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Abstract

A combination hybrid pension plan that consists of a defined contribution account

and a final salary defined benefit guarantee is studied by using multivariate time series

analysis. This time series include salary increase, inflation rate and investment return.

The loss function for the plan sponsor is defined, its first three conditional moments

are derived and its distribution is approximated. Different investment strategies for

the DC account are compared. A simulation study is also performed for illustration

and validation purposes. Finally, the concept of Economic Capital is introduced to

perform risk management on this pension plan.

Keywords: Hybrid Pension Plan, Multivariate Time Series Analysis, Gaussian

Process, Limiting Portfolio, Simulation, Economic Capital.
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Chapter 1

Introduction

1.1 Hybrid Pension Plans

As the main source of income for most retirees, pension plans play an important role

in our lives in terms of maintaining our lifestyle after retirement. Therefore when it

comes to pension plans, how to identify and measure the underlying risks are essential

for both the plan sponsor and its plan members. Pension plans can be categorized

as Defined Benefit (DB), Defined Contribution (DC) and hybrid plans based on their

specific plan design. In a DB plan, the benefit payment after one's retirement is

stated by the policy at issue and the contribution rate is then evaluated accordingly

on regular basis as required by local regulations. The situation is reversed in a DC

plan: the contribution rate, which is usually a percentage of pre-tax salary, is set to

a constant at issue and all the contributions made for one person will be put into a

DC account. The accumulated account balance at one's retirement will determine his

or her benefit payment after retirement. Hybrid pension plan designs are those that

1



CHAPTER 1. INTRODUCTION 2

are neither a full DB nor a full DC plan. For example, there could be a DC account

for each individual plan member to invest the contributions, but the benefit payment

could take form of a DB plan.

One appealing feature of DB plan designs for employees is that it protects its

plan members against risks associated with the investment returns earned by the

contributions. Such risks are designed to fall on the plan sponsor, in most cases, the

employers, since they are responsible for the benefit payment even if the financial

market performs badly or insufficient contributions were made. On the other hand,

DC plan designs are favored by employers in the sense that they don't need to worry

about the benefit payments at all, while the plan members are exposed to almost

all possible risks that are related to the DC account or the pension payment. This

is probably the main reason why the implementation of DC plan designs has always

been controversial. As for hybrid plans, the risk allocation between plan sponsor and

plan member varies with each design. Take a Cash Balance plan which is currently

the most popular hybrid plan in the US for example, the plan sponsor undertakes

the investment risk usually through the guarantee of an investment return on the

pensioner's DC account, while the plan members undertake the annuity conversion

risk and salary inflation risk since they will be given a lump-sum instead of a life

annuity upon retirement, based on their contribution history which is closely related

to salary inflation.

Pension plans in the early days were mostly DB plans, and most government

level pension plans nowadays are DB plans. Social Security in the US and Canada

Pension Plan, Old Age Security in Canada are all defined benefit plans. However, for

employer-sponsored plans, there has been a notable shift from DB plans to hybrid
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and DC plans for the past few decades. Hewitt Bacon and vVoodrow (2005) explained

that the reason for the decline of final salary scheme (one of the most important DB

schemes) in UK is the fact that the plan sponsors want to reduce the volatility of costs

for a pension plan, which leads to the decision of reducing costs. Those costs were

originally increased by low interest rates and investment returns, improved longevity,

and improvements in pension benefits. MacDonald and Cairns (2006) concluded that

the shift toward DC design is mainly due to the simplicity and portability of a DC

design, the risk reduction to plan sponsors, and the opportunity of less contribution

as well as to avoid the rising cost of DB designs. They also pointed out that the main

drawbacks of a pure DC plan is the uncertainty in the level of pension benefit due

to fluctuations of the investment return in the DC account. This is also one of the

reason why the shift from DB to hybrid plans is better accepted. The risk sharing

between plan sponsor and plan member of hybrid pension is more even than both DB

and DC plans.

Three" common" hybrid designs are:

• Cash Balance: The plan member is entitled to a capital sum at retirement

and the lump sum is converted to life annuity just like in DC plans. However

the balance in each member's account is not directly decided by the underlying

asset, it could be a guaranteed value or subject to certain form of underwriting

by the plan sponsor. In this design, the plan member is exposed to annuity

conversion risks the same way as DC plan, but is protected against some of the

investment risks .

• Career Average Plans: Also known as Index Pension Plans. The pension
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benefit is revalued every year based on the average salary throughout the plan

member's career. In this plan design, risks associated with inflation and real

wage increase is reduced for the plan member since the pension benefit depends

on the actual final salary.

• Combination Hybrids: The pension benefit for such products can accrue on

two basis. Here we assume a DC basis and a final salary basis. The plan member

will choose one of the pension benefits upon retirement. The final salary is also

subject to reevaluations in this study. Therefore the inflation risks, real wage

increase risks, annuity conversion risks as well as investment risks are all shared

between plan sponsor and its members. vVe can also consider this combination

hybrid as a DC plan with a final salary scheme guarantee. This is the hybrid

product we will investigate into details.

\Ve will build up time series models for different risk factors in a combination hybrids

plan to model the loss function of the plan sponsor on each individual policy to assess

the embedded risks for such a final salary guarantee.

1.2 Actuarial Applications of Interest Rate Models

In this study we applied stochastic analysis of multivariate time series variables to

actuarial functions of a combination hybrids product. The inflation rate, real wage

increase, investment return and long term treasury bond return are modeled in their

continuously compounded forms to "discount" future cash flows to the time of issue.

Many one dimensional time series models have been applied to evaluate actuarial
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functions. One of the earliest models applied for the force of interest is the White

Noise process which assumes that the force of interest for different time periods are

identically and independent distributed from a normal distribution. vVaters (1978)

worked under such framework to model cash flows with life contingencies and obtained

the first four moments of some actuarial functions. The Pearson curve was also

employed to fit limiting distributions of those actuarial functions.

Besides independent time series models, autoregressive processes have also been

discussed to model the force of interest in an actuarial context. Panjer and Bellhouse

(1980) considered both discrete autoregressive models and their continuous equivalent

models, stochastic differential equations, and showed how to obtain unconditional

moments of actuarial functions under these models where the orders of those process

include one and two. The results were extended by taking historical data into account

and applying conditional probability measurements in Bellhouse and Panjer (1981).

A more general discrete time series model-Autoregressive Integrated Moving Average

process (ARIMA process) was introduced by Dhaene (1989) to model the force of

interest.

Besides the force of interest, some previous studies preferred to model the force

of interest accumulation function with a time series process. Beekman and Fuelling

(1990) used an Ornstein-Uhlenbeck process to model the force of interest accumulation

function and derived the first two moments of both deterministic and contingent future

cash flows.

Parker(1994b) investigated both modeling approaches, to model the force of inter­

est or to model the force of interest accumulation function, with White Noise process,



CHAPTER 1. INTRODUCTION 6

'Wiener process and Ornstein-Uhlenbeck process. Formula and numerical illustra­

tions were presented to show that those two approaches were by no means equivalent.

When it comes to conditional probability measurements, modeling the force of in­

terest could take current market conditions into account while modeling the force of

interest accumulation function would simply ignore those information.

Parker(1993a, 1993b, 1994a, 1996, 1997) introduced derivation for moments of

present value variables and a non-parametric method to obtain approximated distri­

bution function of annuity certain and limiting portfolio of insurance policies including

endowment, temporary and whole life contracts. This approximation method is ex­

tended to two dimensional time series variables in this study to obtain the cumulative

density function of the loss variable of combination hybrid plans.

Since a pension plan usually involves risk factors other than the force of interest

and mortality, such as inflation rate and real wage increase, there have been many

attempts to apply multivariate time series processes in the valuation of pension plans.

MacDonald and Cairns (2006) presented a simulation study based on multivariate

models of continuously compounded rate of return, the CPI log growth and the real

log return on wages to investigate the impact of nationwide implementation of pure

DC pension scheme on the population dynamic. By making many ideal assumptions,

the authors conclude that the nationwide implementation of a pure DC plan design

would cause significant volatilities in the population's retirement dynamic when early

retirement is allowed. For example when the financial market is offering high returns

to the DC account, lots of people would choose to retire earlier than the regular

retirement age 65.



CHAPTER 1. INTRODUCTION 7

Sherris (1995) constructed a multivariate model to evaluate option features in

retirement benefits under the no-arbitrage assumption. The author argued that the

lattice model which was used in contingent claims valuation of financial options were

not computationally feasible for retirement benefits, while a crude simulation which

was considered to be more efficient than the lattice model showed that traditional

deterministic valuation understated the cost of providing those guarantees in pension

plans by as much as 35 percent.

In this study, we will first construct a four dimensional vector autoregressive pro­

cess of order one to the main risk factors involved in a combination hybrid plan, and

then obtain conditional moments and an approximation of the distribution of the loss

function through some linear transformations of modeled variables.

1.3 Outline

In Chapter Two, we will introduce the detailed features of a combination hybrid

pension plan with a final salary scheme. The assumption of a limiting portfolio is

made to get cash flows for averaged individual policy. Illustrations of future cash

flows and variables that need to be modeled are provided.

Then we will define a multivariate time series model VAR(l) in Chapter Three

and derive conditional moments for the four-dimensional variable. Three investment

strategies are proposed for the DC account and three VAR(l) models corresponding

to those strategies are constructed based on historical data from the US financial

market to use for our illustrations in later chapters.
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We combine the loss function of the combination hybrid pension plan and the

VAR(l) model in Chapter Four to investigate the randomness of the potential loss

function from the plan sponsor's perspective. Through linear transformations and

summations of the modeled variables, the first three conditional moments of the loss

function are obtained and numerical results are shown.

The distribution of the average loss function is then studied III Chapter Five.

The approximation method proposed by Parker(1993a) is extended to multivariate

cases and illustrations are provided with a short term pension plan. Results are then

checked with the theoretical moments and simulations. The simulation method is also

applied to get the distribution of the loss function. Comparisons between these two

methods are then made.

In Chapter Six, we introduce the concept of risk measure and Value-at-Risk based

Economic Capital to provide some perspectives to plan sponsors regarding the amount

of risk capital that needs to be set aside to maintain an acceptable probability of

staying solvent. Different investment strategies are compared to show the impact of

asset allocation in the DC account.

Finally, the main conclusions from this study are discussed in Chapter Seven.



Chapter 2

Combination Hybrid Pension Plan

Now we introduce a combination hybrid plan which has a DC account and a pension

income guarantee through a minimum replacement ratio. Contributions are made

at the beginning of each year as a percentage of pre-tax annual salary and pension

benefit payments start on normal retirement date and also paid at the beginning of

year.

2.1 Basic Plan Design

The replacement ratio RR for a pension plan is defined as

RR = Annual Pension Benefit
Annual Final Salary before Retirement

(2.1 )

\Ve assume that this combination hybrid plan offers a minimum guarantee on

the replacement ratio rather than the amount of pension benefit. We believe that

the replacement ratio is a more accurate measurement of the quality of life that the

pension offers than a deterministic pension benefit amount since it is relative to the

9



CHAPTER 2. COMBINATION HYBRID PENSION PLAN 10

final year salary. The main function of a pension plan should be to enable its members

to maintain more or less the same lifestyle in retirement, and the quality of the lifestyle

could be expressed in terms of their final salary. Under such a plan design, the risks

associated with inflation and salary increase are shared by the plan sponsor and

its members. For example, when the real wage increase is quite low compared to the

contemporary inflation rate during one's career, the guaranteed pension benefit would

not provide a sufficient income after retirement. In this case, the plan member could

only hope that the investment in the DC account would provide relative high returns.

MacDonald and Cairns (2006) discussed that a replacement ratio between 60% and

74% would be sufficient for retirees to maintain their pre-retirement standard of living,

because there are some work associated cost that can be reduced after retirement. In

this study, we will apply a 70% replacement ratio guarantee for illustration purposes.

Withdrawals from this hybrid plan before retirement or late retirements will result

m lump-sum payments of the DC account at that time, in such cases the sponsor

acts more like a fund manager who does not carry any risk. Therefore from the

sponsors' point of view, the only situation we need to take into account is when the

plan member enters the pension plan at the start of his career and retires at normal

retirement age. Vie also make the assumption that there are no transaction fees,

expenses, commissions or taxes for simplicity.

2.2 Plan Feature Assumptions

Now let us take a single policy of this combination hybrid plan for example to inves­

tigate in details. Assume that John Doe starts his career at age 25 and enters this
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pension plan immediately. He will stay in this plan until normal retirement age of 65

and start receiving pension benefits from age 65.

2.2.1 Contributions

Annual contributions are made to the DC private account as a percentage, 100c%, of

John Doe's annual salary. This contribution is usually a sum of amounts from both

the plan sponsor and John Doe himself. MacDonald and Cairns (2006) stated that

previous research in the United States showed that a contribution rate in the range

8.7% :::; c :::; 12.6% is acceptable. In this study, c is initially set to 10% for illustration

purposes.

There is one specified investment strategy assigned to each individual DC account

and this strategy is kept the same for all contributions throughout his career. We

will consider I-year treasury bonds and stocks as the only two choices of asset. By

changing the weights of these two assets in the DC account we can have different asset

allocations. Here we assume that the asset allocation in the DC account remains the

same throughout the contribution phase. Therefore rebalancing will be done at year

end, right before the next contribution, to make sure that the target asset allocation

is maintained.

2.2.2 Guaranteed Pension Benefit

Given the replacement ratio guarantee, upon retirement John Doe will get the max­

imum of the guaranteed benefit payment which is the product of the guaranteed

replacement ratio and his final salary, and the pension benefit he can purchase in the
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life annuity market with his DC account balance at that time as his pension benefit.

No further indexing is applied to the pension benefit after retirement.

No attempts have been made in this study to model mortality risks in this product.

Therefore one more assumption made for simplicity is that this plan has a huge number

of participants in each age group. Therefore the number of deaths in each age group

exactly follows the mortality rate in the life table. Such a portfolio of policies is called

a limiting portfolio. Under this assumption, the plan sponsor will be facing a set of

deterministic pension payments in John Doe's policy once he reaches age 65.

2.3 Cash Flows Illustration

Now let us take a look at future cash flows in this pension from both John Doe's and

the plan sponsor's perspectives to get a better understanding.

Let 8(t) denote John Doe's salary at age t, F(t) denote the balance of his DC

account at age t, and a denote the market price of a life annuity at his retirement.

Figure 2.1 gives an illustration of future cash flows that John Doe would expect.

Contributions of 10% of John Doe's annual salary are made to this DC account until

age 65. Upon retirement, he will either choose the guaranteed benefit 70%8(65) or

purchase a life annuity with annual benefit F(65)ja. There are in total 40 annual

contributions while the number of pension payment is a random integer that depends

on the age of death for John Doe.

Figure 2.2 presents the cash flows for each individual policy from the plan spon­

sor's perspective. Cash flows of the annual contribution is the same as John Doe. The
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F(65)!a

.!!!:

100/0S(27)
F(65)iil 70%$(65)
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.!!!:
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Figure 2.1: Cash flows in the plan studied from John Doe's perspective
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Figure 2.2: Cash flows in the plan studied from the plan sponsor's perspective

13

situation is slightly different regarding the pension benefit payments. While providing

a salary related benefit guarantee, the plan sponsor only needs to consider the cases

where the guarantee is exercised and evaluate the loss function of each policy accord­

ingly. Further, since the sponsor has a limiting portfolio, the averaged guaranteed

annuity payment in each single policy should be multiplied by a survival probability

t-65P65 at age t of John Doe, and the averaged future cash flows will terminate at the

end of the life table when the survival probability hits zero. Take the 2001 csa table

(see Appendix A) for example, since qx = 1 for x = 120, there will be 120 - 64 = 56

positive pension payments in each individual policy.
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2.4 Risk Allocations

14

With the combination of final salary scheme and DC scheme, this plan provides a wide

range of risk sharing between the plan sponsor and its members. Risks associated

with inflation, real wage increase and investment in the DC account are all shared at

different levels.

For John Doe, there is not much explicit risk related to inflation before his re­

tirement or investment returns in the DC account as long as he is satisfied with the

guaranteed replacement ratio. However he is exposed to risks associated with salary

increase and inflation after retirement. If the salary increases do not follow contem­

porary inflation rates and the investment in the DC account performs badly which

results in the exercise of the guarantee, John Doe might suffer a quite poor retirement

just as his poor pre-retirement life standard. Another undesirable situation is that the

inflation rate shoots up after his retirement but his pension payments are not further

indexed, life will become tougher as he ages.

According to the combination hybrid design, the plan sponsor certainly takes on

much more risks than a simple DC plan. Exposures to inflation risks, investment risks

and real wage increase risks are all brought in by the final salary guarantee. Actually

this design is quite close to a DB final salary scheme in which the plan sponsor needs

to prepare against all the risks mentioned above and other risk factors. The main

appeal for the plan sponsor of this combination hybrids pension is that when the

investment return in the DC account is higher than the salary increase plus inflation,

there is a great chance that the guarantee won't be exercised and it is almost like in

a DC plan design. This study will focus on the sponsor's obligations with respect to



CHAPTER 2. COMBINATION HYBRID PENSION PLAN 15

this combination hybrid plan. The inflation rate, investment return, salary increase

and long term treasury bond return will be modeled by a multivariate time series

model. No attempts have been made in this study to model mortality risks such as

catastrophic events and longevity risk. We assume a limiting portfolio so that the

study can show the impact of the stochastic economic variables mentioned above.



Chapter 3

Multivariate Time Series

The four variables stated in the last chapter are modeled with a four dimensional

multivariate time series in this study. There are many stochastic processes, both

discrete and continuous, in the literature that are employed to model variables such

as salary increase, inflation rate, and investment returns. A vector AR(l) model is

chosen here to model the economic variables that are involved in this hybrid pension

plan and to investigate the stochastic loss function at issue for the plan sponsor.

The vector AR(l) model is actually equivalent to a continuous multivariate Ornstein­

Uhlenbeck process which is a stochastic differential equation of order one. When the

dimension of the variable is one, the Ornstein-Uhlenbeck process is also known as the

Vasicek model in finance.

First let us take a brief look at the so called Vasicek model and AR(l) model that

are commonly used in modeling one-dimensional variable, such as the rate of return

or the interest rate, in economic, finance and actuarial studies.

16
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• Vasicek Model

The random variable Tt which represents the short rate at time t is said to follow

the Vasicek Model if the following stochastic differential equation holds:

(3.1)

where Wt is a Wiener process that models the market risk, (j is the instantaneous

volatility, b is the long-term mean of this process and a represents the mean­

reversion coefficient .

• AR(1) Process

The short rate Tt is said to follow an AR( 1) process if

Tt - J.L = ¢Crt-l - J.L) + tt (3.2)

where tt is the white noise term, J.L is the long term mean of this AR(1) process.

The AR(1) process is a simple and commonly used member of the ARMA(p,q)

family. The process {Tt} is stationary if and only if I¢I < 1.

Even though the Vasicek model is a continuous differential equation while the

AR( 1) process is defined in discrete time, it has been proved they are actually equiva­

lent processes according to the principle of covariance equivalence. Any AR(1) process

with 0 ~ ¢ ~ 1 can be viewed as the discrete representation of a Vasicek model while

any Vasicek model has a discrete analogue model that is an AR(1) process. In model

estimation, most data available are actually discrete. Therefore the equivalence rela­

tion between a Vasicek model and an AR(1) process enables the estimate of continuous

Vasicek model with discrete observations of Tt.
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In this study, a four dimensional vector AR(l) discrete process is employed instead

of the Vasicek model since the data we have are all discrete and our study for the loss

function will be based on discrete time.

3.1 Variables In Scope

Now let us take a detailed look at the time series variables involved in this study:

• ai : the inflation free continuously compounded salary increase from time i to

i + 1

• Ii : the continuously compounded inflation rate from time i to i + 1

• bi : the inflation free continuously compounded investment return from time i

to i + 1

• li: the inflation free continuously compounded rate of return for 10-year treasury

bond at time i.

The vector Xt = (at, It, bt, It) is modeled by a four dimensional Vector AR(l)

model and estimates are obtained based on data from the US financial market. De­

tailed estimates will be presented in later sections.

Now we will introduce how the variable X t is involved in this combination hybrid plan.

According to the previous chapters, the plan sponsor needs to consider the following

average cash flows in each individual policy:
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• Contributions:
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Every year throughout John Doe's career, for example at age t, where 25 ~ t .::;

64, there will be a contribution of 10% . S(t) made to his DC account, where

S(t) = S(25) . eL:i:js ai+f•. The initial salary, S(25), is a constant known at plan

issue date.

• Investment return in the DC account:

The annual investment return in this DC account from age t to t + 1 is 6t + It.

As discussed earlier, annual rebalancing is performed which assures that this

return, 6t + ft, is realized every year.

• Pension benefit payable:

Upon retirement, the guaranteed pension income will be defined as

RR· S(65) = RR . S(2.5) . eL:~~2s at+ft

Since we assume that salary payments occur at beginning of each year, S(65) is

not really a salary payment since John Doe should have retired by then, but we

still use the projected S(65) to define his pension benefit to include the market

information from age 64 to 65.

• Retirement decisions:

The pensioner will choose between the guaranteed benefit and purchasing a life

annuity with a lump-sum from the DC account at retirement. The market price

for a unit life annuity at that time is 0,65 = 1 + I::':j65 kP65 . eL:7~:: -(1;+ f,) which

leads to an annual benefit of F(65) /0,65.
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3.2 Vector AR(l) Models
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Now we will introduce the Vector AR(l) model. A vector autoregressive time series

of order one is defined as follows:

Definition 3.1. An n-dimensional time series random variable X t is said to follow

an n-dimensional vector autoregressive model of order one, VAR(l) model, if

(3.3)

where t E Z, !:!:. is the long-term mean vector of X t , <I> is the autoregressive coefficient

matrix and at is the white noise term which means that {at It E Z} are identically and

independently distributed and follows a n-dimensional multivariate normal distribution

with zero mean and covariance matrix "E.

The stationary property of a time series model is essential when it comes to ap­

plications in a stable economic environment. A sufficient condition of a stationary

VAR(l) process is given as follows (see section 11.3 of Brockwell and Davis (1991)):

Theorem 3.1. A VAR(l) model is stationary if all the eigenvalues of1 are less than

1 in absolute value, i. e. provided det(I - z<I» =f 0 for all z E C such that Izi :s; 1.

The unconditional moments of a Vector AR(l) process have been discussed in

many textbooks. Since we will construct the model out of historical data, it seems

more reasonable to use conditional probability measurements for practical purposes.

The following theorem gives the results for the first two conditional moments of a

stationary VAR(l) model.
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Theorem 3.2. For an n-dimensional VAR(1) model satisfying Equation (3.3), the

first two conditional moments of X t given X o can be obtained as follows:

t-kL 1>t-i . ~ . (1)t-k-i f.
i=l

Proof: For the first conditional moment, if t = 1, then

Since ~ has mean zero, we have

E(1)· (Xo -1::)IXo) + 1::

= 1>. (Xo -1::) + 1::.

When t > 1,

(3.4)

E(1)· (Xt- 1 -1::) + 1:: + atlXo)

E(1)· (Xt- 1 - L::)IXo) + 1::

= E( 1>2 . (Xt- 2 - 1::) + 1> . at-lIXo) + 1::

= E(1)2. (Xt- 2 -1::)IXo) + 1::

= E(1)t. (Xo - L::)IXo) + 1::

1>t . (Xo - 1::) + 1::.

As for the second conditional moment, since X t can be written as

t

X t = 1>t . (Xo - 1::) + L 1>t-iai ,
i=l
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for any kEN, we have

E(X,X'_kIXo) E[ (1/, (Xo - !!.) +!!. + t <I>'-'a,) (<1>'-" (Xo -!!.)

+!!. + t, <I>'-'-j1!jrH
= (<I>t(Xo _!:!.) +!:!.) . (<I>t-k(Xo _!:!.) +!:!.) T

+E[(t <I>'-'a,) .(~<I>'-HajrH
Since at's are i.i.d.

E(XtXt_kTIXo) = (~t(Xo _!:!.) +!:!.) . (~t-k(Xo _!:!.) +!:!.) T

+~ [<1><-< . E· ( <I>'-k-') '] .
Therefore,

22

TCov(Xt , X t- k IXo) E(XtXt-k'jXO) - E(XtjXo)E(Xt-kIXof

~ ~ [<1><-< E (<I>'-'-YJ 0

Since this is a Guassian process, we can obtain the conditional distribution

fx,IXo(xtlxo) for X t only through the first two moments. Therefore once we have these

two moments, the basic modeling for X t given X o is completed. Next we will estimate

the VAR(l) model with data from the US market.

3.3 Model Estimation

Having chosen the time series process for modeling, we now move on to construct

models with historical data from the US financial market.



CHAPTER 3. MULTIVARIATE TIME SERIES

3.3.1 Data Collection
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In order to derive a practical model, we choose to use real world data to fit VAR(1)

models. All data are collected quarterly for the past 20 years to build a discrete model

where one unit of time stands for a quarter. Annual inflation rates, real wage increases

and lO-year treasury bond returns are converted to continuously compounded rates

before the estimation.

As for the investment return of the DC account, we make some simple assump-

tions about the asset available for investment. Only two assets are selected as general

representatives, the S&P 500 Index and I-year treasury bond. The S&P 500 Index

is chosen to represent asset with high average return and high volatility while I-year

treasury bond stands for assets with low average return and low volatility. Differ-

ent investment strategies in the DC account are realized by setting different weights

for those two assets. After calculating the weighted annual return, the equivalent

continuously compounded rate is obtained.

Table 3.1 shows the asset allocations that are studied here. Strategy A has the

lowest weight in stocks which makes it a low risk portfolio while strategy C represents

a high risk portfolio and strategy B represents a medium risk portfolio.

S&P 500
I-year treasury bond

Strategy A Strategy B
0.2 0.5
0.8 0.5

Strategy C
0.8
0.2

Table 3.1: Asset Allocations in the DC account
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Even though data for inflation rates, real wage increases and lO-year treasury

bond returns are the same for all three investment strategies, we choose to model

those strategies separately with three VAR(l) models since the correlation matrix

can be very different. Therefore three set of parameters will be obtained for the

VAR(l) process based on the data obtained for each investment strategy.

3.3.2 Estimation Method

Following are a few key steps we take to obtain parameters for the VAR(l) model:

1. Long Term Mean: The sample mean ;t is used as an estimate for the long

term mean!:!:.. of this process.

2. Estimates for <P: Estimation of the matrix <P is done with the default Yule­

Walker method in R programme after subtracting the sample mean. Then the

condition in Theorem 3.1 will be examined to make sure that the process is

stationary.

3. Estimates for ~: As for the covariance matrix for at, the covariance matrix of

the residuals from step 2 is calculated and used as an estimate for ~.

4. Initial Value: The latest observation for X t is used as the initial value X O and

it represents the value for X t at issue.

3.3.3 Estimation Results

First let us take a look at the quarterly historical data that has been collected from

the last twenty years. (See Appendix B)
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Continuous Real Wage Increase

:1
1990 1995 2000 2005

Time

Continuous Inflation rate

:l
0

1990 1995 2000 2005

Time

Continuous 10.year treasury bond return

:1
1990 1995 2000 2005

Time

Figure 3.1: Quarterly historical data for salary increase, inflation and long-term bonds

Figure 3.1 shows the time series plot for continuous compounded real wage increase,

inflation rate and real long-term treasury bond returns. 'vVe can find some similarity

in the shape between real wage increase and real long-term treasury bond returns

through time, but inflation rate seems to move in opposite directions with the other

two.
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Continuous Investment Return with low Iisk Iloltfolio
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1990 1995

Time

2000 2005

Continuous Investment Return with median risk pOltfolio

~j
CI --------,---------~-------.---:::.....-------,------

1990 1995

Time

2000 2005

Continuous Investment Return with high risk portfolio

1990 1995

Time

2000 2005

Figure 3.2: Quarterly historical data for different investment strategies

Data for different investment strategies in the DC account are shown in Figure

3.2. The trend behavior of returns for different investment strategies does not vary

a lot through the time horizon we chose, but there are some slight differences on the

volatility among them. We will find further validations about the volatility in the

model estimates.

Now let us have a look at the estimates from those data. The quarterly VAR(l)

models obtained are as follows:
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• Low risk investment strategy A:
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0.77 0.074 0.066 -0.057

0.11 0.87 -0.011 0.089

0.044 0.14 0.74 0.096

-0.042 0.21 -0.00052 0.80

where XO = (0.0072,0.040,0.0098, 0.0046)T, !:!:. = (0.013,0.030,0.027, 0.03of

and the covariance matrix for at is

2::=

10.63

-1.43

4.49

3.77

-1.43

5.19

-6.08

-2.26

4.49

-6.08

43.36

6.76

3.77

-2.26

6.76

7.36

• Medium risk investment strategy B:

0.76 0.072 0.036 -0.035

0.11 0.87 -0.0029 0.081

0.12 0.093 0.71 0.26

-0.038 0.21 -0.0029 0.80

where XO = (0.0072,0.040,0.012, 0.0046)T,!:!:. = (0.013,0.030,0.038, 0.030)T and

the covariance matrix for at is

2::=

10.45

-1.44

7.94

3.80

-1.44

5.19

-11.11

-2.26

7.94

-11.11

223.80

7.25

3.80

-2.26

7.25

7.36

• High risk investment strategy C:

0.75

0.10

0.18

-0.037

0.071

0.87

0.053

0.21

0.023

-0.0014

0.72

-0.0022

-0.023

0.080

0.38

0.80
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where XO = (0.0072,0.040,0.014, 0.0046)T, !!:. = (0.013,0.030,0.047, 0.030)T and

the covariance matrix for at is

2:=

10.41

-1.45

11.41

3.81

-1.45

5.20

-16.18

-2.26

11.41

-16.18

557.40

7.52

3.80

-2.26

7.52

7.36

From the estimated parameters we can see that in all three investment strategies,

the white noise term for the inflation rate moves in opposite direction with all other

three variables which corresponds to the data trend shown in Figure 3.1. This negative

correlation can be explained intuitively: When the CPI grows rapidly, the contem­

porary real investment return and real wage increase are usually impaired by the

inflation since the purchasing power for $1 is weakened. For the covariance matrix I;,

the estimation results show that investment strategy C has the highest volatility with

the highest variance of at,3; strategy B as the second highest variance and strategy A

as the lowest one.

Having obtained the basic time series model for this study, we will use those three

models to carryon analysis of the loss function in the following chapters. The impact

of different investment strategies will also be studied.



Chapter 4

Stochastic Analysis of the Loss

Function

4.1 Loss function for hybrid pension plan

Now let us consider the loss function of the plan sponsor for each individual policy

at issue. According to the cash flows discussed earlier, we define the loss function as

follows:

oL Present Value at age 25 of cash flows before retirement

+Present Value at age 25 of cash flows after retirement

- Present Value of all contributions

+Present Value of all benefit payments

29
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63

= -c· 5(25) + L (-c) ·5(25) . e2:;=25 (ai+/;)-2::=25 (5i+l,)

t=25
w

+RR· 5(25) . e2:~~25 (ai+/;) . L t-65P65 . e2:;:~5 (-li-fi)

t=65

63

-c· 5(25) . (1 + L e2::=l (a,-5i ))

t=25

+RR. 5(25)· e2:~~25(ai-li)

w

+RR· 5(25) . L t-65P65 . e2:~~25 (a,-I,)+2:;:~5 (-li -/;).

t=66

Here w is the maximum age in the life table. In the first expression above, contri-

butions are discounted with the returns on the DC account (6; + Ii for year i) while

future benefit payments are discounted with long term treasury bond returns (Ii + Ii

for year i). In the second expression we can see that the variables Qi - 6i , Qi -Ii and

-Ii - Ii are involved. Under the Guassian assumption we have made, it follows that

those three variables together follow a three dimensional normal distribution for any

given time i. The survival probability t-65P65 is calculated by the 2001 csa life table

(see Appendix A).

4.2 Change of variables

In this section we will discuss how to simplify the expression for the loss function

through linear transformations of the variable X t and appropriate summations of those

variables. The following theorem introduces how to obtain the first two conditional

moments of the transformed time series variables.
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Theorem 4.1. Let Zt = A· X t, where A = (: ~ ~1 ~1)' Therefore Zt is a

o -1 0 -1
three-dimensional time series variable Zt = (Zt,l, Zt,2, Zt,3) defined as follows:

Zt,l = at - 8t

Zt,2 = at - It

Zt,3 -It - it-

The first two conditional moments of this time series can be obtained as follows:

where S, t E Z, s ~ t, and XO is the initial value of X t observed at issue date.

(4.1 )

Proof: For the first moment, the result is straightforward. Since Zt = A . Xt, we

have,

E(ZtIXO) = E(A· XtIXO)

= A· E(XtIXO).

Next,

E(Zt . Z?IXO) E((A· X t) . (A· XslIXO)

- E((A· X t) .X~ . ATIXo)

A· E(Xt . XsTIXO) . AT.



CHAPTER 4. STOCHASTIC ANALYSIS OF THE LOSS FUNCTION 32

Therefore,

E(Zt' ZsTIZO) - (E(ZtIXO). E(ZsIZo)f

A· E(Xt . XsT[XO) . AT - A· E(XtjXO) . E(XsIXOf . AT

o

The loss function can be rewritten as:

63

oL = -C' 5(25) + L (-C) ·5(25) . eL::=25 Zi,1

t=25
w

+RR· 5(25)· eL:~~25Z,,2 + RR· 5(25)· L t-65P65' eL:~~25Z',2+L:;=~5Z,,3.

t=66

Note that Zt is also a Guassian process since it is a linear transformation of the

observed Guassian process X t . Next, to make the expression for the loss function

neater, we define a vector X t .

Let ~ = (~,l, ~,2) be a two dimensional Guassian process where

t = 25

t> 25

~,2

{

~-l
~Zi'l

t-l

L Zi,2 t = 25,26, .",64,65
i=25

64 t-l

L Zi,2 + L Zi,3 t > 65
i=25 i=65

The expression for oL can be simplified to

64 w

oL = L -c· 5(25) . eYt
,1 + RR· 5(25) . L t-65P65 . eYt

,2. (4.2)
t=25 t=65

In this expression we see that investigating the variable ~ will allow us to study the

randomness of oL for this combination hybrid plan,
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4.3 Conditional Moments of the Loss Function

After simplifying the expression, we will try to obtain conditional moments of the loss

function to examine the potential average loss on each policy.

4.3.1 Cash Flow" Adjustments"

In order to evaluate Equation (4.2), we redefine the cash flows and discount factors

of this plan for modeling purposes:

• During the contribution phase, 25 ::; t ::; 64, we consider constant the annual

cash flows of CF(t) = -c' 5(25) which are discounted with the factors eYi,l for

present values .

• After retirement where t ~ 65, the annual pension benefit cash flow at age t is

CF(t) = RR· 5(25) 't-65 P65 and the corresponding discount factor is eYt
,2.

This method of evaluation separates the deterministic terms from the random

terms in the loss function. The deterministic part represents the cash flow and the

random part is the discount factor. The cash flow CF( t) is not the actual cash flow

that occurs in year t. Note that this approach is applied simply to help further

modeling, and it has no impact on the numerical results for oL.

4.3.2 Conditional Moments of oL

We will see, from Equation (4.3), that the expected value of oL can be obtained from

the expected value of a linear combination of many log-normally distributed variables.
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Since yt follows a Guassian process, at any time t, yt,l and yt,2 are both normally

distributed. In order to get the conditional moments of oL, we need the conditional

moments of yt given XO first.

The first conditional moment of yt is simply the sum of the conditional means of

Zt, that is to say,

t-1
E(yt,lIXO) = LE(Zi,lI X O)

i=25

{

i~5 E(Zi,2IXo), if t :; 65

M t-1
i~5 E(Zi,2IXO) + i~5 E(Zd X O) if t > 65

As for the second moment of yt, a recursive method is applied when calculate

Cov(yt, YsTIXO) to improve efficiency. Here we assume t 2: s. Since Cov(Ys, ytTIXo) =

(Cov(yt, Y/IXO))T, once we fill up the lower triangle of Cov(Ys, ytTIXO) with 25 :;

s :; t :; w, the upper triangle is immediately filled in through transposes. Follow­

ing are the steps we take to calculate the lower triangle of Cov(Ys, ytTIXO) where

25 :; s :; wand 25 :; t :; w:

1. Since Var(Y25 IXO) = 0, we start by calculating Var(Y26 IXO).

2. Calculate the first column which represents Cov(yt, Y26 IXO) by recursion:

{
Cov((Z Z )T y TIXo)Cov(y: y TIXO) = Cov(y:_ y TIXO)+ t-1,1, t-1,2 ,---1§. -

-.!.,~ - _t_1,~ - Cov((Z Z)T y TIXO)t,l, t,3 , ---1§. _

if t :; 65

if t > 65

3. Move along each row until reaching the diagonal to fill up the lower triangle

recursively as followings: when t ~ 65,

t-1
Cov(yt, YsT[XO) = Cov(yt, Ys-?/XO)+ L COV((Zi,l, Zi,2f, (Zs-l,l, Zs-1,2)IXO).

i=26
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When t > 65 and s :s; 65,

64

Cov(}~,Ys-?[XO) + L COV((Zi,I' Zi,2f, (Zs-I,I, ZS-I,2)[XO)
i=25

t-l

+L COV((Zi,I' Zi,3f, (Zs-I,I, Zs-I,2)[XO).
i=65

When t > 65 and s > 65,

64

COV(~, Ys-?[XO) + 2..:: COV((Zi,l, Zi,2f, (Zs-I,I, Zs-I,3)[XO)
i=25

t-l

+ 2..:: COV((Zi,l, Zi,3)T, (Zs-I,I, Zs-I,3)!XO).
i=65

Please note that each entry of this (w - 25) by (w - 25) matrix is actually a two by

two matrix instead of a one-dimensional number. Since ~ follows a bivariate normal

distribution, we can directly get the variance of ~,1 and ~,2 from the covariance

matrix of ~ given XO.

Let us move on to the conditional moments of oL given XO. Equation (4.3) gives

the formula for the expected value of oL:

64

E(oLIXO) = 2..:: -c· 5(25) . eE(Yt,IIKO)+O.5Var(Yt,IIKO)

t=25
w

+RR· 5(25) . L t-65P65 . e E (Yt ,2IKO)+O.5Var(Yl,2IKO). (4.3)
i=65

Calculations for the second conditional moments of oL given XO are more complex.

Parker (1997) introduced how to use recursion on future cash flows for this calculation,

and we will follow the same approach here.

Let oLk denote the present value at issue date for all cash flows until age k. Since
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the first cash flow c . S(25) occurs at issue date, we have

For k > 25, if k :S 64, we have

oLk oLk - 1 + CF(k) . eYk,J

oLk - 1 - c· S(25) . eYk,l,

'When k> 64,

oLk oLk - 1 + CF(k) . eYk
,2

oLk - 1 + RR . 5(25) 'k-65 P65 . eYk
,2.

Therefore for 25 < k :S 64 we have

E(oL~IXO) = E((oLk - 1 + CF(k) . eYk,l )2IXO)

E(oLLIIXo) + 2· CF(k) . E(oLk - 1 . eYk,lIXO)

+CF(k)2. E(e2,Yk ,1IXO). (4.4)

In Equation (4.4), E(oLLIIXO) is already available from earlier calculations, and

E(oLk _ 1 - ev,_, IX") = E(~ CP(i) -eYo_, - eV
" IXO )

E(~ CP(i) - eV'_'+v,_, IX")
k-l

= L CF(i)· E(eYi.l+Yk.lIXO)
;=25

k-lL CF(i)· eE(Yi.l+Yk,1IKO)+l/2Var(Yi,1+Yk,lLKO),

;=25



CHAPTER 4. STOCHASTIC ANALYSIS OF THE LOSS FUNCTION 37

where E(Yi,l + Yk,lIXo) and Var(Yi,l + Yk,lIXo) can both be obtained as discussed

earlier from the moments of ~' The last term in Equation (4.4) is also easily calculated

since e2'Yk
,! is log-normally distributed.

When k > 64, similarly we have

and

E((oLk- 1+ CF(k) . eYk ,2?IXo)

E(oLL1IXO) + 2· CF(k) . E(oLk- 1 . eYk ,2IXO)

+CF(k)2 . E(e2Yk ,2IXO) (4.5)

E(f CF(i) . eYi,! . eYk,2Ixo) + E (I: CF(i) . eY,,2 . eYk ,2/ XO )
,==25 ,=65

E(~CF(i) 1.,+h'lxo
) +E(~CF(i) 1.,+h,/XO

)

64 k-l

~ CF(i) . E(eYi,!+Yk,2IXO) +~ CF(i) . E(eYi ,2+Yk,2IXO)
i=25 i==65

64
~ CF( i) . eE(Y,,! +Yk,2IKO)+1/2·Var(Yi,! +Yk,2IXO)

i==25

k-l

+~ CF(i) . eE(Yi,2+Yk,2IXO)+1/2.Var(Yi,2+Yk.2IKO).

i=65

After obtaining E(oLZIXO) for 25 ::; k ::; w, the conditional mean and variance of

oL is calculated as follows:

E(oLIXO) E(oLwIXO)

Var(oLIXO) = Var(oLwIXO)

E(oL~IXO) - (E(oLwIXO)f
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To investigate the distribution of oL more carefully, we also calculate the third

conditional moment of oL which can also be derived using a recursive method. For

the first cash flow, we have

For 25 < k ::; 64,

+3. oLk - 1 • (CF(k) . eYk ,1)2 + (CF(k) . eYk,l )3IXO)

E(oLLIIXO) + 3· E(oLLl . CF(k)· eYk,lIXO)

+3· E(oLk - 1 . (CF(k) . eYk,1 )2IXo) + E((CF(k) . eYk,l )3IXO).

In the above expression, E(oLLIIXO) is obtained in the previous recursions and

As we know, Yi,I +Yj,l +Yk,l given XO is also normally distributed for any integer i, j, k

iri (25,64]. It is straightforward that eYi,I+Yj,l+Yk,l given XO follows a log-normal dis­

tribution. Therefore the expected value of each component in the double summation

in Equation (4.6) can be calculated.

On the other hand,

E ( (~CFU) ey,,) C F(k)2 e2Y
" Ixo)

I:E(CF(i)CF(k)2 . eY,,1+2Yk,1[XO).
t=25
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Therefore E(oL%IXo) can then be obtained when 25 ::; k ::; 64.

For k > 64,

E(oL~IXO) = E((oLk _ 1+ CF(k) . eYk ,2)3IXo)

E(oLLIIXO) + 3· E(oL%-1 . CF(k) . eYk,2IXO)

+3· E(oLk - 1 . (CF(k)· eYk ,2)2/XO) + E((CF(k)· eYk ,2)3/XO).

Here,

aLL! = (~CF(i)' eY
'" +j~CF(j). eVj

,,) 2

64 64 65 k-1

:L :LCF(i)CF(j). eY"l+Yj,l +2· :L :LCF(i)CF(j). eYi ,1+Yj,2
i=25 j=25 i=25 j=65

k-1 k-1

+:L:L CF(i)CF(j)· eYi ,2+Yj,2.
i=65 i=65

Using the properties of the log-normal distribution, the third conditional moment

of oLk given XO can be derived by this recursion. The skewness of oL can be calculated

as

E((oL - E(oLIXO))3/XO)

Var(oLjXO)3/2

E(oL3IXO) - 3 . E(oL2IXO) . E(oLIXO) + 2 . (E(oLjXo))3
Var(oLjX°)3/2

Some numerical examples will be provided in the following section based on the

VAR(l) models that were estimated in the previous chapter and the formula we just

derived.
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4.4 Numerical Illustrations

In this section we will present results for the conditional moments of the loss function

oL given X O with the VAR(1) models we obtained earlier for the investment strategies.

Comparison between different investment strategies will be made to investigate the

impact of the asset allocation on the investment risk for our combination hybrid

pension plan. In the following discussion, we set the first year salary 5(25) to 1 and

the replacement ratio guarantee is 70%.

4.4.1 Deterministic Versus Stochastic Assumptions

First, let us check the impact of the stochastic assumptions on variable X t into this

combination hybrid pension plan. In some earlier studies on pension plans, determin­

istic assumption for X t is used, i.e. X t is assumed to be a constant over time. We will

compare our current stochastic assumptions with a deterministic assumption. The

basic assumptions for both cases are:

• Deterministic Assumptions

Assume that there are no randomness embedded in the variable X t and that

it does not vary through time. The sample means of X t for strategies A, B,

and C are chosen as the best estimates for X t and remain the same through

time in the deterministic valuation. Here we use investment strategy B which

represents the median risk asset allocation as an example. By setting the loss

function at issue, oL, to zero, we back solve for a contribution rate, which is

14.12% in this case.
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• Stochastic Assumptions

Next we use this contribution rate of 14.12% together with the stochastic as­

sumption of the VAR(l) model to obtain the conditional moments of oLk given

XO Therefore with the same contribution rate, and same plan feature, we can

identify the difference caused by the stochastic model by comparing these two

loss functions.

Expected Value of the Loss Function for Portfolio B with c=14.12%

deterministic valuaDon

results from VAR model
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Figure 4.1: Comparison of loss functions on deterministic and stochastic basis

Figure 4.1 compares the expected loss function E(oLk ) for the stochastic model and

the loss function oLk valued on a deterministic basis. The x-axis represents the number

of years that one has been in this pension plan, i.e., k - 25. The graph shows that

there are significant differences between the expected loss function and best estimate

loss function which should be caused by the change of assumptions in variable Xt.
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We could see that during the contribution phase of this pension plan, the expected

value of the DC account which is -E(oLkIXo) under the VAR(1) model is higher than

the deterministic -oL Ic · When positive cash flows, which are the pension payments

start, the expected loss function E(oLkIXo) goes up much faster and exceeds the

deterministic oLk after around 5 years. This can be pa.rtly explained by the property

of log-normal distribution we used for the discount factor. That is

It is also explained by the starting conditions, XO which in this illustration are

lower than the mean, I!.' Therefore the stochastic model not only introduces volatil­

ity in oL but also recognizes the current financial situation. The contribution rate

obtained on a deterministic basis is insufficient in our stochastic modeling exercise.

Hence, since the nature of variable X t is random and starting at XO, it is of great im­

portance for the plan sponsor to take these facts into account when Investigating the

loss function oL, and then price this combination hybrid pension plan very carefully.

4.4.2 Comparison of Different Investment Strategies

As mentioned in Chapter Three, we consider three types of plan members with differ­

ent risk appetite. Here we will compare those three investment strategies to find out

how they could affect the loss function Following is a brief review of their investment

strategies in the DC account:

• Portfolio A 20% stock and 80% one-year treasury bond, the low risk portfolio.
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• Portfolio B: 50% stock and 50% one-year treasury bond, the median risk port­

folio .

• Portfolio C: 80% stock and 20% one-year treasury bond, the high risk portfolio.

With the VAR(l) model we estimated in Chapter Three and the recursive formula

that are derived in this chapter, we obtained the conditional moments of oLk , kEN,

for the three investment strategies studied earlier. To make parallel comparisons

across all lDvestment strategies, we set the contribution rate to a constant of 14.12%

over all portfolios and the replacement ratio guarantee to 70% Detailed results on

the first three moments of oLk given X O are shown in Table 4.1-4.3.

Policy Year E(oLkIXU
)

(k - 25) Strategy A Strategy B Strategy C
5 -0.693 -0.687 -0.687
10 -1.347 -1.315 -1.308
20 -2.551 -2.428 -2.414
30 -3.646 -3.430 -3.476
40 -4.667 -4.409 -4668
50 -1. 021 -0.747 -1.000
60 1.594 1.908 1.665
70 2.871 3.228 2.996
80 3.052 3.421 3.192
90 3.055 3.424 3196
w 3.055 3.424 3.196

Table 4.1: Expected value of the loss function oLk throughout the policy term for
different investment strategies

Rationally, with sufficient contribution rate, the loss function oL studied here for

the plan sponsor should have at most a zero expected value, othenvise the plan sponsor

is almost doomed to lose money by offering such a pension plan. However) here for
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the expected value of oL k given X O
, we can see in Table 4.1 that the contribution

rate for all three investment strategies are not sufficient since the expect values of

the loss function are all quite large given an annual contribution rate of 14.12%,

For investment strategy A which has a lower investment risk than strategy B, the

expected value of oLk for 25 S; k S; w for strategy A is always lower. However,

between investment strategies Band C, there are no uniform ordering of E(oLkIXO
) for

25 S; k S; w, The expected value of oL given X t for strategy B is actually greater than

that of strategy C even though it has a lower portion of stock in the asset allocation.

This is because we are comparing the expected value of two variables that are both

mixtures of log-normally distributed random variables. For log-normal distributed

variables, both the mean and the variance of the corresponding normally distributed

variables need to be taken into account \'y'hen calculating the expected values. It is

not clear that a higher variance in the normally distributed variable would give higher

expected value of the log-normal distribution if the mean also changes.

The results for the standard deviation and ske\vness of oLk are much more straight­

forward to interpret. As the portion of stock increases in the asset allocation, from

strategy A to C, both the standard deviation and the skewness of oL, i.e. oLwl go

up. Therefore special attention needs to be paid to the portion of stock in the asset

allocation of the DC account, because the standard deviation and skewness are rather

high compared to the expected value of oL. There is a huge investment risk embedded

in offering the replacement ratio guarantee as the plan sponsor.

Another thing worth noticing is that CJ(oLkIXO
) increases with policy year. When

we are standing at the issue date of the policy and looking forward, as time goes on

after the issue date, more and more uncertainty is included in the policy. Therefore
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Policy Year O"(oLkIXU
)

(k - 25) Strategy A Strategy B Strategy C
5 0.024

---
0.054 0.089

10 0.078 0.172 0.282
20 0.270 0.554 0.907
30 0599 1.184 2.047
40 1.075 2.180 4.420
50 2.964 2.929 4.115
60 9.400 9.317 9.307
70 17.364 17.867 17.824
80 20.218 21.119 21.177
90 20.329 21. 256 21.322
w 20.330 21. 256 21.322

Table 4.2: Standard deviation of the loss function oLk throughout the policy term for
different investment strategies

the standard deviation of oLk is increasing in k. As for Skew(oLkl.Yo), vvhen the cash

flows are negative, the skewness is always negative and decreases with time. \Vhen

the cash flows turn positive, the skewness of oLk also turns positive after a few years

and increases gradually.

Given that a contribution rate of 14.12% is insufficient for all three investment

strategies, we now investigate the appropriate contribution rate for each strategy. By

setting £(oL) = 0, the required contribution rate is obtained by trial and error. The

results are shown in Table 4.4.

Here we see that the contribution rate is rather high for all three strategies. It is in

fact higher than 20% which is not common in practice for regular DB or DC pension

plans. This combination hybrid pension plan seems much more" expensive" than

regular plans in the current financial context. Among all three investment strategies,
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Policy Year Skew(oLkIXU
)

(k - 25) Strategy A Strategy B Strategy C
5 -0.150 -0.337 -0.560
10 -0236 -0.534 -0.901
20 -0.466 -1.009 -1. 764
30 -0778 -1. 736 -3.621
40 -1.155 -2.993 -10.189
50 5.188 3.777 -6.158
60 19.419 21.106 19,403
70 151.107 178.612 189.291
80 595.377 786.544 859.120
90 699.437 952.772 1,049.179
U' 699.574 953.031 1,049.488

Table 4.3: Skewness of the loss function oLk throughout the policy term for different
investment strategies

Investment Contribution E(oLIXU
) a(oLIX U

) Skew(oLkIX U
)

Strategy Rate
A 23.361 % 0.000 20.154 717.704
B 25.083% 0.000 20.981 990.013
C 23.784% 0.000 21.311 1,048.788

Table 4.4: I'vloments for policies with contribution rates adjusted so that E(oLIXo) = 0

B requires the highest contribution rate which corresponds with the fact that with

the same contribution rate, B gives the biggest expected loss.

'vVe can also find in Table 4.4 that even with different contribution rates, the

standard deviation and skewness of oL given X O still increase with the portion of

stock in the investment strategy and they are still incredibly high compared to the

contribution rate based on the best estimate.
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Figure 4.2: Standard deviation of oL for investment strategy A

Looking at the large numbers for the standard deviation and skewness of oL, we

wonder if it is possible to dampen some of the market risks by changing parameters

such as the contribution rate and the replacement ratio guarantees. Figures 4.2-4.4

illustrate how the standard deviation of oL would change with both the contribution

rate and the replacement ratio guarantee for all three investment strategies. In those

graphs the contribution rate varies from 10% to 100% and the replacement ratio also

varies in this range. Though the contribution might never be as high as 100% and

the replacement ratio should not fall too low in practice, we are only applying this

range to investigate the changes in doLIXO
).

First we find in the graphs that the maximum value of O"(oLIXo) in each graph

increases with the portion of stocks in the investment strategies. Looking into each
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Figure 4.3: Standard deviation of oL for investment strategy B

graph, we see that the surfaces of Q"(oLIXo) for different investment strategies show

some similarity and yet slight differences in their shapes. For all three strategies,

Q"(oLIXo) always increases in the replacement ratio guarantee. This is due to the

fact that the higher the replacement ratio guarantee is, the more pension benefit is

guaranteed by the plan sponsor and therefore the sponsor bears more responsibility

to undertake risks. When it comes to the contribution ratio, O'(oLIXO
) for all three

investment strategies increase with the contribution rate for relatively small replace-

ment ratio guarantee. However, for larger values of replacement ratio guarantee, the

trend varies through strategies. For strategy A, Q"(oLIXO
) decreases with the contri-

bution rate for high replacement ratio guarantees. While for strategies Band C, the

change in Q"(oLIXO
) with the contribution rate for a high replacement ratio guarantee

is not monotone. Taking the range of acceptable replacement ratio into account, we
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Figure 4.4: Standard deviation of oL for investment strategy C

can find that all three surfaces are quite fiat over the desired values of the replace-

ment ratio guarantee and no significant decrements are seen by changing both the

contribution and the replacement ratio within the range we discussed before.

So far we can conclude that in order to provide a competitive plan with sufficient

pension income for its plan members, which means that the replacement ratio should

be set in the range from 60% to 74% as discussed earlier, the extend to which we

can dampen the volatility in oL through adjustments of those two parameters is quite

limited based on the relatively fiat shape of the surface. The contribution rate also

needs to be set at an acceptable value for plan members, which limit the dampening

even more.
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It seems that it would be better for the plan sponsor to focus on choosing a proper

investment strategy and then set the contribution rate under the sponsor's own risk

tolerance. Very careful investigation of oL is needed since the standard deviation we

obtained based on current market data is quite high and can result in significant loss

to the plan sponsor if this combination hybrid pension plan is not properly priced and

valued.

We will further investigate the distribution of oL under each investment strategies

and introduce how risk management can be performed on this hybrid pension plan in

the following chapters.



Chapter 5

Distribution of the Loss Function

In the previous chapter we derived the conditional moments of the loss function for one

individual policy from a limiting portfolio of a combination hybrid pension plan. The

first three conditional moments were calculated recursively from the date of issue.

From Equation (4.3) we see that oL is a mixture of correlated log-normal random

variables. Since the standard deviation and skewness of oL given X O are quite high,

it is difficult to fit the entire conditional distribution by matching the first three

conditional moments. We will try to estimate and simulate the distribution function

of oL in this chapter to gain more insight.

5.1 Approximation

Parker(1993a) introduced an iterative approximation method to obtain the distri­

bution of the present value of future cash flows when the discount factor is one­

dimensional. Here we will extend this method to two-dimensional discount factors yt

51
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and seek for the conditional distributions of oL.

First let us recall the simplified expression for oL:

~ w

oL = 2) -c) . 5(25) . eYt,l + RR· 5(25) . L t-65P65 . eYt ,2.
t=25 t=65

We further simplify the expression by setting 5(25) = 1, therefore

64 w

oL = L (-c) . eYt,l + RR· L t-65P65 . eYt ,2.
t=25 t=65

52

(5.1)

Next we introduce the iterative approximation for the conditional distribution of

oLk for k E {25, 26, ... , w}:

Theorem 5.1. Let the function 9j(P, y) where j E {25, 26, ... , w} be defined as

The distribution of oLj can be expressed as

P(oLj '5:- p) = JJ9j(P,yJdY1 dY2'
R2

An approximation method can be applied to derive 9j(P, y).

For 27'5:- j '5:- 64

(5.2)

9j(P, Ji) ~ JJ9j-1 (p - CF(j) . eYl,~) . f~IYj-l (~I~)dx1 dX2. (5.3)
R2

While j 2: 65 J

9j(P,yJ ~ JJ9j-1(P - CF(j)· eY2,~). fYjIYj_l(ylx)dx1 dX2, (5.4)

R2
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here fy] 1Y;-1 (lil,~J is the conditional density function of Y} given Y}-l.

The starting value for this iteration is

926 (p, li) = P(OL26 < pIY26 = li) . fY26 (li)

!Yz6(li)' I{p ~ CF(26)· eYZ6 ,1 + CF(25)},

where I {.} is an indicator function.

Proof: The relation between 9j(P, li) and P(oL j ::; p) which is

P(oLj ::; p) = JJ9j(P, li)dYl dY2
RZ

is a well know result (see, for example, Morrison (1990),Chapter Three).

For the starting value, it is straightforward that

926(P,li) = P(OL26 ::; pl Y26 = li) . !Yz6(li)

p(CF(25) + CF(26)· eY1 ::; plY26 = li) . fY26(Y)

{
0, if CF(25) + CF(26) . eY1 > P

!YZ6(J!.)· 1, if CF(25) + CF(26). eY1 ::; P .
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Now we justify the approximation. There is an alternative expression for 9j(P, li)

defined in Equation (5.2), that is

The equivalency is also presented in Morrison (1990), therefore we have:

(5.5)
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So far when j :::; 64, gj(p, JL) can be written as:

54

P(oL j :::; plYj = y) . fy(y)
_ - --.2.-

P(oLj - 1 :::; P - CF(j)· eYj,l!Yj = JL)' h)(JL)

P(oL j - 1 :::; p - CFU) . eYj,l, Yj = y)
---------'=----=-- . f ( I

P(Yj = y) Yj JL,

P(Yj = JLloL j - 1 :::; P - CF(j) . eYj,l)

P(Yj = JL)

.P(oL j - 1 :::; P - CFU) . eYj,l) . h j(JL)

P(oL j - 1 :::; P - CF(j)· eYj,l). fY;(JLloL j - 1 :::; p - CFU)· ey),l).

Here,

flj(JLloL j - 1 :::; P - CFU)· eYj,l)

= JJ fljjY;-l (JLloL j - 1 :::; p - CFU) . eYj,l, Yj-l = ~)
R2

-!Yj- 1
(~loLj-l :::; P - CF(j) . eYj,l )dXl dX2. (5.6)

Equation (5.6) uses the definition of a conditional density function,

fYj!yj-1 (JLloL j - 1 :::; P - CFU) . eY),l, Yj-l = ~)

hj,Yj-1(JL, ~loLj-l :::; p - CFU) . eYj,l)
= flj-1 (~loLj-l :::; P - CFU) . eYj,l)

Now we make the core approximation in Equation (5.6) which is

Next, let us proceed with the derivation of the iteration formula for gj(p, JL) will
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and validate the approximation later. Assuming Equation (5.7), we have

9j(p,'M) - P(oLj- 1 :::; P - CF(j)· eYj,l)

.JJf~lYj-1 (:itI~J . !YJ-I (;floL j- 1 :::; P - CF(j) . eYj,1 )dXl dX2·

R2

Since
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we get

9j(P,:it) -:... P(oLj- 1 :::; P - CF(j) . eYj,l)

jrr 9j-l(P - CF(j)· eYj,l,;f)
. J f~IYj-l (:itl;f) . P(oLj- 1

:::; P _ CF(j) . eYJ,I) dXl dX2
R2

JJ f~IYj-I(:itI;f)' 9j-l(P - CF(j)· eYj.I,;f)dxl dX2·

R2

After deriving the approximation for the contribution phase where j :::; 64, we can

carryon with the pension income phase where k > 64. The main difference here is

that for j > 64, 9j(P,:it) can be written as:

9j(P,:it) = P(oLj :::; pl1J = :it) . fYj(:it)

P(oLj- 1 :::; P - CF(j)· e YJ ,211J =:it) . fYj(:it).

By making a similar approximation as Equation (5.7) for j > 64 which is

we can obtain

9j(P,:it) =JJ9j-l(P - CF(j)· eY2 ,;f)' !YJlyj_Jylx)dxl dX2· 0
R2
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It is very important to notice that the accuracy of this approximation is depends

the correlations between Yj and Yj-l' as well as eYj,l,e~,2 and -oLj . 'Ve suggest that

the information provided by Yj-l = ;f is almost the same as that provided by the

combination of Yj-l = ;f and oLj - 1 ~ p - CF(j) . eYj,l when used as the condition

in the density function of Yj. A high correlation usually holds for j ~ 64, however

for j > 64, close investigation needs to be done before the approximation could be

applied.

Note that the variable Yj,2 is not actually involved when we apply the recursive

method during the contribution phase of this combination hybrid plan, therefore the

two-dimensional iteration in Theorem 5.1 can be reduced to a simple one-dimensional

iteration with CF(i) = -c and discount factor eli,l for 25 ~ i ~ 64 as discussed in

Parker(1993a) if the only interest lies in the contribution phase.

On the computational side, we use a discretization method for the double inte­

gral in Equations (5.3) and (5.4). Since we have extended the situation from one­

dimensional in Parker(1993a) to a two-dimensional model, the computational error

due to the discretization is therefore higher compared to Parker(1993a). In order to

provide the same accuracy, the number of points needed in the discretization must

be greater than that of the one-dimensional case. Also, the runtime for the iteration

increases quadratically from the one-dimensional case. In order to maintain an accept­

able accuracy, the number of different points used for Yj,l and Yj,2 in the discretization

is set by trial and error with the runtime taken into account.
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5.2 Numerical Illustrations
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Next we will present some illustrations based on this approximation method with a

simple policy which can help us build a general understanding of the distribution

of the loss function oL. The reason we do not use a practical policy is that the

errors caused by the computations for a practical policy are quite high and would

shadow the mathematical accuracy of the approximation. Also, since we are using a

bivariate normal distribution for }t, the errors caused by matrix calculations is also

quite significant.

Assume that we have a short term combination hybrid pension plan which has 10

years of contributions and 10 years of pension payments. The survival probability is

modeled with a linear decrement that hits zero at the end of these 20 years. We ignore

the first contribution made at age of entry to the plan since there is no randomness

associated with it. First let us look at the results for the first 10 years of this policy

with investment strategy A in Table 5.1. The contribution rate is set at 34% in order

to make sure that E(oLIXO) = O. Results show that the iteration method gives a very

close approximation of the expected value of oLk where the error is within 0.17%. For

O"(oLlOIXO), the error is about 2.71%.

We can find validations for this approximation in Table 5.2. Considering that the

cash flows are negative for the first 10 policy years, the closer the correlation between

oLk and eYk,l gets to -1, the more accurate this approximation method could be.

Now we move on to the pension income phase. Tables 5.3 and 5.4 give the ap­

proximation results with the first two moments of oLk for investment strategy A when
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E(oLkIXU
) o-(oLklXU

)

Policy Year Actual Approxi. Error(%) Actual Approxi. Error(%)
2 -0.338 -0.338 0.00% 0.0096 0.0096 0.00%
3 -0.672 -0.672 0.00% 0.023 0.0232 0.87%
4 -1.002 -1.002 0.00% 0.0396 0.0403 1.77%
5 -1.329 -1.329 0.00% 0.0588 0.0604 2.72%
6 -1.652 -1.652 0.00% 0.0802 0.0831 3.62%
7 -1.971 -1.971 0.00% 0.1039 0.1079 3.85%
8 -2.286 -2.286 0.00% 0.1297 0.1347 3.86%
9 -2.597 -2.598 0.04% 0.1579 0.1631 3.29%

I
10 -2.905 -2.91 0.17% 0.1885 0.1936

1
2.71 %
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Table 5.1: Approximation results for the first 10 policy years with c = 34%, S(25) = 1
and investment strategy A

2 3 4 5 6 7 8 9 10 I

-1.00 -0.96 -0.94 -0.92 -0.90 -0.89 -0.89 -0.88 -0.88 I

Table 5.2: Correlation of oLk and eYk,l for the first 10 policy years with c = 34% and
investment strategy A

the number of points used in the discretization is set to 25 and 35 respectively. The

precision of the approximation becomes weaker and weaker as time goes on for the ex-

pected value of oLk in both of these tables, while the approximation for the standard

deviation of oLk remains relatively close. When we increase the number of points in

the discretization, the results are improved and more accurate. We will further in-

vestigate the distribution function in the next section to compare the approximation

method with the simulation method. Note that the runtime for the approximation

with 25 points is several hours. If we increase the number of points from 25 to 35,
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the runtime is five times as long.
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E(oLkIXU
) o-(oLkIXU

)

Policy Year Actual Approxi. Error(%) Actual Approxi. Error(%)
11 -2.3 -2.312 1% 0.186 0.192 3%
12 -1.784 -1.798 1% 0.212 0.216 2%
13 -1.348 -1.366 1% 0.264 0.265 0%
14 -0.984 -1.029 5% 0.331 0.327 1%
15 -0.685 -0.787 15% 0.405 0.396 2%
16 -0.447 -0.624 40% 0.479 0.468 2%
17 -0.263 -0.528 101% 0.546 0.533 2%
18 -0.129 -0.497 285% 0.603 0.588 2%
19 -0.043 -0.524 1119% 0.645 0.629 2%
20 -0.001 -0.606 60500% 0.668 0.658 1%

Table 5.3: Approximation results for the last 10 policy years with c = 34%, S(25) = 1,
25 points in discretization for investment strategy A

5.3 Simulations

As discussed earlier, the quality approximation method for the distribution of oL

depends on the correlations between each pairing of eYJ,l, eYJ ,2 and oLj . Also for this

2-dimensional case, both the accuracy and the runtime highly depend on the number

of points in the discretization. Therefore we need to seek other methods that can

provide insights on the distribution of oL with a high level of accuracy.

Considering the definition of the variable oL, we think that it is best to use a

multivariate simulation study on X t and oLt for t E {25, 26, ... ,w} to get an empirical

distribution of oL. To compare with the approximation method, we also use a 20-year
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E(oLkIXU
) er(oLkIXU

)

Policy Year Actual Approxi. Error(%) Actual Approxi. Error(%)
11 -2.3 -2.301 0% 0.186 0.195 5%
12 -1.784 -1.785 0% 0.212 0.219 3%
13 -1.348 -1.349 0% 0.264 0.269 2%
14 -0.984 -0.987 0% 0.331 0.335 1%
15 -0.685 -0.706 3% 0.405 0.407 1%
16 -0.447 -0.507 13% 0.479 0.479 0%
17 -0.263 -0.379 44% 0.546 0.546 0%
18 -0.129 -0.310 141% 0.603 0.602 0%
19 -0.043 -0.296 588% 0.645 0.642

0%~
20 -0.001 -0.329 32755% 0.668 0.664 1%

Table 5.4: Approximation results for the last 10 policy years with c = 34%, 5(25) = 1,
35 points in discretization for investment strategy A

pension plan which include 10 years of contribution and 10 years of pension payments.

Results for the first two moments of oLt given X O are shown in Table 5.5.

E(oLkIXU
) er(oLkIXU

)

Strategy Policy Year Actual Simulation Actual Simulation
A 10 -2.905 -2.905 0.186 0.189

20 -0.001 0.003 0.668 0.671
B 10 -2.910 -2.910 0.425 0.425

20 -0.007 -0.007 0.763 0.764
C 10 -2.900 -2.899 0.700 0.700

20 0.002 0.005 0.948 0.952

Table 5.5: Simulation results for all three investment strategies

The number of simulations we performed for each strategy is 200, 000. We can

tell from Table 5.5 that simulation closely matches the actual moments of oLk with

chosen number of simulations. Therefore we can also use simulation to examine the
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accuracy of the iterative approximation method.

5.4 Comparison
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Figure 5.1: Comparison of distribution function for oL lO for both methods

Next let us compare the approximation method and the simulation method. Figure

5.1 compares the distribution function we obtain from the approximation method with

25 points in the discretization and the one from the simulation method for oLlO with

strategy A. They turn out to be very close to each other. After the contribution phase,

we compare the simulation results with those for the approximation with different

number of points in the discretization. We see in Figure 5.2 that as the number of

points increases, the approximation produces closer results to the simulation results.

After comparing the moments of oL under both methods, we find that the simulation

method provides better results. It is almost like that the curve from the approximation
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method is parallel bu t to the left of the simulated curve.

Approximation Versus Simulation
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Figure 5.2: Comparison of distribution function for oL for both methods

Next let us compare the impact of different investment strategies in the DC ac-

count. From Figure 5.3 which gives the simulated distribution of oL with all invest­

ment strategies with different c such that E(oLIXO) = 0, we find that the riskiness of

the investment strategy has a direct impact on oL.

For the probability that oL ~ 0, strategy A offers the highest value while strategy

B gives the lowest one. That is to say, even if the expected values of oL are all set to

0, the probability that the plan sponsor will have a negative loss highly depends on

the riskiness of the DC account. Since portfolio C has the highest portion of stock in
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Figure 5.3: Comparison of distribution function for oL for different investment strate­
gies

the DC account and portfolio B has the second highest, we conclude that the higher

the portion of stock is, the larger probability is that for the plan sponsor will incur

a loss. Therefore, to avoid significant losses, the plan sponsor should be very careful

about the asset allocation that is allowed in the DC account.



Chapter 6

Economic Capital

Now let us consider a practical application of the results we have so far for this

combination hybrid pension plan, which is the calculation of the economic capital for

market risk. The concept of Economic Capital has been a great focus for insurance

companies in recent years, and it is embedded in the Enterprise Risk Management

(ERM) framework which has drawn lots of attention under current market conditions

where many of the insurance companies are facing significant losses in their asset

investment due to the US Subprime Mortgage Crisis. Although Economic Capital is

usually calculated at a corporate level and we are not actually modeling the entire

business of an insurance company, we can still take this combination hybrid pension

plan as one product sold by an insurance company and thus get the economic capital

for market risk associated with this product.

First, we will introduce the properties of risk measure and Value-at-Risk and then

the concept of Economic Capital will be introduced in details.

64
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6.1 Risk Measures
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For insurers, the essence of selling an insurance contract or any type of guarantee is

actually selling risk coverage. Therefore it is very important that the insurer knows

accurately how to measure risks and then price it profitably or decide the capital re­

quirement to prepare for unexpected losses and stay solvent for a certain time horizon.

There are many types of risk measures that have been applied so far. However,

none of them can provide a full coverage of the inherent risk. Each risk measure is

usually chosen to focus on the most desired perspective. For instance, the expected

value of a random loss gives the central tendency and the variance of the random loss

measures the spread.

A general definition for risk measure is as follows (see Denuit, Dhaene, Goovaerts

and Kaas 2005):

Definition 6.1. A risk measure is a functional p mapping a risk X to a non-negative

real number p[X], possibly infinite, representing the extra cash flow which has to be

added to X to make it acceptable.

In this definition, the word" acceptable" could be interpreted in many different

ways. A risk measure could be the "acceptable" premium that the insurer should

charge for an insurance contract, or the" acceptable" amount of risk capital for a

portfolio to avoid insolvency. For a given measurement p, the higher p[X] is, the

more "risky" X is.

One or more of the following properties are usually desired for a risk measure:
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1. Non-excessive loading: The risk measure p[X] for any random variable X is

no greater than the largest possible value of X. i.e.

2. Non-negative loading: The risk measure p[X] for any random variable X is

no less than the expected value of X. i.e.

p[X] 2: E[X]

3. Translativity:

p[X + e] = p[X] + e for any random variable X and any constant c.

4. Constancy:

For any constant e, pre] = e

5. Subadditivity:

For any random variable X and Y, p[X +Y] ::; p[X] + pry]

6. Positive Homogeneity:

For any random variable X and any positive constant e, p[eX] = ep[X].

7. Monotonicity:

For any random variable X and Y, if Pr[X ::; Y] = 1, then piX] ::; pry].

The first property is quite fundamental since there is no point to buy an insurance

contract if the premium is greater than the maximum possible loss, or to keep more

risk capital than any possible loss in the portfolio. The situation is similar with the

second property if the risk measure p represent the premium for an insurance contract.
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According to the law of large number, if p[X] < E[X], the probability of ruin is 1.

The properties listed above are favored by various risk measures based on their own

focus. There are some other properties that are considered to be of great importance

for risk measures, however no attempt is made here to cover all properties.

6.2 Value-at-Risk (VaR)

Nowadays, one of the most important tool in risk management is the Value-at­

Risk(VaR), which is a risk measure that focuses on the tail of a distribution. In

this study, we are concerned with situations where the loss function can be very large

which calls for the use of VaR.

Definition 6.2. Given some confidence level 0' E (0,1), the VaR of the loss function

oL is defined as follows:

VaRc~ = inf{p E R: P(oL > p) ~ 1 - O'}

When a = 95% and the distribution for oL is continuous, for example, then

VaRo.95 will give the 95% percentile of the loss function which means that the proba­

bility of oL exceeding VaRo.95 is at most 5%. This measurement will provide us with

a quantitive understanding of an "extreme loss" on one policy.

As a risk measure, VaR satisfies the non-excessive loading, translative, positive

homogeneity and monotonic properties since VaRc. is equal to a 1000'% percentile if

the distribution of oL is continuous. However, the non-negative loading properties

does not apply to VaR due to different choices of 0'. It has been proven that VaR
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is not subadditive either. For example, it is possible to have X and Y multivariate

normal with VaRo.95 of X + Y greater than the sum of VaR095 for X and Y.

As mentioned before, our focus for this study lies in the loss function of this

combination hybrid pension plan. We are not only concerned about how to set up the

contribution rates, we also need to investigate how to protect the plan sponsor against

some unexpected loss embedded in the replacement ratio guarantee. Therefore the

risk measure VaR meets our needs quite well. In practice, one of the applications

of VaR is the Economic Capital(EC) in the Enterprise Risk Management (ERM)

framework. Now we will introduce this concept and then calculate the EC for our

combination hybrid pension plan.

6.3 Economic Capital

The Economic Capital is defined as the amount of risk capital required to be held by

a financial service firm to remain solvent with a given probability on a going concern

basis.

Definition 6.3. The economic capital is defined with respect to some risk measure p

as

Ee[S] = p[S] - E[S],

where S is the total loss of the company. (related to some line of business)

(6.1)

(See Denuit, Dhaene, Goovaerts and Kaas 2005.)

Since we are looking for the amount of risk capital required to stay solvent, some

worst case scenarios need to be considered on the loss function oL. Therefore, the
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risk measure VaR is commonly chosen in Equation (6.1) to represent p. In this case,

Ee[S] is called VaR-based Economic Capital. It is defined as

Definition 6.4.

Ee[S; a] = VaR[S; a] - E[S]

where V aR[S; a] represent the VaRc. of variable S.

(6.2)

For example, if a = 99.95%, then Ee[S; a] represents the amount of risk capital

that the insurance company needs to keep aside for unexpected losses, in order to

maintain a probability of 99.95% of solvency over a certain time horizon. From here

on in this study, we will simply use "Economic Capital" to refer to the VaR-based

economic capital since no other risk measures are considered here.

For this study, we consider the combination hybrid pension plan as the entire

business of the plan sponsor which could be an insurance company. This could be a

realistic case if this pension plan is a government level or state level plan. Risks that

need to be taken into account for a company usually include market risk, operational

risk, credit risk and for insurance companies there is also mortality risk. This study

mainly focuses on the market risk associated with a combination hybrid pension plan,

therefore we will present the calculation for the market risk economic capital in this

section.

In practice the economic capital is usually obtained through simulations in each

risk category to calculate separate required economic capitals. Then a correlation

matrix for all risk categories is applied to get an overall economic capital. The confi­

dence level of the corresponding VaR in EC calculation of a financial service company

is sometimes adopted by rating agencies in their capital adequacy assessment for that
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company. Therefore the concept of economic capital is not only for the insurance

company itself for solvency purposes, it is also utilized by rating agencies and even

regulators in some cases.

Next we will try to calculate VaR for an individual policy of this combination

hybrid plan through some numerical method.

6.4 EC for hybrid pension plan

Now we perform simulations on the VAR(1) model studied in earlier chapters with

10 years of contributions and 10 years of pension payments, and obtain the VaR-

based economic capital with several confidence levels for this combination hybrid

pension plan with different investment strategies in the DC account. Once the obser-

vation data is collected from simulation, we rank these observations and look for the

99.95th percentile, for example. Then the economic capital is calculated by subtract-

ing E(oLIXo) from the 99.95th percentile.

Confidence Level Strategy A Strategy B Strategy C
95% 1.229 1.320 1.542

97.5% 1.563 1.651 1.892
99% 2.000 2.078 2.338

99.5% 2.305 2.406 2.669
99.95% 3.370 3.427 3.728

Table 6.1: VaR-based Economic Capital for all investment strategies

For each investment strategy, the replacement ratio is set to 70% and the con­

tribution rate is set such that E(oLIXO
) = O. Here we also used a total number of



CHAPTER 6. ECONOMIC CAPITAL 71

200, 000 simulations. The results for the economic capital are shown in Table 6.1.

An obvious conclusion we can draw from Table 6.1 is that for any investment

strategy, EC[S; 0:] increases in 0:. That is to say, if the plan sponsor wants to be more

confident that he can stay solvent, more risk capital needs to be set aside to cover

large potential losses.

Secondly, the results in Table 6.1 agree quite well with Figure 5.3 and point out the

significant impact of the asset allocation in the DC account on the loss function oL.

Ee[S; o:J also increases in the portion of stock in the investment strategy. In order to

be confident about solvency, the plan sponsor needs to set aside more risk capital for

high risk asset allocations. Please note higher economic capital would induce higher

cost of capital for the plan sponsor as well since EC is only allowed to be invested in

certain low risk and low return assets.

Therefore, from the economic capital point of view, the range of asset allocation in

the DC account should be restricted by the plan sponsor, otherwise the plan sponsor

is not only facing huge potential losses, but also inevitable costs brought by a large

economic capital.
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Conclusions

In this study, we focus on the market risk of a combination hybrid pension plan which

has both a DC account and a DB final salary scheme through a replacement ratio

guarantee. Assumptions for a limiting portfolio are made, therefore mortality risk is

not taken into account. A vector AR( 1) model is applied to model the inflation, real

wage increase, investment return of the DC account and long term investment return.

Using US historical data, parameter estimations for three vector AR( 1) models

which employ different investment strategies in the DC account are performed. Then

we derive recursive formulas to calculate the first three moments of the loss function at

time of issue, oL, of a single policy given current financial market information. We find

that the contribution rate required in this plan such that E(oLIXO
) is higher compared

to regular DB and DC plans. Furthermore, with the three investment strategies

considered for the DC account, both the standard deviation and skewness for the

loss function oL are extremely high. We also try to dampen the standard deviation

through adjustment of the plan feature parameters but no significant improvements

72
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are observed. Therefore, plan sponsors offering such a combination hybrid pension

plan actually expose themselves to a significant amount of market risks.

The distribution of aL is also studied to gain more perspective about the mar­

ket risk. We extend the approximation method introduced by Parker(1993a) to a

two-dimensional case and obtain the distribution of aL for the relatively low risk

investment strategy. Based on our vector AR(l) models, the accuracy of the approx­

imation method highly depends on the number of points in the discretization, and

the accuracy is higher when the number of point is increased. But the runtime of

this approximation also goes up significantly with the number of points. Therefore

we switch to a simulation study for the loss function and make comparisons between

those two methods. The runtime issue for the simulation seems better and therefore

the simulation method is adopted in further studies.

A practical application of VaR-based Economic Capital is introduced and simula­

tion is once again used to obtain EC for all three investment strategies. Results show

that in order for the plan sponsor to stay solvent with a high confidence level, a great

amount of risk capital is required to be held and set aside. Also, the economic capital

required increases with the portion of stock in the asset allocation of the DC account.

Therefore we conclude that the plan sponsor of a combination hybrid pension

plan needs to be fully aware of the market risk that he is exposed to and price the

replacement ratio guarantee very carefully. The plan sponsor should set up restrictions

about how plan members can invest their contributions in the DC account, or at least

charge different contribution rates for different investment strategies.



Appendix A

Mortality Table (eSO 2001)

x qx X qx X qx X qx X qx X qx

0 0.0010 21 0.0010 42 0.0020 63 0.0137 84 0.1054 105 0.4592

1 0.0006 22 0.0010 43 0.0022 64 0.0152 85 0.1166 106 0.4822

2 0.0004 23 0.0010 44 0.0024 65 0.0169 86 0.1289 107 0.5067

3 0.0003 24 0.0011 45 0.0027 66 0.0185 87 0.1424 108 0.5327

4 0.0002 25 0.0011 46 0.0029 67 0.0201 88 0.1567 109 0.5603

5 0.0002 26 0.0011 47 0.0032 68 0.0219 89 0.1719 110 0.5896

6 0.0002 27 0.0012 48 0.0033 69 0.0236 90 0.1877 111 0.6208

7 0.0002 28 0.0012 49 0.0035 70 0.0258 91 0.2024 112 0.6538

8 0.0002 29 0.0012 50 0.0038 71 0.0282 92 0.2178 113 0.6889

9 0.0002 30 0.0011 51 0.0041 72 0.0313 93 0.2340 114 0.7262

10 0.0002 31 0.0011 52 0.0045 73 0.0346 94 0.2511 115 0.7657

11 0.0003 32 0.0011 53 0.0049 74 0.0381 95 0.2692 116 0.8076

12 0.0003 33 0.0012 54 0.0055 75 0.0419 96 0.2856 117 0.8521

13 0.0004 34 0.0012 55 0.0062 76 0.0461 97 0.3032 118 0.8992

14 0.0005 35 0.0012 56 0.0069 77 0.0509 98 0.3219 119 0.9492

15 0.0006 36 0.0013 57 0.0076 78 0.0566 99 0.3419 120 1.0000

16 0.0007 37 0.0013 58 0.0083 79 0.0631 100 0.3632

17 0.0009 38 0.0014 59 0.0090 80 0.0701 101 0.3801

18 0.0009 39 0.0015 60 0.0099 81 0.0782 102 0.3981

19 0.0010 40 0.0017 61 0.0109 82 0.0865 103 0.4172

20 0.0010 41 0.0018 62 0.0123 83 0.0955 104 0.4376

(Data source: http://www.actuary.org/life/CSO-0702.asp)
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Data for Model Estimation

• Inflation (percentage)

(Data source: http://www.miseryindex.us/)

Time Data Time Data Time Data Time Data Time Data

87-03 3.03 91-06 4.70 95-09 2.54 99-12 2.68 04-03 1.74

87-06 3.65 91-09 3.39 95-12 2.54 00-03 3.76 04-06 3.27

87-09 4.36 91-12 3.06 96-03 2.84 00-06 3.73 04-09 2.54

87-12 4.43 92-03 3.19 96-06 2.75 00-09 3.45 04-12 3.26

88-03 3.93 92-06 3.09 96-09 3.00 00-12 3.39 05-03 3.15

88-06 3.96 92-09 2.99 96-12 3.32 01-03 2.92 05-06 2.53

88-09 4.17 92-12 2.90 97-03 2.76 01-06 3.25 05-09 4.69

88-12 4.42 93-03 3.09 97-06 2.30 01-09 2.65 05-12 3.42

89-03 4.98 93-06 3.00 97-09 2.15 01-12 1.55 06-03 3.36

89-06 5.17 93-09 2.69 97-12 1.70 02-03 1.48 06-06 4.32

89-09 4.34 93-12 2.75 98-03 1.37 02-06 1.07 06-09 2.06

89-12 4.65 94-03 2.51 98-06 1.68 02-09 1.51 06-12 2.54

90-03 5.23 94-06 2.49 98-09 1.49 02-12 2.38 07-03 2.78

90-06 4.67 94-09 2.96 98-12 1.61 03-03 3.02 07-06 2.69

90-09 6.16 94-12 2.67 99-03 1.73 03-06 2.11 07-09 2.76

90-12 6.11 95-03 2.85 99-06 1.96 03-09 2.32 07-12 4.08

91-03 4.90 95-06 3.04 99-09 2.63 03-12 1.88
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• Personal Annual Income Data (in USD)

(Data source: http://www.bea.gov/)

Time Salary Time Salary Time Salary

1987-1 15,897 1993-IV 21,766 2000-111 30,106

1987-11 16,084 1994-1 21,616 2000-IV 30,205

1987-111 16,342 1994-11 22,104 2001-1 30,565

1987-IV 16,694 1994-111 22,325 2001-11 30,599

1988-1 16,951 1994-IV 22,656 2001-111 30,563

1988-11 17,196 1995-1 22,881 2001-IV 30,558

1988-111 17,496 1995-11 22,992 2002-1 30,697

1988-IV 17,785 1995-111 23,126 2002-11 30,894

1989-1 18,284 1995-IV 23,311 2002-111 30,825

1989-11 18,454 1996-1 23,730 2002-IV 30,852

1989-111 18,606 1996-11 24,106 2003-1 31,037

1989-IV 18,833 1996-111 24,307 2003-11 31,355

1990-1 19,197 1996-IV 24,557 2003-111 31,593

1990-11 19,466 1997-1 24,928 2003-IV 31,988

1990-111 19,651 1997-11 25,128 2004-1 32,408

1990-IV 19,684 1997-111 25,446 2004-11 32,837

1991-1 19,685 1997-IV 25,830 2004-111 33,235

1991-11 19,859 1998-1 26,358 2004-IV 34,017

1991-111 19,970 1998-11 26,753 2005-1 34,110

1991-IV 20,173 1998-111 27,067 2005-11 34,578

1992-1 20,494 1998-IV 27,336 2005-111 34,809

1992-11 20,750 1999-1 27,538 2005-IV 35,525

1992-111 20,912 1999-11 27,715 2006-1 36,186

1992-IV 21,320 1999-111 27,967 2006-11 36,534

1993-1 20,922 1999-IV 28,507 2006-111 36,823

1993-II 21,331 2000-1 29,385 2006-IV 37,290

1993-II1 21,401 2000-II 29,687
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• S&P 500 Index
(Data source: http://finance.yahoo.com/)

Time Adj. Close Time Adj. Close Time Adj. Close

Feb-87 284 Nov-93 462 Aug-OO 1,518

May-87 290 Feb-94 467 Nov-OO 1,315

Aug-87 330 May-94 457 Feb-01 1,240

Nov-87 230 Aug-94 475 May-01 1,256

Feb-88 268 Nov-94 454 Aug-01 1,134

May-88 262 Feb-95 487 Nov-01 1,139

Aug-88 262 May-95 533 Feb-02 1,107

Nov-88 274 Aug-95 562 May-02 1,067

Feb-89 289 Nov-95 605 Aug-02 916

May-89 321 Feb-96 640 Nov-02 936

Aug-89 351 May-96 669 Feb-03 841

Nov-89 346 Aug-96 652 May-03 964

Feb-90 332 Nov-96 757 Aug-03 1,008

May-90 361 Feb-97 791 Nov-03 1,058

Aug-90 323 May-97 848 Feb-04 1,145

Nov-90 322 Aug-97 899 May-04 1,121

Feb-91 367 Nov-97 955 Aug-04 1,104

May-91 390 Feb-98 1,049 Nov-04 1,174

Aug-91 395 May-98 1,091 Feb-05 1,204

Nov-91 375 Aug-98 957 May-05 1,192

Feb-92 413 Nov-98 1,164 Aug-05 1,220

May-92 415 Feb-99 1,238 Nov-05 1,249

Aug-92 414 May-99 1,302 Feb-06 1,281

Nov-92 431 Aug-99 1,320 May-06 1,270

Feb-93 443 Nov-99 1,389 Aug-06 1,304

May-93 450 Feb-OO 1,366 Nov-06 1,401

Aug-93 464 May-OO 1,421
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• I-year treasury bond return (percentage)

(Data source: http://www.federalreserve.gov/)

Time Return Time Return Time Return

Mar-87 6.03 Jun-94 5.27 Sep-01 2.82

Jun-87 6.80 Sep-94 5.76 Dec-01 2.22

Sep-87 7.67 Dec-94 7.14 Mar-02 2.57

Dec-87 7.17 Mar-95 6.43 Jun-02 2.20

Mar-88 6.71 Jun-95 5.64 Sep-02 1.72

Jun-88 7.49 Sep-95 5.62 Dec-02 1.45

Sep-88 8.09 Dec-95 5.31 Mar-03 1.24

Dec-88 8.99 Mar-96 5.34 Jun-03 1.01

Mar-89 9.57 Jun-96 5.81 Sep-03 1.24

Jun-89 8.44 Sep-96 5.83 Dec-03 1.31

Sep-89 8.22 Dec-96 5.47 Mar-04 1.19

Dec-89 7.72 Mar-97 5.80 Jun-04 2.12

Mar-90 8.35 Jun-97 5.69 Sep-04 2.12

Jun-90 8.10 Sep-97 5.52 Dec-04 2.67

Sep-90 7.76 Dec-97 5.53 Mar-05 3.30

Dec-90 7.05 Mar-98 5.39 Jun-05 3.36

Mar-91 6.40 Jun-98 5.41 Sep-05 3.85

Jun-91 6.36 Sep-98 4.71 Dec-05 4.35

Sep-91 5.57 Dec-98 4.52 Mar-06 4.77

Dec-91 4.38 Mar-99 4.78 Jun-06 5.16

Mar-92 4.63 Jun-99 5.10 Sep-06 4.97

Jun-92 4.17 Sep-99 5.25 Dec-06 4.94

Sep-92 3.18 Dec-99 5.84 Mar-07 4.92

Dec-92 3.71 Mar-OO 6.22 Jun-07 4.96

Mar-93 3.33 Jun-OO 6.17 Sep-07 4.14

Jun-93 3.54 Sep-OO 6.13 Dec-07 3.26

Sep-93 3.36 Dec-OO 5.60 Mar-08 1.54

Dec-93 3.61 Mar-01 4.30

Mar-94 4.32 Jun-01 3.58
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APPENDIX B. DATA FOR MODEL ESTIMATION

• 10-year treasury bond return (percentage)

(Data source: http://www.federalreserve.gov/)

Time Return Time Return Time Return

Mar-87 7.25 Jun-94 7.10 Sep-01 4.73

Jun-87 8.40 Sep-94 7.46 Dec-01 5.09

Sep-87 9.42 Dec-94 7.81 Mar-02 5.28

Dec-87 8.99 Mar-95 7.20 Jun-02 4.93

Mar-88 8.37 Jun-95 6.17 Sep-02 3.87

Jun-88 8.92 Sep-95 6.20 Dec-02 4.03

Sep-88 8.98 Dec-95 5.71 Mar-03 3.81

Dec-88 9.11 Mar-96 6.27 Jun-03 3.33

Mar-89 9.36 Jun-96 6.91 Sep-03 4.27

Jun-89 8.28 Sep-96 6.83 Dec-03 4.27

Sep-89 8.19 Dec-96 6.30 Mar-04 3.83

Dec-89 7.84 Mar-97 6.69 Jun-04 4.73

Mar-90 8.59 Jun-97 6.49 Sep-04 4.13

Jun-90 8.48 Sep-97 6.21 Dec-04 4.23

Sep-90 8.89 Dec-97 5.81 Mar-05 4.50

Dec-90 8.08 Mar-98 5.65 Jun-05 4.00

Mar-91 8.11 Jun-98 5.50 Sep-05 4.20

Jun-91 8.28 Sep-98 4.81 Dec-05 4.47

Sep-91 7.65 Dec-98 4.65 Mar-06 4.72

Dec-91 7.09 Mar-99 5.23 Jun-06 5.11

Mar-92 7.54 Jun-99 5.90 Sep-06 4.72

Jun-92 7.26 Sep-99 5.92 Dec-06 4.56

Sep-92 6.42 Dec-99 6.28 Mar-07 4.56

Dec-92 6.77 Mar-OO 6.26 Jun-07 5.10

Mar-93 5.98 Jun-OO 6.10 Sep-07 4.52

Jun-93 5.96 Sep-OO 5.80 Dec-07 4.10

Sep-93 5.36 Dec-OO 5.24 Mar-08 3.51

Dec-93 5.77 Mar-01 4.89

Mar-94 6.48 Jun-01 5.28
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