
RAY COHERENCE IN PARALLEL VOLUME

RENDERING

by

Brendan Moloney

B.Sc. Cum Laude, University of Arizona, 2005

A THESIS SUBMITTED IN PARTIAL PlILP1LLiv1ENT

or THE REQUIRE1\,lENTS FOR THE DEGREE or

MASTER OF SCIENCE

in the School

of

Computing Science

© Brendan Moloney 2008

SIMON FRASER UNIVERSITY

Summer 2008

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

N arne: Brendan fvloloney

Degree: "tvIaster of Science

Title of thesis: Ray Coherence in Parallel Volume Rendering

Examining Committee: Dr. Richard Zhang

Chair

Dr. Torsten Moller. Senior Supervisor

Associate Professor. Computing Science

Dr. Daniel Weiskopf, Co-Supervisor

Professor, Compu tel' Science

Universitat Stuttgart, Germany

Dr. Alexandra Fedorova, SFU Examiner

Assistant Professor, Computing Science

Date Approved:

II

SIMON FRASER UNIVERSITY
LIBRARY

Declaration of
Partial Copyright Licence

The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the "Institutional Repository" link of the SFU Library website
<wwwJib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing
the content, to translate the thesis/project or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in
part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Revised: Fall 2007

Abstract

Ray coherence, meaning all processing along each ray is local to a single machine, is achieved

in our parallel volume rendering environment by using a workload distribution scheme that

divides the image space. This allows one to avoid the compositing stage when performing

standard volume rendering in a parallel rendering pipeline. More importantly, there are

a number of existing algorithms for volume rendering that either benefit from or require

ray coherence when being adapted to a parallel environment. \Ve discuss several of tlw,"' .

algorithms and adapt and implement two of them, our own improved visibility culling tech­

nique to speed up rendering when occlusion occurs and a volumetric shadowing technique

that produces more realistic and informative images. vVe also present novel algorithms for

providing a consistent load balancing and efficiently loading and rendering pieces of a subdi­

vided data set, addressing two of the major issues for data scalable image space distributions.

Keywords: distributed computing; sort first parallelization; volume rendering; visualiza­

tion; load baJancing; occlusion;. shadow; ray coherence

Subject Terms: computer graphics; parallel processing (electronic computers); paral­

lel algorithms; three-dimensional imaging; high performance computing; visualization data

proceSS1l1g

III

To Elizabeth, for her unwavering support.

IV

"lI-lan's mind, once stretched by a new idea, never regains its original dimensions."

Oliver Wendell Holmes

v

Acknowledgments

Firstly, I must thank my two senior supervisors Torsten Moller and Daniel Weiskopf. Like

the proverbial good cop bad cop duo, they simultaneously encouraged me to explore un­

known territory while reminding me of the need to produce some practical and precise

results. They have also shown me that it is possible to know more than a little about a lot

of difierent subjects, inspiring me to embiggen my breadth of knowledge.

J\lembers of the GrUVi lab, both past and present, have been a great source of entertain­

ment and enlightenment. All of the professors that I have interacted with (whether through

a class, a teaching assistant position, or just casually) have been both friendly and helpful.

Most importantly, I must thank my parents for giving me the encouragement anel op­

portunities that have gotten me to where I am today.

This work was funded in part by the Natural Sciences and Engilleering Research Council

(NSERC) of Canada. I would like to thank the following sources for data sets llsed in the

illustrations and experiments:

•	 Dr. Christof Rezk-Salama, University of Siegen, Germany and Dr. Michael Scheuer­

ing, Siemens lVledical Solutions, Forchheim, Germany for the fish data set.

•	 Brown & Herbranson Imaging, Stanford Radiology, and The Rosicrucian museum, for

the mummy data set.

•	 Lawrence Livermore National Laboratory for the Richtmyer-lVleshkov data set.

•	 The National Library of lVledicine for the visible human data set.

vi

Contents

Approval ii

Abstract iii

Dedication iv

Quotation v

Acknowledgments vi

Contents vii

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Motivation . 1

1.2 Volume Rendering Preliminaries 2

1.2.1 The Volume Rendering Integral 3

1.2.2 Compositing Approximation 4

1.2.3 Classification . 5

1.2.4 Partitioning Strategy for Parallel Volume Rendering 6

1.3 Goals and Contributions. 9

2 Previous Work 11

2.1 Evaluating the Volume Rendering Integral 11

Vll

2.1.1 Image Order Algorithms. 11

2.1.2 Object Order Algorithms 12

2.2 CPU Accelerated Volume Rendering 12

2.3 Parallel Rendering . 14

3 Data Scalable Sort First Rendering 18

3.1 The Parallel Rendering Pipeline. 18

3.2 Bricking . 20

3.2.1 Slice Template 21

3.3 Caching . 23

4 Consistent Dynamic Load Balancing 25

4.1 Calculating Per Pixel Rendering Cost 25

4.2 Distributing the Image Space 27

5 Ray Coherent Algorithms in Parallel Rendering 31

5.1 Occlusion Culli ng 32

5.1.1 Killing Fragments with Depth Culling :32

5.1.2 Culling Bricks with Occlusion Queries 34

5.2 Volumetric Shadowing ... 35

5.2.1 Hybrid Partitioning 35

5.2.2 Direct Send Compositing 37

5.3 Other Potential Algorithms 38

6 Results 41

6.1 Baseline Rendering Performance 41

6.1.1 Per Brick Overheads ... 42

6.1.2 Fragment Processing and Data Throughput 4:3

6.1.3 Empty Space Leaping 47

6.2 Data Loading . 47

6.2.1 Bandwidth to Texture Memory 48

6.2.2 Caching Performance. 49

6.3 Compositing 50

6.3.1 Blending. 51

VIII

7

6.3.2 Final Gather Compositing .

6.4 Load Balancing Results .

6.4.1 Computation Time

6.4.2 Load Balancing Quality

6.5 Visibility Culling Results

6.5.1 Fragment Culling Performance

6.5.2 Occlusion Query Performance

6.5.3 Sort First vs Sort Last

6.6 Shadowed Rendering Results

6.6.1 Bricking Overheads.

6.6.2 Scaling

6.7 Overall Performance

6.7.1 Experiment Setup

6.7.2 Results .

Conclusions

7.1 Future \\fork

A System Details

A.l System Overview

A.2 Volumetric Data Sets.

A.3 GPU Pipeline ...

A.4 Computing Per-Pixel Cost on the GPU

A.S Asynchronous Direct Send Compositing

Bibliography

52

53

53

54

58

58

60

6:3

64

65

65

67

67

69

77

79

81

81

82

83

84

87

91

IX

List of Tables

6.1	 A table of the performance of the templated slicing technique compared to

the standard slicing technique. 43

6.2	 The accuracy and performance of empty space leaping with various POT

brick sizes.. 48

6.3	 A comparison of the simple LRU caching algorithm and the proximity ca.ching

algorithm. 50

6.4	 The load balancing quality for different resolutions, animations, and methods

of computing the pixel cost. 55

6.5	 A comparison of our load balancing algorithm to an algorithm that uses the

performance of each unit in previous frames. 57

6.6	 The time it takes to render a brick that is completely culled by the depth test,

and the resulting threshold for what percentage of bricks need to be culled

in a chunk to overcome the query overheads. 62

x

List of Figures

1.1	 An example of a.n object space distribution for parallel volume rendering. 7

1.2	 An example of an image space distribution for parallel volume rendering. 8

3.1	 A generic overview of the parallel DVR pipeline, with several possible paths

traced through it. .. 19

3.2	 A 2D illustration of how bricking allows data scalability in a sort. first. distri ­

bution. 21

3.3	 An illust.ration of how the slice templating works. 22

4.1	 An illustration of the results for the three different methods of computing the

per pixel rendering cost for a single brick. 2G

4.2	 An illustration of the method used t.o divide the screen space. 28

4.3	 An illustrat.ion of how the load balancing is computed in parallel. 29

4.4	 The pixel cost and load balancing result.s for eight processing units rendering

the mummy head. 30

5.1	 An illustration of the hybrid part.itioning for parallel sha.dow rendering. 36

5.2	 An example of shadowed volume rendering on two processing unit.s.. . . 40

6.1	 A graph of the performance of the templated slicing technique compared to

the standard slicing technique. 42

6.2	 A graph of the difference in rendering performance for a power-of-two and

non-power-of-two brick size. 44

6.3	 A graph of the rendering throughput for a texture wit.h a single one byte

component per sample and various brick sizes.. 45

XI

6.4	 A graph of the rendering throughput for a texture with four one byte com­

ponents per sample and various brick sizes. 46

6.5	 Available bandwidth to texture memory for various brick sizes and formats. 49

6.6	 A comparison of the performance of our synchronous and asynchronous im­

plementations of direct send compositing for a one mega pixel image. 51

6.7	 The scaling behaviour, in relation to the image size, of our asynchronous

compositing implementation with six processing units. 52

6.8	 A graph of the per brick overheads for the accurate and backface methods of

computing the per pixel rendering cost. 54

6.9	 A graph of the image scaling behaviour for all three methods of computing

the per pixel cost. 5G

6.10 A graph of the performance scaling results for the accurate method and the

backface method. G6

6.11	 A graph of the amount of overhead incurred from updating t.he depth buffer

for two different image resolutions. .. 59

6.12	 A graph of the percentage of fragments killed using different numbers of

updates to the depth buffer in a frame. 60

6.13	 A graph of the performance increase achieved by the occlusion culling for

different numbers of updates to the depth buffer. 61

6.14 A graph of the amount of overhead incurred from occlusion queries. 61

6.15 A	 graph of the performance scaling for sort first and sort. last distributions,

both with and without Early Ray Termination. 64

6.16 A	 graph of the performance of shadowed volume rendering on the mummy

head data set subdivided into different brick sizes. 66

6.17 A graph of the scaling of t.he shadowed rendering for up to six processing units. 68

6.18	 The mummy data set with its high and low opacity transfer functions. . .. 70

6.19	 The Richtmyer-Jvleshkov data set with its high and low opacity transfer func­

tions. 70

6.20	 Tl1E' visible male dat.a set with its high and low opacity t.ransfer functions. 71

6.21	 A graph of the average performance when rot.ating and zooming the visible

male data set at different speeds. 71

6.22	 A graph of the maximurn amount of bricks loaded among all processing units

for each frame of rendering the Richtmyer-Meshkov data set. 73

xii

6.23 A graph of the maximum amount of bricks loaded among all processing units

for ea.ch frame of rendering the mummy data. set. 74

6.24 A	 detailed break down of how the processing time is split up among the

different stages of the parallel rendering pipeline. 75

A.l	 A high-level overview of the pipeline on a modern programmable GPU. 83

A.2	 The vertex and fragment shader programs for the accurate method of com­

puting the per-pixel cost. 86

XIII

Chapter 1

Introduction

Volume rendering is characterized by the type of data it works on: a continuous field (usually

interpolated from samples) over a three dimensional space, Visualizing such data poses a

number of challenges, from providing an effective visual mapping to harnessing enough

computational power to accurately render the data at an interactive frame rate, The focus

of this thesis is on the latter problem, specifically on how to use multiple processing units to

interactively render data sets that are too large or require too much processing for a single

unit.

The partitioning strategy used to distribute the rendering workload and data set among

the processing units can limit the types of algorithms that are applicable within t.he parallel

rendering environment, In particular, many image space algorithms cannot be efficiently

adapted to work with a partitioning strat,egy that does not keep the data and processing

along each ray local to a single processing unit, In this thesis we explore the advantages

and challenges of utilizing a number of such algorithms in a parallel environment,

1.1 Motivation

Many scientific simulations and measurements result in enormous volumetric data sets,

Volume rendering is an essential tool for visualizing and gaining insight from such data,

The process of exploring volumetric data can also benefit greatly from volume rendering,

but only if the user can interactively alter the viewing conditions,

To perform interactive volume rendering, even of small data sets, requires a tremendous

amount of computational power. In the past this has been the domain of super computers

1

2 CHAPTER 1. INTRODUCTION

- utilizing many processors in a parallel environment. IVlore recently Graphics Processing

Units (GPUs) have provided a cost efficient method of rendering small to medium sized

data sets at interactive frame rates. This has allowed single workstations to do the tasks

once reserved for super computers. However, larger data sets still require more memory and

processing power than a single GPU can provide. Thus we have come full circle in the sense

that we must once again use multiple processing elements, only now they are often GPUs

instead of CPUs.

All high performance GPUs have their own dedicated high speed memory to maximize

the bandwidth available to the processing core. In a parallel environment, this extra layer of

memory further complicates the problem of distributing the data set while simultaneously

distributing the rendering workload evenly. Regardless of this complication, the focus of

this thesis is on multi-GPU systems.

There are hvo main reasons for this choice. First, the computational power provided

by GPUs is unrivaled at their price point. As of early 2008, a top of the line dual core

GPU has a theoretical limit of approximately one TFLOPS and costs under 500 US$. In

comparison, a top of the line quad core CPU has a theoretical limit of only 48 GFLOPS at

a cost of over 1000 US$. The second reason is that the computational power of GPUs is

growjng significantly faster than that of CPUs, and this trend shows no signs of abating.

\Vhile much work has been done on volume rendering with multiple GPUs. algorithms

which require or benefit from data locality along a ray have been under utilized. These

algorithms can provide tremendous speed ups through visibility culling, more informative

images through sophisticated lighting models that include shadowing effects, more accurate

and consistent load balancing, and potentially many other benefits. The downside is the

need to load data during the rendering process when the data set is too large to be replicated

across all of the processing units.

1.2 Volume Rendering Preliminaries

Preliminary work on volume rendering came from attempts to model c:loud::; and other

gaseous phenomena [5, 30]. Later work began to focus on volume rendering as a tool for

visualizing scientific data sets [10, 60]. Regardless of the application, the foundation is the

saIne.

The propagation of light through participating media is a subset of the field of radiative

3 CHAPTER 1. INTRODUCTION

transport theory [8]. When modeling natural phenomena it may be important to model com­

plex effect.s such as fluorescence and Rayleigh scattering. For visualizing scientific data sets

the effects are usually limited to emission, absorptioll, and some limited form of scattering.

In this section we give a high level overview of the fundamentals of volume rendering.

For a more in depth discussion of this topic we refer our readers to the work of Rege [14].

1.2.1 The Volume Rendering Integral

Concept.ually, we can think of a. volume as a particle cloud where each particle can emit,

absorb, and scatter (reflect) light. The scattering incidents can be further classified, based

on whether they reflect light along a ray toward the eye (in-scattering), or reflect light away

from a ray toward the eye (out-scattering). In the most precise terms, this would include

global illumination and shadowing effects. In practice, in-scattering is often limited to first

hit reflections from external sources towards the eye, and out-scattering is often ignored

completely.

Radiance is the fundamental measure used for computing light transport, due largely

to the fact that it is constant along the lengtlJ of a ray (through a vacuum). Radiance is

defined as t.he radiative energy Q per unit projected area Ai- per solid angle D per unit of

time t:

dQ
L = dAi-dDdt (1.1)

Volumetric data is usually defined by a set of interpolated functions over a three dimen­

sional domain. Each function gives us some property of the particle cloud. For example,

we could have a function L(1') which gives the amount of radiance being emitted along the

direction of the ray l' for each portion of the volume. The integral equation for the total

radiance accumulated between two points on the ray, 1'1 and 1'2, is given in Equation 1.2.

L /1'2 L(r)d1' (1.2)1

.IT 1

This emission only model is quite efficient to compute, but lacks the depth cues provided

by attenuation along the ray towards the eye. When a ray of light travels through a cloud

of particles, the amount of light that makes it t.o the other side depends on the distance the

ray travels through the cloud, the densi ty of the particles, and the abili ty of the particles to

reflect and absorb light. For volume rendering, t.he latter two parameters can be combined

4 CHAPTER 1. INTRODUCTION

into one function 1\.(1') which describes the opacity at each point along a ray. The change in

radiance along a ray with an absorption only model can then be expressed as:

dL = -K,(r)Ld1' (1.3)

Which we can rearrange and integrate between the points 1'1 and 1'2 to get the final radiance

L1'2 in terms of the initial radiance LT] and the opacity function K,(r}

1.
1'2 dL ;'7'2- = -K,(r)d1' (1.4)

. 1'1 L .71

(1.5)

(1.6)

The negative of the exponent of the last term in Equation 1.6 is often called the optical

depth. 'We abbreviate the optical depth between two points 1'1 and 1'2 as:

(1. 7)

Vlie can then express the emission alld absorption model for volume rendering as in Equa­

tion 1.8. This is what is called the Volume Rendering Integral. Although it does not

explicitly contain terms for scattering, the in-scattering and out-scattering effects can be

added into the emission function L(1'). In this equation the eye point would lie at the point

1'2 and the initial radiance from behind the volume is given by L r J.

(1.8)

1.2.2 Compositing Approximation

For all but a few special cases. Equation 1.8 cannot be solved analytically and thus numerical

methods must be llsed. For an emission absorption model wi thout scattering, simple ray

integration will suffice. We must discretize the ray l' into a number of intervals in order to

perform tlw numerical integration. If we discretize l' into n intervals, then we can compute

the radiance at position rk from the radiance at 1'k-l as follows:

(1.9)

CHAPTER 1. INTRODUCTION 5

We define two useful abbreviations (h and lh.,:

(1.10)

(1.11)

The term ek is the transparency between two sample points. Transpa.rency is a value between

zero (when the optical depth is infinity) and one (when the optical depth is zero). Both

(h a.nd (3k are generally approximated by assuming they are constant in the vicinity of a

sample or linearly varying from one sample to the next. Using these terms we construct a

discrete recursive description of the volume rendering integral (for simplicity, we assume Tn

is the sample closest to t.he eye) in Equation 1.12. For the base case {30 equals the initial

radiance from behind the volume and eo is zero.

Lr(Tn) = Lr(TT/-deT/ + (in = L
n

lie II
n

ej (1.12)
k=O j=k+l

If we consider the inverse of transparency, opacity ak = 1 - ek , and we note that 13k

IS equivaJent to a pre-multiplied color Ck (ignoring the intricacies of mapping a spectral

power distribution to a color) then we can reformulate this equation in terms of the alpha

compositing over operator [43] as follows:

n n

L r (Tn) = L Ck II (1 - Clj) = Cn over Cn-l over (;71.-2 ... over clover Co (1.13)
/;;=0 j=A' 1

1.2.3 Classification

Generally the data has no intrinsic optical properties, and thus we must assign colors and

opacity values based on some attributes of the data. The mapping of data attributes to

optical properties is called classification, and the function which defines this mapping is

called the transfer function.

Using an appropriate transfer function it> vital to obtaining an informative rendering.

The goal when designing a transfer function i::; to highlight the regions of interest while min­

imizing occlusion of such regions. Achieving this goal is rarely easy, and often unintuitive.

The most common scenario is a data set represented by a scalar field and Ii one di­

mensional transfer function which assigns optical properties to each scalar value. Recently

CHAPTER 1. INTRODUCTION 6

there has been research into multi-dimensional transfer functions which also cla..'3sify based

on the gradients of the scalar field [20]. This approach can help classify boundaries be­

tween materials, but at the cost of added cornplexity both in transfer function design and

rendering.

Generally the transfer function is user specified, though there has been some work on

automating the process to some degree [18]. Interactive editing of the transfer function

is a crucial pa.rt of effectively exploring volume data sets; often the user will not know

what transfer function is appropria te for visualizing a structure until they get some visual

feed back.

Even with an appropriate transfer function, there are a number of factors that i1,ffect

the quality of the rendered image. One irnportant factor is the stage in the rendering

pipeline in which the classification occurs. If the classification occurs before intE'rpolation

(pre-classification) then the resulting image can be blurry and inaccurate when compared

to classification after data interpolation (post-classification).

Another factor is the bandwidth of the transfer function. The maximum frequency of a

data set with a transfer function applied is the product of the maximum frequency of transfer

function and the maximnm gradient of the data set [3]. The explosion of thE' Nyquist rate

when using high frequency transfer functions can be avoided by using pre-integrated transfer

functions [12]. The idea is to compute the volume rendering integral for all combinations of

scalar values over the length of one sampling distance. This removes the dependency on the

Nyquist rate of the transfer function, at the cost of losing some interactivity when editing

the transfer function.

1.2.4 Partitioning Strategy for Parallel Volume Rendering

There are two main reasons for using multiple processing units to render volumetric data.

The first is that the amount of processing required might take too long to achieve interactive

frame rates, and the second is that thE' data itself might be too large to fit into the local

memory of a single unit. Parallel workload distributions that address the former issue can

be called "performance scaling" and distributions that addrec;s the latter issue can be called

"data scaling". Often it is difficult to balance both of these goals reliably for all viE'wing

conditions.

A variety of methods have been proposed for distributing a rendering workload among

a numbE'r of machines. Molnar et a1. [31] c:lassify tbese into groups based on where in

7 CHAPTER 1. INTRODUCTION

the rendering pipeline primitives are sorted in regards to viewing conditions. In sort first

methods the screen space is divided into regions and object space primitives are sorted

into these regions and distributed before rendering. In sort last methods the object space

primitives are distributed, processed, and rasterized independently. Then overlapping pixels

are sorted in depth order and composited together. For the special case of volume rendering,

the object space primitives are arrays of volume data. These arrays generally require little

to no processing before rendering, but they do have significant storage requirements.

Figure 1.1: An example of an object space distribution scheme with four nodes. The left
image shows a global view of the data set with each node using a different color when
rendering the bounding box of their respective portions of the object space. The right
image shows a zoomed in view which illustrates the problem of load balancing with a static
object space distribution (only the green and red nodes are doing work).

Recently there has been a focus on sort last distributions due to their ideal data scaling.

Even with a simple static distribution such an approach provides very good data scaling and

reasonable performance scaling when the data set is viewed globally. However, as illustrated

in Figure 1.1, once the user starts to zoom in to look at smaller features of the data set

a static data distribution is no longer sufficient. Additionally, the performance scaling of

such a distribution can often be hampered by the need to transmit and blend intermediate

images over the network for the alpha compositing process.

A sort first distribution does not need to alpha composite intermediate images, and thus

can provide better performance scaling in certain scenarios. The main drawback to sort

8 CHAPTER 1. INTRODUCTION

Figure 1.2: An example of an image space distribution scheme with four nodes. Each node
colors their image space bounding rectangles and the bounding box of the volume with a
different color. For the two viewpoints used to make the images, the data that each node
needs to render is completely different.

first approaches is the difficulty of achieving data scalability. As illustrated in Figure 1.2,

for different viewing conditions each node may require completely different parts of the data

to render their respective portions of the image space. ·While the total size of the volume

data is always going to be much larger than the size of the image data, as long as we have

frame-to-frame coherence the amount that needs to be loaded on any single frame can be

quite small. It is also possible to cache and asynchronously load the volume data, while

the compositing has to be done after rendering and before sending the final results to the

display unit.

·With a sort first distribution, all the processing and information along a ray is local to

a single unit. When rays are local to a single machine we say they are coherent. If view

rays from the eye position are coherent then the compositing stage of the parallel rendering

pipeline can be skipped and we can perform accurate visibility culling. If shadow rays along

the light direction are coherent then interactive volumetric shadowing can be achieved. In

fact, the ray coherence provided by sort first distri bu tions could playa key role in adapting

many volume rendering algorithms to work efficiently in a parallel environment.

CHAPTER 1. INTRODUCTION 9

1.3 Goals and Contributions

The majority of the state of the art research on parallel volume rendering using multiple

GPUs has focused on sort last decompositions. Our goal is to show that sort first methods

cannot only achieve data scalability at a cost that is often less than the cost of alpha

compositing in sort last methods, but they can also allow for efficient parallelization of a

number of existing volume rendering algorithms that would otherwise he intractable. The

reason for these benefits is the property of ray coherence, which can often eliminate some of

the communication and synchronization that would otherwise be required by the algorithms.

In Chapter 5 we discuss a number of volume rendering algorithms that would benefit

from using a parallel workload distribution that provides ray coherence. \Ve implement

and discuss two of the algorithms in great detail. The first algorithm we implement is an

improvement on an existing method of doing occlusion culling on the GPU. Our improved

algorithm incurs alrnost no overheads when there is little occlusioll while achieving superior

performance when occlusion does occur. More importantly, we show that the culling effi­

ciency of a sort first parallel distribution greatly outperforms a sort last distribut.ion due

t.o ray coherence. The second algorithm we implement uses a hybrid sort first and sort last

distribution which allows us to adapt an image based volumetric shadowing algorithm to a

parallel environment. V·/e achieve ray coherence along the shadow rays by performing a sort

first distribution of the light's image space. This essentially gives us a sort last dist.ribut.ion

from the camera's point of view, which requires us t.o cornposite the intermediate images in

order to get the final resul t.

We also address three of the major challenges to the scalability of sort first methods.

A novel load balancing algorithm that gives a consistently well ba.lanced distribution, even

without frame-to-frame coherence, is provided in Chapter 4. The increased accuracy and

consistency compared to existing load balancing algorithms allows for larger data sets t.o

be rendered using a data scalable sort first approach. vVe introd uce a techuique which uses

slice templates to eliminate a major bottleneck for slice based rendering Oil subdivided data

sets in Chapter 3. This allows liS t.o subdivide our data into smaller pieces which reduces

the amount of data that is replicated among processing units and allows us to perform

more accurate culling of empty portions of the classified data. Finally, in Chapter 3 we

also explore a proximity based caching scheme t.hat reduces sudden dips in performance

associated with data loading.

10 CHAPTER 1. INTRODUCTION

On top of these algorithmic contributions, a detailed performance analysis of each stage

in the parallel rendering pipeline on an inexpensive cluster of workstations is given in Chap­

ter 6. For each stage of the pipeline, we compare the advantages and disadvantages of

distributing the image space versus the object space. JvIost importantly, we expose the util­

ity of a sort first distribution for not only standard volume rendering but also adapting many

existing algorithms to a parallel environment. In Chapter 7 we draw our final conclusions

and highlight possibilities for future research.

Chapter 2

Previous Work

This chapter provides a review of previous literature related to the work presented in later

chapters. Section 2.1 gives an overview of some methods used to evaluate the volume

rendering integral. Section 2.2 reviews the state of the art in interactive volume rendering

on a CPU. Finally, Section 2.3 explores previous work on rendering in a parallel environment.

2.1 Evaluating the Volume Rendering Integral

There are two general c1a..'ises of algorithms for evaluating the volume rendering integral,

categorized by their method of processing the data. Image order algorithms, i.e. ray casting,

process the da ta along rays originating frorn the eye point (or rays along the view direction

for orthographic projections). Object order algorithms are flexible in the order they process

data, the only restriction being that they use a valid compositing order to combine results

from the object. space primitives.

2.1.1 Image Order Algorithms

The most intuitive manner of evaluating the volume rendering integral is through ray casting.

For each pixel, one or more rays are cast into the volume, each one evaluating the volume

rendering integral as it takes discrete steps through the scalar field. Any known filter can

be used to reconstruct the field. but when interactivity is desired trilinear interpolation is

most common.

A number of acceleration schemes [25] have been devised to speed up this process,

11

CHAPTER 2. PREVIOUS WORK 12

including methods of minimizing the processing of parts of the volume that are transparent

(commonly referred to as empty space leaping) or occluded (commonly referred to as early

ray termination). Even with such techniques, large data sets require many CPUs and a high

speed interconnect to reach interactive frame rates.

2.1.2 Object Order Algorithms

Object order algorithms are useful due to their additional flexibility in terms of the order

in which the data is processed. This additional flexibility can allow for better performance

or more complicated light transport models.

Early object order algorithms such as splatting [SR, 59] and shear-warp factorization

[24] achieved better performance than ray casting but at the cost of image fidelity. Revised

versions of these algorithms [53, 35] attempted to increase image fidelity while ma.intaining

the advantage in performance. For direct rendering of an irregular mesh, cell projection [48]

is often used but it can be hindered by an expensive visibility sorting stage.

Slicing algorithms sample the volume along one planar slice at a time. If the slices are

view aligned then the resulting image will be equivalent to one produced through ray casting

with an orthogonal projection. For a perspective projection the spacing between slices along

the rays varies with the angle between the rays and the normal of the slices. This can cause

rendering artifacts (al though often unnoticeable) if the opaci ty is not corrected for the

variation in distance between samples. Slicing was designed as a means of computing the

volume rendering integral on a GPU. The tremendous throughput afforded by GPUs allowed

for an order of magnitude increase in performance.

2.2 GPU Accelerated Volume Rendering

IVlodern GPUs have the ability to load data into textures, and then process that data

concurrently using many vector units. In essence they are the rebirth of vector processors,

but the important difference is that tlw boom of the video game industry has driven GPU

prices down well below prices of traditional CPUs. The cost of all this processing power is a

restricted programming model that requires new approaches to implementing some existing

algorithms.

On GPUs. three dimensional textures provide hardware accelerated trilinear interpo­

lation of a scalar field at the flip of a swi tch. Some kind of proxy geometry can then be

CHAPTER 2. PREVIOUS WORK

rendered to sample the texture. \iVhen the geometry is rendered, each vertex is passed into a

vertex shader program which can manipulate the position and other attributes beforp pass­

ing the vertex down thp pipeline. Next the polygons are rasterized which generates a bunch

of fragments (pixels with additional information such as depth and textllfe coordinates).

For each fragment. a fragment shader program is execut.ed which can access textures and

fragmellt at.tributes and compute a color for that fragment. Fina]]y, in the blending stage

the fragments that are output can then bp composited with values already in the frame

bufFer. A more detailed look at the GPU pipeline can found in Appendix A.3.

Three dimensional texture slicing [9, 6] is all easy way to interactively perform a high

quality vohlme rendering of sma]] to medium sized data sets. Slices are drawn so that thpy

are parallel to the view plane in front-to-back or back-to-front order, sarnpling the texture

at those locations and then being composi ted into the frame buffer.

For older GP s without support for three dimensional textures, two dimensional textures

that correspond to slices of the data can be Llsed. In two dimensional slicing there are three

fixed sets of slices, one for each orthogonal axis. At render time the set of slices corresponding

to the axis most aligned with the viewing direction is used. This can actua]]y be faster than

three dimensional texture sliciug, but it requires three times the texture data and artifacts

occur when the viewing direction is near the boundary between tl1P orthogonal axes.

A slicing technique ca]]ed half angle slicing [20, 61] produces a single set of slices that can

be used to render the data from two different points of view. The direction perpendicular

to the slices is chosen so that it is the half vector of the two view directions if they both

lie in the same hemisphere, or the half vector of one view direction and the inverse of the

other if they lie in opposite hemispheres. By varying the slice spacing based on the angle

between the view directions, a consistent sarnpJing distance can be maintained along the

rays parallel to the view directions.

By using half angle slicing and alternating between rendering each slice from the point

of view of the camera and the point of view of the light source, a shadowing effect can be

produced [20,61]. When the slice is drawn from the camera's point of vit'w, it samples the

resu It from the rendering of t.he previous slice from the light's point of view to determine

the light attenuation. The slices must always be rendered in frollt-to-bad(order for the light

bu t the camera must render the slices back-to-front when it is in the oppositp hemisphere.

Forward scattering effects can also be approximated by taking multiple samples at random

offsets on the previous slice [21].

CHAPTER 2. PREVIOUS WORK 14

Early volume ray casting algorithrns for the GPU used a multi-pass approach due to

the limited number of instructions that could be executed in a shader program on older

GPUs [22, 45]. These mult.i-pass approaches also allowed t.hem t.o updat.e the depth buffer

between each pass, and set it. to kill fragments above some opacity threshold using dept.h

culling. This approach to early ray termination is applicable to any iterativE' front to back

algorit.hm, and has been adapted for data sets t.hat. have been subdivided into bricks [46].

Newer GPUs allow for single pass ray casting [49] which allows for effects like reflection,

refraction, and self shadowing isosurfaces. If full spectral informat.ion is used instead of

just RGB, effects like selective absorption and dispersion [52] can be achieved. The single

pass algorithms mLlst rely on the shader programs dynamic branching support for early ray

termination, which can be less efficient. than depth culling. Ray cast.ing is also generally

slower than sliced based rendering, but by a narrowing margin.

Subdividing the dat.a int.o bricks is a popular method of empty space leaping on GPUs

due to the fact, that it can reduce not only the amount of computations but also the amoLlnt

of texture memory requirecl. Bricking has been used both for slice based rendering [54] and

ray tracing [36]. More accurate met.hods of reducing the comput.ations on empt.y voxels

[19, 46] exist, but do not. save any additional t.ext.ure memory.

Bricking techniques have also been used t.o perform out. of core rendering through mem­

ory paging [54] and volumE' roaming [7], reduce t.he angular dependency on t.ext.ure perfor­

mance [57], and enable level of detail techniques [56]. In parallel rendering it has been used

for dat.a distribution [4] and load balancing [36, 29].

2.3 Parallel Rendering

Rendering a high qualit.y image is almost always comput.at.ionally expensive. Given t.he high

demand for computer graphics, it is no surprise t.hat parallelism ha.c; been widely exploited to

speed up rendering times. There are a number of different considerations to be made when

parallelizing the rendering of polygonal mesh dat.a versus volume dat.a. However, there are

enough similarities in some areas to warrant a look at previous work in both endeavours.

Much of the early research on parallel rendering focused on specific network topologies

and cllstom architectures. This includes mesh connected networks [37], hypercube networks

[33], and cllstom parallel rendering systems like Pixel-Flow [13] and the more specialized

Cube-4 architecture [42] (which evolved into the VolumePro add-in board from l'vIitsubishi

15 CHAPTER 2. PREVIOUS WORK

[41]). While these custom solutions can ofFer some considerable benefi ts, the low price and

high flexibility of commodity workstations with GPUs and a simple bus type network has

shifted the focus of research.

There have been several attempts at creating a software framework for parallel render­

ing. Sorne of the best known examples are Chromium [17] and FlowVR 12]. Chromium

manipulates the streams of OpenGL commands using filters so that certain commands are

being routed to each unit. FlowVR avoids the many complexities of OpenGL by instead dis­

tributing its own resources which define geometry, t.extures, and shadel'S. These frameworks

provide a means to parallelize many existing graphics applications with minimal effort. They

also tend to provide an easy way to set up t.hings like display walls a.nd head tracking. The

tradeoff is that it can be difficult to incorporate application specific opt.imizations.

The sort last method probably is the most common for parallel volume rendering. One

of the primary research t.opics for sort last algorithms is how to efficiently transfer and

composite the intermediate images. Binary swap [27] and direct send [15, 11] compositing

schemes are easy to implement and do a fair job of distributing the compositing workload

among the render nodes. SLIC [51] improves direct send compositing primarily through

better load balancing and scheduling. Hardware solutions to the compositing problem are

also available [50, 26, 39] but they are expensive alternatives.

Sort first methods for parallel volume rendering either replicate the data set across all

render nodes [1] or transfer data over the network [4]. AlgorithlTls that replicate the full

data set on each CPU can only scale performance. but not the maximum dat.a set size.

Algorithms that transfer data over the network, or cache data locally, can allow for data

set.s larger than the memory available to a single processing unit.

Neumann [:38] compares the communication costs for sort first versus sort last volume

rendering. He provides a detailed analysis of t.he communication overheads incurred by

each approach as well as some insight into their advantages and disadvantages in terms of

load balancing, performance for different viewing conditions, and compatibility with differ­

ent net.work topologies. He concludes t.hat dynamic sort first distributions can have much

worse communication costs than sort last. However this does not consider the possibility of

R...<;ynchronously loading and caching data or avoiding loading of occluded data..

There are many other methods of distributing a. rendering workload that are less callanan

t han sort first or sort last. Temporal distribu tions assign different frames of an animation

to different. groups of processing units. This provides perfect load balancing but introduces

16 CHAPTER 2. PREVIOUS WORK

undesirable lag in interactive applications. \Vhen rendering for a stereo display it. is possible

to divide t.he work of rendering for each eye, Sort middle techniques use a static distribution

of t.he primit.ives which each unit transforms into camera space and then routes to the unit

responsible for rasterizing the corresponding portion of tIle screen space. GPUs make this

option unappealing since the transform and rasterization of primi tives is hard wired together.

A number of hybrid methods which combine elements of different distributions have also

been devised. Hybrid sort first and sort IRbt [47] tries to rninirnize the amount of compositing

and data loading by dynamically adjusting overlapping partit.ions in both the image and

object space,

Load ba.lancing is an important. research subject for paraJlel volume rendering, as the

overaJl perforrnance is limited by the slowest component, Load balancing algorithms can

be classified as st.atic or dynamic. A static load balancing algorithm partitions the data

once while a dynamic one can update on each frame. Most static algorithms partition

the image or data into many more pieces than there are processing units and then each

processing unit is assigned several of these pieces to render. A typical example of this for

sort first algorithms is assigning alternating scan lines to different units. Overpartioning

the image space causes much more data replication when using a data scalable sort first

approach and overpartitioning the object space causes much higher compositing overheads.

If overpartitioning is not used, static load balancing tends to perform quit.e poorly for SOltl<:'

viewing conditions (particularly in t.he case of sort first),

Dynamic load balancing tends to assign each unit. a single partition and t.hus avoids the

problems associated with overpart.itioning, Each processing unit's partition is updated as

the camera moves in order to maintain a good load balancing. A common technique uses

the relat.ive performance of each rendering node in the previous frame. This has been done

with sort last algorithrns [36, 29] that subdivide the volume int.o bricks and reassign bricks

to nodes that had a higher frame rate (less workload) in previous frames. Despit.e being sort

last, these methods require volume data to be sent over the network or cached locally. Sort,

first algorithms have also used this method of load balancing [1], redistributing the image

space instead of the object space. Any such method relies on frame-to-frame coherence and

thus cannot guarantee any tight bounds on the level of load balancing.

For sort first rendering of polygonal meshes t.here are existing methods that. do not rely

on frame-to-frame coherence [23], but these techniques do not directly t.ranslate to volmne

rendering. The existing method which is most similar to the one we propose is the mesh

17 CHAPTER 2. PREVIOUS WORI{

based adaptive hierarchy decomposition (lVIAHD) [34]. The cost of rendering portions of

the screen is estimated and then split evenly using a hierarchical distribution. The method

of computing the cost measure is completely different since they are working with polygonal

meshes instead of volumes. Our cost measure is computed at a much finer resolution since

we are doing the computations on GPUs and dist.ributing the overhead among the processing

units.

Chapter 3

Data Scalable Sort First Rendering

Sort. first. parallel volume rendering can achieve ideal performance scaling when t.he full dat.a

set. fits int.o t.he memory of a single GPU. To achieve dat.a scaling one must. subdivide the

dat.a and swap t.he pieces to and from the GPU as the camera moves. This presents a

number of challenges which we address here, but first we discuss t.he key differences between

sort first and sort last rendering. Parts of this chapter originally appeared in the work of

rVloloney, Weiskopf, Moller, and St.rengert 1 [32].

3.1 The Parallel Rendering Pipeline

In Figure 3.1 we illustrate a generic parallel rendering pipeline, as well as the paths that

several algorithms take. The red and blue paths through the pipeline correspond t.o the sort

first and sort last algorithms respectively. There are then three possible points to loop back

t.o in each frame. The dot.t.ed line shows the path t.aken by t.he sort last algor-itlnn when

static load balancing is used and by the sort first a.lgorit.hm when the data is smaller than

the lIlemory of a single GPU. The solid line shows the path taken by t.he data scalable sort

first. algorit.hm and the sort. last algorithm with dynamic load balancing when the data does

fit into system memory. \iVhen the data does not fit into RAM, both algorithms must take

the path shown with t.he dashed line.

One obvious advant.age t.o sort. first. techniques is that the blending stage can be skipped

ent.irely. The cost. of blending intermediat.e images can be quite large, particularly when

j@Eurographic:s Association 2007; Reproduced by kind permission of the Eurographics Association.

18

- --- --

19 CHAPTER 3. DATA SCALABLE SORT FIRST RENDERING

,
Data To RAM llll_der Images -.­ Gather

tl.
\

I I
\ Data To GPU ll!I!!![lmages nteraction

\.
'­

Figure 3.1: A generic overview of the parallel DVR pipeline, with several possible paths
traced through it.

a high latency network like ethernet is used. However, sort first algori thms are inherently

bad at distributing the data set. If we want to render a data set that is larger than the

amount of memory available on the CPU, then we must loop all the way back to the data

distribu tion stages of the pipeline and potentially load some data before we can render the

next frame. \iVhile the total size of the volumetric data is larger than total size of tlw

intermediate images, only a small portion of t.he volumetric data needs to be transfered

when the coherence with the previous fralne is high. Volume data loading can also be

cached and communicated in parallel to the rendering process while compositing must be

done sequentially after rendering. Finally, occluded portions of the data could potentially

not be loaded, reducing the overhead further.

A more important advantage of the sort first rendering is the ability to adapt a number

of algorithms that are not efficient (or sometimes even feasible) with a sort last approach.

Algorithms that require information from a previously rendered sample on a ray may require

too much synchronization when the rays are split up among different rendering nodes. Sort

first rendering can keep one set of rays local to each machine and thus allow for such

algorithms to be utilized efficiently.

Sort last rendering achieves data scalability without swapping data but only if it uses a

static load balancing scheme. Static load balancing can work acceptably well for sort last

algorithms, provided the camera is always viewing the full data set and the size difference

due to perspective projection is small. These caveats are less likely to hold true once the

data sets get larger and the user becomes more likely to zoom in and study features that

CHAPTER 3. DATA SCALABLE SORT FIRST RENDERING 20

are small in proportion to the full data set. Sort last rendering with dynamic load balancing

requires data to be redistributed as the view point changes. \iVhen the camera is zoomed out

and rotating the amount of data redistributed is going to be less than for sort first rendering,

but when zoomed in they will both require similar amounts of data to be transfered.

When the whole data set can fit in the memory of a single GPU, sort first will always

be more efficient due to the lack of compositing. As the data set grows in size, at some

point a sort last distribution will become faster. Where this cross over occurs depends on

many parameters, including the data layout, image resolution, point of view, frame-to-frame

coherence, number of samples, cost per sample, bytes per voxel, network performance, and

transfer function. Advanced compression methods which reduce the data size and increase

the fragment cost could shift the threshold upvvarcls when a transfer function with medium

to high opacity is used. This is due to the more efficient visibility culling possible in sort

first algorithms. which shows increasing benefits as the fragment cost goes up.

3.2 Bricking

\iVe divide our data set into a uniform grid of evenly sized bricks. 'We do this once, when

the data is loaded. based on a user defined parameter for the size of the bricks. At the same

time we compute a bit mask for each brick, corresponding to the scalar values that occur

wi thin that brick. This allows us to quickly and accurately cull bricks in the same manner

as used in [7]. Each rendering node loads only the bricks intersected by its view frustum, as

illustrated by a 2D example in Figure 3.2. By subdividing the data set in this manner, we

can reduce the amount of data that must be replicated among the render nodes by reducing

the brick size.

\iVhen choosing a brick size, we must balallce the benefits of haviug a finer granularity

in object space and the increased overheads from having a larger nurnber of bricks. A finer

granularity reduces data replication between rendering nodes along shared planes of the

nodes' view frustums. This replication is illustrated by a 2D example in Figure 3.2. However,

there is a per brick memory overhead since adjacent bricks must share one data value at

every point on their border so that the trilinear interpolation is consistent across bricks.

When using a pre-integrated transfer function [12], two data values must be replicated so

that you can access the values for the back sides of the slabs at the boundaTy. \!\Then bricks

are culled based on the transfer function, having a finer granularity can allow us to perform

21 CHAPTER 3. DATA SCALABLE SORT FIRST RENDERJNG

Figure 3.2: A 2D illustration of how bricking allows data scalability albeit with a memory
overhead. The red hatched bricks are loaded into textures by the node with the left view
frustum, the solid blue bricks are loaded by the node with the right view frustum, and the
solid yellow bricks must be loaded by both. As the viewpoint changes (left vs right image)
the bricks required by each node can change.

a more accurate culling, thus reducing the rendering workload and the amount of data that

must be loaded. A hierarchy of brick sizes has often been used to help balance these factors

but in turn has it's own associated overheads (in particular memory usage).

The rnost significant per brick performance overhead (when using a slice based rendering

engine) is the increased number of vertices that must be generated on the CPU, and sent

t.o the GPU, for the proxy geometry of each brick. To tackle this issue we devise a novel

technique that computes a single vertex 'template' for each frame, which can be used to

render every brick of the same size. This reduces the amount of computation on the CPU

as well as the amount of data that must be transferred t.o, and stored on, the GPU.

3.2.1 Slice Template

\t\Te found that our rendering times were heavily CPU limited when rendering several hun­

dreds or thousands of bricks. This was because hundreds of slice vertices were being com­

puted for every brick for each frame. Since the slices intersect all of the bricks at the same

angle, the only information that is potentially different for each brick is an offset in the

view direction that determines where the first slice intersects t.he brick. Since the number of

22 CHAPTER 3. DATA SCALABLE SORT FIRST RENDERING

slices for each brick differs by at most one, we can compute a slice template by expanding

the brick along the view direction by one slice distance, and then use the vertices at. the

intersection points of this expanded brick and t.he slice planes. Figure 3.3 illustrates this

concept..

,
.......

...­ /

." ~

.......
.......

-­ _.......

,.-'

.......

.......

-" ,"

~
Figure 3.3: An illustration of how the slice templating works. @Eurographics Association
2007; Reproduced by kind permission of the Eurographics Association.

We can use this slice template to render any brick by simply computing the offset along

t.he view direction for the first int.ersection, and then translating the templated slice vertices

along the direction opposite of the view direction. Since the vertices themselves never

change, they can be loaded onto t.he GPU as a vert.ex buffer object once at the beginning

of each frame. The pre-integration texture coordinat.es are computed in a vertex shader

program on the GPU. Since the templated slices are larger than the actual bricks, we apply

user defined OpenGL clip planes to kill any fragments that lie au tside of t.he actual brick.

In order to minimize the number of fragments that. we need to kill, \ve comput.e one

templat.e for each brick size. \iVe lise a single brick size, except at the boundaries when the

size of the data is not evenly divisible by the size of the bricks. This means that we need at

most eight templates. If there are many brick sizes (due to adaptive bricking for instance)

then a few templates of different sizes could be chosen. Each brick could then be rendered

with the smallest template which completely covers the brick.

CHAPTER 3. DATA SCALABLE SORT FIRST RENDERING 23

3.3 Caching

By dividing the object space into bricks and caching the ones that intersect the view frustum,

we can achieve data scalability with a sort first algorithm. This caching requirernent imposes

an additional overhead as data might need to be transferred to the GPU or system memory

during the rendering. However, the amount of data that needs to be loaded should decrease

as the number of processing units increases. Loading can often be done asynchronously ill

a predictive manner, and in a number of scenarios data loading is unavoidable (eg. time

varying data, ou t of core rendering, dynamic load balancing).

The amount of bricks that need to be loaded on any given frame depends on the size

of the frust Lim relative to the bricks, the level of frame to frame coherence, the viewing

conditions, and the method of caching bricks. Since the size of the frustums decrease a.s we

add processing units, the number of bricks that need to be loaded also decreases as long as

the width and height of the frustums are more thalJ those of a couple of bricks. Frame-to­

frame coherence is usually a fairly safe assumption in interactive volume rendering, with the

exception being time varying data, which has to be loaded on every frame anyway. 'Vhen

the camera is rotating around the volume from a distance, the amount of data loading is

much higher than when the camera is zooming in or panning.

We experilnellt with two caching schemes. The simplest method of caching bricks is to

load them as they intersect the frustum, alld once memory runs out start swapping bricks

out in least recently used (LRU) order. The LRU method is simple to implement but cannot

take advantage of asynchronous loading and it suffers from sudden spikes in the amount of

loading that must be done in a frame. If we can assume frame to frame coherence, then we

can try to predict which bricks will be needed in upcoming frames and load them ahead of

time. The simplest way of doing this is to cache bricks that are in close proximity to the

frustulll but not yet intersecting. For the proximity caching method we approximate the

frustum with a cone and record the distance from the center of each brick to the surface

of the cone. \iVe then swap out the bricks that are farthest away from the frustum and

pre-cache the bricks that are closest. to the frustum. We have a user specified limit. on how

ma.ny bricks can be pre-cached in a frame. A more C1dvanced prediction technique may favor

bricks on a certain side of the frustum based on the movement of t.he previous fra.mes.

Currently there are no GPUs that are capable of asynchronously loading and rendering

at the same time. Transfers to the GPU are only asynchronous on the CPU side, which is of

24 CHAPTER 3. DATA SCALABLE SORT FIRST RENDERING

little benefit since we have no substant.ial work t.o do on t.he CPU bet.ween dist.ributing the

image space and rendering. It is probable that future GPU hardware will have this ability

since the manufacturers are striving to make them more general purpose. Even with the

current hardware, there is still a benefit to predictive caching t.o the GPU. We can stabilize

performance by spreading the loading costs across multiple frames instead of having large

spikes in the amount of data that needs to be loaded in a single frame.

We assume t.hat each processing unit has access to enough syst.em RAJ'vi to hold the

entire data set., because we only have a single layer of caching between local system memory

and GPU memory. For a shared melTlOry envirollment this in not a limitatioll, but in a

distributed memory environment a second layer of caching would be required if the data

set is too large to replicate in the system memory of each node. The second caching layer

would swap data in from network or storage devices to system memory. The bandwidth

frolll network and storage is likely to be significantly less than the bandwidth to the GPU \

but the alllount of memory available for caching would be much larger and the loading

could be done asynchronously while the GPU if performing rendering. The senne predictive

caching methods could be used, but the goal would be to take maximum advantage of the

aSyllchronous loading rather thall just reducing spikes in the amount loaded per frame.

Chapter 4

Consistent Dynamic Load

Balancing

Sort first algorithms have the potential to provide more accurate load balancing thi:tn sort

la::;t algorithms due to the finer granularity available in image space versus object space. In

this chapter we present a novel dynamic load balmlcing scheme to give consistent results

regardless of how much coherence there is between fmmes. \Ve do this by working strictly

with data from the current frarne and taking advantage of the processing power of GPLJs.

This approach was originally described by IV1010ney, Weiskopf, Moller, and Strengert [:32],

and the following chapter is based on their work l .

Since we are using a slice based rendering engine, good load balancing is equivalent to

having each GPU render the same number of fragments. Thus \ve need an estimate of how

many fragments contribute to each pixel. If there is no early ray termination, this is directly

proportional to the total length of the ray through a given pixel, that lies within some brick.

4.1 Calculating Per Pixel Rendering Cost

All important a.<;pect of our algorithm is the use of GPUs to compu te the per pixel cost

contributed by thousands of bricks in a timely manner. \Ne can trade off the accuracy for

speed by using approximation techniques for the per pixel cost and a lower resolution pixel

cost map. We can get further speed ups by distributing the computations among processing

1©Eurographics Association 2007; Reproduced by kind permission or the Eurographics Association.

25

26 CHAPTER 4. CONSISTENT DYNAMIC LOAD BALANCING

Figure 4.1: An illustration of the results for the three different methods of cornputing the
per pixel rendering cost for a single brick. The brightness of each pixel represents the
calculated rendering cost. From left to right: accurate method, backface method, and
splatting method.

units. 'Ne provide an overview of how the cost is computed here, with details about the

implementat.ion in Appendix A.4.

\h/e present three methods of computing the rendering cost for the full image space, each

with varying levels of accuracy and computational cost. The methods differ in the manner

they compute the rendering cost for a single brick, but all three methods use additive

blending to sum up the contributions of individual bricks. A visual comparison of the

results generated by the three methods for a single brick is given in Figure 4.1 and the

results for a full data set is shown in Figure 4.4.

The first method is completely accurate. For an initial attempt at the accurate method

we tried rendering the front faces' depth into a buffer and then rendering back faces and

taking the difference of the depths. This was too slow for significant numbers of bricks

because it requires two passes for each brick. Instead, we compute the distance between the

front and back faces in a single pass by rendering the back faces and intersecting a ray frorn

the position each fragment to the eye with the front faces.

If the number of bricks is quite small, then the accurate method has about the same

overhead as the other methods. For a large number of bricks, the accurate method is about

twice as slow as the other two methods on our target architecture (NVIDIA 6800). However,

011 the latest generation NVIDIA 8800 this method is as fast as the two approximating

methods and thus it would always be the method of choice.

The second method splats a sphere for each brick, wi th a diameter equal to the longest

27 CHAPTER 4. CONSISTE iT DYNAMIC LOAD BALANCING

diagonal of the brick. For each brick we render a quad, textured with this spherical footprint,

at the brick's center with a width and height equal to the diameter of the sphere. In order to

accommodate multiple brick sizes, the fragment shader scales the values from the texture by

the size of the brick. This method will obviously assign a rendering cost outside of the brick's

image space footprint, and even within the brick's footprint the assigned rendering cost will

be inaccurate. This method is quite straightforward to implement, can be much faster than

the accurate method, and actually gives good load balancing resul ts under certain viewing

conditions.

The third and final method we implemented draws only the back faces of each brick,

with an estimated rendering cost assigned to each vertex and then linearly interpolated for

each fragment. We ca1c:ulate two costs, one for vertices on the silhouette and one for vertices

inside the brick's footprint. Vertices inside the brick's footprint are assigned a higher cost

than vertices on the silhouette. In reality the cost on the silhouette is always zero, but this

can cause the interpolated cost to drop off too fast since we are not considering the positions

of the front faces at all. If the view direction is almost perpendicular to a face of the brick

then the cost near the silhouette will be relatively high and the cost for the interior will

be relatively low. On the other hand, if the view direction is almost parallel to one of the

brick '5 diagonals then the cost near the silhouettes will be close to zero and the cost in the

interior will be relatively high.

It is also possible to distribute the computation of tlw rendering cost among the pro­

cessing units. Trying to do this in a manner tha.t bala.nces the computational load on each

rendering node leads to a chicken and egg scenario: we are trying t·o load balance the com­

putation of our load balancing. If we can assume frame-to-frame coherence then we can just

nse the screen distribution from the previous frame;. otherwise the best we can do is evenly

tile the image space bounding box of the volume.

4.2 Distributing the Image Space

Once we have computed the rendering cost for each pixel, we want to nse this information

to update the image space decomposition in a manner that distributes the workload evenly.

We divide the screen using a set of rows that each potentially have a different number of

columns. Each portion of the screen associated with a row and column pair is assigned to Olle

processing unit. We utilize this type of distribution due to it's compatibility with parallel

28 CHAPTER 4. CONSISTENT DYNAMIC LOAD BALANCING

Figure 4.2: An illustration of the basic method used to divide the screen space into 8 pieces.
The left most image shows a distribution of rendering cost on the screen (darker pixels
are more expensive). The middle and right images illustrate the row and column splitting
procedure. The red dotted lines highlight the rows and columns of the SAT that must be
searched to find the split lines. The resulting split lines between rows and columns are
shown in solid blue.

environments that have a non-power of two number of processing units. Additionally, since

the decomposition of the screen is only a two level hierarchy it allows us to efficiently

parallelize the load balancing computations.

'0/e find the divisions for the rows first with each one getting a portion of the rendering

workload proportional to the number of processing units (columns) in that row. Then we

split each row up evenly into the appropriate number of columns. We illustrate this process

in Figure 4.2. To do this efficiently we need to be able to quickly compute the total rendering

cost for an area of the image space. Therefore, we compute a Surnmed Area Table (SAT)

of the rendering cost, which allows us to query an area of the image space for its total

rendering cost in constant time. Finding a line to split the screen space ca.n then be done

with a simple binary search along the row or column of the SAT that is perpendicular to the

splitting line. This approach has been used previously for sort first rendering of polygonal

meshes [34].

'0/e use an axis aligned bounding box in the image space to reduce the number of pixels

that are read back from the GPU and processed in the SAT computation. If we are not

parallelizing the computation of the rendering cost, then the ma.ster node computes the per

pixel cost and SAT for the full image space. The master node then computes the Ilnage

space distribution and broadcasts the result to all other nodes.

For a parallel computation of the rendering cost, each processing unit computes the per

pixel rendering cost and SAT for their respective portion of the image space. A master unit

29 CHAPTER 4. CONSISTENT DYNAMIC LOAD BALANCING

Figure 4.3: The left. image shows the screen decomposition lIsed to distribute the render
cost computation among 5 nodes (black lines). Only the right most column of each nodes
SAT (corresponding to the columns of pixels highlighted with a red dotted lines) need to
be used to find the row split lines (solid blue lines). The middle image shows the rows of
SAT information needed to find the columll split lines in a similar fashion. The right image
shows the image decomposition for the next frame.

gathers data from the SATs of all other units in order to compute the screen distribution

which is then broadcast back out to the slaves. As illustrated in Figure 4.3 we only need

to combine the information from the right most column of each node's SAT to compute the

row split lines. To compute the column split lines, we need the SAT information a.long the

top most row of each nodes screen space and any row intersect.ed by a row split line. The

communications take place in t.wo stages. First the master unit gathers the top most row

and right most column of SAT data from all units before computing and broadcasting the

row split lines. Secondly, all units that have row split lines running through their screen

space send the SAT information along those rows to the master node. The master node call

then compute and broadcast the column split points.

Of course we do not need to divide the rendering cost evenly. If we have a heterogeneous

parallel environment it may be desirable to give some processing units more work than

others. This can easily be achieved by keeping track of how long it takes each unit to

process the workloads they have been given, and then using t.his performance measure to

decide how much of the t.ot.al workload each unit should be given.

30 CHAPTER 4. CONSISTENT DYNAMIC LOAD BALANCING

Figure 4.4: The top row of images shows the calculated rendering cost (brightness normalized
for print) for the rendering of the mummy head shown in the bottom row of images. From left
to right on the top row we have the results generated by the backface, accurate, and splatting
methods. The bottom row shows the rendered image with and without the brick outlines
drawn. Each of the eight processing units uses a unique color for the brick boundaries so
that the screen decomposition is visible.

Chapter 5

•Ray Coherent Algorithms In

Parallel Rendering

The malll reason for us exploring sort first approaches to data scalable parallel volume

rendering is due to their compatibility with many volume rendering algorithms. In this

chapter, we discuss our implenwntation of two such algorithms as well as some other pos­

sible candidate algorithms. All of the algorithms benefit from keeping the information and

processing along each ray local to a single processing unit. The load balancing strategy

discussed in Chapter 4 is an example of such an algorithm, but in this chapter we focus on

existing algorithms for volume rendering on a single processing unit that could benefit from

ray coherence when adapteel to a parallel environment.

The first algorithm, discussed in Section 5.1, takes advantage of the locality of all the

information along a viewing ray in order to cull occluded parts of the data. Each processing

unit in a sort last distribution can only cull data from its local portion of the data set.

This can be very inefficient, imagine the case where one unit's portion of the object space

is completely occluded by data on the other units. The second algorithm, discussed in

Section 5.2, is an image space shadowing algorithm that alternates between rendering from

the light's and camera's point of view. To parallelize this algorithm we must do a sort first

decomposition from the light's point of view, so that all the information alollg the shadow

rays is available locally. From the camera's point of view, we then need to composite the

intermediate images like in a sort last rendering pipeline. Lastly, in Section 5.3 .. we discuss

other existing algorithms that coulel benefit from ray coherence when being adapted to a

31

32 CHAPTER 5. R.AY COHERENT ALGORITHMS IN PARALLEL R.ENDERING

parallel environment.

5.1 Occlusion Culling

It has long been observed that many of the fragments processed when rendering a volume

do not contribute anything to the final image. Typically these fragrnents are separated into

two groups: fragments that have zero opacity (empty fragments) and fragments that are

occluded by one or more fragments which have a total opacity of one (occluded fragments).

While we already have a simple (but crude) method of skipping empty fragments by culling

empty bricks, we have not yet exploited occlusion.

We provide two methods of avoiding processing of occluded parts of the data. The first

IS a simple adaptation of an existing approach [22, 45, 46] which uses the depth cullillg

ability of GPUs to speed up the processing of occluded fragments. The "culled" fragments

still have some, though greatly reduced, processing cost and per brick overheads canllot be

avoided. The second method builds on the first by using the new occlusion query feature

on GPUs to test if entire bricks are completely occluded. Loading and relldering of the

occluded bricks can be avoided for that frame, but the queries themselves incur a significant

overhead.

5.1.1 Killing Fragments with Depth Culling

The depth culli!lg feature on GPUs was originally designed to speed up rendering of occluded

fragments in surface based rendering. The ba<:iic idea is to not only store the color of

fragments in the render target, but also some information about the depth of the fragments.

Fragments that are behind a surface that was already rendered could then be quickly culled

by comparing their depth values to the depth values already stored in the render target..

Occlusion in volume rendering is far more complicated as fragments almost !lever have an

opacity of one, and thus we can only say something is occluded once we have composited

together a number of fragments whose total opacity approaches one.

In the multi-pass ray casting approaches [22, 45J the authors were forced to switch render

targets periodically due to the limited number of operations that could be performed in a

shader on older GPUs. However, olle benefit to this switching was that it gave them an

opportunity to do an extra pass which set the depth buffer so that fragments behind opaque

pixels would be culled. To do this they simply mapped the result that had been rendered

CHAPTER 5. RAY COHERENT ALGORITHMS IN PARALLEL RENDERING ~1:1

thus far as a texture onto a full screen quad at the near clip plane, and any pixels beneath

an opaci ty threshold were kiIJed in th<:> shad<:>r. The pixels that were not killed (the opaque

ones) would then set the value in the depth buffer to the depth of the near clip plane. With

the depth test set to cull fragments with a depth value greater than what is stored in the

buffer, this would depth cull fragments that would project to opaque pixels.

Periodically doing an extra pass to update the depth buffer incurs an overhead propor­

tional to the number of updates (and to a lesser degree, the number of pixels updated).

Ruijters et a1. do an update once for every brick in a subdivided data set [46] by rendering

the front faces of each brick's bounding box into the depth buffer and kiIJing pixels in the

salDe manner described above. Since many bricks do not overlap at all in image spa.ce, we

llave found that it is beneficial to update the depth buffer even less frequently. Therefore,

we render a chunk of bricks at a time, and update the depth buffer in between each chunk.

A smaIJer chnnk size potentially results in a more accurate occlusion culling hut also a. larger

overhead.

,,yhile reducing the number of update pa.sses is going to have the biggest effect on

performance, we also try to minimize the cost associated with each update pass. To do this,

we do not change the render target (as is required in multi-pass raycasting) but instead just

disable color olltput for the update pass. Also, we do not need to render a full screen quad

for each update but rather we can just render a quad which covers the bricks in the last

chunk. To do this we just keep track of an approximate bounding box in the image space

RS we render each chunk.

A front to back ordering of the bricks in a data set is not unique, and which ordering WE'

choose affects our early ray termination algorithm. Since we cannot capture any occlusion

happening between bricks in the same chunk, we would like the bricks in a chunk to be

spread out over the image space rather than overlapping. We can achieve this by generating

our front to back order slab by slab, ""here we choose t.he set of slabs perpendicular to the

axis most aligned with the view direction. ,,ye find the first brick in our front to back order

by finding the set of dividing planes (between the bricks in the slab) that our view point

lies in between. Starting from this point we can build our front to back order by simply

iterating outwards along the rows and columns of the slab. ,,ye can use tbe same order in

the following slabs.

Using these basic optimizations, we try to determine an appropriate chunk size. The

ideal chunk size depends on the data set, the transfer function, the viewing angle, and even

34 CHAPTER 5. RAY COHERENT ALGORITHMS IN PARALLEL RENDERING

the type of GPU we are using. Optimizing for all these parameters on the fly is intractable.

Instead we try to find a good value for the general case. A good chunk size should have

little overhead when no occlusion occurs, and at the same time it should be close to optimal

performance when occlusion does occur.

5.1.2 Culling Bricks with Occlusion Queries

vVe can use the above method for killing fragments in conjunction with the occlusion query

feature on GPUs to cull full bricks which are completely occluded. Occlusion queries allow a

program to know how many fragments were actually rendered (passed the depth and stencil

test) for a group of primitives. Thus if we were to render the bounding box of a brick (with

the depth buffer setup as described above) and we get a fragment count of zero, then we

know that the brick can be skipped entirely.

There is however a much larger overhead for performing occlusion queries compared to

just depth culling. The nature of the overhead is also quite complex as it depends not just on

the nurnber of queries ma.de, but also how the querieb are dispersed through the rendering

process. Dispatching a small number of queries at even intervals during the rendering

process can result in a greater overhead than dispatching a large number of queries in rapid

succession. This behaviour seems to indicate that the occlusion queries disrupt the How of

data through the GPU resulting in reduced throughput. In order to reduce the overhead

from the occlusion queries we must then try to reduce the number of chunks of bricks that

we perform the queries for, rather than just reducing the number of bricks we query in each

chunk.

If we have frame-to-frame coherence, we can use the culling results from previous frames

to guide our choice of which chunks to dispatch occlusion queries for. As a simple heuristic

we allow the user to specify a threshold which defines the minimum percentage of bricks

that must be culled in a chunk for the speedup to outweigh the overhead. TIle threshold

value can be determined by the ratio of the overhead to the time it takes to render a brick

that is getting culled by the dept.h test. Each time we perform the queries we count the

number of bricks that get occluded in each chunk and the chunks that surpass the threshold

will be queried again in t.he next frame.

If we only query chunks that surpass t.he threshold then the results for the other chunks

will go stale over time. To rectify this, we use a second paramet.er for the probabili ty of

querying a chunk which is below the threshold. The discrete probability distribution for the

CHAPTER 5. RAY COHERENT ALGORITHMS IN PARALLEL RENDERING 35

age of a. chunk is a geometric distribution, so the expected value for the age of chunk is 7
where p is the probability that a chunk is queried. As an example, we could set the query

probability to ten percent and then the expected value for the age of the queries would be

nine frames.

5.2 Volumetric Shadowing

Shadowing effects can provide an additional depth cue to a user exploring a volumetric data

set. In the past this was done by creating a corresponding shadow volume which describes

the amount of light arriving at any point in the data. Computing such a shadow volume is

expensive and must be done every time tha.t the light position or transfer function changes.

The ability to interactively change the light position and transfer function is key to efficient

volume exploration. Also, shadow volume approaches can suffer from attenuation leakage

due to insufficient resolution.

A new image space approach to volume shadowing that avoids these problems has since

been proposed [20, 61]. Instead of rendering the slices so that they are aligned with the

camera, they are instead aligned with the half angle between the camera and the light.

This allows the same slice to be rendered from both the camera's and light's points of view.

\iVe can then render the volume slice by slice, with each slice being rendered first from the

camera's point of view, and then from the light's. 'When the next slice is rendered from the

carnera's point of view, the previous result from the light's point of view is mapped as a

texture. The opacity of t.his texture then tells us how much light has been attenuated thus

far. This approach allows for interactive updates of the light and transfer function. requires

ffl.r less memory, and avoids issues with attenuation leakage. By combining this image space

shadowing algorithm with a hybrid partitioning scheme, we are able to perform interactive

shadowed volume rendering on data sets which are too large to fit on a single GPU.

5.2.1 Hybrid Partitioning

In the same way that we exploited the coherence of viewing rays for performing visibility

culling, we can use a sort first distribution of the light's image space in order to make

the light rays coherent on each processing unit. The screen space for the light map is

divided into regions and the corresponding frustums of each unit are intersected against the

bricks. The bricks that intersect the light frustum must also be rendered from the camera's

36 CHAPTER 5. RAY COHERENT ALGORITHMS IN PARALLEL RENDERING

point of view. Obviollsly, when the camera's view is not perfectly aligned with the light's,

the intermediate images produced by each node will overlap. Therefore, as in sort last

partitioning, we require a compositing stage to combine t.he samples along the viewing rays

and create the final image. A two dimensional version of this hybrid partitioning scheme is

illustrated in the left imagl' of Figure 5.1.

Figure 5.1: The left image shows a two dimensional illustration of the hybrid partitioning.
The light frustum is divided into two pieces and the solid blue bricks are rendered by the
unit with the left frustum while the red hatched bricks are rendered by the unit with the
right frustum. The bricks that are solid yelJow must be clipped aga.inst the shared plane of
the two frustums and each unit renders their respective portions. The right image shows
how the staircasing effect that occurs if the bricks are not clipped can create cycles in the
compositing order. A viewing ray (shown with the dashed black line) passes from one unit's
set. of bricks to the other's and back again.

The processing u ni t.s cannot just render their portions of the data brick by brick as we

have done for standard volume rendering. For many viewing conditions there is no ordering

of the bricks t.hat will give correct composit.ing results for hoth the light and the camera.

While this could potentially be overcome by rendering sets of bricks into different buffers

and then combining the results, this would add significant complexity and computational

overhead. Instead we render the data slice by slice by <..:Onsecutively rendering the pieces

of each slice from each of the bricks it intersects. This incurs a significant overhead since

we must change some of the rendering state, such as the current texture, for every piece of

every slice. Due to this additional overhead, the ideal brick size is much larger for shadowed

rendering compared to standard volume rendering.

37 CHAPTER 5. RAY COHERENT ALGORITHMS IN PARALLEL RENDERING

Bricks that are shared by neighboring processing units must be dealt with some how. It

is usually not possible to just assign whole bricks to one node or the other and have a valid

compositing order. Although the bricks themselves are convex, the set of bricks that are

intersecting a unit's frustum are likely to have concavities due to staircasing. As shown in

the right image of Figure 5.1, this creates cycles in the compositing order whenever viewing

rays cross from one unit's set of bricks into another's and then back into the first unit's set

again. Therefore we clip the bricks with the frustum planes to create convex pieces, and

have each unit render their respective portions of the shared bricks. The clipping ca.n be

seen in Figure 5.2 which shows the results from a shadowed rendering with two processing

u ni ts.

5.2.2 Direct Send Compositing

For the compositing stage we choose direct send compositing, due to its simplicity and

efficiency when handling non power of two numbers of nodes. Binary swap compositing

requires some processing units to remain idle for the first compositing stage if the number

of units is not a power of two. For our method of distributing the light's screen space, both

the number of rows and the number of columns in the screen space distribution would have

to be powers of two in order to have no idle units during binary swap compositing. This is

because, in order to a.void cycles in the compositing order, we must composite the images

from the units that belong to the sallle row in the image space distribution before we can

composite the results from the different rows.

For direct send compositing, each unit is assigned a portion of the screen for which they

will perfonlJ all of the compositing calculations. Each unit must read back the full screen

space and then do an all-to-all communication that scatters the portions of the screen that

are not being composited locally and gathers from all units the portion of the screen that is

being composited locally. Each unit can then composite the intermediate results gathered

from the other units in depth order.

vVe do not take advantage of the potential sparsity of the image data. That is, we assume

every pixel (inside the image space bounding box of the full volllIne) needs to be transferred

and composited. A run length encoding scheme would eliminate this issue, but we do not

pursue this as it has heen well studied. If the image space bounding box of the volume

contains P pixels and we have N processing units, then each unit will send, receive, and

composite NN 1 P pixels. This means that as the number of processing units increases, we

CHAPTER 5. RAY COHERENT ALGORITHMS IN PARALLEL RENDERING 38

converge towards a fixed compositing cost which is linearly related to the number of pixels.

One pragmatic issue with the scalability of image compositing is that the total number

of pixels being transferred over the network increases at. a rate of (N - l)P. This can

potentially cause reduced performance as the number of unit.s increases due to congestiou

on the network.

\lVe minimize t.he composit.ing cost by overlapping the read back of pixels from the GPU,

t.he t.ransfer of pixels over the net.work, and t.he compositing computations. The result is that.

our entire compositing t.ime is reduced to slight.ly more than the time it takes to communicate

the pixels over the network, since that. is the bott.leneck in our parallel environmeut. For a

detailed description of how we implemented our overlapped compositing we refer our readers

to Appendix A.5. Even with this optimization, the composit.ing cost on gigabit ethernet

can become quit.e significant. for moderate sizes.

5.3 Other Potential Algorithms

1\iIost algorithms which process t.he data along a set of rays are going to benefit from ray co­

herence when adapted to a sort first parallel distribution. Even standard emission absorption

volume rendering performance can benefit from ray coherence through reduced communica­

tion overheads. Algorithms that benefit from reduced synchronization overheads are likely

to be the most interesting. Acceleration techniques like occlusion culling can just avoid

synchronization at the cost of accuracy. For rendering algorithms like shadowt'd volume

rendering this is not an option, and the synchronization required for doing shadO\ved ren­

dering wit.h an object space distribution would leave the processing units idle for most of

each frame.

Spect.ral effects like inelastic scatt.ering and selective absorpt.ion [40, 52] can be used to

make rendered images more realist.ic and informative. Nest.ed st.ructures of interest within

the volume can be made visually distinct while maintaining surface feat.ures by having each

one scatter and absorb different frequencins of light. These effects depend of the spectrum

of light traveling along the rays, which changes as t.he ray steps through t.he volume. Since

each rendered sample requires information gained from processing the preceding samples

along the ray, the synchronization overhead is simply too high when rays are split among

processing unit.s.

Visualization techniques that utilize depth peeling, such as opacity peeling [14] and

39 CHAPTER 5. RAY COHERENT ALGORITHMS IN PARALLEL RENDERING

feature peeling [28], are an alternative for visualizing nested structures within the volume

data. These techniques split the volume into layers based on some criteria which is evaluated

as the rays pass through the volume. In opacity peeling the criteria is a threshold for the

accumulated opacity of rays. Feature peeling uses a more sophisticated criteria that looks

for transitions in the scalar values along each ray. Both approaches require information

along the ray to be available locally if adapted to a parallel environment.

Using an image based metric for level of detail techniques [55] results in higher quality

images than those a.cquired with a level of detail algorithm using an object based metric.

The reason that image based rnetrics are superior, is that they can take the visibility of a

brick into consideration when choosing its level of detail. The downside is that the image

based metric must be periodically recOlnputed as the viewpoint changes, which can be an

expensive task. In a parallel environment. a ray coherent workload distribution would allow

each processing uni t to compute the image space metric for the bricks they are rendering

without any additional communication or synchronization.

40 CHAPTER 5. RAY COHERENT ALGORITHMS IN PARALLEL RENDERING

Figure 5.2: An example of shadowed volume rendering on two processing units. The first
row shows the intermediate images for the two units with the brick outlines being drawn.
The second row shows the intermediate images without the brick outlines shown. The last
row shows the final image, with and without the brick outlines.

Chapter 6

Results

One of the important contributions of this thesis is the detailed look at the various bottle­

necks in parallel volume rendering. For an overview of both the software and hardware in

our parallel rendering system we direct the reader to Appendix A.I. The reader can also

refer to Appendix A.2 for details about the data sets that are used for the experiments.

The three most. costly parts of the parallel rendering pipeline are: rendering (Section

6.1), data loading (Section 6.2), and compositing (Section 6.~1). We study each of these

costs independently as well as how they interact and change when we use a sort first vs sort

last dist.ribution. The results for our novel load balancing algorithm, with a comparison to

existing approaches, is given in Section 6.4. The two ray coherent algorithms we adapted for

using in a parallel environment, visibility culling and shadowing, are studied ill Sections 6.5

and 6.6 respectively. Finally we look at the overall performance achieved by our rendering

system on a number of large real world data sets ill Section 6.7.

6.1 Baseline Rendering Performance

The most important factor in the performance of our parallel rendering system is the ren­

dering performance of the individual processing units. Since we need to subdivide the data

set into bricks for data scalable sort first rendering, we experiment with how rendering

performance is affect.ed by the size of t.he bricks. 'sing small bricks improves the render­

ing performance by providing better cache coherence and a finer granularity for the empty

space leaping. However, large numbers of bricks reduce the rendering performance due to

per brick overheads.

41

--

42 CHAPTER 6. R.ESULTS

6.1.1 Per Brick Overheads

Existing methods for rendering a bricked data set with view aligned slices generate the proxy

geometry for every brick individually. Once the number of bricks enter the hundreds or

thousands, the rendering performance can become limited by this overhead. Our templated

slicing technique discussed in Section 3.2 minimizes the overhead a.ssociated with rendering

each brick.

Since the overhead we are targeting corresponds to the number of bricks, not the image

size, we use a 1282 view port and 5 different brick sizes on the same 2563 volume. In Table 6.1

the templated slice technique is shown to ou tperform t he standard slicing technique by as

much as a factor of seven. The plot in Figure 6.1 shows that while the performance scales

linearly in the number of bricks both with and without templates, the slope is much greater

without templates. It's important to note that although the per brick overhead is greatly

reduced by using slice templates, it can still be significant if the number of bricks is very

large.

400

300

..-­

-5 '"
200(l) - - 0 - - StandardE ---t:s-- TemplateE=

100

_-IT

0

0 1000 2000 3000 4000 5000 6000 7000

Bricks

Figure 6.1: A graph of the performance of the templated slicing technique compared to the
standard slicing technique. \Ve render the 2563 radial data set into a 1282 view port. \Ve
use a variety of power-of-two brick sizes, which results in the data set being SlJ bdivided into
different numbers of bricks. No acceleration techniques are used, so the transfer functioll is
irrelevant.

43 CHAPTER 6. RESULTS

Table 6.1: A table of the performance of the templated slicing technique compared to the
standard slicing technique. We render the 2563 radial data set into a 1282 view port. VVe
use a variety of power-of-two brick sizes, which results in the data set being subdivided
into different numbers of bricks. No acceleration techniques are used .. so the transfer func­
tion is irrelevant. @Eurographics Association 2007; Reproduced by kind permission of the
Eurographics Association.

Rendering Time (m5)

Bricks Standard Templated Speed Up

1 3.78 ~).77 1.00
9 9.05 5.2~~ 1.73
25 24.21 5.84 4.15
729 46.41 9.21 5.04
6859 367.70 53.33 6.89

6.1.2 Fragment Processing and Data Throughput

\Vhen all of the data needed for rendering is resident in texture memory, there are five

essential factors in the performance of standard volume rendering of a bricked data set: the

number of fragments being proce5sed, the amount of processing that must be done for each

fragment, the amount of data that must be a.ccessed for each fragment, the level of cache

coherence, and the per brick overheads.

The level of cache coherence on the GPU depends on the memory footprint of t.he

brick text.ures, and whether or not the driver doe5 any additional processing to order three

dimensional chunks of data in a more linear fa..<-;hion (eg. space filling curves). For NVidia

6800 GPUs, only textures with power-of-two (POT) dimensions are processed in the driver

to improve their ca.ching performance for different viewing angles. Textures with non-powf'r­

of-two (NPOT) dimensions have the same performance when looking down the z-axis but

much worse performance when looking from any other angle. This is clearly illustrated in

Figure 6.2 where we plot the rendering times for each frame of an animation which starts

off looking down the z-axis and then does one full rotation around the y-axis.

In order to relate rendering performance to the size of the bricks that we subdivide

the data into, we find the average performance for a number of brick sizes when rendering

a 2563 volume that is being rotated around the y-axis. \Ve do this twice for a texture

with one byte per sample and show the results in Figure 6.3. For one set of results we

44 CHAPTER 6. RESULTS

140

120 /"--v
/ "­

/ "	 / \/ '\
100	 I '\I '\ I	 \I	 \ I	 \I	 \ I	 \80 I	 \ I	 \I	 \ I	 \I	 \60	 I \I	 \ --------- 32x32x32

I	 \I	 \ 31x31x31I	 \I	 \40 I	 \I	 \
I	 \I	 \

I	 \20 r	 \ I	 \
./ A	 \

O+--------r-------.....,---------.---------.
o	 90 180 270 360

Rotation Angle (degrees)

Figure 6.2: The dift'erence in rendering performance for a power-of-two and non-power-of­
two brick size. We render the 256:3 radial data set into a 2562 view port with the slicing
distance equal to the sampling distance. Vie are not using allY acceleration techniques.

are rendering approximately one fragment for every sample (2562 view port and the slicing

distance equals the sampling distance) and for the other set of results we are rendering

approximately eight fragments per sample (5122 view port and the slicing distance is double

the sampling distance). We can see that POT brick sizes drastically outperform NPOT

brick sizes. For POT brick sizes, both 32.3 and 64.3 sizes show a performance benefit due to

the fact that they are small enough to fit in cache. However once the brick size is reduced to

16.3 the bricking overheads cause the performance to plummet. Once we start to sample the

data set with a larger number of fragments, the benefits from the bricks fitting into cache

are reduced (although we still see some benefit for 32.3 and 643 brick sizes). The difference

between POT and NPOT performance is also reduced when rendering more fragments, but

remains significant.

In Figure 6.4 we show results for the same set of tests run on a texture with four one bvte

components per sample. For POT sizes we consistently see slightly worse performance as we

decrease the brick size. which indicates that the caching benefits have been reduced to the

point that they are less than the costs from bricking overheads. The difference between POT

and NPOT textures has also been reduced drastically. vVhen rendering eight. fragments per

sample, a brick size of 323 gives only thirty nine percent more throughput than a brick size

45 CHAPTER 6. RESULTS

1600

"0 1400
t:l
0
()
Il)

(/J
1200

'-
Il)

0. 1000
Il) '"

0.. 800
C<l

(/J

""'0 600

8	 r==o==P"oT1
~OTj

'"l:l
400~

~
 200	 ,'------------­r
0

0 50 100 150 200 250 300
Brick Size Along One Dimension (# samples)

350

1S 300
o	 -0>-----0
()

Il)

(/J 250
' ­o
0.

~ 200 /	 --<)-- POT I0.. ---NPOT8 1

~ 150

""'o

'" ~ 100

~ 50

0+-----.---------.-------,-------.-----..,..---------,
o	 50 100 150 200 250 300

Brick Size Along One Dimension (# samples)

Figure 6.3: Rendering throughput for a texture with a single one byte component per
sample and various brick sizes. \iVe render the 2563 radial data set without any acceleration
tec:hniqlles. The top graph shows the throughput when approximately one fragment is
drawn for every voxel and the bottom graph shows the same t.hing when approximately
eight fragments are drawn for every voxel. The scaling of the y-axis is difl'erent so that
details are visible.

46 CHAPTER 6. RESULTS

300

"Cl
I::l 250

0
u
11)

(/)
 ... 200
II)

0..

II) '"
0.. 150
E
(/) '"

0 100

I::

:2
'"

50
~

0

0 50 100 150 200 250 300

Brick Size Along One Dimension (# samples)

70

"Cl 60
I::l L~--<(>->-----_O-------~---l=t--<: ~bT I
0
u
II)

50
(/) ...
II)

0..

II) '" 40

0..
E

(/)'" 30

......
0

'"I:: 20

~

~ 10

0

0 50 100 150 200 250 300

Brick Size Along One Dimension (# samples)

Figure 6.4: Rendering throughput for a text.ure wit.h four one byt.e components per sample
and various brick sizes. \Ve render the 2563 radial data set without any acceleration tech­
niques. The top graph shows the throughput when approximately one fragment is drawn
for every voxel and the bottom graph shows the same t.hing when approximately eight fra.g­
ments are drawn for every voxel. The scaling of the y-axis is different so that details are
visible.

CHAPTER 6. RESULTS 47

of 313 . For comparison, when the texture had only one byte per sample the difference was

over three hundred percent.

6.1.3 Empty Space Leaping

vVhile smaller brick sizes can show an improvement in performance for some scenarios due to

cache coherence, a much greater improvement can be achieved by culling empty bricks. vVe

say a brick is empty when all of its data values are mapped to zero opacity by the transfer

function. Generally the smaller the brick size the more accurate the culling. However,

the level of culling depends heavily on the layout of the data set and the current transfer

function. vVe experiment with the rnummy head data set and the transfer function used in

Figure 6.18.

In Table 6.2 we list the culling performance for a number of brick sizes. vVhile the

total number of sarnples rendered monotonically decreases with the brick siz,e, the number

of samples stored can actually increase. This is due to the duplicated samples at brick

boundaries and the data set not being evenly divisible by the the brick size. The latter

problem is especially pronounced for larger brick sizes when the size of all bricks is fixed

(the third column in the table). If instead we allow bricks at the boundary to be smaller

(just rOUlrded up to the next power-of-two in each dimension) then this problem can be

alleviated (the fourth column in the table). The problem with variable brick sizes is that it

can make it more complicated and costly to swap textmes of different sizes between system

memory and GPU memory.

For this setup, we get over double the performance using a brick size of :323 compared

to rendering the data set as one large brick. This is because of the cache coherence shown

in the previous section as well as the reduction in the number of samples rendered. Using

the even smaller brick size of 163 results in a further reduction in the number of samples

rendered, but the performance is worse than that of one large brick since the per brick

overheads dominate the rendering time.

6.2 Data Loading

Data scalable sort first rendering requires some amount of data is loaded to the GPU when

the camera move::;. The amount of loading depends on the size of the frustum relative to

the size of the bricks and the level of frame-to-frame coherence. How mnch of an impact

48 CHAPTER 6. RESULTS

Table 6.2: The accuracy and performance of empty space leaping with variolls POT brick
sizes. The frames per second results are for rendering the mummy head data set into a 5122

view port with the distance between slices equal to the distance between samples.

Millions of Samples

Brick Size Rendered Stored (fixed) Stored (variable) FPS

163 42.24 80.15 79.53 6.2
323 57.85 79.89 79.89 15.4
643 82.53 108.00 104.07 10.4
1283 102.03 171.97 112.20 7.9
2563 103.46 218.10 136.84 7.9
5123 104.04 134.22 134.22 7.1

the loading has on performance depends on the bandwidth available from system memory

to CPU memory and the caching algori thm lIsed.

6.2.1 Bandwidth to Texture Memory

The two factors that determine the bandwidth to texture memory are the size of the textures

being loaded and their format. We use brick sizes in the range of 323 to 643 with both four

component and single component textures. For the four component textures we use the

BCRA format since this is the internal format for eight bit textures on NVidia CPUs. For

single component textures we use the ALPHA format. We tl':-;t fOllr different POT brick

sizes for the four component textures (323 , 32 x 32 x 64, :32 x 64 x 64, and 643) and two for

the single component textures (323 and 643). For the NPOT tests we subtracted one from

e;-1ch of the dimensions of these brick sizes. The results a.re given in Figure 6.5.

Since NPOT textures are not processed by the CPU driver before upload, it is possible

to avoid copying the texture into the driver's memory and load NPOT textures directly to

the CPU by using pixel buffer objects (PBOs). This results in almost double the bandwidth

in the best case. However, for very small textures the bandwidth can actually be worse with

PBOs. Four component textures always outperform single component textures, but by a

much larger margin for NPOT brick sizes. The ideal texture size is always 256KB regardless

of the texture format.

There is almost an inverse relationship between the rendering performance and loading

49 CHAPTER 6. RESULTS

1000

--­<J}

--­CO
~

800

600

/
'-'
..0
:0
.~

-0
§

CO

400 ---<>-- BGRA - POT
--[}- BGRA - NPOT No PBO
~ BGRA - NPOT PBO

200 -X- ALPHA-POT
--*- ALPHA - NPOT No PBO
--0- ALPHA - l\'POT PBO

0
0 200 400 600 800 1000 1200

Brick Size (KB)

Figure 6.5: Available bandwidth to texture memory for various brick sizes and formats.

performance for the various texture formats. 'Vhile POT brick sizes and single component

textures achieve superior rendering perforrnallce, NPOT brick sizes and four componcnt

textures are capable of achieving significantly better loading performance. Since we have a

static data set the rendering performance is more important even with a data scalable sort

first distri bu tion. If the data set was time varying or required ou t-of-core rendering, then

the data loading band"width may become morc relevant.

6.2.2 Caching Performance

Provided that we have frame-to-frame coherence, the average number of bricks loaded on a

frame will be quite low. However, the number of bricks being loaded on any single frame can

be quite high. This is because the loading occurs in spurts where ma.ny bricks are loaded on

one frame and then none are loaded on the next several frames. This is undesirable when

trying to interactively explore a data set because of the sudden slow down when a spurt of

loading occurs. To combat this we try loading some of the bricks in close proximity to the

frusturn on frames where the loa.ding requirements are small. This will result in more bricks

being loaded in total but in a more consistent fashion.

\Ve compare the proximity caching algorithm to the naive LRU caching algorithm that

just loads bricks as they intersect the frustum. 'Ve render the mummy head data set wi th

50 CHAPTER 6. RESULTS

four component textures and a bricks size of 323 . This results in 320MB of data after

culling empty bricks. We set the maximum amount of texture memory to be used as a

buffer by each render unit to be 230MB. For these tests Wf' use a recorded animation of a

user exploring a data set. The animation includes rotation, panning, and zooming motions.

The results are compiled into Table 6.3.

'vVf' can see that even with a preloading threshold as low as five bricks per frame there is

a large reduction in the number of frames where a spurt of loading occurs. With a threshold

of fifteen bricks per frame the loading spurts are almost eliminated. With tour component

textures and a brick size of 323 it takes 3.5 milliseconds to load 15 bricks. FinaJly, we can

see that when we increase the number of rendering nodes the data loading requirements

decrease in tandem with the size of each render unit's frustum.

Table 6.3: A comparison of the simple LRU caching algorithm and the proximity caching
algorithm. The threshold value is the limit on the number of bricks being preloaded in the
proximity caching algorithm. The results from using four and nine render UlJits are shown.
'liVe take the average number of frames above the threshold among all the render units.
Results are for the mummy head data set with a brick size of 323 .

Average Percentagf' of Frames above Threshold

Four Render Units Nine Render Units

Thrf'shold LRU Proximity LRU Proximity

5 11.65% 2.25% 10.53% 1.54%
10 6.52% 0.59::< 5.67Yc 0.37%
15 4.38% O.09Yc 3.33% 0.09%
20 2.96o/r 0.06::< 2.25% 0.05%

6.3 Compositing

Generally speaking, compositing is a process of combining multiple images into a single

image. The two types of compositing we are interested in are alpha compositing (or blending)

and final gather compositing. Blending takes a number of images and combines them in

depth order using the over and under compositing operators. Final gather cornpositing

simply takes a number of images and tiles them togethf'r to get a single larger image.

\Vhile sort first rendering algorithms at most need to perform final gather compositing, sort

51 CHAPTER 6. RESULTS

last algorithms and the hybrid algorithm we propose in Section 5.2 must do both types of

compositing.

6.3.1 Blending

In Figure 6.6 we plot the performance of our synchronous and asynchronous implementations

of direct send compositing for a one mega pixel image. We also plot the time needed

for just the communication portion of the synchronous implementation. As expected, the

asynchronous implementation is much more efficient as it incurs just a small overhead on

top of the communication time. This overhead comes from the reduction in bandwidth due

to the fragmentation of the packets of data and the fact that synchronization is reduced but

not eliminated.

140

120

100

80

60

---<>--- Communication Only (sync)
40 -{}-- Total Time (sync)

E Total Time (async)

20

O-+---------.------------r---------r---------,
2 3 4 5 6

Processing Units

Figme 6.6: A comparison of the performance of our synchronous and asynchronous imple­
mentations of direct send compositing for a one mega pixel image.

Since the blending cost converges to a constant value a.s we increase the I1l111lber of pro­

cessing units, we show the image scaling performance for our asynchronous implementation

using six processing units in Figure 6.7. The computation time is linear in the number of

pixels as expected, but even with a moderate image size of one mega pixel we are already

limi ted to a maximum frame rate of abou t ten frames per second. If we also consider the

final gather time, the maximum frame rate is even lower.

52 CHAPTER 6. RESULTS

100

90

80

70
.--..
V> 60
S
d) 50
E

f= 40

30

20

10

0
0 200000 400000 600000 800000 1000000

Pixels

Figure 6.7: The scaling behaviour, in relation to the image size, of our asynchronous com­
positing implementation with six processing unit::;.

6.3.2 Final Gather Compositing

In our parallel environment we have a single machine that acts as the vIew client. This

machine handles user interaction by ::;ending the appropriate requests to the rendering units

and then receiving and displaying the resulting image(s). The images can either be gathered

into a single packet on the head render unit and then sent to the view client all at once or

the view client itself can receive the individual packets from each render unit. If the network

connection between the render units has a much lower latency than the connection to the

view client then the former method could be preferable. In our parallel environment the

network connection is always gigabit. ethernet and so we use the latter method to reduce

the total number of pixels transmitted.

Since the total amount. of data being sent over the network for the final gather stage does

not increase as we add processing units, we are unlikely to run into congestion problems

when scaling up our rendering cluster. The difference between doing a final gather with

six units and one unit is at most. a few milliseconds. The performance of the final gather

stage then depends solely on t.he bandwidth and latency of network. Since our view client. is

connected to the same switch as the render units, the latency is negligible. Our experiments

show about 95 MB/s bandwidth with TCP lIP over gigabit ethernet. For a one mega pixel

53 CHAPTER 6. RESULTS

image with four bytes per pixel it would take about forty-two milliseconds to complete the

final gather. Just like for the blending stage, compression could improve this performance

considerably.

6.4 Load Balancing Results

No matter how accurate a load balancing algorithm is, it is Oldy useful if t.he computat.ional

cost is relatively small compared to the rendering cost. Much like t.he rendering process itself,

cOlnputing the per pixel rendering cost for our load balancing algorithm is an embancu.;singly

parallel t.ask. This allows us to compute a per pixel cost both quickly and accurately by

utilizing t.he immense processing power of CPUs. vVe can trade off accuracy in favor of

comput.ational efficiency by reducing the resolution we comput.e t.he pixel cost at and using

approximate techniques to compute the cost of a brick. \Ve reduce the overhead even further

by distributing the computations arnong processing units. In this section. we compare how

these para.meters affect the resulting overheads and qua.lity of our load balancing algorithrn.

6.4.1 Computation Time

For a data set. that has not been subdivided, that is to say the load balancing is computed for

a single brick. there is essentially no difference in the performance of our three rnethods for

computing the per pixel cost. However, as shown in Figure 6.8, when the number of bricks

increases we see an increasing margin between the performance of the accurate method and

the two approximate methods. On more recent CPU architectures this margin does not

exist and thus the accura.te method should always be used, but for our target a.rchitecture

the cost of using the accurate method is likely to be too high when the number of bricks is

large.

vVe show the image scaling results for all three methods of computing the per pixel

rendering cost with 729 bricks in Figure 6.9. \Ve can :,iee that the image scaling reslllts

are quite similar for all three lIletlJOds. with the splatting method being slightly worse due

to it drawing out.side the bricks' image space footprints. The accurate method becomes

more attractive as the resolution increases since the relative differencE' between accurate

and approximate methods decreases. For any of the three methods, the overhead becomes

quite significaut as we approach a resolution of one mega pixel. In order to further reduce the

processing time, we can distribute the load bala.ncing computations among the processing

54 CHAPTER 6. RESULTS

80

70

60 --{]-- Accurate

---<>---- Backface

,-., 50

5
<J}

<I.) 40
E
b 30

20

10

0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

of Bricks

Figure 6.8: The overheads for the accurate and backface methods of computing the per
pixel rendering cost. We compute the cost at a resolution of 1282 and vary the number of
bricks. The results for the splatting method are very similar to the backface method and
thus are not shown.

units.

In Figure 6.10 we show how the performance of our load balancing algori thm scales for

both the accurate and backface methods. 'vVe process 9072 bricks and compute the cost

at a resolution of one mega pixel. We plot a line for just the computation perforrnanc:e as

well as the tota.l performance (computation plus communication and synchronization). The

communication time is consistently less than two milliseconds for this resolution, regardless

of how many processing units are used. However the synchronization cost from load imbal­

ance adds over two milliseconds to this overhead. Since the computation is much faster for

the backface method, the communication and synchronization overhead has a larger irnpact

on the scaling performance.

6.4.2 Load Balancing Quality

In order to quantify how well the load balancing works, we take the difference between the

render times of the fastest and slowest processing unit for each frame. 'vVe then average

this over all frames and normalize by the average render time. The result rs a measure

of thE' deviation in performance among units as a percentage of the average render time.

CHAPTER 6. RESULTS 55

60

50

40
,-.,

<Il

S
'-"
Il) 30
S

F=
---<>-- Accurate20 --0-- Backfam
--(:s-- Splat

10

0
0 200000 400000 600000 800000 1000000 1200000

ofPixe1s

Figure 6.9: The image scaling behaviour for all three methods of computing the per pixel
cost. \iVe render 729 bricks and vary the resolution.

For these measurements we render the mummy head data set with a brick size of 643 to

a one mega pixel image using six processing units. In Table 6.4 we show the results for

all three methods of computing the pixel cost, e;:\.ch with two different resolutions and two

different animations. The resolution for the load balancing computation is relative to the

image H'solution, meaning that the 'full' resolution is 10242 and the 'quarter' resolution is

5122 The rotation animation views the full data set and rotates around the x-axis, whil(:~

the zoom animation zooms in on the data set and then zooms back ou t.

Table 6.4: The deviation of render times among nodes, as a percentage of the average render
time. \Ne use two different types of animations and two resol utions for all three methods of
computing the rendering cost.

Average Render Time Deviation

Animation (Resolution) Accurate Splatting Back Face

Rotation (Full) 1:3.7% 10.8% 17.:3%
Rotation (Quarter) 14.0% 10.9'X 17.4%
Zoom (Full) 10.3% 9.1<;;(14.7%
Zoom (Quarter) 10.6% 9.5% 15.2<;;(

56 CHAPTER 6. RESULTS

Figure 6.10: Performance scaling results for the accurate method (top) and the backface
method (bottom). We compute the load balancing for 9702 bricks at a 10242 resolution.
The scaling of the y-axis is diff"erent so that details are visible.

57 CHAPTER 6. RESULTS

Unexpectedly, the splatting method does a slightly better job than the accurate method

for load balancillg. This is possibly due to a better balancing of the brick overhea,ds, since

the accurate method only gives an accurate measure of fragment processing costs. The lower

resolution did not, hurt the load balancing much for any method. The backface method gives

worse performance than the other two, but it should still be better than load balancing based

off of timing results from previous frames.

Lastly, we compare the quality of our load balancing algorithm against a simple method

of load balancing that uses the relative performance of each unit in the previous frames. We

compare the two algorithms in scenarios with varying levels of frarne-to-frame coherence.

\Ve can vary the level of frame-to-frame coherence by taking a recorded animation that has

fairly good coherence and skipping some number of frames in the animation. The more

frames we skip, the lower the coherence will be. 'Ne use tbe same recorded animation that

we used for the caching results since it includes a variety of vie'wing conditions. vVe render

the mummy head data set into a 10242 view port with six processing units. For our load

balancing algorithm we use the backface method and a quarter resolution for the pixel cost.

The results are listed in Table 6.5.

Table 6.5: A comparison of our load balancing algorithm (cost based) to an algorithm that
uses the perfonnanee of each unit in previous frames (performance based). The results are
listed as a percentage of the average render time.

Average Render Tillie Deviation

Frames Skipped Cost Based Performance Based

o 17.0% ± 12.7% 22.8% ± 23.3%
2 17.6% ± 1:3,0% 46.9% ± 34.0%
4 18.2% ± 13.6% 60.6% ± 34.2%

Even when 've are not skipping any frames ill t.he animation, our cost based load bal­

ancing gives a bet.ter workload distribu tion than the performance based load balancing. As

we decrease the level of frame-to-frame coherence (by skipping frames of the animation) the

difference becomes even greater. The standard deviation of the quality of the load balancing

also shows that our algorit.hm is more consistent in all scenarios. For this configuration, the

amount of time each processing unit spent computing the load balancing for our algorithm

is just over seven percent of the time each unit spent on the rendering stage. Therefore

58 CHAPTER 6. RESULTS

we achieve a more consistent and better quality load balancing, regardless of the level of

frame-to-frame coherence, for a small overhead in processing time.

6.5 Visibility Culling Results

The novel aspect of our approach to visibility culling is the ability to fine tune the perfor­

mauce so that there is rninimal overheads when there is little to no occlusion and maximal

performance when there is occlusion. For the fra.gment culling we have one essential param­

eter, the number of bricks to render between updates of the depth buffer. We refer to the

groups of bricks rendered between updates as 'chunks'. For the brick culling there are two

parameters: the threshold value for what percentage of bricks in a chunk need to he culled

to obtain a net increase in performance. and the number of chunks we should randomly test

so that the previous culling results do not go stale. Once we have experimentally fixed these

parameters, we compare the efficiency of the visibility culling when used with a sort first

versus sort last workload distribution.

6.5.1 Fragment Culling Performance

The amount of overhead incurred from updating the depth buffer depends on the number of

updates performed and the image resolution. To test for the overhead we render the mummy

head da.ta, divided into 4536 bricks, with a transfer function that causes no occ:lusion and

vary the uumber of updates to the depth buffer in a frame. vVe plot the difference between

these runs and a run with zero updates to the depth buffer in Figure 6.11 for two different

image resolutions. For thousands of bricks, updating the depth buffer for each brick would

cause a significant overhead when no occlusion is happening. The negative overhead for

small numbers of updates is uniutuitive, but is probably due to the update passes Rushing

the the graphics pipeline at opportune moments.

Since the bricks are processed in an order that distributes consecutive bricks across the

image plane, updat.ing the depth buffer less frequent.ly should not hurt the cuJJing efficiency

much. To t.est this we run the same tests as above but with a transfer function that does

cause occlusion to occur (the same high opacity transfer functioll shown in Figure 6.18).

First we examine the culling efficiency by using occlusion queries to count the number of

fragments that. pass the depth test when the bounding box of each brick is rendered. We

plot the percent of fragments culJed for varying numbers of updates with an image size of

59 CHAPTER 6. RESULTS

40

35

30

25

,-...

........,S 20

<l)

8 15
E=

10
---D-- 512"2

5 - --<>- - 1024"2

o
-5 -lIjiii"'---.---.---.,----.,----.,----.,------.-----.-----.---,

o	 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Update Passes

Figure 6.11: The amount of overhead incurred from updating the depth buffer for two
different image resolutions. We render 4536 bricks with a transfer function that does not
cause occlusion and vary the number of update passes in a frame from one to one for every
brick. The overhead is calculated by taking the total time and subtracting the time from a
run that does zero updates to the depth buffer.

10242 in Figure 6.12. The difference between updating tl1E' depth buffer 4536 tirnes (once

for every brick) and updating it eleven times (once for every four hundred bricks) is less

than four percent.

Finally we look at the speed up achieved from the occlusion culling for different numbers

of updates to the depth buffer. \Ve use the same rendering parameters as in the last test and

plot the resulting speed up in Figure 6.13. The peak of ninety-eight percent speed up comes

from using eighteen updates (two-hundred and fifty bricks rendered between each update of

the depth buffer). Doing as many as thirty-six updates achieves a ninety-four percent. speed

up in this scenario, and may be a more appropriate choice when more occlusion is occurring.

Even greater speedups can be achieved when more slices are rendered or more expensive

fragment shaders are used. For this test, the difference between the peak performance

and the performance achieved when doing an update for every single brick is just over a

hundred milliseconds This difference is about three times the overhead we recorded for

doing an update for every brick when there ii:i no occlusion happening. This indicates that

the updates to the depth buffer are stalling the pipeline, and these stalls have a larger effect

CHAPTER 6. RESULTS 60

53

52
"0
~
"3
u
E 51
0)
u
0)

0....

50

49.J.....--,,..----------,---------....,------------.
10 100 1000 10000

Update Passes (log scale)

Figure 6.12: The percentage of fragments killed using different numbers of updates to the
depth buffer in a frame. We render the mummy head data set as 4536 bricks with a high
opacity t.ransfer function and count how many fragments are killed by the depth test when
we render the bounding box of each brick.

when occlusion is happening (since bricks are being rendered at a higher rate).

6.5.2 Occlusion Query Performance

The amount of overhead incuned from performing occlusion queries depends primarily on

how many batches of queries are made, and to a lesser degree how many queries are in those

batches. 'We experimentally quantify these overheads using the sarne testing methodology

as we did in the previous section. We render the mummy head data set a.s 4536 bricks

with a transfer function that does not cause any occlusion into a 10242 view port. '7I,Te lise

two different chunk sizes. one hundred and two hundred bricks, and we va.ry the number

of chunks that we perform the occlusion queries for. 'Ve plot the resulting overheads in

Figure 6.14. It is clear that while the number of queries made in each batch hEkS an effect

on the overhead, the number of batches has a much greater effect.

To determine the threshold value for what percentage of bricks in a chunk need to be

culled in order to see a net increase in performance, we need to know how long it takes

to render a brick that is completely culled by the depth t.est. The time it takes to render

a brick that. is culled by the depth test depends on many rendering parameters including:

61 CHAPTER 6. RESULTS

100

90

80

60

50

40

30

20

10

0,-.-----------,---------..,--------------,
10 100 1000 10000

Update Passes (log scale)

Figure 6.13: The performance increase achieved by the occlusion culling for different num­
bers of updates to the depth buffer. We render the mummy head data set as 4536 bricks
with a high occlusion transfer function. VVe render into a 10242 image with the ~lice distance
equal to half the sample distance.

60

55

50

45

40

Ul 35

5 30

E 25

f= 20

-0-- 100 Bricks Per Chunk 15
- ~ - 200 Bricks Per Chunk

10

5

o
-5 +---........----,-----.---.------...-----.....-----.-----.----,,-------,

o	 10 20 30 40 50

Chunks Queried

Figure 6.14: The amount of overhead incurred from occlusion queries. \iVe use the mummy
head data set divided int.o 4536 bricks and 10242 image. \Ve use two different chunk size~,

100 brick~ (forty-four chunks total) and 200 bricks (t.wenty-two chunks total). We vary the
number of these chunks that we query in each frame. We plot t.he difference between the
time for t.he runs when queries are performed and a runs where they are not..

62 CHAPTER 6. RESULTS

the image resolution, the number of slices, the number of components in the texture, and

the number of samples in the brick. In Table 6.6 we show the rendering time and the

computed threshold for a number of different rendering parameters. The threshold values

are computed for a chunk size of two hundred for the 323 brick size and twenty-five for t.he

643 brick size. The higher the threshold is, the smaller the performance gain that can be

achieved. In the cases where the threshold is above one hundred percent, the speed up from

skipping culled bricks cannot overcome the overhead of performing the queries.

Table 6.6: A table of the time it takes to render a brick that is completely culled by t.he
depth test, and the resulting threshold for what percentage of bricks need to be cullf'd
in a chunk to overcom.e the query overheads, for a variety of rendering parameters. The
slice ratio parameter is the ratio of the distance between slices versus the distance between
samples. The threshold is computed for a chunk size of one hundred for thf' :12:3 brick size
and ten for the 643 brick size.

Rendering Parameters

Brick Size Image Size Slice Ratio # Components Time (ms) Threshold

323 5122 0.5 1 0.012 80%
323 5122 0.5 4 0.026 38%
323 5122 0.125 1 0.022 44%
323 5122 0.125 4 0.055 18%
323 10242 0.5 1 0.012 75%
32:1 10242 0.5 4 0028 32%
323 10242 0.125 1 0.0:34 26o/r
323 10242 0.125 4 0.062 14%
64:1 5122 0.5 1 0.098 53%
643 5122 0.5 4 0.211 25 o/r,
643 5122 0.125 1 0.177 301/r
643 5122 0.125 4 0.414 1:3%
643 10242 0.5 1 0.095 58%
643 10242 0.5 4 0.208 27'7r
64.3 10242 0.125 1 0.236 23o/r
643 10242 0.125 4 0.466 12%

The remaining parameter, the percent.age of chunks to randomly query, should be set to

the highest value that does not exceed an acceptable overhead for the application. vVhen

the average frame rate is higher, then the amount of overhead that is accept.able will 1)('

lower. However, a higher frame rate will often result in more frame-to-frame coherence and

CHAPTER 6. RESULTS 63

thus fewer chunks need to be randomly queried in a frame. If we are breaking the data set

up into about forty chunks, then randomly querying ten percent of the chunks would result

in a.n overhead of a.pproxima.tely four to five milliseconds. This would also mean that the

culling results for the chunks should not be much older than ten frames, which should be

acceptable as long as the frame-to-frame coherence is not extremely low.

Finally, we look at how much performance we can gain from using the occlusion queries.

The threshold value must be low to see a significant performance increase. Therefore we use

four component textures and a slicing distance that is one eighth of the sampling distance.

We render a cropped version of the mummy head data set (510 x 510 x 291) with a brick size

of 323 into a 10242 image. Vie use the same high occlusion transfer function that we used in

earlier tests, which gives us 1680 non-empty bricks. For this scenario, we find that a chunk

size of oJle hundred gives us the best performance from killing occluded fragments. vVe use

a threshold value of fourteen percent (see Table 6.6) for determining which chunks to query,

and we randomly query ten percent of the chunks in each frame. Using these parameters,

the performance is increased by just over six percent compared to just killing occluded

fragm(·nts. This increase is qui te small compared to the other acceleration strategies, but

with rendering algorithms that have a higher per brick cost the benefit would be magnified.

It is also possible to avoid loading bricks that are culled by the queries, which could be a

significant benefit in some scenarios. With multi-resolution volume rendering techniques,

the results from the occlusion queries could also be used to help choose a resolution for

bricks that are not completely occluded.

6.5.3 Sort First vs Sort Last

Our last set of experiments for the visibility culling focuses on the effect of using a sort first

versus sort last workload distribution. While we expect t.he sort first approach to achieve

a similar speed up regardless of the number of processing units, we expect the speed up to

rapidly diminish as we add processing units to a sort la.':it distribution. vVe use the mUlIllny

head data set with a brick size of 323 , but we don't cull empty bricks since we only have

simple static load balaIJcing for the sort last approach. \Ve use the performance based load

balancing for the sort first experiments since our pixel cost load balancing does not account

for occlusion. vVe use an animation where the full clata set is visible and is rotated around

the y-axis. These viewing cOllditions should minimize the load imbalance for the static sort

last distribution. \Ve set the slice distance to be one eighth of the of the sample distance

64 CHAPTER 6. RESULTS

and render into a 10242 view port. The results for using one to six processing units is given

in Figure 6.15.

8

7 --()-- No ERT - Sort First

--D-- ERT - Sort First

-c:I
6 --I'r-- No ERT - Sort Last

Cl
0 --<>-- ERT - Sort Last
u 5Il)

.._. No ERT - Ideal Scaling
r/l
.... ------ ERT - Ideal Sca.ling
Il) 40.. _.­<JJ
Il)

E 3
~

u..
....

.' .~-'J

2

0+-------.--------.--------.--------.-----------,
1 2 3 4 5 6

Processing Units

Figure 6.15: The performallce scalillg for sort first and sort last distributiolls, both with
and without Early Ray Termination CERT).

The sort first distribut.ion shows some variation III the amoullt of speed up from the

visibility culling, but remains within twenty percent of what is achieved on a single unit. In

comparison, the sort last distribution loses as much as seventy-five percent of the speed up.

Clearly this is a significant advantage for sort first workload distributions when occlusion is

occurring.

6.6 Shadowed Rendering Results

Su bdividing the data into bricks is necessary to achieve data scalability, however the shad­

owed rendering algorithm must render the data one slice at a time rather than one brick

at a time. This means that each slice that we render must be rendered as a collection of

smaller pieces from all the bricks that the slice intersects. For each piece of each slice we

are required to change some of the rendering state such as the texture that is bound and

tllf' transformation matrix. This incurs a much greater per brick overhead, which limits us

to a larger brick size than we have used in the previous sections.

vVhen we are parallelizing the computation allother complication arises; we need to avoid

CHAPTER 6. RESULTS 65

rendering the parts of tl1f' data that are au tside the light's frustum when we render from the

camera's point. of view. If we are using slice templates, then our only option is to discard

some of the fragments in t.he fragment shader. This is far from ideal since the discarded

fragments have the sallie processing cost as the rendered fragments. If we don't use the

slice templates, then we can eit.her utilize the user specified clip planes in OpenGL to kill

fragment.s early in the pipeline or we can clip the slice geometry against the frustum as the

slices are generated. The latter option would provide the best performance but we use the

former option since it is much simpler to implement and the performance difference should

be minimal as long as t.he bricks are not too large.

6.6.1 Bricking Overheads

To test the bricking overheads, we render the mummy head data set with a variety of brick

sizes. vVe do this both with and without culling empty bricks to see the total overhead

and improvement from t.he culling. In Figure 6.16 we show t.he results for bot.h a 5122 and

10242 view port using a slicing distance that is equal to t.he sampling distance. For the

smaller image resolution we are limited to R brick size of 1283 before we see a large drop in

performance. For the larger image size t.here is a greater benefit from elllpty space leaping

and so we can use bricks as small as 643 With different data sets and t.ransfer functions it

is possible to see a net. increase in performance from culling empty bricks, butthe gain is

likely to be small for all but the most extreme circumst.ances.

6.6.2 Scaling

Next. we would like to look at how well the performance scales when we use multiple pro­

cessing units to render the same data set. In Figure 6.17 we show the scaling results for a

brick size of 643 and 1283 for the same data set as above being rendered to one and two

mega pixel images. For the smaller image resolution the larger brick size performs slightly

better, and the scaling for both brick sizes ma.xes out at five processing units. For the larger

image resolution the smaller brick size performs slightly better and we continue to see some

ilnprovement a.ll the way up to six processing units.

\Vhile the scaling is far from ideal, t.his is the only available method for speeding up

this rendering algorithm and for applying it t.o data sets t.hat are larger than the texture

memory on a single GPU. The various overheads of our parallel shadowing method ar(' a

66 CHAPTER 6. RESULTS

4

3
"0
C
o
u
Il)

C/l ---<>--- 512"2 - No ESL
~ 2 ~ 512"2-ESL
CIl
Il)

E
ell....
~

0
0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512 544 576

Brick Size in One Dimension (# samples)

2

1.8

1.6

"0 c
0

1.4
u
Il)

C/l
1.2

....
Il)

p...
CIl
Il) 0.8
~
~ 0.6

---<>--- 1024"2 - No ESL
~ 1024"2 - ESL

0.4

0.2

0
0 64 128 192 256 320 384 448 512 576

Brick Size in One Dimension (# samples)

Figure 6.16: The performance of shadowed volume rendering on the mummy head data set
su bdivided into different brick sizes. Two image rcsolu tions are shown as welJ &., resul ts
witiJ and with out culJing empty bricks (ESL). The distance bdween slices is equal to the
distance between samples. The scale of the y-axis is different so that details remain visible.

67 CHAPTER 6. RESULTS

large part. of why we achieve such poor scaling, but. more import.ant. is t.he fact that. t.he

main overhead (switching the render target twice for every slice) is not reduced when we

woe multiple processing units. We should see better scalabilit.y on newer graphics hardware

t.hat. reduces the overhead from render target switching. A better net.work interconnect

would also help by reducing the compositing overheads.

6.7 Overall Performance

Our primary interest in the previous sections of this chapter was to isolat.e t.he impact

of different. overheads and accelerat.ion techniques. In t.his chapter we explore t.he total

performance of our rendering syst.em for a number of large data sets being rendered at high

resolutions. \iVe start by giving an overview of the experiment setup and then present t.he

result.s.

6.7.1 Experiment Setup

We use the larger portion of the mummy data set. .. the visble male data set, and t.he

Richt.myer-IVleshkov data set for these experiments. Each dc1t.a set has two different trans­

fer functions which we use in the experirnents. One transfer function has a relatively high

opacit.y and t.hus produces isosurface like images while the other has a relatively low opac­

ity and produces more cloud like images. The transfer functions are designed so that the

same number of bricks are culled for both the high and low opacity versions. The trander

functions for the mummy, Richtmycr-Ivleshkov, and visible male data sets can be seen in

Figure 6.18, Figure 6.19, and Figure 6.20 respectively.

For the mummy dat.a set we choose a brick size of 323 , which results in 5571 visible

bricks for our chosen transfer function. For t.he Richt.myer-Meshkov and visible human dat.a

sets we choose a brick size of 643 , which results in 1662 and 2265 visible bricks for their

respective transfer functions. The total amount of texture memory required for storing the

visible bricks is then 696 MB, 416 MB, and 566 MB. vVe allocate 211 IVIB of memory for

the texture cache of each GPU, giving us a total of 1266 l'vIB of texture space. The largest

data set (after culling) we could render with this set. up is just over fifty percent of the total

texture memory available. \iVhile sort last would allow us t.o essentially use all the available

texture memory, the GPUs are not capable of rendering that much data at interactive frame

rates and a good quality.

68 CHAPTER 6. RESULTS

(,.:I"} Bric"~ I
12:-:'3 Rricks
l<.Ical

3 4 5 6

;, Proccssmg Units

r=-o-- 04 3 811lb I1--0- 12~ :1 BJlc\'-.,
,------ Idcal

3 6

Proct.'sslng Units

Figure 6.17: The scaling of the shadowed rendering for up to six processing units. The top
graph shows the scaling for a one mega pixel image and the bottom graph shows the results
for a two mega pixel image. On each graph we show two curves, one for a brick size of 643

and one for a size of 1283 . The scaling of the y-axis is different to preserve details,

CHAPTER 6. RESULTS 69

To test the performance of our rendering system, we use four different rotation anima­

tions and seven different zooming animations. The rotation animations rotate the camera

around all three of the major axes as well as the vector average of all three axes. The cam­

era is placed at a distance that tries to maximize the size of the datH 011 the screen while

keeping the frustum culling to a m.inimum. The zooming animations start at seven different

positions that are far away from the data and then zoom in towards the origin and then

zoom back out to the starting positions. The starting positions lie on the three major axes,

the three half angles between the major axes, and the diagonaJ between all three major

axes. For all of the animations, we run them at a variety of speeds so that the effects of

da tR loading can be observed.

We render into one mega pixel (10242) and two mega pixel (1792 x 1170) images with

the slice distance set to be half the largest sampling distance. 'vVe cull occluded fragments

using the depth test with twenty updates to the depth buffer for each frame. We use om

pixel cost based load balancing technique with the back face method for calculating the cost

and the resolution set to one quarter of the image resolution. The pixel cost load balancing

cannot account for occlusion, but it allows us to consistently render larger data sets than

what is possible with the performance based load balancing. With the performance based

load balancing it is not uncommon for the screen distribution to jump around and require

a processing unit. to render more data than it can store in texture memory. 'vVe precache

at most seven and a half megabytes in each frame, which corresponds to thirty bricks with

single compollent 643 textures and sixty bricks with four component 323 textures. For these

textme dimensions we have 458.5 MB/s and 537 NIB/s of bandwidth, gl\rll1g maximum

precache loading times of about sixteen and fourteen milliseconds.

6.7.2 Results

Since the amount of loading depends on the frame-to-frame coherence, the performance of

any data scalable sort first system will decrei1se when an animation is sped up. Vlfe show

this drop in performance for the visible human data set in Figure 6.21 by averaging the

rotation and zooming animations separately for each animation speed. As expected, the

rotations experience a larger performance drop than the zooming animations. The visible

human has the largest relative drop in performance among the three data sets, but it is still

a relatively small at eighteen percent.

\"Ihile the loading does not have that much of an impact on the avera.ge performance, it

70 CHAPTER 6. RESULTS

Figure 6.18: The mummy data set with its high and [ow opacity transfer functions. Gradi­
ents are loaded into the textures with the scalar data and used to perform lighting compu­
tations.

....

~" .
..

\ ,-'

" .

\,'!t t·fI',.·~tI'·'"
" '..: '. ' , ''_"~." .~,'~ '.

~ .. "it 'flJ.. '1" '.' '
.... ~.r' ••..,.·'1· .

"\~, ~

..

Figure 6,19: The Richtmyer-Meshkov data set with its high and low opacity transfer func­
tions.

71 CHAPTER 6. RESULTS

Figure 6.20: The visible male data set with its high and low opacity transfer functions.

World Space Units Per Frame

0 0.01 0.02 0.03 0.04 0.05
10

8
-0

l::

0

(.)
~
(/l 6
....
~

P-.

~ 4
(/)

--<>--- Average Rotate E
oj.... ~ Average Zoom

(.l.,

2

0
0 2 4 6 8 10 12 14 16

Degrees Per Frame

Figure 6.21: A graph of the average performance when rotating and zooming the visible
male data set at difFerent speeds. These results are for the high opacity transfer function
and a one mega pixel image.

72 CHAPTER 6. RESULTS

can cause sudden performance hitches when there are spikes in the amount of bricks loaded.

Vve look at the loading behaviour of the Richtmyer-Meshkov and mummy data sets since

they have the smallest and largest texture memory footprints respectively. The results are

shown for the Richtmyer-Meshkov in Figure 6.22 by plotting the maximum number of bricks

loaded by any processing unit in each frame of an animation. The animation we use rotates

the camera twice around the x-axis, which is illustrated by the series of images beneath the

graph. We plot three different speeds of rotation. For the slowest speed, the amount of

loading is consistently beneath the threshold of thirty bricks per frame. The mediulll speed

loads the threshold amount on most frames but never goes above it. For the fastest speed

we start to see spikes in the loading when the bricks become the most condensed on the

screen.

The loading results for the mummy data set are given in Figure 6.23. Since the mUl1lmy

data set is rendered with four bytes per voxel, we are preloading one quarter of the voxels

compared to the other data sets. Since the mummy data set is also right at the limit of

how large of a data SE't can be rendered with our cluster, there is less memory available to

each processing unit for caching. These issues cause much larger spikes in the loading for

the mummy data set. \iVe still see the largest spikes when the data condenses in the screen

space, just like the Richtmyer-Meshkov data set. However, we now start to see some spikes

at the medium rotation speed. It should also be noted that a constant speed rotation is

fairly unlikely in the real world. Our caching algorithm works best for short bursts of fast

rotation which are broken up by slower rotations and zooming animations.

Finally, we show a dE'tailed break down of the average performance for all data sets,

transfer functions, and image resolutions in Figure 6.24. These results are the average of the

rotation animations at a speed of seven degrees per frame. The killing of occluded fragments

results in about double the pE'rformance for the high occlusion versus low occlusion transfer

functions. ThE' rendering time is significantly larger for the four component textures, as is

expected based 011 the results in Section 6.1.2. The load balancing and data loading take

comparable amounts of time, and both are quite small relative to the rendering and the

final gather time. The frame buffer read back is essentially inconsequential on PCI-E and

scales linearly with the number of processing units when doing sort first.

If we were to add more processing units we would expect all of the overheads to remain

the same or go down. The rendering time still dominates the total time, and would con­

tinue to shrink as we add processing units. Therefore we would expect to continuE' to see

73 CHAPTER 6. RESULTS

80

70
1.4 Degree Turns

60 '. - - - - - - 4.2 Degree Turns
"0., 7 Degree Turns

'" 0 50
'."0

-l
..CIl ,.>< 40u

'1::

co ,............ :.....,._._~_.--._y ...
30><

::E'"
20

10

720

Figure 6.22: The maximum amount of bricks loaded among a.ll processing units for each
frame of rendering the Richtmyer-Meshkov data set. There are three plots corresponding
to three different speeds of rotation around the x-axis. Underneath the plot, we show the
frames of the animation corresponding to the major ticks on the x-axis.

74 CHAPTER 6. RESULTS

1.4 Degree Turns 300
4.2 Degree Turns
7 Degree Turns

'".,
 '" 0 '" 200

-l

~
u :1':

'C

o:l I:: \

~ '"

><
100 ,:\.:"\ i:~ .,

: ;' I',.: "

",,\, '" ':j: ",'/ \v _"__ I;

", "- ,\ '....." "'II.~'\J.

720

Figure 6.23: The maxnnum amount of bricks loaded among all processing units for each
frame of rendering the mummy data set. There are three plots corresponding to three
different speeds of rotation around the x-axis. Underneath the plot, we show the frames of
the animation corresponding to the major ticks on the x-axis.

CHAPTER 6. RESULTS	 75

performance scaling for these data sets as we add many more processing units. Eventually

the compositing time will dominate the total time when using gigabit ethernet. This is truE'

for both sort first and sort last approaches, bu t the total compositing time is much worse

for sort last.

I I I I

Low Opacity - ~MP•
I	 I

Low Opacity IMP• I I
• High Opacity -'2 MP

•
I

HighC pacity - I MP

•
I

Low Opacity - 2 i
I

_ Load Balancing
Low Opacity -II MP]•	 oTexture Loading

I _ Rendering

High Opacity J2 MP U Framebuffer Readback •	 I_ Final Gather I

• I
High dpacity - I MP

I	 I•	 I I low Opacity - 2 MP

Low Opacity - I• I
High Opa ity - 2 MP • I I

High Opac'ty - IMP•
o	 100 200 300 400 500 600

Time (ms)

FigurE' 6.24: A detailed break down of how the processing time is split up among the different
stages of the parallel rendering pipeline. All four experiments are shown for all three data
sets and a rotation speed of seven degrees per frame.

This demonstrates the viability of a sort first distribution for data scalable volume

rendering. Our algorithm for killing occluded fragments gives almost a two fold increase in

performance when occlusion occurs, and essentially no overhead when occlusion does not

occur. Our consistent load balancing algorithm allows for larger data sets to be rendered

compared to performance based load balancing. The proximity caching algorithm we use

minimizes spikes in data loading and thus provides a more consistent overhead. Finally,

both the load balancing and data loading take up a relatively small portion of the total

76 CHAPTER 6. RESULTS

time for each frame.

Chapter 7

Conclusions

The utility of sort first workload distributions for parallel volume rendering has been demon­

strated successfully. Dne to concerns of data scalability, the overwhelming majority of the

state of the art work on parallel volume rendering has focused on sort last distributions. \Ve

have shown that the data loading overhead in sort first distributions can be much smaller

than the compositing overhead in sort last distributions for many scenarios. Three impor­

tant issues for data scalable sort first rendering have been addressed: how to efficiently

render a subdivided data set, how to handle the loading of pieces of a subdivided data set,

and how to guarantee a balanced distribution of the work load. More importautly, we have

shown how the locality of the data and processing along rays afforded by a sort first distri ­

bution can allow for efficient adaptations of many existing volume rendering algorithms to

a parallel environment.

The templated slicing technique described in Chapter 3 allows the data set to be divided

into smaller pieces without the generation of slice vertices becoming the bottleneck. This

allows a much finer granularity for any rendering algorithm that requires a subdivided data

set. For our purposes, this llleans we can cull empty portions of the data set more accurately

and reduce the memory overhead in our data scalable sort first distribution.

The simple proximity caching technique described in Chapter 3 has been demonstrated

to dramatically reduce sudden spikes in loading for our data scalable sort fir::;t distribution.

vVhile the proximity caching actually causes more data loading overall, it is preferable in

interactive applications to have a consistent overhead. We have demonstrated that this

consistent overhead can be much smaller than the overhead incurred from cornpositing

when using a sort last distribution. vVhile we have not addressed the issue of data loading

77

78 CHAPTER 7. CONCLUSIONS

to system memory, the same technique could be used. The bandwidth over the network or

from disk would be lower than what is available to the CPU, but the size of the cache would

be much larger and it would be possible to perform the loading asynchronously while the

CPU performs the rendering.

The load balancing algorithm that is presented in Chapter 4 has been shown to give a

better and more consistent distribu tion of the workload than the existing method of using

the performance results from previous frames. Even in situations where there is relatively

good frame-to-frame coherence, our algorithm outperforms the alternative. As the level

of frame-to-frame coherence decreases, our algorithm outperforms the alternative by an

increasing margin. The ability to provide a consistently good load balancing is going to be

even more vital in rendering environments that have a larger number of processing units.

Our optimized visibility culling algorithm. which we discussed in Chapter 5, has achieved

over three times the speed up of existing approaches when a high occlusion transfer function

is llsed. Simultaneously, we have essentially eliminated the overheads from the visibility

culling when a low occlusion transfer function is used. V.,Te have demonstrated the decrease

in the efficiency of visibility culling when a sort last distribution is used, due to the lack of

ray coherence.

The parallel version of an existing shadowing algorithm, which was also discussed in

Chapter 5, allows for data scalable interactive shadowed volume rendering. Our hybrid

'vvorkload distribution scheme keeps the rays from the light source local to a single ma­

chine. \Vithout this ray coherence, there would be too much synchronization required for

an efficient parallel algorithm. We abo demonstrate an efficient method of performing the

compositing in our hybrid distribution. By using direct send compositing we make sure that

no processing unit is ever idle during the compositing stage. Additionally, our asynchronous

implementation of the compositing reduces the total compositing time to just slightly more

than the time it takes to communicate the intermediate images over the network.

In addition to the visibility culling and shadowing algorithms, in Chapter 5 we abo

discuss a number of other rendering algorithms and visualization techniques which could

benefit from tIle ray coherence afforded by a sort first distribution. In the past, almost all

research on parallel volume rendering has focused on the standard emission and absorption

lighting model (or the even simpler emission only model). \Vith the advent of affordable

CPUs, we have seen a dramatic increase in the processing power available to each processing

unit.. This increased processing power allows for more complicated lighting models and

CHAPTER 7. CONCL USIONS 79

visualization techniques. Adapting these new algorithms to a parallel environment requires

a new set of considerations when choosing the method of distributing the workload. We have

demonstrated that ray coherence is a vital consideration for many of these new algorithms.

7.1 Future Work

There are many interesting avenues for expanding upon the work in this thesis. lvlany of

the algorithms presented can be expi-l.I1ded to include new functionality or adapted to a new

application. We attempt to highlight both the pragmatically useful as well theoretically

interesting future directions in this section.

The load balancing algorithm presented III Chapter 4 could play an important role in

parallel rendering of time varying data. Frame to frame coherence cannot be assumed when

rendering time varying data and thus the performance results from previous frames cannot

be used for load balancing. Since the pixel cost load balancing algorithm .ve have presented

works strictly with data from the current frame, it will work just as well for time varying

data as it does for static data. Loading data is also unavoidable when rendering time varying

data, and thus it would cease to be an overhead that is particular to sort first approa.ches.

\iVhile we have provided a variety of techniques for speeding up our load ba.lancing

algorithm at the cost of some accuracy, we have not provided a method of reducing the

number of bricks that are processed. This could be achieved by using a oc:t.ree data structure

so that a single larger brick could be used in place of a group of smaller bricks. The only

downside would be some implementation overhead, but the benefits could be significant for

data sets with large numbers of bricks. A simpler alternative would be to just compute the

load balancing with a coarser bricking everywhere.

The occlusion culling techniques that were described in Chapter 5 could show even

greater benefits when used with more expensive rendering techniques. This includes out

of core rendering, compressed volume rendering. rendering with higher order interpolants,

and much more. Compressed rendering is an especially attractive pairing since it could

significantly reduce the amount of data that needs to be loaded for the sort first approach.

The visibility results from the occlusion queries could be used in a number of interesting

ways. \iVhen performing multi resolution rendering. the visibility result.s could help deter­

mine the appropriate resolution to render a brick at. Visibility results could also be used to

weight the pixel cost computed for the load balancing so that occlusion is accounted for in

80 CHAPTER 7. CONCLUSIONS

the load balancing.

The proximity based caching algorithm that we use in this paper could potentially be

improved by considering the camera movement in the previous frames and trying to predict

where the camera will move in the next frame. The caching overhead could also potentially

be reduced by waiting to load bricks until after the occlusion queries are done, so that the

loading of occluded bricks can be skipped. This is especially appealing since the frames

that have the spikes in loading overhead (when the data compresses in the screen space) are

also usually the frames that have the most occlusion. Ultimately, the caching performance

would need to be tested with a user study to see if the caching scheme is suitable for real

world lise.

Appen.dix A

System Details

A.I System Overview

Our system consists of a number of processing units, each with its own CPU and GPU,

which act together as a render server. A view client can then connect to the server and

provide a configuration file which specifies the data set and rendering parameters to use.

Once a connection is established, the render server waits for render request packets which

specify the updated viewing conditions. When a render request arrives it is distributed

among the processing units which each do their respective parts of the workload before

relaying a portion of the final image back to the view client for display. Once the next user

input is made on the view client the whole process repeats.

Our parallel environment consists of a cluster of workstations, each with an Intel Xeon

Processor (NetBurst architeeture)in the range of 2.8 to 3.2 GHz and at least two gigabytes

of RANI. The workstations are connected with gigabit ethernet through a switch with fiow

control to ease congestion. Each workstation has one NVidia Geforce 6800 Ultra with

2561VIB of memory connected over a PCI-E bus. Our system could also be used on multipipe

machines (multiple GPUs on a single S:r"IP) by creating an individual XlI server and render

process for each GPU.

Our implementation is written in C++ for processing done on the CPU and the OpenGL

Shading Language (GLSL) for tlw processing done on the GPU. We use the MPICH21ibrary

for communication among rendering processes and TCP lIP for communication between the

rendering processes and the view client. We use the GLUT library to display the final results

and handle user interaction on the view client.

81

APPENDIX A. SYSTEM DETAILS 82

A.2 Volumetric Data Sets

We use a total of four real world data sets in this thesis, both for illustrative and experi­

mental purposes. The fish data set that is used in Chapter 1 to illustrate different workload

distribution methods is a CT scan of a Karpfen fish. The mummy head data set that is used

for illustrative purposes in Chapter 4 and Chapter 5 is also a CT scan, but of a mummy in­

side of a sarcophagus. In all of the illustrative renderings we load gradients into the textures

and perform Phong illumination.

'rYe also use the mummy head data set extensively for testing. The mummy head data

set is one of many equally sized portions (510 x 510 x 400) of the full mummy data set. This

data set requires a pretty small brick size to cull empty space accurately for most transfer

functions. vVe use this data set in many of the experiments where we want to isolate a

particular overhead since it is small enough to be replicated among all of the GPUs if one

byte per voxel is used, yet it is still large enough to require some significant processlllg

power.

For tests where the results are not dependent on the under lying data (no culling empty

bricks and no occlusion culling) a synthetic data set (2563) is used where the values decrease

radially from the center. This radial data set is used simply because it is small enough to

fit onto a single GPU even when there are four bytes per voxel and the sample spacing is

isotropic.

For the overall performance experiments we combine the top two portions of the mummy

data so that we have the head and torso (510 x 510 x 800). There is a visible discontinuity

between the portions since they have not been registered, but this does not effect our results.

\iVe load the gradients into the textmes for this data set so that the size increases to 793

lVIB and we can see the effect of llsing fom bytes per voxel. Just like the smaller version,

the amount of empty bricks that can be culled for this data set is relatively small for most

transfer functions.

We abo use a cropped version of the visible male data set (2048 x 1024 x 611) which is

an MR.I scan of the human cadaver. The cropped version includes the head and most of the

torso. With one byte per voxel this data set is 1222 MB but there are quite a few bricks

around the head that are likely to be culled.

Filially, we use a single time step from a data set which shows how two fluids mix

during the Richtmyer-lVIeshkov instability. This instability occurs whell a shock wave passes

APPENDIX A. SYSTEM DETAILS

through the two layers of fluid. The scalar value is a measnre of entropy at each point in

the ~imulation. \iVe down sample the time step by a factor of eight (1024 x 1024 x 960)

by simply averaging the values of the voxels. \iVith one byte per voxel, this data set is 960

lVIB before culling. The Richtmyer-IvIeshkov data set allows for lots of culling with most

transfer functions ~ince the fluid interface is the interesting portion and it is quite contained

spatially.

A.3 GPU Pipeline

We show an illustration of the pipeline for a modern programmable GPU in Figure A.I.

The boxes represent processing stages, and those with a dashed outline represent processing

stages that the application programmer has no direct control over. The ellipses represent

data types on the GPU, each of which can be accessed and written to in a limited number

of ways. The connecting arrows show the flow of data through the pipeline and what data

types can be read frorn and written to by each processing stage. The dashed horizontal line

separates the data and processing on the CPU from that which is resident on the GPU.

Figure A.I: A high-level overview of the pipeline on a modern programmable GPU.

Traditiona.lly_ all communication with the GPU is done through a graphics API (OpenGL

or DirectX). Although the graphics APIs can be circumvented with new tools like NVIDIA's

CUDA and ATI's CTlVI, this is ma.inly of interest to people doing general purpose compu­

tations on GPUs. Since we are doing graphics computations we utilize the traditional path

through the OpenGL API, and we use the associated terminology in our di~cussion.

Since GPUs are designed for data parallel tasks, the computations are data driven. The

vertex shader program is executed once for every incoming vertex, the geometry shader

program is executed once for every incoming primitive, and the fragment shader program

84 APPENDIX A. SYSTEM DETAILS

is executed once for every incoming fragment. The output of each stage is fed as input

to the next stage; transformed vertices are grouped to form primitives and primitives are

rasterized to get fragments. In the blending stage, the output from the fragment shader

can be combined with the value currently in the render target (either a texture or the

frame buffer) using a number of fixed functions. Only the output from the fragrnent shader

can be read back by the application or fed back into the GPU for another iteration. The

geometry shader is a relatively new addition to the pipeline and is not available on our

target hardware, thus we do not utilize it at all.

There are several different methods of communicating data between the CPU and the

GPU. Computations are initiated by issuing rendering commands for groups of vertices.

Each vertex must at least have position information, but other attributes like color and

texture coordinates can also be supplied. Non-standard vertex attributes can be specified as

shader variables. These attributes can be read and modified in the vertex shader before the

vertices are grouped together based on the specified primitive type. The rasterization stage

can then interpolate the vertex attributes across the primitives and feed the interpolated

values into the fragment shader. Values that are constant across a primitive can also be

su pplied through shader variables by specifying them as 'uniform' rather than 'varying'.

Textures provide a more flexible means of communication as they can be read by the

shader programs in an almost arbitrary fashion. Textures are essentially one, two, or three

dimensional arrays with an associated interpolation method. Nearest neighbor and linear

interpolation can be provided by the hardware at little to no cost, but higher order inter­

polations can be computed manually in the shader programs if desired. Initially shader

programs only had read access to texture data, but it is now possible to redirect the output

of the fragment shader into a texture instead of the frame buffer. This allows for much more

efficient iterative computations since the output of one iteration could be read in directly

during the next iteration without copying data from the frame buffer to a texture.

A.4 Computing Per-Pixel Cost on the CPU

In order to accurately represent the cost of rendering a pixel we must account for potentially

hundreds of bricks that project to each pixel as well as the variation in the thickness of each

brick over the image plane. Clearly using a standard fixed precision on eight bit buffer

to store the pixel cost on the GPU is not going to be sufficient. Using the OpenGL frame

85 APPENDIX A. SYSTEM DETAILS

buffer object (FBO) extension, it is possible to render into a sixteen or thirty-two bit floating

point buffer. We opt for a single component sixteen bit floating point buffer since this should

provide sufficient resolution as well as both superior performance and better support on older

hardware compared to a thirty-t"vo bit buffer. All three methods of computing the pixel

cost utilize additive blending to sum up the contributions of the individual bricks.

For the accurate method, we use a simple set of shaders which we provide the code for in

Figure A.2. vVe perform the ray intersections in object space since the normals of the brick

faces are aligned with the major axis. The vertex shader simply computes the view direction

in object space and passes it along with the position in object space to the rasterization

stage for interpolation. The fragment shader receives these interpolated values as well as

two uniform variables which d.escribe which faces are front facing and the scalar components

of the plane equations for those faces. A single addition and division is then sufficient for

find.ing the the distance along the view ray to the intersection with the plane. ''''e have to

compute at most three intersections and take the minimum distance among them. Finally,

we normalize the result by multiplying it with ~ before outputting it to the render target.

The backface method does not require custom shader programs and instead uses the

fixed function pipeline. The vertex weights are simply passed to the CPU as the color

attributes; which are then linearly interpolated across the triangles of the faces. In the

situation where only one vertex is inside the silhouette of the brick, one must be careful to

triangulate the faces so that the interior vertex is part of both of the triangles that make up

that face. If the vertex is only part of one of the two triangles. the other triangle will have

no weight assigned to it. An alternative would be to compute a bilinear interpolation along

each face in a set of custom shader programs, but this would defeat our goal of making this

Inethod as fast a.s possible.

The splatting method computes a spherical footprint and loads it into a texture. A

different type of footprint may be appropriate in some scenarios. For example, with an

orthographic projection the footprint could be comput.ed using t.he accurat.e met.hod and

t.hen replicated for all of the other bricks as a splat. We load the footprint into a 322 texture

so that the resolution is sufficient while still being able to fit into the cache of the CPU. The

fragment shader is essentially the same as the fixed function pipeline, except that it scales

the t.exture values down based 011 the size of the brick.

86 APPENDIX A. SYSTEM DETAILS

uniform vec3 eyePosOS;
varying vec3 posOS;
varying vec3 viewDirOS;

void main () {
posOS = gl_Vertex.xyz;
viewDirOS = normalize(posOS - eyePosOS);
gl_Position = ftransform();

}

uniform ivec3 isFront;
uniform vec3 dComps;
varying vec3 posOS;
varying vec3 viewDirOS;

void main(){
float t = 2.0;

if(isFront.x == 1)

t = min((posOS.x + dComps.x)/viewDirOS.x, t);

if(isFront.y == 1)

t = min((posOS.y + dComps.y)/viewDirOS.y, t);

if(isFront.z == 1)

t = min((posOS.z + dComps.z)/viewDirOS.z, t);

gl_FragColor = vec4(0.57735 * t, 0, 0, 0);
}

Figure A.2: The vertex (top) and fragment (bottom) shader prograrns for t.he accurate
method of computing the per-pixel cost.

87 APPENDIX A. SYSTEM DETAILS

A.S Asynchronous Direct Send Compositing

Compositing over gigabit etherIlet can be quite expensive. It is important to try to rninimize

communication costs by overlapping communications and processing with each other. VYe

give the psuedocode for our asynchronous c:ompositing in Algorithm 1. vVe split the code

lip into four different functions for better readability. The first function shows the main

structure of the algorithm and the other three are helper functions. The only input to the

main funct.ion asyncDirectSendO is depthOrder which is a list of the ranks of t.he processing

units in front to back order.

The first helper function is getPacket(). This function tries to get the packet of pixels at

packetlndex from the unit rank and store them in the array (mf. The function retUrIlS a

boolean indicating if the get was successful. If the pixels are not local, then a non-blocking

receive is used to try to get t.he packets from rank. If t.he pixels are local, t.hen they are

read back from the frame buffer and the function ret,urns true.

The other two helper functions, updateSender() and updateReceiver(), are used to keep

track of which packets of pixels we are current.ly sending and receiving as well as the rank

of the units that have or need those packets. Both functions take the current rank and

packet count for sending and receiving as the first two parameters and updates them. If

t.he current rank is equal to negative one then the functions know that this is the initial

iteration and so they reset their static counters (for how many processing units have finished

comrnunications) to zero. Both functions also take depthOrder as an parameter which they

use to update the current rank we are communicating with. \iVe start by sending to all of

the units behind us and receiving from all of the units in front of us in the depth order.

Once we reach the end of depthOrder going one direction we then go the other direction

(sending to the units in front, receiving fro In behind). The function updateReceiver takes

one additional parameter backToFront which is set t.o true when we are receiving from units

behind us and false otherwise. Both functions return true when all of the communications

are complete.

vVe also assume that each unit has access to its lout! frarne buffer. Each unit can start a

asynchronous frame buffer read by calling the lion-blocking function startFrameBufReadO.

If the read is not complete when endFrameBufReadO is called then it will block at that point.

The function compositelmagesO simply blends two packets of pixels together (the order is

determined by the parameter backToFront). The processing units can communica.te with

88 APPENDIX A. SYSTEM DETAILS

each other asynchronously with the nonBlockingSend() and nonBlockingRecv() functions.

Depending on how these functions are implemented in the message passing library, it may

be necessary to loop through all of the unfinished sends at the end and wait for them to

finish. Finally, we assume that each unit has its own rauk stored in myRank and the total

nurnber of packets of pixels per unit stored in packetsPeT'Node.

The main function asyncDirectSendO starts by initializing some state variables for keep­

ing track of which packets are being commuuicated and who they are being communicated

with. Then it simply enters a loop where it initiates a frame buffer read of the packet it

is going to send, tries to receive and composite a packet into its intermediate buffer, RI](j

finally finishes reading the packet from the frame buffer and sends it to the appropriate

destination. \iVe try to overlap each of these actions by performing them asynchronously.

89 APPENDIX A. SYSTEM DETAILS

Algorithm 1 Asynchronous Compositing Algorithm

1· function asyncDirect ·f'nd(1ist depthOrder):
2: {Initialize the sending and receiving information}
3: bool backToFront
4: int sendRank = -1, recvRank = -1, sentPackets = 0, rec1JPackets = 0
5: bool sendDone = updateSender(sendRank, sentPackets, depthOrder)
6: boot recuDone = lIpdateReciever(recvRank. recvPackets, depthOrder, backToFnmt)
7:

8: {Enter loop reading back, receiving, compositing, a.lld sending packets of pixels}
9: pixel * recvBuf. sendBuf, c01npositeBu.f

JO: while !sendDone or !recvDone do

11: if 'sendDonf; then
12: startFrameBlIfRead(sendRank, sentPackets, sendBv..f)
J:~: end if
14: if !recvDone then
15: bool s'uccess = getPilcket(recvRank, recvPo.ckets, rec"uBv.f)
W: if su·cress then
17: cOllIpositelmages(n~c'uBuf. cmnposdeBuf. backToFront)
18: recvDone = updateReciever(rervRank, rccvPackets, backToFTont. depthOrdeT)
19: end if
20: end if
21: if !sendDone then
22: endFrameBufReacl()
23: nonBlockingSend(sendRank, spntPa.ckets, sendBuf)
24: sendDone = lIpdateSender(sendRank, sentPackpts, depthOrder)
25: end if
26: end while

27: function getPacket(int rank, iut packetlndex, array bu.f):
28: if rank == rnyRank then
29: startFrameBufRead(myRank, packetlnde:r, Imf)
30: endFrameBufReadO
31: return true
32: else
33: return uonBlockingRecv(rank, packetlnde:r, bu.!)
34: end if

90 APPENDIX A. SYSTEM DETAILS

I: function updateSender (int sendRank, int sent Packets, list depthOrder):
2: static int sentCounter
3: if sendRank == -1 then
,1: sentCounter = 0
5: else
6: sentPackets = 1
7: end if
8: if seutPackets == packetsPerNocie or sendRank
9: sentCountc'T = 1

10: if sentCou.nter >= nu.mNodes then
II: return false
12: end if

== -1 then

13: int sendPos = depthOrder.find(myRank) + sentCounta
14: if S('ll.dPos < nwnNodes then
15: sendRank = depthOrdcT·.at(sendPos)
16: else
l7: sendRunk = depthOrder.at(nurnNodes - sentCounter' - 1)
18 end if
[9 end if
20: return true

21: function updateReciever (int recvRank, int recvPackets, bool backToFront, list dept,hOrder):
22: static int recvCounter
23: if T'ecvRank == -1 then
24: T'ecvCounteT' = 0
25: else
26: recuPackets . - 1
27: end if
28: if recvPackets == packetsPerNode or rccvRank == -1 then
29: recvCo1Lnter I = 1
30: if recuCounter > numNodes then
31: return false
:32: end if
:n int, recvPos = depthOrder.find(myRank) - recvCowlter
34: if recvPos > 0 then
35: recvRank = depthOrder.at(rpcvPos)
36: backToFront = true
37: else
38: recvRank = depthOrdeT',at(reevCmmfel' - 1)
:J9: baekToFront = false
40: end if
41: end if
42: return true

Bibliography

[1]	 F. R. Abraham, W. Celes, R. Cerqueira, and J. L. Elias. A load-balancing strategy
for sort-First distributed rendering. In Pmc. Computer Graphics and Image Processing
(SIB GRA PI), pages 292-299, Washington, DC, USA, 2004. IEEE Computer Society.

[2]	 J. Allard and B. Raffin. A shader-based parallel rendering framework. In Pmc. IEEE
Visualization (Vis), pages 127·-134, Los Alamitos, CA, l SA, 2005.] EEE Computer
Society Press.

[3]	 S. Bergner, T. lVloller, D. Weiskopf. and D. J. lVluraki. A spectral analysis of function
composition and its implications for sampling in direct volume visualization. IEEE
Transactions on Visualizati.on and Computer Graphics, 12(5):1353-1360,2006.

[4]	 E. W. Bethel, G. Humphreys, B. Paul, and J. D. Brederson. Sort-First, distributed
memory parallel visualization and rendering. In Pmc. IEEE Symp. Parallel Large­
Data Visualization and Graphics (PVG), page 7, Washington, DC, USA, 2003. IEEE
Computer Society.

[5]	 J. F. Blinn. Light reflection functions for simulation of douds and dusty surfaces. In
Pmc. ACM SIGGRAPH, pages 21-29, New York, NY, USA, 1982. ACrv1 Press.

[6]	 B. Cabral, N. Cam, and .J. Foran. Accelerated volume rendering and tomographic recon­
struction using texture mapping hardware. In Pmc. IEEE Symp. Volume Visualization
and Graphics (Vol Vis), pages 91-98, New York, NY, USA, 1994. AC1VI Press.

[7]	 L. Castanie, C. Mion, X. Cavin: and B. Levy. Distributed shared memory for roam­
ing large volumes. IEEE Transactions on Visualization and Computer Graphics,
12(5):1299-1306,2006.

[x]	 S. Chandrasekhar. Radiative Transfer. Courier Dover Publications, New York, NY,
l SA, 1960.

[9]	 T. J. Cullip and U. Neumann. Accelerating volume reconstruction with 3d texture
hardware. Technical Report TR93-027, University of North Carolina at Chapel Hill,
Chapel Hill, NC, USA, 1993.

[10]	 R. A. Drebin, L. Carpenter, and P. Hanrahan. Volume rendering. ACM SIGGRAPH
Comp'uter Graphics, 22(4):65-74. 1988.

91

92 BIBLIOGRAPHY

[11]	 S. Eilemann and R. Pajarola. Direct Send Compositing for Parallel Sort-Last Rendering
. In Pmc. EG Symp. Parallel Graphics and Vis'l.wl'ization (PGV), pages 29-36, Aire­
la- Ville, Switzerland, 2007. Eurographics Association.

[12]	 K. Engel, IVI. Kraus, and T. Ert!. High-quality pre-integrated volume rendering using
hardware-accelerated pixel shading. In Pmc. ACNJ SIGGRAPH/EG Workshop Graph­
ics Hardware (HWWS), pages 9-16, New York, NY, USA, 2001. ACM Press.

[13]	 J. Eyles, S. IVIolnar, J. Poulton, T. Greer, A. Lastra, N. England, and 1. Westover,
Pixelflow: the realization. In Pmc. ACM SIGGRAPH / EG Workshop on Graphics
Hardware (HWWS), pages 57-68, New York, NY, USA, 1997. ACl'vI.

[14]	 H.-C. Hege, T. Hollerer, and D. Stalling. Volume rendering: Mathematical models and
algorithmic aspects. Technical Report TR-93-07, Konrad-Zuse-Zentrum EliI' Informa­
tioIlstechnik Berlin (ZIB), Berlin, Germany, 1993.

[15]	 W. 1\1. Hsu. Segmented ray casting for data parallel volume rendering. In Proc. Symp.
Parallel Rendenng (PRS) , pages 7-14, New York, NY, USA, 1993. ACl'vI Press.

[16]	 G. Humphreys, tvI. Eldridge, 1. Buck, G. Stoll, M. Everett, and P. Hanrahan. Wiregl: a
scalable graphics system for clusters. In Proc. A CM SIGGRAPH, pages 129-140, New
York, NY, USA, 2001. ACIVl Press.

[17]	 G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. D. Kirchner, and J. T.
Klosow5ki. Chromium: a stream-processing framework for interactive rendering on
clusters. A CM Transactions on Graphics, 21 (3) :693--702, 2002.

[18]	 G. Kindlmann and J. Durkin. Semi-automatic generation of transfer functions for direct
volume rendering. Proc. IEEE Symp. on Volume Visu.alization (VVS), pages 79-86,
1998.

[19]	 T. Klein, M. Strengert, S. Stegmaier, and T. Ert!. Exploiting Frame-to-Frame Coher­
ence for Accelerating High-Quality Volume Raycasting on Graphics Hardwarf'. In PTOr.
IEEE Visualization (Vi.s), pages 223-230. Los Alamitos, CA, USA, 2005. IEEE, IEEE
Computer Society Press.

[20]	 J. Kniss, G. Kindlmann, and C. Hansen. IVIulti-dimensional transfer functions for inter­
active volume rendering. IEEE Transactions on Visualization and Computer Graphics,
8(3):270-285, July 2002.

[21]	 J. Kniss, S. Premoze, C. Hansen, and D. Ebert. Interactive translucent volume render­
ing and procedural modeling. In Proc. IEEE Visual-izatiun (Vis). pages 109-116. Los
Alamitos, CA, USA, 2002. IEEE Computer Society.

[22]	 J. Kruger and R. \Vestermann. Acceleration techniques for gpu-based volume render­
ing. In Proc. IEEE Visualization (Vis), page 38, Washingtoll, DC, USA, 2003. IEEE
Computer Society.

93 BIBLIOGRAPHY

[23J	 T. M. Kur<;, H. Kutluca, C. Aykanat, and B. 6zgi.i~. A comparison of spatial subdivision
algorit.hms for sort,-first rendering. In Proc. International Conference and Exhibition on
High-Performance Computi.ng and Networking (HPCN), pages 137-146, London. UK,
1997, Springer-Verlag.

[24]	 P. Lacroute and Tvr. Levay. Fast Volume Rendering Using a Shear-vVarp Factorization of
the Viewing Transform. ACM SIGGRAPH Computer Graphics, 28(4):451-458,1994.

[25]	 l'vi. Levoy, Efficient ray tracing of volume data, A CM Transactions on Graphics,
9(3):245-261, 1990.

[26]	 S. Lombeyda, L. Moll, M. Shand, D. Breen, and A. Heirich. Scalable int.eractive volume

rendering using off-the-shelf components. In Proc. IEEE Symp. Parallel Large-Data
Visualization and Graphics (PVG), pages 115-121, Piscataway, NJ, USA, 2001. IEEE

Press.

[27]	 1<.-1. Ma, J, S. Painter, C. D. Hansen, and M. F. Krogh, Parallel volume rendering
using binary-swap compositing. IEEE Computer Graphics Applications, 14(4) :59-68,
1994.

[28]	 l'vt }\II. l'vlalik. T, rvloller, and M. E. Groller. Feature peeling. In Proc A CM Graphics
Interface, pages 273-280, New York, NY, USA, 2007. ACTvl.

[29]	 S. l'vlarchesin, C. Mongenet, and J. Dischler, Dynamic load balancing for parallel volume
rendering, In Proc. EG Symp. Parallel Graphics and Visualization (PG V), pages 43-50,
Aire-la-Ville, Switzerland, 2006. Eurographics Association.

[30]	 N. Max. Light diffusion through clouds and haze. Computer Vis'ion, Graphics, and
Image Processing, 33(3):280-292, 1986.

[31]	 S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A sorting classification of parallel
rendering, IEEE Computer Graphics Appllcations, 14(4):23-32, 1994.

[32]	 B. lVloloney, D. Weiskopf, T. Moller, and M. Strengert, Scalable sort.-first parallel direct
volume rendering with dynamic load balancing. In Proc. EG Symp. Parallel Graphics
and Visualization (PG V), pages 45-52, Aire-la-Ville, Switzerland, 2007. Eurographics
Association.

[:l3]	 C. r-,Ilontani, H. Perego, and H. Scopigno. Parallel volume visualization on a hypercube
architecture. In Pmc. ACM Workshop on Volume Vis'ualization (VVS), pages 9-16,

New York, NY, USA, 1992. ACM.

[34J	 C. lVlueller. The sort-first rendering architecture for high-performance graphics. In
Proc. Symp. on Interactive 3D Graphics (SI3D) , pages 75-84, New York, NY, USA,

1995. ACJvl.

94 BIBLIOGRAPHY

[35]	 K. fvIueller, T. IvIoller, and R Crawfis. Splatting without the blur. III Proc. IEEE
Visualization (Vis), pages 363-370, Los Alamitos, CA, USA, 1999. IEEE Computer
Society Press.

[:36]	 c. fvIiiller, IV1. Strengert, and T. Ertl. Optimized volume raycasting for graphics­
hardware-based cluster systems. In Proc. EG Symp. Pamllel Gmphics and Visualization
(PGV), pages 59-66, Aire-la-Ville, Switzerland, 2006. Eurographics Association.

[37]	 U. Neurnann. Parallel volume-rendering algorithm performance on mesh-connected
multicomputers. In Proc. ACM Symp. on Parallel Rendering (PRS) , pages 97-104,
New York. NY, USA, 1993. ACl\1 Press.

[38]	 U. Neumann. Communication costs for parallel volume-rendering algorithms. IEEE
Computer Gmphics and Applications, 14(4) :49-58, Jul 1994.

[39]	 J Non aka .. N. Kukimoto. N. Sakamoto, H. Hazama, Y. Watashiba, X. Liu, M. Ogata,
M. Kanazawa, and K. Koyamada. Hybrid hardware-accelerated image composition
for sort-last parallel rendering on graphics clusters with commodity image composi­
tor. In Proc. IEEE Symp. Vol'ume Visualization and Gmphics (Vol Vis), pages 17-24,
Washington. DC, USA, 2004. IEEE Computer Society.

[40]	 H. Noordmans, H. van del' Voort, and A. Smeulders. Spectral volurne rendering. IEEE
Tmnsactions on Visualization and Computer Gmphics, 6(3):196-207, Jul-Sep 2000.

[41]	 H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L. Seiler. The volumepro real-time
ray-casting system. In Proc. ACM SIGGRAPH, pages 251-260, New York, NY. USA,
1999. ACM Press/Addison-Wesley Publishing Co.

[42J	 H. Pfister and A. Kaufman. Cube-4-a scalable architecture for real-time volume ren­
dering. In Proc. IEEE Symp. on Vol'ume Visualization (VVSJ, pages 47-54, Piscataway,
NJ, USA, 1996. IEEE Press.

[43]	 T. Porter and T. Duff. Compositing digital images. In Pmc. ACM SIGGRAPH, pages
253···259, New York, NY, USA, 1984. ACM.

[44]	 C. Rezk-Salama and A. Kolb. Opacity Peeling for Direct Volume Rendering. Comp'ufer
Gmphics Fororn, 25(3) :597 -606, 2006.

[45]	 S. Roettger, S. Guthe, D. Weiskopf, T. Ertl, and W. Strasser. Smart hardware­
accelerated volume rendering. In Proc. EG Syrnp. on Data Visuali.satwn (VisSyrn),
pages 231 238, Aire-la-Ville, Switzerland, 2003. Eurographics Association.

[46]	 D. Ruijters and A. Vilanova. Optimizing GPU Volume Rendering. Winter School of
Cornvuter Gmphics, 14, 2006.

[47]	 R. Samanta, T. Funkhouser, K. Li, and J. P. Singh. Hybrid sort-first <1,nd sort-last
parallel rendering with a cluster of pes. In Proc. ACM SIGGRAPH / EG Workshop
on Gmphics Hardware (HWWS), pages 97-108, New York, NY, USA, 2000. ACM.

95 BIBLIOGRAPHY

[48]	 P. Shirley and A. Tuchman. A polygonal approximation to direct scalar volume render­
ing. In Pmc. ACM SIGGRAPH. volume 24, pages 63-70, New York, NY, USA, 1~90.

AGtv1 Press.

[49]	 S. Stegmaier, M. Strengert, T. Klein, and T. Ert!. A simple and flexible volume ren­
dering framework for graphics-hardware-based raycasting. In Pmc. EG Wmkshop on
Vol-arne Graphics, pages 187-195, Aire-la-Ville. Switzerland, 2005. Eurographics Asso­
ciation.

[50]	 G. Stoll, lVI. Eldridge, D. Patterson, A. Webb, S. Berman, R. Levy, C. Caywood,
lVI. Taveira, S. Hunt, and P. Hanrahan. Lightning-2: A high-performancE' display sub­
system for PC clusters. In Pmc. A CM SIGGRAPH, pages 141 148, New York, NY,
lJSA, 200l. ACM Press.

[51]	 A. Stompel, K.-L. Ma, E. B. Lurn, J. Ahrens, and J. Patchett. SUe: scheduled linear
image compositing for paraJJd volume rendering. In Pmc. IEEE Symp. Parallel Large­
Data VisMlization and Graphics (PVG), pages 33-40, Washington, DC, USA. 2003.
IEEE Computer Society.

[52]	 M. Strengert, T. Klein, R. Botchen, S. Stegmaier, lV1. Chen, and T. Ertl Spectral
volume rendering using GPU-based raycasting. The Visual Computer, 22(8) :550-561,
2006.

[53]	 J. Sweeney and K. 1\!lueJJer. Shear-warp deluxe: the shear-warp algorithm revisited. In
Pmc. EG Symp. on Data Visualisation (VisSym), pages 95-104, Aire-la-Ville, Switzer­
land, 2002. Eurographics Association.

[54]	 X. TOllg, W. Wallg, W. TS311g, and Z. Tang. Efficiently rendering large volume data
using texture mapping hardware. In Pmc. EG / IEEE TCVG Symp. on Vis'ualization
(VisSym), Berlin / Heidelberg, Germany, 1999. Springer.

[55]	 C. Wang, A. Garcia, and H.-W. Shen. Interactive level-of-detail selection using image­
based quality metric for large volume visualization. IEEE Transactions on Visualization
and Computer Graphics, 13(1):122-134,2007.

[56]]VI. Weiler, R. Westermann, C. Hansen, K. Zimmermann, and T. Ert!. Level-of-detail
volume rendering via ~-ld textures. In Pmc. IEEE Symp. on Volume Vis'IJ.alization
(VVSj, pages 7-13, New York, NY, USA, 2000. ACM Press.

[57]	 D. \iVeiskopf, M. Weiler, and T. Ertl. Maintaining constant frame rates in 3d texture­
based volume rendering. In Pmc. Comp'uter Graphics International (CGI), pages 604­
607, Washington, DC, USA, 2004. IEEE Computer Society.

[58]	 L. ·Westover. Interactive volume rendering. In Pmc. Chapel Hill Workshop on Volume
Visual'ization, pages 9-16, New York, NY, USA, 1989. AC~/f Press,

96 BIBLIOGRAPHY

[59]� 1. Westover. Footprint evaluation for volume rendering. In Pmc. A CM SIGGRAPH,
pages 367-:376, New York, NY, USA, 1990. AClVI Press.

[60]� P. 1. Williams and N. Max. A volume density optical model. In Pmc. A CM Workshop
on Volmne Visualization. pages 61-68, New York, NY, USA, 1992. ACl\/I Press.

[61]� C. Zhang and R. Crawfis. Shadows and soft shadows with participating media using
splatting. IEEE Transactions on Visualization and Computer Graphics, 9(2) :139-149,
200:3.

