 6SS – TCP New Reno 

The plots for the MAC layer delay, file download time, number of packets 

dropped, and MAC throughput are presented in Figure 5.29 to Figure 5.32. 
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Figure 5.29: The global average of MAC delay for 6SS scenario, utilizing New Reno 

 
Figure 5.30: The global average of download time for 6SS scenario, utilizing New Reno 
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Figure 5.31: The global average of packets dropped for 6SS scenario, utilizing New Reno 

 
Figure 5.32: The global average of MAC throughput for 6SS scenario, utilizing New Reno 
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The graph of the MAC layer delay shows four well-spaced plots of the 

original and variations of the proposed design. The graph of the file download 

time begins to illustrate a steadier performance at the application layer, and it 

starts to reflect the gain at the MAC layer. More specifically, when N=6, the traffic 

intensity of the network begins to approach a moderate level, thus leading to a 

steady dequeuing process. The steady dequeuing process provokes the queue 

service rate to settle at the case (b) of the analysis in Section 3.4 more frequently. 

As a result, the weight of a queue becomes the significant factor in queue service 

rate, instead of the queue size. The condition of moderate traffic intensity allows 

the prediction of the analytical model built in Section 3.4 be more accurate. In 

fact, the observations from simulations comply with the analysis, in that the effect 

of the proposed algorithm is more evident when the number of stations in the 

network is higher. 

5.3.2 6SS – TCP Reno & SACK 

The plots of the MAC layer delay, file download time, PHY layer packet 

drop rate and MAC throughput of the 6SS scenario, utilizing combination of TCP 

Reno and SACK, are presented in Figure 5.33 to Figure 5.36. 
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Figure 5.33: The global average of MAC delay for 6SS scenario, utilizing Reno-SACK 

 
Figure 5.34: The global average of download time for 6SS scenario, utilizing Reno-SACK 
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Figure 5.35: The global average of packets dropped for 6SS scenario, utilizing Reno-SACK 

 
Figure 5.36: The global average of MAC throughput for 6SS scenario, utilizing Reno-SACK 
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The observations of the Reno-SACK scenario are similar to New Reno. 

The graph of the MAC layer delay consists of four distinct plots, and the plots are 

in the order of increasing weight-adjusting factor coefficients from top to bottom. 

Moreover, the plots of the file download time observed at the application layer 

are steadier, and better separated than in New Reno. At the same time, the 

fluctuating transient stage at the beginning of the simulation is shortened, and the 

range of the file download time is narrower. The resistance of Reno-SACK 

combination towards packet loss events is becoming observable. The plots of the 

number of packets dropped no longer dominate the trends or the order of the 

plots in the file download time graph. 

The conclusion that can be drawn from the 6SS-scenarios is that the 

improvement at the MAC layer becomes more evident than in the 4SS and 2SS 

scenarios. The overall system reaches a steadier state as greater number of 

stations joined in the network, resulting in the traffic load is increased to a 

moderate level. The combination of a significant reduction of the MAC layer delay 

and steady traffic load leads to an improvement at the application layer. The 

number of packets dropped at the PHY layer shows even less influence on the 

average performance. Nevertheless, the flavour of TCP still plays an important 

role in delivering a decent performance at the application level. 

5.4 Eight Client Stations Scenario 

The same configurations are simulated with eight subscriber stations in 

the network. Like in the 6SS-senario, only simulations of New Reno and Reno-

Sack combination are presented. 
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5.4.1 8SS – TCP New Reno 

The graphs of the MAC layer delay and file download time are presented 

in Figure 5.37 and Figure 5.38. The number of packets dropped at the PHY layer 

and MAC throughput are illustrated in Figure 5.39 and Figure 5.40 respectively. 

 
Figure 5.37: The global average of MAC delay for 8SS scenario, utilizing New Reno 
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Figure 5.38: The global average of download time for 8SS scenario, utilizing New Reno 

 
Figure 5.39: The global average of packets dropped for 8SS scenario, utilizing New Reno 
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Figure 5.40: The global average of MAC throughput for 8SS scenario, utilizing New Reno 

The improvement of the proposed design is distinctively illustrated in the 

graphs of the MAC layer delay and file download time. The initial transient stage 

of the 8SS-New Reno scenario is shorter than the 6SS-New Reno scenario. 

However, in both cases, the improvement is more evident with increasing values 

of weight-adjusting factor coefficients. Moreover, each plot of the file download 

time is spaced further apart in the 8SS-New Reno scenario than in the 6SS-New 

Reno scenario, such that each design fluctuates mostly within its own range of y-

values. In addition, the improvement is persistent, regardless of the drop rate at 

the physical link. Finally, the throughput plots show improvements across the 

designs when N is eight. 

 125



 

5.4.2 8SS – TCP Reno and SACK 

The simulation results of eight subscriber stations, which utilize Reno and 

SACK combination, are presented in this sub-section. The plots of the MAC layer 

delay, file download time, number of packets dropped, and throughput are 

illustrated in Figure 5.41 to Figure 5.44. 

 
Figure 5.41: The global average of MAC delay for 8SS scenario, utilizing Reno-SACK 
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Figure 5.42: The global average of download time for 8SS scenario, utilizing Reno-SACK 

 
Figure 5.43: The global average of packets dropped for 8SS scenario, utilizing Reno-SACK 
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Figure 5.44: The global average of MAC throughput for 8SS scenario, utilizing Reno-SACK 

The Reno-SACK combination demonstrates similar results as in the 8SS-

New Reno case. More specifically, the improvements of the proposed algorithm 

are evident in the MAC layer delay, file download time and throughput. The 

improvement compared to the original design increases with respect to the 

weight-adjusting factor coefficient, but not the growth of the improvement in 

between designs. In fact, the improvement from a=3 to a=5 is less than that from 

a=1 to a=3. In short, the benefit of the increasing weight-adjusting factor 

coefficient diminishes beyond a certain value. This observation complies with the 

analysis in Section 3.4, and suggests that the proposed scheme has a maximum 

performance benefit at a certain coefficient value. An overly aggressive (i.e. large) 
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weight-adjusting factor coefficient may result in a decaying and unfair 

performance. 

Based on the simulation results illustrated in the two, four, six and eight 

subscriber stations scenarios, the proposed algorithm shows a better 

performance as the number of stations in the network is sufficiently large. The 

traffic intensity of the system reaches a moderate level, resulting in a steady 

operation in queue service and the resulting performance. A large weight-

adjusting factor coefficient helps to attain a better outcome, but the improvement 

is limited to a certain extent. 

Another conclusion that can be drawn from the simulations is that the 

MAC layer delay is the most sensitive performance measurement that reflects 

the effect of the proposed scheme. In particular, the improvement of the MAC 

layer delay is observed starting from the 4SS-scenarios, whereas the 

improvement of the download time is observed in the 6SS-scenarios and beyond. 

The improvement of throughput is also observed in 6SS-scenarios and beyond, 

but it only becomes more evident in 8SS-scenarios. This observation is 

reasonable since the MAC layer delay is a statistic, which simply measures the 

end-to-end delay of every packet received. In contrast, both file download time 

and throughput are affected by complicated mechanisms, such as error checking, 

packet drops and timeout events, which make them more difficult to reflect the 

effect of the proposed design. 

The 10-SS, 12-SS and 15-SS scenario simulations were also conducted, 

but they are not illustrated in detail as in the 2SS, 4SS, 6SS and 8SS-scenarios. 

 129



 

Instead, the statistics are plotted against various values of N, as it is shown in the 

next section. 

5.5 Performance with respect to N 

This sub-section provides an overview of the results illustrated in Section 

5.1 to Section 5.4, and in addition, simulation results of 10-SS, 12-SS and 15-SS 

scenarios are included. The performance metrics such as the MAC layer delay, 

file download time, and MAC throughput are plotted against various values of N. 

These figures portray visualization of the effect of the proposed scheme with 

respect to different levels of traffic intensity in the network. The order of the 

presentation is arranged in accordance with the TCP flavours as before. 

5.5.1 The MAC Layer Delay vs. Number of Stations 

The global average of MAC layer delay with various numbers of 

subscriber stations, which utilizes Reno as the TCP flavour, is plotted in Figure 

5.45. 
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Figure 5.45: MAC delay vs. number of stations, utilizing Reno 

The number of stations that were simulated includes two, four, six, eight, 

ten, twelve and fifteen, and the y-axis is the final value of the global average of 

the MAC layer delay. The figure shows an increasing trend of the MAC layer 

delay with respect to the number of stations. This is anticipated as the resources 

of the BS are shared by more stations, thus resulting in an increasing queue 

delay. When N equals to two, the MAC layer delay is small but indistinguishable. 

In fact, the MAC layer delay of the proposed design is worse than the original 

when N equals to two, as illustrated in Section 5.1.1. Though the improvement of 

the MAC layer delay is observed when N equals to four in Reno, as 

demonstrated in Section 5.2.1, the improvement is small and not significant. 

When N is greater or equals to eight, the plots of the proposed designs start to 
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pull away from the original design. Table 5-1 provides the detailed information on 

the percentage difference of each proposed design when comparing to the 

original design. 

Table 5-1: The percentage differences of the global average delay at the MAC layer of each 
proposed design compared to the original design, utilizing Reno 

N a = 1 a = 3 a = 5 

2 0.21% 0.12% 0.33% 

4 -5.41% -2.26% -9.20% 

6 -5.56% -3.07% -8.91% 

8 -16.02% -24.46% -25.41% 

10 -8.13% -20.97% -13.70% 

12 -8.84% -11.79% -11.19% 

15 -2.65% -4.66% -6.46% 

 

When N is two, the percentages are positive. This indicates that the MAC 

layer delays of those scenarios are higher than the original design. When N is 

greater than two, the percentage differences become negative, indicating a 

smaller MAC layer delay of the proposed designs in those scenarios. The 

maximum reduction is 25.41%, which occurs when N is eight, and a is five. 

Furthermore, the table again demonstrates that the gain of the proposed design 

increases with respect to N and a, but the gains are limited at certain bound. 

The MAC layer delay versus the number of stations in the network, which 

employs New Reno as the TCP flavour, is illustrated in Figure 5.46. 
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Figure 5.46: MAC delay vs. number of station, utilizing New Reno 

The New Reno scenario also exhibits an increasing trend in the plots of 

MAC layer delay with respect to the number of stations. Nevertheless, the plots 

are more distinguishable starting when N is six, or even when N is four. For N 

greater than four, the MAC layer delays of the proposed designs are consistently 

lower than the original, and the differences become more evident when the 

number of stations exceeds eight. In addition, the gain of the proposed algorithm 

grows with respect to the increasing a. A detailed comparison on the 

improvement of each data point is listed in Table 5-2. 
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Table 5-2: The percentage differences of the global average delay at the MAC layer of each 
proposed design compared to the original design, utilizing New Reno 

N a = 1 a = 3 a = 5 

2 0.46% 0.49% 0.78% 

4 -4.59% -16.30% -21.13 

6 -6.79% -12.14% -17.96% 

8 -8.70% -17.87% -21.93% 

10 -4.66% -8.93 -12.26% 

12 -3.87% -9.20% -11.51% 

15 -5.02% -9.90% -13.46% 

 

When N equals to fifteen, the a=1 design reduces the delay of the original 

design by approximately 5%, and the a=5 design delivers a reduction of 13.46%. 

Nevertheless, the maximum reduction is 21.93%, which occurs when N is eight 

and a is five. The MAC layer delay of the scenarios utilizing the Reno-SACK 

combination is presented in Figure 5.47. 
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Figure 5.47: MAC delay vs. number of station, utilizing Reno-SACK 

The proposed designs also exhibit consistent reductions in the MAC layer 

delay in the Reno-SACK combination. When N equals to ten, the gains in the a=3 

and a=5 cases are not differentiable. When the number of stations increases to 

beyond ten, the plot of a=5 design begins to move apart from the plot of a=3. 

This behaviour can be explained by the discussion in Section 3.4, in which a 

greater a requires a greater N in order to offset the effect of the coefficient at the 

denominator. The a=1 delivers a reduction of 4% in the MAC layer delay when N 

is fifteen, while in the same scenario, the a=5 design reduces the original design 

by 12.6%. Table 5-3 lists the detailed reductions in the MAC layer delay of each 

scenario when employing Reno-SACK combination as the TCP flavour. 
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Table 5-3: The percentage differences of the global average delay at the MAC layer of each 
proposed design compared to the original design, utilizing Reno-SACK 

N a = 1 a = 3 a = 5 

2 0.47% 0.38% 0.23% 

4 -12.90% -26.46% -32.24% 

6 -9.74% -14.62% -20.04% 

8 -6.90% -17.12% -20.22% 

10 -4.02% -11.57% -11.89% 

12 -3.53% -10.64% -13.27% 

15 -4.01% -8.06% -12.63% 

 

5.5.2 FTP File Download Time vs. Number of Stations 

This sub-section provides an overview of the performance of file download 

time at the application layer with respect to various numbers of stations in the 

network. The figures are illustrated in the same fashion as in the MAC layer delay 

section. The graphs of the Reno and New Reno scenarios are presented in 

Figure 5.48 and Figure 5.49 respectively, and graph of the Reno-SACK 

combination is shown in Figure 5.50. Each figure is followed by a table to provide 

the detailed information on the percentage difference of each proposed design 

compared to the original one. 
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Figure 5.48: The file download time vs. number of stations, utilizing Reno 

Table 5-4: The percentage differences of the global average of the file download time of 
each proposed design compared to the original design, utilizing Reno 

N a = 1 a = 3 a = 5 

2 -1.58% 0.21% -1.08% 

4 0.81% 0.73% 1.43% 

6 1.01% 0.49% -0.30% 

8 -0.25% -1.42% -1.79% 

10 -1.66% -3.10% -4.03% 

12 -1.40% -2.75% -2.70% 

15 -1.39% -1.91% -1.63% 
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Figure 5.49: The file download time vs. number of station, utilizing New Reno 

Table 5-5: The percentage differences of the global average of the file download time of 
each proposed design compared to the original design, utilizing New Reno 

N a = 1 a = 3 a = 5 

2 0.23% -0.54% -2.03% 

4 -1.28% -0.53% -1.04% 

6 -0.92% -3.53% -3.21% 

8 -4.52% -8.37% -8.88% 

10 -3.09% -6.51% -6.77% 

12 -1.89% -3.96% -5.20% 

15 -1.42% -3.09% -3.77% 
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Figure 5.50: FTP file download time vs. number of station, utilizing Reno and SACK 

Table 5-6: The percentage differences of global average of the file download time of each 
proposed design compared to the original design, utilizing Reno-SACK 

N a = 1 a = 3 a = 5 

2 -0.13% -0.41% 0.84% 

4 -0.01% 1.08% 0.11% 

6 -1.43% -2.82% -4.72% 

8 -3.49% -8.69% -9.30% 

10 -2.84% -5.97% -6.01% 

12 -1.95% -4.15% -4.54% 

15 -0.70% -2.28% -3.61% 

 

The file download time is similar to the MAC layer delay, which exhibits a 

rising trend when the number of stations in the network increases. Nevertheless, 
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the reductions in the file download time of the proposed designs are not as 

extraordinary as in the MAC layer delay. In particular, the a=3 and a=5 are not 

differentiable until N is twelve in New Reno and fifteen in Reno-SACK 

combination. Furthermore, the download times of the Reno scenarios are even 

more difficult to differentiate than New Reno and Reno-SACK combination. As 

previously mentioned, download time is a more complicated statistic to anticipate, 

which incorporates many qualities of the mechanisms at the lower layers. In 

particular, Reno suffers the worst among the three flavours because Reno is the 

most vulnerable scheme of the three when encountering packet drops in the 

physical channel. 

The percentage gains of the file download time are smaller than 10% in all 

scenarios, which is less than the MAC layer delay. When N is equal to fifteen, the 

a=1 performs 1.42% better than the original in New Reno, and 0.7% better than 

the original in Reno-SACK combination. In comparison, the a=5 design delivers a 

reduction of 3.77% in New Reno, and 3.6% in the Reno-SACK combination when 

N is fifteen. Therefore, the coefficient of the weight-adjusting factor still makes a 

difference. Nevertheless, the largest reduction in the file download time happens 

when N equals to eight, where the reduction of the a=5 design in the Reno-SACK 

scenario is 9.3%. 

5.5.3 MAC Throughput vs. Number of Stations 

The throughput plots with different numbers of stations in the network are 

presented in this sub-section. In contrast to the delay graphs, the MAC 

throughput decreases as the number of stations grows. Since the throughput is a 
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reducing statistic with increasing N, the figure is cropped at N equal to eight to 

better illustrate the comparison of the designs at high values of N (i.e. when the 

system performance are more stable with steady traffic load). The throughput 

graphs that utilize TCP Reno and New Reno are illustrated in Figure 5.51 and 

Figure 5.52 respectively. The throughput graph of the Reno-SACK combination is 

presented in Figure 5.53.  The detailed comparison of each proposed design to 

the original is provided in a table after each figure. 

 
Figure 5.51: MAC throughput vs. number of station, utilizing Reno 
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Table 5-7: The percentage differences of global average of the MAC throughput of each 
proposed design compared to the original design, utilizing Reno 

N a = 1 a = 3 a = 5 

2 3.32% -0.76% 1.00% 

4 -1.18% 0.55% -0.97% 

6 0.37% 1.70% 0.78% 

8 1.27% 1.36% 2.99% 

10 2.06% 4.92% 5.93% 

12 2.48% 4.23% 3.22% 

15 1.85% 1.62% 2.31% 

 

 
Figure 5.52: MAC throughput vs. number of station, utilizing New Reno 

 142



 

Table 5-8: The percentage differences of global average of the MAC throughput of each 
proposed design compared to the original design, utilizing New Reno 

N a = 1 a = 3 a = 5 

2 3.74% 4.53% 4.49% 

4 -1.30% -0.55% -0.36% 

6 0.32% 2.37% 3.61% 

8 4.34% 8.04% 7.63% 

10 2.33% 4.88% 4.94% 

12 1.41% 1.77% 2.33% 

15 0.49% 1.10% 1.79% 

 

 
Figure 5.53: MAC throughput vs. number of station, utilizing Reno-SACK 
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Table 5-9: The percentage differences of global average of MAC throughput of each 
proposed design compared to the original design, utilizing Reno-SACK 

N a = 1 a = 3 a = 5 

2 0.66% -0.52% -1.59% 

4 -0.53% -2.38% 0.76% 

6 1.48% 0.14% 1.93% 

8 3.77% 9.14% 8.99% 

10 2.53% 3.66% 3.48% 

12 0.92% 1.49% 2.18% 

15 0.85% 1.39% 2.08% 

 

The graphs indicate that the proposed design produces a higher 

throughput than the original design. However, from the tables, some scenarios of 

the proposed design deliver worse throughput than the original when N is small. 

When N is larger, the improvement becomes more distinct. In particular, the 

improvement when N equals to eight is 8.04% in New Reno for the a=3 design, 

and 9.14% in Reno-SACK for the a=3 design. Nevertheless, the plots of a=3 and 

a=5 appear to be indistinguishable, and become more difficult to observe when N 

is larger. To better illustrate the throughput when N is large, the slightly enlarged 

versions of the above graphs are shown in Figure 5.54 to Figure 5.56. 
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Figure 5.54: MAC throughput vs. number of station, utilizing Reno (Zoom In) 

 
Figure 5.55: MAC throughput vs. number of station, utilizing New Reno (Zoom In) 
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Figure 5.56: MAC throughput vs. number of station, utilizing Reno and SACK (Zoom In) 

In both New Reno and Reno-SACK scenarios, the a=3 and a=5 designs 

are more distinguishable when N is twelve and fifteen. This observation 

demonstrates that large coefficients require larger N. Note that the difference 

between the throughput and service rate of a queue is that the service rate 

counts packets that are sent, but may finally be dropped by the physical link, 

whereas the throughput does not. Therefore, the plots of the throughput and 

queue service rate are very similar in a fair physical channel condition. 

5.6 Base Station Analysis 

The other interesting statistics to observe are the MAP-related statistics in 

the BS. A DL-MAP is embedded as a portion of the DL subframe (Section 
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2.2.1.3), and a MAP indicates the number of data bursts and the boundaries of 

each data burst located in the frame. A DL data burst contains data dedicated 

from the BS to a SS. The statistic of the number of data bursts in a DL subframe 

is captured, and it is plotted against various numbers of N as illustrated in Figure 

5.57. Due to the high similarity of the graphs utilizing different TCP flavours, only 

the New Reno graphs are chosen as the representative in this section. 

 
Figure 5.57: Number of burst count of the DL-MAP, utilizing New Reno 

As the number of stations in the network increases, the DL subframe is 

divided into more portions in order to deliver data to each station. As a result, the 

number of burst count increases with the number of stations. Due to the 

additional weight granted to each queue in the proposed scheme, the partitioning 

of a MAC frame is not as obvious in the proposed designs as in the original. As 
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observed in the plots of data burst count, the numbers of data bursts in a DL 

subframe of the proposed designs are less than the original. However, as the 

number of stations in the network grows larger (i.e. N>8), the increase in the 

number of data bursts slows down. This phenomenon implies that the dequeuing 

service provided to each station is approaching the minimum QoS specification 

of the station. At the same time, a slow increase in burst count also suggests the 

BS is slowly approaching its scheduling capacity, such that it cannot 

accommodate more data bursts even though the number of clients has increased. 

Based on the increasing trend observed in the graph of data burst count, 

the size of each data burst should exhibit a decreasing trend since the capacity 

of the BS is fixed. The size of each data burst with respect to varying numbers of 

stations is shown in Figure 5.58. 

 
Figure 5.58: Size of each data burst in the DL-MAP, utilizing New Reno 
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The plots of the data burst size confirm that the size of each data burst 

decreases with respect to N. With a fixed frame capacity, the burst count and 

size have an inverse relationship. However, due to the additional weight granted 

to each queue in the proposed scheme, the sizes of the data bursts are relatively 

higher in the proposed designs than in the original. When N is greater than eight, 

the size of each data burst approaches a steady state. This observation confirms 

that the amount of data dequeued at each station is approaching its maximum 

allowed limit in one round (i.e. Wn’). 

In addition to the burst profile, the utilization of the downlink subframe is 

analyzed. The utilization is measured in percentage, which is the percentage of a 

DL subframe that is occupied by DL data bursts. The DL data burst usages of a 

DL subframe in the New Reno scenarios are illustrated in Figure 5.59. Since the 

DL-MAP and the UL-MAP together occupied as a part of the downlink subframe, 

the percentage of a DL subframe that is allocated to the MAP usage is also 

shown in Figure 5.60. 
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Figure 5.59: DL Data burst usage of a DL subframe, utilizing New Reno 

 
Figure 5.60: MAP usage of a DL subframe, utilizing New Reno 
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The utilization of the data burst in the DL subframe is indistinguishable 

between the proposed and original designs because the scheduling algorithm of 

the BS is greedy, and always attempts to accommodate as much data as 

possible. This results in competitive utilization between the two algorithms. 

Nevertheless, the occupancies of both data bursts and MAP in the DL subframe 

increase as the size of the network expands. The increasing utilization of the DL 

subframe is an indication of increasing traffic load in the network. 

However, the growth of utilization in both data bursts and MAP slows 

down when the number of stations in the network exceeds eight. This 

observation confirms that the scheduling resources of the BS are approaching 

being fully utilized. More specifically, the combined percentage-occupancy of the 

data burst and MAP is approximately 91% of the DL subframe when N is fifteen. 

The observation of the network traffic load approaching the capacity of BS also 

explains the improvement of the proposed designs when N is fifteen is not as 

distinctive as when N is eight. When the traffic load of a network is catching up 

with the system capacity, the utilization of the network is fully exploited under 

most scheduling strategies. Consequently, an improvement in the system 

becomes more difficult to realize, as demonstrated in the plots of Section 5.5. 

5.7 Weight Variations across Stations 

The proposed design is an algorithm that attempts to differentiate 

resource allocation of the BS, based on the network congestion condition 

perceived at TCP. In particular, the ratio of the cwnd values of a station 

compared to that of other stations is utilized. Despite the equally fair channel 
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condition configured at each station in the simulation, the proposed algorithm still 

demonstrates an improvement over the original design on the average 

performance. The reason that differentiates the proposed algorithm from the 

original is that the physical channels are equally fair but still subject to random 

packet drops. The cwnd values thus vary randomly across stations, resulting in 

differentiations in the network condition assessments at a given instance. Since 

the cwnd values vary randomly with respect to time and across stations, the 

queue weight calculated for each queue fluctuates at different time instance as 

demonstrated in Figure 5.61. 

 
Figure 5.61: MAC queue weights of Station1 to Station6 of the 8SS-scenario, utilizing 

Reno-SACK combination and a=1 

As a result, a queue can experience a temporal high or low service rate, 

depending on the cwnd ratio of the queue at the time. This innate adaptive 
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characteristic of the proposed algorithm allows it to exploit the gain of queue 

diversity, thus achieving a more efficient utilization of the bandwidth. Note that 

the MAP usage presented at the end of last section (i.e. Figure 5.60) indicates 

that when N is between six and twelve, the MAP usage of the proposed algorithm 

is less than the original. However, the average performance of the proposed 

designs is better than the original when N is between six and twelve. This 

indicates that the system performance is improved due to efficient utilization of 

the bandwidth. 

The gain of queue diversity is a similar concept to the multiuser diversity 

gain [24] in a multiple access network. The multiuser diversity gain is an 

elevation in user data rates due to an adaptive scheduling algorithm, based on 

the physical channel states of the users. Similarly, Figure 5.61 demonstrates the 

weight granted to each queue is adaptive to the network congestion state over 

the entire transmission path. 

Furthermore, the extra bandwidth granted to each queue in the proposed 

design can be considered as an attempt to extract more capacity out of the BS 

when possible. As long as the BS can sustain the capacity, all queues perform 

better, thus a better global performance. In other words, the proposed algorithm 

also exploits the system capacity in order to deliver better performance when the 

traffic load of the network is moderate to high. However, if the traffic load of the 

network approaches to the system capacity, the effect of the proposed design 

diminishes, as explained in the last section (Section 5.6). 
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CHAPTER 6: A SUMMARY AND FUTURE EXTENSIONS 

The goal of this research effort is to explore the possibility of cross-layer 

optimization in the context of wireless networks. In this thesis, I have proposed a 

new cross-layer technique that interconnects the transport and MAC layers in a 

WMAN. In particular, the scheduler of WiMAX MAC is made aware of the 

congestion condition perceived at TCP. Through the knowledge of cwnd values 

provided by TCP, the MAC scheduler is capable of adaptively distributing its 

resources to desirable connections. The proposed algorithm is greedy since it 

utilizes more capacity of the BS when possible. At the same time, the proposed 

scheme exploits the gain of queue diversity, thus improving the transmission 

efficiency to attain a better average performance. At the same time, the proposed 

algorithm is still a bounded and stable system. 

Analytical models were developed to understand the behavioural 

dynamics of the proposed model. In particular, the queue service rate (Equation 

3.6-3.8) and expected queue delay (Equation 3.34) were developed, with 

particular focus on the case of moderate to high traffic intensity (i.e. case (b)). 

The analytical models indicate that the gain in both service rate and queue delay 

of the proposed scheme grows with respect to increasing N and a, but the gain is 

limited at a certain bound. The analytical models were further developed to 

analyze the effect of the MDRR queue service discipline on the RTT (Equation 

3.42) of a packet. With an expression for RTT, a simple service-rate dependent 
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arrival rate at a MAC queue (i.e. a primitive TCP send rate model) is derived in 

Equation 3.46. Consequently, an arrival-rate dependent MAC queue delay is 

derived in Equation 3.47. Finally, by employing the analytical work published in 

[22], a more complete TCP send rate model, which incorporates the service rate 

at the MAC layer (Equation 3.60 to 3.62), is developed. 

To complement the analytical results, the proposed scheme is 

implemented and simulated in OPNET Modeler. The simulation results indicate 

improvements in the end-to-end delay, file download time and throughput. The 

improvement becomes more evident when traffic intensity is moderate to high (i.e. 

large N), which complies with the analytical model developed. However, when 

the traffic load is approaching the BS capacity, the improvement is not as 

observable due to overly large values of N and full utilization of the system 

capacity. 

Moreover, an increase in numerical value of the weight-adjusting 

coefficient (i.e. a) further emphasizes the resource allocation, based on the cwnd 

ratios. The simulation confirms that an increased coefficient improves the 

average performance of the network but only to an extent. The percentage gain 

in performance measures decreases with respect to increasing coefficients. 

However, both analytical models and simulation results suggest that a large 

coefficient value is more suitable for a large network (i.e. large N). Nevertheless, 

large coefficient should be employed with care to avoid an unstable system, and 

an unfair resource allocation. 
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Another contribution of this thesis is the development of the cwnd-

dependent MDRR scheduler of the OPNET WiMAX MAC model. Some of the 

most challenging tasks were the understandings of the WiMAX standard and the 

implemented architecture of the OPNET WiMAX model. Another challenge of the 

thesis was the export of simulation raw data from OPNET for further data 

manipulation. 

The application of the proposed algorithm is suitable for a network with 

diverse channel conditions, and moderate to busy traffic intensity. According to 

the analysis of TCP sending rate in Section 3.4.4, the proposed scheme is 

beneficial to TCP sending rate in a network of small RTTs. Therefore, a WMAN 

such as WiMAX is a network of suitable scale for the scheme. In addition, the 

proposed scheduler attempts to dequeue more data out of a queue in one visit, 

so the algorithm is ideal for a network with relatively long walk time between the 

queues. More specifically, the proposed scheduling algorithm may be more 

suitable in UL. 

As a result, one of the possible future extensions of the current work is to 

implement the proposed design in the UL. Another possible extension is to 

develop a credit system, such that a station with temporary unfavourable 

transmission condition (i.e. low cwnd) is allowed to accumulate credits for 

bandwidth usage. Upon the recovery of the channel condition, the station is 

allowed to use the credit built up, and enjoys a temporary boost in bandwidth 

allocation to compensate the loss beforehand. 
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The other possibility is to incorporate HARQ at the MAC scheduler. The 

HARQ mechanism should enhance the transmission quality at the link layer. In 

addition, HARQ provides further information on the condition of the physical link. 

Finally, another possible proposal of future work is to study the distribution of the 

stack of cwnd values residing in the packets of a queue. The collection of cwnd 

values provides information on the trend of traffic variation of a queue. 
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APPENDICES 

Appendix A: Implementation Steps and Codes Regarding the 
OPNET TCP Model 

tcp_manager_v3 process model: 

1. Declare/Invoke corresponding child process: 
a) Declare “tcp_conn_v3_sc3” as the child process 
b) Invoke child process “tcp_conn_v3_sc3” 

OPEN Enter Execs: 
op_pro_create ("tcp_conn_v3_sc3", &tcp_ptc_mem); 

2. Declare/Create new Packet Format: 
a) Declare “TCP_seg_v2_sc1” as the Packet Format 
b) Create Packet Format “TCP_seg_v2_sc1” 

Function Block: 
  op_pk_create_fmt ("tcp_seg_v2_sc1"); 

3. Create new attribute, CWND Option, for the process model 
a) Add new attribute named “CWND Option” under process model 

attributes interface. 
b) CWND Option attribute is set to toggle type, where only enabled and 

disabled options are available. 
c) Include the custom header file “tcp_v3_sc3.h” to incorporate the CWND 

Option field in TcpT_Conn_Parameters, and TcpT_Ptc_Mem structure. 
New structure names are TcpT_Conn_Parameters_SC and 
TcpT_Ptc_Mem_SC. 

d) Change declaration of old structure names to the new ones. 
TcpT_Conn_Parameters_SC: 1 in State Variable block, 1 in Function 
Block 
TcpT_Ptc_Mem_SC: 1 in State Variable block 

e) Retrieve setting from the node model and store it, Function Block 
tcp_mgr_tcp_param_parse(). 

 

tcp_conn_v3 process model: 

1. Declare Packet Format: 
a) Declare “TCP_seg_v2_sc1” as the Packet Format 
b) Create Packet Format “TCP_seg_v2_sc1” 

Function Block: 
  op_pk_create_fmt ("tcp_seg_v2_sc1"); 

2. Change to process model to recognize the existence of CWND Option field. 
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a) Include the custom header file “tcp_v3_sc3.h” to incorporate the CWND 
Option field in TcpT_Conn_Parameters, and TcpT_Ptc_Mem structure. 
New structure names are TcpT_Conn_Parameters_SC and 
TcpT_Ptc_Mem_SC. 

b) Change declaration of old structure names to the new ones. 
TcpT_Conn_Parameters_SC: 1 in State Variable block 
TcpT_Ptc_Mem_SC: 1 in Temporary Variable block, 1 in init state Enter 
Executives 

c) Declare cwnd_enabled in State Variable block and retrieve the value 
from ptc_mem (parent-to-child memory) in Function Block 
TCP_conn_sv_init(). 

3. Set cwnd size to the CWND Option field 
a) In function tcp_seg_send: 

  if (cwnd_enabled) 
  { 
  if (op_pk_nfd_set (seg_ptr, "CWND Option", cwnd) ==   
  OPC_COMPCODE_FAILURE) 
  tcp_conn_error ("Unable to set CWND Option in TCP   
  segment.", OPC_NIL, OPC_NIL); 

 } 
b) In function tcp_seg_receive checking if the value that was set in the 

CWND Option field 
 if (op_prg_odb_ltrace_active ("tcp _cwnd")) 
  { 
  Char  msg [156];  
  TcpT_Size cwnd_option; 
   
  if (op_pk_nfd_is_set (seg_ptr, "CWND Option") ==  OPC_TRUE) 
   { 
   if (op_pk_nfd_get (seg_ptr, "CWND Option",   

  &cwnd_option) == OPC_COMPCODE_FAILURE) 
    tcp_conn_error ("Unable to get CWND Option  

   from received TCP segment.", OPC_NIL,   
  OPC_NIL); 

   
   sprintf (msg, "Successfully retrieve CWND Option   

 field [%d].", cwnd_option); 
   } 
  else 
   { 
   sprintf (msg, "CWND Option field is not set or an error  

 occurs"); 
   } 
  op_prg_odb_print_minor (msg, OPC_NIL); 
  } 

 
tcp_v3_sc3.h header file: 
1. New structure is introduced to reflect CWND Option field is being added as a 

new TCP parameter. 
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typedef struct 
 {… 
 Boolean  cwnd_option_flag; 
 Boolean  satisfaction_option_flag; 
 } TcpT_Conn_Parameters_SC; 
 
typedef struct 
 {… 
 //TcpT_Conn_Parameters*  tcp_conn_params_ptr; 
 TcpT_Conn_Parameters_SC* tcp_conn_params_ptr; 
 } TcpT_Ptc_Mem_SC; 
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Appendix B: Implementations of Extraction, Storage and 
Removal of Cwnd 

Extraction of cwnd values: (wimax_mac_sc3_wt_adjustable process model) 

 The cwnd value is extracted from the data packet arriving at the MAC layer, 
in the WiMAX MAC root process. 

static void 

wimax_support_mac_pk_in_queue_efficiency_off_sc (Packet* pkptr, 
WimaxT_Shaper_Queue_Elem* sq_elem_ptr, WimaxT_Service_Flow* service_flow_ptr) 

{ 

…… 

/* We generate a BWR only when its computed size is positive.  */ 

if (bwr_size_bits > 0) 

 { 

 /* Susan-code: Retreive CWND size and ready to pass it down to the  
 child process */ 

 cwnd_size = wimax_mac_cwnd_get (pkptr, &frag_status); 

  

 /* Create and insert a new BWR into the bandwidth request  */ 

 /* queue.        */ 

 wimax_support_bw_request_insert_sc (sq_elem_ptr, (int) bwr_size_bits,   
 cwnd_size, frag_status); 

 } 

} 

 

/* Susan-code: This fuction is to extract the CWND Option field in a TCP packet */ 

int 

wimax_mac_cwnd_get (Packet* pkptr, IpT_Pkt_Frag_Info* frag_status_ptr) 

{ 

int      cwnd; 

FIN (wimax_mac_cwnd_get (pkptr)); 

 

/* Check if the ARP sim efficiency is disabled. In that case, the IP packet does */ 

/* not contain the necessary IP socket information. ARP cannot function  */ 

/* correctly in Wimax, because broadcast is not supported. Warn the user.  */ 
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if (OPC_TRUE == ip_arp_sim_eff_sim_attr_get (OPC_FALSE)) 

 { 

 /* Susan-code: Extract the CWND Option field from TCP header. */ 

 ip_support_ip_pkt_cwnd_extract (pkptr, &cwnd, frag_status_ptr); 

 } 

else 

 { 

 /* When PHY pipelines are used, layer 2 broadcast is also */ 

 /* available. In that case, refrain from ARP warning.  */ 

 if (global_efficiency_less_than_phy) 

  { 

  /* Warn the user to turn the ARP Sim Efficiency on. */ 

  wimax_arp_efficiency_disabled_log_write ();  

  } 

 cwnd = -1; 

 } 

FRET (cwnd); 

} 

 

DLLEXPORT Compcode 

ip_support_ip_pkt_cwnd_extract (Packet* pkptr, int* cwnd_ptr, IpT_Pkt_Frag_Info* 
frag_status_ptr) 

{ 

IpT_Dgram_Fields*    pk_fd_ptr = OPC_NIL;  

Boolean    cwnd_info_read = OPC_FALSE; 

List*     parent_pkt_lptr; 

Packet*    pk_data_ptr = OPC_NIL, *seg_pkptr; 

FIN (ip_support_ip_pkt_cwnd_extract (pkptr));  

 

/* Value initialize to invalid values so that we eliminate multiple */ 

*cwnd_ptr = -1; 

*frag_status_ptr = IpC_Pkt_Frag_Not_Available; 

 

/* Get the content of the IP header fields */ 

if (op_pk_nfd_access (pkptr, "fields", &pk_fd_ptr) == OPC_COMPCODE_FAILURE) 
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 { 

 } 

else  

 { 

 /* For non-tracer packets, socket information is present in the regular location. */ 

 /* Look at the protocol field and *not* the encap flag. If this is a tracer packet   */ 

/* that is being tunneled through another IP packet, we must  return the socket*/ 

/* information of the outer pkt and *not* the socket information of the tracer.    */ 

 if (pk_fd_ptr->protocol != IpC_Protocol_Basetraf) 

  { 

  /* Port information can be obtained from packets that are not */ 

  /* fragments, or from initial fragments.    */ 

  if (!pk_fd_ptr->frag || (pk_fd_ptr->offset == 0)) 

   { 

   if (op_pk_nfd_is_set (pkptr, "data")) 

    { 

    /* Get the data from the IP-datagram. */ 

    op_pk_nfd_get (pkptr, "data", &pk_data_ptr); 

    /* For fragments, this data is a segment, not the original*/ 

    /* transport payload.     */ 

    if (pk_fd_ptr->frag) 

     { 

     seg_pkptr = pk_data_ptr; 

     parent_pkt_lptr =      
     op_sar_seg_parent_packets_access (seg_pkptr); 

     pk_data_ptr = (Packet *) op_prg_list_remove  
     (parent_pkt_lptr, OPC_LISTPOS_HEAD); 

     /* Parent list should be empty because IP segments 
     are not */ 

     /* comprised of multiple packets.  */ 

     op_prg_mem_free (parent_pkt_lptr); 

      

     /* Susan-code */ 

     *frag_status_ptr = IpC_Pkt_Frag_Initial; 

     } 

    else 
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     { 

     *frag_status_ptr = IpC_Pkt_Not_Frag; 

     } 

    /* Check if the transport protocol is TCP */ 

    /* to acquire the TCP  port number.   */ 

    if (pk_fd_ptr->protocol == IpC_Protocol_Tcp) 

     {  

     /* Susan-code */ 

     // Get the CWND Option field from the TCP header  

     if (op_pk_nfd_is_set (pk_data_ptr, "CWND Option")) 

      { 

      op_pk_nfd_access (pk_data_ptr, "CWND 
       Option", cwnd_ptr); 
      } 

     } 

    /* If this is a fragment, then destroy the copy transport */ 

    /* payload.      */ 

    if (pk_fd_ptr->frag) 

     { 

     op_pk_destroy (pk_data_ptr); 

     pk_data_ptr = seg_pkptr; 

     } 

    /* Set the original payload (segment or actual) payload  
    back in the IP datagram.    */ 

    op_pk_nfd_set (pkptr, "data", pk_data_ptr);   

    } 

   else 

    { 

    /* The data field is not set */ 

    } 

   } 

  else 

   { 

   /* Susan-code */ 

   *frag_status_ptr = IpC_Pkt_Frag_Non_Initial; 
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   /* This is a fragmented packet and not the initial fragment  */ 

   } 

  cwnd_info_read = OPC_TRUE; 

  } 

 } 

FRET ((cwnd_info_read) ? OPC_COMPCODE_SUCCESS : 
OPC_COMPCODE_FAILURE); 

} 

Storage of cwnd values: (wimax_bs_control_sc3_wt_adjustable process 
model) 

 When the bandwidth request invokes the BS control child process, the 
request is enqueued in the buffer. Along with the bandwidth request, the 
corresponding cwnd value is retrieved and stored in the list structure 

/* Susan-code */ 

static Boolean 

wimax_bs_control_sched_bw_req_ps_insert (WimaxT_Bs_Scheduler_Handle* 
sched_hdlptr, WimaxT_Request_Element* bwr_ptr, int conn_id, int cwnd_value, 
IpT_Pkt_Frag_Info frag_info) 

{ 

WimaxT_Polling_Service_Queue* ps_q_ptr; 

int* cwnd_value_ptr; 

/** Insert a BW request into the corresponding PS queue based **/ 

/** on the specified connection ID.     **/ 

FIN (wimax_bs_control_sched_bw_req_ps_insert ()); 

 

ps_q_ptr = (WimaxT_Polling_Service_Queue *) 
wimax_bs_control_sched_poll_serv_q_access_by_conn_id (sched_hdlptr, conn_id); 

/* Insert the incomming BW request.     */ 

oms_buffer_enqueue (ps_q_ptr->buffer, bwr_ptr, OPC_NIL, op_sim_time ()); 

 

/* Susan-code: Insert the corresponding CWND size of each request (payload) */ 

cwnd_value_ptr = (int *) op_prg_mem_alloc (sizeof (int)); 

if (frag_info == IpC_Pkt_Not_Frag || frag_info == IpC_Pkt_Frag_Initial) 

 { 

 /* Insert CWND value as it is since this packet is either not fragmented, */ 

/* or is the initial fragment       */ 
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 *cwnd_value_ptr = cwnd_value; 

 ps_q_ptr->last_valid_cwnd = cwnd_value; 

 } 

else 

 { 

 /* Insert prvious CWND value if this packet is fragmented and not the initial 
 fragment, or the fragmentation info is not proper */ 

 *cwnd_value_ptr = ps_q_ptr->last_valid_cwnd; 

 } 

 op_prg_list_insert (ps_q_ptr->cwnd_list_ptr, cwnd_value_ptr, 
 OPC_LISTPOS_TAIL); 

FRET (OPC_TRUE); 

} 

 

Removal of cwnd values: (wimax_bs_control_sc3_wt_adjustable process 
model) 

 The cwnd values are removed when the corresponding bandwidth request is 
removed (dequeue) from the queue in BS control plane 

static WimaxT_Request_Element* 

wimax_bs_control_sched_bw_req_dequeue_from_ps (WimaxT_Bs_Scheduler_Handle* 
sched_ptr, int q_index) 

{ 

WimaxT_Polling_Service_Queue* ps_q_info_ptr; 

WimaxT_Request_Element*   bw_req_ptr; 

int* cwnd_list_value_ptr; 

/** This function dequeues the next BW request available in **/ 

/** the PS queue indicated by the q_index.     **/ 

FIN (wimax_bs_control_sched_bw_req_dequeue_from_buffer); 

 

/* Access the PS queue that corresponds to q_index.   */ 

ps_q_info_ptr = (WimaxT_Polling_Service_Queue *) 
wimax_bs_control_sched_poll_serv_q_access_by_index (sched_ptr, q_index);  

 

/* Extract the next BW request from the buffer.    */ 

bw_req_ptr = (WimaxT_Request_Element *) oms_buffer_dequeue (ps_q_info_ptr-
>buffer, 0, op_sim_time ()); 
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/* Susan-code: toss away the CWND value of the request upon dequeueing */ 

cwnd_list_value_ptr = (int *) op_prg_list_remove (ps_q_info_ptr->cwnd_list_ptr, 
OPC_LISTPOS_HEAD); 

/* Susan-trace */ 

if (op_prg_odb_ltrace_active ("wimax_cwnd") || op_prg_odb_ltrace_active ("cwnd")) 

 { 

 char msg [256]; 

 sprintf (msg, "Dequeue from PS CID[%d]: [%d] bits [%d] symbols, CWND[%d] Q-
 weight[%d], Q-deficit counter[%d]", bw_req_ptr->conn_id, bw_req_ptr- 
 >bwr_size_bits, bw_req_ptr->bwr_size_symbols, *cwnd_list_value_ptr, 
 ps_q_info_ptr->weight, ps_q_info_ptr->deficit_counter); 

 op_prg_odb_print_minor (msg, OPC_NIL); 

 } 

op_prg_mem_free (cwnd_list_value_ptr); 

 

ps_q_info_ptr->num_elems_dequeued++; 

ps_q_info_ptr->num_bits_dequeued += bw_req_ptr->bwr_size_bits; 

if (op_prg_odb_ltrace_active ("wimax_sched_deq") || op_prg_odb_ltrace_active 
("wimax_deq_stat")) 

 { 

 char msg [256]; 

 sprintf (msg, "The scheduler has dequeued CID-%d [%d] requests and [%d] bits, 
 so far, in this schedulling round", ps_q_info_ptr->conn_id, ps_q_info_ptr-
 >num_elems_dequeued, ps_q_info_ptr->num_bits_dequeued); 

 op_prg_odb_print_minor (msg, OPC_NIL); 

 } 

 

FRET (bw_req_ptr); 

} 
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Appendix C: Implementations of the Queue Weight Calculation 
and Modified MDRR Queuing Service Discipline 

Queue Weight Calculation: (wimax_bs_control_sc3_wt_adjustable process 
model) 

 The weight of a queue is calculated before the scheduling (dequeue) 
process.  

static WimaxT_Map* 

wimax_bs_control_one_ofdma_map_generate (WimaxT_Bs_Scheduler_Handle* 
sched_ptr, int* free_symbols_ptr, int* dl_free_symbols_ptr, int ie_size,  

WimaxT_Region type, int* maps_offset_ptr, int num_perennials) 

{…… 

/* Step 1: Take out as many elements as possible from the scheduler  */ 

while (bwr_count > 0) 

 { 

 /* Susan-code: Obtain CWND values across all queues and refresh the */ 

 /* queue weight according to the CWND values    */ 

 wimax_bs_control_sched_cwnd_weight_adjust (sched_ptr); 

  

 /* Extract the request. */ 

 elem_ptr = (WimaxT_Request_Element *)       
  wimax_bs_control_sched_bw_req_dequeue (sched_ptr); 

 if (elem_ptr == OPC_NIL) 

  break; 

 …… 

 } 

…… 

} 

 

/* Susan-code: Obtain CWND values across all queues and refresh the */ 

/* queue weight according to the CWND values    */ 

void 

wimax_bs_control_sched_cwnd_weight_adjust (WimaxT_Bs_Scheduler_Handle* 
sched_ptr) 

{ 

WimaxT_Polling_Service_Queue* ps_q_info_ptr; 
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int     ps_q_count, index = 0; 

int     *cwnd_size_ptr; 

int     cwnd_total = 0, last_valid_cwnd_total = 0; 

int     original_weight = 0, adjust_weight = 0; 

FIN (wimax_bs_control_sched_cwnd_weight_adjust()); 

 

/* Get the total number of queue count, and get the first queue  */ 

ps_q_count = wimax_bs_control_sched_poll_serv_q_count (sched_ptr); 

 

/* 1. Determine the total of CWND values of the first request in each queue */ 
for (index=0; index<ps_q_count; index++) 

 { 

 ps_q_info_ptr = (WimaxT_Polling_Service_Queue *)     
 wimax_bs_control_sched_poll_serv_q_access_by_index (sched_ptr, index); 

  

 /* last_valid_cwnd_total calculation      */ 

 last_valid_cwnd_total += ps_q_info_ptr->last_valid_cwnd; 

 /* cwnd_total calculation       */ 

 if (op_prg_list_size(ps_q_info_ptr->cwnd_list_ptr) > 0) 

  { 

  cwnd_size_ptr = (int *) op_prg_list_access (ps_q_info_ptr 
  ->cwnd_list_ptr, OPC_LISTPOS_HEAD); 

  cwnd_total += *cwnd_size_ptr; 

  /* Record the cwnd size statistics */ 

  wimax_bs_control_sched_cwnd_stat_update (ps_q_info_ptr,   
  *cwnd_size_ptr); 

  if (op_prg_odb_ltrace_active ("wimax_cwnd") ||     
  op_prg_odb_ltrace_active ("cwnd")) 

   { 

   char msg [256]; 

   sprintf (msg, "1st request of Q-index[%d] CID[%d} has a last-valid  
   CWND[%d] and CWND [%d]", index, ps_q_info_ptr->conn_id,  
   ps_q_info_ptr->last_valid_cwnd, *cwnd_size_ptr); 

   op_prg_odb_print_minor (msg, OPC_NIL); 

   } 

  } 
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 else 

  { 

  if (op_prg_odb_ltrace_active ("wimax_cwnd") || op_prg_odb_ltrace_active 
  ("cwnd")) 

   { 

   char msg [256]; 

   sprintf (msg, "\tQ-index[%d] CID[%d] is empty and has last-valid 
 CWND[%d]", index, ps_q_info_ptr->conn_id, ps_q_info_ptr->last_valid_cwnd); 

   op_prg_odb_print_minor (msg, OPC_NIL); 

   } 

  } 

 } 

//check for total CWND value. If 0, set to 1 

if (cwnd_total == 0) 

 { 

 cwnd_total = 1; 

 if (op_prg_odb_ltrace_active ("wimax_cwnd") || op_prg_odb_ltrace_active 
 ("cwnd")) 

  { 

  printf ("\nTime[%.6f]: Total CWND value is 0, and is reset to 1.  Total Q- 
  count is [%d]\n", op_sim_time (),ps_q_count); 

  } 

 } 

if (last_valid_cwnd_total == 0) 

 { 

 last_valid_cwnd_total = 1; 

 if (op_prg_odb_ltrace_active ("wimax_cwnd") || op_prg_odb_ltrace_active  
 ("cwnd")) 

  { 

  printf ("\nTime[%.6f]: Total last-valid-CWND value is 0, and is reset to 1.   
  Total Q-count is [%d]\n", op_sim_time (),ps_q_count); 

  } 

 } 

 

/* 2. Adjust the Q-weight according to the CWND value proportion  */ 
for (index=0; index<ps_q_count; index++) 
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 { 

 ps_q_info_ptr = (WimaxT_Polling_Service_Queue *) 
 wimax_bs_control_sched_poll_serv_q_access_by_index (sched_ptr, index); 

 original_weight = ps_q_info_ptr->original_weight; 

 /* cwnd-adjusted weight calculation      */ 

 if (op_prg_list_size(ps_q_info_ptr->cwnd_list_ptr) > 0) 

  { 

  cwnd_size_ptr = (int *) op_prg_list_access (ps_q_info_ptr->cwnd_list_ptr, 
  OPC_LISTPOS_HEAD); 

  adjust_weight = original_weight * (*cwnd_size_ptr) / cwnd_total; 
  } 

 else 

  adjust_weight = 0; 

 

 ps_q_info_ptr->cwnd_weight = adjust_weight; 

 //ps_q_info_ptr->weight = original_weight + (1*adjust_weight); 

 //ps_q_info_ptr->last_valid_cwnd_weight = 1*(original_weight * ps_q_info_ptr- 
  >last_valid_cwnd / last_valid_cwnd_total); 

 ps_q_info_ptr->weight = original_weight + (weight_adjust_factor *  
 adjust_weight); 
 ps_q_info_ptr->last_valid_cwnd_weight = weight_adjust_factor*(original_weight * 
  ps_q_info_ptr->last_valid_cwnd / last_valid_cwnd_total); 

  

 if (op_prg_odb_ltrace_active ("wimax_cwnd") || op_prg_odb_ltrace_active 
 ("cwnd")) 

  { 

  char msg1 [256]; 

  char msg2 [256]; 

  sprintf (msg1, "Weight adjust: Q[%d] CID[%d]: original weight[%d] +  
  weight_adjust_factor[%f] * cwnd-adjusted weight[%d] = final weight [%d]", 

  index, ps_q_info_ptr->conn_id, ps_q_info_ptr->original_weight,   
  weight_adjust_factor, ps_q_info_ptr->cwnd_weight, ps_q_info_ptr-  
  >weight); 

  sprintf (msg2, "\tdeficit couter[%d], original weight[%d] + last_valid_cwnd  
  adjustweight[%d] = last-valid weight [%d]", ps_q_info_ptr->deficit_counter, 
  original_weight, ps_q_info_ptr->last_valid_cwnd_weight, original_weight  
  + ps_q_info_ptr->last_valid_cwnd_weight); 

  op_prg_odb_print_minor (msg1, msg2, OPC_NIL); 
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  } 

 } 

FOUT; 

} 

 

Modified MDRR Queuing Service Discipline: 
(wimax_bs_control_sc3_wt_adjustable process model) 

 This function implements the flowchart of Figure 3.2 
static int 

wimax_bs_control_sched_mdrr_q_select (WimaxT_Bs_Scheduler_Handle* sched_ptr, 
WimaxT_Requests_Queue_Handle* q_hdl_ptr, Boolean force_block_current_queue) 

{ 

int      num_queues; 

int     q_in_service; 

WimaxT_Polling_Service_Queue* ps_q_info_ptr; 

Boolean    ok_to_service; 

int     last_valid_weight = 0; 

/** Based on the MDRR scheduling algorithm, select the next BW request  **/ 

/** queue to be served. MDRR is applied only for rtPS and nrtPS services.  **/ 

FIN (wimax_bs_control_sched_mdrr_q_select ()); 

 

/* If none of the queues were in service earlier, start with first queue.  */ 

q_in_service = (q_hdl_ptr->current_q_idx == WIMAXC_Q_INDEX_NONE) ? 
WIMAXC_Q_INDEX_FIRST : q_hdl_ptr->current_q_idx ; 

ps_q_info_ptr = (WimaxT_Polling_Service_Queue *) prg_list_access (q_hdl_ptr-
>polling_service_q_lptr, q_in_service); 

/* Get the number of queues.       */ 

num_queues  =  prg_list_size (q_hdl_ptr->polling_service_q_lptr);  

 

/* Service a queue until deficit becomes negative or until the queue becomes empty. */ 

if ((ps_q_info_ptr->deficit_counter > 0) && (!oms_buffer_is_empty (ps_q_info_ptr-
>buffer)) && !force_block_current_queue) 

 { 

 q_hdl_ptr->current_q_idx = q_in_service; 

 FRET (q_in_service); 

 } 
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//else if (oms_buffer_is_empty (ps_q_info_ptr->buffer)) 

/* Susan-code: If the serving queue has only one request left, it will be */ 

/* dequeued despite its deficit counter value     */ 

else if ( ((int) oms_buffer_num_elements_get (ps_q_info_ptr->buffer) == 1) 
&& !force_block_current_queue) 

 { 

 q_hdl_ptr->current_q_idx = q_in_service; 

 if (op_prg_odb_ltrace_active ("wimax_sched_deq")) 

  { 

  char msg [256]; 

  sprintf (msg, "MDRR: current queue has only 1 request left, serve it  
  anyway if space allowed"); 

  op_prg_odb_print_minor (msg, OPC_NIL); 

  } 

 FRET (q_in_service); 

 } 

 

/* If there are no more packets in any of the PS buffers, quit.   */ 

if (wimax_bs_control_sched_all_ps_queues_num_bwr_get (sched_ptr) <= 0) 

 { 

 FRET (WIMAXC_Q_INDEX_NONE); 

 } 

 

/* Loop to find next candidate queue for service.     */ 

do 

 { 

 ok_to_service = OPC_TRUE; 

 /* Wrap around queues if last else move to next queue.   */ 

 q_in_service = ((q_in_service == num_queues - 1) ? 0 : q_in_service + 1); 

  

 /* Susan-code: Keep track of the number of times that the scheduler has */ 

 /* wrapped through the last of the queues     */ 

 if (q_in_service == 0) 

  q_hdl_ptr->wrap_around_counter++; 
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 /* Get handle to new queue */ 

 ps_q_info_ptr = (WimaxT_Polling_Service_Queue *) prg_list_access (q_hdl_ptr-
 >polling_service_q_lptr, q_in_service); 

  

 /* Check if there are pending requests in this buffer.    */ 

 if (oms_buffer_is_empty (ps_q_info_ptr->buffer)) 

  { 

  /* AKP: If in debt add weight */ 

  //if (ps_q_info_ptr->deficit_counter < ps_q_info_ptr->weight) 

  // ps_q_info_ptr->deficit_counter += ps_q_info_ptr->weight; 

  last_valid_weight = ps_q_info_ptr->original_weight + ps_q_info_ptr- 
  >last_valid_cwnd_weight; 

  if (ps_q_info_ptr->deficit_counter < last_valid_weight) 
   { 

   ps_q_info_ptr->deficit_counter += last_valid_weight; 
    

   if (op_prg_odb_ltrace_active ("wimax_sched_deq")) 

    { 

    printf (" - queue(%d) (CID-%d) is empty,    
    deficit_counter[%d] restores with last_valid_weight to  
    [%d].\n", q_in_service, ps_q_info_ptr->conn_id,   
    ps_q_info_ptr->deficit_counter - last_valid_weight,   
    ps_q_info_ptr->deficit_counter); 

    } 

   /* Susan-code: update weight statistic */ 

   wimax_bs_control_sched_weight_stat_update (ps_q_info_ptr,  
   last_valid_weight); 

   } 

   

  if (op_prg_odb_ltrace_active ("wimax_sched_deq")) 

   { 

   printf (" - queue(%d) empty => skip it.\n", q_in_service); 

   } 

   

  /* Ignore empty queue.      */ 

  ok_to_service = OPC_FALSE; 

  } 
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 else 

  { 

  /* Check the deficit counter of this queue.    */ 

  if (ps_q_info_ptr->deficit_counter <=0) 
   { 

   ps_q_info_ptr->deficit_counter += ps_q_info_ptr->weight; 
    

   if (op_prg_odb_ltrace_active ("wimax_sched_deq")) 

    { 

    printf (" - queue(%d) (CID-%d) is NOT empty,   
    deficit_counter[%d] restores with weight to [%d].\n",  
    q_in_service, ps_q_info_ptr->conn_id, ps_q_info_ptr- 
    >deficit_counter - ps_q_info_ptr->weight, ps_q_info_ptr- 
    >deficit_counter); 

    } 

   /* Susan-code: update weight statistic */ 

   wimax_bs_control_sched_weight_stat_update (ps_q_info_ptr,  
   ps_q_info_ptr->weight); 

   } 

  /* If deficit counter is still negative skip this queue.   */ 

  if (ps_q_info_ptr->deficit_counter <=0) 

   ok_to_service = OPC_FALSE; 

   

  if (op_prg_odb_ltrace_active ("wimax_sched_deq")) 

   { 

   if (ok_to_service) 

    printf (" => service it.\n");  

   else  

    printf (" => skip it. \n"); 

   } 

  } 

 /* Until there is a queue to service. There id at least one BW request */ 

 /* so this condition must be true at some time.    */ 

 } while (!ok_to_service); 

 

/* Return the index of the queue in service.      */ 
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q_hdl_ptr->current_q_idx = q_in_service; 

FRET (q_in_service); 

} 

 176



 

REFERENCE LIST  

[1] B. Sardar and D. Saha, "A survey of TCP enhancements for last-hop 
wireless networks," IEEE Commun. Surveys Tuts., vol. 8, pp. 20-34, 3rd 
Qtr. 2006. 

[2] V. Srivastava and M. Motani, "Cross-layer design: a survey and the road 
ahead," IEEE Commun. Mag., vol. 43, pp. 112-119, Dec. 2005. 

[3] F. Foukalas, V. Gazis and N. Alonistioti, "Cross-layer design proposals for 
wireless mobile networks: a survey and taxonomy," IEEE Commun. 
Surveys Tuts., vol. 10, pp. 70-85, First Quarter 2008. 

[4] G. Song and Y. Li, "Utility-based resource allocation and scheduling in 
OFDM-based wireless broadband networks," IEEE Commun. Mag., vol. 
43, pp. 127-134, Dec. 2005. 

[5] S. Toumpis and A. J. Goldsmith, "Performance, optimization, and cross-
layer design of media access protocols for wireless ad hoc networks," in 
Communications, 2003. ICC '03. IEEE International Conference on, 11-15 
May 2003, pp. 2234-2240. 

[6] K. Ramakrishnan and S. Floyd, “A proposal to add explicit congestion 
notification (ECN) to IP,” RFC 2481, Jan. 1999. 

[7] D. Kliazovich and F. Graneill, "A cross-layer scheme for TCP performance 
improvement in wireless LANs," in Global Telecommunications 
Conference, 2004. GLOBECOM '04. IEEE, Dec. 2004, pp. 840-844. 

[8] E. Park, D. Kim, H. Kim and C. Choi, "A cross-layer approach for per-
station fairness in TCP over WLANs," IEEE Trans. Mobile Comput., vol. 7, 
pp. 898-911, July 2008. 

[9] G. Giambene, Resource Management in Satellite Networks, Optimization 
and Cross-Layer Design. New York: Springer Science, 2007, Chapter 9. 

[10] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down 
Approach Featuring the Internet. ,2nd ed. Boston: Addison Wesley, 2003, 
pp. 752. 

[11] W. R. Stevens, TCP/IP llustrated: The Protocols. , vol. 1, Boston: Addison 
Wesley, 1994, pp. 576. 

[12] M. Mathis, J. Mahdavi, S. Floyd and A. Romanow. (1996, October). TCP 
selective acknowledgment options. [Online]. Available: 
http://www.ietf.org/rfc/rfc2018.txt

 177

http://www.ietf.org/rfc/rfc2018.txt


 

[13] A. Ghosh, D. R. Wolter, J. G. Andrews and R. Chen, "Broadband wireless 
access with WiMax/802.16: current performance benchmarks and future 
potential," IEEE Commun. Mag., vol. 43, pp. 129-136, Feb 2005. 

[14] A. Yarali and S. Rahman, "WiMAX broadband wireless access technology: 
Services, architecture and deployment models," in Electrical and 
Computer Engineering, 2008. CCECE 2008. Canadian Conference on, 4-
7 May 2008, pp. 77-82. 

[15] B. Li, Y. Qin, C. P. Low and C. L. Gwee, "A survey on mobile WiMAX ," 
IEEE Commun. Mag., vol. 45, pp. 70-75, December 2007. 

[16] OPNET Technologies, Inc., "Introduction to WiMAX," presented at the 
Technology Tutorials Session 1827 OPNETWORK 2007, Washington, DC, 
Aug. 2007. 

[17] IEEE 802.16 Working Group on Broadband Wireless Access, “IEEE 
Standard for Local and metropolitan area networks: Part 16: Air Interface 
for Fixed Broadband Wireless Access Systems,” IEEE Std 802.16-2004, 
Oct. 1, 2004 

[18] IEEE 802.16 Working Group on Broadband Wireless Access, “IEEE 
Standard for Local and metropolitan area networks: Part 16: Air Interface 
for Fixed Broadband Wireless Access Systems: Amendment 2: Physical 
and Medium Access Control Layers for Combined Fixed and Mobile 
Operation in Licensed Bands and Corrigendum 1,” IEEE Std 802.16e-
2005 and IEEE Std 802.16-2004/Cor 1-2005, Feb. 28, 2006 

[19] OPNET Technologies, Inc., "Understanding WiMAX Model Internals and 
Interfaces,” presented at the Discrete Event Simulation for R&D Session 
1571 OPNETWORK 2007, Washington, DC, Aug. 2007. 

[20] Cisco Systems, Inc. (2004, Jan.). Understanding and Configuring 
MDRR/WRED on the Cisco 12000 Series Internet Router. [Online]. 
Available: http://www.cisco.com/warp/public/63/mdrr_wred_overview.html

[21] J. F. Hayes and T. V. J. Ganesh Babu, Modeling and Analysis of 
Telecommunications Networks. Hoboken, New Jersey: John Wiley & Sons, 
Inc., 2004, pp. 69. 

[22] J. Padhye, V. Firoiui, D. F. Towsley and J. F. Kurose, "Modeling TCP 
Reno performance: a simple model and its empirical validation," 
IEEE/ACM Trans. Netw., vol. 8, pp. 133-145, Apr. 2000. 

[23] Z. Chen, T. Bu, M. Ammar and D. Towsley, "Comments on Modeling TCP 
Reno performance: a simple model and its empirical validation," 
IEEE/ACM Trans. Netw., vol. 14, pp. 451-453, Apr. 2006. 

[24] S. Shakkottai, T. S. Rappaport and P. C. Karlsson, "Cross-layer design for 
wireless networks," IEEE Commun. Mag., vol. 41, pp. 74-80, Oct. 2003. 

 178

http://www.cisco.com/warp/public/63/mdrr_wred_overview.html


 

[25] A. J. Paulraj, D. A. Gore, R. U. Nabar and H. BolcskeiI, "An overview of 
MIMO communications - a key to gigabit wireless," Proc. IEEE, vol. 92, pp. 
198-218, Feb. 2004. 

[26] A. Cantoni and L. C. Godara, “Fast algorithm for time domain broadband 
adaptive array processing,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-
18, pp. 682-699, Sept. 1982. 

[27] D. Johnson and D. Dudgeon, Array Signal Processing: Concepts and 
Techniques, Prentice-Hall, Englewood Cliffs, NJ, 1993. 

[28] J. C. Liberti and T. S. Rappaport, Smart Antenna for Wireless 
Communications: IS-95 and Third Generation CDMA Applications, 
Prentice-Hall, Englewood Cliffs, NJ, 1999. 

[29] D. Branlund, “Stacked Carrier OFDM: Providing High Spectral Efficiency 
with Greater Coverage,” Wireless Communications Association 
International 7th annual Technical Symposium, San Jose, CA, Jan. 2001.1 

[30] A. Demers, S. Keshav and S. Shenker, "Analysis and Simulation of a Fair 
Queuing Algorithm," Internetworking: Research and Experience, Vol. 1, 
No. 1, pp. 3-26, 1990 

[31] A. Parekh and R. Gallager, "A generalized processor sharing approach to 
flow control in integrated services networks: the single-node case," 
IEEE/ACM Trans. Netw., Vol. 1, No. 3, pp. 344-357, June 1993. 

[32] X. Yang, M. Venkatachalam and S. Mohanty, “Exploiting the MAC layer 
flexibility of WiMAX to systematically enhance TCP performance,” IEEE 
Mobile WiMAX Symposium, 2007. 25-29 March 2007, pp. 60-65 

                                            
1 Contact WCAI at +1(202)452 7823 or sahar@wcai.com to obtain copy. 

 179


	: INTRODUCTION
	: RELEVANT LAYERS OF THE PROTOCOL STACK
	TCP in a Nutshell
	TCP Congestion Window
	TCP Slow Start
	TCP Congestion Avoidance
	The Advertised Window
	Duplicate ACKs – TCP Fast Retransmit
	TCP Fast Recovery
	TCP Timeout
	Flavours of TCP
	TCP Tahoe
	TCP Reno
	TCP New Reno
	TCP SACK


	WiMAX in a Nutshell
	The WiMAX PHY Layer
	The OFDMA Technology
	Scalable OFDMA – Dynamic Channel Bandwidth
	OFDMA TDD Frame Structure
	Antenna Technology Options

	The WiMAX MAC Layer
	Service Specific Convergence Sublayer
	MAC Common Part Sublayer
	Network Entry
	QoS Provision (802.16 standard: 6.3.5.2)
	Bandwidth Allocation and Request (802.16 Standard: 6.3.6)
	HARQ Option




	: THE PROPOSED CROSS-LAYER TECHNIQUE: THE ALGORITHM, IMPLEME
	Algorithm Overview
	Discussion of Extreme Cases and Limitations of the Proposed 

	Design Modification of the TCP Segment Format
	Design Modifications of the WiMAX MAC Layer Operation
	The Analytical Model of the Algorithm
	The Analysis of Queue Service Rate
	The Expected Value of Queue Service Rate

	The Analysis of Queue Delay
	The Analysis of Round-Trip Time
	Analysis of TCP Sending Rate Incorporating the Service Rate 


	: AN OVERVIEW AND MODIFICATIONS OF THE OPNET MODELS
	A Brief Modelling Concept of OPNET Modeler
	The OPNET WiMAX Model in a Nutshell
	The Architectural Concept of the OPNET WiMAX Model

	Implementations in the TCP Model
	Implementations in the WiMAX Model
	Extraction and Storage of Cwnd
	Calculation of the Queue Weight

	Configurations of the Simulation Parameters
	Configurations of the TCP Parameters
	Configurations of the WiMAX Parameters

	Validity Check of the Implemented Model

	: OPNET SIMULATION RESULTS
	Two Client Stations Scenario
	2SS – TCP Reno
	2SS – TCP New Reno
	2SS – TCP Reno & SACK

	Four Client Stations Scenario
	4SS – TCP Reno
	4SS – TCP New Reno
	4SS – TCP Reno & SACK

	Six Client Stations Scenario
	6SS – TCP New Reno
	6SS – TCP Reno & SACK

	Eight Client Stations Scenario
	8SS – TCP New Reno
	8SS – TCP Reno and SACK

	Performance with respect to N
	The MAC Layer Delay vs. Number of Stations
	FTP File Download Time vs. Number of Stations
	MAC Throughput vs. Number of Stations

	Base Station Analysis
	Weight Variations across Stations

	: A SUMMARY AND FUTURE EXTENSIONS

