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ABSTRACT 

In this thesis we present TroFi, a system for separating literal and nonliteral usages of 

verbs through unsupervised statistical word-sense disambiguation and clustering techniques. 

TroFi distinguishes itself by redefining the types of nonliteral language handled and by depending 

purely on sentential context rather than selectional constraint violations and paths in semantic 

hierarchies. TroFi uses literal and nonliteral seed sets acquired and cleaned without human 

supervision to bootstrap learning. We adapt a word-sense disambiguation algorithm to our task 

and add learners, a voting schema, SuperTags, and additional context. Detailed experiments on 

hand-annotated data and the introduction of active learning and iterative augmentation allow us to 

build the TroFi Example Base, an expandable resource of literal/nonliteral usage clusters for the 

NLP community. We also describe some other possible applications of TroFi and the TroFi 

Example Base. Our basic algorithm outperforms the baseline by 24.4%. Adding active learning 

increases this to over 35%. 
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1 INTRODUCTION 

1.1 Motivation 

Machines can speak. They can understand. In the movies. 

Realistically speaking, of course, we are still far removed from even out-dated futuristic 

machines like R2-D2 and George Jetson's trusty robotic maid Rosie. Part of the reason for this is 

the inability of robots, and, for that matter, all systems based on Natural Language Processing 

(NLP) techniques, to deal appropriately with nonliteral language. Why, even Rosie, asked to 

bring something to drown George's sorrows, might bring a bucket of water instead of a bottle of 

whisky. And such problems are certainly not restricted to science fiction. 

Our local telephone company, for example, recently replaced some of its customer 

service representatives with a dialogue system. The public reaction has not been particularly 

favorable, and many people do their best to trick the system into passing the call to an actual 

human. This ambivalence might arise from the fact that people are still uncomfortable interacting 

verbally with machines and the fact that current dialogue systems really are not all that clever. 

As more and more companies move to dialogue systems and other automated customer 

relationship management (CRM) systems, it is likely that people will start to feel less ill-at-ease 

around them. However, increased use will translate into increased frustrations if these systems 

continue to misunderstand the needs of the users. 

One of the quickest ways to derail a conversation with a dialogue system is to throw 

some nonliteral language at it. It is easy to imagine that a history-driven system might wander 

down the completely wrong path if it interprets nonliteral language literally, resulting in endless 



frustrations for the user. Let us take as an example the following actual conversation with a web- 

based dialogue system: 

User: Can you tell me where I can grab a quick bite? 

System: Wherever you are right now. 

User: No, no. I mean, where can I get a bite to eat? 

System: Oh I get it. Thanks for explaining that. Have you tried the personal ads? 

User: What for? I want something to still my hunger. 

System: I haven't heard anything like that before: unknown person said he wan't (sic.) 
something to still his or her hunger. 

User: My tummy is growling! 

System: Have you told many people that your tummy is growling? 

User: Of course not. Can you recommend a restaurant? 

System: Have you tried looking in the Open Directory? I'll ask around and get back to you. 

As we can see, it is only by resorting to a literal question that we get a reasonable reply. 

However, if dialogue systems are to become genuinely useful, they must be able to deal with any 

sort of input the user throws at them. In addition, dialogue systems will seem far more human 

and approachable if they themselves use nonliteral language when appropriate. 

So why is it so important for Natural Language Processing (NLP) systems - which 

encompass not only dialogue systems, but also paraphrasing and summarization, language 

generation, machine translation, information extraction, and a number of other applications - to 

be able to process such a tiny, specialized part of language? 

As it turns out, human language is filled to overflowing with nonliteral language. It 

infiltrates not only high literature, but also newspaper articles, technical reports, Master's theses, 

and everyday speech. Until the advent of computer systems, the hunt for nonliteral language, 

such as metaphors, idioms, and other tropes, and the desire to understand how human beings 

process them was important for research into human language and thought. Now that growing 

numbers of NLP tasks are filling the marketplace, being able to recognize and process nonliteral 

language has become even more important. 



Many incomprehensible or irrelevant responses to queries, as well as many unfortunate 

translations, can be avoided if the NLP system in question includes a method for processing 

nonliteral language. Let us look at another example. 

With the recent growth in bioinformatics, software is having to extract all sorts of 

information out of medical notes, reports, etc. It is difficult to imagine how a computer would tell 

the difference between the following two instances of the phrase "pain in the neck": 

1. ER report states that she went to hospital for physical therapy due to pain in the neck. 

2. Doctor firing patient. States: abusive; general pain in the neck. 

Several researchers - such as Fass (1 997), Martin (1 990, 1992), and Russell (1976), to 

name just a few - have taken an interest in the processing of nonliteral language in the past. 

Unfortunately, most of these systems require a tremendous hand-coding effort and a large amount 

of processing time, and even then they tend to apply only to a limited domain. Interest in the 

field seems to be growing again now, with more of an emphasis on automating the learning 

process (e.g. (Mason 2004)). 

The major question for all sorts of NLP systems tends to be: rule-based or statistical? 

Most of the metaphor processing systems developed to date have used some sort of rule-based 

methodology, giving very good results on the set of data they were developed for. What seems to 

be called for in many situations dealing with large amounts of data, on the other hand, is 

something that is not necessarily 100% but can be thrown at any amount of material in any 

domain. This calls for a statistical approach. 

The main shortcoming of statistical approaches is the necessity of a training set of some 

sort. If the algorithm is supervised - which is still likely to achieve better results than an 

unsupervised algorithm - the training set must be manually annotated. This presents us with a 

bottleneck similar to writing rules: the algorithm can learn to generalize once the training set is in 

place, but the initial human effort required is prohibitive, particularly with something as 

3 



ubiquitous1 as nonliteral language. Manually annotating large amounts of training data is time- 

consuming and error-prone, particularly because it is often extremely difficult to decide whether a 

word is being used literally or nonliterally, even for humans. Still, several annotation efforts are 

currently under way (Markert & Nissim, 2002; Semino & Steen, 2001). Another problem with 

this approach is that nonliteral language is creative and people are apt to come up with novel 

expressions on a daily basis. Also, for supervised learning algorithms trained on such annotated 

texts, there might not be enough examples of different nonliteral usages to allow the system to 

learn anything about them. Finally, it is desirable to have annotated sets in a myriad of 

languages, which would require a massive international annotation effort. In conclusion, 

completely unsupervised algorithms may prove a little too unpredictable; manually annotating 

training data, a little too painful. 

Perhaps what is needed is a tool to help the human build a type of literahonliteral 

example base. Such a collection of literal and nonliteral sentences could be used not only as a 

training set for a variety of statistical algorithms, but also as a resource for other nonliteral 

language research. It could further prove a useful resource for any number of NLP applications, 

including dialogue systems, machine translation systems, and information extraction systems. 

1.2 Contribution 

In this thesis we present TroFi, a system for separating literal and nonliteral usages of 

verbs through unsupervised statistical word-sense disambiguation and clustering techniques. We 

provide a brief summary in the following paragraph and then elaborate on these points in the rest 

of this section. 

TroFi distinguishes itself by redefining the types of nonliteral language handled and by 

depending purely on sentential context rather than selectional constraint violations and paths in 

' Allusion to The Ubiquity of Metaphor, the anthology containing (Newmark, 1980). 
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semantic hierarchies. This work is useful for various NLP applications and the science of lexical 

semantics. We adapt a word-sense disambiguation algorithm to our task and add learners, a 

voting schema, SuperTags, and additional context. Detailed experiments on hand-annotated data 

and the introduction of active learning and iterative augmentation allow us to build the TroFi 

Example Base, an expandable resource of literallnonliteral usage clusters for the NLP 

community. We also describe some other possible applications of TroFi and the TroFi Example 

Base. Our basic algorithm outperforms the baseline by 24.4%. Adding active learning increases 

this performance gain to over 35%. 

We now examine the contributions made by this thesis to the field of nonliteral language 

processing in more detail. We consider the main contribution to be a process and algorithms for 

creating the type of literahonliteral example base described in Section 1.1. The second is an 

actual example base for 50 target words. The third is a new approach to the nonliteral language 

processing problem. 

Before we begin, let us look at a concrete example of our goal. Consider the following 

two sentences: 

NONLITERAL: Mr. Rowland "touched on the matter" of a possible stake purchase again last 
week, according to Sir Michael. 

LITERAL: "People in Washington touch cheek-to-cheek quite often," says Ef i  Barry, wife of 
the city's mayor, Marion Barry Jr. 

This is a tiny snippet of the entry for "touch" in the TroFi Example Base. As humans, we 

can see a distinction between the usages of "touch" in these two sentences based on our 

understanding of the literal (see Chapter 2)  meaning of "touch". TroFi finds such distinctions 

automatically for arbitrary verbs in its capacity as a nonliteral language processing system. 

TroFi uses an unsupervised algorithm - with an optional active learning component - to 

separate literal and nonliteral usages of verbs in a corpus. In its most basic form, TroFi is a 

reduction: it reduces a difficult problem - nonliteral language recognition - to one that we know 



(more or less) how to solve - word-sense disambiguation. TroFi has at its core an existing 

similarity-based word-sense disambiguation algorithm2. In order to make this algorithm work for 

nonliteral language recognition, we make one fundamental assumption and then add a number of 

important enhancements to the base algorithm. The fundamental assumption is that literal and 

nonliteral usages of a word can be treated simply as two senses of that word, allowing us to 

reduce the problem of distinguishing between them to one of word-sense disambiguation. In 

order to make the selected word-sense disambiguation algorithm work with our two new senses, 

however, we must introduce a number of significant enhancements: 

the use of databases of known metaphors, idioms, and expressions 

the introduction of scrubbing, different learners, and a voting system 

0 a modification to the way similarity is calculated 

the use of additional features not directly visible in the input, such as SuperTags 

(Bangalore & Joshi, 1999) 

the use of additional context 

the addition of an active learning component 

We discuss these points briefly below. They will be examined in detail in Chapters 6 and 7. 

The basic word-sense disambiguation algorithm works by creating a set of examples for 

each sense of a given word in a machine-readable dictionary (MRD). It then extracts all the 

sentences containing the word of interest out of a corpus and attempts to attract them to one of the 

sense sets. 

Obviously this will not work for the literal/nonliteral case unless the MRD senses are 

separated into literal and nonliteral at some point in the process. It is undesirable to have to do 

this manually since we want to be able to create example bases that cover as many words as 

possible. The need to keep TroFi unsupervised becomes even more obvious when we consider its 

See (Karov & Edelman, 1998). Also Section 7.1.1. I .  
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potential application to other languages. One would not want to have to employ speakers of each 

language to sit down and manually separate MRD senses. We tackle the sense separation 

problem by using information from databases of known metaphors, idioms, and expressions to 

build the nonliteral sense set. This then allows us to leave all the MRD senses together as a single 

literal sense set. Unfortunately this set will still contain a number of nonliteral senses. 

To counteract this problem, we introduce the notion of scrubbing: using certain 

properties of the input data to determine that a given sense set, word, or feature set3 should be 

moved from the literal sense set to the nonliteral sense set or vice versa, or removed altogether. 

Different scrubbing algorithms yield different results for different words, so in order to get the 

best performance possible, we produce a number of learners, each of which is scrubbed 

differently. We also establish a voting schema that takes into account the results of all the 

learners to make a decision about each target-word sentence. 

In the original algorithm each target-word sentence is attracted to the single sentence to 

which it shows the highest similarity. This works well on a collection of small, internally 

homogeneous sense sets. It works less well on a large binary division where each sense set 

contains any number of sub-senses. For this reason we introduce the notion of sum of 

similarities, where we take into account the combined similarities shown by all sentences in the 

sense sets. 

The TroFi algorithm allows for the use of all sorts of features in its sense sets. For 

example, we augment a basic bag-of-words approach with syntactic structure. The novelty of our 

approach is that we do not just use simple n-grams; rather, we use SuperTagIlexeme 

combinations. These include both syntactic and lexical information in a format that is simple yet 

informative. In terms of features, we also improve results by expanding the context used to 

include both the sentence preceding and the sentence following the target-word sentence. 

See Section 6.2. 



Through all these enhancements we are able to produce results that are, on average, 

16.9% higher than the core algorithm and 24.4% higher than the baseline. 

Since TroFi is meant to help the human build an example base, we introduce an optional 

active learning component that allows the human to get involved in further improving the results. 

TroFi sends sentences it is not sure about to the human, and by agreeing to do up to 30% of the 

work4, the human can help improve the results by another 11 or 12%. This may not seem like 

much for 30% of the effort, but we must keep in mind that TroFi does not always send the full 

30%. We did some calculations based on the number of sentences that are sent to the human on 

average (see Section 9.4) and found that, for the same amount of effort, where a purely manual 

process would yield an average accuracy of about 21.7%, TroFi attains about 64.9%. Stated 

another way, to reach the same accuracy obtained by using TroFi, a manual process would 

require approximately 35% more effort. 

The first contribution of this thesis, the TroFi algorithm, allows us to produce the second 

contribution, the TroFi Example Base. The TroFi Example Base currently consists of literal and 

nonliteral cluster of sentences from the Wall Street Journal Corpus for 50 target words. It was 

built using a process called iterative augmentation (see Section 7.3). This example base, which 

can be expanded using the TroFi algorithms, is meant to serve both as a resource for further 

research and as training data for other statistical algorithms. 

As a final contribution, this thesis suggests a new way of approaching the problem of 

nonliteral language in NLP. It does not profess to be a metaphor or metonymy processing 

system. It will neither tell the difference between different types of nonliteral language, nor will 

it provide an interpretation of what a metaphor or metonymy might mean5 or even how it may 

have been derived. There is a lot of work in this area (Nissim & Markert, 2003; Dolan, 1995; 

Often less is required. 
However, see Section 1 1.1.4.1 for a possible method of interpretation through literallnonliteral sentence 

alignment. 



Fass, 1997; Martin, 1990; Mason, 2004), and in future work we hope to show that the 

unsupervised approach presented here could be used as input for nonliteral language 

interpretation approaches. 

We do, however, suggest that it may be worthwhile too take a step back and look at the 

nonliteral language recognition problem as one that could be approached using a more brute force 

methodology. The motivation for this is two-fold: first, with ever-decreasing hardware 

limitations, it is possible to make large, statistically-based solutions workable6; second, in real- 

world applications people are often willing to trade off high-maintenance perfection for easy-to- 

implement flexibility and scalability. Our approach meets the simplicity criterion in that it does 

not require explicit metaphor maps, reams of linguistic rules, or even the calculation of distances 

between nodes in a semantic hierarchy (see Chapter 3). In terms of flexibility and scalability, we 

purposely applied TroFi to real-world data rather than carefully collected example sets and still 

obtained reasonable results. The success of this initial TroFi implementation suggests that a 

scalable literallnonliteral recognition system applicable to any domain and any language, and 

requiring minimal human effort, is both a worthwhile and attainable goal. 

1.3 Organization 

Below we provide an overview of the organization of this thesis. 

Chapter 1 Introduction - In this chapter, we provide a discussion of the motivations 

behind TroFi, an examination of the contributions made by the work, and an overview of the 

organizational structure of the thesis. 

Chapter 2 A Definition of Terms - In this chapter, we define those terms that are most 

likely to be contentious, namely literal and nonliteral. Other terminology is defined throughout 

the thesis on a need-to-know basis. 

Case in point: The IBM models for statistical machine translation. 
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Chapter 3 Metaphor & Metonymy Processing Review - In this chapter, we provide a 

literature review of certain past and current metaphor and metonymy processing systems. 

Chapter 4 Word-Sense Disambiguation & Clustering Review - In this chapter, we 

discuss systems and algorithms designed to solve the problems to which we are trying to reduce 

the nonliteral language recognition problem. 

Chapter 5 TroFi Overview - In this chapter, we provide a brief overview of TroFi. 

Chapter 6 The Data - In this chapter, we discuss various data sources and how those data 

sources are moulded into suitable input for TroFi. 

Chapter 7 Models & Algorithms - In this chapter, we provide a thorough discussion of 

the algorithms employed by TroFi together with an illuminating extended example. 

Chapter 8 Core Experiments & Results - In this chapter, we look at the experiments 

performed to evaluate the basic unsupervised TroFi algorithm. 

Chapter 9 Active Learning Experiments & Results - In this chapter, we discuss the 

experiments performed to evaluate TroFi's active learning component. 

Chapter 10 Building the TroFi Example Base - In this chapter, we discuss the 

construction of the TroFi Example Base. 

Chapter 11 Conclusion - In this chapter, we summarize the findings of the thesis and 

provide suggestions for future work. 

Appendix A TroFi Pseudo-code - The appendix contains the pseudo-code for many of 

the TroFi algorithms. 



A DEFINITION OF TERMS 

TroFi is not a metaphor processing system. It does not claim to interpret metonymy and it 

will not tell you what a given idiom means. Well one may ask, then, what exactly does it do? 

In essence, TroFi attempts to separate literal usages of words1 from nonliteral ones. This 

is not as easy as it may sound. As part of TroFi's evaluation criteria, we had to manually 

annotate a collection of sentences as literal or nonliteral. It is extremely difficult. Everyone can 

probably remember high-school English: the teacher desperately trying to teach an often bored 

class how to recognize a metaphor. Those were the simple beginnings. Figurative language is 

actually much more complex than the basics we were taught in school. In short, it is difficult 

even for humans - never mind a machine - to clearly distinguish between literal and nonliteral 

usages. Certainly there are distinctions that are easy to make: "he was forced to eat his spinach" 

is obviously literal; "he was forced to eat his words" is obviously nonliteral. Another example is: 

"the sponge absorbed the water" (literal) vs. "the company absorbed the loss" (nonliteral). But 

what about "the black hole absorbed the light"? Some usages seem to sit on a sort ofJigurative 

continuum: they start out as nonliteral, but over time they become such an integral part of 

everyday speech that we begin to think of them as literal. For example, how should we classify 

"the final decision rests with the examining committee"? 

Note that we are not trying to solve the problem of the literallnonliteral continuum in this 

thesis. We are simply trying to see whether we can make a binary distinction between usages that 

seem more literal or standard and usages that seem more nonliteral or nonstandard. In doing so, 

we end up flushing all the different subtypes of nonliteral language into the same bucket. 

I In this thesis we will focus on verbs only. 



The rationale for this approach is twofold. First, many metaphor/metonymy/etc. 

processing systems to date have approached the problem from the bottom up - trying to figure out 

the low-level details and building systems up from there. This may be scientifically sound, but it 

does not scale. Second, it is worth questioning whether making fine-grained distinctions between 

types of nonliteral language is actually helpful at the automatic language processing level, 

particularly since such a detailed approach can quickly run into the knowledge acquisition 

bottleneck - i.e. having to annotate thousands of sentences manually and potentially not being 

able to find enough relevant examples of each type. Perhaps a simple distinction between 

language manageable by a regular NLP system and language requiring special treatment would 

be sufficient in many cases. 

As we have suggested, distinguishing between literal and nonliteral usages is non-trivial. 

We will find that distinguishing between the literal and nonliteral definitions is not trivial either. 

Let us begin with a definition of nonliteral: "not literal; using figures of speech 

- figurative" (WordWeb Online, 2005). Next we have a definition of literal: "Conforming or 

limited to the simplest, nonfigurative, or most obvious meaning of a word or words." (American 

Heritage Dictionary of the English Language, 2005) One paragraph in, and already we are going 

around in circles. We will attempt to clarify matters in the following sections. 

2.1 Literal 

For the purposes of this thesis, we wish to define nonliteral as anything that deviates 

from the literal usage. To do so, we will need to define exactly what we mean by literal and what 

we mean by deviate. It turns out that this is actually quite difficult to do. 

We have already provided a simple definition of literal from the American Heritage 

Dictionary of the English Language (2005). We provide a slightly expanded version here: 

literal: Being in accordance with, conforming to, or upholding the exact or primary meaning of 
a word or words. 



literal: Conforming or limited to the simplest, nonfigurative, or most obvious meaning of a 
word or words. 

According to this, a literal meaning is the "primary" or "most obvious" meaning of a 

word. But what does that mean? Lexical semanticists would likely tie the definition of literal to 

the selectional restrictions, or, more loosely, preferences, of a word. The argument is that words 

select for certain types of arguments. For example, the word "drink" typically selects for an 

animate subject and a liquid object. Thus a car drinking gasoline (Fass, 1997), for example, 

would violate the selectional restrictions. However, "drink" in the sense of "consume" might 

well select for an inanimate object, which would mean that our gasoline-guzzling SUV is not 

actually violating a selectional restriction. It may be violating a selectionaIpreference. The 

question then becomes, what makes one set of arguments preferable to another? This may have 

to do with any number of factors, including the history of the word, the closeness of a particular 

sense to physical reality, psychological motivations, the frequency of usage, etc. This opens up a 

huge field of argument that goes far beyond the scope of this thesis. Just as an example, though, 

we want to point out that frequency of usage is contradicted fairly quickly as a possible 

motivating factor when we observe that, at least in the Wall Street Journal, cash is absorbed far 

more readily than water. 

Searching for definitions of literal in the metaphor processing literature, we find very 

little. The most illuminating that we do find is provided by Fass (1997, p. 26). He presents the 

following list of possible definitions: 

1. Conventional literalify in which ordinary conventional language is contrasted with poetic 
usage, exaggeration, irony, indirect speech acts, and so forth. 

2. Subject-matterliteralify in which certain expressions are the ones ordinarily used to talk 
about a particular topic or domain. 

3. Nonmetaphorical literality, or directly meaningful language, in which one word or concept 
is never understood by means of a second word (or concept), hence this precludes the use of 
metaphor and metonymy. 

4. Truth-conditional literalify in which language is used to refer to existing objects in the actual 
world and can be judged true or false. 

5. Context-free literality in which the literal meaning of an expression is its meaning in a 'null' 
context. 



For our purposes, we will regard the literal meaning of a given word to be the sense - 

together with its selectional restrictions - that appears to be closest to the above types of literality. 

We will define nonliteral usage primarily as a deviation from this literal sense. The notion of 

deviation, together with an expanded definition of nonliteral language, is explored in Section 2.2. 

2.2 Nonliteral 

The preceding discussion on literality may have conveyed the notion that deviation from 

literal usage to convey a nonliteral meaning is caused simply by violating the selectional 

restrictions of a word. As pointed out by Fass (1997) and Hahn & Markert (1999), selectional 

restriction violations on their own are insufficient to explain all occurrences of nonliteral 

language. For example, as Hahn and Markert point out, there is no selectional restriction 

violation in the sentence "I like Chaucer." Now let us look at the sentence in context: "I like 

Chaucer. The Canterbury Tales is one of my favourite books." We can see that the intended 

meaning of "Chaucer" - i.e. the works of Chaucer - is not contained in the generally accepted 

meaning of Chaucer, the man. Hahn and Markert (1999) present a "formal notion of deviance" 

based on such "categorization conflicts". 

Another potential area of deviation is assertions, as discussed in (Fass, 1997). The idea is 

that some words carry special meanings that they can assert onto other words in the sentence, and 

that those assertions can be violated. For example, the verb "caress" connotes gentleness or 

tenderness. Consequently, the statement "he caressed his cat brutally" seems distinctly odd, even 

though there is no selectional restriction violation. 

Fass also suggest contextual inappropriateness as a way to recognize nonliteral usage. 

He gives the example by Mark Johnson, that the phrase "all men are animals" may be interpreted 

literally in the context of a biology class and nonliterally in the context of a bad date. 



Although we will not go into all the technical details of deviation, we will consider all the 

aforementioned types of deviation from the literal sense to be part of our definition of nonliteral. 

We will now look at some more surface-level definitions of nonliteral in order to gain an insight 

into specific figurative phenomena that our definition should cover. 

WordWeb Online (2005) defines nonliteral as follows: 

Adjective: nonliteral 

(used of the meanings of words or text) not literal; using figures of speech 
- figurative 
See also: analogical, extended, metaphoric, metaphorical, metonymic, metonymical, poetic, 
rhetorical, synecdochic, synecdochical, tropical 

We can get a slightly more detailed explanation if we dig down into the tropical part of 

the definition - not pineapples and bananas, but rather tropes. 

From the Poetry Glossary (2005): 

The intentional use of a word or expression figuratively, i.e., used in a different sense from its 
original significance in order to give vividness or emphasis to an idea. Some important types 
of trope are: antonomasia, irony, metaphor, metonymy and synecdoche. Sidelight: Strictly 
speaking, a trope is the figurative use of a word or expression, while figure of speech refers to 
a phrase or sentence used in a figurative sense. The two terms, however, are often confused 
and used interchangeably. (See also Imagery) 

From Wikipedia (2005): 

A trope is a rhetorical fiaure of speech that consists of a play on words, i.e. using a word in a 
way other than what is considered its literal or normal form. The other major category of 
figures of speech in the scheme, which involves changing the pattern of words in a sentence. 

Trope comes from the Greek word, tropos, which means a "turn", as in heliotrope, a flower 
which turns toward the sun. We can imagine a trope as a way of turning a word away from its 
normal meaning, or turning it into something else. 

A large number of tropes have been identified, among them: 

metonymv as in association. 

irony as in contraries. 

metaphor as in comparatives. 

svnecdoche as in the distribution of the whole into the part. 



From WordNet (2005): 

The noun trope has one meaning: 

Meanina #I : language used in a figurative or nonliteral sense 
Synonyms: figure of speech, fiaure, image 

As we can see, the definition of trope is far reaching - especially the WordNet definition, 

which brings our definition of nonliteral full circle. In the same way, what we are expecting 

TroFi to recognize as nonliteral is far reaching - hence the name TroFi: Trope Finder. In fact, we 

extend our definition of nonliteral even more to include phrasal verbs, idioms, and other 

expressions where the meaning of the whole is not the sum of the parts. In summary, TroFi tries 

to distinguish between literal usages and usages that deviate from them. We now take a closer 

look at the forms those deviations may take. 

2.2.1 Metaphor 

One of the most popular targets for automatic processing is metaphor. The Columbia 

Electronic Encyclopedia, Sixth Edition, (2005) defines metaphor as: 

metaphor [Gr.,=transfer], in rhetoric, a figure of speech in which one class of things is 
referred to as if it belonged to another class. Whereas a simile states that A is like B, a 
metaphor states that A is B or substitutes B for A. Some metaphors are explicit, like 
Shakespeare's line from As You Like It: "All the world's a stage." A metaphor can also be 
implicit, as in Shakespeare's Sonnet Will, where old age is indicated by a description of 
autumn: 

That time of year thou mayst in me behold 
Where yellow leaves, or none, or few, do hang 

Upon those boughs which shake against the cold, 
Bare ruined choirs, where once the sweet birds sang. 

A dead metaphor, such as "the arm" of a chair, is one that has become so common that it is 
no longer considered a metaphor. 

For the purposes of this discussion, we will ignore extended metaphors like the 

Shakespeare sonnet above. We will, however, examine in more detail the metaphor "all the 

world's a stage." This is fairly easy to recognize as a metaphor and to analyze. The world is 



obviously not a stage, in the literal sense of the word, so we must be dealing with some sort of 

substitution or domain transfer. 

Metaphors are founded on a similarity of qualities between two domains, a source 

domain and a target domain - here, the stage and the human condition. It must be possible to 

perceive the similarity, no matter how subtle, otherwise there is no basis for a metaphor. A 

framework for decomposing metaphors is provided by Peter Newmark (1981). According to 

(Newmark, 1981, p. 299), the components of a metaphor are: 

object - "the item that is described by the metaphor" 

image - "the item in terms of which the object is described" (sometimes also called the 
vehicle) 

sense - "[the point] which shows that the particular aspects of the object and the image are 
similar" (sometimes also called tenor) 

metaphor- "the words taken from the image" 

Given these definitions, we can decompose Shakespeare's "all the world's a stage" 

metaphor as in Figure 2-A. 

Figure 2-A Anatomy of "All the world's a stage" 

sense - play-acting, pretending, 
pre-determinism 

Source: based on the concept by Newmark (1981) 

One way for an automatic system to interpret metaphor would be to somehow figure out 

the source and target domains and find some reasonable connection - some shared sense - 



between them. As with interlingua systems, this approach runs into very complex knowledge 

representation issues, which are as yet not scalable to large-scale use. 

There are a number of different types of metaphors, one of which is those metaphors that 

start out as metaphors but then become accepted usage, like "the arm" of a chair. Newmark 

(1 98 1, p. 299) lists five different kinds2: 

1. dead (fossilized) 
e.g. "the eye of a needle"; "they are transplanting the community" 

2. cliche 
e.g. "filthy lucre"; "they left me high and dry"; "we must leverage our assets" 

3. standard (stock) 
e.g. "plant a kiss"; "lose heart"; "drown one's sorrows" 

4. recent 
e.g. "kill a program"; "he was head-hunted"; "spaghetti code" 

5. original (creative) 
e.g. "A coil of cord, a colleen coy, a blush on a bush tumed first men's laughter into wailful 
mother" (James Joyce); "The teacher mowed the child's essay" (Julia Birke) 

Dead or fossilized metaphors are word usages that may have been novel and metaphorical 

historically, but which have now become so common that we see them as just another word sense. 

It seems to be a general trend with metaphors - especially if the metaphor relies on a novel usage 

of a single word - that if they are used consistently by a large part of the population over a long 

period of time, they slowly become part of the accepted usages of a word. Either that or they 

become clichks. 

Clichks could be looked at as over-used metaphors. Sometimes they involve a metaphor 

based on a novel meaning of a single word, as described above, but usually they involve unique 

expressions or catchphrases. Such expressions do get absorbed into popular culture and become 

widely used, but they tend not to become fossilized metaphors for several reasons: 

they are often part of the slang of a given generation and thus receive lower status in 

the language 

Examples collected primarily by Julia Birke. Peter Newmark must not be blamed for them. 
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they are generally whole expressions, not just single words 

they tend not to fill a gap3 in the language 

Very close in nature to clicht2.s are standard or stock metaphors. Idioms belong to this 

category. Standard metaphors are often seen as expressions where the meaning of the whole is 

not equal to the sum of its parts. 

Recent metaphors, as the name suggests, are metaphors that have just recently been 

accepted into popular usage. They often include current slang, as well as metaphors created to 

describe some new technology or phenomenon for which no adequate terminology existed 

previously. Naturally, much of the language surrounding computers falls into this category. 

The last type of metaphor covers unique, never-before-heard expressions born of truly 

creative minds. These are the metaphors generally found in literature and marketing material. 

They are known as original or creative metaphors. 

As mentioned earlier, different types of metaphors present different challenges to an 

automatic metaphor processing system and are dealt with - or ignored - accordingly. In the 

following paragraphs we will examine how each type has been treated by metaphor processing 

systems in the literature, and how it will be handled by the TroFi system. As discussed 

previously, we are trying to keep TroFi's handling of all nonliteral language, not just metaphors, 

as general as possible. 

Dead metaphors are problematic because the line between dead and alive may be fuzzy. 

The judgment calls may be different from person to person and situation to situation, so it is 

challenging to get high accuracy on dead metaphors. Due to the difficulty of distinguishing 

between recent metaphors and dead ones, most metaphor processing systems end up dealing with 

By gap we mean a new concept in the language for which there is no word. For example, many of the 
computer terms we use, like "killing" a process, were borrowed from another domain to describe a hitherto 
unknown concept. Predictably, computer metaphors will one day become fossilized. 



at least some fossilized metaphors. TroFi makes up its own mind about whether a metaphor is 

dead yet or not, categorizing it as literal or nonliteral based on available information. 

Clichks and idioms can be treated as a single phenomenon by an automated system since 

in both cases we are generally looking at phrases, and often the meaning of the whole is not equal 

to the meaning of the parts. Most NLP systems, especially machine translation systems, deal with 

this problem by storing lists of idioms/clichds in lookup tables. In a dialogue system, appropriate 

responses for listed figurative phrases can thus be produced; in a translation system, the proper 

phrasal translation for each idiomlclichC can be found. TroFi applies the same methodology to 

idioms and clichds as to other nonliteral language. Since TroFi looks at the usage of the verbs, 

taking into account not only the arguments -which can often be ambiguous, as in "the horse 

kicked the bucket" - but also the remaining sentential context, idioms and cliches become just 

one more form of nonliteral language. (See also Section 2.2.4.) 

Recent metaphors receive a fair amount of attention in metaphor processing. They are 

generally the most unambiguously classifiable as metaphors, and it is often easier to see in them 

the source and target domains which some metaphor processing systems depend on. Often they 

have already been manually recorded as examples in the conceptual metaphor collection initiated 

by Lakoff and Johnson (1980). 

The term conceptual metaphor merits a little more explanation. The idea, as put forth by 

Lakoff and Johnson (1 980) is that metaphors are not just a language phenomenon used to make 

poetry more interesting, but rather a reflection of the way our whole conceptual system works. 

Lakoff & Johnson suggest that we experience many aspects of life in terms of some other aspect 

of life, for example LOVE AS HEAT or ARGUMENT AS WAR. The metaphors we utter are 

then just a reflection of these internal thought patterns. This study has resulted in an ever- 

growing collection of conceptual metaphors, and numerous researchers (e.g. (Fass, 1997; Mason, 

2004)) have made use of these collections. 



Having the conceptual metaphor collections handy is beneficial of course, but even those 

metaphor processing systems preceding Lakoff, for example (Russell, 19761, use systems of 

analogy that are arguably conceptual in nature (Martin, 1990). Systems based on conceptual 

metaphor principles attempt to identi@ the source of the metaphor and map it to its target, 

generally through a series of semantic connections or an interpretive high-level representation. In 

other words, these systems are built around extensive metaphor maps (Martin, 1990, 1992; Fass, 

1997) or interlingua (Russell, 1976). 

TroFi does not make explicit use of the conceptual metaphor categories for its central 

algorithm, but it does use the example collections in the preprocessing of input data. Again, 

TroFi treats recent, as well as conceptual, metaphors as just another chunk of nonliteral language. 

The class of original metaphors defies most metaphor processing systems. Although 

some fall into a particular conceptual metaphor category and can consequently treated in the 

regular way, some are more complicated. Furthermore, since they are original there are no 

convenient lists for looking them up. Some systems attempt to deal with original metaphors by 

examining the nature of the relationships between the words in a sentence (Fass, 1997). Again, 

TroFi processes original metaphors in the same way it processes all other types of metaphors, by 

looking at the context and trying to determine if there is anything odd about the usage of the verb. 

2.2.2 Metonymy and Synecdoche 

The second most popular figurative language type for automatic processing is metonymy. 

Synecdoche can be seen as a subset of metonymy. The Columbia Electronic Encyclopedia, Sixth 

Edition, (2005) defines metonymy as: 

metonymy (mitdnmam8) , figure of speech in which an attribute of a thing or something closely 
related to it is substituted for the thing itself. Thus, "sweat" can mean "hard labor," and 
"Capitol Hill" represents the U.S. Congress. 



Synecdoche is defined as: 

synecdoche (sin6k'dake) , figure of speech, a species of meta~hor, in which a part of a 
person or thing is used to designate the whole-thus, "The house was built by 40 hands" for 
"The house was built by 20 people." See metonymy. 

As this definition states, metonymy refers to the use of one aspect of something to refer to 

the whole - for example, "England won the World Cup" means "[The team from] England won 

the World Cup" (Nissim & Markert, 2003, p. 56),  and "All high-school students read 

Shakespeare" means "All high-school students read [plays by] Shakespeare" (example inspired 

by (Murata et al., 2000)). 

Metonymy processing, like metaphor processing, tends to consist of first identifying the 

metonymy and then somehow mapping it to its literal reading. TroFi makes no explicit attempts 

to handle metonymy, but by depending on the input data available for a given word, TroFi may 

correctly identify a metonymic usage as nonliteral. 

2.2.3 Irony 

There are some things that are still a little beyond the grasp of computers, and irony is one 

of those thmgs. The Columbia Electronic Encyclopedia, Sixth Edition, (2005) defines irony as: 

irony, figure of speech in which what is stated is not what is meant. The user of irony 
assumes that his reader or listener understands the concealed meaning of his statement. 
Perhaps the simplest form of irony is rhetorical irony, when, for effect, a speaker says the 
direct opposite of what she means. Thus, in Shakespeare's Julius Caesar, when Mark Antony 
refers in his funeral oration to Brutus and his fellow assassins as "honorable men" he is really 
saying that they are totally dishonorable and not to be trusted. Dramatic irony occurs in a play 
when the audience knows facts of which the characters in the play are ignorant. The most 
sustained example of dramatic irony is undoubtedly Sophocles' Oedipus Rex, in which 
Oedipus searches to find the murderer of the former king of Thebes, only to discover that it is 
himself, a fact the audience has known all along. 

We can see from this definition that automatically processing irony -requiring, as it 

does, the correct recognition of underlying speaker intent - might be a little challenging. TroFi 

does not deal with irony. 



2.2.4 Idioms and Phrasal Verbs 

We saw in our definition of metaphor that idioms are often considered standard or stock 

metaphors. The definition from Wikipedia (2005) below also ties idioms in with conceptual 

metaphors: 

An idiom is an expression whose meaning is not compositional -that is, whose meaning 
does not follow from the meaning of the individual words of which it is composed. For 
example, the Enqlish phrase to kick the bucket means to die. A listener knowing the meaning 
of kick and bucket will not thereby be able to predict that the expression can mean to die. 
ldioms are often, though perhaps not universally, classified as fiqures of soeech. 

ldioms typically admit two different interpretations: a literal one and a nonliteral (or figurative) 
one. Continuing with the previous example, the phrase to kick the bucket can, in fact, refer to 
the act of giving a kick to a bucket, but this interpretation is usually not the intended one when 
a native speaker uses the phrase. This aspect of idioms can be frustrating for learners of a 
new language. 

ldioms are often colloquial metaphors. The most common ones can have deep roots, 
traceable across many lanauaqes. Many have translations in other languages, some of which 
are direct. For example, get lost! - which means go away or stop bothering me - is said to 
be a direct translation from an older Yiddish idiom. 

While many idioms are clearly based in conceptual metaphors such as "time as a substance", 
"time as a path", "love as war" or "up is more", the idioms themselves are often not 
particularly essential, even when the metaphors themselves are. For example "spend time", 
"battle of the sexes", and "back in the day" are idiomatic and based in essential metaphors, 
but one can communicate perfectly well without them. In forms like "profits are up", the 
metaphor is carried by "up" itself. The phrase "profits are up" is not itself an idiom. Practically 
anything measurable can be used in place of "profits": "crime is up", "satisfaction is up", 
"complaints are up" etc. Truly essential idioms generally involve prepositions, for example 
"out of' or "turn into". 

The last few examples in this definition can also be calledphrasal verbs. Wikipedia 

(2005) defines phrasal verbs as follows: 

In the Enqlish lanquaqe, a phrasal verb is a yerJ combined with a preposition, an adverb, or 
an adverbial particle, all three of which are uninflected. 

A phrasal verb is also called verb-particle construction, verb phrase, multi-word verb, or 
compound verb. American English expressions are two-part verb or even three-part verb. 

Some grammarians claim that only the figurative, idiomatic or metaphorical usage of the 
combination should be called a phrasal verb, and that the literal use, where both the verb and 
the preposition are analysed, and both are found to have a literal meaning in a phrasal 
context, should be called verb and particle or verb-particle constructions. 



Other linguistic experts are of the opinion that all verb-particle constructions in both literal, as 
well a figurativeAdiomatic use should be called phrasal verb, irrespectively whether they have 
an individual meaning or not. 

Emphasis in idiomatic phrasal verbs is put on the analysis to ascertain whether either verb or 
particle have a meaning. If neither component has a meaning of its own within the context of 
the sentence, it confirms the idiomaticalness of the whole and all that needs to be noted is 
whether the idiom is valid and recognised as such. 

Because of the non-compositionality and the potential literal reading, idioms present a 

special challenge for automatic processing systems, partially because there are often no 

selectional restriction violations. 

Since TroFi looks at the context beyond the immediate arguments, it can treat idioms 

exactly like any other nonliteral language. Phrasal and expression verbs are both a help and a 

hindrance to TroFi. By expression verbs, we mean expressions like "get the picture". As we will 

see later, phrasaVexpression verbs are vital to the automatic preprocessing of the TroFi input data. 

Unfortunately, the preprocessor cannot tell the difference between truly idiomatic phrasal verbs 

and the literal verb-particle constructions discussed in the Wikipedia definition, leaving the door 

open for error. Furthermore, we claim that TroFi can be made to work in any language, but given 

the dependency of the algorithm on the existence of phrasal verbs, some adjustments would have 

to be made for languages containing no recognizable phrasal verbs. 

2.2.5 Anomalous Semantic Relations 

Fass (1997) discusses certain semantic relations classifiable as neither metaphoric nor 

metonymic. These are called anomalous semantic relations. He provides as an example the 

phrase "the idea drank the heart." He states: "Anomalous relations have neither the inferences of 

a metonymic relation nor the relevant analogy of a metaphorical relation." (Fass, 1997, p. 120) 

Such anomalous relations can cause significant problems for metaphor processing 

systems, but since TroFi does not attempt to distinguish between different types of nonliterality, it 

is able to treat these cases like any other input. 



2.3 TroFi's Choice 

In Section 1.2, we saw an excerpt from the TroFi Example Base. Now that we are more 

familiar with the definitions of literal and nonliteral being assumed in this thesis, we look at 

another, this time for the word "drown": 

NONLITERAL: Realism might drown it. 

LITERAL: As Teresina, the maiden who is drowned in the Bay of Naples and ends up as a 
Nereid in the Blue Grotto before being restored to life by her faithful fisherman lover, 
Gennaro, Linda Hindberg was too inflexible in body and too stolid in personality. 

Our knowledge of the lexical semantics of the word "drown", as well as our general 

world knowledge, allows us to see the literallnonliteral distinction in these examples. TroFi 

attempts to make the same distinction by using unsupervised learning techniques. This is done 

with the understanding that there might be unclear cases which are problematic for TroFi and 

which deserve their proper attention within the theory of metaphor and metonymy processing. 

However, it should be possible for a system like TroFi to handle at least the clear-cut distinctions. 

An interesting idea to consider is that the user of the TroFi system may be able to 

calibrate the literallnonliteral distinction. We explain in Section 1.2 that TroFi works by 

attracting sentences of interest to either a literal sense set or a nonliteral sense set. Although these 

sets are automatically constructed (see Chapter 6) with as much adherence as possible to the 

definitions provided in this chapter, there will inevitably be some question as to the exact location 

of the 1iteraVnonliteral divide. By being generated in an unsupervised manner, the 

literallnonliteral sets will, in a way, influence where that boundary should lie. By then attracting 

other sentences to these sets, TroFi can help consolidate the literavnonliteral distinction for a 

given target word: TroFi has an opinion. Of course, the user of the system may have a different 

opinion, and, through active learning, helshe has a chance to fine-tune the placement of the 

dividing line between 1iteraVnonliteral as supported by TroFi. If, as suggested by Hahn and 

Markert (1999), the literahonliteral distinction is subjective, this is a valid thing to be able to do. 



2.4 Summary 

In this chapter we have provided the definitions of literal and nonliteral that will be 

assumed in the remainder of this thesis, and we have introduced the idea that TroFi's notion of 

literal and nonliteral can be calibrated. We have subsumed a great number of linguistic 

phenomena under the blanket term nonliteral, but ultimately it all seems to come back to our first 

definition: "not literal". 

In the next chapter, we provide an overview of some of the nonliteral language 

processing literature relevant to this thesis. Most of the work reviewed concentrates on specific 

types of nonliteral language, particularly metaphor and metonymy. 



3 METAPHOR & METONYMY PROCESSING REVIEW 

The foundations of TroFi lie in a rich collection of metaphor and metonymy processing 

systems. Researchers have tried everything from hand-coded rule-based systems to statistical 

systems trained on large corpora. Metaphor processing has even been approached with 

connectionist systems storing world-knowledge as probabilistic dependencies. 

Of the rule-based systems, some rely on a type of interlingua (Russell, 1976) to interpret 

metaphors, while others consist of complicated networks and hierarchies - often referred to as 

metaphor maps - that provide paths between the source and target concepts of a metaphor (e.g. 

(Fass, 1997; Martin, 1990, 1992)). These approaches are very effective when applied to certain 

classes of metaphors. Unfortunately, systems of this type have to be largely hand-coded and 

generally work only for an enumerable set of metaphors or in limited domains. Furthermore, like 

many rule-based NLP systems, these approaches tend not to be very efficient. 

The other two types of systems we will look at in this chapter - dictionary-based systems 

and corpus-based systems - can be seen as a reaction to the problems encountered by the rule- 

based systems. Dictionary-based systems use existing machine-readable dictionaries or lexica 

built from a corpus as one of their primary sources for metaphor processing information. An 

example of such a system is presented in (Dolan, 1995). Dolan states that metaphor interpretation 

capabilities are an "emergent property" of extensive lexical knowledge bases (LKBs). Dolan 

claims that, by looking at paths and path lengths between words, one can "[allow] the lexicon 

itself to directly determine whether or not a particular meaning extension is licensed in a 

particular context" (Dolan, 1995, p. 27). Corpus-based systems may also make use of machine- 

readable dictionaries, but usually not directly for processing metaphor or metonymy. They 

extract or learn the necessary information from large corpora instead. By doing so, they attempt 
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to avoid the need for manual annotation or metaphor-map construction. Examples of such 

systems can be found in (Murata et al., 2000), (Nissim & Markert, 2003) and (Mason, 2004). 

We examine our three types of systems in more detail below, followed by some 

conjectures on the future of metaphorlmetonymy processing. 

3.1 Rule-based Systems 

The systems described in this section all depend on rules to interpret metaphors. That is, 

their interpretation components consist, in essence, of complicated systems of rules. Russell 

(1976) uses an interlingua to abstract from sentences and a matrix to find analogies between 

them; Fass (1997) finds detailed semantic relations between the words of a sentence and 

interprets metaphors by looking for common ancestors between source and target concepts in an 

abstraction hierarchy; Martin (1990, 1992) builds explicit representations of conventional 

conceptual metaphors into his system using extensive metaphor maps and uses these both to 

interpret metaphors and to learn new metaphorical uses. 

Each of the three systems mentioned above deals slightly differently with metaphor 

recognition. Russell and Fass both make some use of selectional restriction violations, but 

Russell depends almost exclusively on verbal subcategorization and selectional preferences. 

Martin, on the other hand, minimizes the recognition phase in his quest to treat all input equally. 

He leaves the determination of appropriate usage to his interpretation component. 

An additional system discussed in this section is the connectionist system of Narayanan 

(1999). It uses maps similar to those of the other three systems, but with an emphasis on domain- 

specific world-knowledge stored as probabilistic dependencies. 



3.1.1 Russell 

The system developed by Russell (1 976) makes explicit use of an interlingua. She 

writes, "What is needed is an 'interlingua', which deals with relationships between concepts at 

the cognitive level." (Russell, 1976, p.9) Her interlingua depends on relationships between 

conceptual categories developed by Schank (1973) as part of his Conceptual Dependency Theory. 

In this theory, conceptual dependencies are represented by diagrams with a variety of symbols 

representing semantic roles, causal relationships, and so on. Russell applies this formalism to 

verbs. She then stores the representations in a matrix that can be used to map the relationships 

between the different conceptual categories to which the verbs belong. In other words, the matrix 

allows Russell to draw analogies between different usages of verbs, which she psychologically 

motivates as the method humans use to interpret unknown phrases. 

It appears that recognition of metaphorically used verbs is achieved through examination 

of the "NOMINALs" found as the arguments of the verb. This is analogous to the use of 

selectional constraint violations for recognizing metaphors. 

Russell uses the specialized diagrammatic code mentioned above to build her system. 

This means that every verb in the system must be painstakingly translated into symbols by hand. 

Then this symbolic description must be coded. The result is an exquisitely detailed 

characterization of the verb, but it falters on the fact that metaphors depend on more than the 

immediate arguments of the verb. Additionally, it was suggested by Martin (1992), that Russell's 

system has to work exceedingly hard to capture the relationships that the conceptual metaphors of 

Johnson and Lakoff (1 980) are able to capture by their very nature. 

3.1.2 Fass 

Fass (1997) makes use of selectional preferences, as well as assertions, in his system of 

Collative Semantics (CS). He uses them as one part of his metaphor and metonymy processing 



system. Fass looks at the relationships between each pair of arguments in a sentence, evaluating 

each as one of seven semantic relations based on adherence to, and violations of, preferences and 

assertions. The seven types of semantic relations defined by Fass are literal, metaphorical, 

metonymic, anomalous, redundant, inconsistent and novel. It is the combination of these 

semantic relations in a sentence that determines whether the sentence as a whole should be seen 

as literal or metaphorical. 

Particularly interesting for this thesis is that Fass finds the aforementioned semantic 

relations between words using the different senses of the words themselves and consequently 

disambiguates those same words using the semantic relations. This supports the close 

relationship between metaphor processing and word-sense disambiguation assumed by TroFi. 

For its metaphor interpretation component, Fass's meta5 system uses abstraction 

hierarchies to draw analogies between source and target concepts. The literal meanings of 

metaphors can be discovered by looking for common ancestors between the source and target 

concepts in the hierarchy. In finding these mappings Fass makes extensive reference to the 

conceptual metaphor constructs of Johnson and Lakoff (1980). 

3.1.3 Martin 

The commonality between the above systems is that they contain little explicit knowledge 

about known metaphors. Fass's system does contain extensive implicit knowledge about how 

figurative language in general, and conceptual metaphor in particular, works, but it seems to 

makes no explicit use of existing metaphors. This is where Martin's MIDAS (Metaphor 

Interpretation, Denotation, and Acquisition System) (Martin 1990, 1992) steps in. 

MIDAS, which was developed for use in an expert system for UNIX users, contains hard- 

coded representations of conventional conceptual metaphors, shown as relationships between 

concepts. It encodes the relationships in highly detailed metaphor maps and metaphor map 



hierarchies. It relies on these representations to interpret input and provide appropriate output. 

Furthermore, it sets itself apart by being able to learn new usages from the input by analogy to 

existing metaphors. In addition to conventional metaphors, MIDAS contains representations for 

handling literal input, including hard-coded expected semantic relations for a given word. 

Part of what distinguishes Martin's system from other metaphor processing systems is 

that it is not purely a metaphor processing system. One of its strengths is that no explicit 

metaphor recognition phase is required. All input is treated equally. Of course, within the 

system, all possible interpretations, both literal and metaphorical, must be stepped through in 

order to interpret an input sentence. This unfortunately requires extensive coding for each 

possible word or expression, making it difficult to expand the system beyond a specific domain. 

Besides the use of existing metaphorical knowledge, the work by Martin most relevant to 

TroFi is his research into the use of context to recognize and interpret metaphor (Martin, 1994). 

In this work, Martin examines psychological studies which have shown that the sentences 

preceding a metaphor may be indicative of either the source or target domains of the metaphor, or 

may in fact represent another, similar metaphor. The strongest correlation was found with 

indicators of the target domain in the preceding text. One of TroFi's most successful models 

depends on this finding. 

3.1.4 Narayanan 

Narayanan (1999) and other researchers at the Neural Theory of Language (NTL) 

Research Group at Berkley also make use of Lakoff and Johnson's conceptual metaphor 

construct, and they too make extensive use of metaphor maps. However, they place a far greater 

emphasis on domain-specific world knowledge extracted from a corpus. This detailed world 

knowledge is stored as probabilistic dependencies between variables in a Belief Net representing 

the target domain. The source domain is stored as an "x-schema simulation environment used for 



inference" (Narayanan, 1999, p. 123). In addition, there are metaphor maps to map (project) 

source domain information to the target domain Belief Nets. As described in (Narayanan, 1999, 

p. 121), the system interprets metaphor by generating inferences based on pre-parsed input and is 

limited to "simple causal narratives in the domains of Politics and Economics." 

The system is able to work with fine semantic details like temporal distinctions and 

speaker intent. Also, it is able to interpret novel expressions of the original metaphor variety 

within the domain programmed into the system. Unfortunately, although many of the rules found 

in the system can be automatically created using probabilistic analysis of a corpus, the various 

problems inherent in rule-based systems still prevail: all the Belief Nets, x-schemas, and 

metaphor maps must be preprogrammed, creating an enormous system that is difficult to expand 

to other domains and even to other conceptual metaphor types. 

Narayanan states: "It is now generally accepted that metaphor interpretation requires the 

ability to explicitly represent the source and target domains as well as the metaphor maps 

themselves." (Narayanan, 1999, p. 128) Maybe so, but given the extraordinary computational 

complexity and the scalability problems of such systems, is it any wonder that some researchers 

have attempted to break out of this mould to create lighter, more generally applicable systems? 

3.2 Dictionary-based Systems 

The common thread running through all the rule-based systems outlined above is that 

they do an extraordinary - and theoretically well-motivated -job on a select subset of English 

sentences. It is this restriction to a limited domain that prompted Dolan to write: "Previous 

computational attempts to handle nonliteral word usage have been restricted to 'toy' systems that 

combine hand-coded lexicons with restricted sets of metaphor types that can be used to sanction 

specific classes of semantic subcategorization violations. These hand-coded efforts are unlikely 

to ever scale up to the rigors or real, free text." (Dolan, 1995) 



One possible solution is to make more refined metaphorical use of the lexicon used by 

the language processor. Two such methods are described below: Dolan's example-based 

approach, which uses "a large lexical knowledge base derived from a machine-readable 

dictionary" (Dolan, 1995), and Zernik & Dyer's phrasal lexicon approach (Zernik & Dyer, 1986). 

3.2.1 Dolan 

The system developed by Dolan (1 995) does away with the need for an intricate, hand- 

coded metaphor interpretation component like the ones used by the rule-based systems described 

in Section 3.1. Instead, he automatically derives an extensive lexical knowledge base (LKB) 

from the Longman Dictionary of Contemporary English (LDOCE). This LKB is a type of 

semantic hierarchy, much like WordNet, which provides information about semantic relations 

like hypernymy and holonymy. It also provides selectional preference information in the form of 

TvpicalObjOf and TvpicalSubjOJ: Additionally it provides rankedpaths between words, which 

allow particular relationships (including metaphorical ones) to be determined. 

The beauty of this system is that it does not depend on complex mappings between 

source and target concepts, and that it is a literal lexicon and metaphor recognitiodinterpretation 

system all rolled into one. When input is received, for example a verb and its object, the system 

attempts to interpret the verb literally using selectional preferences encoded in the LKB. If this 

proves impossible - i.e. if there is a selectional constraint violation - the system tries to establish 

a metaphorical relationship between the verb and its object by finding a highly ranked path 

through the hierarchy between the input object and the object typically found with the input verb. 

Dolan explains that sometimes, if no direct path can be found, there may still be secondary paths 

based on path intersection points. 

The benefits of Dolan's approach are obvious: the recognitiodinterpretation component 

is created largely automatically, and there is no need to code up expensive metaphor maps. 



However, the system is limited to finding relationships based on selectional restrictions and 

semantic relationships between individual words. In this sense it faces the same problem as other 

systems based on semantic hierarchies: what if there is no direct - or even indirect - semantic 

relationship to be found using just the arguments of a given word? 

3.2.2 Zernik & Dyer 

Like Dolan, Zernik & Dyer (1 986) deal with metaphorical language in the same way that 

they deal with literal language, and they use a type of automatically built lexicon to do it. Unlike 

Dolan, however, they use a phrasal lexicon built using information extracted from a corpus rather 

than a semantic hierarchy built using information extracted from a machine-readable dictionary. 

In the Zemik & Dyer system, metaphor recognition becomes irrelevant, since all possible 

usages of a word are listed in their phrasal context in the lexicon. Each lexical entry lists the 

pattern to be matched, including required arguments, the situation in which one would use this 

phrase - i.e. the context - and the concept, namely the literal meaning of the phrase. If the input 

phrase happens to be metaphorical, the arguments need simply to be transferred to the literal 

concept. In effect, it functions very much like an example-based machine translation system. 

A drawback of this system is that all those lexical entries need to be created, albeit 

automatically, and stored. One could imagine that storing all those phrases as well as all the 

additional information would be prohibitively space-consuming. Also, to use the system, all 

phrases must be matched against the text and the situation evaluated. It further appears that a pre- 

defined set of situations, such as "$vehicle-collision" or "$fortuitous-encounter" (Zernik & Dyer, 

1986, p. 249), must be created in order to be linked to particular phrases. And although the 

system can handle and learn unknown phrases, it must converse with the user to do so. 

The phrasal lexicon layout of Zernik & Dyer's RINA system probably comes closest to 

how we might build an interpretation system on the TroFi Example Base. We would also want to 



create a system where certain uses of a word could be looked up and converted into a literal 

interpretation if necessary. Like Zernik & Dyer, we populate our database automatically. The 

major differences, however, are that we do not start with a seed lexicon, we do not need to pre- 

code a set of situations, and we attempt to keep user interaction optional and to a minimum. 

Also, rather than building one huge lexicon for the entire English language, TroFi can be tuned to 

build domain-specific example bases given user-specified corpora and target words. 

3.3 Corpus-based Systems 

Three of the systems we have seen thus far, two rule-based and one dictionary-based, 

make use of corpus-based techniques in some capacity. Martin combines context from the corpus 

with known metaphors to learn previously unseen metaphors for addition to his metaphor maps. 

Narayanan extracts domain-specific world knowledge from a corpus. Zernik & Dyer make 

extensive use of the corpus to discern the situations in which a given phrase is typically used. All 

three of these systems use the corpus to learn, and then convert what they have learned, into rules 

that must be stored. 

Up to this point, metaphor processing systems that make use of the corpus in the 

statistical sense of corpus-based NLP have been hard to find, probably since something as 

esoteric and hard-to-define as metaphor seems unlikely to be characterizable using statistical 

distributions. Still, attempts are beginning to be made to use corpus-based linguistics for 

processing nonliteral language. A number of approaches have limited themselves to attempting 

to devise systems for manually annotating nonliteral language (e.g. (Markert & Nissim, 2002; 

Semino & Steen, 2001)). Most of the recent attempts to apply machine learning methods to the 

problem have dealt exclusively with metonymy (Nissim & Markert, 2003; Murata et al., 2000), 

although we did find one project that attempts to discover conceptual metaphors in a collection of 

corpora by statistical means (Mason, 2004). 



We first examine the two approaches to metonymy interpretation - (Nissim & Markert, 

2003) and (Murata et al., 2000) - since the methods employed there are similar to the ones used 

by TroFi for interpreting the broader class of nonliteral language. We then review the work of 

(Mason, 2004), which explores the discovery of conceptual metaphors in a corpus. The work on 

supervised metonymy resolution by Nissim & Markert and the work on conceptual metaphors by 

Mason come closest, to date, to what we are trying to accomplish with TroFi. 

3.3.1 Murata et al. 

Murata et al. (2000) use example bases derived from corpora to find interpretations for 

various types of metonymy. In their work on example-based metonymy interpretation in 

Japanese, Murata et al. attempt to eliminate the necessity for pre-coded metonymy knowledge 

bases and semantic hierarchies by combining different types of phrases extracted from a corpus. 

As described in Section 2.2.2, metonymy is a trope where a word associated with a particular 

entity is made to stand for that entity. The example given in (Murata et al., 2000) (in translation) 

is "I read Tolstoy", where "Tolstoy" actually stands for "Tolstoy's novel" or "the novel of 

Tolstoy". 

The method of Murata et al. is based on the assumption that a given corpus will contain 

both examples of the metonymy and examples relating the metonymic word to the entity it stands 

for. So, in order for the system to interpret "I read Tolstoy" as "I read the novel of Tolstoy", the 

corpus must contain numerous examples of "Y of Tolstoy". From among all the "Y of Tolstoy" 

examples, the most likely one is chosen based on selectional restrictions of the verb. 

It is important to mention this study in relation to TroFi for two reasons. The first is that 

it shows a method for using only examples extracted from a corpus to interpret a type of 

nonliteral language. The second is the reason that Murata et al. provide for not extending their 

method to other types of metaphor: "Metaphor is affected by the context, so metaphor 



interpretation is difficult." (Murata et al., 2000) This lends support to our belief that it is 

important to look beyond the subcategorization frame and selectional restrictions of the verb for 

metaphor processing. 

3.3.2 Nissim & Markert 

Nissim & Markert (2003) approach metonymy resolution with machine learning 

methods, "which [exploit] the similarity between examples of conventional metonymy" (Nissim 

& Markert, 2003, p. 56). They see metonymy resolution as a classification problem between the 

literal use of a word and a number of pre-defined metonymy types1. They use similarities 

between possibly metonymic words ( P M s )  and known metonymies as well as context 

similarities to classify the PMWs. 

The main difference between the Nissim & Markert algorithm and the TroFi algorithm - 

besides the fact that Nissim & Markert deal only with specific types of metonymy and not 

nonliteral language in general - is that Nissim & Markert use a supervised machine learning 

algorithm, as opposed to the primarily unsupervised algorithm used by TroFi. Nissim & Markert 

use a hand-annotated corpus (1000 examples from the BNC) and a decision list classifier for their 

task. They find that they are able to reduce the context to head-modifier relations and still get 

comparable results. However, they run into the same problem encountered by TroFi: data- 

sparseness. Sometimes there is no instance of a particular role-of-head value, for example "subj- 

of-lose" (Nissim & Markert, 2003), in the training data and so no inferences can be drawn. 

Nissim & Markert need to be able to extend similarity to other similar heads. 

Nissim & Markert discuss using the Karov and Edelman (1998) word-sense 

disambiguation algorithm2 to extend similarity to other lexical heads, but they decide to go with a 

simpler approach involving the integration of a thesaurus. This works well for their particular 

The metonymy types used areplace-for-people,plac:e-for-event, place-for-product, mixed, and othernet. 
2 Coincidentally, this is the same algorithm which was chosen as a foundation for TroFi independently of 
the Nissim & Markert paper. 



task since they need only to find other words similar to the main verb. This is not enough for 

TroFi, since TroFi depends on more than just the arguments of the target verb and using the 

synonyms of all the words in the context could give us problematic and incorrect similarities. 

3.3.3 Mason 

Mason (2004) presents work in metaphor processing based on his Ph.D. thesis. He 

describes CorMet, "a corpus-based system for discovering metaphorical mappings between 

concepts" (Mason, 2004, p. 23). His system finds the selectional restrictions of given verbs in 

particular domains by statistical means. It then finds metaphorical mappings between domains 

based on these selectional preferences. By finding semantic differences between the selectional 

preferences, it can "articulate the higher-order structure of conceptual metaphors" (Mason, 2004, 

p. 24), finding mappings like LIQUID-MONEY. 

Mason's work bears many similarities to ~ r o ~ i ~ .  Its creation is based on similar 

motivations - i.e. to take a first step towards building a "robust, broadly applicable computational 

metaphor interpretation system" (Mason, 2004, p. 23). Like TroFi, Mason's CorMet uses 

WordNet as a primary knowledge source, but unlike TroFi, it actually mines WordNet for 

selectional preference information. Further it makes use of context in large corpora, although it 

appears that the domains to be analyzed by CorMet must be pre-defined. 

One of the primary differences between TroFi and CorMet is what they are expected to 

accomplish. CorMet concentrates specifically on conventional conceptual metaphors, attempting 

to automatically extract these from a corpus and provide them with appropriate labels. It is not 

really built as a system for recognizing metaphors in the sense of distinguishing metaphorical 

usages of verbs from literal ones. Mason himself states, "Note that CorMet is designed to detect 

higher-order conceptual metaphors by finding some of the sentences embodying some of the 

Note that we only became aware of this work well after TroFi had been implemented, so it had no 
influence on our current functionality. 



interconcept mappings constituting the metaphor of interest but is not designed to be a tool for 

reliably detecting all instances of a particular metaphor." (Mason, 2004, p. 24) TroFi, on the 

other hand, cannot tell a conceptual metaphor from an idiom, never mind give it a label, but it can 

recognize all sorts of nonliteral language without even knowing anything about the domain. 

3.4 Metaphor Processing Future 

We have now walked through the past and present of metaphorlmetonymy processing, 

but what is the future? We have discovered some common threads running through the various 

methodologies. Most early systems (e.g. (Russell, 1976; Fass, 1997; Martin, 1990)) use large, 

hand-coded interpretation components. However, other efforts have attempted to eliminate these 

as they are difficult to maintain and scale to real-world text in disparate domains. They have 

chosen to rely instead on example-based systems, some (e.g. (Dolan, 1995)) extracting required 

information out of machine-readable dictionaries and thesauri, others (e.g. (Narayanan, 1999; 

Murata et al., 2000; Nissim & Markert, 2003; Mason, 2004)) attempting to learn from a corpus. 

Like current developments in machine translation, example-based systems learning from a corpus 

with the support of a pre-existing machine-readable dictionary or semantic hierarchy like 

WordNet appear to be the way of the future. 

To date, most research still appears to stick with a particular type of nonliteral language, 

like metonymy and metaphor - particularly the well-defined and psychologically motivated 

categories of Lakoff s conceptual metaphor. TroFi appears to be the first system to attempt to 

define and process the broad, sweeping category of nonliteral in a single system. 

Another apparent trend is to take a step back from the ambitious task of interpreting 

metonymy and metaphor and to look instead at some new approaches for simply recognizing 

them in some useful way, perhaps working with them in an example-based form later. This is 

evidenced particularly in (Mason, 2004) and (Nissim & Markert, 2003). 



We have already mentioned the similarity of recent developments in metaphorlmetonymy 

processing to developments in machine translation. If we look back to Russell's (1976) use of an 

interlingua in her metaphor processing system, we can see that the similarities between the two 

research areas have always been evident. Another area sharing similarities with 

metaphorlmetonymy processing is word-sense disambiguation. For example, both fields have 

made extensive use of subcategorization frames, selectional restrictions, and paths in semantic 

hierarchies. It seems logical therefore that the future of metaphorlmetonymy processing may be 

tied not only to advances in machine translation, but also to the state-of-the-art in word-sense 

disambiguation. Not surprisingly, many of the trends in that field point towards automatically 

learning from large corpora. 

We further explore the similarities between word-sense disambiguation and 

metaphorlmetonymy processing in Chapter 4 through an examination of some word-sense 

disambiguation approaches that may be adaptable to nonliteral language processing. In addition, 

we touch briefly on clustering methodologies as related to word-sense disambiguation and 

nonliteral language processing. 



4 WORD-SENSE DISAMBIGUATION & CLUSTERING 
REVIEW 

In Section 3.4, we suggested that nonliteral language processing shares many 

commonalities with word-sense disambiguation - for example, subcategorization frames, 

selectional restrictions, and paths in semantic hierarchies. Based on these similarities, we suggest 

that if we simply regard literal and nonliteral as two senses of a word, we can reduce the problem 

of nonliteral language recognition to one of word-sense disambiguation. This means that we 

should be able to adapt an existing word-sense disambiguation algorithm to our needs. 

In Section 4.1, we browse through a number of word-sense disambiguation algorithms in 

order to find the one most suitable for use in TroFi. Also, since our desired TroFi output is 

literahonliteral clusters, we also take a very brief look at clustering in Section 4.2. 

4.1 Word-sense Disambiguation Methodologies 

Since word-sense disambiguation is one of the greatest thorns in the side of Natural 

Language Processing, it has naturally received a great deal of attention in the literature, resulting 

in a good choice of algorithms for adapting to nonliteral language processing. We discuss a 

number of approaches in the following sections: a sense disambiguation algorithm based on 

selectional preference (Resnik, 1997), an unsupervised bootstrapping algorithm for word-sense 

disambiguation (Yarowsky, 1995), and a similarity-based word-sense disambiguation algorithm 

(Karov & Edelman, 1998). In addition, we briefly glance at some work on the effects of context 

on disambiguation (Beefeman et al., 1997). In all cases, the discussion will focus not so much 

on the details of the work itself but rather on its applicability to TroFi. 



4.1.1 Resnik 

Resnik (1 997) builds his sense disambiguation algorithm on the basis of selectional 

preference. Recall that selectional preference tends to play a role in nonliteral language 

processing systems as well. Resnik uses the relative entropy model of (Kullback & Leibler, 

195 1) to establish selectionalpreference strength of a predicate. This methodology poses two 

problems for the TroFi approach. 

The first difficulty is that once the selectional preferences are found, some method must 

be deployed to separate the literal ones from the nonliteral ones - either that, or separate them 

manually. It is worth noting that (Mason, 2004) uses the Resnik algorithm. However, the purpose 

of Mason's work is to find high-level conceptual metaphors by looking at the differences in 

selectional restrictions across domains. He does not attempt to separate literal and nonliteral 

usages as such. 

The second difficulty lies in the fact that, by Resnik's own admission, "...although 

selectional preferences are widely viewed as an important factor in disambiguation, their practical 

broad-coverage application appears limited.. .," and "more important is information beyond 

selectional preference, notably the wider context utilized by Yarowsky." (Resnik, 1997) 

4.1.2 Yarowsky 

The Yarowsky (1995) algorithm uses an unsupervised bootstrapping method to train 

itself for word-sense disambiguation tasks. The basic idea is to start with a set of seed 

collocations for each sense of a given word. All the sentences in the training set can then be 

tagged according to this basic information. The next step involves training a supervised decision 

list learner on the tagged set, allowing additional collocations to be learned. The corpus is then 

retagged with this new information. Any tagged sentences are added to the training set. At this 

point Yarowsky adds a little twist. He identifies a one senseper discourse constraint. This 



allows any other sentences containing the target word that are in the same discourse as a 

previously tagged sentence to be added to the training set. The supervised learner is then 

retrained on the augmented set, and so on. 

Although this algorithm works extremely well for regular word-sense disambiguation, it 

has a few problems as an algorithm for nonliteral language processing. First, it is very difficult to 

come up with clearly defined collocation seed sets for the literalhonliteral distinction. Second, 

the algorithm requires that additional features be extracted from training examples, but given that 

nonliteral usages are often unique, this might prove futile. Last, since speakers often mix literal 

and nonliteral uses of a word within the same discourse, it is hard to place complete faith in the 

one sense per discourse constraint. 

4.1.3 Karov & Edelman 

A word-sense disambiguation algorithm that seems far more adaptable to the needs of 

TroFi is the similarity-based word-sense disambiguation algorithm of Karov and Edelman (1998). 

It requires as input only the sentences containing the target word, some definition of the relevant 

context (composition of the feature sets), and machine-readable dictionary definitions showing 

the different senses of the target word. An important point is that the algorithm is extremely 

flexible in terms of its sense sets. Anything for which one can create a set - for example, literal 

and nonliteral- can essentially be regarded as a sense. Furthermore, it has the benefit of being 

able to work with very sparse data using the principle of transitive similarity'. This is pivotal, 

since researchers admit that there is a terrible knowledge acquisition bottleneck (see Chapter 2) 

not only in word-sense disambiguation, but also in nonliteral language processing (see (Karov & 

Edelman, 1998; Nissim & Markert, 2003)). The Karov & Edelman approach appears to lend 

itself best of the algorithms reviewed to the task of nonliteral language processing. The 

algorithm, as well as its integration into TroFi, is discussed extensively in Chapter 7. 

It is interesting that this same principle emerges in (Dolan, 1995) in the discussion of secondalypaths. 



4.1.4 Beeferman et al. 

Although Beeferman et.al.'s Model of Lexical Attraction and Repulsion (1997) does not 

focus specifically on word-sense disambiguation, it does discuss a phenomenon relevant to 

disambiguation experiments involving a wider context. Their finding is that the predictive power 

of context words decreases relative to their distance from the target word. This means that 

algorithms depending on this context could be improved by somehow ascribing less relevance to 

more distant words. 

This phenomenon could be modeled in TroFi by manipulating the feature weights (see 

Section 7.1.1) - for example, adjacent words would be given the highest weight, followed by 

other words in the same sentence, followed by words in adjacent sentences, and so on. Although 

this is a possibility, we consider it outside the scope of this thesis and leave it for future work. 

4.2 Clustering Methodologies 

Looking closely at the description of the Karov & Edelman algorithm in Section 4.1.3, 

we notice some similarities to clustering. In essence, the sense sets are like seed sets around 

which we can cluster other sentences, hence our claim that TroFi does literallnonliteral clustering. 

This opens up the question of whether some other clustering algorithm might not be better suited 

to the task. In this section we provide an extremely brief overview of clustering and then 

examine a state-of-the-art clustering algorithm and its applicability to TroFi. 

Speakmg generally, clustering algorithms group words based on the context in which 

they occur. This context can consist of something as simple as the preceding word. A count is 

done on a corpus to determine which words tend to occur with the same feature (in this case the 

preceding word). These are clustered together. Something to keep in mind for the TroFi case is 

that we want to cluster whole phrases, not individual words, and that we want to use extensive 

feature sets, the content of which we can, to some extent, control. 



The extent to which the content of the features sets can be controlled depends on the type 

of clustering algorithm chosen. There are two main categories: hierarchical and non- 

hierarchical. Hierarchical clustering algorithms produce just that - a hierarchy of clusters. Given 

such a hierarchy, decisions must be made about where the branches should be cut in order to 

create the most useful clusters. This would be extremely difficult in the case of TroFi, since we 

approach the clustering problem with no clear idea of where such divisions should fall. 

Furthermore this would require extensive supervision, which we wish to avoid. Non-hierarchical 

clustering, on the other hand, requires the construction of seed cluster-s to which other 

wordslphrases can be attracted. In this sense, the Karov & Edelman algorithm (Karov & 

Edelman, 1998) uses a sort of non-hierarchical clustering technique. However, as opposed to 

other systems, which generally require seed clusters to be built by hand, the Karov & Edelman 

algorithm includes a method for building them automatically. 

The Karov & Edelman algorithm, with its ability to cluster whole phrases around 

automatically constructed seed clusters, seems fairly ideal for our nonliteral language recognition 

purposes. However, for the sake of balance, we do review a pure clustering algorithm below. 

4.2.1 Lee & Pereira 

Lee and Pereira (1999) use distributional similarity models to build clusters meant to 

predict unseen events. For example, their algorithm forms clusters of nouns on the basis of the 

verbs with which they are generally found using complex conditional probability calculations and 

iterative re-estimation procedures. The defining feature of this clustering algorithm is that it 

produces greater amounts of generalization than other algorithms, making it attractive for tasks 

crippled by data sparseness. 

In effect, this would make it a good fit for TroFi, except for the fact that TroFi has to be 

able to cluster whole phrases and use extensive feature lists to do so. The Lee & Pereira 



algorithm requires not only the calculation of word and bigram frequencies in a training corpus, it 

also requires the subsequent calculation of co-occurrence probabilities of word clusters (Dagan, 

Pereira & Lee, 1994). Furthermore, since this similarity-based measure - like k-means and other 

traditional approaches - clusters only words, not words plus context, it is difficult to provide seed 

sets of sentences to use as a bootstrap set to jump-start the learning process. 

Another problem with using this algorithm for literahonliteral clustering is that it is 

hierarchical and requires some division of the clusters into usable sense sets, either manually or 

by training on annotated data. That this is a problem is evidenced in (Dagan, Lee & Pereira, 

1997) in which (Dagan, Pereira & Lee, 199412 is applied to word-sense disambiguation. In this 

paper, the authors shy away from performing an experiment on real-world sense-distinctions due 

to the need for manually annotated training sets. 

The clustering algorithm of Lee & Pereira (1999) is the state-of-the-art for being able to 

handle unseen examples through similarity-based reasoning. However, the Karov & Edelman 

(1 998) algorithm also allows for generalization to unseen examples, and, on the level of being 

able to handle a wide variety of contexts and not requiring manually annotated training data, the 

Karov & Edelman algorithm is certainly preferable for our purposes. 

4.3 Summary 

In this chapter we provided a brief overview of word-sense similarity algorithms and a 

cursory look at clustering methodologies. We concluded that the Karov & Edelman algorithm 

(Karov & Edelman, 1998) is ultimately most suited to our nonliteral language recognition task. 

We examine the Karov & Edelman algorithm rigorously in Section 7.1.1.1, analyzing 

how it fits into the TroFi system in Section 7.1.1.2. However, before diving into the details, we 

provide a high-level overview of the whole TroFi system in Chapter 5. 

An early version of the algorithm presented in (Lee & Pereira, 1999). 
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5 TROFI OVERVIEW 

In this chapter, we provide a high-level overview of TroFi. We discuss the details in 

subsequent chapters: data in Chapter 6; algorithms in Chapter 7; results in Chapters 8, 9 & 10. 

The view we are adopting for the purposes of this exploration is that we can take an 

amorphous collection of sentences unified only by a shared verb and cause a meaningful split of 

this collection into two sets - one where the shared verb is used in a literal sense, and another 

where it is used in a nonliteral sense, as defined in Chapter 2. 

We could approach the splitting of the original collection in several ways: do it 

manually; train a classifier; write a large number of rules; cluster based on individual words; 

collect some seed sets and attract the original sentences to them. 

It is this last approach that we adopt for TroFi. Possibly it is not the most precise of the 

approaches, but it offers the benefits of being extremely flexible and scalable, and it requires 

comparatively little labour to set up and maintain. We discuss the reasons for our choice in more 

detail below. 

Our first option for splitting the original collection is to do it manually; the second, to 

train a classifier. Both of these options require manually annotating enormous amounts of data. 

Manual annotation is an extremely time-consuming and error-prone process. It is particularly 

difficult to make consistent decisions on something as fuzzy as the distinction between literal and 

nonliteral. In addition, because language in general - and nonliteral language in particular - is 

productive, the annotation task would never be done. Finally, every new language of interest 

would require its own annotation initiative. As we walk through the TroFi process later in this 

chapter, several opportunities for manual annotation will arise - for example, manually separating 



the sense sets of a machine-readable dictionary (MRD). Even in those cases, TroFi does not use 

manual input for all the reasons just described. 

The third option is to write "a large number of rules" - i.e. create a rule-based system. 

We are including under this heading any system requiring the use of extensive metaphor maps, 

distances between nodes in semantic hierarchies, and explicitly coded selectional constraints. 

Like manual annotation initiatives, such systems require a great deal of manual effort to code the 

rules and link them together. They are expensive to build and maintain and are often limited in 

size and scope. Although TroFi makes implicit use of various constraint violations and uses the 

data from a semantic hierarchy (WordNet) as input, it does not make use of any explicit rules. 

How this works will become clear in Chapters 6 and 7. 

Clustering on single words is not workable because nonliteral language tends not to exist 

as single words. We must be able to cluster whole phrases. And we must have some idea of what 

kinds of clusters we are trying to build in the first place. 

That leaves us with clustering based on attraction to an existing collection of sentences, 

the approach chosen for TroFi. We automatically gather a set of literal sentences and a set of 

nonliteral sentences and split our original collection through attraction to these two sets. 

A fundamental assumption is that literal and nonliteral can be regarded simply as two 

senses of a given word. This allows us to reduce the difficult problem of literallnonliteral 

language recognition to one that is much closer to being solved, namely that of word-sense 

disambiguation. Seeing literal and nonliteral as word senses is supported in the literature by the 

classification approach to metonymy resolution pioneered by Nissim and Markert (2003) 

discussed in Section 3.3.2. They also use literal as one of their classes, but they take the task one 

step further by subdividing the metonymy class into a number of known metonymy types. 



We must state up front that TroFi currently deals only with verbs, although the algorithm 

can easily be extended to other parts of speech. Limiting the implementation to verbs follows the 

example set by many metaphor interpretation systems detailed in the literature, especially those 

that rely on selectional restriction violations to indicate the presence of a metaphor. The core 

algorithm employed by TroFi allows for extremely flexible features sets, and there is nothing that 

prevents the same set of features from being used when the target word is not a verb, but rather a 

noun or an adjective. Being able to easily extend the system to nouns and adjectives is important 

for cases where there is nothing nonliteral about the use of the verb at all - for example, "You're 

the cat's meow," or "He has a luminous disposition." There is nothing nonliteral about are and 

have in these sentences, and trying to recognize them as such would prove futile. However, these 

sentences are undeniably nonliteral, and a literallnonliteral clustering system ought therefore to be 

able to handle them. TroFi could be made to accept nouns and adjectives as target words with 

only minor adjustments. No changes to the core algorithms would be required. 

To re-iterate, we are attempting to reduce the problem of literallnonliteral recognition to 

one of word-sense disambiguation. For this reason, TroFi is built on an existing similarity-based 

word-sense disambiguation algorithm developed by Yael Karov and Shimon Edelman (1998). 

This algorithm is discussed in Section 7.1.1.1. 

The Karov & Edelman algorithm is completely unsupervised and is based on the 

principle of attraction. Similarities are calculated between sentences containing the word we wish 

to disambiguate (the target word) and collections of sentences called feedback sets. In the case of 

word-sense disambiguation proper, these feedback sets are built around each sense of a word in a 

machine-readable dictionary or thesaurus, in our case, WordNet. Synonyms of a target word are 

used as seeds, and sentences containing these seeds are collected from a corpus. For TroFi, we 

additionally use information from the WordNet definitions and example sentences. A sentence 



from the original set is considered to be attracted to the feedback set containing the sentence to 

which it shows the highest similarity. 

In order to make the Karov & Edelman algorithm work as a foundation for 

literalhonliteral clustering, a few changes must be made. Most important is the composition of 

the feedback sets. Using the individual senses from WordNet is insufficient. Since TroFi is an 

unsupervised algorithm, we have no way of knowing which of these senses might be literal and 

which nonliteral. Also, there may be any number of nonliteral usages which are not covered by 

any of the WordNet senses. For this reason we introduce the use of databases of known 

metaphors, idioms, and expressions (see Section 6.1.4). Critics might say: if such databases 

exist, why do we need TroFi? 

There are several reasons. One is that such databases are unlikely to list all possible 

instances of nonliteral language. For example, the Berkley Conceptual Metaphor Home Page 

lists the metaphor, "don't pour your money down the drain," but not "he keeps pouring cash into 

that failing enterprise." Another reason is that knowing that an expression can be used 

nonliterally does not necessarily mean that you can always tell when it is being used nonliterally. 

For example, let us take the sentence, "Who did you run into?!?" Knowing that "run into" can be 

used idiomatically does not help us to decide whether the addressee just met someone or literally 

bumped into them while running. 

We use the databases of known metaphors, idioms, and expressions to help us redefine 

our feedback sets. TroFi has only two feedback sets: a nonliteral one built on the aforementioned 

databases, and a literal one built on the WordNet senses. Unfortunately, we still have a problem. 

The literal set may still be contaminated by nonliteral senses, resulting in a tug-0'-war between 

the two feedback sets. 

To deal with noise in the data, we introduce a technique called scrubbing. We identify 

problematic senses or words using certain criteria and attempt to eliminate them by moving them 



to the opposite feedback set or removing them altogether. Different scrubbing methodologies 

produce varying results, so we employ a number of them to create different learners. We revisit 

learners later in this chapter. For details on the construction of learners, see Section 6.2.2.1. 

Let us take a step closer and examine the internal structure of a feedback set. As we have 

mentioned previously, a feedback set is a set of sentences from a corpus collected on the basis of 

seed words. The seed words are synonyms of the target word. In addition, our feedback sets 

contain example sentences from WordNet and from the databases of known metaphors, idioms, 

and expressions. Each sentence is pared down to a list offeatures. For TroFi, any stemmed 

(Porter, 1980) noun or verb that is not the target or seed word and that is not in a list of frequent 

words can be a feature. There is no structure imposed on these features: TroFi uses a bag-of- 

words approach. 

The composition of the feedback sets is extremely important. They have more effect than 

any other component on TroFi's success or failure. For this reason, much of our research has 

been devoted to improving them and using them to their full advantage. Besides scrubbing, there 

are two other enhancements to the feedback sets: the expansion of context and the addition of 

structural information through the use SuperTags, which encode additional features not directly 

visible in the input (Bangalore & Joshi, 1999). 

The problem with the bag-of-words approach is that structural information is completely 

ignored. Also, by limiting ourselves to nouns and verbs, we are throwing away potentially 

valuable prepositions, adverbs, and particles. The addition of SuperTags, from the realm of tree- 

adjoining grammars, to the feature lists allows us to remedy some of these shortcomings. 

The primary benefit of SuperTags as far as TroFi is concerned is that each tag encodes 

information not only about a word's part of speech, but also about its local syntactic context. In 

other words, the tag provides information about surrounding words as well. We use a SuperTag 

trigram - to be further discussed in Section 6.2.2.2 -to capture the immediate structure 



surrounding our target and seed words. This is an improvement on regular n-grams because we 

are able to capture meaningful syntactic relationship between words, not just their relative 

locations in the sentence. 

The second enhancement concerns the inclusion of additional context. Studies have 

shown (e.g. (Martin, 1994)) that sources and targets of metaphors (see Section 2.2.1) are often 

revealed in sentences preceding the actual metaphor. Furthermore, people often explain their 

statements after they have made them. It is quite possible, therefore, that the relevant features for 

deciding whether a usage is literal or nonliteral will be not in the sentence containing the target 

word, but in an adjacent sentence. For TroFi we experiment with including both the sentence 

preceding and the sentence following the sentence containing the target word. Larger contexts 

are possible, but the cost of working with such large feature sets becomes prohibitive. 

Once we have constructed the feedback sets, we can run the TroFi algorithm. 

We mentioned previously that TroFi attracts sentences containing the target word to the 

feedback sets by calculating similarities as described in (Karov & Edelman, 1998) and Section 

7.1.1.1. Two sentences are considered to be similar if they contain similar words and two words 

are considered to be similar if they are contained in similar sentences. This circularity engenders 

transitive similari@: if sentence A is attracted to sentence B, and sentence B is attracted to sentence 

C, then sentence A will be attracted to sentence C. This is important because sometimes there are 

no shared words between a given sentence from the original set (i.e. sentences containing the target 

word) and any of the sentences in either of the feedback sets. Under normal circumstances such a 

sentence would never make it into either cluster. By virtue of transitive similarity, however, if this 

original sentence shares a word with some other original sentence and that sentence is similar to 

one of the feedback sets, then it will drag the first sentence with it. By allowing us to work with 

deficient data sources, the algorithm allows us to defeat the knowledge acquisition bottleneck. 



The likelihood of finding all possible usages of a word in a single corpus is low. Transitivity of 

similarity, however, allows us to make the most of the available information. 

Unfortunately, we are still not able to use the available information to its best advantage. 

Doing so requires a change to the basic algorithm. Instead of determining attraction based on the 

highest similarity shown between an original sentence and a single feedback set sentence, we use 

the sum of all the similarities. Although it is appropriate for fine-grained tasks like word-sense 

disambiguation to use the single highest similarity score in order to minimize noise, it may be too 

limiting for a broader task like literallnonliteral clustering. The literal and nonliteral senses cover 

a vast number of usages that could well be spread across a number of sentences in the feedback 

sets. Summing across all the similarities of an original set sentence to the feedback set sentences 

could therefore give us more persuasive results. 

We now return to the learners produced through scrubbing. Due to the different 

scrubbing methodologies employed, the learners vary in their composition and in the patterns of 

attraction they produce. Each learner performs better on some target words and worse on others. 

In order to maximize the potentials of the learners, we allow them to vote using a majority-rules 

schema with optional weighting. The goal is to capitalize on a learner's positive tendencies while 

down-playing its negative ones. 

There will always be some sentences that TroFi is less certain about than others. The 

basic TroFi algorithm makes a default decision on these by awarding them to the cluster of the 

feedback set to which they show the most similarity, no matter how slight. Better results can be 

achieved by sending these sentences to a human evaluator. For cases where the human is willing 

to do a certain percentage of the work, we introduce an optional active learning component. This 

can be regarded either as the human helping the algorithm or as the algorithm helping the human. 

We prefer the latter view. Allowing TroFi to help with the task of literallnonliteral clustering 

greatly reduces the amount of work that would be required for someone to perform this task 



completely manually. In addition, having the certainty of a human judgement allows us to add 

the sentences in question to the feedback sets, potentially improving their attractiveness. 

One last idea we wish to introduce in this overview is that of iterative augmentation. 

Once we finish our first TroFi run, we save the clusters and also add the newly clustered 

sentences to the feedback sets. We then save the feedback sets with all their final similarity 

scores. In future runs, these feedback sets can be re-used and the old similarity scores used as 

weights. In this way, useful sentences can be expected to become more attractive over time, 

gradually improving accuracy on sets of previously unseen sentences. 

Over time, TroFi can create, or heIp to create, extensive literallnonliteral clusters. These 

can be used in any number of applications. On the most basic level, they can be used as training 

data for statistical classifiers. On a more general level, the clusters can serve as a resource for a 

variety of processes and algorithms requiring either a uniform collection of sentences or many 

examples of different usages of particular words. Most ambitiously, one could attempt to use the 

clusters to build a nonliteral language interpretation system.' 

In this chapter, we provided a brief tour through the entire TroFi system. We now begin 

a more detailed examination of the various components, starting in Chapter 6 with the data 

sources used by TroFi and the generation of the input data. 

See Section 1 1.1.4.1. 



6 THEDATA 

The data is a vitally important part of the TroFi process. It is the data, far more than the 

clustering algorithm itself, which determines a clean literallnonliteral separation. It is also in the 

approach to creating the input data and the usage of that data by TroFi that this thesis makes its 

greatest technical contribution: we are using a known word-sense disambiguation algorithm, but 

we adapt it to our nonliteral language recognition problem through the creation of different types 

of feedback sets and modifications to the algorithm to make best use of those feedback sets. 

TroFi employs several different data sources. Most importantly, since TroFi falls into the 

class of corpus-based approaches to metaphor processing, we need a corpus. In addition we need 

aids for producing the literal and nonliteral feedback sets. The data sources we have settled on 

are: the Wall Street Journal Corpus (WSJ), WordNet, Wayne Magnuson English Idioms Sayings 

& Slang, and the Conceptual Metaphor Home Page. 

We discuss each of these data sources and their use in TroFi in Section 6.1. Then, in 

Section 6.2, we discuss the creation of the various types of feedback sets. 

6.1 Data Sources 

6.1.1 The Wall Street Journal Corpus 

We evaluated two corpora for use by TroFi: the Brown Corpus and the Wall Street 

Journal Corpus (WSJ). The Brown Corpus of Standard American English, consisting of 500 texts 

of about 2000 words each, is interesting because of the varied domains from which it is drawn. 

However, although Brown's coverage is broader, we found that the Wall Street Journal Corpus, 

which leans heavily in the direction of commerce, finance, and economic issues, still contains a 



fair amount of domain variation. Also, it is larger and less antiquated than the Brown Corpus. 

This was our main reason for ultimately choosing the WSJ. 

The version of the WSJ being used consists of '88-'89 Wall Street Journal articles and 

was compiled as part of the Penn Treebank Project. The corpus was tagged using the Adwait 

Ratnaparkhi tagger and the B. Srinivas SuperTagger. The statistics provided for the corpus are: 

Total number of tokens in corpus: 24,008,639 

Total sentences: 979,309 

Total number of tagged sentences: 968,293 

Total number of types: 195,308 

Total number of types with count <= 4: 124,789 

The SuperTagged corpus files have the following format: 

... 
the//DT//B-Dnx 
cherished// JJ//B-An 
title//NN//A-NXN 
of//IN//B-nxPnx 
partner//NN//ANXN 
.//.//B-sPU 
... EOS ... / /  . . .  EOS . . .  
. . .  EOS ... / /  . . .  EOS . . .  

We convert these files into three different formats - tagged, SuperTagged, and nv 

(nounlverb) - for use by TroFi. The nv sentences consist of the stemmed nouns and verbs in each 

sentence with any tokens found in a list of 374 frequent words removed. The frequent word list 

consists of the 332 most frequent words in the BNC (British National Corpus) plus contractions, 

single letters, and numbers from 0-10. The resulting nv sentences are really the feature sets that 

will be used by the TroFi algorithm. Below are examples of each of the three formats: 



Tagged: 

SuperTagged: 

nv: 

tradit ... tit1 partner 

TroFi uses a randomly selected 10% of the corpus to create its first-run clusters. 

Additional sentences for iterative augmentation (see Chapter 10) are drawn from the remaining 

90%. Initial development of the TroFi algorithms was carried out using the Brown Corpus, so no 

separate development set from the WSJ was needed. Furthermore, the set of target words used 

for the experiments in Chapters 8 and 9 is augmented by additional target words when we build 

the TroFi Example Base in Chapter 10, showing that TroFi works equally well on a set of 

completely unseen target words. 

6.1.2 WordNet 

The word-sense disambiguation algorithm on which TroFi is based - (Karov & Edelman, 

1998) - uses "a machine readable dictionary or a thesaurus". Karov & Edelman state that "the 

single best source of seed words was WordNet" (Karov & Edelman, 1998, p. 48). We take their 

advice and use WordNet as our machine-readable dictionary (MRD) because it is freely available 

and has interfaces in a number of different programming languages1 

WordNet organizes the entry for a given word into synonym sets or synsets based on the 

different senses of the word. Each synset contains a list of synonyms, a definition, and an 

example or two. The following is the entry for the verb "bite": 

I TroFi uses the Per1 implementation Lingua::Wordnet by Dan Brian. 
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1. bite, seize with teeth -- (to grip, cut off, or tear with or as if with the teeth or jaws; "Gunny 
invariably tried to bite her") 

2. bite, sting, bum -- (cause a sharp or stinging pain or discomfort; "The sun burned his face") 

3. bite -- (penetrate or cut, as with a knife; "The fork bit into the surface" ) 

4. sting, bite, prick -- (of insects, scorpions, or other animals; "A bee stung my arm yesterday") 

Whereas Karov & Edelman use WordNet only for finding synonyms to use as seeds for 

feedback sets, we go a few steps further. We also turn the WordNet definitions and example 

sentences into feature lists and, most importantly, use the characteristics of the synonym lists, 

definitions, and examples sentences to refine our feedback sets. This process of feedback set 

refinement is called scrubbing. We discuss scrubbing further in Section 6.2.2.1. 

6.1.3 Wayne Magnuson English Idioms Sayings & Slang 

Wayne Magnuson English Idioms Sayings & Slang is an electronic collection2 of idioms, 

sayings, and slang. It lists thousands of terms and expressions and gives a definition and an 

example for each. This data source is attractive for use by TroFi due to its size - over 6300 

expressions - and its similarity to WordNet in terms of content and formatting. Like in WordNet, 

there are definitions and examples that we can use for building feature lists. Below is an example 

of a Wayne Magnuson entry for the target word "climb": 

climb the walls . . feel upset or stressed . . On the first day of school , the teacher was 
climbing the walls . 

The main weakness of this data source is a dearth of recent and original metaphors. To 

remedy this shortcoming, we seek out the WWW Server of the Conceptual Metaphor Home Page. 

This collection has also been published by Prairie House Books (ISBN 1-895012-09-0). 
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6.1.4 The Conceptual Metaphor Home Page 

The WWW Server of the Conceptual Metaphor Home Page, administered by the 

University of California, Berkley, provides access to the database of conceptual metaphors 

compiled by George Lakoff, "the Father of the Conceptual Metaphor". 

The conceptual metaphor collection is organized by metaphor type, for example: 

Understanding is Digestion: "It'll take some time to digest that infomation." 

Intense Emotions are Heat: "The crowd was all fired up." 

For TroFi, the metaphor types are irrelevant. Of course this does not mean that much of 

the nonliteral language that TroFi discovers will not be of a particular metaphor type. It simply 

means that we are not concerned in this thesis with using or producing specific labels ourselves. 

TroFi simply trawls a list of examples compiled from the Conceptual Metaphor WWW Server to 

find sentences containing a given target word. 

In the remainder of this thesis, we often refer to the Conceptual Metaphor list combined 

with the Wayne Magnuson collection as the database of known metaphors, idioms, and 

expressions. 

6.1.5 Target Word List 

The target word list is the root of the TroFi Example Base. These are the words for 

which sentences are extracted from the WSJ and for which TroFi distinguishes between literal 

and nonliteral usages. In the current implementation we restrict the target list to verbs. With 

verbs there is less likely to be interference between nonliterals or confusion about where exactly 

in the sentence the nonliteral lies. However, TroFi is not inherently limited to verbs. It could 

easily be adapted for other parts of speech. 

The target word list was derived as follows. We started with a list of English verbs (9091 

of them) compiled by Andrew Saulters at Georgia Tech. Next we pruned this using an available 



list of the 332 most frequent words in the British National Corpus. We then counted how many 

times each verb appears in our database of known metaphors, idioms, and expressions. We also 

counted how many times each word appears in the Brown Corpus. Finally, we automatically 

selected those words which appeared at least once in the idiodmetaphor lists and more than 

twice in Brown. The resulting list of 142 words was augmented with the following hand-selected 

list to bring the total to 150: 

die drown 90 grasp 
guard pass plant plow 

In addition, a few words likely to cause an overflow of examples were manually removed 

or replaced. We then extracted all the sentences containing these words from the 10% slice of the 

WSJ Corpus described in Section 6.1.1 and manually annotated them for selection and testing 

purposes. We further pared our list of words down to 50 by first choosing 25 words that have 

been discussed or mentioned in the metaphor processing literature and by then subjectively 

selecting another 25 based on apparent variety of nonliteral usages and availability of nonliteral 

feedback set data. 

6.2 Original Set and Feedback Set Creation 

In this section, we discuss the use of the data sources described in Section 6.1 to create 

the original and feedback sets for the TroFi algorithm. We first discuss the basic selection of 

these sets and then examine in detail the additional types of feedback sets we create to help with 

the literahonliteral clustering task. 

6.2.1 Basic Original Sets and Feedback Sets 

The basic premise of the TroFi algorithm is the attraction of sentences containing a 

specific target word - the original set - to either the literal or the nonliteral feedback set. 



Logically, as with hand-selected training sets in other statistical algorithms, the composition of 

the feedback sets is paramount. 

To build the original set we follow the data set creation methodology employed by Karov 

and Edelman (1998) for their word-sense disambiguation algorithm. We extract from the corpus 

all the examples or contexts of the target word- i.e. all the sentences containing the word we are 

trying to disambiguate. 

The next step is to create a feedback set for each sense of the target word by collecting 

examples containing seed words for each sense. To gather the seed words, we look up the target 

word in an MRD or a semantic hierarchy - in our case, WordNet. For each sense of the target 

word, we extract a seed set of "contextually similar" words (Karov & Edelman, 1998). 

According to Karov & Edelman these are words that are likely to be found in contexts similar to 

those of the target word when it is used in a particular sense. Feedback sets extracted using these 

seed words ideally contain contexts relevant only to one particular sense of the target word. For 

example, a synonym of the target word "die" is "perish". It is expected that sentences containing 

the word "perish" will most often exhibit a context befitting the "death" sense of "die". 

Unfortunately, nonliteral readings of a word are often transferred to synonyms of that word. For 

example, it is not unlikely that one would hear both "his dreams died" and "his dreams perished." 

However, we proceed on the assumption that such transferred nonliteral readings are less 

frequent. For example, one is more likely to hear the nonliteral expression "the engine died" than 

the slightly odd "the engine perished." 

Karov & Edelman build a feedback set on each of the synsets for a given target word by 

using all the synonyms from that synset as seeds. Unfortunately, this is not appropriate for our 

purposes since we require not individual sense feedback sets, but rather a literal feedback set and 

a nonliteral feedback set. In theory one could divide the WordNet synsets into literal and 

nonliteral, but this would add an element of supervision that we wish to avoid. Although it would 



solve numerous problems for the small  collection^ of target words explored in this thesis, it would 

not scale well to larger collections or to an implementation of TroFi in a foreign language. 

We approach the task of building the nonliteral feedback sets on the synonyms and 

examples from our database of known metaphors, idioms, and expressions (see Section 6.1.4). 

The literal feedback sets are taken from the synonyms and examples of the WordNet synsets. In 

addition to using synonyms as seeds, we convert the examples in both the data sources into 

additional feature lists. They often contain some of the most typical contexts for a given target 

word and thus add a strong initial basis for attraction. 

We now have both a literal and a nonliteral feedback set, but, unfortunately, since the 

literal set contains all the WordNet senses, it contains the nonliteral ones as well. This issue turns 

out to be one of the largest problems for TroFi, and we attempt to address it with a technique 

called scrubbing. We discuss scrubbing and other feedback set enhancements in Section 6.2.2. 

Each sentence in the original and feedback sets is pared down to a set of features. 

Anything deemed useful to the disambiguation task can be declared a feature, and features can be 

weighted according to their expected contribution. Features can be anything from simple nouns 

and verbs to n-grams and syntactic structures. For the basic algorithm, we use just the nouns and 

verbs in each sentence that are not also found in the frequent word list (see Section 6.1.1). We 

later attempt to improve the feature lists by adding extra context (see Section 6.2.2.3) and 

information about the syntactic frames of the verbs encoded in SuperTags (see Section 6.2.2.2). 

6.2.2 Variations on the Feedback Sets 

In the previous section we lamented the fact that our literal feedback sets may be 

contaminated by nonliteral WordNet senses. In the same way, the nonliteral feedback sets may 

contain words and phrases that cause problems by overlapping with words and phrases from the 



literal feedback set. This type of feedback set noise is the greatest threat to TroFi accuracy, so we 

must attempt to remedy the situation. 

We have already discussed why we cannot manually separate literal and nonliteral 

WordNet synsets: it would be fine for a few target words, but it would not scale well to large 

collections. Additionally, it would become an even more difficult chore if we were running TroFi 

in a language other than English. Trying to clean the feedback sets after they have been created 

would be far more onerous still. TroFi generates hundreds, even thousands, of feedback set 

sentences. Cleaning these by hand would be prohibitive in terms of both time and sanity. This 

means that we must somehow clean up the feedback sets automatically. 

Implementing an automatic process is also important for maintaining TroFi's status as an 

unsupervised algorithm. Doing manually clean-up would be akin to creating training data by 

hand - which is precisely what we are trying to avoid. 

We refer to our automatic cleaning process as scrubbing. In effect, we attempt to scrub 

the dirt (or noise) out of the feedback sets. More precisely, scrubbing describes the process of 

moving or removing particular synsets, words, or feature sets from the input data or from the 

generated feedback sets. Decisions are made based on specific properties of the synsets andlor 

words, or on the overlap of certain features between one feedback set and the other. 

We experimented with a number of different scrubbing methods. Since different 

scrubbing methodologies produce different results, we employ a variety of strategies and refer to 

the results as learners. These learners are an important enhancement to the basic TroFi 

algorithm. We discuss the creation of learners in the Section 6.2.2.1. 

The feedback set feature lists can be improved further by augmenting them with structure 

in the form of SuperTags and by increasing their size with additional context. These 

enhancements will be discussed in Sections 6.2.2.2 and 6.2.2.3, respectively. 



6.2.2.1 Learners 

Before we can leap into a discussion of scrubbing and the construction of different 

learners, we must first acclimatize ourselves to the basic feedback-set-building algorithm. We 

examine it in detail in this section and refer back to it often in our subsequent discussions of the 

individual learners. Pseudo-code is available in Appendix A. 

We begin with the nonliteral feedback set. We first find all entries containing a given 

target word in our database of known metaphors, idioms, and expressions. We select all the 

nouns and verbs that are not in our list of frequent words from the definitions (where available) 

and add them to the nonliteral seed list. We also add them to a scrubber set - a collection of 

words that we will later use to scrub the literal set. Next we convert all the example sentences 

into feature sets and add them to our nonliteral feedback set. We also add the words from these 

sentences to the scrubber set. Finally, we select from the WSJ Corpus sentences containing the 

seed words we have collected, convert them into feature lists, and add them to the nonliteral 

feedback set.3 

To create the literal feedback sets, we take the synonyms from each WordNet synset 

containing a given target word and add them to the set of literal seeds. Note that since WordNet 

synonyms may be single words or whole expressions, our seed lists may contain not only single 

verbs, but also phrasal and expression verbs. Next we convert the example sentences and 

definitions into feature sets and add them to the literal feedback set. We gather all the words 

from all the feature sets together into a scrubber. Finally we select the rest of the literal feedback 

set from the WSJ Corpus using our seed list. If a given seed contains a particle or noun, 

sentences containing first the verb and then the particle or noun as the next or next-next word are 

selected. 

3 Note that we strip the seed words out of the corpus feature sets so that they do not cause unhelpful 
commonalities between sentences. 



If we were doing scrubbing, we would have used the collected scrubbers at various points 

throughout the above algorithm. We discuss the scrubbing process in general in the following 

paragraphs and then devote a section to the creation of each of the learners. 

Scrubbing is founded on a few basic principles. The first is that the contents of the 

database of known metaphors, idioms, and expressions are just that - known. Consequently we 

take them as primary and use them to scrub the WordNet synsets. The second is that phrasal and 

expression verbs are often indicative of nonliteral uses of verbs - i.e. they are not the sum of their 

parts - so they can be used as catalysts for scrubbing. The third is that content words appearing 

in both feedback sets will cause a tug-0'-war, a situation we want to avoid. The fourth is that our 

scrubbing action can take a number of different forms: we can choose to scrub just a word, a 

whole synset, or even an entire feature set. In addition we can either move the offending item to 

the opposite feedback set or remove it altogether. Some of the principles described here require 

further explanation. 

By phrasallexpression verbs we mean verbal units consisting of more than one word. We 

take these as indicators of nonliteral senses because they are very often not the sum of their parts. 

For example, in telling someone to "throw it away," one would not want to be taken literally. 

Scrubbing on the basis of phrasallexpression verbs can cause problems for literal synsets 

containing phrasal verb synonyms - for example, "set on" is a synonym of "attack" in the 

perfectly good literal sense of assailing someone physically. Also, many nonliteral synsets 

contain no phrasal/expression verbs - for example, the synset of "absorb" that contains the 

sample sentence "her interest in butterflies absorbs her completely" contains no phrasal or 

expression verbs. To counteract the first problem, we build more than one learner. To counteract 

the second problem, we additionally use overlapping words as indicators for scrubbing. 

We define overlapping words as content words (in our case, nouns and verbs) in the 

synsets that can also be found in the relevant entries of the database of known metaphors, idioms, 



and expressions, and vice versa. For example, if the word "squander" is in our scrubber for the 

target word "blow", then we scrub the synsets containing that word. The reasoning here is 

simple: we know that "squander" is a nonliteral meaning of "blow" because our database of 

known metaphors, idioms, and expressions tells us so. Hence, a synset listing "squander" as a 

synonym is most likely describing a nonliteral sense. 

Based on the above discussion, it would seem logical that we would cover the most 

ground by using both phrasallexpression verbs and overlapping words as scrubbing indicators, 

rather than just one or the other. We have confirmed this intuition experimentally. In addition to 

looking simply at a choice between both, eitherlor, or neither, we experimented with assigning a 

value to each indicator and adding them up to find the scrubhability factor of each synset. If a 

synset's scrubbability factor was above a certain threshold it was scrubbed. Informal experiments 

revealed that this method provided no significant improvement over the simple approach. 

We identify problem synsets, words, and feature sets using the above indicators. We 

must then decide whether to move or remove them. Our primary motivation is to remove 

contaminants, and either of these actions will accomplish that. A secondary motivation is to try 

to fortuitously augment the nonliteral sets. Sometimes the nonliteral feedback sets are extremely 

weak, and moving content over from the literal set can help give them a much needed boost. 

Unfortunately, by doing so, we risk introducing noise. 

We experimented with a number of these options to produce a whole complement of 

learners. There is safety in numbers, and we hope that if we create a collection of learners, they 

will be able to balance out each other's imperfections. Each learner is characterized by its 

scrubbing profile: 



INDICATOR : 

the linguistic phenomenon that triggers the scrubbing : 

phrasallexpression verbs, overlap (words appearing in both sets) 

TYPE : 

the kind of item to be scrubbed : 

word, synset, feature set 

ACTION : 

the action to be taken with the scrubbed item : 

move, remove 

6.2.2.1.1 Learner A 

The scrubbing profile of Learner A is: 

INDICATOR : phrasallexpression words AND overlap 

TYPE : synset 

ACTION : move 

To build Learner A, we start by creating the nonliteral feedback set as described in our 

general discussion above. When we get to the literal feedback set, instead of sending all the 

synsets directly to the literal side, we use our scrubbing indicators to pick out synsets that should 

cross over to the nonliteral side. For Learner A, we are looking at the synonym lists only: the 

chosen synsets are those whose synonym lists contain either expressionlphrasal verbs or scrubber 

words collected during the creation of the nonliteral feedback set. These indicators suggest to 

TroFi that the synset is potentially encoding a nonliteral sense. 

Once we have decided the fate of each synset, we proceed normally, collecting seed 

words and examples for the literal set from the literal synsets and additional seed words and 

examples for the nonliteral set from the nonliteral synsets. Once we have built both feedback 

sets, we do a final pass to remove any feature sets that have inadvertently ended up in both s e k 4  

Sentences from the WSJ Corpus can end up in both sets if there happen to be identical seed words, or if a 
sentence contains a seed word both from both the literal list and the nonliteral list. 



6.2.2.1.2 Learner B 
The scrubbing profile of Learner B is: 

INDICATOR : phrasal/expression words AND overlap 

TYPE : synset 

ACTION : remove 

The only difference between Learner A and Learner B is that instead of moving 

problematic synsets from the literal set to the nonliteral set, we remove them altogether. This 

saves us from accidentally contaminating the nonliteral set. However, it does mean that we are 

throwing away information that could have been used to pad out sparse nonliteral sets. 

6.2.2.1.3 Learner C* 
The scrubbing profile of Learner C' is: 

INDICATOR : overlap 

TYPE : word 

ACTION : remove 

Learner C' is constructed on the notion that moving or removing whole synsets might be 

overkill. Hence, we do not interfere with the synsets, but rather remove overlapping words from 

the final literal and nonliteral feedback set feature lists. 

We build the feedback sets without any special interventions and only then scrub both 

sets. From the literal feedback set sentences, we remove any scrubber words we collected while 

building the nonliteral set. If we find such an overlapping word, we add it to the scrubber we 

collected while building the literal set so that it will be scrubbed from the nonliteral set as well. 

We do this because if there is overlap, the offending word, although potentially useful to one set, 

could just as easily wreak havoc. For example, imagine that we get overlap on the word "wind" 

for the target word "blow". The literal set speaks of the "wind blowing" while the nonliteral set 

tells us that the "winds of war are blowing". Since we are using a bag-of-words approach, it is 



easy to see how the word "wind" is going to cause problems, especially if we leave it in just the 

nonliteral set. We do lose important information by removing it from the literal set, but that is 

why we have more than one learner. 

6.2.2.1.4 Learner C? 

The scrubbing profile of Learner c2 is: 

INDICATOR : overlap 

TYPE : feature set 

ACTION : remove 

While experimenting with Learner c', we noticed that the feature sets containing the 

overlapping words often contained other words likely to cause false attraction. In order to 

annihilate this potential threat, we created Learner c2, which simply removes the whole feature 

set if an overlapping word is found. 

Running some tests on the different effects of these two learners, we found that we 

obtained slightly better results using Learner c2. For this reason - and due to the overhead of 

adding extra learners - we decided to use only Learner c2 for the final version of TroFi. 

6.2.2.1.5 Learner D 
The scrubbing profile of Learner D is: 

INDICATOR : n/a 

TYPE : n/a 

ACTION : n/a 

Learner D is the baseline - no scrubbing. We simply use the basic algorithm described at 

the beginning of Section 6.2.2.1. 



6.2.2.2 SuperTags 

Thus far, our feature lists have used a bag-of-words approach: we have collected a bunch 

of words, but have imposed no structure on them. This means that we have been discarding 

syntactic information about subjects and objects. Furthermore, by using only verbs and nouns, 

we have been ignoring potentially important information held in other words in the sentence. 

These ignored words include prepositions and particles. We have been ascribing great value to 

these - in the form of phrasallexpression verbs - in the building of our learners, indicating that 

they should really be incorporated into other parts of the algorithm as well. 

We attempt to include some of this important information through the use of SuperTags 

from the realm of tree-adjoining grammars. The benefit of ~ u p e r ~ a ~ s ~  is that they encode a great 

deal of syntactic information in a single tag. In addition to a word's part of speech, they also 

encode information about its location in a syntactic tree. In other words, from the SuperTag of a 

given word, we learn something about the surrounding words as well. We experimented with a 

number of different SuperTag combinations: just the SuperTag of the target verb; a trigram 

incorporating the preceding and following SuperTags; a combination tag mixing actual words in 

with the tags. Since TroFi attempts to establish similarities and differences between sentences, 

the critical part of choosing a SuperTag combination is to find something that will not create too 

many - quite possibly false - similarities. Using just the SuperTag of the target word, for 

example, creates a feature that may be common to many of the sentences and is thus unhelpful. 

On the other hand, we do not want to create anything too unique for fear of producing no new 

similarities at all. 

After some experiments, we settled on a SuperTag trigram composed of the SuperTag of 

the target word and the SuperTags of the following two words if they contain any actual 

prepositions, particles, adverbs, or nouns, as well as the words themselves. If the trigram does 

We will occasionally refer to these as xtags, particularly in graphs and the pseudo-code in Appendix A. 
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not include any of these additional words, it is not used. To learn about the exact construction of 

the SuperTag trigrams, please consult the pseudo-code in Appendix A. We provide a couple of 

examples of SuperTagged sentences and their corresponding feature sets below: 

AIB-Dnx personIA-NXN needs/B-nx0Vsl disciplineIA-NXN to/B-Vvx kick/B-nx0Vplsl 
a/B-Dnx habitlA_NXN like/B-nxPnx drinkingIA-GnxOVnxl ./B-sPU 

-+ 

disciplin habit drink kick/B-nx0Vplsl-habitlA-NXN 

The/B-Dnx theory/A-NXN filled/A-nx0Vpxl in/A-PXPnx gaps/B-ARBS left/AAnxOVpxl 
in/A-PXPnx earlierIB-An accounts/A-NXN ./B-sPU 

---f 

theori gap account ftll/A~nxOVpxl~in/A~PXPnx~gap/B~ARBs 

It is important to note that we do not produce another learner when we use SuperTags; 

rather, we produce a whole parallel set of learners. The full complement of learners described in 

Section 6.2.2.1 is there, only in this case they all include SuperTag trigrams in their feature lists. 

It is worth noting that the creation of Learners A and B changes somewhat if SuperTags are used. 

In the original version we only move or remove synsets based on phrasal/expression verbs and 

overlapping words. If SuperTags are used, we also move or remove feature sets whose SuperTag 

trigram contains adverbs, particles, or prepositions, as these may indicate phrasaVexpression verbs. 

6.2.2.3 Context 

Sometimes critical disambiguation features are contained not in the sentence with the 

target word, but in an adjacent sentence. As we all learned during vocabulary lessons in 

elementary school, people often explain what they mean before or after they use a given word or 

expression. For example, in the sentence "Member hit the ceiling," there is nothing to indicate 

whether "hit the ceiling" is being used literally or nonliterally. The sentence following this 

sentence, however, provides the necessary context: "Member stated that she broke her thumb 

while she was cheering for the Patriots at home and hit her thumb on the ceiling." 



We can see that adding context from adjacent sentences to our feature lists may prove 

beneficial. Unfortunately, there is also the chance that these extra features will generate enough 

noise to hinder rather than help the clustering process. To add context, we simply group the 

sentence containing the target word with a specified number of surrounding sentences and turn 

the whole group into a single feature set. As with SuperTags, we do not create additional learners 

by using context; rather, we create a full parallel set. 

The example below shows the effect of adding context. First we see the simple feature 

set; second, the feature set with added context: 

foot draglA-GnxOVnxl-footlA-NXN 

foot everyon rncdonnel dougla cornrnod anyon paul nisbet aerospac 
analyst prudentialbach secur mcdonnel propfan model spring count order delta 
drag/A-GnxOVnxl -footlA_NXN 

In the simple case, it is difficult for TroFi to tell whether the "dragging of the feet" 

should be taken literally or nonliterally: there is not much to go on. In the context case, however, 

the additional features will allow TroFi to make a more confident decision. 

6.3 Summary 

In this chapter we discussed the various data sources used by TroFi, namely the Wall 

Street Journal Corpus, WordNet, Wayne Magnuson English Idioms Sayings & Slang, and the 

Conceptual Metaphor Home Page. We also described in detail the construction of the feedback 

sets, including our scrubbing algorithm and the different learners produced by scrubbing. Finally, 

we discussed the contribution of SuperTags and additional context to the expansion of the feature 

sets. In Chapter 7, where we discuss TroFi7s various models and algorithms, we will gain further 

insight into how all this data is actually used. 



7 MODELS & ALGORITHMS 

We will discuss the algorithms used by TroFi for literallnonliteral clustering in three 

main sections: 

1. Unsupervised Algorithm 

a. Sum of Similarities vs. Highest Similarity 

b. Learners and Voting 

c. SuperTags 

d. Context. 

2. Active Learning 

3. Iterative Augmentation 

7.1 The Unsupervised Algorithm 

By now is should be clear that TroFi's primary task is to separate literal and nonliteral 

usages of a given target word into two distinct clusters based on the surrounding context. We 

have also mentioned that in order to do this, we have chosen to regard literal and nonliteral as 

two distinct senses of the target word, allowing us to reduce our nonliteral language recognition 

problem to one of word-sense disambiguation. 

In order to determine whether word-sense disambiguation algorithms can in fact be 

applied to nonliteral language recognition, we construct the core TroFi algorithm around a 

statistical similarity-based word-sense disambiguation algorithm presented in (Karov & Edelman, 

1998). We chose the Karov & Edelman approach because certain features of this algorithm make 

it particularly attractive for the task of nonliteral language recognition: 



1. it allows for flexible sense distinctions 

2. it provides flexibility in the choice of sentence features 

3. it is largely unsupervised 

4. its training information can be derived using a machine-readable dictionary (MRD) 

5. it deals effectively with very sparse data 

Our investigations revealed that the basic Karov & Edelman algorithm, although quite 

successful as a tool for word-sense disambiguation according to the authors, is, on its own, 

insufficient for the task of separating literal vs. nonliteral usages. We have thus added various 

enhancements to the basic algorithm, including a different way of calculating similarity, a variety 

of learners, a voting system, SuperTag trigrams, and additional context. These enhancements, as 

well as the basic algorithm, will be discussed in detail in the following sections. 

7.1.1 The Basic Algorithm 

The algorithm used by Karov and Edelman (1998) for word-sense disambiguation serves 

as the basis for TroFi's literahonliteral clustering algorithm. The reason we use this algorithm 

as a core and not some other clustering algorithm is that we are not simply trying to cluster 

words. We are actually trying to cluster predicates, arguments, and adjuncts all at the same time. 

The Karov & Edelman algorithm allows us to do that. 

In the following section we provide a brief summary of the Karov & Edelman algorithm. 

It will be useful for our subsequent discussion of the TroFi algorithm, which will be illustrated 

using a sample scenario. 

7.1.1.1 The Karov & Edelman Algorithm 

The Karov & Edelman (1998) algorithm is built on the idea that two sentences are similar 

if they contain similar words, and that two words are similar if they are contained in similar 

sentences. The apparent circularity of this algorithm allows similarities to be found between 



sentences that do not share any direct commonalities. The similarities are found by iteratively 

updating two sets of matrices. How exactly this works, is explored below. 

The algorithm requires two sets of data: the original set, which contains the example 

sentences for a given target word, and the feedback sets, the sets of contextually similar sentences 

containing the WordNet synonyms of the target word. These sets are used to populate similarity 

matrices. There are two types: a Word Similarity Matrix (WSM), and Sentence Similarity 

Matrices (SSMs). The WSM lists all the words from the union of the original and feedback sets 

along both the x and y dimensions. The SSMs always have the original examples along they 

dimension. In the first iteration of the algorithm - which uses the Original SSM- the x 

dimension also lists the original set. In subsequent iterations - which use the Feedback SSMs - 

the x dimension is reserved for the feedback set. There is a different Feedback SSM for each 

sense. These matrices are used to calculate the similarity of words and sentences by iteratively 

updating the WSM using the SSM and vice versa. 

Updating is a mutually recursive process which starts with the WSM initialized to the 

identity matrix. Looking at similarity on a scale of 0 to 1, this indicates that every word is 

maximally similar to itself and minimally similar to every other word. Next, the algorithm calls 

for iteration: 

1. update the sentence similarity matrices SSM; , using the word similarity matrix WSM,, ; 

2. update the word similarity matrix WSM,, , using the sentence similarity matrices SSM; . 

(Karov & Edelman, 1998), where n is the iteration and k is the sense of the target word. 

To explain this another way: we start with the WSM and then update the Original SSM 

with it. We then update the WSM from the Original SSM. Then we update each of the Feedback 

SSMs from the WSM. Then we update the WSM from each of the Feedback SSMs in turn. Then 

we update each of the Feedback SSMs from the WSM. And so on. We illustrate this process in 

Figure 7-A. The numbered arrows show the order in which updating occurs. 



Figure 7-A Iterative Updating 

Source: based on the concept by Karov & Edelman (1998) 

Iteration continues until the difference in the changes is small enough to meet the stop 

conditions. We examine the Karov & Edelman updating process in more detail below. 

The initialized WSM is used to calculate the similarity values of the Original SSM using 

the following formulas: 

Here n refers to the iteration, S, is a sentence from the y dimension, S, is a sentence 

from the x dimension, and W is a word. 

To find the similarity between two sentences (i.e. sim,,, (s, , S, ) ), we simply find the sum 

of the weighted affinities (i.e. aff,(w, s,)) of each word W (which belongs to S, ) to S, . The 

affinity can be easily calculated using the WSM as a lookup table. For a given word W , we look 

up its similarity to each word W; in S, and take the maximum. The weight (i.e. weight(W,S,)) 

by which each affinity is multiplied in the calculation ofsim,,, (s, , S,) , is a function of the 

weights of individual words in a sentence, norma.lized by the total number of words in the 

sentence. Once all the similarities have been calculated for the Original SSM, it is used to update 

the WSM. 



The formulas for finding the similarity of' two words given an SSM are similar to the 

sentence similarity formulas described above. There is one fundamental difference, however. 

Whereas the sentence similarity calculations are concerned with the words q that belong to a 

given sentence S (e.g. q E S,), the word similarity calculations are concerned with the 

sentences S, that include a given word W (e.g. S, 3 T). The formulas for calculating word 

similarity are given below: 

Here n refers to the iteration, Wl is a word from the y dimension, W2 is a word from 

the x dimension, and S is a sentence. 

To find the similarity of two words (i.e. sim,,, ( 4 ,  W2 ) ), we find the sum of the weighted 

affinities (i.e. a f ~ , ( ~ ,  6)) of each sentence S (which includes W, ) to W2 . In the case of word 

similarity, the affinity can be calculated using the SSM - here, the Original SSM. For a given 

sentence S , we look up the similarity of S to any S j  that includes W2 and take the maximum. 

The weight (i.e. weight(s, 4 ) )  by which each affinity is multiplied in the calculation of 

sim,,, ( 4 ,  W2 ) is a h c t i o n  of the weight of each sentence that includes a given word, 

normalized by the total number of sentences that include that word. This concludes the first 

iteration. 

The second iteration follows the same procedure as above, but instead of working with 

the Original SSM, it works with the Feedback SSM of a particular sense. This algorithm 

converges, and a proof of convergence is given in (Karov & Edelman, 1998). 



Once all the matrices have been populated, we can read from them the similarity of each 

original sentence to each sentence in the feedback set for a particular sense. We define each 

original sentence with a similarity to a given feedback sentence above a particular threshold as 

being attracted to that feedback sentence. We cluster all original examples that are attracted to a 

given feedback set. 

Karov & Edelman see this as the training phase and then describe how the clusters can be 

used to disambiguate unseen words. With TroFi we are only interested in finding the clusters. 

Let us return for a moment to why the Karov & Edelman algorithm is so suitable for 

literallnonliteral clustering, i.e. nonliteral language recognition. The five main features 

mentioned earlier were flexible sense distinctions, flexibility in choice of sentence features, a 

largely unsupervised algorithm, training information derivable from a machine-readable 

dictionary (MRD), and the ability to deal effectively with very sparse data. We now discuss each 

of these points in turn. 

Flexible sense distinctions are important because we define two new senses: literal, to 

cover all the literal senseslusages of the target word, and nonliteral, to cover all the nonliteral 

senses/usages. We build feedback sets for both of our new senses. Ideally, we should be able to 

define any original sentence attracted to the litera.1 feedback set as being part of the literal cluster 

and any sentence attracted to the nonliteral feedback set as being part of the nonliteral cluster. 

Because any number of features may be important for distinguishing between literal and 

nonliteral usages of verbs, our chosen algorithm must give us flexibility for experimenting with 

different types of sentence features without having to edit the algorithm - or even its 

implementation. For example, in addition to using the nouns and verbs in a sentence as basic 

features, we also use SuperTag trigrams (see Section 6.2.2.2). 



The third aspect of the Karov & Edelman algorithm that makes it particularly applicable 

to literalhonliteral clustering is that it is largely unsupervised, allowing us to avoid the knowledge 

acquisition bottleneck - that is, having to annotate thousands of sentences manually. Anyone 

who has ever done any manual sense tagging - or even something as "basic" as part-of-speech 

tagging - knows that this is neither trivial nor pleasant. The difficulties become even more 

pronounced when the distinction between the senses is necessarily vague, like the 

literallnonliteral distinction. It is worth keeping in mind that a linguistic distinction that is 

difficult for a human to judge is likely to be even more difficult for a machine, so achieving 

reasonable results by applying an unsupervised algorithm to raw, real-world data, is - to say the 

least - challenging. 

In order to build a sufficient training set for finding sense distinctions, one generally 

requires large datasets which can be difficult to come by. Luckily the Karov & Edelman 

algorithm is designed to work with very sparse data. Without this feature, we would stand little 

chance of making TroFi work at all. The reason is that both the literal and the nonliteral senses 

encompass a number of sub-senses, and each of these senses can be disambiguated using a large 

number of features. It is unlikely that examples of all the possible features are going to end up in 

the feedback sets. Still, we want to correctly cluster literal and nonliteral sentences whose 

features do not have an exact counterpart in either of the feedback sets. This is where the most 

intriguing aspect of the Karov & Edelman algorithm comes into play: transitivity of similarity. 

Transitivity of similarity means that if S, and S2 are found to be similar, and S2 and S3 

are found to be similar, then S, and S3 will also1 be similar. The result is that many more 

original sentences are attracted to the literal and nonliteral feedback sets than would normally be 

the case. As we will see, this property will become an important feature of the TroFi algorithm. 



7.1.1.2 The TroFi Algorithm 

Simply put, TroFi takes a collection of sentences containing a particular target verb and 

splits them into two clusters, one where the target word is used literally, and one where it is used 

nonliterally. In this section we will describe how exactly it does this with the help of an 

illustrative example using the target word "grasp". For the pseudo-code version of the algorithm, 

please see Appendix A. 

TroFi uses the Karov & Edelman algorithm described in Section 7.1.1.1 as the clustering 

component of its nonliteral language recognition algorithm. This is worth keeping in mind during 

the following discussion. 

The basic version of TroFi uses as input an original set and unscrubbed feedback sets 

(Learner D). The creation of these sets is exhaustively described in Section 6.2. Here we will 

just provide a brief overview of the resultant input using the word "grasp" as our target word. ' 

We will use the following sentences for the original set: 

She grasped her mother's hand. 

He thinks he has grasped the essentials of the institute's finance philosophies. 

The president failed to grasp KaiserTech's finance quandary. 

Once we stem this input and remove anything that is a frequent word or something other 

than a noun or a verb, we get: 

1 L mother hand 

2 N essenti institut financ philosophi 

3 N president kaisertech financ quandary 

The Ls and Ns are testing labels indicating whether the sentence is literal or nonliteral. 

The numbers allow us to refer to these feature sets in Figure 7-C, Figure 7-E, and Figure 7-H. 

I Note that this is a highly simplified example. A full example would be too complicated to be 
illuminating. 



Our literal feedback set looks as follows: 

His aging mother gripped his hands tightly. 

-+ 

L l  mother hand 

Finally, our nonliteral feedback set is the following: 

After much thought, he finally grasped the idea. 

This idea is risky, but it looks like the director of the institute has finally comprehended 
the basic principles behind it. 

Mrs. Fipps is having trouble comprehending the legal straits. 

+ 

N1 idea 

N2 idea director institut principl 

N3 fipp trouble strait 

We first read all the words in the original set as well as all the words in the feedback sets 

into a WSM (Word Similarity Matrix), with all the words along both the x and y axes. Since 

each word is maximally similar to itself the matrix is initialized to the identity matrix. We 

represent the WSM graphically in Figure 7-B to provide a better overview. 



Figure 7-B WSIM for grasp: Initial 
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Karov & Edclman do some experimentation with initializing the matrix in such a way 

that the similarities reflect the length of the path between any two words in WordNet. They find 

that this obfuscates the issue as i t  can create dominant similarities between dissimilar words or 

hold apart words that might otherwise find each other. We can predict by analysis the samc sort 

of bchaviour for the TroFi case. For example, although "idea" and "principle" are in the same 

WordNet tree, namely cognitive-content, they arc far away from "essentials" which is in the 

entity tree. Of course, although "president" and "director" are in the enfir?, tree and we would likc 

to show a similarity between "president", "director", and "essentials", we do not necessarily want 

the resulting side-effect similarity between "csscntials" and "mother" and "hand". Furthermore, 

"hand" is also under cognitive-content, and the path between "hand" and "idea" is shorter than 

the path between "hand" and "mother". I t  is worth noting that one might even have to consider 

disambiguating the words before finding the WordNet distances. This would require a great deal 



of additional effort. So we can see that although using WordNet path lengths could definitely be 

used for nonliteral language recognition work - as studied at length by Dolan (1 995) and as 

suggested by Nissim and Markert (2003) - in the TroFi case it would require additional 

investigation, experimentation, and analysis that is outside the scope of this thesis. 

We next set up: an Original SSM (Sentence Similarity Matrix) with the original sentences 

(feature sets) both along the x and the y axes; a. Literal Feedback SSM with the literal feedback 

set sentences along the x axis and the original sentences along the y axis; and, a Nonliteral 

Feedback SSM with the nonliteral sentences along the x axis and the original sentences along the 

y axis. All these matrices are initialized to 0 as shown in Table 7-A. 

Table 7-A SSMs for grasp: Initial 

mother hand 0 0 0 

essenti 
institut financ 
philosophi 0 0 0 

president 
kaisertech 
financ 
quandari 0 0 0 

ILiteral Feedba;k SSM I 

mother hand H+ 
institut financ 

president 
kaisertech 

quandari 

Non-Lteral Feedback SSM 

idea director 

mother hand 0 0 

essenti 
institut financ 
philosophi 0 0 

president 
kaisertech 
financ 
quandari 0 0 

We now start the algorithm proper by updating2. We begin by calculating the similarity 

of each of the original sentences to itself by summing over the weighted WSM similarities of the 

words in those sentences. Each sentence will necessarily be equal to itself. We demonstrate on 

an example. The feature set "mother hand" contains two words. Each of these words will thus 

carry a weight of 0.5. When we check the WSM, we find that the similarity of "mother" to itself 

is 1, and that the similarity of "hand" to itself is 1. Thus the similarity of "mother hand" to 

"mother hand" is 0.5.1 + 0.5.1 = 1 . Sometimes we will also find similarities between different 

2 A detailed description of this process is given in Section 7.1.1.1. 
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original sentences. Using the same type of calculation as for the "hand mother" example, we find 

that "essenti institut financ philosophi" and "president kaisertech financ quandari" have a 

similarity of 0 .25 .0  + 0 .25 .0  + 0.25.1 + 0 .25 .0  = 0.25.  The results are shown in Figure 7-C. 

Recall that the labels in the following graphs refer back to the feature sets on pages 80 and 81. 

Figure 7-C 01 riginal SSM for grasp : lSt Iteration 

Once we have updated the Original SSM, we update the WSM from the Original SSM. 

We find the similarities between each pair of words by summing over the weighted SSIM 

similarities of the sentences containing those words. For example, for "financ" and "essenti" we 

get a similarity of 0.125 - 1 + 0.125.1 = 0.25. The weight of 0.125 is due to the fact that each 

sentence containing the word "financ" has four words, making for a sentence weight of 0.25 and 

there are two sentences containing the word "financ", meaning that we must further divide the 

sentence weight by two, giving us 0.125. Note that we only replace similarities from the previous 

iteration if the new similarity value is higher. This is why our similarity for "mother" to itself 

remains at 1 and does not sink to 0.5. The state of the WSM after the first iteration is shown in 

Figure 7-D. 



Figure 7-1 1 WSM for grasp: 1" Iteration 

This concludes the first iteration. In subsequent iterations, we first update the Nonliteral 

Feedback SSM and then the Literal Feedback SSM from the WSM, as shown in Figure 7-E. 

' 

Figure 7-E SSiMs for grasp: 1" Iteration 
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We then update the WSIM, first from the Nonliteral Feedback SSM and then from the 

Literal Feedback SSM. We can see the results in Figure 7-F. 

Figure 7-F WSM for grasp: 2nd Iteration 
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The reason for doing both SSM updates in sequence, rather than following each SSM 

update with a WSM update, is that we want the literal and nonliteral matrices to stand on an even 

footing. If we were to update the WSM immediately after updating the Nonliteral Feedback 

SSM, there would be word similarities available to the Literal Feedback SSM that were not 

available to the Nonliteral Feedback SSM. 

Already after the second iteration we can see the transitivity of similarity at work. If we 

were to cluster simply based on words in the originaI sentence appearing somewhere in one of the 

feedback sets, we would correctly attract the sentence "she grasped her mother's hand' to the 

literal feedback set due to the sentence "his aging mother gripped his hands tightly." Also, using 



only direct attraction, the sentence "he thinks he has grasped the essentials of the institute's 

finance philosophies" is correctly attracted to the nonliteral feedback set due to the sentence "this 

idea is risky, but it looks like the director of the institute has finally comprehended the basic 

principles behind it." However, using just direct attraction, there would be no way to get the 

sentence "the president failed to grasp KaiserTech's finance quandary" into the nonliteral cluster 

because it has no words in common with the nonliteral feedback set. Fortunately it can be 

indirectly attracted to the nonliteral feedback set through its sharing of the word "finance" with an 

original sentence that is attracted to the nonliteral feedback set. The reason for this is as follows: 

the original feature sets "essenti institut financ philosophi" and "president kaisertech financ 

quandary" are similar because they both contain the word "financ". The words "financ" and 

"institut" are similar because they are contained in similar sentences. Both original sentences are 

then attracted to the feedback set sentence "idea director institut principl" because they contain 

similar words -not identical, but similar. 

At the end of each iteration, we are able to read from the SSMs the similarity of each 

original sentence to each feedback sentence. We take the highest of these similarities for each 

original sentence to a literal feedback set sentence and to a nonliteral feedback set sentence. 

These similarity values are used for clustering. 

Clustering refers to the attraction of each original sentence to either the literal or the 

nonliteral feedback set. The reason we cluster at the end of each iteration rather than after the 

algorithm has converged has to do with the addition of learners (to be discussed in Section 

7.1.2.2.1). In order to decide which cluster an original sentence should belong to, we abide by 

the following decision process: if the similarity to either feedback set is below a given threshold, 

or the absolute difference between the highest similarity to the literal feedback set and the highest 

similarity to the nonliteral feedback set is below a given threshold, then no decision can be made 

at the current iteration and the original sentence is considered to be attracted to the undecided 



cluster. Otherwise, if the highest similarity of the original sentence to the literal feedback set is 

greater than the highest similarity of that sentence to the nonliteral feedback set, then the sentence 

is considered to be part of the literal cluster. If, on the other hand, its similarity to the nonliteral 

feedback set is greater, then we add it to the nonliteral cluster. Note that we are not at this point 

pulling any sentence out of the running, so to speak. We are simply making a temporary decision 

to allow for voting between the learners (see Section 7.1.2.2.2). 

At the end of each iteration, we calculate the greatest change in similarity values. As 

long as this value is above a given threshold, we continue iteratively updating. The threshold was 

set experimentally to ensure that the algorithm stops after a reasonable (optimistically below 12) 

number of iterations. 

Due to the simplicity of our current example, there are only four iterations -three with 

changes and one to meet the stop condition. Figure 7-G and Figure 7-H show the final states. 



Figure 7-G WSM for grasp: 4Ih Iteration 
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Fig lure 7-H SSMs for grasp: 4'h Iteration 



As we can see, by the time the program finishes running, we have established the 

similarity of our two nonliteral original sentences to another of the nonliteral feedback set 

sentences, namely to "after much thought, he finally grasped the idea". This fact may not seem 

particularly significant at the moment because we are only interested in the highest similarity and 

we have only a few sentences. However, it could have been extremely important had we had 

many sentences, because through this new similarity we might have found additional similarities. 

Also, we shall see that the number of feedback set sentences to which an original sentence is 

attracted is highly significant for one of our TroFi enhancements (see Section 7.1.2.1). 

We have just described the basic TroFi algorithm. Unfortunately, attraction to the correct 

feedback set is not quite that simple. Because of feature overlap and insufficient attraction, there 

will often be sentences that are attracted equally to both sets, as well as sentences that are 

attracted to neither set. Also, there will always be cases where an original sentence is attracted to 

the wrong set entirely. For example, let us change the original set to contain the following: 

The girl and her brother grasped their mother's hand. 

He thinks he has grasped the essentials of the institute's finance philosophies. 

The president failed to grasp KaiserTech's finance quandary. 

+ 

l a  L girl brother mother hand 

2a N essenti institut financ philosophi 

3a N president kaisertech financ quandari 

The literal feedback set will now read thus: 

The man's aging mother gripped her husband's shoulders tightly. 

The child gripped her sister's hand to cross the road. 

The president just doesn't get the picture, does he? 

+ 

Lla  man mother husband shoulder 

L2a child sister hand cross road 

L3a president 



Finally, the makeup of the nonliteral feedback set will be as follows: 

After much thought, he finally grasped the idea. 

This idea is risky, but it looks like the director of the institute has finally comprehended 
the basic principles behind it. 

Mrs. Fipps is having trouble comprehending the legal straits of the institute. 

She had a hand in his finally fully comprehending their quandary. 

Nla idea 

N2a idea director institut principl 

N3a fipp trouble strait institut 

N4a hand quandari 

Note that "picture" does not show up as a feature in the above examples. It is part of the 

expression verb "get the picture", a synonym of "grasp". As part of a seed, it is omitted from thc 

feature set. The final results of running TroFi on these expanded sets are show in Figure 7-1. The 

labels in the following graphs refer back to the revised feature sets above. 

Figure 7-1 SSMs for grasp extended: 6Ih Iteration 

Looking at the above graphs i t  is quite obvious that we got Trouble, we got lots and lots 

of Trouble, with a capital "T" and that rhymes with "P" and that stands for Precision. Note that 

since both feedback sets contain the words "president" and "hand", we get a sort of tug-0'-war. 



In both the case of "the girl and her brother grasped their mother's hand" and "the president failed 

to grasp KaiserTech's finance quandary," we have a tie, meaning that this basic version of TroFi 

will not be able to add them to either the literal or the nonliteral cluster. 

Luckily this is only the basic implementation of TroFi. In the following sections we walk 

through some methods and algorithms designed to enhance the basic algorithm and hopefully 

remedy problems like the above. 

7.1.2 Enhancements 

There are a number of ways in which we can enhance the basic TroFi algorithm, including: 

1. Sum of Similarities vs. Highest Similarity 

2. Learners and Voting 

3. SuperTags 

4. Context 

We will discuss each of these in turn in the following sections. 

7.1.2.1 Sum of SimiIarities vs. Highest Similarity 

Currently we base the strength of attraction of an original sentence to a feedback set on 

the highest similarity of the original sentence to any of the sentences in the feedback set. This is 

designed to eliminate noise: any feedback set sentences showing a spurious similarity to the 

original sentence will ideally be ignored. This makes sense for homogeneous sense sets with a 

fairly limited scope. Unfortunately, the literal and nonliteral feedback sets often encompass a 

large number of senses and a large number of domains. It may not be enough to depend on 

individual feedback set sentences. One way to remedy the situation is to measure attraction based 

not on highest similarity values, but rather on sum of similarities values. 



Recall that for highest similarity values, at the updating stage, TroFi returns the highest 

similarity value between the original sentence and any of the feedback set sentences. In order to 

calculate the sum of similarities, TroFi simply sums over all the similarities displayed by each 

original sentence to any of the feedback set sentences. In order to make this sum comparable to 

other sums, and to ensure that the individual similarities do not add up to more than 1, we 

normalize by dividing each individual similarity score - i.e. the similarity of each original 

sentence to each feedback set sentence -by the total number of sentences in that particular 

feedback set. We also have to make an adjustment to the similarity threshold below which 

sentences are sent to the undecided cluster. This threshold is also divided by the total number of 

sentences in each feedback set. If we did not do this, most sentences would end up in the 

undecided cluster most of the time. 

Summing over similarities will not only ensure that we do not ignore some vital sense 

information, it will also decrease the incidence of ties between the literal and nonliteral feedback 

sets. We accept the risk that any attraction, no matter how unfortunate, could affect the results. 

Figure 7-5 shows how our "grasp" example behaves with the sum of similarities enhancement. 



Figure 7-5 Final Cluster Attraction Using Highest Similarity vs. Sum of Similarities 
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As we can see, for the second original sentence, "essenti institut financ philosphi", using 

sum of similarities gives us the same clustering behaviour as using highest similarity. The 

sentence is correctly attracted to the nonliteral feedback set in both cases. However, recall that 

for the first and last original sentences, using highest similarity gave us a tie. Using sum of 



similarities, on the other hand, we get the tie-breaker we were looking for - correct for the first 

sentence, incorrect for the last. The reason for the incorrect decision is that, although we have a 

direct attraction to both sets because the word "president" is in the literal feedback set and the 

word "quandary" is in the nonliteral feedback set, the attraction to the nonliteral feedback set is 

weakened slightly by the fact that there are more sentences in the nonliteral feedback set. This is 

a difficult problem, but we will attempt to overcome it with some of our other enhancements. 

We can see that using sum of similarities, definitely has an effect on the clustering results 

- even if it is not always the effect we want. The effect of the two approaches is likely to vary 

from target word to target word, depending on the nature of the original sentences and the 

feedback sets. The choice between using highest similarity and sum of similarities will therefore 

be made experimentally. The results are discussed in Section 8.3. 

7.1.2.2 Learners & Voting 

One of the biggest stumbling blocks for TroFi is noise in the feedback sets causing false 

attraction. To remedy this, we created a number of algorithms for scrubbing the noise out of the 

feedback sets, resulting in a variety of learners. (See Section 6.2.2.1 for details.) 

One of the issues with learners is that since some scrubbing methods may cause incorrect 

moves or removals, the benefit of learners is maximized if they are used in combination to 

enhance each other's strengths and minimize each other's weaknesses. For this reason we have 

developed a voting schema allowing for a contribution from each learner. We discuss the effects 

of the individual learners in Section 7.1.2.2.1 and examine the voting system in Section 7.1.2.2.2. 

7.1.2.2.1 Learners 

In Section 6.2.2.1, we described the creation of the various learners that can be used by 

TroFi. In the following sections we examine the effect of each learner on the TroFi algorithm. 

We demonstrate using our running example. 



7.1.2.2.1.1 Learner A 

Recall that Learner A was produced by moving WordNet synsets from the literal to the 

nonliteral feedback set on the basis of phrasal/expression verbs and overlapping words. We want 

to move words and phrases likely to cause false attraction to the opposite feedback set. To see 

the basic effects this alternative learner has on TroFi, we simply replace the basic learner with 

Learner A, and re-examine our running example. (See Chapter 8 for detailed results.) 

The WordNet entry for "grasp" is: 

I. grasp, grip, hold on -- (hold firmly) 

2. get the picture, comprehend, savvy, dig, grasp, compass, apprehend -- (get the meaning of 
something; "Do you comprehend the meaning of this letter?") 

To create Learner A, the synsets of "grasp" containing phrasal or expression verbs are moved to 

the nonliteral set. Unfortunately, both synsets of "'grasp" contain phrasal or expression verbs, 

meaning that our literal feedback set is empty and all the original sentences will be attracted to 

the nonliteral set. This means that the nonliteral original sentence "president kaisertech financ 

quandari" is now attracted to the nonliteral set, but so, unfortunately, is our literal example, "girl 

brother mother hand". 

Let us speculate for a moment about what would happen if the first synset did not contain 

the phrasal verb "hold on". In that case, only the second synset, the one containing the expression 

verb "get the picture" would be scrubbed. The result would be that our feedback set sentence 

"president" would end up in the nonliteral feedback set where it could correctly attract "president 

kaisertech financ quandari". The first graph in Figure 7-K shows the results given by the actual 

Learner A; the second, by the hypothetical Learner A. 



Figure 7-K Final Cluster Attraction Using Learncr A and Hjpofhefical Learncr A 
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In the non-hypothetical case, Learner A allows us to correctly cluster a sentence that the 

basic learner cannot handle. However, it does cause one of our other sentences to be classified 



incorrectly. We must investigate the remaining learners to see if we can reap the advantages of 

Learner A while cancelling out its negative effects. 

7.1.2.2.1.2 Learner B 

Learner B is similar to Learner A. The only difference is that rather than moving entire 

synsets on the basis of phrasal/expression verbs and overlapping words, we simply remove them. 

This has the effect of scrubbing false attraction from one feedback set without accidentally 

introducing noise into the other. 

In terms of our "grasp" example, we still end up with an empty literal feedback set, but at 

least we are not adding noise to the nonliteral feedback set. Perhaps Learner C (c' or C2) will 

give us what we need. 

7.1.2.2.1.3 Learner C' 

The Learners C are a little less drastic than Learners A and B. Rather than moving or 

removing whole synsets, which, as we have seen, can have hefty effects, for Learners C' and C' 

we just remove features or feature sets, respectively, from the final feedback sets on the basis of 

overlapping words. For Learner c', we remove the whole feature set containing an overlapping 

word. For Learner c', we just remove the offending word itself. 

Applying Learner C' to our running example, we find that the word "hand" is scrubbed 

out of both feedback sets. Figure 7-L shows the e-ffects on the final results. 



Figure 7-L Final Cluster attraction using Learner C' 
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We expected that removing the word "hand" from both sets would break any potential 

ties in the case of the sentence "girl brother mother hand". However, it has also solved the rest of 

our attraction problems as a side-effect. Due to the transitivity of similarity, changing a single 

word will often have far-reaching effects. 

7.1.2.2.1.4 Learner c2 
For Learner c', instead of removing overlapping word 

containing those words. 

s, we remove who1 e feature sets 

In terms of our "grasp" example, Learner c2 would cause the feature set containing the 

word "hand" - namely "child sister hand cross road" - to be completely removed. We havc 

found that, in general, Learner c2 yields slightly better results than Learner C' over a number of 

targct words, so that is the one we use as the TroFi default. 



7.1.2.2.1.5 Learner D 

Learner D is the basic learner we have been referring to during the course of this 

discussion. It is completely unscrubbed, and hence at the same time unenhanced and unbroken. It 

serves both as the baseline against which the other learners can be compared and as an important 

anchor for the voting system. 

7.1.2.2.2 Voting System 

We now have four learners with four different opinions. The question is, how do we use 

those opinions to our best advantage? The simplest thing, of course, is to compare them and 

choose the one exhibiting the best performance. Unfortunately, when we try to do this (see 

Section 8.4) we find that some learners produce better results for some words and worse results 

for others. In the end, our experiments found no marked difference between the average 

accuracies produced by the learners. As previously suggested, we need to be able to take the best 

from each learner. We accomplish this by letting them vote. 

We initially experimented with a variety of different voting schemata - for example, all 

agree, best 3 of 4, at  least one - and used a backoff model to pick a set of results. This became 

too complex too quickly, the logic was non-trivial to justify, and the results were questionable. 

Therefore, we decided to go with a simple majority-rules schema. We provide the pseudo-code 

below, followed by a more detailed explanation. 

for each original sentence 
if nonliteral for 3 of 4 learners 

add to nonliteral cluster 
else if literal for 3 of 4 learners 

add to literal cluster 
else 

add to undecided cluster 

We have gone from the extremely complicated to the extremely simple. If three of the 

four learners say that a given original sentence should be nonliteral, we put it in the nonliteral 



cluster; if three of four say i t  should be literal, we put i t  in the literal cluster; if three of four 

cannot make up their mind or there is a tie, we put it in the undecided cluster. 

Thc voting results are given in Figure 7-M. 

Figure 7-M Voting Results 

girl brother mother hand I essenti institut financ philosophi 

Sentences and Learners 

president kaisertech financ quandari 

I Literal rn Nonliterel 1 

Unfortunately, we have a tie for our hotly contested first example. We could potentially 

improve results by giving the learners different weights. There are some experiments to this 

effect in Section 8.5. Also, we still have a few enhancements that might have a positive effect. 

7.1.2.3 SuperTags 

The addition of SuperTags (see Section 6.2.2.2) requires no special behaviour from 

TroFi. The SuperTag trigrams are just another feature. The effects of SuperTags on the accuracy 

of the TroFi output will be more fully explored in Section 8.6. For now, suffice i t  to say that the 



SuperTag trigrams can provide beneficial additional similarity between sentences, sometimes 

providing information - like prepositions and nominal arguments - that would otherwise be 

ignored. Like all features, the SuperTag trigrams can be either a benefit or a detriment. In order 

to limit false attraction we have kept the contents of the SuperTag trigrams rather constrained, as 

described in Section 6.2.2.2. 

7.1.2.4 Context 

As discussed in Section 6.2.2.3, the context enhancement simply involves the expansion 

of the feature sets to include the sentences immediately preceding and following the sentence 

containing the target word. The purpose of this is to increase the size - and therefore the 

attractiveness - of our feature sets. Like the SuperTag trigrams, these additional features require 

no special treatment. 

Unfortunately, the context enhancement does face a stumbling block in terms of speed. 

TroFi currently uses an 0 ( n 2 )  implementation, where n is the total number of words (with 

duplicates removed) in the union of the original and feedback sets. This means that increasing 

the size of the feedback sets by adding extra context slows down processing considerably. The 

optimization of the algorithm for better scalability is left for future work. 

7.2 Active Learning 

We have seen in our "grasp" example, and we will see in our experiments in Chapter 8, 

that there is only so far we can go with the unsupervised algorithm. It would be nice to be able to 

push the results a little further. For this reason we have added an optional active learning 

component to TroFi. 

One way to look at the TroFi active learning component is as damage control. Early in 

the classification process, one could attempt to nudge things in the right direction by sending a 



certain percentage of the sentences that TroFi is not sure about to a human helper. These 

sentences could then be added to the appropriate feedback set to provide a certain point of 

attraction for additional sentences that might not otherwise have been attracted to the correct 

feedback set. 

Another way to look at active learning is that, rather than the human helping TroFi do its 

automatic clustering, TroFi is helping the human do manual clustering. TroFi takes the process 

as far as it can, leaving the human with a reduced set of sentences for manual annotation. 

Whichever way we look at it, one of the concerns about using active learning is that we 

do not want to impose too much work on the human. After all, TroFi is supposed to be a labour- 

saving device. The goal of the active learning component, therefore, must be to minimize effort 

and maximize impact. Several issues must be addressed in order to accomplish this. First, we 

must make a decision on how much work, at most, the human should ever have to do. Then we 

must ensure that we send the most appropriate sentences possible to fill this quota. Finally, we 

must use the human expertise to our best advantage by applying it at the point in the algorithm 

where it will have the most beneficial effect. 

We experimented with several methods for deciding what sentences would be sent to the 

human. For a start, they are always sentences from the undecided cluster. As we learned in 

Section 7.1.1.2, TroFi puts sentences in the undecided cluster if their attraction to either feedback 

set, or the absolute difference between the attractions to the two feedback sets, falls below a given 

threshold. We toyed therefore with the idea of sending everything in the undecided cluster to the 

human and controlling the size of the cluster purely with the similarity threshold setting. We 

found after some experimentation, however, that we got great variation between different target 

words, and that we were often sending an unreasonable percentage of the sentences to the human. 

To counteract this, we added a cap on the percentage of input sentences that TroFi would be 

allowed to send to the human. We then found that we were not always sending the most 



uncertain sentences. Also, we were often not filling the allowable quota. For this reason, we 

raised the similarity threshold so that practically anything could be sent to the undecided cluster 

and we imposed an order on these sentences based on similarity values. The result is that those 

original sentences showing the least similarity to either feedback are sent to the human first. 

In order to make certain TroFi settings work, it is imperative that not all the sentences 

sent to the human have similarity values or absolute differences of zero. The reason is that if 

nothing is attracted to a given original sentence during the first iteration, moving it into a 

feedback set is not going to help either. On the other hand, not clustering a sentence counts 

negatively in the evaluation, and sending a rogue sentence to the human might be its only chance. 

We solve this dilemma through compromise: we send alternating positive similarity values 

(starting from the lowest) and zeros. 

After TroFi receives a decision from the human, it moves the sentence in question not 

only into the correct cluster, put also into the corresponding feedback set. Some experimentation 

revealed, however, that the positive attraction of these sentences was not enough to effectively 

counteract the existing false attraction generated by feedback set sentences placed in the wrong 

set right from the start. Thus we tried moving all the feedback set sentences showing a similarity 

to the human-judged sentence to the correct feedback set as well. Unfortunately, with most large 

sets, this resulted in having to move every single feedback set sentence from one feedback set to 

the other, meaning that one of the feedback sets ended up empty. We tried various percentages, 

but finally decided that the negligible potential benefit was not worth the risk. 

After deciding what sentences to send to the human, we must decide when to send them. 

One possibility is to wait until the last iteration in the hope that TroFi correctly clustered 

everything else. This immediately destroys any bootstrapping possibilities: nothing can be 

learned from the human input. For this reason, we experimented with having TroFi send the 

sentences to the human earlier. There are several possibilities: send the whole quota right after 



the first iteration, send the whole quota at some later iteration, or send a small fraction of the 

quota at each iteration. 

The potential benefit of sending everything after the first iteration is to have at least a 

small chance of nipping any false attractions in the bud. Also, as mentioned earlier, the 

algorithms can be expected to learn from the human decisions. Risks include sending sentences 

to the human prematurely - i.e. before TroFi has had a chance to make potentially correct 

decision about them. Because of some flipping back and forth of sentences between clusters 

while the program runs, it is difficult to predict wlhen TroFi will have made its final decision. 

Karov & Edelman suggest that nothing really good happens after the third iteration. We 

have found this to be true in some cases and not in others. The main issue is the similarity values 

tend to keep increasing with each iteration to eventually converge. This means -particularly 

since we are using sum of similarities - that eventually the numbers may increase in such a way 

as to make an original sentence flip from one cluster to the other, or from the undecided set into 

the literal or nonliteral cluster. We have discovered however that the general order of similarity 

values tends not to change very much, if at all, after the third iteration. This suggests that right 

after the third iteration may be a good time to send the sentences to the human. Allowing the 

human to put a hand in at this point could give the algorithm a second chance. 

A third approach is to send the quota of sentences to the human in small doses in order to 

gain some benefit at each iteration - i.e. the certainty measures will change for the better with 

each bit of human input, so at each iteration more and more appropriate sentences will be sent to 

the human. This is a type of bootstrapping. Ideally, we would get a compounding of benefits. 

On the other hand, we could also get a compounding of risks. 

The risks of the TroFi active learning component are similar to the risks we discovered 

when looking at using context as an enhancement (see Section 7.1.2.4). The sentences sent to a 

particular cluster by the human may themselves be correctly classified, but they might contain 



misleading features that will cause incorrect attractions. We currently have no way to minimize 

this risk. Also, as mentioned above, sending sentences to the human in a distributed manner may 

compound this problem. 

We have covered the active learning algorithm loosely in the above paragraphs. A more 

structured version can be found in the pseudo-code in Appendix A. 

Looking back at our "grasp" example, we can see that active learning gives us a chance 

to save our problematic first example, "the girl and her brother grasped their mother's hand." 

Voting produces a tie for this sentence (see Figure 7-M), so it ends up in the undecided cluster. 

Since it is the only sentence there, it is sent to the human, who can identify it as literal and place it 

into the literal cluster. 

In Section 9.2, we will experimentally examine the relative merits of sending all the 

sentences after the first iteration, after the third iteration, at the end, or distributed across all the 

iterations. We will also take a look at what happens if we simply select random sentences to send 

to the human. Finally, we will discuss the value provided to the human by TroFi. 

7.3 Iterative Augmentation 

Most statistical NLP algorithms include a training phase. We have not yet made any 

reference to training TroFi. The reason is that we are not specifically trying to train the algorithm 

to work on unseen examples. Rather, we are trying to separate our input into two distinct sets, 

which, in theory could then be used, among other things, as training data for a statistical 

classifier. In a way, we are creating training data. Still there may be a place for a sort of training 

phase in TroFi as well. 

We can consider TroFi to have a training phase only insofar as one can refer to learning 

from previous runs as training. A more appropriate term here may be iterative augmentation. 

We want to be able to add to our literal and nonliteral clusters over time. We would also expect 



to be able to use the knowledge we have gained in previous runs, and not start from scratch each 

time. We can do this by adding our new clusters to the appropriate feedback sets at the end of 

each run, and saving the results for future runs. In this way we can augment both the clusters and 

the feedback sets over time; hence the term iterative augmentation. 

Benefits of iterative augmentation are tha.t it will allow us to compensate for current 

speed limitations. As we suggested when discussing the addition of context, since the current 

implementation is 0(n2),  where n is the total number of words, drastically increasing the size of 

the initial input sets will grind the algorithm to a halt. However, working with smaller input sets 

in an iterative fashion will keep the algorithm from becoming unusable. 

When TroFi is run initially, in addition to the clusters, we output a set of sentences, 

which we will, for the sake of convenience, call a classi$er. The idea behind this classifier is that 

we save the information gathered during the initial run in two ways. First, we add the newly 

classified sentences to their respective feedback sets with a high certainty (weight). Second, we 

add certainty measures to the actual feedback set sentences by giving them a weight 

corresponding to their highest similarity to any of the original set sentences plus epsilon. The 

epsilon value is a small number used to ensure that none of the weights is zero, so that none of the 

sentences is dropped out of the clustering algorithm altogether. Just because a particular 

feedback set sentence does not attract any original set sentences in one run does not mean that it 

will not attract any in future runs. We simply want to make certain that those feedback set 

sentences that proved useful during the initial runs are given higher importance in subsequent 

runs. The pseudo-code for building the classifier is provided in Appendix A. 

It is not difficult to see the potential pitfalls in the proposed algorithm, namely that 

incorrect attractions will be compounded in future runs by using the classifier. One way to 

Note that active learning (see Section 7.2) is optional for augmenting the classifier. If active learning is 
used, the decisions about the undecided cluster become more reliable, and so both the augmentation of the 
literal and nonliteral clusters and the revised versions of the classifiers will be more accurate. 



minimize this problem might be to exclude sentences below a given certainty threshold from both 

the clusters and the classifier. This is left for future work. 

Once we have a classifier we can use it in a slightly modified version of the TroFi 

algorithm. Instead of many learners and a voting system, we use a single learner. Also, instead 

of building new feedback sets, we use our newly created classifiers. We use a new original set of 

sentences and, as before, attempt to send each sentence to the appropriate cluster. At the end, we 

can add the freshly clustered sentences to our classifiers, giving us: iterative augmentation. 

7.4 Summary 

In this chapter we examined TroFi's models and algorithms on hand of an illustrative 

running example. We began with the core word-sense disambiguation algorithm upon which 

TroFi is built. We then walked through our collection of enhancements: sum of similarities, 

learners, voting, SuperTags, and additional context. Subsequently, we moved on to an analysis of 

the active learning and iterative augmentation algorithms. 

In the following chapters we carry out extensive experimentation to determine the 

effectiveness of the various models and algorithms. We begin with the core algorithms and 

enhancements in Chapter 8, followed by the active learning component in Chapter 9. Iterative 

augmentation is further discussed in Chapter 10. 



8 CORE EXPERIMENTS & RESULTS 

In this chapter, we discuss the evaluation of the core TroFi algorithms. This includes a 

description of the baseline, a comparison of sum of similarities to highest similarity, a look at 

variations in learners and voting schemata, and an examination of adding SuperTags andlor 

additional context to the feature sets. Active learning experiments and results will be covered 

separately in Chapter 9. 

8.1 Evaluation Criteria and Methodology 

TroFi's core algorithms and enhancements were evaluated on the 25 target words listed 

in Table 8-A. (For information on how these words were chosen, please see Section 6.1.5.) The 

original sets for the target words contain anywhere from 1 to 1 15 sentences pulled from the test 

set of the WSJ Corpus. Some of the sets started out larger, but were randomly reduced to 

approximately 100 sentences. The sets were kept quite small to limit the amount of manual 

annotation required in preparation for testing. We provide the total number of sentences, plus the 

manually evaluated literal and nonliteral counts for each target word in Table 8-A. Keep in mind 

that one objective of this thesis is to deal with real-world data. This implies that the data is often 

noisy and certainly does not like to split nicely into half literal and half nonliteral. It can even 

happen that there are either no literals or no nonliterals. This imbalance may affect results. 



Table 8-A Usage Counts per Word 

Literal 
Nonliteral 
Total 

Literal 
Nonliteral 
Total 

Literal 
Nonliteral 
Total 

absorb 
4 
62 
66 

grab 
5 
13 
18 

smooth 
0 
11 
11 

assault 
3 
0 
3 

grasp 
1 
4 
5 

step 
12 
94 
106 

die 
24 
11 
35 

kick 
10 
26 
36 

stick 
8 
73 
81 

drag 
12 
4 1 
53 

knock 
11 
29 
40 

strike 
51 
64 
115 

drown 
4 
1 
5 

lend 
77 
15 
92 

touch 
13 
4 1 
54 

escape 
24 
39 
63 

miss 
58 
40 
98 

examine 
49 
37 
86 

pass 
0 
1 
1 

fill 
47 
40 
87 

rest 
8 
20 
28 

fix flow 
39 10 
16 31 
55 41 

ride roll 
22 25 
26 46 
48 71 

A variety of feedback sets were generated for different experiments. There are from one 

to around 1500 literal and nonliteral feedback set sentences per word for each of the experiments. 

The algorithms were evaluated based on how accurately they clustered the hand- 

annotated sentences. Included in this evaluation was whether the algorithm managed to cluster 

the sentences at all. This addition was prompted by the question of what to do with sentences that 

are attracted to neither cluster or are equally attracted to both. We will call these unknowns. 

Several options came to mind: put all unknowns in the literal cluster; put all unknowns in the 

nonliteral cluster; ignore unknowns; or, put unknowns in the opposite set from their label - e.g., if 

the manual label says the sentence is literal, add the sentence to the nonliteral cluster. This 

approach allows us to evaluate the algorithms more fairly, since any failure to cluster a sentence 

is seen as an incorrect clustering. The opposites method is for evaluation purposes only, of 

course. In non-test situations we ignore unknowns to keep clusters as pure as possible. 

Evaluation results were recorded as recall, precision, and f-score values. Given pre- 

annotated sentences, TroFi is able to automatically calculate precision and recall for each set of 

experimental results. Literal recall is defined as the percentage of all the literal original sentences 

that are correctly attracted to the literal cluster: (literals~n~iteral~~uster/tota~~itera~s). 

Literalprecision is the percent of original sentences attracted to the literal cluster that are actually 

literal: (literals~n~iteral~~uster/si~e~~~iteral~luster). Nonliteralprecision and recall are 



defined similarly. The recall and precision values are used to calculate thef-score for each set, 

wheref-score is defined as (2 precision. recal~)/(~recision + recall). To combine the literal 

and nonliteral results into an overall accuracy, we average literal and nonliteral precision and 

literal and nonliteral recall, and calculate a new f-score from these averages. 

In cases where there are only literals in the original set, nonliteral recall is set to 100%. 

Nonliteral precision is considered to be 100% as llong as no literals are attracted to the nonliteral 

cluster. If so much as one literal sentence is attracted to the nonliteral cluster, nonliteral precision 

becomes 0%. Literal precision and recall are calculated normally, although literal precision will 

of course be 100% by default. On the other hand., in cases where there are only nonliterals, literal 

recall is loo%, and literal precision is either 100% or 0% as defined above. 

8.2 Baseline 

The baseline accuracy for each target word is calculated using a simple attraction 

algorithm. Each original set sentence is attracted to the feedback set sentence containing the 

sentence with which it has the most words in common. This corresponds well to the basic highest 

similarity TroFi algorithm. Sentences that are attracted to neither set, or are equally attracted to 

both, are placed in the opposite cluster to where their manual label says they should be (see 

Section 8.1). We provide the pseudo-code for the highest-similarity baseline in Appendix A. 

8.3 Experiment 1: Sum of Similarities vs. High Similarity 

In our discussion of the TroFi algorithms in Chapter 7, we found that replacing highest 

similarity measures with sum of similarities measures had good effects on our simple example. 

In this experiment, we examine whether sum of similarities is more effective in general as well. 

TroFi was run on the set of 25 target words first using highest similarity measures and 

then using the sum of similarities enhancement. Figure 8-A shows the results as compared to the 



baseline. Note that although we do calculate the precision, recall, and f-score for both the literal 

and the nonliteral clusters - and the average - for all of our experiments, wc only graph the 

average f-score for ease of viewing. 

Figure 8-A Highest Similarity and Sum of Similarities Comparison 

Target Words 

It sum Similarities +High Similarities +Baseline 1 

Let LIS first compare the TroFi highest similarity results to the baseline. We can sce that 

the results produced by TroFi are significantly higher for some of the words, like "lend" and 

"touch" for example. This can be explained by transitivity of similarity (see Section 7.1.1.1). On 

avcrage, the most basic TroFi algorithm gives us a 7.6% improvement over the baseline. 

Next we examine the sun1 of similarities results. All the individual target word results 

except for "examine" sit above the baseline. The reason this point falls below the baseline is that 

while TroFi can generate some beneficial similarities between words related by context, i t  can 

also generate some detrimental ones. This means that when we use sum of similarities, i t  is 



possible, for example, for the transitively discovered indirect similarities between an original 

nonliteral sentence and all the sentences in the literal feedback set to add up to more than a single 

direct similarity between the original sentence and a single nonliteral feedback set sentence. In 

such a case, the original sentence will be attracted to the wrong set. Dips below the baseline 

cannot happen in the highest similarity case because a single sentence would have to show a 

higher similarity to the original sentence than that produced by sharing an identical word. This is 

not possible because word and sentence weights generally prevent transitively discovered 

similarities from adding up to 1. 

Given the above explanation, we should not be surprised to find that using highest 

similarity occasionally produces better results than using sum of similarities. However, on 

average we can expect to get better results with sum of similarities. In this experiment alone, we 

get an average f-score of 46.3% for the sum of similarities results - a 9.4% improvement over the 

average high similarity results (36.9%) and a 16.9% improvement over the baseline (29.4%). 

8.4 Experiment 2: Comparison of Learners 

In Sections 6.2.2.1 and 7.1.2.2.1 we discussed in depth the composition and importance 

of learners. We can see from Experiment 1 in Section 8.3 that spurious sentences or words in a 

feedback set can have heavy repercussions: not only can they cause direct false attractions, but 

through transitive similarity their effects can spread out across the rest of the set. In this section, 

we show the difference that scrubbing can make by comparing Learners A, B, and C to the no- 

scrub learner, Learner D. Note that the highest similarity and sum of similarities results in 

Section 8.3 were produced using Learner D. We also compare all four learners to each other. 

The results are shown in Figure 8-B. We examine the effects of superimposing a voting schema 

in Section 8.5. 



Figure 8-B No Scrub and Learner Comparisons 

Target Words 

I t  Learner A t No scrub1 

Target Words 



Target Words 

Targetwords 

]+learner A +.Learner 8 +Leamet C -+No Scrub] 



We begin with Learner A. Recall that we create Learner A by moving whole synsets to 

the opposite feedback set on the basis of phrasal/expression verbs and overlapping words. As we 

can see, sometimes Learner A is better and sometimes the no-scrub learner is better, with the final 

averages being almost the same. We cannot expect Learner A to be uniformly superior across all 

target words because despite being able to move appropriate synsets to the opposite feedback set, 

its scrubbing algorithm is quite capable of occasionally moving inappropriate ones. 

For Learner B, rather than moving the synsets, we simply remove them with the hope of 

eliminating potentially dangerous synsets from one feedback set without accidentally 

contaminating the other one. A quick glance will tell us that, as could be expected, the gains are 

not as great as for Learner A, but neither are the losses. Unfortunately, the average Learner B 

results sit 2.5% below the no-scrub average. We want to be able to eventually balance out the 

effects of Learners A and B and hopefully also add some slight improvement with Learner C. 

For Learner C, rather than scrubbing synsets, we remove sentences from the feedback 

sets themselves on the basis of overlapping words. We found that removing the whole sentence 

gave us slightly better results than just removing individual words. As with the other two 

learners, we have some good, some bad, and some indifferent results, with the average falling 

2.8% below the no-scrub results. 

To gain some perspective on how the learners might play off against each other to 

enhance strengths and reduce weaknesses, we must study the graph comparing all four learners in 

Figure 8-B. The one thing that should be evident is that it would be difficult to claim that any one 

of the learners is independently superior to any of the others. Although Learner D (no scrub) and 

Learner A have a higher overall average, we can see that there are words for which they are 

soundly trumped by Learners B andlor C. To attempt to pull the best out of these variable results, 

we introduce a voting system. 



8.5 Experiment 3: Effects of Voting 

In this section we experiment with a voting system (see Section 7.1.2.2.2) to find a 

weighted schema that will allow us to eke out the best possible performance from our four 

learners. As described in Section 7.1.2.2.2, we begin with a basic majority-rules schema. If three 

learners decide that a given original sentence belongs in a particular cluster, they will override the 

fourth. If there is a tie, the fate of the sentence stays undecided until a default decision can be 

made or the sentence is sent to a human evaluator through active learning. 

The first graph in Figure 8-C shows the results of voting when all learners carry an equal 

weight. These results are ever so slightly above the no-scrub learner and ever so slightly below 

our best individual learner, Learner A. We introduce weighting to try to improve on these results. 

We begin by adding extra weight to our two best-performing learners, Learners A and D. 

We do this by doubling the number of votes allotted to Learners A and D and awarding the win 

based on four votes out of six. Thus, either Learners A and D have to agree, Learners A, B, and 

C have to agree, or Learners B, C, and D have to agree. 

A quick glance at Figure 8-C shows us that the only reason for our slight improvement - 

1% - on the final average is that we managed to counteract that low score obtained by "absorb" 

when all learners are equal. We attempt to do better by giving a higher weight only to the 

strongest learner, Learner A. For this schema, Learner A gets two votes and a decision is based 

on three votes out of five. Although the average advantage of doubling Learner A is minimal - 

1.8% above weighting all learners equally; 1.7% above Learner A alone - we do get some nice 

improvements across the target words, with only one word - "drag" - seriously dragging us 

down. 



Figure 8-C Simple Voter and Weighted Voter Comparisons 

Target Words 
--- - -- 

m e a m e r s  Eaual t Learner A +No scrub1 

Target Words 

I-+AII LeamersA Double +All Learners AD Double +All Learners Equal 



Of course, with the averages being so close and the results depending so much on 

individual target words, i t  is difficult to justify calling any of the voting schemata the undisputed 

winner. We will see the truth of this even more in the following sections when we start 

examining the augmentation of feature sets. Still, if wc compare our current state-of-the-art to 

whcre we started - see Figure 8-D - we can see that we are now solidly above the baseline. 

Figure 8-D Best Voter and Baseline Comparison 

Target Words 

8.6 Experiment 4: Effects of Using SuperTags 

In Sections 6.2.2.2 and 7.1.2.3, we discuss augmenting our bag-of-words feature sets with 

SuperTags. In the following experiments we examine the effects of this enhancement. We begin 

by comparing the SuperTag results with the plain results, using the Leurner A doubled voting 

schema for both. The results are shown in Figure 8-E. 



Figure 8-E Plain vs. SuperTags using Learner A Doubled Schema 

Target Words 

EEarner A Double Xtaas +Learner A Double Plain , 

We can see that adding SuperTags to the feature lists has a definite effect, but i t  his hard 

to say whether the overall effect is positive or negative. The SuperTag averagc is slightly higher, 

but only by 0.2%. There is a sizable impact on individual target words, however. Adding 

SuperTags can dramatically improve the results (e.g. "flow) but it can also make them drastically 

worse (e.g. "escape"). Ideally we would like to make a decision about whether to use SuperTags 

on a case-by-case basis. Unfortunately this would reduce scalability: we need one setting for the 

whole system. 

We mentioned in Section 8.5 that changing the feature sets could affect the voting 

schema results. We re-run the final voting schema experiment using SuperTags (see Figure 8-F). 

Recall that for the plain feature sets, the best results were achieved by doubling the vote of 

Learner A only; the next, by doubling Learners A and D; the lowest, by having all learners equal. 



Figure 8-F Weighted Voters Comparison for SuperTags 

.- - - - - - Target Words 

It  earners Equal Xtags t Learners AD Double Xtags t 

I t  is difficult to tell from the graph, but comparing the numerical results we find that for 

SuperTags, the success of the voters is revcrsed: highest is all learners equal; next, Learners A 

and D doubled; last, Learner A doubled. As it turns out, our worst SuperTags result is still 

slightly higher than our best plain result, so we will simply take the middle numbers from both to 

compare against the baseline, as shown in Figure 8-G. By doing so, we must accept a result for 

the word "escape" that is slightly below the baseline. This point would be above the baseline if 

we were to use the all learners equal schema for SuperTags. 



Figure 8-G Plain, SuperTag, and Baseline Comparison 

I -+- Learners AD Double Xtaas +Learners AD Double Plain +Baseline 1 

Although we cannot make a definitive decision about the superiority of SuperTags based 

on these results, we will use them in our remaining experiments. We place such grcat import on 

phrasal and expression verbs for scrubbing that i t  makes sense to incorporate these features into 

other parts of the algorithm as well. 

8.7 Experiment 5: Effects of Increasing Context 

In Sections 6.2.2.3 and 7.1.2.4, we discuss the fact that the relevant context for clustering 

a given original sentence is not always in the sentence itself. Often it is in an adjacent sentence. 

In this section we experiment with expanding the feature sets to include the sentences 

immediately preceding and immediately following the sentence containing the target word. We 

conduct two main experiments regarding context: one where we increase the context of both the 

original and the feedback set sentences, and one where we only increase the context of the 

original sentences. 



The motivation for the first experiment is obvious. The motivation for the second is 

processing time. TroFi currently uses an 0 ( n 2 )  implementation with a large coefficient, where 

n is the size of the union of all the unique words in the feature lists. This means that multiplying 

the number of features by two, or even three, does not scale well in the current implementation. 

We therefore additionally examine the results obtained by adding context to the original 

sentences only. We wish to see if we can obtain similar results without sacrificing scalability. 

For five of our 20 target words - "fix", "knock", "lend", "strike", and "touch" -processing time 

becomes prohibitive in the first experiment, forcing us to exclude them. The results are shown in 

Figure 8-H. Recall that we are using the Learners A and D doubled voting schema with 

SuperTags. 



Figure 8-H Context Comparisons 
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Looking at the first graph in Figure 8-H, we find that, as usual, our enhancement 

improves the performance on some words and decreases it on others. Worth noting is that the 

two target words exhibiting the most significant improvement, "drown" and "grasp", have some 

of the smallest original and feedback set feature sets, supporting the theory that lack of cogent 

features may be a cause of poor perfomance. Note also that the addition of context results in a 

comparatively large increase in accuracy - 5.5% over the no con/ex/ model. 

We ran the second experiment hoping to find a similar increase in accuracy with a lesser 

hit on processing time. Sadly, adding context only to the original set sentences decreases our gain 

to just 1.4%. Still, it may be worthwhile to use the original context only approach for those target 

words for which thejidl conkrt approach proves too unwieldy. We run a third experiment using 

hybrid context - full context whenever possible and original context only for the rest. The results 

are shown in Figure 8-1. 

Figure 8-1 Original Context Only and Hybrid Context Comparison 
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As always, we gain a little and we lose a little with our new innovation. However, since 

the hybrid context approach allows us to handle all our target words while still producing a 4.7% 

accuracy improvement over the baseline, we accept it as a good compromise. We compare our 

new state-of-the-art to the baseline in Figure 8-5. Except for the word "examine", where adding 

context has caused something of a train wreck, we are moving steadily away from the baselinc. 

Figure 8-J Baseline and Hybrid Context Comparison 

Target Words 

8.8 Summary 

At the beginning of this chapter, we started with a baseline for which the average 

accuracy was 29.4%. The core TroFi algorithm brought us up to 36.9%. After we added all our 

enhancements, TroFi produced an average accuracy of 53.8% - 16.9% above the core and 24.4% 

above the baseline. The biggest gains came from the sum of similarities approach and the use of 

additional context. 



An important observation arising from the experiments performed in this chapter is the 

variation in the behaviour of different target words. Looking only at average accuracy, one 

would be inclined to think that many of the enhancements had hardly any effect. However, if we 

look at individual target words, we often see drastic changes between models. What exactly 

causes these differences in behaviour is difficult to define. Some factors may be: 

different original set sizes - for some target words there are 100 examples, for some 

there are only three. 

literallnonliteral imbalance - for some target words there are many more literal than 

nonliteral usages and vice versa; for some, one of the categories is completely empty. 

looseness of selectional restrictions - it may be easier to cluster verbs with tight 

selectional restrictions like "eat" - for example, "she ate her lunch" vs. "she ate her 

words" - than verbs with loose selectional restrictions like "examine" - for example, 

"the detective examined the report" vs. "the committee examined the proposal". 

frequency - some verbs, like "examine", are so frequent that they are apt to occur in 

sentences where there is a nonliteral usage that has nothing to do with the target word 

- for example, "He examined her closely as she sat devouring her book". If such a 

sentence is an example in our collection of known metaphors, idioms, and 

expressions, it will show up in the nonliteral feedback set of "examine" regardless. 

state of fossilization - as metaphors are absorbed into common usage, they become 

fossilized. It may be more difficult to cluster nonliteral language in the process of 

fossilization - consider "his anger is rising" vs. "the prices are rising". 

general noise - some target words may simply have noisier original sets and feedback 

sets than others. 

lack of good examples - for some target words there are excellent sets of seeds and 

examples on which to build feedback sets. For others there are not. For some target 

words the nonliteral feedback sets end up completely empty, making it difficult to 

attract things to them. 

We might have avoided much of this problematic variance had we chosen our example 

sets for the experiments more carefully. However, that would have defeated one of the primary 



goals of this thesis: applying TroFi not to a handful of carefully crafted examples, but rather to 

real-world data, in all its messy, ugly glory. 

Given the massive fluctuations in individual target word accuracy from enhancement to 

enhancement, it is conceivable that optimal results could be obtained by tuning up a separate 

configuration for each word. This would require manually annotating a held-out set for each one. 

This could be justified only for very large projects where the held-out set would make up a tiny 

fraction of all the sentences to be clustered. For smaller sets, the general optimal model arrived 

upon in this chapter is sufficient. To review, this model uses sum of similarities, the Learner A 

doubled voting schema, SuperTags, and two sentences of context for target words where the 

union of all feature sets is a reasonable size. Again, this model produces an average accuracy of 

53.8% compared to a baseline of 29.4%. 

The question is: what if this is not good enough? What if we need greater accuracy and 

someone is willing to work for it? For those cases, we introduce active learning (see Section 

7.2). Experiments and results for TroFi's active learning component are discussed in Chapter 9. 



9 ACTIVE LEARNING EXPERIMENTS & RESULTS 

In this chapter we discuss various experiments for evaluating TroFi's active learning 

component. As we have seen in Chapter 8, the purely unsupervised TroFi algorithm does fairly 

well on its own, but it may be even more effective to use TroFi as a tool for heking a human with 

a literallnonliteral clustering task. 

With active learning TroFi is able to send sentences it is unsure about to the human. We 

allow different settings for what percentage of the original set the human is willing to evaluate 

manually. The benefit of this approach is that only some of the sentences - hopefully those most 

in need of help - are sent to the human. Risks are that sentences showing a strong attraction to 

the incorrect feedback set will never make it to the human and that the human will be sent some 

sentences that TroFi's default decision process would have classified correctly without any help. 

Another approach would be to ask the human to manually process a randomly selected 

subset up front. We use this as a test case for evalluating the appropriateness of TroFi's choices 

later in this chapter. Risks of random selection are that the results could vary greatly from one 

run to the next. 

Other options for human involvement - which lie outside the scope of this thesis - might 

be to allow TroFi to classify all the sentences and to then send the classified sentences to the 

human for verification. Careful tests with human subjects would have to be run to determine 

whether this would save time and effort as compared to having the human draw conclusions 

about the literallnonliteral distinctions independently. Much of the success or failure of this kind 

of approach is likely to be UI-dependent. 



The purpose of our first active learning experiment is to set the parameters for how many 

sentences are sent to the human; the second, to determine when the sentences are sent. We then 

compare the results of our selected model to those obtained by sending a randomly selected set to 

the human. Finally, we examine the value gained and the effort saved by using active learning. 

9.1 Experiment 1: Setting the Parameters 

In this experiment we attempt to determine how many sentences should ideally be sent to 

the human. We do this by finding appropriate settings for two parameters: the similarity 

threshold below which sentences are sent to the human; and, the limit on the percentage of 

sentences the human is willing to look at. 

To set the parameters, we ran some experiments on a held-out set of the target word 

"fill". All experiments were run using sum of similarities, voting with Learners A and D 

doubled, no SuperTags, and no context. The chosen sentences were sent to the human after the 

last iteration to avoid potential irregularities introduced by learning from human input at earlier 

iterations. In addition to the baseline of (0,0), the combinations of similarity thresholds and 

human percentage limits shown in Table 9-A were tested. 

Table 9-A Active Learning Parameter Combinations 

The results are shown in Figure 9-A. 



Figure 9-A Parameter Evaluation on Held-Out Set of "MI" 
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The graph in Figure 9-A demonstrates the power of both the similarity threshold and the 

human percentage limit. We see that the similarity threshold can limit the number of sentences to 

be sent to the human because TroFi is only able to approach the human percentage limit as we 

loosen the similarity threshold. It is also obvious that TroFi does not want to send more than 22 

sentences to the human at any point for this particular target word. Note that the accuracy also 

levels off. At first glance it may seem odd that the accuracy line on the graph does not parallel 

exactly the line of the number of sentences sent to the human. The reason for this is that TroFi 

occasionally sends sentences to the human that its default decision process would have handled 

correctly in the end, making the human evaluation redundant. 

The experiment indicates that, at least for the held-out set of "fill", we cannot improve on 

sending to the human everything that TroFi wants to send - i.e. a similarity threshold of 1.0 - up 

to a human percentage limit of 30%. For the word "fill", there would be little point in setting the 



human percentage limit any higher. Although there might be target words for which it would be 

beneficial to send more sentences, the human really should not be made to deal with more than 

30% in any case. Based on these results, the remaining experiments in this chapter and in 

Chapter 10 are run with a 1.0 similarity threshold and a 30% human percentage limit. 

9.2 Experiment 2: Timing 

In this section we look at four different options for when to send the chosen sentences to 

the human. As discussed in Section 7.2, when the sentences are sent determines how much TroFi 

is able to learn - or mislearn - from the human helper. 

In the first model, as in the experiment for determining the parameters in Section 9.1, we 

send everything to the human after the first iteration, hoping to correct some potential errors and 

produce some augmented feedback set benefits early on. 

In the second model, we send everything to the human after the third iteration. Through 

an informal investigation of how the similarity values fluctuate over iterations, we determined 

that the order of certainty1 with which original sentences are attracted to a feedback set generally 

stops changing after the third iteration. The individual certainty values continue to change after 

this point, but not enough to affect the certainty order. What this indicated to us is that the 

selection of sentences to be sent to the human would not change much after this point. In 

addition, by the third iteration there should be few certainty values of 0 remaining. Only those 

sentences truly dissimilar to anything else would still be at 0. 

In the third model, we distribute the sentences to be sent to the human across a number of 

iterations in order to get a bootstrapping effect. We divide the human percentage limit by six - an 

estimate by inspection of the number of iterations in an average run. If we want to send 30% to 

the human, this means that we will be sending 5% per iteration. The idea is that if we move some 

1 Certainty values are snapshots of the similarity values taken at each iteration right before clustering. 
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sentences known to be correct into the feedback sets at a particular iteration, perhaps these will 

attract some other sentences that would otherwise have been sent to the human. This would help 

refine the list of sentences to be sent to the human in the next iteration. 

In the fourth and final model, we simply send all the sentences at the end, after TroFi has 

gone about as far as it can go. This has the benefit of providing more predictable results, but 

unfortunately it limits what TroFi can learn from the human choices in a particular run. However, 

there is still a chance to learn from these choices during iferafive uug~nentution (see Section 7 .3 ) .  

In order to show the results as clearly as possible, we will not plot all four models on the 

same graph. Instead we compare various subsets. As a baseline we use the hybrid context results 

from Section 8.7. 

Figure 9-B Comparison of  models for When to Send Sentences to Human 
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The first graph in Figure 9-B indicates that - as expected - we get a certain amount of 

stability after the third iteration. The first iteration results are a little erratic, exhibiting 

extraordinary luck on words like "ride" and "smooth" and catastrophic misfortune on words like 

"fill" and "knock". This can happen if we move an original sentence to a given feedback set (see 

Section 7.2) and its features end up causing false attraction. We conclude that although sending 

the sentences after the first iteration gives us slightly higher results on average - about 1.6% - the 

difference is not particularly significant and does not compensate for the risk we are taking: we 

cannot have the human input causing the results to fall below the no-active-learning baseline! 

We must also ask why human help makes absolutely no difference to some words. This 

can happen for any of the following reasons: the way the similarity threshold has been 

recalculated to work with sum of similarities is too low to allow for the full 30% of sentences to 

be sent to the human; there are not enough sentences in the original set to allow for 30% of them 

to be sent to the human (for example, the "pass" original set contains only one sentence); the 

decisions made by the human are the same as those that TroFi would have made using its default 

decision process; TroFi is so confident in its choices that none of the similarity values fall below 

the threshold, so nothing is sent to the human. The last of these explains the lack of accuracy 

change for the target word "absorb", for example. 

In the second graph in Figure 9-B, we compare sending everything after the third 

iteration to sending the sentences in a distributed manner - a few percent per iteration. Sending 

sentences to the human a bit at a time seems to cause fairly flat results, which, unfortunately, 

means that there is not much gain and there are also a number of words that end up performing 

below the baseline. 

Finally, we compare sending everything after the third iteration to sending everything 

after the last iteration. As we can see, the differences are minimal, mainly because we already 

have a fair amount of stability after the third iteration. We do get a few lucky - and some not so 



lucky - brcaks by sending the sentences after the third iteration. However, since this does not 

make much difference to the average (0.3%), we select the most stable and predictable option - 

sending everything after the last iteration - as our optimal active learning model. 

In Figure 9-C we show the results of the optimal TroFi-with-active-learning model. An 

average accuracy of 64.9% puts us 35.5% above our original baseline. 

Figure 9-C Optimal Active Learning and Baseline Comparison 
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9.3 Experiment 3: Random Comparison 

In our chosen active learning model, TroFi makes as many decisions as it can on its own 

and then sends the rest to the human. We suggested at the beginning of this chapter that another 

approach would be to select a percentage of the original sentences randomly and send those 

instead. In this section we experiment with this approach by randomly selecting a certain 



percentage of sentences at the beginning, running TroFi, and then sending the randomly chosen 

sentences, rather than sentences chosen by TroFi, to the human at the end. 

Conceivably, choosing sentences random1.y could be either beneficial or detrimental. 

Results could improve if the randomly selected sentences were ones that TroFi on its own would 

have clustered incorrectly. Deterioration could result if the selected sentences were ones TroFi 

would have clustered correctly regardless: we may not be sending the neediest sentences to the 

human. Also, by using random selection, we introduce an element of unpredictability, and the 

outcome becomes non-deterministic. 

To compare the two approaches we use the optimal active learning model from Section 

9.2. For the random model, we select randomly the same number of sentences that were sent to 

the human in that non-random run. This is to avoid giving the random model an unfair advantage 

by allowing it to send more sentences to the human than the non-random model. Note that the 

randomly selected sentences are still part of the clustering process. Holding them out completely 

would make for incomparable results. We take the average of three random runs to reduce the 

likelihood of "dumb luck". The three random runs and the comparison of the random results to 

the TroFi-selected, non-random results are shown in Figure 9-D. 



Figure 9-D Random and TroFi-Selected Comparison 
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There does not appear to be much difference between the results of the random model 

and the results of the non-random model. To see why this might be, we must examine the 

possible sources of a randomly chosen sentence. It could be a sentence that TroFi would also 

have picked for human evaluation, a sentence that TroFi would have clustered correctly in the 

main part of the algorithm, a sentence that TroFi would have clustered correctly using its default 

decision process, or a sentence that TroFi would have clustered incorrectly. As suggested earlier 

in this section, for the random model to outperform the non-random one it would have to select its 

sentences from the last of these sets; to do worse it would have to select only sentences that TroFi 

could have handled on its own. Since the likelihood of the random choices coming exclusively 

from these two sets is low, it makes sense that the results are similar to the non-random ones. 

In Section 9.2, we decided that TroFi should send its selected sentences to the human 

after the last iteration. To make the random and non-random results comparable, we had to do 

the same in the random case. One might ask, however, if results would not be improved by 

having the human evaluate the randomly chosen sentences at the beginning for addition to the 

appropriate feedback sets. We ran some informal experiments on sending the randomly selected 

sentences to the human after the first iteration. Although the results were impressive for some 

target words, on the whole the model proved to be unstable and unpredictable. 

9.4 Benefits of TroFi with Active Learning over Manual Clustering 

In Section 9.2 we found that TroFi with active learning attained an accuracy of 64.9%. 

Although this is 35.5% above the baseline, it is only an 11.1% improvement on TroFi without 

active learning. The question is, is the 11.1% gain worth the effort the human must contribute? 

We examine this issue below. 

Let us imagine a manual clustering task where we want to send only 30% of the 

sentences - chosen randomly - to the human. We assume that we are using the TroFi evaluation 



standards - i.e. precision, recall, andf-score defined as in Section 8.1, and unknown sentences 

being sent to the cluster opposite their manual testing label. We look at three potential scenarios 

with 100 original sentences each. The first is a perfectly balanced scenario: 50 literal; 50 

nonliteral. Of the 30 sentences sent to the human, half are literal and half are nonliteral. In the 

second and third scenarios we have an imbalance: 96 literal; 4 nonliteral. In an imbalanced 

situation like this, the outcome depends on what is randomly chosen for the human. In the second 

scenario, we assume that all four nonliteral sentences are chosen; in the third scenario, we assume 

that none are. We provide the results of our hypothetical experiment in Table 9-B. 

Table 9-B Results of Manually Clustering 30% of the Original Sentences 

S f = $ = + q  
We can see that in a balanced scenario we get an average f-score of 30%, as would be 

expected. In the second scenario, where all four nonliteral sentences are sent to the human, we 

get a much higher average f-score, primarily due to the perfect recall score for the nonliteral 

cluster and the perfect precision score for the literal cluster. In the third scenario, where none of 



the four nonliteral sentences is sent to the human, we get disastrous results for the nonliteral 

cluster. This drags down even the high literal precision score. Since we cannot predict how the 

random sentence selector will behave, we average the three experimental results to give us an 

average score we could be expected to obtain by randomly selecting 30% of the sentences. This 

score comes out to nearly 36.9%. 

In Figure 9-E and Figure 9-F, we explore the benefits gained by using TroFi. Note that 

often TroFi does not end up sending the whole 30% to the human. In these cases we estimate thc 

accuracy one could be expected to attain giving the human only the number of sentences TroFi 

would have sent. We calculate the expected manual process accuracy by taking the number of 

sentences sent to the human and multiplying by 1.23. This factor is derived from our hypothetical 

situation above, where 30.1.23 = 36.9. Based on these premises, we produce a results that 

could be expected from a manual process and compare them to the TroFi results in Figure 9-E. 

Figure 9-E TroFi and  manual Accuracy for Same Human Effort 
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Sending the same number of sentences to the human in both the TroFi and the manual 

case gives us an average accuracy of 64.9% for TroFi and 2 1.7% for the manual process. For the 

same effort, TroFi gives us an almost threefold improvement in accuracy. 

We can also estimate the amount of effort that can be saved by using TroFi. We divide 

the TroFi accuracy scores by 1.23 to give us the percentage of sentences the human would have to 

cluster manually in order to obtain the same results. Figure 9-F compares the amount of human 

effort required by TroFi to the amount of human effort required by the manual process to reach an 

average accuracy of 64.9%. 

Figure 9-F Human Effort Required to Attain 64.9% Accuracy 
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We can see that TroFi allows us to attain the same results as a manual process with about 

35% less effort. With TroFi we obtain a 64.9% average accuracy with only 17.7% human effort! 



We must admit that it would be difficult to get 100% accuracy using TroFi, whereas if 

one sends 100% of the sentences to the human, one should get 100% accuracy - in theory. Also, 

we must remember that for the purposes of our experiment we placed unknown sentences in the 

cluster opposite to where they belong. If we were to ignore such sentences, the manual process 

would necessarily give us cleaner clusters. However, it is worth keeping in mind that 

literal/nonliteral judgments are often extremely difficult for humans, and inconsistencies tend to 

occur. One could claim, therefore, that a purely manual process cannot attain 100% accuracy 

either. We do not pretend to adequately support this claim. The human subject studies required 

lie outside the scope of this thesis. 

To conclude, we claim that TroFi with active learning is a helpful tool for a 

literahonliteral clustering project. It can save the human significant effort while still producing 

reasonable results. 

9.5 Summary 

In this chapter we presented experiments for determining the optimal configuration of 

TroFi with active learning and for comparing the performance of the resultant model to the 

optimal core model. We further presented an informal analysis of the significant human effort 

saved by using TroFi in a literal/nonliteral clustering project rather than depending on a purely 

manual process. 

In Chapter 10, we combine the optimal active learning model with iterative augmentation 

to construct the long-awaited TroFi Example Base. 



10 BUILDING THE TROFI EXAMPLE BASE 

In this chapter we discuss the TroFi Example Base and its construction. First, we briefly 

revisit the iterative augmentation process described in Section 7.3. Then we discuss the structure 

and contents of the example base itself, together with the potential for expansion. 

After an initial run for a particular target word, not only the cluster results, but also a 

record of the feedback sets augmented with the newly clustered original sentences is produced. 

For simplicity's sake, we will call these classzjiers. As explained in Section 7.3, each feedback 

set sentence is saved with a classz3er weight: its highest similarity to any of the original 

sentences plus E . The newly clustered original sentences, which are added to the feedback sets, 

are assigned a weight of 1 .O. 

Subsequent runs may be carried out to augment the initial clusters. For these runs, we 

use the classifiers from our initial run as feedback sets. New sentences for clustering are treated 

like a regular original set. TroFi then proceeds normally, with or without active learning. At the 

end, TroFi produces new clusters and re-weighted classifiers augmented with the newly clustered 

sentences. There can be as many runs as desired; hence the term iterative augmentation.' 

We used the iterative augmentation process to build a small example base consisting of 

the target word list described in Section 6.1.5, as well as another 25 words. These additional 

target words are discussed in more detail below, followed by an outline of the process used to 

augment the clusters from the initial run to produce the TroFi Example Base. 

If active learning is used, the selected sentences do not have to be checked right away, but can be saved 
for checking and incorporating into the classifier at a later time. 



The additional 25 target words were drawn from the experiments and examples of 

scholars whose work was reviewed in Chapter 3. Table 10-A presents the original set counts for 

each word for the initial run as well as the name of the scholar from whose work the word stems2. 

Table 10-A Target Words Selected from the Literature 

Dolan 

Literal 
Nonliteral 
Total 

Fass 

Literal 
Nonliteral 
Total 

Martin 

Literal 
Nonliteral 
Total 

Mason 

Literal 
Nonliteral 
Total 

Literal 
Nonliteral 
Total 

Narayanan 

Literal 
Nonliteral 
Total 

Russell 

Literal 
Nonliteral 
Total 

flourish 
4 
46 
50 

dance 
39 
7 

46 

eat 
39 
14 
53 

attack 
35 
69 
104 

evaporate 
7 

41 
48 

stumble 
6 
41 
47 

rain 
32 
11 
43 

plant 
39 
11 
50 

drink 
49 
1 

50 

kill (also Fass) 
84 
15 
99 

besiege 
3 
18 
21 

melt 
24 
19 
43 

flood 
3 

46 
49 

wither 
6 
31 
37 

fly 
87 
12 
99 

cool 
11 
39 
50 

pour 
13 
37 
50 

destroy 
40 
32 
72 

Pump 
15 
35 
50 

plow 
12 
38 
50 

dissolve 
14 
26 
40 

target 
4 
60 
64 

sleep 
41 
8 
49 

vaporize 
1 
6 
7 

We ran TroFi on this set of words using our optimal models from Chapters 8 and 9 - i.e. 

sum of similarities, voting with Learners A and D doubled, SuperTags, additional context, and 

active learning with a similarity threshold of 1.0 and a human percentage limit of 30%. The 

results, set off against the baseline, are shown in Figure 10-A. 

Other words under consideration were Martin's "give" and "take", and Zemik & Dyer's "throw". All 
three had to be dropped because their occurrences were too numerous to be handled within the constraints 
of this thesis. 



Figure 10-A Words from Literature using Optimal TroFi Model 
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We can see that we have managed to attain an average accuracy 39.1 % above the 

baseline, 3.6% more than the improvement achieved on our first set of 25 words. For a final look, 

we show all 50 words in Figure 10-B. 



Figure 10-B All 50 Target Words Results 
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As explained earlier, at the end of the initial run, TroFi produces classifiers for future 

iterative augmentation. The reader will recall that the original sets for the initial run were 

collected from a 10% subset of the Wall Street Journal Corpus. We pulled additional sentences 

for the iterative augmentation phase out of the remaining 90%. Where possible, we randomly 

selected a set of 100 additional original sentences per target word. Where this proved impossible 

due to insufficient remaining examples, we simply took what was left. Unfortunately, in a few 

cases - namely "besiege", "play", "vaporize", and "wither" - all we had left was a great big 

goose egg. The reason for this is that in order to fill out the initial run, if there were too few 

examples for a given target word, we attempted to round out the set by stealing from the 90% set. 

We ran each additional original set through the iterative augmentation version of TroFi, 

which uses as feedback sets the weighted classifiers created in the initial run. After sending up to 

30% of the sentences to the human, TroFi produced the new clusters and augmented classifiers. 



The combined old and new clusters of each of the 50 target words make up the TroFi Example 

Base. The TroFi Example Base is publicly available at h~://www.cs.sfU.ca/-anoo~Istudents/ibir 

The current example base should be seen as a starting point. It is conceivable that 

additional iterative augmentation will increase not only the size, but also the quality of the 

clusters, particularly if active learning is used. Since clustered sentences are always added to the 

feedback sets, the ability of the feedback sets to attract appropriate sentences should increase over 

time. In addition to augmenting existing clusters, new target words could be added to the 

example base. Interested parties wishing to expand the TroFi Example Base should contact the 

author of this thesis for further inf~rmation.~ 

It is expected that the TroFi Example Base will be useful not only for future research in 

the field of nonliteral language processing, but also as training data for other statistical processes 

or as a general resource for the NLP community. 

See httu://natlan~.cs.sfu.cd~eo~le.Dhr, for contact information. 



11 CONCLUSION 

It has long been a dream of mankind to be able to interact naturally with machines, and, 

slowly, science fiction is starting to become reality. In certain contexts, we expect machines to 

understand us and provide appropriate responses, preferably in fluent English. In other situations, 

we want the machine to translate input from one language into another. And sometimes, we just 

want to chat. In those cases, we even expect appropriate responses in terms of facial expressions! 

As suggested in the Introduction, it is surprising then that so many of the sophisticated systems 

available can still be derailed by something as fundamental and pervasive as nonliteral language. 

Part of the difficulty of nonliteral language is that it is so wide-spread and productive. 

This thesis, for example, is full of it. Humans are somehow, through world-knowledge and 

experience, able to follow the connections between domains and come up with appropriate 

interpretations of what a nonliteral utterance might mean. It would be extremely optimistic to 

expect the same from a machine, or to expect a human to enter all the necessary knowledge into a 

machine. Luckily, with ever-increasing hardware capabilities, another road has been rapidly 

opening up in the form of statistical and example-based techniques. Our ultimate hope for TroFi 

is that it may point nonliteral language processing down that road as well, thus avoiding much of 

the labour and complexity currently associated with nonliteral language processing systems. 

In the remainder of this chapter we look at some suggestions for future work with TroFi, 

including an expansive section on possible applications of TroFi. We also make suggestions for 

extending TroFi from the realm of nonliteral language recognition to that of nonliteral language 

interpretation. We follow this up with a brief summary of the work completed and the 

contributions to the field made as part of this thesis. 



11.1 Future Work 

In this section we look at some ideas for filrther improving andor experimenting with 

TroFi. We examine four different areas: 

1. Core Algorithms 

2. Active Learning 

3.  TroFi Example Base 

4. Applications 

We begin our discussion by looking at some possible improvements to the core 

algorithms. 

11.1.1 Core Algorithms 

There are a number of ways in which the core algorithms could be tweaked in an attempt 

to improve accuracy. Areas worth revisiting are the scrubbing procedures, the composition of the 

feature sets, and the efficiency of the TroFi algoritlm andor its implementation. 

The scrubbing algorithm lends itself to further exploration. One area that we began to 

investigate was scrubbability scores. To produce such scores, every trigger for scrubbing - for 

example, each phrasal verb in a synonym list - could be given a value. Summing over these 

values would result in a score. If this score was above a certain threshold, the synset or feature 

set in question would be scrubbed. In this thesis we concentrated on phrasal/expression verbs and 

overlapping words as scrubbing triggers. There could well be others. 

The expansion of the trigger set for scrubbing could result in an increase in the number of 

learners. There is nothing to prevent the voting algorithm from being tuned to handle more 

learners. Also with regards to the voting system, further exploring voting schemata other than 

majority rules may still be a worthwhile exercise. 



Another potential for further investigation also lies in the feature sets. The feature sets 

currently contain only stemmed nouns and verbs, and, optionally, SuperTag trigrams. It may be 

interesting to study the effects of adding some other types of features. Adjectives would be a 

good place to start. One can often tell a great deal about a domain from adjectives. Adverbs, 

although also interesting, might prove to be too common and create too many similarities. 

The composition of the SuperTag n-grams could also be studied further. Our research 

suggests that trigrams containing the SuperTag of the target word and the following two tags with 

the addition of actual verbs, nouns, and adverbs/prepositions/particles strike a good balance 

between being too general and too specific. However, our average accuracy improvements using 

SuperTag trigrams were not overwhelming, suggesting further experimentation in this area could 

prove beneficial. 

Also in the realm of features, more could be done with weighting. One may get 

interesting results by giving certain features more weight than others - for example, one might 

want to weight nouns more heavily than verbs, or one could create weights based on some 

frequency measure of the word in the corpus. 

Finally, further experimentation could be done with the contents of the extended context. 

For this thesis we only looked at adding the two immediately adjacent sentences as additional 

context. Research done by Martin (1994), however, indicates that much of the source domain of 

a metaphor may be exposed in the sentences preceding the metaphor. It would be interesting to 

look at differences resulting from choosing different contexts - for example, choosing only the 

preceding two sentences, or choosing only the following two sentences. Furthermore, there is no 

reason why one should restrict oneself to two sentences, except performance, which brings us to 

our next point. 



The TroFi algorithm - or rather, its current implementation - must be optimized. At the 

moment, it is 0 ( n 2 )  and consequently does not scale particularly well in terms of processing 

time and memory. Until this is improved, dramatically increasing the amount of extra context 

might prove difficult. 

11.1.2 Active Learning 

Future work on the TroFi active learning component should focus on research involving 

live human subjects. Possible experiments include: testing the difficulty of manually annotating 

literallnonliteral distinctions; and, testing the effort level and final accuracy difference between 

manually annotating everything from scratch and manually correcting TroFi output. 

It would also be interesting to research the most effective UI for human input to TroFi: 

a UI that minimizes the perceived effort. 

11.1.3 TroFi Example Base 

One of the contributions of this thesis was to build the TroFi Example Base. It currently 

contains fairly small literal and nonliteral clusters for 50 verbs. In order to further improve the 

value of the TroFi Example Base, a couple of things must happen: it must be launched on the 

Internet with an interface that allows for its expansion; and, the program must be tuned to allow 

for the addition of nouns and adjectives as well as verbs. 

The second of these items is comparatively trivial. There is nothing inherent in TroFi 

that limits it to verbs, although some minor changes to the implementation may be required. 

The first item is less trivial. Although it is not difficult to put static collections of 

sentences on the Web as an example base, the benefit of TroFi would be so much greater if 

anyone could add to the Example Base, either by iteratively augmenting existing sets or by 

adding new sets. Although possible, this would require: a. the optimization of the TroFi 



implementation; b. software engineering and UI development to make the application usable by 

the general public; c. security measures. 

11.1.4 Applications 

One of the most important areas of future work for TroFi is studying its possible 

integration with various NLP applications. On a basic level, we suggested that the TroFi 

Example Base could be used to train other statistical algorithms - categorizers and the like - for 

recognizing nonliteral usages in incoming text. 

Recognizing a usage as nonliteral, even wrthout any interpretation or translation into 

literal text, is useful because it allows a warning to be sent to the rest of the system that a given 

input phrase cannot be handled in the standard' way. For example, a dialogue system could 

respond, "I'm not sure what you mean; could you please rephrase that?" as opposed to 

interpreting the input literally and giving the user some silly response. In a more sophisticated 

scenario, the system might include a database of common nonliteral expressions with their literal 

translations - perhaps limited to a particular domain - and the recognition of nonliteral input 

could trigger a search of this database. This would be more efficient than searching the database 

for every single input sentence. 

A bigger project would be to use TroFi to imtomatically generate a kind of nonliteral to 

literal example-based machine translation (EBMT) system. A high-level overview of such a 

system is provided in the following section. 

11.1.4.1 TroFi Example-based NonliteraVLiteral Translation System 

In this thesis we have concentrated on developing a system for clustering literal vs. 

nonliteral usages - i.e. nonliteral language recognition. In this section we further explore the 

1 What is meant by "standard" would depend on the particular application. 
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possibility of developing a system for interpreting nonliteral language, or translating between 

nonliteral and literal language, using TroFi. 

The motivation for building a nonliteral interpretation system modelled on example- 

based machine translation (EBMT) systems stems from a belief that translating from a source 

language into a target language is much like translating from nonliteral language into literal 

language. Looking carefully at the dictionary-based metaphor processing systems discussed in 

Section 3.2, we find that Dolan (1995) refers to his lexical knowledge base as an example-based 

system, and we note the similarity of the Zernik & Dyer phrasal lexicon (Zernik & Dyer, 1986) to 

an example-based system. This begs the question., what exactly is an example-based system? 

Simply put, an example-based system is a system that depends on a database filled with 

examples. The general idea of EBMT is to break the source sentence into input fragments, match 

the input fragments to fragments in the database, retrieve the translation, and recombine the 

retrieved fragments into fluent output in the target language. In the sections below we examine 

what would be required to build such a system using TroFi. 

We begin by outlining the basic steps and then describe each step in detail: 

1. Separate literal and nonliteral usages of target words into two clusters 

2. Recluster to find nonliteral and literal phrases with similar meanings 

3. Store phrases in example base 

4. Provide method for processing metaphors using the example base 

11.1.4.1.1 Separating Literal and Nonliteral Usages 

Step 1 was the focus of this thesis so the only thing we will say about it is that it would be 

possible to produce output in the form of Figure 11 -A, including the original set sentence for each 

example, as well as the feature set with extended context. For the sake of illustration, we have 

also included adjectives in the feature lists. 



Figure 11-A Separating Literals and Nonliterals 

Nonliteral 
You're killing me! (joke, funny) 
The old man kicked the bucket. 
(old, man, bucket, hospital, funeral) 
I'm gonna die laughing! (laugh, joke, 
fUnny) 
He went to the pub to drown his 
sorrows. (pub, sorrow, girlfriend, 
break-up) 
You'll laugh your head off! (head, 
joke, funny) 

Literal 
They killed him. (gun) 
The horse kicked the bucket. 
(horse, bucket, spill, grain, eat) 
He died in hospital! (hospital, funeral) 
He drowned himself in the river. 
(river, body) 
I never laugh at his jokes. (joke, 
fUnny) 

II.I.4.I.2 Reclustering According to Meaning 
After the first step, we have literallnonliteral clusters for each target word. Unfortunately 

this gives us no hint as to the meaning of the nonliteral sentences. 

So far in this thesis we have not concerned ourselves much with meaning, and we do not 

want to change that now. Therefore we approach the finding of nonliterallliteral translations the 

same way we approached literallnonliteral clustering: we use the context. The idea is that words 

that can be used in similar contexts have similar meanings. Going on this principle, we can 

proceed by throwing all the literal and nonliteral sets for all the words together and reclustering to 

find literal and nonliteral sentences displaying a similar context. An adapted version of TroFi 

could be used for this by simply having one sentence similarity matrix with the nonliteral 

sentences along one axis and the literal sentences along the other. Since we are just looking for 

similarities of the sentences to each other, no feedback sets would be needed. The clusters 

produced would depend on the similarities found in the matrix. Careful work would be required 

to determine cluster boundaries. The kinds of clusters we might expect are shown in Figure 11-B. 



Figure 11-B Reclustering across the Literal/Noiiliteral Divide 

Cluster 1 
I'm gonna die laughing! (laugh, joke, 
funny) [nonliteral] 
You're killing me! (joke, funny) 
[nonliteral] 
You'll laugh your head off! (head, joke, 
funny) [nonliteral] 
I never laugh at his jokes. (joke, funny) 
[literal] 

He went to the pub to drown his sorrows. 
(pub, sorrow, girlfriend, break-up) 
[nonliteral] 

He drowned himself in the river. (river, 
body) [literal] 

Cluster 2 
The old man kicked the bucket. 
(old, man, bucket, hospital, funeral) 
[nonliteral] 
He died in hospital! (hospital, funeral) 
[literal] 

The horse kicked the bucket. 
(horse, bucket, spill, grain, eat) [literal] 

Cluster 6 
They killed him. (gun) [literal] 

Note that due to the small size of our sample set, we do not get translation clusters for all 

the sentences. However, we do get two usable translation clusters for taking us to the next step. 

11.1.4.1.3 Storing Phrases in the Example Base 

The phrases extracted in the previous step are stored in the example base in their 

translation clusters, with the set of nonliteral phrases for each aligned with the corresponding set 

of literal phrases. There are numerous ways to store examples, but we will not go into that here. 

Since the way the examples fiom the TroFi Example Base are used will depend largely 

on the NLP system into which the database is integrated, we must choose the most flexible 

solution possible. One possibility, since we have access to the SuperTags anyway, is to store the 

target word and the surrounding words required by its SuperTag. Complications that will arise 

are cases where we are dealing with something like an idiom which expands beyond the 

SuperTag of the target word. Furthermore there will be issues with deciding which part of the 

phrase-structure tree is variable and which is a necessary part of the nonliteral expression. 



Figure 1 1 -C shows an extremely simplified version - no trees, no argument structure - of what 

this might look like. Note that we still keep a link to the context for recognition purposes. 

Figure 11-C Storing Phrases in the Example Base 

I NonLiteral I Literal 

die laughing 
(laugh, joke, funny) 
kill me 
(joke, funny) 
laugh /PRP$ head off 
(head, joke, funny) 

laugh at 
(joke, fimny) 

kick the bucket 
(old, man, bucket, hospital, funeral) I tEspita1, funeral) 

I I. 1.4.1.4 Processing Metaphor Using the Example Base 

The purpose of building the example base would be to use it in NLP systems for 

processing nonliteral language. Access should be general enough to allow the example base to be 

easily incorporated into a variety of different systems. In this section we provide a hypothetical 

example of how the system might work integrated with another application. 

Each input sentence determined to be nonliteral by a literal/nonliteral classifier trained on 

the basic TroFi Example Base (literallnonliteral clusters) would be compared to the entries in the 

translation database to find the closest nonliteral match. The nonliteral phrase showing the 

greatest similarity to the input sentence would be selected together with the literal phrases of that 

translation cluster. Naturally, each translation cluster would contain numerous literal phrases. 

The most appropriate of these would have to be chosen. This literal phrase could then - with 

some syntactic and morphological massaging - replace the nonliteral phrase in the input sentence. 



The above discussion assumes the most complicated integration scenario, where the 

desired output is a literal paraphrase of a nonliteral sentence. In many systems, however, it may 

be sufficient just to return the literal phrase from the example base. In an information retrieval 

system, for example, it may be possible to replace (or even just augment) nonliterals in the text 

with their corresponding literal with no regard to the consequent grarnmaticality of the sentence. 

In this way literal search criteria would produce results, and incorrect matches would be reduced. 

Another integration scenario might involve example bases in several languages used in 

combination to get nonliteral-to-nonliteral translations. This would involve finding the literal in 

the source language, translating it into the target language, looking the literal up in the target 

language example base, and spitting out an appropriate nonliteral, as illustrated in Figure 1 I-D. 

Figure 11-D Example Base in a Machine Translation System 

kick the bucket 
bite the dust 
pass on 
push up daisies 
cross over to the other side 
go the way of the dodo 

die 
decease 
perish 

ins Grass beissen 
entweichen 
hinueber treten 
dem Jenseits entgegentreten 
abkratzen 

ins Grass beissen l - l  

sterben 

In this section we have provided some informal sketches of possible applications of the 

TroFi Example Base. Although none of these have been explored in any detail, and much more 

work would be required to actually implement them, they do give us a view to the possibilities. 



11.2 Summary and Contributions 

In this thesis we presented TroFi, a system for separating literal and nonliteral usages of 

verbs through statistical word-sense disambiguation and clustering techniques. We motivated the 

usefulness of literallnonliteral clustering for NLP applications - e.g. dialogue systems, 

paraphrasing and summarization, machine translation, information extraction - and for the 

science of lexical semantics. 

We positioned TroFi in the research area of metaphor and metonymy recognition, 

provided an overview of some past work in this area, and explained that we do not actually claim 

to solve the problem of either metonymy or metaphor recognition in the detailed sense seen in the 

literature. Rather we claimed to provide a rough, real-world, scalable approach dependent not on 

selectional constrain violations and paths in semantic hierarchies, but rather on simple sentential 

context. We further suggested that TroFi is applicable to all sorts of nonliteral language. In 

order to be able to make this claim, we provided an in-depth explanation of what we mean by 

literal and nonliteral in the context of TroFi and this thesis. By our definition, nonliteral is a 

blanket term for any language that is "not literal", including different types of metaphor, 

metonymy, idioms, and even phrasal verbs. 

We adapted an existing unsupervised word-sense disambiguation algorithm to the task of 

literallnonliteral clustering through the redefinition of literal and nonliteral as word senses, 

alterations to the core algorithm such as changing the nature of the similarity scores used, and 

enhancements such as the addition of learners and a voting schema, SuperTags, and additional 

context. We further introduced an active learning component and the notion of iterative 

augmentation. 

For all our models and algorithms, we carried out detailed experiments on hand- 

annotated data both to fully evaluate the system and to arrive at an optimal configuration. Our 

experiments show that our models outperform the baseline on a number of levels. Through our 



enhancements we were able to produce results that are, on average, 16.9% higher than the core 

algorithm and 24.4% higher than the baseline. We further found that by using the optional active 

learning component, we were able to improve on those results by another 1 1 or 12%, giving us a 

model that outperforms the baseline by just over 35%. 

Finally, we used our optimal configuration of TroFi, together with active learning and 

iterative augmentation, to build the TroFi Example Base, a publicly available, expandable 

resource of literallnonliteral usage clusters for use by the NLP community. 



APPENDICES 

Appendix A 

This appendix contains pseudo-code, by section, for most of the algorithms described 

throughout this thesis. 

6.2.2.1 Learners 

for each WM (Wayne Magnuson) entry containing the target word 
for each verb or noun in the definition 

unless it is the target word or it is in freqhashl 
add word to metseeds 
add word to metscrubber 

for each WM example sentence 
convert into feature set (stemmed, non-freqhash, non-target 

nouns and verbs only) 
add each word in feature set to metscrubber 
if xtags is on 

&f indXtag 
add xtag trigram to feature set 
add xtag-augmented feature set to metEGs 

else 
add plain feature set to metEGs 

for each CM (Conceptual Metaphor) example sentence 
convert into feature set 
add each word in feature set to metscrubber 
if xtags is on 

&f indXtag 
add xtag trigram to feature set 
add xtag-augmented feature set to metEGs 

else 
add plain feature set to metEGs 

for each word in metseeds 
&selectsentences (selects sentences from WSJ) 

lfieqhash is a hash of the 332 most frequent words from the British National Corpus plus some additional 
items such as numbers up to ten and all individual letters. 



for each WordNet synset containing the target word 
if any of the synonyms are in metscrubber 

or are phrasal/expressions verbs 
AND learner is A or B 

add synset to metsynset list 
else 

add synset to litsynset list 
for each synset in the litsynset list 

add synonyms to litseeds 
if learner is A 

for each synset in the metsynset list 
add synonyms to metseeds 

for each WordNet example sentence 
convert into feature set 
if xtags is on 

&f indXtag 
add xtag trigram to feature set 
if synset is in litsynset list 

add xtag-augmented feature set to litEGs 
else if synset is in metsynset list AND learner is A 

add xtag-augmented feature set to metEGs 
else 

if synset is in litsynset list 
add plain feature set to litEGs 

else if synset is in metsynset list AND learner is A 
add plain feature set to metEGs 

for each synset definition (gloss; before examples) 
convert into feature set 

if synset is in litsynset list 
add feature set to litEGs 

else if synset is in metsynset list AND learner is A 
add feature set to metEGs 

for each feature set in litEGs 
add all words to litscrubber 

for each word in litseeds 
&selectsentences 

for each search phrase 
break phrase into searchword and particle (if exists) 
for each sentence in WSJ containing searchword 

OR containing searchword followed by particle as 
next or next-next word 

convert into feature set 
if xtags is on 

&f indXtag 
add xtag trigram to feature set 
add xtag-augmented feature set to feedback set 

else 
add plain feature set to feedback set 

(See Section 6.2.2.2) 

if sentence is in both the literal and nonliteral feedback sets 
remove sentence from both sets 



6.2.2.1.1 Learner A 

&selectMet 
&selectLit 
if xtags is on 

&augmentLitNoScrubPlus 
else 

&augmentLitNoScrub 
&augmentMetNoScrub 
&removeoverlap 

for each potential literal feedback set feature set 
if xtag feature contains tags for adverbs, particles, 

or prepositions 
if learner is A 

add feature set to metEGs 
else if learner is B 

ignore feature set 
else 

add feature set to literal feedback set 

for each potential literal feedback set feature set 
add feature set to literal feedback set 

for each word in metseeds 
&selectsentences 

for each potential nonliteral feedback set feature set 
add feature set to nonliteral feedback set 

6.2.2.1.2 Learner B 

&selectMet 
&selectLit 
if xtags is on 

&augmentLitNoScrubP1us 
else 

&augmentLitNoScrub 
&augmentMetNoScrub 
&removeOverlap 

NOTE - See Section 6.2.2.1.1 for the following procedures: 
&augmentLitNoScrubPlus 
&augmentLitNoScrub 
&augmentMetNoScrub 



6.2.2.1.3 Learner C' 

for each potential literal feedback set feature set 
for each word 

if word is in metscrubber 
add word to litscrubber 

else 
keep word in feature set 

for each word in metseeds 
&selectsentences 

for each potential nonliteral feedback set feature set 
for each word 

unless word is in litscrubber 
keep word in feature set 

6.2.2.1.4 Learner c2 

for each potential literal feedback set feature set 
for each word 

if word is in metscrubber 
add word to litscrubber 
mark feature set for scrubbing 

unless feature set marked for scrubbing 
add feature set to literal feedback set 

for each word in metseeds 
&selectsentences 

for each potential nonliteral feedback set feature set 
for each word 

if word is in litscrubber 
mark feature set for scrubbing 

unless feature set marked for scrubbing 
add feature set to nonliteral feedback set 



6.2.2.1.5 Learner D 

NOTE - See Section 6.2.2.1.1 for the following procedures: 
&augmentLitNoScrub 
&augmentMetNoScrub 

6.2.2.2 SuperTags 

select the tag of the target word and also the following two tags 
(one, if sentence final) 

if the trigram contains any of the following: nouns, adverbs, 
particles, or prepositions 

if these tags occur in the second and third tags 
concat all three words and their tags as xtag trigram 

else if these tags occur in the second tag only 
concat first and second words and their tags as xtag trigram 

else if these tags occur in the third tag only 
concat first and third words and their tags as xtag trigram 

else 
do not return xtag trigram 

else 
do not return xtag trigram 

7.1.1.2 The TroFi Algorithm 

for each target word 
&setup 
update Original SSM 
update WSM from Original SSM 

while highest diff in similarities < diff threshold 
&update 
&clusterer 

if active learning is on 
&activeLearning 

else if active learning is off 
OR there are remaining undecided sentences after active learning 

&noActiveLearning 
&buildclassifier 



make WSM with similarity of each word to self set to 1 
make Original SSM 
make Literal Feedback SSM 
make Nonliteral Feedback SSM 

update Nonliteral Feedback SSM 
collect highest similarity scores for each original sentence 

to nonliteral feedback set 
update Literal Feedback SSM 
collect highest similarity scores for each original sentence 

to literal feedback set 
update WSM from Nonliteral Feedback SSM 
update WSM from Literal Feedback SSM 

for each original sentence 
if highest similarity2 to both literal and nonliteral 

feedback sets is below given threshold, or absolute 
difference between similarity to literal and nonliteral 
feedback sets is below given threshold 

add original sentence to undecided cluster 
else if highest similarity to literal feedback set is 

higher than to nonliteral feedback set 
add original sentence to literal cluster 

else 
add original sentence to nonliteral cluster 

(See Section 7.2) 

for each undecided sentence 
if highest similarity to literal feedback set is greater 

than highest similarity to nonliteral feedback set 
add original sentence to literal cluster 

else 
add original sentence to nonliteral cluster 

(See Section 7.3) 

Note that we are using similarities here to refer to either single similarities or sums of similarities. 
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7.1.2.2.2 Voting System 

for each original sentence 
if nonliteral for 3 of 4 learners 

add to nonliteral cluster 
else if literal for 3 of 4 learners 

add to literal cluster 
else 

add to undecided cluster 

7.2 Active Learning 

sort undecided sentences from lowest to highest certainty 
for each undecided sentence, beginning with lowest certainty 

if percentage of sentences already sent to human plus current 
< human threshold 

if NOT using distributed algorithm 
OR if using distributed and percent sent this iter 
< human threshold/6 
OR if this is last iter 

get human decision 
for each learner 

add sentence to appropriate feedback set 
add sentence to appropriate SSM 

and set similarity to self to 1 

7.3 Iterative Augmentation 

for each learner 
for each feedback set 

for each feedback set sentence 
find highest similarity to any original sentence 
set weight equal to highest similarity + E 
unless exists 

add feedback sentence to appropriate 
classifier 

else if weight > current classifier weight 
update current classifier weight 

for each original sentence in literal cluster 
set weight equal to 1.0 
unless exists 

add to literal classifier 
else if weight > current classifier weight 

update current classifier weight 
for each original sentence in nonliteral cluster 

set weight equal to 1.0 
unless exists 

add to nonliteral classifier 
else if weight > current classifier weight 

update current classifier weight 



8.2 Baseline 

f o r  each  t a r g e t  word 
& s e t u p  
f o r  each  o r i g i n a l  s e n t e n c e  

f o r  each o r i g i n a l  word 
f o r  each l i t e r a l  feedback s e t  s e n t e n c e  

add 1 t o  t o t a l  f o r  t h a t  feedback s e n t e n c e  
f o r  each  occur rence  of o r i g i n a l  word 

f o r  each n o n l i t e r a l  feedback s e t  s e n t e n c e  
add 1 t o  t o t a l  f o r  t h a t  feedback s e n t e n c e  

f o r  each occur rence  of o r i g i n a l  word 
s e t  l i t e r a l  t o t a l  t o  h i g h e s t  t o t a l  f o r  any l i t e r a l  

feedback s e t  s e n t e n c e  
s e t  n o n l i t e r a l  t o t a l  t o  h i g h e s t  t o t a l  f o r  any n o n l i t e r a l  

feedback s e t  s e n t e n c e  
i f  l i t e r a l  t o t a l  > n o n l i t e r a l  t o t a l  

add s e n t e n c e  t o  l i t e r a l  c l u s t e r  
e l s e  i f  n o n l i t e r a l  t o t a l  > l i t e r a l  t o t a l  

add s e n t e n c e  t o  n o n l i t e r a l  c l u s t e r  
e l s e  

i f  manual t e s t i n g  l a b e l  i s  " l i t e r a l "  
add s e n t e n c e  t o  n o n l i t e r a l  c l u s t e r  

e l s e  i f  manual t e s t i n g  l a b e l  i s  " n o n l i t e r a l "  
add s e n t e n c e  t o  l i t e r a l  c l u s t e r  



BIBLIOGRAPHY 

Abeille, A. and Schabes, Y. 1989. Parsing idioms in lexicalized TAGS. In Proceedings of 
the Fourth Conference on European Chapter of the Association For 
Computational Linguistics (Manchester, England, April 10 - 12, 1989). European 
Chapter Meeting of the ACL. Association for Computational Linguistics, 
Morristown, NJ, 1-9. 

Abeille, A., Schabes, Y., and Joshi, A. K. 1990. Using lexicalized tags for machine 
translation. In Proceedings of the 13th Conference on Computational Linguistics - 
Volume 3 (Helsinki, Finland, August 20 - 25, 1990). H. Karlgren, Ed. 
International Conference On Computational Linguistics. Association for 
Computational Linguistics, Morristown, NJ, 1-6. 

Bangalore, S. and Joshi, A. K. 1999. Supertagging: an approach to almost parsing. 
Comput. Linguist. 25,2 (Jun. 1999), 237-265. 

Barzilay, R. and Lee, L. 2003. Learning to paraphrase: an unsupervised approach using 
multiple-sequence alignment. In Proceedings of HLT/NAACL 2003, (Edmonton, 
Canada, May-June, 2003), 16-23. 

Beeferman, D., Berger, A., and Lafferty, J. 1997. A model of lexical attraction and 
repulsion. In Proceedings of the Eighth Conference on European Chapter of the 
Association For Computational Linguistics (Madrid, Spain, July 07 - 12, 1997). 
European Chapter Meeting of the ACL. Association for Computational 
Linguistics, Morristown, NJ, 373-380. 

Daelemans, W. 1993. Memory-based lexical acquisition and processing. EAMT 
Workshop 1993, 85-98. 

Dagan, I., Pereira, F., and Lee, L. 1994. Similarity-based estimation of word 
cooccurrence probabilities. In Proceedings of the 32nd Annual Meeting on 
Association For Computational Linguistics (Las Cruces, New Mexico, June 27 - 
30, 1994). Annual Meeting of the ACL. Association for Computational 
Linguistics, Morristown, NJ, 272-278. 

Dagan, I., Lee, L., and Pereira, F. 1997. Similarity-based methods for word sense 
disambiguation. In Proceedings of the 35th Annual Meeting on Association For 
Computational Linguistics (Madrid, Spain, July 07 - 12, 1997). Annual Meeting 
of the ACL. Association for Computational Linguistics, Morristown, NJ, 56-63. 

Dolan, W. B. 1995. Metaphor as an emergent property of machine-readable dictionaries. 
In Proceedings of Representation and Acquisition of Lexical Knowledge: 
Polysemy, Ambiguity, and Generativity (March 1995, Stanford University, CA). 
AAAI 1995 Spring Symposium Series, 27-29. (Technical Report MSR-TR-95- 
1 I), Redmond, WA: Microsoft Corporation. 



Fass, D. 1997. Processing metonymy and metaphor. Greenwich, CT: Ablex Publishing 
Corporation. 

Hahn, U. and Markert, K. 1999. On the Formal Distinction between Literal and 
Figurative Language. In Proceedings of the 9th Portuguese Conference on 
Artzjkial intelligence: Progress in Artzjkial intelligence (September 2 1 - 24, 
1999). P. Barahona and J. J. Alferes, Eds. Lecture Notes In Computer Science, 
vol. 1695. Springer-Verlag, London, 133- 147. 

Karov, Y. and Edelman, S. 1998. Similarity-based word sense disambiguation. Comput. 
Linguist. 24, 1 (Mar. 1998), 41-59. (Technical Report CS96-05), Rehovot, Israel: 
Weizmann Institute Of Science: Mathematics & Computer Science. 

Kullback, S. and Leibler, R. A. 195 1. On information and sufficiency. Annals of 
Mathematical Statistics, 22, 79-86. 

Lakoff, G. and Johnson, M. 1980. Metaphors we live by. Chicago, IL: University of 
Chicago Press. 

Lee, L. and Pereira, F. 1999. Distributional similarity models: clustering vs. nearest 
neighbors. In Proceedings of the 37th Annual Meeting of the Association For 
Computational Linguistics on Computational Linguistics (College Park, 
Maryland, June 20 - 26, 1999). Annual Meeting of the ACL. Association for 
Computational Linguistics, Morristown, NJ, 33-40. 

Manning, C. D. and Schuetze, H. 1999. Foundations of statistical natural language 
processing. Cambridge, MA: The MIT Press. 

Markert, K. and Nissim, M. 2002. Towards a corpus annotated for metonymies: the case 
of location names. In Proceedings of the 3rd ~nternational Conference on 
Language Resources and Evaluation (LREC 2002) (Canary Islands, Spain, 27 
May-2 June 2002). 1385-1392. 

Martin, J. H. 1990. A computational model of metaphor interpretation. Toronto, ON: 
Academic Press, Inc. 

Martin, J. H. 1992. Computer understanding of conventional metaphoric language. 
Cognitive Science 16,2 (1992), 233-270. 

Martin, J. H. 1994. A corpus-based analysis of context effects on metaphor 
comprehension. (Tech. Rep. No. CU-CS-738-94), Boulder: University of 
Colorado: Computer Science Department. 

Mason, Z. J. 2004. CorMet: a computational, corpus-based conventional metaphor 
extraction system. Comput. Linguist. 30, 1 (Mar. 2004), 23-44. 

Murata, M., Ma, Q., Yamamoto, A. and Isahara, H. 2000. Metonymy interpretation using 
x no y examples. In Proceedings of SNLP2000 (Chiang Mai, Thailand, 10 May 
2000). 



Narayanan, S. 1999. Moving right along: a computational model of metaphoric reasoning 
about events. In Proceedings of the Sixteenth National Conference on Artzjicial 
intelligence and the Eleventh innovative Applications of ArtiJicial intelligence 
Conference innovative Applications of Artzjkial intelligence (Orlando, Florida, 
United States, July 18 - 22, 1999). American Association for Artificial 
Intelligence, Menlo Park, CA, 12 1 - 127. 

Newrnark, P. 1980. The translation of metaphor. In Wolf PaprottC & Rend Dirven (Eds.), 
The ubiquity of metaphor (pp. 295-326). Philadelphia, PA: John Benjamins 
Publishing Company. 

Nissim, M. and Markert, K. 2003. Syntactic features and word similarity for supervised 
metonymy resolution. In Proceedings of the 41st Annual Meeting of the 
Association for Computational Linguistics (ACL-03) (Sapporo, Japan, 2003). 
56-63. 

Porter, M. F. 1980. An algorithm for suffix stripping. Program. 14(3), 130- 137. 

Resnik, P. 1997. Selectional preference and sense disambiguation. In Proceedings of the 
ANLP Workshop "Tagging Text with Lexical Semantics: Why What and How?" 
(Washington, DC, April 4-5, 1997). 

Russell, S. W. 1976. Computer understanding of metaphorically used verbs. American 
Journal of Computational Linguistics, Microfiche 44. 

Schank, R. 1973. The fourteen primitive actions and their inferences. AIM- 183, 
Computer Science Department, Stanford University, Stanford, California. 

Semino, E. and Steen, G. 200 1. A method for the annotation of metaphors in corpora. 
Interdisciplinary Workshop on Corpus-Based & Processing Approaches to 
Figurative Language (Lancaster University, 27 March 200 1). 

Shieber, S. M. and Schabes, Y. 1990. Synchronous tree-adjoining grammars. In 
Proceedings of the 13th Conference on Computational Linguistics - Volume 3 
(Helsinki, Finland, August 20 - 25, 1990). H. Karlgren, Ed. International 
Conference On Computational Linguistics. Association for Computational 
Linguistics, Morristown, NJ, 253-258. 

Somers, H. 1999. Review article: Example-based machine translation. Machine 
Translation 14, 113-157. 

Yarowsky, D. 1995. Unsupervised word sense disambiguation rivaling supervised 
methods. In Proceedings of the 33rd Annual Meeting on Association For 
Computational Linguistics (Cambridge, Massachusetts, June 26 - 30, 1995). 
Annual Meeting of the ACL. Association for Computational Linguistics, 
Morristown, NJ, 189- 196. 

Zernik, U. and Dyer, M. G. 1986. Disambiguation and language acquisition through the 
phrasal lexicon. In Proceedings of the 11 th Coference on Computational 
Linguistics (Bonn, Germany, August 25 - 29, 1986). International Conference On 
Computational Linguistics. Association for Computational Linguistics, 
Morristown, NJ, 247-252. 



idiom. (n.d.). Wikipedia. Retrieved April 29,2005, from Answers.com Web site: 
http://w~~.an~wer~.com/topic/trope 

irony. (n.d.). The Columbia Electronic Encyclopedia, Sixth Edition. Retrieved April 29, 
2005, from Answers.com Web site: http://www.answers.com/topic/metaphor 

literal. (n.d.). The American Heritage@ Dictionary of the English Language, Fourth 
Edition. Retrieved June 25, 2005, from Answers.com Web site: 
http://www.answers.com/topic/literal 

metaphor. (n.d.). The Columbia Electronic Encyclopedia, Sixth Edition. Retrieved April 
29, 2005, from Answers.com Web site: http://www.answers.com/topic/rnetaphor 

metonymy. (n.d.). The Columbia Electronic Encyclopedia, Sixth Edition. Retrieved April 
29,2005, from Answers.com Web site: http://www.answers.com/topic/metaphor 

nonliteral. (n.d.). WordWeb Online. Retrieved June 25, 2005, from WordWeb Online 
Web site: http://www.wordwebonline.com/search.pl?w=nonliteral 

phrasal verb. (n.d.). Wikipedia. Retrieved June 25,2005, from Answers.com Web site: 
http://www.an~wer~.com/topic/phrasal-verb 

synecdoche. (n.d.). The Columbia Electronic Encyclopedia, Sixth Edition. Retrieved 
April 29,2005, from Answers.com Web site: 
http://www.an~wer~.com/topic/metaphor 

trope. (n.d.). Poetry Glossary. Retrieved April 29,2005, from Answers.com Web site: 
http://~ww.an~wer~.com/topic/trope 

trope. (n.d.). Wikipedia. Retrieved June April 29, fiom Answers.com Web site: 
http://www.an~wer~.com/topic/trope 

trope. (n.d.). WordNet 1.7.1. Retrieved April 29,2005, fiom Answers.com Web site: 
http://www.answers.com/topic/trope 




