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Abstract

With the increasing consumer demand for high-speed wireless access to the Internet,

new technologies have been developed and standards have been proposed to improve

the efficiency of wireless devices to provide the bandwidth and to support the quality

of service (QoS) required. In this thesis, we investigate one aspect of the problem

arose from providing Internet-like services with a wireless physical layer interface,

specifically, energy optimal cross-layer designs of packet schedulers under strict, per­

packet delay constraints. The design of the schedulers takes into consideration the

randomness of the packet arrival as well as time-varying channels.

Firstly, a novel convex optimization formulation is proposed. By assuming pre­

scient knowledge of the channel state information and packet arrival and expiry times,

an interesting analytical solution is derived with a novel geometric interpretation,

referred to as piecewise water-filling. An efficient algorithm for calculating such a

solution is also presented. The problem is considered under both single- and multi­

carrier scenarios with simulation results showing improvements due to the channel

diversity effect.

In addition to the analysis of the prescient scheduler, practical issues are also con­

sidered. Specifically, several optimal causal schedulers are proposed, each assuming

various degrees of prior knowledge of the system parameters. Through simulations

of these causal schedulers, it was established that the optimal packet scheduler with-

iii



out cross-layer knowledge uses 10 dB more energy than optimal prescient scheduler.

In contrast, a practical causal scheduler with cross-layer knowledge of physical layer

channel gains, utilizing an 8 tap Wiener channel prediction filter, can achieve energy

usage that is only 3 dB away from the prescient scheduler.

For completeness, we also study the modifications required to the scheduling prob­

lem formulation for multi-user channels, specifically, under the information theoretical

multi-access channel (MAC) and broadcast channel (BC) channel models. For prac­

tical systems, we propose a practical scheme for cross-layer design in a multi-user

environment based on time division multiple access.

Keywords:

packet scheduling, convex optimization, cross-layer design, quality of service, adaptive

modulation

Subject Terms:

Telecommunication - Traffic

Constrained optimization
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Chapter 1

Overview of the Thesis

1.1 Motivation

Guaranteed quality of service (Qo8) is a difficult but necessary requirement in modern

wireless communication systems. Many real-time media services, such as realtime

voice or video, require that the packetized data be properly received and decoded

before a specified deadline. This deadline is the time instant after which the data

packet is no longer useful to the receiver. In this thesis, we consider the issue of

providing guaranteed packet delivery within the specified deadline for each packet

over some commonly encountered wireless channels.

Conventionally, multimedia data are only transported through wire-line channels

where bandwidth can be expanded by adding an extra pair of wires and where power

usage is not a limiting factor. However, in recent years, we see a proliferation of mobile

communication devices with multi-media capabilities and there is an increasing user

demand for wireless systems with real-time streaming capability. With the additional

constraints of limited bandwidth and the time-varying nature of the mobile channel,

the inefficiency inherent in the layered open system interconnection (081) reference

1



Chapter 1. Overview of the Thesis 2

model of networking becomes more apparent. In recent years, many researchers have

studied adaptive transmission that jointly considers both the queueing and physical

aspects of a wireless system in an attempt to optimize the performance of such wireless

systems. A comprehensive survey of pioneering research in this area can be found

in [1].

This thesis investigates the design of an adaptive modulation and power control

system that is capable of meeting the individual packet transmission deadlines with

the minimum amount of energy usage. The emphasis is on minimizing the energy

usage under the influence of both a time-varying traffic load and time-varying chan­

nels. A variety of channel models is considered in this thesis, specifically, we con­

sider flat fading, multi-carrier, as well as multi-access channel (MAC) and broadcast

channel (BC).

1.2 Organization of the Thesis

This thesis is organized around the following main contributions of my Ph.D. research.

These are:

1. the derivation of the optimal prescient schedule and the piecewise water-filling

(PWF) property of the optimal rate profile.

2. the development of the iterative string pulling (ISP) algorithm as an efficient

method for finding the prescient optimal schedule.

3. the development of the channel predicting causal schedulers as practical sched­

ulers to be used in real world wireless communication systems.

4. the analysis of the optimal prescient scheduler for a variety of queueing disci­

plines.

5. the extension of the scheduling algorithms to the multi-user channels.
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The problem investigated and the solution obtained is applicable to a wide vari­

ety of channel and traffic models. In the most general case, the solution presented

here can be applied to multi-user, multi-carrier channels with a variety of queueing

disciplines. In this thesis, instead of presenting the most general system model and

the associated solution, we present firstly the full details of the analysis of a simpler

single user, multi-carrier scheduler with a first in first out (FIFO) queueing disci­

pline. This is presented in Chapter 3 to 5 and forms the main part of this thesis.

The variation in queueing disciplines and the consideration of multi-user channels

are discussed in Chapter 6 and Chapter 7 respectively as modifications to the single

user, multi-carrier system. Numerical results are used throughout the thesis as spe­

cific examples to demonstrate the important properties of the analytical solutions. It

is not intended to simulate the performance of any particular real world application

nor does it provide a full coverage of all combinations of system parameters.

The rest of this thesis is organized as follows. After a brief background and litera­

ture survey in Chapter 2, we present a deterministic problem formulation in Chapter 3

for a point-to-point system, i.e., a single user channel. This deterministic view of the

system assumes all future traffic and channel states are known a priori and it is from

this deterministic view that we derived the optimal solution. To the best of the author's

knowledge, this is the first time such a solution was observed. The treatment of the

deterministic problem begins with a small toy formulation using a single user, point­

to-point flat fading link, followed by the generalization of the piecewise water-filling

property to multi-carrier channels. From this piecewise water-filling observation, an

efficient numerical algorithm for computing the optimal solution was designed and

is presented in Chapter 4. This algorithm exploits the piecewise water-filling prop­

erty and has computational complexity much lower than that of using generic convex

optimization routines.
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After the treatment of the prescient scheduling problem, the causal formulation

is considered (Chapter 5). Several optimal causal schedulers are formulated that

are different in the causality assumptions. Specifically, we consider the cases where

only limited knowledge of the future channel gains and packet arrivals are available

through prediction. An arbitrarily chosen set of traffic scenarios were used to simulate

the performance of these causal schedulers and the resulting energy usage is compared

against that of the prescient solution. A brief discussion on the relative merits of these

causal schedulers is also provided.

Chapter 6 and Chapter 7 present extensions to the single user scheduling problem.

Firstly, a qualitative discussion of the effect of utilizing earliest deadline first (EDF)

priority queues is given. Both preemptive and non-preemptive queues are considered

and the differences in performance are discussed. While it is obvious that a preemptive

EDF queue can achieve the lowest energy usage and the FIFO queue has the worst

performance, the performance gap is not quantified since it is highly dependent on

the traffic model.

Finally, the problem formulations for multi-user channels are presented in Chap­

ter 7. In this chapter, we show how the piecewise water-filling solution is to be applied

to the multi-user channels. Only a theoretical treatment would be given. Testing and

comparison of the various proposed algorithm under multi-user channels are planned

as future work.



Chapter 2

Background

In designing a mobile wireless network, we are faced with different challenges than

designing for the traditional media for the internet, the wire-line channels. Mobile

wireless channels are often characterized by the rapid constructive and destructive

interference of the received signal (Rayleigh fading) as well as a slower variation in

signal strength due to blockage of the signal path (shadowing). In addition, mobile

devices are often equipped with a limited energy source. In order to use this lim­

ited energy efficiently, various techniques are developed to compensate for channel

variations, ranging from simply allocating enough power margin to ensure there is

always enough received signal power, to a more sophisticated method of dynamically

allocating communication resources such as transmission power or information rate

based on knowledge of the channel's state. Some of these adaptive resource allocation

technologies are being adapted by the third-generation cellular standards (see e.g. [2])

and will feature even more strongly in future broadband wireless access technologies

such as the mobile worldwide interoperability for microwave access (WiMAX).

During the time when the main application of mobile communication devices is

real-time voice communications, channel fading was compensated by keeping a con-

5



Chapter 2. Background 6

stant received signal to noise ratio (SNR) by adjusting the transmit power to be in­

versely proportional to the channel gain, a technique known as channel inversion.

While this provides guaranteed performance, it is more energy efficient if the data

can be transmitted in high rate bursts during good channel conditions while staying

idle in periods of bad channel condition [3].

To provide the necessary background on designing the optimal packet scheduler

for heterogeneous traffics, we start with an historic overview of the development of

adaptive transmission technology that only concerns itself with physical layer param­

eters for power control purposes in Section 2.1. In Section 2.2, a briefliterature survey

is provided into recent research into joint consideration of communication delay and

information theoretic power control, which is the main area of research of this thesis.

We then digress into introducing the mathematical terminologies used in formulating

the problem in Section 2.3. Finally, we conclude this chapter with a description of the

wireless communication system model in Section 2.4 and a summary of contribution

in Section 2.5.

2.1 Adaptive Transmission Technology

The idea of adapting transmission parameters dynamically to the changing channel

state can be dated back to the pioneering work in the late 60's and early 70's by

[4, 5]. In these early works, a single end to end link with time varying channel is

considered and the aim is to produce a time-varying modulation scheme (i.e. varying

rate [5] or varying power [4]) that maintains a certain link quality measure (e.g. bit

error rate (BER». However, dynamic adaptation of transmission parameters requires

feedback of the channel states and large computational power that were not available

at the time and work in the area has not been taken seriously by the industry until

more recently.
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Most of the modern adaptive resource allocation schemes are based on the work

by [3] that shows the water-filling power allocation scheme is optimal in achieving ca­

pacity under average power constraint. It, [3], also compares the water-filling scheme

with other suboptimal schemes that strives to maintain a constant received SNR at a

constant rate and show that there is a large power penalty. While [3] provides the in­

formational theoretical framework, [6, 7] shows how variable information rate can be

achieved through a family of coded m-ary quadrature amplitude modulation (mQAM)

constellations and that at any specified BER target, the rate and power relationship

follows closely to the logarithmic form of the capacity equation [8, 9] with a constant

SNR penalty. A similar work using turbo coding to approach capacity can be found

in [10]. A unified treatment of adapting various physical layer parameters, namely

power, BER, and modulation can be found in [11], which provides a solid framework

for designing optimal power control and adaptive modulation scheme for the physical

layer. Variation on the water-filling adaptive scheme by [3] have been proposed. In

[12], a peak power constraint is imposed on the system and it has been shown that

with reasonable selection of the peak power, the performance penalty is minimal. A

more severely limited transmitter with a constant on/off power control has been con­

sidered in [13] with a very-low complexity logarithm-free power allocation algorithm.

While all of the previously presented references assume perfect channel state

information (CSI) at the transmitter, in practical systems, this CSI has to be esti­

mated at the receiver and communicated back to the transmitter. Thus, there is an

estimation error and delay associated with the actual CSI being used. This effect is

considered in [14] where the effect of estimation error on the optimal algorithm is ana­

lyzed. In other work, [15] has proposed the use of channel prediction filters to provide

a more up to date channel estimate at the transmitter by extrapolating the outdated

channel estimate. A more sophisticated approach where uncertainty of channel esti-
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mation is considered and compensated for in the problem formulation can be found

in [16, 17]. In these works, a strongly robust signal is introduced that performs well

under a selected set of channel autocorrelation functions. The idea of robustness and

the use of a channel prediction filter will be used in this thesis to formulate the online

algorithm where future channel gains and traffic are unknown.

2.2 Cross Layer Designs

The above-mentioned researches into adaptive modulation and coding within the phys­

icallayers, while complete and can be shown to be optimal, fail to consider the delay

aspect of the data transmission. For example, ifone were to use the water-filling power

and rate control scheme in a shadowing situation, a user would experience no commu­

nication for the period in the shadow and a burst of activity when the channel became

good again. This type of bursty transmission is energy efficient and can be used if the

application is delay insensitive such as e-mail or large file transfer. However, it would

not be acceptable for surfing the web nor real-time voice communications which has

been the traditional market for wireless services. On the other hand, a channel inver­

sion or constant receive SNR power control scheme offers guaranteed signal strength

everywhere for voice communications but is extremely inefficient for delay insensi­

tive traffics. Traditionally, the open system interconnection (OSI) reference model of

communication systems separates the consideration of delay and modulation into two

independent layers to be designed separately so that the physical layer power control

is not traffic type aware and cannot adapt its power control strategy to the traffic load.

Cross layer design (CLD) is a name used to describe communication system de­

signs that do not conform to the OSI reference model and allow different layers to

communicate and optimize the overall performance. There are many different sys­

tem parameters to be considered and we will only consider single hop delay in this
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thesis. An overview of recent development on CLD in general can be found in [18].

The first challenge is to formulate the relationship between delay and power. While

the information theoretical approach to power control yields a closed form solution,

the codeword length and the associated delay are difficult to control. Several related

capacity measures such as outage capacity [19] and delay limited capacity [20] have

been proposed to provide a more meaningful measure of performance under delay con­

straints. Work in joint consideration of information theoretical capacity and delay are

characterized by [21-23] and many more are mentioned in the survey by [1]. However,

most of this work considers optimization for average delay only and does not cater for

different delays for multiple classes of traffic nor does it guarantee a finite maximum

delay.

For this thesis, the system considered is one that guarantees a maximum delay on a

per-packet basis while minimizing transmission energy for time-varying channels. To

the best of the author's knowledge, this is the first attempt at characterizing optimal

transmission with per-packet, hard deadline constraints with a realistic continuous

time-varying channel. Under this formulation, a communication link supporting mul­

tiple classes of traffic with different delay constraints can be modelled. Furthermore,

the solution obtained is optimal in the sense that there exists no rate and power allo­

cation scheme with lower energy usage under the same set of traffic constraints and

channel conditions.

The most important aspect of this work is that per-packet maximum delay con­

straints are considered. It was found through the author's personal experience with

engineering design, that the users often specify performance parameters in absolute

terms, e.g., maximum delay shall not exceed 150 ms, while the system designers are

more inclined to work with probabilistic measures, e.g., the average delay shall be

100 ms. This is perhaps due to the fact that most analysis in queueing theory only
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provides results regarding average quantities. Thus, a system is often designed using

these average design guidelines in an attempt to met some maximum or minimum

specifications. For example, by designing for an average delay of 100 ms with some

standard deviation around 10 ms, one could comfortably meet the 150 ms maximum

delay constraint in most cases. However, this slight mismatch often results in sub­

optimal designs and it is the goal of this research (perhaps due to some personal

preference) to design a packet scheduler that meets this maximum delay constraints

directly.

There exists only a limited number of previous works that provide solutions with a

maximum delay instead of average ones, and even fewer where the delay constraints

are explicitly controlled. Previous work that considers hard delay limit can be found

in [24-31]. These works consist mainly of two Ph.D. theses and a paper which are

described in more details below.

The earliest work is done by E. Uysal-Biyikoglu for her Ph.D. research [24-27]

which considers a random arrival problem with a common deadline motivated from

satellite communication systems. While it guarantees a maximum delay, it is consid­

ered as a system wide parameter and is not constrained nor minimized explicitly in

the formulation. The problem formulation can be seen as a special case of the prob­

lem considered in this thesis, which allows individual packet deadline constraints. In

[24-27] a problem-specific optimization algorithm, known as MoveRight, is proposed.

It is similar in purpose to the iterative string pulling (lSP) algorithm developed in this

thesis, but it can not be applied directly to the more general problem considered here.

In the initial study performed for this thesis, it was observed that the MoveRight

algorithm can be modified to find the solution for our problem, by "moving left and

right" iteratively. However, it was found that the convergence of this "moving left and

right" algorithm to the optimal solution was very slow, perhaps due to the additional
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delay constraints. A more direct and general approach is developed in this thesis

that exploits the piecewise waterfilling property observed in the analysis of the prob­

lem. The resulting ISP algorithm can also be applied to solve the common deadline

problem considered in [24-27] and in the author's opinion, represents a more efficient

algorithm for solving the optimisation problem.

Another related work is the Ph.D. research by M. Zafer [28-30] which considers

a system setup similar to the one considered in this thesis with random arrivlas

and expiries, however, the emphasis is quite different. It pursues a discrete Markov

modelling approach with a 2 state Gilbert-Elliot channel model which, in the author's

opinion, oversimplifies the problem and maskes the interesting property of piecewise

water-filling over a continuous time-varying channel.

Finally, for completeness, there is also the work by [31] that presents a novel

formulation of the problem as an adaptive filtering problem which can be solved readily

with adaptive filtering techniques. However, the filter model can only be applied to

the scheduling problem under a static channel.

2.3 Convex Optimization

Despite the variation in the problem formulation and sometimes the conclusions with

cross layer optimization (CLO) researches, a common theme is to dynamically adapt

certain physical layer resource allocations (rate, power, modulation, etc) in order to

extremize some performance measure (error rate, power usage, capacity etc). The

formulation of the optimization problem and the associated solution has been well

studied and documented both in engineering [9] and as a mathematics discipline under

numerical optimization and operations research [32, 33]. In this section, we provide

the necessary background for the mathematical tools required to study optimization
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problems that falls in the broad category of convex optimization. It does not aim

to provide a comprehensive treatment of convex optimization but to provide a quick

description of the terminologies and certain useful key results that are used in this

thesis. A survey of the use of convex optimization methods for communications and

signal processing research can be found in [34].

In general, an optimization problem is stated in the form of minimizing or max­

imizing some mathematical expression, known as the objective, over an admissible

set of parameters. For the problems that we are interested in, the admissible set of

parameters are defined as a continuous region in a multi-dimensional space often ex­

pressed as a set of inequality expressions. This region is also known as the domain of

the problem. The goal is to find the point in this domain with the smallest or largest

objective.

Convex optimization problem is a special class of optimization problem such that

the domain forms a convex set and the objective is a convex function. The procise

mathematical property of convexity can be found in [32]. It suffices to know for now

that a convex optimization problem can be solved efficiently with numerical methods

and that it can be transformed into another convex optimization problem, known as

the dual, from which an analytical solution may be obtained. Furthermore, a set of

necessary and sufficient conditions, known as the Karush-Kuhn-Tucker (KKT) condi­

tions, can be stated and solved to aid in the understanding of the general property of

the optimal solution. A good example of the use of the KKT condition is the derivation

of the water-filling property of optimal power allocation and can be found in [9]. The

analysis through KKT conditions will be used extensively in Chapter 3.
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2.4 System Level Considerations

13

In this section, we take a more detailed look at the optimization problem. As in most

good engineering practise, a good problem definition is as good as or better than a

solution to an ill defined problem. The purpose of this section is to put the problem

into the proper perspective. Many comments stated in this section may seem to be

common sense at first. However, these common sense observations will be frequently

referred to as the problem statement is being developed. They are critical, not just

for the initial problem statement, but also at a later stage when it may be necessary

to simplify the problem or to make certain modeling assumptions.

For a wireless system to support the internet-like services as we know it to­

day, the system under consideration must: 1. support multiple users, 2. be wire­

less, and 3. support heterogeneous traffic types, as in most modern cellular sys­

tems. Furthermore, a wireless system that is capable of supporting multiple users

inevitably requires large total bandwidth. This leads to a system model with multi­

ple parallel channels accessible to all users such as an orthogonal frequency division

multiplexing (OFDM) or time division multiple access (TDMA) system. We will also

assume that a centralized controller is available to perform the scheduling and that

all CSI is known at this central location. Under these system level specifications, one

can now consider the problem under the proper perspective.

Most importantly, the system must perform to meet the user demand. This is

to say, the system should not schedule access to users based on signal strength as

suggested by the capacity maximization formulation in [35] but schedule to provide

the best service to all users according to the user demand. An extreme example would

be the implementation of the 911 emergency calls in cell phones. In such situation, the

signal is often weak with low SNR but here, it has an associated user requirement

that it should have the highest priority over all other traffic types and should be
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given access to the channel regardless of its signal strength. While it is possible to

implement a scheduler to provide for this single exception when such signal occurs by

interruption or reserving emergency bandwidth, it is often better to design a scheduler

which is inherently quality of service (QoS) aware so that multiple level of priorities

can be implemented.

QoS specifications forms an important part of any modern wireless communication

standards. For example, the emerging mobile WiMAX standard specifies the following

different traffic classes

UGS (Unsolicited Grant Service) real-time data streams comprising fixed-size

data packets issued at periodic intervals.

ertPS (Extended Real-time Polling Service) Real-time service flows that generate

variable size data packets at periodic intervals.

rtPS (Real-time Polling Service) real-time Data streams comprising variable size

data packets that are issued at periodic intervals.

nrtPS (Non-real-time Polling Service) delay tolerant data streams comprising vari­

able size packets for which minimum data rate is required.

BE (Best Effort) Data Stream for which no minimum service level is required

and is handled on a space available basis.

From this specified set of QoS classes, it is interesting to note that packets are

always issued at periodic intervals and may be at variable packet length for real-time

traffics with no service supporting variable interarrival intervals. Furthermore, two

real-time services, ertPS and rtPS are specified with very similar description. In fact,

when one examines the standard more closely, it is found that the main difference is

that ertPS has an additional jitter constraint while rtPS does not. This demonstrates

a pragmatic engineering design choice common to most wireless communication sys­

tem where a synchronous periodic transmission frame is used in the physical layer and
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multiple variable rate data services are implemented in higher layers with variable

length packets over these periodic transmission intervals. While a system conforming

to the WiMAX standard must implement the five different QoS classes as specified,

we are under no such constraint and will be working with a generalized traffic model.

Specifically, the system model allows variable length packets arriving at variable in­

tervals and it is possible for each packet to have a different constraint on allowable

delay. Under this general model, a system serving a mixed class of traffic simultane­

ously can be modelled and we will not rely on any assumption on the regularity of the

traffic for analysis purposes.

Consider a generic wireless communication system with n users communicating

through a common trunk, consisting of two base stations with a broadband wireless

link in between, to another n users, as shown in Figure 2.1. It is assumed that

all traffic is packetized into variable length packets presented to the transmitter at

irregular intervals. Furthermore, each packet has an associated deadline parameter

to specify the time by which this packet must be transmitted to the other end of

the wireless link. We are interested in the overall packet schedule defined as the

transmission rate and power of each packet that is most energy efficient while meeting

all deadline constraints. By allowing packets of variable length with random arrivals,

a wide range of QoS requirements can be specified in this scheme. For example, the

nrtPS QoS class for mobile WiMAX can be modelled as either periodic arrival of fixed

length packets with an appropriate over-all rate for a single user, or as random arrival

of variable length packets with delay constraint proportional to the packet length as

depicted by the minimum rate.

Since we are interested in the power and traffic load aspect of the system, we will

simply ignore the possibility of multistage routing in the trunk. There are three dis­

tinct scenarios to consider. The uplink stage, the trunk stage and the downlink stage.
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Figure 2.1: A simplified model of a trunked communication system.

During the trunk stage, all user traffic and system control traffic are firstly collected at

one of the base station and transmitted through a broadband, (possible multi-carrier)

wireless link in a managed manner. This is the simplest stage to consider as all

traffic types and their associated QoS requirements are known at one location and

can be scheduled optimally. Similarly, at the downlink stage, QoS requirements are

known at the transmitter and the only different from scheduling in the trunk is that

now there is a different set of channels for each user and one must also consider the

effect of the broadcast channel (BC) model [36]. The difficulty for the design of the

uplink scheduler lies in the fact that there is no central location for co-ordinating the

transmission, not in the channel modeling. It is sufficient to say that if one wishes

to implement uplink scheduling, a handshake protocol must be performed so that the

uplinking base station has the channel state and traffic load information for schedul­

ing purposes. One possible implementable protocol for uplinking is for all users to

send a periodic request for resource allocation stating the packet length and deadline
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requirements to the uplink base station. This base station will use the information

provided in this request together with the channel estimates for all of the users to

schedule the optimal time for transmission and inform each user of the schedule on

the corresponding downlink. However, one must also account for the delay involved

in this handshake.

2.5 Contribution

We consider the energy-optimal scheduling problem in two different settings. Firstly,

under a deterministic setting where the problem is to find the optimal schedule for a

given packet arrival and deadline constraints under a known time-varying channel.

Under this deterministic setting, a novel piecewise water-filling solution is obtained

with an efficient numerical method for computing this optimal schedule. The analysis

of this deterministic system serves two purposes. Firstly, it aids in the understanding

of the interaction of various traffic and channel parameters and secondly, the per­

formance of the optimal solution serves as a bound on what is achievable for any

real design. In addition to the deterministic formulation and the optimal prescient

schedule, which we present in Chapter 3 and 4, we also propose an efficient and

easy to implement online scheduler with performance close to that of the prescient

optimal (Chapter 5). We also consider a general traffic and channel model where

very few assumptions are required for analysis. SpeCifically, the traffic is modelled as

discrete packets with individual deadline constraints and variable arrival time and

packet length. We also consider a variety of time-varying channels ranging from single

carrier flat fading channel to multi-user channels at various stages of a trunked com­

munication system. Also, no specific statistical properties about the traffic or channel

states are assumed in the deterministic formulation and while the online scheduler

operates on the assumptions that the channel state is predictable, hence correlated
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in time, it is not limited to be of any specific distribution.

As indicated earlier, the system under consideration must deal with not just a

point-to-point multi-carrier channel but also the broadcast channel (BC) and multi­

access channel (MAC) cases. Since the main difference between these is the channel

models, we will delay the consideration for the multi-user channels till chapter 6 by

concentrating on the point-to-point scenarios initially.



Chapter 3

Prescient Schedulers

In this chapter, we present the deterministic formulation of the scheduling problem for

the single user channel. The deterministic view assumes that the present and future

channel state information (CSI) and the offered traffic load are all known a priori.

Despite being impossible to realize, the study of this prescient scheduler allows one

to provide a performance bound on any other practical realization. That is, no other

implementation can assume more knowledge than the prescient scheduler and hence

can never outperform it.

For the rest of this chapter, we present the mathematical formulation of the prob­

lem and derive the piecewise water-filling property of the optimal prescient power

profile which is essential for the derivation of efficient numerical methods presented

in the next chapter.

3.1 A Toy Problem

We begin with a small toy problem that demonstrates the essential properties of the

optimal packet schedule. Specifically, we consider a single user flat fading additive

19
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white Gaussian noise (AWGN) channel with a first in first out (FIFO) input queue

driving the input and the aim is to find the service rate profile that has the minimum

energy usage. The problem definition and the associated solutions have also been

presented by the author in [37]. To introduce the main concept, the piecewise water­

fiZZing property will be introduced through a numerical demonstration as a conjecture

followed by a more rigorous proof of the observation. This piecewise water-filling

property holds for the more general case with diversity channels, as well as multi­

user systems, and the toy problem can be seen as a special case of these.

For the rest of this section, we start by introducing the cumulative arrivals and

cumulative expiries as a way of determining the feasibility of any given transmission

rate profile, from which the energy usage can be determined. A general representation

of the channel as a time-varying function with little assumption of the channel model

is then presented with its relation to the transmission rate and energy usage. With

the traffic and channel properly specified, the scheduling problem is stated as a convex

optimization problem from which efficient numerical methods can be used to find the

solution [32] and a numerical example is used to demonstrate the piecewise water­

fiZZing property. Finally, we conclude this section with an analysis of the Karush­

Kuhn-Tucker (KKT) conditions to derive the piecewise water-fiZZing property.

3.1.1 System Model

The system model consists of a single flat fading wireless link with a FIFO queue at

the input as shown in Figure 3.1. Each packet enters the queue at a random time and

carries with it a quality of service (QoS) requirement stating its maximum allowable

delay. The problem is to determine the optimal rate profile, the one that has the

minimum transmission energy, assuming perfect knowledge of all past and future

channel state information, packet arrivals and packet expiries.
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Figure 3.1: The system block diagram of the optimal cross-layer scheduler.

Let the random arrival time of packet i be denoted as TaCi)' where the packet

index i is assigned in the natural order of arrival such that TaCl):s Ta(2) :s .... The

corresponding packet expiry times Te(i) = TaCi) + rCi) can be calculated by knowing

the maximum allowable delay rCi) of packet i. Furthermore, denote the amount of

information contained in packet i as D(i) nats (lnC2) times the number of bits) and

observe that, in order to meet the transmission deadline of packet i, the system must

transmit all information in packet i as well as all the packet preceding it. That is,

the transmission rate ret) of the system must satisfy

(Te(il i

Jt==o r(t)dt?'];1 DCx) for all (3.1)

Similarly, the total amount of information serviced can never exceed that contained

in the packets arrived. That is, the system cannot transmit more information than is

available. Thus, we have a similar set of inequalities at each packet arrival instant:

(Ta(i) i-I

Jt==o r(t)d t:s ];1 DCx) for all (3.2)

To allow for easier mathematical manipulation, the inequalities (3.1) and (3.2)
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are reformulated as explicit function of time in terms of the cumulative arrivals and

expiries. We will refer to the term on the left-hand-side of (3.1) and (3.2) as the

cumulative rate function Reum (t) = 1:=0 rCx) dx and the upper and the lower bounds of

(3.1) and (3.2) can be rewritten as explicit function of time, the cumulative arrivals,

AcumCt) and the Cumulative Expiries, Eeum(t). The exact definition of these curves

and its relation to the forms given previously is best demonstrated through a concrete

example. Consider a sequence of eight packet arrivals as shown in Figure 3.2. The

diagram shows the allowable maximum delay of each packet as the width of the box

while the height of the box shows the information contained in each packet. With

the boxes stacked in the order of arrival, it is easy to determine the exact form of the

cumulative arrival, AcumCt) and the cumulative expiry, Eeum(t) graphically such that

Aeum(t) ~ ReumCt) ~ EeumCt) (3.3)

Since transmission rate is a non-negative quantity, it is also required that the

cumulative rate be a non-decreasing function of time. In summary, we have the

following requirement for the transmission rate profile of a variable rate max-delay

constrained queueing system to be admissible.

Property 1 (Rate Bounding Property). The transmission rate profile ret) ofa variable

service rate FIFO queue with per-packet maximum delay constraints is admissible if

and only if it satisfies the following:

1. The cumulative information rate Rcum(t) is upper bounded by the cumulative

arrivals Acum (t).

2. The cumulative rate Rcum(t) is lower bounded by the cumulative expiries Ecum(t).

3. The transmission rate profile ret) is non-negative.

Next, we present the formal definition of the convex optimization problem with the
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objective being finding the admissible transmission rate profile that has the minimum

energy usage.

3.1.2 Convex Formulation

Here, we consider the deterministic problem formulation where we assume that the

traffic information is all known a priori. As for the cost of transmission, we assume a

flat, time-varying, AWGN channel characterized by the time-varying power gain g(t).

Without loss of generality, we use a piecewise constant approximation of g(t) which

only allows the channel gain to change at discrete time instants. This block fading

channel can be made arbitrarily close to a continuous channel by using a smaller time

step.

Furthermore, due to the positivity constraint of the transmission rate, the upper

and lower bound constraints only need to be tested at the arrival and expiry time of

each packet (i.e. the corner point of the bunding staircase of Figure 3.2). This allows

us to discretize the problem formulation into finite and discrete epochs for ease of

computation. Following a very similar formulation to that used in [27], the time axis

is divided into variable length segments known as epochs. An epoch is a continuous

segment of time where the system parameters are constant. An epoch change takes

place when the upper or lower bound on the cumulative rate changes, or when the

channel state changes. That is, an epoch changes when a packet enters the queue,

Le. a change in upper bound, or at a constraining expiry constraint, i.e. a change in

lower bound as depicted in Figure 3.2, or if the channel state changes which happens

at discrete instants by the block fading approximation.

Let the normalized duration of epoch m, x(m), be given by x(m) = (tm+] - tm)W,

where W is the frequency bandwidth in Hz and tm is the time at the beginning of

epoch m. Since the channel gain, cumulative arrivals, cumulative expiries are con-
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stant within each epoch, it follows that the optimal transmission rate must also be

constant. For convenience, we will denote the discrete channel gain for epoch m as

gem) = gCtm), the discrete cumulative arrival and expiry as Acum(m) = AcumCtm) and

Ecum(m) =EcumCtm) respectively, and the transmission rate during epoch mas rem).

As noted previously, the cumulative rate curve is admissible if it meets the bound­

ing constraints at arrival and expiry instants. The bounds specified in (3.3) can

be stated in the discrete form as Acum(m) ~ L~l x(i)r(i) ~ Ecum(m). It together with

rem) ~ 0 forms the admissibility condition of the rate profile in the discrete form.

To formulate the objective of the optimization problem, let [(r(m),g(m)) be the

transmit signal to noise ratio (SNR) required to transmit at rate, rem), given a channel

power gain of gem). As is common in adaptive transmission analysis, we consider the

function to be increasing and strictly convex in the first argument, rem). Without loss

of generality, also assume that no energy is used when the transmitter is idle, i.e.,

[(0, gem)) =O. The energy-optimal rate profile is therefore the solution to the following

convex optimization problem, with infinite optimization horizon:

00

Minimize: [ x(m)[(r(m),g(m)) (3.4a)
m=l
m

Subject to: [x(i)r(i) $ Acum(m), for m= 1. ..00 (3.4b)
i=l
m

[x(i)r(i) ~ Ecum(m), for m = 1. .. 00 (3.4c)
i=l

rem) ~ 0 for m = 1. ..00 (3.4d)

The cumulative arrivals and expiries form the upper and lower bounds of the cu­

mulative rate profile in each epoch through the inequality constraints Acum(m) ~

L~l x(i)r(i) ~ Ecum(m) at each epoch boundary as shown in Figure 3.2.

While the power function [(r,g) is assumed to be convex in the variable r with no

other restriction for the problem to be solvable numerically, it is convenient to have an
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actual expression to work in some places. For the toy problem, we assumed a specific

form of fer, g) defined as

er -1
f(r, g) =--;

g
a er

-a f(r, g) =-
r g

(3.5)

following from Shannon's channel capacity [8] formulation.

3.1.3 A Numerical Example

Once a problem is formulated as a convex optimization problem, generic numerical

methods can be used to derive the solutions efficiently. Here, we will give a numerical

example of the optimization problem specified in the AMPL language [38] and solved

using the freely available algencan solver from the TANGO project [39, 40] with the

student edition of AMPL.

The AMPL equivalent of the problem definition (3.4) is given as follows:

param N',

param g{t in 1. . N};

param X{t in 1. . N};

param A{t in 1. . N};

param E{t in 1. . N};

var r{t in 1 .. N};

minimize Energy:

subject to Arrival{t in 1 .. N}:

sum{i in 1 .. t}( X [i] *r [i]) <= A[t] ;

subject to Expiry{t in 1 .. N}:

1
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sum { i in 1.. t }( X[iJ *r [ i]) >= E [t] ;

subject to Positivity{t in 1 .. N}:

rEt] >= 0;

13

14

15

27

In the above model definition, we define N epochs with the associated system parame­

ters g, X, A, and E in line 1-5, all as length N vectors. The desired variable r is declared

in line 6. The rest of the model definition specifies the problem mathematically with

the power function being specified by (3.5).

The actual numerical values of the various parameters are specified in a separate

data file. To demonstrate the essential properties of piecewise water-filling we specify

twelve epochs as follows:

param N 12 ; 1

param: g X A E 2

1 1.0 2 0 0 3

2 0.7 2 10 0 4

3 0.5 4 10 0 5

4 0.1 2 25 0 6

5 1 4 25 10 7

6 0.5 2 25 10 8

7 0.3 1 30 25 9

8 0.5 2 30 25 10

9 0.1 4 30 25 11

10 0.5 5 40 25 12

11 1 2 40 30 13

12 0.7 4 40 40 14

The optimal rate profile can be calculated by running the two file listings through
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Figure 3.3: The optimal cumulative rate profile for the numerical example (a) and
the corresponding water-filling diagram showing the piecewise water-filling property
in (b). The optimal transmit power is the difference of the two curves shown in (b),
[(r,g) =(e' -1)/g.

AMPL to obtain the optimal transmission rate for the twelve epochs. The cumulative

rate profile with the cumulative arrival and cumulative expiry bounds are shown

in Figure 3.3 (a). A more revealing graph is the plot of the equivalent noise power

1/g (floor to water-fill against) and the total noise and transmit power (e' - 1)1g +

11g (the water level) in Figure 3.3 (b) which clearly shows the piecewise water-filling

phenomena.

From the numerical result presented, we make several observations about the

optimal rate profile for traffic with strict deadline constraints.

Observation 1. The power allocation associated with the optimal rate profile follows

a piecewise water-filling property where a constant waterlevel is maintained across

multiple epochs and the waterlevel changes whenever the cumulative rate curve touches

the arrival or expiry bounds.
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Furthermore, with several random trials, we also observe that
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Observation 2. The piecewise constant waterlevel can increase only if the cumulative

rate touches the arrival bound. The converse also holds. That is, the waterlevel can

decrease only if the cumulative rate touches the expiry bound.

It should also be noted that waterlevel change does not occur when the floor to

waterfill against, 11g exceeds the waterlevel, i.e. when eT < 1. This can be clear seen

in Figure 3.3 where the first occurence of eT < 1 has different waterlevel on either side

while the waterlevel stays the same across the second occurence of eT < 1. We will

provide the formal proof of these observations next.

3.1.4 KKT Conditions and Their Interpretations

In the previous section, we have presented some observations without proof about

the general structure of the optimal solution. In this section, we provide the math­

ematical proof that the fundamental structure of the solution is water-filling across

the epochs between active arrival and expiry constraints (where the cumulative rate

curve touches the arrivals or expiries staircases, as shown in Fig. 3.3 (a». Consider

the optimisation problem (3.4) and assign the non-negative Lagrangian multipliers

{111 ... l1m ...}, {VI ••. v m· ..}, and {AI· .. Am ...} to constraints (3.4b), (3.4c) and (3.4d) respec­

tively. The Lagrangian, .5£ is

.5£ =11 x(m)!(r(m),g(m)) - 11 11m [Acum(m) - (~x(i)r(i))] -

flVm [(~ x(i) r(i)) - Ecum (m) ] - 11 Am r(m) (3.6)

Next, we differentiate the Lagrangian with respect to r(m) to obtain the set of
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conditions
0 0000

x(m)-::l-[(r(m),g(m)) + x(m) L J..li - x(m) L Vi - Am =O.
ur(m) i=m i=m
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(3.7)

Examination of (3.7) shows that through subtraction of (3.7) for m and m-l, the

partial summation can be eliminated. An equivalent set of Lagrangian conditions

can be stated as

o ( ) AmJ..lm - V m = -;- [ r(m),g(m) ---
ur x(m)

[
0 ( ) Am-I]- -[ r(m-1),g(m-1) ----
or x(m-1)

for all m =1... 00 (3.8)

with the appropriate definition for [(reO), g(O)) = 0 and Ao = 0 to take care of the initial

condition of the difference relation.

The right hand side of (3.8) can be further Simplified by noting that the comple-

mentary slackness conditions associated with J..lm and V m are

m

L x(i)r(i) = Acum(m) ~ J..lm > 0
i=l
m

L x(i)r(i) = Ecum(m) ~ V m > 0
i=l

(3.9)

(3.10)

Thus, when the cumulative rate touches the arrivals or expiries staircases, the con-

straints are activated with J..lm > 0 or V m > 0, respectively. As a special case, epochs

in which the two staircases are equal have an empty queue for any feasible solution,

so the rate is zero. Such an epoch produces a finite optimization horizon. Consider

a sequence of epochs with slack arrival and expiry constraints, i.e., J..lm = Vm = 0, and

delimited by active arrival or expiry constraints. Within such a water-fill segment we
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have

a ( ) Am
W = -a1 r(m),g(m) ---

r x(m)
a Am+l=- I(r(m + 1), g(m + 1)) - ----'c.:........:._
ar x(m + 1)
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(3.11)

Here, a constant w is used to simply denote the value of this chain of equality. Also

recall the complementary slackness condition that Am =0 whenever the rate allocation

in epoch m is non-zero.

Lets first consider (3.11) for the epochs within the same water-fill segments. This

has several implications. Firstly, two adjacent epochs must have identical power gra-

dient in rate, Le.
a a
- 1 (r(m),g(m») =-a1 (r(m + l),g(m + 1))
ar r

(3.12)

if r m and rm+l are both non-zero. Secondly, whether rates are zero or not, (3.11) can

be chained in sequence to obtain

a ( ) Am a ( ) Am+l-a1 r(m),g(m) ---=-1 r(m+l),g(m+l) _----'c.:........:._
r x(m) ar x(m + 1)

=

a ( . . ) Am+j=-a1 r(m+ J),g(m+ J) - . =W
r x(m+ J)

(3.13)

for a sequence of j epochs within the same water-fill segment. The relation to water­

filling is evident ifthe power function takes the form specified by the capacity equation.

By substituting the derivative of (3.5) into (3.11), we obtain

er(m) 1 Am
-- =I(r(m),g(m») +-- =w+-­
g(m) g(m) x(m)

(3.14)

for all epochs connected by slack arrival and departure constraints. Making one final

substitution for the complementary slackness condition for Am and using the fact that
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x(m) > 0, we must have,

f(r(ml,g(ml) ~ { :- -g(-~-)
1

for --$W
g(m)

1
for -->w

g(m)
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(3.15a)

(3.15b)

which is the well known water-filling condition on power, and hence the piecewise

water-filling property observed previously.

The water-filling in power as expressed in (3.15a) and (3.15b) can also be expressed

as water-filling in rate. Solving (3.14) for rate, we obtain

{

In(w) + In(g(m))
r(m) =

o

for In(w) ~ -In(g(m))

for In(w) < -In(g(m))

(3.16a)

(3.16b)

Since 1/g(m) is the normalized transmit noise power, we will refer to its logarithm as

the noise rate and obtain the water-filling in rate where the optimal information rate

is the difference between the rate water levelln(w) and the noise rate. Furthermore,

we will refer to the epochs with a zero rate assignment in the optimal solution as the

idle epochs. An idle epoch can be identified by In(w) < -In(g(m)).

Next, we turn our attention to the epoch boundaries that are not slack, i.e., either

J.lm or vm is not zero. Provided that the queue is not in the empty state, the cumu­

lative arrival bound can never equal the cumulative expiry bounds and without loss

of generality, we assume that only one of arrival or expiry constraints can be active

at any instant, hence only one of J.lm and V m is non-zero for any given m. Thus, the

complementary slackness conditions combined with (3.8) can be re-written as

J.lm > 0 <==>

Vm>O <==>

a ( ) Am a ( ) Am-l
or! r(m),g(m) - -x(-m-) > or! r(m-l),g(m-l) - -x-(m---l)

a ( ) Am a ( ) Am-l
or! r(m),g(m) --x(-m-) < or! r(m-l),g(m-l) - x(m-l)

(3.17a)

(3.17b)
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Since the inequality on the right hand side (RHS) of (3.17) simply compares the wa­

terlevels for the previous and current waterfill segments by (3.13), an active arrival

constraint, left hand side (LHS) of (3.17a), implies an increase in waterlevel, RHS of

(3.17b) and an active expiry constraint implies an decrease in waterlevel, as observed

numerically in the previous section.

The optimal solution can thus be interpreted as a set of different water-filling so­

lutions applied to sequence of epochs delimited by active arrival or expiry constraints.

These constraints can become active only at concave corners of the arrivals and ex­

piries staircases, since the cumulative rate curve is non-decreasing. The curve can

run along the "tread" of a staircase only in epochs with sub-threshold gain, where the

rate is already zero.

In this section, we presented the formulation of a simple cross layer optimization

problem that considers the dynamics of both channel and traffic load variations in a

typical point-to-point communication system. By formulating the problem as a convex

optimization problem, a numerical example was given which reveals an interesting

property about the optimal solution, that the optimal rate profile can be described as

piecewise water-filling, with changes in water level occurring only when the system

meets active arrival or expiry constraints. In additional to examine the problem

numerically, analytical proof of the piecewise water-filling property is also presented

through the analysis of the KKT conditions.

3.2 Diversity Channels

Next, we consider a more general channel model where multiple parallel channels are

available. Specifically, the following description uses orthogonal frequency division

multiplexing (OFDM) as a specific example. However, the formulation that follows
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can be applies to any single-user multi-carrier channels such as time division multiple

access (TDMA) channels or even eigen-channels of multi-input multi-output (MIMO)

systems.

With a multi-carrier channel, the general form of piecewise water-filling still holds

and the optimal rate allocation is in the form of water-filling across time and subcar­

riers and the waterlevel is only allowed to change at time instants corresponding to

active arrival or expiry constraints. The analysis of the multi-carrier system follows

closely the analysis of the toy problem presented previously but differs in the following

significant ways:

1. A multi-carrier channel is used.

2. A periodic symbol-spaced quantization of the time axis is used in place of the

concept of epoch.

3. A more realistic power to rate formulation for m-ary quadrature amplitude

modulation (mQAM) adaptive modulation [6] is used instead of ergodic capacity.

4. A generalized piecewise water-filling solution is derived.

3.2.1 System Model

The system under consideration is a mobile point-to-point wireless system utilizing

multiple parallel channels for transmission. The user data arrives randomly into a

queue and is serviced at a rate that is adjusted dynamically by the scheduler. The

scheduler also varies the transmission power for all channels jointly with the trans­

mission rate to minimize total energy usage. The system block diagram is shown in

Figure 3.1.

Instead of dividing time into variable length epochs, the transmission of data is

organized into constant duration time slots or conceptually, OFDM symbols, during

which the channel is assumed constant. We also assume that the packet arrival time



Chapter 3. Prescient Schedulers 35

and its associated deadline constraint are also quantized to the appropriate symbol

boundary. That is, a packet arriving during the symbol m is available for transmission

only in symbol (m + 1) or beyond and we quantize the arrival time to be at the end of

symbol m. Similarly, a packet set to expire during symbol m must be serviced on or

before symbol (m -1) and we quantize the expiry time to be at the beginning of symbol

m.

Notations similar to the toy problem will be used with an additional subscript

to denote the subcarrier. Specifically, we will denote the subcarriers in the channel

with a subscript n for an N channel system and we denote all quantities that are

defined for each subcarrier individually with a small case letter and the corresponding

capitalized version without the subscript n to denote quantities that are summed

across all subcarriers, i.e. rn(m),Pn(m) denote the rate and power for symbol m in

subcarrier n while R(m), P(m) denote the total rate and power for symbol m in all the

subcarriers. Furthermore, with the extensive use of cumulative quantities to specify

the admissible rate profile, we will use the shorthand Reum(m) =L~l R(m) to denote

the partial sum of the first m elements of the sequence R(m), similar to the previous

definition of Acum and Eeum . Also note that a shorter notation Pn(m) is used to denote

power, and its dependence on the instantaneous transmission rate and channel gain

should be noted implicitly.

Next, we turn our attention to the relationship between the required transmit

power, Pn(m), the desired modulation rate rn(m) (measured in nats per symbol per

channel), the channel power gain, gn(m) and the bit error rate (BER) obtained with

finite constellation.

Following the formulation given in [14], the achievable transmission rate is

(3.18)
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where K is a constant related to the desired instantaneous target BER by

K ~ _,----_-_1_.5_----:­
In (5BERtarget)
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(3.19)

for uncoded mQAM. In this formulation, we denote the receiver noise spect ral density

as No and the system bandwidth as W. (3.19) can be further modified with a coding

gain multiplier for trellis coded mQAM [6] for finer rate and power steps and also

for turbo coded systems [10]. Here, we make the same assumption as [14, 6], that a

continuous set of rates is achievable. In practice, we approximate a continuous set

of rates through various combinations of coding and modulation. This continuous

approximation is necessary to provide a tractable convex optimization formulation of

the problem. If K = 1, (3.18) simply reduces to the achievable rate expression specified

by Shannon's capacity equation and is the form considered for the toy problem and as

in [37].

3.2.2 Convex Optimization Formulation

The scheduling problem is equivalent to solving the convex optimization problem

M N

Minimize: L L Pn(m) (3.20a)
m=l n=l
m N

Subject to: L L rn(i) ~ Ecum(m) for me: [I,M] (3.20b)
i=l n=l
m N

L L rn(i) sAcum(m) for me: [I,M] (3.20c)
i=l n=l

rn(m) ~ 0 for ne: [l,N]; me: [I,M] (3.20d)

for the rate and power profile {rn(m), Pn(m)} over the OFDM tones (n) and over time

(m) that minimizes the total energy (3.20a).

Without loss of generality, we assume that constraint (3.20b) and (3.20c) are both
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satisfied with strict equality if and only if m =M. In other words, in the mathemat­

ical formulation, we disallow the cumulative arrival bounds to equal the cumulative

expiry bounds in the interior of the optimization problem. This assumption does not

compromise the validity of the model since any general problem can be separated into

smaller subproblems at these instants and be solved independently from each other.

This assumption also allows only one of the constraints to become active at any instant

to provide an uncluttered view of the piecewise water-filling property.

3.2.3 KKT Conditions and Their Interpretations

By assigning the Lagrangian multipliers j.l(m), v(m) and An(m) to constraints (3.20b),

(3.20c) and (3.20d) respectively, and differentiating with respect to Pn(m), we obtain

the set of equations

orn(m)
1- a [w(m)]- An(m) =0

Pn(m)

where we define a new slack variable

for all n,m (3.21)

M M
w(m) = L j.l(i) - L veil.

i=m i=m
(3.22)

Note that w(m) is constant over all tones in any given OFDM symbol m. By substi­

tuting the derivative of (3.18) into (3.21) and rearranging, we obtain

Pn(m) =
w(m)

1- An(m)

WNo

Kgn(m)
(3.23)

By the complementary slackness condition associated with constraint (3.20d),

(3.24)
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it follows that the power allocation within an OFDM symbol is in the form of water­

filling in frequency (n), i.e., within any given OFDM symbol m,

{

w(m) - K;',~~)
Pn(m) =

o

for w(m) ~ K;',~~)

otherwise

(3.25)

where w(m) is the water-level and the term WNol Kgn(m) is the floor to water-fill

against.

Next, we study the behaviour of the solution across the time dimension m. Byex­

amining the expression of the waterlevel w for two consecutive OFDM symbols (3.22),

we find that the difference in waterlevel ~w(m) ~ w(m + 1) - w(m) is

~w(m) = v(m) - /-l(m) for m= 1. .. M-1 (3.26)

Note that the RHS of (3.26) are the slack variables associated with constraint (3.20b)

and (3.20c), and since both of these constraints cannot be active simultaneously ex­

cept when m =M, we have the following equivalent set of complementary slackness

conditions for ~w(m).

m

~w(m) = v(m) > 0 {=::::> Acum(m) = L R(i) > Ecum(m)
i=l
m

~w(m) =0 {=::::> Acum (m) > L R(i) > Ecum(m)
i=l
m

~w(m) =-/-l(m) < 0 {=::::> Acum(m) > L R(i) =Ecum(m)
i=l

Thus, we have the following property,

(3.27)

(3.28)

(3.29)

Property 2 (Piecewise Water-filling Property). The optimal power allocation Pn(m)

obeys the water-filling property across the tones of every OFDM symbol. Furthermore,
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when both constraints are slack, i.e., (3.28), the water-level for the next OFDM symbol

w(m + 1) must equal the water-level of the current symbol w(m). Thus, this waterlevel

is piecewise constant and can change only when one of the traffic constraints (3.20b),

(3.20c) is active. An active arrival constraint leads to an increase in waterlevel by v(m),

(3.27), and an active expiry constraint leads to a decrease in waterlevel by JL(m), (3.29).

For our purposes, rate is a more convenient quantity to consider since the traffic

constraints are stated in terms of cumulative rates. By substituting (3.25) into (3.18)

and rearranging, we obtain

{

In (w(m)) -In (K~,~::z))
rn(m) =

o

for w(m) > K~,~m)

otherwise

(3.30)

That is, the optimal rate allocation is to allocate according to the water-filling princi­

ple with the floor In(WNo/Kgn(m)) and a waterleveIIn(w(m)). Recall that a sequence of

OFDM symbols with slack arrival and expiry constraints must share the same water-

level w(·). Hence In(w(m)) =In(w(m -1)). Similarly, it follows that In(w(m -1)) > In(w(m))

if the expiry constraint is active and In(w(m - 1)) < In(w(m) if the arrival constraint is

active. Thus the rate profile must follow the same piecewise water-filling property

as the power profile. Thus the rate profile, like the power profile, must exhibit a

piecewise water-filling property.

Property 3 (Piecewise Rate Water-filling Property). The optimal rate allocation rn(m)

obeys the water-filling property across every OFDM tone. Furthermore, when .both

constraints are slack, i.e., (3.28), the water-level for the next OFDM symbol In(w(m + 1))

must equal the water-level of the current symbol In(w(m)). Thus, this waterlevel is

piecewise constant and can change only when one of the traffic constraints (3.20b),

(3.20c) is active. An active arrival constraint leads to an increase in waterlevel by
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v(m), (3.27), and an active expiry constraint leads to a decrease in waterlevel by p(m),

(3.29).

For the prescient scheduler, the instantaneous transmit power and rate are as­

signed jointly and are related by the convex power function p(r,g). Whether rate or

power are calculated from the optimization problem is not important as with perfect

knowledge of the channel gain, the prescient scheduler can always convert from one

to the other without ambiguity.

3.2.4 Numerical Result

In this section, we present a small time snapshot of a simulation to illustrate some of

the main property of the prescient scheduler. An instance of a two-carrier system with

independent Rayleigh fading and a randomly generated arrival and expiry bounds is

shown in Figure 3.4. We present here only a snapshot of 15 packets to demonstrate the

main properties of piecewise water-filling for multiple subcarriers. Simulation results

showing the average energy usage over a large number of packets will be presented

later in Chapter 5.

The graph presented in Figure 3.4(a) shows the optimal cumulative transmission

rate and the cumulative arrival and expiries bounds. The more revealing graph is the

rate water-filling graphs shown in Figure 3.4(b) and (c) for each of the two subcarriers.

In these diagrams, the floor to waterfill against is the log of the equivalent noise power,

In(WNofKgn(m)), and the transmission rate is indicated as the shaded region over and

above this floor with the waterlevel In(w(m)) (see (3.30». In addition to the piecewise

waterfilling rate allocation for each subchannel, it can also be clearly seen that the

waterlevel is shared across the two subchannels and the waterlevel changes occur

simultaneously.
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Chapter 4

Efficient Optimization

Algorithms

In the previous chapter, the piecewise water-filling properties for both power and

rate were demonstrated. With a convex optimization problem formulation, a solution

can be easily obtained through generic convex optimization software such as the free

algencan solver [39, 40]. However, the student edition is restricted to solving prob­

lems with 300 objectives plus constraints, which restricts the problem size that can

be simulated to less than 100 epochs for the single-carrier system, and proportional

reduction with more carriers. Furthermore, the computational complexity of these

generic solvers grows as the cube of the dimensionality, that is O(n3 ), without ex­

ploiting the structure of the problem [32]. For our problem, n = NM, where M is the

number of epochs and N is the number of subcarriers. This motivates the following

development of an efficient method of finding the optimal solution by exploiting the

piecewise water-filling property observed in Chapter 3.

The algorithm operates in a transformed space where the the optimal solution can

be determined as a shortest path under cumulative arrival and expiry bounds through

42
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geometric constructions. The finding of the proper transformed space is iterative while

the process of finding the shortest path can be visualized as pulling a piece of string

through a series of pegs, hence the name iterative string pulling (lSP) algorithm.

A limited form of the shortest path property for a static single carrier channel has

been observed previously in [28]. It can be seen as a special case, where the iterative

transform is not required under this limiting channel condition.

While the ISP algorithm presented here has reduced computational complexity

and has an interesting "string-pulling" interpretation, it is not realizable. This is

because the channel state information and the traffic information at all times must

be known a priori in order to specify the parameters of (3.20). Nevertheless, this

prescient scheduler leads to some insights that are used in Chapter 5 to develop a

practical causal scheduler.

For the rest of this chapter, we begin with a quick numerical demonstration of

the shortest path property for the single carrier static channel followed by the algo­

rithmic definition of the "string-pulling" algorithm, which is an O(n2 ) algorithm, for

n = NM. The transformation required to take into account channel variations is given

in Section 4.2, with the iterations presented in Section 4.2.2. Finally, we conclude

this chapter with the complete algorithm in Section 4.3.

4.1 Shortest Path Property

In this section, we give a brief description of the shortest path property for a static

channel simplification of the single-user, single-carrier toy problem presented earlier.

By setting the channel gain g(m) =1 for all m, the water-filling power allocation within

each waterfill segment becomes a much simpler constant power allocation, as the

floor to waterfill against is now a constant. Furthermore, the increase and decrease
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of the waterlevel according to whether the cumulative arrival or expiry constraints

are active can now be simplified to an increase or decrease of the actual transmit

power. That is, when the floor to waterfill against is a constant, the behaviour of the

waterlevel as observed in the previous chapter can be directly applied to the actual

power allocation. Furthermore, the optimal transmission rate profile must also follow

a similar piecewise constant property, as it is proportional to the power allocation.

Thus, the power and rate are both piecewise constant, with changes only at active

arrivl or expiry constraints.

Next, consider the bounding property for cumulative rate as shown in Figure 3.2.

Since the cumulative rate is the time integral of the transmission rate profile r(t),

it follows that the cumulative rate curve must be continuous, non-decreasing, and

piecewise linear. Furthermore, this piecewise linear cumulative rate curve can only

bend at active constraint points where the cumulative rate profile touches the bounds.

We further observe that by Property 2, the cumulative rate curve bends upwards when

touching the upper bound and bends downwards when touching the lower bound.

This is precisely the behaviour of a piece of taut string under bounding constraints as

illustrated in Figure 4.1. The illustration also demonstrates a possible algorithm for

finding the shortest path by considering the constraints one at a time.

Can it happen that there exists another piecewise linear curve within the bound­

ing constraints that exhibits the same property without being the shortest? Visual

inspection of Figure 4.1 shows that such curve is unique provided that both ends of

the string are fixed.

4.1.1 String Pulling Algorithm

The string-pulling analogy also provides us with an efficient way of computing the

optimal cumulative rate profile from the given constraint points (peg positions). The
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Figure 4.1: An illustration of the string-pulling process.



Chapter 4. Efficient Optimization Algorithms 46

procedure provided here can compute the result in OCn2) where n =2NM is the num­

ber of constraint points. The process is illustrated graphically in Figure 4.1 and an

algorithmic description is given below. The string-pulling algorithm takes a list of

bounds B[·] as input, and as output, produces a list A[·] selected from the elements

of B[·] which specifies the points through which the feasible shortest path must pass.

The string-pulling procedure is most concisely described as

1: function STRINGPULLING(B[])

2: INPUT: BI]: List of Bounds

3: OUTPUT: A[]: List of Bounds

4: A[] - B[1. .. 2]

5: end-2

6: for i - 3 ... K do

7: Append B[i] to A[]

8: end - end+ 1

9: for j - (i - 1) downto 2 do

10: G1 - Gradient (A[end - 1], A[end])

11: G2 - Gradient (A[end - 2], A[end -1])

12: if G1 < G2 and IsUpperBound(B[j]) then

13: A[end -1] - B[j-1]

14: else

15: Insert B[j -1] before A[end - 1]

16: end - end+ 1

17: end if

18: if G1 > G2 and IsLowerBound(B[j]) then

19: A[end -1] - B[j - 1]

20: else
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21: Insert B[j -1] before A[end-1]

22: end -end+l

23: end if

24: end for

25: end for

26: return A

27: end function

In the algorithm specification, the input B[] is a list of co-ordinate points and can

be implemented as a structure data type. By allowing each element of B[] to specify

whether it is an upper or lower bound, a single list B[] is used to specify both the

arrival and expiry bounds. The functions IsUpperBound and IsLowerBound are used

to determine the type of bounds while the Gradient function simply computes the

gradient between two bounding points as (Xl - Xz) / (YI - yz). The overall operation of the

algorithm is as follows. It constructs the shortest path by firstly assigning a temporary

path following a straight line connecting the first two bounds (line 4). This temporary

path is then extended with the next bound (7). The for-loop in lines 9 to 24 performs

the checks of all the previous bounds to ensure that the shortest path is found. The

two if-statements in line 12 and line 18 check if the shortest path is tight against

the bounds and adds or subtracts the point from the returned list A[·] appropriately.

Thus, for a problem setup with n bounds, there are 1 +2 + ... + n =nZ /2 checks in the

form of lines 12 and 18 which are much simpler than the generic optimization solver

solutions that require O(n3 ) computations of the gradients of the Lagrangians [32].
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4.2 Information and Noise Rate
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Next, we turn our attention back to the time-varying multi-carrier channel problem

and show that through a simple transformation, we can account for the time varying

channel and use the string-pulling algorithm iteratively to solve the full time-varying

multi-carrier channel problem.

Recall that the optimal cumulative rate can be interpreted as the time integral of

the rate profile that obeys the piecewise water-filling (PWF) property if the channel is

static. However, with time varying channel gain that causes the cost of transmission

at a certain rate to fluctuate, the optimal cumulative rate profile, as seen in the simple

example of Figure 3.3, is no longer the shortest straight line. For the time varying

channel, the trick is to work instead with the time integral of the constant waterlevel

which has similar properties that lead to the shortest path interpretation.

A numerical example of a single-user-scheduling problem and its solution is shown

in Figure 4.2 to aid the explanation of the ISP algorithm. The top and bottom graph

show the cumulative rate and the water-filling plot of the solution. The middle

plot shows the required transform in order to apply the shortest path interpreta­

tion. There are two important processes in finding the correct domain for performing

string pulling. Firstly, the bounds are transformed by adding an appropriate offset

(the noise rate) to the cumulative arrival and expiry bounds. Secondly, a process of

identifying and removing idle epochs (shaded region in Figure 4.2), known as punc­

turing, is required since the shortest path property only applies to the set of non-idle

epochs.

First, define the set of active tones for the moth orthogonal frequency division

multiplexing (OFDM) symbol as the set of tone indexes n E: Om if and only if w(m) >

WNo/(Kgn(m)). That is, Om contains the indexes of the OFDM tones where the rate

or power allocation is strictly positive as indicated by (3.30). We will refer to the com-
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Figure 4.2: Diagram showing the relationship between the cumulative arrivals and
expiries (a) and the water-filling diagram (c). The transformation required to show
the shortest path property is shown in (b). Idle epochs are highlighted by the vertical
strips. The cINR is piecewise linear outside of the idle epochs (shaded region).
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plement as the set of the idle tones o-in. Note that active tones actually correspond to

slack non-negativity constraints and should not be confused with active constraints.

Also, define the noise rate as 1]n(m) ~ln(WNo/(Kgn(m))) and refer to rn(m) as the infor­

mation rate. Their sum, the information and noise rate (lNR), (n(m)~rn(m)+1]n(m),

allows us interpret the rate piecewise water-filling property simply as maintaining a

constant (n(m) over the active tones:

{

In(W(m))
(n(m) =

In(K~,~~»)

for nEOm

for n EO-in
(4.1)

by noting that the optimal rate must obey the water-filling property of (3.30). Note

that infn(n (m) = In(w(m)) is achieved when n E Om'

Recall that the goal of the offline prescient scheduler is to find the optimal rate

profile that satisfies the Karush-Kuhn-Tucker (KKT) conditions, or equivalently, sat­

isfies both the rate bounding property (Property 1), and the piecewise rate water-filling

property (Property 3). The rate allocation over the idle tones o-in is zero as indicated

by (3.30). For the rate allocation over the set of active tones Om, it is more conve­

nient to calculate the piecewise constant rate waterlevel In(w(m)) first, and use (4.1)

to calculate the optimal rate rn(m).

4.2.1 Bounding the Information and Noise Rate

First, we denote the average Information and Noise Rate over an arbitrary subset of

OFDM tones, 'Pm as

(4.2)
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and the cINR averaged over any arbitrary collection of OFDM tones for all symbols

in the problem 'I' = 1'P 1 ••• 'PM} as

m

Zc~m(m)~ LZ'l'i(i)
i=l

(4.3)

where I'P ml =size('P m) is the number of non-idle channels in the set and the bold face

'I' denotes a sequence of sets over several epochs.

Recall that the traffic constraints are most conveniently represented as upper and

lower bounds on the cumulative rates Rcum (m) defined in Property 1. The quantity

Zc~m(m) is bounded in a similar way:

Acum(m)+f(_I- L 1Jn(i))~Z~m(m)~Ecum(m)+f(_I- L 1Jn(i)) (4.4)
i=l I'P ml ne:'l'm i=l I'Pml ne:'l'm

for all m = 1... M. That is, the cINR is bounded above by the cumulative expiries

and noise rate (cENR) and bounded below by the cumulative arrivals and noise rate

(cANR) over any arbitrary subset of OFDM tones. Geometrically speaking, this bound

combines the staircase bounds as shown in Figure 3.2 with an extra time-varying offset

equal to the amount of cumulative noise rate added (see Figure 4.2 (b».

Finally, we present an interesting property of the cINR averaged over the set of

active tones, 'I' = n = {Ol ... OM}. When we limit our consideration to the set of active

tones, the average INR over the set of active tones is simply the rate waterlevel.

Zn(m) =In (w(m))

and the cINR over the set of active tones is

m

z~m (m) = L In (w(i))
i=l

(4.5)

(4.6)
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It should also be noted that (4.6) can be interpreted as the time integral of the positive

rate water-level In(w) so it is an increasing continuous, piecewise linear curve. This

property can be formally stated as the shortest path property of the optimal cINR

curve and it allows an efficient "string-pulling" algorithm for calculating this optimal

cINR. Hence, by limiting our attention to only the set of active tones, we have the

following shortest path property for the cINR curve.

Property 4 (Shortest Path Property). The x-y plot of the cINR over the active tones,

z2tm (m) against m, must fall on the shortest path within the cANR and cENR bounding

constraints as specified by (4.4).

Proof. From (4.6), we note that zgm(m) must be piecewise linear with the slope equal

to the rate waterlevel In(w(m)). Furthermore, from the piecewise water-filling prop­

erty, this piecewise linear curve bends upward (increases in slope) only if it touches

the upper bound and bends downward (decreases in slope) only if it touches the

lower bound. This precisely describes the geometric property of a taut piece of string

pulled tight against pointwise bounding constraints and is known to form the shortest

~fu. 0

This shortest property for the example given in Figure 4.2 can be best visualized

by physically cutting out the shaded region of the graph to remove idle epochs and

pasting together the remaining pieces to form a continuous piecewise linear cINR

curve as seen in Figure 4.3. Thus, the "string-pulling" algorithm [37], which finds

the shortest constrained path by simulating pulling a piece of string through a set of

pegs representing the constraints, can be used to compute the optimal rate waterlevel

In(w(m)) by first finding zgm(m) and then solving (4.6) for the optimalln(w(m)) pro­

vided that the active tones Q m are known. Next, we will provide a method for finding

Q m through a method of elimination.
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Figure 4.3: Graphs showing the cANR, cENR and cINR curves in (a). The shortest
path property can be best visualized by piecing together consecutive segments of active
tones as shown in (b).
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4.2.2 Iteratively Finding the Active Tones

54

Firstly, we note that the "string-pulling" algorithm is a general method to minimize the

geometric length of the Z~m(m) trajectory in Cartesian coordinates under constraint

(4.4) over some arbitrarily selected sequence 'I' of tone sets. However, if idle tones are

included, this solution will make their rates negative or zero. Since we do not know a

priori which tones should be idle, we can remove them over a few iterations, a process

referred to as puncturing. The iterations can be described with the following steps.

In the first iteration, we assume that all tones are active and initialize 'I' to contain

all tones at all times. Equivalent, we write 'I' = 0 U 01-; that is, the initial guess at

the idle set is empty. Next, apply the string-pulling algorithm to find the shortest

path and hence Z'l'll'(m). From this Z'I'IlI(m), we have the INRs (n(m) in the slopes of

Z'I'111(m)=Z~~(m)-Z~~(m-l).Finally, subtract the noise rates, 1]n(m) from (n(m),

to obtain the information rate, Tn(m), which concludes the first iteratio n. If all rates

are positive, we have the optimal solution and the algorithm terminates. Otherwise,

we assign tones with non-positive rates to the idle sets, 01-[21 (m) in iteration two,

leaving a reduced '1'[2] (m) ='I'D] (m) \ 01-[2] (m). The shortest path calculation and idle

tone removal is repeated until there are no non-positive tones.

To prove that the iterations will converge to the optimal solution, we must show

firstly, that tones removed from consideration because they violate the non-negativity

constraint are indeed·idle in the final optimal solution, i.e, 1]n(m) ~ Z[i](m) ~ n E: o-fn,
and secondly, that the iteration will terminate within finite number of iterations.

Proof Firstly, note that all interim waterlevel, Z[il(m), satisfies the rate bounding

constraints, since the cumulative rates fall between the cumulative arrival and expiry

constraints. This interim waterlevel is infeasible only if one or more rate allocations

are non positive. In the next iteration, the algorithm compensates by removing all
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tones with non-positive rates and moving them to the idle set. This process effectively

reduces the overall waterlevel since the rate allocation in other symbols can be lower,

since they no longer need to compensate for the negative rate. Thus, the waterlevel

profile calculated in earlier iterations can never be lower than ones calculated in later

iterations.

Thus, the interim waterlevel, Z[iJ (m), is a non-increasing sequence; that is Z[ll (m) ~

Z[2] (m) ~ ... ~ Zfl(m). As a consequence, if for a given iteration i, we have the n-th tone

identified as being idle, i.e., Z[il ::s 1Jn(m), it follows that 1Jn(m) ~ Zfl(m) and the tone

is idle in all subsequent iterations, including the final one, which is the optimum

solution.

Furthermore, since the algorithm only repeats when there is at least one negative­

rate channel remaining, and since the total number of channels is finite, the algorithm

terminates within a finite number of iterations. 0

4.3 Simulation Result

We conclude the description of the ISP algorithm with a step by step walkthrough

with a single channel example. System simulation results will be presented at the

end of Chapter 5 after the discussion on the implementation of causal schedulers. The

traffic constraints and the channel gains for the example are shown in Figure 4.4 (a)

and (b). Initially, we do not know any idle epochs, thus the string-pulling procedure

is performed with the cANR and cENR constraints calculated from the all epochs

(Figure 4.4 (c». The interim calculation of the cINR indicated by the piecewise straight

line in Figure 4.4 (c) can be transformed back to the cumulative rate domain by

subtracting the noise rate offset. However, since the idle epochs are not yet properly

removed, the resulting rate profile is not strictly positive and an idle epoch is identified.



Chapter 4. Efficient Optimization Algorithms 56

For the example given, the negative rate allocation is clearly visible from the water-

filling diagram, Figure 4.4 (b).
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Figure 4.4: The water-filling diagram and the cINR plot for the first iteration of the
ISP algorithm.

To prepare for the second iteration, the idle epochs are removed and a new set of

cANR and cENR constraints are formed as shown in Figure 4.5. This can be seems as

physically cutting out the unwanted epochs and pasting the remaining pieces together.

The same transform -+ string-pulling -+ inverse transform steps are performed with

these newly punctured set of constraints to find a better approximation to the optimal

solution. At the end of this second iteration, there are no more idle epochs being

identified for the example given, thus the algorithm terminates and the resulting rate

profile is the optimal rate allocation for the active epochs while the identified idle

epochs must take the rate of zero.

Although the number of iterations can potentially be as many as the number of

epochs, making the upper bound on the overall computational complexity O(n3 ), that

is n iterations of the string-pulling procedure at O(n2 ) complexity, it was observed
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Figure 4.5: The water-filling diagram and the cINR plot for the second (final) iteration
of the ISP algorithm.

through simulation that the actual number of iterations required to find all idle epochs

remains relatively constant irrespective of the number of epochs in any given simu­

lation. This is due to the fact that, statistically speaking, epochs with a low inverse

channel gain (floor of water-filling) relative to the actual waterlevel have a higher

probability of being identified with a small number of iterations, while an epoch with

inverse channel gain close to the actual waterlevel may require a few iterations before

it "rises from the water". Thus the number of iterations required is actually depen­

dent on the statistical distribution of the channel gains and is independent of the

total number of epochs being simulated. Hence, the computational complexity of the

proposed algorithm is O(n2 ).



Chapter 5

Single User Online Scheduling

Algorithm

Any real world scheduler must operate without the perfect knowledge of future ar­

rivals and future channel conditions enjoyed by the prescient scheduler studied in

Chapter 3 and 4. In this chapter, we present several causal modifications to the opti­

mization problem to obtain practically implementable schedulers and compare their

performances. Some of these causal adaptations have been previously published by

the author in [37, 41].

The emphasis on the design of the causal scheduler is to provide optimization

formulations that are solvable using only causal knowledge and provides compara­

ble performances to the prescient formulation. This chapter is organized as follows,

In Section 5.1, we present a sequence of causal adaptations ranging from the most

computationally intensive to ones that are practical and easily implementable while

remaining optimal in some restricted sense. There are several ways of dealing with

uncertainty in the future and we have chosen a relaxed robust formulation that guar­

antees the feasibility of the rate allocation while not being too restrictive as be un-

58
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solvable. More details of this formulation can be found in Section 5.1.1. All of the

schedulers presented here can be solved using the iterative string pulling (lSP) algo­

rithm used for the prescient scheduler and, in certain special cases, only one iteration

of the inner string-pulling procedure is required.

In Section 5.3, the performance of some of these online schedulers are compared

with that of the prescient scheduler and it was shown that under correlated Rayleigh

fading conditions, the channel prediction scheduler can perform to within 3 dB of

the prescient scheduler in single carrier channels and even better with diversity in

multi-carrier channels.

5.1 Optimal Online Scheduler

In this section, we introduce several scheduler formulations that provide optimal so­

lutions in some statistical sense. Firstly, we describe the common requirement of

causality and the limitation it placed on the optimization problem formulation. We

then present three variations on the problem formulations, two of which will be de­

veloped into practical algorithms for further simulation later in this chapter.

Firstly, a scheduler is practically implementable if the optimal transmission rates

{rn(m) V n} for epoch m, can be computed at the beginning of epoch m using channel

and traffic information known to the transmitter at the time. This is the optimal

time for making the decision, for any earlier, we risk throwing away valuable channel

and traffic information for making the rate assignment while any later violates the

causality requirement. Obviously, the performance of any causal scheduler is upper

bounded by that of the prescient scheduler. This bound is tight in the sense that

under some specific circumstances, the causal scheduler can attain the performance

of the prescient version. The performance of the prescient scheduler is only attainable
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if 1. the packet arrival and expiry time as well as packet length are deterministic, and

2. the channel gains for the future are perfectly predictable. Allowing either traffic or

future channel states to be random causes the performance of any causal scheduler

to be worse then that of the prescient scheduler.

Thus, for all the causal schedulers considered in this section, we will concentrate

on describing the problem of finding an optimal rate Tn(m) for epoch m only. A similar

problem with updated channel and traffic information will be used for the next epoch

to calculate Tn(m+l). We also assume that the channel gains for all past and present

epochs are known perfectly. That is, gn(l) ... gn(m) are known perfectly at the begin­

ning of epoch m. By assuming that the current channel gain is known, it is possible

to convert rate allocation to power allocation without considering the probability of

outage. In practice, only noisy channel estimates can be obtained and one would use

a slight underestimate of the channel gain to ensure that the signal strength is high

enough to ensure an acceptable probability of outage. We will assume that these val­

ues are known perfectly, as the main emphasis here is to provide a causal formulation

and the inclusion of these other practical concerns will only distract us from the main

issue at hand.

Next, we turn our attention to the traffic constraints. It is easier to impose causal­

ity on the packet arrival process and then use it to determine which portion of the

traffic constraints is known. Specifically, consider the arrival and expiry of the packets

as shown in Figure 5.1, taken from the example used in Chapter 3. At the beginning

of epoch 11, triggered by a channel state change not shown here, there have been

six packet arrivals with two past expiries. Hence, there are potentially four known

expiries that are in the future, and part of the cumulative expiry bounds can be

determined. To distinguish this partial cumulative expiries bound from the actual cu­

mulative expiries bound, we denote it as E~~in(K) where the superscript 1m] indicates



Chapter 5. Single User Online Scheduling Algorithm 61

that it is computed from causal information at the beginning of epoch m and we will

use K to denote the time index relative to the current time. It should also be noted

that this partially known constraint boundary is only a lower bound of the actual

constraint for the prescient case, where the difference is due to the unknown arrivals

and expiries due to packets arriving in the future. In addition to these past obser­

vations, g~::~t =gn(l) ... gn(m) and E~~~(K), we also need to specify the current arrival

constraints which is simply a constant equal to the current queue length and is also

equal to the last entry of E~~~(K). Hence, the past is fully specified by {g::~t,E~~~(K)}.

Also, for convenience, we denote the current queue length as Q[m] =L~1 D(i)-L~ll R(i)

assuming all unity bandwidth epochs, Xi =1.

Next, we provide a description of the notation required to specify the future.

Lets denote the uncertain future channel gains as a random vector gr[mt
l =gn(m +u ure

l) ... gn(m+k) where k is chosen to be large enough to cover symbols up to the expiry

time instant of the last packet in the queue. Also, denote the future portion of the

cumulative arrivals and expiries, Le. the part contributed by packet not yet arrived

at symbol m, as the random vector A~'::~ (K) and E~~~(K) for K =1. .. k. That is, a rate

allocation is admissible given this future state if the cumulative rate profile satisfies

k
Q [m] +Arm] (K) < '\' r(K) < E[m] (K) +E[m] (K)cum - L - cum cum

K=1
(5.1)

A graphical illustration of the relationship of these various quantities is shown in

Figure 5.2.

5.1.1 Optimal Casual Scheduler with Conditional Future Averages

In this section, we discuss the meaning of optimality under uncertainty of system

parameters. Here, we consider the evolution of the system states for the next k epochs
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and all quantities are indexed relative to the current time, m, with the dummy variable

K.

Denote the ensemble of all possible futures as {g~:~ure'A~~ln(K), E~~ln (K)} e: §. Firstly,

we need an expression denoting the conditional probability of any specific future oc­

curring given an observed past. Since the channel gain evolves independently of

the packet arrival process, we denote the probability that the channel evolves ac-

cording to a given trajectory gr[m
t
] conditional on the past observations, g[ml t , asuure pM

Pr (gK;~ure Ig~:~t). Also, by assuming memoryless arrival and expiries, the probability

that a given traffic constraints TIm] = [A~Jn (K), E~~in (K)] occurring due to new packet

arrivals is assumed to be independent of the past and can be expressed as Pr(Tlm]). It

is also possible to formulate the causal scheduling problem with more general arrival

and expiry distributions by replacing the unconditional probability of future traffic

with an conditional one. However, the memoryless assumption is often used in places

where the traffic model is not known, as it represents the worst case scenario.

Given the above notation, we can now describe the process in obtaining a statis­

tically optimal rate allocation. For demonstration purposes only, consider the case

where there is only a discrete number of possible futures. Specifically, assume that

the evolution of future channel gains are only allowed to follow one of three possible

trajectories gl' gz, g3 with probability Pr(gd, Pr(gz) and Pr(g3)' We further assume

that there are two possible future traffic states, T1, Tz with probability of occurring

being Pr(Til and Pr(Tz) respectively. One obvious but suboptimal brute force approach

to deal with uncertainty would be to calculate the optimal rate allocation using the

prescient formulation for all six possible combinations and assign the actual trans­

mission rate as a weighted average (weighted by the respective probability) of the

calculated rates. However, this is not necessarily optimal due to the fact that the av­

erage of a function is not the same as the function of the average unless the function
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is linear. And in our case, the functional map from the parameter space of channel

gains and traffic constraints to the optimal rate is not linear.

The correct approach to the probabilistic optimization problem is to minimize the

expected value of the objective over the future ensemble, while attempting to meet all

of the possible constraints. That is, using the example with three channel states and

two traffic states, the optimization problem can be formulated as

3

Minimize: L !(r,Kn)Pr(Kn)
n=!

k

Subject to: L r(K) ~ Q[ml + A~'::ln (K)
K=!

k

L r(K) ~ E~~k (K) + E~~k (K)
K=!

r~O

(5.2a)

(5.2b)

(5.2c)

(5.2d)

assuming non-zero probability probability for each state. Note that this formulation

is not dependent on the probability distribution of the future traffic states Pr(Tj). In

order for the solution to be robust, it must be admissible under all possible future

traffic states irrespective of how often each traffic states is likely to occur.

We note that this problem remains a convex optimization problem with the ob­

jective dependent only on the statistics of the channel gain while the constraints are

deterministic and covers all possible future traffic states. The fact that the channel

random process is independent from the traffic random process also helps in the re­

duction of the problem by allowing the objective and the constraints to be considered

separately. Furthermore, the only unknown to be determined in this formulation is

the joint conditional probability distribution of the channel gain vectors.

This formulation is theoretically appealing in that it optimizes for all possible

eventualities and the weighted objective can be seen as minimizing the mean error

in energy cost due to uncertain future, although there are practical difficulties in
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obtaining and working with the actual joint probability distribution of the channel gain

vectors. This line of development was not pursued. Instead, as it can be seen in the

following sections, that much less computationally intensive methods that approaches

the performance of the prescient scheduler to within 3-dB in single-carrier systems

and less than one dB for multi-carriers were obtained. This leaves very little room

for improvement by taking this more complex approach.

5.1.2 Optimal Causal Scheduler with MMSE Channel Prediction

Here we present a practical implementation of the causal scheduler based on mini­

mizing the energy usage assuming the most likely channel gain trajectory. Under this

formulation, we have removed the need to optimize a weighted sum of energy usages

by considering only the most likely path. Next, we present the exact formulation of

the objective to minimize followed by the simplification of the constraints.

The prescient objective of minimizing total energy consumption, (3.20a), is depen­

dent on the future channel gains, which are partially unknown at the beginning of

symbol m, so it is not well defined for optimization. Hence, we use a statistical ap­

proximation g~ml (i):::< gn(m+i) at symbol m of the unknown future channel gains. That

is, instead of an objective that averages over several scenarios, we will use only one

single representative scenario. Since the power and rate allocation for the past can

no longer be altered, we minimize the future energy usage under estimated channels

for symbols m up to m + k only. While this allows us to calculate the rate allocation

for the next k epochs, we are only interested in the first one. Denote the transmission

rate for symbol m + K calculated at symbol time m as r~ml (K), and the future energy

usage can be expressed as

(5.3)
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where g~ml(O) = gn(m) is the channel gain of the current symbol, which is assumed

to be known perfectly. By assuming that the channel gain of the current symbol is

known, we can assign its rates and powers without incurring the possibility of channel

outage. Note that outage was not a problem in the prescient formulation since the

channel is assumed to be known perfectly for all symbols a priori.

To provide a concrete example for channel prediction, we assume that the channels

undergo correlated Rayleigh fading with Jakes Doppler spectrum. In these circum­

stances, the maximum likelihood channel power gain predictor is based on a simple

linear L-point minimum mean square error (MMSE) predictor for the complex channel

gains. It is used to estimate the future power gains, g~ml (K), as the conditional means

of gn(m+K) = Ihn(m+K)1 2 given the past observation of complex channel gains, hn(m),

hn(m - 6), ... , hn(m - L6 +6), where 6 is selected to provide Nyquist sampling of the

Doppler spectrum. The details of the MMSE predictor are given in Appendix A. For

those readers interested in the accuracy of various channel prediction methods, see

also [42].

Next, we find a deterministic set of constraints that will produce a robust solution.

Then we can constrain the cumulative rate r.~=Or.~=1r~m](K) in a similar way to the

prescient problem by the cumulative arrivals and expiries. Assuming for the moment

that there is no new packet arrival within the next k symbols, we can formulate a

deterministic convex minimization problem as follows:

Minimize:

Subject to:

k N WNo(er):nl(Kl_l)

.L .L ~[ml
K=On=1 Kgn (K)

k N.L .L r~m] (K) ::s Q[ml
K=On=1

K N K

.L .L r~ml (i) ;?: .L Elm] (i)
i=On=1 i=O
r~ml (k) ;?: °

for K E: [0, k]

for n E: [1, NJ, K E: [0, k]

(5Aa)

(5Ab)

(5Ac)

(5Ad)
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where the cumulative expiries can be derived from the expiries of the packets already

in the queue and the cumulative arrivals is given by the current queue length Q[mJ =

L~l A(i) - L~ll R(i) in nats. This problem closely resembles the prescient optimization

(3.20), with termination time equal to the expiry time K of the last packet in the queue,

and it can be solved in the same way. In fact, in this formulation, the arrival constraint

is always slack except at the end and can be used to simplify the ISP algorithm, as

there is only one type of constraints to test against.

Also, note that the scheduler uses only the rate allocations r~mJ (0) for the current

symbol, and discards allocations for future symbols, since a new optimization is per­

formed at every symbol time. Thus we can relax the robustness condition by requiring

only r~ml (0) to meet all possible constraints rather than requiring all r~mJ (K) to meet

all constraints for all K =1... k. Next, we show that r~ml (0) is robust by noting that no

packet arriving on or after symbol m can expire at the end of symbol m. Thus r~mJ (0)

satisfies the expiry constraints of all possible scenarios. Furthermore, future arrivals

can only relax the arrival constraint (5.4b) and thus any r~ml (0) satisfying (5.4b) must

satisfy the constraints of all other possible arrival scenarios.

In summary, the robust scheduler must perform an optimization at the beginning

ofevery symbol by constructing and solving (5.4). This system with only k symbols and

a simplified set of constraints can be quickly solved using the ISP algorithm presented

for the prescient scheduler and will result in an robustly optimal causal scheduler.

Furthermore, a recalculation of current transmission rate, r~ml (0), only needs to occur

when the channel state changes, or when there is a new packet arrival, instead of at

every orthogonal frequency division multiplexing (OFDM) symbol. This represents a

considerable reduction in processing requirement in a system with a slowly changing

channel and long packet inter-arrival time.
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Figure 5.3: The system diagram for the layered scheduler. Note that the channel
state information is not used in determining the service rate.

5.1.3 The OSI Layered Scheduler

In this section, we consider a different causal scheduler where we assume that the

only knowledge about future channel gain is the ensemble average. That is, we as­

sume g~l (K) =1. This allows two important simplifications to the online scheduling

algorithm compared to the channel prediction scheduler presented earlier. Firstly,

there is no need to perform channel predictions. And secondly, by assuming that the

channel gains are constant, the ISP algorithm can be greatly simplified resulting in

a linear complexity scheduler. It also represents the optimal scheduler under the lay­

ering constraint imposed by the open system interconnection (OSI) reference model.

That is, the channel gain information is confined to be only known in the physical

layer and is not available for making rate assignment decisions which is a function of

higher layers. For the system diagram, see Figure 5.3.
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cANR for static channel
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cENR for static channel

Figure 5.4: The shortest path under only cumulative expiry bounds must form the
convex hull over the constraint point as shown in the diagram.

The formulation for this scheduler is

Minimize:

Subject to:

K N [IL L (e,,:n (k) -1)

k=on=l
K N
L L r~ml(i) ~ Qm
i=O n=l
k N k
L L r~ml (i) ~ L Elm] (i)
i=On=l i=O

r~ml(k) ~°
for k E [0, K]

for nE[l,NJ,kE[O,K]

(5.5a)

(5.5b)

(5.5c)

(5.5d)

where the objective is no longer a function of the time-varying channel gain and the

robust traffic constraint remain the same as that of (5.4) and is indicated by the

up-side-down staircase shaped region shown in Figure 5.1.

We also note that in this formulation, the ISP algorithm can be applied directly

without the adding of the In(g) offset as g = 1 in this particular formulation. We

further observe that the taut string can only be constrained by the expiry staircase

and forms the convex hull of the expiry bounds, as demonstrated by Figure 5.4, and

the initial slope of this "taut string" is determined by the maximum of the slopes of
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all line segments connecting the origin to all the expiry constraints

for the variable length epoch formulation.

71

(5.6)

In this simplified model where the channel gain is assume constant, the string­

pulling algorithm can be further simplified by checking less number of constraint

points in line 7. This results in an D(n) complexity as oppose to D(n2 ) for the variable

channel case.

5.2 Qualitative Comparison of Online Schedulers

In this section, we provide some qualitative discussion on the performance of various

online schedulers proposed. For comparison purposes, the system parameters used in

the example given in Chapter 3.2.4 - Figure 3.4 is used.

Figure 5.5 shows the cumulative rate plot and the rate water-filling diagram of

the simplest, layered scheduler described in Section 5.1.3. The diagram shows the

cumulative rate and the cumulative arrival and expiry bounds (a) as well as the

rate allocations for each of the two subcarriers as the shaded region. This scheduler

calculates the optimal cumulative curve based only on the partially known expiry

constraints and uses no channel state information in computing the rate profile. Thus,

the cumulative rate curve as seen in Figure 5.5 (a) apprOXimates a straight line.

Furthermore, since the rate allocation only adapts to past traffic, it can be seen from

Figure 5.5 (b) and (c) that a constant rate is transmitted in both good and bad channel

states. Thus, we could predict that the power usage ofthis layered scheduler resembles

that of a channel inversion power control system.

Next, we consider the optimal scheduler assuming a one tap channel predictor.
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Figure 5.5: The cumulative rate plot and the rate water-filling diagram of the layered
scheduler.
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From the channel gain trajectories shown in Figure A.I from Appendix A, it can be

seen that the one tap channel predictor assumes a return to mean channel prediction

and can be easily calculated from the current channel gains. The cumulative rate plot

and the rate water-filling diagram for the one tap prediction scheduler are shown in

Figure 5.6. Compared with the result shown in Figure 5.5, it is easy to see that the

inclusion of even a very crude channel predictor in the rate allocation consideration

allows the scheduler to avoid allocating rate in places where the channel is bad. This

can be easily seen by comparing Figure 5.5 and Figure 5.6 in the region around t =10

and 27. With knowledge of the channel in each of the subcarriers, the scheduler can

now perform water-filling between these two subcarriers and it is easy to see that

the channel prediction scheduler simply avoids using the channel with a bad channel

gain.

Finally, Figure 5.7 shows the cumulative rate plot and the rate water-filling dia­

grams for the channel prediction scheduler with an 8-tap channel predictor. In the

figure, it can be clearly seen from the water-filling diagrams that the rate allocation

now closely resembles the one for the prescient scheduler as seen in Figure 3.4.
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We have addressed minimum-energy scheduling for the multi-carrier channel with

per-packet delay constraints, and have obtained efficient means of computing the op­

timal rate and power allocation in the form of the optimal prescient scheduler and the

robustly optimal causal scheduler. How well do they work? In this section we com­

pare the energy usage of these schedulers under Rayleigh fading channel and various

traffic patterns and show that the performance of the causal scheduler approaches

that of the prescient scheduler, especially as the number of carriers or the order of

the predictor increase.

To demonstrate the value of joint traffic and channel optimization, we also simu­

late the layered scheduler, comprising a channel-unaware queue server and a traffic­

unaware power control unit. The queue server calculates the rates r~ml (0) by opti­

mizing (5.4) with the unconditional expected gains g~ml (0) =1, and the power control

unit simply meets those rates by inverting (3.18), assuming knowledge of the current

channel gains. With this layered structure, the resulting power profile contains large

power spikes during deep fades, resulting in an near-infinite average power. This is

analogous to the infinite average power of a channel inversion power allocation scheme

in Rayleigh fading channels [43]. In order to compare it with the scheduler above, a

truncated average power measure is used [43]. Specifically, we omit the 0.1% of bits

with the greatest energy allocation from the average [41]. Note that it is the com­

parison scheduler that is being presented in a somewhat optimistic fashion, not the

schedulers derived above. For the prescient and causal schedulers, there is no prob­

lem with these infinite power spikes during deep fades and the Eb usage is calculated

over all symbols.

To make meaningful comparison of the above-mentioned schedulers, we need to

compare their energy usages under identical traffic and channel conditions. In the
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next section, we will present the traffic and channel model from which the traffic

parameters A(m), E(m), E[ml(K), and the channel parameters gn(m) can be derived.

5.3.1 Normalized Traffic and Channel Model

For modeling the traffic, let the packet arrival be modelled as a Poisson process with

exponentially distributed inter-arrival times tlA with mean tlA (seconds), and the

packet length () be exponentially distributed with mean () (bits). Thus, the average

throughput of the system is ()/tlA bits per second. For a total system bandwidth of

NW Hz, the spectral efficiency p is

p= NWtIA bits/seclHz (5.7)

We also denote the maximum allowable packet delay as teo

For modeling the fading channel, the complex channel gains hn(m) are generated

as correlated complex Gaussian processes that are correlated in time (m) and indepen­

dent in frequency (n). For a typical OFDM system, independence in frequency implies

significant separation of subcarriers, which is a somewhat unrealistic assumption.

However, we are more interested in the diversity effect of multiple parallel channels

than in the detailed implementation of an OFDM system, so in our simulation, we

use only a small number of independent channels (N= 1,2 and 8). As for the temporal

correlation, we assume a Jakes spectrum [44] with a maximum Doppler frequency

fd Hz.

5.3.2 Defining the Simulation Scenarios

When comparing the performances of the schedulers, it is not possible to simulate

for all combinations of the parameters {(lA, W, p, N,fd' te, No, K} defined above. How-



Chapter 5. Single User Online Scheduling Algorithm 78

ever, their number can be reduced by normalizing them in meaningful dimensionless

groups. Firstly, instead of comparing the total energy usage of various schedulers,

we will compare the average SNR per bit Yb =Ln,m Pn(m)/(pWNoNM). Without loss of

generality, we will also set K =1 in the rate-power conversion (3.18), corresponding to

the Shannon capacity. For systems with other values of K, we note that the required

power usage is simply K- 1 times more and does not affect the comparison result in

dB. Finally, we normalize the remaining time-dependent quantities by the average

interarrival time, leaving us with four independent parameters, {N,p,fdtIA, teltIA}'

To begin, we can distinguish two limiting cases in which the effects of channel vari­

ation and traffic demands become decoupled, and there is little benefit in performing

joint optimization. As te becomes large, i.e., the maximum allowable delay for each

packet becomes infinite, the optimal rate and power allocation must approach that of

water-filling with a constant water level over time and frequency. On the other hand,

when the maximum allowable delay becomes smaller than the interarrival time, the

system will spent most of its time oscillating between idling and servicing only one

packet. In this case, the performance of the system is dominated by the mark-to-space

ratio, tel (tIA - tel, of the queue state, and under a block fading assumption that the

channel state remain roughly constant during the transmission of a packet, the power

consumption must follow that of channel inversion.

For the rest of this section, we will present the performance comparisons with

telt/Ai in the range of 1/4 to 8 where there is a rich variability in the traffic constraints

and the interaction with the Doppler frequency is important. As for the value of

Doppler frequency, we will simulate at a slow Doppler, fd = 0 and at a fast Doppler, fd =

O.05ti1 which is chosen to be the fastest Doppler frequency under which a reasonable

accuracy of channel prediction can still be obtained up to K symbols into the future.

Next, we will compare the average signal to noise ratio (SNR), Yb, of the prescient
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scheduler and the causal scheduler with various accuracies of channel prediction, and

the truncated average SNR, Yb, for the layered scheduler under the two extreme ends

of Doppler frequency (Jd =0 and fd =0.05tl1), at N= 1,2, and 8. For the causal sched­

uler with channel predictions, we use a channel sample spacing of {j =0.31 fd. The

comparison is initially performed at a spectral efficiency p =1 which corresponds to

the operating point of O-dB SNR under static additive white Gaussian noise (AWGN)

channel. Results for a single subcarrier at higher spectral efficiencies are also pre­

sented at the end of this chapter.

5.3.3 Performance in Static Flat Channel

Firstly, we consider the performance under the simplest, static flat fading channel

where the only performance difference of the schedulers must be due to the different

way of formulating the traffic constraints. The average SNR per bit for the vari­

ous schedulers under static channel conditions (Jd =0) are plotted against tel tIA in

Figure 5.8. The performances of all the robust causal schedulers and the layered

scheduler are identical for all values of N. This is because the channel is constant in

time, so that the Yb performance measure is independent of the channel prediction

accuracy.

Also note that as tel tIA increases, the gap between the upper and lower staircase

bounds on the cumulative rate widens and the occurance of active constraints became

less frequent. As a consequence, the system performance approaches that of an un­

constrained system. That is, at a spectral effiCiency of p =1, the required SNR per bit

is 0 dB, which is the asymptotic value shown in Figure 5.8.

Despite the fact that the performance curves for all causal schedulers collapse

into one, we see that there is only a very small, constant gap (0.5 dB) between the

causal schedulers and the prescient scheduler. Since all schedulers can make perfect
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Figure 5.8: Comparison of the average SNR per bit (Yb) for the causal and prescient
schedulers under static channel conditions.

prediction under this static condition, we can attribute this half dB difference to the

"no future arrivals" assumption in the robust formulation of the causal schedulers,

which make their rate allocation necessarily small at times.

5.3.4 Performance in Fading Channels

Figure 5.9 - 5.11 shows the performance comparison of the various schedulers under

N = 1,2, and 8 parallel channels respectively. The traffic load is normalized such that

a system with higher total bandwidth is carrying proportionally more bits so that all

systems maintain an average spectral efficiency of one bit per second per Hz. Firstly,

we note that in the single channel case (Figure 5.9), as we increase the number of

past channel samples used in the prediction, the performance of the causal schedulers

improves and with a reasonably easy-to-implement 8-point predictor, we can achieve

performance that is only 3 dB away from that of the prescient optimal.

Furthermore, as we increase the diversity by increasing the number (N) of sub-
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Figure 5.9: Comparison of the average SNR per bit (Yb) for N =1 subcarriers at spectral
efficiency p =1 bits per second per Hz.
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Figure 5.10: Comparison of the average SNR per bit (Yb) for N =2 subcarriers at
spectral efficiency p = 1 bits per second per Hz.
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Figure 5.11: Comparison of the average SNR per bit (Yb) for N = 8 subcarriers at
spectral efficiency p =1 bits per second per Hz.

carriers, the performance of the causal scheduler with lower order channel predictors

improves and starts to approach that of the prescient optimal. This performance gain

can be explained in terms of channel hardening; as the number of parallel channel

increases, the coefficient of variation of capacity per symbol decreases, and the accu-

racy of channel prediction becomes less important. The improvement is less dramatic

but also significant for the 8-point prediction scheduler, which reduces from 3 dB away

from the prescient optimal (Figure 5.9) for the single channel case, to just a little more

than 1 dB for the case with eight-fold diversity (Figure 5.11).

On the other end of the spectrum, the layered scheduler that assigns transmission

rate without considering the channel gain, is consistently the worst of the group.

This illustrates the value of cross-layer optimization. It is interesting that, as te/ilA

approaches 0, that is, as the packets are set to be transmitted with a very short delay

constraint, all optimizing schedulers, prescient and causal, approach the performance

of this layered scheduler, as predicted previously.
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Figure 5.12: Comparison of the average SNR per bit <'fb) for N = 1 subcarriers at
spectral efficiency p =2 bits per second per Hz.

Finally, we present the comparison of the required average SNR per bit under

a spectral efficiency p =2 bits per second per Hz and N = 1 subcarrier. Comparing

with the simulation for p = 1 bits per second per Hz with one subcarrier shown in

Figure 5.9, we note that the relative positions of the different schedulers remain the

same, but they all shift 3 dB upwards. To explain this 3 dB offset, we note that, as

te/tlA becomes large, the prescient scheduler performance approaches that of a water­

filling-in-time power control scheme with no traffic constraints. The required SNR of a

water-filling-in-time power control scheme to achieve any given spectral efficiency has

been calculated previously by [43] and the values of interest are 0 dB SNR at one bits

per second per Hz and 6 dB at two bits per second per Hz [43, Figure. 9]. Converting

these SNR values to SNR per bit by dividing by p, we obtain the asymptotic lower

bound of 3 dB which is observed in Figure 5.12. A similar simulation at a spectral

efficiency p = 3 bits per second per Hz and N = 1 subcarrier is shown in Figure 5.13.
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Chapter 6

Effect of Queueing Disciplines

So far, we have limited our attention to systems with first in first out (FIFO) queues.

In this chapter, we discuss two earliest deadline first (EDF) queueing disciplines and

provide a description of the modification required to the iterative string pulling (lSP)

algorithm necessary for obtaining the optimal solutions under these queueing disci­

plines. Specifically, we consider both non-preemptive priority queue and preemptive

priority queues. Note that from the arrival and expiry diagram shown in Figure 3.2, it

is clear that the arrival of a packet with a short deadline would require all previously

arrived packet to be cleared out of the queue even if they have a later deadline in the

case of a simple FIFO queueing discipline. For example, see packet 7 in Figure 3.2.

This requires a higher transmission rate than if packets can be re-arranged so that

the packet with the earliest deadline is serviced first.

Intuitively, being able to rearrange the queue allows a late-arriving packet with an

earlier deadline to be transmitted first without the need to service all of the packets

in the queue, and it follows that some performance improvement can be obtained.

However, the expected performance gain is highly dependent on the type and mix

of quality of service (QoS) classes present in the system. For example, the constant

85



Chapter 6. Effect of Queueing Disciplines 86

delay cases used in providing the performance result of Chapter 5 requires no queue

rearrangement, since late arriving packets always have a later deadline than those

already in the queue, due to the constant delay.

Since the performance improvement obtained is highly dependent on the type of

traffic, we concentrate instead on describing how one can obtain the prescient perfor­

mance bounds for these queueing disciplines in Section 6.1 and Section 6.2, instead of

providing simulation results for an arbitrarily chosen traffic model. Simulation based

on the methods described in the rest of this chapter can be performed to determine if

there is any need for implementing the more sophisticated queueing disciplines once

the exact traffic model is determined.

As for incorporating these priority queues into the online schedulers, recall that

the online schedulers described in Chapter 5 perform optimization at the beginning

of every epoch based on traffic constraints calculated from the "current" queue state.

Since the expiry constraints (5.4c) are updated at the beginning of every epoch, rear­

ranging the queue in the EDF order can be performed prior to computing the "current"

expiry constraints for optimization. This extra step requires little computation and

may result in reducing the total transmission energy. The question remaining is

how to obtain the performance bound of the prescient scheduler with these queueing

disciplines.

6.1 Non Preemptive Priority Queue

In this section, we consider EDF queue rearrangement with a non-preemptive priority

queue. A non-preemptive priority queue allows higher priority packets to be placed at

the head of the queue to be transmitted right after the current packet is transmitted.

That is, with a non-preemptive queue server, the system must complete the trans-
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mission of the packet currently in transmission before servicing this "high priority"

packet. With this mode of transmission, the receiver will receive a complete packet at

a time and requires little extra overhead in constructing the communication protocol

over the top of a FIFO queue.

As an example, consider the packet arrivals and expiries as shown in Figure 3.2.

At the arrival instant of Packet 7, the queue can be in one of five states. It may be

servicing any of the packets 3 - 6, or empty as shown in Figure 6.1. With a non

preemptive priority queueing discipline using the EDF ordering, there is an option

of changing the order of servicing for packet 6 and 7 if the queue state is such that

packet 6 is not already in service. The alternative expiry curve with reordering is

shown as the dotted line in Figure 6.1 and we observe that at this instant in time, if

the queue is in state 1 - 3, then the relaxed expiry constraints should be used as the

cumulative expiries curve instead.

Next, we observe that the alternative expiry curve is always a less restrictive

constraint for the optimization problem. This observation allows us a quick method for

determining the optimal rate schedule under this new queueing discipline as described

below.

Consider the time period immediately surrounding the arrival instant of packet 7

shown in larger magnification in Figure 6.1. Assume first that the system following the

optimal transmission rate profile of the FIFO scheme up to the time instant just prior

to the arrival of packet 7, that is, this is the first time queue rearrangement took place

after an empty queue state. Depending on the actual system parameters, the queue

could be in one of the four states shown in the figure. Note that EDF queue reordering

can only take place only if the optimal transmission rate profile calculated under the

FIFO queueing discipline place the system in state 1 - 3 at this time instant. Note

that packet 6 is in service if the system is in state 4 and the EDF reordering can take
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ation of the expiry constraint when queue reordering takes place. Each of the queue
diagram shows the state of the system assuming that the actual cumulative rate curve
intersects the vertical axis at the point range shown.
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place with a non-preemptive priority queue. Furthermore, relaxation of constraints

in a convex optimization problem can provide a better objective only if the constraint

being relaxed is an active constraint (indicated by the cross in the diagram). That is,

an EDF non preemptive priority queueing discipline can have a lower energy usage if

and only if the optimal transmission profile for the FIFO queue under the identical

traffic and channel conditions satisfies the following:

1. Queue reordering can take place, Le. cumulative rate curve intersect the ver­

tical arrival indicator line below the point indicated by the circle in Figure 6.1.

2. The expiry constraint at the end of the overtaking packet is active, Le. cumu­

lative rate curve touches the expiry bound at the point indicated by the cross

in Figure 6.1.

If reordering cannot take place or if the constraint to be relaxed is not active, then

the transmission profile for the FIFO discipline is also optimal under the non preemp­

tive EDF queueing scheme and we simply use the solution obtained from solving the

FIFO system. Otherwise, we use the relaxed expiry constraints after reordering to

compute the optimal rate profile. Thus, to obtain the prescient optimal transmission

profile under the non-preemptive EDF queueing discipline, one would firstly obtain

the optimal rate profile assuming a FIFO queueing discipline. Next, the active expiry

constraints of the FIFO solution shall be considered for possible relaxation and the

relaxed cumulative expiries curve be used to compute the updated transmission rate

profile. The relaxation step shall be repeated until no queue reordering need to take

place.

Finally, it shall be noted that if in an earlier iteration, the queue is in a relaxable

state, e.g. when queue re-ordering can take place as in state 1-3 in example given in

Figure 6.1, then relaxing the constraint can only reduce the slope of the cumulative

rate profile and the queue will remain within a relaxable state.
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A corresponding online scheduler using the EDF non-preemptive priority queue

can be easily derived following the a similar process shown in Chapter 5 with an

additional queue reordering step prior to the computation of the partial expiry curves.

6.2 Preemptive EDF Queue

Next, we consider the case with a preemptive EDF priority queue. Conceptually, allow­

ing an urgent packet to be transmitted immediately by interrupting a current packet

transmission should result in a better performance than that of a non-preemptive sys­

tem. However, in order for a system to operate in this mode, the system must be able

to deal with interruption and resumption of packets and would require extra overhead

in the transmission protocol. Despite this undesirable implementation overhead, we

will show the steps necessary in analyzing the performance of this preemptive EDF

queue for completeness.

The optimal solution for the preemptive case is similar to the non-preemptive case

in that the solution for the FIFO equivalent is the optimal solution provided that

the constraint of the preempting packet is not active. However, that is where the

similarity ends. Since a preemptive priority queue allow packet currently in service

to be interrupted and resumed once the preempting packet exits the queue, there is

a continuous set of possible relaxations of expiry constraints, depending on when the

interruption is initiated, instead of a finite number defined by the possible ordering

of packets and the method of examining all possible relaxations of Section 6.1 cannot

be used.

For the analysis of this preemptive EDF system, a layered view of the interrupt

and resume processes is required. Consider firstly, some background on the common

method of analyzing a preemptive priority queue. Assume first, a priority queue with
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two priority classes. On the arrival of a high priority packet, it enters the queue with

all existing high priority packets placed ahead of it and overtakes all low priority

packets. Hence, for all packets in the high priority class, it sees a FIFO queue with

only packets in the highest priority class. For the lower priority class, it sees a queue

with a server that is only available if it is not servicing a higher priority packet.

Hence, we can model the system as two FIFO queues with two servers, one for each

priority class. For the high priority queue, it operates as a normal FIFO queue and for

the lower priority queue, the server is only available when the higher priority queue

is in the empty state.

With this model of preemptive priority queue modelled as layers of queues in mind,

we now examine a similarly layered view of the water-filling process. The description

given here is based on the geometric interpretation of a concept known as marginal

utility and a rigorous mathematical treatment can be found in [45]. Consider for now,

the transmission of a single packet of length L to be transmitted within T seconds over

a time-varying channel g(t) as shown in Figure 6.2. It can be easily shown that the

energy-minimal way of transmitting this packet is water-filling over the finite period

of this T seconds. Now consider the addition of a higher priority packet as shown with

length L2 bits arriving at time Ta and expiring at time Te . The addition of this packet

has the following two effects:

1. The total number of bits transmitted in the period [0, Tl increases by L2 bits.

2. The system has an additional constraint that the bits transmitted during the

period [Ta , Tel must be equal to or higher than L2 bits.

To obtain the optimal power allocation that satisfies the above two constraints, one

can firstly perform water-filling in the period [Ta , Tel so that there is enough power

to transmit L2 bits. Next, we "freeze" this column of water in place to ensure that

condition 2 is always satisfied and then perform water-filling again over the period
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Figure 6.2: Diagram showing optimal power allocation for a preemptive priority queue­
ing scheme.
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[0, T] with the remaining L bits. With Lz bits frozen in place, this second iteration of

water-filling would flow around and produce the optimal power profile of transmitting

these lower priority bits. Next, we extend the discussion to the general case where

packets are arriving and expiring randomly.

To compute the optimal rate profile for this preemptive priority queue, the packets

need to be classified into different priority levels based on the priority level of the

packets it "overtakes" when it arrives in the queue. Qualitatively speaking, these

priority levels are assigned so that the packets with the highest priority see only

themselves while packets with lower priorities see all packets with equal or higher

priority than it. That is, an arriving packet only "overtake" packets with priority lower

than it. Given these priority levels, the optimal rate profile can be calculated by firstly

compute the optimal transmission rate with only the highest priority packets since

these packets only sees the effect of the time-varying channel and themselves. The

next highest priority packets are considered next. To transmit these packets, power

needs to be allocated over and above what is already being transmitted and the extra

power allocation can be computed as another layer of piecewise water-filling against

the effective transmit noise to signal ratio O/g) and the power to transmit the higher

priority packets optimally. Using the water-filling analogy, the process is similar to

performing piecewise water-filling based on the highest priority packets, and freezing

the water before another layer of piecewise water-filling is performed.

Next, we examine more closely the details of assigning the priority levels to the

packets based on their deadline constraints. Firstly, we note that by definition, a

packet that overtakes another must have priority higher than the packet it overtook.

Secondly, a packet can only overtake packets that are still in the queue. Hence, the

priority level of a sequence of packets with arrival time TaU) and expiry time TeU) for

packet i can be assigned firstly by letting the first packet having the lowest priority of
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1. Then, consider the packets in the sequence they arrive and form a queue. If packet

2 has an expiry time earlier than that of packet 1, it is assigned a priority level of 2, or

else it is assigned a priority of 1. In general, we compare the expiry time of packet n

with the expiry time of all the packet preceding it, and assign an appropriate priority

level so that is has priority level at least one higher then the priority level of all the

packets it overtook during queue rearrangement.

6.3 Conclusion

In this chapter, we discuss the method for obtaining the performance of the prescient

scheduler under both preemptive and nonpreemptive EDF priority queue. Firstly,

we observe that by allowing packets with earlier deadlines to have higher priority

in the queue, the associated cumulative expiry constraint is relaxed. These results

in potential improvement of performance. However, the amount of improvement is

highly dependent on the type of traffic present in the system. With no specific traffic

model in mind, we present only the methods for obtaining the prescient performance

bound under these EDF dicipline and leave numerical simulation as future work when

more indepth knowledge of the traffic model for such wireless internet applications is

available.

The procedures for obtaining the prescient performance bound for the nonpreemp­

tive and preemptive queues are very different. For the nonpreemptive EDF queues, an

iterative relaxation of expiry constraints is applied to the packets as reordering takes

place. Due to the nonpreemptive nature of the queue, there is only a finite number

of possible packet orders and an iterative procedure is presented for obtaining the

prescient performance bound under the nonpreemptive queueing dicipline.

As for the preemptive queues, a high priority packet can interrupt any low priority
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packet currently in transmission. This results in an infinite number of possible expiry

curves and the iterative procedure for analyzing the nonpreemptive system cannot be

used here. Instead, we resort to the marginal utility description of the water-filling

process and by assigning priority levels to packets based on the packets they overtook

during preemptive reordering, a multilevel waterfilling solution was obtained. The

method for obtaining the solution can be described by repeatedly performing piecewise

water-filling and "freezing" for packets from the highest priority class to the lowest.

Finally, it should be noted that EDF queue reordering can be easily implemented

for the causal schedulers presented in Chapter 5 by adding an extra queue reordering

step just prior to calculating the causal expiry constraints for each symbol or epoch.



Chapter 7

Multi-user Schedulers

In this chapter, we consider the packet scheduling problem for multi-user scenarios,

specifically the uplinking and downlinking stages of a trunked communication system

(see Figure 2.1). In these multi-user scenarios, the cross layer schedulers must also

consider the issue of user access control in addition to the time variation in channel

states and the random arrival and expiry of packets.

To see how this additional consideration of user access control can affect the per­

formance of the scheduler, first consider the following simple scenario. Let us begin

by consider a layered design where packet scheduling is performed independently of

the user access control. Specifically, consider a two-user system with a simple round

robin access control scheme that is not aware of channel and traffic information. That

is, user A is allocated to transmit in all the odd time devision multiplexing (TDM)

time slots while user B is allocated the even slots. Since the two users are allocated

orthogonal channels each with half of the system bandwidth, each user can perform

optimal packet scheduling independently without knowledge of the other users chan­

nel state information (CSI). Thus, the average energy per bit usage over these two

users is simply the average of the average energy per bit for each user with half of
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the total system bandwidth. The causal schedulers can also be used with this type of

round robin access control and the performance of such system can be inferred from

the simulation results presented previously. The big question here is this: is there

any energy saving that can be gained by jointly considering user access control as

part of the scheduler? The answer is yes, and we will see how this is possible next.

Now, consider the same two-user system described previously and note that each user

independently performs optimal scheduling within its allocated time slots. Under the

assumption that the channel gains are time-varying, some of these time slots will be

idle due to a combination of bad channel gain and low urgency of the traffic in these

slots for this given user. Since this user is not utilizing all of its time slots, these idle

slots can be allocated to the other user for transmission without affecting the perfor­

mance of this user while potentially decreasing the overall energy usage of the other

user. Hence, there is a diversity gain to be achieved by this simple reallocation of time

slot without even resorting to the more complicated multi-user coding schemes.

In the rest of this chapter, we provide a more detailed discussion of the design

of the multi-user cross-layer scheduler. Following a similar progression as the devel­

opment of the single user schedulers, we begin with a brief overview and literature

survey of the user access control problem by highlighting some of the important re­

sults in Section 7.1. We then introduce the information theoretical formulation of the

energy minimizing problem for both the multi-access channel (MAC) and broadcast

channel (BC) channels in Section 7.2 and show that the problem is convex, hence can

be solved efficiently. Instead of concerning ourselves with the details of the Karush­

Kuhn-Tucker (KKT) conditions and the exact derivation of the result, we provide

a more qualitative discussion on the general behaviour of the multi-user piecewise

water-filling solution and the required steps to derive an equivalent set of online

schedulers for the multi-user setting. Finally, we consider a more practical and prag-
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matic scheduling approach by concluding the treatment of multi-user channels in Sec­

tion 7.4 by revisiting the round robin access control scheme and providing a pragmatic

scheduler design that does not require special multi-user coding.

7.1 Background on User Admission Control

The user admission control problem for maximizing the sum capacity of multi-user

channels is widely studied. In [35], the problem of maximizing the sum capacity of a

MAC channel without diversity is studied. It was found that the optimal transmission

scheme is to allow only one user to access the channel at any instant to avoid perfor­

mance degradation due to interference. However, by maximizing the total throughput

of the system, the users with a better average channel gains are given access more

frequently than the weaker users. This can be seen as a direct consequence of formu­

lating the problem to maximize total throughput. With no other constraints, the best

channel is utilized to provide the maximum throughput irrespective of whether there

is any actual data to transmit. To provide a fair share of the resources, often a fair­

ness parameter is introduced which results in various proportionally fair scheduling

algorithms such as those proposed in [46]. The introduction of this fairness param­

eter allows weaker user to gain access to the channel while preserving the desired

one-user-at-a-time transmission structure but the solution no longer achieves capac­

ity. By characterizing the complete capacity region of the MAC with inter symbol

interference (ISI) (frequency-varying channels), [47] presents the optimal transmis­

sion power profiles to achieve any rate combinations on the capacity boundary. From

this solution, one can easily find the capacity achieving transmission scheme along

the direction of any rate vector as desired to achieve fairness.

Similar results also apply to the BC and can be found in [48]. In this formula­

tion, a weighted sum of transmission rates is maximized and these weights indicate
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the relative priority of each user. With these multi-user waterfilling solutions, time

sharing ceases to be optimal. In these cases, simultaneous transmission of the user

signals with interference cancelling receiver MAC or superposition coding (BC) is re­

quired to achieve capacity. Most importantly, the optimal solution can be interpreted

with a geometric interpretation of multi-user water-filling (see [48, Figures 4-8] and

[47, Figures 12-13]). We will not dwelling too much on the exact derivation of the

multi-user water-filling solution. Instead, interested readers are referred to [47].

While these researches are for capacity maximization, the geometric interpretation

of multi-user water-filling provided by [47] and [48] can be used to provide some insight

into the energy minimization problem for the multi-user system. That is, the optimal

transmission rate profile for the multi-user channel must take the form of piecewise

multi-user water-filling where within each water-filling segments delimited by active

arrival and expiry constraints, the optimal power allocation must take on the form of

multi-user water-filling as found in [48, 47], and is only allowed to change at epoch

boundaries where one of the constraints is active.

To conelude the background section, we discuss briefly the differences and similar­

ities between capacity maximization and energy minimisation formulations. In the

single user case, there is vary little difference as discussed in Chapter 2. Both formula­

tions results in the waterfilling solution and differs only in the actual waterlevel to be

used. SpeCifically, consider the Lagrangian for these two problem formulations. The

Lagrangian for the capacity maximization is in the form of (capacity) -Il(energy­

const2) where const is the average power constraint. On the other hand, the La­

grangian for the energy minimisation problem is in the form of energy-v(capacity­

const 1). With some simple mathematical manipulations, it is easy to see that these

two Lagrangian is equivelent with Il =v- 1 and both results in the waterfilling solution

with the actual waterlevel depending in the value of const1 and const2. The case for
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the multi-user case is, however, different as will be presented next.
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For the multi-user system, we no longer have the simple inverse relationship be­

tween the Lagrangian multipliers. This is due to the fact that there are now N

constraints with one objective for an N user system and there is no longer a one to

one match between the variables of these two different formulation. For the purpose

of this thesis, we will concerntrate on minimizing the total energy usage with rate

(capacity) constraints for each user.

7.2 Prescient Problem Formulation

In this section, we present the mathematical formulation of the prescient schedulers

for the MAC and BC. Just like the single user case, the optimal rate obtained through

optimizing the prescient formulations gives us a tight performance bound for any prac­

tical, causal scheduler variations we wish to consider. However, the actual numerical

simulation and comparison are not included in this thesis as the emphasis of this the­

sis is on the theoretical study of the schedulers rather then system modeling issues.

7.2.1 Multi-access Channel

The multi-access channel (MAC) is a multipoint-to-point communication system. Pack­

ets from different sources arrive at a single base station and can potentially interfare

with each other. For simplicity, we consider only the case where each user channel is

a single-carrier flat fading channel and denote the N user MAC channel power gain by

the length-N vector of individual channel power gains g(m) =(gll/(m), ... ,glN](m)). As

for the traffic constraints, the cumulative arrival and expiry curves must also be spec­

ified for each user individually, i.e. Acum(m) = {A~~m(m), ... ,A~~(m)} and Ecum(m) =

{E~~m(m), ... ,E~~(m)}. Thejoint transmission rate profiles r(m) = {rll](m), "', rlN] (m)}
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are admissible if the rate profile for each user is admissible as defined for the point­

to-point system. That is, in vector notation, r(m) is admissible if and only if the

individual rate profile meets the bounding and non-negativity constraint, Le.

r(m) ~ 0

Acum(m) ~ r(m) ~ Ecum(m)

where ~ denotes elementwise inequality.

(7.1)

(7.2)

Next, we turn our attention to the formulation ofthe objective. The energy minimal

way to transmit in a MAC without traffic constraints is to allow all users to transmit

simultaneously and use successive interference cancellation in the receiver [9]. Con-

sider a two-user MAC with static channel gains gl and g2 and the system is to transmit

at 'I and '2 nats of information over unit bandwidth. Without loss of generality, we

assume gl > g2. The signal to noise ratio (SNR) requirement is

e2r1_1 e2r2 _1
---+---

gl g2

if the two users were to transmit at 50% duty cycle each.

(7.3)

With successive interference cancellation, the rate pair ('1, '2) can be achieved with

transmit power PIOla! =PI + P2 if the following set of inequalities holds.

'I :5 In (1 + gl PI )
WNo

'2 :5 In (1 + g2
P

2 )
WgIPI + WNo

(7.4)

(7.5)

The optimal energy usage is achieved when each user only sees weaker users as inter­

ference and signal from the stronger users are assumed to be detected and cancelled

perfectly before detection. It can be shown (see for example, [9]) that the minimum
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power usage for any given rate pair can be expressed as
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(7.6)

Expanding and removing the constant terms, it is easy to see that the total power

usage is simply a sum of exponential of the rates and is convex in these variables.

Next, we introduce the mathematical form for the time varying channel. Again,

we assume that the channel is block fading and the deterministic problem is divided

into m symbols such that the channel state vector gem) has constant entries. For

convenience of notation, we define the order function Hdm) and H21 (m) as

g!Cm) < gz(m)

and
{

0 gl (m) 2': gz(m)
H21(m) =

1 gl (m) < gz(m)

(7.7)

for the two-user case. In general, let Habc(m) =1 if and only if the channel gains is in

the order ga 2': gb 2': gr. Note that HlZ and HZl can be determined from knowledge of the

channel gains and are assumed to be known a priori for the deterministic formulation.

The time-varying MAC optimization problem for two users can thus be stated as

m

Subject to: L r[nl (i) 2': E~~lm (m) for m € [1, M], n € {l,2}
i=l
m
L r[nl (i) ~ A~~lm(m) for m € [I,M], n ={l,2}
i=l

r[nl(m) 2': 0 for n € {l,2}, m € [1, M]

(7.8a)

(7.8b)

(7.8c)

(7.8d)
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Similarly a general expression for the objective for N users can be derived as

(-. [(e'" - 1) exp (I%n+1 rd)
Ptotal = No L

n=l gn
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(7.9)

assuming that the channel gains are ordered such that gl > gz > ... gN. For those

interested in the derivation of (7.9), see Appendix B.

While this problem formulation is very cumbersome for analysis purposes, it is

easy to specify numerically and can be easily solved using AMPL following similar

steps as specified in Section 3.1.

7.2.2 Broadcast Channel

The scheduling problem for the BC can be formulated in a similar way. In fact, it

can be shown that the optimal power and rate allocations for the BC can be found by

solving the MAC problem with the same channel gain vectors. Specifically, we use the

duality between MAC and BC. Simply, to quote [49] on duality between multi-input

multi-output (MIMO) MAC and MIMO BC:

We establish this duality by showing that all rates achievable in the dual

MIMO MAC with power constraints whose sum equals the BC power con­

straint are also achievable in the MIMO BC, and vice versa.

While this quote is in reference to the more general dual relationship between MIMO

BC and MIMO MAC, the result also applies to the more restricted case of single input

single output (SISO) channels. In the context of energy minimization, the energy re­

quired to transmit at any given set of rates in BC is equal to the total energy required

to achieve the same rate vector under the dual MAC, which is exactly the objective

that we are minimizing in the previous section. In other words, under identical traffic

constraints, the rate profile that achieves minimal energy usage in a MAC must be
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also achievable in the dual BC. To show that these rate profiles also achieve mini­

mal energy usage in the dual MAC we perform proof by contradiction. Assume that

there exist rate profiles with lower energy usage in the dual BC, then by the reverse

statement of duality, these new rates are also achievable in the MAC and have lower

energy usage than the minimal rate profiles which is a contradiction. Thus, there is

only one problem to solve for both the MAC and BC channels.

7.3 Multi-User Piecewise Waterfilling

In this section, we briefly discuss the general form of the solution to problem (7.8) and

show that in some special cases, the iterative string pulling (lSP) algorithm can be

used to obtain the optimal solution.

Note firstly, that by forming the Lagrangian and differentiating with respect to the

rate for each user, r[n] (m), the differentiation operation sifts out only the constraints

associated with user n. Thus, the set of KKT conditions for the single user problem

presented in Section 3.1.4 holds for the multi-user case with the exception of the

definition of the energy objective !(r(m),g(m)), which should be replaced with the

multi-user version of the energy objective as shown in (7.8a). Next, we generalize

the definition of a water-filling segment for each user to be a sequence of consecutive

epochs with slack arrival and expiry constraints for the specific user, in which the

ordering of the channel gains remain the same across these epochs. Thus, we must

have

o 0 ['J
-[-I !(r(m),g(m)) = -[-I !(r(m + l),g(m + 1)) = Wior n or n

(7.10)
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if the traffic constraints for epoch m is slack, i.e.,
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m2: rfnl(i) > E ln] (m) (7.11)cum
i=l
m2: rlnl(i) < A lnl (m) (7.12)cum

i=l

By letting f(r(m),g(m)) to be the energy usage implied by the multi-user capacity

formulation, it follows that the optimal power allocation across epochs with slack traffic

constraints must be in the form of multi-user water-filling. Furthermore, by noting

that this rate vector is on the capacity boundary and is only achievable through the

use of successive interference cancellation, it follows that the each user must allocate

power against equivalent receiver noise and interferences from weaker users. Thus,

the multi-user water-filling solution can be interpreted as the following. Firstly, the

optimal power allocation for the weakest user must follow the form of single user water­

filling, as it sees no interference. The power allocation for the next weakest user can

be interpreted as water-filling against a floor of receiver noise and interference from

the weakest user.

In the special case where the order of the channel gains is unchanged over a

complete simulation run, the optimal rate profiles can be obtained by performing the

ISP algorithm for the traffic and channel for the weakest user, as this user sees no

interference. Once the optimal power and rate allocation are determined for this

user, the interference level seen by the next weakest user can be determined and the

optimal transmission power and rate can be determined for the second weakest user.

This process is to be repeated till the rate and power allocations for all users are

determined.

For the prescient problem in general, the order of the power gains can change and

the problem may be solved using general convex optimization algorithms such as the
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simplex methods or the interior point methods. However, if one were to consider the

causal problem formulation for the multi-user case, the assumption that the ordering

of channel gains is unchanged may be true over the short optimization horizon and

the successive application of the ISP algorithm can be used to implement the causal

scheduler efficiently.

7.4 Practical Considerations

There are several practical issues associated with implementing an optimal scheduler

that takes advantage of multi-user diversity. Firstly, the prescient multi-user schedul­

ing problem (7.8), cannot be solved using the ISP algorithm proposed in Chapter 4

in general. Furthermore, the power function used to formulate the objective is based

on ergodic capacity and the successive interference cancellation required for decoding

the signals has a problem with error propagation in practice particularly for uncoded

signals.

In this section, we turn our attention to a more pragmatic approach where the

channel is shared among the users by allowing only one user to transmit at a time.

Again, consider the round robin user admission scheme for a two-user system de­

scribed at the beginning of this chapter. In the previous discussion related to this

scheduler, we noticed that it is possible to reallocate the idle channels for user A to

user B and vise versa. We will now describe a design based on this observation.

Initially, the transmission time is divided between two users equally and each

user performs optimal scheduling within its own allocated time slots and meets its

own packet expiry constraints. This results in an admissible, but suboptimal multi­

user transmission profile. We have noted that by reallocating the idle slots of user A

to user B, it is possible for user B to obtain a schedule with lower total energy usage
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with these extra time slots. In fact, user B would calculate a new rate allocation

profile with these extra channels added.

Furthermore, we note that obtaining more slots from other user might reduce some

of the waterlevels but it can never increase the waterlevel. Hence, it is possible to

iteratively identify more idle slots to be given to the other user. In general, we propose

that for the N user system, the idle slots shall be reallocated based on the channel

gain and shall be allocated to the non-idle user with the worst channel gain. That is,

if the time slot is idle for user n, it is reallocated to user n' such that user n' is non-idle

and it has the worst channel gain amoung all non-idle users. This rule is based on

the premise that an extra time slot provide more energy saving in low channel gain

situations then that of higher channel gains. This heuristic is plausible, but has not

yet been tested. Testing and comparison with the optimal solution obtained using a

generic convex optimization package is planned for future work.

7.5 Conclusion

In this chapter, multi-user considerations are discussed. The discussion begins with

the convex formulation of the prescient scheduler for multiuser channels by a simple

modification to the energy objective function. An interesting side effect of formulating

the problem as an energy minimizing problem is that, through duality, the MAC

and BC channels have identical optimal rate profiles and the achievable total energy

usage is also the same. We also propose a more pragmatic approach to multi-user

scheduling by modifying the round robin user access scheme with slot reassignment

to obtain better channel usage.



Chapter 8

Conclusions and Future

Directions

8.1 Summary

This thesis presents the work on obtaining optimal packet schedulers under per-packet

delay constraints. The problem is considered from both the theoretical and practical

perspectives.

Through the formulation of the prescient schedulers under various channel models,

it was established that the solution has the form of piecewise water-filling. Specifically,

for the single user systems, the solution can be constructed by water-filling within

each water/illing segment delimited by active traffic constraint points over all parallel

channels. We also consider the modification required for multi-user channels and the

effect of queueing disciplines. On the more practical side, we present the details of

the formulation of several causal schedulers based on minimizing energy usage of the

expected future channel gain under various assumptions.

Several novel and interesting results were obtained in this investigation. Firstly,
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and most importantly, it was established that the optimal power and rate allocation

follows the form of piecewise water-filling. Simply speaking, the transmission profile

can be divided into smaller time segments within which the water-filling phenomena

applies. Furthermore, these time segments are delimited by active traffic constraints

corresponding to either an empty queue state or just meeting a deadline constraint.

From the perspective of packets in the queue, this phenomenon can be summarized

with the following rule:

Maintain a constant waterlevel unless there is a near miss of a packet

deadline or there is nothing to transmit.

On the practical perspective, an algorithm based on finding the shortest path be­

tween two points under boundary constraints was proposed that solves the scheduling

problem efficiently. This algorithm was developed firstly to provide a quick way of ob­

taining the prescient result but it was also useful in obtaining the result, for the

more practically oriented causal schedulers. It is the author's opinion that using the

iterative string pulling (lSP) algorithm, the proposed online schedulers can be imple­

mented in real-time with currently available micro processors for deployment in a real

communication system.

While the system under consideration for most part of this thesis is a single user

multi-carrier system, most of the results can be extended to the multi-user system by

a simple substitution of the objective function with the multi-user equivalent and the

general form of multi-user piecewise water-filling solution can be inferred.

8.2 Future Directions

While this thesis covers the broad area of energy optimal scheduling under a variety

of channels and causality assumptions, there are many detailed investigations that
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can be carried out for the piecewise water-filling solution. For example, simulation

and analytical results on the statistics of the duration of each water-filling segment

as a function of fade rate and traffic parameters would further the understanding of

the interaction between the traffic and the channel.

It should also be noted that the main emphasis of this thesis is to provide a theo­

retical analysis of the optimal scheduler under strict deadline constraints in a general

setting. That is, we do not assume any specific statistical characteristics of the arriv­

ing traffic or channel gain variations. Despite obtaining a performance close to the

prescient scheduler for the 8-tap channel prediction causal scheduler in the specific

example provided, it is not representative of any real world systems. Further simula­

tion and modeling is required to obtain realistic performance measures for real world

systems. It would also be very interesting to derive an analytical expression of the

performance gap between the prescient scheduler and the many causal variants.



Appendix A

Channel Power Gain Prediction

A Rayleigh fading channel with Doppler is often modelled as a complex gain that

is a Gaussian distributed random process with a Jakes spectrum. With this model,

a Wiener prediction filter can be used to provide an unbiased estimate of a future

complex gain, h ~ h, with a well defined estimation error variance a~ [50].

Consider the L-point MMSE linear predictor Wk written as a column vector of filter

weights satisfying the equation

(A.l)

where hIm] = [h(m) h(m-8) ... h(m-L8+8)]T contains L present and past channel gain

samples at Nyquist spacing 8 and him] is the estimated channel gain for symbol m + k

at the beginning of symbol m. This prediction filter Wk is independent of m and can

be obtained from solving the normal equation

(A.2)

where Rh is the covariance matrix of past samples and Pk is the vector of cross corre-
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Figure A.l: Plot of the power gain of a Rayleigh fading channel and various MMSE
predictor outputs for 1, 2, 8, and 16 taps.

lation of the past observations with the desired prediction value.

The prediction error variance for k symbol into the future can also be expressed

simply in terms of the auto-correlation function as

(A.3)

again, independent of m.

Given that the prediction him] and the prediction error are uncorrelated, the con­

ditional mean of the power gain at symbol m + k is

(AA)

which is used to provide the channel power gain estimate for the causal scheduler.

Figure A.l shows four specific instances of the channel power gain predictors used
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in the simulation with 1,2,8, and 16 taps. From this figure, we note that a one tap

predictor simply decays from the last known channel gain back to the expected value

while the higher order predictors can approximate the occurrence and duration of the

first fade.



Appendix B

The Power Formula for the

Multi-access Channel

The achievable rates for a general N user multi-access channel (MAC) with channel

power gains gl '" gN with transmit power Pl'" P n assuming gi ~ g2 ~ ... ~ gN is at the

corner of the polymatroid specified by

(B.1)

(B.2)

(B.3)

(BA)

Firstly, we rearrange (B.1) to obtain

(B.5)
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and substituting the left hand side (LHS) of (B.5) for glPI in (B.2) and (B.3), we obtain

(B.B)

(B.7)

Again, we can manipulate (B.B) to obtain an expression for gzPz as

(B.8)

and substituting into (B.7) to obtain

(B.9)

which in turn, can be rearranged to give g3P3 as

(B.IO)

and it is easy to see that in general

and the total power usage is

N N ~,,-!
e£"i=! ri (e r" - 1)

Ptotal = L Pn =No L -----
n=1 n=1 gn

(B.11)

(B.12)
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