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Abstract

The study of modal logic often starts with that of unary operators applied to sentences, de-

noting some notions of necessity or possibility. However, we adopt a more general approach

in this dissertation. We begin with object languages that possess multi-ary modal oper-

ators, and interpret them in relational semantics, neighbourhood semantics and algebraic

semantics. Some topics on this subject have been investigated by logicians for some time,

and we present a survey of their results. But there remain areas to be explored, and we

examine them in order to gain more knowledge of our territory. More specifically, we pro-

pose polyadic modal axioms that correspond to seriality, reflexivity, symmetry, transitivity

and euclideanness of multi-ary relations, and prove soundness and completeness of normal

systems based on these axioms. We also put forward polyadic classical systems determined

by classes of neighbourhood frames of finite types such as superset-closed frames, quasi-

filtroids and filtroids. Equivalences between categories of modal algebras and categories of

relational frames and neighbourhood frames are demonstrated. Furthermore some of the

systems studied in this dissertation are shown to be translationally equivalent.

While the first part of our study is purely formal, we take a different route in the sec-

ond part. The multi-ary modal operators, previously interpreted in classes of mathematical

structures, are given meanings in ordinary discourse. We read them as modalities in nor-

mative thinking, for instance, as the “ought” when we say “you ought to visit your parents,

or at least call them if you cannot visit them”. A series of polyadic modal logics, called

systems of deontic residuation, are proposed. They represent real-life situations involving,

for example, normative conflicts and contrary-to-duty obligations better than traditional

deontic logics based on unary modal operators do.

Keywords: polyadic modal logic; relational semantics; neighbourhood semantics; transla-

tional equivalence; deontic logic; deontic residuation
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Chapter 0

Introduction

Modern modal logic since C.I. Lewis’s A Survey of Symbolic Logic (1918) has been pre-

dominantly monadic in character: it posits unary modal operators, usually labelled by their

intended meanings such as necessity, possibility, impossibility and contingency. The advent

of relational semantics in the 1950’s has not changed the dominance of the monadic lan-

guage in the study of modal logic. In spite of some exceptions, most contemporary systems

of modal logic (for example, the weakest normal modal system K, and its extensions such

as KT and KD) deal with a single unary operator, but there are no reasons, other than

simplicity, to insist on this self-imposed constraint on the arity of modal operators. It may

be argued, as we do here, that a more general approach is preferred, both from a formal

and from an interpretational point of view.

Mathematicians have long been working on functions and relations of finite ranks (i.e.

functions taking n arguments and relations consisting of n-tuples, for some finite number

n). Logic, as the formal study of reasoning, has had a close relationship with mathematics.

(We note here that Boole, in the 19th-century, conceived propositional logic as an algebra

of propositions.) Thus viewed, there are good reasons to develop a general theory of modal

logic, in which unary operators are merely special cases of multi-ary operators that can

take finitely many sentences as their operands. In fact such an approach has already been

suggested by Jónsson and Tarski’s paper “Boolean Algebras with Operators. Part I” (1951),

which shows that every Boolean algebra supplemented with finitary functions satisfying the

conditions of normality and additivity can be represented as a subalgebra of the complex

algebra of a relational structure. Effectively their work provides a multi-ary relational

semantics for the polyadic modal language although its implications for modal logic had not

1



CHAPTER 0. INTRODUCTION 2

been recognized for some time after the publication of their paper.

But our interest in modal logic is not purely formal. We also want to investigate how

modal vocabulary is deployed in ordinary discourse. Modalities used in natural languages

are quite often polyadic in character. For example, “X until Y” in discourse about time,

and “Obligatorily, if P then Q” when we deliberate on obligation. And there is no reason to

limit modal expressions to dyadic ones. Accepted norms of colloquy dictate that we should

refrain from being long-winded, but we can easily imagine that an artificial agent (or robot)

is perfectly capable of handling iterated constructions such as “Obligatorily, if P then if Q

then if . . . then R.” Indeed, the application of modal logic in formalizing notions of time,

obligation, knowledge, etc. (in fields such as computer science, linguistics, economics) often

requires a language that is polyadic modal. In other words, there is a need for polyadic

modal logic from an interpretational point of view.

The first part of this dissertation (Chapters 1 through 8) is concerned with the formal

study of modal logic with polyadic modal languages as our object languages. We study

normal systems in the context of relational semantics (Chapters 2, 3 and 4), and classi-

cal systems in the context of neighbourhood semantics (Chapter 5). Equivalences between

descriptive relational frames and normal modal algebras, and between descriptive neigh-

bourhood frames and modal algebras are presented in Chapters 6 and 7. Moreover some of

the polyadic modal systems are shown to be translationally equivalent in Chapter 8. The

scope of these chapters is broad. But they far from exhaust the subject-matter of polyadic

modal logic. We limit our attention to the n-adic generalizations of monadic formulas that

are well known not just for historical reasons but also for the mathematical reason that

they correspond to basic relational properties such as reflexivity, symmetry and transitivity.

Soundness and completeness of selected polyadic systems are demonstrated in these chap-

ters. However, we have to forgo many other modal formulas such as the Geach formula,

and neglect other topics such as decidability and complexity. A thorough investigation of

polyadic modal logic requires many more chapters than we could afford in a single disser-

tation. Our aim here is to make the area accessible to philosophers who are interested in

n-ary necessity.

As noted earlier, studying modalities of ordinary discourse is part of our motivation for

investigating polyadic modal logic. Accordingly we apply some of the results of the first part

to normative reasoning in the second part of this dissertation. More specifically, we provide

a survey of modern deontic logic in Chapter 9, and then put forward in Chapter 10 the
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n-adic system Dn as a deontic logic, which is extended by principles of deontic residuation.

The systems of deontic residuation we propose provide a better formalization of the notion

of contrary-to-duty imperatives than the traditional Standard Deontic Logic does. However

we do not claim that our systems solve every problem in deontic logic: for example, the

occurrence of normative conflicts is allowed in our systems but only if the conflicting obli-

gations are not unshirkable. Nonetheless, the final chapter of this dissertation exemplifies

the resources that n-ary necessity can offer to philosophical logicians and philosophers who

are willing to make the effort.



Chapter 1

Modal Languages and

Set-Theoretic Semantics

We begin our dissertation by introducing the object languages we are going to study. They

extend the languages of propositional logic with multiple modal operators, each of which

takes finitely many formulas as its arguments. Various semantic idioms for our polyadic

multi-modal languages are examined: the relational semantics, the neighbourhood semantics

and hybrids of them. We call these semantic idioms “set-theoretic” since evaluations of the

truth of formulas according to them are essentially set-theoretic operations.

1.1 Object languages

1.1.1 The languages of propositional logic

To specify a formal language, we need first a set of symbols (called its alphabet), then a set

of rules (called its syntax) for concatenating symbols into formulas. The modal languages

we are going to study in this dissertation are extensions of the language of propositional

logic, the alphabet of which consists of atoms pn (where n is a non-negative integer), truth-

functional connectives ¬, ∨ and ⊥, and punctuation marks ( and ). While most of the time

we work with the set of atoms mentioned above, we shall on occasion deal with other sets

of atoms (either finite or denumerable). So the notion of the language of propositional logic

is generalized to that of a language of propositional logic over a countable set P of atoms.

4



CHAPTER 1. MODAL LANGUAGES AND SET-THEORETIC SEMANTICS 5

Definition 1.1.1 (Propositional languages). A propositional language over a countable set

P of atoms, denoted by L(P ), has the following primitive symbols:

• atoms p, all of which are members of P ;

• connectives ⊥ (falsity), ¬ (negation), and ∨ (disjunction);

• punctuation marks ( and ).

Formulas of L(P ) are defined inductively as follows:

• every atom p is a formula;

• ⊥ is a formula;

• if α is a formula, then so is ¬α;

• if α and β are formulas, then so is (α ∨ β);

• if α is a formula, then it is so in virtue of the above clauses. a

The above inductive definition of formulas is often given in a more concise form called

the Backus-Naur Form (BNF):

α ::= p|⊥|¬α|(α ∨ α),

where p ranges over the elements of P . (Note that each occurrence of α to the right of ::=

stands for any already constructed formula. So the two occurrences of α in (α ∨ α) may be

replaced by different formulas. Some authors emphasize this by using expressions such as

(α ∨ β) although this is not strictly required.)

Other familiar truth-functional connectives—> (truth), ∧ (conjunction), → (condition-

ality), and ↔ (biconditionality)—are introduced by the following identities.

> = ¬⊥

(α ∧ β) = ¬(¬α ∨ ¬β)

(α→ β) = (¬α ∨ β)

(α↔ β) = ((α→ β) ∧ (β → α))
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In writing formulas of L(P ), we usually omit the outermost parentheses. More paren-

theses can be dropped without ambiguity by adopting the following rule: among the binary

connectives, ∨ and ∧ bind more strongly than the others.

We mention here some of the metalinguistic conventions used in this dissertation. English

letters p, q, r, . . . (with or without subscripts) stand for atoms. Lower case Greek letters

α, β, γ, . . . (with or without subscripts) denote formulas of the object languages, whereas

upper case Greek letters Γ, ∆, Σ, . . . denote sets of formulas.

1.1.2 Polyadic modal languages

A propositional modal language (or simply a modal language) extends a propositional lan-

guage with operators that are characterized as “modal” (so called because they tell us

something about the mode in which their operands are true). In this dissertation, we con-

sider not just unary operators, i.e. those that are applied to one formula. Operators that

take finite numbers of arguments are also studied. As a matter of convention, specific sym-

bols are used to denote modal operators in some applications of modal logic. For example,

in temporal logic the future tense and the past tense modalities are often written as G

and H (for “it is always going to be the case” and “it has always been the case”, respec-

tively). However when we are studying the general theory of modal languages and logics,

more generic symbols are desirable. For that purpose, we use the symbols �0, �1, . . . , �ξ,

. . . , where ξ is an ordinal, for our primitive modal operators. We dub them “squares” or

“boxes”.

The above preliminary remarks make it clear that in defining a modal language, we need

to specify, in addition to the base language, the ordinal which contains the smaller ordinals

used to index the modal operators and the number of arguments each operator accepts.

This leads us to the notion of a modal type.

Definition 1.1.2 (Modal types). A modal type is a pair τ = 〈ζ, ρ〉 where ζ is an ordinal

such that 1 ≤ ζ ≤ ω, and ρ is a function assigning each ξ < ζ a natural number ρ(ξ). a

Definition 1.1.3 (Modal languages). Let τ = 〈ζ, ρ〉 be a modal type and P a set of atoms.

The modal language of type τ over P , denoted by Lτ (P ), is the extension of the language

L(P ) with modal operators �ξ’s where ξ < ζ. Formulas of the language is specified by the
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following rule:

α ::= p|⊥|¬α|(α ∨ α)|�ξ(α, . . . , α︸ ︷︷ ︸
ρ(ξ) times

),

where p ranges over the elements of P . a

As in the case of truth-functional connectives, we introduce an often-used abbreviation

of modality called the duals of “squares” and dubbed “diamonds” as follows.

♦ξ(α1, . . . , αρ(ξ)) = ¬�ξ(¬α1, . . . ,¬αρ(ξ))

For a language of modal type τ = 〈ζ, ρ〉, ordinals smaller than ζ are used to index modal

operators, and, for each ξ < ζ, the number of arguments �ξ takes is the finite number ρ(ξ).

Note that ζ is required to be greater than zero to ensure that there is at least one operator

(viz. �0) present in every modal language we have occasions to study in this dissertation.

Moreover, since ζ ≤ ω, our modal languages contain countably many modal operators and

so are themselves countable languages (given that the base language is also countable).

The number of arguments �ξ takes, viz. ρ(ξ), is called the rank or arity of the modal

operator. Operators with arities one, two, three, . . . , are often described as unary, binary,

ternary, etc. We call modal languages or types with unary operators only “monadic”, those

with binary operators only “dyadic”, those with ternary operators only “triadic”, and so

on. Observe that we adopt Latin-based prefixes for operators (and functions, relations, etc.)

and Greek-based prefixes for languages (and types, logics, etc.).

The definition of modal languages above (Definition 1.1.3) is completely general—it de-

fines a polyadic multimodal language, i.e. a language possibly with multiple modal operators,

which may have different arities. However the study of modal logics is greatly simplified by

limiting our attention to those based on unimodal languages, those with a single modal op-

erator (which we shall denote by � for simplicity). The reason is that results in a unimodal

setting can straightforwardly be applied to a multimodal language. In the following we

describe, as examples, unimodal languages which we will regularly meet in this dissertation.

Note that the set of atoms is suppressed, as will often be the case if it is clear what set of

atoms we are working with.

Example 1.1.4 (Polyadic unimodal languages). The simplest unimodal language is the one

that has a single unary operator �. We call it the basic modal language or simply L1. In



CHAPTER 1. MODAL LANGUAGES AND SET-THEORETIC SEMANTICS 8

general, a modal language with a single n-ary operator � is called Ln. Thus we have the

following sequence of modal languages: L1, L2, L3, . . . , or in English: monadic, dyadic,

triadic, . . . (uni)modal languages. a

1.2 Semantics for propositional languages

The simplest model for a propositional language is an assignment of truth-value (either

T or F) to each atom of the language. However to prepare ourselves for the models of

modal propositional languages, we adopt a slightly more complicated approach — we take

a propositional model to be a collection of points, at which atoms are either true or false.

These points can be taken as possible states of some system we are describing. To specify

the points at which an atom is true, we use a function called a valuation. A propositional

model is thus a set of points together with a valuation.

Definition 1.2.1 (Propositional models). A model for a propositional language L(P ) is a

pair 〈U, V 〉, where

• U , the universe of the model, is a non-empty set of points;

• V , the valuation function of the model, assigns to each atom p ∈ P a set of points in

U . a

Definition 1.2.2 (Truth in propositional models). Let M = 〈U, V 〉 be a model of a propo-

sitional language L(P ). An L(P )-formula α is said to be true at a point x in M (notation:

M, x |= α) according to the following inductive definition, where M, x 6|= α means that α is

false at x in M:

• M, x |= pi if x ∈ V (pi); otherwise M, x 6|= pi.

• M, x 6|= ⊥.

• M, x |= ¬α if M, x 6|= α; otherwise M, x 6|= ¬α.

• M, x |= (α ∨ β) if either M, x |= α or M, x |= β; otherwise M, x 6|= (α ∨ β).

If M, x |= α for all x ∈ U , α is said to hold in M (notation: M |= α). a

Truth conditions for the defined truth-functional connectives can easily be derived:
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• M, x |= >.

• M, x |= (α ∧ β) if both M, x |= α and M, x |= β; otherwise M, x 6|= (α ∧ β).

• M, x |= (α→ β) if either M, x 6|= α or M, x |= β; otherwise M, x 6|= (α→ β).

• M, x |= (α ↔ β) if either both M, x |= α and M, x |= β or both M, x 6|= α and

M, x 6|= β; otherwise M, x 6|= (α↔ β).

The above truth conditions can be recast in set-theoretic language. First we define the

notion of the truth-set of a formula in a model.

Definition 1.2.3 (Truth-sets). Let M = 〈U, V 〉 be a propositional model for a propositional

language L(P ) and α a formula of L(P ). The truth-set of α in M, denoted by ‖α‖M, is the

set of points of U at which α is true in M. a

For a propositional model M = 〈U, V 〉, the truth-sets of formulas are as below.

‖pi‖M = V (pi)

‖⊥‖M = ∅

‖>‖M = U

‖¬α‖M = U − ‖α‖M

‖α ∨ β‖M = ‖α‖M ∪ ‖β‖M

‖α ∧ β‖M = ‖α‖M ∩ ‖β‖M

‖α→ β‖M = (U − ‖α‖M) ∪ ‖β‖M

‖α↔ β‖M = ‖α→ β‖M ∩ ‖β → α‖M

Evidently, if α holds in M then ‖α‖M is simply U .

In propositional logic we are not so much interested in truth in a model as truth in

every model. Put it another way, our interest lies in formulas that are true independently

of whether their atoms are true or false rather than in formulas that happen to be true

on some assignments of truth values but false on other assignments. So we generalize the

notion of truth in a model to the notion of validity in a class of models. Note that the

concept of validity and other related ones we are going to define are applicable not just to

propositional languages but also to their extensions such as modal languages (and indeed

many other formal languages). We indicate this generality by not mentioning any particular

language in our definitions.
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Definition 1.2.4 (Validity in classes of models). Let C be a class of models. A formula α

is said to be valid in C if it holds in every model in C (notation: |=C α). If it is valid in the

class of all models, we simply say it is valid and write |= α.

The class of valid propositional formulas is exactly the class of tautologies, which are

formulas true on every assignment of truth values to atoms. In the following we define the

important notion of semantic entailment. Intuitively it is the idea that truth of a set of

hypotheses guarantees truth of its conclusion.

Definition 1.2.5 (Semantic entailment). A set Σ of formulas is said to semantically entail

a formula α in a class C of models (notation: Σ |=C α) if for every model M in C and every

point x in M, we have M, x |= α whenever M, x |= σ for every σ ∈ Σ. If C is the class of

all models, we simply say Σ semantically entails α (notation: Σ |= α). a

Note that α is entailed by the empty set of formulas if and only if it is a valid formula.

Thus we write |= α for ∅ |= α.

Although we adopt a particular interpretation of the truth-functional connectives of

propositional languages in Definition 1.2.2, it is by no means the only interpretation of

them. In general a language may be interpreted in different types of models, and, given the

same type of models, it may be interpreted according to different sets of truth conditions.

With this in mind, we define the notion of an idiom which allows us to talk about different

interpretations of a language.

Definition 1.2.6 (Semantic idioms). A semantic idiom I for a language is a class C of

models together with a set of truth conditions which collectively defines truth of every

formula in a model belonging to C. a

Validity and entailment in an idiom are just the same as validity and entailment in a

class of models. Thus we write |=I α if α is valid in I, and Σ |=I α if Σ entails α in I. As

is often the case, the truth theory for a class C of models is clear in the context, and we

revert to the earlier notation, viz. |=C α and Σ |=C α.

1.3 Relational semantics for modal languages

Binary relational semantics is often attributed to Kripke, who published several influential

papers in the late 1950’s and early 1960’s (Kripke (1959, 1963, 1965)). However, as many
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writers on the history of modern modal logic point out, the idea of using a binary relation

to study monadic modal languages had already been nurtured among logicians before the

1960’s, for example, Carnap, Meredith, Prior, Smiley, Kanger and Hintikka. (Copeland

(2002) provides a survey on the development of possible worlds semantics up to the mid

1960’s.) Generalizing binary relational semantics to multi-ary relational semantics is well-

known in the literature. See, for instance, Gabbay (1976), Johnston (1976) and Blackburn

et al. (2001). The idea of using multi-ary relational structures to analyze polyadic modal

languages was already hinted at in Jónsson and Tarski’s paper “Boolean Algebras with

Operators. Part I” (Jónsson and Tarski (1951)). However, relevance of the paper to modal

logic had not been recognized for some time after its publication.

Definition 1.3.1 (Relational models). Let τ = 〈ζ, ρ〉 be a modal type and P a set of atoms.

A relational model for the language Lτ (P ) is a triple 〈U,R, V 〉 where

• U , the universe of M, is a non-empty set of points;

• R is a set of relations Rξ’s such that ξ < ζ and Rξ is an (ρ(ξ) + 1)-ary relation on U ;

• V is a valuation assigning to each atom p a set V (p) of points. a

Definition 1.3.2 (Truth in relational models). Let M = 〈U,R, V 〉 be a relational model

for a modal language Lτ (P ) where τ = 〈ζ, ρ〉 is a modal type and P a set of atoms. Truth

conditions for Lτ (P )-formulas are those of Definition 1.2.2 plus the following one for modal

formulas:

• M, x |= �ξ(α1, . . . , αρ(ξ)) if ∀y1, . . . , yρ(ξ), Rxy1 · · · yρ(ξ) =⇒ ∃i : M, yi |= αi;

otherwise M, x 6|= �ξ(α1, . . . , αρ(ξ)). a

Truth condition for ♦ξ, the dual of �ξ, is thus:

• M, x |= ♦ξ(α1, . . . , αρ(ξ)) if ∃y1, . . . , yρ(ξ) : Rxy1 · · · yρ(ξ) & ∀i, M, yi |= αi;

otherwise, M, x 6|= ♦ξ(α1, . . . , αρ(ξ)) .

Recall that in Section 1.1.2 we announce that the most common modal languages we

deal with in this dissertation are the unimodal ones: L1, L2, L3, . . . , each with a modal

operator of rank one, two, three, . . . , respectively. We describe below, as an example, their

models and the truth conditions for � and its dual ♦.
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Example 1.3.3 (Relational models for unimodal languages). Let Ln be a modal language

with a single modal operator � of rank n. A relational model for Ln is a triple 〈U,R, V 〉
where U is a non-empty set of points, R an (n + 1)-ary relation on U , and V a valuation.

Truth conditions for � and ♦ are as follows:

• M, x |= �(α1, . . . , αn) if ∀y1, . . . , yn, Rxy1 · · · yn =⇒ ∃i : M, yi |= αi;

otherwise M, x |= �(α1, . . . , αn).

• M, x |= ♦(α1, . . . , αn) if ∃y1, . . . , yn : Rxy1 · · · yn & ∀i, M, yi |= αi;

otherwise M, x 6|= ♦(α1, . . . , αn).

In particular, truth conditions for the � and ♦ of L1 are the following:

• M, x |= �α if ∀y, Rxy =⇒ M, y |= α; otherwise M, x 6|= �α.

• M, x |= ♦α if ∃y : Rxy & M, y |= α; otherwise M, x 6|= ♦α.

Truth conditions for the � and ♦ of L2 are the following:

• M, x |= �(α, β) if ∀y, z, Rxyz =⇒ (M, y |= α or M, z |= β); otherwise M, x 6|=
�(α, β).

• M, x |= ♦(α, β) if ∃y, z : Rxyz & M, y |= α & M, z |= β; otherwise M, x 6|= ♦(α, β). a

We have defined validity and semantic entailment in the context of propositional models.

These notions equally apply to relational models, which may be considered as augmentations

of propositional models in the same way as modal languages are extensions of propositional

languages. However the introduction of relations into the models allows us to consider

validity not merely with respect to classes of models, but to classes of “frames” as well.

Definition 1.3.4 (Relational frames). A relational frame F of type τ = 〈ζ, ρ〉 is a pair

〈U,R〉 where U is a non-empty set of points, and R a set of relations Rξ’s such that ξ < ζ

and Rξ is a (ρ(ξ) + 1)-ary relation on U . a

A relational model M = 〈U,R, V 〉 for a language of type τ can be considered as a frame

F = 〈U,R〉 of the same type supplemented with the valuation V . We also say that M is a

model on F.

Definition 1.3.5 (Validity on frames). Let F be a relational frame of type τ and α a formula

of a modal language of the same type. α is said to be valid on F (notation: F |= α) if α

holds in every model on F. a
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Definition 1.3.6 (Validity in classes of frames). Let C be a class of relational frames of

type τ and α a formula of a modal language of the same type. α is said to be valid in C
(notation: |=C α) if α is valid on every frame in C. If C is the class of all relational frames,

we simply say α is valid and write |= α. a

Semantic entailment can be defined with respect to classes of frames instead of classes

of models. Note that preservation of truth is still local, i.e. Σ entails α in a class C of frames

if and only if at any point in any model on any frame belonging to C, truth of all formulas

of Σ implies truth of α.

1.4 Neighbourhood semantics for modal languages

In the 1960’s, neighbourhood semantics (for monadic modal languages) was developed inde-

pendently by Montague and Scott (see Section 8, Chapter 1 of Segerberg (1971)). However,

the most detailed development of the semantics and its application to the study of modal

logic is perhaps Segerberg (1971). However, the generalization of neighbourhood models to

interpret polyadic modal languages seems not to have been investigated in the literature (as

far as the author knows).

Definition 1.4.1 (Neighbourhood models). Let τ = 〈ζ, ρ〉 be a modal type and P a set

of atoms. A neighbourhood model M for the language Lτ (P ) is a triple 〈U,N, V 〉 where U

and V are as in Definition 1.2.1, and N is a set of neighbourhood functions Nξ’s such that

Nξ : U → P((P(U))ρ(ξ)) for each ξ < ζ. In other words, for each operator �ξ, we have a

neighbourhood function Nξ mapping each element of U to a collection of ρ(ξ)-tuples of sets

of points of U . Nξ is said to be of type ρ(ξ). a

Definition 1.4.2 (Truth in neighbourhood models). Let M = 〈U,N, V 〉 be a neighbourhood

model of a modal language Lτ (P ) where τ = 〈ζ, ρ〉 is a modal type and P is a set of atoms.

Truth conditions for Lτ (P )-formulas are those of Definition 1.2.2 plus the following:

• M, x |= �ξ(α1, . . . , αρ(ξ)) if 〈‖α1‖M, . . . , ‖αρ(ξ)‖M〉 ∈ Nξ(x);

otherwise M, x 6|= �ξ(α1, . . . , αρ(ξ)). a

Truth condition for ♦ξ, the dual of �ξ, can easily be derived as follows:

• M, x |= ♦ξ(α1, . . . , αρ(ξ)) if 〈‖¬α1‖M, . . . , ‖¬αρ(ξ)‖M〉 /∈ Nξ(x);

otherwise M, x 6|= ♦ξ(α1, . . . , αρ(ξ)).
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Definition 1.4.3 (Neighbourhood frames). A neighbourhood frame F of type τ = 〈ζ, ρ〉 is a

pair 〈U,N〉 where U is a non-empty set of points, and N is a set of neighbourhood functions

as in Definition 1.4.1. a

Validity on a neighbourhood frame are defined as for validity in the relational idiom.

We provide below, as examples, neighbourhood models for unimodal languages.

Example 1.4.4 (Neighbourhood models for the monadic unimodal language). Recall that

L1 is the modal language that has a single monadic modal operator �. A neighbourhood

model M for L1 is a triple 〈U,N, V 〉 where

• U is a non-empty set of points,

• N : U →P(P(U)) , i.e. N assigns to each point a collection of sets of points, and

• V is a valuation, i.e. V assigns to each atom a set of points.

Truth conditions for � and ♦ are stated thus:

• M, x |= �α if ‖α‖M ∈ N(x); otherwise M, x 6|= �α.

• M, x |= ♦α if ‖¬α‖M /∈ N(x); otherwise M, x 6|= ♦α. a

Example 1.4.5 (Neighbourhood models for polyadic unimodal languages). Recall that Ln

is the modal language with a single modal operator � of rank n (n ≥ 1). A neighbourhood

model M for Ln is a triple 〈U,N, V 〉 where

• U is a non-empty set of points,

• N : U →P((P(U))n) , i.e. N assigns to each point a collection of n-tuples of sets of

points, and

• V is a valuation, i.e. V assigns to each atom a set of points.

Truth conditions for � and ♦ are as follows:

• M, x |= �(α1, . . . , αn) if 〈‖α1‖M, . . . , ‖αn‖M〉 ∈ N(x);

otherwise M, x 6|= �(α1, . . . , αn).

• M, x |= ♦(α1, . . . , αn) if 〈‖¬α1‖M, . . . , ‖¬αn‖M〉 /∈ N(x);

otherwise M, x 6|= ♦(α1, . . . , αn). a
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1.5 Hybrids of relational and neighbourhood semantics

In this section, we introduce two types of models (called prenormal and non-normal) for

analyzing modal languages. They are characterized as hybrids of relational and neighbour-

hood semantics introduced in Sections 1.3 and 1.4. The universe of a prenormal model is

divided into normal points and non-normal (or queer) points, with a relational component

for the normal points and a neighbourhood component for the non-normal points. While at

normal points modal formulas are evaluated as in a relational model, at non-normal points

they are evaluated as in a neighbourhood model. A non-normal model is simply a prenormal

model with the output of its neighbourhood function always being the empty set. Moreover,

relational models can be considered as special cases of non-normal models, viz. those with

normal points only. Although prenormal and non-normal models do not play any significant

role in this dissertation (except Section 8.3), we include them here for general interest.

The notion of prenormal models is based on the semantics used in Chellas and Segerberg

(1996) to study what the authors call “prenormal logics” (which are monadic modal sys-

tems). Chellas and Segerberg’s semantics is a recast and generalization of that developed

in Cresswell (1972) for the study of Lewis system S1. The use of non-normal models (for

monadic modal languages) can be traced to Kripke (1965), which deals with Lewis systems

S2 and S3 and Lemmon’s E2 and E3. (We note here that prenormal semantics for monadic

modal languages is used in Leung and Jennings (2005) to study weak modal systems in the

vicinity of S1.)

Definition 1.5.1 (Prenormal models). Let τ = 〈ζ, ρ〉 be a modal type and P a set of atoms.

A prenormal model M for the language Lτ (P ) is a quintuple 〈U,Q,R,N, V 〉 where

• U is a non-empty set of points;

• Q is a subset of U (the elements of which are called non-normal or queer points);

• R is a collection of relations Rξ’s where ξ < ζ such that Rξ ⊆ (U −Q)× Uρ(ξ) ;

• N is a collection of neighbourhood functions Nξ’s where ξ < ζ such that Nξ : Q →
P((P(U))ρ(ξ)) satisfying the condition that 〈a1, . . . , ai−1, U, ai+1, . . . , an〉 /∈ Nξ(x) for

every i ≤ n, a1, . . . , ai−1, ai+1, . . . , an ⊆ U and x ∈ Q;

• V is a valuation assigning to each atom a set of points. a
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Definition 1.5.2 (Truth in prenormal models). Let M = 〈U,Q,R,N, V 〉 be a prenormal

model for a modal language Lτ (P ). Truth conditions for Lτ (P )-formulas are those of

Definition 1.2.2 plus the following, where �ξ is an operator belonging to type τ and ρ(ξ) is

its rank:

• For x /∈ Q: M, x |= �ξ(α1, . . . , αρ(ξ)) if ∀y1, . . . , yρ(ξ) ∈ U, Rξxy1 · · · yρ(ξ) =⇒ ∃i :

M, yi |= αi; otherwise M, x 6|= �ξ(α1, . . . , αρ(ξ)).

• For x ∈ Q: M, x |= �ξ(α1, . . . , αρ(ξ)) if 〈‖α1‖M, . . . , ‖αρ(ξ)‖M〉 ∈ Nξ(x);

otherwise M, x 6|= �ξ(α1, . . . , αρ(ξ)). a

Definition 1.5.3 (Non-normal models). Let τ = 〈ζ, ρ〉 be a modal type and P a set of

atoms. A non-normal model M for the language Lτ (P ) is a quadruple 〈U,Q,R, V 〉 where

U , Q, R and V are as in Definition 1.5.1. a

Definition 1.5.4 (Truth in non-normal models). Let M = 〈U,Q,R, V 〉 be a non-normal

model of a modal language Lτ (P ). Truth conditions for Lτ (P )-formulas are those of Defi-

nition 1.2.2 plus the following, where �ξ is an operator belonging to type τ and ρ(ξ) is its

rank:

• For x /∈ Q: M, x |= �ξ(α1, . . . , αρ(ξ)) if ∀y1, . . . , yρ(ξ) ∈ U, Rξxy1 · · · yρ(ξ) =⇒ ∃i :

M, yi |= αi; otherwise M, x 6|= �ξ(α1, . . . , αρ(ξ)).

• For x ∈ Q: M, x 6|= �ξ(α1, . . . , αρ(ξ)). a



Chapter 2

From Propositional Logic to

Normal Modal Systems

Our study of polyadic modal logic begins with the so-called normal systems. As we shall

see, these systems are closely related to the relational semantics introduced in Section 1.3.

The organization of this chapter is as follows. We begin with some remarks on deductive

systems and semantic idioms, followed by a discussion of the classical propositional logic,

which serves as the base of our modal systems. Since languages with unary modal operators

are the simplest modal languages, we study monadic normal systems first, then generalize

them to systems in polyadic modal languages. Only the smallest of these polyadic systems,

which we call Kn, is presented in this chapter, while extensions of Kn will be examined in the

next two chapters. The systems that appear in this chapter are well-known in the literature.

Therefore in most cases proofs of meta-theorems are omitted. (Standard references in this

area are Hughes and Cresswell (1996) and Chellas (1980). For more recent exposition of the

subject, see Chagrov and Zakharyaschev (1997) and Blackburn et al. (2001).)

2.1 Logics: syntax and semantics

2.1.1 Logics as deductive systems

In logical enquiry we are interested in finding out what sentences (conclusions) follow from a

given set of sentences (hypotheses or assumptions). In arriving at the conclusions, we allow

ourselves to make use of, beside the hypotheses, some sentences (axioms or postulates)

17
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which we accept unconditionally, and some rules of deduction which, like the axioms, are

accepted as being correct without substantiation. The primitive axioms and rules constitute

a system, on the basis of which we define the notion of deduction.

Definition 2.1.1 (Formal systems). A formal system S in some object language L consists

of a decidable set of L-formulas, called the axioms of the system, and a set of reasonable

rules, each of which specifies a formula as the output for a set of formulas. a

Note that the set of axioms must be decidable, and the rules must be reasonable. We will

not give precise definitions of decidability and reasonableness here, but roughly speaking a

set of formulas is decidable if there is an algorithm that provides us the correct answer, in

finite time, to the question as to whether a given formula belongs to the set or not. Similarly

a rule is reasonable if we have an algorithm to check, in finite time, whether a given formula

follows or not from a given set of formulas according to the rule. Note that a formal system

is always defined in the context of some object language. It would be tedious, however, to

repeat this fact every time we say something about a formal system. So henceforward we

shall be silent in the matter of the object language.

Definition 2.1.2 (Deducibility). A formula α is said to be deducible in S from a set Σ

of formulas (notation: Σ `S α) if there exists a finite sequence of formulas β1, . . . , βn with

the last member βn being α and each βi (where 1 ≤ i ≤ n) satisfying one of the following

conditions:

(1) βi belongs to Σ.

(2) βi is an axiom of S.

(3) βi is the output of a rule of S for some previous formula(s) in the sequence. a

An alternative term for “deduction” is “proof”: if α is deducible in S from Σ, we also say

that α is provable in S from Σ, and call the (finite) sequence of formulas in the deduction

a proof. Sometimes the term “logical consequence” is used: α is a logical consequence of Σ

in S if α is deducible from Σ in S. We also adopt the more compact expressions such as

S-deducible etc. If the system is understood, we simply say that α is deducible from Σ and

write Σ ` α. The next definition introduces the class of theorems, those formulas that can

be deduced without assumption.
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Definition 2.1.3 (Theoremhood). Let S be a formal system. A formula α is said to be a

theorem of S or simply an S-theorem if it is deducible in S from the empty set, i.e. ∅ `S α.

If α is an S-theorem, we also write `S α. a

The term “logic”, when applied to particular logics rather than the study of such entities,

is often used interchangeably in the literature with the term “system”. However we distin-

guish between these two terms in this dissertation. Whereas formal systems have already

been defined in Definition 2.1.1, logics are defined below.

Definition 2.1.4 (Logics). A logic Λ is a set of formulas that is closed under a collection

of rules. In other words, if α is the output for β1, . . . , βn according to one of the rules, and

β1, . . . , βn are in Λ, then α is also in Λ. a

Obviously the set of theorems of a system is closed under its rules. Accordingly a formal

system determines a logic. However the reverse need not hold. If we could form a system

by taking all the formulas belonging to a logic as axioms and all the rules of the logic as its

primitive rules, then trivially the theorems of the resulting system would coincide with the

logic. However there is no guarantee that the set of formulas that is the logic is decidable.

In other words, there are logics that cannot be identified with the set of theorems of any

system. We describe such logics as unaxiomatizable. Extending the notion of logic to include

unaxiomatizable sets has the benefit of bringing them into the purview of logical enquiry.

If two systems yield the same set of theorems, they are called equivalent axiomatizations

of the same logic. In fact we often treat them as if they were the same object. A system is

said to provide a formula or a rule if the formula is among its axioms or theorems, or the

rule is primitive or derivable in the system. The opposite is that a system lacks the formula

or the rule. If a system S2 provides all the axioms and rules of another system S1, we say

that S2 is an extension of S1, or, more concisely, S2 is an S1-system. On the other hand, if

the set of theorems of S1 is included in the set of theorems of S2, i.e. if every S1-theorem is

an S2-theorem, then S1 is said to be included in S2. Notice that if S2 extends S1, then S1 is

included in S2. However the mere inclusion of one system in another system is insufficient

for the latter to be an extension of the former. The reason is that the latter system may

lack some of the rules of the former system.
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2.1.2 Logics and semantic idioms

Recall that an object language is interpreted in an idiom, which comprises a class of models

and a collection of truth conditions. Apparently we want the systems or logics we define

to be correct with respect to the interpretation we intend for the object language. Put it

another way, we require the theorems of a system to be valid in the intended idiom, and,

more generally, any deduction in the system to be truth-preserving in the idiom we have

chosen for the language. However we want something more than that from our systems or

logics. Not only should they provide only valid theorems and truth-preserving deductions,

but they should also give us all of the valid theorems and truth-preserving deductions.

These considerations give rise to the following notions of soundness and completeness.

Definition 2.1.5 (Soundness). A system S is strongly sound with respect to an idiom I if

for every set of formulas Σ and every formula α,

Σ `S α =⇒ Σ |=I α.

S is weakly sound with respect to I if for every formula α,

`S α =⇒|=I α. a

Definition 2.1.6 (Completeness). A system S is strongly complete with respect to an idiom

I if for every set of formulas Σ and every formula α,

Σ |=I α =⇒ Σ `S α.

S is weakly complete with respect to I if for every formula α,

|=I α =⇒`S α. a

Definition 2.1.7 (Determination). A system S is strongly determined by an idiom I if it is

both strongly sound and strongly complete with respect to I, i.e. for every set of formulas

Σ and every formula α,

Σ `S α ⇐⇒ Σ |=I α.

S is weakly determined by I if it is both weakly sound and weakly complete with respect to

I, i.e. for every formula α,

`S α ⇐⇒ |=I α. a
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In this dissertation, we prove strong soundness and completeness (hence strong deter-

mination) of the systems we consider. Henceforth, “soundness”, “completeness” and “de-

termination” mean the strong versions of the respective notions. We mention here that if

a system S satisfies a deduction theorem (e.g. PL and Kn, see Theorems 2.2.2 and 2.4.4),

strong soundness and weak soundness collapse.

As we have stated earlier, the set of truth conditions for a given class of models or frames

are typically fixed. Hence we need only mention the class of models or frames when referring

to an idiom. This follows the usual practice of defining soundness and completeness with

reference to a class of models or frames rather than to an idiom. In other words, instead of

saying that a system is sound (or complete) with respect to an idiom, we simply say that

it is sound (or complete) with respect to a class of frames or models, assuming that the

reader already knows what the truth conditions are. For instance, strong determination of

Definition 2.1.7 can be rephrased as follows: a system S is strongly determined by a class C
of models or frames if for every set of formulas Σ and every formula α,

Σ `S α ⇐⇒ Σ |=C α.

2.2 Propositional Logic and its extensions

The modal systems we are going to study in this dissertation are extensions of classical

propositional logic (PL), the system that axiomatizes the set of propositional formulas valid

in the class of all propositional models. The set of valid propositional formulas coincides

with the set of tautologies, formulas that are true on any assignment of truth-values to their

atoms. For simplicity we take the set of tautologies for the set of axioms in our following

definition of PL.

Definition 2.2.1. Propositional Logic (PL) in a propositional language L(P ) has all of the

tautologies as its axioms and the following two rules, known as modus ponens and uniform

substitution:

[MP]
α, α→ β

α

[US]
` α

` α[pi/β]

where α[pi/β] is the formula that results from substituting β for every occurrence of pi in

α. a
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Theorem 2.2.2. Deducibility in PL has the following properties.

(1) (Finiteness) If Σ `PL α, then there is a finite subset Σ′ of Σ such that Σ′ `S α.

(2) (Monotonicity) Σ `PL α, then for any set of formulas Σ′, Σ ∪ Σ′ `PL α.

(3) (The deduction theorem, [DT]) If Σ ∪ {α} `PL β, then Σ `PL α→ β.

(4) (The rule of replacement of (provable) equivalents, [RRE]) If `PL α ↔ β and `PL γ,

then `PL γ′ where γ′ is the formula resulting from replacing some (possibly zero)

occurrence of α in γ with an occurrence of β.

Finiteness and monotonicity follow from the definition of deducibility, and so hold for

deducibility in any formal system, not just PL. Note that the deduction theorem ([DT])

and the rule of replacement of equivalents ([RRE]) need not hold for every extension of

PL. Although the modal systems we are going to study have these properties as well, they

are results to be established separately. The following notions of consistency and maximal

consistency are general and apply to any PL-system, including PL itself.

Definition 2.2.3. Let S be a PL-system.

(1) A set of formulas Σ is S-consistent if Σ 6`S ⊥. Otherwise, Σ is S-inconsistent.

(2) A set of formulas Σ is maximal S-consistent if it is S-consistent, and, for any formula

α /∈ Σ, Σ ∪ {α} is S-inconsistent.

(3) The S-proof set of a formula α (notation: |α|S) is the set of all the maximal S-consistent

sets of formulas containing α.

(4) �−(Σ) is the set {α|�α ∈ Σ} where Σ is a set of formulas. a

Theorem 2.2.4. Let S be a PL-system.

(1) If Σ is S-inconsistent, then for any formula α, we have Σ `S α.

(2) (The Extension Theorem or Lindenbaum’s Lemma) If Σ is S-consistent, then there

exists a set Σ′ of formulas such that Σ′ is maximal S-consistent and Σ ⊆ Σ′.

(3) (Deductive Closure) If Σ is maximal S-consistent and Σ `S α, then α ∈ Σ.
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(4) If Σ is maximal S-consistent, then the set of S-theorems is a subset of Σ.

(5) If α is not a theorem of S, then there is some maximal S-consistent set of which α is

not an element.

(6) If Σ is maximal S-consistent, then exactly one of α and ¬α is an element of Σ.

(7) If Σ is maximal S-consistent, then α→ β ∈ Σ iff α 6∈ Σ or β ∈ Σ.

2.3 Normal monadic systems

We begin our study of modal logic with what have commonly been called normal systems.

Monadic languages are the simplest among the polyadic modal languages. So we start with

normal monadic systems, from which we generalize to normal polyadic systems in the next

section. Some formulas and rules pertaining to monadic systems are listed below.

[RE]
` α↔ β

` �α↔ �β
[RE♦]

` α↔ β

` ♦α↔ ♦β

[RM]
` α→ β

` �α→ �β
[RM♦]

` α→ β

` ♦α→ ♦β

[RR]
` α ∧ β → γ

` �α ∧�β → �γ
[RR♦]

` α→ β ∨ γ
` ♦α→ ♦β ∨ ♦γ

[RK]
` α1 ∧ · · · ∧ αm → β

` �α1 ∧ · · · ∧�αm → �β
[RK♦]

` α→ β1 ∨ · · · ∨ βm
` ♦α→ ♦β1 ∨ · · · ∨ ♦βm

(m ≥ 0) (m ≥ 0)

[RN]
` α
` �α

[RN♦]
` ¬α
` ¬♦α

[M] �(p ∧ q)→ �p ∧�q [M♦] ♦p ∨ ♦q → ♦(p ∨ q)

[C] �p ∧�q → �(p ∧ q) [C♦] ♦(p ∨ q)→ ♦p ∨ ♦q

[R] �(p ∧ q)↔ �p ∧�q [R♦] ♦(p ∨ q)↔ ♦p ∨ ♦q

[K] �(p→ q)→ (�p→ �q) [K♦] ¬♦p ∧ ♦q → ♦(¬p ∧ q)
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[N] �> [N♦] ¬♦⊥

Definition 2.3.1 (Normal monadic systems). A system in the monadic modal language L1

is called normal if it provides, in addition to PL, rules [RM], [RN], and axiom [C]. a

Definition 2.3.2. The weakest normal system is called K (after Kripke). It consists of the

following axioms and rules.

K : PL, [RM], [RN], [C] a

Other ways to characterize normal systems are as below:

• PL, [RN] and [K].

• PL and [RK].

Note that every normal monadic system has the formulas and rules listed earlier in this

section.

2.4 Normal polyadic systems

In this section, we generalize normal monadic systems to normal n-adic systems where n

is a positive integer. To simplify presentation of polyadic modal rules and principles, we

adopt shorthands as follows.

Notation 2.4.1. Where n is a positive integer and 1 ≤ i, k ≤ n,

• Instead of the longer 1 ≤ i ≤ n, we write simply i.

• In formulas such as�(α1, . . . , αi, . . . , αn)→ �(α1, . . . , β, . . . , αn), the formula β occurs

at the i-th place as αi does.

• ~p stands for the n-termed sequence p1, p2, . . . , pn.

• >k stands for a k-termed sequence of >’s. Similarly for ⊥k. a

Polyadic modal rules and formulas pertaining to normal polyadic systems are listed

below.
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[REin]
` α↔ β

` �(α1, . . . , αi, . . . , αn)↔ �(α1, . . . , β, . . . , αn)

[RMi
n]

` αi → β

` �(α1, . . . , αi, . . . , αn)→ �(α1, . . . , β, . . . , αn)

[RRi
n]

` αi ∧ β → γ

` �(α1, . . . , αi, . . . , αn) ∧�(α1, . . . , β, . . . , αn)→ �(α1, . . . , γ, . . . , αn)

[RKi
n]

` α1
i ∧ · · · ∧ αmi → β

` �(α1, . . . , α1
i , . . . , αn) ∧ · · · ∧�(α1, . . . , αmi , . . . , αn)→ �(α1, . . . , β, . . . , αn)

(m ≥ 0)

[RNi
n]

` αi
` �(α1, . . . , αi, . . . , αn)

[Mi
n] �(p1, . . . , pi ∧ q, . . . , pn)→ �(p1, . . . , pi, . . . , pn) ∧�(p1, . . . , q, . . . , pn)

[Ci
n] �(p1, . . . , pi, . . . , pn) ∧�(p1, . . . , q, . . . , pn)→ �(p1, . . . , pi ∧ q, . . . , pn)

[Ri
n] �(p1, . . . , pi ∧ q, . . . , pn)↔ �(p1, . . . , pi, . . . , pn) ∧�(p1, . . . , q, . . . , pn)

[Ki
n] �(p1, . . . , pi → q, . . . , pn)→ (�(p1, . . . , pi, . . . , pn)→ �(p1, . . . , q, . . . , pn))

[Ni
n] �(p1, . . . ,>, . . . , pn)

We list below dual forms of the above rules and formulas for reference.

[RE♦in]
` αi ↔ β

` ♦(α1, . . . , αi, . . . , αn)↔ ♦(α1, . . . , β, . . . , αn)

[RM♦in]
` αi → β

` ♦(α1, . . . , αi, . . . , αn)→ ♦(α1, . . . , β, . . . , αn)

[RR♦in]
` αi → β ∨ γ

` ♦(α1, . . . , αi, . . . , αn)→ ♦(α1, . . . , β, . . . , αn) ∨ ♦(α1, . . . , γ, . . . , αn)

[RK♦in]
` αi → β1

i ∨ · · · ∨ βmi
` ♦(α1, . . . , αi, . . . , αn)→ ♦(α1, . . . , β1

i , . . . , αn) ∨ · · · ∨ ♦(α1, . . . , βmi , . . . , αn)

(m ≥ 0)



CHAPTER 2. FROM PL TO NORMAL MODAL SYSTEMS 26

[RN♦in]
` ¬αi

` ¬♦(α1, . . . , αi, . . . , αn)

[M♦in] ♦(p1, . . . , pi, . . . , pn) ∨ ♦(p1, . . . , q, . . . , pn)→ ♦(p1, . . . , pi ∨ q, . . . , pn)

[C♦in] ♦(p1, . . . , pi ∨ q, . . . , pn)→ ♦(p1, . . . , pi, . . . , pn) ∨ ♦(p1, . . . , q, . . . , pn)

[R♦in] ♦(p1, . . . , pi ∨ q, . . . , pn)↔ ♦(p1, . . . , pi, . . . , pn) ∨ ♦(p1, . . . , q, . . . , pn)

[K♦in] ¬♦(p1, . . . , pi, . . . , pn)→ (♦(p1, . . . , q, . . . , pn)→ ♦(p1, . . . ,¬pi ∧ q, . . . , pn))

[N♦in] ¬♦(α1, . . . ,⊥, . . . , αn)

Note that the above rules and formulas are specified in the form of schemas. For instance

[RMi
n], where 1 ≤ i ≤ n, consists of n instances of the given schematic form. We refer to

the instances collectively by [RMn]. Parallel nomenclature is used for other schemas of rules

and formulas.

Definition 2.4.2 (Normal n-adic systems). A system in the n-adic modal language Ln is

called normal if it provides, in addition to PL, rules [RMn], [RNn] and axioms [Cn]. a

Definition 2.4.3. The weakest normal n-adic system is called Kn. It consists of the fol-

lowing axioms and rules.

Kn : PL, [RMn], [RNn], [Cn] a

As in the case of monadic systems, there are other ways to characterize normal n-adic

systems:

• PL, [RNn] and [Kn].

• PL and [RKn].

We have called the weakest normal n-adic system Kn. Note that K1 is just K. Naming of

the weakest normal n-adic system is not universally agreed. Bell (1996) calls it in the same

way as we do here, whereas Blackburn et al. (2001) call it Kτ where τ is a modal similarity

type. Other names have also been used: E[n] (E for entailment) in Gabbay (1976), and Gn

in Johnston (1976). (Johnston names the system after Goldblatt for his introducing what

amounts to G2 in an unpublished paper “Temporal Betweenness”.)
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Theorem 2.4.4 (Deduction Theorem for Kn). Let Σ be a set of Ln-formulas, and let α, β

be Ln-formulas. If Σ ∪ {α} `Kn β, then Σ `Kn α→ β.

Proof. The proof is along the same lines of the proof of the deduction theorem for PL. We

assume that Σ ∪ {α} `Kn β, i.e. there is a Kn-proof of β from Σ ∪ {α} consisting of a

sequence of formulas γ1, . . . , γk, . . . , γm such that γm is β, and show by induction on k that

there is a Kn-proof of α→ γm from Σ.

For the basis of the induction, we consider the following possibilities: γ1 is an axiom of

Kn, a member of Σ, or α itself. The cases common with PL are omitted here. For the case

of γ1 being [Ci
n], we note that the following is a Kn-proof of α→ γ1 from ∅ (so a fortiori a

Kn-proof of α→ γ1 from Σ). (Note that the proof is the same as in the case of PL-axioms.)

1. γ1 [Ci
n]

2. γ1 → (α→ γ1) PL

3. α→ γ1 1, 2, [MP]

For the inductive step, we assume Σ `Kn α → γg for every g < k (the I.H.) and show

that Σ `Kn α → γk. The formula γk is either an axiom of Kn, a member of Σ, α itself, or

the output of some earlier formula(s) of the sequence by a rule of Kn. We omit here the

cases common with PL. The case for γk being [Ci
n] is the same as above. The remaining

cases are those in which γk is obtained from an earlier formula γg by applying [RNi
n] or

[RMi
n] . We show the case for [RNi

n] only (the case for [RMi
n] is similar). Note that the use

of [RNi
n] requires γg be a Kn-theorem, i.e. there is a Kn-proof of γg from ∅. Then such a

proof (say of m′ lines) followed by the lines below is a Kn-proof of α → γk from ∅ and a

fortiori a Kn-proof of α→ γk from Σ:

m′ + 1. γk m′, [RNi
n]

m′ + 2. γk → (α→ γk) PL

m′ + 3. α→ γk m′ + 1, m′ + 2, [MP]

Note that the I.H. is not required in proving the cases for [RNi
n] and [RMi

n]. But it is

required for the case of [MP]. a

2.5 Determination for Kn

In this section, we demonstrate the soundness and completeness of Kn, the weakest normal

n-adic system, with respect to the class of all (n+ 1)-ary relational frames.
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Theorem 2.5.1 (Soundness of Kn). The weakest normal n-adic system, Kn, is sound with

respect to the class of all (n+ 1)-ary relational frames.

Proof. It is straightforward to show that [RMn] and [RNn] preserve validity, and [Cn] is

valid in the class of all (n+ 1)-ary relational frames. a

Our strategy of proving the completeness of a normal n-adic system S with respect to a

class C of (n+1)-ary relational frames is to show that every set of Ln-formulas consistent in

S has a model on a frame in C. In fact, for any normal modal system, there exists a model

that satisfies any consistent set of formulas. We call this model the canonical model of the

system, and the corresponding frame its canonical frame. Given this result, all that remains

to prove the completeness of S with respect to C is to show that the canonical frame of S

belongs to C.

In the following, we first define the canonical model of a normal n-adic system. Before

showing that the canonical model is indeed a model for any consistent set of formulas, we

prove an existence lemma and a truth lemma pertaining to such a system and its canonical

model. (The proof for what we call the existence lemma here is based on Gabbay (1976).

Another proof is found in Johnston (1976). For a more recent version, readers are advised

to check Blackburn et al. (2001) pp. 200-201).

Definition 2.5.2 (Canonical frames and models). Let S be a normal system in the modal

language Ln. The S-canonical model, denoted MS, is a triple 〈US, RS, VS〉 where:

• US is the set of all maximal S-consistent sets of Ln-formulas.

• For every x, y1, . . . , yn ∈ US, we have RSxy1 · · · yn iff for any Ln-formulas α1, . . . , αn,

�(α1, . . . , αn) ∈ x =⇒ ∃i : αi ∈ yi.

• For every pi, VS(pi) is the set {x ∈ US | pi ∈ x}.

We call the pair 〈US, RS〉 the canonical frame of S. a

Lemma 2.5.3 (Existence Lemma for normal n-adic systems). Let MS = 〈US, RS, VS〉 be

the canonical model of a normal n-adic system S. For any point x ∈ US and Ln-formulas

α1, . . . , αn, if ¬�(α1, . . . , αn) ∈ x, then there exist y1, . . . , yn ∈ US such that ¬α1 ∈ y1, . . . ,

and ¬αn ∈ yn, and RSxy1 · · · yn.
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Proof. Assume ¬�(α1, . . . , αn) ∈ x. We show, by induction, that there exist y1, . . . , yn ∈ US

such that each yi (1 ≤ i ≤ n) satisfies both of the following requirements.

(E1) ¬αi ∈ yi.

(E2) For any formulas γ1, . . . , γi−1, β, if ¬γ1 ∈ y1, . . . , ¬γi−1 ∈ yi−1, and

�(γ1, . . . , γi−1, β, αi+1, . . . , αn) ∈ x, then β ∈ yi.

For the existence of y1, we first show that y0
1 defined by letting

y0
1 = {¬α1} ∪ {β|�(β, α2, . . . , αn) ∈ x}

is S-consistent. Assume, for reductio, y0
1 is not S-consistent. Then, for some β1, . . . , βm ∈

{β|�(β, α2, . . . , αn) ∈ x}, the following hold.

{β1, . . . , βm,¬α1} `S ⊥
`S β1 ∧ · · · ∧ βm → α1

`S �(β1 ∧ · · · ∧ βm → α1, α2, . . . , αn) ([RNn])

`S �(β1 ∧ · · · ∧ βm, α2, . . . , αn)→ �(α1, α2, . . . , αn) ([Kn])

`S
∧m
j=1�(βj , α2, . . . , αn)→ �(α1, α2, . . . , αn) ([Cn])

Since both �(βj , α2, . . . , αn) ∈ x for every j and x is maximal S-consistent, we have

�(α1, α2, . . . , αn) ∈ x. But this is impossible, for by assumption ¬�(α1, α2, . . . , αn) ∈ x.

Thus, by reductio, y0
1 is S-consistent and so has a maximal S-consistent extension y1 (by

Lindenbaum’s Lemma). It is straightforward to see that y1 satisfies both requirements (E1)

and (E2) (for i = 1).

To demonstrate the existence of the other members of the series, viz., y2, . . . , yn, assume

that we already have y1, . . . , yk ∈ US which satisfy (E1) and (E2) in place (where k < n).

As in the case of y1, we define an initial set y0
k+1 that can be shown to have a maximal

S-consistent extension yk+1 satisfying both (E1) and (E2). So let

y0
k+1 = {¬αk+1} ∪ {β|∃γ1, . . . , γk : ¬γ1 ∈ y1, . . . ,¬γk ∈ yk &

�(γ1, . . . , γk, β, αk+2, . . . , αn) ∈ x}.

To show that y0
k+1 is S-consistent, we assume otherwise. Then, for some β1, . . . , βm ∈

y0
k+1 − {¬αk+1}, the following hold.

{β1, . . . , βm,¬αk+1} `S ⊥
`S β1 ∧ · · · ∧ βm → αk+1
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For each βj (1 ≤ j ≤ m), there exist ¬γj.1 ∈ y1, . . . ,¬γj.k ∈ yk such that

�(γj.1, . . . , γj.k, βj , αk+2, . . . , αn) ∈ x.

Then by [RMn] and [Kn] we get

�(
m∨
j=1

γj.1, . . . ,
m∨
j=1

γj.k,
m∧
j=1

βj , αk+2, . . . , αn) ∈ x.

Since β1 ∧ · · · ∧ βm → αk+1 ∈ x, we also have the following by [RNn]

�(
m∨
j=1

γj.1, . . . ,

m∨
j=1

γj.k,

m∧
j=1

βj → αk+1, αk+2, . . . , αn) ∈ x.

Thus by [Kn] we have

�(
m∨
j=1

γj.1, . . . ,
m∨
j=1

γj.k, αk+1, αk+2, . . . , αn) ∈ x.

Note that ¬
∨m
j=1 γj.1 ∈ y1, since ¬γj.1 ∈ y1 for all j (1 ≤ j ≤ m), and y1 is maximal S-

consistent. Similarly, ¬
∨m
j=2 γj.2 ∈ y2, . . . , and ¬

∨m
j=1 γj.k ∈ yk. But

∨m
j=1 γj.k ∈ yk, since

yk complies with our requirement (E2). Hence we derive a contradiction. By reductio y0
k+1

is S-consistent, and so has a maximal S-consistent extension yk+1. It is straightforward to

check that yk+1 satisfies requirements (E1) and (E2) (for i = k + 1).

We have now demonstrated the existence of y1, . . . , yn ∈ US all of which satisfy require-

ments (E1) and (E2). It remains to show that RSxy1 · · · yn. Assume that for any β1, . . . , βn,

�(β1, . . . , βn) ∈ x, β1 /∈ y1, . . . , βn−1 /∈ yn−1. Then ¬β1 ∈ y1, . . . , ¬βn−1 ∈ yn−1. Since yn
satisfies (E2), we have βn ∈ yn. Thus RSxy1 · · · yn according to the definition of RS. This

completes our proof of the Existence Lemma. a

Lemma 2.5.4 (Truth lemma for normal n-adic systems). Let MS = 〈US, RS, VS〉 be the

canonical model of a normal n-adic system S. For any Ln-formula α, we have

∀x ∈ US, MS, x |= α ⇐⇒ α ∈ x.

Proof. The proof is by induction on α. In the following we show the modal case of the

inductive step only. Let α be �(α1, . . . , αn), and show that for an arbitrary x ∈ US,

MS, x |= �(α1, . . . , αn) ⇐⇒ �(α1, . . . , αn) ∈ x
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by assuming the inductive hypothesis that the theorem holds for α1, . . . , and αn.

For the direction =⇒, assume�(α1, . . . , αn) /∈ x, which is equivalent to ¬�(α1, . . . , αn) ∈
x. Then, by the existence lemma, there exist y1, . . . , yn ∈ US such that ¬α1 ∈ y1, . . . , and

¬αn ∈ yn, and RSxy1 · · · yn. Then for each i such that 1 ≤ i ≤ n, αi /∈ yi and by the

inductive hypothesis MS, yi 6|= αi. Thus MS, x 6|= �(α1, . . . , αn), as desired.

For the direction ⇐=, assume �(α1, . . . , αn) ∈ x. To show that MS, x |= �(α1, . . . , αn),

we consider arbitrary y1, . . . , yn ∈ U such that RSxy1 · · · yn. Then by the definition of RS,

αi ∈ yi for some i where 1 ≤ i ≤ n. It follows from the inductive hypothesis that M, yi |= αi,

whence we conclude that MS, x |= �(α1, . . . , αn). a

Corollary 2.5.5. Let S be a normal n-adic system. Then any S-consistent set of formulas

Σ is satisfiable in the S-canonical model MS.

Proof. By Lindenbaum’s Lemma, Σ can be extended to a maximal S-consistent set x of

formulas. But every formula of Σ is true at x in MS according to the truth lemma. Therefore,

Σ is satisfiable in MS. a

Theorem 2.5.6 (Completeness of Kn). The weakest n-adic normal system Kn is complete

with respect to the class of all (n+ 1)-ary relational frames.

Proof. It is enough to note that the canonical model of Kn is an (n + 1)-ary relational

model. a



Chapter 3

Normal Systems from Kn to S5n

Whereas monadic systems extending K with axioms [P], [D], [T], [B], [4] and [5] have been

studied in detail by modal logicians, polyadic normal systems (other than its weakest mem-

ber Kn) seem to have been given little attention by many practitioners of modal logic. In

this chapter we embellish modal logic by proposing n-adic counterparts of the aforemen-

tioned monadic axioms, and extending Kn with these n-adic axioms (Section 3.2). The

classes of frames for the defined normal polyadic systems, as well as their completeness,

are demonstrated in Sections 3.3 and 3.4. We also investigate the first-order relational

properties corresponding to our n-adic modal axioms, culminating in the study of multi-ary

equivalence relations (Section 3.5). But first we present in Section 3.1 results for the normal

monadic systems P, D, T, B, S4 and S5. While the polyadic systems we propose in this

chapter are new, their monadic cousins have been examined in standard textbooks such as

Chellas (1980) and Hughes and Cresswell (1996).

It is worth mentioning that the n-adic axioms [Pn], [Dn], [Tn], [Bn], [4n] and [5n] we are

going to present are Sahlqvist formulas. So their correspondences with first-order properties

are expected, and the proofs are straightforward. Our aims here, however, are primarily

studying these n-adic axioms and the resulting systems that can be said to generalize their

monadic members, as well as investigating the corresponding conditions of multi-ary rela-

tions which, like the n-adic axioms and systems, are generalizations of their binary coun-

terparts.

32
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3.1 The normal monadic systems P, D, T, B, S4 and S5

In monadic modal logic, various axioms have been put forward to extend K. The following

axioms (and their duals) have been studied for their theoretical and applicational interests.

[P] ♦> [P�] ¬�⊥
[D] �p→ ♦p [D♦] �p→ ♦p
[T] �p→ p [T♦] p→ ♦p
[B] p→ �♦p [B♦] ♦�p→ p

[4] �p→ ��p [4♦] ♦♦p→ ♦p
[5] ♦p→ �♦ p [5♦] ♦�p→ �p

Part of the theoretical significance of the above axioms is due to their correspondence

to some simple first-order properties of binary relations, viz. seriality, reflexivity, symmetry,

transitivity and euclideanness.

[P] : [ser] (∀x)(∃y)Rxy

[D] : [ser] (∀x)(∃y)Rxy

[T] : [refl] (∀x)Rxx

[B] : [sym] (∀x)(∀y)(Rxy → Ryx)

[4] : [trans] (∀x)(∀y)(∀z)(Rxy ∧Ryz → Rxz)

[5] : [eucl] (∀x)(∀y)(∀z)(Rxy ∧Rxz → Ryz)

By adding one or more of the above axioms to K, we obtain various systems (with some

of them being equivalent systems). The following ones are important both historically and

theoretically. (Alternative names are given in parentheses.)

KP (P) : K, [P]

KD (D) : K, [D]

KT (T) : K, [T]

KTB (B) : K, [T], [B]

KT4 (S4) : K, [T], [4]

KT5 (S5) : K, [T], [5]

From the correspondence results, the classes of frames for the systems P, D, T, B, S4
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and S5 are as indicated below.

KP (P) : Serial frames

KD (D) : Serial frames

KT (T) : Reflexive frames

KTB (B) : Reflexive and symmetric frames

KT4 (S4) : Reflexive and transitive frames

KT5 (S5) : Equivalence frames

Moreover the listed systems are complete with respect to their classes of frames. In the

following sections, we generalize the above results pertaining to extensions of the monadic

K to extensions of the n-adic Kn.

3.2 The normal polyadic systems Pn, Dn, Tn, Bn, S4n and S5n

The following formulas generalize the monadic [P], [D], [T], [B], [4] and [5]. (Notation:

To improve readability, we write ⊥n for an n-termed sequence of ⊥’s, ~p for p1, . . . , pn.

If the i-th member of an n-termed sequence of ⊥’s is replaced by p, we write simply

⊥, . . . , p, . . . ,⊥. Similarly instead of the longer p1, . . . , pi−1, α, pi+1, . . . , pn, we use the

shorter p1, . . . , α, . . . , pn. Occasionally the above conventions are suspended in order to

highlight syntactic features.)

[Pn] ♦>n

[Dn] �~p→
∨
i ♦(>, . . . , pi, . . . ,>)

[Tn] �~p→
∨
i pi

[Bi
n] pi → �(¬p1, . . . ,♦~p, . . . ,¬pn)

[4in] �~p→ �(p1, . . . ,�(⊥, . . . , pi, . . . ,⊥), . . . , pn)

[5in] ♦(>, . . . , pi, . . . ,>)→ �(¬p1, . . . ,♦~p, . . . ,¬pn)

The dual forms of the above formulas are as follows.

[P�n] ¬�⊥n

[D♦n]
∧
i�(⊥, . . . , pi, . . . ,⊥)→ ♦~p

[T♦n]
∧
i pi → ♦~p

[B♦in] ♦(¬p1, . . . ,�~p, . . . ,¬pn)→ pi

[4♦in] ♦(p1, . . . ,♦(>, . . . , pi, . . . ,>), . . . , pn)→ ♦~p
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[5♦in] ♦(¬p1, . . . ,�~p, . . . ,¬pn)→ �(⊥, . . . , pi, . . . ,⊥)

By adding one or more of the above axioms to Kn, we obtain n-adic counterparts of the

monadic systems P, D, T, B, S4 and S5.

Definition 3.2.1. The following are extensions of Kn. Recall that Kn is the smallest system

that provide PL, [RMn], [RNn] and [Cn]. (Alternative names of the systems are given in

parentheses.)

KnPn (Pn) : Kn, [Pn]

KnDn (Dn) : Kn, [Dn]

KnTn (Tn) : Kn, [Tn]

KnTnBn (Bn) : Kn, [Tn], [Bn]

KnTn4n (S4n) : Kn, [Tn], [4n]

KnTn5n (S5n) : Kn, [Tn], [5n] a

Note that there are other ways to generalize monadic axioms. Some of them are listed

below, followed by their dual forms. In order to distinguish them from the earlier set of

axioms, we prefix their names with † (dagger).

[†Di
n] �(⊥, . . . , p, . . . ,⊥)→ ♦(>, . . . , p, . . . ,>)

[†Ti
n] �(⊥, . . . , p, . . . ,⊥)→ p

[†Bi
n]

∧
i pi → �(⊥, . . . ,♦~p, . . . ,⊥)

[†4in] �~p→ �(⊥, . . . ,�~p, . . . ,⊥)

[†5in] ♦~p→ �(⊥, . . . ,♦~p, . . . ,⊥)

[†D♦in] �(⊥, . . . , p, . . . ,⊥)→ ♦(>, . . . , p, . . . ,>)

[†T♦in] p→ ♦(>, . . . , p, . . . ,>)

[†B♦in] ♦(>, . . . ,�~p, . . . ,>)→
∨
i pi

[†4♦in] ♦(>, . . . ,♦~p, . . . ,>)→ ♦~p
[†5♦in] ♦(>, . . . ,�~p, . . . ,>)→ �~p

The following theorems illustrate the deductive relations among the formulas listed so

far. In order to highlight the rules and axioms used in deduction, we require the base logic

to provide PL and rule [REn] only. (Such a system is called “classical”. We shall study
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classical systems in Chapter 5.) Remarks about the deductive relations follow the proofs of

the theorems.

Theorem 3.2.2. Let S be a PL-system providing [REn].

(1) [Dn]→ [Pn] is provable in S if it has [RNn].

(2) [Pn]→ [Dn] is provable in S if it has [RMn] and [Cn].

(3) [†Dn]→ [Pn] is provable in S if it has [RNn].

(4) [Pn]→ [†Dn] is provable in S if it has [Cn].

(5) [Dn]→ [†Dn] is provable in S if it has [RNn].

(6) [†Dn]→ [Dn] is provable in S if it has [RMn], [RNn] and [Cn].

Proof. For (1). We show that if S provides [RNn], then [Dn] `S [Pn].

1. > PL

2. �>n 1, [RNn]

3. �>n → ♦>n [Dn],PL

4. ♦>n 2, 3, [MP]

For (2). It suffices to show that if S provides [RMn] and [Cn], then the following holds:

{�~p,�(¬p1,⊥, . . . ,⊥),�(⊥,¬p2,⊥, . . . ,⊥), . . . ,�(⊥, . . . ,⊥,¬pn)} `S �⊥n

since from the above we have `S �~p ∧
∧
i�(⊥, . . . ,¬pi, . . . ,⊥) → �⊥n (by [DT]) and so

`S [Pn]→ [Dn] (by contraposition).

1. �(¬p1,⊥, . . . ,⊥) assumption

2. �(¬p1,⊥, . . . ,⊥)→ �(¬p1, p2, . . . , pn) PL, [RMn]

3. �(¬p1, p2, . . . , pn) 1, 2, [MP]

4. �(p1, p2, . . . , pn) assumption

5. �(p1 ∧ ¬p1, p2, . . . , pn) 3, 4, [Cn], [MP]

6. �(p1 ∧ ¬p1, p2, . . . , pn)↔ �(⊥, p2, . . . , pn) PL, [REn]

7. �(⊥, p2, . . . , pn) 5, 6, [MP]

8. �(⊥,¬p2,⊥, . . . ,⊥) assumption
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9. �(⊥,¬p2, p3, . . . , pn) PL, [RMn]

10. �(⊥, p2 ∧ ¬p2, p3, . . . , pn) 7, 9, [Cn], [MP]

11. �(⊥, p2 ∧ ¬p2, p3, . . . , pn)↔ �(⊥,⊥, p3, . . . , pn) PL, [REn]

12. �(⊥,⊥, p3, . . . , pn) 10, 11, [MP]

Using the rest of the assumptions, we eventually arrive at the formula �(⊥, . . . ,⊥) as

desired.

For (3). We show that if S provides [RNn], then [†Di
n] `S [Pn].

1. > PL

2. �(⊥i−1,>,⊥n−i) 1, [RNn]

3. �(⊥i−1,>,⊥n−i)→ ♦>n [†Di
n], [US]

4. ♦>n 2, 3, [MP]

For (4). We show that if S provides [Ci
n], then `S [Pn]→ [†Di

n].

1. �(⊥i−1, p,⊥n−i) ∧�(⊥i−1,¬p,⊥n−i)→ �(⊥i−1, p ∧ ¬p,⊥n−i) [Ci
n], [US]

2. �(⊥i−1, p ∧ ¬p,⊥n−i)↔ �(⊥i−1,⊥,⊥n−i) PL, [REn]

3. �(⊥i−1, p,⊥n−i) ∧�(⊥i−1,¬p,⊥n−i)→ �⊥n 1, 2, [MP]

4. ¬�⊥n → ¬�(⊥i−1, p,⊥n−i) ∨ ¬�(⊥i−1,¬p,⊥n−i) 3,PL

5. ¬�⊥n → ¬�(⊥i−1, p,⊥n−i) ∨ ♦(>i−1, p,>n−i) 4,PL, [Df♦]

6. ¬�⊥n → (�(⊥i−1, p,⊥n−i)→ ♦(>i−1, p,>n−i)) 5,PL

For (5). We show that if S provides [RNn], then [Dn] `S [†Dn].

1. �(⊥, . . . , pi, . . . ,⊥)→ ♦(⊥,>, . . . ,>) ∨ · · · ∨
�(>, . . . , pi, . . . ,>) ∨ · · · ∨�(>, . . . ,>,⊥) [Dn], [US]

2. �(⊥j−1,>,⊥n−j) where 1 ≤ j 6= i ≤ n [RNn]

3. ¬♦(>j−1,⊥,>n−j) 2, [Df♦]

4. �(⊥, . . . , pi, . . . ,⊥)→ ♦(>, . . . , pi, . . . ,>) 1, 3,PL

For (6). It follows from (3) and (2) that if S provides [RMn], [RNn] and [Cn], then

[†Dn]→ [Dn] is provable. a

Remark 3.2.3. [Dn] and [Pn] are provable equivalents in normal systems, but not so in

systems that are weaker than Kn. In some interpretations of the modality � (for instance,
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a deontic reading of � as “it is obligatory that”) we may wish to distinguish between these

two axioms and so prefer a logic weaker than Kn. The same applies to [†Dn] and [Pn]. Note

that [Dn] and [†Dn] are provable equivalents in normal systems. However in PL-systems

providing [RMn] and [RNn] only, [Dn] is deductively stronger than [†Dn].

Theorem 3.2.4. Let S be a PL-system providing [REn].

(1) [Tn]→ [Dn] is provable in S.

(2) [Tn]→ [†Tn] is provable in S.

(3) [†Tn]→ [Pn] is provable in S.

(4) [†Tn]→ [†Dn] is provable in S.

Proof. For (1). We show that [Tn] `S [Dn].

1. �~p→
∨
i pi [Tn]

2. pi → ♦(>i−1, pi,>n−i) [T♦n], [US]

3. �~p→
∨
i ♦(>i−1, pi,>n−i) 1, 2,PL

For (2). We show that [Tn] `S [†Ti
n].

1. �(⊥, . . . , pi, . . . ,⊥)→ ⊥∨ · · · ∨ pi ∨ · · · ∨ ⊥ [Tn], [US]

2. �(⊥, . . . , pi, . . . ,⊥)→ pi 1,PL

For (3). We show that [†Tn] `S [Pn].

1. �⊥n → ⊥ [†Tn], [US]

2. > → ¬�⊥n 1,PL

3. ¬�⊥n 2,PL

For (4). We show that [†Tn] `S [†Dn].

1. �(⊥, . . . , p, . . . ,⊥)→ ♦(>, . . . , p, . . . ,>) [†Tn], [†T♦n],PL

a

Remark 3.2.5. In PL-systems providing [REn] (and therefore in normal systems as well),
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[Dn] is derivable from [Tn]. So are [Pn] and [†Dn] since both are derivable from [†Tn], which

in turn is derivable from [Tn] in such systems.

Theorem 3.2.6. Let S be a PL-system providing [REn].

(1) [Ci
n] is provable in S if it has [RMi

n] and [Bi
n].

(2) [Ni
n] is provable in S if it has [RMi

n] and [Bi
n].

Proof. For (1). Let ~p be the sequence p1 · · · pi · · · pn and ~qi the sequence p1, . . . , qi, . . . , pn

(where qi occurs at the ith-place as pi does). The following sketches a proof of [Ci
n] in S.

1. ♦(¬p1, . . . ,�~p, . . . ,¬pn)→ pi [B♦in]

2. ♦(¬p1, . . . ,�~qi, . . . ,¬pn)→ qi [B♦in]

3. ♦(¬p1, . . . ,�~p, . . . ,¬pn) ∧ ♦(¬p1, . . . ,�~qi, . . . ,¬pn)→ pi ∧ qi 1, 2,PL

4. ♦(¬p1, . . . ,�~p ∧�~qi, . . . ,¬pn)→ pi ∧ qi 3,PL, [RM♦in]

5. �(p1, . . . ,♦(¬p1, . . . ,�~p ∧�~qi, . . . ,¬pn), . . . , pn)→
�(p1, . . . , pi ∧ qi, . . . , pn) 4, [RMi

n]

6. �~p ∧�~qi → �(p1, . . . ,♦(¬p1, . . . ,�~p ∧�~qi, . . . ,¬pn), . . . , pn) [Bi
n], [US], [REn]

7. �~p ∧�~qi → �(p1, . . . , pi ∧ qi, . . . , pn) 5, 6, [MP]

For (2).

1. > → �(p1, . . . ,♦(¬p1, . . . ,>, . . . ,¬pn), . . . , pn) [Bi
n], [US], [REn]

2. �(p1, . . . ,♦(¬p1, . . . ,>, . . . ,¬pn), . . . , pn) 1,PL

3. ♦(¬p1, . . . ,>, . . . ,¬pn)→ > PL

4. �(p1, . . . ,♦(¬p1, . . . ,>, . . . ,¬pn), . . . , pn)→
�(p1, . . . ,>, . . . , pn) 3, [RMi

n]

5. �(p1, . . . ,>, . . . , pn) 2, 4, [MP]

a

Remark 3.2.7. Both [Ci
n] and [RNi

n] are provable if a S has, in addition to PL and [REn],

both [RMi
n] and [Bi

n]. The claim is a generalization to the n-ary � of the result reported in

Jennings (1981) for the unary �. An import of this is that a KnTnBn-system, also known

as a Brouwersche system, can be characterized by a smaller set of modal axioms and rules,

viz. [RMn], [Tn] and [Bn] (in addition to PL).
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3.3 Classes of frames for Pn, Dn, Tn, Bn, S4n and S5n

A formula α is said to correspond to a frame property φ if the following holds: a frame F

validates α if and only if it has the property φ. In symbols,

F |= α ⇐⇒ F |= φ.

The class of frames for a set Σ of formulas is the collection C of frames validating all the

formulas belonging to Σ. In other words, for any frame F,

F ∈ C ⇐⇒ (∀σ ∈ Σ, F |= σ).

We take the class of frames for a system S to be the class C of frames for the set of S-

theorems. Thus, C comprises all the frames on which every theorem of S is valid. More

formally, for any frame F,

F ∈ C ⇐⇒ (∀α, `S α =⇒ F |= α).

Let C be the class of frames for a system S. If formulas X1, . . . , Xn correspond respec-

tively to frame properties φ1, . . . , φm, then the class of frames for the system SX1 · · ·Xm

(i.e. the extension of S with X1, . . . , Xm as axioms) is the class D ⊆ C of frames satisfying

φ1, . . . , φm. For any frame F ∈ D validates all the rules and axioms of SX1 · · ·Xm, and any

frame F /∈ D invalidates some theorems of SX1 · · ·Xm.

Note that the class of frames for Kn is the class of all (n+ 1)-ary relational frames since

the axioms of Kn are valid, and the rules of Kn preserve validity in the class of all (n+1)-ary

relational frames. In the following, we show that each of the principles [Pn], [Dn], [Tn], [Bn],

[4n] and [5n] corresponds to a first-order property of (n + 1)-ary relations. It follows from

our earlier discussion that the classes of frames for KnPn, KnDn, KnTn, KnTnBn, KnTn4n
and KnTn5n are precisely the classes of frames satisfying the relevant first-order conditions.

An (n+1)-ary relation R is said to be serial, reflexive, symmetric, transitive or euclidean

at the i-th place (where appropriate) if it satisfies the following conditions, respectively.

[sern+1] (∀x)(∃~y)Rx~y

[refln+1] (∀x)Rxx · · ·x
[symi

n+1] (∀x)(∀~y)(Rx~y → Ryiy1 · · ·x · · · yn)

[transin+1] (∀x)(∀~y)(∀~z)(Rx~y ∧Ryi~z → Rxy1 · · · zi · · · yn)

[euclin+1] (∀x)(∀~y)(∀~z)(Rx~y ∧Rx~z → Ryiy1 · · · zi · · · yn)
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Note that there is only one instance of seriality and of reflexivity whereas there are n in-

stances of each of symmetry, transitivity and euclideanness. If R is symmetric at every place,

i.e. if R satisfies [symn+1] (which stands for the conjunction of all instances of [symi
n+1]),

we simply call it symmetric. The same applies to transitivity and euclideanness.

Before demonstrating correspondence between modal axioms and relational properties,

we mention here some heuristic devices which will be helpful in understanding the argu-

ments. A binary relation is often characterized as a seeing relation, and shown in diagrams

as a set of arrows. We propose similar devices here. Given an (n + 1)-ary relation R, if

Rxy1 · · · yn, we say that x sees the n-tuple y1, . . . , yn, i.e. x sees y1, . . . , yn and sees them

in that order. In terms of the seeing relation, (n + 1)-ary seriality is the property that

every point sees at least one n-tuple; (n+ 1)-ary reflexivity is the property that every point

sees the n-tuple consisting of itself only; and so on. Furthermore we represent the seeing

relation in the form of arrows, each with n heads. If x sees the tuple y1, . . . , yi, . . . , yn, i.e.

if Rxy1 · · · yi · · · yn, we draw the following picture.

x

����

y1
���������

yi yn
?????????

Note that in the cases of symmetry, transitivity and euclideanness, new seeing arrangements

arise from existing ones. We illustrate this by showing how points can be moved. For

example, for symmetry at the i-th place, a new seeing arrangement results from swapping

the positions of x and yi. See Figures 3.1, 3.2 and 3.3 for symmetry, transitivity and

euclideanness, respectively. (In each case, the diagram on the right is obtained from that

on the left by moving point(s) as indicated with dotted arrow(s).)

We list below correspondences between modal formulas and frame properties. Proofs for

them follow.

[Pn] : [sern]

[Dn] : [sern]

[Tn] : [refln]

[Bi
n] : [symi

n]

[4in] : [transin]
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[5in] : [euclin]

Theorem 3.3.1. [Pn] corresponds to [sern+1], i.e. for any (n+ 1)-ary relational frame F,

F |= [Pn] ⇐⇒ F |= [sern+1].

Proof. For =⇒. Assume F = 〈U,R〉 is not serial, i.e. there exists an x such that for all

y1, . . . , yn, ¬Rxy1 · · · yn. Clearly for any model M on F, we have M, x |= �⊥n, i.e. M, x 6|=
♦>n. Thus [Pn] is invalid on F.

For⇐=. Assume F = 〈U,R〉 is serial, i.e. every x is related to a tuple y1, . . . , yn. Clearly

M, x |= ♦>n. Thus [Pn] is valid on F. a

Theorem 3.3.2. [Dn] corresponds to [sern+1], i.e. for any (n+ 1)-ary relational frame F,

F |= [Dn] ⇐⇒ F |= [sern+1].

Proof. For =⇒. Assume F = 〈U,R〉 is not serial, i.e. there exists an x such that for all

y1, . . . , yn, ¬Rxy1 · · · yn. Clearly for any model M on F, we have M, x |= �~p but M, x 6|=
♦(>, . . . , pi, . . . ,>) for every i. Thus [Dn] is invalid on F.

For ⇐=. Consider a point x in a model M on a serial frame F. Note that Rxy1 · · · yn
for some points y1, . . . , yn. Assume M, x |= �~p. Then for some i, M, yi |= pi and so

M, x |= ♦(⊥, . . . , pi, . . . ,⊥). Thus M, x |= [Dn]. Since M and x are arbitrary, [Dn] is valid

on F. a

Theorem 3.3.3. [Tn] corresponds to [refln+1], i.e. for any (n+ 1)-ary relational frame F,

F |= [Tn] ⇐⇒ F |= [refln+1].

Proof. For =⇒. Assume F = 〈U,R〉 is not reflexive, i.e. there exists an x such that

¬Rxx · · ·x. Consider a model M on F such that for all i where 1 ≤ i ≤ n,

V (pi) = U − {x}.

Then M, x |= �~p since for any y1, . . . , yn related to x, at least one of them, say yj , is not x

and so M, yj |= pj . But M, i 6|= pi for all i. Thus M is a countermodel of [Tn].

For ⇐=. Consider a point x in a model M on a reflexive frame F. Note that Rxx · · ·x.

Assume M, x |= ~p. Then for some i, M, x |= pi. In other words, M, x |= [Tn]. But x and M

are arbitrary. So [Tn] is valid on F. a



CHAPTER 3. NORMAL SYSTEMS FROM KN TO S5N 43

x

����

y1
���������

yi yn
?????????

WW

��

yi

����

y1
���������

x yn
?????????

Figure 3.1: Symmetry at the i-th place
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Figure 3.2: Transitivity at the i-th place
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CHAPTER 3. NORMAL SYSTEMS FROM KN TO S5N 44

Theorem 3.3.4. [Bi
n] corresponds to [symi

n+1], i.e. for any (n+ 1)-ary relational frame F,

F |= [Bi
n] ⇐⇒ F |= [symmi

n+1].

Proof. For =⇒. Assume F = 〈U,R〉 is not symmetric at the i-th place, i.e. there exist x,

y1, . . . , yi, . . . , yn such that Rxy1, . . . , yi, . . . , yn yet ¬Ryiy1 · · ·x · · · yn. Then any M = 〈F, V 〉
satisfying the following will falsify [Bi

n] at x (where j ranges from 1 to n).

V (pi) = {x}

V (pj) = {yj} for all j 6= i

To prove that M, x 6|= [Bi
n], we first note that M, x |= pi and then show the following:

M, x |= ♦(p1, . . . ,�(¬p1, . . . ,¬pn), . . . , pn).

It is clear that M, yj |= pj for all j 6= i . So it remains to show that M, yi |= �(¬p1, . . . ,¬pn).

Consider arbitrary z1, . . . , zi, . . . , zn such that Ryiz1 · · · zi · · · zn. Assume for all j 6= i we

have M, zj |= pk. Then zj = yj , from which it follows that zi 6= x (since by assumption

¬Ryiy1 · · ·x · · · yn). Thus M, zi |= ¬pi, whence we conclude M, yi |= �(¬p1, . . . ,¬pn).

For ⇐=. Assume F = 〈U,R〉 is symmetric at the i-th place. Consider a point x

in a model M = 〈F, V 〉. We show that M, x |= [Bi
n]. So assume M, x |= pi. For

any y1, . . . , yi, . . . , yn such that Rxy1 · · · yi · · · yn, if for all j 6= i we have M, x |= pj

then M, yi |= ♦(p1, . . . , pi, . . . , pn) (since Ryiy1 · · ·x · · · yn by [symi
n+1]). Hence M, x |=

�(¬p1, . . . ,♦(p1, . . . , pi, . . . , pn), . . . ,¬pn). So M, x |= [Bi
n], whence we conclude that F |=

[Bi
n]. a

Theorem 3.3.5. [4in] corresponds to [transin+1], i.e. for any (n+ 1)-ary relational frame F,

F |= [4in] ⇐⇒ F |= [transin+1].

Proof. For =⇒. Assume F = 〈U,R〉 is not transitive at the i-th place, i.e. there exist x, ~y

and ~z such that Rx~y, Ryi~z, yet ∼ Rxy1 · · · zi · · · yn. Consider a model M = 〈F, V 〉 for which

V (pi) = U − {zi};

V (pj) = U − {yj},where 1 ≤ j ≤ n and j 6= i.

Then M, x |= �~p, since for any ~w such that Rx~w, if M, wj 6|= pj for all j 6= i then wj = yj

for all j 6= i and so wi 6= zi, which implies M, wi |= pi. As well, M, yj |= ¬pj for all j 6= i;
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M, yi |= ♦(>, . . . ,¬pi, . . . ,>); hence M, x |= ♦(¬p1, . . . ,♦(>, . . . ,¬pi, . . . ,>), . . . ,¬pn) or

equivalently M, x 6|= �(p1, . . . ,�(⊥, . . . , pi, . . . ,⊥), . . . , pn). In other words, M, x 6|= [4in].

For ⇐=. Assume F = 〈U,R〉 is transitive at the i-th place. Let x be an arbitrary point

of U . To show M, x |= [4in], we assume M, x |= �~p and show

M, x |= �(p1, . . . ,�(⊥, . . . , pi, . . . ,⊥), . . . , pn).

Consider arbitrary ~y such that Rx~y and assume M, yj 6|= pj where j 6= i. For any ~z such that

Ryi~z we have, by [transin+1], Rxy1 · · · zi · · · yn. Consequently M, zi |= pi since, by assump-

tion, �~p is true at x and pj is false at yj where j 6= i. Thus M, yj |= �(⊥, . . . , pi, . . . ,⊥)

whence we conclude that M, x |= �(p1, . . . ,�(⊥, . . . , pi, . . . ,⊥), . . . , pn) as desired. a

Theorem 3.3.6. [5in] corresponds to [euclin+1], i.e. for any (n+ 1)-ary relational frame F,

F |= [5in] ⇐⇒ F |= [euclin+1].

Proof. For =⇒. Assume F = 〈U,R〉 is not euclidean at the i-th place, i.e. there exist x,

~y and ~z such that Rx~y, Rx~z, yet ∼ Ryiy1 · · · zi · · · yn. We show that the following is a

countermodel for [5in]. Let M = 〈F, V 〉 be a model such that

V (pi) = {zi};

V (pj) = {yj}, where 1 ≤ j ≤ n and j 6= i.

Since Rx~z, we have M, x |= ♦(>, . . . , pi, . . . ,>). It remains to show that

M, x 6|= �(¬p1, . . . ,♦~p, . . . ,¬pn).

Note that M, yi |= �(¬p1, . . . ,¬pn) since for any w1, . . . , wn such that Ryiw1 · · ·wn, if

M, wj |= pj for all j 6= i, then wj = yj for all j 6= i, which implies wi 6= zi and so

M, wi |= ¬pi. Recall that Rx~y. Therefore M, x |= ♦(p1, . . . ,�(¬p1, . . . ,¬pn), . . . , pn). In

other words, M, x 6|= �(¬p1, . . . ,♦~p, . . . ,¬pn) as desired.

For ⇐=. Assume F = 〈U,R〉 is euclidean at the i-th place. Consider a point x in a

model M = 〈F, V 〉. We show that M, x |= [5in]. So assume M, x |= ♦(>, . . . , pi, . . . ,>),

i.e. there exist y1, . . . , yn such that Rxy1 · · · yn and M, yi |= pi. We need to show that

M, x |= �(¬p1, . . . ,♦~p, . . . ,¬pn). So consider arbitrary z1, . . . , zn such that Rxz1, . . . , zn

and M, zj |= pj , for all j 6= i, and show that M, zi |= ♦~p. But this is obvious since

Rziz1 · · · yi · · · zn (by [euclin+1]). a
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It follows from the correspondence results that the class of frames for each of the nor-

mal systems defined in Definition 3.2.1 comprises those frames satisfying the first-order

condition(s) that corresponds to the distinctive modal axiom(s) of that system.

Theorem 3.3.7. The classes of frames for the following normal systems are as indicated.

KnPn : Serial frames

KnDn : Serial frames

KnTn : Reflexive frames

KnTnBn : Reflexive and symmetric frames

KnTn4n : Reflexive and transitive frames

KnTn5n : Reflexive and euclidean frames

Modal axioms [†Ti
n], [†Bi

n], [†4in] and [†5in] correspond to notions of reflexivity, symmetry,

transitivity and euclideanness which are different from the ones we defined at the beginning

of this section. To distinguish these relational properties from the earlier ones, we add the

prefix †, in the same way as we name the corresponding modal axioms.

[†reflin+1] (∀x)(∃~y)Rxy1 · · ·x · · · yn
[†symi

n+1] (∀x)(∀~y)(Rx~y → Ryix · · ·x)

[†transin+1] (∀x)(∀~y)(∀~z)(Rx~y ∧Ryi~z → Rx~z)

[†euclin+1] (∀x)(∀~y)(∀~z)(Rx~y ∧Rx~z → Ryi~z)

Correspondence theorem between the † axioms and first-order relational properties are

given below. Note that [†Di
n] corresponds to the same notion of seriality as [Dn].

Theorem 3.3.8. The following modal axioms correspond to the indicated first-order prop-

erties of (n+ 1)-ary relations.

[†Dn] : [sern+1]

[†Tn] : [†refln+1]

[†Bi
n] : [†symi

n+1]

[†4in] : [†transin+1]

[†5in] : [†euclin+1]

Proof. We leave the proof to the reader. a

Figures 3.4, 3.5 and 3.6 give us a picture of these properties. As before, the diagrams on

the right are obtained from those on the left by moving point(s) as indicated with dotted
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arrow(s). Note that the movement of points for †transitivity and for †euclideanness can be

represented in a simpler way (see Figures 3.7 and 3.8). It is illuminating to compare these

diagrams with those for symmetry, transitivity and euclideanness (Figures 3.1, 3.2 and 3.3).

Finally we note that for n ≥ 2, the following Ln-formula

�~p→ ♦~p

does not have an (n + 1)-ary relational frame, i.e. there is no (n + 1)-ary relational frame

on which the formula is valid. To see this, consider F = 〈U,R〉 where R is an (n + 1)-ary

relation on U . We let M be the model 〈F, V 〉 such that V (p1) = U and V (pj) = ∅ for

all j ≥ 2. Then for any x ∈ U , M, x |= �~p but M, x 6|= ♦~p. In other words, the formula

�~p→ ♦p is false at any point in such a model on F. It is thus invalid on F.

3.4 Determination for Pn, Dn, Tn, Bn, S4n and S5n

It is straightforward to see that Pn, Dn, Tn, Bn, S4n and S5n are sound with respect to

their respective classes of frames. It remains to show that they are also complete.

As discussed in Section 2.5, we prove completeness of a normal n-adic system with

respect to a class of (n + 1)-ary relational frames by establishing that its canonical model

is on a frame belonging to that class.

Theorem 3.4.1. The following normal n-adic systems are complete with respect to the

indicated classes of (n+ 1)-ary relational frames:

KnPn : Serial frames

KnDn : Serial frames

KnTn : Reflexive frames

KnTnBn : Reflexive and symmetric frames

KnTn4n : Reflexive and transitive frames

KnTn5n : Reflexive and euclidean frames

Proof. For KnPn. We show that the canonical model M of any KnPn-system has a serial

(n + 1)-ary relation R. For any x of M, we have ♦>n ∈ x, Then, by the Truth Lemma

for normal systems, M, x |= ♦>n. So there exist y1, . . . , yn of M such that Rxy1 · · · yn and

M, yi |= >. In other words, R is serial.
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Figure 3.4: †Symmetry at the i-th place
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Figure 3.5: †Transitivity at the i-th place
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Figure 3.6: †Euclideanness at the i-th place
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Figure 3.7: †Transitivity at the i-th place: an alternative picture
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Figure 3.8: †Euclideanness at the i-th place: an alternative picture

For KnDn. We show that the canonical model M of any KnDn-system has a serial (n+1)-

ary relation R. For any x of M, we have, by substitution, �>n →
∨
i ♦(>, . . . ,>, . . . ,>) ∈ x,

i.e. �>n → ♦>n ∈ x. Since �>n ∈ x (by [RNn]), we have, by deductive closure, ♦>n ∈ x.

Hence R is serial, as already shown in the case of KnPn.

For KnTn. We show that the canonical model M of any KnTn-system has a reflexive

(n + 1)-ary relation R. To demonstrate Rxx · · ·x (where x is a point of M), we assume

�(α1, . . . , αn) ∈ x and show αi ∈ x for some i ≤ n. From �(α1, . . . , αn) →
∨
i αi ∈ x, it

follows that α1 ∨ · · · ∨αn ∈ x. Then, by the Truth Lemma, M, x |= α1 ∨ · · · ∨αn and so, for

some i ≤ n, M, x |= αi, whence we conclude αi ∈ x as desired.

For KnTnBn. We need only show that the canonical model M of any KnBn-system

has a symmetric relation R (since the canonical relation of any KnTn-system has already
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been shown to be reflexive). Assume Rxy1 · · · yn (for any x, y1, . . . , yn of M). To show

that Ryiy1 · · ·x · · · yn (where i ≤ n), we assume �(α1, . . . , αn) ∈ yi and demonstrate

αi ∈ x. Based on the assumptions, we have M, yi |= �(α1, . . . , αn) and so M, x |=
♦(¬α1, . . . ,�(α1, . . . , αn), . . . ,¬αn). Consequently ♦(¬α1, . . . ,�(α1, . . . , αn), . . . ,¬αn) ∈ x
(by the Truth Lemma). But all substitutional instances of [B♦in] are in x. Thus αi ∈ x,

which is what we want.

For KnTn4n. We need only show that the canonical model M of any Kn4n-system has

a transitive relation R (since the canonical relation of any KnTn-system has already been

shown to be reflexive). Assume Rxy1 · · · yn and Ryiz1 · · · zn (for any x, y1, . . . , yn, z1, . . . , zn).

To show Rxy1 · · · zi · · · yn (for any i ≤ n), we assume �(α1, . . . , αn) ∈ x and demonstrate

that either αk ∈ yk (for some k 6= i) or αi ∈ zi. So assume αk /∈ yk (for all k 6= i). Then the

following hold.

�(α1, . . . ,�(⊥, . . . , αi, . . . ,⊥), . . . , αn) ∈ x ([4in], deductive closure)

�(⊥, . . . , αi, . . . ,⊥) ∈ yi (Rxy1 · · · yn, αk /∈ yk)
αi ∈ zi (Ryiz1 · · · zn, ⊥ /∈ zk)

But this is what we want to demonstrate.

For KnTn5n. We need only show that the canonical model M of any Kn5n-system has

a euclidean relation R (since the canonical relation of any KnTn-system has already been

shown to be reflexive). Assume Rxy1 · · · yn and Rxz1 · · · zn (for any x, y1, . . . , yn, z1, . . . , zn).

To show Ryiy1 · · · zi · · · yn (for any i ≤ n), we assume �(α1, . . . , αn) ∈ yi and demonstrate

that either αk ∈ yk (for some k 6= i) or αi ∈ zi. So assume αk /∈ yk (for all k 6= i). Then

following hold.

¬αk ∈ yk (αk /∈ yk by assumption)

M, yk |= ¬αk (Truth Lemma)

M, x |= ♦(¬α1, . . . ,�(α1, . . . , αn), . . . ,¬αn) (Rxy1 · · · yn by assumption)

♦(¬α1, . . . ,�(α1, . . . , αn), . . . ,¬αn) ∈ x (Truth Lemma)

�(⊥, . . . , αi, . . . ,⊥) ∈ x ([5♦in], deductive closure)

αi ∈ zi (Rxz1 · · · zn by assumption)

But this is what we want to demonstrate. a
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Figure 3.9: Inclusions among normal systems

Finally, inclusions among the normal systems studied in this paper are shown in Fig-

ure 3.9, where if two logics are linked by a line, the one at the top properly includes the one

at the bottom.

3.5 First-order relational properties

In this section, the first-order relational properties which we have shown to be modally

definable in Section 3.3 are studied for their own sake. We shall define a notion of equivalence

relation on the basis of these properties.

3.5.1 Inter-derivability of relational properties

Theorem 3.5.1. Let R be an (n+ 1)-ary relation.

(1) If R satisfies [refln+1] and [euclin+1], then it also satisfies [symi
n+1] and [transin+1].

(2) If R satisfies [symi
n+1], then [transin+1] is equivalent to [euclin+1].

(3) If R satisfies [symn+1] and [transn+1], then [sern+1] implies [refln+1] (whereas the

converse holds generally).

Proof. For (1). Assume that R satisfies [refln+1] and [euclin+1]. If Rxy1 · · · yi · · · yn, then

Ryiy1 · · ·x · · · yn by [refln+1] (which gives Rx · · ·x) and [euclin+1]. In other words, R satisfies
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[symi
n+1]. If Rxy1 · · · yi · · · yn and Ryiz1 · · · zi · · · zn, then Ryiy1 · · ·x · · · yn (since R has al-

ready been shown to satisfy [symi
n+1]) and so Ryiy1 · · · zi · · · yn by [euclin+1]. In other words,

R satisfies [transin+1].

For (2). Assume R satisfies [symi
n+1]. To show that [transin+1] implies [euclin+1], assume

R satisfies [transin+1]. If Rxy1 · · · yi · · · yn and Rxz1 · · · zi · · · zn, then Ryiy1 · · ·x · · · yn by

[symi
n+1], and so Ryiy1 · · · zi · · · yn by [transin+1]. In other words, R satisfies [euclin+1]. To

show that [euclin+1] implies [transin+1], assume R satisfies [euclin+1]. If Rxy1 · · · yi · · · yn and

Ryiz1 · · · zi · · · zn, then Ryiy1 · · ·x · · · yn by [symi
n+1], and so Rxy1 · · · zi · · · yn by [euclin+1].

In other words, R satisfies [transin+1].

For (3). Assume R satisfies [symn] and [transn+1] (i.e. [symi
n+1] and [transin+1] for all

i ≤ n). To show that [sern+1] implies [refln+1], assume R satisfies [sern+1]. Then for

any x, there exist y1, y2, . . . , yn such that Rxy1y2 · · · yn. Then Ry1xy2 · · · yn by [sym1
n+1],

and so Rxxy2 · · · yn by [trans1
n+1]. By applying the same argument to Rxxy2 · · · yn using

the conditions of symmetry and transitivity for the other places, we eventually arrive at

Rxx · · ·x. In other words R satisfies [refln+1]. a

An equivalence relation is often characterized as being reflexive, symmetric and tran-

sitive. The above shows that it can equally be characterized either as being reflexive and

euclidean, or as being serial, symmetric and transitive.

Theorem 3.5.2. Let R be an (n+ 1)-ary relation.

(1) If R satisfies [symi
n+1], then [transin+1] is equivalent to [†transin+1].

(2) If R satisfies [symi
n+1], then [euclin+1] is equivalent to [†euclin+1].

(3) If R satisfies [symn+1] and [transn+1], then [refln+1] implies [†refln+1] (whereas the

converse holds generally).

Proof. For (1). Assume R satisfies [symi
n+1]. To show that [transin+1] implies [†transin+1],

we assume [transin+1] holds for R. If Rxy1 · · · yi · · · yn and Ryiz1 · · · zi · · · zn, then both

Ryiy1 · · ·x · · · yn and Rziz1 · · · yi · · · zn (by [symi
n+1]) and so Rziz1 · · ·x · · · zn (by [transin+1]),

from which we have Rxz1 · · · zi · · · zn (by [symi
n+1]). In other words, R satisfies [†transin+1].

To show that [†transin+1] implies [transin+1], we assume that [†transin+1] holds for R. If

Rxy1 · · · yi · · · yn and Ryiz1 · · · zi · · · zn, then both Ryiy1 · · ·x · · · yn and Rziz1 · · · yi · · · zn (by

[symi
n+1]) and so Rziy1 · · ·x · · · yn (by [†transin+1]), from which we have Rxy1 · · · zi · · · yn (by

[symi
n+1]). In other words, R satisfies [transin+1].
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For (2). Assume R satisfies [symi
n+1]. To show that [euclin+1] implies [†euclin+1], we

assume [euclin+1] holds for R. If Rxy1 · · · yi · · · yn and Rxz1 · · · zi · · · zn, then Rziz1 · · · yi · · · zn
(by [euclin+1]) and so Ryiz1 · · · zi · · · zn (by [symi

n+1]). In other words, R satisfies [†euclin+1].

To show that [†euclin+1] implies [euclin+1], assume [†euclin+1] holds for R. If Rxy1 · · · yi · · · yn
and Rxz1 · · · zi · · · zn, then Rziy1 · · · yi · · · yn (by [†euclin+1]) and so Ryiy1 · · · zi · · · yn (by

[symi
n+1]). In other words, R satisfies [euclin+1].

For (3). Note that [†refln+1] implies [sern+1]. Furthermore, assuming [symi
n+1] and

[transin+1], [sern+1] implies [refln+1] (item (3) of Theorem 3.5.1). Thus, on the same as-

sumption, [†refln+1] also implies [refln+1]. a

3.5.2 Symmetry and permutation

An (n + 1)-ary relation R is said to satisfy permutation if 〈x0, x1, . . . , xn〉 ∈ R implies

〈xπ0 , xπ1 , . . . , xπn〉 ∈ R for any permutation π of 0, 1, . . . , n. We also say that R is permu-

tational. For example, a ternary relation R is permutational if Rxyz implies Rxzy, Ryxz,

Ryzx, Rzxy, and Rzyx. We demonstrate below that symmetry (at all places) is equiva-

lent to permutation. It is trivial to show that permutation implies symmetry. So only the

converse is of interest.

Theorem 3.5.3. If an (n + 1)-ary relation R satisfies [symn+1], then it is permutational.

(Recall that [symn+1] =
∧
i[symi

n+1].)

Proof. We prove the above by induction on n. For n = 1, i.e. for a binary relation R, if

Rxy, then by symmetry Ryx. So R is permutational.

For the inductive step, we assume that any n-ary symmetric relation is permutational

(I.H.), and show that any (n+1)-ary relation is also permutational. Let R be an (n+1)-ary

relation, and let 〈x0, x1, . . . , xn−1, xn〉 ∈ R. Observe that any permutation of 0, 1, . . . , n−1, n

is of the following form:

π0, π1, . . . , πi−1, n, πi, . . . , πn−1

where π is a permutation of 0, 1, . . . , n− 1, and 0 ≤ i ≤ n− 1. Thus in order to show that

R is permutational, we need to show that

〈xπ0 , xπ1 , . . . , xπi−1 , xn, xπi , . . . , xπn−1〉 ∈ R. (1)
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We define an n-ary relation Rxn as follows:

〈y0, . . . , yn−1〉 ∈ Rxn ⇐⇒ 〈y0, . . . , yn, xn〉 ∈ R.

It is easy to check that Rxn is symmetric, given that R is symmetric. Thus Rxn is permuta-

tional (by I.H.). Clearly 〈x0, x1, . . . , xn−1〉 ∈ Rxn . Hence 〈xπ0 , xπ1 , . . . , xπn−1〉 ∈ Rxn . Then

the following (n+ 1)-tuples are in R by the definition of Rxn and the symmetry of R.

〈xπ0 , xπ1 , . . . , xπn−1 , xn〉

〈xn, xπ1 , . . . , xπn−1 , xπ0〉

〈xπi , xπ1 , . . . , xπi−1 , xn, xπi+1 , . . . , xπn−1 , xπ0〉

〈xπi+1 , xπ1 , . . . , xπi−1 , xn, xπi , . . . , xπn−1 , xπ0〉
...

〈xπn−1 , xπ1 , . . . , xπi−1 , xn, xπi , . . . , xπn−2 , xπ0〉

〈xπ0 , xπ1 , . . . , xπi−1 , xn, xπi , . . . , xπn−2 , xπn−1〉

In other words, we have shown (1). This concludes the inductive step. a

3.5.3 Equivalence

An (n + 1)-ary relation R is called an equivalence relation if is reflexive, symmetric and

transitive at every co-ordinate, i.e. if R satisfies [refln+1], [symi
n+1] and [transin+1] for all

i. Note that that any equivalence relation satisfies [euclin+1], [†transin+1], [†euclin+1] and

permutation (see Theorems 3.5.1, 3.5.2 and 3.5.3). We shall make use of these conditions

when proving properties of equivalence relations.

We show below that an (n + 1)-ary equivalence relation R on a set U determines a

partition of U , i.e. a collection of non-empty subsets of U such that each member of U

belongs to one of the subsets and any two distinct subsets are disjoint. Moreover the

partition has the following property: any n+ 1 members from the same subset (also called

cell) of the partition are related under R, but members from different cells are not so related.

First we define, for every x of U , the equivalence class of x modulo R as follows:

[x]R = {y ∈ U | ∃~z : Rx~z & y = zi for some i}.

Note that the subscript R is often dropped if it is clear from the context. The collection

of all equivalence classes is called the quotient set of U by R (denoted by U/R, read “U
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modulo R”). In other words,

U/R = {[x] | x ∈ U}.

Theorem 3.5.4. Let R be an (n + 1)-ary equivalence relation on U . Then the following

holds for any x, y ∈ U :

(1) x ∈ [x].

(2) [x] = [y] iff ∃~z : Rx~z & y = zi for some i.

(3) If [x] 6= [y] then [x] ∩ [y] = ∅.

In other words, U/R is a partition of U .

Proof. (1) follows directly from reflexivity and the definition of equivalence class.

For the right-to-left direction of (2). Assume [x] = [y]. By (1), y ∈ [y]. Thus y ∈ [x] and

so, by the definition of [x], we have Rx~z for some ~z and y = zi for some i.

For the converse of (2), assume Rx~z for some ~z and y = zi for some i. Consider arbitrary

w ∈ [x]. Then, for some ~v and j, Rx~v and w = vj . Then by permutation, for some ~v′, Rx~v′

and w = v′i. Since R is euclidean, we thus have Ryz1 · · ·w · · · zn (where w occurs at the i-th

place), from which it follows that w ∈ [y]. Hence [x] ⊆ [y]. It remains to show that [y] ⊆ [x].

Consider arbitrary s ∈ [y]. Then, for some ~t and k, Ry~t and s = tk. Then by permutation,

for some ~t′, Ry~t′ and s = t′i. Since R is transitive, we thus have Rxz1 · · · s · · · zn (where s

occurs at the i-th place), from which it follows that s ∈ [x]. Hence [y] ⊆ [x].

For (3). We proceed by contraposition. Assume [x]∩ [y] 6= ∅. It suffices to show the left

hand side of (2), from which it follows that [x] = [y]. By assumption, there exists a w such

that w ∈ [x] and w ∈ [y]. In other words, both Rx~v and w = vi (for some ~v and i) and Ry~t

and w = tj (for some ~t and j). Then by permutation, Rw~t′ and y = t′i (for some ~t′). Then

by transitivity, Rxv1 · · · y · · · vn (where y occurs at the i-th place). Thus we have shown the

left hand side of (2). a

Theorem 3.5.5. Let R be an (n + 1)-ary equivalence relation on U . Then for any points

x0, x1, . . . , xn ∈ U ,

Rx0x1 · · ·xn ⇐⇒ ∃C ∈ U/R : x0, x1, . . . , xn ∈ C.
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Proof. For =⇒. Assume Rx0x1 · · ·xn. Then, by (2) of Theorem 3.5.4, we have [x0] = [x1] =

· · · = [xn]. But x0 ∈ [x0], x1 ∈ [x1] and so on. Thus they belong to the same cell.

For ⇐=. Assume that x0, x1, . . . , xn belong to some cell, say [y], of U/R. Then

Ryw1 · · ·x0 · · ·wn with x0 at the ith-place, and Ryv1 · · ·x1 · · · vn with x1 at the jth-place

(for some w1, . . . , v1, . . . ). By permutation, Rx0w1 · · · y · · ·wn and Ryv1 · · ·x1 · · · vn with

both y and x1 occurring at the ith-place. Then by transitivity Rx0w1 · · ·x1 · · ·wn, from

which we get Rx0x1w2 · · ·wn by permutation. Repeating the same argument, we eventually

arrive at Rx0x1 · · ·xn. a

An alternative to the account of equivalence relation given by Theorems 3.5.4 and 3.5.5

is as follows. An (n + 1)-ary equivalence relation R (i.e. an (n + 1)-ary relation that is

reflexive, symmetric and transitive at all places) induces a binary relation R′ where

R′xy ⇐⇒ ∃~z : ∃i : Rx~z & y = zi.

Then R′, which can be shown to be a binary equivalence relation, determines a partition of

U having the following property: any n+ 1 members from the same cell of the partition are

related under the (n+ 1)-ary relation R but members from different cells are not so related.



Chapter 4

Maximal Normal Systems

In this chapter we study two normal systems in the n-adic modal language—the Trivial

system and the Verum system. They are the “extremes” for normal n-adic systems in the

sense that every such system is included in either the Trivial system or the Verum system (or

both). They are also maximal: adding any non-theorem to them would yield inconsistency.

Thus they are like Propositional Logic (PL), which has no consistent extension. In fact, as

we shall see, they can be translated to PL and so they are said to collapse into PL. Hughes

and Cresswell (1996) has a clear exposition of the monadic Trivial system and Verum system.

Here we generalize the results to the n-ary case.

4.1 The systems Trivn and Vern

The Trivial system and the Verum system, denoted by Trivn and Vern, are obtained from the

smallest n-adic normal system Kn by adding, respectively, the schemas [Trivn] and [Vern].

[Trivn] �~p↔
∨
i pi

[Triv♦n]
∧
i pi ↔ ♦~p

[Vern] �~p

[Ver♦n] ¬♦~p

Definition 4.1.1. The n-adic Trivial system and the n-adic Verum system are the following

extensions of Kn.

Trivn : Kn, [Trivn]

57
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Vern : Kn, [Vern]

The axiom [Trivn] combines [Tn] and its converse
∨
i pi → �~p. Note the the Trivial

system Trivn is deductively equivalent to the extension of KnDn with
∨
i pi → �~p as an

axiom. The inclusion of the latter system in Trivn follows directly from the deducibility of

[Dn] from [Tn] in normal systems, while the inclusion of Trivn in the latter system follows

from the following theorem.

Theorem 4.1.2. Let S be a KnDn-system. [Tn] is derivable if S has
∨
i pi → �~p.

Proof. Assume S has
∨
i pi → �~p, or equivalently ♦~p→

∧
i pi. Then

`S ♦(>, . . . , pi, . . . ,>)→ pi by assumption and PL;

`S �~p→
∨
i ♦(>, . . . , pi, . . . ,>) by [Dn];

`S �~p→
∨
i pi by [MP]. a

[Trivn] says that every sequence of p1, . . . , pn is necessary iff one of them is the case,

whereas [Vern] says that every sequence of p1, . . . , pn is necessary. We next show that the

Trivial system and the Verum system collapse into Propositional Logic in the following sense:

every formula in the n-adic modal language (Ln) is deductively equivalent to a formula in

the language of propositional logic (L).

Theorem 4.1.3. Let t be a mapping of Ln-formulas to L-formulas for which αt (called the

L-transform of α under t) is defined recursively as follows.

pt = p

⊥t = ⊥

(¬β)t = ¬(βt)

(β ∨ γ)t = βt ∨ γt

(�(β1, . . . , βn))t =
∨
i

βi
t

Then for any Ln-formula α, we have `Trivn α↔ αt.

Proof. The proof is by induction on the construction of α. The basis of the induction follows

directly from the following theorems of PL (and so a fortiori, theorems of Trivn): p ↔ p

and ⊥ ↔ ⊥. For the inductive step, we argue as below:
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(Case 1) α = ¬β. By I.H. `Trivn β ↔ βt. Thus by PL, `Trivn ¬β ↔ ¬(β)t.

(Case 2) α = (β ∨ γ)t. By I.H. both `Trivn β ↔ βt and `Trivn γ ↔ γt. Thus by PL,

`Trivn (β ∨ γ)↔ (βt ∨ γt)
(Case 3) α = �(β1, . . . , βn). By I.H. `Trivn βi ↔ βi

t for all i. But by [Trivn], `Trivn

�(β1, . . . , βn)↔
∨
i βi. Thus by PL, `Trivn �(β1, . . . , βn)↔

∨
i(βi)

t. a

Theorem 4.1.4. Let t∗ be a mapping of Ln-formulas to L-formulas for which t∗(α) (called

the L-transform of α under t∗) is defined recursively as follows.

pt
∗

= p

(¬β)t
∗

= ¬(βt
∗
)

(β ∨ γ)t
∗

= βt
∗ ∨ γt∗

(�(β1, . . . , βn))t
∗

= >

Then for any Ln-formula α, we have `Vern α↔ αt
∗
.

Proof. The proof is by induction on α. The propositional cases are similar to those in the

proof for Theorem 4.1.3. For the modal case, it suffices to note that `Vern �(β1, . . . , βn)↔ >
since `Vern �(β1, . . . , βn). a

We close this section by proving the following theorem which will be required later (see

Proposition 4.3.3).

Theorem 4.1.5. Let α be a constant formula (i.e. a formula constructed out of > and ⊥
by truth-functional and modal connectives) and αt its L-transform under t. Then `KnDn α

if αt is PL-valid, and `KnDn ¬α otherwise.

Proof. The proof is by induction on α. Note that α is a constant formula. So any subformula

of α or its L-transform is also a constant formula, i.e a formula that does not have any

atoms. Furthermore, a constant formula is PL-valid iff it is satisfiable. Put it another way,

a constant formula is PL-invalid iff it is unsatisfiable.

For the basis of induction, we let α be >. The L-transform of > is itself, which is both

PL-valid and a theorem of KnDn.

For the induction step, we consider the following cases. In each case we show that (i) if

αt is PL-valid then α is a theorem of KnDn, and (ii) if αt is PL-invalid then ¬α is a theorem

of KnDn.
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(Case 1) α = ¬β. Then αt = ¬βt.
(i) If ¬βt is PL-valid, then βt is not PL-valid, and so by I.H. `KnDn ¬β.

(ii) If ¬βt is PL-invalid or equivalently ¬βt is unsatisfiable, then ¬¬βt is PL-valid, and

so by I.H. `KnDn ¬¬β,

(Case 2) α = β ∨ γ. Then αt = βt ∨ γt.
(i) If βt ∨ γt is PL-valid, then βt ∨ γt is satisfiable, from which it follows that βt or γt is

satisfiable (hence PL-valid) and so, by I.H., β or γ is a theorem of KnDn. Therefore β ∨ γ
is also a theorem of KnDn.

(ii) If βt ∨ γt is PL-invalid, then βt ∨ γt is unsatisfiable, from which it follows that both

βt and γt are unsatisfiable (hence PL-invalid) and so, by I.H., both ¬β and ¬γ are theorems

of KnDn. Therefore ¬(β ∨ γ) is also a theorem of KnDn.

(Case 3) Let α be �(β1, . . . , βn). Then αt is β1
t ∨ · · · ∨ βnt.

(i) If β1
t ∨ · · · ∨ βnt is PL-valid and hence satisfiable, then one of βit is satisfiable and

hence PL-valid, from which it follows by I.H. that one of βi is a theorem of KnDn, implying

that �(β1, . . . , βn) is also a theorem of KnDn (by virtue of [RNn]).

(ii) If β1
t ∨ · · · ∨ βnt is PL-invalid and hence unsatisfiable, then all βit are unsatisfiable

and hence PL-invalid, from which we argue as follows.

∀i, `KnDn ¬βi (I.H.)

∀i, `KnDn �(⊥i−1,¬βi,⊥n−i) ([RNn])

`KnDn

∧
i�(⊥i−1,¬βi,⊥n−i) (PL)

`KnDn ♦(¬β1, . . . ,¬βn) ([D♦n])

`KnDn ¬�(β1, . . . , βn) ([Df♦])

This completes the induction step of the proof. a

4.2 Classes of frames and determination for Trivn and Vern

We next show that [Trivn] and [Vern] correspond to the following conditions of (n+ 1)-ary

relations:

[trivn+1] (∀x)(∀~y)(Rx~y ↔ (∀i)yi = x)

[vern+1] (∀x)(∀~y)¬Rx~y

Note that an (n + 1)-ary relation satisfying [trivn+1] comprises all and only constant se-

quences 〈x, . . . , x〉 of length (n+ 1), and an (n+ 1)-ary relation satisfying [vern+1] is always

empty.
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Theorem 4.2.1. [Trivn] corresponds to [trivn+1], i.e. for any (n+ 1)-ary relational frame

F,

F |= [Trivn] ⇐⇒ F |= [trivn+1].

Proof. For =⇒. Assume F = 〈U,R〉 does not satisfy [trivn+1]. In other words, either

(1) there exist an x and a ~y such that Rx~y but at least one member of ~y is not x, or

(2) there exists an x such that ¬Rx · · ·x.

If (1), then define a model M = 〈F, V 〉 where for all i ranging from 1 to n,

V (pi) =

U − {x} if yi = x,

{x} if yi 6= x.

Then M, x |= ♦(¬p1, . . . ,¬pn) or equivalent M, x 6|= �(p1, . . . , pn), but M, x |=
∨
i pi (since

at least one of pi is true at x in M). In other words, [Trivn] fails at x in M. So it is invalid

on F.

If (2), then define a model M = 〈F, V 〉 where for all i ranging from 1 to n,

V (pi) = U − {x}.

Then M, x |= �(p1, . . . , pn) since for any ~y such that Rx~y at least one member yi of ~y is not

x and so pi is true at yi in M. (There may be no such ~y, in which case �(p1, . . . , pn) is true

trivially at x in M.) It is also clear that M, x 6|=
∨
i pi since each pi is false at x in M. Thus

[Trivn] fails at x in M, from which it follows that it is invalid on F.

(1) and (2) are all the possible cases. So we conclude [Trivn] is invalid on F.

For ⇐=. Assume F = 〈U,R〉 satisfies [trivn+1]. Consider an arbitrary point x in an

arbitrary model M on F. If M, x |= �(p1, . . . , pn), then at least one member of ~p is true at

x in M since x is related to the tuple 〈x, . . . , x〉. If M, x 6|= �(p1, . . . , pn), then each member

of ~p is false at x in M since x is not related to any tuples other than 〈x, . . . , x〉. In other

words, M, x |= [Trivn], whence we conclude [Trivn] is valid on F. a

Theorem 4.2.2. [Vern] corresponds to [vern+1], i.e. for any (n+ 1)-ary relational frame F,

F |= [Vern] ⇐⇒ F |= [vern+1].
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Proof. For =⇒. Assume F = 〈U,R〉 does not satisfy [vern], i.e. Rx~y for some ~y. Then define

a model M = 〈F, V 〉 by letting for all i ranging from 1 to n,

V (pi) = U − {yi}.

Evidently for all i, M, yi 6|= pi. Hence M, x 6|= �(p1, . . . , pn) and so [Vern] is invalid on F.

For⇐=. Assume F = 〈U,R〉 satisfies [vern]. In other words, R is empty. So �(p1, . . . , pn)

is true at any point in any model on F. Thus [Vern] is valid on F. a

Theorem 4.2.3. The classes of frames for the Trivial system (Trivn) and the Verum system

(Vern) are the classes of trivial and verum frames, respectively.

Theorem 4.2.4. The system Trivn is determined by its class of frames, viz. those frames

satisfying [trivn+1].

Proof. It is easy to check that the axiom [Trivn] is valid in the class of frames satisfying the

condition [trivn+1], and hence the system Trivn is sound with respect to this class of frames.

For the completeness of Trivn, it suffices to show that its canonical model ML =

〈UL, RL, VL〉 (where L stands for Trivn) belongs to the class of frames satisfying [trivn+1].

In other words, we show that for arbitrary members x, y1, . . . , yn of UL,

RLxy1 · · · yn ⇐⇒ ∀yi, yi = x.

For =⇒, assume RLxy1 · · · yn. Further assume, for reductio, yi 6= x for some i. Then there

exists a formula α such that either (1) α ∈ yi but α /∈ x or (2) α ∈ x but α /∈ yi. Suppose

(1). Then we have the following.

¬α ∈ x (x is maximal)

ML, x |= ¬α (Truth Lemma)

ML, x |= ⊥ ∨ · · · ∨ ¬α ∨ . . .⊥ (PL)

ML, x |= �(⊥, . . . ,¬α, . . . ,⊥) ([Trivn])

�(⊥, . . . ,¬α, . . . ,⊥) ∈ x (Truth Lemma)

¬α ∈ yi (Definition of RL)

α /∈ yi (yi is maximal)

But this is absurd since by supposition α ∈ yi. Now suppose (2). Then α ∈ x, and by

an argument similar to the above we have α ∈ yi, which contradicts the supposition that
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α /∈ yi. Both (1) and (2) yield contradiction. So by reductio yi = x for all i, whence we

conclude RLxy1, . . . , yn.

For ⇐=, what need to be shown is RLxx · · ·x. So we assume, for arbitrary α1, . . . , αn,

that �(α1, . . . , αn) ∈ x and check if there exists an i such that αi ∈ x.

�(α1, . . . , αn) ∈ x (Assumption)

α1 ∨ · · · ∨ αn ∈ x ([Trivn])

ML, x |= α1 ∨ · · · ∨ αn (Truth Lemma)

∃i : ML, x |= αi (PL)

∃i : αi ∈ x (Truth Lemma)

We have thus shown that RL satisfies [trivn+1]. It follows that system L, viz. Trivn, is

complete with respect to the class of frames satisfying [trivn+1]. a

Theorem 4.2.5. The system Vern is determined by its class of frames, viz. those frames

satisfying [vern+1].

Proof. For the soundness of the system Vern with respect to the class of frames whose

relation is empty, it suffices to show that the axiom [Vern+1] is valid in this class of frames,

which will follow if any frame invalidating [Vern+1] has a non-empty relation. So suppose

�(p1, . . . , pn) is invalid on a frame F = 〈U,R〉. Then there is a model M = 〈F, V 〉 such that

the formula ♦(¬p1, . . . ,¬pn) is true at some x ∈ U , which implies that x is related to some

y1, . . . , yn, i.e. R is non-empty.

For the completeness of Vern, we show that its canonical model ML = 〈UL, RL, VL〉
(where L is Vern) has an empty relation. Assume, for reductio, RL is non-empty, i.e.

RLxy1 · · · yn for some elements x, y1, . . . , yn of UL. But �(⊥, . . . ,⊥) ∈ x by virtue of the

axiom [Vern+1]. Then it follows from the definition of RL that ⊥ ∈ yi for some i, which

however is absurd. Thus by reductio the canonical relation RL is empty. From this we

conclude that Vern is complete with respect to the class of frames satisfying the condition

[vern+1]. a

4.3 Maximality

In this section, we show that the Trivial system and the Verum system have the following

properties:
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(1) Trivn is a consistent system, and so is Vern. However any system which has both

[Trivn] and [Vern] (in addition to PL) is inconsistent.

(2) Every n-adic normal system is included in Trivn or in Vern (or in both). (A system

S1 is said to be included in another system S2 if every S1-theorem is an S2-theorem.)

(3) Trivn and Vern are maximal. (A system S is said to be maximal if it is consistent and

adding any non-theorem to it as an axiom results in an inconsistent system.)

Note that (3) follows from (1) and (2). For if Trivn were not maximal, i.e. if there existed

a non-theorem of Trivn (say α) such that adding it to Trivn as an axiom would not result

in an inconsistent system, then the resulting system (call it Trivnα), being a normal system

not included in Trivn, would be included in Vern according to (2). In other words, if Trivn
were not maximal, then Vern would contain [Trivn], which is absurd since by (1) Vern is

consistent and any PL-system that contains both [Trivn] and [Vern] is inconsistent. By a

similar argument, we can show that Vern is maximal given (1) and (2).

Thus what need to be demonstrated are (1) and (2), from which (3) can be deduced.

For (1) we argues as follows.

Proposition 4.3.1. Trivn and Vern are consistent systems, and any PL-system that con-

tains both of the schemas [Trivn] and [Vern] is inconsistent.

Proof. Trivn is sound with respect to the class of trivial frames, and Vern is sound with

respect to the class of verum frames (and both classes of frames are non-empty). Therefore

each of these systems is satisfiable and thus consistent. However any PL-system that has

both of the schemas [Trivn] and [Vern] is inconsistent because the falsum is provable in such

a system. The following is a proof.

1. �(p, . . . , p) [Vern], [US]

2. �(p, . . . , p)→ p [Trivn],PL

3. p 1, 2, [MP]

4. ⊥ 3, [US]

a

Observe that, as a consequence of (1), each of the systems Trivn and Vern does not

include the other. Next we show (2) by establishing the following two propositions:
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• Every normal system which is not included in Vern contains [Dn], or equivalently [Pn].

• Every normal system which contains [Dn] is included in Trivn.

Proposition 4.3.2. Every consistent extension of Kn which is not included in Vern contains

[Pn] (hence its equivalent [Dn]).

Proof. Let S be a consistent extension of Kn not included in Vern. It suffices to show that S

has some theorem of the form ♦(δ1, . . . , δn). For if so, then `S ♦(>, . . . ,>) by the tautology

δi → > and rule [RM♦n].

Since S is not included in Vern, there exists a formula α such that

`S α and 6`Vern α.

We rewrite α in conjunctive normal form, then remove any negation before a modal for-

mula by using PL-equivalences ¬�(α1, . . . , αn) ↔ ♦(¬α1, . . . ,¬αn) and ¬♦(α1, . . . , αn) ↔
�(¬α1, . . . ,¬αn). The resulting formula α′ is PL-equivalent (hence S-equivalent) to α. Thus

we have,

`S α
′ and 6`Vern α

′.

Moreover α′ is of the form C1 ∧ · · · ∧ Ck where each conjunct is either:

(a) a PL-formula, or

(b) a disjunction containing a disjunct of the form �(β1, . . . , βn), or

(c) a formula of the form ♦(β11, . . . , β1n) ∨ · · · ∨ ♦(βm1, . . . , βmn), or

(d) a formula of the form β ∨ ♦(γ11, . . . , γ1n) ∨ · · · ∨ ♦(γm1, . . . , γmn) where β is a PL-

formula.

But α′ is an S-theorem and not a theorem of Vern. In other words,

∀i,`S Ci and ∃j : 6`Vern Cj .

Cj could not be of type (a) since if Cj were a PL-formula, then given that Cj is provable

in S we would have Cj provable in PL and so in Vern as well. Nor could Cj be of type (b)

since �(β1, . . . , βn) is provable in Vern, which implies that a disjunction of type (b) is also
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provable in Vern. Therefore Cj is either of type (c) or type (d). We examine each of them

below.

If Cj is of type (c), then for some δ1, . . . , δn, we have `S ♦(δ1, . . . , δn) since the following

is a theorem of Kn and hence also a theorem of S.

♦(β11, . . . , β1n) ∨ · · · ∨ ♦(βm1, . . . , βmn)→ ♦(β11 ∨ · · · ∨ βm1, . . . , β1n ∨ · · · ∨ βmn)

If Cj is of type (d), then

`S β ∨ ♦(δ1, . . . , δn)

for some formulas δ1, . . . , δn since the following is a theorem of Kn and hence also a theorem

of S.

♦(γ11, . . . , γ1n) ∨ · · · ∨ ♦(γm1, . . . , γmn)→ ♦(γ11 ∨ · · · ∨ γm1, . . . , γ1n ∨ · · · ∨ γmn)

β must not be PL-valid because if it were then Cj would become PL-valid and so Vern-

valid. Thus there is a substitutional instance β∗ of β such that β∗ is unsatisfiable and ¬β∗

is PL-valid. Therefore we have the following.

`S β
∗ ∨ ♦(δ1, . . . , δn)

`S ¬β∗ → ♦(δ1, . . . , δn)

`S ♦(δ1, . . . , δn)

To summarize, Cj is either of type (c) or of type (d). Each of them implies that a

♦-formula is derivable in S, whence we conclude ♦(>, . . . ,>) is also derivable in S. a

Proposition 4.3.3. Every consistent extension of Kn which contains [Dn] is included in

Trivn.

Proof. Let S be an extension of Kn containing [Dn] (i.e. its axiom and rules include those

of Kn, and [Dn] is a theorem of it). We show that if there is a theorem of S which is

not a theorem of Trivn then S is inconsistent. So assume α is an S-theorem but not a

Trivn-theorem, i.e. assume `S α and 6`Trivn α.

Given the assumption that 6`Trivn α, the L-transform of α, denoted αt, is not PL-valid.

(For if αt were PL-valid, we would have `Trivn αt and so `Trivn α since `Trivn α ↔ αt.)

Then there exists a substitutional instance α∗ of α such that α∗ is a constant formula whose

PL-transform, viz. (α∗)t, is unsatisfiable. The claim we just made is substantiated by the
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following argument. Since αt is not PL-valid, there is a truth-value assignment v that makes

αt false. Then substitute > for every atom p that occurs in αt if v(p) = 1, and substitute

⊥ for p otherwise. Note that the formula thus obtained from αt is unsatisfiable. Apply the

same substitution to α. The resulting formula is a constant formula whose L-transform is

precisely the unsatisfiable formula we obtained earlier from αt.

Since α∗ is a constant formula whose L-transform is unsatisfiable, ¬α∗ is a theorem of

KnDn by virtue of Theorem 4.1.5. It follows that ¬α∗ is also a theorem of S. However by

our original assumption α is a theorem of S, and so its substitutional instance α∗ is also a

theorem of S. This makes S inconsistent. a



Chapter 5

Classical Systems of Modal Logic

The systems of polyadic modal logic we have studied so far are normal systems, which extend

Kn, the smallest normal system, with one or more axioms. In this chapter, we investigate

systems that are weaker than Kn: they have some but not necessarily all of the theorems

and rules of Kn. We call them classical systems. While multi-relational frames are used to

study polyadic normal systems, we use a more general type of structures for investigating

polyadic classical systems, viz. the neighbourhood frames of finitary types discussed in

Chapter 1. As in the case of normal systems, we present the simpler monadic classical

systems (Section 5.1) before introducing the more general polyadic systems (Section 5.2).

Whereas monadic classical systems are well documented (see Segerberg (1971) and Chellas

(1980)), their polyadic counterparts appear not to have been studied in the literature. Thus

we establish, in detail, the classes of frames and completeness for our polyadic classical

systems. (Sections 5.3 to 5.5).

5.1 Classical monadic systems

Following Chellas, we define a series of monadic systems of increasing strength: classical

systems, monotonic systems, regular systems, and normal systems. They extend Proposi-

tional Logic (PL) with one or several of the following rule and axioms. (These axioms and

rules, together with their duals, already appear in Section 2.3. They are listed here again

for easy reference.)

[RE]
` α↔ β

` �α↔ �β
[RE♦]

` α↔ β

` ♦α↔ ♦β

68
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[M] �(p ∧ q)→ �p ∧�q [M♦] ♦p ∨ ♦q → ♦(p ∨ q)

[C] �p ∧�q → �(p ∧ q) [C♦] ♦(p ∨ q)→ ♦p ∨ ♦q

[N] �> [N♦] ¬♦⊥

Definition 5.1.1. Let S be a monadic system providing PL.

• S is classical if it provides [RE].

• S is monotonic if it is classical and provides [M].

• S is regular if it is monotonic and provides [C].

• S is normal if it is regular and provides [N].

Definition 5.1.2. The smallest classical, monotonic, regular and normal monadic systems

are as follows. (Alternative names of the systems are enclosed in parentheses.)

E : PL, [RE]

EM (M) : E, [M]

EMC (R) : E, [M], [C]

EMCN (K) : E, [M], [C], [N]

Each of the above systems can be extended by adding more axioms such as [P], [D], [T],

[B], [4], and [5]. Note that the above list of classical systems does not exhaust all possibilities.

There are other classical systems that are of interest, for example EMN. But to avoid a

long chapter, we limit our attention to those listed above (and their n-adic counterparts in

the following sections).

Classical systems weaker than K (in the sense that they lack some of the K-theorems)

are incomplete with respect to the class of binary relational frames. A common semantic

idiom for these systems is neighbourhood semantics (see Example 1.4.4 for details). The

following determination results are standard.

Definition 5.1.3. Let N be a neighbourhood function (of type 1) on U and x a point.

N(x) is said to be closed under supersets and closed under intersections, and contains the

unit if it satisfies the following conditions, respectively.

[sup] ∀a, ∀b, a ∈ N(x) & a ⊆ b =⇒ b ∈ N(x).

[int] ∀a, ∀b, a ∈ N(x) & b ∈ N(x) =⇒ a ∩ b ∈ N(x).

[unit] U ∈ N(x).
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N(x) is a quasi-filter if it is closed under both supersets and intersections. A quasi-filter

containing the unit is called a filter. (Equivalently a filter is a non-empty quasi-filter.) a

The terminology defined above applies to neighbourhood functions, frames and models.

For example, if N(x) is closed under supersets for every x of U , we say that N , F =

〈U,N〉 and M = 〈U,N, V 〉 are closed under supersets. Ditto for the other conditions of

neighbourhood functions.

Theorem 5.1.4 (Determination of Classical Systems). The following classical systems are

determined by the indicated classes of neighbourhood frames.

E : All frames

EM (M) : Frames closed under supersets

EMC (R) : Quasi-filters

EMCN (K) : Filters

5.2 Classical polyadic systems

In this section, we generalize the monadic systems of the previous section to n-adic systems,

i.e. systems in the polyadic language Ln. The rules and axioms we need have already been

stated in Section 2.4. They are listed here for quick reference.

[REin]
` αi ↔ β

` �(α1, . . . , αi, . . . , αn)↔ �(α1, . . . , β, . . . , αn)

[Mi
n] �(p1, . . . , pi ∧ q, . . . , pn)→ �(p1, . . . , pi, . . . , pn) ∧�(p1, . . . , q, . . . , pn)

[Ci
n] �(p1, . . . , pi, . . . , pn) ∧�(p1, . . . , q, . . . , pn)→ �(p1, . . . , pi ∧ q, . . . , pn)

[Ni
n] �(p1, . . . ,>, . . . , pn)

Duals of the above rules and axioms are as below.

[RE♦in]
` αi ↔ β

` ♦(α1, . . . , αi, . . . , αn)↔ ♦(α1, . . . , β, . . . , αn)

[M♦in] ♦(p1, . . . , pi, . . . , pn) ∨ ♦(p1, . . . , q, . . . , pn)→ ♦(p1, . . . , pi ∨ q, . . . , pn)

[C♦in] ♦(p1, . . . , pi ∨ q, . . . , pn)→ ♦(p1, . . . , pi, . . . , pn) ∨ ♦(p1, . . . , q, . . . , pn)

[N♦in] ¬♦(α1, . . . ,⊥, . . . , αn)



CHAPTER 5. CLASSICAL SYSTEMS OF MODAL LOGIC 71

There are n instances of each of the above schemas of axioms and rules, and we refer to

them collectively by [RMn], [Mn], [Cn] and [Nn] (and similarly for their duals).

Definition 5.2.1. Let S be an n-adic system containing PL.

• S is classical if it provides [REn].

• S is monotonic if it is classical and contains [Mn].

• S is regular if it is monotonic and contains [Cn].

• S is normal if it is regular and contains [Nn].

Definition 5.2.2. The smallest classical, monotonic, regular and normal n-adic systems

are listed below. (Alternative names of these systems are given in parentheses.)

En : PL, [REn]

EnMn (Mn) : En, [Mn]

EnMnCn (Rn) : En, [Mn], [Cn]

EnMnCnNn (Kn) : En, [Mn], [Cn], [Nn]

Each of the above system can be extended by adjoining axioms such as [Pn], [Dn], [Tn],

[Bn], [4n] and [5n]. However we shall not study these extensions in this dissertation; our

focus remains on the systems defined in Definitions 5.2.2.

We are not concerned here with proving formulas in classical systems. But the following

two meta-theorems are of interest in our present study. The first one provides another

characterization of monotonic, regular and normal systems, and the second one is the modal

analogue of a correspondence result that we shall come across in the next section.

Theorem 5.2.3. Let S be a classical system.

(1) [RMi
n] is a rule of S iff [Mi

n] is provable in S.

(2) [RNi
n] is a rule of S iff [Ni

n] is provable in S.

Proof. For (1). Suppose S has the rule [RMi
n]. Since pi∧q → pi and pi∧q → q are theorems

of PL, they are theorems of S as well. Then by [RMi
n], the following hold.

`S �(p1, . . . , pi ∧ q, . . . , pn)→ �(p1, . . . , pi, . . . , pn)

`S �(p1, . . . , pi ∧ q, . . . , pn)→ �(pi, . . . , q, . . . , pn)
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We thus have [Mi
n] as a theorem of S by PL.

Suppose S has [Mi
n] as a theorem. To show that S has the rule [RMi

n], we assume αi → β

is provable in S.

`S αi ∧ β ↔ αi (Assumption, PL)

`S �(α1, . . . , αi ∧ β, . . . , αn)↔ �(α1, . . . , αi, . . . , αn) ([REin])

`S �(α1, . . . , αi, . . . , αn)→ �(α1, . . . , β, . . . , αn) ([Mi
n], PL)

In other words, S has the rule [RMi
n].

For (2). Suppose S has the rule [RNi
n]. Since > is an S-theorem (by virtue of PL), we

have �(α1, . . . ,>, . . . , αn) as a theorem of S by applying [RNi
n].

Suppose S has [Ni
n] as a theorem. Assume αi is provable in S. Then by PL, αi ↔ > is

provable in S, and so, by [REin], [Ni
n] and PL, we have �(α1, . . . , αi, . . . , αn) provable in S

as well. In other words, S has the rule [RNi
n]. a

The import of the above theorem is that monotonic systems can be characterized as

PL-systems providing [RMn], regular systems as PL-systems providing [RMn] and [Cn], and

normal systems as PL-systems providing [RMn], [RNn] and [Cn]. (This accords with the

definition of normal systems in Chapter 2.)

Theorem 5.2.4. Let S be a PL-system.

(1) [RMn] are rules of S iff the following is a rule of S.

[RM+
n ]

`
∧
i(αi → βi)

` �(α1, . . . , αn)→ �(β1, . . . , βn)

(2) [Mn] are provable in S iff the following is provable in S.

[M+
n ] �(p1 ∧ q1, . . . , pn ∧ qn)→ �(p1, . . . , pn) ∧�(q1, . . . , qn)

(Recall that [RMn] and [Mn] stand for the collections of all instances of [RMi
n] and [Mi

n],

respectively.)

Proof. For (1). Given [RM+
n ], we get [RMi

n] (where 1 ≤ i ≤ n) simply by letting αj = βj

for all j 6= i. For the converse, suppose S has [RMn]. Assuming S has
∧
i(αi → βi), we have
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the following by virtue of [RMn].

`S �(α1, α2, . . . , αn)→ �(β1, α2, . . . , αn)

`S �(β1, α2, α3, . . . , αn)→ �(β1, β2, α3, . . . , αn)
...

`S �(β1, . . . , βn−1, αn)→ �(β1, . . . , βn−1, βn)

It follows from the above that �(α1, . . . , αn) → �(β1, . . . , βn) is a theorem of S. In other

words, S has [RM+
n ].

For (2). Given [M+
n ], we get [Mi

n] (where 1 ≤ i ≤ n) by letting pj = qj for all j 6= i. For

the converse, suppose S has [Mn]. Then we have the following.

`S �(p1 ∧ q1, p2 ∧ q2, . . . , pn ∧ qn)→ �(p1, p2 ∧ q2, . . . , pn ∧ qn)

`S �(p1, p2 ∧ q2, p3 ∧ q3, . . . , pn ∧ qn)→ �(p1, p2, p3 ∧ q3, . . . , pn ∧ qn)
...

`S �(p1, . . . , pn−1, pn ∧ qn)→ �(p1, . . . , pn−1, pn)

From the above we have �(p1 ∧ q1, . . . , pn ∧ qn)→ �(p1, . . . , pn) as an S-theorem. Similarly

for �(p1 ∧ q1, . . . , pn ∧ qn)→ �(q1, . . . , qn). Finally, by PL, [M+
n ] is a theorem of S. a

Since all logics that appear in this chapter are classical systems (which are PL-systems),

we shall freely make use of the equivalences stated in the above theorem. It is interesting

to compare [Cn] (the collection of all instances of [Ci
n]) with the following formula.

[C+
n ] �(p1, . . . , pn) ∧�(q1, . . . , qn)→ �(p1 ∧ q1, . . . , pn ∧ qn)

It is easy to check that the above is not a theorem of Kn (using relational semantics). So it

is not equivalent to [Cn] in normal systems, let alone in PL-systems or classical systems. We

shall return to this when discussing correspondence between modal formulas and properties

of neighbourhood frames in the next section.

5.3 Properties of neighbourhood functions

The axioms [Mn], [Cn] and [Nn] are valid in the class of (n+ 1)-ary relational frames. Thus

they correspond to the same class of relational frames, viz. the class of all such frames. Put

another way, the relational idiom (or more particularly, the (n + 1)-ary relational idiom)
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fails to distinguish between [Mn], [Cn] and [Nn]. As well, the systems En, Mn and Rn are

incomplete with respect to the class of (n+ 1)-ary relational frames since they lack some of

the theorems of Kn, which axiomatizes the set of validities in that class of frames. A more

suitable semantics for studying classical logics (weaker that Kn) is the neigbhourhood idiom

discussed in Section 1.4. In this section we define various properties of neighbourhood

functions, and, in the next two, we show that [Mn], [Cn] and [Nn] correspond to these

properties and En, Mn and Rn are complete with respect to their classes of neighbourhood

frames.

5.3.1 Neighbourhoods from the algebraic perspective

A neighbourhood function N of type 1 on a set U of points assigns to each point x a

collection N(x) of sets of points. From the algebraic point of view, the collection of all

sets of points of U ordered by set inclusion is a complemented distributive lattice, which

we denote by 〈P(U),⊆〉. Equivalently, it is a Boolean algebra, viz. 〈P(U),∩,−, U〉 for

which Boolean meet and complementation are the set-theoretic operations of union and

complementation, and the maximum (also called the unit element) is U . The algebraic

perspective for neighbourhood functions of type 1 can be generalized to neighbourhood

functions of arbitrary finite type n. Any such function N on U assigns to each point x a

collection N(x) of n-tuples of sets of points, i.e. N : U → P((P(U))n). Note that the

Cartesian product (P(U))n is the collection of all n-tuples of sets of points. We define an

ordering (denoted ≤ and called “less than”) on (P(U))n as below:

〈a1, . . . , an〉 ≤ 〈b1, . . . , bn〉 ⇐⇒ ∀i, ai ⊆ bi.

It is straightforward to check that 〈(P(U))n,≤〉 is a complemented distributive lattice. Its

corresponding Boolean algebra is 〈(P(U))n,∧,−, 1〉 where the meet, complementation and

maximum of the algebra are the following:

〈a1, . . . , an〉 ∧ 〈b1, . . . , bn〉 = 〈a1 ∩ b1, . . . , an ∩ bn〉;

−〈a1, . . . , an〉 = 〈−a1, . . . ,−an〉;

1 = 〈U, . . . , U〉.

Next we define the following properties of N(x), which we call closure under greater than

(or upward closure), closure under (finite) meets, and presence of the maximum, respectively.
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(Recall that ~a and ~b stand for n-sequences or n-tuples of sets of points.)

∀~a, ∀~b, ~a ∈ N(x) & ~a ≤ ~b =⇒ ~b ∈ N(x).

∀~a, ∀~b, ~a ∈ N(x) & ~b ∈ N(x) =⇒ ~a ∧~b ∈ N(x).

〈U, . . . , U〉 ∈ N(x).

N(x) is called a quasi-filter if it is closed under both greater than and meets. It is called

a filter if it is a quasi-filter and contains the maximum. Alternatively, a filter is a non-empty

quasi-filter (since containing the maximum and being non-empty are the same thing if N(x)

is already closed under greater than). Given an ~a, the collection of all ~b such that ~a ≤ ~b is

a filter, also called the principal filter generated by ~a.

5.3.2 Coordinate-wise properties

N(x) where N is of type 1 can be considered as comprising 1-tuples of sets of points. The

algebraic conditions of closure under greater than, closure under meets, and presence of the

maximum defined in Section 5.3.1 can thus be said to generalize the properties of closure

under supersets, closure under intersections, and presence of the unit which are ascribable

to neighbourhood functions of type 1 in Section 5.1. However, there exist other ways to

generalize the aforementioned properties of type 1 neighbourhood functions. In fact, from

the perspective of our modal axioms [Mi
n], [Ci

n] and [Ni
n], a different set of conditions are

more relevant. (As we shall see, although [Mn], the conjunction of all instances of [Mi
n],

corresponds to closure under greater than, [Cn] does not correspond to closure under meets,

nor does [Nn] correspond to presence of the maximum.). The following abbreviations will

be used in defining the conditions corresponding to [Mi
n], [Ci

n] and [Ni
n].

ã = a1, . . . , ai−1, ai+1, . . . , an

a1, . . . , b, . . . , an = a1, . . . , ai−1, b, ai+1, . . . , an

The second abbreviation should be familiar to the reader by now. As for the first one, note

that ã is an (n − 1)-sequence of sets of points obtained from ~a by the deletion of ai. The

reason for this unusual labelling will become clear below.

Definition 5.3.1. Let N be a neighbourhood function of type n on a set U of points, and

let x be a point. N(x) is said to be closed under supersets at the i-th place, to be closed
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under intersections at the i-th place, and to contain the unit at the i-th place if it satisfies

the following conditions, respectively:

[supin] ∀ã, ∀ai, ∀b, 〈a1, . . . , ai, . . . , an〉 ∈ N(x) & ai ⊆ b =⇒
〈a1, . . . , b, . . . , an〉 ∈ N(x);

[intin] ∀ã, ∀ai, ∀b, 〈a1, . . . , ai, . . . , an〉 ∈ N(x) & 〈a1, . . . , b, . . . , an〉 ∈ N(x) =⇒
〈a1, . . . , ai ∩ b, . . . , an〉 ∈ N(x);

[unitin] ∀ã, 〈a1, . . . , U, . . . , an〉 ∈ N(x).

If N(x) satisfies [supn], [intn] and [unitn] (i.e. [supin], [intin] and [unitin] for every i), we

call it simply closed under supersets, closed under intersections, and containing the unit,

respectively. a

The above terminology extends to the neighbourhood function N , the frame F = 〈U,N〉,
and any model M = 〈U,N, V 〉. For example, if every N(x) is closed under supersets at the

i-th place, we say that N , F and M are closed under supersets at the i-th place; similarly, if

every N(x) is closed under supersets, we say that N , F and M are closed under supersets.

Observe that the properties of closure under supersets, closure under meets and pres-

ence of the unit (both at the i-th place and at every i-th place) are defined partly with

reference to sets of points occurring at some fixed position in the n-tuples. These proper-

ties may be described as “coordinate-wise” properties. In fact we could have called [supin]

coordinate-wise closure under supersets at the i-th place and [supn] coordinate-wise closure

under supersets, and similarly for the other properties. However for simplicity we omit

“coordinate-wise”. The coordinate-wise character of the properties can be made explicit by

restatements deploying the following definition:

Si(ã, x) = {b|〈a1, . . . , b, . . . , an〉 ∈ N(x)}

where i is a position, ã is an (n− 1)-sequence a1, . . . , ai−1, ai+1, . . . , an, all of which are sets

of points, and x is a point. In other words, Si(ã, x) consists of all those sets of points such

that if any one of them is inserted between ai−1 and ai+1 in ã then the resulting n-tuple

is a member of N(x). We can now restate the properties of neighbourhood functions in

Definition 5.3.1 as follows:

[supin] ∀ã, ∀ai, ∀b, ai ∈ Si(ã, x) & ai ⊆ b =⇒ b ∈ Si(ã, x);

[intin] ∀ã, ∀ai, ∀b, ai ∈ Si(ã, x) & b ∈ Si(ã, x) =⇒ ai ∩ b ∈ Si(ã, x);

[unitin] ∀ã, U ∈ Si(ã, x).
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The above formulation of the coordinate-wise properties make clear that it is those sets

Si(ã, x) that possess the coordinate-wise properties when we say that N(x) has them. For

example, to say that N(x) is closed under supersets at the i-th place is to say that for any

ã, Si(ã, x) is closed under supersets; to say that N(x) is closed under supersets is to say

that for any i and ã, Si(ã, x) is closed under supersets. Observe that Si(ã, x) defaults to

N(x) in the case of neighbourhood functions of type 1.

It is interesting to compare the coordinate-wise properties with closure under greater

than, closure under meets, and presence of the maximum, which we discussed in Sec-

tion 5.3.1. Closure under supersets (i.e. closure under supersets at every place) is equivalent

to closure under greater than. However corresponding remarks cannot be made of the other

two pairs of properties. On the one hand, closure under intersections does not imply closure

under meets although the latter implies the former. On the other hand, presence of the unit

implies presence of the maximum but the latter does not imply the former.

5.3.3 Quasi-filtroids and filtroids

Definition 5.3.2. Let N be a neighbourhood function of type n on a set U of points, and

let x be a point. If N(x) is closed under both supersets and intersections, then it is called

a quasi–filtroid. If N(x) is a quasi-filtroid and contains the unit, it is called a filtroid. a

As before, given a neighbourhood function N on U of type n, we call the function N ,

the frame F = 〈U,N〉 or any model M = 〈U,N, V 〉 a (quasi-)filtroid if every N(x) is a

(quasi-)filtroid.

To say that N(x) is a filtroid is to say that for every i and ã, Si(ã, x) is a filter (in the

lattice 〈U,⊆〉). Thus we could have called filtroids “coordinate-wise filters”. For simplicity,

we adopt the term “filtroids”. That N(x) is a filtroid does not imply that N(x) is a filter

(in the lattice 〈(P(U))n,≤〉), and vice versa. Therefore the notions of filtroids and filters,

despite some similarities, are independent of each other. What we have said of “filtroids”

in this paragraph applies equally to quasi-filtroids. (The term “filtroid” comes from Bell

(1996). In that paper, Bell proves among other things soundness and completeness of

normal systems with respect to the class of filtroids, which coincide with our “coordinate-

wise filters”. Whereas the starting points of Bell are normal systems and filtroids, we build

normal systems on the basis of classical systems, and develop the notion of filtroids from

the more basic coordinate-wise properties.)
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We have defined filtroids as quasi-filtroids containing the unit. An alternative charac-

terization of filtroids is quasi-filtroids satisfying the following condition of coordinate-wise

non-emptiness for every i.

Definition 5.3.3. Let N be a neighbourhood function of type n on a set U of points,

and let x be a point. N(x) is said to be coordinate-wise non-empty at the ith-place if the

following holds:

[nein] ∀ã, ∃b : 〈a1, . . . , b, . . . , an〉 ∈ N(x)

If N(x) is coordinate-wise non-empty at every place, we say simply that it is coordinate-wise

non-empty.

The properties of coordinate-wise non-emptiness extends to neighbourhood functions,

frames and models as usual. Like the other coordinate-wise properties, the above can be

reformulated as below:

[nein] ∀ã, Si(ã, x) 6= ∅.

The above makes clear what are non-empty when we say that N(x) is coordinate-wise

non-empty at the ith-place, viz. Si(ã, x) for any ã. Note that we use the term “coordinate-

wise” in describing our property of non-emptiness (while we drop such a description for

the other coordinate-wise properties). This avoids confusion with the condition that N(x)

is non-empty, i.e. N(x) 6= ∅. For neighbourhood functions of type 1, coordinate-wise non-

emptiness coincides with non-emptiness. But for n ≥ 2, while coordinate-wise non-emptiness

implies that N(x) is non-empty, the converse does not always hold. That some ~b is in N(x)

is insufficient to guarantee that for every i, for every ã, the set Si(ã, x) is non-empty; it

guarantees only that for every i, for some ã, the set Si(ã, x) is non-empty (let ã be ~b minus

bi).

That filtroids are precisely coordinate-wise non-empty quasi-filtroids follows from the

following theorem.

Theorem 5.3.4. For any neighbourhood function N of type n on a set U of points and a

point x, if N(x) satisfies [supin], then

[unitin] ⇐⇒ [nein].

In other words, if N(x) is closed under supersets at the i-th place, then it contains the unit

at the ith-place just in case it is coordinate-wise non-empty at the same place.
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We close this section with another property of N(x) called augmentation.

Definition 5.3.5. Let N be a neighbourhood function of type n on a set U of points, and

let x be a point. N(x) is said to be augmented at the i-th place if it satisfies the following:

[augmi
n] ∀ã, ∀b, Si(ã, x) 6= ∅ &

⋂
Si(ã, x) ⊆ b =⇒ b ∈ Si(ã, x).

If N(x) is augmented at every place, it is said to be augmented.

By extension, we say that N , F = 〈U,N〉 and any model M on F are augmented if N(x) is

augmented for every x. The following theorem provides another definition of augmentation

at the i-th place.

Theorem 5.3.6. For any neighbourhood function N of type n on a set U of points, and a

point x, N(x) satisfies [augin] iff

∀ã, Si(ã, x) 6= ∅ =⇒ Si(ã, x) = Fd

where Fd is the filter generated by d =
⋂
Si(ã, x). In other words, N(x) is augmented at the

ith-place exactly when for any ã, either Si(ã, x) is empty or it is a principal filter.

Note that if N(x) contains the unit and so is non-empty (for example when N(x) is a

filtroid), then N(x) is augmented at the i-th place iff

∀ã, ∀b,
⋂
Si(ã, x) ⊆ b =⇒ b ∈ Si(ã, x),

or equivalently

∀ã, Si(ã, x) = Fd

where Fd is the filter generated by d =
⋂
Si(ã, x).

5.4 Classes of frames for classical systems

All tautologies are valid in the class of neighbourhood frames, and the rules [MP], [US] and

[REn] preserve validity in the same class of frames. While we get PL and [REn] for free

in neighbourhood semantics, the same does not hold for [Mn], [Cn] and [Nn]. These modal

axioms correspond to second-order formulas defining classes of neighbourhood frames we

have studied in Section 5.3.2, viz. frames closed under supersets, closed under intersections,
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and containing the unit, respectively. Consequently the classes of frames for systems En,

Mn, Rn and Kn are, respectively, the class of all (neighbourhood) frames, frames closed

under supersets, quasi-filtroids and filtroids. In this section, we show that [REn] preserve

validity in the class of all frames (while we leave the proof of validity-preservation by PL

in the class of all frames to the reader). Correspondence results for [Mn], [Cn] and [Nn]

then follow, leading to the theorem about the classes of frames for the weakest classical,

monotonic, regular and normal systems aforementioned.

Theorem 5.4.1. [REn] preserves validity in the class of all frames.

Proof. Assume αi ↔ β is valid in the class of all frames. To show that

�(α1, . . . , αi, . . . , αn)↔ �(α1, . . . , β, . . . , αn)

is also valid in the class of all frames, we consider a point x of a model M on a frame

F = 〈U,N〉. By assumption, ‖αi‖M = ‖β‖M. Thus 〈‖α1‖M, . . . , ‖αi‖M, . . . , ‖αn‖M〉 ∈ N(x)

iff 〈‖α1‖M, . . . , ‖β‖M, . . . , ‖αn‖M〉 ∈ N(x). In other words, M, x |= �(α1, . . . , αi, . . . , αn) iff

M, x |= �(α1, . . . , β, . . . , αn), whence �(α1, . . . , αi, . . . , αn) ↔ �(α1, . . . , β, . . . , αn) is true

at x in M and so valid on F (since x and M are arbitrary). We have thus established that

[REin] preserves validity in the class of all frames. a

Theorem 5.4.2. Let F = 〈U,N〉 be a neighbourhood frame of type n.

(1) F |= [Mi
n] ⇐⇒ F |= [supin], for every i.

(2) F |= [Mn] ⇐⇒ F |= [supn].

Proof. We prove (1) only, leaving to the reader the task of checking that (2) follows from

(1). Let i be an arbitrary place.

( =⇒ ) Assume F is not closed under supersets at the i-th place, i.e. for some point x, some

sequence ã of sets of points, and some sets ai and b of points, we have 〈a1, . . . , ai, . . . , an〉 ∈
N(x) and ai ⊆ b but 〈a1, . . . , b, . . . , an〉 /∈ N(x). Then define M = 〈F, V 〉 by letting:

V (pk) = ak, where 1 ≤ k ≤ n;

V (q) = b.

Clearly M, x |= �(p1, . . . , pi∧q, . . . , pn) since ‖pi ∧ q‖M = ‖pi‖M∩‖q‖M = ai∩b = ai. How-

ever M, x 6|= �(p1, . . . , q, . . . , pn) since 〈‖p1‖M, . . . , ‖q‖M, . . . , ‖pn‖M〉 is 〈a1, . . . , b, . . . , an〉,
which by assumption is not in N(x). Thus [Mi

n] is false at x in M and so invalid on F.
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(⇐=) Assume F is closed under supersets at the i-th place. Consider a point x of a

model M on F. Clearly [Mi
n] is true at x in M since both ‖pi‖M and ‖q‖M are supersets of

‖pi ∧ q‖M, and N(x) is closed under supersets at the i-th place. a

Theorem 5.4.3. Let F = 〈U,N〉 be a neighbourhood frame of type n.

(1) F |= [Ci
n] ⇐⇒ F |= [intin], for every i.

(2) F |= [Cn] ⇐⇒ F |= [intn].

Proof. We prove (1), from which (2) follows straightforwardly. Let i ≤ n be an arbitrary

place.

( =⇒ ) Assume F is not closed under intersections at the i-th place, i.e. for some point

x, some sequence ã of sets of points, and some sets ai and b of points, we have both

〈a1, . . . , ai, . . . , an〉 ∈ N(x) and 〈a1, . . . , b, . . . , an〉 ∈ N(x) but 〈a1, . . . , ai∩b, . . . , an〉 /∈ N(x).

Then define M = 〈F, V 〉 by letting:

V (pk) = ak, where 1 ≤ k ≤ n;

V (q) = b.

Clearly both �(p1, . . . , pi, . . . , pn) and �(p1, . . . , q, . . . , pn) are true at x in M. However

�(p1, . . . , pi ∧ q, . . . , pn) are false at x in M since ‖pi ∧ q‖M or equivalently ‖pi‖M ∩‖q‖M is

ai ∩ b.
(⇐=) Assume F is closed under intersections at the ithe-place. Consider a point x of a

model M on F. Assume both �(p1, . . . , pi, . . . , pn) and �(p1, . . . , q, . . . , pn) are true at x in

M. Then so is �(p1, . . . , pi ∧ q, . . . , pn) since ‖pi ∧ q‖M is ‖pi‖M ∩ ‖q‖M and N(x) is closed

under intersections at the i-th place. a

Theorem 5.4.4. Let F = 〈U,N〉 be a neighbourhood frame of type n.

(1) F |= [Ni
n] ⇐⇒ F |= [unitin], for every i.

(2) F |= [Nn] ⇐⇒ F |= [unitn].

Proof. We show correspondence between [Ni
n] and [unitin] only, from which correspondence

between [Nn] and [unitn] follows. Consider an arbitrary position i.
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( =⇒ ) Assume N(x) does not contain the unit at the ith-place, i.e. there exists an ã

such that 〈a1, . . . , U, . . . , an〉 /∈ N(x). Then define M = 〈F, V 〉 by letting:

V (pk) = ak, where k 6= i;

V (pi) = U.

Then �(p1, . . . ,>, . . . , pn) is false at x in M since ‖>‖M is U .

(⇐=) Assume F contains the unit at the i-th place. It is obvious that [Ni
n] is true at any

point x of any model M on F since ‖>‖M is precisely U . a

All the theorems of En are valid in the class of all neighbourhood frames (of type n).

Consequently En has the class of all neighbourhood frames as its class of frames. Moreover,

[Mn], [Cn] and [Nn] correspond to closure under supersets, closure under intersections, and

presence of the unit, respectively. We therefore have the following result about the classes

of frames for the smallest classical, monotonic, regular and normal systems.

Theorem 5.4.5. The classes of neighbourhood frames of type n for the following classical

systems are as indicated.

En : All frames

EnMn (Mn) : Frames closed under supersets

EnMnCn (Rn) : Quasi-filtroids

EnMnCnNn (Kn) : Filtroids

We close this section by the following remarks about the correspondence between modal

formulas and the conditions of closure under greater than, closure under meets, and presence

of the maximum.

Remark 5.4.6. (1) The following formula corresponds to closure under greater than.

�(p1 ∧ q1, . . . , pn ∧ qn)→ �(p1, . . . , pn) ∧�(q1, . . . , qn)

(2) The following formula corresponds to closure under meets.

�(p1, . . . , pn) ∧�(q1, . . . , qn)→ �(p1 ∧ q1, . . . , pn ∧ qn)

(3) The following formula corresponds to presence of the maximum.

�(>, . . . ,>)
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5.5 General neighbourhood frames and completeness

We prove completeness of classical systems with respect to general neighbourhood frames.

(Refer to Section 7.1 for the definitions of general neighbourhood frames and models.) We

mention here that the monadic EM, EMC, EMCN can be shown to be complete with

respect to their classes of “ordinary” neighbourhood frames by suitably supplementing their

canonical neighbourhood functions (see Chapter 9 of Chellas (1980) for details). While

similar supplementation still works for the n-adic EnMn, no such technique is forthcoming

for EnMnCn and EnMnCnNn (for n ≥ 2). By working with general neighbourhood frames,

the proofs of completeness for classical systems become straightforward. This shows that

general neighbourhood frames provide a more powerful tool for studying modal logic (which

is a fragment of second-order logic) than ordinary neighbourhood frames do.

Definition 5.5.1 (Canonical models for classical systems). Let S be a classical system. Its

canonical (general neighbourhood) model MS is the tuple 〈US, NS, AS, VS〉 where

(1) US is the collection of all maximal S-consistent sets of formulas;

(2) NS assigns to each maximal S-consistent set x a collection NS(x) of n-tuples of sets of

maximal S-consistent sets such that 〈a1, . . . , an〉 ∈ NS(x) iff

∃α1, . . . , αn : �(α1, . . . , αn) ∈ x & ∀i, ai = |αi|S.

(3) AS is the collection of all S-proof sets of formulas.

(4) V assigns to each propositional variable p the S-proof set of p, i.e. |p|S. a

The model defined above is indeed a general neighbourhood model. The reason is as

follows.

• US is non-empty, given that S is consistent.

• NS(x) consists of n-tuples of proof sets, all of which are members of AS.

• AS contains |⊥|S, which is the empty set. Moreover it is closed under complementa-

tion, unions, and the operation lNS
since −|α|S = |¬α|S, |α|S ∪ |β|S = |α ∨ β|S and

lNS
(|α1|S, . . . , |αn|S) = |�(α1, . . . , αn)|S.

• VS(p), i.e. |p|S, is a member of AS.
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Theorem 5.5.2 (Truth lemma for classical systems). Let MS = 〈US, NS, VS, AS〉 be the

canonical model of a classical system S in the n-adic language Ln. Then for every Ln-

formula α, the following holds:

∀x ∈ US, MS, x |= α ⇐⇒ α ∈ x.

Proof. The proof is by induction on the construction of α. We show only the modal case of

the inductive step:

∀x ∈ US, MS, x |= �(β1, . . . , βn) ⇐⇒ �(β1, . . . , βn) ∈ x

on the inductive hypothesis that the theorem holds for every βi with 1 ≤ i ≤ n. Consider

an arbitrary x in US.

For (=⇒), assume MS, x |= �(β1, . . . , βn), i.e. 〈‖β1‖MS , . . . , ‖βn‖MS〉 ∈ NS(x). Then

〈|β1|S, . . . , |βn|S〉 ∈ NS(x) by the inductive hypothesis. So for some formulas γ1, . . . , γn, we

have |β1|S = |γ1|S, . . . , |βn|S = |γn|S, and �(γ1, . . . , γn) ∈ x. But |βi|S = |γi|S iff `S βi ↔ γi,

for all i from 1 to n; so by repeated application of [REn] we have `S �(β1, . . . , βn) ↔
�(γ1, . . . , γn). Since �(γ1, . . . , γn) ∈ x, we conclude �(β1, . . . , βn) ∈ x.

For (⇐=), assume �(β1, . . . , βn) ∈ x. Then 〈|β1|S, . . . , |βn|S〉 ∈ NS(x); so by the induc-

tive hypothesis 〈‖β1‖MS , . . . , ‖βn‖MS〉 ∈ NS(x). In other words, MS, x |= �(β1, . . . , βn). a

Theorem 5.5.3. The following classical systems are complete with respect to the indicated

classes of general neighbourhood frames of type n:

En : All frames

EnMn (Mn) : Frames closed under supersets

EnMnCn (Rn) : Quasi-filtroids

EnMnCnNn (Kn) : Filtroids

Proof. Given the truth lemma for classical systems, we demonstrate completeness of the

listed systems with respect to the indicated classes of frames by showing that their canon-

ical frames MS = 〈US, NS, AS〉 belong to the respective classes. For En, it suffices to note

that its canonical model is a general neighbourhood model (see the explanation after Defi-

nition 5.5.1). For EnMn, EnMnCn and EnMnCnNn, we show in Theorems 5.5.4, 5.5.5 and

5.5.6 that their canonical models are superset-closed, a quasi-filtroid and a filtroid, respec-

tively. (Note that in the context of general neighbourhood models and frames, the variables

a1, . . . , ai, . . . , an and b used in defining coordinate-wise properties (Definition 5.3.1) range

over elements of A rather than elements of P(U).) a
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Theorem 5.5.4. Let S be a monotonic system. Its canonical model MS = 〈US, NS, VS, AS〉
is closed under supersets, i.e. for every x of US and position i, NS(x) satisfies [supin].

Proof. Consider arbitrary a1, . . . , ai, . . . , an and b, all of which are members of AS. Assume

〈a1, . . . , ai, . . . , an〉 ∈ NS and ai ⊆ b. Then for some formulas α1, . . . , αi, . . . , αn, we have

�(α1, . . . , αi, . . . , αn) ∈ x and |α1|S = a1, . . . , |αi|S = ai, . . . , |αn|S = an. Given that b

belongs to AS, we have b = |β|S for some formula β. Then |αi|S ⊆ |β|S; so `S αi → β. Since

x is closed under [RMi
n], �(α1, . . . , β, . . . , αn) ∈ x, and so 〈a1, . . . , b, . . . , an〉 ∈ NS(x). We

thus conclude that N(x) is closed under supersets at the i-th place. a

Theorem 5.5.5. Let S be a regular system. Its canonical model MS = 〈US, NS, VS, AS〉 is

a quasi-filtroid, i.e. for every x of US and position i, NS(x) satisfies both [supin] and [intin].

Proof. Given that a regular system is also monotonic, NS(x) already satisfies [supin]. It

remains to show that NS(x) satisfies [intin] as well. Let a1, . . . , ai, . . . , an and b be elements

of AS. Assume both 〈a1, . . . , ai, . . . , an〉 ∈ NS(x) and 〈a1, . . . , b, . . . , an〉 ∈ NS(x). Then we

have the following:

• for some formulas α1, . . . , αi, . . . , αn, |α1|S = a1, . . . , |αi|S = ai, . . . , |αn|S = an, and

�(α1, . . . , αi, . . . , αn) ∈ x;

• for some formulas α′1, . . . , β, . . . , α
′
n, |α′1|S = a1, . . . , |β|S = b, . . . , |α′n|S = a′n, and

�(α′1, . . . , β, . . . , α
′
n) ∈ x.

But for all j 6= i, |aj |S = |a′j |S. Thus `S αj ↔ α′j . Since x is closed under [REn],

�(α1, . . . , β, . . . , αn) ∈ x. Moreover x is closed under [Ci
n]. Therefore �(α1, . . . , αi ∧

β, . . . , αn) ∈ x; consequently 〈a1, . . . , ai ∩ b, . . . , an〉 ∈ NS(x) since |αi ∧ β|S = |αi|S ∩ |β|S.

Thus we have shown that NS(x) is closed under intersections at the i-th place. a

Theorem 5.5.6. Let S be a normal system. Its canonical model MS = 〈US, NS, VS, AS〉 is a

filtroid, i.e. for every x of US and position i, NS(x) satisfies all of [supin], [intin] and [unitin].

Proof. It is enough to show that NS(x) satisfies [unitin] since S is regular and so NS already

satisfies both [supin] and [intin]. Consider arbitrary elements a1, . . . , ai−1, ai+1, . . . , an of

AS. There exist formulas α1, . . . , αi−1, αi+1, . . . , αn such that a1 = |α1|S and so on. Since

x contains [Ni
n], �(α1, . . . ,>, . . . , αn) ∈ x and so 〈a1, . . . , ai−1, U, ai+1, . . . , an〉 ∈ NS(x),

whence we conclude that NS(x) contains the unit at the i-place a
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Remark 5.5.7. We have shown completeness of En, EnMn, EnMnCn and EnMnCnNn with

respect to classes of general neighbourhood frames (Theorem 5.5.3). It can also be shown

that these classes of frames are also the classes of general neighbourhood frames for the

listed systems. The proof for Theorem 5.4.1 applies to general neighbourhood frames as

it does to ordinary neighbourhood frames. The proofs for Theorems 5.4.2, 5.4.3 and 5.4.4

apply also to general neighbourhood frame F = 〈U,N,A〉: observe that the functions V

defined in proving the direction =⇒ are valuations on F (since they assign to each atom an

elements of A), and, for the direction⇐=, all truth-sets of formulas in M = 〈F, V 〉 are in A.

In other words, En, EnMn, EnMnCn and EnMnCnNn are determined by the their classes of

general neighbourhood frames.



Chapter 6

Modal Algebras and General

Relational Frames

Stone (1936) established that every Boolean algebra was isomorphic to a set algebra . The

result was extended by Jónsson and Tarski (1951) to cover what they called Boolean algebras

with operators: every such algebra was isomorphic to a set algebra or, more particularly, a

subalgebra of the complex algebra of a relational structure. The connection between Boolean

algebras and propositional logic had long been observed by logicians. (In fact, propositional

logic as conceived by Boole in the 19th-century was algebraic in character: hence the name

Boolean algebra.) However the relationship between modal logic and Boolean algebras with

operators went unnoticed by philosophers for some time after the publication of Jónsson and

Tarski’s work even though relational semantics had become popular among modal logicians

since Kripke (1959). (For example, Lemmon (1966a,b), writing on algebraic semantics for

modal logics, made no reference to Jónsson and Tarski’s work.) It was only in the 1970’s that

modal logicians started to incorporate the representation theorem of Jónsson and Tarski

into the theory of relational structures. Goldblatt (1974) and Thomason (1975) showed

that certain categories of binary relational structures were dually equivalent to categories

of Boolean algebras with unary operators.

In Goldblatt (1974) it was proved that the category of descriptive (binary) relational

frames and the category of normal modal algebras (or Boolean algebras with normal unary

operations) were dually equivalent by two contravariant functors, which Goldblatt denoted

87
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by + and +. We generalize the result to the n-ary case where n is a finite number. Specifi-

cally, we show that the category of descriptive relational frames (DRF) and the category of

normal modal algebras (NMA) are dually equivalent by two contravariant functors, which

we denote by ] and [. Whereas ] transforms DRF to NMA, [ goes back from NMA to DRF.

They do so in such a way that composing them gives us an isomorphic copy of the original

category. In technical terms, we have the result that, on the one hand, the composite [◦ ] is

naturally isomorphic to the identity functor on DRF, and, on the other hand, the composite

] ◦ [ is naturally isomorphic to the identity functor on NMA. It is in this sense that the two

categories are equivalent (dually since ] and [ are contravariant functors).

This chapter is organized in the following way. We first define the categories of modal

algebras and normal modal algebras (Section 6.1) as well as the category of descriptive

relational frames (Section 6.2). Then we show in Section 6.3 that the function ] is a con-

travariant functor from DRF to NMA. In Section 6.4 we do the same thing for the function

[ that transforms NMA to DRF. Finally both categories are shown to be dually equivalent

by these two functors (Section 6.5). Background information about Boolean algebras and

category theory is given separately in Appendices A and B, respectively.

6.1 Modal algebras and normal modal algebras

In this section, we define the categories of modal algebras and normal modal algebras. These

algebras extend Boolean algebras with n-ary operations. In the case of modal algebras, no

conditions are imposed on these n-ary operations. However conditions are imposed on them

in the case of normal modal algebras. Note that what we call normal modal algebras here

are also known as Boolean algebras with operators (a name due to Jónsson and Tarski).

Definition 6.1.1 (Modal algebras). A modal algebra A is a tuple 〈A,+,−, 0, l〉 where

〈A,+,−, 0〉 is a Boolean algebra and l is an n-ary operation on A. a

Boolean meet · and the unit element 1 are defined as for Boolean algebras. The dual of

l, denoted m, is the operation

m(a1, . . . , an) = −l(−a1, . . . ,−an)

where a1, . . . , an are elements of the carrier A of the algebra A.

We define validity of formulas on modal algebras as we do for validity of formulas on

Boolean algebras. In other words, a formula α is said to be valid on a modal algebra A if
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the equation α ≈ > holds in A or, equivalently, if V (α) = 1 for every valuation V on A. In

symbols,

A |= α ⇐⇒ A |= α ≈ >

⇐⇒ V (α) = 1, for every V on A.

(Note that we treat atomic formulas as algebraic variables and, more generally, formulas as

terms.)

In what follows, we define various types of mappings between modal algebras that pre-

serve algebraic operations. Note that we call these mappings “algebraic” in order to distin-

guish them from structure-preserving maps between other types of structures (for instance,

relational frames). However when it is clear that we are talking about algebras, we usually

drop the adjective “algebraic”.

Definition 6.1.2 (Algebraic homomorphisms). Let both A = 〈A,+,−, 0, l〉 and A′ =

〈A′,+,−, 0, l〉 be modal algebras. A map f : A→ A′ is a homomorphism if it preserves all

algebraic operations, i.e.

f(a+ b) = f(a) + f(b);

f(−a) = −f(a);

f(0) = 0;

f(l(a1, . . . , an)) = l(f(a1), . . . , f(an)). a

Note that in the above definition we use the same set of symbols for the operations of

A and A′. The context makes clear which algebraic operations we are talking about.

Definition 6.1.3 (Algebraic embeddings). An embedding of A in A′ is an injective ho-

momorphism from A to A′. A is embeddable in A′ if there is an embedding of A in A′.

a

Definition 6.1.4 (Algebraic isomorphisms). An isomorphism from A to A′ is a surjective

embedding of A in A′ or, equivalently, a bijective homomorphism from A to A′. A is

isomorphic to A′ if there is an isomorphism from A to A′. a

If A is isomorphic to A′ under f , then A′ is isomorphic to A under f−1. Hence we often

call A and A′ isomorphic to each other (A ∼= A′).
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We say that a mapping f between modal algebras A and A′ (and between any structured

sets) preserves a property P ascribable to them if A′ has P whenever A has it. If f preserves

P in the other direction, i.e. if A′ has P only when A has it, we say that f respects P . If P

is preserved and respected by f , it is said to be invariant under f .

Modal algebras are used as interpretations of modal languages. Thus we are interested

in knowing what types of mappings between modal algebras preserve or respect or both

preserve and respect validity of formulas. We note here that validity is respected by em-

beddings, and invariant under isomorphisms.

• If A is embeddable in A′, then for any formula α,

A′ |= α =⇒ A |= α.

• If A and A′ are isomorphic, then for any formula α,

A |= α ⇐⇒ A′ |= α.

Definition 6.1.5 (Normal modal algebras). A modal algebra A = 〈A,+,−, 0, l〉 is normal

if the operation l satisfies the following conditions of normality and multiplicativity, respec-

tively. (Note that 〈a1, . . . , 1, . . . , an〉 stands for 〈a1, . . . , ai−1, 1, ai+1, . . . , an〉, and the same

applies to other similar cases.)

l(a1, . . . , 1, . . . , an) = 1.

l(a1, . . . , ai, . . . , an) · l(a1, . . . , b, . . . , an) = l(a1, . . . , ai · b, . . . , an). a

Given our definition of the dual operation m, it can easily be checked that the following

conditions of normality and additivity hold for normal modal algebras.

m(a1, . . . , 0, . . . , an) = 0.

m(a1, . . . , ai, . . . , an) +m(a1, . . . , b, . . . , an) = m(a1, . . . , ai + b, . . . , an).

Normal modal algebras are also known as Boolean algebras with operators (BAO). We

shall use the terms interchangeably. In the following we define the categories of modal

algebras and normal modal algebras.

Definition 6.1.6 (The category of modal algebras). The category of modal algebras, MA,

consists of all modal algebras as its objects and all homomorphisms between modal algebras

as its arrows. The operations of domain, codomain, composition and identity are the usual

ones for functions or maps. a
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Definition 6.1.7 (The category of normal modal algebras). The category of normal modal

algebras, NMA, consists of all normal modal algebras as its objects and all homomorphisms

between normal modal algebras as its arrows. The operations of domain, codomain, com-

position and identity are the usual ones for functions or maps. a

6.2 General relational frames

The notions of general relational frames and models extend that of relational frames and

models with an additional element A which is a collection of sets of points of a frame

or model subject to certain closure conditions. (The reason for calling this set A will be

explained later.) If it is clear that we are talking about general relational frames or models

rather than ordinary relational frames or models, we use the simpler description “relational

frame” or “relational model”. The even simpler term “frame” or “model” is used if the type

of frames or models is obvious from the context.

Given an (n+ 1)-ary relation R on a set W , we let lR be an n-ary operation on P(W )

defined as follows (where a1, . . . , an ⊆W ):

lR(a1, . . . , an) = {x0 ∈W | ∀x1, . . . , xn ∈W,Rx0x1 · · ·xn =⇒ ∃i ≥ 1 : xi ∈ ai}.

The dual of lR, denoted mR, is the operation

mR(a1, . . . , an) = −lR(−a1, . . . ,−an).

It follows from the above that

mR(a1, . . . , an) = {x0 ∈W | ∃x1, . . . , xn ∈W : Rx0x1 · · ·xn & ∀i ≥ 1, xi ∈ ai}.

Recall that if Rx0x1 · · ·xn we say that x0 sees the tuple 〈x1, . . . , xn〉. Thus, lR(a1, . . . , an)

consists of all points x0 such that whatever tuple, say 〈x1, . . . , xn〉, it sees has a member xi
in ai. Using the same metaphor, x0 is in mR(a1, . . . , an) iff x0 sees a tuple, say 〈x1, . . . , xn〉,
such that each member xi comes from ai.

Definition 6.2.1 (General relational frames). A general (n + 1)-ary relational frame F is

a triple 〈W,R,A〉 of which:

(1) W is a non-empty set of points;

(2) R is an (n+ 1)-ary relation on W ;
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(3) A ⊆P(W ) contains ∅, and is closed under ∪, − and lR. a

Definition 6.2.2 (General relational models). Let F = 〈W,R,A〉 be a general relational

frame. A general relational model M on F is a pair 〈F, V 〉 or equivalently a quadruple

〈W,R,A, V 〉 where V , called a valuation on F, assigns to each atom an element of A. a

Truth of formulas in general relational models and validity of formulas on general rela-

tional frames are defined as in the cases of ordinary relational models and frames. Note that

for any general relational frame F = 〈W,R,A〉, the set A contains all the truth-sets of formu-

las in any model M on F. In other words, for any formula α and model M = 〈W,R,A, V 〉,
we have ‖α‖M ∈ A.

Indeed A is the carrier of a modal algebra, viz. 〈A,∪,−, ∅, lR〉. This explains why we

denote the set by the symbol A, where A stands for “algebra”. Some authors use the symbol

A in the sense of “admissible”: the set A is a collection of admissible sets of points of W ,

and a valuation V on F assigns to each atom an admissible set of points.

Observe that ordinary relational frames and models are special cases of general relational

frames and models, viz. those with their components A being identical to the power set of

W . In other words, the accompanying algebra of an ordinary relational frame F = 〈W,R〉
or model M = 〈W,R, V 〉 is the power set algebra 〈P(W ),∪,−, ∅, lR〉.

A structure preserving map f from a relational structure 〈W,R〉 to another one 〈W ′, R′〉,
as studied in first-order model theory, is usually of one of the following types.

• Homomorphisms: if Rx0x1 · · ·xn then R′f(x0)f(x1) · · · f(xn).

• Strong homomorphisms: Rx0x1 · · ·xn iff R′f(x0)f(x1) · · · f(xn).

• Embeddings: injective strong homomorphisms.

• Isomorphisms: surjective embeddings, or equivalently bijective homomorphisms.

While surjective strong homomorphism is sufficient for the preservation of validity of

modal formulas, it is stronger than necessary. There is a weaker but more useful notion,

which we call “general relational frame morphism” (or simply “frame morphism” if the type

of frames is clear).

Definition 6.2.3 (General relational frame morphisms). Let F = 〈W,R,A〉 and F′ =

〈W ′, R′, A′〉 be frames. A map f : W → W ′ is a frame morphism from F to F′ if all of the
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following conditions hold. (Unless otherwise stated, x0, x1, . . . , xn range over the elements

of W , y1, . . . , yn over the elements of W ′, and b over the elements of A′.)

(R1) Rx0x1 · · ·xn =⇒ R′f(x0)f(x1) · · · f(xn).

(R2) R′f(x0)y1 · · · yn =⇒ (∃x1, . . . , xn ∈W : Rx0x1 · · ·xn & ∀i ≥ 1, f(xi) = yi).

(A1) f−1[b] ∈ A. a

Note that if the algebraic component A is dropped, frame morphism is what has been

known as p-morphism (for pseudo-epimorphism), bounded morphism or zig-zag morphism

in the literature.

In the following definitions, let F = 〈W,R,A〉 and F′ = 〈W ′, R′, A′〉 be general relational

frames. As in the case of general relational frame morphisms, the description “general

relational” will be omitted wherever avoidable.

Definition 6.2.4 (General relational frame morphic images). F′ is a frame morphic image

of F if there is a surjective frame morphism from F to F′. a

Definition 6.2.5 (General relational frame embeddings). An embedding of F in F′ is an

injective frame morphism f from F to F′ satisfying the following (where a ranges over the

elements of A):

(A2) f [a] = b ∩ f [W ], for some b ∈ A′.

F is embeddable in F′ if there is an embedding of F in F′. a

Definition 6.2.6 (General relational frame isomorphisms). An isomorphism from F to F′

is a surjective embedding of F in F′. F is isomorphic to F′ if there is an isomorphism from

F to F′. a

If F is isomorphic to F′ under f , then F′ is isomorphic to F under f−1. Thus when

there is an isomorphism from F to F′ we often say that F and F′ are isomorphic to each

other (F ∼= F′). Note that F is isomorphic to F′ under f iff f is a bijective frame morphism

from F to F′, and its inverse f−1 is a frame morphism from F′ to F. This provides another

characterization of isomorphism.

Validity of modal formulas is preserved by taking frame morphic images. Moreover it is

invariant under isomorphisms. In detail, we note the following.
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• Let f be a frame morphism from F = 〈W,R,A〉 to F′ = 〈W ′, R′, A′〉, and let V ′ be

a valuation on F′. Then V mapping each atom p to f−1[V ′(p)] is a valuation on F.

Moreover for any formula α,

‖α‖M = f−1[‖α‖M′ ]

where M = 〈F, V 〉 and M′ = 〈F′, V ′〉.

• If F′ is a frame morphic image of F, then for any formula α,

F |= α =⇒ F′ |= α.

• If F and F′ are isomorphic, then for any formula α,

F |= α ⇐⇒ F′ |= α.

We have observed earlier that the set A of a general relational frame F = 〈W,R,A〉
comprises all the truth-sets of formulas in models definable on F. Recall that the truth-set

of a formula in a model is the set of points (states or worlds) at which the formula is true

in the model. These truth-sets are often held to be propositions expressed by the formulas

of the object language. Thus viewed, the set A comprises all the propositions that can be

expressed in the language, and the set of elements of A to which a point x belongs, viz. the

following set

Ax = {a ∈ A | x ∈ a}

comprises all the propositions true in x. Following Goldblatt (1974), we call Ax the truth-

description of x. Some properties of frames are intuitively plausible:

• Each state of affairs is uniquely determined by the propositions true in that state.

• A consistent and exhaustive selection from among all propositions defines a state of

affairs.

• If all sequences of n propositions necessarily true of x are true of a sequence of n states

〈y1, . . . , yn〉, then Rxy1 · · · yn.

We call a frame satisfying the above properties “descriptive general relational frame” (or

simply “descriptive relational frame” or more simply “descriptive frame” if no confusion

would arise). A more formal definition is given below.
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Definition 6.2.7 (Descriptive general relational frames). A frame F = 〈W,R,A〉 is descrip-

tive if it satisfies all of the following. (Unless otherwise stated, x, y, y1, . . . , yn range over

the elements of W ; a1, . . . , an range over the elements of A; u ranges over the ultrafilters in

〈A,∪,−, ∅, lR〉.)

(D1) Ax = Ay =⇒ x = y.

(D2) u = Ax, for some x ∈W.

(D3)
(
x ∈ lR(a1, . . . , an) =⇒ ∃i : yi ∈ ai

)
=⇒ Rxy1 · · · yn. a

Remark 6.2.8. Note that converses of the above conditions hold for all frames.

(1) If x = y, then Ax = Ay.

(2) The set Ax is an ultrafilter in 〈A,∪,−, ∅, lR〉.

(3) If Rxy1 · · · yn, then for every a1, . . . , an such that x ∈ lR(a1, . . . , an) we have yi ∈ ai
for some i. a

In the following, we define the category of descriptive general relational frames, or simply

the category of descriptive relational frames.

Definition 6.2.9 (The category of descriptive general relational frames). The category of

descriptive general relational frames, DRF, comprises all descriptive frames as its objects and

all frame morphisms between descriptive frames as its arrows. The operations of domain,

codomain, composition and identity are the usual ones for functions or maps. a

6.3 Transformation of DRF to NMA

In this section, we define a function (denoted ] and read “sharp”) that transforms descriptive

frames to set algebras, and their frame morphisms to maps between these set algebras (but

with the directions reversed). As we shall see, the set algebras we get by ] are normal modal

algebras, and the maps between these algebras we get by ] are homomorphisms. Moreover

the transformation preserves both composition of morphisms and the identity morphisms.

Therefore, the function ] is a contravariant functor from the category of descriptive frames

(DRF) to the category of normal modal algebras (NMA). (Refer to Appendix B.5 for the

definition of contravariant functors.)
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Definition 6.3.1 (The function ] for descriptive relational frames and their frame mor-

phisms). The function ] (read “sharp”) assigns to each descriptive frame F = 〈W,R,A〉 a

set algebra F], and to each frame morphism f from descriptive frame F1 = 〈W1, R1, A1〉 to

descriptive frame F2 = 〈W2, R2, A2〉 a map f ] from the set algebra F2
] to the set algebra

F1
] as follows.

• F] = 〈A,∪,−, ∅, lR〉.

• f ] : A2 → A1 is defined, for every b ∈ A2, by

f ](b) = f−1[b]. a

Note that f ] is well defined since, by condition (A1) of frame morphism (Definition 6.2.3),

f−1[b] is guaranteed to be in A1. Also observe that the arrows are reversed: whereas f maps

A1 to A2, f ] maps A2 to A1.

We next show that F] is a normal modal algebra and f ] is a homomorphism. In addition,

] preserves composition of morphisms as well as the identity morphisms. Note that in

proving the above (and so the function ] is a contravariant functor from DRF to NMA), we

do not make use of (D1), (D2) and (D3) of Definition 6.2.7, which are the distinctive frame

conditions for descriptive frames. However these conditions will be required when we show,

in Section 6.5.1, that ] is an equivalence from DRF to NMA.

Theorem 6.3.2. For any frame F = 〈W,R,A〉, F] = 〈A,∪,−, ∅, lR〉 is a normal model

algebra (called the full complex algebra of F).

Proof. It follows directly from the definition of frames (Definition 6.2.1) that the set A

contains ∅, and is closed under ∪, − and lR. Hence, according to Definition 6.1.1, F] is a

modal algebra. It remains to show that F] is normal, i.e. lR satisfies both the conditions of

normality and multiplicativity (see Definition 6.1.5).

For normality, observe that for any x and ~y, if Rx~y then trivially yi ∈W for all i. Thus,

by the definition of lR, we have

lR(a1, . . . ,W, . . . , an) = W.

For the condition of multiplicativity, i.e.

lR(a1, . . . , ai, . . . , an) ∩ lR(a1, . . . , b, . . . , an) = lR(a1, . . . , ai ∩ b, . . . , an),

we argue as follows:
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• Assume x is a member of both lR(a1, . . . , ai, . . . , an) and lR(a1, . . . , b, . . . , an). Consider

arbitrary ~y such that Rx~y. If yj /∈ aj for all j 6= i, then yi ∈ ai and yi ∈ b, i.e. yi ∈ ai∩b.
Hence x is a member of lR(a1, . . . , ai ∩ b, . . . , an).

• Assume x is a member of lR(a1, . . . , ai ∩ b, . . . , an). Consider arbitrary ~y such that

Rx~y. Then either (i) x ∈ ai ∩ b, i.e. x ∈ ai and x ∈ b, or (ii) x ∈ aj for some j 6= i. In

other words, both x ∈ ai or x ∈ aj for some j 6= i and x ∈ b or x ∈ aj for some j 6= i.

Hence x is a member of both lR(a1, . . . , ai, . . . , an) and lR(a1, . . . , b, . . . , an).

We have shown that lR is both normal and multiplicative. Thus F] is a normal modal

algebra. a

Theorem 6.3.3. For any frame morphism f from frame F1 = 〈W1, R1, A1〉 to frame F2 =

〈W2, R2, A2〉, f ] is a homomorphism from F2
] = 〈A2,∪,−, ∅, lR2〉 to F1

] = 〈A1,∪,−, ∅, lR1〉.

Proof. What needs to be shown is that f ] preserves the set-theoretic operations of F2
]. The

following hold simply by virtue of the definition of inverse relations (where b, b1, b2, etc. are

elements of A2):

f−1[b1 ∪ b2] = f−1[b1] ∪ f−1[b2];

f−1[−b] = −f−1[b];

f−1[∅] = ∅.

Hence ∪, − and ∅ are preserved under f ], i.e.

f ](b1 ∪ b2) = f ](b1) ∪ f ](b2);

f ](−b) = −f ](b);

f ](∅) = ∅.

For the preservation of the modal operation lR2 , i.e.

f ](lR2(b1, . . . , bn)) = lR1(f ](b1), . . . , f ](bn)),

we show the following:

f−1[lR2(b1, . . . , bn)] = lR1(f−1[b1], . . . , f−1[bn]).

First, consider arbitrary x0 ∈ f−1[lR2(b1, . . . , bn)]. Suppose R1x0x1 · · ·xn. Then by

condition (R1) of frame morphism (Definition 6.2.3), we have R2f(x0)f(x1) . . . f(xn). But
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f(x0) ∈ lR2(b1, . . . , bn). Thus there exists an i ≥ 1 such that f(xi) ∈ bi, i.e. xi ∈ f−1[bi].

Consequently x0 ∈ lR1(f−1[b1], . . . , f−1[bn]).

Secondly, consider arbitrary x0 ∈ lR1(f−1[b1], . . . , f−1[bn]). Suppose R2f(x0)y1 · · · yn.

Then by condition (R2) of frame morphism (Definition 6.2.3), there exist x1, . . . , xn such that

R1x0x1 · · ·xn, f(x1) = y1, . . . , and f(xn) = yn. Given our initial assumption about x0, we

have for some i ≥ 1, xi ∈ f−1[bi], i.e. f(xi) = yi ∈ bi. Consequently f(x0) ∈ lR2(b1, . . . , bn)

or equivalently x0 ∈ f−1[lR2(b1, . . . , bn)]. a

Theorem 6.3.4. The function ] preserves both composition and identity, i.e.

(1) (f2 ◦ f1)] = f1
] ◦ f2

], for any frame morphisms f1 : F1 → F2 and f2 : F2 → F3;

(2) idF
] = idF] for any frame F.

Proof. For (1). What needs to be shown is that the following diagram commutes, i.e.

(f2 ◦ f1)] = f1
] ◦ f2

].

F1
f1 //

f2◦f1   AAAAAAA F2

f2
��

F3

F1
] F2

]
f1

]

oo

F3
]

(f2◦f1)]

``BBBBBBBB
f2

]

OO

It is straightforward to check the following, where c is an element of F3
].

(f2 ◦ f1)](c) = (f2 ◦ f1)−1[c] (Definition of ])

= f1
−1[f2

−1[c]] (Definition of inverse relations and compositions)

= f1
](f2

](c)) (Definition of ])

= (f1
] ◦ f2

])(c) (Definition of compositions).

Note that the above (f2 ◦ f1)−1[c] = f1
−1[f2

−1[c]] because of the definitions of inverse

relations and composition of maps. The detail is as follows.

x ∈ (f2 ◦ f1)−1[c].

(f2 ◦ f1)(x) ∈ c.

f2(f1(x)) ∈ c.

f1(x) ∈ f2
−1[c].

x ∈ f1
−1[f2

−1[c]].
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For (2). We note that for any a of F],

idF
](a) = idF

−1[a] = a = idF](a). a

Theorem 6.3.5. The function ] is a contravariant functor from the category DRF to the

category NMA.

Proof. The theorem follows immediately from Theorems 6.3.2, 6.3.3 and 6.3.4. a

6.4 Transformation of NMA to DRF

We are going to define a function called [ (read “flat”) that is the converse of the function

]: whereas ] transforms descriptive frames and their frame morphisms to normal modal

algebras and their homomorphisms, [ transforms normal modal algebras and their homo-

morphisms to descriptive frames and their frame morphisms. Similarly, while the function

] is a contravariant functor from the category DRF to the category NMA, the function [ is

a contravariant functor from NMA to DRF.

Let A be a modal algebra. We denote the collection of all ultrafilters in A by Uf A. For

every element a of A, Ua is the set of ultrafilters containing a. In other words,

Ua = {u ∈ Uf A | a ∈ u}.

Definition 6.4.1 (The function [ for normal modal algebras and their homomorphisms).

The function [ (read “flat”) assigns to each normal modal algebra A = 〈A,+,−, 0, l〉 a

relational structure A[, and to each homomorphism f from normal modal algebra A1 =

〈A1,+,−, 0, l〉 to normal modal algebra A2 = 〈A2,+,−, 0, l〉 a map from A2
[ to A1

[ as

follows.

• A[ = 〈Uf A, RA, AA〉 where:

(1) Uf A is the set of all ultrafilters in A;

(2) RA is an (n + 1)-ary relation on Uf A such that for any u0, u1, . . . , un ∈ Uf A,

RAu0u1 · · ·un iff ∀a1 · · · an ∈ A, l(a1, . . . , an) ∈ u0 =⇒ ∃i ≥ 1 : ai ∈ ui;

(3) AA is the set {Ua | a ∈ A}.

• f [ : Uf A2 → Uf A1 is defined, for every v ∈ Uf A2, by

f [(v) = f−1[v]. a
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Note that f [ is well defined because f−1[v] is an ultrafilter in A1 (given that v is an

ultrafilter in A2 and f is a homomorphism from A1 to A2). It is easy to check that f−1[v]

is a filter (since it is non-empty, closed under taking meets, and is upward closed) and, for

every a ∈ A1, exactly one of a and −a is in it.

The next two theorems show that for any normal modal algebra A, the relational struc-

ture A[ is a frame (Theorem 6.4.2) and is descriptive (Theorem 6.4.3). We also call A[ the

ultrafilter frame of A.

Theorem 6.4.2. For any normal modal algebra A = 〈A,+,−, 0, l〉, A[ = 〈Uf A, RA, AA〉 is

a frame.

Proof. Uf A is non-empty and RA is an (n + 1)-ary relation on Uf A. It remains to show

that AA contains ∅, and is closed under ∪, − and lRA
.

Since every element of AA is of the form Ua (for some a ∈ A), it is sufficient to note the

following (where a, a1, . . . , an and b are elements of A).

• ∅ = U0 since no ultrafilters in A contain the zero element.

• Ua∪Ub = U(a+b) since for any ultrafilter u in A, u ∈ Ua∪Ub iff u ∈ Ua or u ∈ Ub iff

a ∈ u or b ∈ u iff a+ b ∈ u iff u ∈ U(a+ b). (The only interesting step is the inference

that a ∈ u or b ∈ u iff a+ b ∈ u, which follows from the proprieties of ultrafilters.)

• −Ua = U(−a) since u ∈ −Ua iff a /∈ u iff −a ∈ u iff u ∈ U(−a).

• lRA
(Ua1, . . . , Uan) = U(l(a1, . . . , an)) since the following are equivalent, where u0 ∈

Uf A.

u0 ∈ lRA
(Ua1, . . . , Uan). (1)

∀u1, . . . , un ∈ Uf A, RAu0u1 · · ·un =⇒ ∃i ≥ 1 : ui ∈ Uai. (2)

l(a1, . . . , an) ∈ u0. (3)

u0 ∈ U(l(a1, . . . , an)). (4)

For the last item, note that (1) ⇐⇒ (2) by the definition of lRA
, (3) ⇐⇒ (4) by the

definition of U(l(a1, . . . , an)), and (3) =⇒ (2) by the definition of RA (bear in mind that

ui ∈ Uai iff ai ∈ ui). The only interesting inference is that (2) =⇒ (3), which we prove by

contraposition. Assume

l(a1, . . . , an) /∈ u0,
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and show

∃u1, . . . , un ∈ Uf A : RAu0u1 · · ·un & ∀i ≥ 1,−ai ∈ ui.

To show the above, it suffices to establish (by induction) that there exist a series of

ultrafilters u1, . . . , un of A, each of which satisfies the following conditions (where 1 ≤ i ≤ n).

(i) −ai ∈ ui.

(ii) If b1 /∈ u1, . . . , bi−1 /∈ ui−1 and l(b1, . . . , bi−1, bi, ai+1, . . . , an) ∈ u0, then bi ∈ ui (for

any b1, . . . , bi−1, bi ∈ A).

For if so then we have −ai ∈ ui for all i ≥ 1, and, for any b1, . . . , bn ∈ A, l(b1, . . . , bn) ∈ u0

implies bi ∈ ui for some i ≥ 1 (hence RAu0u1 · · ·un).

(The basis) We show that the following subset s1 of A has the finite intersection property

(i.e. the meet of every finite subset of s1 is not the zero element of A) and so can be extended

to an ultrafilter in A.

s1 = {−a1} ∪ {c ∈ A | l(c, a2, . . . , an) ∈ u0}.

Suppose, for reductio, that s1 does not have the finite intersection property, i.e. the meet

of some finite subset of s1 is the zero element of A. But −a1 6= 0 since l is normal and

by assumption l(a1, . . . , an) /∈ u0. Hence there exist c1, . . . , cm ∈ s1 − {−a1} such that the

following hold (where j ranges from 1 to m):

−a1 ·
∏

cj = 0;∏
cj ≤ a1;

l(
∏

cj , a2, . . . , an) ≤ l(a1, a2, . . . , an).

But for all j, l(cj , a2, . . . , an) ∈ u0. We thus have

l(
∏

cj , a2, . . . , an) ∈ u0,

since u0 is closed under taking meets and l is multiplicative. In addition, u0 is upward

closed. Therefore,

l(a1, a2, . . . , an) ∈ u0,
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which is contrary to the initial assumption that l(a1, a2, . . . , an) /∈ u0. Hence, by reductio, s1

has the finite intersection property. Accordingly it can be extended to an ultrafilter u1 in A.

Obviously −a1 ∈ u1 (since −a1 ∈ s1 ⊆ u1). Moreover, for any b ∈ A, if l(b, a2, . . . , an) ∈ u0

then b ∈ u1 (since b ∈ s1 ⊆ u1). In other words, u1 satisfies both (i) and (ii) (for the case of

i = 1).

(The inductive step) The I.H. is that there already exist u1, . . . , uk ∈ Uf A (where 1 ≤
k < n) satisfying both (i) and (ii). Consider the following subset of A.

sk+1 = {−ak+1} ∪ {c ∈ A | ∃d1, . . . , dk ∈ A : −d1 ∈ u1, . . . ,−dk ∈ uk &

l(d1, . . . , dk, c, ak+2, . . . , an) ∈ u0}.

We show, by reductio, that sk+1 has the finite intersection property. So assume not, i.e. there

is a finite subset of sk+1 such that its meet is the zero element of A. But −ak+1 6= 0 since l is

normal and by assumption l(a1, . . . , an) /∈ u0. Thus for some c1, . . . , cm ∈ sk+1 − {−ak+1},
we have the following (where j ranges from 1 to m).

−ak+1 ·
∏

cj = 0.∏
cj ≤ ak+1.

For each j, there exist −d1
j ∈ u1, . . . ,−dkj ∈ uk such that

l(d1
j , . . . , d

k
j , cj , ak+2, . . . , an) ∈ u0.

Then, by the upward closure of u0, we have for each j

l(
∑

d1
j , . . . ,

∑
dkj , cj , ak+2, . . . , an) ∈ u0.

Then, by the closure of u0 under taking meets, and the multiplicativity of l,

l(
∑

d1
j , . . . ,

∑
dkj ,
∏

cj , ak+2, . . . , an) ∈ u0,

from which it follows by the upward closure of u0 that

l(
∑

d1
j , . . . ,

∑
dkj , ak+1, ak+2, . . . , an) ∈ u0.

Note that for all j, −d1
j ∈ u1. So

∏
(−d1

n) ∈ u1, whence we derive −
∑
d1
j ∈ u1 and thus∑

d1
j /∈ u1. Similarly, we have

∑
d2
j /∈ u2, . . . ,

∑
dk−1
j /∈ uk−1 and

∑
dkj /∈ uk.
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However by the I.H. uk complies with (ii). Hence
∑
dkj ∈ uk. We thus arrive at a

contradiction. Therefore, by reductio, sk+1 has the finite intersection property. Accordingly

it can be extended to an ultrafilter uk+1 in A. Clearly −ak+1 ∈ uk+1 (since −ak+1 ∈
sk+1 ⊆ uk+1). Moreover if b1 /∈ u1, . . . , bk /∈ uk and l(b1, . . . , bk, bk+1, ak+2, . . . , an) ∈ u0,

then bk+1 ∈ uk+1 (since bk+1 ∈ sk+1 ⊆ uk+1). Therefore uk+1 satisfies (i) and (ii) (for the

case of i = k+ 1). This concludes the inductive proof that there exist ultrafilters u1, . . . , un

in A satisfying (i) and (ii), which is what is needed to show (2) =⇒ (3). a

Theorem 6.4.3. Let A = 〈A,+,−, 0, l〉 be a normal modal algebra. The frame A[ =

〈Uf A, RA, AA〉 is descriptive.

Proof. We show that A[ satisfies conditions (D1), (D2) and (D3) of descriptive frames (see

Definition 6.2.7).

To show (D1), i.e. AAu = AAv =⇒ u = v, we suppose u 6= v and demonstrate AAu 6=
AAv. By supposition, there exists an a ∈ A such that both a /∈ u and a ∈ v (or both

a ∈ u and a /∈ v, in which case the following argument applies mutatis mutandis). Then

Ua /∈ AAu but Ua ∈ AAv. Hence AAu 6= AAv.

(D2) stipulates that every ultrafilter µ in AA is of the form AAu where u is an ultrafilter

in A. (Note that µ is a maximal collection of Ua’s, where Ua is the set of ultrafilters in AA

containing a.) To demonstrate this, it suffices to show that the set

v = {a ∈ A | Ua ∈ µ}

is an ultrafilter in A, because if it is then AAv = {Ub | v ∈ Ub} is simply µ (to see this, note

that Ua ∈ µ iff a ∈ v iff v ∈ Ua iff Ua ∈ AAv). Indeed, v is an ultrafilter in A because it is

non-empty, closed under Boolean meet, upwardly closed, and, for each a ∈ A, exactly one

of a and −a is in v. Details are as follows:

• 1 ∈ v since U1 = Uf A ∈ µ.

• Suppose a, b ∈ v, i.e. Ua,Ub ∈ µ. Then Ua ∩ Ub ∈ µ. But Ua ∩ Ub = U(a · b). Thus

a · b ∈ v.

• Suppose a ∈ v and a ≤ b. Given the latter, Ua ⊆ Ub (since if u ∈ Ua or equivalently

a ∈ u then b ∈ u or equivalently u ∈ Ub). Given that a ∈ v, we have Ua ∈ µ and so

Ub ∈ µ, i.e. b ∈ v.
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• Suppose it is false that exactly one of a and −a is in v, i.e. either (i) both a and

−a are in v or (ii) neither a nor −a is in v. If (i) then Ua,U(−a) ∈ µ, then Ua ∩
U(−a) = U(a · −a) = U0 = ∅ ∈ µ, which is absurd. If (ii) then Ua,U(−a) /∈ µ, then

−Ua,−U(−a) ∈ µ, then U(−a), U(a) ∈ µ, which contradicts the earlier derivation

that Ua,U(−a) /∈ µ. Thus, by reductio, exactly one of a and −a is in v.

For (D3), we suppose that for any u0, u1, . . . , un ∈ Uf A and a1, . . . , an ∈ A,

u0 ∈ lRA
(Ua1, . . . , Uan) =⇒ ∃i ≥ 1 : ui ∈ Uai, i.e. ai ∈ ui,

and show that RAu0u1 · · ·un or, equivalently, for any a1, . . . , an,

l(a1, . . . , an) ∈ u0 =⇒ ∃i ≥ 1 : ai ∈ ui.

So assume l(a1, . . . , an) ∈ u0. Then by the definition of RA we have for any u1, . . . , un ∈
Uf A,

Ru0u1 · · ·un =⇒ ∃i ≥ 1 : ai ∈ ui, i.e. ui ∈ Uai.

But this just means that u0 ∈ lRA
(Ua1, . . . , Uan) (by the definition of lRA

). Thus by

supposition there exists an i ≥ 1 such that ai ∈ ui as desired.

We have shown that A[ satisfies (D1), (D2) and (D3). It is thus a descriptive frame. a

Theorem 6.4.4. For any homomorphism f from modal algebra A1 = 〈A1,+,−, 0, l〉 to

modal algebra A2 = 〈A2,+,−, 0, l〉, f [ is a frame morphism from A2
[ = 〈Uf A2, RA2 , AA2〉

to A1
[ = 〈Uf A1, RA1 , AA1〉.

Proof. We show that f [ satisfies conditions (R1), (R2) and (A1) of frame morphisms (Def-

inition 6.2.3). In the following, let u0, u1, . . . , un be ultrafilters in A1 and let v0, v1, . . . , vn

be ultrafilters in A2.

For (R1), assume RA2v0v1 · · · vn and show RA1f
[(v0)f [(v1) · · · f [(vn), or equivalently

RA1f
−1[v0]f−1[v1] · · · f−1[vn], or equivalently if l(a1, . . . , an) ∈ f−1[v0] then there exists

an i ≥ 1 such that ai ∈ f−1[vi] i.e. f(ai) ∈ vi. So suppose l(a1, . . . , an) ∈ f−1[v0], i.e.

f(l(a1, . . . , an)) ∈ v0. Then l(f(a1), . . . , f(an)) ∈ v0 since f is a homomorphism from A1 to

A2. But RA2v0v1 · · · vn by assumption. So f(ai) ∈ vi for some i ≥ 1, as desired.

For (A1), what needs to be shown is f [
−1

[Ua] ∈ AA2 for an arbitrary a ∈ A1. It

suffices to establish that f [
−1

[Ua] = U(f(a)) since U(f(a)) is a member of AA2 . Consider

a v ∈ Uf A2. Then,
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v ∈ f [−1
[Ua] ⇐⇒ f [(v) ∈ Ua (definition of inverse relations)

⇐⇒ f−1[v] ∈ Ua (definition of [)

⇐⇒ a ∈ f−1[v] (definition of Ua, and f−1[v] ∈ Uf A1)

⇐⇒ f(a) ∈ v (definition of inverse relations)

⇐⇒ v ∈ U(f(a)) (definition of U(f(a))).

f [ satisfies (R1), (R2) and (A1). It is thus a frame morphism. a

Theorem 6.4.5. The function [ preserves compositions of morphisms and the identity

morphisms, i.e.

(1) (f2 ◦ f1)[ = f1
[ ◦ f2

[ whenever f2 is composable with f1;

(2) (idA)[ = idA[.

Proof. For (1). What needs to be shown is that the following diagram commutes, i.e.

(f2 ◦ f1)[ = f1
[ ◦ f2

[.

A1
f1 //

f2◦f1   BBBBBBBB A2

f2
��

A3

A1
[ A2

[
f1

[

oo

A3
[

(f2◦f1)[

aaBBBBBBBB
f2

[

OO

It is straightforward to check the following, where w is an element of A3
[.

(f2 ◦ f1)[(w) = (f2 ◦ f1)−1[w] (Definition of [)

= f1
−1[f2

−1[w]] (Definition of inverse relations and compositions)

= f1
[(f2

[(w)) (Definition of [)

= (f1
[ ◦ f2

[)(w) (Definition of compositions).

As noted above, (f2◦f1)−1[w] = f1
−1[f2

−1[w]] by virtue of the definitions of inverse relations

and compositions of maps. The detail is as follows.

x ∈ (f2 ◦ f1)−1[w].

(f2 ◦ f1)(x) ∈ w.

f2(f1(x)) ∈ w.

f1(x) ∈ f2
−1[w].

x ∈ f1
−1[f2

−1[w]].
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For (2). We note that for any u of A[,

idA
[(u) = idA

−1[u] = u = idF[(u). a

Theorem 6.4.6. The function [ for normal modal algebras and their homomorphisms is a

contravariant functor from the category NMA to the category DRF.

Proof. The theorem follows immediately from Theorems 6.4.2, 6.4.3, 6.4.4 and 6.4.5. a

6.5 Dual equivalence between DRF and NMA

In the previous two sections, we have established ] and [ to be contravariant functors

from DRF to NMA, and from NMA to DRF, respectively. We now show that they are also

equivalences between the two categories.

Theorem 6.5.1. The categories DRF and NMA are dually equivalent.

Proof. We demonstrate the following regarding contravariant functor ] (from DRF and NMA)

and contravariant functor [ (from NMA to DRF).

• The composite functor [ ◦ ] is naturally isomorphic to the identity functor on DRF

(Theorem 6.5.4).

• The composite functor ] ◦ [ is naturally isomorphic to the identity functor on NMA

(Theorem 6.5.7).

Further details of the proof are given in Section 6.5.1 and 6.5.2. a

Background information about natural transformation, equivalence and contravariance

is provided in B.3, B.4 and B.5. The setup is technical but the underlying idea is simple.

The most important thing we show is the following:

• Every descriptive frame F = 〈W,R,A〉 is isomorphic to F]
[ (the ultrafilter frame of

the complex algebra of F) under the map x 7→ Ax.

• Every normal modal algebra A = 〈A,+,−, 0, l〉 is isomorphic to A[] (the complex

algebra of the ultrafilter frame of A) under the map a 7→ Ua.
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6.5.1 Natural isomorphism between IdDRF and [ ◦ ]

Throughout this section, F, F] and F]
[ are as follows.

• F = 〈W,R,A〉 is a descriptive frame, i.e. frames satisfying (D1), (D2) and (D3). (See

Definition 6.2.7.)

• F] = 〈A,∪,−, ∅, lR〉 is the normal modal algebra we get from A by ]. Recall that lR
is the n-ary operation on A defined, for every a1, . . . , an ∈ A, by

lR(a1, . . . , an) = {x ∈W | ∀y1, . . . , yn, Rxy1 · · · yn =⇒ ∃i : yi ∈ ai}.

• F]
[ = 〈Uf F], RF] , AF]〉 is the ultrafilter frame we get from F] by [. Note that

– Uf F] is the collection of all ultrafilters in F];

– RF]u0u1 · · ·un iff lR(a1, . . . , an) ∈ u0 =⇒ ∃i ≥ 1 : ai ∈ ui;

– AF] = {Ua | a ∈ A} where Ua is the set of ultrafilters in F] containing a.

We let η be the function that assigns to each descriptive frame F = 〈W,R,A〉 the map

ηF : W → Uf F] defined, for every x ∈W , by

ηF(x) = Ax.

The map ηF is well defined since every Ax is an ultrafilter in F] = 〈A,∪,−, ∅, lR〉. See (2)

of Remark 6.2.8.

Theorem 6.5.2. ηF : W → Uf F] is a frame morphism from F to (F])[.

Proof. We show that ηF satisfies (R1), (R2) and (A1) of Definition 6.2.3. For (R1) and

(R2), we establish the following equivalences first (where x0, x1, . . . , xn ∈W ).

RF](Ax0)(Ax1) . . . (Axn). (1)

∀a1, . . . , an ∈ A, lR(a1, . . . , an) ∈ Ax0 =⇒ ∃i : ai ∈ Axi. (2)

∀a1, . . . , an ∈ A, x0 ∈ lR(a1, . . . , an) =⇒ ∃i : xi ∈ ai. (3)

Rx0x1 · · ·xn. (4)

In the above, (1) ⇐⇒ (2) by the definition of RF] ; (2) ⇐⇒ (3) by the definition of

Ax0 and Axi and the closure of A under lR; (3) =⇒ (4) by (D3) while (4) =⇒ (3) by the

definition of lR.
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For (R1), we assume Rx0x1 · · ·xn. Then by the above RF](Ax0)(Ax1) . . . (Axn). In

other words, RF]ηF(x0)ηF(x0) . . . ηF(x0).

For (R2), we assume, for arbitrary x0 ∈ W and u1, . . . , un ∈ Uf F], RF]ηF(x0)u1 . . . un.

But ηF(x0) = Ax0. Moreover, according to (D2), u1 = Ax1 for some x1 ∈ W and similarly

for u2, . . . , un. Thus for some x1, . . . , xn ∈ W , RF](Ax0)(Ax1) . . . (Axn), from which it

follows from the above equivalences that Rx0x1 · · ·xn where for all i ≥ 1, ηF(xi) = Axi = ui.

(A1) stipulates that ηF
−1[Ua] ∈ A for any a ∈ A. (Note that AF] is the set {Ua | a ∈ A}.)

To show (A1) we establish that ηF
−1[Ua] = a (and so ηF

−1[Ua] ∈ A since a ∈ A). For any

x ∈W ,

x ∈ ηF
−1[Ua] ⇐⇒ ηF(x) ∈ Ua

⇐⇒ Ax ∈ Ua

⇐⇒ a ∈ Ax

⇐⇒ x ∈ a.

Thus ηF
−1[Ua] = a, as desired. a

Theorem 6.5.3. η is a natural transformation from IdDRF to [ ◦ ].

Proof. We have proved in Theorem 6.5.2 that every component ηF of η is a frame morphism

from F to F]
[, i.e. from IdDRF(F) to ([ ◦ ])(F). It remains to show that the following holds

for any frame morphism f from descriptive frame F1 = 〈W1, R1, A1〉 to descriptive frame

F2 = 〈W2, R2, A2〉,

f ]
[ ◦ ηF1 = ηF2 ◦ f.

In other words, what needs to be shown is that the following diagram commutes.

F1

f

��
F2

F1

ηF1 //

f

��

F1
][

f][

��
F2 ηF2

//
F2

][

We recall here that f ] : A2 → A1 and f ]
[ : Uf F1

] → Uf F2
] are defined by:

∀b ∈ A2, f
](b) = f−1[b];

∀u ∈ Uf F1
], f ]

[
(u) = f ]

−1
[u].
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Observe that f ][ ◦ ηF1 = ηF2 ◦ f iff for any x ∈W1,

(f ]
[ ◦ ηF1)(x) = (ηF2 ◦ f)(x)

or equivalently

f ]
[
(A1x) = A2(f(x)).

To show the above identity, we consider arbitrary b ∈ A2. The following are equivalent.

b ∈ f ][(A1x) ⇐⇒ b ∈ A2(f(x)).

b ∈ f ]−1
[A1x] ⇐⇒ f(x) ∈ b.

f ](b) ∈ A1x ⇐⇒ f(x) ∈ b.

f−1[b] ∈ A1x ⇐⇒ f(x) ∈ b.

x ∈ f−1[b] ⇐⇒ f(x) ∈ b.

f(x) ∈ b ⇐⇒ f(x) ∈ b.

But the last statement is obviously true. Thus we have shown that f ][(A1x) = A2(f(x))

for any x ∈W1, from which it follows that f ][ ◦ ηF1 = ηF2 ◦ f , as argued above. a

Theorem 6.5.4. η is a natural isomorphism from IdDRF to [ ◦ ]. Thus IdDRF is naturally

isomorphic to [ ◦ ].

Proof. We already know that η is a natural transformation from IdDRF to [ ◦ ] (Theo-

rem 6.5.3). For η to be a natural isomorphism, every component ηF of it must be a frame

isomorphism. In other words, we need to show that for every frame morphism ηF from

F = 〈W,R,A〉 to F]
[ = 〈Uf F], RF] , AF]〉, there exists a frame morphism θF from F]

[ to F

such that

θF ◦ ηF = idF;

ηF ◦ θF = id
F][ .

Let θF : Uf F] →W be defined as follows: for every u ∈ Uf F]

θF(u) = x, whenever u = Ax.

Note that θF is well-defined since
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• by (D2) every ultrafilter u in F] is of the form Ax for some x ∈W and so is assigned

some member of W ;

• by (D1) every ultrafilter u in F] is assigned at most one member of W (for if u = Ax

and u = Ay, then x = y).

Moreover θF as defined earlier is a frame morphism from F]
[ to F because it satisfies

(R1), (R2) and (A1) of Definition 6.2.3. In detail, we have:

• if RF](Ax0)(Ax1) . . . (Axn), then Rx0x1 · · ·xn where for all i ≥ 0, xi = θF(Axi);

• if RθF(Ax0)x1 · · ·xn, then Rx0x1 · · ·xn, then RF](Ax0)(Ax1) . . . (Axn) where all i ≥ 1,

Axi ∈ Uf F] and θF(Axi) = xi.

• for all a ∈ A, θF
−1[a] ∈ AF] because θF

−1[a] = Ua. (To see the latter, assume

u ∈ θ−1
F [a]. Then for some x ∈ W , u = Ax and x ∈ a or equivalently a ∈ Ax. Then

u ∈ Ua. The argument can be reversed.)

Finally for any x ∈W and Ax ∈ Uf F],

(θF ◦ ηF)(x) = θF(ηF(x)) = θF(Ax) = x;

(ηF ◦ θF)(Ax) = ηF(θF(Ax)) = ηF(x) = Ax.

Thus, both θF ◦ ηF = idF and ηF ◦ θF = id
F][ . a

6.5.2 Natural isomorphism between IdNMA and ] ◦ [

Throughout this section, A, A[ and A[] are as follows.

• A = 〈A,+,−, 0, l〉 is a normal modal algebra. (See Definition 6.1.5.)

• A[ = 〈Uf A, RA, AA〉 is the descriptive frame we get from A under [ as defined in

Definition 6.4.1. Recall that:

– Uf A is the collection of all ultrafilters in A;

– RAu0u1 · · ·un iff

∀a1, . . . , an ∈ A, l(a1, . . . , an) ∈ u0 =⇒ ∃i ≥ 1 : ai ∈ ui;

– AA = {Ua |a ∈ A} where Ua consists of all ultrafilters in A containing a.
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• A[] = 〈AA,∪,−, ∅, lRA
〉 is the normal modal algebra we get from A[ under ] as defined

in Definition 6.3.1. Note that lRA
(Ua1, . . . , Uan), which consists of ultrafilters u0 in

A satisfying the condition

∀u1, . . . , un ∈ Uf A, RAu0u1 · · ·un =⇒ ∃i ≥ 1 : ui ∈ ai,

is simply U(l(a1, . . . , an)) (see the proof of Theorem 6.4.2).

We let η be the function that assigns to each A the map ηA : A→ AA defined, for every

a ∈ A, by

ηA(a) = Ua.

Theorem 6.5.5. ηA : A→ AA is a homomorphism from A to A[].

Proof. We show that ηA preserves the algebraic operations, i.e.

ηA(a+ b) = ηA(a) ∪ ηA(b);

ηA(−a) = −ηA(a);

ηA(0) = ∅;
ηA(l(a1, . . . , an)) = lRA

(ηA(a1), . . . , ηA(an)).

But the above is a consequence of the following, which we have already demonstrated

when proving that the set AA is closed under ∪, −, ∅ and lRA
(see the proof of Theo-

rem 6.4.2):

U(a+ b) = U(a) ∪ U(b);

U(−a) = −U(a);

U(0) = ∅;
U(l(a1, . . . , an)) = lRA

(U(a1), . . . , U(an)).

Thus ηA is a homomorphism from A to A[]. a

Theorem 6.5.6. η is a natural transformation from IdNMA to ] ◦ [.

Proof. We have proved in Theorem 6.5.5 that every component ηA of η is a homomorphism

from A to A[], i.e. from IdNMA(A) to (] ◦ [)(A). It remains to show that the following holds

for any homomorphism f from A1 = 〈A1,+,−, 0, l〉 to A = 〈A,+,−, 0, l〉2 (both are normal
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modal algebras),

f [
] ◦ ηA1 = ηA2 ◦ f.

In other words, what needs to be shown is that the following diagram commutes.

A1

f
��

A2

A1

ηA1 //

f

��

A1
[]

f[]

��
A2 ηA2

//
A2

[]

We recall here that f [ : Uf A2 → Uf A1 and f [
]

: AA1 → AA2 are defined by:

∀v ∈ Uf A2, f
[(v) = f−1[v];

∀a ∈ A1, f
[](Ua) = f [

−1
[Ua].

Observe that f [
] ◦ ηA1 = ηA2 ◦ f iff for any a ∈ A1,

(f [
] ◦ ηA1)(a) = (ηA2 ◦ f)(a)

or equivalently

f [
]
(U1a) = U2(f(a))

where U1a consists of all ultrafilters in A1 containing a, and U2(f(a)) consists of all ultra-

filters in A2 containing f(a). To show the above identity, we consider arbitrary v ∈ Uf A2.

The following are equivalent.

v ∈ f [](U1a) ⇐⇒ v ∈ U2(f(a)).

v ∈ f [−1
[U1a] ⇐⇒ f(a) ∈ v.

f [(v) ∈ U1a ⇐⇒ f(a) ∈ v.
f−1[v] ∈ U1a ⇐⇒ f(a) ∈ v.
a ∈ f−1[v] ⇐⇒ f(a) ∈ v.
f(a) ∈ v ⇐⇒ f(a) ∈ v.

But the last statement is obviously true. Thus we have shown that f [
]
(U1a) = U2(f(a)) for

any a ∈ A1, from which it follows that f [
] ◦ ηA1 = ηA2 ◦ f , as argued above. a
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Theorem 6.5.7. η is a natural isomorphism from IdNMA to ] ◦ [. Thus IdNMA is naturally

isomorphic to ] ◦ [.

Proof. We already know that η is a natural transformation from IdNMA to ] ◦ [ (Theo-

rem 6.5.6). For η to be a natural isomorphism, every component ηA of it must be a

isomorphism. In other words, we need to show that for every homomorphism ηA from

A = 〈A,+,−, 0, l〉 to A[], there exists a homomorphism θA from A[] to A such that

θA ◦ ηA = idA;

ηA ◦ θA = id
A[] .

Let θA : AA → A be defined as follows: for every Ua ∈ AA,

θA(Ua) = a.

θA as defined above is a homomorphism from A[] to A iff the following hold:

θA(Ua ∪ Ub) = θA(Ua) + θA(Ub),

θA(−Ua) = −θA(Ua),

θA(∅) = 0,

θA(lRA
(Ua1, . . . , Uan)) = l(θA(Ua1), . . . , θA(Uan)),

or equivalently the following hold:

θA(U(a+ b)) = θA(Ua) + θA(Ub),

θA(U(−a)) = −θA(Ua),

θA(0) = 0,

θA(U(l(a1, . . . , an))) = l(θA(Ua1), . . . , θA(Uan)).

But the last set of identities are obvious, given our definition of θA.

Finally for any a ∈ A and Ua ∈ AA, we have

(θA ◦ ηA)(a) = θA(ηA(a)) = θA(Aa) = a;

(ηA ◦ θA)(Ua) = ηA(θA(Ua)) = ηA(a) = Ua.

Thus, both θA ◦ ηA = idA and ηF ◦ θA = id
A][ . a



Chapter 7

Modal Algebras and General

Neighbourhood Frames

We showed in the previous chapter that the categories of descriptive relational frames and

normal modal algebras are dually equivalent. More general than the relational frames are the

neighbourhood structures. Došen (1989) establishes dual equivalence between descriptive

neighbourhood frames of type 1 and modal algebras with arbitrary unary operations. In this

chapter, we generalize Došen’s result to duality between descriptive neighbourhood frames

of type n and modal algebras with arbitrary n-ary operations.

The plan of this chapter is similar to that of the previous chapter. We define the

categories of descriptive neighbourhood frames (DNF) in Section 7.1. (Note that the category

of modal algebras MA has already been defined in Section 6.1.) A function ] is defined in

Section 7.2 for descriptive neighbourhood frames and their frame morphisms. It transforms

a frame to a set algebra, and a frame morphism to a homomorphism between set algebras.

We then show that the function ] is a contravariant functor from DNF to MA. We proceed

similarly in Section 7.3 for the contravariant functor [, which transforms modal algebras and

homomorphisms to descriptive neighbourhood frames and their frame morphisms. Finally,

the categories of descriptive neighbourhood frames and modal algebras are demonstrated to

be dually equivalent by the contravariant functors ] and [ (Section 7.4).

114
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7.1 General neighbourhood frames

Consider a neighbourhood function N of type n on a set W of points. Every point x is

assigned a collection of n-tuples of sets of points (with the sets of points being called the

neighbourhoods of x). In symbol, N(x) ⊆ (P(W ))n. We let lN be an n-ary operation on

P(W ) defined as follows (where a1, . . . , an ⊆W ):

lN (a1, . . . , an) = {x ∈W | 〈a1, . . . , an〉 ∈ N(x)}.

The dual operation of lN , denoted mN , is thus:

mN (a1, . . . , an) = −lN (−a1, . . . ,−an),

where − is set-complementation (relative to W ). It is easy to check that the following

identity holds:

mN (a1, . . . , an) = {x ∈W | 〈−a1, . . . ,−an〉 /∈ N(x)}.

Definition 7.1.1 (General neighbourhood frames). A general neighbourhood frame F is a

triple 〈W,N,A〉 of which:

(1) W is a non-empty set of points;

(2) N is a neighbourhood function of type n on W , i.e. N : W →P((P(W ))n);

(3) A ⊆P(W ) contains ∅ as well as all neighbourhoods, and is closed under −, ∪ and lN .

(A neighbourhood a is a set of points such that for some point x and sets b1, . . . , bn
of points, we have 〈b1, . . . , bn〉 ∈ N(x) and a is one of b1, . . . , bn.) a

Definition 7.1.2 (General neighbourhood models). Let F = 〈W,N,A〉 be a general neigh-

bourhood frame, and V a function that assigns to each atom an element of A. M = 〈F, V 〉,
or equivalently M = 〈W,N,A, V 〉, is called a general neighbourhood model on F. a

Truth in general neighbourhood models and validity on general neighbourhood frames

are defined in the same way as truth in ordinary neighbourhood models and validity on

ordinary neighbourhood frames. Note that for any formula α and general neighbourhood

model M = 〈W,N,A, V 〉 we have ‖α‖M ∈ A. As in the case of general relational frames and

models, the set A is so named because it is the carrier of a modal algebra, viz. 〈A,∪,−, ∅, lN 〉.
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Another reason is that the members of A are sometimes called admissible sets and a valuation

on F = 〈W,N,A〉 assigns to each atom an admissible set of points.

When the context makes clear we are talking about general neighbourhood frames and

models, we use the expressions “neighbourhood frames” and “neighbourhood models”, or

simply say “frames” and “models”. The same applies to morphisms between general neigh-

bourhood frames that we are going to define.

Definition 7.1.3 (General neighbourhood frame morphisms). Let F1 = 〈W1, N1, A1〉 and

F2 = 〈W2, N2, A2〉 be frames. A map f : W1 → W2 is called a frame morphism from F1 to

F2 if all of the following conditions hold. (In the following, x ranges over the elements of

W1, and b, b1, . . . , bn range over the elements of A2.)

(N1) 〈f−1[b1], . . . , f−1[bn]〉 ∈ N1(x) ⇐⇒ 〈b1, . . . , bn〉 ∈ N2(f(x)).

(A1) f−1[b] ∈ A1.
a

In the following definitions, F1 = 〈W1, N1, A1〉 and F2 = 〈W2, N2, A2〉 are general neigh-

bourhood frames.

Definition 7.1.4 (General neighbourhood frame morphic images). F2 is a frame morphic

image of F1 if there is a surjective frame morphism from F1 to F2. a

Definition 7.1.5 (General neighbourhood frame embeddings). A frame morphism f from

F1 to F2 is called an embedding of F1 in F2 if it is injective and satisfies the following

condition (where a ranges over elements of A1):

(A2) f [a] = b ∩ f [W1], for some b ∈ A2.

If there is an embedding of F1 in F2, F1 is said to be embeddable in F2 a

Definition 7.1.6 (General neighbourhood frame isomorphisms). A surjective embedding

of F1 in F2 is called an isomorphism from F1 to F2. If there is an isomorphism from F1 to

F2, F1 is said to be isomorphic to F2 a

If F1 is isomorphic to F2 under f , then F2 is isomorphic to F1 under f−1. Thus when

there is an isomorphism from F1 to F2, we often say that F1 and F2 are isomorphic to each

other (F1
∼= F2). F1 is isomorphic to F2 under f iff f is a bijective frame morphism from F1

to F2, and its inverse f−1 is a frame morphism from F2 to F1. This provides an alternative

definition of isomorphism.
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Validity of modal formulas is preserved by taking frame morphic images, and it is in-

variant under isomorphisms. In detail, we note the following.

• Let f be a frame morphism from F1 = 〈W1, N1, A1〉 to F2 = 〈W2, N2, A2〉, and let V2

be an admissible valuation on F2. Then V1 assigning to each atom p the set f−1[V2(p)]

of points of W1 is a valuation on F1. Moreover for any formula α,

‖α‖M1 = f−1[‖α‖M2 ]

where M1 = 〈F1, V1〉 and M2 = 〈F2, V2〉.

• If F2 is a frame morphic image of F1, then for any formula α,

F1 |= α =⇒ F2 |= α.

• If F1 and F2 are isomorphic, then for any formula α,

F1 |= α ⇐⇒ F2 |= α.

Analogous to descriptive relational frames, we define the following class of general neigh-

bourhood frames characterizable as descriptive.

Definition 7.1.7 (Descriptive general neighbourhood frames). A frame F = 〈W,N,A〉 is

said to be descriptive if it satisfies all of the following conditions. (Unless otherwise stated,

x and y range over the elements of W , and u ranges over the ultrafilters in 〈A,∪,−, ∅, lN 〉.)

(D1) Ax = Ay =⇒ x = y.

(D2) u = Ax, for some x ∈W.

(Recall that Ax is the set {a ∈ A | x ∈ a}.) a

The converses of the above conditions hold generally. If x = y, then trivially Ax = Ay.

Moreover every Ax can be shown to be an ultrafilter in 〈A,∪,−, ∅, lN 〉.

Definition 7.1.8 (The category of descriptive general neighbourhood frames). The category

of descriptive general neighbourhood frames (DNF), comprises all descriptive frames as its

objects and all frame morphisms between descriptive frames as its arrows. The operations

of domain, codomain, composition and identity are the usual ones for functions or maps. a
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7.2 Transformation of DNF to MA

In the rest of this chapter, descriptive frames means descriptive general neighbourhood

frames, and frame morphisms means general neighbourhood frame morphisms.

Definition 7.2.1 (The function ] for descriptive neighbourhood frames and their frame

morphisms). The function ] (read “sharp”) assigns to each descriptive frame F = 〈W,N,A〉
a set algebra F], and to each frame morphism f from descriptive frame F1 = 〈W1, N1, A1〉
to descriptive frame F2 = 〈W2, N2, A2〉 a map f ] from the set algebra F2

] to the set algebra

F1
] as follows.

• F] = 〈A,∪,−, ∅, lN 〉.

• f ] : A2 → A1 is defined, for every b ∈ A2, by

f ](b) = f−1[b]. a

Note that f ] is well defined since, by condition (A1) of frame morphism (Definition 7.1.3),

f−1[b] is guaranteed to be in A1. Note that the arrows are reversed: whereas f maps A1 to

A2, f ] maps A2 to A1.

We next show that F] is a modal algebra (also called the full complex algebra of F) and

f ] is a homomorphism. In addition, ] preserves composition of morphisms as well as the

identity morphisms. Note that in proving the above (and so the function ] is a contravariant

functor from DNF to MA), we do not make use of (D1) and (D2) of Definition 7.1.7, which

are the distinctive frame conditions for descriptive frames. However these conditions will

be required when we show, in Section 6.5.1, that ] is an equivalence from DNF to MA.

Theorem 7.2.2. For any frame F = 〈W,N,A〉, F] = 〈A,∪,−, ∅, lN 〉 is a modal algebra.

Proof. It follows directly from the definition of frames (Definition 7.1.1) that the set A

contains ∅, and is closed under ∪, − and lN . Hence F] is a modal algebra by Definition 6.1.1.

a

Theorem 7.2.3. For any frame morphism f from frame F1 = 〈W1, N1, A1〉 to frame F2 =

〈W2, N2, A2〉, f ] is a homomorphism from F2
] = 〈A2,∪,−, ∅, lN2〉 to F1

] = 〈A1,∪,−, ∅, lN1〉.
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Proof. It can easily be shown that the following hold generally:

f−1[b1 ∪ b2] = f−1[b1] ∪ f−1[b2];

f−1[−b] = −f−1[b];

f−1[∅] = ∅.

Hence ∪, − and ∅ are preserved under f ], i.e.

f ](b1 ∪ b2) = f ](b1) ∪ f ](b2);

f ](−b) = −f ](b);

f ](∅) = ∅.

For the preservation of the modal operation, i.e. f ](lN2(b1, . . . , bn)) = lN1(f ](b1), . . . , f ](bn)),

we show that f−1[lN2(b1, . . . , bn)] = lN1(f−1[b1], . . . , f−1[bn]), or equivalently for any x ∈W1,

x ∈ f−1[lN2(b1, . . . , bn)] ⇐⇒ x ∈ lN1(f−1[b1], . . . , f−1[bn]).

For =⇒, we argue as follows:

x ∈ f−1[lN2(b1, . . . , bn)] by assumption;

f(x) ∈ lN2(b1, . . . , bn) by the definition of f−1;

〈b1, . . . , bn〉 ∈ N2(f(x)) by the definition of lN2 ;

〈f−1[b1], . . . , f−1[bn]〉 ∈ N1(x) by (N1) of frame morphisms;

x ∈ lN1(f−1[b1], . . . , f−1[bn]) by the definition of lN1 .

The ⇐= direction holds as well since the above argument can be reversed.

We thus have shown that f ] preserves all the relevant algebraic operations, and so f ] is

a homomorphism from F2
] to F1

]. a

Theorem 7.2.4. The function ] preserves both composition and identity, i.e.

(1) (f2 ◦ f1)] = f1
] ◦ f2

], for any frame morphisms f1 : F1 → F2 and f2 : F2 → F3, and

(2) idF
] = idF] for every frame F.

Proof. The proof is the same as that for Theorem 6.3.4.

a
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Theorem 7.2.5. The function ] is a contravariant functor from the category DNF to the

category MA.

Proof. The theorem follows immediately from Theorems 7.2.2, 7.2.3 7.2.4. a

7.3 Transformation of MA to DNF

In the following, the collection of all ultrafilters in an algebra A is denoted by Uf A, and the

set of all ultrafilters containing an element a of A is denoted by Ua. In other words,

Ua = {u ∈ Uf A | a ∈ u}.

Definition 7.3.1 (The functions [ for modal algebras and homomorphisms). The function

[ (read “flat”) assigns to each modal algebra A = 〈A,+,−, 0, l〉 a neighbourhood structure

A[, and to each homomorphism f from modal algebra A1 = 〈A1,+,−, 0, l〉 to modal algebra

A2 = 〈A2,+,−, 0, l〉 a map from A2
[ to A1

[ as follows.

• A[ = 〈Uf A, NA, AA〉 where:

(1) Uf A consists of all ultrafilters in A;

(2) NA : Uf A→P((P(Uf A))n) such that for each u ∈ Uf A,

NA(u) = {〈Ua1, . . . , Uan〉 | l(a1, . . . , an) ∈ u};

(3) AA = {Ua | a ∈ A}.

• f [ : Uf A2 → Uf A1 is defined, for every v ∈ Uf A2, by

f [(v) = f−1[v]. a

Theorem 7.3.2. For any modal algebra A = 〈A,+,−, 0, l〉, A[ = 〈Uf A, NA, AA〉 is a

descriptive frame.

Proof. We first show that AA contains the ∅ as well as all neighbourhoods, and is closed

under ∪, − and lNA
(hence A[ is a frame, given that Uf A is non-empty and NA is a

neighbourhood function of type n on Uf A), and secondly show that conditions (D1) and

(D2) of Definition 7.1.7 are satisfied (hence A[ is descriptive).

For the first part, it suffices to check the following, where a, a1, . . . , an and b range over

elements of A.
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• ∅ = U0 since no ultrafilter in A contains the zero element.

• All neighbourhoods are of the form Ua.

• Ua∪Ub = U(a+b) since for any ultrafilter v in A, v ∈ Ua∪Ub iff v ∈ Ua or v ∈ Ub iff

a ∈ v or b ∈ v iff a+ b ∈ v iff v ∈ U(a+ b). (The only interesting step is the inference

that a ∈ v or b ∈ v iff a+ b ∈ v, which follows from the proprieties of ultrafilters.)

• −Ua = U(−a) since for any ultrafilter v in A, v ∈ −Ua iff a /∈ v iff −a ∈ v iff

v ∈ U(−a). (The only interesting step is the inference that a /∈ v iff −a ∈ v, which

follows from the proprieties of ultrafilters.)

• lNA
(Ua1, . . . , Uan) = Ul(a1, . . . , an) since the following (where u is an ultrafilter in A)

are equivalent.

u ∈ lNA
(Ua1, . . . , Uan)

〈Ua1, . . . , Uan〉 ∈ NA(u) (Definition of lNA
)

lNA
(a1, . . . , an) ∈ u (Definition of NA)

u ∈ Ul(a1, . . . , an) (Definition of Ul(a1, . . . , an))

A[ is thus a frame. We next show that it is descriptive, i.e. conditions (D1) and (D2) of

descriptive frames are satisfied (see Definition 7.1.7).

To show (D1), i.e. AAu = AAv =⇒ u = v, we suppose u 6= v and demonstrate AAu 6=
AAv. Note that AAu and AAv consists of all the elements of AA containing u and v,

respectively, and Ua consists of all ultrafilters containing a. Therefore:

AAu = {Ua | u ∈ Ua} = {Ua | a ∈ u};
AAv = {Ua | v ∈ Ua} = {Ua | a ∈ v}.

By supposition u 6= v. Thus there exists an a ∈ A such that either (i) both a ∈ u and a /∈ v
or (ii) both a /∈ u and a ∈ v. If (i), then Ua ∈ AAu but Ua /∈ AAv, and so AAu 6= AAv.

Similarly if (ii), we have AAu 6= AAv. In other words, we have shown that A[ satisfies (D1).

(D2) stipulates that every ultrafilter µ in 〈AA,∪,−, ∅, lNA
〉 is of the form AAu where u

is an ultrafilter in A = 〈A,+,−, 0, l〉. (Note that µ is a maximal collection of Ua’s, where

Ua consists of ultrafilters in A containing a.) To demonstrate (D2), it suffices to show that

the set

v = {a ∈ A | Ua ∈ µ}
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is an ultrafilter in A, because if it is then AAv = {Ub | v ∈ Ub} is simply µ. (To see this,

assume v ∈ Uf A, then Ua ∈ µ iff a ∈ v iff v ∈ Ua iff Ua ∈ AAv). Thus what remains to

be shown is that v is an ultrafilter in A. Our argument is that v is non-empty, closed under

Boolean meet, and upward closed (hence v is a filter) and for each a ∈ A, exactly one of a

and −a is in v (hence v is an ultrafilter). Details are as follows:

• 1 ∈ v since U1 = Uf A ∈ µ.

• Suppose a, b ∈ v, i.e. Ua,Ub ∈ µ. Then Ua ∩ Ub ∈ µ. But Ua ∩ Ub = U(a · b). Thus

a · b ∈ v.

• Suppose a ∈ v and a ≤ b. From a ∈ v, we have Ua ∈ µ. From a ≤ b, we have Ua ⊆ Ub
(since if u ∈ Ua or equivalently a ∈ u then b ∈ u or equivalently u ∈ Ub). Thus,

Ub ∈ µ, from which it follows that b ∈ v.

• Suppose it is false that exactly one of a and −a is in v, i.e. either (i) both a and

−a are in v or (ii) neither a nor −a is in v. If (i) then Ua,U(−a) ∈ µ, then Ua ∩
U(−a) = U(a · −a) = U0 = ∅ ∈ µ, which is absurd. If (ii) then Ua,U(−a) /∈ µ, then

−Ua,−U(−a) ∈ µ, then U(−a), U(a) ∈ µ, which contradicts the earlier derivation

that Ua,U(−a) /∈ µ. Hence, by reductio, exactly one of a and −a is in v.

This concludes the proof that A[ is a descriptive frame. a

Theorem 7.3.3. For any homomorphism f from modal algebra A1 = 〈A1,+,−, 0, l〉 to

modal algebra A2 = 〈A2,+,−, 0, l〉, f [ is a frame morphism from A2
[ = 〈Uf A2, NA2 , AA2〉

to A1
[ = 〈Uf A1, NA1 , AA1〉.

Proof. We show that f [ satisfies conditions (N1) and (A1) of frame morphisms (see Defini-

tion 7.1.3).

For (N1), we note that the following are equivalent, where v ∈ Uf A2 and a1, . . . , an ∈ A1.

〈f [−1
[Ua1], . . . , f [

−1
[Uan]〉 ∈ NA2(v)

〈U(f(a1)), . . . , U(f(an))〉 ∈ NA2(v)

l2(f(a1), . . . , f(an)) ∈ v

f(l1(a1, . . . , an)) ∈ v

l1(a1, . . . , an) ∈ f−1[v]

l1(a1, . . . , an) ∈ f [(v)

〈Ua1, . . . , Uan〉 ∈ NA1(f [(v))
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For (A1), what needs to be shown is f [
−1

[Ua] ∈ AA2 for an arbitrary a ∈ A1. It

suffices to establish that f [
−1

[Ua] = U(f(a)) since U(f(a)) is a member of AA2 . Consider

a v ∈ Uf A2. The following are equivalent.

v ∈ f [
−1

[Ua]

f [(v) ∈ Ua

f−1[v] ∈ Ua

a ∈ f−1[v]

f(a) ∈ v

v ∈ U(f(a))

Note that a ∈ f−1[v] implies f−1[v] ∈ Ua because f−1[v] is an ultrafilter in A1 (given that

v is an ultrafilter in A2 and f is a homomorphism from A1 to A2). a

Theorem 7.3.4. The function [ preserves both composition and identity, i.e.

(1) (f2 ◦ f1)[ = f1
[ ◦ f2

[, for any homomorphisms f1 : A1 → A2 and f2 : A2 → A3, and

(2) idA
[ = idA[ for every modal algebra A.

Proof. The proof is the same as that for Theorem 6.4.5. a

Theorem 7.3.5. The function [ for modal algebras and homomorphisms is a contravariant

functor from the category MA to the category DNF.

Proof. The theorem follows immediately from Theorems 7.3.2, 7.3.3 and 7.3.4. a

7.4 Dual equivalence between DNF and MA

In the previous two sections, we have established ] and [ to be contravariant functors from

DNF to MA, and from MA to DNF, respectively. We now show that they are also equivalences

between the two categories.

Theorem 7.4.1. The categories DNF and MA are dually equivalent.

Proof. We demonstrate the following regarding contravariant functor ] (from DNF and MA)

and contravariant functor [ (from MA to DNF).
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• The composite functor [ ◦ ] is naturally isomorphic to the identity functor on DNF

(Theorem 7.4.4).

• The composite functor ] ◦ [ is naturally isomorphic to the identity functor on MA

(Theorem 7.4.7).

Further details of the proof are given in Section 7.4.1 and 7.4.2. a

As in duality between DRF and NMA, the basic idea is the following.

• Every descriptive frame F = 〈W,N,A〉 is isomorphic to F]
[ (the ultrafilter frame of

the complex algebra of F) under the map x 7→ Ax.

• Every modal algebra A = 〈A,+,−, 0, l〉 is isomorphic to A[] (the complex algebra of

the ultrafilter frame of A) under the map a 7→ Ua.

7.4.1 Natural isomorphism between IdDNF and [ ◦ ]

Throughout this section, F, F] and F]
[ are as follows.

• F = 〈W,N,A〉 is a descriptive frame, i.e. frames satisfying (D1) and (D2). (See

Definition 7.1.7.)

• F] = 〈A,∪,−, ∅, lN 〉 is the normal modal algebra we get from A by ]. Recall that lN
is the n-ary operation on A defined, for every a1, . . . , an ∈ A, by

lN (a1, . . . , an) = {x ∈W | 〈a1, . . . , an〉 ∈ N(x)}.

• F]
[ = 〈Uf F], NF] , AF]〉 is the ultrafilter frame we get from F] by [. Note that

– Uf F] is the collection of all ultrafilters in F];

– NF](u) = {〈Ua1, . . . , Uan〉 | lN (a1, . . . , an) ∈ u}, for every u ∈ Uf F];

– AF] = {Ua | a ∈ A} where Ua is the set of ultrafilters in F] containing a.

We let η be the function that assigns to each descriptive frame F the map ηF : W → Uf F]

defined, for every x ∈W , by

ηF(x) = Ax.

The map ηF is well defined since every Ax is an ultrafilter in F]. See (2) of Remark 6.2.8.
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Theorem 7.4.2. ηF : W → Uf F] is a frame morphism from F to F]
[.

Proof. We show that ηF satisfies (N1) and (A1) of Definition 7.1.3.

(N1) stipulates that for any x ∈W , a1, . . . , an ∈ A,

〈ηF
−1[Ua1], . . . , ηF

−1[Uan]〉 ∈ N(x) ⇐⇒ 〈Ua1, . . . , Uan〉 ∈ NF](ηF(x)),

which is equivalent to

〈a1, . . . , an〉 ∈ N(x) ⇐⇒ 〈Ua1, . . . , Uan〉 ∈ NF](Ax),

since ηF(x) = Ax and, for every i from 1 to n, ηF
−1[Uai] = ai. (To see the latter, con-

sider arbitrary x ∈ W , then x ∈ ηF
−1[Uai] iff Ax ∈ Uai iff ai ∈ Ax iff x ∈ ai.) But

〈Ua1, . . . , Uan〉 ∈ NF](Ax) iff lN (a1, . . . , an) ∈ Ax iff x ∈ lN (a1, . . . , an) iff 〈a1, . . . , an〉 ∈
N(x). Thus ηF satisfies (N1).

(A1) requires that for every a ∈ A, ηF
−1[Ua] ∈ A. But this is obvious since we already

know that ηF
−1[Ua] = a. a

Theorem 7.4.3. η is a natural transformation from IdDNF to [ ◦ ].

Proof. We have proved in Theorem 7.4.2 that every component ηF of η is a frame morphism

from F to F]
[, i.e. from IdDNF(F) to ([◦])(F). It remains to show that the following holds for

any frame morphism f from F2 = 〈W2, N2, A2〉 to F2 = 〈W2, N2, A2〉 (both are descriptive

frames),

f ]
[ ◦ ηF1 = ηF2 ◦ f.

In other words, what needs to be shown is that the following diagram commutes.

F1

f

��
F2

F1

ηF1 //

f

��

F1
][

f][

��
F2 ηF2

//
F2

][

The proof is the same as that for descriptive relational frame, and is omitted here. a

Theorem 7.4.4. η is a natural isomorphism from IdDNF to [ ◦ ]. Thus IdDNF is naturally

isomorphic to [ ◦ ].
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Proof. We already know that η is a natural transformation from IdDNF to [ ◦ ] (Theo-

rem 7.4.3). For η to be a natural isomorphism, we need to show that every component ηF

of it is a frame isomorphism from F to F]
[, i.e. there exists a frame morphism θF from F]

[

to F such that

θF ◦ ηF = idF;

ηF ◦ θF = id
F][ .

Let θF : Uf F] →W be defined as follows: for every u ∈ Uf F]

θF(u) = x, where u = Ax.

Note that θF is well-defined since

• by (D2) every ultrafilter u in F] is of the form Ax for some x ∈W and so is assigned

some member of W ;

• by (D1) every ultrafilter u in F] is assigned at most one member of W (for if u = Ax

and u = Ay, then x = y).

Moreover θF as defined earlier is a frame morphism from F]
[ to F because it satisfies

(N1) and (A1) of Definition 7.1.3. The reasons are as follows.

• (N1) stipulates that for every Ax ∈ Uf F], a1, . . . , an ∈ A,

〈θF
−1[a1], . . . , θF

−1[an]〉 ∈ NF](Ax) ⇐⇒ 〈a1, . . . , an〉 ∈ N(θF(Ax)),

which is equivalent to

〈Ua1, . . . , Uan〉 ∈ NF](Ax) ⇐⇒ 〈a1, . . . , an〉 ∈ N(x),

since for every i from 1 to n,

θF
−1[ai] = {Ax ∈ Uf F] | x ∈ ai}

= {Ax ∈ Uf F] | ai ∈ Ax}

= Uai.

But 〈Ua1, . . . , Uan〉 ∈ NF](Ax) iff lN (a1, . . . , an) ∈ Ax iff x ∈ lN (a1, . . . , an) iff

〈a1, . . . , an〉 ∈ N(x). Thus ηF satisfies (N1).
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• (A1) requires that for every a ∈ A, θF
−1[a] ∈ AF] . But this is obvious since we already

know that θF
−1[a] = Ua.

Finally for any x ∈W and u = Ax ∈ Uf F],

(θF ◦ ηF)(x) = θF(ηF(x)) = θF(Ax) = x;

(ηF ◦ θF)(Ax) = ηF(θF(Ax)) = ηF(x) = Ax.

Thus, both θF ◦ ηF = idF and ηF ◦ θF = id
F][ . a

7.4.2 Natural isomorphism between IdMA and ] ◦ [

Throughout this section, A, A[ and A[] are as follows.

• A = 〈A,+,−, 0, l〉 is a normal modal algebra. (See Definition 6.1.5.)

• A[ = 〈Uf A, RA, AA〉 is the descriptive frame we get from A under [ as defined in

Definition 6.4.1. Recall that:

– Uf A is the collection of all ultrafilters in A;

– RAu0u1 · · ·un iff

∀a1, . . . , an ∈ A, l(a1, . . . , an) ∈ u0 =⇒ ∃i ≥ 1 : ai ∈ ui;

– AA = {Ua |a ∈ A} where Ua consists of all ultrafilters in A containing a.

• A[] = 〈AA,∪,−, ∅, lRA
〉 is the normal modal algebra we get from A[ under ] as defined

in Definition 6.3.1. Note that lRA
(Ua1, . . . , Uan), which consists of ultrafilters u0 in

A satisfying the condition

∀u1, . . . , un ∈ Uf A, RAu0u1 · · ·un =⇒ ∃i ≥ 1 : ui ∈ ai,

is simply U(l(a1, . . . , an)) (see the proof of Theorem 6.4.2).

We let η be the function that assigns to each A the map ηA : A→ AA defined, for every

a ∈ A, by

ηA(a) = Ua.

Theorem 7.4.5. ηA : A→ AA is a homomorphism from A to A[].

Proof. We show that ηA preserves the algebraic operations, i.e.
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ηA(a+ b) = ηA(a) ∪ ηA(b);

ηA(−a) = −ηA(a);

ηA(0) = ∅;
ηA(l(a1, . . . , an)) = lRA

(ηA(a1), . . . , ηA(an)).

But the above is a consequence of the following, which we have already demonstrated

when proving that the set AA is closed under ∪, −, ∅ and lRA
(see the proof of Theo-

rem 6.4.2):

U(a+ b) = U(a) ∪ U(b);

U(−a) = −U(a);

U(0) = ∅;
U(l(a1, . . . , an)) = lRA

(U(a1), . . . , U(an)).

Thus ηA is a homomorphism from A to A[]. a

Theorem 7.4.6. η is a natural transformation from IdMA to ] ◦ [.

Proof. We have proved in Theorem 6.5.5 that every component ηA of η is a homomorphism

from A to A[], i.e. from IdMA(A) to (] ◦ [)(A). It remains to show that the following holds

for any homomorphism f from A1 = 〈A1,+,−, 0, l〉 to A = 〈A,+,−, 0, l〉2 (both are normal

modal algebras),

f [
] ◦ ηA1 = ηA2 ◦ f.

In other words, what needs to be shown is that the following diagram commutes.

A1

f
��

A2

A1

ηA1 //

f

��

A1
[]

f[]

��
A2 ηA2

//
A2

[]

We recall here that f [ : Uf A2 → Uf A1 and f [
]

: AA1 → AA2 are defined by:

∀v ∈ Uf A2, f
[(v) = f−1[v];

∀a ∈ A1, f
[](Ua) = f [

−1
[Ua].
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Observe that f [
] ◦ ηA1 = ηA2 ◦ f iff for any a ∈ A1,

(f [
] ◦ ηA1)(a) = (ηA2 ◦ f)(a)

or equivalently

f [
]
(U1a) = U2(f(x))

where U1a consists of all ultrafilters in A1 containing a, and U2(f(a)) consists of all ultra-

filters in A2 containing f(a). To show the above identity, we consider arbitrary v ∈ Uf A2.

The following are equivalent:

v ∈ f [](U1a) ⇐⇒ v ∈ U2(f(a));

v ∈ f [−1
[U1a] ⇐⇒ f(a) ∈ v;

f [(v) ∈ U1a ⇐⇒ f(a) ∈ v;

f−1[v] ∈ U1a ⇐⇒ f(a) ∈ v;

a ∈ f−1[v] ⇐⇒ f(a) ∈ v;

f(a) ∈ v ⇐⇒ f(a) ∈ v.

But the last statement is obviously true. Thus we have shown that f [
]
(U1a) = U2(f(a))

for any a ∈ A1, from which it follows that f [
] ◦ ηA1 = ηA2 ◦ f , as argued above. a

Theorem 7.4.7. η is a natural isomorphism from IdMA to ] ◦ [. Thus IdMA is naturally

isomorphic to ] ◦ [.

Proof. We already know that η is a natural transformation from IdMA to ]◦[ (Theorem 7.4.6).

For η to be a natural isomorphism, every component ηA of it must be a isomorphism. In

other words, we need to show that for every homomorphism ηA from A = 〈A,+,−, 0, l〉 to

A[], there exists a homomorphism θA from A[] to A such that

θA ◦ ηA = idA;

ηA ◦ θA = id
A[] .

Let θA : AA → A be defined as follows: for every Ua ∈ AA,

θA(Ua) = a.

θA as defined above is a homomorphism from A[] to A iff the following hold:
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θA(Ua ∪ Ub) = θA(Ua) + θA(Ub),

θA(−Ua) = −θA(Ua),

θA(∅) = 0,

θA(lRA
(Ua1, . . . , Uan)) = l(θA(Ua1), . . . , θA(Uan)),

or equivalently the following hold:

θA(U(a+ b)) = θA(Ua) + θA(Ub),

θA(U(−a)) = −θA(Ua),

θA(0) = 0,

θA(U(l(a1, . . . , an))) = l(θA(Ua1), . . . , θA(Uan)).

But the last set of identities are obvious, given our definition of θA.

Finally for any a ∈ A and Ua ∈ AA, we have

(θA ◦ ηA)(a) = θA(ηA(a)) = θA(Aa) = a;

(ηA ◦ θA)(Ua) = ηA(θA(Ua)) = ηA(a) = Ua.

Thus, both θA ◦ ηA = idA and ηF ◦ θA = id
A][ . a



Chapter 8

Translation in Modal Logic

This chapter explores translation between various types of modal logic: between monadic

and polyadic systems, and between normal and non-normal systems. We start with a

discussion of the notions of translation schemes and translational equivalence.

8.1 Translation and translational equivalence

Following Pelletier and Urquhart (2003), we adopt the following definitions of translations

between languages and translational equivalence between systems.

Definition 8.1.1 (Translation schemes and translations). A translation scheme t from

object language L to object language L′ has the following form (where α1, . . . , αn are pa-

rameters or place-holders in formulas):

• Every atom pi of L is assigned a formula Ai of L′;

• For any n-ary connective f of L, the formula f(α1, . . . , αn) is assigned a formula Bf
of L′ containing only parameters from α1, . . . , αn.

The translation determined by a translation scheme t is the mapping t from formulas of

L to formulas of L′ as given by the following recursive definition:

(1) If pi is an atom of L, then pi
t is Ai.

(2) If f is an n-ary connective of L, then (f(A1, . . . , An))t is Bf [α1/A1
t, . . . , αn/An

t],

which is the formula resulting from substituting A1
t for every occurrence of α1 in Bf

(and similarly for A2
t etc.). a

131
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Note that the translation schemes (and the corresponding translations) we considered in

this chapter assign each atom to itself, and assign each formula constructed from a truth-

functional connective to the formula itself. Thus in stating the translation schemes, we

stipulate only the modal case.

Definition 8.1.2 (Sound and exact translations). Let S and S′ be systems in the languages

L and L′, and α a formula in L. A translation t from L to L′ is sound if αt is a theorem

of S′ whenever α is a theorem of S. The translation is exact if αt is a theorem of S′ exactly

when α is a theorem of S. a

Definition 8.1.3 (Translational equivalence). Two systems S and S′ (in the languages L

and L′ respectively) are translationally equivalent if there are translations t from L to L′

and t′ from L′ to L such that

(1) Both t and t′ are sound;

(2) For any formula α in L, (αt)t
′ ↔ α is a theorem of S;

(3) For any formula α in L′, (αt
′
)t ↔ α is a theorem of S′. a

8.2 Monadic fragments of polyadic systems

8.2.1 Diagonalization

Consider the following translation scheme from the monadic modal language L1 to the

n-adic modal language Ln:

�α 7−→ �(α, . . . , α)

♦α 7−→ ♦(α, . . . , α)

The unary � and ♦ can be described as the diagonalization of the n-ary � and ♦: if we

consider the set of all n-tuples of formulas as an n-dimensional matrix, then the subset of

tuples whose coordinates are the same formula can be viewed as a diagonal across such

a matrix. Hence we call the translation scheme dn (for n-diagonalization). Similarly the

unary � and ♦ are called the n-diagonal � and ♦, respectively. (We do not mention n if it

is clear what n is.)
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Given the translation scheme dn and the usual interpretation of the n-adic modal lan-

guage, it can readily be seen that the interpretation of the diagonal � and ♦ in the class of

(n+ 1)-ary relational frames is as follows:

• M, x |= �α iff ∀y1, . . . , yn, Rxy1 · · · yn =⇒ ∃i(1 ≤ i ≤ n) : M, yi |= α.

• M, x |= ♦α iff ∃y1, . . . , yn : Rxy1 · · · yn & ∀i(1 ≤ i ≤ n), M, yi |= α.

We call the above idiom for the monadic modal language “the n-diagonal idiom”. (Recall

that an idiom is a class of frames with a truth-theory.) The set of monadic formulas valid

in the n-diagonal idiom, which we refer to as the n-diagonal logic, is finitely axiomatizable.

For details, see Jennings and Schotch (1984), Apostoli and Brown (1995), and Nicholson

et al. (2000).

Definition 8.2.1 (n-diagonal logics). Kd
n has PL, [RM], [RN], and the following axiom.

[∧d
n] �p1 ∧ · · · ∧�pn+1 → �

n+1∨
i=1

n+1∨
j=i+1

(pi ∧ pj) a

The characteristic axioms of the first two members of the series of diagonal logics are as

follows:

[∧d
1 ] �p ∧�q → �(p ∧ q)

[∧d
2 ] �p ∧�q ∧�r → �((p ∧ q) ∨ (p ∧ r) ∨ (q ∧ r))

Note that the axiom [∧d
1 ] is the familiar [C], and the logic Kd

1 is just K. The n-diagonal

logic Kd
n (where n > 1) can be described as a “weakly aggregative modal logic” since its

aggregation principle [∧d
n] is a weakening of the following principle of complete aggregation,

which is a theorem of K.

�p1 ∧ · · · ∧�pn → �(p1 ∧ · · · ∧ pn)

Kd
n can be extended by adding the familiar monadic formulas [C], [P], [T], [B], [4], and

[5], and the resulting systems are called, respectively, Kd
nC, Kd

nP, Kd
nT, Kd

nB, Kd
n4, and Kd

n5.

Note that Kd
nC is just Kd

1 or K, since [∧d
n] is derivable from [∧d

1 ] or [C] (in the presence of

PL and [RM]. In the following, we list correspondence and determination results for these

formulas and logics (in the n-diagonal idiom).
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Theorem 8.2.2. The following monadic modal formulas correspond to the indicated first-

order conditions on (n+ 1)-ary relations.

[C] : (∀x)(∀~y)(Rx~y → (∃yi ∈ ~y)Rxyi · · · yi) (D-binarity)

[P] : (∀x)(∃~y)Rx~y (Seriality)

[T] : (∀x)Rxx · · ·x (Reflexivity)

[B] : (∀x)(∀~y)(Rx~y → (∃yi ∈ ~y)Ryix · · ·x) (D-symmetry)

[4] : (∀x)(∀~y, ~z1, . . . , ~zn)(Rx~y ∧Ry1~z1 ∧ · · · ∧Ryn~zn →

(∃~w ⊆ ~z1 ∪ · · · ∪ ~zn)Rx~w) (D-transitivity)

[5] : (∀x)(∀~y, ~z)(Rx~y ∧Rx~z → (∃yi ∈ ~y)Ryi~z) (D-euclideanness)

Note: In the condition of d-transitivity, ∃~w ⊆ ~z1 ∪ · · · ∪ ~zn means the following: there exists

a ~w such that every wk ∈ ~w belongs to the set of zi.j’s where 1 ≤ i, j ≤ n.

Observe that the frame properties corresponding to [B], [4], and [5] are weaker than

those corresponding to [Bn], [4n], and [5n], which is expected since the former formulas are

derivable from the latter ones. We distinguish the weaker properties from the stronger ones

by prefixing it with the letter D or d (for diagonal).

Theorem 8.2.3. The following n-diagonal logics are determined by the indicated classes of

(n+ 1)-ary relational frames.

Kd
n : All frames

Kd
nC : D-binary frames

Kd
nP : Serial frames

Kd
nT : Reflexive frames

Kd
nB : D-symmetric frames

Kd
n4 : D-transitive frames

Kd
n5 : D-euclidean frames

Theorem 8.2.4. The monadic n-diagonal system Kd
n is exactly translatable into the n-adic

normal system Kn under the translation dn, i.e. for every L1-formula α,

`Kd
n
α ⇐⇒ `Kn α

dn .
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8.2.2 Furcation

In this section, we introduce another translation scheme from the monadic modal language

L1 to the n-adic modal language Ln.

�α 7−→ �(α,⊥n−1) ∨�(⊥, α,⊥n−2) ∨ · · · ∨�(⊥n−1, α)

♦α 7−→ ♦(α,>n−1) ∧ ♦(>, α,>n−2) ∧ · · · ∧ ♦(>n−1, α)

The above can be written in a more condensed but less readable form.

�α 7−→
n∨
i=1

�(⊥i−1, α,⊥n−i)

♦α 7−→
n∧
i=1

♦(>i−1, α,>n−i)

For illustration, we present the case for the dyadic modal language.

�α 7−→ �(α,⊥) ∨�(⊥, α)

♦α 7−→ ♦(α,>) ∧ ♦(>, α)

The translation “splits” the unary � into n n-ary �’s. Hence we call it n-furcation

(forking into n branches). If n is two, we have a case of bifurcation. We denote the

translation by fn. As in the case of diagonalization, we call the unary � and ♦ n-furcate

modal connectives. If the value of n is clear in the context, we will not mention it.

Truth conditions for the n-furcate � and ♦ in (n + 1)-ary relational frames can easily

be derived as follows:

• M, x |= �α iff ∃i(1 ≤ i ≤ n) : ∀~y, Rx~y =⇒ M, yi |= α;

• M, x |= ♦α iff ∀i(1 ≤ i ≤ n), ∃~y : Rx~y & M, yi |= α.

We call the resulting idiom the n-furcate idiom. Note that the above interpretation of the

unary � and ♦ effectively treats an (n+1)-ary relation R as consisting of n binary relations.

This is made more succinct by first defining the set of i-th relata of x under R:

Ri(x) = {y|∃~y : Rx~y & y = yi},

then rewriting the truth conditions for the unary � and ♦:

• M, x |= �α ⇐⇒ ∃i(1 ≤ i ≤ n) : Ri(x) ⊆ ‖α‖M;
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• M, x |= ♦α ⇐⇒ ∀i(1 ≤ i ≤ n), Ri(x) ∪ ‖α‖M 6= ∅.

The case of bifurcation is given below for illustration:

• M, x |= �α iff R1(x) ⊆ ‖α‖M or R2(x) ⊆ ‖α‖M;

• M, x |= ♦α iff R1(x) ∪ ‖α‖M 6= ∅ or R2(x) ∪ ‖α‖M 6= ∅,

where R1(x) = {y|∃z : Rxyz} and R2(x) = {z|∃y : Rxyz}.
In fact we could have translated the monadic (uni)modal language L1 to a multi-modal

language consisting of unary �1, �2, . . . , �n (call the language L1,...,1). The translation

scheme would look like the following.

�α 7−→ �1α ∨�2α ∨ · · · ∨�nα

♦α 7−→ ♦1α ∧ ♦2α ∧ · · · ∧ ♦nα

Truth conditions for the unary � and ♦ in a multi-relational model M = 〈U,R1, . . . , Rn, V 〉
would be:

• M, x |= �α iff ∃i(1 ≤ i ≤ n) : ∀y, Rixy =⇒ M, y |= α;

• M, x |= ♦α iff ∀i(1 ≤ i ≤ n), ∃y : Rixy & M, y |= α.

While the earlier approach, i.e. translating L1 to Ln, is the official one adopted here, it is

straightforward to see what results would obtain if we were to follow the second approach,

i.e. translating L1 to L1,...,1.

The set of monadic formulas valid in the n-furcate idiom is axiomatized by the following

system denoted Kf
n.

Definition 8.2.5 (n-furcate logics). Kf
n has PL, [RM], [RN], and the following axiom.

[∧f
n] �p1 ∧ · · · ∧�pn →

n+1∨
i=1

n+1∨
j=i+1

�(pi ∧ pj) a

For illustration, we list the characteristic axioms Kf
1 and Kf

2:

[∧f
1] �p ∧�q → �(p ∧ q)

[∧f
2] �p ∧�q ∧�r → �(p ∧ q) ∨�(p ∧ r) ∨�(q ∧ r)
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Note that the axiom [∧f
1] is the familiar [C], and the system Kf

1 is just K. Like Kd
n, the

system Kf
n (where n > 1) can be described as a “weakly aggregative modal logic” since its

aggregation principle [∧f
n] is a weakening of the following principle of complete aggregation,

which is a theorem of K.

�p1 ∧ · · · ∧�pn → �(p1 ∧ · · · ∧ pn)

Any system that provides Kf
n is called an n-furcate system or logic. Thus Kf

n is the

smallest n-furcate system. It can be extended by adding the familiar monadic formulas [C],

[P], [T], [B], [4], and [5], and the resulting systems are called, respectively, Kf
nC, Kf

nP, Kf
nT,

Kf
nB, Kf

n4, and Kf
n5. Note that Kf

nC is just Kf
1 or K, since [∧f

n] is derivable from [∧f
1] or [C]

(in the presence of PL and [RM]. In the following, we list correspondence and determination

results for these formulas and systems (in the n-furcate idiom).

Theorem 8.2.6. The following monadic modal formulas correspond to the indicated first-

order conditions on (n+ 1)-ary relations R.

[C] : ∀x,∀i,∀j, Ri(x) ⊆ Rj(x) or Rj(x) ⊆ Ri(x) (F-binarity)

[P] : ∀x,∀i, Ri(x) 6= ∅ (Seriality)

[T] : ∀x, x ∈ Ri(x) ∩ · · · ∩Rn(x) (F-reflexivity)

[B] : ∀x,∃i : ∀y ∈ Ri(x), x ∈ R1(y) ∩ · · · ∩Rn(y) (F-symmetry)

[4] : ∀x,∀i,∃j : ∀y ∈ Rj(x),∃k : Rk(y) ⊆ Ri(x) (F-transitivity)

[5] : ∀x,∀~y, ~z ∈ R1(x)× · · · ×Rn(x), ∃y ∈ ~y : ∀i,∃z ∈ ~z : z ∈ Ri(y)

(F-euclideanness)

Theorem 8.2.7. The following n-furcate systems are determined by the indicated classes

of (n+ 1)-ary relational frames.

Kf
n : All frames

Kf
nC : F-binary frames

Kf
nP : Serial frames

Kf
nT : F-reflexive frames

Kf
nB : F-symmetric frames

Kf
n4 : F-transitive frames

Kf
n5 : F-euclidean frames
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Theorem 8.2.8. The monadic n-furcate system Kf
n is exactly translatable into the n-adic

normal system Kn under the translation fn, i.e. for every L1-formula α,

`Kf
n
α ⇐⇒ `Kn α

fn

8.3 Equivalence between non-normal systems and normal sys-

tems

In this section we consider translation between the n-adic regular system RnPn and the

n-adic normal system Kn:

RnPn : PL, [En], [Mn], [Cn], [Pn]

Kn : PL, [RMn], [RNn], [Cn]

Regular systems are defined in Section 5.2 and normal systems are defined in Section 2.4.

We show that the following translation scheme, which we call t1 in this section, is a

sound translation of RnPn to Kn:

�1(α1, . . . , αn) 7−→ �2(α1, . . . , αn) ∧ ♦2>n

where �1 is the modal operator of RnPn and �2 is the modal operator of Kn. On the other

hand, Kn can be soundly translated to RnPn by the following translation scheme called t2

here.

�2(α1, . . . , αn) 7−→ �1(α1, . . . , αn) ∨ ♦1⊥n

Note that t1 and t2 map formulas of Ln to formulas of Ln. Moreover both translations

preserve propositional variables and truth-functional connectives. As we shall see, RnPn
and Kn are equivalent under the above translations. We proceed semantically, making use

of the following determination results:

• RnPn is sound and complete with respect to the class of serial non-normal (n+ 1)-ary

relational frames. Non-normal semantics is discussed in Section 1.5. We shall not

prove here the determination of RnPn by the class of serial non-normal (n + 1)-ary

relational frames. A determination proof for the monadic RP can be found in Leung

(2003). Generalization of the proof to the n-adic case is straightforward.



CHAPTER 8. TRANSLATION IN MODAL LOGIC 139

• Kn is sound and complete with respect to the class of (n + 1)-ary relational frames

respectively. (Refer to Section 2.5 for the determination of Kn.)

Theorem 8.3.1. Every (n+ 1)-ary relational model M = 〈U,R, V 〉 is simulated by a serial

non-normal (n+ 1)-ary relational model M′ = 〈U ′, Q′, R′, V ′〉 with respect to the translation

t1. In other words, there is a one-to-one correspondence between the points of U and that

of U ′ such that the following holds for every Ln-formula α:

∀x ∈ U, M, x |= αt1 ⇐⇒ M′, x′ |= α

where x′ is the point in U ′ corresponding to x.

Proof. Given a relational model M = 〈U,R, V 〉, we define its simulation model M′ =

〈U ′, Q′, R′, V ′〉 by letting U ′ = U , R′ = R, V ′ = V and

Q′ = U − {x ∈ U | ∃~y ∈ Un : Rx~y}.

Note that non-normal points of M′ are precisely those points of U that are not related to any

tuple under R, and the normal points of M′ are precisely those points of U that are related to

some tuple under R. Clearly M′ is a non-normal relational model since R′ ⊆ (U ′−Q′)×U ′n.

Moreover R′ is serial since every normal point is related to some tuple under R′.

We show that if each point x of U is mapped to itself, then for every Ln-formula α,

∀x ∈ U, M, x |= αt1 ⇐⇒ M′, x |= α.

The proof is by induction on α. We show the modal case only, i.e.

∀x ∈ U, M, x |= (�1(α1, . . . , αn))t1 ⇐⇒ M′, x |= �1(α1, . . . , αn),

which is equivalent to

∀x ∈ U, M, x |= �2(α1
t1 , . . . , αn

t1) ∧ ♦2>n ⇐⇒ M′, x |= �1(α1, . . . , αn).

In the following, let x be a point of U .n

For ( =⇒ ). Assume M, x |= �2(α1
t1 , . . . , αn

t1) ∧ ♦2>n. Then x ∈ U ′ − Q′ since x is

R-related to some tuple. Consider arbitrary ~y such that R′x~y. Then Rx~y. Hence for some

i, M, yi |= αt1 and so by I.H. M′, yi |= αi. But ~y is arbitrary. Thus M′, x |= �1(α1, . . . , αn).

For (⇐=). Assume M′, x |= �1(α1, . . . , αn). Then x ∈ U ′ − Q′. Then x is R-related

to some tuple, whence M, x |= ♦2>n. Moreover M, x |= �2(α1
t1 , . . . , αn

t1) because of

the following. Suppose Rx~y. Then R′x~y. Hence for some i, M′, yi |= αi and so by I.H.

M, yi |= αt1i . a
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Theorem 8.3.2. Every serial non-normal (n+ 1)-ary relational model M = 〈U,Q,R, V 〉 is

simulated by an (n+1)-ary relational model M′ = 〈U ′, R′, V ′〉 with respect to the translation

t2. In other words, there is a one-to-one correspondence between the points of U and that

of U ′ such that the following holds for every formula Ln-formula α:

∀x ∈ U, M, x |= αt2 ⇐⇒ M′, x′ |= α

where x′ is the point in U ′ corresponding to x.

Proof. Given a serial non-normal relational model M = 〈U,Q,R, V 〉, we define its simulation

model M′ = 〈U ′, R′, V ′〉 by letting U ′ = U , R′ = R and V ′ = V . Clearly M′ is a relational

model.

We show that if each point x of U is mapped to itself, then for every Ln-formula α,

∀x ∈ U, M, x |= αt2 ⇐⇒ M′, x |= α.

The proof is by induction on α. We show the modal case only, i.e.

∀x ∈ U, M, x |= (�2(α1, . . . , αn))t2 ⇐⇒ M′, x |= �2(α1, . . . , αn),

which is equivalent to

∀x ∈ U, M, x |= �1(α1
t2 , . . . , αn

t2) ∨ ♦1⊥n ⇐⇒ M′, x |= �2(α1, . . . , αn).

In the following, let x be a point of U .

For ( =⇒ ), assume that M, x |= �1(α1
t2 , . . . , αn

t2) ∨ ♦1⊥n. Then either (i) M, x |=
�1(α1

t2 , . . . , αn
t2) or (ii) M, x |= ♦1⊥n.

• Suppose (i) is the case. Then x ∈ U −Q. Consider arbitrary ~y such that R′x~y. Then

Rx~y. Hence for some i, M, yi |= αi
t2 and so by I.H. M′, yi |= αi. But ~y is arbitrary.

Thus M′, x |= �2(α1, . . . , αn).

• Suppose (ii) is the case. Then x ∈ Q. Then x is not R′-related to any tuple. So

M, x |= �2(α1, . . . , αn) trivially.

In either case, we have M, x |= �2(α1, . . . , αn).

For (⇐=), assume M′, x |= �2(α1, . . . , αn). Either (i) x is R′-related to some tuple or

(ii) x is not R′-related to any tuple.



CHAPTER 8. TRANSLATION IN MODAL LOGIC 141

• If (i), then x ∈ U − Q. Consider arbitrary ~y such that Rx~y. Then R′x~y. Then

for some i, M′, yi |= αi and so by I.H. M, yi |= αi
t2 . Since ~y is arbitrary, we have

M, x |= �1(α1
t2 , . . . , αn

t2).

• If (ii), then x ∈ Q since R is serial. Then M, x |= ♦1⊥n trivially.

In either case, we have M, x |= �1(α1
t2 , . . . , αn

t2) ∨ ♦1⊥n. a

Theorem 8.3.3. Both of the translations t1 and t2 are sound, i.e. for every Ln-formula α,

(1) If `RnPn α, then `Kn α
t1.

(2) If `Kn α, then `RnPn α
t2.

Proof. For (1). Given the determination results for RnPn and Kn, it suffices to note that if

αt1 fails in a relational model, then α fails in a serial non-normal relational model according

to Theorem 8.3.1.

For (2). Given the determination results for RnPn and Kn, it suffices to note that if αt2

fails in a serial non-normal relational model, then α fails in a relational model according to

Theorem 8.3.2. a

Theorem 8.3.4. For any Ln-formula α, (αt1)t2 ↔ α is a theorem of RnPn.

Proof. Given that RnPn is determined by the class of serial non-normal (n+1)-ary relational

frames, it needs to be shown that for any Ln-formula α, αt1 t2 ↔ α is valid in the same class of

frames. In other words, we demonstrate that for any serial non-normal (n+1)-ary relational

model M = 〈U,Q,R, V 〉, the following holds for any Ln-formula α:

∀x ∈ U, M, x |= αt1
t2 ⇐⇒ M, x |= α.

The proof is by induction on α. Only the modal case of the induction step is of interest:

∀x ∈ U, M, x |= (�(β1, . . . , βn))t1 t2 ⇐⇒ M, x |= �(β1, . . . , βn).

Note that

(�(β1, . . . , βn))t1 t2 = (�(β1
t1 , . . . , βn

t1) ∧ ♦>n)t2

= (�(β1
t1 , . . . , βn

t1))t2 ∧ (¬�⊥n)t2

= (�(β1
t1 t2 , . . . , βn

t1 t2) ∨ ♦⊥n) ∧ (♦>n ∧�>n).
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In the following, let x be a point of U .

For ( =⇒ ). Assume M, x |= (�(β1, . . . , βn))t1 t2 . Then x ∈ U − Q since M, x |= �>n.

Consider arbitrary ~y such that Rx~y. But M, x |= �(β1
t1 t2 , . . . , βn

t1 t2) (since x ∈ U −Q and

so M, x 6|= ♦⊥n.) Thus for some i, M, yi |= βi
t1 t2 , whence by I.H. M, yi |= βi. Given that ~y

is arbitrary, we thus have M, x |= �(β1, . . . , βn).

For (⇐=). Assume M, x |= �(β1, . . . , βn). Then x ∈ U − Q. Trivially M, x |= �>n.

Since R is serial, M, x |= ♦>n. It remains to show that M, x |= �(β1
t1 t2 , . . . , βn

t1 t2). Con-

sider arbitrary ~y such that Rx~y. By assumption, there exists an i such that M, yi |= βi. Then

by I.H. M, yi |= βi
t1 t2 . Given that ~y is arbitrary, we thus have M, x |= �(β1

t1 t2 , . . . , βn
t1 t2),

as desired. a

Theorem 8.3.5. For any Ln-formula α, (αt2)t1 ↔ α is a theorem of Kn.

Proof. Given that Kn is determined by the class of (n + 1)-ary relational frames, it needs

to be shown that for any Ln-formula α, αt2 t1 ↔ α is valid in the same class of frames. In

other words, we demonstrate that for any (n + 1)-ary relational model M = 〈U,R, V 〉, the

following holds for any Ln-formula α:

∀x ∈ U, M, x |= αt2
t1 ⇐⇒ M, x |= α.

The proof is by induction on α. Only the modal case of the induction step is of interest:

∀x ∈ U, M, x |= (�(β1, . . . , βn))t2 t1 ⇐⇒ M, x |= �(β1, . . . , βn).

Note that

(�(β1, . . . , βn))t2 t1 = (�(β1
t2 , . . . , βn

t2) ∨ ♦⊥n)t1

= (�(β1
t2 , . . . , βn

t2))t1 ∨ (¬�>n)t1

= (�(β1
t2 t1 , . . . , βn

t2 t1) ∧ ♦>n) ∨ (♦⊥n ∨�⊥n).

In the following, let x be a point of U .

For ( =⇒ ). Assume M, x |= (�(β1, . . . , βn))t2 t1 . Since M, x 6|= ♦⊥n, we have either

(1) M, x |= �(β1
t2 t1 , . . . , βn

t2 t1) ∧ ♦>n, or

(2) M, x |= �⊥n.
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If (1), then M, x |= �(β1, . . . , βn) since, for any ~y such that Rx~y, we have, for some i,

M, yi |= βi
t2 t1 and so M, yi |= βi according to the I.H. If (2), then x is not related to any tuple

under R, then trivially M, x |= �(β1, . . . , βn). Thus, in either case, M, x |= �(β1, . . . , βn).

For (⇐=). Assume M, x |= �(α1, . . . , αn). Either (i) x is R-related to some tuple or (ii)

x is not R-related to any tuple. If (i), then M, x |= ♦>n and M, x |= �(β1
t2 t1 , . . . , βn

t2 t1).

(Note that the latter holds generally by virtue of the assumption and the I.H.) If (ii), then

trivially M, x |= �⊥n. Thus, in either case, M, x |= (�(β1, . . . , βn))t2 t1 . a

Theorem 8.3.6. RnPn and Kn are translationally equivalent under t1 and t2.

Proof. The theorem follows directly from Definition 8.1.3, Theorems 8.3.3, 8.3.4 and 8.3.5.

a

8.4 Equivalence between polyadic systems and monadic sys-

tems

The monadic system KP or equivalently KD (also called Standard Deontic Logic) is defined

in Section 3.1, and the n-adic system DR!n (also called the smallest system of strong deontic

residuation) is defined in Section 10.2.3. They are the following systems:

KP : PL, [RM], [RN], [C] [P]

DR!n : PL, [RMn], [RNn], [Cn], [Pn] [Re!n]

We show in this section that the following translation t1 of L1-formulas to Ln-formulas

is a sound translation of KP to DR!n

�α 7−→ �(α,⊥n−1).

Furthermore, the following translation tn of Ln-formulas to L1-formulas is a sound transla-

tion of DR!n to KP.

�(α1, α2, . . . , αn) 7−→ �(α1 ∨�(α2 ∨ · · · ∨�(αn−1 ∨�αn) · · · ))

For example, the translations t2 and t3 are as follows.

�(α1, α2) 7−→ �(α1 ∨�α2)

�(α1, α2, α3) 7−→ �(α1 ∨�(α2 ∨�α3))
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Finally, KP and DR!n are translationally equivalent under t1 and tn.

As before we proceed semantically, making use of the following determination results.

• KP is determined by the class of serial binary relational frames. (Refer to Section 3.1.)

• DR!n is determined by the class of serial and strongly semital (n + 1)-ary relational

frames. (Refer to Section 10.4.)

Theorem 8.4.1. Every serial and strongly semital (n + 1)-ary relational model M =

〈U,R, V 〉 is simulated by a serial binary relational model M′ = 〈U ′, R′, V ′〉 with respect

to the translation t1. In other words, there is a one-to-one correspondence between the

points of U and that of U ′ such that the following holds for every L1-formula α:

∀x ∈ U, M, x |= αt1 ⇐⇒ M′, x′ |= α

where x′ is the point in U ′ corresponding to x.

Proof. Given a serial and strongly semital (n + 1)-ary relational model M = 〈U,R, V 〉, we

define its simulation model M′ = 〈U ′, R′, V ′〉 by letting U ′ = U , V ′ = V , and R′ be as

follows: for any x0, x1 ∈ U ′,

R′x0x1 ⇐⇒ ∃x2, . . . , xn ∈ U : Rx0x1x2 · · ·xn.

Evidently M′ is a serial binary relational model.

We show that if each point x of U is mapped to itself, then for every L1-formula α,

∀x ∈ U, M, x |= αt1 ⇐⇒ M′, x |= α.

The proof is by induction on α. We show the modal case only, i.e.

∀x ∈ U, M, x |= (�α)t1 ⇐⇒ M′, x |= �α,

which is equivalent to

∀x ∈ U, M, x |= �(αt1 ,⊥n−1) ⇐⇒ M′, x |= �α.

In the following, let x be a point of U .

For ( =⇒ ). Assume M, x |= �(αt1 ,⊥n−1). Consider arbitrary y1 such that R′xy1. Then

Rxy1y2 · · · yn for some y2, . . . , yn. Then M, y1 |= αt1 and so by I.H. M′, y1 |= α. Since y1 is

arbitrary, we have M′, x |= �α.

For (⇐=). Assume M′, x |= �α. Consider arbitrary ~y such that Rx~y. Then R′xy1. Then

M′, y1 |= α and so by I.H. M, y1 |= αt1 . But ~y is arbitrary. Thus M, x |= �(αt1 ,⊥n−1). a
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Theorem 8.4.2. Every serial binary relational model M = 〈U,R, V 〉 is simulated by a

serial and strongly semital (n+ 1)-ary relational model M′ = 〈U ′, R′, V ′〉 with respect to the

translation tn. In other words, there is a one-to-one correspondence between the points of

U and that of U ′ such that the following holds for every Ln-formula α:

∀x ∈ U, M, x |= αtn ⇐⇒ M′, x′ |= α

where x′ is the point in U ′ corresponding to x.

Proof. Given a serial binary relational model M = 〈U,R, V 〉, we define its simulation model

M′ = 〈U ′, R′, V ′〉 by letting U ′ = U , V ′ = V , and R′ be as follows: for every x0, x1, . . . , xn

in U ′,

R′x0x1 · · ·xn ⇐⇒ x0Rx1 · · ·xn−1Rxn

where x0Rx1 · · ·xn−1Rxn stands for “Rx0x1, . . . , and Rxn−1xn.” Note that given R is

serial, R′ is both serial and strongly semital.

We show that if each point x of U is mapped to itself, then for every Ln-formula α,

∀x ∈ U, M, x |= αtn ⇐⇒ M′, x |= α.

The proof is by induction on α. We show the modal case only, i.e.

∀x ∈ U, M, x |= �(α1, . . . , αn)tn ⇐⇒ M′, x |= �(α1, . . . , αn),

which is equivalent to

∀x ∈ U, M, x |= �(α1
tn ∨�(α2

tn ∨ · · · ∨�(αn−1
tn ∨�αntn) · · · ))

⇐⇒ M′, x |= �(α1, . . . , αn).

For any x ∈ U , the following are equivalent.

M, x |= �(α1
tn ∨�(α2

tn ∨ · · · ∨�(αn−1
tn ∨�αntn) · · · )).

∀y1, . . . , yn, xRy1 . . . ynRyn =⇒ ∃i : M, yi |= αi
tn .

∀y1, . . . , yn, R
′xy1 · · · yn =⇒ ∃i : M′, yi |= αi.

M′, x |= �(α1, . . . , αn).

We thus have shown the modal case of the inductive step. a
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Theorem 8.4.3. Both of the translations t1 and t2 are sound. In other words:

(1) For every L1-formula α, if `KP α, then `DR!n α
t1.

(2) For every Ln-formula α, if `DR!n α, then `KP α
tn.

Proof. For (1). Given the determination results for KP and DR!n, it suffices to note that if

αt1 fails in a serial and strongly semital (n+ 1)-ary relational model, then α fails in a serial

binary relational model according to Theorem 8.4.1.

For (2). Given the determination results for KP and DR!n, it suffices to note that if

αtn fails in a serial binary relational model, then α fails in a serial and strongly semital

(n+ 1)-ary relational model according to Theorem 8.4.2. a

Theorem 8.4.4. For any L1-formula α, αt1 tn ↔ α is a theorem of KP.

Proof. Given that KP is determined by the class of serial binary relational frames, it needs

to be shown that for any L1-formula α, αt1 tn ↔ α is valid in the same class of frames. In

other words, we demonstrate that for any serial binary relational model M = 〈U,R, V 〉, the

following holds for any L1-formula α:

∀x ∈ U, M, x |= αt1
tn ⇐⇒ M, x |= α.

The proof is by induction on α. Only the modal case of the induction step is of interest:

∀x ∈ U, M, x |= (�β)t1 tn ⇐⇒ M, x |= �β.

Note that

(�β)t1 tn = (�(βt1 ,⊥n−1))tn

= �(βt1 tn ∨�(⊥ ∨ · · · ∨�(⊥ ∨�⊥) · · · )).

In the following, let x be a point of U .

For ( =⇒ ). Assume M, x |= (�β)t1 tn . Consider arbitrary y ∈ U such that Rxy. Since R

is serial, we have, for any point z of U , M, z 6|= �⊥, M, z 6|= �(⊥∨�⊥), and so on. Thus by

assumption M, y |= βt1
tn , whence by I.H. M, y |= β. But y is arbitrary. Thus M, x |= �β.

For (⇐=). Assume M, x |= �β. Consider arbitrary y ∈ U such that Rxy. Then by

assumption M, y |= β. Then by I.H. M, y |= βt1
tn , whence M, y |= βt1

tn ∨�(⊥∨· · ·∨�(⊥∨
�⊥) · · · ). Since y is arbitrary, we have M, x |= (�β)t1 tn . a
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Theorem 8.4.5. For any Ln-formula α, αtn t1 ↔ α is a theorem of DR!n.

Proof. Given that DR!n is determined by the class of serial and strongly semital (n+ 1)-ary

relational frames, it needs to be shown that for any Ln-formula α, αtn t1 ↔ α is valid in

the same class of frames. In other words, we demonstrate that for any serial and strongly

semital (n+ 1)-ary relational model M = 〈U,R, V 〉, the following holds for any Ln-formula

α:

∀x ∈ U, M, x |= αtn
t1 ⇐⇒ M, x |= α.

The proof is by induction on α. Only the modal case of the induction step is of interest:

∀x ∈ U, M, x |= (�(β1, . . . , βn))tn t1 ⇐⇒ M, x |= �(β1, . . . , βn).

Note that (�(β1, . . . , βn))tn t1 is the following:

(�(β1
tn ∨�(β2

tn ∨ · · · ∨�(βn−1
tn ∨�βntn) · · · )))t1 ;

�(β1
tn t1 ∨�(β2

tn t1 ∨ · · · ∨�(βn−1
tn t1 ∨�(βntn

t1 ,⊥n−1),⊥n−1) · · · ,⊥n−1),⊥n−1).

In the following, let x be a point of U .

For ( =⇒ ). We proceed by contraposition. Assume M, x 6|= �(β1, . . . , βn), i.e. M, x |=
♦(¬β1, . . . ,¬βn). Thus, there exist y1, . . . , yn such that Rxy1 · · · yn and for all i, M, yi |= ¬βi
or equivalently M, yi |= ¬βitn

t1 (by I.H.). Starting from i = n, we note that

M, yn−1 |= ♦(¬βntn
t1 ,>n−1)

since R is serial and strongly semital. (Details are as follows. By seriality, we have

Rynz1 · · · zn for some z1, . . . , zn. But Rxy1 · · · yn. So Ryn−1ynz1 · · · zn−1 by the condition

of strong semita. Finally note that M, yn |= ¬βntn
t1 .) Repeating the same argument for

i = n− 1 and so on, we establish that the following is true at x in M:

♦(¬β1
tn t1∧♦(¬β2

tn t1∧· · ·∧♦(¬βn−1
tn t1∧♦(¬βntn

t1 ,>n−1),>n−1) · · · ,>n−1),>n−1),

which is equivalent to ¬(�(β1, . . . , βn))tn t1 . Thus, M, x 6|= (�(β1, . . . , βn))tn t1 .

For (⇐=). Again we proceed by contraposition. Assume M, x 6|= (�(β1, . . . , βn))tn t1 . In

other words, the following is true at x in M:

♦(¬β1
tn t1∧♦(¬β2

tn t1∧· · ·∧♦(¬βn−1
tn t1∧♦(¬βntn

t1 ,>n−1),>n−1) · · · ,>n−1),>n−1).

Then we have the following (where ~y1 stands for the n-termed sequence y1.1, . . . , y1.n, and

similarly for ~y2, etc.):
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∃~y1 : Rx~y1 & M, y1.1 |= ¬β1
tn t1 ;

∃~y2 : Ry1.1~y2 & M, y2.1 |= ¬β2
tn t1 ;

...

∃~yn−1 : Ry(n−2).1~yn−1 & M, y(n−1).1 |= ¬βn−1
tn t1 ;

∃~yn : Ry(n−1).1~yn & M, yn.1 |= ¬βntn
t1 .

Since R is semital, Rxy1.1y2.1 . . . y(n−1).1yn.1. Moreover by I.H. M, yi.1 |= ¬βi for all i

from 1 to n. Thus M, x |= ♦(¬β1, . . . ,¬βn), i.e. M, x 6|= �(β1, . . . , βn). a

Theorem 8.4.6. KP and DR!n are translationally equivalent under t1 and tn.

Proof. The theorem follows directly from Definition 8.1.3, Theorems 8.4.3, 8.4.4 and 8.4.5.

a



Chapter 9

Formal Representation of Deontic

Reasoning

The root “deon” comes from the Greek term δέoν, which means “that which is binding,

duty”. Deontic logic can thus be understood as the logic of obligation and other related

notions such as permission, prohibition and supererogation. Obligations (and permissions

etc.) provide us, qua agents, norms for action. The term “norm” (Latin “norma”) is used

here in a general sense: besides obligations, there are norms for belief (epistemic norms),

norms for preference (norms for rational choice) and so on. In this dissertation our focus is

restricted to the class of deontic concepts, which is only one species of normative concepts.

We shall not go into philosophical analysis of the notion of obligation here. Questions about

the nature of obligations and their obligatoriness, however significant they are, require an

analysis deeper than any that can be offered in this dissertation. Our focus is on the more

mundane task of studying the logical relations between deontic statements, and proposing

a formal representation of deontic reasoning.

In this chapter we provide a survey of modern deontic logic, starting with the so-called

Standard Deontic Logic and motivations for it (Section 9.1). The development of deontic

logic has been driven by a set of core problems also known as “paradoxes”, which we examine

in Section 9.2. Finally we give a selective summary of contemporary approaches to deontic

reasoning in Section 9.3. The following sources have been consulted when preparing this

chapter: introductory chapters on deontic logic in various handbooks and guides, for exam-

ple, Åqvist (2002), Carmo and Jones (2002), Hilpinen (2001) and McNamara (2006). More

149
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detailed information is found in anthologies dedicated to deontic logic such as Hilpinen

(1971), Hilpinen (1981) and the workshop proceedings of DEON 1998 (McNamara and

Prakken (1999)), DEON 2000 (Demolombe and Hilpinen (2000, 2001)), DEON 2004 (Lo-

muscio and Nute (2004)) and DEON 2006 (Goble and Meyer (2006)).

9.1 Modern deontic logic

Modern deontic logic is often said, rightly or wrongly, to begin with the publication of

“Deontic logic” in Mind by von Wright (1951). The tribute is correct in so far as influences on

later authors are concerned, for it is von Wright’s paper that initiates a line of research which

is still active today (and, admittedly, this dissertation is part of that research tradition).

But it has also been pointed out that, before von Wright’s paper, Mally (1926) had already

put forward, in Grundgesetze des Sollens, Elemente der Logik des Willens, a deontic logic

which is “modern” in every aspect in which von Wright’s deontic logic of 1951 is. Therefore

it would not be historically incorrect to say that modern deontic logic begins with Mally’s

pioneer work, although the impact among logicians of his Grundgesetze is less than that of

von Wright’s “Deontic logic”. (We note here that Mally’s system suffers a significant defect:

the collapse of what ought to be into what is the case.)

The use of the term “modern” in describing our subject matter acknowledges the fact

that deontic logic, as the formal study of obligation and other deontic notions, has its origin

in much earlier periods. As far as Western philosophy is concerned, discussions of normative

reasoning already appeared in Aristotle’s writings (for example practical syllogism in Nico-

machean Ethics). A logic of norms began to emerge in the works of medieval philosophers,

and the formal study of norms continued well into the early modern period. (Secondary

literature about “pre-modern” deontic logic is rather rare. Knuuttila (1981) still provides

valuable information about the development of deontic logic in the 14th century.)

9.1.1 Analogies between deontic concepts and modal concepts

Since the early days of modern deontic logic (in fact since the medieval period), logicians

have noticed similarities between deontic logic and (alethic) modal logic. For example,

some deontic concepts are inter-definable in the same way as modal concepts are, and de-

ontic statements are related logically in a pattern that is analogous to the logical relations

between modal statements (and categorical statements). The deontic and modal squares of
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opposition (Figures 9.3 and 9.2), together with the traditional square of opposition (Fig-

ure 9.1), illustrate the analogy between deontic, modal and quantificational concepts.

From the deontic square of opposition, we can derive the following set of principles

(where �α stands for “Obligatorily α”, and ♦α stands for “Permissibly α”).

[Df♦] ♦α↔ ¬�¬α
[Df�] �α↔ ¬♦¬α
[D] �α→ ♦α

While [Df♦], [Df�] and [D] can be deduced from the deontic square, we can proceed the

other way round, viz. deriving the deontic square from the trio [Df♦], [Df�] and [D] (with

PL as the base logic). Thus the deontic square is tautologously equivalent to [Df♦], [Df�]

and [D]. Note that if the base logic is classical (i.e. if it provides PL and [RE]), then the

deontic square is equivalent to the pair [Df♦] and [D], or the pair [Df�] and [D] (since in

classical systems, [Df♦] and [Df�] are inter-derivable).

[Df♦] and [Df�] are so called because they can be considered as definitions of permission

(in terms of obligation) and of obligation (in terms of permission). Thus, according to

these two principles, α is permissible if and only if its negation is non-obligatory, and α is

obligatory if and only if its negation is impermissible. The principle [D]�α → ♦α asserts

that what is obligatory is also permissible. In view of the interdefinability of obligation and

permission, the principle can be stated thus:

[D] �α→ ¬�¬α

In other words, it stipulates that obligations cannot conflict: if α is obligatory then its

negation is not obligatory. The principle is called [D] (for deontic) because being free of

conflicts is often held to be a defining characteristic of deontic necessity.

It is common in modern deontic logic to define other deontic notions in terms of the

primitive notion of obligation (or permission).

It is forbidden that α =def �¬α (or ¬♦α)

It is gratuitous that α =def ¬�α (or ♦¬α)

It is optional that α =def ¬�α ∧ ¬�¬α (or ♦α ∧ ♦¬α)
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Figure 9.1: The traditional square of opposition
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Figure 9.2: The modal square of opposition
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Figure 9.3: The deontic square of opposition
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9.1.2 Standard Deontic Logic and its semantics

The so-called Standard Deontic Logic (SDL for short) is the system KD, which is obtained

by adding the deontic principle [D] to K, the smallest normal system. (Recall that K is

axiomatized by PL, [K], [RN], or alternatively by PL, [C], [RM], [RN].) We note here that

in any normal system, [D] is equivalent to the following principle.

[P] ¬�⊥

(Following Chellas we call the above principle [P] where P stands for possibilitation). Since

[D] and [P] are inter-derivable in any normal system of modal logic, SDL can be defined to

be the system KP instead of KD. (More specifically, the inter-deducibility between [D] and

[P] is as follows. [P] is derivable from [D] using PL and [RM], and [D] is derivable from [P]

using PL and [C].)

According to the relational semantics, �α is true at a point (state or world) x iff α is

true at all points to which x is related. It has been shown that SDL is determined by the

class of relational frames satisfying seriality, the condition that every point is related to

some point(s). The relata of x (the points to which x is related) are often said to be the

ideal alternatives of x (i.e. states or worlds where things go as they should according to the

norms of x). Thus viewed, the deontic accessibility or alternative relation is one for which

every state or world has a non-empty set of ideal alternatives.

9.1.3 Reduction of SDL to alethic modal logic

In the 1950’s, Anderson proposed a reduction of deontic logic to alethic logic. (See Anderson

(1956, 1958).) Kanger, a contemporary of Anderson, had a similar proposal. In fact the

idea of analyzing deontic modalities in terms of alethic ones can be found in Leibniz’s works.

(Hilpinen (2001) has more details on this.)

Let us consider a language which has two modal operators � and �, and a propositional

constant v (in addition to the usual propositional connectives and variables). Assume the

logic for � is the smallest alethic modal system KT and the following axioms hold.

[Viol] ¬� v
[Df�] �p↔ �(¬p→ v)

Then the logic for � satisfies the theorems of SDL (i.e. KD). It is common to read the

constant v as the proposition that a violation of some relevant norms has occurred.



CHAPTER 9. FORMAL REPRESENTATION OF DEONTIC REASONING 154

9.2 Problem set for deontic logic

There has been an accumulation of core problems for modern deontic logic that are widely

referred to as paradoxes (or puzzles). Although they are often directed at the so-called Stan-

dard Deontic Logic (SDL), these “paradoxes” are applicable to any formalization of deontic

reasoning as they are to SDL. Thus in what follows, we discuss these problems, whenever

possible, from the general perspective of deontic logic (rather than from the perspective of

SDL). Nevertheless, the rules or axioms belonging to, or absent from, SDL will be used to

illustrate the problems. (Not all the problems are peculiar to modern deontic logic. Some of

them, for example, those relating to conditional obligations and closure of obligation under

consequence, were discussed by medieval logicians (cf. Knuuttila (1981)).

9.2.1 Representation of norms

Ought-to-do and ought-to-be

Obligations and prohibitions are often expressed in sentences such as “A ought to do X” and

“A ought not to do X” where the term A refers to some agent(s), definite or indefinite, and

the term X an action or action type. For example, the ideal of fidelity is often promulgated

by such principles as “you ought not to cheat on your partners”. These sentences are often

referred to as statements expressing ought-to-do since deontic concepts are applied to actions

which are to be carried out or avoided by agents. (Instead of postulating a separate class of

“ought-not-to-do” for prohibitions, we treat them as obligations to refrain from executing

certain actions.)

The idea of deontic concepts as ought-to-do presents a problem to logicians. Since its

early days, modern deontic logic has been developed as a branch of modal logic. It is a

common practice in modal logic to apply modal terms to indicative sentences. In other

words, modal concepts are ascribed to factual propositions or states of affairs. For example,

“S must be P” is treated as having the same meaning as“It is necessarily the case that S is

P” or “Necessarily S is P”, which is symbolized by �α where � is the alethic modality of

necessity and α the sentence expressing the proposition that S is P. Following the practice

of modal logic, normative statements in deontic logic are typically treated as indicative

sentences with modal operators applied to them. So “A ought to do X” becomes “It ought

to be the case that A does X” or “Obligatorily, A does X”, and in symbol �α where �

denotes the notion of obligatoriness and α the proposition that A does X. Sentences of the
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form “It ought to be the case that A does X” are said to be statements expressing ought-

to-be, in order to distinguish them from statements expressing ought-to-do, which is of the

from “A ought to do X”.

Given the distinction between ought-to-do and ought-to-be, one may ask whether the

practice in deontic logic of representing ought-to-do by ought-to-be is adequate or not.

There are in fact two questions involved. The first one is about the appropriateness of the

translation of ought-to-do to ought-to-be we have discussed earlier, viz. treating “A ought

to do X” as being equivalent to “It ought to be the case that A does X”. However, even

though the above translation may be shown to be faulty, there may still be other reductions

that do the job better. So there is a more general question of whether every ought-to-do

can be reduced to an ought-to-be.

Norms and truth

There is a philosophical tradition according to which norms are non-factual items and as

such lack truth values. On the other hand, there is the view that logical relations exist

among norms and as a result a logic of norms is possible. Let us call the first view “non-

cognitivism” and the second view “logical approach to norms”. These two views become

incompatible if one also accepts that logical relations are dependent upon the possession of

truth values by the items entering into those relations. Several responses are possible.

(1) One may simply reject non-cognitivism and endorse the logical approach to norms.

However in accepting the logical approach, explanation has to be given as to how norms

acquire truth values (despite the apparent differences between normative sentences and

factual ones).

(2) One may adopt the non-cognitivist position and reject the logical approach to norms.

If so, then the remaining problem is to explain away the appearance of a logic of

norms.

(3) Instead of choosing between non-cognitivism and the logical approach to norms, one

may accept both and reject the assumption that logical relations among norms require

the ascription of truth values to norms. The challenge then is coming up with a theory

of validity that is not based on the notion of truth.
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9.2.2 Violability and fulfillability of norms

Some have argued that obligations must be violable, and so actions (events or states) can

be obligatory only if they are avoidable. Violability could be applied in different contexts:

we may ask whether it is psychologically, physically or conceptually possible for someone

to default on his obligation. The case for violability looks contentious if what matters

is psychological possibility. For instance it may well be true that parents protect their

children from harm as a matter of psychological (or biological) fact. But it still makes

sense (at least for some theorists) to say that parents ought to protect their children from

harm. However the principle of violability appears more convincing in those cases involving

physical possibility. For example, it is physically impossible for us to change events that

have already happened; so no one is obligated to keep past events from being changed. In

the following discussion, we refrain from entering into this debate by considering violability

in a logical context. The specific type of considerations, whether it is psychological, physical

or conceptual, can be incorporated into the underlying logic as domain-specific axioms.

The principle of violability (in a logical context) is usually specified by a rule to the

effect that if α is a theorem of the logic, i.e. logically necessary, then α is not obligatory

(` α =⇒` ¬�α). In other words, no theorems are obligatory (¬�>). This principle

obviously leads to contradiction in any logic that has [RN], or equivalently [N], both of

which stipulate that every theorem is obligatory (�>). But the problem is not restricted

to [RN] or [N] only. Indeed in any system that provides [RM], the principle of violability

entails that nothing should be obligatory if contradiction is to be avoided. For according to

[RM], if any thing is obligatory at all then so is the verum.

While (it has been argued that) obligations should be violable, (it has also been argued

that) obligations should be fulfillable. As in the case of violability, the notion of fulfillability

can be applied in various contexts: psychological, physical, conceptual, etc. Thus if it is a

fact of psychology that parents protect their children from harm, then no parents should be

obligated to sacrifice their children willingly (though as in the case of violability this claim

may be contested). For the same reason that no one ought to prevent past events from being

changed, viz. the fact that history cannot be altered, no one ought to change past events

either. To avoid controversy regarding the principle of fulfillability in different contexts, we

consider logical fulfillability in our discussion.

In comparison with the principle of violability (in a logical context), the principle of
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fulfillability presents a lesser challenge to deontic logic. It can be represented either by a

rule to the effect that nothing logically impossible should be obligatory (` ¬α =⇒` ¬�α),

or by the principle that the falsum is not obligatory ([P]¬�⊥). Unlike the principle of

violability, the principle of fulfillability does not lead to logical inconsistency in systems

that has [RN] or [RM]. However the principle of fulfillability has a problem of its own:

if (unrestricted) aggregation of obligations is permitted, then the principle of fulfillability

excludes cases of conflicting obligations, situations which, according to some theorists, are

plausible. (We shall discuss more of this in the next section.)

In a language that has both deontic modality (�) and alethic modality (�), the principle

of violability cum fulfillability (i.e. ¬�> ∧ ¬�⊥) can be formalized by the formula �α →
¬� α ∧ ¬� ¬α, which says α is obligatory only if α is contingent.

9.2.3 Normative conflicts

Not all cases of normative conflicts are irresolvable. For in some cases the appearance of

conflicts between obligations can be removed by balancing the reasons that support each of

the obligations. However some philosophers and logicians maintain that not all apparent

conflicts can be resolved by deliberation (for example when the reasons for the incompatible

obligations are equally strong) and so there are genuine cases of normative conflicts. The

following two examples, taken from Plato and Sartre (see Lemmon 1962) illustrate the above.

Case 1. Plato in the Republic describes the following scenario. A man demands his

friend to return weapons as promised. But the man is now in a rage and intends unjustly to

kill someone with the weapon. While it is obligatory for his friend to keep his promise, it is

also obligatory for him to save innocent life. Apparently he cannot fulfil both obligations.

Case 2. A character in Sartre’s essay has to choose between joining the resistance to

revenge his brother’s death and fight the Nazi occupation, and staying at home to aid his

ailing mother. It seems that he is obligated to do both, even though performing one means

neglecting the other.

The first case, many will say, is not irresolvable, for the reason to save life outweighs the

reason to keep promise. But the second case presents a greater challenge since the reason for

joining the resistance is as strong as the reason to stay at home. The existence of these two

types of conflicts—those that are resolvable by balancing the strength of reasons and those

that are (or at least seem to be) irresolvable by such calculation—suggests a distinction

between prima facie obligations and all-things-considered obligations. While it is generally
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accepted that prima facie oughts may conflict with each other, there is no such consensus on

the question of whether there are genuine conflicts among all-things-considered oughts. For

example, while some ethicists regard Case 2 as an instance of irresolvable normative conflicts,

some consider it as a case in which one has a disjunctive obligation (i.e. an obligation to

do either one of the two options) and not a case in which one has two obligations (i.e. an

obligation to do one option and another obligation to do the other option).

The rejection of conflicting obligations (let us assume they are all-things-considered

oughts) can be represented by the so-called deontic consistency principle [D] �α→ ¬�¬α.

(More generally, if the logic has rule [RM], then [D] is equivalent to �α → ¬�β where

α∧β → ⊥ is a theorem of the logic.) This principle, however, should be distinguished from

the principle of fulfillability discussed earlier (viz. [P] ¬�⊥), which says that there are no

logically impossible obligations. One may accept [P] while denying [D]. In other words,

one may reject the existence of logically impossible obligations but accept the existence of

conflicting obligations. But the distinction between [D] and [P], which seems compelling, is

destroyed if the logic endorses aggregation of obligations, usually formalized by [C] �α ∧
�β → �(α ∧ β). For it is obvious that in such a logic [D] and [P] are provable equivalents.

Rejecting the aggregation principle, which collapses conflicts into impossible obligations,

is important for logicians who wish to allow for normative conflicts (while maintaining

fulfillability of obligations). But a total rejection of aggregation would appear too drastic,

for aggregation seems desirable when no conflict would arise (see van Fraassen, 1973). While

there are systems and semantics designed for distinguishing [P] from [D], devising a logic

that endorses aggregation of compatible obligations remains a challenge. (The following

solutions have been proposed: a logic with the axiom ¬ � ¬(p ∧ q) ∧ �p ∧ �q → �(p ∧ q),
and defeasible deontic logic.)

9.2.4 Closure of obligation under consequence

The intuition that the logical consequence of what is obligatory is also obligatory is usually

formalized by the rule [RM] (from α→ β infer �α→ �β). The problem of logical inconsis-

tency caused by this rule in the presence of the principle of violability has been discussed in

Section 9.2.2 on page 156. Perhaps the most obvious puzzle brought about by this rule is

the so-called the Good Samaritan Paradox. For instance if we ought to relieve the suffering

of the poor, then the poor ought to suffer, by virtue of [RM] and the fact that relief works

presupposes that the poor suffer. A similar puzzle arises in the case of what may be called
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epistemic obligation. Suppose there is a fire in the town. Then the fire chief ought to know

that there is a fire in the town. But this knowledge entails there is a fire; so by [RM] there

ought to be a fire in the town.

Another puzzle in connection with the closure principle is Ross’s paradox: A duty of

posting some letter implies a disjunctive obligation of posting it or burning it, since the

proposition that the letter is posted or the letter is burned is a logical consequence of the

proposition that the letter is posted. But it seems odd that a duty of posting a letter begets

another one which can be fulfilled by burning it.

9.2.5 Commitments or derived obligations

Representing conditional obligations generates a range of problems for deontic logic, some

of which have counterparts in other modal notions, while others are peculiar to deontic

notions. The so-called paradox of commitment or derived obligation (discussed in this

section) belongs to the first category, and the paradox of contrary-to-duty (discussed in the

next section) belongs to the second category.

Commitments have the general form “A’s action X commits him to do Y”. Let α be the

proposition “A did X”, and β the proposition “A does Y”. At first glance, we can formalize

commitment in one of the following two ways (where → is the material conditional).

(1) α→ �β

(2) �(α→ β)

However each of the above approach has problems of its own.

Suppose commitment is represented by (1). We have the following by virtue of proposi-

tional logic (for any α and β).

• α→ (¬α→ �β)

• �β → (α→ �β)

In other words, the negation of a true proposition commits one to everything, and any

proposition commits one to an existing obligation. These consequences, although not causing

any logical contradiction, would seem odd. Readers may notice that this is similar to the

paradox of material implication.

Suppose we represent commitment by (2). Analogous to the paradox of strict conditional,

we have the following by virtue of propositional logic and [RM].
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• �α→ �(¬α→ β)

• �β → �(α→ β)

What the above says is that violating an existing obligation commits one to everything, and

anything commits one to whatever is already obligatory. These results look strange, if not

totally outrageous.

9.2.6 Contrary-to-duty obligations

The original Chisholm paradox

In “Contrary-to-duty imperatives and deontic logic” (1963) Chisholm argues that contrary-

to-duty imperatives (imperatives telling us what we ought to do if we neglect certain of

our duties) cannot be given an adequate representation in the deontic systems proposed by

Mally, von Wright, Prior, and Anderson. (We can substitute Standard Deontic Logic SDL

for the target of Chisholm’s criticism.)

Chisholm observes that CTD imperatives cannot be represented in the form of an obliga-

tory conditional: “It is obligatory that if a then b”. His reason is that given “It is obligatory

that not a”, we can derive “It is obligatory that if a then b”, for any b. (If one should refrain

from performing the act of doing a, then one should refrain from performing the joint act

of doing a and not doing b, no matter what b may be.) But apparently this is not what we

intend when using CTD imperatives. For example, breaking a promise requires remedial

action, but the misdeed does not give us license to do anything we want. (In SDL, �¬α
entails �(α→ β) for any β by virtue of propositional logic and [RM].)

If CTD imperatives cannot be represented as obligatory conditionals, then, Chisholm

points out, they must be represented in the form of a conditional with an obligatory conse-

quent (“If a, then it is obligatory that b”). But unfortunately this leads to logical contra-

diction in the presence of [K] and [D]):

[K] �p ∧�(p→ q)→ �q
[D] ¬(�p ∧�¬p)

Chisholm illustrates the problem with an example which consists of the following four

sentences:

(1) It ought to be that a certain man goes to the assistance of his neighbours.
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(2) It ought to be that if he does go he tells them he is coming.

(3) If he does not go, then he ought not to tell them he is coming.

(4) He does not go.

Or in symbolic form:

(1) �go.

(2) �(go→ tell).

(3) ¬go→ �¬tell.

(4) ¬go.

From the first two sentences, we can derive �tell using [K]. From the last two sentences, we

can derive �¬tell using modus ponens. It then follows that �tell∧�¬tell, which contradicts

[D]. (Deriving �tell from the first two sentences is sometimes called deontic detachment,

and deriving �¬tell from the other two sentences is sometimes called factual detachment.)

In conclusion, the above four sentences, which can be generalized to describe most of the

situations in which CTD obligations arise, are mutually inconsistent (in the presence of

principles [K] and [D].)

One may wonder whether the second sentence of the Chisholm set can be formalized as

“go→ �tell” (thus �tell can no longer be derived from (1) and (2) by deontic detachment).

But if (2) is represented as a conditional with an obligatory consequent, then it becomes

deducible from (4) simply by virtue of PL. Independence is likewise lost if we represent

(3) as “�(¬go → ¬tell)” (thereby avoiding the derivation of �¬tell from (3) and (4) by

factual detachment). The reason is that if (3) is so represented, it will be derivable from

(1) by using PL and [RM]. Therefore the problem of representing CTD obligations is how

to describe situations in which such imperatives arise by a set sentences or formulas whose

members are independent of the others and logically consistent when taken together.

Note that even if [D] is dropped and so logical contradiction is avoided, the derivation

of a pair of contradictory obligations (which represents a situation of practical conflict) is

problematic, since intuitively the Chisholm set does not present a dilemma at all. The

person, in Chisholm’s example, should not tell his neighbours he is coming because he does

not go to help.
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Another version of the Chisholm paradox

In the original Chisholm paradox, the action described in the antecedent of the obligatory

conditional (�(go→ tell)) takes place (ideally) after the action described in its consequent.

In other words, helping one’s neighbours should happen after telling them that one is coming.

The same temporal ordering can be said of the antecedent action and the consequent action

of the CTD obligation (¬go → �¬tell). We can reverse this temporal ordering as in the

following version of the paradox.

(1) It ought to be the case that John does not impregnate Suzy Mae.

(2) It ought to be the case that if John does not impregnate Suzy Mae, then he does not

marry her.

(3) If John impregnates Suzy, then it ought to be the case that he marries her.

(4) John impregnates Suzy.

Timeless and actionless CTD examples

The CTD scenarios considered so far involve some kind of temporality of actions. However

there are examples of CTD not depending on any temporal ordering of actions at all. The

following are two examples.

Example 1:

(1) There ought to be no dog.

(2) If there is no dog, there ought to be no warning sign.

(3) If there is a dog, there ought to be a warning sign.

(4) There is a dog.

Example 2:

(1) There must be no fence.

(2) -

(3) If there is a fence, then it must be a white fence.

(4) There is a fence.
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The Gentle Murderer Paradox

Some paradoxes discussed in the literature have a similar structure to the Chisholm para-

dox. They describe scenarios in which some obligations arise in less than ideal situations.

However, under [RM] (closure of obligations under logical consequence), such obligations

imply other obligations that are highly problematic. We describe one such case (the gentle

murderer paradox) here, and another (the good Samaritan paradox) in the next section.

(1) Smith ought not to kill his mother.

(2) If Smith kills his mother, he ought to kill her gently.

(3) Smith kills his mother.

The last two sentences entails that Smith ought to kill his mother gently. But killing

gently implies killing. So one may conclude that Smith ought to kill his mother, which is

(deontically) inconsistent with the first sentence.

The Good Samaritan Paradox

A good Samaritan gives help to people in trouble (for example, the victim of a robbery).

But her good deed implies the existence of misery of someone. So, given that obligations

are closed under logical consequence (rule [RM]), someone ought to suffer. Like the CTD

examples above, the Good Samaritan paradox involves some less than ideal situation. Al-

though the agent (the good Samaritan) has not violated any primary obligation, we can

present the paradox in the standard CTD format as follows:

(1) John ought not to be robbed.

(2) If John has been robbed, Mary ought to help him.

(3) John has been robbed.

Mary ought to help John, who has been robbed (from the last two sentences). Since helping

the victim of a robbery means that the person in question has been robbed, we arrive at

the conclusion that John ought to be robbed (by applying [RM]). This contradicts the first

sentence (in the presence of D, the deontic consistency principle).
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Responses to the CTD “paradoxes”

In “Deontic logic and contrary-to-duties” (2002), Carmo and Jones state the following re-

quirements that an adequate formalization of the Chisholm set (and other CTD scenarios)

should meet:

(1) The set should be consistent.

(2) The sentences in the set should be logically independent.

(3) The formalization should be applicable to timeless and actionless CTD examples.

(4) The assignment of logical form to each of the norms in the set should be independent

of the other norms in it.

(5) We should be able to derive actual obligations.

(6) We should be able to derive ideal obligations.

(7) Pragmatic oddity should be avoided.

In the following we outline some proposals that address the problem of representing

CTD.

9.3 After SDL: new approaches to deontic logic

We list below some of the contemporary approaches to deontic logic. Although a broad

range of deontic logics are covered, the examples we give represent only a small subset of

the different theories available. Note that the approaches are not exclusive of each other.

Quite often the same deontic logic may incorporate elements from several approaches. Our

discussion here is brief. So interested readers are advised to check the references we provide

below.

9.3.1 Temporal approaches

In traditional deontic logics such as SDL, obligation statements are evaluated at a state or

world. But obligation changes as the state or world evolves over time, and in the traditional

approaches such changes of obligation cannot be represented easily. For example, in the
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Chisholm paradox (Section 9.2.6), before it is settled that the person does not go to help his

neighbours, he has an obligation to tell them that he is coming . However, once the matter

is settled, the original obligation is replaced by a contrary one: the obligation of not telling

them that he is coming.

In order to deal with the Chisholm paradox or other situations in which temporality

plays an important role, a formal language that can represent time is desirable, and deontic

logic becomes an extension of temporal logic. There are two families of deontic temporal

logics: the indexed or the non-indexed.

(1) In indexed temporal deontic logics (e.g. van Eck (1982)) , the object language typically

has the following symbols:

• time terms t1, t2, etc.

• time-indexed propositional variables pt1 , pt2 , etc.

• time-indexed necessity operator �t1 , �t2 , etc.

• time-indexed deontic operator �t1 , �t2 , etc.

(2) In non-indexed temporal deontic logics, the base tense logic has temporal operators

such as F, G, P, H (for “it will be the case that”, “it is always going to be the case

that”, “it was the case that”, and “it has always been the case that”, respectively).

In addition to the temporal operators, the object language has a necessity operator �

and a deontic operator �. See, for example, Chellas (1980), Thomason (2002, 1981).

A model for temporal deontic logic usually consists of a set of histories, which are

instantaneous world-states ordered temporally. For each history h at a moment of time

t, there is a set of histories h′ that is called the deontic alternatives of h at t (subject to

the constraint that h′ shares the same past as h at t). Thus worlds or states in the model

for SDL are replaced by histories in the model for deontic temporal logic, and the relation

of deontic alternativeness is no longer between worlds or states, but between histories and

relativized to time.

9.3.2 Action-based approaches

The distinction between ought-to-be and ought-to-do has been discussed in Section 9.2.1. In

traditional deontic logics, the obligation operator is applied to sentences expressing states
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of affairs rather than to terms denoting actions. There are contemporary deontic logics that

allow us to represent actions explicitly.

(1) In Casteñeda’s deontic logic, a distinction is made between propositions and practi-

tions, for example, conditional obligations can be expressed by formulas in the form of

�s(p→ q∗) where s is a particular sense of obligation, p is the circumstance or condi-

tion of a deontic judgement, and q∗ is an action practically considered. See Tomberlin

(1983b, 1986a) for a discussions of Casteñeda’s logic.

(2) The dynamic deontic logics of Meyer (1988) and Meyer et al. (1998) are based on

propositional dynamic logic, which has terms for both actions and propositions. For

example, the formula [φ]α means that execution of the action φ leads to some state

where the proposition α holds. The object language has a propositional constant v

denoting violation. Formulas of the form [−φ]v thus states that the negated action

−φ leads to a state of violation, or, put it another way, the action φ is obligatory.

(3) The deontic logic of Horty (2001) represents actions with the help of an operator called

“cstit” (“stit” for “see to it that” and “c” for Chellas). The statement that an agent

A sees to it that a state α is the case is formalized by [A : cstitα]. Ought-to-do and

conditional ought-to-do are represented as follows:

• �[A : cstitα]: A ought to see to it that α.

• �([A : cstitα]/β): A ought to see to it that α under the condition β.

9.3.3 Preference-based approaches

In the model for SDL, each state is assigned a collection of states, called its deontic alter-

natives (sometimes called ideal states or better permissible states). A formula α is said to

be obligatory at a state x if α holds at every deontic alternative of x. This type of model is

too crude, as critics point out, to represent all of the deontic notions we are interested in.

An example is the contrary-to-duty obligations. These duties arise when some other duties

are violated. However, in the model for SDL, no duties that are applicable of a state x go

unsatisfied in the deontic alternatives of x. In order to model CTD scenarios, we need some

kind of grading of states. For instance, in the Gentle Murderer Paradox, those states in

which Smith kills his mother gently are better than those in which he kills but not gently

although in either case he has violated his obligation of not killing his mother.
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Lewis (1974) discusses four types of semantics. They postulate some kinds of value

structures on the basis of which worlds or states are compared.

• Hansson (1969)

• Føllesdal and Hilpinen (1971)

• van Fraassen (1972, 1973) (Appendix C.1)

• Lewis (1973)

For more recent preference-based deontic logics, see Jennings (2001) and Goble (2000,

2003, 2004) (Appendix C.2). Horty (2001) is a combination of temporal, action and prefer-

ence based approaches.

9.3.4 Rule-based approaches

The traditional way of doing deontic logic (and modal logic in general) has been to define

a class of models and determine the logic it validates (or vice versa, that is, to define an

axiom system and find a class of models that validates the theorems of the system). In this

approach, a normative statement is considered as expressing a proposition just like any non-

modal statement is. But this methodology has been questioned for various reasons. One

concerns the truth-aptness of norms, which we have discussed in Section 9.2.1. Another

criticism is directed at its failure to represent our normative reasoning, for example, the

application of aggregation when doing so would not cause any problem (Section 9.2.3. This

type of reasoning is difficult to be represented in a traditional modal system (see van Fraassen

(1973)). The last mentioned criticism has led Horty (1997) to treat norms as default rules,

thus showing that van Fraassen’s semantics can better be captured by treating a set of norms

as a default theory. Yet another criticism of the traditional approach is that it is difficult to

formulate a defeasible theory. Note that the classical consequence relation |= is monotonic

(and so is the classical derivability relation `). In order to get a nonmonotonic deontic logic,

a more radical approach than the traditional one becomes necessary. (The same situation

is also found in default reasoning, which adopts formalisms such as circumscription and

default logic.) In the following, we list some approaches that treat norms, not as ordinary

modal formulas, but as rules.

• Horty’s nonmonotonic deontic logic: Horty (1997, 2003) (Appendix C.3)
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• Nute’s defeasible deontic logic: Nute (1997a, 1999) (Appendix C.4)

• Makinson and van der Torre’s input/output logics: Makinson and van der Torre (2000,

2001, 2003) (Appendix C.5)



Chapter 10

The Logic of Deontic Residuation

In this chapter, we present a class of normal polyadic systems that are interpreted as logics

of deontic residuation, the concept that a principal obligation passes to another obligation,

for example, through neglect of the agent or change of circumstances. The second obli-

gation could also pass to other obligations, and the process, or residuation as we call it,

may continue for some further steps. Deontic residuation is contrasted with the idea that

a single sanction attends every omission of obligation, a thesis introduced by Anderson in

his reduction of deontic logic to alethic modal logic. Making certain assumptions about

the polyadic operators, we show that our deontic logics can be strengthened and the result-

ing systems can be embedded into the so-called Standard Deontic Logic (SDL). But even

in these reductions Anderson’s notion of there being a single sanction following different

transgressions is avoided.

The idea of deontic residuation introduced here generalizes that of contrary-to-duty

obligation (CTD): whereas the notion of CTD involves a primary obligation and a secondary

obligation (hence it is dyadic), our notion of deontic residuation allows for a finite sequence

of obligations starting from a principal obligation and going through successive residual

obligations (hence it is polyadic). The adoption of polyadic language permits us to represent

the change of obligation more effectively than using monadic or dyadic language.

We begin in Section 10.1 with a discussion of the shortcoming of SDL in representing the

consequences of moral transgressions, which is exposed by Anderson’s famous reduction of

SDL to alethic modal logic. Systems of deontic residuation and strong residuation are then

presented in Section 10.2, followed by their classes of frames in Section 10.3. These systems

are demonstrated to be complete with respect to their classes of frame (Section 10.4). We

169
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show that the systems of strong deontic residuation can be embedded in SDL (Section 10.5).

An interpretation of the deontic rules and axioms is provided in Section 10.6, where we

also illustrate how normative conflicts are dealt with. (Section 10.1 is contributed by Ray

Jennings, who has also suggested the names “semita” and “deontic residuation” to the

author.)

10.1 From Anderson’s sanction to deontic residuation

So many authors have brought serious charges against each of the principles of SDL, that

one must almost reject the system KD from the role as a standard or reconstrue the role.

This much is true. KD has become the customary point of departure for pure research

into formal models of deontic language, and that perhaps, post hoc, justifies the title. It is

obtained, following Kripke’s recipe, by replacing the alethic principle [T] by the so-called

deontic law, [D]. But both that alethic and that deontic logic represent a set of necessities as

a classical theory, that is, as a (classically) deductively closed set, which is therefore either

consistent or the whole language. This has seemed to some to misrepresent deontic discourse

both by collapsing deontically significant distinctions and by multiplying obligations beyond

moral capacity. On the first score, Jennings and Schotch, severally and jointly have explored

systems that preserve the distinction between

[D] �p→ ♦p,

which seems to preclude moral conflict and

[P�] ¬�⊥,

which merely rejects obligatory contradictions. See Schotch and Jennings (1980, 1981),

Jennings and Schotch (1981) and Jennings (2001). That distinction requires the rejection

of

[C] �p ∧�q → �(p ∧ q).

In the second matter, various authors, supposing themselves to be honouring von Wright’s

principle that only contingencies can be obligatory, have rejected the principle

[RN]
` α
` �α

,
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which makes all tautologies obligatory. In fact, however, von Wright’s contingency principle

would require the rule

[Anti-RN]
` α
` ¬�α

,

the adoption of which would, in its turn, require the rejection of the unrestricted mono-

tonicity principle

[RM]
` α→ β

` �α→ �β
.

When all of these authors have made their excisions, only [P�] remains as a bedrock de-

ontic principle. On the other hand, the remaining, restricted monotonicity principle, which

holds for provable consequents other than tautologies, would seem to require a strengthened

underlying logic such as S5 to distinguish contingent consequents from those universally

verified in a model.

At a somewhat more foundational level, no argument has been advanced to justify the

system KT, or latterly K, as the most natural starting point for modal logic, and that system

has at least one competitor that is at at least as intuitively compelling. Algebraically, one

might insist, it is plausible to assume that ⊥ is not necessary, that > is necessary and that

anything above a necessity is a necessity. On this intuition, a reasonable starting common

point of departure for both alethic and deontic systems would be the system axiomatized

by [P�], [N] (�>), and [RM].

The deontic path would retain [P�], replace [N] by [Anti-RN] and [RM] by a rule yielding

only contingent obligations. Again, the approach would seem to require some such system

as S5 rather than PL as its foundation, though this would confer another benefit in that it

would let us explicitly represent the Kantian law that ought implies can.

The problem with these surgery-cum-prosthesis (SCP) approaches is that in ordinary

deontic discourse, we do, upon occasion, feel compelled to infer obligations from obligations

using something like [RM], even if we do not infer tautologous ones, and we do from time to

time aggregate obligations, even if we do not aggregate those that conflict. Who is to say

that it is not unweakened [RM] that we are “using” or not [C]? In the nature of things, the

whole of humanity in the whole history of its deontic deliberations will not have used even

every acceptable instance of either principle. Moreover, even if every acceptably attributed

obligation lies strictly between the verum and the falsum, the practical principle that en-

sures this is that we don’t expect from one another even the physically, or psychologically
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impossible, and we don’t represent conditions already achieved as present obligations. (Per-

haps the real deontic correspondent of [T] is [Anti-T] �p → ¬p.) So there may be some

point in trying to separate inferential discourse from its logic. The former is the set of all

historical, correct inferences; the latter is the smallest closed set of conditionals capable of

expressing them. A similar attitude would dissipate some of the gloom from the study of

relevant logic.

A second and more illuminating alternative to SCP approaches would take up some

advice offered by Max Cresswell 1: Don’t re-axiomatize; define. The idea, as it applies to

deontic logic, would be to exploit the expressive power of the language of SDL or even K to

embed systems closer to the heart’s desire. So, for example, a connective �1 defined by

�1α = �α ∧ ♦α

would admit [D] and defines a non-normal deontic sublogic of K, just as the connective �2

defined by

�2α = �α ∧ α

yields the alethic logic T as a sublogic of K. Such a strategy has the theoretical advantage

of introducing a new question, namely, how is the � of the parent system to be understood

in the definition?

Now a characteristic of deontic necessity is its adventitiousness even in the time scale of

day-to-day living. Obligations can arise accidentally as the outcome of morally indifferent

events. A complete stranger, by falling ill in one’s presence, creates an obligation. And

obligations are created dynamically by one’s responses. Without self-loathing, one does not

cower in one’s room knowing of a heart attack behind the next door. The loathing is hardly

diminished if one takes on the task of phoning the wife while delegating the duty of care.

Even the notification seems to require an offer of transport.

Now it may be simply a matter of time-scale that distinguishes the adventitiousness

of deontic necessity from that of, say, physical necessity. We do not know what accidents

early in the evolution of the physical universe created its present nomological profile. Nor,

presumably, can we answer corresponding questions set in an even larger multidimensional-

scale for mathematical necessity. However, in the realm of the deontic, our social lives are

1In conversation with Ray Jennings, 1973.
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daily shaped by necessities born of accidence, whether chance spatio-temporal coincidence,

or failures on our own or on others’ parts to meet social expectations.

It is evident that not only moral failures have morally significant consequences. But some

have thought that among human doables, it is precisely the anticipatable untoward moral

significance of failure that distinguishes the obligatory from the non-obligatory. Of course,

simply as a matter of logic, failures of obligations commit one to every act, as negations of

alethic necessities strictly imply every sentence. Alan Ross Anderson’s reduction of deontic

logic to alethic modal logic can be understood as an attempt to refine this purely formal

mark of the obligatory by more closely specifying a morally significant outcome of failure

(Anderson (1956, 1958)).

One might rather have said that his was a study of a deontic system restricted to those

obligations for which penalties invariably attend defaults. The reduction averages over any

distinctions among sanctions that might correspond to differences among their triggering

transgressions. We need not interpret this as the stern moralism of an uncompromising

religionist

Ye have heard that it was said by them of old time, Thou shalt not kill; and

whosoever shall kill shall be in danger of the judgment. But I say unto you

. . . whosoever shall say, Thou fool, shall be in danger of hell fire. Matthew 5: 21,

22.

for if we average the sanctions we will not be hanged even for a sheep, let alone for a lamb.

Anderson himself offered “All Hell breaks loose” as a reading for his constant S, but we can

understand this as merely a moral hell, which, like Mr. Bennett, we get through pretty well.

It was not till the afternoon, when he joined them at tea, that Elizabeth

ventured to introduce the subject [of Lydia’s elopement]; and then, on her briefly

expressing her sorrow for what he must have endured, he replied, “Say nothing

of that. Who would suffer but myself? It has been my own doing, and I ought

to feel it.”

“You must not be too severe upon yourself,” replied Elizabeth.

“You may well warn me against such an evil. Human nature is so prone to

fall into it! No, Lizzy, let me once in my life feel how much I have been to blame.

I am not afraid of being overpowered by the impression. It will pass away soon

enough.” (Austen, 1813)
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Again, in ordinary life, an undertaking, as often as not, has a shelf-life: some sought-after

benefit may be gained by its timely fulfilment, but once its “best-before” date has passed,

we soldier on without the benefit or we seek another. Grant application deadlines come

readily to mind. If one is missed, there will be another, and in the meantime other sources

of support for destitute research students may present themselves. Virtue ethics makes us

complacent. It is a virtue to feed the starving, but the starving we have with us always: it

will be just as virtuous to feed next year’s batch after this year’s batch have succumbed.

The idea that every failure to fulfill one’s obligations is a grave matter is an idol of moral

vanity. As Kipling remarked: All men count, but none too much. Our obligations, as often

as not, present themselves with, or even as the consequences of failure, and also with means

of mitigation. The general notion of behaving well is one of behaving in such a way as to

minimize duties of mitigation for ourselves and for others. In popular expression it is to

create or leave as few pieces as possible for ourselves and others to pick up and reassemble.

But in general we live our lives on the avails of restitution.

This general feature of mitigation creates another source of difficulty for SDL. Since

its introduction by Chisholm, it has been discussed under the heading of contrary-to-duty-

imperatives (see Section 9.2.6 for details). Solving the problem requires the recognition that

in real life obligations of any moment residuate. Obligations of the absolute non-residuating

variety cannot have much moment, precisely because no further obligations arise when we

fail to fulfill them. This chapter is an attempt to chart a representation of moral residuation

in polyadic modal logics and SDL.

10.2 Normal deontic systems and their residuating exten-

sions

Recall that an n-adic system (in the language Ln) is said to be normal if it includes PL and

provides the following rules of inference and axioms. (In what follows, 1 ≤ i ≤ n, and β, q,

and pi ∧ q occur in the ith place of � as αi and pi do.)

[RMi
n]

` αi → β

` �(α1, . . . , αi, . . . , αn)→ �(α1, . . . , β, . . . , αn)

[RNi
n]

` αi
` �(α1, . . . , αi, . . . , αn)
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[Ci
n] �(p1, . . . , pi, . . . , pn) ∧�(p1, . . . , q, . . . , pn)→ �(p1, . . . , pi ∧ q, . . . , pn)

�(p1, . . . , pi ∧ q, . . . , pn)

The weakest normal n-adic modal logic, called Kn, axiomatizes the set of formulas valid

in the class of (n + 1)-ary relational frames (see Section 2.5). In the following, we extends

Kn to normal deontic logics, which are further extended to logics of deontic residuation and

strong deontic residuation.

10.2.1 Normal deontic systems

Definition 10.2.1 (Normal deontic systems). A normal n-adic system is said to be deontic

if it provides the following axiom.

[P�n] ¬�(⊥, . . . ,⊥)

The weakest normal n-adic deontic system is called Dn. a

[P�n] is the dual of the possibilitation principle [Pn] ♦n(>, . . . ,>). (Note that [P�n] is

logically equivalent to [Pn].) We might refer to the formula ¬�n(⊥, . . . ,⊥) as the deontic

principle and notate it as [Dn]. However it is now common practice to use the symbol “D”

(for “deontic”) to designate another principle, viz. �p → ♦p. Thus, in naming the axioms

of our normal deontic logics, we adapt the nomenclature of Chellas, who calls the formula

♦> “P” and the formula ¬�⊥ “P�”.

By way of illustration, we list the inferential rules and axioms of D1 and D2 below.

Note that an alternative axiomatization of D1 is obtained by adding to the weakest normal

system K1 the axiom [D] �α → ♦α instead of our [P�1]. D1 is also known as “Standard

Deontic Logic” (SDL) in the literature.

Example 10.2.2. D1 (in the language L1) consists of PL and the following rules of inference

and axioms.

[RM]
` α→ β

` �α→ �β

[RN]
` α
` �α

[C] �p ∧�q → �(p ∧ q)

[P�] ¬�⊥
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Example 10.2.3. D2 (in the language L2) consists of PL and the following rules of inference

and axioms.

[RM2]
` α→ β

` �(α, γ)→ �(β, γ)
` α→ β

` �(γ, α)→ �(γ, β)

[RN2]
` α

` �(α, β)
` α

` �(β, α)

[C2] �(p, r) ∧�(q, r)→ �(p ∧ q, r)

�(r, p) ∧�(r, q)→ �(r, p ∧ q)

[P�2] ¬�(⊥,⊥)

10.2.2 Systems of deontic residuation

A normal deontic system can be extended by adding what we call “residuation principles”,

resulting in a system of deontic residuation.

Definition 10.2.4 (Systems of deontic residuation). A normal n-adic deontic system is

said to be a system of deontic residuation if it provides the following axioms of residuation

(where 1 ≤ i ≤ n and ⊥k is a k-tuple of ⊥’s).

[Rein] �(p1, . . . , pn)→ �(p1, . . . , pi−1, pi ∨�(pi+1, . . . , pn,⊥i),⊥n−i)

The weakest n-adic system of deontic residuation is called DRn. a

Observe that there are n instances of [Rein]. We list the first two below.

[Re1
n] �(p1, . . . , pn)→ �(p1 ∨�(p2, . . . , pn,⊥),⊥n−1)

[Re2
n] �(p1, . . . , pn)→ �(p1, p2 ∨�(p3, . . . , pn,⊥,⊥),⊥n−2)

The last instance, [Renn], is the tautology �(p1, . . . , pn) → �(p1, . . . , pn). As in the case of

other rules and axioms, we use [Ren] to denote the collection of the instances of [Rein]. DR1

is just D1, and our real interest in the logic of deontic residuation begins with DR2, the

axioms and rules of inference of which are given below.
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◦x0 ◦x1 ◦xi___________ ◦xn// //
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Figure 10.1: Semita at the i-th place

Example 10.2.5. DR2 (in the language L2) consists of PL, [RM2], [RN2], [C2], [P�2], and

the following axiom.

[Re2] �(p, q)→ �(p ∨�(q,⊥),⊥)

Note that we omit the second instance of [Re2], which is the tautology �(p, q)→ �(p, q).

We show in Theorem 10.3.3 that [Rein] (with 1 ≤ i ≤ n) corresponds to the following

property of an (n+ 1)-ary relation R: for any x0, x1, . . . , xn, and y1, . . . , yn,

Rx0x1 · · ·xn & Rxiy1 · · · yn =⇒ Rx0x1 · · ·xiy1 · · · yn−i.

One way to read the above condition is to treat R as consisting of paths, each with (n+ 1)

nodes, i.e. each tuple 〈x0, . . . , xn〉 of R is a path originating at x0 and passing through

successively x1, . . . , xn−1 before ending at xn. What the condition says is thus the follow-

ing: if there is a path 〈x0, . . . , xn〉 and the path branches at xi, i.e. there is another path

〈xi, y1, . . . , yn〉, then there is a path 〈x0, x1, . . . , xi, y1, . . . , yn−i〉. Representing an (n + 1)-

tuple or path as an extended arrow passing through (n + 1) nodes, we get the picture as

shown in Figure 10.1.

We call an (n+1)-ary relational frame semital if it satisfies the above condition for every

1 ≤ i ≤ n. (“Semital” is based on the Latin word “semita”, which means path.) The system

DRn is both sound and complete with respect to the class of (n + 1)-ary relational frames

that are both serial and semital (see Section 10.4).

10.2.3 Systems of strong deontic residuation

In this section, we strengthen systems of deontic residuation to what are described as systems

of strong deontic residuation.
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Definition 10.2.6 (Systems of strong deontic residuation). An n-adic deontic system is said

to be a system of strong deontic residuation if it provides the following axioms of strong

residuation. (In the following, 2 ≤ j ≤ n, and ⊥k stands for an k-tuple of ⊥’s.)

[Re!1n] �(p1, p2, . . . , pn)→ �(p1 ∨�(p2, . . . , pn,⊥),⊥n−1)

[Re!jn] �(⊥j−2,¬�(p1, . . . , pn), p1 ∨�(p2, . . . , pn,⊥),⊥n−j)

The weakest n-adic system of strong deontic residuation is called DR!n. a

Note that [Re!1n] is the same formula as [Re1
n]. Indeed, we can derive all of the instances

of [Rein] from [Re!in], given PL, [RMn] and [Cn] (see Theorem 10.2.8). This justifies our

calling the axioms [Re!in] “strong principles of deontic residuation”, and the resulting systems

“systems of strong deontic residuation”. As in the case of DRn’s, the system DR!1 is a

degenerative case: it is just D1 (or SDL). The system DR!2 is given below as an example.

Example 10.2.7. DR!2 (in the language L2) consists of PL, [RM2], [RN2], [C2], [P�2], and

the following axioms.

[Re!2] �(p, q)→ �(p ∨�(q,⊥),⊥)

�(¬�(p, q), p ∨�(q,⊥))

The axiom [Re!in] (with 1 ≤ i ≤ n) corresponds to the following property of an (n+1)-ary

relation R: for any x0, x1, . . . , xn, and y1, . . . , yn,

Rx0x1 · · ·xn & Rxiy1 · · · yn =⇒ Rxi−1xiy1 · · · yn−1.

Using arrows to represent R, we get the dotted path from the two solid paths in Figure 10.2.

An (n + 1)-ary relation satisfying the above condition for every i from 1 to n is said to be

strongly semital. The class of (n+ 1)-ary relational frames that are both serial and strongly

semital determines the system DR!n. (See Theorem 10.3.4 for the correspondence result

and Section 10.4 for the determination result.)

Theorem 10.2.8. The principles of residuation [Rein] is provable in DR!n. Hence the n-

adic system of deontic residuation DRn is included in the n-adic system of strong deontic

residuation DR!n.

Proof. The proof is by induction on i. The base case is obvious since [Re1
n] is just [Re!1n].

For the inductive case, assume

[Rein] �(p1, . . . , pn)→
�(p1, . . . , pi−1, pi ∨�(pi+1, . . . , pn,⊥i),⊥n−i)
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Figure 10.2: Strong semita at the i-th place

is provable in DR!n (the inductive hypothesis), and show that

[Rei+1
n ] �(p1, . . . , pn)→

�(p1, . . . , pi−1, pi, pi+1 ∨�(pi+2, . . . , pn,⊥i+1),⊥n−i−1)

is provable in DR!n. Given the inductive hypothesis, it suffices to show that the following

is provable in DR!n.

�(p1, . . . , pi−1, pi ∨�(pi+1, . . . , pn,⊥i),⊥n−i)→

�(p1, . . . , pi−1, pi, pi+1 ∨ �(pi+2, . . . , pn,⊥i+1),⊥n−i−1) (†)

Applying suitable uniform substitutions to [Re!i+1
n ], we obtain

�(⊥i−1,¬�(pi+1, . . . , pn,⊥i), pi+1 ∨�(pi+2, . . . , pn,⊥i+1),⊥n−i−1)

from which by [RMn] we derive the following theorem of DR!n.

�(p1, . . . , pi−1,¬�(pi+1, . . . , pn,⊥i), pi+1 ∨�(pi+2, . . . , pn,⊥i+1),⊥n−i−1)

On the other hand, the following is derivable in DR!n by using PL and [RMn].

�(p1, . . . , pi−1, pi ∨�(pi+1, . . . , pn,⊥i),⊥n−i)→

�(p1, . . . , pi−1, pi ∨�(pi+1, . . . , pn,⊥i), pi+1 ∨�(pi+2, . . . , pn,⊥i+1),⊥n−i−1)

From the last two displayed formulas, we obtain by PL the following theorem of DR!n.

�(p1, . . . , pi−1, pi ∨�(pi+1, . . . , pn,⊥i),⊥n−i)→

�(p1, . . . , pi−1, pi ∨�(pi+1, . . . , pn,⊥i), pi+1 ∨�(pi+2, . . . , pn,⊥i+1),⊥n−i−1)∧

�(p1, . . . , pi−1,¬�(pi+1, . . . , pn,⊥i), pi+1 ∨�(pi+2, . . . , pn,⊥i+1),⊥n−i−1)
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Finally by [Cn], [RMn], and the following PL-valid formula

(pi ∨�(pi+1, . . . , pn,⊥i)) ∧ ¬�(pi+1, . . . , pn,⊥i)→ pi

we get the desired result (†). a

Another sense in which DR!n is a strong system is that it can be embedded in D1 by the

following translation scheme ∗ mapping formulas of Ln to those of L1 (see Section 10.5).

�(α1, . . . , αn)∗ = �(α1
∗ ∨�(α2

∗ ∨ · · · ∨�(αn−1
∗ ∨�αn∗) . . . )).

In other words, the n-ary modal operator � of DR!n can be represented by the unary � of

D1 or equivalently the so-called Standard Deontic Logic SDL.

10.3 Classes of frames for Dn, DRn and DR!n

The class of frames for a system is the class of frames that validates every theorem of

the system. We show that the classes of (n + 1)-ary relational frames for DRn and DR!n
are, respectively, the class of serial and semital frames, and the class of serial and strongly

semital frames. Given that PL and [Cn] are valid, and [RMn] and [RNn] preserve validity in

the general class of (n+ 1)-ary relational frames, it is sufficient to show that the classes of

frames validating the remaining axioms of these systems, viz. [P�n], [Ren], and [Re!n], are

the classes of serial, semital, and strongly semital frames, respectively. In other words, we

show that each of the axioms (or axiom schema) just mentioned is valid on an (n + 1)-ary

relational frame if and only if the frame is in the indicated class of frames.

Definition 10.3.1. Let n ≥ 1. An (n + 1)-ary relational frame F = 〈U,R〉 is said to be

serial if R satisfies the following condition.

[Serialityn+1] (∀x)(∃y1, . . . , yn)Rxy1 · · · yn

F is said to be semital if R satisfies the following condition for all i with 1 ≤ i ≤ n.

[Semitain+1] (∀x0, x1, . . . , xn, y1, . . . , yn)(Rx0x1 · · ·xn ∧Rxiy1 · · · yn →
Rx0x1 · · ·xiy1 · · · yn−i)

F is said to be strongly semital if R satisfies the following condition for all i with 1 ≤ i ≤ n.

[Semita!in+1] (∀x0, x1, . . . , xn, y1, . . . , yn)(Rx0x1 · · ·xn ∧Rxiy1 · · · yn →
Rxi−1xiy1 · · · yn−1) a
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As we explained in Section 10.2.2, one way to read the conditions of semita and strong

semita is to treat the (n + 1)-ary relation R as consisting of paths, each of (n + 1) nodes.

See also Figures 10.1 and 10.2.

Theorem 10.3.2. [P�n] corresponds to [Serialityn+1], i.e. for any (n + 1)-ary relational

F = 〈U,R〉,

F |= [P�n] ⇐⇒ F |= [Serialityn+1].

Proof. For =⇒, assume F is not serial, i.e. there exists an x such that for all y1, . . . , yn, we

have ¬Rxy1, . . . , yn. It follows directly from the truth condition for � that �(⊥, . . . ,⊥) is

true at x in any model on F. Thus F 6|= [P�n].

For ⇐=, assume F is serial. It is straightforward to see that for any x in any M on F,

we have M, x |= ♦n(>, . . . ,>), i.e. M, x |= ¬�(⊥, . . . ,⊥). Hence F |= [P�n]. a

Theorem 10.3.3. [Rein] corresponds to [Semitain+1] (where 1 ≤ i ≤ n), i.e. for every

(n+ 1)-ary relational frame F = 〈U,R〉,

F |= [Rein] ⇐⇒ F |= [Semitain+1].

Proof. For =⇒, assume F does not satisfy [Semitain+1], i.e. there exist x0, x1, . . . , xi, . . . , xn,

y1, . . . , yn such that Rx0x1 · · ·xi · · ·xn and Rxiy1 · · · yn but ¬Rx0x1 · · ·xiy1 · · · yn−i. Con-

sider a model M = 〈F, V 〉 where the valuation V satisfies the following conditions.

V (p1) = U − {x1}

V (p2) = U − {x2}
...

V (pi) = U − {xi}

V (pi+1) = U − {y1}
...

V (pn) = U − {yn−i}

It is not difficult to see that M, x0 |= �(p1, p2, . . . , pn). (Observe that if Rx0z1z2 · · · zn for

some arbitrary z1, z2, . . . , zn, then at least one of the following identities does not hold:

z1 = x1, z2 = x2, . . . , zi = xi, zi+1 = y1, . . . , zn = yn−i since ¬Rx0x1 · · ·xiy1 · · · yn−i.)
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Furthermore, we have M, x1 |= ¬p1, M, x2 |= ¬p2, . . . , M, xi |= ¬pi, and M, xi |=
♦n(¬pi+1, . . . ,¬pn,>, . . . ,>) (note that Rxiy1 · · · yn). Since Rx0x1 · · ·xn, the following

holds.

M, x0 6|= �(p1, . . . , pi−1, pi ∨�(pi+1, . . . , pn,⊥, . . . ,⊥),⊥, . . . ,⊥)

Thus F 6|= [Rein].

For ⇐=, assume F satisfies [Semitain]. It is straightforward to verify that for any point

x in any M = 〈F, V 〉 we have M, x |= [Rein]. a

Theorem 10.3.4. [Re!in] corresponds to [Semita!in+1] (where 1 ≤ i ≤ n), i.e. for every

(n+ 1)-ary relational frame F = 〈U,R〉,

(1) F |= [Re!1n] ⇐⇒ F |= [Semita!1n+1], and

(2) F |= [Re!jn] ⇐⇒ F |= [Semita!jn+1], where 2 ≤ j ≤ n.

Proof. Case (1). [Re!1n] is just [Re1
n], and [Semita!1n] just [Semita1

n]. Thus case (1) follows

directly from Theorem 10.3.3

Case (2). For =⇒, assume F does not satisfy [Semita!jn+1] or equivalently there ex-

ist x0, x1, . . . , xj , . . . , xn, y1, . . . , yn such that both Rx0x1 · · ·xj · · ·xn and Rxjy1 · · · yn but

¬Rxj−1xjy1 · · · yn−1. Consider a model M = 〈F, V 〉 satisfying the following conditions.

V (p1) = U − {xj}

V (p2) = U − {y1}

V (p3) = U − {y2}
...

V (pn) = U − {yn−1}

Again it is not difficult to show that M, xj−1 |= �(p1, p2, . . . , pn). (Observe that if we

have Rxj−1z1z2 · · · zn for some arbitrary z1, z2, . . . , zn, then at least one of the following

does not hold: z1 = xj , z2 = y1, z3 = x2, . . . , zn = yn−1, since ¬Rxj−1xjy1 · · · yn−1.)

Furthermore, M, xj |= ¬p1 and M, xj |= ♦n(¬p2, . . . ,¬pn,>) (note that Rxjy1 · · · yn). So

M, xj |= ¬(p1 ∨�(p1, . . . , pn,⊥)). Given that Rx0x1 · · ·xj · · ·xn, we thus have F 6|= [Re!jn].

For ⇐=, assume F satisfies [Re!jn]. It is straightforward to verify that for any point x in

any M = 〈F, V 〉 we have M, x |= [Re!jn]. a
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Theorem 10.3.5. The classes of (n + 1)-ary relational frames for the following normal

n-adic systems are as indicated:

Dn : Serial

DRn : Serial and semital

DR!n : Serial and strongly semital

Proof. The theorem follows directly from Theorems 10.3.2, 10.3.3, and 10.3.4. a

10.4 Determination for Dn, DRn and DR!n

Soundness of Dn, DRn, and DR!n with respect to their classes of frames follows immediately

from Theorem 10.3.5. In the following, we demonstrate that they are also complete by

showing that every Dn-consistent set of formulas is satisfiable on a serial (n+1)-ary relational

frame, every DRn-consistent set of formulas is satisfiable on a serial and semital (n+ 1)-ary

relational frame, and every DR!n-consistent set of formulas is satisfiable on a serial and

strongly semital (n+ 1)-ary relational frame. Given that these systems are normal systems,

we make use of the result that the canonical model of any normal system is a model for

every set of formulas consistent in that system. (Refer to Section 2.5.) What remains to

be shown for completeness of our systems is thus the following: the canonical model of Dn

is serial, that of DRn is serial and semital, and that of DR!n is serial and strongly semital.

We show the above after describing the canonical model of a normal system.

We recall here that the canonical model of a normal n-adic system S, denoted MS, is

the triple 〈US, RS, VS〉 where:

• US is the set of all maximal S-consistent set of Ln-formulas.

• For every x, y1, . . . , yn ∈ US, RSxy1 · · · yn iff the following condition holds for any

Ln-formulas α1, . . . , αn:

�(α1, . . . , αn) ∈ x =⇒ ∃i : αi ∈ yi.

• For every propositional variable pi and x ∈ US, x ∈ VS(pi) iff pi ∈ x.

In the ensuing proofs, we make use of, often silently, the following properties of canonical

models and maximal consistent sets of formulas (for any normal n-adic system S):
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• Every Ln-formula α is true at a point x in MS if and only if α belongs to x.

• Every maximal S-consistent sets of formulas contains all the theorems of S and is

closed under logical consequence.

Theorem 10.4.1. Let S be a normal deontic n-adic system, and MS = 〈US, RS, VS〉 its

canonical model. Then RS is serial.

Proof. To show that RS is serial, we consider an arbitrary x in US. Since ♦n(>, . . . ,>) ∈ x,

we have MS, x |= ♦n(>, . . . ,>). Then there exist y1, . . . , yn such that RSxy1 · · · yn. In other

words, RS is serial. a

Theorem 10.4.2. Let S be an n-adic system of deontic residuation, and MS = 〈US, RS, VS〉
its canonical model. Then RS is both serial and semital.

Proof. Given that S is also a normal deontic system, we know that RS is serial from The-

orem 10.4.1. To show that RS is semital, i.e. it satisfies the condition [Semitain+1] for all i

from 1 to n, we assume RSx0 · · ·xi · · ·xn and RSxiy1 · · · yn (for arbitrary x0, . . . , xi, . . . , xn,

y1, . . . , yn, and 1 ≤ i ≤ n), and show that RSx0 · · ·xiy1 · · · yn−i. In other words, we show

that if �(α1, . . . , αn) ∈ x0 (for arbitrary α1, . . . , αn) then at least one of the following holds:

α1 ∈ x1, . . . , αi ∈ xi, αi+1 ∈ y1, . . . , αn ∈ yn−i. So assume �(α1, . . . , αn) ∈ x0. Since

[Rein] ∈ x0, we have:

�(α1, . . . , αi−1, αi ∨�(αi+1, . . . , αn,⊥i),⊥n−i) ∈ x0;

MS, x0 |= �(α1, . . . , αi−1, αi ∨�(αi+1, . . . , αn,⊥i),⊥n−i);
α1 ∈ x1 or · · · or αi−1 ∈ xi−1 or αi ∨�(αi+1, . . . , αn,⊥i) ∈ xi.

So if α1 /∈ x1, . . . , and αi−1 /∈ xi−1, then αi ∨ �(αi+1, . . . , αn,⊥i) ∈ xi. If in addition

αi /∈ xi, then

�(αi+1, . . . , αn,⊥i) ∈ xi;
MS, xi |= �(αi+1, . . . , αn,⊥i);
αi+1 ∈ y1 or · · · or αn ∈ yn−i

which is what we want. a

Theorem 10.4.3. Let S be an n-adic system of strong deontic residuation, and MS =

〈US, RS, VS〉 its canonical model. Then RS is both serial and strongly semital.
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Proof. Seriality follows from Theorem 10.4.1. For [Semita!in] where 1 ≤ i ≤ n, note that

the case of i = 1 has already been shown in Theorem 10.4.2 since [Semita!1n] is the same as

[Semita1
n], and [Re!1n] the same as [Re1

n]. It remains to show RS satisfies [Semita!jn] where

2 ≤ j ≤ n.

Assume RSx0x1 · · ·xj · · ·xn and RSxjy1 · · · yn (for arbitrary x0, . . . , xn, y1, . . . , yn and

1 ≤ j ≤ n), and show that RLxj−1xjy1 · · · yn−1 or equivalently if �(α1, . . . , αn) ∈ xj−1, then

α1 ∈ xj or αk ∈ yk−1 for some k such that 2 ≤ k ≤ n. So assume �(α1, . . . , αn) ∈ xj−1.

Since [Re!jn] is in x0, we argue as follows:

�(⊥j−2,¬�(α1, . . . , αn), α1 ∨�(α2, . . . , αn,⊥),⊥n−j) ∈ x0;

MS, x0 |= �(⊥j−2,¬�(α1, . . . , αn), α1 ∨�(α2, . . . , αn,⊥),⊥n−j);
¬�(α1, . . . , αn) ∈ xj−1 or α1 ∨�(α2, . . . , αn,⊥) ∈ xj ;
α1 ∨�(α2, . . . , αn,⊥) ∈ xj ;
MS, xj |= α1 ∨�(α2, . . . , αn,⊥);

MS, xj |= α1 or MS, xj |= �(α2, . . . , αn,⊥);

MS, xj |= α1 or MS, y1 |= α2 or · · · or MS, yn−1 |= αn;

α1 ∈ xj or α2 ∈ y1 or · · · or αn ∈ yn−1

which is what we want. a

Theorem 10.4.4. The following normal n-adic systems are both sound and complete with

respect to the indicated classes of (n+ 1)-ary relational frames:

Dn : Serial

DRn : Serial and semital

DR!n : Serial and strongly semital

Proof. Soundness follows directly from Theorem 10.3.5. Completeness follows from Theo-

rems 10.4.1, 10.4.2, and 10.4.3. a

10.5 Embedding of DR!n in D1

A system S in a language L is said to be embeddable in another system S′ in another

language L′ if there is a translation t from L to L′ such that for every L-formula α,

`S α ⇐⇒ `S′ α
t.
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In this section, we show that DR!n can be embedded in D1 (or SDL) under the following

translation.

Definition 10.5.1. The translation ∗ maps formulas of the n-adic modal language Ln to

formulas of the monadic modal language L1 according to the following condition for �:

�(α1, . . . , αn)∗ = �(α1
∗ ∨�(α2

∗ ∨ · · · ∨�(αn−1
∗ ∨�αn∗) · · · ))

while propositional variables and truth-functional connectives are preserved under the trans-

lation. a

(The notion of embedding defined here is weaker than the notion of translational equivalence

defined in Section 8.1. So the embedding of DR!n in D1 can be derived as a corollary of

Theorem 8.4.6. Nonetheless we include this section in order to provide a direct proof of the

embedding result.)

We already know that D1 is determined by the class of serial binary relational frames and

DR!n by the class of serial and strongly semital (n+1)-ary relational frames. Thus, showing

that DR!n is embedded in D1 under ∗ is equivalent to showing that every Ln-formula α is

valid in the class of serial and strongly semital (n+1)-ary frames if and only if its translation

α∗ is valid in the class of serial binary frames. That this is the case follows from the next two

theorems, which show that a serial binary frame can be simulated by a serial and strongly

semital (n+ 1)-ary frame, and vice versa.

Theorem 10.5.2. Every serial binary relational model M = 〈U,R, V 〉 is pointwise equiva-

lent to a serial and strongly semital (n+1)-ary relational model M′ = 〈U,R′, V 〉 with respect

to the translation *, i.e. for every Ln-formula α and every x in U ,

M, x |= α∗ ⇐⇒ M′, x |= α.

Proof. We define R′ according to the following condition: for every x0, x1, . . . , xn in U ,

R′x0x1 · · ·xn ⇐⇒ x0Rx1 · · ·xn−1Rxn

where x0Rx1 · · ·xn−1Rxn stands for “Rx0x1, . . . , and Rxn−1xn.” The proof is by induction

on the formation of α. The cases for atomic formulas and truth-functional connectives are

trivial, and are omitted here. For the modal case, we consider a sub-formula of α in the
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form of �n(β1, . . . , βn) and argue first that if its translation is true at an arbitrary point x0

in M then it is true at the same point in M′. Details are as follows:

M, x0 |= �(β1
∗ ∨�(β2

∗ · · · ∨�(βn−1
∗ ∨�βn∗) · · · ));

∀x1, . . . , xn, x0Rx1 · · ·xn−1Rxn =⇒ M, x1 |= β1
∗ or · · · or M, xn |= βn

∗;

∀x1, . . . , xn, R
′x0x1 · · ·xn =⇒ M′, x1 |= β1 or · · · or M′, xn |= βn;

M′, x0 |= �n(β1, . . . , βn).

Moreover the above steps can be reversed; so we have proved the modal case. a

Theorem 10.5.3. Every serial and strongly semital (n + 1)-ary relational model M =

〈U,R, V 〉 is pointwise equivalent to a binary relational model M′ = 〈U,R′, V 〉 with respect

to the translation *, i.e. for every Ln-formula α and every x in U ,

M, x |= α ⇐⇒ M′, x |= α∗.

Proof. We define R′ as follows: for any x0, x1 in U ,

R′x0x1 ⇐⇒ ∃x2, . . . , xn : Rx0x1x2 · · ·xn.

The proof is by induction on the formation of α. We omit the cases of atomic formulas and

truth-functional connectives. For the modal case, we consider a subformula of α in the form

of �n(β1, . . . , βn), and argue first that if it is true at an arbitrary point x0 in M then its

translation is also true at the same point in M′ (and vice versa). Details are as follows:

M, x0 |= �n(β1, . . . , βn);

∀x1, . . . , xn, Rx0x1 · · ·xn =⇒ ∃i(1 ≤ i ≤ n) : M, xi |= βi;

∀x1, . . . , xn, x0R
′x1 · · ·xn−1R

′xn =⇒ ∃i(1 ≤ i ≤ n) : M′, xi |= βi
∗;

M′, x0 |= �(β1
∗ ∨�(β2

∗ · · · ∨�(βn−1
∗ ∨�βn∗) · · · )).

Moreover the above steps can be reversed. For the reasoning from line two to line three

above (and the reverse direction), observe that given that R is serial and strongly semital,

we have

Rx0x1 · · ·xn ⇐⇒ x0R
′x1 · · ·xn−1R

′xn.

For the left-to-right direction, assume that Rx0 · · ·xi−1xi · · ·xn. Since R is serial, we have

Rxiy1 · · · yn (for some y1, . . . , yn). But R is strongly semital. Thus Rxi−1xiy1 · · · yn−1, from



CHAPTER 10. THE LOGIC OF DEONTIC RESIDUATION 188

which it follows that R′xi−1xi. For the right-to-left direction, we start from R′xn−1xn. By

the definition of R′, Rxn−1xny1 · · · yn−1 for some y1, . . . , yn−1, and Rxn−2xn−1z1 · · · zn−1 for

some z1, . . . , zn−1. But R is strongly semital. Thus Rxn−2xn−1xny1 · · · yn−2. By repeating

the same argument, we eventually get Rx0x1 · · ·xn. a

Theorem 10.5.4. The n-adic modal system DR!n is embedded in the monadic modal system

D1 under the translation ∗. In other words, for every Ln-formulas,

`DR!n α ⇐⇒ `D1 α
∗.

Proof. For =⇒, assume 6`D1 α
∗. Then α∗ does not hold a serial binary relational model.

Then, by Theorem 10.5.2, α does not hold in a serial and strongly semital (n + 1)-ary

relational model. In other words, 6`DR!n . Argument for the ⇐= direction is similar but

makes use of Theorem 10.5.3. a

10.6 The logic of deontic residuation: an interpretation

10.6.1 Principal and residual obligations

In the introduction, we remarked that different sanctions might attend different omissions

of obligation, and analyzing deontic necessity in terms of a single sanction simply ignores

this subtlety of our deontic discourse. Let us consider the following scenario. Suppose you

ought to help your neighbour, because of a previous promise, for example. Unexpected

circumstances might prevent you from fulfilling your obligation. In that case, you incur an

obligation to apologize to your neighbour. But should you fail to do that either, you ought

to avoid your neighbour lest you might embarrass yourself. We say that you have a principal

obligation to help you neighbour, and, defaulting on that, you incur a residual obligation

to apologize to your neighbour. The residuation of “previous” obligations could go on for

some further steps, as our example above illustrated.

In our systems of deontic residuation, we formalize the residuation of deontic necessity

by a series of polyadic modal operators �’s. The formula �(α, β) means that default on α

makes β obligatory, or, in our terminology, an obligation of α residuates into an obligation

of β. We also call α the principal, and β the residuum, of the residuating obligation �(α, β).

In the general case of �(α1, α2, . . . , αn), the sequence 〈α2, . . . , αn〉 is said to the residua of

the principal α1, with αi+1 (1 ≤ i < n) being called the i-th residuum. In the rest of this



CHAPTER 10. THE LOGIC OF DEONTIC RESIDUATION 189

section, we limit our consideration to the dyadic system of deontic residuation for simplicity.

See Example 10.2.5 for the axioms and rules of DR2. An interpretation of them is offered

below.

• [RM2]: Obligations, principal or residual, are closed under logical consequence.

• [RN2]: Any logical truth is an absolute obligation, principal or residual. (An obligation

is said to be absolute if, in the case of a principal obligation, every formula is a residue

of it, or, in the case of a residual obligation, it is a residue of every formula. Note

that given the rule [RM2], the above amounts to saying that a principal obligation of,

say α, is absolute if �(α,⊥) holds, and a residual obligation of, say β, is absolute if

�(⊥, β) holds.) The sense of an absolute obligation is that one cannot shirk it. Since

an obligation of logical truth is trivially fulfilled, the rule [RN2] is pretty harmless,

even for those who dislike the idea of logic being able to impose obligation by itself.

• [C2]: If two principal obligations shares the same residue, they aggregate. If two

residual obligations come from the same principal, they aggregate.

• [P�2]: The axiom excludes the unwelcome situation of having the false both as a

principal obligation and as a residue (i.e. the situation in which one ought to do the

logically impossible, or failing that, which is bound to happen, one is still obligated

to do it). Put it another way, the false is not a persistent obligation. (An obligation

of α is said to be persistent if �(α, α) holds, i.e. if it has itself as a residue.)

• [Re2]: A principal obligation of α with a residuum of β implies an absolute principal

obligation of α ∨ �(β,⊥). Whereas all the rules and axioms discussed so far, viz.

[RM2], [RN2], [C2], and [P�2], deal with obligations in the same place of �, the

principle of residuation [Re2] shows how an obligation in the second place gives rise to

an obligation in the first place. Facing a residuating obligation with α as the principal

and β as the residuum, one is obligated to make a choice (which is unavoidable)

between realizing α and bringing upon oneself an obligation of realizing β. Note that

the second obligation is “unshirkable”, reflecting the limitation of deontic residuation

to one residuum in the case of the dyadic �.
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10.6.2 Representation of normative conflicts

Two obligations (say the obligation to realize α and the obligation to realize β) are said to

be in conflict if {α, β} is logically inconsistent, or in the formal representation, the false

can be derived from {α, β}. Plausibly, there are genuine cases of conflicting obligations, as

for example, when one ought to help one’s neighbour and ought not to help him. A more

subtle (and more usual) form of deontic conflict, however, involves impracticability rather

than logical inconsistency, as when one inadvertently commits to helping one’s neighbour

and to visiting one’s parents but it is practically impossible to do both. We can represent

such impracticabilities by augmenting our system of deontic residuation (DR2) with domain-

specific axioms, for instance, the axiom that if you help your neighbour, then you do not

visit your parents:

HelpNeighbour → ¬V isitParents.

In such an augmented system, which we might call DR+
2 , the duties of being an attentive

neighbour and being a dutiful offspring become logically inconsistent.

We note that two conflicting absolute principal obligations yield logical inconsistency in

our system DR+
2 . For if HelpNeighbour → ¬V isitParents is part of our augmented sys-

tem, then we can derive from �(HelpNeighbour,⊥) and �(V isitParents,⊥), by applying

[C2] and [RM2], the conclusion that �(⊥,⊥), which contradicts [P�2]. This intolerance

of conflicts among absolute principal obligations mirrors similar intolerance of conflicting

obligations in the monadic DR1, which is of course the same system as D1 or SDL.

By contrast, DR2 allows non-absolute principal obligations to conflict. To continue the

example above, suppose that the only residue of the principal obligation of helping the

neighbour is to apologize to him, and the only residue of the principal obligation of visiting

one’s parents is to call them. In other words, we have the following:

�(HelpNeighbour,ApologizeToNeighbour);

�(V isitParents, CallParents).

Even though HelpNeighbour and V isitParents are inconsistent in our augmented system

DR+
2 , we cannot derive �(⊥,⊥) from the above two obligations with residues. Instead we

derive, by using [C2] and [RM2], the formula �(⊥, ApologizeToNeighbour∨CallParents).
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More interestingly, if we also use [Re2], we arrive at the following absolute obligation:

�

(((
HelpNeighbour ∧�(CallParents,⊥)

)
∨(

V isitParents ∧�(ApologizeToNeighbour,⊥)
)
∨(

�(ApologizeToNeighbour,⊥) ∧�(CallParents,⊥)
))
,⊥
)
.

The above obligation gives all the normative situations one possibly faces: (a) one helps

the neighbour but incurs an absolute obligation to call one’s parents; (b) one visits one’s

parents but incurs an absolute obligation to apologize to the neighbour; (c) one does neither

and incurs an absolute obligation to apologize to the neighbour and another to call one’s

parents.



Appendix A

Algebraic Systems and Boolean

Algebras

In this appendix, we present background material in the area of algebraic logic connected

with our study of polyadic modal logic. We start with some universal algebraic notions, then

move to Boolean algebras, which is then extended to modal algebras (or Boolean algebras

with operators). Algebraic logic is a big topic in both algebra and logic. We mention

here some of the references consulted when preparing this appendix. For an introduction

to universal algebra, see Burris and Sankappanavar (1981), Denecke and L. (2002). An

algebraic account of propositional logic can be found in Bell and Slomson (1971). Goldblatt

(2000) provides a useful survey on the application of algebraic ideas to modal logic but a

more detailed treatment is given in modern textbooks on modal logic such as Chagrov and

Zakharyaschev (1997) and Blackburn et al. (2001).

A.1 Algebras

An algebra A consists of a non-empty set A of objects a, b, c, . . . together with a collection

of finitary operations φ, ψ, χ . . . on A (these operations, which may be infinitely many,

are called the basic operations of A). By an n-ary operation φ on A, we means an n-ary

function from the n-th Cartesian power of A to A (i.e. φ : An → A). The number n is

called the rank or arity of φ. Note that we require n be a finite number. In this dissertation

we use ordinals to index the operations of an algebra. Thus the collection of operations

192
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of A comprises φ0, φ1, . . . , φξ, . . . where ξ < ζ for some ordinal ζ. This setup facilitates

comparison of algebras, which may have different symbols to denote their operations. Two

algebras can now be said to be similar (or belong to the same type) if there is a one-to-one

correspondence between their collections of operations and corresponding operations have

the same rank. We give below formal definitions of abstract types and algebras. (The

types are called abstract because they are independent of the symbols used to denote the

operations of particular types of algebras).

Definition A.1.1 (Abstract type). An abstract type (or simply a type) is a pair τ = 〈ζ, ρ〉
where ζ is an ordinal, and ρ (called the rank function of τ) maps ζ into ω, i.e. for any ordinal

ξ < ζ, ρ(ξ) is a natural number n (called the rank or arity of ξ). a

Definition A.1.2 (Algebras). Let τ = 〈ζ, ρ〉 be a type. An algebra A of type τ is a pair

〈A,O〉 where A is a non-empty set called the carrier of the algebra, and O is a collection of

operations φ0, φ1, . . . , φξ, . . . such that ξ < ζ and each φξ is a ρ(ξ)-ary operation on A. (We

often denote A by 〈A, φξ〉ξ<ζ in order to display the operations of A.) a

Our definition of an algebra allows for nullary operations, the output of each of which is

a fixed member of the algebra. As a matter of convention, we call a nullary operation by the

name of the object it picks out from the carrier of the algebra. Two algebras A = 〈A, φξ〉ξ<ζ
and B = 〈B,ψξ〉ξ<η are said to be similar if they are of the same type, i.e. ζ = η, and for

every ξ < ζ the rank of φξ is the same as that of ψξ.

When a type τ = 〈k, ρ〉 is finite, i.e. when k is a finite ordinal, we represent τ by the

sequence ρ(0), ρ(1), . . . , ρ(k−1). An algebra A of finite type τ = 〈k, ρ〉 can thus be written as

a tuple 〈A, φ0, φ1, . . . , φk−1〉, and it is said to be of type ρ(0), ρ(1), . . . , ρ(k− 1). Whereas in

our definition of algebras the operations are called φξ’s, particular types of algebras studied

in mathematics often denote their operations by specific symbols, as the following examples

illustrate.

Example A.1.3 (Groups and Abelian groups). A group is an algebra 〈G, ·,−1 , 1〉 of type

2, 1, 0 satisfying the following axioms.

a · (b · c) = (a · b) · c (G1)

a · 1 = 1 · a = a (G2)

a · a−1 = a−1 · a = 1 (G3)
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G is an Abelian group (or commutative group) if it satisfies, in addition to (G1), (G2) and

(G3), the following axiom.

a · b = b · a (G4)

Note that when the binary operation on G is denoted by ·, the group is said to be written

multiplicatively, in which case the unary operation is denoted by −1 (with a−1 called the

inverse of a), and the nullary operation is denoted by 1 (called the identity element of the

group). Sometimes a group is presented additively: its binary operation is denoted by +.

In such a case, the inverse of a is usually denoted by −a (also called the negative of a), and

the identity element is denoted by 0 (also called the zero element). In other words, a group,

when presented additively, is an algebra 〈G,+,−, 0〉 of type 2, 1, 0 satisfying the following

conditions (G1’), (G2’) and (G3’). An Abelian group, when presented additively, satisfies

(G4’) as well.

a+ (b+ c) = (a+ b) + c (G1’)

a+ 0 = 0 + a = a (G2’)

a+ (−a) = (−a) + a = 0 (G3’)

a+ b = b+ a (G4’)

Example A.1.4 (Semigroups and monoids). A semigroup is an algebra 〈S, ·〉 of type 2

satisfying (G1). A monoid is an algebra 〈M, ·, 1〉 of type 2, 0 satisfying (G1) and (G2). a

Example A.1.5 (Rings). A ring is an algebra 〈R,+, ·,−, 0〉 of type 2, 2, 1, 0 satisfying the

following.

〈R,+,−, 0〉 is an Abelian group. (R1)

〈R, ·〉 is a semigroup. (R2)

x · (y + z) = (x · y) + (x · z)

(x+ y) · z = (x · z) + (y · z)
(R3)

A ring with identity is an algebra 〈R,+, ·,−, 0, 1〉 of type 2, 2, 1, 0, 0 such that (R1), (R2),

(R3) and (G2) hold. In other words, 〈R,+, ·,−, 0, 1〉 is a ring with identity iff 〈R,+, ·,−, 0〉
is a ring and 〈R, ·, 1〉 is a monoid. a
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A.2 Operations on algebras

In the following, we describes several ways of constructing new algebras from given ones, viz,

the constructions of homomorphic images, subalgebras and product algebras, which lead us

to the important notion of a variety of algebras. Note that the new algebras are of the same

type as the original ones.

A.2.1 Homomorphisms

Definition A.2.1 (Homomorphisms). Let A = 〈A, φξ〉ξ<ζ and B = 〈B,ψξ〉ξ<η be two

algebras of the same type. A map f : A → B is a homomorphism if for any φξ and

a1, . . . , an ∈ A (where n is the rank of φξ),

f(φξ(a1, . . . , an)) = ψξ(f(a1), . . . , f(an)). a

For any two similar algebras A and B, we say that B is a homomorphic image of A if

there is a surjective homomorphism from A onto B. Given a class C of algebras, HC denotes

the class of homomorphic images of the algebras in C.

A bijective homomorphism, or equivalently a homomorphism whose inverse is also a

homomorphism, is called an isomorphism. If there is an isomorphism from A to B, we

say that A and B are isomorphic (or they are isomorphic images of each other) and write

A ∼= B. In general we do not distinguish between isomorphic algebras.

A.2.2 Subalgebras

Definition A.2.2 (Subalgebras). Let A = 〈A, φξ〉ξ<ζ be an algebra, and B a subset of A

closed under every operation φξ. Then we call B = 〈B,ψξ〉ξ<ζ a subalgebras of A if ψξ is

φξ � B, i.e. the restriction of φξ to B. a

An algebra B is said to be embeddable in another algebra A if B is isomorphic to a

subalgebra of A, and the isomorphism is called an embedding. SC denotes the class of

isomorphic images of subalgebras of algebras in class C.

A.2.3 Products of algebras

Definition A.2.3 (Products of algebras). Let I be an index set, and {Ai}i∈I a collection of

algebras of type τ = 〈ζ, ρ〉. In other words, for each i ∈ I, Ai is 〈Ai, φiξ〉ξ<ζ and the rank of
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φiξ is ρ(ξ). The product of these algebras, denoted
∏
i∈I Ai, is the algebra 〈

∏
i∈I Ai, φξ〉ξ<ζ ,

where
∏
i∈I Ai the Cartesian product of the carriers of Ai’s, and the operation φξ of rank

n = ρ(ξ) is defined as follows:

φξ(〈ai1〉i∈I , . . . , 〈ain〉i∈I) = 〈φiξ(ai1, . . . , ain)〉i∈I ,

where for any i ∈ I, ai1, . . . , a
i
n ∈ Ai. If Ai’s are the same algebra A, we write AI and call it

a power of A.

Given a class C of algebras, PC is the class of isomorphic copies of products of algebras

in C.

A.2.4 Varieties

A class C of algebras is called a variety if it is closed under taking homomorphic images,

subalgebras, and products, i.e. HC ⊆ C, SC ⊆ C, and PC ⊆ C. Where C is a class of

algebras, VC denotes the smallest variety including C. We also say that it is the variety

generated by C.

Theorem A.2.4. Let C be a class of algebras. Then we have VC = HSPC.

An import of the above theorem is that we can obtain the variety generated by C, by

first taking products of algebras in C, then taking subalgebras of PC, and finally forming

homomorphic images of SPC. Further applications of these operations will not produce any

new algebras.

A.3 Equational classes

A.3.1 Algebraic languages

In order to develop a metatheory of a class of similar algebras, say of type τ = 〈ζ, ρ〉, we

require a formal language that is suitable for the purpose. First of all, the language should

have a set S of operation symbols corresponding to the operations of the algebras. In other

words, S consists of a sequence of operation symbols s0, s1, . . . , sξ, . . . , with ξ < ζ, and the

rank of sξ is ρ(ξ). Besides the operation symbols, we need a set X of variables in order to

talk about elements of the algebras. We call this language the algebraic language of type
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τ over X, and denote it by Lτ (X). The terms of Lτ (X) is defined by the following rule in

BNF:

t ::= x|sξ( t, . . . , t︸ ︷︷ ︸
ρ(ξ)times

),

where x ranges over the set X of variables, and sξ over the set S of operation symbols. An

equation is a pair of terms 〈t1, t2〉, often written as t1 ≈ t2.

A.3.2 Valuation and satisfaction

An algebra A = 〈A, φξ〉ξ<ζ of type τ = 〈ζ, ρ〉 can be considered as an interpretation of the

algebraic language Lτ (X) — the operation φξ is simply the denotation of the operation

symbol sξ. Each term of the language is assigned an element of the carrier A according to

a valuation or assignment function V satisfying the following conditions:

• V (x) ∈ A, for every variable x;

• V (sξ(t1, . . . , tn)) = φξ(V (t1), . . . , V (tn)), for every operation symbol sξ of rank n, and

terms t1, . . . , tn.

Note that we could have defined V as a function mapping X to A, and extend it to another

function V + that covers every term of the language. But for simplicity, we define V in such

a way that it already covers all the terms of the language, including its variables.

An A is said to satisfy an equation t1 ≈ t2 if V (t1) = V (t2) for every V on A. A class

C of algebras is said to satisfy t1 ≈ t2 if every algebra of C satisfies it. When A (or C)

satisfies t1 ≈ t2, we also say that the equation is true in A (or C) or holds in A (or C). More

formally, we have the following definitions.

• A |= t1 ≈ t2 if for all V on A, V (t1) = V (t2); otherwise A 6|= t1 ≈ t2.

• C |= t1 ≈ t2 if for all A ∈ C, A |= t1 ≈ t2; otherwise C 6|= t1 ≈ t2.

A.3.3 Equational classes

The notion of satisfaction for an equation can be extended to a set E of equations.

• A |= E if for any equation t1 ≈ t2 in E, A |= t1 ≈ t2; otherwise, A 6|= E.
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• C |= E if for any equation t1 ≈ t2 in E, C |= t1 ≈ t2; otherwise, C 6|= E.

A class C of algebras is said to be defined by a set E of equations if for every algebra

A, A ∈ C iff C |= E. We say that C is equationally definable or an equational class if

it is defined by a class of equations. The following theorem due to Birkhoff provides an

important link between the structure theoretic and the equational approaches in studying

universal algebra.

Theorem A.3.1 (Birkhoff). A class C of algebras is an equational class iff it is a variety.

A.4 Algebraic semantics for propositional languages

Recall that a propositional language over a set P of variables contains connectives ∨, ¬, and

⊥, which are binary, unary, and nullary connectives respectively. Such a language can be

considered as an algebraic language of type 〈2, 1, 0〉, and any algebra of the same type could

be used to interpret it. However, we want the algebraic operations to follow certain rules

that reflect the meaning we intend for the connectives. The equational class of Boolean

algebras are commonly held to be suitable for interpreting propositional languages.

A.4.1 Boolean algebras

Definition A.4.1 (Boolean algebras). A Boolean algebra (BA) is a 2, 1, 0-type algebra

A = 〈A,+,−, 0〉 whose operations, called respectively joint, complementation, and the zero

element, satisfy the following conditions for any a, b, c ∈ A.

a+ b = b+ a a · b = b · a (Commutative laws)

a+ (b+ c) = (a+ b) + c a · (b · c) = (a · b) · c (Associative laws)

a+ 0 = a a · 1 = a (Identity laws)

a+ (−a) = 1 a · (−a) = 0 (Complement laws)

a+ (b · c) = (a+ b) · (a+ c) a · (b+ c) = (a · b) + (a · c)(Distributive laws)

Observe that we have used the following shorthands in stating the above conditions:

• a · b, called the meet of a and b, abbreviates −a+−b.

• 1, called the unit element, abbreviates −0.
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Finally, the class of all Boolean algebras is denoted by BA. a

A Boolean algebra A = 〈A,+,−, 0〉 can be considered as a complemented distributive

lattice 〈A,≤〉 where a ≤ b iff a+ b = b or equivalently a · b = a. Conversely a complemented

distributive lattice 〈A,≤〉 can be considered as a Boolean algebra A = 〈A,+,−, 0〉 where

a + b is the supremum of {a, b}, −a is the lattice complement of a, and 0 is the minimum

of lattice.

An element a of a Boolean algebra is said to be less than, or below, another element

b (a ≤ b in symbol) if a ∨ b = b or equivalently a ∧ b = a. Indeed, a Boolean algebra

A = 〈A,+,−, 0〉 can be considered as a complemented distributive lattice 〈A,≤〉.
Given a set {ai}i∈I of (possibly infinitely many) elements of a Boolean algebra, we define

the joint and meet of the set as follows,∑
i∈I

ai = inf({ai}i∈I)
∏
i∈I

ai = sup({ai}i∈I)

where for any set B of elements of A, inf(B) is the infimum or the greatest lower bound

of B in A, and sup(B) is the supremum or the least upper bound of B in A. If {ai}i∈I is

finite, i.e. it consists of a1, . . . , ai, . . . , an for some natural number n, its joint can be written

as a1 + · · ·+ ai + · · ·+ an and its meet as a1 · · · · · ai · · · · · an.

In the following we define filters and ultrafilters in Boolean algebras and list important

theorems of them which we will require later.

Definition A.4.2 (Filters and ultrafilters). Let A = 〈A,+,−, 0〉 be a Boolean algebra, and

a, b elements of the algebra.

(1) A subset F of A is a filter in A if

(i) it is non-empty;

(ii) it is closed under taking meets, i.e. if a, b ∈ F , then a · b ∈ F ;

(iii) it is upward closed, i.e. if a ∈ F and a ≤ b, then b ∈ F .

(2) A filter F in A is proper if F 6= A.

(3) An ultrafilter is a proper filter which has no proper extensions which are also proper

filters. The collection of all ultrafilters in A is denoted by Uf(A).

Theorem A.4.3. The following hold for any Boolean algebra A = 〈A,+,−, 0〉.
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(1) A filter F in A is an ultrafilter iff for each a ∈ A, either a ∈ F or −a ∈ F but not

both.

(2) (The ultrafilter theorem) Every proper filter in A can be extended to an ultrafilter.

(3) Each set of elements of A having the finite intersection property can be extended to an

ultrafilter. (A set B of elements of A is said to have the finite intersection property if

the meet of every finite subset of B is not identical with 0.)

(4) Each non-zero element of A is contained in some ultrafilters.

(5) If a and b are distinct element of A, then there is an ultrafilter containing one but not

the other.

A.4.2 Interpretation of propositional languages In Boolean algebras

We remarked earlier that a propositional language L(P ) (where P is a set of propositional

variable), considered as an algebraic language of type 〈2, 1, 0〉, can be interpreted in a

Boolean algebra A = 〈A,+,−, 0〉. More specifically, the connectives ∨, ¬, and ⊥ are read as

respectively the binary operation + (joint), the unary operation − (complementation), and

the nullary operation 0 (the zero element — recall that a nullary operation is named after

its output). The defined connective ∧ thus corresponds to the defined operation · (meet),

and the constant > to 1 (the unit element). A propositional formula is treated as a term.

So, given a valuation V on A, a formula denotes an element of the algebra according to the

following rules:

• V (p) ∈ A, for every p ∈ P ;

• V (φ ∨ ψ) = V (φ) + V (ψ);

• V (¬φ) = −V (φ);

• V (⊥) = 0.

We say that a formula φ is valid in A if the equation φ ≈ > is valid in A, i.e. A |= φ ≈ >
or, using more English, for every valuation V on A, we have V (φ) identical with 1. This

is a rather sloppy piece of terminology since we define validity in an algebra for equations

rather than for terms (which are here formulas). Continuing the same sloppiness, we say
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that φ is valid in a class C of algebras if the equation φ ≈ > is valid in every algebras of C,

i.e. C |= φ ≈ >.

A.4.3 Boolean algebras and propositional models

Example A.4.4 (The algebra of truth values). The algebra of truth values is the tuple

2 = 〈2,+,−, 0〉, where for any a, b ∈ 2 = {0, 1},

a+ b = max({a, b});

−a = 1− a.

Example A.4.5 (Power set algebras and set algebras). Given a set X, the power set algebra

of X is the tuple P(X) = 〈℘(X),∪,−, ∅〉, where ℘(X) is the collection of all subsets of X,

∪ is set union, − is set complementation, and ∅ is the empty set. A subalgebra of a power

set algebra is called a set algebra. The class of all set algebras is denoted by SET.

Theorem A.4.6. Every power set algebra is isomorphic to a power of the algebra of truth

values 2, and vice versa. Hence every set algebra is isomorphic to a subalgebra of a power

of 2, and vice versa.

Proof. Given a power set algebra P(X) = 〈℘(X),∪,−, ∅〉, we show that it is isomorphic

to 2X = 〈2X+,−, 0〉. Consider a map f : ℘(X) → 2X defined as follows: for any Y ⊆ X,

f(Y ) = 〈ax〉x∈X with ax = 1 if x ∈ Y and ax = 0 otherwise. It is not difficult to check that

f is a homomorphism, i.e. for any X1, X2 ⊆ X,

f(X1 ∪X2) = f(X1) + f(X2);

f(−X1) = −f(X1).

Moreover f is a bijective. Thus it is an isomorphism.

Conversely, given a power 2I = 〈2I+,−, 0〉 of the algebra of truth values, we show that it

is isomorphic to the power set algebra P(I) = 〈℘(I),∪,−, ∅〉. Consider a map θ : 2I → ℘(I)

defined by letting θ(〈ai〉i∈I) be the set of i’s such that ai = 1. Again it is straightforward

to show the following:

θ(〈ai〉i∈I + 〈bi〉i∈I) = θ(〈ai〉i∈I) ∪ θ(〈bi〉i∈I);

θ(−〈ai〉i∈I) = −θ(〈ai〉i∈I).

Thus θ is a homomorphism. Since it is bijective, θ is an isomorphism. a
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Theorem A.4.7 (Stone’s representation theorem). Every Boolean algebra is isomorphic to

a set algebra, hence to a subalgebra of a power of 2.

Theorem A.4.8. Validity of propositional formulas in the class of all propositional models

is equivalent to that in the following algebra and classes of algebras:

• the algebra of truth values 2;

• the class SET of all set algebras;

• the class BA of all Boolean algebras.

A.5 Algebraic semantics for modal languages

A.5.1 Modal algebras

In the previous section, we use Boolean algebras to interpret propositional languages. Recall

that modal languages are extensions of propositional languages with modal operators. Hence

it is natural to supplement Boolean algebras with additional operations, which provide

interpretations for modal operators. We call these structures “modal algebras”.

Definition A.5.1 (Modal algebras). Let τ = 〈ζ, ρ〉 be a modal type. A modal algebra (MA)

of type τ is an algebra A = 〈A,+,−, 0, l〉mξζ where 〈A,+,−, 0〉 is a Boolean algebra and

each operation mξ maps Aρ(ξ) into A. a

For each operation mξ we define another operation lξ (called its dual) as follows (where

n = ρ(ξ)).

lξ(a1, . . . , an) = −mξ(−a1, . . . ,−an)

In our definition of modal algebras, the operations mξ’s are completely general. Classes

of modal algebras can be specified by imposing conditions on these operations. In the

following, we define an important class which has been commonly called “Boolean algebras

with operators”. They are modal algebras that satisfy the conditions of normality and

additivity (see below for details). A more precise description of them is “normal and additive

modal algebras”, but we follow the tradition of calling them Boolean algebras with operators

or BAO in short. Note that some authors have called them “normal modal algebras” or

simply “modal algebras”.
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Definition A.5.2 (Boolean algebras with operators). Let τ = 〈ζ, ρ〉 be a modal type. A

Boolean algebra with operators (BAO) of type τ is a modal algebra A = 〈A,+,−, 0,mξ〉ξ<ζ
where every mξ satisfies the following for any i ≤ n = ρ(ξ) and any a1, . . . , ai, . . . , an and

a′i in A.

mξ(a1, . . . , 0, . . . , an) = 0 (Normality)

mξ(a1, . . . , ai + a′i, . . . , an) = mξ(a1, . . . , ai, . . . , an) +mξ(a1, . . . , a
′
i, . . . , an)

(Additivity)

a

Given our earlier definition of lξ, it is easy to check that the following identities hold for

any BAO.

lξ(a1, . . . , 1, . . . , an) = 1 (Normality)

lξ(a1, . . . , ai · a′i, . . . , an) = lξ(a1, . . . , ai, . . . , an) · lξ(a1, . . . , a
′
i, . . . , an)

(Multiplicativity)

A.5.2 Interpretation of modal languages in modal algebras

A modal language of type τ = 〈ζ, ρ〉 has, in addition to the truth-functional connectives ∧,

¬, and ⊥, a series of modal connectives �ξ’s (where 1 ≤ ξ < ζ) whose arities are determined

by the function ρ. It is easy to see that a modal algebra of type 〈ζ, ρ〉 can be used to

interpret such a modal language: the denotation of the modal connective �ξ is simply the

algebraic operation lξ, and that of ♦ξ is mξ. Thus given an assignment v on a modal algebra

A = 〈A,+,−, 0, l〉mξζ, a formula of the modal language Lτ (P ) is assigned a member of the

algebra. The rules for the truth-functional connectives are as before and that for the modal

connectives are as follows:

• V (�ξ(α1, . . . , αρ(ξ)) = lξ(V (α1), . . . , V (αρ(ξ))).

• V (♦ξ(α1, . . . , αρ(ξ)) = mξ(V (α1), . . . , V (αρ(ξ))).

Validity of Lτ (P )-formulas in modal algebras and in classes of modal algebras are as in

the case of propositional formulas and Boolean algebras. Given that Boolean algebras with

operators are modal algebras, the above applies to them as well.
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A.5.3 Boolean algebras with operators and relational models

Definition A.5.3 (Full complex algebras and complex algebras). Let F = 〈U,Rξ〉ξ<α be a

relational frame of type τ = 〈α, ρ〉. The full complex algebra of F, denoted F], is the algebra

〈℘(U),∪,−, ∅,mξ〉ξ<α where 〈℘(U),∪,−, ∅〉 is the powerset algebra of U , and for every

X1, . . . , Xn ⊆ U with n = ρ(ξ), x ∈ mξ(X1, . . . , Xn) iff there exist x1 ∈ X1, . . . , xn ∈ Xn

such that Rξxx1 · · ·xn. A complex algebra is a subalgebra of a full complex algebra. Where

C is a class of relational frames, we denote the class of the full complex algebras of frames

in C by C].

Proposition A.5.4. Let F = 〈U,Rξ〉ξ<α be a relational frame of type τ = 〈α, ρ〉. Its full

complex algebra F] = 〈P(U),mξ〉ξ<α is a BAO.

Proposition A.5.5 (Johnsson-Tarski theorem). Every BAO is isomorphic to a complex

algebra.

Theorem A.5.6. Let Lτ (P ) be a modal language. Validity of Lτ (P )-formulas in the class

C of all relational frames is equivalent to that in the following classes of algebras:

• the class C] of full complex algebras of frames in C;

• the class BAO of all Boolean algebras with operators.

A.6 Lindenbaum-Tarski algebras

Propositional language L(P ) can be treated as an algebraic language of the similarity type

〈2, 1, 0〉. We call the corresponding term algebra formula algebra.

Definition A.6.1 (Formula algebras). Let P be a set of propositional variables, and

FormL(P ) the set of L-formulas over P . The formula algebra of L over P is the tuple

FormL(P ) = 〈FormL(P ),+,−,⊥〉 where for any formulas α, β in FormL(P ),

α+ β = α ∨ β;

−α = ¬α. a

Note that formula algebras are not Boolean algebras. Nonetheless, there is a class of

Boolean algebras based on formula algebras, and they play an important role in the study

of algebraic completeness of propositional logic PL.
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Definition A.6.2 (Lindenbaum-Tarski algebra). Let P be a set of propositional variables,

and Form(P )/ ≡PL be the set of equivalence classes that ≡PL induces on the set of formulas

and [α] be the equivalence class containing α. Then the Lindenbaum-Tarski algebra for this

language is the structure APL(P ) = 〈Form(P )/ ≡PL,+,−, 0〉, where +, −, and 0 are defined

as follows:

[α] + [β] = [α ∨ β];

−[α] = [¬α];

0 = [⊥]. a



Appendix B

Basic Category Theory

In this appendix we review the basic notions of category theory used in Chapter 6. For a

comprehensive treatment of the subject, seeMac Lane (1998). The following books provide

accessible approach to category theory: Adámek et al. (1990), Bell (1988) and Goldblatt

(1979).

B.1 Categories

Definition B.1.1 (Categories). A category C is a tuple 〈Obj,Arr,dom, cod, ◦, id〉 where

Obj is a class of objects (a, b, c, etc.), Arr is a class of arrows (f , g, h, etc. also called

morphisms), and dom, cod, ◦ and id are the following operations.

(1) Each arrow f is assigned a pair of objects dom f and cod f (called its domain and

codomain). If dom f = a and cod f = b, we say that f is an arrow from a to b, and

write f : a→ b.

(2) Each pair of arrows f and g for which cod f = dom g (such arrows are said to be

composable) is assigned an arrow g ◦ f from dom f to cod g, called the composition or

composite of f and g.

(3) Each object a is assigned an arrow ida : a→ a called the identity arrow on a.

In addition, the operations of composition and identity satisfy the following laws:

• (Associative law) For any arrows f : a→ b, g : b→ c and h : c→ d, we have

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

206
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• (Identity law) For any arrows f : a→ b and g : b→ c, we have

idb ◦f = f ; g ◦ idb = g a

The associative law and the identity law can be represented by the following two com-

mutative diagrams.

a
f //

g◦f ��======== b

g

��

h◦g

��========

c
h
// d

a
f //

f

��

b

idb
���

�����
g

��
b g

// c

Note that the identity arrow for each object b is uniquely determined by the identity

law: for if h : b → b satisfies the identity law, i.e. if the law still holds after replacing idb
with h, then we have h ◦ idb = idb (from substituting h for idb and idb for f in the first

part of the identity law) and h ◦ idb = h (from substituting h for g in the second part of

the identity law), whence we conclude h is idb. In other words, there is a bijective mapping

between objects and identity arrows.

In our definition of category, we do not require the class of objects and the class of

arrows to be sets. They can be proper classes, collections that are too “large” to be sets. A

category is said to be small if its class of arrows is a set; otherwise it is called large. Observe

that if a category is small, then its class of objects, like its class of arrows, is also a set

since there is a one-one correspondence between objects and identity arrows. In the case of

the large categories, i.e. those categories whose arrows do not form sets, it is still possible

that the class of arrows from an object a to another object b—denoted by homC(a, b) or

simply hom(a, b), and called the hom-class of 〈a, b〉—is a set. If such is the case, we say that

the category is locally small, and call hom(a, b) the hom-set of 〈a, b〉. Note that category

C is small iff it is locally small and its class of objects is a set. Right-to-left follows from

our previous remark, whereas left-to-right follows from the fact that the union
⋃

hom(a, b)

where a and b range over Obj is a set given that Obj and all hom(a, b)’s are sets. (Some

authors incorporate the “local smallness” condition into the definition of categories, and

under their definition a category is said to be small if its class of objects is a set.)

Examples of categories are given below. Quite often the objects are sets (structured

or not) and the arrows are functions or maps between sets. For these types of categories,

the domain and codomain of arrows are simply the domain and codomain of functions;
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composition of arrows and identity arrows are the usual composition of functions and identity

functions. So we omit them in our examples whenever no ambiguity would arise.

Example B.1.2. The category Set has the class of all sets as its class of objects and the

class of all functions between sets as its class of arrows. a

Although Set is a large category, it is locally small since the collection of functions

between two sets X and Y (denoted by Y X) is a set. So are the following two examples

whose arrows are structure-preserving maps between structured sets.

Example B.1.3. The category Alg(τ) (where τ is an algebraic type) consists of algebras

of type τ as objects and homomorphisms between these algebras as arrows. a

Example B.1.4. The category Rel(τ) (where τ is a modal type) consists of relational

structures of type τ as objects and homomorphisms between these structures as arrows. a

Finally we give an example of categories whose objects, unlike the previous ones, are

not always sets.

Example B.1.5. A pre-ordered class 〈X,≤〉 is a category whose class of objects comprises

members of X, and class of arrows comprises pairs 〈a, b〉 whenever a ≤ b. The domain and

codomain of 〈a, b〉 are a and b, respectively. The composite of 〈a, b〉 and 〈b, c〉 is 〈a, c〉, and

the identity arrow on a is 〈a, a〉. (Note that the composite arrow and the identity arrow

defined above exist since ≤ is transitive and reflexive. Moreover there is exactly one arrow

from each object to itself and at most one arrow from one object to another.) a

Definition B.1.6 (Isomorphisms between objects). An arrow f : a→ b is an isomorphism

from a to b (written f : a ∼= b) if there exists an arrow g : b→ a such that

g ◦ f = ida; f ◦ g = idb .

Such an arrow g is called an inverse of f . Object a is isomorphic to object b (a ∼= b in

symbol) if there is an isomorphism from a to b. a

It is easy to check the following.

• Each arrow f has at most one inverse g (for if g and g′ are inverses of f , then g =

g ◦ idb = g ◦ (f ◦ g′) = (g ◦ f) ◦ g′ = ida ◦g′ = g′). Since an inverse g of f , if it exists,

is unique, we say that g is “the” inverse of f , and denote it by f−1.
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• For each object a, a ∼= a (since ida is an isomorphism).

• If a ∼= b, then b ∼= a (since if f : a ∼= b, then f−1 : b ∼= a).

• If a ∼= b and b ∼= c, then a ∼= c (since if f : a ∼= b and g : b ∼= c, then g ◦ f : a ∼= c).

• Given the last three points, the relation “is isomorphic to” is an equivalence relation

on the class of objects. If a is isomorphic to b, we simply call them isomorphic, and

treat them as “essentially” the same object.

B.2 Functors

Categories themselves can be considered as objects with arrows definable between them.

The arrows (between categories) we are going to define in this section are called functors,

which, like the arrows of a category, are composable in such a way that the associative law

and the identity law (for functors) hold for them. Isomorphic categories are defined similarly

as isomorphic objects of a category.

Definition B.2.1 (Functors). A functor F from category C to category D (F : C → D in

symbol) is a function that assigns to each C-object a a D-object Fa and to each C-arrow

f : a→ b a D-arrow Ff : Fa→ Fb subject to the following conditions.

(1) F (g ◦ f) = Fg ◦ Ff , whenever composition is defined;

(2) F ida = idFa, for any C-object a. a

Condition (1) of the above definition of functors can be restated as below: If the first

diagram commutes in category C, then second diagram commutes in category D.

a
f //

h ��>>>>>>>> b

g

��
c

Fa
Ff //

F (h) !!DDDDDDDD Fb

Fg

��
Fc

It is clear from the definition of functors that a functor F : C → D preserves the

operations dom and cod since F (dom f) = dom(Ff) and F (cod f) = cod(Ff). Obviously F

also preserves the operations of composition and identity since this is exactly what conditions

(1) and (2) say. It is in this sense that F is said to provide a picture of C in D.

Functors may be composed in a way which is associative, and identity functors defined

to act as identities for the composition.



APPENDIX B. BASIC CATEGORY THEORY 210

Definition B.2.2 (Composition of functors). For any functors F : C→ D and G : D→ E,

their composite G ◦ F : C→ E is the function defined by letting

G ◦ F (a) = G(Fa); G ◦ F (f) = G(Ff)

for any C-object a and C-arrow f . a

Definition B.2.3 (Identity functors). For any category C, the identity functor IdC is the

function that maps each object to itself and each arrow to itself. a

Proposition B.2.4. Composite functors and identity functors satisfy the following condi-

tions.

• (Associative law) Whenever composition is defined,

H ◦ (G ◦ F ) = (H ◦G) ◦ F.

• (Identity law) For any functors F : C→ D and G : D→ E,

IdD ◦F = F ; G ◦ IdD = G.

The following are examples of functors. It can easily be checked that they preserve

composition and identity as required in our definition of functors.

Example B.2.5. For any category C consisting of structured sets as objects and structure-

preserving maps as arrows, we can define a forgetful functor (or underlying functor) U : C→
Set which assigns to each structured set its underlying set and to each structure-preserving

map the map itself. For instance we have the forgetful functors U : Alg(τ) → Set and

U : Rel(τ)→ Set. a

Example B.2.6. An order-preserving map f from a pre-ordered class P1 to another pre-

ordered class P2 is a functor from P1 to P2, each of which is considered as a category.

a

Definition B.2.7 (Isomorphisms between categories). A functor F : C → D is an iso-

morphism from C to D (F : C ∼= D in symbol) if there exists a functor G : D → C such

that

G ◦ F = IdC; F ◦G = IdD .

Such a functor G is called an inverse of F . Category C is isomorphic to category D (C ∼= D

in symbol) if there exists an isomorphism from C to D. a
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As in the case for isomorphism between objects, an inverse of functor F if exists is

unique. We call it the inverse of F , and denote it by F−1. The relation “is isomorphic to”

is reflexive, symmetric and transitive. So it is an equivalence relation on the collection of

all categories. Isomorphic categories are treated as essentially the same entity. However

in the next section we shall consider a weaker but more useful notion of sameness between

categories. In the following, we define some properties pertaining to functors and provide

another characterization of isomorphism.

A functor F : C → D is called injective on arrows if F maps C-arrows one-one to D-

arrows, and surjective if F maps C-arrows onto D-arrows. Similarly for objects. Given a

functor F : C→ D and a pair of C-objects 〈a, b〉, the term “hom-class restriction” means the

restriction of the domain and codomain of F to homC(a, b) and homD(Fa, Fb), respectively.

Definition B.2.8. Let F : C→ D be a functor.

(1) F is full if all hom-class restrictions are surjective.

(2) F is faithful if all hom-class restrictions are injective.

(3) F is an embedding if it is injective on arrows, or equivalently if it is faithful, and

injective on objects.

(4) F is dense if for any D-object b, there is a C-object a such that Fa ∼= b. a

Note that if F is an embedding then F is faithful. However the converse does not always

hold. Consider a faithful F : C→ D which maps two distinct C-objects a and a′ to the same

D-object (i.e. a 6= a′ and Fa = Fa′). Then F is not injective on arrows since ida 6= ida′ but

F ida = idFa = idFa′ = F ida′ .

Proposition B.2.9. A functor F : C → D is an isomorphism iff it is bijective on both

objects and arrows, or equivalently iff it is full, faithful, and bijective on objects.

B.3 Natural transformations

In the previous section, we mentioned that a functor from category C to category D can

be thought of as providing a picture of C inside D. We are interested in knowing when two

such functors F and G are “essentially” the same. With this aim in mind, we define arrows

between these functors (treated as objects) so that a notion of isomorphism between functors
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becomes definable. The guiding ideas are that an arrow from F to G is a transformation of

the F -picture of C inside D into the G-picture of C inside D, and F is isomorphic to G if

the F -picture and the G-picture of C look the same inside D

Definition B.3.1 (Natural transformations). Let F and G be functors from C to D. A

natural transformation η from F to G (denoted by η : F → G) is a function that assigns to

each C-object a a D-arrow ηa : Fa→ Ga in such a way that for every C-arrow f : a→ b,

Gf ◦ ηa = ηb ◦ Ff.

The arrows ηa, ηb, etc. are called the components of η. a

The above “naturality” condition can be re-stated as the condition that the following

diagram commutes.

a

f
��
b

Fa
ηa //

Ff
��

Ga

Gf
��

Fb ηb

// Gb

Intuitively, η : F → G uses the arrows of D to turn the F -picture of C inside D into a

G-picture. Next we make precise the idea that the F -picture and the G-picture of C look

the same inside D.

Definition B.3.2 (Natural isomorphisms). Let F and G be functors from C to D. A natural

transformation η : F → G is called a natural isomorphism from F to G (written η : F ∼= G)

if every component of it is an isomorphism, i.e. if ηa : Fa ∼= Ga for every C-object a. (Recall

that ηa : Fa ∼= Ga iff there exists an arrow θ : Ga → Fa such that θ ◦ ηa = idFa and

ηa ◦ θ = idGa.) F is said to be naturally isomorphic to G (written F ∼= G) if there is a

natural isomorphism from F to G. a

Observe that the relation “is naturally isomorphic to” between functors from category

C to category D is reflexive, symmetric and transitive. Hence it is an equivalence relation

on the collection of all functors from C to D.

B.4 Equivalence of categories

Isomorphism between categories C and D requires the existence of functors F : C→ D and

G : D→ C such that they are inverse of each other (i.e. G ◦ F = IdC and F ◦G = IdD). As
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mentioned earlier, this notion of isomorphism between categories is too strong—there are

categories which we consider as being the same but fail to be isomorphic. In this section,

we define the notion of equivalence (between categories) which is weaker than the notion

of isomorphism. The idea is that for C and D to be equivalent, we require the existence

of functors F : C → D and G : D → C such that G ◦ F is naturally isomorphic to IdC,

and F ◦G is naturally isomorphic to IdD (instead of requiring the composite functors to be

identical to the respective identity functors). Naturally isomorphism, as we have already

seen, is weaker than identity.

Definition B.4.1 (Equivalences between categories). A functor F : C→ D is an equivalence

from C to D (written F : C ≡ D) if there exists a functor G : D→ C such that

G ◦ F ∼= IdC; F ◦G ∼= IdD .

A category C is equivalent to another category D (written C ≡ D) if there exists an equiva-

lence from C to D. a

The relation “is equivalent to” between categories is reflexive, symmetric and transitive.

So it is an equivalence relation on the collection of all categories.

The notion of equivalence defined here is weaker than the notion of isomorphism (between

categories): if F : C ∼= D, then F : C ≡ D since both F−1 ◦ F = IdC and F ◦ F−1 = IdD

(by isomorphism between categories), and both IdC
∼= IdC and IdD

∼= IdD (by reflexivity of

natural isomorphisms between functors).

The following proposition provides another definition of equivalence, which is analogous

to the alternative characterization given to the notion of isomorphism between categories.

Note the stronger condition of bijection on objects for isomorphism is replaced by the weaker

condition of denseness for equivalence.

Proposition B.4.2. A functor F : C→ D is an equivalence from C to D if it is full, faithful

and dense.

B.5 Contravariance and opposites

Definition B.5.1 (Opposite or dual categories). Let C = 〈Obj,Arr,dom, cod, ◦, id〉 be a cat-

egory. The opposite or dual category of C is the tuple Cop = 〈Obj,Arr,domop, codop, ◦op, id〉
where
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(1) domop f = cod f and codop f = dom f .

(2) f ◦op g = g ◦ f . a

Note that Cop has the same objects, arrows, and identities as C. The difference between

them is that the “direction” of arrows is reversed. The tuple Cop is indeed a category since

its operations of composition and identity observe the associative law and the identity law.

• For any Cop-arrows f : a → b, g : b → c and h : c → d, we have C-arrows f : b → a,

g : c→ b and h : d→ c, and

h ◦op (g ◦op f) = (f ◦ g) ◦ h = f ◦ (g ◦ h) = (h ◦op g) ◦op f.

• For any Cop-arrows f : a→ b and g : b→ c, we have C-arrows f : b→ a and g : c→ b,

and

idb ◦opf = f ◦ idb = f ; g ◦op idb = idb ◦g = g.

Functors as defined previously are sometimes called covariant functors, in order to distin-

guish them from contravariant functors, which reverse the direction of corresponding arrows

and hence the order of composition.

Definition B.5.2 (Contravariant functors). A contravariant functor F from category C to

category D is a function that assigns to each C-object a a D-object Fa and to each C-arrow

f : a→ b a D-arrow Ff : Fb→ Fa subject to the following conditions.

(1) F (g ◦ f) = Ff ◦ Fg, whenever composition is defined;

(2) F ida = idFa, for any C-object a. a

A contravariant functor F from C to D can be represented as a (covariant) functor

F : Cop → D since

F (f ◦op g) = F (g ◦ f) = Ff ◦ Fg

whenever composition is defined. Equivalently F can be represented as a (covariant) functor

F : C→ Dop since

F (g ◦ f) = Ff ◦ Fg = Fg ◦op Ff.
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Definition B.5.3 (Dually equivalent categories). Categories C and D are dually equivalent

if Cop ≡ D or equivalently C ≡ Dop. a

The following proposition provides another characterization of dually equivalent cate-

gories which are sometimes more convenient for proving equivalence than the above defini-

tion.

Proposition B.5.4. Categories C and D are dually equivalent iff there exist contravariant

functors F from C to D and G from D to C such that

G ◦ F ∼= IdC; F ◦G ∼= IdD .



Appendix C

Contemporary Deontic Logics

C.1 van Fraassen’s deontic logics

Reference: van Fraassen (1972, 1973).

C.1.1 The axiological thesis

• X is what ought to be done because its being so would be good. (What ought to be

is what is best or better than its alternatives.)

• A model M is a tuple 〈U,V, >, f〉 where

– U is a set of alternative possibilities we are evaluating.

– V is a set of values.

– >x (for every x ∈ U) is a binary relation on V such that > is asymmetric,

transitive, and connected on its field (i.e., a linear ordering of values for x).

– fx (for every x ∈ U) is a function assigning to each y ∈ U a set of values from

the field of >x (i.e., fx(y) ⊆ fld(>x)).

• Evaluation of monadic ought statements:

M, x |= �α ⇐⇒ ∃y ∈ ‖α‖M : ∃v ∈ fx(y) : ∀z ∈ ‖¬α‖M, ∀w ∈ fx(z), v >x w.

That is, it ought to be α exactly if some value attaching to some α-state is greater

than any value attaching to any non α-state, or simply α is better ¬α.

216
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• Evaluation of dyadic ought statements:

M, x |= �(α|β) ⇐⇒ ∃y ∈ ‖α ∧ β‖M : ∃v ∈ fx(y) :

∀z ∈ ‖¬α ∧ β‖M,∀w ∈ fx(z), v >x w.

• The class of frames determines the (dyadic) logic CD, which includes a dyadic ver-

sion of KD plus some other principles. Note that CD does not have the principle of

augmentation (or strengthening of antecedent) �(α|β)→ �(α|β ∧ γ).

• A problem though: moral conflicts ruled out by the axiological thesis.

C.1.2 Evaluation by imperatives

• Motivating problems:

– Possibility of unresolvable normative conflicts (replace [D] with [P] while keeping

[RM]). Note that the earlier logic CD motivated by the axiological thesis is no

longer a candidate because it has [D].

– Agglomeration of oughts when there are no conflicts.

• Let Ix be the set of imperatives in force at world x. The set of worlds (or states of

affairs) at which an imperative i is fulfilled is denoted by i+. Then,

M, x |= �α ⇐⇒ ∃i ∈ Ix : i+ ⊆ ‖α‖M.

• With the restriction that any imperative in forces can be fulfilled, we have PL, [RM],

and [P]. (We also have [N] if every world has some imperative in force.)

C.1.3 Aggregation of oughts

• Motivating problem – If one’s choice is between fulfilling two imperatives in force and

fulfilling only one of them, one ought to do the first. An example (given by Stalnaker):

(1) Honor thy father or thy mother!

(2) Honor not thy mother!

(3) Hence, thou shalt honor thy father.
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Applying [RM] to the tautology ((f ∨m)∧¬m)→ f , we have that �((f ∨m)∧¬m)→
�f , If we can aggregate the obligations from the first two premises, then �f is deriv-

able. Note that van Fraassen cannot not simply adopt [C] (the conjunction principle)

since [D] is derivable from [C] and [P]. Put it in another way, unrestricted aggregation

of oughts (for example, conflicting norms) may contradict [P]. Thus what van Fraassen

would require is agglomeration of oughts when doing so causes no problems.

• Let Ix be the set of imperatives in force at world x. The set of worlds (or states of

affairs) at which an imperative i is fulfilled is denoted by i+. The score of a world y

with respect to x is defined as follows.

scorex(y) = {i ∈ Ix|y ∈ i+}

An ought-sentence Oα is true at a world x in a model M iff

∃y ∈ ‖α‖M : ∀z /∈ ‖α‖M, scorex(y) 6⊆ scorex(z).

• Logic:

– The schemata [N], [P], and the rule [RM] are validated yet [D] and [C] are not.

(Hence normative conflicts would not lead to inconsistency.)

– The semantics supports aggregation of imperatives if they are compatible with

each other: for any i1, i2 ∈ Ix and any formula α,

(i+1 ∩ i
+
2 6= ∅ & i+1 ∩ i

+
2 ⊆ ‖α‖

M) =⇒M, x |= �α.

But this condition cannot be expressed in a logic of ought-statements alone.

C.2 Goble’s deontic logics

Reference: Goble (2000, 2003, 2004).

C.2.1 A preference-based semantics

According to Kripke-style relational semantics, �α is true (at a world x in a model M) just

in case α is true (in M) at all the deontically perfect or ideal possible worlds (for x). Thus,

conflicts of obligation are not allowed in the logic it determines (i.e., SDL). In a preference
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semantics, however, possible worlds are compared with each other instead of being classified

either as ideal or not. This semantics determines a weaker logic called P, where normative

conflicts could occur.

C.2.2 Simple preference frames

A simple preference frame is a duple F = 〈U,P 〉 where P assigns to each point x of U a

binary relation (called a preference relation) Px on U . Evaluation of ought-statements in a

model M = 〈F, V 〉 is as follows.

M, x |= �α ⇐⇒ ∃y ∈ fldPx : y ∈ ‖α‖M & ∀z, Pxzy =⇒ z ∈ ‖α‖M.

Conditional oughts are evaluated according to the following rule:

M, x |= �(α|β) ⇐⇒ ∃y ∈ fldPx : y ∈ ‖α ∧ β‖M &

∀z : (Pxzy & z ∈ ‖β‖M) =⇒ z ∈ ‖α‖M.

Monadic Deontic Logics SDL and P

• SDL is determined by the class of all standard simple preference frames, i.e., those

frames whose preference relations are transitive, connected and so reflexive (on their

fields).

• The logic P (axiomatized by PL, [RM], [N], and [P]) is determined by the class of all

simple preference frames.

Dyadic Deontic Logics DP and SDDL

• The logic SDDL (standard dyadic deontic logic) is determined by the class of all

standard simple preference frames. SDDL is axiomatized by PL together with the

following schemas and rules.

[RCE]
` β ↔ β′

` �(α|β)↔ �(α|β′)
[RCM]

` α↔ α′

` �(α|β)↔ �(α′|β)
[CK] �(α→ β|γ)→ (�(α|γ)→ �(β|γ))

[CD] �(α|β)→ ¬�(¬α|β)
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[CN] �(>|>)

[C�∧] �(α|β)→ �(α ∧ β|β)

[trans] ((α ≥ β) ∧ (β ≥ γ))→ (α ≥ γ)

where α ≥ β abbreviates ¬�(¬α|α∨β). (Intuitively, α ≥ β, read “α is at least as good

as β”, represents a preference ordering of formulas in terms of conditional obligation.)

• The logic DP (dyadic P) is determined by the class of all reflexive, transitive simple

preference frames. DP is axiomatized by PL together with the following schemas and

rules.

[RCE]
` β ↔ β′

` �(α|β)↔ �(α|β′)
[RCM]

` α↔ α′

` �(α|β)↔ �(α′|β)
[CN] �(>|>)

[CP] ¬�(⊥|α)

[C�∧] �(α|β)→ �(α ∧ β|β)

[trans] ((α ≥ β) ∧ (β ≥ γ))→ (α ≥ γ)

[C�∨] �(α|β ∨ γ)→ (�(α|β) ∨�(α|γ))

C.2.3 Multiple preference frames

A multiple preference frame (MP-frame) is a duple F = 〈U,P〉 where P assigns each x ∈ U
a non-empty set Px of preference relations P ’s on U . (We assume each P is non-empty.)

We can define two modal operators �e and �a (corresponding to the indefinite sense and

the core or definite sense of ought) as follows.

M, x |= �eα ⇐⇒ ∃P ∈ Px : ∃y ∈ fldP : y ∈ ‖α‖M & ∀z, Pzy =⇒ z ∈ ‖α‖M.

M, x |= �aα ⇐⇒ ∀P ∈ Px : ∃y ∈ fldP : y ∈ ‖α‖M & ∀z, Pzy =⇒ z ∈ ‖α‖M.

Monadic deontic logics SDLaPe and PaPe

The (bimodal) logic SDLaPe is determined by the class of all standard MP-frames. SDLaPeis

axiomatized by PL together with the following rules and schemas.
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[Ka], [Da], [RNa] [K], [D], and [RN] with �a as the modal operator.

[RMe], [Ne], [Pe] [RMe], [Ne], [Pe] with �e as the modal operator.

[Kae] �a(α→ β)→ (�eα→ �eβ)

The (bimodal) logic PaPe is determined by the class of all MP-frames (or all reflexive

or transitive MP-frames. PaPe is axiomatized by PL together with the following rules and

schemas.

[RMa], [Na], [Pa] [RMa], [Na], [Pa] with �a as the modal operator.

[RMe], [Ne], [Pe] [RMe], [Ne], [Pe] with �e as the modal operator.

[�a�e] �aα→ �eα

C.2.4 Ranked multiple frames

A ranked multiple preference frame (MP≤-frame) is a triple 〈U,P,≤〉 where ≤ assigns to

each point x of U a binary relation ≤x (a ranking) on the set Px of preference relations.

Besides �a and �e we also have � as a new dyadic operator. “α � β” could be read as

saying that β is at least as obligatory as α. Truth evaluation is as follows.

M, x |= α � β ⇐⇒ (∀P ∈ Px, M, P |= α =⇒ ∃Q ∈ Px : M, Q |= β & P ≤x Q)

where M, P |= α means that

∃y ∈ fldP : M, y |= α & ∀z, Pzy =⇒M, z |= α.

Monadic deontic logics SDLaPe ≤ and PaPe ≤

The logic SDLaPe ≤ is determined by the class of all standard MP≤-frames. SDLaPe ≤ is

axiomatized by SDLaPe together with the following schemas.

[�a �] �a(α→ β)→ (α � β)

[¬�e �] ¬�eα→ (α � β)

[� �e] (α � β)→ (�eα→ �eβ)

[�-trans] ((α � β) ∧ (β � γ))→ (α � γ)

The logic SDLaPe ≤c is determined by the class of all standard MP≤-frames whose ≤x
(for every x ∈ U) is connected. aPe ≤c is SDLaPe ≤ plus the following schema.

[�-connex] (α � β) ∨ (β � α)
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The logic determined by the class of all MP≤-frames (or the class of all reflexive or

transitive MP≤-frames) is PaPe ≤, i.e., PaPe plus the following.

[�a �′] �a(α)→ (β � α)

[¬�e �] ¬�eα→ (α � β)

[� �e] (α � β)→ (�eα→ �eβ)

[�-trans] ((α � β) ∧ (β � γ))→ (α � γ)

[R �]
` α→ β

` α � β

If ≤x (for every x) is connected, we have PaPe ≤c, i.e., PaPe ≤ plus [≤-connex].

C.3 Horty’s deontic logics

Reference: Horty (1997, 2003).

C.3.1 Nonmonotonic foundations for deontic logic

A nonmonotonic approach is better than standard model-theoretic approach, especially in

two particular areas of normative reasoning.

• conflicting oughts.

• prima facie oughts (conditional oughts that can be overridden by other norms or by

some facts).

C.3.2 Normative conflicts and van Fraassen’s proposal

Let Γ be a set of ought statements �α etc., and M a propositional model of an ought-free

language (that is, an assignment of truth value to propositional letters). the score of M

with respect to Γ is defined as follows.

scoreΓ(M) = {�α ∈ Γ | M |= α}

Van Fraassen’s notion of deontic consequence (`F ) is captured by the following.

Γ `F �α ⇐⇒ ∃M1 ∈ Mod α : ∀M2 ∈ Mod ¬α, scoreΓ(M1) 6⊆ scoreΓ(M2).
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(Mod α is the class of all models of the formula α. Similarly Mod Γ is the class of all models

that satisfy the set Γ of formulas.) An equivalent definition of the consequence relation `F
is given below . (Let �−(Γ) be the set of formulas α’s such that �α is in Γ.)

Γ `F �α ⇐⇒ Σ ` α, for some consistent subset Σ of �−(Γ).

C.3.3 Oughts as defaults

A set Γ of ought statements induces a default theory 〈W,D〉 where

• W = ∅, and

• D = { : α
α
| �α ∈ Γ}.

The following shows that the consequence relation `F can be seen as deduction in default

logic, and justifies therefore the claim that oughts are default rules.

Γ `F �α ⇐⇒ α ∈ E, for some extension E of the default theory induced by Γ.

As an example, let Γ be the set {�p,�¬p}. Then the default theory induced by Γ is

〈∅, {: p/p, : ¬p/¬p}. It can readily be seen that any variable q distinct from p will not be in

any extension of our default theory. Thus Γ 6`F �q, i.e., deontic explosion is avoided even

we have competing obligations.

C.3.4 A skeptical reasoning strategy

The following are equivalent definitions.

• Γ `S �α ⇐⇒ α ∈ E, for each extension E of the default theory induced by Γ.

• Γ `S �α ⇐⇒ Σ ` α, for each consistent subset Σ of �−(Γ).

C.3.5 The strategy of articulating the premise set

Given a set Γ of ought statements, the articulated set Γ∗ is defined as the smallest superset of

Γ that contains both �(. . . α . . .) and �(. . . β . . .) whenever it contains one of the following:

• �(. . . (α ∧ β) . . .) with the occurrence of the conjunction positive;

• �(. . . (α ∨ β) . . .) with the occurrence of the disjunction negative.
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An articulated variant of `F is as follows.

Γ `FA �α ⇐⇒ Γ∗ `F �α.

C.3.6 An articulated skeptical strategy

Combining the previous two strategies, we get:

Γ `SA �α ⇐⇒ Γ∗ `S α.

C.3.7 Conditional obligations

An ought context is a duple 〈W,Γ〉, where W is a set of facts, and Γ a set of conditional

ought statements in the form of �(α|β).

An ought statement �(α|β) is overridden in a context 〈W,Γ〉 iff there exists another

ought statement �(γ|δ) ∈ Γ such that all of the following hold.

(1) Mod W ⊆ Mod δ.

(2) Mod δ ⊂ Modβ (i.e., δ is more specific than β).

(3) W ∪ {α, γ} is inconsistent.

In other words, a conditional ought can be overridden (only) by a single opposing statement,

which is both applicable in the context and more specific.

A set E of formulas is a conditioned extension of 〈W,Γ〉 iff there exists a set A of formulas

such that all of the following hold.

(1) α ∈ A iff

(i) �(α|β) ∈ Γ,

(ii) Mod W ⊆ Modβ,

(iii) �(α|β) is not overridden in 〈W,Γ〉, and

(iv) ¬α /∈ E.

(2) E = Cn(W ∪A).
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Note that a conditioned extension of an ought-context can be considered as a way to fulfil

the oughts given the world knowledge. Moreover it can be shown that every ought context

has a conditioned extension.

Finally we can define a consequence relation for conditional oughts as follows.

〈W,Γ〉 `CF �(α|β) ⇐⇒ α ∈ E,

for some conditioned extension E of 〈W ∪ {β},Γ〉.

In particular, if W is empty, we have that

Γ `CF �(α|β) ⇐⇒ α ∈ E, for some conditioned extension E of 〈{β},Γ〉.

C.3.8 Outstanding problems

• The account, as it now stands, does not allow for any kind of transitivity of conditional

oughts.

�(α|β),�(β|γ)
�(α|γ)

What we want is transitivity as a defeasible rule.

• The account does not allow reasoning with disjunction antecedents.

�(α|β),�(α|γ)
�(α|β ∨ γ)

• The account allows overridden of a norm only by a single opposing norm, but not by

a set of opposing norms.

• According to the present account, an overridden norm cannot be reinstated when the

overriding norm is itself overridden.

C.4 Nute’s defeasible deontic logic

Reference: Nute (1997a, 1999). We restrict ourselves to formulas that are either literals (i.e.,

p or ¬p where p is a propositional letter) or modal formulas (i.e., �λ or ¬�λ where λ is a

literal). Note that we do not have compound formulas that are disjunctions or conjunctions.

Neither do we have iterated negations or embedded modalities.
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There are three types of rules recognized in the logic. (In the following, A is a set of

formulas and φ is a formula.)

• strict rule: A→ φ (e.g., Penguins are birds.)

• defeasible rule: A⇒ φ (e.g., Birds fly.)

• undercutting defeaters: A φ (e.g., A damp match might not burn.)

Norms are thus represented as rules rather than as formulas. (For example, “You ought not

to lie” as “⇒ �¬l”, “If lying saves lives, you ought to lie” as “s⇒ �l”.)

A deontically closed defeasible theory T is a tuple 〈F,R,C,≺〉 where

(1) F is a set of formulas called facts.

(2) R is a set of rules.

(3) C is a set of conflict sets, i.e., finite sets of formulas satisfying all of the following

conditions for any formula φ.

(i) {φ,∼ φ} ∈ C.

(ii) For every set S ∈ C and every strict rule A→ φ ∈ R, if φ ∈ S, then A∪(S−{φ}) ∈
C.

(iii) For every {φ1, . . . , φn} ∈ C, there exists {ψ1, . . . , ψn} ∈ C, such that for each

1 ≤ i ≤ n, either

i. φi is a literal and ψi is �φi, or

ii. φi is not a literal and ψi is φi.

(4) ≺ is an acyclic binary relation (precedence relation) on the non-strict rules in R.

A defeasible deontic proof (of a formula φ from a theory T ) is an argument tree whose

top node has the formula φ, and is constructed according to a series of rules. Without going

into details of the rules here, we will illustrate how the logic works with a simple example.

Consider the theory T whose components are as follows. (Let s be the statement that lying

saves lives, l the statement that you lie.)

• The set F of facts is {s}.

• The set R of rules is {⇒ �¬l, s⇒ �l}
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• The set C of conflict set has the following members.

{l,¬l}, {s.¬s}, {�l,¬�l}, {�¬l,¬�¬l}, {�s,¬�s}, {�¬s,¬�¬s},

{�l,�¬l}, {�s,�¬s}.

• The set ≺ is {⇒ �¬l ≺ s⇒ �l}.

Given the fact s (that lying saves lives), we can derive �l (It is obligatory to lie) by applying

the rule s ⇒ �l by deontic detachment. �l is in the conflict set {�l,�¬l} but it is not

defeated because the derivation of �¬l could be done only by a weaker rule⇒ �¬l. On the

other hand, we cannot apply deontic detachment to the rule ⇒ �¬l since it is defeated (in

the sense that its consequent �¬l is in the conflict set {�l,�¬l}, and �l is derivable by the

stronger rule s⇒ �l.

C.5 Makinson and van der Torre’s Input/Output Logics

Reference: Makinson and van der Torre (2000, 2001, 2003).

C.5.1 Terminology

• A conditional norm is an ordered pair of propositions (a, x) where the body a represent

a condition and x what is deemed desirable given the condition.

• A normative code G is a set of conditional goals or obligations (also called a generating

set).

• An input A is a set of propositions (representing a situation).

• An output of G under A (out(G,A)) is a set of propositions (representing what are

deemed desirable given the situation and the code).

• x ∈ deriv(G, a) (or (a, x) ∈ deriv(G)) iff (a, x) is in the least set that includes G,

contains the pairs (t, t) where t is a tautology, and is closed under a set of rules (to be

given).

• x ∈ deriv(G,A) (or (A, x) ∈ deriv(G)) iff x ∈ deriv(G, a) where a is a finite conjunc-

tion of some elements of A.

• x ∈ G(A) iff for some (a, x) ∈ G, a ∈ A.x
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C.5.2 Output Operations

• Simple-minded output: out1(G,A) = Cn(G(Cn(A)))

• Basic output: out2(G,A) = ∩{Cn(G(V )) : A ⊆ V, V complete}

• Reusable simple-minded output: out3(G,A) = ∩{Cn(G(B)) : A ⊆ B = Cn(B) ⊇
G(B)}

• Reusable basic output: out4(G,A) = ∩{Cn(G(V )) : A ⊆ V ⊇ G(V ), V complete}

• Simple-minded throughput: out+1 (G,A) = out1(G∪I, A) where I is the set of all pairs

of formulas (a, a). (Similarly for other output operations)

C.5.3 Derivation rules

• SI(strengthening input): (a, x) =⇒ (b, x) whenever b ` a

• AND(conjoining output): (a, x), (a, y) =⇒ (a, x ∧ y)

• WO(weakening output): (a, x) =⇒ (a, y) whenever x ` y

• OR(disjoining input): (a, x), (b, x) =⇒ (a ∨ b, x)

• CT(cumulative transitivity): (a, x) =⇒ (a ∧ x, y)

• ID(identity): =⇒ (a, a)

C.5.4 Derivability and Output Operations

• out1(G,A) = deriv1(G,A) where deriv1 has the rules SI, AND, WO.

• out2(G,A) = deriv2(G,A) where deriv2 has the rules SI, AND, WO, OR.

• out3(G,A) = deriv3(G,A) where deriv1 has the rules SI, AND, WO, CT.

• out4(G,A) = deriv4(G,A) where deriv1 has the rules SI, AND, WO, OR, CT.
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C.5.5 Constrained Outputs

• maxfamily(G,A,C): the family of all maximal H ⊆ G such that out(H,A) is consis-

tent with C (constraint set).

– maxfamily(G,A, ∅)

– maxfamily(G,A,A)

• outfamily(G,A,C): the family of all outputs under input A generated by elements

of maxfamily(G,A,C).

• ∩outfamily(G,A,C): full meet constrained output.

• ∪outfamily(G,A,C): full join constrained output.

C.5.6 Constrained Outputs and Reiter’s Default Logic

The pair (G,A) can be considered as a normal Reiter’s default theory by taking (a, x) to be
a;x
x . The family of all extensions of (G,A) is denoted by extfamily(G,A). In the following,

the output operation is out+3 (reusable simple-minded throughput), and we assume A is

consistent.

• extfamily(G,A) ⊆ outfamily(G,A)

• For every X ∈ outfamily(G,A), there is an E ∈ extfamily(G,A) with X ⊆ E.

• extfamily(G,A) consists exactly the maximal elements of outfamily(G,A).

• ∪(extfamily(G,A)) = ∪(outfamily(G,A)).



Bibliography
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Åqvist, L. and J. Hoepelman (1981). Some theorems about a “tree” system of deontic tense
logic. See Hilpinen (1981), pp. 187–221.

Bell, J. L. (1988). Toposes and Local Set Theories: An Introduction. Oxford University
Press.

Bell, J. L. (1996). Polymodal lattices and polymodal logic. Mathematical Logic Quarterly 42,
219–233.

Bell, J. L. and A. B. Slomson (1971). Models and Ultraproducts: An Introduction. North-
Holland Publishing Company.

Blackburn, P., M. de Rijke, and Y. Venema (2001). Modal Logic. Cambridge University
Press.

Blackburn, P. and J. van Benthem (2006). Modal logic: A semantic perspective. See
Blackburn et al. (2006), pp. 1–82.

230



BIBLIOGRAPHY 231

Blackburn, P., J. van Benthem, and F. Wolter (Eds.) (2006). Handbook of Modal Logic.
Elsevier.

Bull, R. and K. Segerberg (2001). Basic modal logic. In D. M. Gabbay and F. Guenthner
(Eds.), Handbook of Philosophical Logic (2nd ed.), Volume 3, pp. 1–81. Dordrecht: Kluwer
Academic Publishers.

Carmo, J. and A. Jones (2002). Deontic logic and contrary-to-duties. See Gabbay and
Guenthner (2002), pp. 265–343, Volume 8.

Chagrov, A. and M. Zakharyaschev (1997). Modal Logic. Oxford University Press.

Chellas, B. F. (1980). Modal Logic: An Introduction. Cambridge: Cambridge University
Press.

Chellas, B. F. and K. Segerberg (1996). Modal logics in the vicinity of S1. Notre Dame
Journal of Formal Logic 37, 1–24.

Copeland, B. J. (2002). The genesis of possible worlds semantics. Journal of Philosophical
Logic 31, 99–137.

Cresswell, M. J. (1967). The interpretation of some Lewis systems of modal logic. Aus-
tralasian Journal of Philosophy 45, 198–206.

Cresswell, M. J. (1972). The completeness of S1 and some related systems. Notre Dame
Journal of Formal Logic 13, 485–496.

Cresswell, M. J. (1995). S1 is not so simple. In W. Sinnott-Armstrong, D. Raffman, and
N. Asher (Eds.), Modality, Morality, and Belief: Essays in Honor of Ruth Barcan Marcus,
pp. 29–40. Cambridge: Cambridge University Press.

Demolombe, R. and R. Hilpinen (Eds.) (2000). Nordic Journal of Philosophical Logic, Vol.
5, No. 2. Selected papers presented in the 5th International Workshop on Deontic Logic
in Computer Science, DEON 2000.

Demolombe, R. and R. Hilpinen (Eds.) (2001). Fundamenta Informaticae, Vol. 48, No.
2-3. Selected papers presented in the 5th International Workshop on Deontic Logic in
Computer Science, DEON 2000.

Denecke, K. and W. S. L. (2002). Universal Algebra and Applications in Theoretical Com-
puter Science. Chapman and Hall.
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