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presented. The second problem is to provide a catalogue of "good" two-level folded­

over non-orthogonal designs. Such designs are useful in screening experiments. To

assess the goodness of designs, we introduce the MDS-resolution and MDS-aberration,

based on the notion of minimal dependent sets (MDS). With both criteria, it is possible

to systematically compare the statistical properties of designs. Obtaining a catalogue,

however, remains challenging because it involves determining whether or not two

designs are isomorphic. A fast isomorphism check is developed for this purpose. A

catalogue of minimum MDS-aberration designs is obtained for many useful run sizes.

An algorithm for obtaining "good" larger designs is discussed.

IV



Dedication

To Randy R. Sitter

v



Acknowledgments

lowe an enormous debt of gratitude to my advisors, Randy Sitter, Boxin Tang and

Derek Bingham. I appreciate their instruction, steadfast encouragement, and guid­

ance throughout. I was exceptionally fortunate to have Randy's faith in me. His

contagious enthusiasm has pulled me up and helped me believe in what I cun doing.

I am especially grateful to Boxin for his generous guidance through the most difficult

time in my life. I have also been lucky enough to benefit from his comprehensive

knowledge. I thank Derek for providing an efficient and fun working envirollllH'nt.

many interesting and stimulating conversations, and new research problems.

I also need to express my gratitude to my supervisory committee. I thank Profes­

sors Ching-Shui Cheng, Tom Loughin and Carl Schwarz for their time and sugg<'st iOlls

to make my thesis better. I am thankful to enjoy the friendship of my offi("('llHl tes.

Wilson, Jason, Crystal, Pritam, Matt and Ryan.

At SFU, I would like to thank the faculty and staff in the department of statistics

and actuarial science for making this the great place to learn that it is. I thallk

my friends: Jason Nielson, Farouk Nathoo, Simon Bonner, Celes Ying, Xin F<'llg. I'\a

Lei, Lihui Zhao, Saman Muthukumarana, Elizabeth Juarez-Colunga, Carolyn Hustoll.

Dongming Sun and Ada Zhang. I must separately thank Jean's company for the past

six years no matter if it was a good time or a bad time.

Finally, my heart-felt thanks go to my family - my parents, brother, and grand­

mother - for their patience, understanding and love.

vi



Contents

Approval

Abstract

Dedication

Acknowledgments

Contents

List of Tables

List of Figures

1 Introduction

1.1 Computer experiments

1.1.1 Model

1.1.2 Design

1.2 Factorial designs

1.2.1 Fractional factorial designs .

1.2.2 Folded over non-orthogonal designs

1.3 Outline .

vii

II

iii

v

vi

Vll

x

XllI

1

1

3

4

6

6

8

9



2 Orthogonal and Cascading Latin Hypercubes 10

2.1 Review. .. 11

2.1.1 Latin hypercubes 11

2.1.2 Orthogonal and nearly orthogonal Latin hypercubes. 11

2.1.3 Cascading Latin hypercubes 13

2.2 A flexible construction method. .. 15

2.2.1 Constructing Latin hypercubes 17

2.2.2 Constructing orthogonal Latin hypercubes 19

2.2.3 Constructing nearly orthogonal Latin hypercubes 24

2.2.4 Constructing cascading Latin hypercubes. 28

2.3 An existence result .. 29

2.4 An algorithm for constructing designs of small runs 31

2.4.1 Xu's algorithm 31

2.4.2 Optimality criteria 32

2.4.3 The adapted algorithm and results 34

2.5 Constructing orthogonal Latin hypercubes of other run sizes 40

2.5.1 A direct stacking method. 40

2.5.2 Orthogonal designs method 41

2.6 Collections of orthogonal Latin hypercubes 44

3 Generalizations 53

3.1 Introduction . 53

3.2 Generalization methods. 58

3.3 A cascading Latin hypercube example. 61

4 Two-level Fractional Factorial Designs 65

4.1 Introduction. 66

4.2 Notation, and definitions and background. 68

Vlll



4.2.1 Notation and definitions of two-level FF designs

4.2.2 Background on design constructions.

4.3 Design construction .

4.4 Applications to designs of 24, 32, 40 runs

4.4.1 Designs of 24 runs

4.4.2 Designs of 32 runs

4.4.3 Designs of 40 runs

5 Folded Over Non-Orthogonal Designs

5.1 Introduction..............

5.2 MDS-resolution and MDS-aberration

5.3 Folded over non-orthogonal designs for screening .

5.4 An isomorphism check .

5.5 Obtaining minimum MDS-aberration designs.

6 Conclusions and Future Research

Appendices

A A 32 x 12 orthogonal Latin hypercube

B Top 24-run two-level designs

C Top 32-run two-level designs

D Top 40-run two-level designs

E Top non-isomorphic MDS designs

Bibliography

IX

68

70

71

75

75

76

76

77

77

79

81

84

90

92

97

97

99

103

107

111

123



List of Tables

2.1 Orthogonal Latin hypercubes of n runs, 4 ::; n ::; 13 . 36

2.2 Orthogonal Latin hypercubes of n runs, 15 ::; n ::; 21 37

2.3 The best values of P and PM (in bracket) for 4 ::; n ::; 15 38

2.4 The best values of P and PM (in bracket) for 16::; n ::; 22 39

2.5 Orthogonal matrices of n runs, n = 2,4,8,16 . . . . . . . 42

2.6 The maximum number m of factors in orthogonal LHDs obtained by

approach (i) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 45

2.7 The maximum number m of factors in orthogonal LHDs obtained by

approach (ii). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 45

2.8 The maximum number m of factors in orthogonal LHDs obtained by

approach (iii) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 46

2.9 The maximum number m of factors in orthogonal LHDs obtained by

approach (iv) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 47

2.10 The maximum number m of factors in orthogonal LHDs obtained by

approach (v) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 47

2.11 The maximum number rn of factors in orthogonal LHDs obtained by

approach (vi) " 48

2.12 The maximum number m* of factors in available orthogonal LHDs of

run sizes n ::; 67 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 49

x



2.13 The maximum number m* of factors in available orthogonal LHDs of

run sizes 68 ::; n ::; 131 . . . . . . . . . . . . . . . . . . . . . . . . ., 50

2.14 The maximum number m* of factors in available orthogonal LHDs of

run sizes 132 ::; n ::; 195 51

2.15 The maximum number m* of factors in available orthogonal LHDs of

run sizes 196 ::; n ::; 259 52

3.1 Four constructions for cascading LHDs 62

5.1 The 12-run Plackett-Burman design. 80

5.2 Minimal dependent sets 80

5.3 Comparison between proposed and Clark and Dean's isomorphism check

for large designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

B.1 Top 24-run designs based on minimum G-aberration for 3 ::; m ::; 6 99

B.2 Top 24-run designs based on minimum G-aberration for 7::; m :s; 14 100

B.3 Top 24-run designs based on minimum G-aberration for 15 ::; m ::; 23 101

B.4 Top 24-run designs based on minimum G2-aberration for 3 ::; m ::; 23 102

C.1 Top 32-run designs for 6 :s; Tn :s; 10 . 103

C.2 Top 32-run designs for 11 :s; m :s; 17 . 104

C.3 Top 32-run designs for 18 :s; m :s; 24 . 105

C.4 Top 32-run designs for 25 ::; m ::; 31 106

D.1 Top 40-run designs for 6 ::; m ::; 9 . 107

D.2 Top 40-run designs for 10 :s; m ::; 19 . 108

D.3 Top 40-run designs for 20 ::; m :s; 29 . 109

D.4 Top 40-run designs for 30 :s; m ::; 39 . 110

E.1 Non-isomorphic lO-run MDS designs with k ::; 5 111

E.2 Non-isomorphic 12-Run MDS Designs with k :s; 6 111

Xl



E.3 Non-isomorphic 14-run MDS designs with k ::; 7 . . . . . 112

E.4 Top 10 Non-isomorphic 16-run MDS designs with k ::; 8 . 113

E.5 Top 10 Non-isomorphic 18-run MDS designs with k ::; 7 . 114

E.6 Top 10 Non-isomorphic 18-run MDS designs with 8 ::; k ::; 9 115

E. 7 Top 10 Non-isomorphic 20-run MDS designs with k ::; 7 . . . 116

E.8 Top 10 Non-isomorphic 20-run MDS designs with 8 ::; k ::; 10 . 117

E.9 Top 10 Non-isomorphic 22-run 11DS designs with 5 ::; k ::; 8 . 118

E.I0 Top 10 Non-isomorphic 22-run MDS designs with 8 ::; k ::; 11 . 119

E.11 Top 10 Non-isomorphic 24-run MDS designs with 5 ::; k ::; 7 . 120

E.12 Top 10 Non-isomorphic 24-run MDS designs with 8 ::; k ::; 10 . 121

E.13 Top 10 Non-isomorphic 24-run MDS designs with 11 ::; k ::; 12 122

Xll



List of Figures

2.1 A 6 x 2 Latin hypercube design .

2.2 A cascading Latin hypercube of 27 points with levels (9,3)

12

14

3.1 d is a column of ones 55

3.2 d is balanced 55

3.3 Design points of two columns from £} . 57

3.4 Design points of two columns from £2 . 57

3.5 Design points of two columns, one from £} and the other from £2 58

3.6 Pairwise plot of £[ 03

3.7 Pairwise plot of £2 63

3.8 Pairwise plot of £3 03

3.9 Pairwise plot of £4 03

3.10 Pairwise plot of the second and eighth columns of £} and £3 0-1

3.11 Pairwise plot of the sixth and ninth columns of £2 and L 1 04

Xlll



Chapter 1

Introduction

1.1 Computer experiments

Deterministic computer experiments are becoming more commonly used in SCIence

and engineering. This is primarily because the underlying physical processes are too

time-consuming, expensive, or even impossible to observe. Rapid growth in computer

power has made it possible to perform deterministic experiments on simulators. The

first computer experiment appeared to be conducted by Enrico Fermi and colleagues

in Los Alamos in 1953. Since then, scientists in diverse areas such as engineering,

cosmology, particle physics and aircraft design have turned to computer experiments

as a powerful tool to understand their respective processes. For instance, in the design

of a vehicle, computer experiments are used to study the effect of a collision of the

vehicle with a barrier before manufacturing the prototype of the vehicle. See Bayarri

et al. (2002) for details.

Similar to physical experiments, computer experiments can be planned and im­

plemented in the following steps:

1. State the objectives. Computer experiments are performed with a variety of

goals in mind. For example, objectives include factor screening, building an

1



CHAPTER 1. INTRODUCTION 2

emulator of the simulator, optimization, and model calibration.

2. Choose a response. It can be univariate, multivariate, temporal or functional.

3. Choose input variables. They can be qualitative or quantitative or both. They

can also be categorized into control variables, environmental variables, and

model variables.

4. Represent and implement the underlying physical process using a computer code.

5. Choose an experimental plan.

6. Perform the experiments on the simulators.

7. Analyze the data. This includes identifying the active factors and model fitting.

8. Interpret the model and draw conclusions.

A detailed discussion of each step can be found in Santner, Williams and Notz

(2003) and Fang, Li and Sudjianto (2006). This thesis will investigate the indispens­

able step 5 - choosing an experimental plan. It is a crucial step because often the

computer code is expensive in that it may take hours or days to produce one single

output. We will briefly review several types of designs for computer experiments in

Section 1.1.2. To help understand the selection of designs, we give an overview of

modeling techniques in Section 1.1.1. Before doing so, we introduce some necessary

notation and outline the framework.

In many scientific investigations, complicated physical phenomena are represented

by a mathematical model

Y = f(X), X E [O,l]m, (1.1 )

where X consists of m input variables, f is the computer code, and Y represents

the response. Model (1.1) is usually a solution to a set of equations, which can be

linear, nonlinear, ordinary or partial differential. Because the solution to the equations

is often impossible to obtain analytically, scientists study the complex relationship
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between the inputs and outputs by varying the inputs to the computer code and

observing how their process outputs are affected. Such studies are called computer

experiments. A key feature of computer experiments is that the computer code is

deterministic. That is, the response is unchanged if an input setting is replicated.

The lack of random errors presents challenges, which necessitate new approaches to

the design and analysis of experiments (see, e.g., Sacks, Welch, Mitchell and Wynn,

1989).

1.1.1 Model

One important objective of computer experiments is to find a model that describes

the empirical relationship between the inputs and outputs. That is, we wish to build

a statistical model to approximate the true model (1.1). We refer to the approximate

model as an emulator. Obtaining an accurate, informative yet simple emulator plays

a crucial role in the analysis of computer experiments in that the emulator will replace

the true model to make predictions at unsampled points and perform other analyses

such as uncertainty analysis and sensitivity analysis.

The true model (1.1) can be viewed as a nonparametric model without a random

error component. Therefore, building an emulator can be treated as a nonparametric

regression problem with no random error. To deal with the absence of random errors,

researchers have developed diverse models for users. Fang, Li and Sudjianto (2006)

provided a comprehensive review on modeling techniques to build an emulator. The

commonly used modeling techniques include polynomial regression, spline regression,

Gaussian process stochastic model, and local polynomial regression. Comparisons of

different modeling techniques have been made in the literature (see, e.g., Simpson,

Peplinski, Koch and Allen, 2001; Ben-Ari and Steinberg, 2007).
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1.1.2 Design

4

In the previous subsection, we have mentioned that there are a variety of modeling

techniques for building an emulator. There is no correct statistical model for computer

experiments. In addition, little knowledge is available about which model would fit

the data well before they are collected. Thus, designs for computer experiments

should facilitate diverse modeling methods. Space-filling designs are a class of designs

that serve this purpose. They meet the basic requirement of designs for computer

experiments - designs should not have repeated runs due to the deterministic nature

of computer models. Furthermore, when making prediction at unsampled points is

the primary goal, space-filling designs are more likely to provide better prediction

accuracy. A design that is not space-filling leaves most of the design space unexplored

and clearly yields a poor predictor.

Most commonly used space-filling designs in computer experiments are Latin hy­

percube designs, maximin distance designs and uniform designs. Latin hypercube

designs have the one-dimensional space-filling property in that when projected onto

each dimension, each portion of the design range has a design point. They were pro­

posed by McKay, Beckman and Conover (1979), which is commonly recognized as the

first paper on the designs for deterministic computer experiments. This class of de­

signs is easy to generate. Maximin distance designs were first introduced by Johnson,'

Moore and Ylvisaker (1990) in the context of computer experiments. The basic idea

behind this class of designs is quantifying how spread out the design points using dis­

tance criteria. A maximin distance design maximizes the smallest distance between

any two design points so that no two design points are too close. Johnson, Moore and

Ylvisaker (1990) showed that maximin distance designs are asymptotically D-optimal

under some regularity conditions. Uniform designs were proposed by Fang (1980) and

Wang and Fang (1981). They were chosen based on the discrepancy between the
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empirical cumulative distribution function of a design and that of the uniform dis­

tribution in the design region. The discrepancy is a measure of uniformity; lower

discrepancy implies better uniformity. A more detailed account of the above three

types of designs can be found in Santner, Williams and Notz (2003), Fang, Li and

Sudjianto (2006) and the references therein. An alternative approach to space-filling

designs is to use some model-dependent criteria such as the integrated mean square

error and maximum mean square error to select designs for computer experiments

(Santner, Williams and Notz, 2003).

The curse of dimensionality comes into serious play in the construction of space­

filling designs for computer experiments. When the dimensionality of the input space

is high, providing a good coverage of the entire input space as suggested by the original

idea of space-filling designs with limited design points is a hopeless undertaking. A

realistic and fruitful approach is to construct designs that are space-filling in the low

dimensional projections. Randomized orthogonal arrays (Owen, 1992) and orthogo­

nal array-based Latin hypercubes (Tang, 1993) enjoy this property of low dimensional

space-filling. Research on the use of orthogonal designs for computer experiments has

been gaining momentum recently. As argued in Bingham, Sitter and Tang (2008), or­

thogonality is directly useful when polynomial models are considered, and it can also

be viewed as stepping stones to designs that are space-filling in low dimensional pro­

jections. Chapters 2 and 3 of the thesis are devoted to the construction of orthogonal

and nearly orthogonal Latin hypercubes.

Another consequence of the high dimensionality is that design points are very far

apart in a space-filling design. As the spatial correlation (see, e.g., Santner, Williams

and Notz, 2003) decreases with the distance dramatically relative to the spacing, there

are no points close enough to give reliable estimates of the correlation parameters. To

enhance the estimation of the correlation parameters, Handcock (1991) recommended

what he terms a cascading Latin hypercube in which small Latin hypercube designs

with closely clustered points are dispersed through the space as clusters while the
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cluster centers also form a Latin hypercube. By doing so, the space-filling property

is maintained, and some points that are close together are also ensured. Chapters 2

and 3 of this thesis will provide a method for constructing a rich class of designs with

a cascading structure.

1.2 Factorial designs

Factorial designs play a fundamental role in the theory and practice of physical ex­

periments. They have been used in a wide range of fields including engineering, social

science, agriculture and biology. They allow experimenters to study simultaneously

the effects of multiple input variables on the response. In physical experiments, the

input variables are called factors. Each factor must have at least two settings so that

the effect of change in factor settings on the response can be studied. These settings

are called levels of the factor. A combination of the level settings of factors is referred

to as a treatment or a run. Physical experiments differ from computer experiments

introduced in the previous section in that the former has random errors in the re­

sponse. The experimental designs that deal with the arrangement of treatments are

called factorial designs. In this thesis, we consider factorial designs with factors at

two levels represented by ±1. Specifically, two-level fractional factorial (FF) designs

and two-level folded over non-orthogonal designs are the subjects of Chapters 4 and

5, respectively.

1.2.1 Fractional factorial designs

A full factorial design consists of all possible treatments. That is, if a factorial exper­

iment involves m factors at two levels, a full factorial design requires 2m runs. This

run size grows rapidly as the number m of factors increases. For example, this run

size grows from 32 to 512 as the number of factors increases from 5 to 9. Therefore,
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running a full factorial design becomes impractical even for an moderately large value

of m. Instead, fractional factorial (FF) designs are commonly used in practice as they

only use a fraction or a subset of the full factorial design. FF designs can be classified

into regular designs and nonregular designs. Regular designs are specified through

defining relations. In a regular design, any two factorial efi'ects are either orthogonal

or fully aliased. Designs that do not have this property are called nonregular designs.

Many important problems regarding FF designs have been studied by researchers

and practitioners. We here discuss three major ones. The first and probably most

important problem is the choice of FF designs. The first criterion for selecting optimal

regular fractions is the maximum resolution proposed by Box and Hunter (1961a, b).

Because many designs with the same resolution exist, Fries and Hunter (1980) pro­

posed a more discriminating criterion, known as the minimum aberration. However,

these criteria are only applicable to regular designs. Deng and Tang (1999) extended

the notions of resolution and minimum aberration to nonregular designs and proposed

generalized resolution and minimum aberration. Subsequently, criteria such as min­

imum G2-aberration (Tang and Deng, 1999) and minimum moment aberration (Xu.

2003) were introduced. These criteria reduce to their counterparts for regular (ksip;ns.

Meanwhile, other criteria for selecting FF designs have arisen from different st at ist i­

cal points of view. These include the criteria of maximum number of clear two-factor

interactions (Wu and Chen, 1992), estimation capacity (Sun, 1993; Cheng awl i\lllk­

erjee, 1998; Cheng, Steinberg and Sun, 1999), projection estimation capacity (Chmp;.

1995; Loeppky, Sitter and Tang, 2007), and average D efficiency (Cheng. Denp; awl

Tang, 2002). The second problem is that, for a given number of factors, we want to

find the minimum run size for a design with certain desirable properties to exist. It

is equivalent to seeking the maximum number of factors for a given run size and op­

timality criteria. The problem is practically important for obvious economic reasons.

Third, a catalogue of non-isomorphic designs can be very helpful for idellti(ying the

design patterns or searching for optimal designs. Two factorial designs are said to be
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isomorphic if one can be obtained from the other by relabeling the factors having the

same number of levels, reordering the treatment combinations and/or relabeling the

levels of one or more factors. Otherwise, the two designs are non-isomorphic. When

such a catalogue is computationally infeasible to obtain, a catalogue of good designs

based on major criteria would be still beneficial for searching designs based on other

criteria. In Chapter 4, we aim to provide a collection of good two-level FF designs

based on the criteria of minimum G and G2-aberration.

1.2.2 Folded over non-orthogonal designs

Fold-over (Box and Wilson, 1951) is a clever technique in factorial experiments because

it is able to de-alias main effects and two-factor interactions. In other words, in

the folded over design, main effects and all two-factor interactions can be estimated

independently. For any run in an initial factorial design, its fold-over is the run with

the levels of all the factors sign-switched. Thus the fold-over of (1, -1, -1) is (-1, 1, 1),

where 1 and -1 designate the high and low levels of a factor. The fold-over of a design

is simply the union of the initial design and the fold-overs of the runs in the design.

The fold-over technique has been used primarily to create orthogonal resolution

IV designs from orthogonal resolution III designs with notable exceptions of the early
. .

literature by John (1962, 1964), Banerjee and Federer (1967), Webb (1968) and Mar-

golin (1969). Folding over a non-orthogonal resolution III design produces a resolu­

tion IV design, in which the main effects and two-factor interactions are orthogonal,

implying that all the main effects are estimable, ignoring three and more factor inter­

actions. Folded over non-orthogonal designs are recommended because such designs

have fewer runs than the competing orthogonal resolution IV designs and only a small

efficiency loss in estimating main effects. Miller and Sitter (2005) explored the use of

such designs for screening experiments. In screening experiments, the primary goal

is to identify the important main effects and the secondary goal is to identify the
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important two-factor interactions. Folded-over non-orthogonal designs sacrifice some

orthogonality of main effects to achieve the complete separation of main effects from

two-factor interactions. As argued in Miller and Sitter (2005), this may be a prudent

trade-off; that is, these non-orthogonal resolution IV designs can outperform the more

commonly recommended orthogonal resolution III designs. Chapter 5 of this thesis is

devoted to the selection of folded over non-orthogonal designs and aims to provide a

catalogue of good designs based on the proposed design criteria.

1.3 Outline

An outline of the remainder of this thesis is as follows. Chapters 2 and 3 will be de­

voted to developing new methods for constructing designs for computer experiments.

In Chapter 2, we will present methods for constructing many orthogonal Latin hy­

percubes that are not available in the literature. Construction of nearly-orthogonal

and cascading Latin hypercubes are also considered here. In addition, we prove a

theorem regarding the existence of orthogonal Latin hypercubes and propose an al­

gorithm for finding orthogonal and nearly orthogonal Latin hypercubes of small runs.

In Chapter 3, two generalizations of the basic method proposed in Chapter 2 will be

introduced and studied. In Chapters 4 and 5, we turn to two-level FF designs. Specif­

ically, Chapter 4 is concerned with two-level FF designs and provides a collection of

good designs based on two criteria of minimum G and G2 aberration. In Chapter 5,

we introduce MDS-resolution and MDS-aberration as criteria for comparing folded

over non-orthogonal designs. These criteria and a proposed fast isomorphism check

together are used to obtain a catalogue of top two-level folded over non-orthogonal

designs. Finally, we will conclude the thesis with a discussion of future research

directions in Chapter 6.



Chapter 2

Orthogonal and Cascading Latin

Hypercubes

Since the introduction of Latin hypercube sampling by McKay, Beckman and Conover

(1979), Latin hypercube designs have become increasingly popular in the area of

computer experiments. Except for achieving uniformity in one-dimensions, a Latin

hypercube design is merely a combinatorial structure and not directly associated with

any criteria such as space-filling or orthogonality. One natural way to find "good"

designs within the whole class of Latin hypercube designs is to restrict the attention

to a certain class of Latin hypercubes. Such classes include orthogonal array - based

Latin hypercubes, orthogonal Latin hypercubes and cascading Latin hypercubes. Here

we consider the latter two.

The rest of the chapter is organized as follows. In Section 2.1, we will provide a

brief review of Latin hypercubes and each of the two classes of Latin hypercubes. In

Section 2.2, we will present methods for constructing many orthogonal Latin hyper­

cubes that are not available in the literature, and the construction of nearly orthogonal

Latin hypercubes and cascading Latin hypercubes are also considered here. In Sec­

tion 2.3, a theorem regarding the existence of orthogonal Latin hypercubes will be

10
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proved. In Section 2.4, an adapted algorithm is used to find orthogonal and nearly

orthogonal Latin hypercubes of small runs. Section 2.5 provides further methods for

constructing orthogonal Latin hypercubes. Section 2.6 concludes the chapter with

results and discussions.

2.1 Review

2.1.1 Latin hypercubes

A Latin hypercube design (LHD) IS an n x m matrix, each column of which is a

permutation of {I, 2, ... ,n}. Each of the 1 x m row vectors is taken as a design point

in an m-dimensional design space. The main feature of an LHD is that it achieves

uniformity in each of the m univariate margins. An example of a 6 x 2 LHD has

design matrix

1 4

2 3

3 2

4 6

5 1

6 5

which can be represented graphically by Figure 2.1.

For ease of presentation, hereafter we use a slightly different definition for an

LHD. The n entries in each column are taken to be centered at zero and equally­

spaced. Thus each column is a permutation of {-(n -1)/2, ... ,0, ... , (n -1)/2} and

{-(n - 1)/2, ... , -1/2, 1/2, ... , (n - 1)/2} when n is odd and even, respectively.

2.1.2 Orthogonal and nearly orthogonal Latin hypercubes

Let '11 = ['111,"" Un] and v = [VI, ... , vn] be two vectors. The correlation between

u and v is then defined as 2:i(Ui - U)(Vi - v)/[2:JUi - U)2 2:JVi - v)2P/2, where
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Figure 2.1: A 6 x 2 Latin hypercube design

o

4 G

o

1 2 3 4 5 6

"

Definition 2.1. A Latin hypercube is said to be orthogonal if all pairs of its col'Umns

have zero correlation.

It is easy to verify that the design in Example 2.1 is an orthogonal LHD.

Example 2.1. An orthogonal LHD with n = 9 and m = 5 is given by

-4 -1 -4 -2 -3

-3 -3 -1 3 3

-2 2 3 -3 1

-1 4 2 o -1

o -2

1 1

4 4-2

o -1 0

2 3 -3 2 4

3 -4 1 -4 2

4 0 -2 1-4

The construction of orthogonal LHDs have been considered by Ye (1998), Steinberg

and Lin (2006) and Cioppa and Lucas (2007). However, the problem is far from

completely solved. In the orthogonal LHDs constructed by Ye (1998), the run size n

must have form n = 2k or 2k +1 and the corresponding number of factors is rn = 2k - 2
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where k ;::: 2. This means that a very large number of runs is needed to entertain a

moderately large number of factors. The orthogonal LHDs constructed by Steinberg

and Lin (2006) have a more severe restriction on the run size n, which must be of

form n = 22k
. This implies that they in fact only provide two practical run sizes, i.e.

n = 16 and n = 256. Recently, Cioppa and Lucas (2007) extended Ye's approach and

thus the constraint on the run size remains. Consequently, there is only a handful

of orthogonal LHDs available in the literature. This motivates our work in Section

2.2, where we provide a general method for constructing orthogonal LHDs with much

more flexible run sizes.

By slightly sacrificing the orthogonality requirement, we can obtain nearly orthog­

onal LHDs with even more factors. The definition of what is meant by "nearly" is not

unique. In Section 2.2, we find nearly orthogonal LHDs by minimizing the maximum

correlation and the average correlation.

The rationale for using orthogonal and nearly orthogonal LHDs has been discussed

by various researchers (See, e.g., Iman and Conover 1982; Owen, 1994; Tang, 1998).

In particular, the following arguments are related to the use in computer experiments.

First, when a lower order polynomial model is employed to fit the data from computer

experiments, orthogonal LHDs ensure uncorrelated estimates of linear effects of each

input variable; see Ye (1998). Second, Bingham, Sitter and Tang (2008) argued that

orthogonal or nearly orthogonal designs can be viewed as useful stepping stones to

space-filling designs.

2.1.3 Cascading Latin hypercubes

Cascading LHDs were introduced by Handcock (1991). A formal definition is given

as follows.

Definition 2.2. A cascading Latin hypercube of n rr~=l nk points with levels
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(nl, ... , n p) is an np-point Latin hypercube about each point in the (nl, ... , np-d cas­

cading Latin hypercube.

Clearly, the usual LHD is the special case with a single level (p = 1). Handcock's

(1991) experience is that two or three levels (p = 2 or 3) are adequate. We illustrate

the definition with Example 2.2 below.

Figure 2.2: A cascading Latin hypercube of 27 points with levels (9,3)
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Example 2.2. Consider Figure 2.2. The 27 circles together form an LHD. In addition.

the 9 diamonds constitute an LHD. Moreover, each of these diamonds is stlITotlIlded

by a 3-point LHD. Thus, the 27 circles represent a cascading LHD of 27 points wit 11

levels (9,3). 0

By Definition 2.2, it is easy to verify a cascading LHD by looking at the geometric

distribution of the design points. Next, we give a new definition of a cascading LHD

based on its design matrix L. This definition is employed to show a design constructed

by the proposed method is a cascading LHD in Section 2.2. Let V* = (v;j) be rVl
where v'0 is the nearest integer greater than or equal to Vij.
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Definition 2.3. A Latin hypercube L is termed a cascading Latin hypercube of n

points with levels (nl' ... ,np ) if the matrix U = rL/ TI~=q+l nk1 has TIk=1 nk distinct

rows, each of which has TIf=q+l nk replicates, for all q = 1, ... ,p - 1.

Cascading LHDs enjoy global space-filling properties as well as having local points.

Here global space-filling properties represent the spread of the clustered LHDs. Local

points are expected to provide reliable estimates of the scale and smoothness param­

eters in an additive stochastic model, ,as reported by Handcock (1991).

An obvious way to obtain cascading LHDs is replacement. For example, suppose

that we wish to construct a cascading LHD of 77 points with levels (771,772) for Tn

variables. We first select an 771 x Tn LHD, Do, as a base design and then replace each

design point in Do by an 772 x Tn LHD. Note that the dimensionality of the resulting

cascading LHD is the same as that of the base design. In contrast, the cascading LHDs

constructed in Section 2.2 will have the dimensionality up to 772 times dimensionality

of the base design Do.

2.2 A flexible construction method

In this section, we will first introduce a construction method. We then show how this

method can be' used to construct LHDs, orthogonal LHDs, nearly orthogonal LHDs

and cascading LHDs.

Consider designs with 77 runs and Tn factors, each factor at s levels, where 2 ::;

S ::; 77. We denote such designs as D(77, sm), represented by an 77 x Tn matrix, D =

(dij ), with entries from a set of s levels. Without loss of generality, the s levels

are taken to be centered at zero and equally-spaced. Thus the levels are {- (s ­

1)/2, ... ,0, ... , (s - 1)/2} and {-(s - 1)/2, ... , -1/2, 1/2, ... , (s - 1)/2} when s is

odd and even, respectively. In particular, LHDs are such designs with s = 77.

Let A = (aij) be an 771 X m} matrix with entries aij = ± 1, B = (bij ) be a

D(772' S~2), C = (Cij) be a D(771' Sr;"l), and D = (dij ) be an 772 x Tn2 matrix with
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entries dij = ± 1. Let I be any real number. Consider the construction:

L = A ® B + IC ® D,

where Kronecker product A ® B is the nln2 x mlm2 block matrix

(2.1 )

with aij B itself being an n2 x m2 matrix. Designs Band C are called base designs.

While A and D are technically two-level designs, they playa different role from designs

Band C and are used to provide replicates of designs Band C respectively. The

resulting design L in (2.1) has n = nl'Tl2 runs and m = mlm2 factors.

The above construction has some interesting features. To explain, consider a

simple case in which A = (1, If and C = (1/2, -1/2f. Design L in (2.1) has a

column

(2.2)

where b is a column of Band d is a column of D. Further let b = (b 1, • .• ,bn2 f and

d = (d 1 , •.. , dn2 f. The entries in the column (2.2) are bi + Idd2 and bi - Idd2 with

i = 1, ... ,n2. Because di = ±1, the column (2.2) has entries bi + 1/2 and bi - 1/2.

Consequently, the column (2.2) can be viewed as simultaneously shifting each level

in b to the left and the right by the same length 1/2. If we view b as a block, this is

equivalent to shifting two identical blocks b, one to the left and the other to the right.

We will show that with the appropriate choices of A, B, C, D and I (in Proposition

2.1 in the next section), the levels in each column of Lin (2.1) are equally-spaced and
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unreplicated, resulting in a Latin hypercube. Now consider all rn columns of Lunder

this simple case. Each one-dimensional block b becomes an rn-dimensional stratum

B. Suppose D is a matrix of plus ones, then the design points in B + 'YD /2 can be

obtained by shifting the entire stratum B to the right by the length 'Y /2. Similarly,

the design points in B - 'YD/2 can be obtained by shifting the entire stratum B to

the left by the length 'Y/2. In this case, closely clustered points in each stratum are

expected in design L in (2.1). This feature will be utilized to construct cascading

Latin hypercubes in the next section.

The orthogonality or near orthogonality of L in (2.1) is determined by the orthog­

onality or near orthogonality of A, B, C and D, the correlations between the columns

in A and those in C, and the correlations between the columns in B and those in D.

As a result, the method allows orthogonal and nearly orthogonal Latin hypercubes to

be easily constructed.

Vartak (1955) appears to be the first to use Kronecker product to construct sta­

tistical experimental designs. In a recent work, Bingham, Sitter and Tang (2008)

introduced a method for constructing a rich class of designs that are suitable for use

in computer experiments. Their method is a special case of our proposed method in

(2.1) with 'Y = O. Unlike our method, theirs does not produce LHDs.

2.2.1 Constructing Latin hypercubes

The following proposition tells us how to obtain a large LHD based on small LHDs

using the method (2.1).

Proposition 2.1. A design L, formed as in (2.1), is a Latin hypercube if
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(iii) there do not exist i and j, where i = 1, ... , ml and j = 1, .. _, m2, such that

api = -ap1i and dqj = -dq1j simultaneously hold, where p and p' ar-e such that

Cpi = -Cp1i and q and q' are such that bqj = -bq1j .

Proof. Let n = nln2- Conditions (i), (ii) and (iii) ensure that each column of

L is {-(n - 1)/2, ... ,0, _.. , (n - 1)/2} if both nl and n2 are odd and {-(n

1)/2,. _., -1/2, 1/2, .. _, (n - 1)/2} otherwise. D

Proposition 2.1 gives the conditions under which designs constructed in (2.1) result

in Latin hypercubes. Condition (i) implies that both Band 0 are required to be Latin

hypercubes. Recall that in the previous section, we view the column produced by the

term A ® B as nl blocks_ Here a Latin hypercube B is used to ensure that the

levels in each block are equally-spaced and unreplicated. Condition (iii) is needed to

prevent replicated levels from occurring in each column of L. Furthermore, a Latin

hypercube 0 in combination with condition (ii) guarantees that among the nj blocks

after shifting, any two consecutive blocks have spacing equal to 1.

We now discuss condition (iii). First, it implies that if there exists (p,p', i) such

that Cpi = -Cp1i and api = -ap'i, then D must satisfy dqj = dq1j where q and q' are

row indices such that bqj = -bq1 j for all j = 1, ... , m2. Second, the following are

three cases in which condition (iii) is met: (a) either A or D or both are identity

matrices; (b) if 0 is a symmetric LHD in the sense that 0 = (Ol, -Ol)T, then using

A = (Air, Airf will satisfy condition (iii); (c) B is a symmetric LHD and D has form

D = (DT;,DT;f.

Example 2.3. Suppose one wishes to construct 32 x 32 Latin hypercubes. There are

various choices of nl, n2, ml and m2 such that n = nln2 = 32 and m = mjm2 = 32.

One such choice is nl = mj = 2, n2 = m2 = 16. To meet condition (iii) in Proposition

2.1, we can choose either A or D to be a matrix of plus ones. Suppose we let A be a

matrix of plus ones. By Proposition 2.1, we now let 1= n2 = 16, choose any 16 x 16



CHAPTER 2. ORTHOGONAL AND CASCADING LATIN HYPERCUBES 19

matrix D = (dij ) with dij = ±1 and any Latin hypercubes Band C. For example,

we can let C = {(1/2, -1/2)T, (-1/2, 1/2)T}T and

-15 5 9 -3 7 11 -11 7 -9 3 -15 5 11 -11 7 -7
-13 1 1 13 -7 -11 11 -7 -1 -13 -13 13 5 5 -3
-11 7 -7 -11 13 -1 -1 -1:1 9 -3 15 -5 -5 11 -7 7
-9 3 -15 5 -13 1 1 13 1 13 13 -1 -13 -5 -5 3
-7 -11 11 -7 11 -7 7 11 5 15 -3 -9 -9 3 9 11
-5 -15 3 9 -11 7 -7 -11 13 -1 -1 -13 -1 9 11 15
-3 -9 -5 -15 1 13 13 -1 -5 -15 3 9 1 7 -11 -11

B-! -1 -13 -13 1 -1 -13 -13 1 -13 1 1 13 9 -9 -9 -15
- 2 1 13 13 -1 -9 3 -15 5 11 -7 7 11 -7 -7 -15 -9

3 9 5 15 9 -3 15 -5 ;1 9 5 15 -15 -13 -13 -13
5 15 -3 -9 -3 -9 -5 -15 -11 7 -7 -11 15 -3 15 !)

7 11 -11 7 3 9 5 15 -3 -9 -5 -15 7 15 13 13
9 -3 15 -5 -5 -15 3 9 -7 -11 11 -7 5 13 -3 5

11 -7 7 11 5 15 -3 -!) -15 5 9 -3 3 -1 -1
13 -1 -1 -13 -15 5 9 -3 7 11 -11 7 -11 -15 3 -5
15 -5 -9 3 15 -5 -9 3 15 -5 -9 3 -3 1 -1

The design formed as in (2.1) is then a 32 x 32 Latin hypercube.

Note that an LHD given by B ® A + ,D ® C is equivalent to that in (2.1) up

to row permutations and column permutations, and we therefore only consider the

construction (2.1) in the later development. It is worthwhile to mention that in

the method (2.1), we can obtain a rich class of new LHDs by applying different

row permutations, column permutations, and/or sign-switching columns of A, B, C

and D.

2.2.2 Constructing orthogonal Latin hypercubes

In this section, the proposed method is adapted to construct orthogonal LHDs of size

n = 8k, where k is any positive integer, which provide much more flexible run sizes

than those given by the methods of Ye (1998), Steinberg and Lin (2006) and Cioppa

and Lucas (2007).

Consider a design or matrix D = (d1 , •.. , dm ), where dj is the jth column of D. A

design or matrix D is called column-orthogonal if any two columns of D are orthogo­

nal, i.e., dTdj = 0 for any i -=J. j. Column-orthogonality is weaker than orthogonality



CHAPTER 2. ORTHOGONAL AND CASCADING LATIN HYPERCUBES 20

because it does not require each column of D to be balanced. In the proposition

below, column-orthogonal matrices with entries ±1 are used. Hadamard matrices

and two-level orthogonal arrays with levels ±1 are such column-orthogonal matrices.

The following proposition provides sufficient conditions for a design L in (2.1) to be

column-orthogonal.

Proposition 2.2. Let A and D be column-orthogonal. A design L, formed as in

(2.1), is column-orthogonal if designs Band C are both-orthogonal, and at least one

of the two, ATC = 0 and B TD = 0, holds.

Proof. Let L(i,j,p, q) be the entry produced by aip, bjq , Cip and djq . The validity of

this proposition can be easily established by noting that

nj n2

L L L(i,j,p, q)L(i,j,p', q')
i=l j=l
nj nz

L L(aipbjq + ,Cipdjq )(aip,bjq, + ,cip,djq,)
i=l j=l
nj nz

L L(aipbjqaiP,bjq' + ,aipbjqcip,djql + ,cipdjqaip,bjql + ,2cipdjqcip,djq')
i=l j=l
nj n2 nj nz

L aipaip' L bjqbjq, +, L aipcip' L bjqdjq,
i=l j=l i=l j=l

nl nz nj nz

+, L Cipaip' L djqbjq, + ,2 L CipCip' L djqdjq,.
i=l j=l i=l j=l

(2.3)

Clearly, the first and last terms on the right hand side are zero by orthogonality of

A, B, C and D. The second and third terms vanish due to either of the two additional

conditions. o

Theorem 2.1. A design L, formed as in (2.1), is an orthogonal Latin hypeTcube if
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(ii) A and D are column-orthogonal;

(iii) Band C are orthogonal Latin hyper·cubes;

(iv) there do not exist i and j, where i = 1, ... , ml and j = 1, ... , m2, such that

api = -ap'i and dqj = -dq'j simultaneously hold, wher·e p and p' are such that

Cpi = -Cp'i and q and q' are such that bqj = -bq'j;

(v) at least one of the two, ATe = 0 and B TD = 0, holds.

Theorem 2.1 is a direct consequence of Propositions 2.1 and 2.2. Conditions (i)

and (iv), and LHDs Band e are sufficient to obtain an LHD. The orthogonality of

LHDs Band e, conditions (ii) and (v) are needed for the orthogonality of the LHD

L. Condition (v) implies that either the correlations between the columns of A and

those of e are zero, or the correlations between the columns of B and those of Dare

zero. In addition, the run sizes nl and n2 must be either 2 or a multiple of 4 because

of the column-orthogonality of A and D. Thus, the run size n must be of form 'II = 8k

(k = 1, 2, ... ). Note that, technically, orthogonal designs must have at least two

factors, but if a design Bore has only one factor, it is orthogonal by our defillitioll.

Next, we revisit Example 2.3 and give an example of the use of Theorem 2.1.

Example 2.4. Recall Example 2.3. The first 12 columns of B form all orthogollal

LHD of 16 runs, due to Steinberg and Lin (2006). Theorem 2.1 tells us that if D is

column-orthogonal, the first 12 columns of L, in Example 2.3, constitute a 32 x 12

orthogonal LHD (See Appendix A), which offers more orthogonal factors thall the

existing designs in the literature; a 32 x 11 orthogonal LHD was provided by Cioppa

and Lucas (2007). D

We are now in a position to present a result that goes beyond Theorem 2.1 by dou­

bling the dimensionality of certain orthogonal LHDs constructed by the method (2.1).
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Theorem 2.2. Suppose that in (2.1), n1 = n2 = no and A, B, C, D, and'Y satisfy

the conditions in Theor'em 2.1. Let U = -noA ® B + C ® D. Then design [ L, U j is

an n6 x 2m orthogonal Latin hypercube, where m = m1m2.

Proof. Design U is obviously an n6 x m orthogonal LHD as L is. Thus, it remains to

show every column from L and every column from U have zero correlation. Consider

a column L(i,j,p,q) and a column U(i,j,p',q'), we then have

no no

L L L(i,j,p, q)U(i,j,p', q')
i=l j=l
no no

L L(aipbjq + nocipdjq )(-noaip,bjq, + Cip,djq,)
i=l j=l
no no

L L (-noaipbjqaip,bjq' + aipbjqcip,djq' - ngcipdjqaiplbjq' + nocipdjqCiP,djql)
i=l j=l

no no no no

-no L aipaip' L bjqbjq, + L aipcip' L bjqdjql
i=l j=l i=l j=l

no no no no

-ng L Cipaip' L djqbjq, + no L CipCip' L djqdjql
i=l j=l i=l j=l

o.

TJ.1e second and third terms on the right hand side equal zero because of either

of the two additional conditions for L to be an orthogonal LHD. For the first and

last terms, both of them equal zero in the cases (p, q) =1= (p', q'). In the case of

(p, q) = (p', q'), the first and last terms are canceled out. Hence, we conclude that the

new design [L, U] is an n6 x 2m orthogonal LHD. D

Theorem 2.2 is applicable to the case in which the run size n must be of form

n = n6. Note that no must be a multiple of 4 because of the column-orthogonality

of A and D. The orthogonal LHD [L, U] in Theorem 2.2 generally possesses more

columns than anyone obtained by directly using (2.1). This point can be illustrated

using the following example.
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Example 2.5. Suppose that we wish to construct orthogonal LHDs of 64 runs. The

first approach is to set

1 -1 1 -3

1 1
and C = ~

3 1
A=

1 -1 -1 3

1 1 -3 -1

take the first 12 columns of B in Example 2.3 to be a new B. Choosing any column-

orthogonal 16 x 12 matrix D = (dij ) with entries dij = ±1 and applying the method

(2.1) with I = 16, we obtain a 64 x 24 orthogonal LHD.

Alternatively, we can choose

1 1 1 1 1 -3 7 5

1 1 -1 -1 3 1 5 -7

1 -1 1 -1 5 -7 -3 -1

1 -1 -1 1
and B = C = .!

7 5 -1 3
A=D=

1 1 1 1
2

-1 3 -7 -5

1 1 -1 -1 -3 -1 -5 7

1 -1 1 -1 -5 7 3 1

1 -1 -1 1 -7 -5 1 -3

Let Land. U be A ® B + 8C ® D and -8A ® B + C ® D, respectively. By Theorem

2.2, design [L, U] is a 64 x 32 orthogonal LHD, which has more columns than the one

obtained by the first approach. 0

Theorem 2.1 and Theorem 2.2 are powerful results for constructing orthogonal

LHDs. Theorem 2.1 is useful for providing orthogonal LHDs of size 8k, thereby filling

some of the vast gaps between the available run sizes. Theorem 2.1 and Theorem

2.2 will be used to construct many orthogonal LHDs not available in the literature in

Section 2.6.
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2.2.3 Constructing nearly orthogonal Latin hypercubes

In this section, we show how the method (2.1) can be adapted for constructing nearly

orthogonal LHDs. The basic result is that if the base designs Band e are nearly

orthogonal, the method (2.1) produces a nearly orthogonal LHD under some mild

conditions.

To assess the near orthogonality, we use two measures defined in Bingham, Sitter

and Tang (2008). For a design D = (d1 , •.. ,dm ), where dj is the .jth column of D, .

they define pij(D) to be J(di, dj)/[J(di,di)J(dj ,dj )P/2, where J(di, dj ) = dTdj. If

the mean of the levels in dj for all j = 1, ... , m is zero, then Pij(D) is simply the

correlation coefficient between columns di and dj . This is the case for any LHD

with levels as described in this chapter. Bingham, Sitter and Tang (2008) then

defined two measures of near orthogonality, namely, PM(D) = maxi<jlpij(D)1 and

p2 (D) = Li<j prj(D)/[(m(m - 1)/2]. Smaller values of PM(D) and p2 (D) imply the

near orthogonality. Obviously, if PM(D) or p2 (D) is equal to zero, an orthogonal LHD

is obtained. The following theorem relaxes the conditions in Theorem 2.1 by allowing

LHDs Band e to be nearly-orthogonal.

Theorem 2.3. Suppose that A, B, e, D and, in (2.1) satisfy the conditions

in Proposition 2.1. Furthermore, let A and D be column-orthogonal, and either

ATe = 0, or BTD = O. We then have that

where WI, W2, W3 and W4 are given by WI = (m2 - l)(n~ - 1)2/[(ml'm2 - 1)(n2
- 1)2],

W2 = n~(ml - l)(ni - 1)2/[(mlm2 - 1)(n2 - 1)2], W3 = (n§ - 1)/(n2 - 1) and W4 =

n~(ni - 1)/(n2
- 1).

Pmof. Let L(i,j,p,q) be the entry produced by aip, bjq , Cip and djq . Let L(p,q) be
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the column to which the entry L( i, j, p, g) belongs. Provided that either ATC = 0, or

B T D = 0, the equation (2.3) reduces to

nj n2

L L L(i,j,p, g)L(i,j,p', g')
i=l j=l

nj n2 nj n2

L o,ipo,ip' L bjqbjq' + 1
2 L CipCip' L djqdjql

i=l j=l i=l j=l

nj n2 nj n2

L o,ipo,ip' L bjqbjql + n~ L CipCip' L djqdjql .

i=l j=l i=l j=l

(2.4)

The last step follows as 1 = n2, a condition such that L is an LHD. In addition, the

value setting of (p, g,p', g') consists of three cases (a) p = p', g =I- g'; (b) p =I- p', g = g';

(c) p =I- p', g =I- g'.

To derive the quantities p2(L) and PM(L), we first consider p[L(p, g), L(p', g')],

which has form

p[L(p, g), L(p', g')] = J[L(p, g), L(p', g')]/ {J[L(p, g), L(p, q)]J[L(p', q'), L(p', g')]}1/2,

where J[L(p, g), L(p', q')] = [L(p, g)]T[L(p', q')]. Note that matrices A and D are re­

quired to be column-orthogonal, thereby implying that both n1 and n2 are even. Thus,

J[L(p, q), L(p, q)] = n(n2 - 1)/12 ~ N. We then have

p[L(p, g), L(p', q')] J[L(p, g), L(p', g')]/N
nj n2

L L L(i,j,p, q)L(i,j,p', q')/N
i=l j=l

)
2{n1Pppl(A)pqql(B n2(n2 - 1)/12

+n~[n1 (ni - 1)/12]pppl(C)pqql(D)n2} / N. (2.5)

The last step follows by the equation (2.4).
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We now consider the right hand side of (2.5) under the three cases of the value

settings of (p, q, p', q'). First, consider the case (c). Matrices A and D are assumed

to be column-orthogonal. Thus pppt(A) and pqqt(D) equal zero, thereby giving us

p[L(p, q), L(p', q')] = O.

For the cases (a) and (b), we have pppt(A) = Pppt(C) = 1 and pqqt(B) = pqqt(D) = 1,

respectively. Consequently, we obtain

Tnj Tn2 Tnj Tn2

p
2
(L) = LLLL p2 [L(p, q), L(p', q')]jM

where M = mlm2(mlm2 - 1).

Let WI be (m2 - 1)(n3 - 1)2j[(mIm2 - 1)(n2 - 1)2] and W2 be n~(mI - l)(ni­

1)2 j[(mI m2 - 1)(n2 - 1)2]. Note that

WI + W2 < (n~ - 1)2 j(n2 - 1)2 + n~(ni - 1)2 j(n2 - 1)2

{n4 - 2n~[ni - 1 + 1jn~ -lj(2n~)]}j{n4 - 2n~('nijn~ - 1j(2n~)]}

< 1.

We then finish the proof for part (i) in Theorem 2.3. Part (ii) is obvious by the

definition of PM (L ). o

Theorem 2.3 is a generalization of Theorem 2.1. That is, if we relax the con­

ditions in Theorem 2.1 by allowing LHDs Band C to be nearly orthogonal, the

LHD L constructed is then also nearly orthogonal, in terms of both measures of near

orthogonality. An example, illustrating the use of this result, is considered below.
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Example 2.6. Let A be (1, If and C be (1/2, -1/2f· Set I to be 16 and choose a

nearly orthogonal LHD

-15 15 -13 13 -5 -13 5 3 -1 5 -7 5 -9 -9 5

-13 -15 -3 3 7 3 15 -11 13 -5 7 -13 -7 -3 -:~

-11 -9 -5 -11 -15 13 -5 11 -9 9 9 3 -5 -1 -11

-9 -1 9 -15 -11 -1 -13 5 -1 -15 7 3 15

-7 -7 7 15 15 -13 9 -5 -13 -3 -1 -1 7 13

-5 13 11 -5 9 -7 -3 -9 -13 11 1a -9 -3 1a

-3 -5 13 15 -9 -9 -11 7 -9 . 15 11 9 -1

B=! -1 -11 3 -7 11 -15 13 15 -7 -3 -9 9 7 9 -5

3 -9 -3 -1 -5 -15 -1 11 3 -11 -15 15 5 -15

3 -:~ 15 11 :~ \) -7 -15 1 -13 -3 :~ -15 -9

5 9 7 -1 5 11 \} 13 15 15 5 11 -7 9

7 7 -1 -13 13 -1 -7 -5 9 -7 3 15 -13 -11 -13

9 5 -11 -9 -7 -3 7 -3 -11 -15 11 -7 U -13 7

11 11 5 5 -13 7 11 5 3 -11 -5 -5 -11 15 -7

1:~ -7 -15 9 5 :~ -15 -3 13 1:~ 5 11 3

15 -13 -3 -11 -9 7 7 -1 -11 -15 -5 11

with p2(B) = 0.0003 and PM(B) = 0.0765. Taking any 15 columns of a Hadamard

matrix of order 16 to be D and applying the approach (2.1), we obtain an LHD L of

32 run and 15 factors. As p2(C) = PM(C) = 0, we have p2(L) = (n~ -1)2p2(B)/(n2_

I? = 0.0621p2(B) = 0.00002 and PM(L) = (n~ -1)PM(B)/(n2-1) = 0.2493pM(B) =

0.019I. D

In the use of Theorem 2.3, we notice that both A and D are required to be column­

orthogonal. This means that both n1 and n2 must be 2 or a multiple of 4. In other

words, the run size n must be a multiple of 8. To cope with other run sizes, we can

instead let Band C be orthogonal LHDs and a result similar to Theorem 2.3 can also

be obtained. That is, if A and D are nearly column-orthogonal matrices, the method

(2.1) gives a nearly orthogonal LHD when Band C are orthogonal LHDs and either

ATC = 0 or BTD = 0 is true.
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2.2.4 Constructing cascading Latin hypercubes

We begin by presenting a theorem based on which we construct two-level cascading

LHDs using the method (2.1). We then mention how k-Ievel cascading LHDs (k =

3,4, ... ) can be further constructed.

Theorem 2.4. Let D be an n2 x m2 matrix of plus ones. A design L, formed as in

(2.1), is a two-level cascading Latin hypercube of n = njn2 points with level (nl' n2)

if (i) SI = nj and 82 = n2; (ii) r = n2·

Proof. Provided that D is a matrix of plus ones, the resulting design L is an LHD,

following from Proposition 2.1. To establish the cascading property, we employ Defi­

nition 2.3. Let rrl be the nearest integer greater than or equal to 1'. Let L(i, j,]J, q)

be the entry produced by aip, bjq , Cip and djq . We have

U(i,.i,p,q) rL(i,.i, p, q)/n2l = raipbjq /n2 + cipdjql

raipbjq /n2 + Cipl = rCipl, (2.G)

which follows from the fact that djq = 1, laipbjq /n21 < 1/2, and Cip is either a l1lultiple

of 1/2 (when nj is even) or an integer (when nj is odd). The equation (2.G) inforl1Is us

that each row of matrix U is completely determined by a row of C. More Sl)('cifi('all~·.

matrix U has nj distinct rows of n2 replicates, yielding Theorem 2.4. 0

We discuss a couple of issues regarding Theorem 2.4. First, the proof of TIH'ol'<'l1l

2.4 reveals that the global space-filling properties of cascading LHDs constructed in

the theorem are controlled by the space-filling properties of the LHD C. Locally, (JipB

determines the layout of the design points in each clust~red LHD. Therefore, in the

use of Theorem 2.4, we may use good space-filling designs such as maximin LHDs (see,

e.g., Morris and Mitchell, 1995) for Band C in order to achieve good space-filling

properties, both globally and locally.
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Second, the consequence of using a matrix D of plus ones in the method (2.1) to

construct cascading LHDs is that the bivariate projection of the columns {(i-I )m2 +
1, ... ,im2, i = 1, ... ,ml} has undesirable diagonal patterns. This disadvantage partly

motivates the work in the next chapter.

We now briefly describe how we can construct k-Ievel (k > 2) cascading LHDs.

Suppose that we have obtained a two-level cascading LHD, we then can create a k­

level cascading LHD simply by takin,g a (k - I)-level cascading LHD to be C and

using Theorem 2.4.

2.3 An existence result

In this section, we present a theorem on the existence of orthogonal LHDs. An LHD

with one column is orthogonal in the previous sections, but an orthogonal LHD must

have two or more columns in Theorem 2.5 below.

Theorem 2.5. There exists an orthogonal Latin hypercube if and only if the run size

n is not eq'ual to 3 and does not have form 4k + 2, where k = 0,1,2, ....

Proof. We will prove Theorem 2.5 by showing that (i) there exists an orthogonal LHD

of odd size (n #- 3) ; (ii) there exists an orthogonal LHD of size n having the form

n = 4k; (iii) there does not exist an orthogonal LHD of size 3 and 4k+2, where k 2: o.
To show (i) and (ii), we will make use of the following orthogonal LHDs of 4, 5

and 7 runs with two factors

Let

(
3/2

-1/2

T

1/2 -1/2 -3/2) (2 1 0 -1
3/2 -3/2 1/2 ' -1 2 0 -2

(
3 2 1 0 -1 -2 _3)T

-2 -1 3 0 2 1-3

-2 )T
1 and
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O
2

= (Xl -Xl X2 -X2) T

X2 -X2 -Xl Xl

If we stack an 4 x 2 orthogonal LHD on O2 with Xl = 5/2, X2 = 7/2, the resulting

design is an 8 x 2 orthogonal LHD. Similarly, if we stack an 5 x 2 orthogonal LHD on

O2 with Xl = 3, X2 = 4, we obtain a 9 x 2 orthogonal LHD. In the same fashion, we can

obtain 11 x 2 orthogonal LHDs. In general, suppose we have an n x 2 orthogonal LHD,

where the run size n has form 4k, 4k+1 or 4k+3, we can obtain an (n+4) x2 orthogonal

LHD by stacking an n x 2 orthogonal LHD on O2 with Xl = (n - 3) /2, X2 = (n - 1) /2.

It is easy to verify that there does not exist an orthogonal LHD of size 3. Thus, to

show (iii), it remains to show that there does not exist an orthogonal LHD of size 4k+2

(k = 0, 1, ... ). Equivalently, our target is to show that there are no two orthogonal

columns in an LHD of size 4k + 2. Let a = (al,"" an)T and b = (b l , ... , bnf be

the first and second column of such an LHD and both a and b are permutations

of {1/2, 3/2, ... , (n - 1)/2, -1/2, -3/2, ... , -(n - 1)/2}. Note that 2:::1 (J,i = 0,

2::~=1 bi = O. Without loss of generality, we assume that a has form (1/2,3/2, ... , (n­

1)/2, -1/2, -3/2, ... , -(n - 1)/2f. In other words, ai = -ai+n/2 = (2'[ - 1)/2. We

will prove the result by contradiction. Suppose columns a and b are orthogonal, that

is, 2::~=1 (J,ibi = 0, which can be rewritten as

n/2
2-1 L[(2bi)i - (2bi+n/2)(i - 1)] = O.

i=l

(2.7)

Note that both 2bi and 2bi+n/2 are odd, i = 1, ... , n/2. The quantity (2bih ­
(2bi+n/2)(i-1) must be odd as (2bi )i and (2bi+n/2)(i-1) cannot be both even or both

odd. In addition, n/2 must be odd. It is obvious that the addition or substraction

among odd numbers of odd integers gives an odd integer. This leads to a contradiction

and we therefore conclude that there does not exist an orthogonal LHD of size n =

4k + 2 where k 2 o. D



CHAPTER 2. ORTHOGONAL AND CASCADING LATIN HYPERCUBES 31

2.4 An algorithm for constructing designs of small

runs

In Section 2.2, we have presented a method that allows us to construct LHDs of large

runs based on LHDs of small runs. More importantly, the method can build large-run

(nearly) orthogonal LHDs based on small-run (nearly) orthogonal LHDs. Hence, to

obtain a rich class of large-run (nearly) orthogonal LHDs, it is important to have a

catalogue of small-run (nearly) orthogonal LHDs.

To the best of our knowledge, the problem of obtaining a catalogue of small-run

(nearly) orthogonal LHDs has not been considered in the literature. It is a challenging

problem because of the astronomical number of possible LHDs and the computational

complexity in determining the isomorphism of any two LHDs. Two LHDs are called

isomorphic if one can be obtained from the other by reordering the runs, relabeling the

factors and/or sign-switching one or more factors. To determine if two such designs

of n runs with m factors are isomorphic, a complete search compares 2m n!m! designs.

Although Clark and Dean (2001) proposed an efficient method based on Hamming

distances for checking the isomorphism between any two factorial designs, it is not

applicable here since the Hamming distance between any two rows of an LHD is a

constant, which is equal to the number m of factors. For a fixed small run size, instead, .

we aim to find some orthogonal LHDs and the best nearly orthogonal LHD according

to some optimality criteria. To do so, we adapt Xu's algorithm (2002), which we will

briefly describe first. We then discuss our optimality criteria and present the designs

found by the adapted algorithm.

2.4.1 Xu's algorithm

Xu (2002) presented a simple and effective algorithm for constructing orthogonal

arrays and nearly orthogonal arrays with mixed levels and small runs. The key idea
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of his algorithm is to add columns sequentially to an existing design. To add a column,

two operations, pairwise switch and exchange, are used. A pairwise switch switches a

pair of distinct symbols in a column. For a candidate column, the algorithm searches

for all possible pairwise switches and makes the pairwise switch that achieves the best

improvement of the optimality criteria. This search and pairwise switch procedure is

repeated until a bound is reached or there is no further improvement. An exchange

replaces the candidate column by a randomly generated column in which all levels

appear equally often. The exchange step is repeated at most T1 (user-specified) times

if no bound of optimality criteria is achieved. The procedure relies on the initial

random columns, therefore the entire procedure is repeated T2 times. Apart from

the sequential idea, the efficiency of the algorithm benefits from its fast updates of

the optimality criteria. An update is needed when a pairwise switch is applied. The

update is fast because the calculation of the value change of the criteria does not

involve multiplications.

2.4.2 Optimality criteria

In Section 2.2, we have adopted two measures, p2 (D) and PM(D), to evaluate exact

and near orthogonality of a design D. Here only p2 (D) is used in the algorithm. We

will explain the reason of not using PM(D) shortly.

To apply Xu's algorithm, we need to calculate the update of the (i(D) value when

the pairwise switch and exchange are carried out. Recall that for a design D k =

(d1, ... , dd, where dj is the jth column of Dk, p2 (Dk ) = Li<j p2 (di, dj)/[k(k - 1)/2]

where p(di, dj ) = J(di, dj)/[J(di, di)J(dj , dj )P/2 and J(di, dj ) = dJ'dj . Suppose that

the existing design D k - 1 has k - 1 columns and dk is added to D k - 1. The new design

is denoted by Dk = (Dk - 1, dk ). We then have
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where TJk = k(k - 1)/2.

Now.suppose that two symbols in rows j and I in the added column dk are

switched. Then for i = 1, ... , k -1, we get Jj1(di, dk) = J(di, dk) - (dji - d1i )(djk - d1k )

where Jj1(di, dk) represents the value of J(di, dk) after the pairwise switch and di =

(d1i , ... ,dnif. Let d{,l and D{,l denote the added column and the design after the

switch of the row pair (j, I), respectively. A straightforward calculation leads to

and

k-l

TJk-lp2(Dk-d + L p2(di, df)
i=l

k-l

flk_lP2(Dk_d + L p2(di, dk)
i=l

k-l

- L ~ik(j, l)/[J(di, di)J(dk, dk)]
i=l

k-l

TJk_lP2(Dk) - L ~ik(j, l)/[J(di, di)J(dk, dk)], (2.8)
i=l

where ~ik(j, l) = 2J(di, dk)6jl - 6]1 and 6jl = (dji - d1i )(djk - d1k ).

In this section, only LHDs are considered so J (di , di ) = 71 (n2 - 1) / 12 in our

notation. Thus on the right hand side of (2.8), only ~(j, I) = L.:7~11 ~ik(j, I) varies

due to the pairwise switch. The equation (2.8) implies that we perform the pairwise

switch which produces a positive and biggest value of ~(j, I).

An important aspect of an optimality criterion is a lower bound. In our situation,

p2(D) = 0 is clearly a lower bound for an orthogonal LHD. When there does not exist

an orthogonal LHD, i.e. 71 = 4k + 2 (k = 0,1, ... ), the following corollary provides a

useful lower bound of p2 due to Theorem 2.5.

Corollary 2.1. For an 71 x m Latin hypercube L, each column of which is a perrnu­

tation of {-(n - 1)/2, ... , -1/2, 1/2, ... , (71 - 1)/2}, wheTe n iii of fOTrn 71 = 4k + 2
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(k = 0,1, ... ), we have that

(2.9)

Proof. Consider any two column vectors a and b from the LHD L, we have

n n/2
L aibi = 2- 1 L[(2bi)i - (2bi+n/2)Ci - 1)],
i=l i=l

given by the equation (2.7) in the proof of Theorem 2.5. Because IL:~~~[(2bi)i ­

(2bi+n/2)(i -1)]12: 1, we have Ip(a,b)1 = ILi (libil/(Li aT Li b;)l/2 2: 2- 1/[n(n2 ­

1)/12] = 6/[n(n2-1)]. Therefore, p2(L) = L:i:'::jp2(li,lj)/[m(m-1)/2] 2: 36/[71.2(71.2­

1)2]. D

We have tried to use PM(Dk) as an optimality criterion for several cases in the

adapted algorithm. However, the results are not so good as those from using p2 (D).

An intuitive explanation is as follows. If we choose PM (Dk ) as an optimality crite­

rion, obviously, PM(Dk) = Max{PM(Dk-d, Ip(d1 , dk)I, ... , Ip(dk - 1 , dk)I}. This means

if Ip(di , dk)1 < PM(Dk-d for all i = 1, ... , k - 1, PM(Dk) = PM(Dk- 1 ) and the added

column dk has no contribution to the selection of optimal designs. Therefore, PM(Dk )

as an optimality criterion does not give results as fruitful as p2 (D).

2.4.3 The adapted algorithm and results

Xu's algorithm is adapted to obtain orthogonal and nearly orthogonal LHDs. Suppose

we aim to construct a nearly orthogonal LHD of 71. runs with m factors. Let S be

{-(71. -1)/2, ... ,0, ... , (71. -1)/2} and {-(71. -1)/2, ... , (71. -1)/2} when 71. is odd and

even, respectively. The lower bound of p2 is defined as

n=4k+2 (k= 1,2, ... );

otherwise.

The adapted algorithm works as follows.
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Step 1: Randomly select a permutation of S. Set ma = O.

Step 2: For k = 2, ... , m, do the following:

(a) Generate a random permutation of S for the kth candidate column, dk .

Let D k - 1 be the present design and D k denote the design obtained by

adding dk to Dk- 1 • Compute p2(Dk) = [(k - l)(k - 2)p2(Dk_1 )/2 +
l:7~11 p2(d i , dk)]/[k(k - 1)/2]. If p2(Dk) = 0, set ma = ma + 1. If p2(Dk) =

£(71), go to (d).

(b) For every pair of rows, ,j and l, compute !':1(,j, l) as defined in Section 2.4.2.

Choose the pair with the positive and largest !':1(,j, l) and switch the symbols

in rows ,j and l of dk. Reduce p2(Dk) by !':1(,j, l)/[T/kn(n2 - 1)/12]. If

p2(Dk) = 0, then set ma = ma + 1. If p2(Dk) = £(71), go to (d); otherwise,

repeat (b) until no further improvement is possible.

(c) Repeat (a) and (b) T1 times and choose a column dk that produ('es the

smallest value of p2(Dk).

(d) Add the column dk to Dk- 1 and update the value of p2(Dk).

Step 3: Repeat Steps 1 and 2 T2 times. Keep the design D m with the smalkst \"Hllle

of p2(Dm ) and the orthogonal LHD Dmo with the largest ma.

We now tabulate the orthogonal LHDs obtained by the adapted algorithm wit h

T1 = 3000 and T2 = 3000 in Tables 2.1 and 2.2. At step 3 of the algorithm. T2

designs are ranked according to PM and the one with the smallest value of Pili is also

kept. Tables 2.3 and 2.4 summarize the smallest values of p and PM obtained by

the algorithm for various 71 and m. Note that the design that has the smallest value

of p may not have the smallest value of PM and vice versa. When the run size n

is not of form 4k + 2, p = PM = 0 corresponds to an orthogonal LHD. In the case

of n = 4k + 2, the lower bound in Corollary 2.1 is attained for some values of rn.
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For instance, in Table 2.4, LHDs of 22 runs with Tn factors achieve the lower bound

P = PM = 6/[n(n2
- 1)] = 0.00056 for Tn ::; 7.

Table 2.1: Orthogonal Latin hypercubes of n runs, 4 < n < 13
n

4 5 7 8
-1.5 -0.5 -2 1 -:1 -3 0 -3.5 1.5 -0.5 -2.5
-0.5 1.5 -1 0 -2 2 -3 -2.5 -2.5 0.5 3 ".V

0.5 -1.5 0 -1 -1 1 3 -1.5 3 " -1.5 2.5.0

1.5 0.5 1 -2 0 3 1 -0.5 -0.5 1.5 -3.5
2 2 1 -2 -1 0.5 -:t5 -2.5 -1.5

2 -1 2 1.5 -1.5 3.5 1.5
3 0 -2 2 c 2.5 2.5 -0.5.0

:1.5 0.5 -:1.5 0.5

n

9 11
-4 -1 -4 -2 -3 -5 -4 -5 -5 -3 0 0
-3 -3 -1 :3 :3 -4 2 -1 3 4 5 4
-2 2 3 -3 1 -3 -2 4 5 -4 -2 -1
-1 4 2 0 -1 -2 3 -3 4 1 -4 -2

0 -2 4 4 -2 -1 4 2 -4 3 2 -4
1 1 0 -1 0 () -5 5 -2 5 -3 2
2 3 -3 2 4 1 5 3 -3 -5 -1 5
3 -4 1 -4 2 2 -1 1 1 -2 3 -5
4 0 -2 1 -4 3 0 0 -1 () 1 -:3

4 1 -4 0 2 -5 1
5 -:3 -2 2 -1 4 3

n

12 13
-5.5 -5.5 -1.5 -5.5 -3.5 3 " -6 -6 -6 0 -5 -1- .0

-4.5 -2.5 -2.5 5.5 4.5 0.5 -5 1 4 -1 6 5
-3.5 4.5 5.5 -4.5 -0.5 1.5 -4 6 -4 5 5 -2
-2.5 0.5 0.5 0.5 0.5 5.5 -3 2 6 -4 -6 2
-1.5 2.5 -0.5 1.5 5.5 -4.5 -2 -2 2 2 -2 -4
-0.5 5.5 2.5 3.5 -2.5 -1.5 -1 :3 1 1 -3 3

0.5 1.5 -5.5 2.5 -5.5 -2.5 0 4 -2 -6 1 -5
1.5 -1.5 1.5 -1.5 1.5 2.5 1 -4 -5 -2 3 4
2.5 -4.5 3.5 4.5 -4.5 :3.5 2 -5 5 6 2 1
3.5 -0.5 -4.5 -3.5 3 " 4.5 3 -3 3 -5 4 -6.0

4.5 3 " -3.5 -2.5 -1.5 -0.5 4 -1 0 4 -1 -3.V

5.5 -3.5 4.5 -0.5 2.5 -G.G 5 5 -1 3 -4 0
6 0 -3 -3 0 6
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Table 2.2: Orthogonal Latin hypercubes of n runs, 15 < n < 21
n

15 17 19
-7 4 -7 -6 -2 -5 -8 -8 -8 3 1 -7 -9 -9 -9 -8 2 7
-6 3 5 3 5 2 -7 0 5 -1 -6 8 -8 5 5 4 -8 9
-5 -6 -2 5 6 -3 -6 -2 3 -2 -2 -1 -7 -6 -5 5 0 -5
-4 1 4 4 -5 -2 -5 7 -6 2 3 5 -6 -3 0 -9 -4 -2
-3 0 -4 -7 0 3 -4 3 -5 -7 0 3 -5 9 6 1 7 4
-2 -2 3 0 -4 -7 -3 2 8 0 7 6 -4 7 9 -5 -2 -6
-1 -7 6 -2 -3 5 -2 -3 -1 -4 6 -4 -3 -2 3 3 -9 -7

0 7 -5 7 3 7 -1 5 4 6 4 -8 -2 6 -8 6 6 -3
1 -4 1 -5 4 6 0 4 1 7 -8 -5 -1 -4 4 9 5 2
2 -1 0 6 -6 1 1 -5 -3 5 2 2 0 4 -6 -2 9 -8
:~ 6 2 -3 -7 4 2 -6 7 -6 -1 0 1 0 -2 -4 -5 -1
4 -3 -3 -1 2 -1 3 8 2 1 -3 -2 2 8 -3 -1 3 1
5 5 7 -4 7 -4 4 -4 6 -3 -4 -6 3 -8 8 0 4 3
6 -5 -6 1 -1 0 5 1 -4 4 -7 4 4 -7 2 8 -1 -9
7 2 -1 2 1 -6 6 -1 -7 -8 -5 1 5 -5 7 -3 8 5

7 6 -2 -5 8 -3 6 1 -4 7 -7 6
8 -7 0 8 5 7 7 2 -7 2 -3 8

8 3 -1 -6 -6 -4
9 -1 1 -7 1 0

n
20 21

-9.5 6.5 -9.5 -8.5 -9.5 3.5 -10 -2 -9 4 -9 -9
-8.5 -6.5 4.5 8.5 -5.5 -1.5 -9 -5 8 !J 10 -7
-7.5 -4.5 5.5 2.5 5.5 4.5 -8 0 -3 -8 -4 -6
-6.5 4.5 -1.5 -4.5 7.5 1.5 -7 10 4 7 6 6
-5.5 -7.5 0.5 -7.5 -6.5 -7.5 -6 9 3 -5 4 -5
-4.5 9.5 -0.5 5.5 6.5 -4.5 -5 5 -1 -1 -7 :l
-3.5 7.5 -4.5 4.5 -3.5 2.5 -4 1 -2 -9 -5 9
-2.5 -1.5 3.5 -1.5 0.5 8.5 -3 -4 7 2 -1 10
-1.5 -9.5 -3.5 3.5 3 ~ 7.5 -2 6 -5 -4 8 8.0

-0.5 0.5 7.5 -5.5 -1.5 -6.5 -1 -7 9 6 -10 -1
0.5 -0.5 8.5 -0.5 -0.5 -2.5 0 -3 0 -6 3 0
1.5 -8.5 -5.5 6.5 4.5 -8.5 1 -1 -6 10 -3 5
2.5 2.5 -2.5 -6.5 1.5 -3.5 2 -8 -4 -2 2 7
3.5 5.5 1.5 1.5 9.5 -0.5 :~ -10 5 -3 5 -8
4.5 1.5 -7.5 0.5 8.5 0.5 4 -6 2 -10 7 1
5.5 8.5 9.5 7.5 -7.5 -5.5 5 -9 -7 0 -2 2
6.5 -2.5 -6.5 9.5 -8.5 6.5 6 2 -10 5 9 -,1
7.5 -5.5 6.5 -9.5 2.5 5.5 7 8 1 -7 -6 -10
8.5 -3.5 -8.5 -3.5 -2.5 -9.5 8 4 -8 8 1 -3
9.5 3.5 2.5 -2.5 -4.5 9.5 9 3 6 3 -8 4

10 7 10 1 0 -2
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Table 2.3: The best values of P and PM (in bracket) for 4 ::; n ::; 15
n

III
4 5 6 7 8 9

2 0.000(0.000) 0.000(0.000) 0.029(0.029) 0.000(0.000) 0.000(0.000) 0.000(0.000)
3 0.258(0.400) 0.082(0.100) 0.055(0.086) 0.000(0.000) 0.000(0.000) 0.000(0.000)
4 0.135(0.200) 0.072(0.086) 0.015(0.036) 0.000(0.000) 0.000(0.000)
5 0.093(0.143) 0.037(0.071 ) 0.011(0.024) 0.000(0.000)
6 0.053(0.107) 0.015(0.024) 0.009(0.017)
7 0.036(0.071) 0.016(0.033)
8 0.028(0.067)

n
III

10 11 12 13 14 15
2 0.006(0.006) 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.002(0.002) 0.000(0.000)
3 0.006(0.006) 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.002(0.002) 0.000(0.000)
4 0.006(0.006) 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.002(0.002) 0.000(0.000)
5 0.006(0.006) 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.002(0.002) 0.000(0.000)
6 0.006(0.006) 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.002(0.002) 0.000(0.000)
7 0.012(0.030) 0.000(0.000) 0.003(0.007) 0.002(0.005) 0.002(0.002) 0.001(0.004)
8 0.019(0.042) 0.010(0.028) 0.006(0.014) 0.004(0.011) 0.003(0.007) 0.002(0.004)
9 0.030(0.079) 0.017(0.036) 0.011(0.028) 0.006(0.016) 0.005(0.011) 0.003(0.007)
10 0.025(0.064) 0.016(0.035) 0.009(0.022) 0.006(0.015) 0.005(0.011)
11 0.021(0.056) 0.015(0.038) 0.010(0.024) 0.007(0.018)
12 0.021(0.049) 0.014(0.033) 0.010(0.029)
13 0.020(0.059) 0.012(0.039)
14 0.017(0.050)
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2.5 Constructing orthogonal Latin hypercubes of

other run sizes

In Section 2.3, we have shown that the run size of an orthogonal LHD must be a

multiple of 4 or odd. In Section 2.2, the proposed method enables us to construct

orthogonal LHDs of any size n that n is a multiple of 8. In this section, we develop

methods for all other run sizes that are odd or multiples of 4. Thus, the problem of

constructing orthogonal LHDs is solved completely ill terms of run sizes.

Let 5 be the n levels of an LHD of size n. Let 5 = 51 U52 where 51 n 52 = 13, and

n1 and n2 be the numbers of elements in 51 and 52, respectively. Suppose that there

exist an n1 x rn orthogonal design D1 with levels ill 51 and an n2 x rn orthogonal

design D 2 with levels in 52' Then

(2.10)

is an n x rn orthogonal LHD, where n = n1 + n2' Note that D 1 and D 2 are not LHDs

in general.

In the following two subsections, we discuss two methods for obtaining the designs

D 1 and D2 in (2.10). In the orthogonal LHDs constructed by the first method, the

run size n must be 8k + 1 or 8k - 1 (k = 3, 4, ... ). The second method can provide

orthogonal LHDs of any run size that does not have form 4k + 2 (k = 0, 1, ... ).

2.5.1 A direct stacking method

This method applies to the situation where n1 is odd, n2 is even, n1 + n2 = n, and

In1 - n21 = 1. The method works as follows:

(i) Select an n1 x rn orthogonal LHD to be rh;

(ii) Select an n2 x rn orthogonal LHD to be D2;



CHAPTER 2. ORTHOGONAL AND CASCADING LATIN HYPERCUBES 41

As an illustration, we consider constructing orthogonal LHDs of 23 runs in the next

example.

Example 2.7. Let n1 = 11 and n2 = 12. In Table 2.1, we take the first six columns of
-

the 11 x 7 orthogonal LHD to be D 1 and the 12 x 6 orthogonal LHD to be D2, i.e.,

-11 -11 -3 -11 -7 -7
-5 -4 -5 -5 -3 0

-9 -=--5 -5 11 9 1
-4 2 -1 3 4 5

-7 9 11 -9 -1 3
-3 -2 4 5 -4 -2

-5 1 1 1 1 11
-2 3 -3 4 1 -4

-3 5 -1 3 11 -9
-1 4 2 -4 3 2

D1 = and D2 = ~
-1 11 5 7 -5 -3

0 -5 5 -2 5 -3
1 3 -11 5 -11 -5

1 5 3 -3 -5 -1
3 -3 3 -3 3 5

2 -1 1 1 -2 3
5 -9 7 9 -9 7

3 0 0 -1 0 1
7 -1 -9 -7 7 9

4 1 -4 0 2 -5
9 7 -7 -5 -3 -1

5 -3 -2 2 -1 4
11 -7 9 -1 5 -11

A 23 x 6 orthogonal LHD can then be obtained immediately by (2.10) without the

effort of computer search. 0

2.5.2 Orthogonal designs method

This method proceeds as follows.

(i) Given n, choose n1 and n2 such that n1 + n2 = nand n2 is a multiple of 8;

(ii) Choose an n1 x m orthogonal LHD to be D1;

(iii) Construct an n2 xm orthogonal design D2 with levels {- (n1 +n2-1) /2, ... , -(n1 +

1)/2, (n1 + 1)/2, ... , (n1 + n2 - 1)/2}.

Two approaches for obtaining a design D2 in (iii) are now considered. To describe the

first approach, we consider an n x m orthogonal matrix V that satisfies the following:
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(i) V has entries ±XI, ... , ±Xn /2' where Xl, ... ,Xn /2 are real variables;

(ii) Both Xi and -Xi must occur exactly once in each column of of V, i = 1, ... ,n/2;

(iii) Every two columns Vi and Vj of V are orthogonal, i.e., vTvj = 0 for i i- j.

Unfortunately, no general construction method for V is available at present. Never­

theless, we have obtained a few orthogonal matrices V for n = 2,4,8, 16, as listed in

Table 2.5. Substituting each Xi (i = 1, ... , n2/2) in an n2 x m orthogonal matrix V by

(nl +2i-1)/2 will then yield an n2 x m orthogonal design D 2 , required by the method

in (2.10). For example, 27 x 7, 28 x 6, 29 x 6 and 31 x 6 orthogonal LHDs can easily

be constructed using this method together with orthogonal LHDs in Table 2.1. We

note that orthogonal matrices V considered above are related to but different from

orthogonal designs in the combinatorics literature (Geramita and Seberry, 1979).

Table 2.5: Orthogonal matrices of n runs, n - 2,4, 8, 16
n

2 4 8 16
1:1 Xl X2 Xl -X2 X4 X3 Xl -X2 -X4 -X3 -·1:s Xi .1':) .l'{i

-Xl -Xl -X2 1:2 Xl 1:3 -X4 X2 Xl -X3 X4 -X7 -:1', -.1'" ·1';1

X2 -Xl X3 -X4 -X2 -Xl X3 -X4 1:2 :rl -1:6 -:1~f) ·1"7 -·1'8

-X2 Xl X4 X3 -Xl X2 X4 X3 Xl -:1'2 -X5 :f(} -.r~ -·1'7

-X4 -X3 Xl -X2 X5 -X6 -:rs X7 X4 :1';1 -·1'1 -.f:2

-X3 X4 X3 Xl X6 X5 -X7 -Xs X3 -:1'4 .r2 -.1'[

-X2 -Xl -X3 X4 X7 -Xs Xu -X5 :r2 -:/"1 -./":\ ·1'1

-Xl X2 -X4 -X3 Xs X7 X5 X6 Xl ·1'2 ·1'1 .1':\

-Xl X2 X4 1:3 :rs -·1'7 -.1';) -.r{i

-:1'2 -Xl X3 -:1'4 X7 1:, .1',; -·1":1

-:1'3 X4 -X2 -1:] Xu :[,5 -·1"7 .1'1"

-X4 -X3 -X] X2 :1'5 -.T(j ·1'8 ·1'7

-X5 X6 X, -X7 -:C] -:1';, ·1'1 .1':2

-Xu -:r:5 X7 Xs -:1':3 1:4 -.r2 ·1'1

-X7 1:S -X6 X5 -X2 Xl .1':\ -'/"I

-:I's -X7 -:1'5 -X6 -XI -:1'2 -'/".J -.1':\

We now turn to the second approach thanks to Proposition 2.3 below.

Proposition 2.3. Let A be an n21 x ml column-orthogonal matrix, B be an 7/22 x rll2

orthogonal Latin hypeT"cube, C = (Cij) be an n21 x ml onhogonal design with levels
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. {-[nl + kn22]/2, [nl + knd/2, k = 1,3, ... , n21 - I}, D be an n22 x m2 column­

orthogonal matrix. Let n2 = n21n22 and m = mlm2. Suppose that A, B, C and D

satisfy conditions (iii) and (iv) in Theorem 2.1. Then choosing I = 1 in (2.1) gives

an orthogonal design D2 = L with levels {- (nl + n2 - 1)/2, ... , - (nl + 1) /2, (nl +

1)/2, ... , (nl +n2 - 1)/2}.

Proof. It is straightforward to see the levels of D2 are {-(nl + n2 - 1)/2, ... , -(nl +

1) /2, (nl +1)/2, ... , (nl +n2-1) /2} from the levels in A, B, C and D and the definition

of Kronecker product. The orthogonality of D 2 follows directly from Proposition

2.2. o

C=

Proposition 2.3 is particularly useful when nl = 1. That is because D1 in (2.10)

is a row of zeros in this case and there is no restriction on the number of columns in

D 1 . To use Proposition 2.3, we choose A, Band D in the same way as in Theorem

2.1. As for C, we can make use of the orthogonal matrices in Table 2.5. For given n2,

we can use different combinations of n21 and n22, which yield many choices for D 2.

The next two examples illustrate the use of Proposition 2.3.

Example 2.8. Let n21 = 2, n22 = n2/2, ml = 1, and m2 = m, and let A, Band D

be chosen as in Proposition 2.3. Taking ((nl + n22)/2, -(nl + n22)/2f to be C in

the method (2..1), we obtain an orthogonal design D2 for (2.10). For example, letting

nl = 1 and n2 = 24, a 25 x 6 orthogonal LHD can be obtained immediately.

Example 2.9. Let n21 = 4, n22 = n2/4, ml = 2, and m2 = m/2. Again, A, Band D

are chosen as in Proposition 2.3. Let C be

11 12

-'1 -'2
12 -'1

-,2 11

where 11 = (nl + n22)/2 and 12 = (nl + 3n22)/2. For instance, suppose we wish to

construct an orthogonal LHD of 65 runs. To do so, we let nl be 1 and n2 be 64. In
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addition, we choose a 16 x 12 orthogonal LHD to be B. After choosing A and D

appropriately, we can obtain a 65 x 24 orthogonal LHD.

2.6 Collections of orthogonal Latin hypercubes

Our intention in this section is to provide a comprehensive table of orthogonal LHDs

for available run sizes, n. Note that 71, must not equal 3 and 4k + 2 (k = 0,1, ... ).

In the previous sections, six approaches have been introduced to construct orthog­

onal LHDs of various run sizes. They are (i) the algorithm search in Section 2.4.3; (ii)

the orthogonal matrices method in Section 2.5.2; (iii) the direct stacking method in

Section 2.5.1; (iv) the construction (2.1) as in Theorem 2.1; (v) the construction as in

Theorem 2.2; (vi) the construction (2.10) as in Proposition 2.3. We now summarize

orthogonal LHDs provided by each approach. Approach (i) is used to obtain orthog­

onal LHDs of small run sizes. The corresponding number m of columns in each of

these designs is given in Table 2.6. Approach (ii) uses orthogonal matrices to obtain

orthogonal designs D2 in the construction (2.10). Although general construction on

orthogonal matrices is not available currently, orthogonal matrices of sizes 8 and 16

are available in Table 2.5. Because 71,1 can be any available run size, this approach

can provide orthogonal LHDs of any available run size. As an illustration, Table 2.7

provides the number m of columns in those designs of run sizes 71, ::; 40. Note that

71, = 71,1 + 71,2 and m = min{m1' m2}. For the larger run sizes, the value of m's can be

readily obtained using m's for small run sizes. Approach (iii) applies to the situation

where 71,1 and 71,2 are adjacent. Equivalently, it can offer orthogonal LHDs of run sizes

71, = 8k - 1 and 71, = 8k + 1 where k is any positive integer. For example, Table 2.8

displays the cases k = 3,4,5. Again, we have 71, = 71,1 + 71,2 and m = min{m1' m2} in

this approach. Approach (iv) is applicable to the cases 71, = 8k (k = 1,2, ... ). Table

2.9 gives the value of m, 71,1, 71,2, m1 and m2 in Theorem 2.1 for each of the run size

71, ::; 256. Note that there may exist multiple choices of 71,1 and 71,2 that gives the
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same m, but we only report one such choice. Approach (v) requires the run size TI

to have form n = 16k2 • The number m of columns in orthogonal LHDs obtained by

this approach is given in Table 2.10. Note that m = 2m1m2. In approach (vi), Tl2

must be a multiple of 8 while TIl can be any integer that is not equal to 4k + 2 and 3,

where k is any integer. Therefore, this approach can provide orthogonal LHDs of any

available run size. It is particularly useful when TIl = 1 and n2 is a multiple of 16 as

indicated in Table 2.11.

Table 2.6: The maximum number m of factors in orthogonal LHDs obtained by
approach (i)

n 4578911
m223457

12 13 15
666

16 17 19 20
6 6 6 6

Table 2.7: The maximum number m of factors in orthogonal LHDs obtained by
approach (ii)

n m n1 n2 m1 m2 n m n1 n2 711,1 Tn2
17 8 1 16 8 8 29 6 13 16 6 8
19 4 11 8 7 4 31 6 15 16 6 8
20 4 12 8 6 4 32 8 16 16 12 8
21 4 13 8 6 4 33 8 17 16 8 8
23 4 15 8 6 4 35 6 19 16 6 8
24 4 16 8 12 4 36 6 20 16 6 8
25 5 9 16 5 8 37 6 21 16 6 8
27 7 11 16 7 8 39 6 23 16 6 8
28 6 12 16 6 8 40 6 24 16 6 8

Given the results above, we now summarize the maximum value of m provided by

the aforementioned six approaches and the methods of Ye (1998), Steinberg and Lin

(2006) and Cioppa and Lucas (2007) in Tables 2.12, 2.13, 2.14, and 2.15. Therefore,

the maximum number m* of columns obtained by combining all the results is also
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given in Tables 2.12, 2.13, 2.14, and 2.15. Due to the space consideration, we only

list the cases n ~ 259.

Several comments are in order. First, Tables 2.12 - 2.15 demonstrate that our

approaches outperform others in terms of both flexibility of the run size and the

number of orthogonal columns. Second, since large orthogonal LHDs are built based

on small ones, we will obtain more columns for large ones if more columns for small

ones can be found through algorithms or constructions in the future. Third, suppose

we have an nl X mj orthogonal LHD and an 'n2 x m2 orthogonal LHD. One may expect

an ('nj'n2) x (mjm2) orthogonal LHD given by the method (2.1). However, this is not

always the case. For example, we have a 12 x 6 and 20 x 6 orthogonal LHD that can

be used as Band C respectively for constructing orthogonal LHDs of 240 runs. But

a 240 x 36 orthogonal LHD cannot be constructed because condition (iv) in Theorem

2.1 is not satisfied. Instead, only 12 columns are available as reported in Table 2.15.

Lastly, many small orthogonal LHDs are available and thus a large collection of large

ones are obtained via both methods (2.1) and (2.10). In addition, as argued in Section

2.2.1, given A, B, C and D that produce an orthogonal LHD via the method (2.1),

we can apply different row permutations (or column permutation or sign-switching or

a combination of these operations) between A and C, or between Band D to obtain

non-isomorphic orthogonal LHDs.

Table 2.8: The maximum number m of factors in orthogonal LHDs obtained by
approach (iii)

23 6 11 12 7 6
25 6 13 12 6 6
31 6 15 16 6 12

33 8 17 16 8 12
39 6 19 20 6 6
41 6 21 20 6 6
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Table 2.9: The maximum number m of factors in orthogonal LHDs obtained by
approach (iv)

n rn nj n2 rnj m2 n m nj n2 mj m2
24 6 12 2 6 1 144 12 12 12 6 2
32 12 16 2 12 1 152 6 76 2 6 1
40 6 20 2 6 1 160 24 20 8 6 4
48 12 12 4 6 2 168 6 84 2 6 1
56 6 28 2 6 1 176 12 44 4 6 2
64 24 16 4 12 2 184 6 92 2 6 1
72 6 36 2 6 1 192 48 16 12 8 6
80 12 20 4 6 2 200 6 100 2 6 1
88 6 44 2 6 1 208 12 52 4 6 2
96 24 12 8 6 4 216 6 108 2 6 1
104 6 52 2 6 1 224 24 28 8 G 4
112 12 28 4 6 2 232 G 116 2 6 1
120 6 60 2 6 1 240 12 60 4 6 2
128 48 16 8 12 4 248 G 124 2 G 1
136 6 68 2 6 1 256 96 16 16 12 8

Table 2.10: The maximum number m of factors in orthogonal LHDs obtained by
approach (v)

n m no rnj rn'2
64 32 8 4 4
144 24 12 6 2
256 192 16 12 8
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Table 2.11: The maximum number m of factors in orthogonal LHDs obtained by
approach (vi)

n Tn nl n2 n2l n22 Tnl Tn2

33 12 1 32 16 2 12 1
41 6 1 40 20 2 6- 1
49 12 1 48 12 4 6 2
57 6 1 56 28 2 6 1
65 24 1 64 16 4 12 2
73 6 1 72 36 2 6 1
81 12 1 80 20 4 6 2
89 6 1 88 44 2 6 1
97 24 1 96 12 8 6 4
105 6 1 104 52 2 6 1
113 12 1 112 28 4 6 2
121 6 1 120 60 2 6 1
129 48 1 128 16 8 12 4
137 6 1 136 68 2 6 1
145 12 1 144 12 12 6 2
153 6 1 152 76 2 6 1
161 24 1 160 20 8 6 4
169 6 1 168 84 2 6 1
177 12 1 176 44 4 6 2
185 6 1 184 92 2 6 1
193 48 1 192 12 16 6 8
201 6 1 200 100 2 6 1
209 12 1 208 52 4 6 2
217 6 1 216 108 2 6 1
225 24 1 224 28 8 6 4
233 6 1 232 116 2 6 1
241 12 1 240 60 4 6 2
249 6 1 248 124 2 6 1
257 96 1 256 16 16 12 8
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Chapter 3

Generalizations

Generalizations of the construction in Chapter 2 for better projection properties are

the focus of this chapter. The idea is motivated by the generalizations introduced by

Bingham, Sitter and Tang (2008). Their generalizations are reviewed and the con­

nection to the present methods is discussed. Our generalizations are then introduced

and studied. An example will be provided at the end of the chapter.

3.1 Introduction

Bingham, Sitter and Tang (2008) presented two generalizations, one of which improves.

the projection properties of their basic method. In this section, we will briefly review

this generalization and discuss its connection with our present work.

In Section 2.2, we have used D(n,8m ) to denote a design with n runs and Tn

factors, each factor at 8 levels, where 2 :::; 8 :::; n. Let A = (o,ij) be an nl x Tnl matrix

with o,ij = ±1. Let Do be a D(n2' 8 m2
). The basic method proposed by Bingham,

Sitter and Tang (2008) provides a design

D = A®Do.

53
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Let Dj be a D(n2' 8 m2 ), for each j

generalization

54

1, ... ,mI. They considered the following

anDI aI2 D2 aImjDmj

D = (aijDj ) =
a2I D I a22 D2 a2mjDmj

(3.2)

anjlDI anj 2D2 anjmjDmj

and went on using a simple case to explain that this generalization offers better

projection properties as compared with their basic method (3.1). The idea is as

follows. When A in (3.1) has the form ((1, If, (1, -Iff, the basic method (3.1)

produces two columns of the form

( d d)
d -d

in the resulting design D, where d is a column of Do. When the design D is projected

onto these two columns, its design points lie on the two diagonal lines y = x and

y = -x, leaving most of the design space unexplored. The generalization (3.2) uses

different D I and D2 , thereby producing two columns of the form

where d l is a column of D I and d2 is a column of D 2 • Obviously, if the column vectors

d l and d2 are different, there will not be the diagonal pattern in any two columns

of D in (3.2). When we say d l and d2 are different, we mean that d l =F ±d2 . This

implies that D I should not be obtained from D 2 just by column-permuting and/or

sign-switching if we want to eliminate the diagonal pattern exhibited in D in (3.1).

We now discuss the connection between the basic method (3.1) and the proposed

method in the previous chapter. Recall that our proposed method for constructing a
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Figure 3.1: d is a column of ones

Latin hypercube design (LHD) is

Figure' 3.2: d is balanced

(3.3)

where A and D are matrices with entries ±1 and Band Care LHDs. Now consider

a simple case in which

A= (1 1) 1 ( 1-1)and C = -1-1 2 -1 1
The design L, formed as in (3.3), has two columns of the form

(
b+ Tlfd b-!!;fd)
b- Tlfd -b+ Tffd

where b is a column of Band d is a column of D. When the design L is projected

onto these two columns, the design points are spread out in two ways based on the

column d. If d is a column of plus ones, those design points are plotted in the bottom

plot of Figure 3.1. Another case is that the column d is balanced (half 1's and half

-l's) and the bottom plot of Figure 3.2 shows the corresponding design points. In

both plots, we notice that the design points form two clusters, each having n2 points.

Furthermore, the centers of the two clusters lie on the diagonal line y = -x. The top



CHAPTER 3. GENERALIZATIONS 56

part of Figures 3.1 and 3.2 displays the respective two clusters of design points. The

design points in each cluster lie on the diagonal lines y = :r or y = -x or both.

In brief, the proposed method in Chapter 2 possesses similar undesirable projection

properties as the basic method in Bingham, Sitter and Tang (2008). A natural way

to cope with this issue is to adopt their generalization by using different Bj and Dj

VIa

(3.4)

We now use the following example to illustrate the benefit of this generalization.

Let

1 1 -3 1

1 -1
and C = ~

1 3
A=

1 1 3 -1

1 -1 -1 -3

The design L, formed as in (3.4), becomes

L=

'3B 1 - ~D1

B 1 + ~D1

B 1 + ~D1

B 1 - ~D1

B 2 + ~D2

3-B2 + 2D2

B 2 - ~D2

-B2 - ~D2

Let L 1 = (Bf - 3Df/2, Bf + Df/2, Bf + 3Df/2, Bf - Df/2f and L 2 = (Bl' +
Dr/2, -Br + 3Dr/2, Br - Dr/2, -Br - 3Dr/2f. When the design L is proj<,ct<,d

onto two columns in L 1, the design points are distributed as in Figure 3.3. Similarly,

Figure 3.4 displays the design points when the design L is projected onto two columlls

in L 2 • When the design L is projected onto two columns, one from L 1 and the other

from L 2 , the design points are distributed as in Figure 3.5.

Figures 3.3 and 3.4 indicate that when the design L, formed as in (3.4), is projected

onto the two columns from the same B j and D j , the design points still roughly lie on
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the diagonal lines y = x and y = -1:. This motivates us to consider the generalization,

(3.5)

in which the diagonal pattern of some projected columns will be completely elimi­

nated.

BO,--------,-~-~-~-~-~-~-___,

60

40

20

-20

-40

-60

-B..oBLO--~60'-----~40'-----~20'---~0--2:'::0--4:'::0--6~O --"BO

L1,1

Figure 3.3: Design points of two columns from £1

BO,-----~----,-~-~-~-~-~-__,

60

40

20

-20

-40

-60

-B..oB'::-O--~60'-----~40'------:':20'---~0--2:'::0--4"'"::0--:6"::-0--:'BO

L2.1

Figure 3.4: Design points of two columns from £2
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Figure 3.5: Design points of two columns, one from L1 and the other from L2
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3.2 Generalization methods

In this section, we will introduce two generalizations and study the properties of the

corresponding designs.

Let A = (aij) be an nl x ml matrix with aij = ±1 and C be a D(nl' s;n 1
). For

each j = 1, ... ,ml, let B j = (!J1k) be a D(n2' s~Z) and D j = (dik) be an n2 x m2 ma­

trix with d{k = ±1. Further let r be any real number. Consider the first generalization

L = (aijBj + "(cijDj )

allBI + "(cllD I

a2l B I + "(C2I D I

al2B2 + "(C12 D 2

a22 B 2 + "(C22 D 2

aIm! B m ! + "(el m1 D rn1

a2m! B m ! + "(C2m! D m1
(3.6)

Let D = (dij ) be an n2 x m2 matrix with dij = ±1 and B be a D(n2' s;nz). For

each j = 1, ... , m2, let C j = (Sk) be a D(nl' S~l) and A j = (aik) be an nl x ml

matrix with a{k = ±1. Further let r be any real number. The second generalization

provides a design
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L (bijAj + rydijCj )

bll A 1+ ryd ll C 1

b21 A 1+ ryd21 C1

b12 A 2 + ryd12C2

b22 A 2 + ryd22C2

b1m2Am2 + ryd1m2Cm2

b2m2 A m2 + ryd2m2 Cm2
(3.7)

The first generalization improves the local projection properties while the second

one offers better global projection properties. Here the global and local projection

properties respectively represent the spread of the clusters and the points in each

cluster when the design is projected onto the lower dimensions. Furthermore, the

generalizations also permit us to construct LHDs, orthogonal or nearly orthogonal

LHDs, and cascading LHDs. We will provide the parallel conditions for the design L

constructed by the generalizations to be in these three classes of designs as done in

Section 2.2. For simplicity in presentation, we only consider the generalization (3.7)

although similar results can readily be obtained for the generalization (3.6).

The proposition below generalizes Proposition 2.1. The proof is analogous to that

of Proposition 2.1 and thus omitted here.

Proposition 3.1. A design L, formed as in (3.7), is a Latin hypercube if

(iii) there do not exist.i and k, where .i = 1, ... , m2 and k = 1, ... , ml, such that

a~jk = -a~lk and dpj = -dp1j simultaneously hold, where p and p' are such that
J

bpj = -bp1j and qj and qj are such that ~jk = -~lk·
J

The following result is about the exact and near orthogonality of the design L in

the generalization (3.7).
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Theorem 3.1. Suppose that Aj , B, Cj, D and r are so chosen that a Latin hypercube

L is obtained. Furthermore, let A j and D be column-orthogonal, B be orthogonal, and

B T D = O. We then have that

(i) PM(L) = Max{wlPM(Cj), j = 1, ... ,rnd, where WI = n~(ni -l)/(nin~ -1), and

(ii) p2(L) = W2 ~7;:1 p2(Cj )/m2' where W2 = (ml - 1)wi/(mlm2 - 1)], and

(iii) L is orthogonal if and only if Cl , C2, ... ,Cm2 are all orthogonal.

Proof. Let Ljk be the column produced by the jth column of B and the kth column

Aj . Further let n = nln2. Then, parts (i) and (ii) can be easily obtained by noting

that

which implies that p(Ljk,Lj'k') = 0 when j =F j' and p(Ljk,Lj'k') = n~(ni­

1)Pkk,(Cj )/(n2
- 1) in the case of j = j' and k =F k'. Part (iii) follows directly

from parts (i) and (ii). 0

Theorem 3.1 says that if every matrix is column-orthogonal and every LHD is

orthogonal, the generalization (3.7) results in an orthogonal LHD. If C/s are relaxed

to be nearly orthogonal, the corresponding LHD L is also nearly orthogonal. Note that

matrices A j are required to be column-orthogonal in the theorem. This assumption is

not difficult to meet since a column-orthogonal matrix with entries ±1 of n rows can

have as many as n columns. As for orthogonal C/s, they are not rare anymore thanks
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to the proposed method in Chapter 2. Nevertheless, it is worthwhile to mention that

C/s can be equivalent up to row-permuting, column-permuting and/or sign-switching

within one or more columns. It should, however, be noted that column-permuting and

sign-switching columns alone do not eliminate the diagonal pattern in the bivariate

projections.

We now present the conditions for L in (3.7) to be a two-level cascading LHD in

the result below. The proof is omitted as it is similar to that of Theorem 2.4. As

discussed in Section 2.2.4, a k-level (k > 2) cascading LHD can be easily obtained

once we have a two-level cascading LHD.

Theorem 3.2. Let D be an n2 x m2 matrix of plus ones. A design L, formed as in

(3.7), is a two-level cascading Latin hypercube of n = nl'{/2 points with level (rll' rl2)

if (i) Sl = rll and 82 = rl2; (ii) I = rl2·

To conclude the section, we summarize that the generalizations not only improve

the global or local projection properties, but also retain the exact or near orthogonality

and the cascading structure.

3.3 A cascading Latin hypercube example

In this section, we use an example to illustrate the benefits gained by using the

generalizations as compared with the basic method. In addition, the difference of

these two generalizations will be demonstrated.

Example 3.1. Let rll = 9 and ml = rl2 = m2 = 3. We first choose A, B, C and D as

follows:

B=

o -1 1

1 0-1

-1 1 0

,D=

111

111

111
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1 1 1 -4 -3 -2

-1 1 1 -2 0 1

1 -1 1 -3 2 3

-1 -1 1 0 -4 0

A= 1 1 -1 and C= -1 1 4

-1 1 -1 1 4 -4

1 -1 -1 3 -2 2

-1 -1 -1 2 -1 -3

-1 1 -1 4 3 -1

Given E, we can row-permute it. We shall denote the resulting LHD after the jth row-

permuting by E j , j = 1, ... , m]. Similarly, we use D for all D/s. For A and C, we row-

permute them independently m2 times instead. The corresponding designs/matrices

are denoted by Ak and Ck , k = 1, ... ,m2.

Table 3.1:
Designs

Four constructions for cascading LHDs
Method Reference
A®E+n2C®D (2.1)
E®A+n2D®C (2.1)
aij ® E j + n2Cij ® Dj (3.6)
bik ® A k + n2dik ® Ck (3.7)

We now consider four constructions in Table 3.1. They produce four designs L1,

L 2 , L 3 and L4 . It is easy to verify that the four designs all are cascading LHDs.

Their pairwise plots are shown in Figures 3.6,3.7,3.8 and 3.9. There are a few points

worth mentioning. First, Figures 3.6 and 3.7 display the identical pattern after row­

permuting and column-permuting the pairwise plots because the designs L] and L 2

are equivalent up to row-permuting, column-permuting and sign-switching. Second,

L 3 constructed by the first generalization provides better local bivariate projection
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properties, as shown in Figure 3.10. Third, the second generalization improves the

global bivariate projection properties of the basic method. For example, Figure 3.11

depicts the sixth and ninth columns of L2 and L4 . The global diagonal pattern present

in the columns of L 2 has vanished in the columns of L 4 .

Figure 3.6: Pairwise plot of L 1

~~~~~~00B;
_10' _10, '0' .10' _10,

Figure 3.8: Pairwise plot of L3

Figure 3.7: Pairwise plot of L2

Figure 3.9: Pairwise plot of L4
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Figure 3.10: Pairwise plot of the second and eighth columns of L 1 and L3
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Figure 3.11: Pairwise plot of the sixth and ninth columns of L 2 and L4



Chapter 4

Two-level Fractional Factorial

Designs

Fractional factorial designs with factors at two levels are the most widely used in

practice. An important question that arises in fractional factorial experimentation is

how to judge the "goodness" of designs and select good designs. The minimum G

and G2-aberration are the commonly used criteria for selecting optimal designs. The

purpose of this chapter is to provide a collection of good designs based on these two

criteria.

A brief outline of this chapter is as follows. In Section 4.1, the problem that we

aim to attack is described and relevant work is reviewed. Necessary notation and

definitions, as well as the background knowledge, are introduced in Section 4.2. A

general method and its implementation are the topics of Section 4.3. The method is

then applied to construct designs of 24, 32 and 40 runs in Section 4.4.

65
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We consider factorial experiments with m factors at two levels. A full factorial design

requires n = 2m runs and thus is rarely used in practice unless m is very small.

Fractional factorial (FF) designs, which are fractions of full factorial designs, are

commonly used instead. Among two-level FF designs, those constructed through the

defining relation are called regular designs. The rest are termed nonregular designs. In

this chapter, we focus on two-level orthogonal designs in which for every two columns·

of the design matrix, the four level combinations (1, 1), (1, -1), (-1, 1), (-1, -1) occur

equally often.

Minimum aberration (MA) (Fries and Hunter, 1980) is the most popular criterion

for choosing a regular design. It has been discussed extensively by many researchers.

See Chapter 4 of Wu and Hamada (2000) for a comprehensive review.

In an attempt to evaluate and discriminate general two-level FF designs, Deng

and Tang (1999) proposed generalized minimum aberration, also referred to as mini­

mum G-aberration. Because minimum G-aberration is very stringent, Tang and Deng

(1999) then introduced a relaxed version of minimum G-aberration, called minimum

G 2-aberration. They justified the criterion by showing that it leads to designs that

minimize the contamination of nonnegligible interactions on the estimation of main

effects. Tang (2001) provided a projection justification of minimum G2-aberration.

Further, Cheng, Deng and Tang (2002) established a justification of minimum G2­

aberration from model robustness and efficiency point of view.

With the minimum G and G2-aberration, an important problem is to obtain opti­

mal designs with respect to one or both criteria. Deng, Li and Tang (2000) appeared

to be the first attempt in this direction. They restricted their attention to the class

of Hadamard matrices of orders 16, 20, and 24 and used short versions of minimum

G-aberration, which they term MA-4 and MA-5 classifiers, to obtain a catalogue of

top nonregular designs of 16 for all m :S 15 and 20 runs for all m :S 19, and 24 runs
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for m :::; 8. Deng and Tang (2002) made similar efforts except that they searched for

nonregular designs as well as regular designs.

Because not every two-level orthogonal design can be embedded into a Hadamard

matrix, Tang and Deng (2003) sought minimum G-aberration designs within the whole

class of orthogonal designs. They were able to construct minimum G-aberration

designs of 3, 4, 5 factors for any run size n that is a multiple of 4. Li, Deng and

Tang (2004) further pursued the problem in this direction and obtained minimum

G-aberration designs of 20, 24, 28, 32 and 36 runs and up to 6 factors. Butler (2003a,

2003b) presented some construction results which allow MA regular and minimum

G2-aberration nonregular designs to be found. The results on MA regular designs

of n runs apply to the cases that 5n/16 :::; m < n. For minimum G2-aberration

nonregular designs, the results are used to find such designs for many of the cases

with the run size n = 16,24,32,48,64,96 and m :::: n/2 - 2 factors. Ingram and Tang

(2005) focused on designs of 24 runs and provided a complete table of minimum or

near-minimum G aberration designs for all values of m :::; 23. Xu (2005) made use of

the Nordstrom and Robinson (1967) code to construct nonregular designs with 32,64,

128, and 256 runs with 7-16 factors. Many of these nonregular designs were shown

to have minimum G2-aberration among all possible designs. Xu and Wong (2007)

explored the connection between nonregular designs and quaternary linear codes and

presented a collection of nonregular designs with 16, 32, 64, 128, 256 runs and up to

64 factors.

In spite of the above rich results, obtaining a collection of good two-level designs

remains largely unsolved. In this chapter, we aim to provide a general method for

constructing good two-level FF designs of flexible run size n and all possible values

ofm.
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In this section, we will first introduce the notation and concepts used in the rest of the

chapter, and then provide some background knowledge on the design construction.

4.2.1 Notation and definitions of two-level FF designs

Consider designs with 71, runs and m factors, each factor at two levels, denoted by

1 and -1, respectively. We use an 71, x m matrix D = (dij ) to represent such a

design. To assess the "goodness" of two-level designs, Deng and Tang (1999) proposed

the generalized resolution and the minimum G-aberration. To introduce them, the

following concepts need to be defined. For s = {d1 , ... , dd, a subset of k columns of

D, define
n

Jk(s) = IL di1 ... dikl,
i=1

where dij is the ith entry of column dj . Obviously, 0 :::; Jk(s) :::; n. In particular, when

D is orthogonal, we have J 1 (s) = J2 (s) = O. In addition, when D is a regular design,

Jk (s) must equal 0 or 71" with 0 corresponding to orthogonality and 71, to full aliasing.

The formal definition of the generalized resolution is then given as follows.

Definition 4.1. The generalized resolution of D is defined as

where r is the smallest integer such that maxlsl=r Jr (s) > O.

It should be noted that for regular designs, the generalized resolution is the same

as the usual resolution. Moreover, when D is orthogonal, we have R(D) > 3. In

general, the larger generalized resolution, more desirable a design.

Many designs may have the same generalized resolution. To further characterize or

discriminate between two-level designs, Deng and Tang (1999) proposed the minimum

G-aberration criterion which will be defined based on the following concept.
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Definition 4.2. Let n = 4t. The confounding frequency vector (CFV) of D is defined

to be the vector of length (m - 2)(t + 1), F(D) = [F3 (D); ... ;Fm(D)] where Fk(D) =

Ukl, ... ,fk(Hl)) and fkj represents the frequency of k column combinations such that

Jk(s) = 4(t + 1 - j) for> j = 1, ... , t + 1.

Definition 4.3. For any two designs D l and D 2 , let F(Dl ) and F(D2 ) be their

respective CFV's and fi(Dd and fi(D2 ) be the c07-responding ith entries, where i =

1, ... , (m - 2)(t + 1). Let l be the smallest integer such·that fz(Dd t- Jz(D2 ). Then

D l is said to have less G aberration than D2 if fz (Dd < fz (D2 ). If there is no design

with less G-aberration than D l , then D l has minimum G-aberration.

Tang and Deng (1999) proposed a relaxed variant of minimum G-aberration, called

minimum G2 aberration. Let Bk(D) = n-2 Llsl=k[.h(sW. The generalized word

length pattern and minimum G2 aberration can then be defined.

Definition 4.4. The vector (Bl (D), ... , B m(D)) is called the generalized word length

pattern.

Definition 4.5. For any two designs D l and D 2 , let r be the smallest integer> such that

Br(Dl ) t- B r(D2 ). Then Dl is said to have less G2 aberration than D2 if Br(Dd <

B r(D2 ). If no design has less G 2 -aberration than D l , then D l has minimum G 2 ­

aberration.

For regular designs, both minimum G-aberration and minimum G2-aberration

reduce to minimum aberration introduced by Fries and Hunter (1980).

Next, we will present a useful result due to Butler (2003b). Let T = DDT and

l\,{k = n~2 L;=l L;=l T;q, where T = (Tpq ).

Lemma 4.1. For designs of resolution I I I and more, we have
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Therefore, finding minimum G2-aberration designs is equivalent to sequentially

minimizing !'v13 , !'vf4 , ... , !'vfm. Calculating M k is computationally much easier and

thus will be adopted in our work. However, it is worth mentioning that Lemma 4.1

does not help for finding minimum G-aberration designs.

4.2.2 Background on design constructions

As mentioned in Chapters 2 and 3, Bingham, Sitter and Tang (2008) proposed one

basic method and two generalizations for constructing a rich class of orthogonal de­

signs suitable for computer experiments. Because the method to be used to construct

good two-level FF designs here is adapted from their constructions, we next revisit

their basic method and generalizations.

In their notation, a design of n runs for m factors of 8 levels is denoted by D('fI. 8
m )

and represented by an n x m matrix D = (dij ). Their choice of level setting is

slightly different from ours in Chapters 2 and 3. They chose 8 levels to be ('('ntered

at zero, equally spaced and integer valued. Thus the levels instead are -8 + 1. -,0.; +
3, ... , -1, 1, ... ,8 - 3,8 - 1 when 8 is even. When 8 is odd, the levels remain -(8 ­

1) /2, ... , -1, 0, 1, ... , (8 -1) /2. In particular, design D becomes a two-level FF design

when 8 = 2.

Let A = (aij) be an nl x ml matrix with aij = ± 1 as before. Further let Do he a

D(n2' 8m2 ). Their basic method provides a design

D = A®Do, C-LI)

which is a D(nj n 2, 8 m1m2 ).

For each j = 1, ... , ml, let D j be a D(n2' 8m2 ). Their first generalization gives

anDI al2D2 almlDml

(aijDj) =
a2j D j a22 D2 a2ml Dml

(4.2)D

an1lD1 an1 2D2 l.tnlmlDml
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They then studied the orthogonality and 3-orthogonality of design D. The orthog­

onality is the same as the one in orthogonal LHDs in Chapter 2.

Definition 4.6. Design D is called orthogonal if it is balanced and the inner product

of any two columns of D is zero, that is, L:~l dij = 0 and L~=I dijl dih = O.

Definition 4.7. Design D is called 3-orthogonal if it simultaneously satisfies

(i) L~=l dij = 0 for all .7;

(ii) L~=l dijl dij2 = 0 for all .71 =1= .72;

(iii) L~=I dijl dihdij3 = 0 for all .71, .72, .73'

Note that, a two-level FF design is orthogonal if and only if r > 3 and is 3­

orthogonal if and only if r ?:: 4, where l' is defined as in Definition 4.1.

The following results will be useful for the later development.

Lemma 4.2. Let A be column-orthogonal. Design D in (4.1) is orthogonal if and

only if Do is orthogonal.

Lemma 4.3. Let A be column-orthogonal. Design D zn (4.2) is orthogonal if and

only if D I , ... ,Drrq are all orthogonal.

4.3' Design construction

Consider constructing two-level orthogonal FF designs of n runs for rn factors. Sup­

pose that there exist nl, n2, rnl and rn2j (,j = 1, ... , nil) such that an nl x rnl

column-orthogonal matrix A = (aij) with aij = ± 1 and n2 x rn2j orthogonal two-level

D/s can be obtained. Consider the following construction

anDl aI2D2 almlDml

(aijDj) =
a2l D l a22 D2 a2ml Dml

(4.3)D

an1lDI an1 2D2 anlmlDml
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Obviously, design D is an orthogonal two-level FF design with n runs for m factors

by Lemma 4.3, where m = L~I m2j. Compared with the first generalization (4.2) in

Bingham, Sitter and Tang (2008), the construction (4.3) allows Dy's to have different

numbers of factors.

There are a few important issues regarding the use of the construction above.

First, the construction is applicable to any run size that is a multiple of 8. Second,

for a given run size n, there may exist multiple value settings of ni and n2. Unfor­

tunately, no general theory on the optimal setting of ni and n2 can be given at this

moment. Instead, we consider all possible combinations of ni and n2. Third, for a

given ml, the vector (m21, ... , m2ml) may have different value settings. There is no

dear optimal choice of the vector (m21, ... , Tn2ml)' as indeed shown in the applica­

tions of the construction in Section 4.4. Finally, we discuss the choices of Dj's for

all j = 1, ... , mI. The first possibility is D j C D~1 where M = max{ rn21, ... , m2ml}·

That is, after taking a design DMfrom a complete catalogue of designs of rl2 runs with

M factors, we can take m2j columns from these M columns to form D j . In fact, this

covers the basic construction in Bingham, Sitter and Tang (2008). The second possi­

bility is taking each D j from a complete catalog of designs of n2 runs for m2j factors.

In addition, better G or G2 aberration designs may be attained by row-permuting

Dy's for each design obtained by the two possibilities above. It should, however, be

mentioned that the designs after column-permuting or sign-switching Dy's are isomor­

phic to the initial design and thus do not help improve the criteria of minimum G or

G2-aberration.

The above discussion leads us to consider how one can row-permute Dy's. For

rl2-rUn Dy's, j = 1, ... ,ml, there are (n2!)m 1-1 possible row permutations. It is com­

putationally infeasible to carry out all these permutations even for moderately large

values of n2 and mI. When the complete search is impossible, random permutations

become a naive solution. Here, we propose an efficient algorithm to search for good
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designs. The algorithm essentially adopts the two important operations, pairwise

switch and exchange, in Xu's algorithm (see Section 2.4 for the details). For ease in

presentation, we assume nl = Tnl = 2, all = al2 = a2l = 1 and a22 = -1 in the

construction (4.3). In other words, we aim to construct designs

(4.4)

where D l and D2 are two-level orthogonal designs of n2 runs for Tn21 and Tn22 factors,

respectively. For each given D, the algorithm for seeking a better design by row­

permuting D2 works as follows.

Step 1: Randomly row permute D2 ;

Step 2: For each pair of rows in D2 , make a switch and calculate the corresponding

criterion. Choose the pair with the best value of the criterion and switch the

pair of rows. Repeat Step 2 until no further improvement is possible;

Step 3: Repeat Step 1 and Step 2 T times.

The algorithm above is a general form. We may be able to perform fast update in

Step 2 depending on the criterion used in the algorithm.

With the construction (4.3) and the above discussion, we can have a search algo­

rithm for obtaining a collection of good designs using minimum G and G2-aberration

defined in the previous section. For simplicity, the algorithm is presented only for the

simple form of the construction as in (4.4). Let r i be the catalogue of non-isomorphic

designs of n2 runs for 'i factors.

The following procedure generates a collection of S top designs formed as in (4.4)

and ranked by minimum G-aberration criterion.

Let C be the top designs obtained and s be the number of designs in C, with initial

values C = 0 and s = 0. For Tn21 = 0, ... ,Tn, let Tn22 = Tn - Tn2l and do the following.
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Step 1: If m22 = 0, obtain a design D = [Dr, DflT and calculate its CFV. Set

s = s + 1 and add this design to C. If s = S + 1, then discard the design with

the worst CFV in C and set 8 = 8 - 1;

Step 2: If m21 = 0, obtain a design D = [Dr, -DrJT and calculate its CFV. Set

s = s + 1 and add this design to C. If 8 = S + 1, then discard the design with

the worst CFV in C and set 8 = S - 1;

Step 3: If m21 > °and m22 > 0, let A1max = Max{m21, m22}. For each design Do in

the catalogue r M rnax ' do the following:

(a) If m21 = A1max , let D1 = Do in (4.4). If m22 = Mmax , let D2 = Do in (4.4);

(b) Consider all possible M min columns out of A1max columns of Do where

M min = Min{m21' m22}. Let the A1min columns be D 2 if m21 = A1max and

D 1 if m22 = Mmax . Obtain a design D formed as in (4.4) and calculate its

CFV. Set s = s + 1 and add this design to C. If s = S + 1, then discard

the design with the worst CFV in C and set 8 = 8 - 1;

(c) Randomly row permute D2 ;

(d) For each pair ofrows in D2 , make a switch and calculate the corresponding

criterion. Choose the pair with the smallest CFV and switch the pair of.

rows. Set 8 = S + 1 and add this design to C. If s = S + 1, then discard

the design with the worst CFV in C and set 8 = S - 1;

(e) Repeat (d) until no further improvement is possible;

(f) Repeat (c), (d) and (e) T times.

Similarly, the procedure above can be adjusted to construct a collection of good

designs according to minimum G2-aberration. In the next section, we will apply this

procedure to obtain a collection of good designs of 24, 32, 40 runs based on minimum

G and G2-aberration criteria.
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4.4 Applications to designs of 24, 32, 40 runs
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In this section, the method (4.3) is applied to designs of 24, 32 and 40 runs, using

minimum G and Graberration as ranking criteria. New results are presented and

comparisons with the existing results are made. Due to the space consideration, the

design matrices are not given here but are available upon request. Information on the

generalized resolution, generalized word length pattern and CFV's of the top designs

is provided in Appendices B, C and D.

4.4.1 Designs of 24 runs

For the case n = 24, we choose nl = 2 and n2 = 12 in (4.3). Appendix B contains the

three best CFV's and the three best generalized word length patterns. We also report

one combination of m21 and m22 such that the corresponding CFV's or generalized

word length pattern is achieved.

We compare our result with Ingram and Tang (2005). In Appendix B, the '*',

'**' and ,***, designations correspond to the cases that our design has less aberration

than, the same aberration as, and more aberration than the design found by Ingram

and Tang (2005). For the case 3 ::; m ::; 12, we found the same G-aberration designs

as those obtained by Ingram and Tang (2005). Therefore, these designs are minimum

G-aberration followed by Proposition 1 in Ingram and Tang (2005). In addition, we

found two 24 x 6 designs of resolution 4.67 because there are two non-isomorphic

designs of 12 runs for 6 factors. For the case m 2: 13, although the minimum G­

aberration design obtained by Ingram and Tang (2005) has less aberration than the

one found by our method, excluding the case m = 14, the difference is very small.

For minimum G 2-aberration, we found as good designs as those by Ingram and Tang

(2005). The comparison also leads us to conclude that there exist two-level designs

that do not have form (4.3).
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4.4.2 Designs of 32 runs
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In the use of the method (4.3) for constructing 32-run designs, we have four choices

of 711 and 712, (711 = 2, 712 = 16), (711 = 4, 712 = 8), (711 = 16, 712 = 2) and (711 = 8,

712 = 4). Our investigation indicates that the combination (n1 = 2, 712 = 16) produces

the most comprehensive and best designs. Consequently, we choose n1 = 2 and

712 = 16 in (4.3) for constructing 32-run designs of m factors, where 3 ::; m ::; 31.

The three best resolution, generalized word length pattern, and CFV's are listed in

Appendix C.

We compare our results with Xu and Wong (2007), yielding the last column of

the tables in Appendix C. The 'G**' and 'G2**' designations correspond to the cases

our designs have the same G and G2 aberration as those obtained by Xu and Wong

(2007), respectively. The 'G*' and 'G2*' designations indicate that our designs are

better than those obtained by Xu and Wong (2007). Note that m for 32-run designs

in Xu and Wong (2007) must satisfy 7 ::; m ::; 24. Appendix C reveals that our

designs are better for m ~ 10 and as good as theirs for m ::; 9 in terms of minimum

G-aberration. Turning to minimum G 2-aberration, our designs are better for m = 10

and equally good in other cases. As a result, the method (4.3) not only allows us

to construct a class of good designs with every possible number of factors, but also

obtain the best or nearly-best designs in terms of both criteria.

4.4.3 Designs of 40 runs

A complete catalogue of 20-run non-isomorphic designs is available thanks to Sun,

Li and Ye (2002). We construct 40-run designs of m (3 ::; m ::; 39) factors by using

711 = 2 and 712 = 20 in (4.3). However, we have not considered the row permutations of

Dj's for the time being. The resulting two best generalized word length patterns and

CFV's are tabulated in Appendix D. These results are new. The search incorporating

row permutations of D/s will be done in the future work.



Chapter 5

Folded Over Non-Orthogonal

Designs

Folded over non-orthogonal designs for screening are studied in this chaptcr. The

notion of minimal dependent sets (MDS) is used to introduce MDS-resolution and

MDS-aberration as criteria for comparing folded over non-orthogonal designs. A fast

isomorphism check is developed that uses a cyclic matrix defined on the design bdol"('

it is folded over. The isomorphism check is used to obtain a catalogue of lllininllllll

MDS-aberration designs for some useful run sizes n and the number k of factors. An

algorithm for obtaining "good" larger designs is discussed.

5.1 Introduction

Screening experiments are used to sift through a set of candidate factors to idcntify

those that impact the response - these factors are referred to as being "active." For

this chapter we assume that the standard linear model assumptions are valid. Further

we assume that the active factors can impact the response through either a main effect

(ME) or a two-factor interaction (2FI) but that all interactions involving three or

77
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more factors are negligible. Thus the model is a linear model that contains ME's and

2FI's formed using the active factors. The primary goal of a screening experiment

is to identify the active factors but an important secondary goal is to provide a

simple model that captures the essential features of the relationship between these

active factors and the response. Clearly, if an experiment is run that allows the true

model to be correctly identified, then both of these goals are achieved. Folded over

non-orthogonal two-level designs were demonstrated to be useful in such screening

experiments (Miller and Sitter, 2005). Such designs are our study objects in this

chapter. The term "folding over" indicates that the levels of all the factors are reversed

to form runs that are the mirror images of those in the original design.

To assess and compare folded over non-orthogonal designs, we introduce two cri­

teria, MDS-resolution and MDS-aberration, both of which are based on the concept

of MDS developed by Miller and Sitter (2004).

With MDS-resolution and MDS-aberration, we can obtain a catalogue of MDS­

aberration folded over non-orthogonal designs. However, this is not an easy task as it

involves determining whether or not two designs are in fact different. Two designs are

said to be isomorphic if one can be obtained from the other by relabeling the factors,

reordering the treatment combinations and/or relabeling the levels of one or more

factors. Otherwise, the two designs are non-isomorphic. In other words, isomorphic

designs can be changed into each other by the usual randomization of factor labels

and level labels. Since isomorphic designs share the same statistical properties in

classical ANOVA models and are essentially the same, it is sufficient to include only

one of them in a catalogue of designs. In addition, one wants to avoid considering

more than one of them in any search for optimal designs and thus avoid unnecessary

computations. The identification of the isomorphism of two designs is a combinatorial

problem. For two k-factor (each having two levels) n-run designs, a complete search

compares n!k!2k designs based on the definition of isomorphism. It is known as an NP

problem, when nand k increase. To alleviate the computational burden, we develop
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a fast isomorphism check that uses a cyclic matrix defined on the design before it

is folded over. By doing so, the speed of checking for isomorphism is much faster

than directly applying an isomorphism check to the fold-over design. This relative

difference becomes greater as the design size increases. As a result, we are able to use

the isomorphism check to obtain a catalogue of minimum MDS-aberration designs for

some useful nand k, and we will also discuss an algorithm for obtaining "good" larger

designs.

5.2 MDS-resolution and MDS-aberration

In this section, the concept of minimum dependent sets (MDS) will be reviewed. Two

criteria, MDS-resolution and MDS-aberration, will then be introduced and discussed.

Miller and Sitter (2004) introduced the concept of MDS. Its formal definition is given

as follows.

Definition 5.1. A minimal dependent set is a set of 2FI's such that the model that

contains all of the main effects and this set of 2FI's is not estimable but if any of the

2FI's is removed the resulting model is estimable.

A model is estimable if and only if the columns in its model matrix are linearly

independent. As an illustration, we consider a 12-run Plackett-Burman design (PB12).

Example 5.1. Table 5.1 contains the design matrix of the 12-run Plackett-Burman

design. Consider the first 5 columns from this design and denote them by P B125a o

The number of MDS's of various sizes for design P B125a is given in Table 5.2. Note

that the smallest MDS are of size four. In addition, design P B125a has 10 MDS's

of size four, one of which is {12, 13,24, 35}. This implies that it will be difficult to

distinguish between the following sets of interactions: (a) {12, 13} from {24,35}, (b)

{12,24} from {13, 35} and (c) {12,35} from {13, 24}.
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Table 5.1: The 12-rull Plackett-Burmall design
1 2 3 4 5 6 7 8 9 10 11
1 1 1 1 1 1 1 1 1 1 1

-1 -1 -1 1 -1 1 1 -1 1 -1 1
1 -1 -1 -1 1 1 1 -1 -1 1 -1
1 1 -1 -1 -1 -1 1 1 -1 -1 1
1 1 1 -1 -1 1 -1 -1 1 -1 -1

-1 1 1 1 -1 -1 1 -1 -1 1 -1
1 -1 1 1 1 -1 -1 -1 -1 -1 1

-1 1 -1 1 1 1 -1 1 -1 -1 -1
-1 -1 1 -1 1 -1 1 1 1 -1 -1
1 -1 -1 1 -1 -1 -1 1 1 1 -1

-1 1 -1 -1 1 -1 -1 -1 1 1 1
-1 -1 1 -1 -1 1 -1 1 -1 1 1

Table 5.2: Minimal dependent sets

80

Design

PB125a.

PB125b

Number of 2FI's in the MDS
12345
o 0 0 10 0
o 0 0 15 0

6
80
15

An MDS implies that we cannot distinguish some 2FI's in the MDS from the rest·

of 2FI's. This implication can be better understood if we view an MDS as a word. A

word is an interaction that equals the identity element I in regular fractional factorial

designs. For example, in a 25-1 design, 1= 2345 means that the corresponding design

is not capable of distinguishing the two effects of 5 and 234. Just as a longer word

is preferred, an MDS of larger size is preferable. In other words, we would like to

select designs such that their MDS's are as large as possible. If we maximize the size

of the smallest MDS, we obtain the criterion of maximum MDS-resolution in obvious

parallel to maximum resolution in regular FF designs. It is also evident that if we

have two designs that have the same size of the smallest MDS but one has fewer
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MDS's of that size than the other, then the former is preferred to the latter. Thus,

we introduce the "MDS word length pattern" as follows.

Definition 5.2. The vector W = (AI, A 2 , .•. , A k ) is called the MDS word length pat­

tern where Ai is the number of MDS's of size 'i.

Returning to Example 5.1, design P B125a has an MDS word length pattern (0, 0,

0, 10, 0, 80). It indicates that this design has no MDS's of size:::; 3, 10 MDS's of size

4, no MDS of size 5, and 80 MDS's of size 6. This is an obvious parallel to the usual

word length pattern of the defining contrast subgroup of a regular FF design. This

leads to the obvious notion of MDS-aberration.

Definition 5.3. For two designs dl and d2 , let r be the smallest integer such that

AT(dd i- AT(d2 ). Then dl is said to have less MDS-aberration than d2 if AT(dd <

AT(d2 ). If there is no design with less MDS-aberration than d l , then d l has minimum

MDS-aberration.

Example 5.2. Consider the last 5 columns from the design in Table 5.1. We refer to

these 5 columns as design P B125b . The corresponding MDS word length pattern is

(0, 0, 0, 15, 0, 15), given in Table 5.2. Based on the minimum MDS-aberration cri­

terion, design P B125a has less MDS-aberration than design P B125b , and is therefore

preferred.

We have introduced maximum MDS-resolution and minimum MDS-aberration.

Both of them will be used for comparing designs in Section 5.4.

5.3 Folded over non-orthogonal designs for screen-
.
lng

Miller and Sitter (2005) have investigated the use of folded over non-orthogonal designs

for screening. Their work indicates that fold-over designs are effective in situations
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where the following conditions are satisfied:

(1) All interactions that involve three or more factors are negligible.

(2) At most, a small proportion of the 2FI's will be active.

(3) A 2FI that satisfies strong heredity is more apt to be active than one that satisfies

weak heredity which, in turn, is more apt to be active than one that does not satisfy

heredity.

In the condition (3), strong heredity assumes that an interaction can be active only

when both corresponding main effects are active, and weak heredity assumes that an

interaction can be active when at least one of the corresponding main effects is active

(see Chipman, 1996; Chipman, Hamada and Wu, 1997).

They go on to propose a 2-stage analysis that exploits the fact that for fold­

over designs there is a clear separation of the information about ME's and 2FI's.

That is, for fold-over designs it is well known that every odd-order effect (ME's,

3FI's, 5FI's, etc.) is orthogonal to every even-order effect (intercept, 2FI's, 4FI's,

etc.) and that the sample space of the response can be divided into two orthogonal

subspaces each of dimension n/2 such that all the odd-order effect vectors occur in

one subspace and all of the even-order effect vectors occur in the other. Given that

the intercept is included in all models it is useful to adjust the 2FI's to make them

all orthogonal to the intercept. Under the assumption that all interactions involving

more than 2 factors are negligible, the sample space of the response Y can be split into

three orthogonal subspaces: a subspace of dimension 1 that contains the intercept, a

subspace of dimension n/2 that contains the ME's and a subspace of dimension n/2-1

that contains the 2FI's. There are two consequences of this that are important for

the following discussion. First, we can evaluate how effective a design will be for

identifying active ME's and for identifying active 2FI's separately. Second, although

the degrees of freedom available for ME's and 2FI's are roughly the same, n/2 and

n/2 - 1, there are typically considerably fewer ME's than 2FI's. As a result, the

criteria we use to evaluate how well a design can identify ME's will differ from that
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used for 2FI's.

First consider ME's. In order not to restrict the maximum number of active ME's

that can be identified, we only consider designs that allow the full ME model to be

estimated. Thus the designs can be used for situations where the practitioner believes,

a priori, that all the ME's may be active and wishes estimates for all ME's as well as

for screening applications. To evaluate ME estimation/identification, we adapt the

definition of efficiency used in Margolin (1969):

ME efficiency = k/ [n x trace (XI1E X ME) -1] ,
where X ME contains only the columns in the model matrix X for ME's. This eval­

uates average variance of the estimated main effects and thus is closely related to

A-efficiency. If ME's are defined as 1/2 the difference between the average response

at the -1 and +1 levels then the average variance of the estimated ME's is equal to

a2 /(n x effici~ncy). A design that has orthogonal ME's will have efficiency = 1 and

designs which have non-orthogonal ME's will have efficiency < 1 which will result in

the average variance of the estimated ME's being inflated by a factor of l/efficiency.

Thus the efficiency can be interpreted as a measure of how close the ME-design ma­

trix is to being orthogonal. It is generally accepted that for screening applications the

best possible situation is to have all the effects orthogonal to each other. Thus this

measure of efficiency should also give a good indication of how suitable the design is

for screening applications.

Now consider 2FI's. For the fold-over designs considered in this chapter, and larger

designs, the degrees of freedom (dfs) available for 2FI's are not large enough to allow

the full 2FI model to be estimated. For example, for the 6-factor 24-run design there

are 11 dfs available for 2FI's and a total of 15 2FI's to be considered. Thus we have a

situation where the design is supersaturated with respect to 2FI's and we cannot use

the efficiency of estimated effects for the full 2FI model as a criterion. For this type

of situation, minimum MDS-aberration as described in Section 5.2 provides a useful
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criterion to evaluate how well a design can screen for 2FI's.

To obtain fold-over designs that have high ME-efficiency and minimum or near­

minimum MDS-aberration for the 2FI's that can entertain from 4 to 12 factors in

24 runs or less requires an extensive computer search. This can be attributed to

three facts: (1) the number of possible designs is large for each combination of factor

number, k, and run size, n, and (2) calculating the MDS word length pattern for a

single design can consume a surprising amount of computing time; and (3) checking

isomorphism (equivalence) of any two designs is computationally intensive. All of

these problems become worse as k and n increase.

We address these problems by first developing a new isomorphism check that is an

adaptation from Clark and Dean (2001) specifically for fold-over designs in the next

section.

5.4 An isomorphism check

Let A and B be two 2-level n x k non-orthogonal design matrices, and let D I =

(AT, -ATf and D 2 = (BT, -BTf be the 2n x k design matrices cOllstrlll"t(,d h~'

respectively folding these over. Then we have the following definitions, the s('("(Hld of

which follows from the first and the special structure of the design matrix of a fol(1<'d

over non-orthogonal design.

Definition 5.4. D1 and D 2 are said to be isomorphic or equivalent if one ('an he

obtained fmm the other by mw permutations, cohlmn permutations and relabeling the

levels within one or more columns.

Definition 5.5. D 1 and D2 are said to be isomorphic or equivalent if ther'e exists an

n x n TOW permutation matrix R and a k x k column permutation matrix C such that

A = L 1RBCL2 , where L 1 and L2 are diagonal matrices with ±1 on the diagonals.
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[A*kj = { -1, if ai(j+I) = aij

1, if ai(j+I) =1= aij

for each j = 1, 2, ... , k - 1, i = 1, 2, ... , nand
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{

-I,
[A*]i,k = . 1,

for each i = 1,2, ... ,n.

We call A* a cyclic matrix for easy reference. The term cyclic refers to the fact

that one compares the last element of the ith row of A to the first element when

forming A*. The cyclic matrix A* is invariant to changes of sign within rows of A and

for each row of A, if we know anyone of the entries, we can obtain A from A*. In

other words, we can say that A* uniquely determines A up to changes of sign within

rows.

Define the Hamming distance matrix h(A*) of A* to have Ci, j)th element

{

""k b[A*]1 'f' -I- .
[h(A*)kj = Dl=1 i,j' ~ Z=J.

0, If Z - J,

where .b[A*]L is. equal to 1 if in the lth column of A*, the symbols in the ith and jth

rows are different, and equal to zero if they are the same. The (i,j)th element of h(A*)

counts the number of dimensions in which the ith and jth points fail to coincide. The

distance matrix h(A*) is invariant to permutations of columns and relabeling of levels

within columns of A*.

Let (AC)* denote the cyclic matrix of AC and h((AC)*[l : q]) be the Hamming

distance matrix corresponding to the first q columns of (AC)*.

Lemma 5.1. For any given column permutation matrix C and given TOW permuta­

tion matrix R, the sequence of matrices Rh((AC)*[l : q])RT , q = 1,2, ... , k, uniquely

determines the matrix A up to the equivalence defined above.
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Proof. The following proof combines the proof of Lemma 2.2 and Theorem 2.1 of

Clark and Dean (2001) with the fact that the cyclic matrix of a matrix uniquely

determines the matrix up to changes of sign within rows.

Since permuting rows before or after creating the cyclic matrix is equivalent,

(RAC)*[l : q] = R((AC)*[l : q]). (5.1 )

This implies that (RAC)*[l: q] and (AC)*[l : q] are isomorphic, as (5.1) implies one

can be obtained from the other via row permutations. Since a necessary condition for

the isomorphism of any design matrices, D 1 and D2 , is that there exists a row permuta-

tion matrix R such that h(Dd = Rh(D2 )RT, h((RAC)*[l : q])=Rh((AC)*[l : q])RT.

For a given R let the sequence of matrices Rh((AC)*[l : q])RT, q = 1,2, ... , k, corre­

sponding to a fixed but unknown matrix A, be fixed. Note that, for any q :::; k,

q-l

[Rh((AC)*[l : q])RTkj = L 8[R(AC)*]L + 8[R(AC)*];,j
p=l

[R(h((AC)*[l: (q - l)]))RTkj + [R(h((AC)*[q])RTkj

where (AC)*[q] denotes the qth column of (AC)*. Thus, a fixed sequence of distance

matrices Rh((AC)*[l : q])RT, q = 1,2, ... , k, implies a fixed sequence Rh((AC)*[q])RT,

q = 1,2, ... ,k, and we may investigate each column of A separately. Let A* be an n x k

matrix with the first row [-1, -1, ... ,-1]. For each q E {I, 2, ... ,k}, we construct the

qth column of A* as follows. For i = 2,3, ... , n in turn, if [R(h((AC)*[q])RTL,j = 0,

for some j = 1,2, ... , i-I, then the symbol (-lor 1) in the ith row of column q of

A* is identical to the symbol in the jth row, so set [A*kq = [A*]j,q. Otherwise, set

[A*kq equal to an unused symbol. The qth column of A* is then identical to the qth

column of R(AC)*, up to a relabeling of the symbols in the column. Let Abe an n x k

matrix with the first row [1,1, ... ,1] and the first column [1,1, ... , l]T. Based on the
~ ~

definition of the cyclic matrix, we can obtain A from A*. Thus, A is identical to A

up to row permutations, column permutations, symbol relabeling within columns and

changes of sign within the rows. D
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Theorem 5.1. Designs D1 and D2 are isomorphic iff there exists an n x n row

permutation matrix R and a column permutation matrix C such that, for every q = 1,

2, 0'" k, h(A*[1 : q])=R(h((BC)*[1 : q])RTo

Proof. Necessity: Suppose that design D 1 and D2 are isomorphic. The distance

matrix h((BC)*) is invariant to symbol relabeling in any columns of (BC)* and B* is

invariant to changes of sign within any rows of B. Hence, without loss of generality we

assume that the factors in designs D 1 and D2 have the same level labeling. Then we .

can write A = L2RBC which implies A* = R(BC)*, where C is the row permutation

matrix and R is the permutation matrix corresponding to the row permutation. Then,

for 1 ::; P ::; k, we have [h(A*[P])kj = b[R(BC)*]f,y = [h((BC)*[P])]ri,rj" Therefore, for

each q = 1,2, ... ,k,

[h(A*[1 : q])]i,j
q q

2)h(A*[p])kj = I)h((BC)*[P])]ri,rj
p=l p=l

q

2)R[h((BC)*[p])]RTkj = [R(h((BC)*[1 : q])RTkj.
p=l

Sufficiency: Follows from Lemma 5.1. o

Corollary 5.1. Designs D 1 and D2 are isomorphic iff there exists an n x n row

permutation matrix R and a column permutation matrix C such that, for every q = 1,

2, ... , k, h(A*[q])=R(h((BC)*[q])RT.

For folded over non-orthogonal designs where all the factors have two levels, A * is

still a matrix whose entries have two levels. In this case, the distance matrix can be

written as HA * = (kJn - A*(A*f)/2, where I n is an n x n matrix of unit elements.

We then have the following second corollary to Theorem 5.1.

Corollary 5.2. Designs D 1 and D2 are isomorphic iff there exists an n x n row

permutation matrix R and a column permutation matrix C such that, for every q = 1,

2, . 0" k, A*[q](A*[q]f=R(BC)*[q]((BC)*[q]fRI'o
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Theorem 5.1 and its corollaries simplify checking isomorphism of two-level folded

over non-orthogonal designs to checking isomorphism of the original non-orthogonal

designs that were folded over, yielding computational advantages. There is, however,

still some thought necessary as to how to use Theorem 5.1 to establish the isomorphism

of two folded over non-orthogonal designs D 1 and D2 , say. To do so, we need to

determine L1, R, C and L2 such that A = L 1RBGL2 . Once the permutation matrices

Rand G are known, L 1 and L2 are determined, since the negative entries on the

diagonal of L1 correspond to the elements in the first column of RBG that differ in

sign from the corresponding elements in the first column of A. Likewise, the negative

entries on the diagonal of L2 correspond to the elements in the first row of RBG

that differ in sign from the corresponding elements in the first row of A. Thus, the

issue comes down to how to find Rand G. Unfortunately, Theorem 5.1 is not enough

to provide Rand G. The reason is that the Hamming distance matrix of B* is not

equivalent to that of (BG)*. The conventional strategy with regard to searching for

possible Rand G is to find R before G (see Clark and Dean, 2001; Lin and Sitter,

2008). In order to find R, we use the following procedure. We first search for the

possible row permutation matrices for D 1 and D 2 using the algorithm presented in

Clark and Dean (2001). Let R be a 2n x 2n possible row permutation matrix for D 1

and D 2 , then R = R[1 : n, 1 : n] + R[1 : n, (n + 1) : 2n] will be the possible row

permutation matrix for A and B. For each possible row permutation matrix R, we

basically take advantage of Corollary 5.2. Noting that

q < k;

q = k,

we seek C1, Ck, Ck-1, ... , C2 sequentially by testing A*[q](A*[q])T=R(BC)*[q]((BC)*[q])TRT.

If there is no Rand G satisfying Corollary 5.2, the two designs are non-isomorphic.

This new isomorphism check has some computational advantages over directly ap­

plying the Clark and Dean (2001) isomorphism check. These advantages are modest
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for the designs tabulated here, but become progressively greater for larger designs. To

demonstrate, we perform a small numerical evaluation. For various n (number of runs)

and k (number of factors) we randomly choose a set of B = 1, 500 non-orthogonal de­

signs with n/2 rows and k columns, Xl, ... ,XB , by independently generating Ber(1/2)

random variables for each element. For each X j we generate another design which

is isomorphic to it and one that is not. To generate the design that is isomorphic

to X j , we randomly generate matrices R, C, L j and £2 to get isomorphic design

XJ = L j RXj CL2 . To generate the design which is non-isomorphic to X j we merely

randomly generate non-orthogonal designs until we obtain one that is non-isomorphic

to X j . We then apply the proposed isomorphism check and the Clark and Dean iso­

morphism check to each pair of isomorphic designs and to each pair of non-isomorphic

designs. Table 5.3 compares the speed (in seconds) of our proposed adaptation over

directly applying Clark and Dean's isomorphism check to the fold-over design for iso­

morphic pairs and for non-isomorphic pairs, for some of the tabulated cases in the

next section (n = 20 and 22) and for some larger cases. The table gives the average

time (ET), the relative average time (RT=[ETnew-ETcD]/ETnew, where ETnew refers

to the proposed method and ETcD to Clark and Dean's), and the 5th and 95th per­

centile of the relative times (5%, 95%). As can be seen in the first 6 rows of Table 5.3,

when comparing non-isomorphic designs applying Clark and Dean isomorphism check

directly is better, but in these cases both are extremely fast, while when comparing

isomorphic designs, the gains of the proposed isomorphism check are greater, though

still modest for these small designs. One should note, however, that there are many

more comparisons necessary between isomorphic designs than betweenllon-isomorphic

designs. Overall, in the searches performed in the next section for n = 16 - 24 the

relative gains were around 35%. In the last three rows of Table 5.3, we illustrate that

the gains become much more dramatic as nand k become larger. Looking at the

isomorphic cases, we can see that the proposed algorithm outperforms the Clark and

Dean algorithm most of the time and by very large amounts. This bodes well for use
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Table 5.3: Comparison between proposed and Clark and Dean's isomorphism check
for large designs

Isomorphic N011- Isomorphic
n k RT 5% 95% ETcD ETnew RT 5% 95% ETcD ETnew

20 6 0.678 0.285 1.192 0.003 0.002 1.509 1.280 2.168 0.0001 0.0002
20 8 0.622 0.243 1.134 0.004 0.002 1.362 1.313 1.626 0.0002 0.0003
20 10 0.569 0.211 1.037 0.007 0.004 1.274 1.259 1.328 0.0002 0.0003

22 7 0.623 0.249 0.115 0.004 0.002 1.323 1.254 1.538 0.0002 0.0002
22 9 0.555 0.212 0.999 0.007 0.003 1.315 1.239 1.597 0.0002 0.0003
22 11 0.533 0.192 0.960 0.010 0.003 1.289 1.243 1.434 0.0003 0.0003

60 20 0.348 0.128 0.607 0.448 0.152 1.068 1.049 1.088 0.004 0.004
100 50 0.272 0.108 0.454 15.65 4.30 1.033 1.031 1.035 0.023 0.024
200 80 0.231 0.092 0.371 283.5 61.67 1.004 1.003 1.004 0.145 0.145

*Times given in seconds

in searching for large folded over non-orthogonal designs.

5.5 Obtaining minimum MDS-aberration designs

We are able to perform an exhaustive search using the isomorphism check of the

previous section for all cases with n =10, 12, 14, 16 and 18 for which we obtain all

non-isomorphic designs. We are also able to obtain all non-isomorphic designs for

n = 20 with k ::; 8, n = 22 with k ::; 6, and n = 24 for all 5 ::; k ::; 12 restricting

to MDS(l), ... , MDS(5) all equal to zero. For n = 20 with k = 9, and 10, and for

n = 22, 7 ::; k ::; 11 we use the following algorithm.

1. Start with the largest k for which an exhaustive search was possible. Order the

obtained designs on the basis of their MDS sequences.

2. Next search for the best designs for the same number ofruns and one additional

factor. To do this, perform a comprehensive search of designs that can be

formed by adding one additional column to the best designs identified in Step 1,
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keeping only the set of non-isomorphic designs. The logic is that if we take any

k -1 columns from a k-factor design then the MDS for the (k -I)-factor design

are included in the MDS for the k-factor design. Only the best 50 designs are

retained.

3. Repeat Step 2 until the maximum number of factors (k = n/2) is reached.

This algorithm uses an idea similar to those in Loeppky, Sitter and Tang (2007)

which were developed in a different context. Although we cannot guarantee that we

have found the best possible design in each case, we are confident that the designs

presented are among the best possible.

In Tables E.I-E.13 in Appendix E, we present the non-isomorphic minimum MDS­

aberration designs obtained for each combination of k and n. In those tables, a design

run il'i 2 ••• i p represents a run whose ijth setting is 1, j = 1, ... , p, and remaining

settings are -1. For example, consider Table E.l, in the case of k = 4, a design nUl

12 designates a level setting (1, 1, -1, -1). There are a number of interesting aspects

to the designs presented in Tables E.I-E.13:

1. There is only one design for 5 factors in 10 runs and one design for 6 factors in

12 runs that have MDS-resolution 4, and in each case these are the .r.largolin

(1969) designs which were investigated in Miller and Sitter (2005).

2. There are 3 designs for 7 factors in 14 runs that have MDS-resolution 4 awl the

Margolin (1969) design is the third best in terms of both MDS-aberration anel

ME-efficiency.

3. For 5 factors in 16 runs, the regular FF design defined by selecting all of the

runs for which the 5-factor interaction is at the +1 (or -1) level has resolution

v. Although it is not a folded over design it has all ME's and 2FI's orthogonal

to each other. Therefore it performs better, both for estimating ME's and for

separating 2FI's, than the best fold-over designs.



Chapter 6

Conclusions and Future Research

In this thesis, we have developed methodologies for designing both computer experi­

ments and physical experiments. Computer experiments provide a fresh and power­

ful approach to helping scientists understand their complex physical processes. The

underlying physical mechanism in a computer experiment is represented and imple­

mented by a computer code, which produces the response. The absence of random

errors in the response necessitates new approaches to the design and analysis of exper­

iments. Space-filling designs such as Latin hypercubes, maximin distance designs and

uniform designs are commonly used to select the settings of input variables to run the
. .

computer code. This thesis studies Latin hypercube designs. Under this topic, four

pieces of work are accomplished. The first is the development of a new method for

constructing Latin hypercubes. The method offers new insights into the structure of

Latin hypercubes. It is simple yet powerful because it allows large Latin hypercubes

to be constructed using small Latin hypercubes. In addition, it has some interest­

ing and attractive features. First, orthogonality or near orthogonality of small Latin

hypercubes is carried over to large Latin hypercubes, which allows us to completely

solve the problem of constructing orthogonal Latin hypercubes in terms of available

92
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run SIzes. The method produces designs that are capable of entertaining more or­

thogonal factors than the existing methods. Second, the method can be adapted to

construct cascading Latin hypercubes that provide local design points to enhance the

estimation of correlation parameters (Handcock, 1991). The second piece of work is

that we have established the existence of orthogonal Latin hypercubes in terms of

run sizes. When orthogonal Latin hypercubes do not exist, the lower bound on the

correlations is useful for both theoretical construction and computer search of the best

nearly orthogonal Latin hypercubes. We have also proposed an adapted algorithm,

which allows us to efficiently obtain small orthogonal and nearly orthogonal Latin hy­

percubes. Although the algorithm is only applied to Latin hypercubes in the thesis,

it can also be used for seeking s-level designs (2 :S s :S n) or mixed-level designs.

The above three pieces of work constitute Chapter 2. The fourth piece of work was

presented in Chapter 3, in which we introduced and studied two generalizations of

our basic method. We then exemplified that the generalizations provide designs with

better projection properties.

Chapters 4 and 5 form the second topic of this thesis. They dealt with designs for

physical experiments. We focus on two types of designs, two-level nonregular designs

and two-level folded-over non-orthogonal designs. In spite of the important progress

in the research of nonregular designs during the last decade (Xu and Wong, 2007

and the references therein), construction of minimum G and G2-aberration designs

remains largely unsolved. We have made in Chapter 4 another serious attempt in this

direction. Based on the structures of designs in Bingham, Sitter and Tang (2008),

we have developed a computational algorithm for searching for minimum G and G2­

aberration designs. Our method is applicable as long as the run size is a multiple of

eight; in contrast, the method of Xu and Wong (2007) applies only when the run size is

a power of two. Results from the application of the algorithm to designs of 24, 32 and

40 runs are obtained and presented in the thesis. Two-level folded-over non-orthogonal

designs were demonstrated to be useful in screening experiments in Miller and Sitter
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(2005). We here proposed two criteria, MDS-resolution and MDS-aberration, to assess

and compare such designs. Obtaining a catalogue of good folded-over non-orthogonal

designs is of practical interest. To this end, we proposed an isomorphism check to

determine whether or not two fold-over designs are isomorphic. The isomorphism

check was then demonstrated to have computational advantages through a numerical

evaluation.

Next, we discuss some future work in the following five directions.

More on the proposed method in Chapter 2

The basic method and its generalizations construct large Latin hypercubes using

small Latin hypercubes Band C. An obvious question is what the resulting design

looks like if B, C, or both are not Latin hypercubes. In fact, we can show that

when both Band C are supersaturated designs, the methods will produce multi-level

supersaturated designs. A supersaturated design is a factorial design with n runs and

Tn factors with Tn > n - 1. It can save considerable cost in situations in which the

number of active factors is very small compared to the number of factors. A problem

worthy of further study is whether and when supersaturated designs produced in

this way have better statistical properties than the existing supersaturated designs.

The examples that we have looked at show that this study is promising. Another

future work is to investigate the possibility of adapting the methods to construct.

other space-filling designs including maximin distance designs and uniform designs.

More generally, we can view the above problems as an inverse problem - determining

the settings of A, B, C, D and r for some given design L.

Cascading Latin hypercubes

Intuitively, the local points in cascading Latin hypercube designs can help pro­

vide a more accurate estimation of correlation parameters. Hence, presumably such

designs will be useful in identifying important factors in the initial stage of experimen­

tation. Handcock (1991) conducted a simulation study to demonstrate the usefulness

of cascading Latin hypercubes. His simulation study offered some important insights
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into the potential use of such Latin hypercubes. However, the simulation study is

rather limited for the following reasons: (a) only additive Gaussian process stochastic

models with a Matern correlation function was considered, (b) a small run size n = 27

was used. A simulation study incorporating diverse models and designs of large run

sizes would be beneficial to probe the further value of cascading Latin hypercubes in

the context of screening experiments. This is part of our future research plan.

Designs with high projectivity

In Chapter 1, we have mentioned that one research problem in the designs for

computer experiments is obtaining space-filling designs with good projection proper­

ties. Such designs are important for factor screening. In particular, those with high

projectivity are desirable in practice because of the complexity of computer mod­

els. Randomized orthogonal arrays (OA's) and OA-based Latin hypercubes provide

partial solutions as OA's exist only for certain run sizes. Constructing space-filling

designs with high projectivity is a challenging topic and is part of our future work.

Two-level fractional factorial designs

The proposed method was applied to construct designs of 24, 32 and 40 runs. For

designs of 40 runs, we have not considered the row permutations of designs D/s. In

the future, we will include row permutations of D/s. In addition, we will continue

to provide catalogues of good designs of larger run sizes. As the run size grows, the

complexity and computational burden may increase considerably. Investigations on

the different efficient algorithms are thus necessary. Global optimization algorithms

such as genetic algorithms and simulated annealing may be useful.

Folded over non-orthogonal designs

We note that two recent papers, Bingham and Chipman (2007) and Jones, Li,

Nachtsheim, and Ye (2007), presented criteria that directly evaluate the ability of a

design to discriminate between competing models. These criteria could be applied

to the scenarios considered in this thesis and it would be very interesting to see how
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the optimal designs under these criteria compare with those found using the MDS­

aberration criteria. Such a comparison would require a prohibitive amount of comput­

ing since for all of the criteria involved finding an optimal design is computationally

intensive. Thus we have left such a comparison for future research.



Appendix A

A 32 x 12 orthogonal Latin

hypercube

Let L be a 32 x 12 orthogonal LHD. The first 16 rows of L are

-31 21 25 -19 23 27 -27 23 -25 19 -31 21

-29 17 17 29 -23 -27 27 -23 -17 -29 -29 17

-27 23 -23 -27 29 -17 -17 -29 25 -19 31 -21

-25 19 -31 21 -29 17 17 29 17 29 29 -17

-23 -27 27 -23 27 -23 23 27 21 31 -19 -25

-21 -31 19 25 -27 23 -23 -27 29 -17 -17 -29

-19 -25 -21 -31 17 29 29 -17 -21 -31 19 25

-17 -29 -29 17 -17 -29 -29 17 -29 17 17 29

17 29 29 -17 -25 19 -31 21 27 -23 23 27

19 25 21 31 25 -19 31 -21 19 25 21 31

21 31 -19 -25 -19 -25 -21 -31 -27 23 -23 -27

23 27 -27 23 19 25 21 31 -19 -25 -21 -31

25 -19 31 -21 -21 -31 19 25 -23 -27 27 -23

27 -23 23 27 21 31 -19 -25 -31 21 25 -19

29 -17 -17 -29 -31 21 25 -19 23 27 -27 23

31 -21 -25 19 31 -21 -25 19 31 -21 -25 19
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The remaining 16 rows of L are

1 -11 -7 13 -9 -5 5 -9 7 -13 1 -11

3 -15 -15 -3 9 5 -5 9 15 3 3 -15

5 -9 9 5 -3 15 15 3 -7 13 -1 11

7 -13 1 -11 3 -15 -15 -3 -15 -3 -3 15

9 5 -5 9 -5 9 -9 -5 -11 -1 13 7

11 1 -13 -7 5 -9 9 5 -3 15 15 3

13 7 11 1 -15 -3 -3 15 11 1 -13 -7

15 3 3 -15 15 3 3 -15 3 -15 -15 -3

-15 -3 -3 15 7 -13 1 -11 -5 9 -9 -5

-13 -7 -11 -1 -7 13 -1 11 -13 -7 -11 -1

-11 -1 13 7 13 7 11 1 5 -9 9 5

-9 -5 5 -9 -13 -7 -11 -1 13 7 11 1

-7 13 -1 11 11 1 -13 -7 9 5 -5 9

-5 9 -9 -5 -11 -1 13 7 1 -11 -7 13

-3 15 15 3 1 -11 -7 13 -9 -5 5 -9

-1 11 7 -13 -1 11 7 -13 -1 11 7 -13
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Appendix B

Top 24-run two-level designs

2

3
2

o
1
1

4
3.67
3.33

R

3 ** [(OOOlh,-,-]
3 - [(0010h,-,-]
3 - [(0100h,-,-]

Table B.1: Top 24-run designs based on minimum G-aberration for 3 < m ::::: 6
CFV(D)=[F3(D), F4(D), F5(D)]

TTL Ab. Jk (s)=(24 1680)

4 ** [(000 4h,(0 0 1 0)4, -] 4.67 0 4
4 - [(000 4h,(1 000)4, -] 4 2 2
4 [(001 3h,(0 0 0 1)4, -] 3.67 1 3

5 ** [(000 10h,(0 0 5 0)4,(0 0 0 1hl 4.67 0 5
5 - [(001 gh,(O 0 3 2)dO 0 1 0)5] 3.67 3 2
5 - [(002 8h,(0 0 1 4)dO 0 0 1)5] 3.67 1 4

6 ** [(000 20h,(0 0 15 0)4,(0 0 0 6)5] 4.67 0 6
6 - [(000 20h,(0 0 15 O)dO 0 06h] 4.67 0 6
6 - [(004 16h,(0 0 5 10)dO 1 23)5] 3.67 2 4

99
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Table B.2: Top 24-run designs based on minimum G-aberration for 7 < m < 14

m, Ab.
CFV(D)=[F3 (D), F4 (D), F5 (D)J

R rn21 m'22Jds)=(24 1680)
7 ** [(000 35h,(0 0 35 O)dO 0 0 21hJ 4.67 0 7
7 [(006 29h,(0 0 15 20)dO 3 6 12)5J 3.67 1 6
7 [(00 7 28h,(0 0 15 20)dO 2 8 11hJ 3.67 1 6

8 ** [(000 56h,(0 0 70 O)dO 0 0 56hJ 4.67 0 8
8 [(00 13 43h,(0 3 21 46)4,(05 14 37hJ 3.67 2 6
8 [(0013 43h,(0 421 45)dO 4 10 42hJ 3.67 3 5

9 ** [(000 84h,(0 0 126 O)dO 0 0 126hJ 4.67 0 9
9 [(0020 64h,(0 9 36 81)dO 6 28 92hJ 3.67 4 5
9 [(0020 648h,(1 73583)4,(0820 98hJ 3.67 4 5

10 ** [(000 120h,(0 0 210 O)dO 0 0 252hJ 4.67 0 10
10 - [(0028 92h,(0 0 12684)4,(0 10 56 186hJ 3.67 1 9
10 - [(0032 88)d2 1256 140)4,(0864 180hJ 3.67 5 5

11 ** [(000 165h,(0 0 330 O)dO 0 0 462hJ 4.67 0 11
11 - [(0036 129h,(0 0 210 120)dO 1884 360)5J 3.67 1 10
11 - [(0045 120h,(0 0 210 120)dO 30 o432hJ 3.67 1 10

12 ** [(00 0,220h,(0 0 495 0)4,(0 0 0 792hJ 4.67 0 12
12 - [(0045 175h'(0 0 330 165)dO 30120 642hJ 3.67 1 11
12 - [(0072 148h,(0 0 255 240)dO 36 168 588hJ 3.67 2 10

13 *** [(0 0 90 196h,(1 0 366 348)dO 60 240 987hJ 3.67 2 11
13 - [(00 109 177h,(3 0 294 418)dO 57 273 957)5] 3.67 3 10
13 - [(00 110 176h,(4 18 213480)4,(042320 925hJ 3.67 8 5

14 * [(00 136 228h,(3 0 438 560)dO 94 384 524)5] 3.67 3 11
14 - [(00 140 224h,(21 0280 700)dO 48 560 1394hJ 3.67 7 7
14 - [(00 146 218h,(15 0 310 676)dO 56 510 1436)r,J 3.67 6 8
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Table B.3: Top 24-run designs based on minimum G-aberration for 15 ::; m ::; 23

rn Ab.
CFV(D)=[F3(D), F4(D), F5(D)]

R rn21 Tn22Jk(s)=(24 1680)
15 *** [(00 182 273h,(21 04209240)4,(088770 2145hl 3.67 7 8
15 - [(00184 271h,(6 0 547 812)4,(0 136576 2291h] 3.67 4 11
15 - [(00 188 267h,(15 0456894)4,(0 102696 2205h] 3.67 6 9

16 *** [(00 224 3:~6h,(28 0 560 1232)4,(0 128 11203120)5] 3.67 8 8
16 - [(00231 329h,(21 0602 1197)dO 148 1022 3198hl 3.67 7 9
16 - [(00235 325h,(10 0 695 1115)4,(0 190840 3338h] 3.67 5 11

17 *** [(00280 400h,(28 0 784 1568)dO 208 14564524)5] 3.67 8 9
17 - [(00287 393h,(21 0833 1526)dO 234 1323 4631hl 3.67 7 10
17 - [(0 0 288 392h,(21 0 833 1526)4,(0 234 1316 4638)5] 3.67 10 7

18 *** [(00336 480)d36 0 1008 2016)dO 288 2016 6264h] 3.67 9 9
18 - [(00344 472h,(28 0 1064 1968)4,(0320 1848 6400hl 3.67 8 10
18 - [(00350 466h,(21 01121 1918)dO 353 16806535)5] 3.67 7 11

19 *** [(00408 561h,(36 0 13442496)4,(04322520 8676hl 3.67 9 10
19 - [(00416 553h,(28 0 14082440)4,(04722304 8852)s] 3.67 8 11
19 - [(00417 552h,(28 0 1408 2440)dO 472 2296 8860hJ 3.67 11 8

20 ** [(00480 660h,(45 0 16803120)4,(05763360 11568)5] 3.67 10 10
20 - [(00489 651h,(36 0 1752 3057)4,(0624309611784)5] 3.67 9 11
20 - [(018417 705h,(18 90 1554 3183k(0 582 3264 11658)s] 3.33 11 9

21 *** [(00570 760h,(45 0 2160 3780)4,(0 816 4080 15453)5] 3.67 10 11
21 - [(024474 832)d21 12018963948)4,(07444368 15237h] 3.33 11 10
21 - [(025470 835h,(20 125 18853955)4,(07164480 15153)5J 3.33 10 11

22 ** [(00660 880h,(55 0 2640 4620)dO 1056 5280 19998h] 3.67 11 11
22 - [(030540 970)d25 1502310 4830)dO 936 5760 19638hJ 3.33 11 11
22 - [(040500 1000h,(15 200 2200 4900)dO 896 5920 19518hJ 3.33 11 11

23 *** [(066495 1210h,(0 330 2475 6050)dO 1056 7920 24673)51 3.33 11 12
23 - [(1 60510 1200)d5 300 2550 6000)4,(0 1056 7920 24673h] 3 11 12
23 - [(254525 1190h,(10 270 2625 5950)4,(0 10567920 24673hJ 3 11 12
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Table B.4: Top 24-run designs based on minimum G2-aberration for 3 < m < 23
rn WLP=(B3 B4 B5 ) Tn21 77~22 rn WLP=(B3 B4 B5 ) 'm21 77~22

3 0 0 3 13 65540 1 12
3 0.11 1 2 13 10 41.67 53.33 2 11

13 11.5637.2253.33 6 7

4 00.11 0 4 14 12 61 80 2 12
4 o 1 2 2 14 15.11 51.6784.44 3 11
4 0.11 0 1 :) 14 15.5650.11 84.22 7 7

5 00.560 0 5 15 18.11 73 125.33 3 12
5 0.11 0.33 0.11 3 2 15 20.2266.33 126 8 7
5 0.220.11 0 1 4 15 20.22 66.77 125.56 8 7

6 o 1.670 0 6 16 24.44 91.11 181.33 4 12
6Q o 1.670 0 6 16 24.89 90.22 181.33 8 8
6 0.44 1.670 1 5 16 25.67 87.44 179.78 9 7

7 03.690 0 7 17 31.11 115.11 254.22 8 9

7 0.67 1.672 1 6 17 31.11 115.56253.33 5 12
7 0.78 1.67 1.78 1 6 17 31.11 115.56253.78 5 12

8 07.780 0 8 18 37.33 148 352 9 9
8 1.443.67 3.78 2 6 18 38.22 146.22 347.56 8 10
8 3.893.56 1 7 18 38.33 146.67 346.67 6 12

9 o 14 0 0 9 19 45.33 185.33 472 9 10
9 2.227.786.22 1 8 19 45.78 184.89 468.89 9 10
9 2.227.786.67 1 8 19 45.89 184.89 468 7 12

10 023.330 0 10 20 53.33 231.67 629.33 10 10
10 3.11 14 10.67 1 9 20 54.22230.78 622.22 8 12
10 3.33 14 10 1 9 20 54.33 230.67 621.33 9 11

11 036.70 0 11 21 63.33 285 816 9 12
11 4 23.33 17.33 1 10
11 4.11 23.33 16.89 1 10 22 73.33 348.33 1056 10 12

12 0550 0 12 23 84.33 421.67 1349.33 11 12

12 5 36.67 26.67 1 11
12 8 27.44 34.67 2 10
a. This design has different. B6 from t.he first. design.



Appendix C

Top 32-run two-level designs

Table C.l: Top 32-run designs for 6 :::; m :::; 10

rn R
CFV(D)=[F3 (D), F4 (D), F5 (D)]

WLP=(B3 ,B4 ,B5 ) Comparison
Jds)=(32 24 1680)

6 6 [(0 0 0 0 20)dO 0 0 0 15)4,(0 0 0 0 6h] 000
6 5 [(0000 20h,(0 0 0 0 15)4,(1 00 0.5h] 001
6 4.5 [(0000 20h,(0 0 1 0 14)dO 0 2 04h] 00.250.5

7 4.5 [(0000 35h,(0 04031)4,(1 040 16h] 012 G**, G2 **
7 4.5 [(0000 35h,(0 06029)4,(0060 15h] o 1.5 1
7 4.5 [(0000 35)dO 0 8 0 27)4,(0 0 0 021hl o 1.5 1.5

8 4.5 [(0000 56h,(0 0 12058)4,(1 0 120 43hJ 034 G**, G2**
8 4.5 [(0000 56h,(0 0 14056)4,(00 14042)5] 03.53.5
8 4.5 [(0000 56h,(0 0 20 0 50)dO 0 0 0 56h] 042

9 4.5 [(0000 84h,(0 0 24 0 102)d2 0 24 0 100hl 068 G**, G2**
9 4.5 [(0000 84h,(0 0 28 0 98)4,(0 0 28 o98hJ 077
9 4.5 [(0000 84h,(0 0 42 0 84)dO 0 0 0 126h] 084

10 4 [(0000 120h,(l 0620 147)4,(0000252)5] 01016 G*, G2*
10 4 [(0000 120h,(2 0 56 0 152)dO 0 0 0 252h] o 150 G*, G2*
10 4 [(0000 120h,(2 0 58 0 150)dO 0 0 o252h] o15.750 G*, G2**
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Appendix D

Top 40-run two-level designs

Table D.l: Top 40-run designs for 6 < rn < 9

m R
CFV(D)=[F3(D), F4 (D), F5 (D)]

WLP=(B3 ,B4 ,B5 )
Jk (8)=(40 32 24 1680)

4 4.8 [(00000 4h,(0 000 1 0)4,-J 00.04
4 4.4 [(00000 4h'(0 0 1 000)4,-] 00.36

5 4.8 [(00000 10h,(0 0 0 05 O)dO 0 0 0 0 1h] 00.20
5 4.4 [(00000 10h,(0 0 1 04 O)dO 0 0 0 0 1h] 00.520

6 4.8 [(00000 20)dO 0 0 0 15 0)4,(0 0 0 0 06h] 00.60
6a 4.8 [(00000 20)dO 0 0 0 150)4,(00000 6h] 00.60

7 4.8 [(00000 35h,(0 0 0 0 35 0)4,(0 0 0 0 0 21)5] 01.40
7 4.4 [(00000 35h,(O 0 1 0340)4,(00000 21h] o 1.72 0

8 4.4 [(00000 56h,(0 0 2 0 68 O)dO 0 0 0 0 56h] 03.440
8 4.4 [(00000 56)dO 0 3 0 67 0)4,(0 0 0 0 0 56)s] 03.760

9 4.4 [(00000 84h,(0 0 6 0 120 O)dO 0 0 0 0 126hl 06.960
9 4.4 [(00000 84h,(0 0 70 119 O)dO 0 0 0 0 126h] 07.280
a. This design has different F{i and B 6 from the first design.
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Appendix E

Top non-isomorphic MDS designs

Table E.!: Non-isomorphic lO-run MDS designs with k < 5
k Design Runs (l\ID8(4), MDS(5), MDS(6)) Efficiency
4 1 12 13 14 1234 3 0 0 0.9143

5 15 12 13 14 12345 25 102 0 0.9000

Table E.2: Non-isomorphic l2-Run MDS Designs with k < 6
k Design Runs (MDS(4),MDS(5),MDS(6)) Efficiency
4 1 12 13 123 14 1234 1 00 0.8889
4 1 1 123 124 134 1234 3 0 0 0.8696
4 1 1 12 13 14 1234 300 0.8000

5 15 12 13 123 14 12345
5 15 1 12 13 14 12345
5 15 15 12 13 14 12345

12 186
150 15
25 1020

0.8547
0.7778
0.8333

6 15 126 136 123 14 123456 45 162 1411

111

0.833:~



APPENDIX E. TOP NON-ISOMORPHIC MDS DESIGNS

Table E.3: Non-isomorphic 14-run MDS designs with k < 7
k Design Runs (M DS(4), M DS(5), M DS(6)) bjJiciency
4 1 12 13 123 14 124 1234 000 0.9143
4 1 1 12 123 124 134 1234 100 0.8649
4 1 1 12 13 123 14 1234 100 0.8067
4 1 1 123 123 124 134 1234 300 0.8649
4 1 1 1 123 124 134 1234 300 0.7857
4 1 1 12 12 13 14 1234 300 0.7857
4 1 1 1 12 13 14 1234 300 0.7033

5 15 1 125 135 123 14 12345 542 0.8193
5 15 1 125 123 124 134 12345 642 0.8494
5 15 1 125 12 13 14 12345 906 0.7635
5 15 15 12 13 123 14 12345 12 186 0.8193
5 15 15 1 123 124 134 12345 12 186 0.8036
5 15 1 1 123 124 134 12345 12 186 0.7635
5 15 15 1 12 13 14 12345 15015 0.7418
5 15 1 1 12 13 14 12345 15015 0.6786
5 15 15 12 12 13 14 12345 25 102 0 0.8036
5 15 15 15 12 13 14 12345 25 1020 0.7418

6 15 16 1256 1356 123 14 123456 15 54 246 0.7912
6 156 16 125 135 123 14 123456 2457294 0.8099
6 15 16 125 135 123 14 123456 27 54 172 0.7792
6 15 16 12 13 123 14 123456 33 12 214 0.7319
6 15 1 126 136 123 14 123456 36 63 150 0.7373
6 15 16 1 12 13 14 123456 45 0 150 0.6Gl7
6 15 15 126 136 123 14 123456 45 162 1411 0.7792

7 157 167 1256 1356 123 14 1234567 602702637 0.782G
7 15 16 127 137 123 14 1234567 87 219 2145 0.7153
7 15 16 17 12 13 14 1234567 105 105 2877 0.6494

112



APPENDIX E. TOP NON-ISOMORPHIC MDS DESIGNS

Table E.4: Top 10 Non-isomorphic 16-run MDS designs with k < 8

113

k Design Runs (1\1 DS(4), !IfDS(5), 1\1DS(6)) Efficiency
5 1 12 13 124 134 125 145 12345 2 1 1 0.8400
5 1 12 13 124 134 1235 145 12345 3 0 0 0.8824
5 1 12 13 14 1234 125 135 12345 3 0 0 0.8065
5 1 12 13 123 14 125 135 12345 320 0.8120
5 1 12 123 134 135 145 1245 12345 4 0 0 0.8824
5 1 12 13 123 14 124 15 12345 502 0.7798
5 1 12 13 123 14 1234 15 12345 502 0.7500
5 1 1 123124 1234 125 1345 12345 542 0.7955
5 1 12 13 124 125 145 145 12345 542 0.7895
5 1 1 12 13 124 125 145 12345 542 0.7474

6 16 12 13 1246 1346 1256 145 123456 6 18 112 0.8036
6 16 12 13 1246 134 1256 145 123456 10 21 52 0.7826
6 16 12 13 124 1346 1256 145 123456 10 21 98 0.8015
6 16 126 13 124 134 125 145 123456 11 2075 0.8036
6 16 12 1:~ 1236 14 1256 135 123456 11 2460 0.7638
6 16 12 13 1246 134 125 145 123456 12 16 83 0.7742
6 16 126 13 124 1346 125 145 123456 12 1782 0.8182
6 16 12 13 124 1346 125 145 123456 13 1649 0.7768
6 1 12 136 1246 134 125 1456 123456 13 1864 0.7795
6 16 126 136 124 134 1235 145 123456 14 1778 0.8140

7 167 127 13 1246 1346 1256 145 1234567 2793799 0.7778
7 167 127 13 124 1346 1256 145 1234567 28 101 779 0.7516
7 16 12 137 12467 134 1256 1457 1234567 3090570 0.7438
7 167 127 137 1247 1346 125 1457 1234567 3694694 0.7383
7 167 127 13 1246 134 1256 145 1234567 36 116754 0.7570
7 167 127 137 1236 14 1256 135 1234567 37 108 763 0.7711
7 167 127 13 1246 1347 1256 145 1234567 37121 851 0.7711
7 16 12713 124 134671256 1457 1234567 37139869 0.7538
7 16 12 137 1236 14 12567 135 1234567 3977658 0.7271
7 16 127 123 1347 1357 145 1245 1234567 3990720 0.7778

8 1678 127138 1248 1346 12568 145 12345678 603723952 0.7083
8 168 128 137 12467 134 1256 14578 12345678 763683876 0.7391
8 1678 127 1378 12478 1346 1258 1457 12345678 843643988 0.6881
8 167 1278 137124713468 125 14578 12345678 893293825 0.7109
8 17 1268 1368 1236 146 12348 15 12345678 1143483648 0.6842
8 17 128 138 1236 146 1234 15 12345678 1143693783 0.6774
8 16 18 127 13 124 125 1457 12345678 126 291 3837 0.6523
8 16 1278 1238 1347 1357 1458 1245 12345678 1474084832 0.7500
8 16 17 128 138 123 14 15 12345678 1803153645 0.6160
8 16 17 12 1348 1358 1458 1345 12345678 219 144 4800 0.6250



~

T
ab

le
E

.5
:

T
op

10
N

on
-i

so
m

or
ph

ic
18

-r
un

M
D

S
de

si
gn

s
w

it
h

k
::;

7
~

k
D

es
ig

n
R

u
n

s
(M

D
S

(4
),

M
D

S
(5

),
M

D
S

(6
))

E
ff

ic
ie

n
cy

5
1

12
13

12
4

13
4

12
34

12
5

14
5

12
34

5
0

0
1

0.
83

33
~

5
1

12
13

12
4

13
4

12
34

12
35

14
5

12
34

5
1

0
0

0.
90

09
~

5
1

12
13

12
3

14
12

34
12

5
13

5
12

34
5

1
0

0
0.

85
47

~
5

1
12

13
12

3
14

12
34

12
5

14
5

12
34

5
1

0
0

0.
77

19
5

1
12

13
12

3
14

12
4

12
5

13
5

12
34

5
1

1
0

0.
82

62
"":

l
5

1
12

13
12

3
14

12
4

15
13

5
12

34
5

2
0

1
0.

78
75

0 'U
5

1
12

13
12

4
13

4
12

5
14

5
14

5
12

34
5

2
1

1
0.

82
62

~
5

1
1

12
3

12
4

13
4

12
5

12
35

13
45

12
34

5
2

1
1

0.
83

33
0

5
1

1
12

12
3

12
4

13
4

13
5

12
45

12
34

5
2

1
1

0.
81

24
~

5
1

1
12

12
3

13
4

12
34

13
5

14
5

12
34

5
2

1
1

0.
78

75
en 0

6
16

12
13

12
46

13
46

12
34

12
56

14
5

12
34

56
2

8
4

6
0.

84
21

~ 0
6

1
12

6
13

6
12

46
13

4
12

34
12

5
14

5
12

34
56

3
6

4
5

0.
78

43
~

6
16

12
13

12
36

14
6

12
34

12
56

13
5

12
34

56
4

6
2

7
0.

78
46

'U
6

16
12

13
6

12
36

14
12

34
12

56
13

5
12

34
56

4
6

3
0

0.
82

47
~

6
16

12
13

12
46

13
46

12
34

12
5

14
5

12
34

56
4

6
3

5
0.

78
46

C1

6
16

12
13

12
36

14
12

34
12

56
13

5
12

34
56

4
7

2
8

0.
78

92
S

6
16

12
13

12
46

13
4

12
34

12
56

14
5

12
34

56
4

11
25

0.
77

73
U

)

6
16

12
13

6
12

46
13

4
12

34
12

5
14

5
12

34
56

5
3

4
4

0.
84

21
t:J

6
16

12
6

13
12

36
14

12
34

12
5

14
5

12
34

56
5

5
2

7
0.

73
56

~
6

16
12

6
13

12
36

14
6

12
34

12
5

13
5

12
34

56
5

5
4

1
0.

78
92

c;
J

7
1

7
1

2
6

1
3

6
1

2
4

6
7

1
3

4
7

1
2

3
4

1
2

5
1

4
5

1
2

3
4

5
6

7
11

3
3

2
7

1
0.

73
98

t3
7

16
7

12
13

7
12

46
7

13
46

12
34

12
56

14
5

12
34

56
7

11
48

32
5

0.
79

67
7

1
6

7
1

2
7

1
3

7
1

2
3

6
1

4
6

12
34

7
12

56
13

5
12

34
56

7
1

2
3

6
2

6
1

0.
74

35
7

16
12

7
13

67
12

46
7

13
4

12
34

12
5

14
57

12
34

56
7

12
42

33
8

0.
79

67
7

16
71

26
7

13
7

12
36

14
6

12
34

12
57

13
5

12
34

56
7

1
2

4
7

3
6

3
0.

74
67

7
16

12
7

13
67

12
36

14
12

34
7

12
56

13
.5

12
34

56
7

13
25

24
4

0.
74

56
7

16
12

7
13

7
12

36
7

14
7

12
34

12
56

13
5

12
34

56
7

13
30

2.
58

0.
77

54
7

16
7

12
7

13
7

12
36

14
6

12
34

12
56

13
5

12
34

56
7

13
31

35
2

0.
79

43
7

16
12

7
13

7
12

36
14

67
12

34
12

56
13

5
12

34
56

7
1

3
3

9
2

8
5

0.
75

49
7

16
12

7
13

12
36

14
67

12
34

12
56

13
57

12
34

56
7

13
41

34
7

0.
66

08
I
-
'

I
-
'
~



T
ab

le
E

.6
:

T
op

10
N

on
-i

so
m

or
ph

ic
18

-r
un

M
D

S
de

si
gn

s
w

it
h

8
<

k
<

9
k

D
es

ig
n

R
un

s
(M

D
S

(4
),

M
D

S
(5

),
A

fD
S

(6
))

E
ff

ic
ie

nc
y

8
16

78
12

8
13

7
12

46
7

13
46

12
34

8
12

56
14

5
12

34
56

78
24

13
6

17
98

0.
76

19
8

16
7

12
67

8
13

78
12

36
14

68
12

34
12

57
13

58
12

34
56

78
26

14
5

16
96

0.
67

72
8

17
8

12
68

13
6

12
46

7
13

47
12

34
8

12
5

14
58

12
34

56
78

29
17

5
17

76
0.

75
29

8
16

8
12

78
13

67
12

46
7

13
48

12
34

12
5

14
57

12
34

56
78

30
14

6
17

91
0.

80
64

8
16

71
26

78
13

78
12

36
8

14
68

12
34

12
57

8
13

5
12

34
56

78
30

15
3

18
43

0.
71

11
8

16
8

12
71

37
8

12
36

7
14

67
12

34
12

56
13

5
12

34
56

78
31

16
3

15
00

0.
70

11
8

16
78

12
8

13
7

12
46

7
13

46
8

12
34

8
12

56
14

5
12

34
56

78
31

16
71

72
7

0.
72

93
8

17
8

12
68

13
6

12
46

7
13

47
12

34
12

5
14

58
12

34
56

78
31

18
2

15
82

0.
68

95
8

16
8

12
78

13
7

12
36

8
14

67
12

34
12

56
13

5
12

34
56

78
31

18
2

17
84

0.
60

95
8

16
8

12
78

13
7

12
36

8
14

67
12

34
12

56
13

58
12

34
56

78
32

15
7

17
50

0.
72

54

9
16

89
12

78
9

13
67

12
46

7
13

48
12

34
9

12
5

14
57

9
12

34
56

78
9

9
16

79
12

67
8

13
78

9
12

36
9

14
68

9
12

34
12

57
9

13
58

12
34

56
78

9
9

16
8

12
78

13
67

12
46

79
13

48
9

12
34

12
59

14
57

12
34

56
78

9
9

16
89

12
79

13
78

12
36

7
14

67
12

34
12

56
13

59
12

34
56

78
9

9
16

89
12

78
13

79
12

36
8

14
67

12
34

9
12

56
9

13
5

12
34

56
78

9
9

16
78

12
89

13
79

12
46

79
13

46
9

12
34

12
56

9
14

5
12

34
56

78
9

9
16

89
12

78
9

13
79

12
36

8
14

67
12

34
9

12
56

13
58

12
34

56
78

9
9

16
78

12
89

13
79

12
46

7
13

46
89

12
34

8
12

56
14

59
12

34
56

78
9

9
17

89
12

68
13

69
12

46
79

13
47

12
34

9
12

5
14

58
9

12
34

56
78

9
9

16
7

12
78

9
13

79
12

36
8

14
68

9
12

34
12

56
9

13
5

12
34

56
78

9

56
51

8
68

06
6

2
5

5
8

73
22

6
2

5
6

1
69

70
6

4
5

6
4

7
0

1
2

65
61

56
94

2
6

6
5

8
2

6
3

7
6

6
6

5
8

2
6

5
3

2
6

7
5

7
8

6
9

9
1

6
8

5
4

6
6

9
2

5
6

8
5

9
4

6
9

4
9

0.
77

32
0.

55
10

0.
70

81
0.

63
46

0.
62

82
0.

66
06

0.
67

55
0.

64
30

0.
65

52
0.

61
00

~ ~ ~ ~ t:r1 f-3 ~ ~ a ~ 2i:l a ~ ~ ~ C
l S Cf
J. tl ~ Q 2;3 >
-'

>
-'

C
Jl



~

T
ab

le
E

.7
:

T
op

10
N

on
-i

so
m

or
ph

ic
20

-r
un

M
D

S
de

si
gn

s
w

it
h

k
<

7
>v ~

k
D

es
ig

n
R

un
s

(A
fD

S(
4)

,
A

fD
S

(5
),

A
ID

S(
6)

)
E

ff
ic

ie
nc

y
~

5
1

12
13

12
4

13
4

12
34

12
5

13
5

14
5

12
34

.5
0

0
0

0.
92

31
5

1
12

13
12

3
14

12
4

12
5

13
5

14
5

12
34

5
0

0
0

0.
89

55
~

5
1

12
13

12
3

14
12

4
13

4
12

5
13

5
12

34
5

0
0

0
0.

84
08

t:rJ
5

1
12

13
12

3
14

12
4

12
34

13
5

14
5

12
34

5
0

0
0

0.
75

00
5

1
12

13
12

4
13

4
12

34
12

5
13

5
12

35
12

34
5

0
0

0
0.

60
00

...,
5

1
12

13
12

4
13

4
12

34
12

5
14

5
14

5
12

34
5

0
0

1
0.

83
33

~
5

1
1

12
12

3
12

4
13

4
13

5
12

35
12

45
12

34
5

0
0

1
0.

82
27

~
5

1
12

13
12

3
14

12
4

15
13

5
14

5
12

34
5

0
0

1
0.

79
59

0
5

1
1

12
13

12
4

13
4

12
34

12
5

14
5

12
34

5
0

0
1

0.
78

45
f':

5
1

12
13

12
3

14
12

4
12

5
13

5
12

45
12

34
5

0
1

0
0.

83
33

U3 0
6

1
12

6
13

6
12

3
14

6
12

4
12

5
13

5
14

5
12

34
56

o
0

12
0.

82
39

~ 0
6

1
12

6
13

6
12

4
13

46
12

34
12

56
13

.5
12

35
12

34
56

0
0

1
5

0.
64

29
~

6
16

12
13

12
46

13
46

12
34

12
56

13
56

14
5

12
34

56
0

0
1

6
0.

90
00

>v
6

16
12

13
12

36
14

12
46

12
56

13
56

12
45

12
34

56
o

6
10

0.
80

00
~

6
16

12
13

12
36

14
12

46
15

13
56

14
56

12
34

56
0

6
1

0
0.

73
85

C
l

6
1

12
6

13
6

12
3

14
6

12
46

12
5

13
56

14
5

12
34

56
1

0
12

0.
78

26
S

6
1

12
6

13
6

12
4

13
46

12
34

12
56

13
5

14
5

12
34

56
1

0
16

0.
84

71
C

f)

6
1

12
6

13
6

12
36

14
6

12
4

13
4

12
5

13
5

12
34

56
1

1
9

0.
76

85
tl

6
16

12
6

13
6

12
3

14
6

12
4

13
4

12
5

13
5

12
34

56
1

1
11

0.
83

27
trJ

6
16

1
12

6
12

3
12

46
13

46
13

56
12

35
12

45
12

34
56

1
2

10
0.

76
94

~ G

7
1

7
1

2
6

7
13

6
12

47
13

46
7

12
34

12
56

13
57

12
35

12
34

56
7

2
2

9
6

0.
47

46
a

7
1

7
1

2
6

13
67

12
4

13
46

12
34

7
12

56
7

13
5

12
35

12
34

56
7

2
4

1
3

7
0.

67
20

7
16

7
12

13
7

12
46

7
13

46
12

34
12

56
13

56
14

5
12

34
56

7
3

3
1

2
7

0.
84

00
7

17
12

6
13

6
12

37
14

67
12

47
12

5
13

.5
7

14
.5

12
34

56
7

3
5

12
1

0.
63

64
7

17
12

67
13

67
12

3
14

67
12

46
12

5
13

56
14

57
12

34
56

7
4

5
7

1
0.

73
29

7
17

12
6

13
6

12
3

14
6

12
46

7
12

57
13

56
7

14
5

12
34

56
7

4
5

9
6

0.
73

89
7

17
12

6
13

67
12

47
13

46
12

34
12

56
7

13
57

14
5

12
34

56
7

4
8

9
5

0.
76

36
7

1
7

1
2

6
13

67
12

47
13

46
12

34
12

56
13

5
14

5
12

34
56

7
4

8
1

3
9

0.
84

00
7

1
7

1
2

6
1

3
6

7
1

2
3

1
4

6
7

1
2

4
7

1
2

5
7

1
3

5
7

1
4

5
1

2
3

4
5

6
7

5
2

9
7

0.
78

40
7

17
12

67
13

67
12

3
14

67
12

46
12

5
13

56
14

5
12

34
56

7
5

6
8

1
0.

72
48

t-
'

t-
'

C
')



~

T
ab

le
E

.8
:

T
op

10
N

on
-i

so
m

or
ph

ic
20

-r
un

M
D

S
de

si
gn

s
w

it
h

8
:S

k
<

10
~

k
D

es
ig

n
R

un
s

(M
D

S(
4)

,
M

D
S(

5)
,

M
D

S(
6)

)
E

ff
ic

ie
nc

y
~

8
17

12
68

13
67

8
12

48
13

46
12

34
7

12
56

7
13

58
12

35
12

34
56

78
6

2
1

58
9

0.
68

57
8

16
7

12
8

13
78

12
46

7
13

46
8

12
34

12
56

8
13

56
14

5
12

34
56

78
7

2
2

6
0

8
0.

80
00

~
8

1
7

1
2

6
8

13
67

8
12

47
8

13
46

12
34

12
56

13
58

14
58

12
34

56
78

8
3

2
6

0
2

0.
80

00
~

8
17

8
12

6
13

67
8

12
48

13
46

12
34

7
12

56
7

13
58

12
35

12
34

56
78

9
32

51
1

0.
58

84
8

16
78

12
13

78
12

46
7

13
46

12
34

8
12

56
8

13
56

14
5

12
34

56
78

9
4

2
4

7
2

0.
72

00
,.., 0

8
17

12
68

13
67

8
12

4
13

46
12

34
7

12
56

7
13

58
12

35
12

34
56

78
1

0
2

8
5

0
0

0.
62

47
'"0

8
1

7
8

1
2

6
7

1
3

6
8

1
2

4
7

8
13

46
71

23
48

12
56

8
13

57
12

35
12

34
56

78
10

40
46

8
0.

35
29

<
8

17
8

12
67

8
13

68
12

47
13

46
7

12
34

8
12

56
13

.5
7

12
35

12
34

56
78

11
31

50
6

0.
42

58
0

8
17

8
12

68
13

67
12

4
13

46
12

34
71

25
67

13
58

12
35

12
34

56
78

11
3

2
5

5
9

0.
66

21
~

8
17

8
12

67
8

13
68

12
47

13
46

7
12

34
8

12
56

8
13

57
12

35
12

34
56

78
11

4
0

4
6

5
0.

46
92

en 0
9

17
9

12
68

9
13

67
8

12
48

13
46

12
34

79
12

56
7

13
58

9
12

35
12

34
56

78
9

12
68

20
55

0.
67

50
~ 0

9
17

9
12

68
9

13
67

8
12

48
13

46
12

34
7

12
56

7
13

58
9

12
35

12
34

56
78

9
21

10
0

18
30

0.
63

53
~

9
17

9
12

68
9

13
67

8
12

48
13

46
9

12
34

79
12

56
7

13
58

9
12

35
12

34
56

78
9

22
10

5
19

01
0.

67
50

'"0
9

17
9

12
68

9
13

67
8

12
48

13
46

9
12

34
7

12
56

7
13

58
12

35
12

34
56

78
9

22
10

9
19

52
0.

63
53

t:s
9

16
79

12
89

13
78

12
46

7
13

46
89

12
34

12
56

8
13

56
14

5
12

34
56

78
9

22
11

4
18

55
0.

70
43

0
9

17
89

12
68

9
13

67
12

4
13

46
9

12
34

79
12

56
7

13
58

12
35

9
12

34
56

78
9

22
12

22
19

7
0.

58
38

S
9

17
89

12
67

9
13

68
12

47
13

46
7

12
34

89
12

56
9

13
57

9
12

35
12

34
56

78
9

22
16

4
18

96
0.

45
00

Cf:
J.

9
17

12
68

13
67

89
12

48
9

13
46

12
34

7
12

56
7

13
58

12
35

9
12

34
56

78
9

23
10

5
19

08
0.

63
53

t:J
9

1
7

8
1

2
6

8
9

1
3

6
7

9
1

2
4

9
1

3
4

6
1

2
3

4
7

9
1

2
5

6
7

1
3

5
8

9
1

2
3

5
1

2
3

4
5

6
7

8
9

23
12

72
21

3
0.

58
38

tri
9

16
79

12
8

13
78

12
46

7
13

46
8

12
34

9
12

56
89

13
56

9
14

5
12

34
56

78
9

24
96

18
77

0.
54

00
S!3 G

10
17

91
0

12
68

9
13

67
81

0
12

48
10

13
46

12
34

79
12

56
7

13
58

9
12

35
10

12
34

56
78

91
0

20
17

05
99

0
0.

60
00

~
10

17
91

0
12

68
91

0
13

67
8

12
48

13
46

12
34

79
12

56
7

13
58

9
12

35
10

12
34

56
78

91
0

3
7

2
6

5
5

5
4

6
0.

62
07

10
17

91
0

12
68

91
0

13
67

8
12

48
13

46
9

12
34

79
12

56
7

13
58

9
12

35
10

12
34

56
78

91
0

4
0

2
9

4
5

9
2

2
0.

60
00

10
17

91
0

12
68

91
0

13
67

81
0

12
48

13
46

12
34

79
12

56
7

13
58

9
12

35
10

12
34

.5
67

89
10

41
26

55
73

4
0.

60
00

10
16

79
10

12
89

13
78

10
12

46
7

13
46

89
12

34
10

12
56

81
0

13
56

14
5

12
34

56
78

91
0

4
4

3
0

6
5

7
6

8
0.

64
29

10
17

89
12

67
9

13
68

91
0

12
47

91
0

13
46

7
12

34
8

12
56

13
57

10
12

35
9

12
34

56
78

91
0

44
39

95
88

3
0.

39
47

10
17

89
12

67
91

0
13

68
10

12
47

10
13

46
7

12
34

89
12

56
9

13
57

91
0

12
35

12
34

.5
67

89
10

45
36

0
59

21
0.

39
79

10
17

91
0

12
68

9
13

67
8

12
48

13
46

12
34

79
12

56
7

13
58

9
12

35
10

12
34

56
78

91
0

4
6

2
8

7
5

6
8

8
0.

64
29

10
17

91
0

12
68

91
0

13
67

8
12

48
10

13
46

10
12

34
7

12
56

7
13

58
9

12
35

10
12

34
56

78
91

0
46

30
7

55
26

0.
54

55
10

17
89

10
12

68
9

13
67

10
12

41
0

13
46

9
12

34
79

12
56

7
13

58
12

35
9

12
34

56
78

91
0

4
6

3
3

6
5

7
7

4
0.

54
55

I
-
'

I
-
'

-1



T
ab

le
E

.g
:

T
op

10
N

on
-i

so
m

or
ph

ic
22

-r
un

M
D

S
de

si
gn

s
w

it
h

5
<

k
<

8
k

D
es

ig
n

R
un

s
(J

II
D

S(
4)

,l
vJ

D
S(

.5
),

M
D

S(
6)

)
E

ff
ic

ie
nc

y
5

1
12

13
12

4
13

4
12

34
12

5
13

5
12

3.
5

14
5

12
34

5
0

0
0

0.
95

45
5

1
12

13
12

4
13

4
12

34
12

5
13

5
14

5
14

5
12

34
5

0
0

0
0.

95
4.

5
5

1
12

13
12

3
14

12
4

13
4

12
5

13
5

14
5

12
34

.5
0

0
0

0.
94

04
.5

1
12

13
12

3
14

12
4

13
4

15
12

5
13

5
12

34
5

0
0

0
0.

90
36

.5
1

1
12

3
12

4
13

4
12

34
12

.5
13

·5
12

45
13

45
12

34
5

0
0

0
0.

90
36

5
1

1
12

12
3

12
4

13
4

13
5

12
3·

5
14

5
12

45
12

34
5

0
0

0
0.

90
36

·5
1

1
12

13
12

4
13

4
12

34
12

5
13

5
14

5
12

34
5

0
0

0
0.

88
64

5
1

1
12

12
3

12
4

13
4

12
34

13
5

12
35

14
.5

12
34

5
0

0
0

0.
87

08
5

1
12

13
12

3
14

12
4

13
4

15
12

5
12

35
12

34
5

0
0

0
0.

87
08

.5
1

1
12

13
12

3
12

4
13

4
12

5
12

35
14

5
12

34
5

0
0

0
0.

86
58

6
1

12
6

13
6

12
3

14
6

12
4

13
4

15
6

12
5

13
5

12
34

56
0

0
0

0.
90

28
6

16
1

12
36

12
46

13
46

12
34

12
56

13
56

12
35

12
45

12
34

·5
6

0
0

0
0.

83
00

6
16

12
13

12
36

14
12

46
13

46
15

12
56

12
35

12
34

56
0

0
0

0.
82

33
6

16
12

13
12

36
14

12
46

13
46

15
12

56
13

56
12

34
56

0
0

0
0.

78
97

6
16

1
12

12
36

12
46

13
46

12
34

12
56

13
56

12
45

12
34

56
0

0
0

0.
78

05
6

16
1

12
12

36
12

46
13

46
12

34
12

56
13

56
12

35
12

34
56

0
0

0
0.

67
83

6
16

12
13

12
36

14
12

46
13

46
12

35
12

45
13

45
12

34
56

0
0

0
0.

60
89

6
16

1
12

6
13

6
12

3
14

6
12

4
12

5
13

5
14

5
12

34
56

0
0

3
0.

81
38

6
16

1
12

6
13

6
12

4
13

4
12

34
6

12
·5

13
5

14
5

12
34

56
0

0
3

0.
74

05
6

16
1

12
3

12
46

13
46

12
34

12
56

13
56

12
45

13
4.

5
12

34
56

0
0

3
0.

90
28

7
16

17
12

67
13

12
46

13
46

12
34

7
12

56
13

56
7

12
35

12
34

56
7

0
0

3
3

0.
44

38
7

16
17

12
36

12
47

13
46

7
12

34
12

56
7

13
57

12
35

12
45

12
34

56
7

0
0

4
5

0.
76

36
7

16
17

12
67

12
3

12
46

13
46

13
56

7
12

35
14

5
12

45
7

12
34

56
7

0
0

5
2

0.
76

36
7

16
17

12
36

12
4

13
46

7
12

34
7

12
56

7
13

57
12

35
12

45
7

12
34

56
7

0
0

5
6

0.
6·

51
9

7
16

7
17

12
67

13
12

46
13

46
12

34
7

12
56

13
56

7
12

35
12

34
56

7
0

0
5

7
0.

44
38

7
16

1
12

7
13

7
12

46
13

46
7

12
34

12
56

7
13

56
12

35
12

34
56

7
0

0
5

8
0.

22
46

7
16

17
12

6
12

37
12

46
13

46
7

13
56

12
35

14
5

12
45

7
12

34
56

7
0

0
6

0
0.

65
19

7
17

12
6

13
6

12
47

13
46

7
12

34
12

56
7

13
57

12
35

14
5

12
34

56
7

0
0

7
0

0.
90

91
7

17
12

67
13

6
12

4
13

46
12

34
7

12
56

13
57

12
35

14
5

12
34

56
7

0
0

7
6

0.
90

91
7

16
17

12
67

13
67

12
4

13
47

12
34

6
12

57
13

5
14

57
12

34
56

7
1

0
3

4
0.

74
28

8
16

17
8

12
67

12
38

12
46

13
46

8
13

56
7

12
35

14
5

12
45

78
12

34
56

78
0

0
2

4
8

0.
22

97
8

17
8

12
68

13
6

12
47

13
46

7
12

34
8

12
56

7
13

57
8

12
35

14
5

12
34

·5
67

8
0

0
31

0
0.

87
27

8
1

7
8

1
2

6
7

1
3

6
8

1
2

4
1

3
4

6
1

2
3

4
7

8
1

2
5

6
8

1
3

5
7

1
2

3
5

1
4

5
8

1
2

3
4

5
6

7
8

0
0

3
1

0
0.

87
27

8
16

8
17

12
67

8
12

38
12

46
13

46
13

56
7

12
35

14
58

12
45

7
12

34
56

78
2

3
2

4
4

0.
75

89
8

16
8

18
12

7
13

78
12

46
13

46
7

12
34

8
12

56
78

13
56

12
35

12
34

56
78

2
6

2
9

7
0.

22
97

~ ~ ~ ~ ~ '-3 ~ ~ ~ (j) o ~ ~ 2S Cl S 1J
) ~ o 63 f-

"
f-

"
0

0



T
ab

le
E

.I
0:

T
op

10
N

on
-i

so
m

or
ph

ic
22

-r
un

.M
D

S
de

si
gn

s
w

it
h

8
:::;

k
:::;

11
~ 'U

k
D

es
ig

n
R

un
s

(J
i!

D
S

(4
),

M
D

S
(5

),
A

ID
S

(6
))

E
Jj

ic
ie

nc
y

'U tr1
8

16
8

17
8

12
67

12
3

12
46

8
13

46
13

56
7

12
35

8
14

5
12

45
7

12
34

56
78

2
7

2
4

8
0.

75
89

~
8

16
17

8
12

36
8

12
4

13
46

7
12

34
78

12
56

7
13

57
12

35
12

4.
57

8
12

34
56

78
3

4
2

5
4

0.
52

89
8

16
17

8
12

67
12

38
12

46
13

46
8

13
.5

67
12

35
14

58
12

45
7

12
34

.5
67

8
3

6
2

0
3

0.
44

41
><

8
17

8
12

6
13

6
12

47
13

46
7

12
34

8
12

56
7

13
57

8
12

35
14

5
12

34
56

78
3

6
2

4
4

0.
75

89
~

8
17

8
12

6
13

68
12

47
13

46
7

12
34

8
12

56
78

13
·5

7
12

3.
5

14
5

12
34

56
78

3
6

2
5

0
0.

88
75

17
89

12
68

13
69

12
47

9
13

46
7

12
34

8
12

56
7

13
57

8
12

35
9

14
5

12
34

.5
67

89
0

0
9

9
3

0.
81

82
f-:J

9
a

9
17

89
12

67
13

68
12

49
13

46
9

12
34

78
12

56
8

13
-5

79
12

35
14

58
12

34
56

78
9

4
1

6
8

2
9

0.
74

03
'U

9
1

6
9

1
7

8
9

1
2

6
7

1
2

3
8

1
2

4
6

9
1

3
4

6
8

1
3

-5
6

7
12

35
9

14
5

12
45

78
12

34
56

78
9

4
2

0
9

0
S

0.
22

31
~

9
17

89
12

68
13

6
12

47
9

13
46

7
12

34
8

12
56

7
13

57
8

12
35

9
14

5
12

34
56

78
9

5
2

2
8

6
5

0.
74

03
a

9
16

17
89

12
67

12
38

12
46

9
13

46
8

13
56

7
12

35
9

14
5

12
45

78
12

34
56

78
9

6
16

88
1

0.
24

55
~

9
17

89
12

68
13

69
12

47
13

46
7

12
34

89
12

56
79

13
57

8
12

35
14

5
12

34
56

78
9

6
24

84
1

0.
84

97
en

9
17

89
12

67
13

68
9

12
49

13
46

12
34

78
12

56
8

13
57

12
35

14
58

12
34

56
78

9
6

2
5

9
0

5
0.

81
82

a
9

17
89

12
68

13
69

12
47

9
13

46
7

12
34

8
12

56
7

13
57

8
12

35
14

.5
12

34
56

78
9

6
2

7
8

5
6

0.
81

82
~

9
16

89
18

12
79

13
78

12
46

13
46

7
12

34
89

12
56

78
13

56
9

12
35

12
34

56
78

9
6

27
94

1
0.

22
31

a
9

19
12

36
78

12
3

14
68

13
47

9
15

67
12

58
9

13
56

9
12

45
7

13
45

8
12

34
56

78
9

6
2

8
9

4
6

0.
68

18
~ 'U

10
17

89
10

12
36

79
12

31
0

14
69

10
13

47
8

15
67

12
58

9
13

56
81

0
12

45
71

0
13

45
9,

12
34

56
78

91
0

0
0

2
7

3
0

0.
72

73
~

10
17

89
10

12
36

79
12

31
0

14
69

10
13

47
8

15
67

12
58

9
13

56
8

12
45

71
0

13
45

9,
12

34
56

78
91

0
8

5
2

2
3

9
6

0.
70

06
CJ

10
12

39
10

12
46

81
0

13
48

12
34

67
9

12
56

13
56

89
12

35
78

10
14

59
10

12
45

78
9,

13
45

67
10

12
34

56
78

91
0

8
5

6
2

5
1

0
0.

19
83

S
10

17
89

10
12

36
79

12
31

0
14

69
10

13
47

8
15

67
12

58
9

13
56

81
0

12
45

71
0

13
45

91
0,

12
34

56
78

91
0

9
5

7
2

3
8

2
0.

77
92

10
17

81
0

12
36

71
0

12
39

14
69

10
13

47
89

15
67

9
12

58
91

0
13

56
89

10
12

45
7

13
45

10
,

12
34

56
78

91
0

10
74

26
33

0.
19

83
1J

) tl
10

12
37

12
46

79
10

13
49

12
34

68
10

12
56

13
56

79
10

12
35

89
10

14
51

0
12

45
78

9
13

45
67

8,
12

34
56

78
91

0
1

2
4

8
2

5
7

4
0.

25
37

tr1
10

18
91

0
12

36
7

12
38

10
14

68
10

13
47

91
0

1·
56

71
0

12
59

10
13

56
89

12
45

78
13

45
12

34
56

78
91

0
1

2
6

8
2

4
9

4
0.

6.
57

2
1J

)

10
17

89
12

36
79

12
31

0
14

68
9

13
47

81
0

15
67

10
12

58
91

0
13

56
8

12
45

7
13

45
9

12
34

56
78

91
0

12
80

24
94

0.
79

82
.....

.
Q

10
19

12
36

78
12

31
0

14
68

10
13

47
91

0
15

67
10

12
58

91
0

13
56

9
12

45
7

13
45

8
12

34
56

78
91

0
12

83
27

16
0.

68
18

~
10

16
9

17
89

12
67

10
12

38
10

12
46

9
13

46
8

13
56

7
12

35
9

14
51

0
12

45
78

12
34

56
78

91
0

1
3

6
5

2
6

1
0

0.
23

72

11
17

89
10

12
68

11
13

69
10

11
12

47
91

1
13

46
7

12
34

81
0

12
56

71
0

13
57

81
1

12
35

9
14

51
01

1
1
2
:
~
4
5
6
7
8
9
1
0
1
1

0
0

6
7

6
5

0.
54

55
11

17
89

10
12

68
11

13
69

10
11

12
47

91
1

13
46

7
12

34
81

0
12

56
71

0
13

57
81

1
12

3.
59

14
51

0
12

34
56

78
91

01
1

12
10

8
58

71
0.

62
07

11
17

89
10

12
68

11
13

69
12

47
91

1
13

46
7

12
34

81
0

12
56

71
0

13
57

81
1

12
35

9
14

51
01

1
12

34
56

78
91

01
1

16
16

06
37

7
0.

13
95

11
17

89
10

12
68

11
13

69
10

11
12

47
91

1
13

46
72

34
81

0
12

56
71

0
13

57
81

1
12

35
9

14
5

12
34

56
78

91
01

1
18

17
4

63
27

0.
66

67
11

17
89

10
12

67
11

13
68

10
11

12
4m

01
1

1:
\4

G
fJ

12
:3

47
8

12
:'6

81
01

1
13

57
91

1
12

35
10

14
58

11
12

34
56

78
91

01
1

20
14

8
64

79
0.

19
35

11
16

91
1

17
89

11
12

67
10

11
1
2
:
~
8
1
0

12
·H

;'J
I:

W
i8

11
1:

1'
,(;

7
12
:1
'j
~J
ll

IF
i1

01
1

12
4:

'7
81

23
45

67
89

10
11

22
13

0
65

15
0.

24
00

11
1G

91
01

11
78

91
11

2G
71

O
12

:3
81

01
1

12
1(

i')
11

1:
\H

i,-
:

l:r
jG

71
1

12
:\·

;')
ll

'i1
01

1
In

;7
8

12
34

56
78

91
01

1
22

17
86

90
0

0.
19

35
II

1G
91

11
78

!J
II

12
67

10
1:

2:
lS

Il
1l

11
2H

i'J
lI

t:
IH

iS
IT

,G
71

1
12

:r
i'

)I
I'

il
O

lI
12

1'
i7

81
2:

\4
:,

67
8!

Jl
O

ll
24

16
0

69
60

0.
24

00
11

17
8!

Jl
O

12
68

!:
\(

i'J
lI

12
17

')1
1

1:
\l(

i7
12

:\1
-:1

11
12

;G
71

1l
n

-,
7

S
II

12
:\

;')
IF

>l
1l

11
12

:3
1:

,G
78

91
01

1
2

4
2

0
0

5
5

7
8

0.
51

85
.....

.
11

17
89

10
12

68
11

l:J
6!

J1
1

12
17

!J
lI

1:
\W

7
12

:\
IS

IO
II

12
·;(

;7
10

I:F
i7

81
1

lU
i!

)
14

51
01

1
12

34
:'6

78
91

01
1

2
4

2
0

1
56

89
0.

51
85

.....
.

co



~ 'U
T

ab
le

E
.l

1
:

T
op

10
N

on
-i

so
m

or
ph

ic
24

-r
un

M
D

S
de

si
gn

s
w

it
h

5
<

k
<

7
'U tr1

k
D

es
ig

n
R

u
n

s
(1

\1
D

S
(6

),
..

,M
D

S
(8

))
E

ff
ic

ie
nc

y
~

5
1

12
13

12
3

14
12

4
13

4
12

34
12

5
13

5
14

5
12

34
5

0
0

0
0.

95
24

><
5

1
12

13
12

3
14

12
4

13
4

15
12

5
13

5
14

5
12

34
5

0
0

0
0.

95
24

5
1

1
12

3
12

4
13

4
12

34
12

5
13

5
12

35
14

5
12

45
12

34
5

0
0

0
0.

95
24

~
5

1
1

12
12

3
12

4
13

4
13

4
13

5
12

35
14

5
12

45
12

34
5

0
0

0
0.

95
24

'-3
5

1
12

13
12

3
14

12
4

13
4

15
12

5
13

5
12

45
12

34
5

0
0

0
0.

93
15

0
5

1
1

12
12

3
12

4
13

4
12

34
12

5
13

5
12

35
14

5
12

34
5

0
0

0
0.

93
15

'U
5

1
12

13
12

4
13

4
12

34
12

5
13

5
14

5
14

5
14

5
12

34
5

0
0

0
0.

92
59

~
5

1
1

12
3

12
4

13
4

12
34

12
5

13
5

12
35

12
45

13
45

12
34

5
0

0
0

0.
92

59
0

5
1

1
12

13
12

4
13

4
12

34
12

5
13

5
12

35
14

5
12

34
5

0
0

0
0.

92
59

~
5

1
1

12
13

12
4

13
4

12
34

12
5

13
5

14
5

14
5

12
34

5
0

0
0

0.
92

59
en 0

6
16

1
12

6
13

12
36

12
46

13
46

12
34

12
35

14
56

12
45

12
34

56
0

0
2

0.
83

81
~ 0

6
16

1
12

12
36

12
46

13
46

13
4

12
34

13
56

12
45

13
45

12
34

56
0

0
2

0.
81

95
~

6
16

1
12

12
36

12
46

13
4

13
56

12
35

14
56

12
45

13
45

12
34

56
0

0
4

0.
91

30
'U

6
16

1
12

13
12

36
12

46
13

46
12

34
12

56
13

56
14

5
12

34
.5

6
0

0
4

0.
87

68
~

6
16

1
12

12
36

12
46

13
46

12
34

12
56

13
56

12
45

13
45

12
34

56
0

0
4

0.
85

55
Cl

6
16

1
12

12
36

12
46

13
46

12
34

12
56

13
56

12
35

13
45

12
34

56
0

0
4

0.
82

46
S

6
16

1
12

13
12

36
12

46
13

46
12

34
12

56
14

56
13

45
12

34
56

0
0

4
0.

81
73

\J
)

6
16

1
12

13
12

36
12

46
13

46
12

34
12

56
13

56
12

45
12

34
56

0
0

4
0.

80
11

0
6

16
1

12
6

12
13

12
36

14
13

46
13

56
12

35
14

56
12

34
56

0
0

4
0.

78
45

tr1
6

16
1

12
13

12
36

12
46

13
46

12
34

12
56

14
56

12
45

12
34

56
0

0
4

0.
78

25
~ Q

7
16

17
12

13
7

12
36

14
6

12
46

7
12

56
12

57
13

56
7

12
4.

5
12

34
56

7
11

40
13

4
0.

70
65

~
7

16
17

12
13

12
36

7
14

67
12

47
13

46
12

56
12

35
13

45
12

34
56

7
11

41
16

.5
0.

72
42

7
16

17
12

67
12

36
12

37
12

46
13

46
7

12
34

13
56

12
45

13
45

7
12

34
56

7
11

42
15

1
0.

83
83

7
16

17
12

67
13

12
36

12
46

13
46

12
34

7
12

35
14

56
12

45
7

12
3.

45
67

1
2

2
2

11
4

0.
73

47
7

16
7

1
12

7
13

7
12

36
14

67
12

46
12

56
7

12
5

13
56

7
12

45
7

12
34

56
7

12
36

13
9

0.
69

23
7

16
17

12
13

12
36

7
14

67
12

46
12

34
12

57
13

57
12

45
12

34
56

7
12

42
15

7
0.

69
54

7
16

17
12

67
13

12
37

12
46

13
4

12
34

67
12

57
12

45
13

45
7

12
34

56
7

12
47

13
2

0.
59

18
7

16
17

12
13

67
12

36
12

46
7

13
46

12
34

12
35

7
12

45
6

13
45

12
34

56
7

1
3

2
8

11
4

0.
81

67
7

16
17

12
7

13
67

12
3

14
12

46
13

46
12

56
12

35
7

13
45

12
34

56
7

13
29

13
6

0.
78

24
7

16
17

12
67

13
67

12
3

14
67

12
47

13
4

12
57

13
57

14
5

12
34

56
7

13
32

13
7

0.
81

28
f
-
'

t>
.:l

0



T
ab

le
E

.1
2:

T
op

10
N

on
-i

so
m

or
ph

ic
24

-r
un

M
D

S
de

si
gn

s
w

it
h

8
<

k
<

10
k

D
es

ig
n

R
u

n
s

8
1

6
7

8
1

7
1

2
1

3
6

8
1

2
3

6
7

1
2

4
6

7
8

1
3

4
6

1
2

3
4

7
1

2
3

5
8

1
2

4
.5

6
13

45
7

12
34

.5
67

8
8

1
6

7
1

8
1

2
6

8
1

2
3

1
2

4
8

1
3

4
7

8
1

2
3

4
6

7
1

3
5

7
8

1
2

3
.5

6
8

14
56

13
45

12
34

.5
67

8
8

16
7

17
8

12
6

12
36

8
12

47
8

13
46

7
13

4
12

34
8

13
58

12
45

13
45

6
12

34
56

78
8

17
18

12
78

12
36

12
46

8
13

46
7

12
34

78
12

56
7

13
56

8
12

3.
57

8
14

56
78

12
34

56
78

8
17

18
12

36
12

46
13

46
78

12
34

78
12

56
8

13
56

8
12

3·
57

14
56

7
12

45
8

12
34

56
78

8
17

18
12

36
7

12
46

78
13

46
8

12
34

7
12

56
78

13
56

7
12

35
8

14
56

12
45

12
34

56
78

8
16

7
18

12
68

12
38

12
47

8
13

47
12

34
6

13
57

8
12

35
67

14
56

8
13

45
12

34
56

78
8

16
7

18
12

36
7

12
46

78
13

46
8

12
34

12
56

8
13

56
12

35
14

57
12

45
8

12
34

56
78

8
16

17
12

68
13

8
12

36
12

47
8

13
46

7
12

34
12

56
7

13
57

8
12

35
12

34
56

78
8

17
18

12
36

12
46

13
46

78
12

34
78

12
56

13
.5

68
12

35
7

14
56

7
12

45
8

12
34

56
78

9
16

8
17

9
12

36
9

12
47

89
13

48
12

34
67

12
56

78
13

57
12

35
89

12
45

13
4.

57
8

12
34

56
78

9
9

16
89

17
89

12
78

13
79

12
36

78
9

12
46

9
13

46
7

12
34

8
12

.5
67

13
56

8
12

35
9

12
34

.5
67

89
9

17
9

18
12

68
13

69
12

37
14

67
9

12
48

9
13

47
8

15
67

8
12

57
9

13
58

9
12

34
56

78
9

9
16

89
1

12
78

13
79

12
36

12
46

9
13

46
7

12
34

8
12

56
7

13
56

8
12

35
9

12
34

56
78

9
9

17
9

18
12

36
12

46
78

13
46

89
12

34
79

12
56

78
9

13
56

7
12

35
89

14
56

9
12

45
12

34
56

78
9

9
17

9
18

12
36

12
46

89
13

46
7

12
34

78
9

12
56

79
13

56
89

12
35

78
14

56
78

12
45

12
34

56
78

9
9

18
9

12
68

13
69

12
37

9
14

67
12

48
9

13
47

8
15

67
89

12
57

13
58

14
.5

9
12

34
56

78
9

9
17

18
9

12
36

9
12

46
8

13
46

78
12

34
79

12
56

78
9

13
56

12
3.

57
8

14
.5

67
9

12
45

12
34

56
78

9
9

16
78

9
17

12
6

12
37

12
46

13
46

9
13

47
8

13
59

12
35

68
14

58
12

45
79

12
34

56
78

9
9

17
18

9
12

36
9

12
46

8
13

46
7

12
34

78
9

12
56

79
13

56
8

12
35

78
14

56
78

9
12

4·
5

12
34

56
78

9

10
17

9
18

10
12

36
12

46
78

10
1.

34
68

9
12

34
79

10
12

56
78

9
13

56
71

0
12

3.
58

91
0

14
.5

69
10

12
45

12
34

56
78

91
0

10
17

91
0

12
68

13
69

10
12

37
9

14
67

10
12

48
91

0
13

47
8

15
67

89
12

57
10

13
58

10
14

59
12

34
.5

67
89

10
10

17
9

18
10

12
36

12
46

78
13

46
89

10
12

34
79

10
12

56
78

91
0

13
56

71
0

12
35

89
14

56
9

12
4.

51
0

12
34

56
78

91
0

10
17

9
12

68
10

13
69

12
37

91
0

14
67

10
12

48
9

13
47

8
1.

56
78

9
12

57
13

58
10

14
.5

91
0

12
34

56
78

91
0

10
17

9
18

10
12

36
10

12
46

89
13

46
7

12
34

78
91

0
12

56
79

10
13

.5
68

9
12

3.
57

8
14

56
78

10
12

45
12

34
56

78
91

0
10

17
9

18
10

12
36

12
46

89
13

46
71

0
12

34
78

91
0

12
.5

67
91

0
13

.5
68

91
0

12
35

78
14

56
78

10
12

4.
5

12
34

56
78

91
0

10
17

9
18

10
12

36
10

12
46

78
13

46
89

12
34

79
10

12
56

78
91

0
13

56
7

12
35

89
14

56
91

0
12

45
12

34
.5

67
89

10
10

17
91

0
12

68
10

13
69

12
37

91
0

14
67

10
12

48
9

13
47

8
15

67
89

12
57

13
58

10
14

59
10

12
34

.5
67

89
10

10
17

91
0

18
12

36
10

12
46

89
13

46
7

12
34

78
91

0
12

.5
67

9
13

56
89

10
12

35
78

14
.5

67
81

0
12

45
10

12
34

.5
67

89
10

10
17

91
01

81
23

61
01

24
67

81
34

68
91

01
23

47
9

12
56

78
91

01
35

67
12

35
89

14
56

9
12

45
10

12
34

56
78

91
0

(11
.1

D
S

(6
),

..,
M

D
S

(8
))

82
19

1
14

50
8

9
2

0
7

1
3

0
2

8
9

2
6

8
1

6
7

9
9

6
2

7
0

15
63

9
7

1
7

8
13

92
9

7
1

9
4

14
17

10
1

19
4

13
96

10
22

65
15

72
10

32
31

14
35

10
32

66
15

08

42
.5

94
8

12
03

0
44

2
94

7
11

37
0

4.
53

12
98

13
39

6
49

61
01

1
12

45
3

49
99

50
11

1.
58

50
6

89
6

11
51

8
50

8
91

0
11

87
8

50
8

93
0

12
17

6
50

81
37

2
14

11
1

51
5

86
3

10
78

7

13
83

41
76

67
.5

24
14

02
39

08
60

34
1

14
02

41
.5

2
60

26
7

14
04

42
78

72
63

3
14

06
40

36
63

67
9

14
10

40
44

60
56

1
14

17
41

14
64

18
8

14
67

37
66

57
73

4
14

73
38

34
60

23
0

14
80

40
36

60
37

3

~ "tl "tl trJ
E

ff
ic

ie
nc

y
~

0.
73

81
~

0.
43

49
~

0.
19

75
0.

21
28

f-J
0.

61
08

0 "tl
0.

69
96

~
0.

54
44

0
0.

57
81

~
0.

44
68

en
0.

35
40

0 ~
0.

56
25

0
0.

71
05

::0 "tl
0.

21
95

2:i
0.

71
05

C
l

0.
81

82
~

0.
78

26
6

0.
87

61
U

)
0.

81
82

t:l
0.

21
9.

5
trJ

0.
78

26
~ 0

0.
71

43
~

0.
86

21
0.

71
43

0.
78

13
0.

71
43

0.
68

75
0.

78
12

0.
86

21
0.

68
7.

5
0.

78
12

.....
.
~ .....

.



T
ab

le
E

.1
3:

T
op

10
N

on
-i

so
m

or
ph

ic
24

-r
un

~
l
D
S

de
si

gn
s

w
it

h
11

<
k

<
12

k
D

es
ig

n
R

u
n

s
1\

1D
S

(6
)

E
ff

ic
ie

n
cy

17
91

81
01

1
12

36
12

46
78

10
13

46
89

11
12

34
79

10
11

11
12

.5
67

89
11

13
.5

67
10

11
12

3.
58

91
0

14
.5

69
10

12
4.

51
1

12
34

.5
67

89
10

11
33

.5
7

0.
.5

23
8

17
9

18
10

11
12

36
11

12
46

78
10

13
46

89
12

34
79

10
11

11
12

.5
67

89
11

13
.5

67
10

12
3.

58
91

0
14

.5
69

10
11

12
4.

5
12

34
.5

67
89

10
11

33
78

0.
61

11
17

91
01

26
81

1
13

69
10

11
12

37
9

14
67

10
12

48
91

0
11

13
47

81
1

1.
56

78
91

2.
57

10
11

13
.5

81
0

14
.5

91
1

12
34

.5
67

89
10

11
33

90
0.

73
33

17
91

01
1

12
68

11
13

69
10

11
12

37
9

14
67

10
12

48
91

0
e

11
13

47
81

1
1.

56
78

9
12

.5
71

01
1

13
.5

81
0

14
.5

91
1

12
34

.5
67

89
10

11
34

03
0.

84
62

17
9

18
10

11
12

36
10

12
46

89
13

46
71

1
12

34
78

91
01

1
')

11
12

.5
67

91
01

1
13

.5
68

91
1

12
3.

57
8

14
.5

67
81

0
12

4.
51

1
12

34
.5

67
89

10
11

3.
5~
.5

0
..5

23
8

17
91

1
18

10
12

36
10

11
12

46
78

13
46

89
11

12
34

79
10

e

11
12

.5
67

89
10

11
13

.5
67

12
3.

58
9

14
.5

69
10

12
4.

51
1

12
34

.5
67

89
10

11
30

28
0.

73
33

17
9

18
10

11
12

36
11

12
46

78
13

46
89

10
12

34
79

10
11

11
12

.5
67

89
10

11
13

.5
67

10
12

3.
58

9
14

.5
69

11
12

4.
51

0
12

34
.5

67
89

10
11

3.
54

2
0.

61
11

17
89

10
11

12
68

11
13

69
10

11
12

37
10

14
67

91
24

89
10

11
13

47
81

1
1.

56
78

10
12

.5
79

11
13

.5
89

14
.5

10
11

12
34

.5
67

89
10

11
38

2.
5

0.
93

46

1
12

68
11

13
69

10
11

12
37

9
14

67
10

12
48

91
0

11
13

47
81

1
1.

56
78

91
2.

57
10

11
13

.5
81

0
14

.5
91

1
12

34
.5

67
89

10
11

41
7.

5
0.

.5
23

8
17

89
10

11
1

12
36

81
1

12
46

89
10

13
46

71
01

1
12

34
79

11
12

56
79

11
13

.5
69

10
12

3.
57

81
0

14
.5

67
8

12
4.

51
01

1
12

34
.5

67
89

10
11

41
82

0.
61

11

17
91

01
2

12
68

11
12

13
69

10
11

12
37

91
21

46
71

01
21

24
89

10
7.

57
8

0.
66

67
12

11
34

78
11

1.
56

78
91

2.
57

10
11

13
.5

81
01

2
14

.5
91

11
2

12
34

.5
67

89
10

11
12

17
91

81
01

11
21

23
61

2
12

46
78

10
13

46
89

11
12

34
79

10
11

12
0.

14
63

12
12

.5
67

89
11

12
13

.5
67

10
11

12
3.

58
91

01
4.

56
91

01
21

24
.5

11
12

34
.5

67
89

10
11

12
76

24
17

89
10

11
12

12
68

11
12

13
69

10
11

12
37

10
12

14
67

91
21

24
89

10
84

70
0.

93
17

12
13

47
81

1
1.

56
78

10
12

.5
79

11
13

.5
89

12
14

.5
10

11
12

12
34

.5
67

89
10

11
12

17
91

21
81

01
11

23
61

11
21

24
67

81
01

21
34

68
91

23
47

91
01

1
88

93
0.

42
86

12
12

.5
67

89
11

13
.5

67
10

12
3.

58
91

01
2

14
.5

69
10

11
12

12
4.

5
12

34
.5

67
89

10
11

12
')

17
91

01
11

2
12

68
11

12
13

69
10

11
12

37
91

2
14

67
10

12
12

48
91

0
91

4.
5

0.
82

76
L

13
47

81
1

1.
56

78
91

2.
57

10
11

13
.5

81
01

2
14

.5
91

11
2

12
34

.5
67

89
10

11
12

')
17

91
1

18
10

12
12

36
10

11
12

46
78

13
46

89
11

12
12

34
79

10
12

9.
50

1
0.

42
86

L
12

.5
67

89
10

11
12

13
.5

67
12

12
3.

58
91

4.
56

91
0

12
4.

51
11

2
12

34
.5

67
89

10
11

12
')

1
12

68
11

12
13

69
10

11
12

37
91

2
14

67
10

12
12

48
91

0
96

00
0.

14
63

L
13

47
81

1
1.

56
78

91
2.

57
10

11
13

.5
81

01
2

14
.5

91
11

2
12

34
.5

67
89

10
11

12

~ ~ ~ ~ ~ f-3 ~ :< o ~ en o ~ ~ ~ C
l 8 CI:
!. tl ~ Cl ~ .....
.
~ ~



Bibliography

Banerjee, K. S. and Federer, W. T. (1967). On a special subset giving an irregular

fractional replicate of a 2n factorial experiment. Journal of the Royal Statistical

Society, Series B 29, 292~299.

Bayarri, M., Berger, J. 0., Higdon, D., Kennedy, M., Kottas, A., Paulo, R, Sacks,

J., Cafeo, J., Cavendish, J. and Tu, J. (2002). A framework for the validation

of computer models. Proceedings of the Workshop on Foundations fOT V€1 V in the

21st Century, D. Pace and S. Stevenson, eds., Society for Modeling and Simulation

International.

Ben-Ari, E. N. and Steinberg, D. M. (2007). An empirical comparison of kriging with

mars and projection pursuit regression in modeling data from computer experi­

ments. Quality Engineering 19, 327-338.

Bingham, D. and Chipman, H. A. (2007). Incorporating prior information in optimal

design for model selection. Technometrics 49, 155-163.

Bingham, D., Sitter, R R and Tang, B. (2008). Orthogonal and nearly orthogonal

designs for computer experiments. Accepted by Biometrika .

Box, G. E. P. and Hunter, W. G. (1961a). The 2k
-

p fractional factorial designs.

Technometrics 3, 311-352.

123



BIBLIOGRAPHY 124

Box, G. E. P. and Hunter, W. G. (1961b). The 2k
- p fractional factorial designs.

Technometrics 3, 449-458.

Box, G. E. P. and Wilson, K. B. (1951). On the experimental attainment of optimum

conditions. Journal of the Royal Statistical Society, Series B 13, 1-45.

Butler, N. A. (2003a). Some theory for constructing minimum aberration fractional

factorial designs. Biometrika 90, 233-238.

Butler, N. A. (2003b). Minimum aberration construction results for nonregular two­

level fractional factorial designs. Biometrika 90, 891-898.

Cheng, C. S. (1995). Some projection properties of orthogonal arrays. Annals of

Statistics 23, 1223-1233.

Cheng, C. S., Deng, L. Y. and Tang, B. (2002). Generalized minimum aberration and

design efficiency for nonregular fractional factorial designs. Statistica Sinica 12,

991-1000.

Cheng, C. S. and Mukerjee, R. (1998). Regular fractional factorial designs with

minimum estimation capacity. Annals of Statistics 26, 2289-2300.

Cheng, C. S., Steinberg, D. M. and Sun, D. X. (1998). Minimum aberration and

model robustness for two-level fractional factorial designs. Journal of the Royal

Statistical Society: Series B 61, 85-93.

Chipman, H. (1996). Bayesian variable selection with related predictors. Canadian

Journal of Statistics 24, 17-36.

Chipman, H., Hamada, M. and Wu, C. F. J. (1997). A bayesian variable selection

approach for analyzing designed experiments with complex aliasing. Technometrics

39, 372-381.



BIBLIOGRAPHY 125

Cioppa, T. M. and Lucas, T. M. (2007). Efficient nearly orthogonal and space-filling

latin hypercubes. Technometrics 49, 45-55.

Clark, J. B. and Dean, A. M. (2001). Equavalence of fractional factorial designs.

Statistica Sinica 11, 537-547.

Deng, L. Y., Li, Y. and Tang, B. (2000). Catalogue of nonregular designs with small

runs from Hadamard matrices based on generalized minimum aberration criterion.

Communication in Statistics - Theory and Methods 29, 1379-1395.

Deng, L. Y. and Tang, B. (1999). Generalized resolution and minimum aberration cri­

teria for Plackett-Burman and other nonregular factorial designs. Statistica Sinica

9, 1071-1082.

Deng, L. Y. and Tang, B. (2002). Design selection and classification for Hadamard

matrices using generalized minimum aberration criteria. Technometrics 44, 173~

184.

Fang, K., Li, R. and Sudjianto, A. (2006). Design and Modeling for Computer Exper­

iments. CRC Press.

Fang, K. T. (1980). The uniform design: Application of number-theoretic methods in

experimental design. Acta Mathematicae Applicatae Sinica 3, 363-372.

Fries, A. and Hunter, W. G. (1980). Minimum aberration 2k - p designs. Technornetrics

22, 601-608.

Geramita, A. V. and Seberry, J. (1979). Orthogonal designs. Marcel Dekker.

Handcock, M. S. (1991). On cascading latin hypercube designs and additive models

for experiments. Communication Statistics - Theory and Method 20, 417-439.



BIBLIOGRAPHY 126

Iman, R. L. and Conover, W. J. (1982). A distribution-free approach to inducing

rank correlation among input variables. Communication in Statistics, Part B ­

Simulation and Computation 11, 311-334.

Ingram, D. K. and Tang, B. (2005). Construction of minimum G-aberration designs

via efficient computational algorithms. Journal of Quality Technology 37, 101-114.

John, P. W. M. (1962). Three-quarter replicates of 211 designs. Biometrics 18, 172­

184.

John, P. W. M. (1964). Blocking of 3(211
- k) designs. Technometrics 6, 371-376.

Johnson, M. E., Moore, L. M. and Ylvisaker, D. (1990). Minimax and maximin

distance designs. Journal of Statistical Planning and Inferoence 26, 131-148.

Jones, B. A., Li, W., Nachtsheim, C. J. and Ye, K. Q. (2007). Model discrimination

- another perspective on model-robust designs. Journal of Statistical Planning and

Inference 137, 1576-1583.

Li, Y, Deng, L. Y and Tang, B. (2004). Design catalog based on mininllllli G­

aberration. Journal of Statistical Planning and Inference 124, 219-230.

Lin, C. D. and Sitter, R. R. (2008). An isomorphism check for two-level fractional

factorial designs. Journal of Statistical Planning and Inference 134, 1085 110l.

Loeppky, J., Sitter, R. R. and Tang, B. (2007). Nonregular designs with desirable

projection properties. Technometrics 49, 454-467.

Margolin, B. H. (1969). Results on factorial designs of resolution IV for the 211 and

2113m series. Technometrics 11, 431-444.

McKay, M. D., Beckman, R. J. and Conover, W. J. (1979). Comparison of three

methods for selecting values of input variables in the analysis of output from a

computer code. Technometrics 21, 239-245.



BIBLIOGRAPHY 127

Miller, A. and Sitter, R. R. (2004). Choosing columns from the 12-run plackett­

burman design. Statistics and Probability Letters 67, 193-201.

Miller, A. and Sitter, R. R. (2005). Using folded over non-orthogonal designs. Tech­

nometrics 47, 502-513.

Morris, M. D. and Mitchell, T . .1. (1995). Exploratory designs for conputational

experiments. Journal of Statistical Planning and Inference 43, 381-402.

Nordstrom, A. W. and Robinson, J. P. (1967). An optimum nonlinear code. Inform

Control 11, 613-616.

Owen, A. B. (1992). Orthogonal arrays for computer experiments, integration, and

visualization. Statistica Sinica 2, 439-452.

Owen, A. B. (1994). Controlling correlations in latin hypercube samples. Journal of

the American Statistical Association 89, 1517-1522.

Plackett, R. L. and Burman, .1. P. (1946). The design of optimum multifactorial

experiments. Biometrika 33, 305-325.

Sacks, .1., Welch, W . .1., Mitchell, T. J. and Wynn, H. P. (1989). Design and analysis
. .

of computer experiments. Statistical Sciences.

Santner, T . .1., Williams, B. .1. and Notz, W. 1. (2003). The Design and Anal:tJsis of

Computer Experiments. Spring-Verlag.

Simpson, T. W., Peplinski, .1. D., Koch, P. N. and Allen, .1. K. (2001). Meta-models

for computer-based engineering design: Survey and recommendations. Engineering

With Computers .

Steinberg, D. M. and Lin, D. K. J. (2006). A construction method for orthogonal

latin hypercube designs. Biometrika 93, 279-288.



BIBLIOGRAPHY 128

Sun, D. X. (1993). Estimation Capacity and Related Topics in Experimental Design.

Ph.D. thesis, University of Waterloo.

Sun, D. X., Li, W. and Ye, Q. (2002). An algorithm for sequentially constructing non­

isomorphic orthogonal designs and its applications. Technical Report, SUNYSB­

AMS.

Tang, B. (1993). Orthogonal array-based latin hypercubes. Journal of the American

Statistical Association 88, 1392-1397.

Tang, B. (1998). Selecting latin hypercubes using correlation criteria. Statistica Sinica

8,965-977.

Tang, B. (2001). Theory of J-characteristics for fractional factorial designs and pro­

jection justification of minimum G 2 Aberration. Biometrika 88, 401-407.

Tang, B. and Deng, L. Y. (1999). Minimum G 2-Aberration for nonregular fractional

factorial designs. Annals of Statistics 27, 1914-1926.

Tang, B. and Deng, L. Y. (2003). Construction of generalized minimum aberration

designs of 3, 4, and 5 factors. Journal of Statistical Planning and Inference 113,

335-340.

Vartak, M. N. (1955). On an application of kronecker product of matrices to statistical

designs. The Annals of Mathematical Statistics 36, 420-438.

Wang, Y. and Fang, K. T. (1981). A note on uniform distribution and experimetllal

design. Kexue TongBao 26, 485-489.

Webb, S. (1968). Non-orthogonal designs of even resolution. Technometric 10, 291­

299.

Wu, C. F. J. and Chen, Y. (1992). A graph-aided method for planning two-level

experiments when certain interactions are important. Technometric 34, 162-174.



BIBLIOGRAPHY 129

Wu, C. F. J. and Hamada, M. (2000). Experiments Planning, Analysis, and Parameter

Designs Optimization. Wiley-Interscience Publication.

Xu, H. (2002). An algorithm for constructing orthogonal and nearly-orthogonal arrays

with mixed levels and small runs. Technometric 44, 1430~1439.

Xu, H. (2003). Minimum moment aberration for nonregular designs and supersatu­

rated designs. Statistica Sinica 13, 691-708.

Xu, H. (2005). Some nonregular designs from the Nordstrom and Robinson code and

their statistical properties. Biometrika 92, 385-397.

Xu, H. and Wong, A. (2007). Two-level nonregular designs from quaternary linear

codes. Statistica Sinica 17, 1191-1213.

Ye, Q. (1998). Orthogonal column latin hypercubes and their application in computer

experiments. Journal of American Statistics Association 93, 1430-1439.


	ETD3625-001
	ETD3625-002
	ETD3625-003
	ETD3625-004
	ETD3625-005
	ETD3625-006
	ETD3625-007
	ETD3625-008
	ETD3625-009
	ETD3625-010
	ETD3625-011
	ETD3625-012
	ETD3625-013
	ETD3625-014
	ETD3625-015
	ETD3625-016
	ETD3625-017
	ETD3625-018
	ETD3625-019
	ETD3625-020
	ETD3625-021
	ETD3625-022
	ETD3625-023
	ETD3625-024
	ETD3625-025
	ETD3625-026
	ETD3625-027
	ETD3625-028
	ETD3625-029
	ETD3625-030
	ETD3625-031
	ETD3625-032
	ETD3625-033
	ETD3625-034
	ETD3625-035
	ETD3625-036
	ETD3625-037
	ETD3625-038
	ETD3625-039
	ETD3625-040
	ETD3625-041
	ETD3625-042
	ETD3625-043
	ETD3625-044
	ETD3625-045
	ETD3625-046
	ETD3625-047
	ETD3625-048
	ETD3625-049
	ETD3625-050
	ETD3625-051
	ETD3625-052
	ETD3625-053
	ETD3625-054
	ETD3625-055
	ETD3625-056
	ETD3625-057
	ETD3625-058
	ETD3625-059
	ETD3625-060
	ETD3625-061
	ETD3625-062
	ETD3625-063
	ETD3625-064
	ETD3625-065
	ETD3625-066
	ETD3625-067
	ETD3625-068
	ETD3625-069
	ETD3625-070
	ETD3625-071
	ETD3625-072
	ETD3625-073
	ETD3625-074
	ETD3625-075
	ETD3625-076
	ETD3625-077
	ETD3625-078
	ETD3625-079
	ETD3625-080
	ETD3625-081
	ETD3625-082
	ETD3625-083
	ETD3625-084
	ETD3625-085
	ETD3625-086
	ETD3625-087
	ETD3625-088
	ETD3625-089
	ETD3625-090
	ETD3625-091
	ETD3625-092
	ETD3625-093
	ETD3625-094
	ETD3625-095
	ETD3625-096
	ETD3625-097
	ETD3625-098
	ETD3625-099
	ETD3625-100
	ETD3625-101
	ETD3625-102
	ETD3625-103
	ETD3625-104
	ETD3625-105
	ETD3625-106
	ETD3625-107
	ETD3625-108
	ETD3625-109
	ETD3625-110
	ETD3625-111
	ETD3625-112
	ETD3625-113
	ETD3625-114
	ETD3625-115
	ETD3625-116
	ETD3625-117
	ETD3625-118
	ETD3625-119
	ETD3625-120
	ETD3625-121
	ETD3625-122
	ETD3625-123
	ETD3625-124
	ETD3625-125
	ETD3625-126
	ETD3625-127
	ETD3625-128
	ETD3625-129
	ETD3625-130
	ETD3625-131
	ETD3625-132
	ETD3625-133
	ETD3625-134
	ETD3625-135
	ETD3625-136
	ETD3625-137
	ETD3625-138
	ETD3625-139
	ETD3625-140
	ETD3625-141
	ETD3625-142

