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presented. The second problem is to provide a catalogue of “good” two-level folded-
over non-orthogonal designs. Such designs are useful in screening experiments. To
assess the goodness of designs, we introduce the MDS-resolution and MDS-aberration,
based on the notion of minimal dependent sets (MDS). With both criteria, it is possible
to systematically compare the statistical properties of designs. Obtaining a catalogue,
however, remains challenging because it involves determining whether or not two
designs are isomorphic. A fast isomorphism check is developed for this purpose. A
catalogue of minimum MDS-aberration designs is obtained for many useful run sizes.

An algorithm for obtaining “good” larger designs is discussed.

v
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Chapter 1

Introduction

1.1 Computer experiments

Deterministic computer experiments are becoming more commonly used in science
and engineering. This is primarily because the underlying physical processes are too
time-consuming, expensive, or even impossible to observe. Rapid growth in computer
power has made it possible to perform deterministic experiments on simulators. The
first computer experiment appeared to be conducted by Enrico Fermi and colleagues
in Los Alamos in 1953. Since then, scientists in diverse areas such as engineering,
cosmélogy, parficle physics and aircraft design have turned to computer experiments
as a powerful tool to understand their respective processes. For instance, in the design
of a vehicle, computer experiments are used to study the effect of a collision of the
vehicle with a barrier before manufacturing the prototype of the vehicle. See Bayarri
et al. (2002) for details.

Similar to physical experiments, computer experiments can be planned and im-

plemented in the following steps:

1. State the objectives. Computer experiments are performed with a variety of

goals in mind. For example, objectives include factor screening, building an



CHAPTER 1. INTRODUCTION 2

emulator of the simulator, optimization, and model calibration.
2. Choose a response. It can be univariate, multivariate, temporal or functional.

3. Choose input variables. They can be qualitative or quantitative or both. They
can also be categorized into control variables, environmental variables, and

model variables.
4. Represent and implement the underlying physical process using a computer code.
5. Choose an experimental plan.
6. Perform the experiments on the simulators.
7. Analyze the data. This includes identifying the active factors and model fitting.

8. Interpret the model and draw conclusions.

A detailed discussion of each step can be found in Santner, Williams and Notz
(2003) and Fang, Li and Sudjianto (2006). This thesis will investigate the indispens-
able step 5 - choosing an experimental plan. It is a crucial step because often the
computer code is expensive in that it may take hours or days to produce one single
output. We will briefly review several types of designs for computer experiments in
Section 1.1.2. To help understand the selection of designs, we give an overview of
modeling techniques in Section 1.1.1. Before doing so, we introduce some necessary
notation and outline the framework.

In many scientific investigations, complicated physical phenomena are represented

by a mathematical model
Y = f(X), X e€][0,1]", (1.1)

where X consists of m input variables, f is the computer code, and Y represents
the response. Model (1.1) is usually a solution to a set of equations, which can be
linear, nonlinear, ordinary or partial differential. Because the solution to the equations

is often impossible to obtain analytically, scientists study the complex relationship
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between the inputs and outputs by varying the inputs to the computer code and
observing how their process outputs are affected. Such studies are called computer
experiments. A key feature of computer experiments is that the computer code is
deterministic. That is, the response is unchanged if an input setting is replicated.
The lack of random errors presents challenges, which necessitate new approaches to
the design and analysis of experiments (see, e.g., Sacks, Welch, Mitchell and Wynn,

1989).

1.1.1 Model

One important objective of computer experiments is to find a model that describes
the empirical relationship between the inputs and outputs. That is, we wish to build
a statistical model to approximate the true model (1.1). We refer to the approximate
model as an emulator. Obtaining an accurate, informative yet simple emulator plays
a crucial role in the analysis of computer experiments in that the emulator will replace
the true model to make predictions at unsampled points and perform other analyses
such as uncertainty analysis and sensitivity analysis.

The true model (1.1) can be viewed as a nonparametric model without a random
error component. Therefore, building an emulator can be treated as a nonparametric
regression problem with no random error. To deal with the absence of random errors,
researchers have developed diverse models for users. Fang, Li and Sudjianto (2006)
provided a comprehensive review on modeling techniques to build an emulator. The
commonly used modeling techniques include polynomial regression, spline regression,
Gaussian process stochastic model, and local polynomial regression. Comparisons of
different modeling techniques have been made in the literature (see, e.g., Simpson |,

Peplinski, Koch and Allen, 2001; Ben-Ari and Steinberg, 2007).
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1.1.2 Design

In the previous subsection, we have mentioned that there are a variety of modeling
techniques for building an emulator. There is no correct statistical model for computer
experiments. In addition, little knowledge is available about which model would fit
the data well before they are collected. Thus, designs for computer experiments
should facilitate diverse modeling methods. Space-filling designs are a class of designs
that serve this purpose. They meet the basic requirement of designs for computer
experiments - designs should not have repeated runs due to the deterministic nature
of computer models. Furthermore, when making prediction at unsampled points is
the primary goal, space-filling designs are more likely to provide better prediction
accuracy. A design that is not space-filling leaves most of the design space unexplored
and clearly yields a poor predictor.

Most commonly used space-filling designs in computer experiments are Latin hy-
percube designs, maximin distance designs and uniform designs. Latin hypercube
designs have the one-dimensional space-filling property in that when projected onto
each dimension, each portion of the design range has a design point. They were pro-
posed by McKay, Beckman and Conover (1979}, which is commonly recognized as the
first paper on the designs for deterministic computer experiments. This class of de-
signs is easy to generate. Maximin distance designs were first introduced by Johnson,
Moore and Ylvisaker (1990) in the context of computer experiments. The basic idea
behind this class of designs is quantifying how spread out the design points using dis-
tance criteria. A maximin distance design maximizes the smallest distance between
any two design points so that no two design points are too close. Johnson, Moore and
Ylvisaker (1990) showed that maximin distance designs are asymptotically D-optimal
under some regularity conditions. Uniform designs were proposed by Fang (1980) and

Wang and Fang (1981). They were chosen based on the discrepancy between the
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empirical cumulative distribution function of a design and that of the uniform dis-
tribution in the design region. The discrepancy is a measure of uniformity; lower
discrepancy implies better uniformity. A more detailed account of the above three
types of designs can be found in Santner, Williams and Notz (2003), Fang, Li and
Sudjianto (2006) and the references therein. An alternative approach to space-filling
designs is to use some model-dependent criteria such as the integrated mean square
error and maximum mean square error to select designs for computer experiments
(Santner, Williams and Notz, 2003).

The curse of dimensionality comes into serious play in the construction of space-
filling designs for computer experiments. When the dimensionality of the input space
is high, providing a good coverage of the entire input space as suggested by the original
idea of space-filling designs with limited design points is a hopeless undertaking. A
realistic and fruitful approach is to construct designs that are space-filling in the low
dimensional projections. Randomized orthogonal arrays (Owen, 1992) and orthogo-
nal array-based Latin hypercubes (Tang, 1993) enjoy this property of low dimensional
space-filling. Research on the use of orthogonal designs for computer experiments has
been gaining momentum recently. As argued in Bingham, Sitter and Tang (2008), or-
thogonality is directly useful when polynomial models are considered, and it can also
be viewed as stepping stones to designs that are space-filling in low dimensional pro-
jections. Chapters 2 and 3 of the thesis are devoted to the construction of orthogonal
and nearly orthogonal Latin hypercubes.

Another consequence of the high dimensionality is that design points are very far
apart in a space-filling design. As the spatial correlation (see, e.g., Santner, Williams
and Notz, 2003) decreases with the distance dramatically relative to the spacing, there
are no points close enough to give reliable estimates of the correlation parameters. To
enhance the estimation of the correlation parameters, Handcock (1991) recommended
what he terms a cascading Latin hypercube in which small Latin hypercube designs

with closely clustered points are dispersed through the space as clusters while the
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cluster centers also form a Latin hypercube. By doing so, the space-filling property
is maintained, and some points that are close together are also ensured. Chapters 2
and 3 of this thesis will provide a method for constructing a rich class of designs with

a cascading structure.

1.2 Factorial designs

Factorial designs play a fundamental role in the theory.and practice of physical ex-
periments. They have been used in a wide range of fields including engineering, social
science, agriculture and biology. They allow experimenters to study simultaneously
the effects of multiple input variables on the response. In physical experiments, the
input variables are called factors. Each factor must have at least two settings so that
the effect of change in factor settings on the response can be studied. These settings
are called levels of the factor. A combination of the level settings of factors is referred
to as a treatment or a run. Physical experiments differ from computer experiments
introduced in the previous section in that the former has random errors in the re-
sponse. The experimental designs that deal with the arrangement of treatments are
called factorial designs. In this thesis, we consider factorial designs with factors at
two levels represented by +1. Specifically, two-level fractional factorial (FF') designs
and two-level folded over non-orthogonal designs are the subjects of Chapters 4 and

5, respectively.

1.2.1 Fractional factorial designs

A full factorial design consists of all possible treatments. That is, if a factorial exper-
iment involves m factors at two levels, a full factorial design requires 2™ runs. This
run size grows rapidly as the number m of factors increases. For example, this run

size grows from 32 to 512 as the number of factors increases from 5 to 9. Therefore,
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running a full factorial design becomes impractical even for an moderately large value
of m. Instead, fractional factorial (FF) designs are commonly used in practice as they
only use a fraction or a subset of the full factorial design. FF designs can be classified
into regular designs and nonregular designs. Regular designs are specified through
defining relations. In a regular design, any two factorial effects are either orthogonal
or fully aliased. Designs that do not have this property are called nonregular designs.

Many important problems regarding FF designs have been studied by researchers
and practitioners. We here discuss three major ones. The first and probably most
important problem is the choice of FF designs. The first criterion for selecting optimal
regular fractions is the maximum resolution proposed by Box and Hunter (1961a, b).
Because many designs with the same resolution exist, Fries and Hunter (1980) pro-
posed a more discriminating criterion, known as the minimum aberration. However,
these criteria are only applicable to regular designs. Deng and Tang (1999) extended
the notions of resolution and minimum aberration to nonregular designs and proposed
generalized resolution and minimum aberration. Subsequently, criteria such as min-
imum Gs-aberration (Tang and Deng, 1999) and minimum moment aberration (Xu.
2003) were introduced. These criteria reduce to their counterparts for regular designs.
Meanwhile, other criteria for selecting FF designs have arisen from different statisti-
cal points of view. These include the criteria of maximum number of clear two-factor
interactions (Wu and Chen, 1992), estimation capacity (Sun, 1993; Cheng and Muk-
erjee, 1998; Cheng, Steinberg and Sun, 1999), projection estimation capacity (Cheng,.
1995; Loeppky, Sitter and Tang, 2007), and average D efficiency (Cheng, Deng and
Tang, 2002). The second problem is that, for a given number of factors, we want to
find the minimum run size for a design with certain desirable properties to exist. It
is equivalent to seeking the maximum number of factors for a given run size and op-
timality criteria. The problem is practically important for obvious economic reasons.
Third, a catalogue of non-isomorphic designs can be very helpful for identifying the

design patterns or searching for optimal designs. Two factorial designs are said to be
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isomorphic if one can be obtained from the other by relabeling the factors having the
same number of levels, reordering the treatment combinations and/or relabeling the
levels of one or more factors. Otherwise, the two designs are non-isomorphic. When
such a catalogue is computationally infeasible to obtain, a catalogue of good designs
based on major criteria would be still beneficial for searching designs based on other
criteria. In Chapter 4, we aim to provide a collection of good two-level FF designs

based on the criteria of minimum G and Ga-aberration.

1.2.2 Folded over non-orthogonal designs

Fold-over (Box and Wilson, 1951) is a clever technique in factorial experiments because
it is able to de-alias main effects and two-factor interactions. In other words, in
the folded over design, main effects and all two-factor interactions can be estimated
independently. For any run in an initial factorial design, its fold-over is the run with
the levels of all the factors sign-switched. Thus the fold-over of (1, -1, -1) is (-1, 1, 1),
where 1 and -1 designate the high and low levels of a factor. The fold-over of a design
is simply the union of the initial design and the fold-overs of the runs in the design.
The fold-over technique has been used primarily to create orthogonal resolution
IV designs from orthogonal resolution III designs with notable exceptions of the early
literature by John (1962, 1964), Banerjee and Federer (1967), Webb (1968) and Mar-
golin (1969). Folding over a non-orthogonal resolution III design produces a resolu-
tion IV design, in which the main effects and two-factor interactions are orthogonal,
implying that all the main effects are estimable, ignoring three and more factor inter-
actions. Folded over non-orthogonal designs are recommended because such designs
have fewer runs than the competing orthogonal resolution IV designs and only a small
efficiency loss in estimating main effects. Miller and Sitter (2005) explored the use of
such designs for screening experiments. In screening experiments, the primary goal

is to identify the important main effects and the secondary goal is to identify the
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important two-factor interactions. Folded-over non-orthogonal designs sacrifice some
orthogonality of main effects to achieve the complete separation of main effects from
two-factor interactions. As argued in Miller and Sitter (2005), this may be a prudent
trade-off; that is, these non-orthogonal resolution IV designs can outperform the more
commonly recommended orthogonal resolution IIT designs. Chapter 5 of this thesis is
devoted to the selection of folded over non-orthogonal designs and aims to provide a

catalogue of good designs based on the proposed design criteria.

1.3 Outline

An outline of the remainder of this thesis is as follows. Chapters 2 and 3 will be de-
voted to developing new methods for constructing designs for computer experiments.
In Chapter 2, we will present methods for constructing many orthogonal Latin hy-
percubes that are not available in the literature. Construction of nearly-orthogonal
and cascading Latin hypercubes are also considered here. In addition, we prove a
theorem regarding the existence of orthogonal Latin hypercubes and propose an al-
gorithm for finding orthogonal and nearly orthogonal Latin hypercubes of small runs.
In Chapter 3, two generalizations of the basic method proposed in Chapter 2 will be
introduced and studied. In Chapters 4 and 5, we turn to two-level FF designs. Specif-
ically, Chapter 4 is concerned with two-level FF designs and provides a collection of
good designs based on two criteria of minimum G and G5 aberration. In Chapter 5,
we introduce MDS-resolution and MDS-aberration as criteria for comparing folded
over non-orthogonal designs. These criteria and a proposed fast isomorphism check
together are used to obtain a catalogue of top two-level folded over non-orthogonal
designs. Finally, we will conclude the thesis with a discussion of future research

directions in Chapter 6.



Chapter 2

Orthogonal and Cascading Latin
Hypercubes

Since the introduction of Latin hypercube sampling by McKay, Beckman and Conover

(1979), Latin hypercube designs have become increasingly popular in the area of

computer experiments. Except for achieving uniformity in one-dimensions, a Latin

hypercube design is merely a combinatorial structure and not directly associated with

any criteria such as space-filling or orthogonality. One natural way to find “good”

designs within the whole class of Latin hypercube designs is to restrict the attention

to a certain class of Latin hypercubes. Such classes include orthogonal array - based
Latin hypercubes, orthogonal Latin hypercubes and cascading Latin hypercubes. Here

we consider the latter two.

The rest of the chapter is organized as follows. In Section 2.1, we will provide a
brief review of Latin hypercubes and each of the two classes of Latin hypercubes. In
Section 2.2, we will present methods for constructing many orthogonal Latin hyper-
cubes that are not available in the literature, and the construction of nearly orthogonal
Latin hypercubes and cascading Latin hypercubes are also considered here. In Sec-

tion 2.3, a theorem regarding the existence of orthogonal Latin hypercubes will be

10
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proved. In Section 2.4, an adapted algorithm is used to find orthogonal and nearly
orthogonal Latin hypercubes of small runs. Section 2.5 provides further methods for
constructing orthogonal Latin hypercubes. Section 2.6 concludes the chapter with

results and discussions.

2.1 Review

2.1.1 Latin hypercubes

A Latin hypercube design (LHD) is an n x m matrix, each column of which is a
permutation of {1,2,...,n}. Each of the 1 x m row vectors is taken as a design point
in an m-dimensional design space. The main feature of an LHD is that it achieves

uniformity in each of the m univariate margins. An example of a 6 x 2 LHD has

1)
3
2

6

design matrix

> e N =

5 1
\ 6 5/

which can be represented graphically by Figure 2.1.

For ease of presentation, hereafter we use a slightly different definition for an
LHD. The n entries in each column are taken to be centered at zero and equally-
spaced. Thus each column is a permutation of {—(n—1)/2,...,0,....(n—=1)/2} and

{—=(n—=1)/2,...,-1/2,1/2,...,(n —1)/2} when n is odd and even, respectively.

2.1.2 Orthogonal and nearly orthogonal Latin hypercubes

Let u = [ug,...,uy] and v = [vy,...,v,] be two vectors. The correlation between

u and v is then defined as Y, (u; — @)(v; — 0)/[3;(w — @)2 Y, (vi — ©)%]V2, where
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Figure 2.1: A 6 x 2 Latin hypercube design

a=>_,u/nand v=>_,v;/n.

Definition 2.1. A Latin hypercube is said to be orthogonal if all pairs of its columns

have zero correlation.
It is easy to verify that the design in Example 2.1 is an orthogonal LHD.
FExample 2.1. An orthogonal LHD with n = 9 and m = 5 is given by
[(—4 -1 -4 —2 -3
-3 -3 -1 3 3
-2 2 3 -3 1
-1 4 2 0 -1

0 -2 4 4 -2
1 1 0 -1 0
2 3 -3 2 4
3 4 1 -4 2

\ 4 0 -2 1 -4

The construction of orthogonal LHDs have been considered by Ye (1998), Steinberg
and Lin (2006) and Cioppa and Lucas (2007). However, the problem is far from
completely solved. In the orthogonal LHDs constructed by Ye (1998), the run size n

must have form n = 2% or 2°+1 and the corresponding number of factors is m = 2k —2
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where k£ > 2. This means that a very large number of runs is needed to entertain a
moderately large number of factors. The orthogonal LHDs constructed by Steinberg
and Lin (2006) have a more severe restriction on the run size n, which must be of
form n = 22°. This implies that they in fact only provide two practical run sizes, i.e.
n = 16 and n = 256. Recently, Cioppa and Lucas (2007) extended Ye’s approach and
thus the constraint on the run size remains. Consequently, there is only a handful
of orthogonal LHDs available in the literature. This motivates our work in Section
2.2, where we provide a general method for constructing .orthogonal LHDs with much
more flexible run sizes.

By slightly sacrificing the orthogonality requirement, we can obtain nearly orthog-
onal LHDs with even more factors. The definition of what is meant by “nearly” is not
unique. In Section 2.2, we find nearly orthogonal LHDs by minimizing the maximum
correlation and the average correlation.

The rationale for using orthogonal and nearly orthogonal LHDs has been discussed
by various researchers (See, e.g., Iman and Conover 1982; Owen , 1994; Tang, 1998).
In particular, the following arguments are related to the use in computer experiments.
First, when a lower order polynomial model is employed to fit the data from computer
experiments, orthogonal LHDs ensure uncorrelated estimates of linear effects of each
input variable; see Ye (1998). Second, Bingham, Sitter and Tang (2008) argued that
orthogonal or nearly orthogonal designs can be viewed as useful stepping stones to

space-filling designs.

2.1.3 Cascading Latin hypercubes

Cascading LHDs were introduced by Handcock (1991). A formal definition is given

as follows.

Definition 2.2. A cascading Latin hypercube of n = [[h_, nx points with levels
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(n1,...,ny) is an ny,-point Latin hypercube about each point in the (ni,...,n,_1) cas-
cading Latin hypercube.

Clearly, the usual LHD is the special case with a single level (p = 1). Handcock’s
(1991) experience is that two or three levels (p = 2 or 3) are adequate. We illustrate

the definition with Example 2.2 below.

Figure 2.2: A cascading Latin hypercube of 27 points with levels (9, 3)
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Example 2.2. Consider Figure 2.2. The 27 circles together form an LHD. In addition.
the 9 diamonds constitute an LHD. Moreover, each of these diamonds is surrounded
by a 3-point LHD. Thus, the 27 circles represent a cascading LHD of 27 points with
levels (9,3). O

By Definition 2.2, it is easy to verify a cascading LHD by looking at the geometric
distribution of the design points. Next, we give a new definition of a cascading LHD
based on its design matrix L. This definition is employed to show a design constructed
by the proposed method is a cascading LHD in Section 2.2. Let V* = (v};) be [V]

where v; is the nearest integer greater than or equal to v;;.
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Definition 2.3. A Latin hypercube L 1s termed a cascading Latin hypercube of n
points with levels (ny, ..., np) if the matriz U = [L/[[;_,, 7] has [[i=, m distinct

rows, each of which has Hizqﬁ ny replicates, for allq=1,...,p— 1.

Cascading LHDs enjoy global space-filling properties as well as having local points.
Here global space-filling properties represent the spread of the clustered LHDs. Local
points are expected to provide reliable estimates of the scale and smoothness param-
eters in an additive stochastic model, .as reported by Handcock (1991).

An obvious way to obtain cascading LHDs is replacement. For example, suppose
that we wish to construct a cascading LHD of n points with levels (n;,ny) for m
variables. We first select an n; x m LHD, Dy, as a base design and then replace each
design point in Dy by an ny x m LHD. Note that the dimensionality of the resulting
cascading LHD is the same as that of the base design. In contrast, the cascading LHDs
constructed in Section 2.2 will have the dimensionality up to n, times dimensionality

of the base design Dj.

2.2 A flexible construction method

In this section, we will first introduce a construction method. We then show how this
method can be used to construct LHDs, orthogonal LHDs, nearly orthogonal LHDs
and cascading LHDs.

Consider designs with n runs and m factors, each factor at s levels, where 2 <
s < n. We denote such designs as D(n, s™), represented by an n x m matrix, D =
(d;j), with entries from a set of s levels. Without loss of generality, the s levels
are taken to be centered at zero and equally-spaced. Thus the levels are {—(s —
1)/2,...,0,...,(s = 1)/2} and {—(s —1)/2,...,-1/2,1/2,...,(s — 1)/2} when s is
odd and even, respectively. In particular, LHDs are such designs with s = n.

Let A = (a;;) be an n; x m; matrix with entries a;; = £1, B = (b;) be a

D(ny, s5?), C = (¢;5) be a D(ny, s7"), and D = (d;;) be an ny X mo matrix with
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entries d;; = 1. Let v be any real number. Consider the construction:
L=A®B+~C® D, (2.1)

where Kronecker product A ® B is the nyny X m;msy block matrix

(luB a12B ce almlB
A9 B— QQ?B CLQ?B .. (lgmlB
anllB an12B ce anlmlB

with a;; B itself being an ny X mo matrix. Designs B and C are called base designs.
While A and D are technically two-level designs, they play a different role from designs
B and C and are used to provide replicates of designs B and C respectively. The
resulting design L in (2.1) has n = njny runs and m = mym, factors.

The above construction has some interesting features. To explain, consider a

simple case in which A = (1,1)7 and C = (1/2,-1/2)". Design L in (2.1) has a

column
b+ 1d
>, (2.2)
b—1d
where b is a column of B and d is a column of D. Further let b = (by,...,b,,)T and

d=(d,...,dn,)T. The entries in the column (2.2) are b; + vd;/2 and b; — vd; /2 with
i=1,...,n9. Because d; = %1, the column (2.2) has entries b; + v/2 and b; — /2.
Consequently, the column (2.2) can be viewed as simultaneously shifting each level
in b to the left and the right by the same length ~/2. If we view b as a block, this is
equivalent to shifting two identical blocks b, one to the left and the other to the right.
We will show that with the appropriate choices of A, B, C, D and ~ (in Proposition

2.1 in the next section), the levels in each column of L in (2.1) are equally-spaced and
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unreplicated, resulting in a Latin hypercube. Now consider all m columns of L under
this simple case. Each one-dimensional block b becomes an m-dimensional stratum
B. Suppose D is a matrix of plus ones, then the design points in B + yD/2 can be
obtained by shifting the entire stratum B to the right by the length ~v/2. Similarly,
the design points in B — D/2 can be obtained by shifting the entire stratum B to
the left by the length v/2. In this case, closely clustered points in each stratum are
expected in design L in (2.1). This feature will be utilized to construct cascading .
Latin hypercubes in the next section.

The orthogonality or near orthogonality of L in (2.1) is determined by the orthog-
onality or near orthogonality of A, B, C and D, the correlations between the columns
in A and those in ', and the correlations between the columns in B and those in D.
As a result, the method allows orthogonal and nearly orthogonal Latin hypercubes to
be easily constructed.

Vartak (1955) appears to be the first to use Kronecker product to construct sta-
tistical experimental designs. In a recent work, Bingham, Sitter and Tang (2008)
introduced a method for constructing a rich class of designs that are suitable for use
in computer experiments. Their method is a special case of our proposed method in

(2.1) with v = 0. Unlike our method, theirs does not produce LHDs.

2.2.1 Constructing Latin hypercubes

The following proposition tells us how to obtain a large LHD based on small LHDs
using the method (2.1).

Proposition 2.1. A design L, formed as in (2.1), is a Latin hypercube if
(i) s1=mn1, s2="ny;

(ii) Y = Na;
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(iii) there do not exist ¢ and j, where i = 1,...,my and 7 = 1,...,my, such that
ap; = —ay; and dg; = —dg; simultaneously hold, where p and p’ are such that
Cpi = —Cp; and q and ¢ are such that by; = —by;.

Proof. Let n = nyny. Conditions (i), (ii) and (iii) ensure that each column of

Lis {—(n—1)/2,....0,...,(n — 1)/2} if both n; and n, are odd and {—(n —

1)/2,...,-1/2,1/2,...,(n — 1)/2} otherwise. O

Proposition 2.1 gives the conditions under which designs constructed in (2.1) result
in Latin hypercubes. Condition (i) implies that both B and C are required to be Latin
hypercubes. Recall that in the previous section, we view the column produced by the
term A ® B as n; blocks. Here a Latin hypercube B is used to ensure that the
levels in each block are equally-spaced and unreplicated. Condition (iii) is needed to
prevent replicated levels from occurring in each column of L. Furthermore, a Latin
hypercube C in combination with condition (ii) guarantees that among the n; blocks
after shifting, any two consecutive blocks have spacing equal to 1.

We now discuss condition (iii). First, it implies that if there exists (p,p’,4) such
that ¢,; = —cp; and ap; = —ay;, then D must satisfy dg; = dy; where ¢ and ¢’ are
row indices such that b,; = —by; for all j = 1,...,mq. Second, the following are
three cases in which condition (iii) is met: (a) either A or D or both are identity
matrices; (b) if C is a symmetric LHD in the sense that C' = (Cg, —CT)7, then using.
A = (AF, AT)T will satisfy condition (iii); (¢) B is a symmetric LHD and D has form
D= (D}, DIT.

Ezample 2.3. Suppose one wishes to construct 32 x 32 Latin hypercubes. There are
various choices of ny, ng, m; and mo such that n = nyny = 32 and m = mymq = 32.
One such choice is n; = my = 2, ny = my = 16. To meet condition (iii) in Proposition
2.1, we can choose either A or D to be a matrix of plus ones. Suppose we let A be a

matrix of plus ones. By Proposition 2.1, we now let v = ny = 16, choose any 16 x 16



CHAPTER 2. ORTHOGONAL AND CASCADING LATIN HYPERCUBES 19

matrix D = (d;;) with d;; = £1 and any Latin hypercubes B and C. For example,
we can let C = {(1/2,-1/2)T,(—=1/2,1/2)T}" and

-15 5 9 -3 7 11 11 7 -9 3 15 5 11 -11 7T -7
-13 1 1 13 -7 -1 1 -7 -1 =13 -13 1 13 5 5 -3
-11 7T -7 11 3 -1 -1 -13 9 -3 5 -5 -5 11 -7 7

-9 3 -15 5 ~13 1 1 13 1 13 3 -1 -13 -5 -5 3

-7 11 1 -7 1 =7 7 11 5 %5 -3 -9 -9 3 9 11
-5 —15 3 9 -11 7T =7 -11 3 -1 -1 -13 -1 9 11 15

-3 -9 -5 -15 1 13 3 -1 -5 -15 3 9 1 7 —11 —-11
B_1 -1 —-13 -13 1 -1 —-13 -13 1 -13 1 1 13 9 -9 -9 15
“3 1 13 13 -1 -9 3 -15 5 11 -7 7 11 -7 -T —-15 -9
3 9 5 15 9 -3 15 =5 3 9 5 15 -15 -13 -13 -—-13
5 15 -3 -9 -3 -9 -5 -15 —-11 7 -7 —-11 15 -3 15 9
7 11 -11 7 3 9 5 15 -3 -9 -5 -15 7 15 13 13
9 -3 15 -5 =5 -15 3 9 -7 -11 11 -7 5 13 -3 5

m -7 7 11 5 15 -3 -9 -15 5 9 -3 3 -1 -1
3 -1 -1 —-13 -—-15 5 9 -3 7 11 -11 7 —11 =15 3 =5
5 -5 =9 3 5 -5 -9 3 15 -5 -9 3 -3 1 1 -1

The design formed as in (2.1) is then a 32 x 32 Latin hypercube.

Note that an LHD given by B ® A + vD ® C is equivalent to that in (2.1) up
to row permutations and column permutations, and we therefore only consider the
construction (2.1) in the later development. It is worthwhile to mention that in
the method (2.1), we can obtain a rich class of new LHDs by applying different

row permutations, column permutations, and/or sign-switching columns of A, B, C

and D.

2.2.2 Constructing orthogonal Latin hypercubes

In this section, the proposed method is adapted to construct orthogonal LHDs of size
n = 8k, where k is any positive integer, which provide much more flexible run sizes
than those given by the methods of Ye (1998), Steinberg and Lin (2006) and Cioppa
and Lucas (2007).

Consider a design or matrix D = (d, ..., dy), where d; is the jth column of D. A
design or matrix D is called column-orthogonal if any two columns of D are orthogo-

nal, i.e., d/'d; = 0 for any i # j. Column-orthogonality is weaker than orthogonality
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because it does not require each column of D to be balanced. In the proposition
below, column-orthogonal matrices with entries 41 are used. Hadamard matrices
and two-level orthogonal arrays with levels 1 are such column-orthogonal matrices.
The following proposition provides sufficient conditions for a design L in (2.1) to be

column-orthogonal.

Proposition 2.2. Let A and D be column-orthogonal. A design L, formed as in
(2.1), is column-orthogonal if designs B and C are both-orthogonal, and at least one

of the two, ATC = 0 and BTD = 0, holds.

Proof. Let L(i, j,p, q) be the entry produced by a;p, bjq, ¢ip and djq. The validity of
this proposition can be easily established by noting that

ny N2

S > LG jip.g)L(i. 5.0 q)

i=1 j=1
ni n

= Z Z(aipqu + Cipliq) (@ip by + Veip djgr)
i=1 j=1
k3| ne

— . . . . . . . . . . . . 2 . . . B
= E , E :(azpbyqam’qu’ + YaipbjqCip djg + YCipdjqQip big + v CipdjqCip djqr)
i=1 j=1

ni ny n n2
= E QipQipy E ququ/ + v E QipCip E qudqu
i=1 j=1 i=1 7=1

ni ng n n2
+7 Z CipQip/ Z djbjq +7° Z CipCap’ Z djqd;q- (2.3)
i=1 j=1 i=1 j=1

Clearly, the first and last terms on the right hand side are zero by orthogonality of
A, B, C and D. The second and third terms vanish due to either of the two additional

conditions. O
Theorem 2.1. A design L, formed as in (2.1), is an orthogonal Latin hypercube if

(i) Y= Moy
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(ii) A and D are column-orthogonal;

(iii) B and C are orthogonal Latin hypercubes;

(iv) there do not exist i and j, where i = 1,...,m; and j = 1,...,ma, such that
Upi = —Qy; and dgj = —dg; simultaneously hold, where p and p’ are such that
Cpi = —Cpi and q and ¢’ are such that by; = —by;;

(v) at least one of the two, ATC = 0 and BT D = 0, holds.

Theorem 2.1 is a direct consequence of Propositions 2.1 and 2.2. Conditions (i)
and (iv), and LHDs B and C are sufficient to obtain an LHD. The orthogonality of
LHDs B and C, conditions (ii) and (v) are needed for the orthogonality of the LHD
L. Condition (v) implies that either the correlations between the columns of A and
those of C are zero, or the correlations between the columns of B and those of D are
zero. In addition, the run sizes n; and ny must be either 2 or a multiple of 4 because
of the column-orthogonality of A and D. Thus, the run size n must be of form n = 8k
(k = 1,2,...). Note that, technically, orthogonal designs must have at least two
factors, but if a design B or C has only one factor, it is orthogonal by our definition.

Next, we revisit Example 2.3 and give an example of the use of Theorem 2.1.

Fxample 2.4. Recall Example 2.3. The first 12 columns of B form an orthogonal
LHD of 16 runs, due to Steinberg and Lin (2006). Theorem 2.1 tells us that if D is
column-orthogonal, the first 12 columns of L, in Example 2.3, constitute a 32 x 12
orthogonal LHD (See Appendix A), which offers more orthogonal factors than the
existing designs in the literature; a 32 x 11 orthogonal LHD was provided by Cioppa

and Lucas (2007). O

We are now in a position to present a result that goes beyond Theorem 2.1 by dou-

bling the dimensionality of certain orthogonal LHDs constructed by the method (2.1).
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Theorem 2.2. Suppose that in (2.1), ny = nes =ng and A, B, C, D, and ~ satisfy
the conditions in Theorem 2.1. Let U = —ngA® B+ C ® D. Then design [ L, U | is

an n3 x 2m orthogonal Latin hypercube, where m = myms.

Proof. Design U is obviously an n3 x m orthogonal LHD as L is. Thus, it remains to
show every column from L and every column from U have zero correlation. Consider
a column L(i, 7,p,q) and a column U(%, j,p', ¢'), we then have

o 7no

Z Z L(17]apv q)U(ihj’p,’ ql)

i=1 j=1

ng no
= > (@apbje + nocipd;e) (—noaipbig + Cardiy)

i=1 j=1
no no

"2 ,
= E E (—n0aipbjqipbjg + aipbieCiy djqr — noCipdjqipbjg + NoCipdjqCipy djgr)
i=1 j=1

ng ng ng ng
= _”OE :aipaip/ § :ququ' + E QipCipy § :qudjq’
i=1 j=1 i=1 j=1
no

ng no no
2
—ng Y Ciptir Y dygbyg + 10 Y Capciy Y digdq
j=1 i=1 j=1

i=1

The second and third terms on the right hand side equal zero because of either
of the two additional conditions for L to be an orthogonal LHD. For the first and
last terms, both of them equal zero in the cases (p,q) # (p',¢'). In the case of
(p,q) = (p', '), the first and last terms are canceled out. Hence, we conclude that the

new design [L, U] is an n3 x 2m orthogonal LHD. O

Theorem 2.2 is applicable to the case in which the run size n must be of form
n = n2. Note that ny must be a multiple of 4 because of the column-orthogonality
of A and D. The orthogonal LHD [L, U] in Theorem 2.2 generally possesses more
columns than any one obtained by directly using (2.1). This point can be illustrated

using the following example.
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Ezxample 2.5. Suppose that we wish to construct orthogonal LHDs of 64 runs. The

first approach is to set

1 -1 1 -3

11 o3 o1
A= and C = 5 y

1 -1 -1 3

1 1 -3 -1

take the first 12 columns of B in Example 2.3 to be a new B. Choosing any column-
orthogonal 16 x 12 matrix D = (d;;) with entries d;; = £1 and applying the method
(2.1) with v = 16, we obtain a 64 x 24 orthogonal LHD.

Alternatively, we can choose

(1 1 1 1\ 1 -3 7 5\
11 -1 -1 3 1 5 -7
1 -1 1 -1 5 —7 -3 -1
U e T DY
1111 -1 3 -7 -5
11 -1 -1 3 -1 =5 7
1 -1 1 -1 -5 7 3 1
\1 -1 -1 1 \ -7 -5 1 -3

Let Land U be A B+8C ®D and -84 ® B + C ® D, respectively. By Theorem
2.2, design [L, U] is a 64 x 32 orthogonal LHD, which has more columns than the one

obtained by the first approach. O

Theorem 2.1 and Theorem 2.2 are powerful results for constructing orthogonal
LHDs. Theorem 2.1 is useful for providing orthogonal LHDs of size 8%, thereby filling
some of the vast gaps between the available run sizes. Theorem 2.1 and Theorem
2.2 will be used to construct many orthogonal LHDs not available in the literature in

Section 2.6.
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2.2.3 Constructing nearly orthogonal Latin hypercubes

In this section, we show how the method (2.1) can be adapted for constructing nearly
orthogonal LHDs. The basic result is that if the base designs B and C' are nearly
orthogonal, the method (2.1) produces a nearly orthogonal LHD under some mild
conditions.

To assess the near orthogonality, we use two measures defined in Bingham, Sitter
and Tang (2008). For a design D = (dy,...,dy), where d; is the jth column of D, -
they define p;;(D) to be J(d;, d;)/[J(di,d;)J(d},d;)]'/?, where J(d;,d;) = dld;. If
the mean of the levels in d; for all j = 1,...,m is zero, then p;;(D) is simply the
correlation coefficient between columns d; and d;. This is the case for any LHD
with levels as described in this chapter. Bingham, Sitter and Tang (2008) then
defined two measures of near orthogonality, namely, pp(D) = max;<;|p;;(D)| and
p*(D) = 3,.; p5(D)/[(m(m — 1)/2]. Swmaller values of py (D) and p*(D) imply the
near orthogonality. Obviously, if pys(D) or p?(D) is equal to zero, an orthogonal LHD
is obtained. The following theorem relaxes the conditions in Theorem 2.1 by allowing

LHDs B and C to be nearly-orthogonal.

Theorem 2.3. Suppose that A, B, C, D and v in (2.1) satisfy the conditions
in Proposition 2.1. Furthermore, let A and D be column-orthogonal, and either

ATC =0, or BTD = 0. We then have that
(1) p*(L) = w1p*(B) + wyp*(C), and
(i) pp(L) = Maz{wspp (B), wipp(C)},

where wy, wy, ws and wy are giwven by wy = (ma — 1)(n3 — 1)2/[(mims — 1)(n* — 1)?],
we = ni(my — 1)(n? — 1)2/[(myma — 1)(n? — 1)?], wz = (ni —1)/(n* = 1) and wy =

ny(ni —1)/(n* = 1).

Proof. Let L(i,j,p,q) be the entry produced by aip, bj4, ¢, and dj,. Let L(p,q) be
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the column to which the entry L(4, 7, p, q) belongs. Provided that either ATC = 0, or
BTD = 0, the equation (2.3) reduces to

ny n2

SN LG @)L, )
i=1 j=1
1 n2 ni no
= Z AipQip Z ququ, —+ ryz Z CipCip’ Z djqdjq/
i=1 j=1 i=1 j=1

ny no n1 n2
2 .
= E QipQiyy E :ququ’ + 73 E CipCip/ _S_ digdjq. (2.4)
i=1 j=1 i=1 j=1

The last step follows as v = ng, a condition such that L is an LHD. In addition, the
value setting of (p, ¢,p’,q’) consists of three cases (a) p=p',q# ¢; (b)) p#p,q=¢;
() p#p.a#d.

To derive the quantities p?(L) and pp (L), we first consider p[L(p,q), L(p, )],

which has form

plL(p,q), L(v', )] = J[L(p, q), L', &) /{I[Lp,q). L(p, )] J LW, ¢'), LG, a)]}/2,

where J[L(p, q), L(¢',q")] = [L(p, )]T[L(p',¢)]. Note that matrices A and D are re-
quired to be column-orthogonal, thereby implying that both n, and n, are even. Thus,

JIL(p,q), L(p,q)] = n(n? —1)/12 = N. We then have

plL(p,q), LY, q")] = J[L(p.q), L(Y',¢)|/N

ni na

= D> LGj.p.gLi.d)/N

i=1 j=1

= {nlppp’(A)pqq’(B)nQ(ng - 1)/12
+nalng(n? — 1)/12]pp (C) pgg(D)n2} /N. (2.5)

The last step follows by the equation (2.4).
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We now consider the right hand side of (2.5) under the three cases of the value
settings of (p,q,p’,¢). First, consider the case (c). Matrices A and D are assumed
to be column-orthogonal. Thus p,y(A) and pee (D) equal zero, thereby giving us
pIL(p. q), L(p',¢)] = 0.

For the cases (a) and (b), we have p,y (A) = pp (C) = 1 and pgq (B) = peg (D) = 1,

respectively. Consequently, we obtain

mp Mmz Mmip Mma

AL = Y33y PIL(p, 9). L(v',¢"))/M
p=l el P =10=1 g2 (0 )
ng—1y 1M1 4
= [m1 Z(TIQ — 1) pqq/(B) + mgy Z 77'2(,”’2 _ 1) ppp,(C)]/M

atq p#p/

n?—1
) muma(my — 1)pH(C) /M

gy — 1)p*(B) + i

2

20 (0),

Zmymg —1'n2 — 1

where M = mymo(mims — 1).
Let w; be (mg — 1)(n2 — 1)2/[(mimy — 1)(n* — 1)?] and wy be nj(m; — 1)(n? —

1)2/[(mymy — 1)(n* — 1)?]. Note that

wy +wy < (ni—1)%/(n* —1)* +ny(ni —1)%/(n* - 1)?
= (20— 11— Y — 200 — 1720}

< 1.

We then finish the proof for part (i) in Theorem 2.3. Part (ii) is obvious by the
definition of pps(L). O

Theorem 2.3 is a generalization of Theorem 2.1. That is, if we relax the con-
ditions in Theorem 2.1 by allowing LHDs B and C to be nearly orthogonal, the
LHD L constructed is then also nearly orthogonal, in terms of both measures of near

orthogonality. An example, illustrating the use of this result, is considered below.
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Ezample 2.6. Let A be (1,1)7 and C be (1/2,—1/2)T. Set ~ to be 16 and choose a
nearly orthogonal LHD

-15 15 -13 13 -5 -13 5 3 -1 5 =7 5 -9 -9 5
-13 -15 =3 3 7 3 15 —11 13 -5 7T -13 -7 -3 =3
-1 -9 =5 -11 -15 13 -5 11 =9 9 9 3 -5 -1 -1

-9 -1 9 -15 -1 1 -1 -13 5 -1 ~15 7 1 3 15
-7 T -7 7
-5 13 11 =5 9 -7 -3 -9 -13 11 13 -9 =3 13 1
-3 =5 13 15

bl

11 11 5 5 —13 7 11 5 3 -1 -5 =5 -11 15 =7
13 -7 -15 9 1 5 3 —-15 -3 13 1 13 5 11 3
15 —-13 1 1 -3 -11 -9 7 1 7T -1 -11 -15 =5 11

with p?(B) = 0.0003 and pp(B) = 0.0765. Taking any 15 columns of a Hadamard
matrix of order 16 to be D and applying the approach (2.1), we obtain an LHD L of
32 run and 15 factors. As p*(C) = pp(C) = 0, we have p*(L) = (n3 —1)?p*(B)/(n* —
1)2 = 0.0621%(B) = 0.00002 and ppr(L) = (n2—1)par(B)/(n® —1) = 0.2493py,(B) =
0.0191. O

In the use of Theorem 2.3, we notice that both A and D are required to be column-
orthogonal. This means that both n; and n, must be 2 or a multiple of 4. In other
words, the run size n must be a multiple of 8. To cope with other run sizes, we can
instead let B and C be orthogonal LHDs and a result similar to Theorem 2.3 can also
be obtained. That is, if A and D are nearly column-orthogonal matrices, the method
(2.1) gives a nearly orthogonal LHD when B and C are orthogonal LHDs and either
ATC =0or BTD = 0 is true.
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2.2.4 Constructing cascading Latin hypercubes

We begin by presenting a theorem based on which we construct two-level cascading
LHDs using the method (2.1). We then mention how k-level cascading LHDs (k =

3,4,...) can be further constructed.

Theorem 2.4. Let D be an ny X mg matriz of plus ones. A design L, formed as in
(2.1), is a two-level cascading Latin hypercube of n = ningy points with level (ny,no)

if (i) s1 = ny and s3 = ny; (i1) v = na.

Proof. Provided that D is a matrix of plus ones, the resulting design L is an LHD,
following from Proposition 2.1. To establish the cascading property, we employ Defi-
nition 2.3. Let [r] be the nearest integer greater than or equal to . Let L(i. 7, p, q)

be the entry produced by a;,, bjq, ¢ip and dj,. We have

Ui, j,p,q) = [L(,7,p,q9)/n2] = [aipbjq/n2 + cipdiq

= [aipqu/nQ + Cip-l = |'Cip-|7 (2.6)

which follows from the fact that d;q = 1, |a;pbje/n2| < 1/2, and ¢;,, is either a multiple
of 1/2 (when n, is even) or an integer (when n; is odd). The equation (2.6) informs us
that each row of matrix U is completely determined by a row of C'. More specifically.

matrix U has n; distinct rows of ny replicates, yielding Theorem 2.4. O

We discuss a couple of issues regarding Theorem 2.4. First, the proof of Theorem
2.4 reveals that the global space-filling properties of cascading LHDs constructed in
the theorem are controlled by the space-filling properties of the LHD C. Locally. a;,3
determines the layout of the design points in each clustered LHD. Therefore, in the
use of Theorem 2.4, we may use good space-filling designs such as maximin LHDs (see,
e.g., Morris and Mitchell, 1995) for B and C in order to achieve good space-filling
properties, both globally and locally.
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Second, the consequence of using a matrix D of plus ones in the method (2.1) to
construct cascading LHDs is that the bivariate projection of the columns {(z —1)msy+
1,...,img,i = 1,...,m;} has undesirable diagonal patterns. This disadvantage partly
motivates the work in the next chapter .

We now briefly describe how we can construct k-level (k > 2) cascading LHDs.
Suppose that we have obtained a two-level cascading LHD, we then can create a k-
level cascading LHD simply by taking a (k — 1)-level cascading LHD to be C and

using Theorem 2.4.

2.3 An existence result

In this section, we present a theorem on the existence of orthogonal LHDs. An LHD
with one column is orthogonal in the previous sections, but an orthogonal LHD must

have two or more columns in Theorem 2.5 below.

Theorem 2.5. There exists an orthogonal Latin hypercube if and only if the run size

n is not equal to 8 and does not have form 4k + 2, where k =0,1,2, . ...

Proof. We will prove Theorem 2.5 by showing that (i) there exists an orthogonal LHD
of odd size (n # 3) ; (ii) there exists an orthogonal LHD of size n having the form
n = 4k; (iii) there does not exist an orthogonal LHD of size 3 and 4k +2, where k > 0.

To show (i) and (ii), we will make use of the following orthogonal LHDs of 4, 5

and 7 runs with two factors
T T
3/2 1/2 —1/2 =3/2 210 -1 =2 and
-1/2 3/2 =3/2 1/2 )7 \ -1 20 -2 1
T

3 210 -1 -2 =3
-2 -130 2 1 -3

Let
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T
x —T T —x
O2 — 1 1 2 2 .
To —Io —XT1 Ty

If we stack an 4 x 2 orthogonal LHD on O, with x; = 5/2, 2z, = 7/2, the resulting
design is an 8 x 2 orthogonal LHD. Similarly, if we stack an 5 x 2 orthogonal LHD on
O, with x1 = 3,9 = 4, we obtain a 9 x 2 orthogonal LHD. In the same fashion, we can
obtain 11 x 2 orthogonal LHDs. In general, suppose we have an n x 2 orthogonal LHD,
where the run size n has form 4k, 4k+1 or 4k+3, we can obtain an (n+4) x 2 orthogonal
LHD by stacking an n x 2 orthogonal LHD on O, with z; = (n—3)/2,25 = (n—1)/2.

It is easy to verify that there does not exist an orthogonal LHD of size 3. Thus, to
show (iii), it remains to show that there does not exist an orthogonal LHD of size 4k+2
(k =0,1,...). Equivalently, our target is to show that there are no two orthogonal
columns in an LHD of size 4k + 2. Let a = (ay,...,a,)T and b = (by,...,b,)" be

the first and second column of such an LHD and both a and b are permutations

of {1/2,3/2,...,(n —1)/2,-1/2,-3/2,...,—(n — 1)/2}. Note that > " a; = 0,
S by = 0. Without loss of generality, we assume that @ has form (1/2,3/2,...,(n—
1)/2,-1/2,-3/2,...,—(n —1)/2)T. In other words, a; = —a;4n/2 = (2i — 1)/2. We

will prove the result by contradiction. Suppose columns a and b are orthogonal, that
is, Y =, a;b; = 0, which can be rewritten as

n/2

271D _[(26:)i = (2bisnyo) (0 = 1] = 0. (2.7)

Note that both 2b; and 2b;,,/2 are odd, ¢ = 1,...,n/2. The quantity (2b;)i —
(2b;1n/2)(i—1) must be odd as (2b;)i and (2b;4,,/2) (2 — 1) cannot be both even or both
odd. In addition, n/2 must be odd. It is obvious that the addition or substraction
among odd numbers of odd integers gives an odd integer. This leads to a contradiction
and we therefore conclude that there does not exist an orthogonal LHD of size n =

4k + 2 where k£ > 0. O
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2.4 An algorithm for constructing designs of small

runs

In Section 2.2, we have presented a method that allows us to construct LHDs of large
runs based on LHDs of small runs. More importantly, the method can build large-run
(nearly) orthogonal LHDs based on small-run (nearly) orthogonal LHDs. Hence, to
obtain a rich class of large-run (nearly) orthogonal LHDs, it is important to have a
catalogue of small-run (nearly) orthogonal LHDs.

To the best of our knowledge, the problem of obtaining a catalogue of small-run
(nearly) orthogonal LHDs has not been considered in the literature. It is a challenging
problem because of the astronomical number of possible LHDs and the computational
complexity in determining the isomorphism of any two LHDs. Two LHDs are called
isomorphic if one can be obtained from the other by reordering the runs, relabeling the
factors and/or sign-switching one or more factors. To determine if two such designs
of n runs with m factors are isomorphic, a complete search compares 2™n!m! designs.
Although Clark and Dean (2001) proposed an efficient method based on Hamming
distances for checking the isomorphism between any two factorial designs, it is not
applicable here since the Hamming distance between any two rows of an LHD is a
constant, which is equal to the number m of factors. For a fixed small run size, instead, -
we aim to find some orthogonal LHDs and the best nearly orthogonal LHD according
to some optimality criteria. To do so, we adapt Xu’s algorithm (2002), which we will
briefly describe first. We then discuss our optimality criteria and present the designs

found by the adapted algorithm.

2.4.1 Xu’s algorithm

Xu (2002) presented a simple and effective algorithm for constructing orthogonal

arrays and nearly orthogonal arrays with mixed levels and small runs. The key idea
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of his algorithm is to add columns sequentially to an existing design. To add a column,
two operations, pairwise switch and exchange, are used. A pairwise switch switches a
pair of distinct symbols in a column. For a candidate column, the algorithm searches
for all possible pairwise switches and makes the pairwise switch that achieves the best
improvement of the optimality criteria. This search and pairwise switch procedure is
repeated until a bound is reached or there is no further improvement. An exchange
replaces the candidate column by a randomly generated column in which all levels
appear equally often. The exchange step is repeated at most T} (user-specified) times
if no bound of optimality criteria is achieved. The procedure relies on the initial
random columns, therefore the entire procedure is repeated T5 times. Apart from
the sequential idea, the efficiency of the algorithm benefits from its fast updates of
the optimality criteria. An update is needed when a pairwise switch is applied. The
update is fast because the calculation of the value change of the criteria does not

involve multiplications.

2.4.2 Optimality criteria

In Section 2.2, we have adopted two measures, p*(D) and pp(D), to evaluate exact
and near orthogonality of a design D. Here only p?(D) is used in the algorithm. We
will explain the reason of not using pss(D) shortly.

To apply Xu’s algorithm, we need to calculate the update of the p?( D) value when
the pairwise switch and exchange are carried out. Recall that for a design D, =
(dy, . ... dx), where d; is the jth column of Dy, p*(Dy) = 3_,_; p*(di, dj)/[k(k — 1)/2]
where p(d;, d;) = J(di,d;)/[J(di,d;)J(d;,d;)]V? and J(d;, d;) = dF'd;. Suppose that
the existing design Dy_; has k — 1 columns and dy, is added to Di_;. The new design
is denoted by Dy = (Dy_1,dx). We then have

k—1

mp*(Di) = e-1p”(Di—t) + Y p7(diy di),

i=1
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where 1, = k(k —1)/2.

Now .suppose that two symbols in rows j and [ in the added column dj are
switched. Then fori =1,...,k—1, we get Jy(d;, dp) = J(d;, dp) — (dji — i) (dj. — du)
where Jj,(d;, di;) represents the value of J(d;,d) after the pairwise switch and d; =
(disy- .., dp)T. Let di’l and Di’l denote the added column and the design after the

switch of the row pair (j,1), respectively. A straightforward calculation leads to

p2(di’ d?;l) = pQ(div dk) ( J(dlv dk)(sjl 6 )/[‘](dh d; )‘](dk’ dk)]

and
mp* (DY) = meap?(Dio) + Y p2(ds &)
i=1
k-1
= 119’ (Dp_1) + Z p*(d;, dy,)
=1
k-1
= Al D)/ 1 (di, )T (i, di)]
i=1
k-1
= 1P (De) = Y A )/ [J(di, di) ] (dy, i), (2.8)
i=1

where Ag(4,1) = 2J(d;, di)d — 0% and 6y = (dyi — dis)(djr — dip,).-

In this section, only LHDs are considered so J(d;, d;) = n(n* — 1)/12 in our
notation. Thus on the right hand side of (2.8), only A(j,1) = Zk ! Au(j,1) varies
due to the pairwise switch. The equation (2.8) implies that we perform the pairwise
switch which produces a positive and biggest value of A(y,1).

An important aspect of an optimality criterion is a lower bound. In our situation,
p?(D) = 0 is clearly a lower bound for an orthogonal LHD. When there does not exist
an orthogonal LHD, i.e. n =4k +2 (k=0,1,...), the following corollary provides a

useful lower bound of p? due to Theorem 2.5.

Corollary 2.1. For an n x m Latin hypercube L, each column of which is a permu-

tation of {—(n—1)/2,...,=1/2,1/2,...,(n —1)/2}, where n is of form n = 4k + 2
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(k=0,1,...), we have that
A(L) > bn) = 36/[n(n” — 1)7] (29)

Proof. Consider any two column vectors a and b from the LHD L, we have

n n/2
> abi =271 [(2b)i — (2bigny)(i — 1)),
i=1 i=1

SiLI2b)i —
(Gbiny2)(i — DI 2 1, we have |p(e,B)] = | 55 aibl/(5, a2 S 8)72 > 274 fn(n? -
1)/12] = 6/[n(n* —1)]. Therefore, p*(L) = 3", p*(ls,[;)/[m(m—1)/2] > 36/[n*(n” —
1)2]. O

given by the equation (2.7) in the proof of Theorem 2.5. Because

We have tried to use pp(Dy) as an optimality criterion for several cases in the
adapted algorithm. However, the results are not so good as those from using p?(D).
An intuitive explanation is as follows. If we choose pp(Dy) as an optimality crite-
rion, obviously, pa(Dy) = Max{pnr(Dr_1), |p(d1,dr)|, ..., |p(dr_1,ds)|}. This means
if |p(d;,di)| < pm(Dg—y) forall i =1,... .k =1, pp(Dy) = par(Dy_1) and the added
column dy has no contribution to the selection of optimal designs. Therefore, py;(Dy)

as an optimality criterion does not give results as fruitful as p?(D).

2.4.3 The adapted algorithm and results

Xu’s algorithm is adapted to obtain orthogonal and nearly orthogonal LHDs. Suppose
we aim to construct a nearly orthogonal LHD of n runs with m factors. Let & be
{-(n=1)/2,...,0,...,(n—=1)/2} and {—(n—1)/2,...,(n—1)/2} when n is odd and

even, respectively. The lower bound of p? is defined as

b(n) = 36/[n2(n® = 1)?], n=4k+2 (k=1,2,...);

0, otherwise.

t(n) =

The adapted algorithm works as follows.
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Step 1: Randomly select a permutation of S. Set my = 0.
Step 2: For k= 2,...,m, do the following;:

(a) Generate a random permutation of S for the kth candidate column, d.
Let Dj_; be the present design and Dj denote the design obtained by
adding dy to Dy_;. Compute p?(Dy) = [(k — 1)(k — 2)p*(Dyr_1)/2 +
S A (dey d)] bk — 1)/2). T p?(Dy) = 0, set mo = mo + 1. 1 p(Dy) =
¢(n), go to (d).

(b) For every pair of rows, j and [, compute A(J,1) as defined in Section 2.4.2.
Choose the pair with the positive and largest A(j, ) and switch the symbols
in rows j and [ of dy. Reduce p*(Dy) by A(4,1)/[mn(n® — 1)/12). If
p*(Dy) = 0, then set mg = mg + 1. If p*(Dy) = £(n), go to (d); otherwise,

repeat (b) until no further improvement is possible.

(c) Repeat (a) and (b) T} times and choose a column dj, that produces the

smallest value of p*(Dy).

(d) Add the column dj to Dy_; and update the value of p?(Dy).

Step 3: Repeat Steps 1 and 2 T5 times. Keep the design D,, with the smallest value
of p*(Dy,) and the orthogonal LHD D,,, with the largest my.

We now tabulate the orthogonal LHDs obtained by the adapted algorithm with
T, = 3000 and 75 = 3000 in Tables 2.1 and 2.2. At step 3 of the algorithm. T,
designs are ranked according to pys and the one with the smallest value of py; is also
kept. Tables 2.3 and 2.4 summarize the smallest values of p and p;; obtained by
the algorithm for various n and m. Note that the design that has the smallest value
of p may not have the smallest value of p); and vice versa. When the run size n
is not of form 4k 4+ 2, p = pp; = 0 corresponds to an orthogonal LHD. In the case

of n = 4k 4 2, the lower bound in Corollary 2.1 is attained for some values of m.
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4<n<13

= 0.00056 for m < 7.
Table 2.1: Orthogonal Latin hypercubes of n runs,

pu = 6/[n(n® —1)]
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For instance, in Table 2.4, LHDs of 22 runs with m factors achieve the lower bound
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15 <n<?21

Table 2.2: Orthogonal Latin hypercubes of n runs,
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Table 2.3: The best values of p and pys (in bracket) for 4 <n < 15

1 5 6 7 8

2 0.000(0.000) 0.000(0.000) 0.029(0.029) 0.000(0.000) _0.000(0.000) 0.000(0000)
3 0.258(0.400) 0.082(0.100) 0.055(0.086) 0.000(0.000) 0.000(0.000) 0.000(0.000)
4 0.135(0.200) 0.072(0.086) 0.015(0.036) 0.000(0.000) 0.000(0.000)
5 0.093(0.143)  0.037(0.071) 0.011(0.024) 0.000(0.000)
6 0.053(0.107)  0.015(0.024) 0.009(0.017)
7 0.036(0.071)  0.016(0.033)
8 0.028(0.067)
m 10 11 12 13 14 15

3 0.006(0.006) 0.000(0.000) 0.000{0.000) 0.000(0.000) _0.002(0.002) _0.000(0.000)
3 0.006(0.006) 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.002(0.002) 0.000(0.000)
4 0.006(0.006) 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.002(0.002) 0.000(0.000)
5 0.006(0.006) 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.002(0.002) 0.000(0.000)
6 0.006(0.006) 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.002(0.002) 0.000(0.000)
7 0.012(0.030) 0.000(0.000) 0.003(0.007) 0.002(0.005) 0.002(0.002) 0.001(0.004)
8 0.019(0.042) 0.010(0.028) 0.006(0.014) 0.004(0.011) 0.003(0.007) 0.002(0.004)
9 0.030(0.079) 0.017(0.036) 0.011(0.028) 0.006(0.016) 0.005(0.011) 0.003(0.007)
10 0.025(0.064) 0.016(0.035) 0.009(0.022) 0.006(0.015) 0.005(0.011)
11 0.021(0.056) 0.015(0.038) 0.010(0.024) 0.007(0.018)
12 0.021(0.049) 0.014(0.033) 0.010(0.029)
13 0.020(0.059)  0.012(0.039)
14 0.017(0.050)

38
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2.5 Constructing orthogonal Latin hypercubes of

other run sizes

In Section 2.3, we have shown that the run size of an orthogonal LHD must be a
multiple of 4 or odd. In Section 2.2, the proposed method enables us to construct
orthogonal LHDs of any size n that n is a multiple of 8. In this section, we develop
methods for all other run sizes that are odd or multiples of 4. Thus, the problem of
constructing orthogonal LHDs is solved completely in terms of run sizes.

Let S be the n levels of an LHD of size n. Let S = S; US, where $; NS, = ¢, and
n, and ng be the numbers of elements in §; and S,, respectively. Suppose that there
exist an n; X m orthogonal design D, with levels in §; and an ny X m orthogonal
design Dy with levels in S;. Then

D,

L= (2.10)
D,

is an n x m orthogonal LHD, where n = n; 4+ ns. Note that D, and D, are not LHDs
in general.

In the following two subsections, we discuss two methods for obtaining the designs
Dy and D, in (2.10). In the orthogonal LHDs constructed by the first method, the
run size n must be 8k + 1 or 8k — 1 (k = 3,4,...). The second method can provide
orthogonal LHDs of any run size that does not have form 4k +2 (k=0,1,...).

2.5.1 A direct stacking method

This method applies to the situation where n; is odd, ny is even, n; + ny = n, and

|n1 — ng| = 1. The method works as follows:

(i) Select an n; x m orthogonal LHD to be Di;

(ii) Select an ny x m orthogonal LHD to be Do;
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(iii) In (2.10), set D, = 2D, and Dy = 2D,.
As an illustration, we consider constructing orthogonal LHDs of 23 runs in the next
example.

Ezxample 2.7. Let ny = 11 and no = 12. In Table 2.1, we take the first six columns of
the 11 X 7 orthogonal LHD to be 51 and the 12 x 6 orthogonal LHD to be 52, ie.,

s 4 s s 3 0 ~11 —11 -3 —11 -7 =7
4 9 1 3 4 s -9 =5 -5 11 9 1
a9 4 5 4 o -7 9 11 -9 -1 3
o 3 3 4 1 4 -5 1 1 1 1 1
L4 9 4 3 o -3 5 -1 3 11 -9

Di=| 0 -5 5 -2 5 -3 |andD,=1 Lo s s

L5 s s s 1 3 -11 5 —11 -5
o 1 1 1 9 3 3 -3 3 -3 3 5
5 0 0 -1 o 1 5 -9 7 9 -9 7
A 4 0 9 s 7 -1 -9 -7 7T 9
s s 9 9 1 4 9 7 -7 -5 -3 -1

1 =7 9 -1 5 —11
A 23 x 6 orthogonal LHD can then be obtained immediately by (2.10) without the

effort of computer search. O

2.5.2 Orthogonal designs method

This method proceeds as follows.

(i) Given n, choose n; and ny such that n; + ny = n and n, is a multiple of &;
(ii) Choose an ny x m orthogonal LHD to be Dy;

(iii) Construct an nyxm orthogonal design D, with levels {—(n;+ny—1)/2, ..., —(n1+

1)/2, (ny +1)/2, ..., (n1 +ny — 1)/2}.

Two approaches for obtaining a design D, in (iii) are now considered. To describe the

first approach, we consider an n X m orthogonal matrix V that satisfies the following:
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(i) V has entries tz,..., £, /9, Where xy,..., T,/ are real variables;
(ii) Both z; and —x; must occur exactly once in each column of of V., i = 1,...,n/2;

iii) Every two columns v; and v; of V are orthogonal, i.e., v v; = 0 for 7 # j.
J 1 7]

Unfortunately, no general construction method for V is available at present. Never-
theless, we have obtained a few orthogonal matrices V for n = 2,4, 8, 16, as listed in
Table 2.5. Substituting each x; (i = 1,...,n2/2) in an ny x m orthogonal matrix V' by
(ny+2i—1)/2 will then yield an ny x m orthogonal design Ds, required by the method
in (2.10). For example, 27 X 7, 28 x 6, 29 x 6 and 31 x 6 orthogonal LHDs can easily
be constructed using this method together with orthogonal LHDs in Table 2.1. We
note that orthogonal matrices V' considered above are related to but different from

orthogonal designs in the combinatorics literature (Geramita and Seberry, 1979).

Table 2.5: Orthogonal matrices of n runs, n = 2,4, 8,16

n

2 4 8 16
I I Xa xry —Iy T4 I3 ry, —Iy —xy —T3 —Is I RS ENS
—I1 —r] —I9 ) T Tz —T4 I Ty —I3 T4 —T7 —Ixg —J¢ dg
e —I r3 —I&y4 —T2 —XT1 Irz —XIy4 Ty Iy —Ig —Is I —d
—I2 Iy T4 T3 —I I Ty I3 Ty —d&y —Iy g — s A7
—I4 —I3 Iry —I2 Iy —Tg —ITg Tr Iy Ty —rypy —0
—X3 €Ty T3 Iy Te s —I7 —Ig Iy —Iy B IO
—ZTp —I] —I3 Ty Iy —Ig Ty —Is Ty —I —ay Sy
—I; Iy —Ty —ITg Tg €Ty Iy I Iy Iy £y Iy
—I) ) Xy X3 g —I7 —bn —Jdg
—Xa2 —I r3 —I4 I g Jeoo =
—I3 Ty —Io —XTy Te Iy —aOy In
—Iy —I3 —I1 To Is —Ig S £y
—Is5 T Iy —I7 —&y —Ty Jy £
—Ts —Ip Iy g —I3 £y O £
—Iy rg —Ug Ty —T9 Iy Iy —ay
—Is —T7 —I5 —Tg —T1 —Ig —Iy —dy

We now turn to the second approach thanks to Proposition 2.3 below.

Proposition 2.3. Let A be an nyy X my column-orthogonal matriz, B be an nqy X me

orthogonal Latin hypercube, C' = (c;;) be an ngy x my orthogonal design with levels



CHAPTER 2. ORTHOGONAL AND CASCADING LATIN HYPERCUBES 43

{=[ny + kngl/2,[n1 + kna]/2,k = 1,3,...,n0 — 1}, D be an ngy X my column-
orthogonal matrixz. Let ng = nojngy and m = myme. Suppose that A, B, C and D
satisfy conditions (iii) and (w) in Theorem 2.1. Then choosing v =1 in (2.1) gives
an orthogonal design Dy = L with levels {—(ny + ny — 1)/2,...,—(ny + 1)/2, (n; +
1)/2,...,(ny +ng—1)/2}.

Proof. Tt is straightforward to see the levels of D, are {—(n; +no—1)/2,...,—(n1 +
1)/2,(n1+1)/2,...,(ny+ne—1)/2} from the levels in A, B, C and D and the definition
of Kronecker product. The orthogonality of D, follows directly from Proposition

2.2. O

Proposition 2.3 is particularly useful when n; = 1. That is because D; in (2.10)
is a row of zeros in this case and there is no restriction on the number of columns in
D,. To use Proposition 2.3, we choose A, B and D in the same way as in Theorem
2.1. As for C, we can make use of the orthogonal matrices in Table 2.5. For given ng,
we can use different combinations of ny; and ngy, which yield many choices for Ds.

The next two examples illustrate the use of Proposition 2.3.
Ezample 2.8. Let noy = 2, ngg = ne/2, m; = 1, and my = m, and let A, B and D
be chosen as in Proposition 2.3. Taking ((n; + n22)/2, —(n1 + n2)/2)7 to be C in
the method (2.1), we obtain an orthogonal design D, for (2.10). For example, letting
n; =1 and ny = 24, a 25 X 6 orthogonal LHD can be obtained immediately.
Ezxample 2.9. Let nyy = 4, ngy = na/4, my = 2, and my = m/2. Again, A, B and D

are chosen as in Proposition 2.3. Let C be

1 72

= -7 Y2 ,
Y2 N
—Y2 "N

where v, = (n; + n22)/2 and 5 = (n; + 3ng)/2. For instance, suppose we wish to

construct an orthogonal LHD of 65 runs. To do so, we let n; be 1 and ny be 64. In
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addition, we choose a 16 x 12 orthogonal LHD to be B. After choosing A and D
appropriately, we can obtain a 65 x 24 orthogonal LHD.

2.6 Collections of orthogonal Latin hypercubes

Qur intention in this section is to provide a comprehensive table of orthogonal LHDs
for available run sizes, n. Note that n must not equal 3 and 4k +2 (k= 0,1,...).

In the previous sections, six approaches have been introduced to construct orthog-
onal LHDs of various run sizes. They are (i) the algorithm search in Section 2.4.3; (ii)
the orthogonal matrices method in Section 2.5.2; (iii) the direct stacking method in
Section 2.5.1; (iv) the construction (2.1) as in Theorem 2.1; (v) the construction as in
Theorem 2.2; (vi) the construction (2.10) as in Proposition 2.3. We now summarize
orthogonal LHDs provided by each approach. Approach (i) is used to obtain orthog-
onal LHDs of small run sizes. The corresponding number m of columns in each of
these designs is given in Table 2.6. Approach (ii) uses orthogonal matrices to obtain
orthogonal designs D in the construction (2.10). Although general construction on
orthogonal matrices is not available currently, orthogonal matrices of sizes 8 and 16
are available in Table 2.5. Because n; can be any available run size, this approach
can provide orthogonal LHDs of any available run size. As an illustration, Table 2.7
provides the number m of columns in those designs of run sizes n < 40. Note that
n =n; +ny and m = min{m;, mo}. For the larger run sizes, the value of m’s can be
readily obtained using m'’s for small run sizes. Approach (iii) applies to the situation
where n; and ny are adjacent. Equivalently, it can offer orthogonal LHDs of run sizes
n = 8k — 1 and n = 8k 4+ 1 where £ is any positive integer. For example, Table 2.8
displays the cases k = 3,4,5. Again, we have n = n;, + ny and m = min{m;, ms} in
this approach. Approach (iv) is applicable to the cases n = 8k (k = 1,2,...). Table
2.9 gives the value of m, ny, ny, m; and ms in Theorem 2.1 for each of the run size

n < 256. Note that there may exist multiple choices of n; and ny that gives the
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same m, but we only report one such choice. Approach (v) requires the run size n
to have form n = 16k2. The number m of columns in orthogonal LHDs obtained by
this approach is given in Table 2.10. Note that m = 2mims,. In approach (vi), ng
must be a multiple of 8 while n; can be any integer that is not equal to 4k + 2 and 3,
where k is any integer. Therefore, this approach can provide orthogonal LHDs of any
available run size. It is particularly useful when n; = 1 and ns is a multiple of 16 as

indicated in Table 2.11.

Table 2.6: The maximum number m of factors in orthogonal LHDs obtained by
approach (i)

n

bo|
po| o

9 11 12 13 15 16 17 19 20
9

7 8
3 4 7 6 6 6 6 6 6 6

Table 2.7: The maximum number m of factors in orthogonal LHDs obtained by
approach (ii)

n m TNy N9 My Mo T m mnyp nNg My o
17 8 1 16 & 8 29 6 13 16 6 8
19 4 11 8 7 4 31 6 15 16 6 8
20 4 12 8 6 4 32 8 16 16 12 8
21 4 13 8 6 4 33 8 17 16 8 3
23 4 15 8 6 4 3% 6 19 16 6 8
24 4 16 8 12 4 36 6 20 16 6 8
25 5 9 16 5 8 37 6 21 16 6 8
21 7 11 16 7 8 39 6 23 16 6 8
286 12 16 6 8 40 6 24 16 6 8

Given the results above, we now suminarize the maximum value of m provided by
the aforementioned six approaches and the methods of Ye (1998), Steinberg and Lin
(2006) and Cioppa and Lucas (2007) in Tables 2.12, 2.13, 2.14, and 2.15. Therefore,

the maximum number m* of columns obtained by combining all the results is also
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given in Tables 2.12, 2.13, 2.14, and 2.15. Due to the space consideration, we only
list the cases n < 259.

Several comments are in order. First, Tables 2.12 - 2.15 demonstrate that our
approaches outperform others in terms of both flexibility of the run size and the
number of orthogonal columns. Second, since large orthogonal LHDs are built based
on small ones, we will obtain more columns for large ones if more columns for small
ones can be found through algorithms or constructions in the future. Third, suppose
we have an n; x m; orthogonal LHD and an ns X ms orthogonal LHD. One may expect
an (ning) X (myms) orthogonal LHD given by the method (2.1). However, this is not
always the case. For example, we have a 12 x 6 and 20 x 6 orthogonal LHD that can
be used as B and C respectively for constructing orthogonal LHDs of 240 runs. But
a 240 x 36 orthogonal LHD cannot be constructed because condition (iv) in Theorem
2.1 is not satisfied. Instead, only 12 columuns are available as reported in Table 2.15.
Lastly, many small orthogonal LHDs are available and thus a large collection of large
ones are obtained via both methods (2.1) and (2.10). In addition, as argued in Section
2.2.1, given A, B, C' and D that produce an orthogonal LHD via the method (2.1),
we can apply different row permutations (or column permutation or sign-switching or
a combination of these operations) between A and C, or between B and D to obtain

non-isomorphic orthogonal LHDs.

Table 2.8: The maximum number m of factors in orthogonal LHDs obtained by
approach (iii)

noom Ny Ng My Moy noom ny Mg My Mo
23 6 11 12 7 6 33 8 17 16 8 12
25 6 13 12 6 6 39 6 19 20 6 6
31 6 15 16 6 12 41 6 21 20 6 6
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Table 2.9: The maximum number m of factors in orthogonal LHDs obtained by

approach (iv)

n m my Ny My My n m  ny Ny My My
24 6 12 2 6 1 144 12 12 12 6 2
32 12 16 2 12 1 152 6 76 2 6 1
40 6 20 2 6 1 160 24 20 8 6 4
48 12 12 4 6 2 168 6 84 2 6 1
56 6 28 2 6 1 176 12 44 4 6 2
64 24 16 4 12 2 18 6 92 2 6 1
72 6 36 2 6 1 192 48 16 12 8 6
80 12 20 4 6 2 200 6 100 2 6 1
88 6 44 2 6 1 208 12 52 4 6 2
96 24 12 8 6 4 216 6 108 2 6 1
104 6 52 2 6 1 224 24 28 8 6 4
112 12 28 4 6 2 232 6 116 2 6 1
120 6 60 2 6 1 240 12 60 4 6 2
128 48 16 8 12 4 248 6 124 2 6 1
136 6 68 2 6 1 256 96 16 16 12 8

Table 2.10: The maximum number m of factors in orthogonal LHDs obtained by

approach (v)

n m o ng Mmp; Mgy
64 32 8 4 4
144 24 12 6 2
256 1192 16 12 8
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Table 2.11: The maximum number m of factors in orthogonal LHDs obtained by

approach (vi)

n m n Mg Moy Moo MMy My
33 |12 1 32 16 2 12 1
41 6 1 40 20 2 6 1
49 112 1 48 12 4 6 2
57 6 1 56 28 2 6 1
65 (24 1 64 16 4 12 2
73 6 1 72 36 2 6 1
8 (12 1 80 20 4 6 2
89 6 1 88 44 2 6 1
97 (24 1 96 12 8 6 4
106 6 1 104 52 2 6 1
11312 1 112 28 4 6 2
121 6 1 120 60 2 6 1
129 148 1 128 16 g 12 4
137 6 1 136 68 2 6 1
145112 1 144 12 12 6 2
153 6 1 152 76 2 6 1
161124 1 160 20 8 6 4
169 6 1 168 &4 2 6 1
177112 1 176 44 4 6 2
185 6 1 184 92 2 6 1
193 148 1 192 12 16 6 8
201, 6 1 200 100 2 6 1
209112 1 208 52 4 6 2
2171 6 1 216 108 2 6 1
225124 1 224 28 8 6 4
2331 6 1 232 116 2 6 1
241112 1 240 60 4 6 2
2491 6 1 248 124 2 6 1
257196 1 256 16 16 12 3
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Table 2.14: The maximum number m* of factors in available orthogonal LHDs of run sizes 132
SLW CL®
0
0

Note: (1): The approach that gives m*; (2): approaches (i) - (vi); (3): Ye (1998); (4): Steinberg and Lin (2006); (5) Cioppa and Lucas (2007).
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Chapter 3

(Generalizations

Generalizations of the construction in Chapter 2 for better projection properties are
the focus of this chapter. The idea is motivated by the generalizations introduced by
Bingham, Sitter and Tang (2008). Their generalizations are reviewed and the con-
nection to the present methods is discussed. Our generalizations are then introduced

and studied. An example will be provided at the end of the chapter.

3.1 Introduction

Bingham, Sitter and Tang (2008) presented two generalizations, one of which improves -
the projection properties of their basic method. In this section, we will briefly review
this generalization and discuss its connection with our present work.

In Section 2.2, we have used D(n,s™) to denote a design with n runs and m
factors, each factor at s levels, where 2 < s < n. Let A = (a;;) be an n; x m; matrix
with a;; = £1. Let Dy be a D(ng,s™?). The basic method proposed by Bingham,
Sitter and Tang (2008) provides a design

D =A® D,. (3.1)

23
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Let D; be a D(ng,s™2), for each j = 1,...,my. They considered the following

generalization
CLUDl CL12D2 . almlel
D D anDy  axpDs ... aym Dp, )
= (ayD;j) = ) (3.2)
anllDl anlgDQ . amml Dm1

and went on using a simple case to explain that this generalization offers better
projection properties as compared with their basic method (3.1). The idea is as
follows. When A in (3.1) has the form ((1,1)%, (1, —=1)T)T, the basic method (3.1)

produces two columns of the form

d d
d —d

in the resulting design D, where d is a column of Dy. When the design D is projected
onto these two columns, its design points lie on the two diagonal lines y = = and
y = —x, leaving most of the design space unexplored. The generalization (3.2) uses

different D; and Ds, thereby producing two columns of the form

dy dy
dy —do

where d; is a column of D, and d5 is a column of D5. Obviously, if the column vectors
d, and dy are different, there will not be the diagonal pattern in any two columns
of D in (3.2). When we say d; and d, are different, we mean that dy # +d,. This
implies that D; should not be obtained from D just by column-permuting and/or
sign-switching if we want to eliminate the diagonal pattern exhibited in D in (3.1).
We now discuss the connection between the basic method (3.1) and the proposed

method in the previous chapter. Recall that our proposed method for constructing a
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Figure 3.1: d is a column of ones Figure 3.2: d is balanced
Latin hypercube design (LHD) is
L=A® B+n,C®D, (3.3)

where A and D are matrices with entries +1 and B and C are LHDs. Now consider

a simple case in which

1
A= and C = }
1 -1 -1 1

The design L, formed as in (3.3), has two columns of the form

b+%2d b d
b—T2d —b+m2d

where b is a column of B and d is a column of D. When the design L is projected
onto these two columns, the design points are spread out in two ways based on the
column d. If d is a column of plus ones, those design points are plotted in the bottom
plot of Figure 3.1. Another case is that the column d is balanced (half 1’s and half
-1’s) and the bottom plot of Figure 3.2 shows the corresponding design points. In
both plots, we notice that the design points form two clusters, each having ns points.

Furthermore, the centers of the two clusters lie on the diagonal line y = —x. The top



CHAPTER 3. GENERALIZATIONS 56

part of Figures 3.1 and 3.2 displays the respective two clusters of design points. The
design points in each cluster lie on the diagonal lines y = x or y = —x or both.

In brief, the proposed method in Chapter 2 possesses similar undesirable projection
properties as the basic method in Bingham, Sitter and Tang (2008). A natural way
to cope with this issue is to adopt their generalization by using different B; and D;
via

L = (a;; ® Bj + ngci; @ D). (3.4)

We now use the following example to illustrate the benefit of this generalization.

Let

1 1 -3 1

1 -1 1 3
A= and C = %

1 1 3 -1

1 -1 -1 -3

The design L, formed as in (3.4), becomes

B —3D, By+1iD,
Bi+4iDy —B,+3D,
By + %Dl B, — %DQ
B,~1iD, -B,-3iD,

Let L, = (BT —3DY/2, BT + DT /2, BT +3DY /2, BT — DT/2)T and L, = (B! +
DT /2, —BT +3DT/2, BT — DY /2, — BT — 3D /2)T. When the design L is projected
onto two columns in Ly, the design points are distributed as in Figure 3.3. Similarly,
Figure 3.4 displays the design points when the design L is projected onto two columns
in Ly. When the design L is projected onto two columns, one from L; and the other
from L,, the design points are distributed as in Figure 3.5.

Figures 3.3 and 3.4 indicate that when the design L, formed as in (3.4), is projected

onto the two columns from the same B; and Dj, the design points still roughly lie on
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the diagonal lines y = ¢ and y = —xz. This motivates us to consider the generalization,
L= (bij X Aj + Tl/gdij ® Cj), (35)

in which the diagonal pattern of some projected columns

nated.

Figure

L2‘2

Figure 3.4:

will be completely elimi-
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Figure 3.5: Design points of two columns, one from L; and the other from Lo
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3.2 Generalization methods

In this section, we will introduce two generalizations and study the properties of the
corresponding designs.

Let A = (a;;) be an n; x m; matrix with a;; = £1 and C be a D(n,, s{*). For
each j=1,...,my, let B; = (b{k) be a D(nq, s5?) and D; = (dgk) be an ny X mg ma-

trix with dJ,, = £1. Further let v be any real number. Consider the first generalization

L = (ayB;+7ci;Dj)

an By +yenn Dy 0128y +yc12 Dy ... a1m, Bm, +v¢im, D,
az1B1 + yea1D1 a2 By +ve22 Dy ... @2m, Bm, + vcam, D, (3.6)
anllBl + ven, 1Dy an12BQ + ven, 2D2 oo Opymy Bm1 + Yenim, Dm1

Let D = (d;;) be an ny x my matrix with d;; = £1 and B be a D(ny, s5). For
each j = 1,...,mq, let C; = (Czk) be a D(ny,s7") and A; = (afk) be an n; X my
matrix with afk = #+1. Further let v be any real number. The second generalization

provides a design
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L = (byA; +7di;Cy)
biiAr +vduCh bi1oAs + vd12Cy ... b1myAms + YdimyCms
bo1 A1 + vd21 Cy baoAg + vdo2Cy ... bams Amy + Yd2m, Cma 3.7)
bn2 lAl + 'Vdnzlcl b7122A2 + ’de22c‘2 e bnzﬂlz Amz + ’degmg C‘"lz

The first generalization improves the local projection properties while the second ‘
one offers better global projection properties. Here the global and local projection
properties respectively represent the spread of the clusters and the points in each
cluster when the design is projected onto the lower dimensions. Furthermore, the
generalizations also permit us to construct LHDs, orthogonal or nearly orthogonal
LHDs, and cascading LHDs. We will provide the parallel conditions for the design L
constructed by the generalizations to be in these three classes of designs as done in
Section 2.2. For simplicity in presentation, we only consider the generalization (3.7)
although similar results can readily be obtained for the generalization (3.6).

The proposition below generalizes Proposition 2.1. The proof is analogous to that

of Proposition 2.1 and thus omitted here.
Proposition 3.1. A design L, formed as in (3.7), is a Latin hypercube if

(i) 81 =Ny, S = N,

(i) v = no;

(iii) there do not exist j and k, where j = 1,...,mq and k = 1,...,my, such that
azjk = —a;';k and dy; = —dy; simultaneously hold, where p and p’ are such that
by; = —by; and q; and q; are such that c;jk = ——C’Z];k.

The following result is about the exact and near orthogonality of the design L in

the generalization (3.7).
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Theorem 3.1. Suppose that A;, B, C;, D andy are so chosen that a Latin hypercube
L is obtained. Furthermore, let A; and D be column-orthogonal, B be orthogonal, and

BTD = 0. We then have that
(i) pm(L) = Maz{wipm(Cj),7 =1,...,ma}, where w; = n3(n?—1)/(nin—1), and

(i) p*(L) =wy 372 p*(Cy)/my, where wy = (my — Dwi/(mymg — 1)], and

(#1) L is orthogonal if and only if C1,Cy, ..., Cy, are all orthogonal.

Proof. Let Lj; be the column produced by the jth column of B and the kth column
A;. Further let n = nyny. Then, parts (i) and (ii) can be easily obtained by noting

that

P(lem Lj’k’)

il

n(n? —1) e - ; y
2] 50 S G sl bl el

i1=11is=1

n(n2 _ 1) n1 no n
= |: 12 ] ( Z b11.7b11.7 Z al)’m(llt)k + n2 Z d1IJI)ZlJ Z lzlta’l)k)/

i1=1 ix=1 =1 ir=1

n2 i ne ni
4 " 9 . .
+n2 Z biljdi,lj’ Z aizkczzk’ + o Z dhjdilj’ E Cllszng/>

i1=1 ig=1 i1=1 io=1

- . " nq
B l:Lle—L)] ( Z bll]an Z alzkahk’ + n2 Z d“]d“J Z >’

i1=1 i2=1 t1=1 ip=1

which implies that p(Ljk, L) = 0 when j # j' and p(Ljk, Ljn) = n3(n? —

Dperr(C;)/(n* — 1) in the case of j = j/ and k # k. Part (iii) follows directly
from parts (i) and (ii). O

Theorem 3.1 says that if every matrix is column-orthogonal and every LHD is
orthogonal, the generalization (3.7) results in an orthogonal LHD. If C;’s are relaxed
to be nearly orthogonal, the corresponding LHD L is also nearly orthogonal. Note that
matrices A; are required to be column-orthogonal in the theorem. This assumption is
not difficult to meet since a column-orthogonal matrix with entries &1 of n rows can

have as many as n columns. As for orthogonal C;’s, they are not rare anymore thanks
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to the proposed method in Chapter 2. Nevertheless, it is worthwhile to mention that
C;’s can be equivalent up to row-permuting, column-permuting and/or sign-switching
within one or more columns. It should, however, be noted that column-permuting and
sign-switching columns alone do not eliminate the diagonal pattern in the bivariate
projections.

We now present the conditions for L in (3.7) to be a two-level cascading LHD in
the result below. The proof is omitted as it is similar to that of Theorem 2.4. As
discussed in Section 2.2.4, a k-level (K > 2) cascading LHD can be easily obtained

once we have a two-level cascading LHD.

Theorem 3.2. Let D be an ny X my matriz of plus ones. A design L, formed as in

(3.7), is a two-level cascading Latin hypercube of n = nyns points with level (ny,no)

if (1) 81 =ny and sy = ng; (ii) v = na.

To conclude the section, we summarize that the generalizations not only improve
the global or local projection properties, but also retain the exact or near orthogonality

and the cascading structure.

3.3 A cascading Latin hypercube example

In this section, we use an example to illustrate the benefits gained by using the
generalizations as compared with the basic method. In addition, the difference of

these two generalizations will be demonstrated.

Ezample 3.1. Let ny = 9 and m; = ny = mg = 3. We first choose A, B, C and D as

follows:

0 -1 1 1 11
—1 1 0 1 1 1



CHAPTER 3. GENERALIZATIONS 62

(1 1 1) —4 =3 -2

-1 1 1 —2 0 1

1 -1 1 -3 2 3

-1 -1 1 0 —4 0

A= 1 1 -1 JlandC=} -1 1 4
-1 1 -1 1 4 —4

1 -1 -1 3 -2 2

-1 -1 -1 2 -1 -3

-1 1 -1 \ 4 3 -1

Given B, we can row-permute it. We shall denote the resulting LHD after the jth row-
permuting by B;, j = 1,...,m;. Similarly, we use D for all D;’s. For A and C, we row-
permute them independently my times instead. The corresponding designs/matrices

are denoted by Ay and C, E=1,...,ma.

Table 3.1: Four constructions for cascading LHDs

Designs Method Reference
L3 Q5 X Bj + NaCyy ® Dj (36)
Ly bir ® Ag + nodi, @ Cy, (3 7)

We now consider four constructions in Table 3.1. They produce four designs L),
Ly, Ly and Ly. It is easy to verify that the four designs all are cascading LHDs.
Their pairwise plots are shown in Figures 3.6, 3.7, 3.8 and 3.9. There are a few points
worth mentioning. First, Figures 3.6 and 3.7 display the identical pattern after row-
permuting and column-permuting the pairwise plots because the designs L, and L,
are equivalent up to row-permuting, column-permuting and sign-switching. Second,

L3 constructed by the first generalization provides better local bivariate projection
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properties, as shown in Figure 3.10. Third, the second generalization improves the
global bivariate projection properties of the basic method. For example, Figure 3.11
depicts the sixth and ninth columns of Ls and L4. The global diagonal pattern present

in the columns of Ly has vanished in the columns of L.

Figure 3.6: Pairwise plot of L;

Figure 3.8: Pairwise plot of Lj
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Figure 3.7: Pairwise plot of L,
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Figure 3.9: Pairwise plot of L,
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Figure 3.10: Pairwise plot of the second and eighth columns of L; and Lj
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Chapter 4

Two-level Fractional Factorial

Designs

Fractional factorial designs with factors at two levels are the most widely used in
practice. An important question that arises in fractional factorial experimentation is
how to judge the “goodness” of designs and select good designs. The minimmum G
and G-aberration are the commonly used criteria for selecting optimal designs. The
purpose of this chapter is to provide a collection of good designs based on these two
criteria.

A brief outline of this chapter is as follows. In Section 4.1, the problem that we
aim to attack is described and relevant work is reviewed. Necessary notation and
definitions, as well as the background knowledge, are introduced in Section 4.2. A
general method and its implementation are the topics of Section 4.3. The method is

then applied to construct designs of 24, 32 and 40 runs in Section 4.4.

65
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4.1 Introduction

We consider factorial experiments with m factors at two levels. A full factorial design
requires n = 2™ runs and thus is rarely used in practice unless m is very small.
Fractional factorial (FF) designs, which are fractions of full factorial designs, are
commonly used instead. Among two-level FF designs, those constructed through the
defining relation are called regular designs. The rest are termed nonregular designs. In
this chapter, we focus on two-level orthogonal designs in which for every two columns’
of the design matrix, the four level combinations (1, 1), (1, -1), (-1, 1), (-1, -1) occur
equally often.

Minimum aberration (MA) (Fries and Hunter, 1980) is the most popular criterion
for choosing a regular design. It has been discussed extensively by many researchers.
See Chapter 4 of Wu and Hamada (2000) for a comprehensive review.

In an attempt to evaluate and discriminate general two-level FF designs, Deng
and Tang (1999) proposed generalized minimum aberration, also referred to as mini-
mum G-aberration. Because minimum G-aberration is very stringent, Tang and Deng
(1999) then introduced a relaxed version of minimum G-aberration, called minimum
Gs-aberration. They justified the criterion by showing that it leads to designs that
minimize the contamination of nonnegligible interactions on the estimation of main
effects. Tang (2001) provided a projection justification of minimum GQ—aberration..
Further, Cheng, Deng and Tang (2002) established a justification of minimum Gs-
aberration from model robustness and efficiency point of view.

With the minimum G and Gg-aberration, an important problem is to obtain opti-
mal designs with respect to one or both criteria. Deng, Li and Tang (2000) appeared
to be the first attempt in this direction. They restricted their attention to the class
of Hadamard matrices of orders 16, 20, and 24 and used short versions of minimum
G-aberration, which they term MA-4 and MA-5 classifiers, to obtain a catalogue of

top nonregular designs of 16 for all m < 15 and 20 runs for all m < 19, and 24 runs
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for m < 8. Deng and Tang (2002) made similar efforts except that they searched for
nonregular designs as well as regular designs.

Because not every two-level orthogonal design can be embedded into a Hadamard
matrix, Tang and Deng (2003 ) sought minimum G-aberration designs within the whole
class of orthogonal designs. They were able to construct minimum G-aberration
designs of 3, 4, b factors for any run size n that is a multiple of 4. Li, Deng and
Tang (2004) further pursued the problem in this direction and obtained minimum
G-aberration designs of 20, 24, 28, 32 and 36 runs and up to 6 factors. Butler (2003a,
2003b) presented some construction results which allow MA regular and minimum
G-aberration nonregular designs to be found. The results on MA regular designs
of n runs apply to the cases that 5n/16 < m < n. For minimum Gy-aberration
nonregular designs, the results are used to find such designs for many of the cases
with the run size n = 16,24, 32,48, 64,96 and m > n/2 — 2 factors. Ingram and Tang
(2005) focused on designs of 24 runs and provided a complete table of minimum or
near-minimum G aberration designs for all values of m < 23. Xu (2005) made use of
the Nordstrom and Robinson (1967) code to construct nonregular designs with 32, 64,
128, and 256 runs with 7-16 factors. Many of these nonregular designs were shown
to have minimum Gs-aberration among all possible designs. Xu and Wong (2007)
explored the connection between nonregular designs and quaternary linear codes and
presented a collection of nonregular designs with 16, 32, 64, 128, 256 runs and up to
64 factors.

In spite of the above rich results, obtaining a collection of good two-level designs
remains largely unsolved. In this chapter, we aim to provide a general method for
constructing good two-level FF designs of flexible run size n and all possible values

of m.



CHAPTER 4. TWO-LEVEL FRACTIONAL FACTORIAL DESIGNS 68

4.2 Notation, and definitions and background

In this section, we will first introduce the notation and concepts used in the rest of the

chapter, and then provide some background knowledge on the design construction.

4.2.1 Notation and definitions of two-level FF designs

Consider designs with n runs and m factors, each factor at two levels, denoted by
1 and —1, respectively. We use an n x m matrix D = (d,;) to represent such a
design. To assess the “goodness” of two-level designs, Deng and Tang (1999) proposed
the generalized resolution and the minimum G-aberration. To introduce them, the
following concepts need to be defined. For s = {dy,...,d}, a subset of k columns of

D, define
Jr(s) = |Zdz’1 s digl,
i=1

where d;; is the ith entry of column d;. Obviously, 0 < Ji(s) < n. In particular, when
D is orthogonal, we have J;(s) = Ja(s) = 0. In addition, when D is a regular design,
Ji(s) must equal 0 or n, with 0 corresponding to orthogonality and n to full aliasing.

The formal definition of the generalized resolution is then given as follows.
Definition 4.1. The generalized resolution of D is defined as
R(D) = r 4 [1 — mazg=rJr(8)/n]
where 1 is the smallest integer such that maxs=,J(s) > 0.

It should be noted that for regular designs, the generalized resolution is the same
as the usual resolution. Moreover, when D is orthogonal, we have R(D) > 3. In
general, the larger generalized resolution, more desirable a design.

Many designs may have the same generalized resolution. To further characterize or
discriminate between two-level designs, Deng and Tang (1999) proposed the minimum

G-aberration criterion which will be defined based on the following concept.
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Definition 4.2. Let n = 4t. The confounding frequency vector (CFV) of D is defined
to be the vector of length (m —2)(t+ 1), F(D) = [F3(D);...; Fy(D)] where Fy,(D) =
(fers -+, fepsny) and fu; represents the frequency of k column combinations such that

Je(8) =4t +1—7j) forj=1,...t+1.

Definition 4.3. For any two designs Dy and D,, let F(Dy) and F(Dy) be their
respective CFV’s and f;(Dy) and fi(Ds) be the corresponding ith entries, where i =
L...,(m—=2)(t+1). Letl be the smallest integer such-that fi(D;) # fi(D2). Then
Dy is said to have less G aberration than D, if fi(Dy) < fi(Ds). If there is no design

with less G-aberration than Dy, then D, has minimum G-aberration.

Tang and Deng (1999) proposed a relaxed variant of minimum G-aberration, called
minimum Gy aberration. Let By(D) = n™>37_;[Je(s)]>. The generalized word

length pattern and minimum G, aberration can then be defined.

Definition 4.4. The vector (By(D),...,Bn(D)) is called the generalized word length

pattern.

Definition 4.5. For any two designs Dy and Do, let v be the smallest integer such that
B,(Dy) # B.(Ds). Then Dy is said to have less Go aberration than D, if B.(D;) <
B.(Ds). If no design has less Go-aberration than Dy, then D; has minimum Go-

aberration.

For regular designs, both minimum G-aberration and minimum Gs-aberration
reduce to minimum aberration introduced by Fries and Hunter (1980).

Next, we will present a useful result due to Butler (2003b). Let T = DDT and
My =n"2%0 >0 Ty, where T = (T,).

g=1 " pg’

Lemma 4.1. For designs of resolution I11 and more, we have

]\41 = 0, M2 = 1m, M3 = 6B3, M4 = 24B4 + ’m(3m — 2), M5 = 12035 -+ (60m - 120)B3
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Therefore, finding minimum Gs-aberration designs is equivalent to sequentially
minimizing Ms, My, ..., M,,. Calculating M, is computationally much easier and
thus will be adopted in our work. However, it is worth mentioning that Lemma 4.1

does not help for finding minimum G-aberration designs.

4.2.2 Background on design constructions

As mentioned in Chapters 2 and 3, Bingham, Sitter and Tang (2008) proposed one
basic method and two generalizations for constructing a rich class of orthogonal de-
signs suitable for computer experiments. Because the method to be used to construct
good two-level FF designs here is adapted from their constructions, we next revisit
their basic method and generalizations.

In their notation, a design of n runs for m factors of s levels is denoted by D(n. s™)
and represented by an n x m matrix D = (d;;). Their choice of level setting is
slightly different from ours in Chapters 2 and 3. They chose s levels to be centered

at zero, equally spaced and integer valued. Thus the levels instead are —s + 1. —s +

3,...,—1,1,...,5—3,s — 1 when s is even. When s is odd, the levels remain —(s —
1)/2,...,-1,0,1,...,(s—1)/2. In particular, design D becomes a two-level FF design
when s = 2.

Let A = (a;;) be an ny x m; matrix with a;; = £1 as before. Further let Dy be a

D(ng, s™?). Their basic method provides a design

which is a D(nyng, s™1™2).
For each j = 1,...,my, let D; be a D(ng, s™). Their first generalization gives
anDy  apDsy ... aim Dm,
CL21D1 a22D2 . a2m1Dm1

D = (ayDj)= : : aE (4.2)

amlDl angg (lnlmle]
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They then studied the orthogonality and 3-orthogonality of design D. The orthog-

onality is the same as the one in orthogonal LHDs in Chapter 2.

Definition 4.6. Design D is called orthogonal if it is balanced and the inner product

of any two columns of D is zero, that is, Y ., dij =0 and Y ;_, dij,dij, = 0.

i=1
Definition 4.7. Design D s called 3-orthogonal if it simultaneously satisfies
(1) Y0, dij =0 for all j;
(ii) Z?:l dijydij, = 0 for all ji # j2;
(iii) Y"1 | dij dijydijy = 0 for all jy, ja, Js.
Note that, a two-level FF design is orthogonal if and only if » > 3 and is 3-

orthogonal if and only if 7 > 4, where r is defined as in Definition 4.1.

The following results will be useful for the later development.

Lemma 4.2. Let A be column-orthogonal. Design D in (4.1) is orthogonal if and
only if Dy is orthogonal.

Lemma 4.3. Let A be column-orthogonal. Design D in (4.2) is orthogonal if and
only if Dy, ..., Dy, are all orthogonal.

4.3 Design construction

Consider constructing two-level orthogonal FF designs of n runs for m factors. Sup-
pose that there exist ny, ng, m; and my; (5 = 1,...,my) such that an n; X my
column-orthogonal matrix A = (a;;) with a;; = £1 and ny X my; orthogonal two-level

D;’s can be obtained. Consider the following construction

annDy  apeDy ...  aimDp,

as D ass Dy ...  agm. D
D = (aiij)= 2 1 22 2 2 m1. . (43)

_anllDl an]2D2 anlmlel
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Obviously, design D is an orthogonal two-level FF design with n runs for m factors
by Lemma 4.3, where m = Z;nzll mgy;. Compared with the first generalization (4.2) in
Bingham, Sitter and Tang (2008), the construction (4.3) allows D;’s to have different
numbers of factors.

There are a few important issues regarding the use of the construction above.
First, the construction is applicable to any run size that is a multiple of 8. Second,
for a given run size n, there may exist multiple value settings of n, and n,. Unfor-
tunately, no general theory on the optimal setting of n; and ns can be given at this
moment. Instead, we consider all possible combinations of n; and n,. Third, for a
given my, the vector (mayy, ..., Moy, ) may have different value settings. There is no
clear optimal choice of the vector (may, ..., Moy, ), as indeed shown in the applica-
tions of the construction in Section 4.4. Finally, we discuss the choices of Dj’s for
all j = 1,...,my. The first possibility is D; C Dj; where M = max{May, ..., Mam, }.
That is, after taking a design Dy from a complete catalogue of designs of ny runs with
M factors, we can take mg; columns from these M columns to form D;. In fact, this
covers the basic construction in Bingham, Sitter and Tang (2008). The second possi-
bility is taking each D; from a complete catalog of designs of ny runs for my; factors.
In addition, better G or GG, aberration designs may be attained by row-permuting
D;’s for each design obtained by the two possibilities above. It should, however, be
mentioned that the designs after column-permuting or sign-switching D;’s are isomor-
phic to the initial design and thus do not help improve the criteria of minimum G or
(Go-aberration.

The above discussion leads us to consider how one can row-permute D;’s. For
no-run Dj’s, j =1,...,my, there are (ny!)Y™~1 possible row permutations. It is com-
putationally infeasible to carry out all these permutations even for moderately large
values of n, and m;. When the complete search is impossible, random permutations

become a naive solution. Here, we propose an efficient algorithm to search for good
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designs. The algorithm essentially adopts the two important operations, pairwise
switch and exchange, in Xu’s algorithm (see Section 2.4 for the details). For ease in
presentation, we assume n; = m; = 2, a;; = @12 = ag; = 1 and age = —1 in the
construction (4.3). In other words, we aim to construct designs
D D
p=|"" T, (4.4)
Dy -D,
where D, and Dy are two-level orthogonal designs of no runs for ms; and me, factors,
respectively. For each given D, the algorithin for seeking a better design by row-

permuting Dy works as follows.

Step 1: Randomly row permute Ds;

Step 2: For each pair of rows in Dy, make a switch and calculate the corresponding
criterion. Choose the pair with the best value of the criterion and switch the

pair of rows. Repeat Step 2 until no further improvement is possible;

Step 3: Repeat Step 1 and Step 2 T times.

The algorithm above is a general form. We may be able to perform fast update in
Step 2 depending on the criterion used in the algorithm.

With the construction (4.3) and the above discussion, we can have a search algo-
rithm for obtaining a collection of good designs using minimum G and Gs-aberration
defined in the previous section. For simplicity, the algorithm is presented only for the
simple form of the construction as in (4.4). Let I'; be the catalogue of non-isomorphic
designs of ny runs for ¢ factors.

The following procedure generates a collection of S top designs formed as in (4.4)
and ranked by minimum G-aberration criterion.

Let C be the top designs obtained and s be the number of designs in C, with initial

values C = @ and s = 0. For mg; = 0, ..., m, let may = m —ms; and do the following,.
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Step 1: If mgy; = 0, obtain a design D = [DT,DT]7 and calculate its CFV. Set
s = s+ 1 and add this design to C. If s = 5 + 1, then discard the design with
the worst CFV in C and set s = s — 1;

Step 2: If my; = 0, obtain a design D = [DI, —DI]T and calculate its CFV. Set
s = s+ 1 and add this design to C. If s = .5 + 1, then discard the design with
the worst CFV in C and set s = s — 1;

Step 3: If mo; > 0 and mge > 0, let M0, = Max{ma;, mas}. For each design Dy in

the catalogue ['y;

max?

do the following;:

(a) If Moy = Almam, let D1 = D() in (44) If Moo = Mma:u let D2 = DO in (44),

(b) Consider all possible M,,;, columns out of My, columns of Dy where
Mpin = Min{may, maa}. Let the My, columns be Dy if mo; = Mpe, and
Dy if myy = Mpe,. Obtain a design D formed as in (4.4) and calculate its
CFV. Set s = s 4+ 1 and add this design to C. If s = S + 1, then discard
the design with the worst CFV in C and set s = s — 1;

(c) Randomly row permute Dy;

(d) For each pair of rows in Dy, make a switch and calculate the corresponding
criterion. Choose the pair with the smallest CFV and switch the pair of
rows. Set s = s+ 1 and add this design to C. If s = S + 1, then discard
the design with the worst CFV in C and set s = s — 1;

(e) Repeat (d) until no further improvement is possible;

(f) Repeat (c), (d) and (e) T times.

Similarly, the procedure above can be adjusted to construct a collection of good
designs according to minimum Ga-aberration. In the next section, we will apply this

procedure to obtain a collection of good designs of 24, 32, 40 runs based on minimum

G and Gs-aberration criteria.
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4.4 Applications to designs of 24, 32, 40 runs

In this section, the method (4.3) is applied to designs of 24, 32 and 40 runs, using
minimum G and Ge-aberration as ranking criteria. New results are presented and
comparisons with the existing results are made. Due to the space consideration, the
design matrices are not given here but are available upon request. Information on the
generalized resolution, generalized word length pattern and CFV’s of the top designs

is provided in Appendices B, C and D.

4.4.1 Designs of 24 runs

For the case n = 24, we choose n; = 2 and n, = 12 in (4.3). Appendix B contains the
three best CFV’s and the three best generalized word length patterns. We also report
one combination of mo; and mas such that the corresponding CFV’s or generalized
word length pattern is achieved.

We compare our result with Ingram and Tang (2005). In Appendix B, the ¥’

kK

Y

and *¥**’

designations correspond to the cases that our design has less aberration
than, the same aberration as, and more aberration than the design found by Ingram
and Tang (2005). For the case 3 < m < 12, we found the same G-aberration designs
as those obtained by Ingram and Tang (2005). Therefore, these designs are minimum
G-aberration followed by Proposition 1 in Ingram and Tang (2005). In addition, we
found two 24 x 6 designs of resolution 4.67 because there are two non-isomorphic
designs of 12 runs for 6 factors. For the case m > 13, although the minimum G-
aberration design obtained by Ingram and Tang (2005) has less aberration than the
one found by our method, excluding the case m = 14, the difference is very small.
For minimum Gy-aberration, we found as good designs as those by Ingram and Tang
(2005). The comparison also leads us to conclude that there exist two-level designs

that do not have form (4.3).
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4.4.2 Designs of 32 runs

In the use of the method (4.3) for constructing 32-run designs, we have four choices
of ny and na, (n; = 2, ng = 16), (n; = 4, no = 8), (n; = 16, ny = 2) and (n; = 8,
ny = 4). Our investigation indicates that the combination (n; = 2, no = 16) produces
the most comprehensive and best designs. Consequently, we choose n; = 2 and
ny = 16 in (4.3) for constructing 32-run designs of m factors, where 3 < m < 31.
The three best resolution, generalized word length pattern, and CFV’s are listed in
Appendix C.

We compare our results with Xu and Wong (2007), yielding the last column of
the tables in Appendix C. The ‘G*** and ‘G2**’ designations correspond to the cases
our designs have the same G and G, aberration as those obtained by Xu and Wong
(2007), respectively. The ‘G*’ and ‘G,* designations indicate that our designs are
better than those obtained by Xu and Wong (2007). Note that m for 32-run designs
in Xu and Wong (2007) must satisfy 7 < m < 24. Appendix C reveals that our
designs are better for m > 10 and as good as theirs for mm < 9 in terms of minimum
G-aberration. Turning to minimum Gs-aberration, our designs are better for m = 10
and equally good in other cases. As a result, the method (4.3) not only allows us
to construct a class of good designs with every possible number of factors, but also

obtain the best or nearly-best designs in terms of both criteria.

4.4.3 Designs of 40 runs

A complete catalogue of 20-run non-isomorphic designs is available thanks to Sun,
Li and Ye (2002). We construct 40-run designs of m (3 < m < 39) factors by using
ny = 2 and ny = 20 in (4.3). However, we have not considered the row permutations of
Dj’s for the time being. The resulting two best generalized word length patterns and
CFV’s are tabulated in Appendix D. These results are new. The search incorporating

row permutations of D;’s will be done in the future work.



Chapter 5

Folded Over Non-Orthogonal

Designs

Folded over non-orthogonal designs for screening are studied in this chapter. The
notion of minimal dependent sets (MDS) is used to introduce MDS-resolution and
MDS-aberration as criteria for comparing folded over non-orthogonal designs. A fast
isomorphism check is developed that uses a cyclic matrix defined on the design before
it is folded over. The isomorphism check is used to obtain a catalogue of minimum
MDS-aberration designs for some useful run sizes n and the number £ of factors. An

algorithm for obtaining “good” larger designs is discussed.

5.1 Introduction

Screening experiments are used to sift through a set of candidate factors to identify
those that impact the response - these factors are referred to as being “active.” For
this chapter we assume that the standard linear model assumptions are valid. Further
we assume that the active factors can impact the response through either a main effect

(ME) or a two-factor interaction (2FI) but that all interactions involving threc or

77
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more factors are negligible. Thus the model is a linear model that contains ME’s and
2FT’s formed using the active factors. The primary goal of a screening experiment
is to identify the active factors but an important secondary goal is to provide a
simple model that captures the essential features of the relationship between these
active factors and the response. Clearly, if an experiment is run that allows the true
model to be correctly identified, then both of these goals are achieved. Folded over
non-orthogonal two-level designs were demonstrated to be useful in such screening
experiments (Miller and Sitter, 2005). Such designs are our study objects in this
chapter. The term “folding over” indicates that the levels of all the factors are reversed
to form runs that are the mirror images of those in the original design.

To assess and compare folded over non-orthogonal designs, we introduce two cri-
teria, MDS-resolution and MDS-aberration, both of which are based on the concept
of MDS developed by Miller and Sitter (2004).

With MDS-resolution and MDS-aberration, we can obtain a catalogue of MDS-
aberration folded over non-orthogonal designs. However, this is not an easy task as it
involves determining whether or not two designs are in fact different. Two designs are
said to be isomorphic if one can be obtained from the other by relabeling the factors,
reordering the treatment combinations and/or relabeling the levels of one or more
factors. Otherwise, the two designs are non-isomorphic. In other words, isomorphic
designs can be changed into each other by the usual randomization of factor labels
and level labels. Since isomorphic designs share the same statistical properties in
classical ANOVA models and are essentially the same, it is sufficient to include only
one of them in a catalogue of designs. In addition, one wants to avoid considering
more than one of them in any search for optimal designs and thus avoid unnecessary
computations. The identification of the isomorphism of two designs is a combinatorial
problem. For two k-factor (each having two levels) n-run designs, a complete search
compares n!k!2* designs based on the definition of isomorphism. It is known as an NP

problem, when n and k increase. To alleviate the computational burden, we develop
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a fast isomorphism check that uses a cyclic matrix defined on the design before it
is folded over. By doing so, the speed of checking for isomorphism is much faster
than directly applying an isomorphism check to the fold-over design. This relative
difference becomes greater as the design size increases. As a result, we are able to use
the isomorphism check to obtain a catalogue of minimum MDS-aberration designs for
some useful n and k, and we will also discuss an algorithm for obtaining “good” larger

designs.

5.2 MDS-resolution and MDS-aberration

In this section, the concept of minimum dependent sets (MDS) will be reviewed. Two
criteria, MDS-resolution and MDS-aberration, will then be introduced and discussed.
Miller and Sitter (2004) introduced the concept of MDS. Its formal definition is given

as follows.

Definition 5.1. A minimal dependent set is a set of 2FI’s such that the model that
contains all of the main effects and this set of 2FI’s is not estimable but if any of the

2FI’s us removed the resulting model is estimable.

A model is estimable if and only if the columns in its model matrix are linearly

independent. As an illustration, we consider a 12-run Plackett-Burman design (PB12).

Example 5.1. Table 5.1 contains the design matrix of the 12-run Plackett-Burman
design. Consider the first 5 columns from this design and denote them by PB12;,.
The number of MDS’s of various sizes for design PB12;, is given in Table 5.2. Note
that the smallest MDS are of size four. In addition, design PB125, has 10 MDS’s
of size four, one of which is {12,13,24,35}. This implies that it will be difficult to
distinguish between the following sets of interactions: (a) {12,13} from {24, 35}, (b)
{12,24} from {13,35} and (c) {12,35} from {13,24}.
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Table 5.1: The 12-run Plackett-Burman design
1 2 3 4 5 6 7 8 9 10 11
1 1.1 1 1 1 1 1 1 1 1
-1 -1 1 -1 1 1 -1 1 -1 1
r -1 -1 -1 1 1 1t -1 -1 1 -1
1 1r-1 -1 -1 -1 1 1 -1 -1 1
1
1

111 -1-1 1-1-1 1 -1 -1
-11 1 1 -1 -1 -1 -1 1 -1
1 -1 1 1 1-1-1 -1 -1 -1 1
-1 1 -1 1 1 1-1 1 -1 -1 -1
-1 -1 1 -1 1-1 1 1 1 -1 -1
1 -1 -1 1-1 -1 -1 1 1 1 -1
-+ 1-1 -1 1-1 -1 -1 1 1 1
-1 -1 1 -1 -1 1-1 1 -1 1 1

Table 5.2: Minimal dependent sets
Number of 2FT’s in the MDS

1 2 3 4 5 6
PB12, 0 0 0 10 0 80
PB12s, 0 0 0 15 0 15

Design

An MDS implies that we cannot distinguish some 2FI’s in the MDS from the rest .
of 2FD’s. This implication can be better understood if we view an MDS as a word. A
word is an interaction that equals the identity element I in regular fractional factorial
designs. For example, in a 2°~! design, I = 2345 means that the corresponding design
is not capable of distinguishing the two effects of 5 and 234. Just as a longer word
is preferred, an MDS of larger size is preferable. In other words, we would like to
select designs such that their MDS’s are as large as possible. If we maximize the size
of the smallest MDS, we obtain the criterion of maximum MDS-resolution in obvious
parallel to maximum resolution in regular FF designs. It is also evident that if we

have two designs that have the same size of the smallest MDS but one has fewer
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MDS’s of that size than the other, then the former is preferred to the latter. Thus,

we introduce the “MDS word length pattern” as follows.

Definition 5.2. The vector W = (Ay, Aq, ..., Ag) is called the MDS word length pat-

tern where A; is the number of MDS’s of size i.

Returning to Example 5.1, design PB12s, has an MDS word length pattern (0, 0,
0, 10, 0, 80). It indicates that this design has no MDS’s of size < 3, 10 MDS’s of size
4, no MDS of size 5, and 80 MDS’s of size 6. This is an obvious parallel to the usual
word length pattern of the defining contrast subgroup of a regular FF design. This

leads to the obvious notion of MDS-aberration.

Definition 5.3. For two designs d, and ds, let v be the smallest integer such that
A, (dy) # A.(ds). Then dy is said to have less MDS-aberration than dy if A.(d)) <
A,(dy). If there is no design with less MDS-aberration than d,, then dy has minimum

MDS-aberration.

Example 5.2. Consider the last 5 columns from the design in Table 5.1. We refer to
these 5 columns as design PB125,. The corresponding MDS word length pattern is
(0, 0, 0, 15, 0, 15), given in Table 5.2. Based on the minimum MDS-aberration cri-
terion, design PB12s5, has less MDS-aberration than design PB12;, and is therefore

preferred.

We have introduced maximum MDS-resolution and minimum MDS-aberration.

Both of them will be used for comparing designs in Section 5.4.

5.3 Folded over non-orthogonal designs for screen-
ing

Miller and Sitter (2005) have investigated the use of folded over non-orthogonal designs

for screening. Their work indicates that fold-over designs are effective in situations
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where the following conditions are satisfied:

(1) All interactions that involve three or more factors are negligible.

(2) At most, a small proportion of the 2FI’s will be active.

(3) A 2FI that satisfies strong heredity is more apt to be active than one that satisfies
weak heredity which, in turn, is more apt to be active than one that does not satisfy
heredity.

In the condition (3), strong heredity assumes that an interaction can be active only
when both corresponding main effects are active, and weak heredity assumes that an
interaction can be active when at least one of the corresponding main effects is active
(see Chipman, 1996; Chipman, Hamada and Wu, 1997).

They go on to propose a 2-stage analysis that exploits the fact that for fold-
over designs there is a clear separation of the information about ME’s and 2FT’s.
That is, for fold-over designs it is well known that every odd-order effect (ME’s,
3FT’s, 5FT’s, etc.) is orthogonal to every even-order effect (intercept, 2FI’s, 4FT’s,
etc.) and that the sample space of the response can be divided into two orthogonal
subspaces each of dimension n/2 such that all the odd-order effect vectors occur in
one subspace and all of the even-order effect vectors occur in the other. Given that
the intercept is included in all models it is useful to adjust the 2FI’s to make them
all orthogonal to the intercept. Under the assumption that all interactions involving
more than 2 factors are negligible, the sample space of the response Y can be split into
three orthogonal subspaces: a subspace of dimension 1 that contains the intercept, a
subspace of dimension n/2 that contains the ME’s and a subspace of dimension n/2—1
that contains the 2FI'’s. There are two consequences of this that are important for
the following discussion. First, we can evaluate how effective a design will be for
identifying active ME’s and for identifying active 2FI’s separately. Second, although
the degrees of freedom available for ME’s and 2FI’s are roughly the same, n/2 and
n/2 — 1, there are typically considerably fewer ME’s than 2FI's. As a result, the

criteria we use to evaluate how well a design can identify ME’s will differ from that
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used for 2FT’s.

First consider ME’s. In order not to restrict the maximum number of active ME’s
that can be identified, we only consider designs that allow the full ME model to be
estimated. Thus the designs can be used for situations where the practitioner believes,
a priori, that all the ME’s may be active and wishes estimates for all ME’s as well as
for screening applications. To evaluate ME estimation/identification, we adapt the

definition of efficiency used in Margolin (1969):
ME efficiency = k/ [n X trace (X}C,EXME)_l] ,

where X ;g contains only the columns in the model matrix X for ME’s. This eval-
uates average variance of the estimated main effects and thus is closely related to
A-efficiency. If ME’s are defined as 1/2 the difference between the average response
at the —1 and +1 levels then the average variance of the estimated ME’s is equal to
0?/(n x efficiency). A design that has orthogonal ME’s will have efficiency = 1 and
designs which have non-orthogonal ME’s will have efficiency < 1 which will result in
the average variance of the estimated ME’s being inflated by a factor of 1/efficiency.
Thus the efficiency can be interpreted as a measure of how close the ME-design ma-
trix is to being orthogonal. It is generally accepted that for screening applications the
best possible situation is to have all the effects orthogonal to each other. Thus this
measure of efficiency should also give a good indication of how suitable the design is
for screening applications.

Now consider 2FT’s. For the fold-over designs considered in this chapter, and larger
designs, the degrees of freedom (dfs) available for 2FI's are not large enough to allow
the full 2FI model to be estimated. For example, for the 6-factor 24-run design there
are 11 dfs available for 2FI’s and a total of 15 2FI’s to be considered. Thus we have a
situation where the design is supersaturated with respect to 2FI’s and we cannot use
the efficiency of estimated effects for the full 2FI model as a criterion. For this type

of situation, minimum MDS-aberration as described in Section 5.2 provides a useful
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criterion to evaluate how well a design can screen for 2FI’s.

To obtain fold-over designs that have high ME-efficiency and minimum or near-
minimum MDS-aberration for the 2FI’s that can entertain from 4 to 12 factors in
24 runs or less requires an extensive computer search. This can be attributed to
three facts: (1) the number of possible designs is large for each combination of factor
number, k, and run size, n, and (2) calculating the MDS word length pattern for a
single design can consume a surprising amount of computing time; and (3) checking
isomorphism (equivalence) of any two designs is computationally intensive. All of
these problems become worse as k and n increase.

We address these problems by first developing a new isomorphism check that is an
adaptation from Clark and Dean (2001) specifically for fold-over designs in the next

section.

5.4 An isomorphism check

Let A and B be two 2-level n x k non-orthogonal design matrices, and let D, =
(AT, —AT)T and D, = (BT,—BT)T be the 2n x k design matrices constructed by
respectively folding these over. Then we have the following definitions, the second of
which follows from the first and the special structure of the design matrix of a folded

over non-orthogonal design.

Definition 5.4. D, and D, are said to be isomorphic or equivalent if onc can be
obtained from the other by row permutations, column permutations and relabeling the

levels within one or more columns.

Definition 5.5. D, and Dy are said to be isomorphic or equivalent if there exists an
n X n row permutation matriz R and a k x k column permutation matriz C' such that

A= L {RBCL,, where L1 and Ly are diagonal matrices with 41 on the diagonals.
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For k > 2, define a cyclic matrix A* of a matrix A = (a;;)nxr to have (¢, 7)th

element

* ‘-1, lf a,-(jH) = aij
(A% = _
1, ifaygqy # ay

foreach =1,2,...,k—1,¢=1,2,...,n and

=1, ifayg =ay

1, ifag #an

[A"]ik =

’

foreachi=1,2,...,n.

We call A* a cyclic matrix for easy reference. The term cyclic refers to the fact
that one compares the last element of the ith row of A to the first element when
forming A*. The cyclic matrix A* is invariant to changes of sign within rows of A and
for each row of A, if we know any one of the entries, we can obtain A from A*. In
other words, we can say that A* uniquely determines A up to changes of sign within
rOWS.

Define the Hamming distance matrix h{A*) of A* to have (i, j)th element

S OlATL, if i
0, if i =j,

[h(A%)]i; =

where §[A* ﬁ ; is equal to 1 if in the /th column of A*, the symbols in the ith and jth
rows are different, and equal to zero if they are the same. The (¢, j)th element of h(A*)
counts the number of dimensions in which the ¢th and jth points fail to coincide. The
distance matrix h(A*) is invariant to permutations of columns and relabeling of levels
within columns of A*.

Let (AC)* denote the cyclic matrix of AC and h((AC)*[1 : ¢]) be the Hamming

distance matrix corresponding to the first ¢ columns of (AC)*.

Lemma 5.1. For any given column permutation matrizx C' and given row permuta-
tion matriz R, the sequence of matrices Rh((AC)*[1: q))RT,q = 1,2,...,k, uniquely

determines the matriz A up to the equivalence defined above.
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Proof. The following proof combines the proof of Lemma 2.2 and Theorem 2.1 of
Clark and Dean (2001) with the fact that the cyclic matrix of a matrix uniquely
determines the matrix up to changes of sign within rows.

Since permuting rows before or after creating the cyclic matrix is equivalent,
(RAC)™[1 : q] = R((AC)™[1 : g]). (5.1)

This implies that (RAC)*[1 : ¢q] and (AC)*[1 : q] are isomorphic, as (5.1) implies one
can be obtained from the other via row permutations. Since a necessary condition for
the isomorphism of any design matrices, D, and D,, is that there exists a row permuta-
tion matrix R such that h(D;) = Rh(Ds)R", h((RAC)*(1 : q])=Rh((AC)*[1 : q])RT.
For a given R let the sequence of matrices Rh((AC)*[1: q])RT, ¢ =1,2,...,k, corre-

sponding to a fixed but unknown matrix A, be fixed. Note that, for any q < k,

q—1

[RR((ACY[1: DB )iy = Y _O[R(AC)'); + S[R(AC)]
p=1
= [R(M((AC)[L: (a — D]))R"]i; + [R(R((AC) [d) R"]:;

where (AC)*[g] denotes the gth column of (AC)*. Thus, a fixed sequence of distance
matrices Rh((AC)*[1: q])RT, q = 1,2,..., k, implies a fixed sequence Rh((AC)*[q])R7,
q=1,2,...,k, and we may investigate each column of A separately. Let A* be an nxk
matrix with the first row [—1,—1,...,—1]. Foreachq € {1,2,...,k}, we construct the
qth column of A* as follows. For i = 2,3,...,n in turn, if [R(R((AC)*[q))RT];; = 0,
for some j = 1,2,...,4 — 1, then the symbol (-1 or 1) in the ith row of column g of
A* is identical to the symbol in the jth row, so set [%]i’q = [;4v*]j,q. Otherwise, set
[E‘]i,q equal to an unused symbol. The gth column of A* is then identical to the gth
column of R(AC)*, up to a relabeling of the symbols in the column. Let Abeannxk
matrix with the first row [1,1,...,1] and the first column [1,1,...,1]”. Based on the
definition of the cyclic matrix, we can obtain A from A*. Thus, A is identical to A
up to row permutations, column permutations, symbol relabeling within columns and

changes of sign within the rows. O
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Theorem 5.1. Designs D; and Dy are isomorphic iff there exists an n X n row

permutation matriz R and a column permutation matriz C' such that, for every q =1,

2, ..., k, h(A*[1: q))=R(h((BC)*[1 : q])RT.

Proof. Necessity: Suppose that design D; and D, are isomorphic. The distance
matrix A((BC)*) is invariant to symbol relabeling in any columns of (BC)* and B* is
invariant to changes of sign within any rows of B. Hence, without loss of generality we
assume that the factors in designs D; and D; have the same level labeling. Then we -
can write A = Ly RBC which implies A* = R(BC)*, where C is the row permutation
matrix and R is the permutation matrix corresponding to the row permutation. Then,
for 1 < p <k, we have [h(A*[p])];; = S[R(BC)*]%; = [h((BC)*[p])]+..r;- Therefore, for
each ¢q=1,2,....,k,

q q

AT LDl = Y (AT D) = D_[R((BO) D)o,
= D _[RI((BOY IR = [R(M((BC) 1+ a))R): .
Sufficiency: Follows from Lemma 5.1. ]

Corollary 5.1. Designs Dy and Dy are isomorphic iff there exists an n X n row

permutation matriz B and a column permutation matrixz C such that, for everyq=1, -

2, ... k, h(A*[q))=R(h((BC)[g)R".

For folded over non-orthogonal designs where all the factors have two levels, A* is
still a matrix whose entries have two levels. In this case, the distance matrix can be
written as Hq» = (kJ, — A*(A*)T)/2, where J,, is an n x n matrix of unit elements.

We then have the following second corollary to Theorem 5.1.

Corollary 5.2. Designs Dy and Dy are isomorphic iff there ezists an n X n row

permutation matriz R and a column permutation matriz C such that, for every q = 1,

2, ..., k, A*[g)(A*[a])" =R(BC)*[q)((BC)*[a)" RT.
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Theorem 5.1 and its corollaries simplify checking isomorphism of two-level folded
over non-orthogonal designs to checking isomorphism of the original non-orthogonal
designs that were folded over, yielding computational advantages. There is, however,
still some thought necessary as to how to use Theorem 5.1 to establish the isomorphism
of two folded over non-orthogonal designs D, and D, say. To do so, we need to
determine L,, R, C and Ly such that A = Ly RBC Ly. Once the permutation matrices
R and C are known, L; and L. are determined, since the negative entries on the
diagonal of L; correspond to the elements in the first column of RBC' that differ in
sign from- the corresponding elements in the first column of A. Likewise, the negative
entries on the diagonal of L, correspond to the elements in the first row of RBC
that differ in sign from the corresponding elements in the first row of A. Thus, the
issue comes down to how to find R and C. Unfortunately, Theorem 5.1 is not enough
to provide R and C. The reason is that the Hamming distance matrix of B* is not
equivalent to that of (BC)*. The conventional strategy with regard to searching for
possible R and C is to find R before C (see Clark and Dean, 2001; Lin and Sitter,
2008). In order to find R, we use the following procedure. We first search for the
possible row permutation matrices for D; and Dy using the algorithm presented in
Clark and Dean (2001). Let R be a 2n x 2n possible row permutation matrix for D,
and D,, then R = R[1 : n,1 : n] 4+ R[1 : n,(n + 1) : 2n] will be the possible row
permutation matrix for A and B. For each possible row permutation matrix R, we

basically take advantage of Corollary 5.2. Noting that

—|Bleg) + Blegll + 1, g < k;

BC)*q] =
(BOl) —|Ble] + Blek]| + 1,  q¢=k,

we seek ¢y, ¢k, Ch_1, - - - , C2 sequentially by testing A*[q](A*[q))T=R(BC)*[q]((BC)*[q])* RT.
If there is no R and C satisfying Corollary 5.2, the two designs are non-isomorphic.
This new isomorphism check has some computational advantages over directly ap-

plying the Clark and Dean (2001) isomorphism check. These advantages are modest
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for the designs tabulated here, but become progressively greater for larger designs. To
demonstrate, we perform a small numerical evaluation. For various n (number of runs)
and k (number of factors) we randomly choose a set of B = 1, 500 non-orthogonal de-
signs with n/2 rows and k columns, X4, ..., Xg, by independently generating Ber(1/2)
random variables for each element. For each X; we generate another design which
is isomorphic to it and one that is not. To generate the design that is isomorphic
to X;, we randomly generate matrices R, C, L; and L, to get isomorphic design
X ]T = LiRX;CL,. To generate the design which is non-isomorphic to X; we merely
randomly generate non-orthogonal designs until we obtain one that is non-isomorphic
to X;. We then apply the proposed isomorphism check and the Clark and Dean iso-
morphism check to each pair of isomorphic designs and to each pair of non-isomorphic
designs. Table 5.3 compares the speed (in seconds) of our proposed adaptation over
directly applying Clark and Dean’s isomorphism check to the fold-over design for iso-
morphic pairs and for non-isomorphic pairs, for some of the tabulated cases in the
next section (n = 20 and 22) and for some larger cases. The table gives the average
time (ET), the relative average time (RT=[ET e, ETcp]/ET ew, where ET ., refers
to the proposed method and ET¢p to Clark and Dean’s), and the 5th and 95th per-
centile of the relative times (5%, 95%). As can be seen in the first 6 rows of Table 5.3,
when comparing non-isomorphic designs applyiﬁg Clark and Dean isomorphism check
directly is better, but in these cases both are extremely fast, while when comparing
isomorphic designs, the gains of the proposed isomorphism check are greater, though
still modest for these small designs. One should note, however, that there are many
more comparisons necessary between isomorphic designs than between non-isomorphic
designs. Overall, in the searches performed in the next section for n = 16 — 24 the
relative gains were around 35%. In the last three rows of Table 5.3, we illustrate that
the gains become much more dramatic as n and k become larger. Looking at the
isomorphic cases, we can see that the proposed algorithm outperforms the Clark and

Dean algorithm most of the time and by very large amounts. This bodes well for use



CHAPTER 5. FOLDED OVER NON-ORTHOGONAL DESIGNS 90

Table 5.3: Comparison between proposed and Clark and Dean’s isomorphism check
for large designs

Isomorphic Non-Isomorphic
n k RT 5%  95% ETecp EThew RT 5% 95% ETcp ETiew
20 0.678 0.285 1.192 0.003 0.002 1.509 1.280 2.168 0.0001 0.0002
20 8 0.622 0.243 1.134 0.004 0.002 1.362 1.313 1.626 0.0002 0.0003
20 10 0569 0.211 1.037 0.007 0.004 1.274 1.259 1.328 0.0002 0.0003

[

22 7 0.623 0.249 0.115 0.004 0.002 1.323 1.254 1.538 0.0002 0.0002
22 9 0.555 0.212 0.999 0.007 0.003 1.315 1.239 1.597 0.0002 0.0003
22 11 0533 0.192 0960 0.010 0.003 1.289 1.243 1.434 0.0003 0.0003

60 20 0.348 0.128 0.607 0.448 0.152 1.068 1.049 1.088 0.004 0.004
100 50 0.272 0.108 0454 15.65 4.30 1.033 1.031 1.035 0.023 0.024
200 80 0.231 0.092 0371 283.5 61.67 1.004 1.003 1.004 0.145 0.145

*Times given in seconds

in searching for large folded over non-orthogonal designs.

5.5 Obtaining minimum MDS-aberration designs

We are able to perform an exhaustive search using the isomorphism check of the
previous section for all cases with n =10, 12, 14, 16 and 18 for which we obtain all
non-isomorphic designs. We are also able to obtain all non-isomorphic designs for
n = 20 with £k < 8, n =22 with £ < 6, and n = 24 for all 5 < k < 12 restricting
to MDS(1), ..., MDS(5) all equal to zero. For n = 20 with & = 9, and 10, and for

n =22, 7<k <11 we use the following algorithm.

1. Start with the largest k for which an exhaustive search was possible. Order the

obtained designs on the basis of their MDS sequences.

2. Next search for the best designs for the same number of runs and one additional
factor. To do this, perform a comprehensive search of designs that can be

formed by adding one additional column to the best designs identified in Step 1,
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keeping only the set of non-isomorphic designs. The logic is that if we take any
k —1 columns from a k-factor design then the MDS for the (k — 1)-factor design
are included in the MDS for the k-factor design. Only the best 50 designs are

retained.

3. Repeat Step 2 until the maximum number of factors (k = n/2) is reached.

This algorithm uses an idea similar to those in Loeppky, Sitter and Tang (2007)
which were developed in a different context. Although we cannot guarantee that we
have found the best possible design in each case, we are confident that the designs
presented are among the best possible.

In Tables E.1-E.13 in Appendix E, we present the non-isomorphic minimum MDS-
aberration designs obtained for each combination of £ and n. In those tables, a design
run Zés - - -4, represents a run whose i;th setting is 1, 7 = 1,...,p, and remaining
settings are -1. For example, consider Table E.1, in the case of k = 4, a design run
12 designates a level setting (1, 1, -1, -1). There are a number of interesting aspects

to the designs presented in Tables E.1-E.13:

1. There is only one design for 5 factors in 10 runs and one design for 6 factors in
12 runs that have MDS-resolution 4, and in each case these are the Margolin

(1969) designs which were investigated in Miller and Sitter (2005).

2. There are 3 designs for 7 factors in 14 runs that have MDS-resolution 4 and the
Margolin (1969) design is the third best in terms of both MDS-aberration and
ME-efficiency.

3. For 5 factors in 16 runs, the regular FF design defined by selecting all of the
runs for which the 5-factor interaction is at the +1 (or -1) level has resolution
V. Although it is not a folded over design it has all ME’s and 2FI’s orthogonal

to each other. Therefore it performs better, both for estimating ME’s and for

separating 2FT’s, than the best fold-over designs.



Chapter 6

Conclusions and Future Research

In this thesis, we have developed methodologies for designing both computer experi-
ments and physical experiments. Computer experiments provide a fresh and power-
ful approach to helping scientists understand their complex physical processes. The
underlying physical mechanism in a computer experiment is represented and imple-
mented by a computer code, which produces the response. The absence of random
errors in the response necessitates new approaches to the design and analysis of exper-
iments. Space-filling designs such as Latin hypercubes, maximin distance designs and
uniform designs are commonly used to select the settings of input variables to run the
comp.uter code. This thesis studies Latin hypercube designs. Under this topic, four
pieces of work are accomplished. The first is the development of a new method for
constructing Latin hypercubes. The method offers new insights into the structure of
Latin hypercubes. It is simple yet powertul because it allows large Latin hypercubes
to be constructed using small Latin hypercubes. In addition, it has some interest-
ing and attractive features. First, orthogonality or near orthogonality of small Latin
hypercubes is carried over to large Latin hypercubes, which allows us to completely

solve the problem of constructing orthogonal Latin hypercubes in terms of available

92
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run sizes. The method produces designs that are capable of entertaining more or-
thogonal factors than the existing methods. Second, the method can be adapted to
construct cascading Latin hypercubes that provide local design points to enhance the
estimation of correlation parameters (Handcock, 1991). The second piece of work is
that we have established the existence of orthogonal Latin hypercubes in terms of
run sizes. When orthogonal Latin hypercubes do not exist, the lower bound on the
correlations is useful for both theoretical construction and computer search of the best
nearly orthogonal Latin hypercubes. We have also proposed an adapted algorithm,
which allows us to efficiently obtain small orthogonal and nearly orthogonal Latin hy-
percubes. Although the algorithm is only applied to Latin hypercubes in the thesis,
it can also be used for seeking s-level designs (2 < s < n) or mixed-level designs.
The above three pieces of work constitute Chapter 2. The fourth piece of work was
presented in Chapter 3, in which we introduced and studied two generalizations of
our basic method. We then exemplified that the generalizations provide designs with
better projection properties.

Chapters 4 and 5 form the second topic of this thesis. They dealt with designs for
physical experiments. We focus on two types of designs, two-level nonregular designs
and two-level folded-over non-orthogonal designs. In spite of the important progress
in the research of nonregular designs during the last decade (Xu and Wong, 2007
and the references therein), construction of minimum G and Gs-aberration designs
remains largely unsolved. We have made in Chapter 4 another serious attempt in this
direction. Based on the structures of designs in Bingham, Sitter and Tang (2008),
we have developed a computational algorithm for searching for minimum G and Go-
aberration designs. Our method is applicable as long as the run size is a multiple of
eight; in contrast, the method of Xu and Wong (2007) applies only when the run size is
a power of two. Results from the application of the algorithm to designs of 24, 32 and
40 runs are obtained and presented in the thesis. Two-level folded-over non-orthogonal

designs were demonstrated to be useful in screening experiments in Miller and Sitter
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(2005). We here proposed two criteria, MDS-resolution and MDS-aberration, to assess
and compare such designs. Obtaining a catalogue of good folded-over non-orthogonal
designs is of practical interest. To this end, we proposed an isomorphism check to
determine whether or not two fold-over designs are isomorphic. The isomorphism
check was then demonstrated to have computational advantages through a numerical
evaluation.

Next, we discuss some future work in the following five directions.
More on the proposed method in Chapter 2

The basic method and its generalizations construct large Latin hypercubes using
small Latin hypercubes B and C'. An obvious question is what the resulting design
looks like if B, C', or both are not Latin hypercubes. In fact, we can show that
when both B and C are supersaturated designs, the methods will produce multi-level
supersaturated designs. A supersaturated design is a factorial design with n runs and
m factors with m > n — 1. It can save considerable cost in situations in which the
number of active factors is very small compared to the number of factors. A problem
worthy of further study is whether and when supersaturated designs produced in
this way have better statistical properties than the existing supersaturated designs.
The examples that we have looked at show that this study is promising. Another
future work is to investigate the possibility of adapting the methods to construct .
other space-filling designs including maximin distance designs and uniform designs.
More generally, we can view the above problems as an inverse problem - determining
the settings of A, B, C, D and ~ for some given design L.
Cascading Latin hypercubes

Intuitively, the local points in cascading Latin hypercube designs can help pro-
vide a more accurate estimation of correlation parameters. Hence, presumably such
designs will be useful in identifying important factors in the initial stage of experimen-
tation. Handcock (1991) conducted a simulation study to demonstrate the usefuluness

of cascading Latin hypercubes. His simulation study offered some important insights
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into the potential use of such Latin hypercubes. However, the simulation study is
rather limited for the following reasons: (a) only additive Gaussian process stochastic
models with a Matern correlation function was considered, (b) a small run size n = 27
was used. A simulation study incorporating diverse models and designs of large run
sizes would be beneficial to probe the further value of cascading Latin hypercubes in
the context of screening experiments. This is part of our future research plan.
Designs with high projectivity

In Chapter 1, we have mentioned that one research problem in the designs for
computer experiments is obtaining space-filling designs with good projection proper-
ties. Such designs are important for factor screening. In particular, those with high
projectivity are desirable in practice because of the complexity of computer mod-
els. Randomized orthogonal arrays (OA’s) and OA-based Latin hypercubes provide
partial solutions as OA’s exist only for certain run sizes. Constructing space-filling
designs with high projectivity is a challenging topic and is part of our future work.
Two-level fractional factorial designs

The proposed method was applied to construct designs of 24, 32 and 40 runs. For
designs of 40 runs, we have not considered the row permutations of designs D;’s. In
the future, we will include row permutations of D;’s. In addition, we will continue
to provide catalogues of good designs of larger run sizes. As the run size grows, the
complexity and computational burden may increase considerably. Investigations on
the different efficient algorithms are thus necessary. Global optimization algorithms
such as genetic algorithms and simulated annealing may be useful.
Folded over non-orthogonal designs

We note that two recent papers, Bingham and Chipman (2007) and Jones, Li,
Nachtsheim, and Ye (2007), presented criteria that directly evaluate the ability of a
design to discriminate between competing models. These criteria could be applied

to the scenarios considered in this thesis and it would be very interesting to see how
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the optimal designs under these criteria compare with those found using the MDS-
aberration criteria. Such a comparison would require a prohibitive amount of comput-
ing since for all of the criteria involved finding an optimal design is computationally

intensive. Thus we have left such a comparison for future research.



Appendix A

A 32 x 12 orthogonal Latin
hypercube

Let L be a 32 x 12 orthogonal LHD. The first 16 rows of L are

-31 21 2 -19 23 27 -2 23 -2 19 31 21
-29 17 1vr 29 -—-23 -27 27 -23 -17 -29 -29 17
=27 23 -23 -27 29 -17 -17 =29 25 -19 31 =21
-25 19 =31 21 -29 17 17 29 17 29 29 —-17
-23 =27 27 =23 27 -23 23 2v 21 31 -19 -25
-21 =31 19 26 27 23 -23 -2v 29 -17 -—17 =29
-19 -2 -21 -31 17 29 29 -—-17 -21 -31 19 25
-17 =29 -29 17 -17v =29 -29 1v -29 17 17 29
17 29 29 -17 -25 19 -31 2% 27 -23 23 27
9 25 2t 31 2 -19 31 -21 19 25 21 31
21 31 -19 -25 -19 -25 -21 -31 -27 23 -23 =27
23 27 -2v 23 19 25 21 31 —-19 -25 -—-21 31
25 -19 31 -21 -21 -31 19 25 -23 -27 27 =23
2r =23 23 2vr 21 31 -19 =25 =31 21 25 -—-19
29 —-17 -17 =29 -31 21 25 -19 23 27 -27 23
31 -21 -2 19 31 -2t -2 19 31 -21 -25 19
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APPENDIX A. A 32 x 12 ORTHOGONAL LATIN HYPERCUBE

The remaining 16 rows of L are
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Appendix B

Top 24-run two-level designs

Table B.1: Top 24-run designs based on minimum G-aberration for 3 < m <6
CFV(D)=[F3(D), Fy(D), F5(D)]

m  Ab. Ju(5)—(24 16 8 0) R Mo Moo
3 (000 ) -] 1 0 3
3 - [(0010)s,-,-] 3.67 1 2
3 - [(0100),-, -] 3.33 12
4 *  [(0004)5(0010),-| A.67 0 4
4 - [(0004)3(1000)y, -] 4 2 2
4 - [(0013)3,(000 1)y -] 3.67 13
5 *  [(00010)5,(0050),,0001)] 467 0 5
5 - [(0019)3,(0032),,(001 0 3.67 9
5 - [(0028)3,(0014),(000 1)) 3.67 1 4
6 *  [(00020)5(00150),(0006)s]  4.67 0 6
6 - [(00020)5,(00150),(0006); 467 0 6
6 -  [(00416)5(00510),(0123);]  3.67 2 4

99
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Table B.2: Top 24-run designs based on minimum G-aberration for 7 < m < 14

CFV(D)=[Fs(D), F4(D), F5(D)]

m  Ab. Ju(s)=(24 16 8 0) R Mo Moo
7 ** (000 35)3,(00350)4,(0 00 21) 4.67 0 7
7 - [(0 06 29)3,(0 015 20)4,(0 3 6 12)5) 3.67 1 6
7 - (007 28)3(001520),(028 11y 3.67 1 6
8 ** (000 56)3(00700)4,(00 0 56)s] 4.67 0 8
8 - [(00 13 43)5,(0 3 21 46)4,(0 5 14 37)5] 3.67 2 6
8 - [(0 013 43)3,(0 4 21 45),4,(0 4 10 42)5] 3.67 3 5
9 **  [(00084);3(00 126 0)4,(000 126)3) 4.67 0 9
9 - [(0 020 64)3,(0 9 36 81)4,(0 6 28 92)5] 3.67 4 5
9 - [(0 0 20 648)3,(1 7 35 83)4,(0 8 20 98)s] 3.67 1 5
10 *  [(000120)3,(0 0210 0)4,(0 0 0 252)5] 4.67 0 10
10 - [(002892)s,(0 0126 84)4,(0 10 56 186)3] 3.67 19
10 - [(003288)s,(2 12 56 140)4,(0 8 64 180)s] 3.67 5 05
11 % [(00 0 165)3,(0 0 330 0)4,(0 0 0 462)s] 467 0 1
11 - [(00 36 129)3,(0 0 210 120),,(0 18 84 360)3) 3.67 110
11 - [(0 0 45 120)3,(0 0 210 120)4,(0 30 0 432)5] 3.67 1 10
12 **  [(000,220)3,(0 0 495 0)4,(0 0 0 792)5) 4.67 0 12
12 - [(0 045 175)3,(0 0 330 165)4,(0 30 120 642)5] 3.67 11
12 - [(0072148)5,(0 0 255 240)4,(0 36 168 588);] 3.67 2 10
13 *¥ (0090 196)5,(1 0 366 348),,(0 60 240 987)s] 3.67 2 11
13 - [(00109 177)3,(3 0 204 418),,(0 57 273 957)s] 3.67 310
13 - [(00110 176)s,(4 18 213 480)4,(0 42 320 925)5] 3.67 8 5
14 * [(0 0 136 228)5,(3 0 438 560)4,(0 94 384 524)5] 3.67 3 11
14 - [(0 0 140 224)3,(21 0 280 700)4,(0 48 560 1394)5] 3.67 7 7
14 - [(00 146 218)5,(15 0 310 676)4,(0 56 510 1436);]  3.67 6 8
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Table B.3: Top 24-run designs based on minimum G-aberration for 15 < m < 23

CFV(D)=[F3(D), F4(D), F5(D)]

m  Ab. Ju(5)=(24 16 8 0) R Mo Mgo
15 *** (00182 273)3,(21 0 420 9240)4,(0 88 770 2145)5] 3.67 7 8
15 - [(0 0184 271)5,(6 0 547 812)4,(0 136 576 2291)] 3.67 4 11
15 - [(00 188 267)3,(15 0 456 894),,(0 102 696 2205)s] 3.67 6 9
16 ¥ [(0 0 224 336)3,(28 0 560 1232)4,(0 128 1120 3120)3] 3.67 8 8
16 - [(0 0 231 329)3,(21 0 602 1197)4,(0 148 1022 3198)5] 3.67 7 9
16 - [(0 0 235 325)3,(10 0 695 1115)4,(0 190 840 3338)5] 3.67 5 11
17 *** (0 0 280 400)5,(28 0 784 1568)4,(0 208 1456 4524)4] 3.67 8 9
17 - [(00 287 393)3,(21 0 833 1526)4,(0 234 1323 4631)5] 3.67 710
17 - [(0 0 288 392)3,(21 0 833 1526)4,(0 234 1316 4638)5] 3.67 10 7
18 *** (0 0 336 480)3,(36 0 1008 2016)4,(0 288 2016 6264)5] 3.67 9 9
18 - [(0 0 344 472)5,(28 0 1064 1968),,(0 320 1848 6400)5] 3.67 8§ 10
18 - [(0 0 350 466)3,(21 0 1121 1918)4,(0 353 1680 6535)s] 3.67 7 11
19 ** (0 0 408 561)5,(36 0 1344 2496)4,(0 432 2520 8676)5) 3.67 9 10
19 - [(0 0 416 553)3,(28 0 1408 2440),,(0 472 2304 8852);] 3.67 8§ 11
19 - [(0 0 417 552)3,(28 0 1408 2440)4,(0 472 2296 8860)s] 3.67 11 8
20 **  {(0 0 480 660)3,(45 0 1680 3120)4,(0 576 3360 11568)5] 3.67 10 10
20 - [(00 489 651)3,(36 0 1752 3057),,(0 624 3096 11784)s] 3.67 9 11
20 - [(0 18 417 705)3,(18 90 1554 3183)4,(0 582 3264 11658)5] 3.33 11 9
21 F (0 0 570 760)3,(45 0 2160 3780)4,(0 816 4080 15453)5] 3.67 10 11
21 - [(0 24 474 832)3,(21 120 1896 3948),,(0 744 4368 15237)5] 3.33 1110
21 - [(0 25 470 835)3,(20 125 1885 3955)4,(0 716 4480 15153)5] 3.33 10 11
22 F% (00 660 880),(55 0 2640 4620)4,(0 1056 5280 19998)s] 3.67 111
22 - |(0 30 540 970),(25 150 2310 4830),,(0 936 5760 19638)5] 3.33 111
2 - [(0 40 500 1000)3,(15 200 2200 4900)4,(0 896 5920 19518)5] 3.33 11 11
23 **k (0 66 495 1210)3,(0 330 2475 6050),,(0 1056 7920 24673)5] 3.33 11 12
23 - [(160 510 1200)s,(5 300 2550 6000),,(0 1056 7920 24673)5] 3 1112
23 - |(2 54 525 1190)3,(10 270 2625 5950)4,(0 1056 7920 24673)s] 3 11 12
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Table B.4: Top 24-run designs based on minimum Gs-aberration for 3 <m < 23

m WLP:(BJ B4 Bs) mMmo1 Moo m WLP:(Bg B4 B5> Mo1 Mo
3 0 0 3 13 6 55 40 1 12
3 0.11 1 2 13 10 41.67 53.33 2 11
13 11.56 37.22 53.33 6 7
4 00.11 0 4 14 12 61 80 2 12
4 01 2 2 14 15.11 51.67 84.44 3 11
4 0.11 0 1 3 14 15.56 50.11 84.22 7 7
) 00560 0 b 15 18.11 73 125.33 3 12
5 0.11 0.33 0.11 3 2 5 20.22 66.33 126 8 7
) 0.220.11 0 1 4 15 20.22 66.77 125.56 8 7
6 01670 0 6 16 24.44 91.11 181.33 4 12
6¢ 01670 0 6 16 24.89 90.22 181.33 8 8
6 0.44 1.67 0 1 5 16 25.67 87.44 179.78 9 7
7 03690 0 7 17 31.11 115.11 254.22 8 9
7 0.67 1.67 2 1 6 17 31.11 115.56 253.33 5 12
7 0.78 1.67 1.78 1 6 17 31.11 115.56 253.78 5 12
8 07.780 0 3 18 37.33 148 352 9 9
8 1.44 3.67 3.78 2 6 18 38.22 146.22 347.56 8 10
8 3.89 3.56 1 7 18 38.33 146.67 346.67 6 12
9 0140 0 9 19 45.33 185.33 472 9 10
9 2.22 7.78 6.22 1 8 19 45.78 184.89 468.89 9 10
9 2.22 7.78 6.67 1 8 19 45.89 184.89 468 7 12
10 023330 0 10 20 53.33 231.67 629.33 10 10
10 3.11 14 10.67 1 9 20 54.22 230.78 622.22 8 12
10 3.33 14 10 1 9 20 54.33 230.67 621.33 9 11
11 036.70 0 11 21 63.33 285 816 9 12
11 4 23.33 17.33 1 10
11 4.11 23.33 16.89 1 10 22 73.33 348.33 1056 10 12
12 0550 0 12 23 84.33 421.67 1349.33 11 12
12 5 36.67 26.67 1 11
12 8 27.44 34.67 2 10

a. This design has different Bg from the first design.



Appendix C

Top 32-run two-level designs

Table C.1: Top 32-run designs for 6 < m < 10

CFV(D)=[F;(D), Fy(D), F5(D)]

Ju(s)=(32 24 16 8 0) WLP=(B3,B4,Bs) Comparison

6 6 [(000020)5,(000015),,(00006)s 000

6 5 {(000020)s(000015),(1000.5)s 001

6 45 [(000020)5,001014),,(0020 4)3) 00.25 0.5

7 45 [(000035)5(004031)(104016)s 012 G**, G**
7 45 [(000035)3(006029),,(006015); 0151

7 45 [(000035)3,(008027),(000021)s 01515

8 45 [(000056)5,(0012058),,(1012043)s] 034 G¥*, Gy**
8 45 [(000056);,(0014056),,(0014042)s] 03535

8 45 [(000056)s(0020050)(000056)s) 042

9 45 [(000084);,(00240102),,(20210100)s] 068 GF*, Gy¥*

9 45 [(000084);,(00280098),,(0028098)5] 077
9 45 [(000084);,(0042084),,(0000126)5] 084

10 4 [(0000120)s,(10620147),,(0000252)5] 010 16 G*, Go*
10 4 [(0000120)5,(20560152)4,(0000252);] 0150 G*, Gy*
10 4 [(0000120)3,(20580150),,(0000252)5] 015750 G*, Go**
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Appendix D

Top 40-run two-level designs

Table D.1: Top 40-run designs for 6 <m <9

CFV(D)=[Fs(D), Fy(D), F5(D)]

R Ji(8)=(40 32 24 16 8 0) WLP=(Bs.B4.55)
4 48 [(000004)3,(00001 0)g-] 00.04
4 44 [(000004)5,(001000),| 00.36
5 48 {(0000010)5(000050);(00000 1)) 00.20
5 44 [(0000010)3,(001040),(00000 1)s] 00.52 0
6 48 [(0000020)5,(0000150),(000006)s) 00.60
6° 4.8 [(0000020)5,(0000150),(000006)s 0060
7 48 [(0000035)3,(0000350),0000021);] 0140
7 44 [(0000035)5(0010340),,(0000021)s) 01720
8 44 [(0000056)3,(0020680),(0000056)5] 03.440
8 44 [(0000056)5,(0030670),,(0000056);] 03.760
9 44 [(0000084)5(00601200),,(00000126);] 06.960
9 44 [(0000084)5,(00701190),(00000126)5] 07.280

a. This design has different Fi; and Bg from the first design.
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Appendix E

Top non-isomorphic MDS designs

Table E.1: Non-isomorphic 10-run MDS designs with £ <5

k Design Runs (MDS(4),MDS(5), MDS(6)) Efficiency
4 11213141234 300 0.9143
5 151213 14 12345 251020 0.9000

Table E.2: Non-isomorphic 12-Run MDS Designs with £ < 6

k Design Runs (MDS(4), MDS(5), MDS(6)) Efficiency
4 11213123 14 1234 100 0.8889
4 11123124 134 1234 300 0.8696
4 111213141234 300 0.8000
5 151213 123 14 12345 1218 6 0.8547
5 1511213 14 12345 15015 0.7778
5 151512 13 14 12345 25102 0 0.8333
6 15 126 136 123 14 123456 45 162 1411 0.8333
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Table E.3: Non-isomorphic 14-run MDS designs with £k < 7

Design Runs

(MDS(4), MDS5(5), MDS(6)) Efficiency

S S S S S

U v Ov Ot Ot O Cv v O Ot

(o> or = Bl e) Ble)Be)Bep

~ =

11213 123 14 124 1234
1112123 124 134 1234
111213123 14 1234
11123123 124 134 1234
111123124 134 1234
11121213 14 1234
1111213141234

151 125 135 123 14 12345
151 125 123 124 134 12345
15112512 13 14 12345

15 15 12 13 123 14 12345
15151 123 124 134 12345
1511123 124 134 12345
1515112 13 14 12345
151112 13 14 12345
151512 12 13 14 12345

15 15 15 12 13 14 12345

15 16 1256 1356 123 14 123456
156 16 125 135 123 14 123456

15 16 125 135 123 14 123456
1516 12 13 123 14 123456
151 126 136 123 14 123456
1516112 13 14 123456

15 15 126 136 123 14 123456

157 167 1256 1356 123 14 1234567
15 16 127 137 123 14 1234567

1516 17 12 13 14 1234567

000
100
100
300
300
300
300

542

642

906

1218 6
12186
1218 6
15015
15015
25102 0
251020

15 54 246
24 57 294
27 54 172
33 12 214
36 63 150
45 0 150
45 162 1411

60 270 2637
87 219 2145
105 105 2877

0.9143
0.8649
0.8067
0.8649
0.7857
0.7857
0.7033

0.8193
0.8494
0.7635
0.8193
0.8036
0.7635
0.7418
0.6786
0.8036
0.7418

0.7912
0.8099
0.7792
0.7319
0.7373
0.6617
0.7792
0.7826

0.7153
0.6494
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Table E.4: Top 10 Non-isomorphic 16-run MDS designs with k& < 8

113

Design Runs

(MDS(4), MDS(5), MDS(6)) Efficiency

or O Ot Ot Ot o

ot O Ov O O

SO O

[orRNe RN o o RN e

NI IS I IEN RN BN B N

oo 00 00 OO 00 G0 Q0o 00 0T o

11213 124 134 125 145 12345
112 13 124 134 1235 145 12345
1213 14 1234 125 135 12345
12 13 123 14 125 135 12345

12 123 134 135 145 1245 12345
12 13 123 14 124 15 12345

12 13 123 14 1234 15 12345
1123 124 1234 125 1345 12345
12 13 124 125 145 145 12345
111213124125 145 12345

S T S G G T G Y

16 12 13 1246 1346 1256 145 123456
16 12 13 1246 134 1256 145 123456
16 12 13 124 1346 1256 145 123456
16 126 13 124 134 125 145 123456
16 12 13 1236 14 1256 135 123456
16 12 13 1246 134 125 145 123456
16 126 13 124 1346 125 145 123456
16 12 13 124 1346 125 145 123456
112 136 1246 134 125 1456 123456
16 126 136 124 134 1235 145 123456

167 127 13 1246 1346 1256 145 1234567
167 127 13 124 1346 1256 145 1234567
16 12 137 12467 134 1256 1457 1234567
167 127 137 1247 1346 125 1457 1234567
167 127 13 1246 134 1256 145 1234567
167 127 137 1236 14 1256 135 1234567
167 127 13 1246 1347 1256 145 1234567
16 127 13 124 13467 1256 1457 1234567
16 12 137 1236 14 12567 135 1234567

16 127 123 1347 1357 145 1245 1234567

1678 127 138 1248 1346 12568 145 12345678
168 128 137 12467 134 1256 14578 12345678
1678 127 1378 12478 1346 1258 1457 12345678
167 1278 137 1247 13468 125 14578 12345678
17 1268 1368 1236 146 12348 15 12345678

17 128 138 1236 146 1234 15 12345678

16 18 127 13 124 125 1457 12345678

16 1278 1238 1347 1357 1458 1245 12345678
16 17 128 138 123 14 15 12345678

16 17 12 1348 1358 1458 1345 12345678

211
300
300
320
400
502
502
542
542
542

618 112
10 21 52
10 21 98
112075
11 24 60
12 16 83
1217 82
13 16 49
13 18 64
14 17 78

27 93 799
28 101 779
30 90 570
36 94 694
36 116 754
37 108 763
37 121 851
37 139 869
39 77 658
39 90 720

60 372 3952
76 368 3876
84 364 3988
89 329 3825
114 348 3648
114 369 3783
126 291 3837
147 408 4832
180 315 3645
219 144 4800

0.8400
0.8824
0.8065
0.8120
0.8824
0.7798
0.7500
0.7955
0.7895
0.7474

0.8036
0.7826
0.8015
0.8036
0.7638
0.7742
0.8182
0.7768
0.7795
0.8140

0.7778
0.7516
0.7438
0.7383
0.7570
0.7711
0.7711
0.7538
0.7271
0.7778

0.7083
0.7391
0.6881
0.7109
0.6842
0.6774
0.6523
0.7500
0.6160
0.6250




114

APPENDIX E. TOP NON-ISOMORPHIC MDS DESIGNS

8099°0 LVE TV €1 LOSPETT LSET 9STT VEZT LOFT 9821 €1 L31 91 2
6VCL 0 68T 6€ €1 LOSPETT GET 99T FETT LOFT 9€CT LET LTT 9T 2L
EV6L°0 7SE 1€ €1 L9SPETT GET 9SZT FETT OFT 96T LET 22T L9T 2
PGLLO 8GZ 0€ €1  L9CPETT €T 9STT FETT LVT L9€TT LET LC1 91 2
9G¥ L0 PPT 6T €1 L9STETT SE1 9STT LFETT F1 92T L9ET L2T 91 L
LOVL0 €9€ Ly 1 L9GPETT SET LSTT PECT 9FT 9ECT LET L9TT 291 2
L96L°0 8EE TV ¢1 LOSFETT LSFT STT VETT ¥ET LOVTT LIET LT1 9T 2
CEVLO 192 9€ ¢1 L9SPETT GET 9SG LVETT 9T 98TT LE1 L3T 29T L
L96L°0 GTE 8V 1T L9GFETT SPT 9STT FECT 9FET LOVET LET T L9T L
86£L°0 1.2 €6 1T L9SVETT SF1 STT FETT LVET LOFRT 981 921 LT L
768L°0 17 gg 9GPETT ST STT FETT 9FT 9€¢T €1 921 9T 9
98€L°0 Leg 9GvegT SIT 62T ¥ECT F1 9621 €1 92T 91 9
12V8°0 pree 9GEET ST ST FEET FET 9¥2T 961 21 91 9
€LLL°0 ST I ¥ 9GPETT SV 9921 $ETT PET 9FE1 €1 21 9T 9
T68L°0 8T LV 9GVETT ST 9821 FEZT 1 9621 €1 2T 91 9
9¥8L°0 GE9 ¥ 9GPETT V1 ST ¥€CT 9FET 9%2T1 €1 81 9T 9
L¥Z80 0£97¥ 9GVETT €T 9931 F€TT ¥1 9631 9€1 &1 9T 9
9¥8L°0 129V 9GVEST ST 9631 VETT 9VT 9€2T €1 21 91 9
£F8L°0 cr9g 9GHETT SFT STT ¥€3T VET 9VTT 9ET 92T T 9
12780 9 8e 9GFETT SPT 9STT PECT OFET 9T €1 21 91 9
¢l8L°0 112 STECT SVT GET PECT PET €21 21 1T §
72180 11¢ chETT SPET CET VET VT €21 1 11 G
££€8°0 11¢ GPETT CFET SETT ST PET FET €21 11 6
2978°0 112 ChETT GFT GFT SCT FET FZT €1 CL 1 G
CL8L0 10¢ CHECT GET ST FEL PT €CI EL T T G
29280 011 GYECT CET ST VO F1 €C1 €121 1 €
6TLL0 001 GPETT ST GTT PECI FT €SI €T ST T §
L¥S8°0 001 CPETT SET GTT FPECT FT €T €T ST 1 €
60060 001 GYETT SPT SETT VECT VeI FET €1 T T ¢
££E8°0 100 CYEET ST ST ¥ECT PET PG 1 GI T G
fowswylg ((9)sayv ‘(e)sai (r)Sam) suny ubisaq Y

L> i s suSsop SN una-gT omdiourost-uoN 0T doT, :6d oIq¥L



115

APPENDIX E.

TOP NON-ISOMORPHIC MDS DESIGNS

0019°0 6769 P65 89 68L9SFEGT ST 69531 FETT 689FT 8981 6L€T 68L21 L91 6
590 GT69 9FS 89 6SLISFETT 68SFT STI G6PETT LVET 6297G1 69€1 89CT 68LT 6
0£79°0 1669 8LS L9  68L9CHEGT 6SFT 991 SFEGT 689FET LOVTT 6LET 68T1 8LIT 6
66290 7ESO 78S 99 68L9SVETI 8SET 9STI 6VETL LOPT S9EGT 6LET 68L31 6891 6
90990 92£9 78S 99 GSLISHETL GPT 69STL FETI 69FET 6L9FCT 6LET 68T 8291 6
8290 TP69 G19 G0 68L9SVETL SE1 69STT 6FETT LOFT 89ETT 6LET 8LTT 6891 6
9r€9°0 TT0L ¥9S ¥9 63L9SVET1 6SET 9STT PETT LOFT LIETT 8LET 6131 6891 6
180L°0 0169 195 39 68L9SHETT LSV 6T FETT 68VET 6L9FCT L9ET 8LTT 89T 6
01550 TTEL 8GG T9 68L9SFETT 8SET 6LSTT FETT 689V1 69631 68LET 8L9CT 6291 6
TeLL0 9089 8IS 9 68L9SFEGT 6LSYT ST1 6VECT SYET LOVET LIET 6821 6891 6
7L 0 0GLT LT &€ 8L9GFEGT 8SET 9GTT ¥EGT L9FT 89EGT LET 8LTT 89T 8
6090 78L1 781 1€ 8LICTEGT CET 9STT VT L9FT 89631 LET 8LC1 89T 8
5689°0 7861 78T 1€ 8LOCVETT 8SFT GGT FEGI LVET LOPGT 9ET 89T 8LT 8
€630 LTLT 291 1€ 8L9SFETT SPT 9931 SVEG1 89FET LOVTT LET STT 8L9T 8
110L°0 0051 €91 1€ 8L9GTECT SET 9SGT PET L9FT L98TT 8LET LTT 89T 8
11120 V81 €61 08 8L9GFETT SET 8LCTT FETT SOFT 895TT 8LET 8L9T1 L9T 8
79080 1621 9¥1 0€ 8LOGFETT LGFPT GGT FEGT SPET L9FGT L9€T 8LTL 89T 8
63SL°0 9LL1 GLT 62 8LOGFETT 8SYT CTT SVETT LVET LOFGT 9€T 89T 8LT 8
TLL90 9691 ST 9% 8LOSFETT 8SET LCTT ¥ECT 89FT 9631 8LET 8L9TT L9T 8
61920 86L1 98T ¥T BLOSVETT SV1 9GGT 8PEGL VST LOVET LET 8T 8291 8
fiouarfly ((9)Sa i ($)Sam (¥)San) suny ubisaq y

6 > ¥ > 8 YIm sudisep N uni-g1 orydiowosi-uoN 1 doJ, :9°d 9[qeL



116

APPENDIX E. TOP NON-ISOMORPHIC MDS DESIGNS

8FZL°0 189S  L9ShETT GPT 9SET STT 9¥CT L9V €31 LOST L9GT LT L
0¥8L°0 16CC  LOSPETT SPT 29T ZSTT L¥ZT LOFT €21 L9€T 921 L1 L
00¥8'0 6T 8%  L9SPETT GF1 ST 9621 F€2T 9FEl LbeT L9€1 921 L1 L
9£9.°0 G6 8 ¥ L9CGPETT G LCET L9STT ¥€2T OFET L¥ET LOET 921 L1 L
68EL°0 96 G F  L9GFETT VT L9G€T LSTT LOVTT OFT €21 9€1 921 L1 L
62EL°0 1LSV  L9SPETT LG¥T 9SET GTT 9FZT LOPT €21 L9€1 L92T LT L
79£9°0 121 S¢ L9CHETT GV LCET ST1 LPT1 L9V LETT 9€T1 921 L1 L
00¥8°0 LT €€ LOSVETT ST 9SET 9S¢T FETT 9VET LOVET LET 21 29T L
02.9°0 LE1 ¥ T L9SVETT SETT €T 29S¢T LVETT OFET ¥TT LOET 921 LT L
9PLY 0 96 ¢ ¢ L9SPETT SETT LSET 9GTT FEZT LOVET L¥ET 98T 2921 LT L
769.°0 0121 9GVELT SFET GETT 9SET 9FET 9F2T €21 92T 191 9
17€8°0 111 9GreTT GET €21 ¥ET V2T OF1 €21 9€1 921 91 9
G89L°0 611 95731 61 21 PET 2T 9T 9821 98T 92T T 9
1.¥8°0 9101 9SkEZT SPT GeT 95T ¥€TT 9PET #1981 92T 1 9
978L°0 2101 9GTEeTT CFT 9GET STT 9OFCT 9VT €21 981 92T 1 9
g8eL'0 0190 9G¥€TT 9SF1 9GET ST 9FZT ¥T 9821 €1 21 91 9
0008°0 0190 9GrETT SFTT 9G€1 9621 9¥eT ¥1 9621 €1 ¢1 91 9
0006°0 91 00 9GVETT GPT 9SET 92T FETT 9FET 9FZT €1 21 91 9
62790 c100 9GFEZ1 GETT GET1 9SCT FECT 9FET 721 98T 92T T 9
6£28°0 2100 9GHETT GFT GET 621 F2T OVT €21 96T 921 T 9
£ee8'0 010 chezl GPel GeT1 STl VeI VI €CT €121 1 &
G¥8L'0 100 SPeeT SF1 92T PECT PET VT €T GT T T ¢
6S6L°0 100 SPETT SP1 GET ST FeT P1 €CT €131 1 ¢
L228°0 100 ShEgT GPTT CECT SET VET V21 €21 21 11 ¢
££€8°0 100 GhezT CFT GF1 ST ¥EC1 PET VST €1 ST 1 §
0009°0 000 ShETT GETT SE1 STT PECL PET FC1 €1 2T 1 §
005L°0 000 CheZT CF1 SET ¥ECl ¥TT PT €21 €I 2T T 6
8078°0 000 SPEeT 8T ST PET VT FIECT €1 2T 1 G
¢G68°0 000 SYEeT ST GET S2T PEI P1 €SI €T 2T T ¢
1€76°0 000 GYEZT GF1 SET GCT 8T T PI €1 CI 1 ¢
fiouaroiffg ((9)sa v ‘(9)SA N ‘(F)SA ) sunyf ubisaq y

L > qum sudsep GO uni-0g orydiowost-uoN 01 dog, :LH o[qeL



117

APPENDIX E. TOP NON-ISOMORPHIC MDS DESIGNS

GGHe 0 V126 98€ OF  016829STETT 6SETT 8SET L9STT 6LFEZT 69VEL O1FZ1 01L9€T 68921 0T68LT 01
GGHG0 929G L0€ 9F 0T68L9SFEZT 01GETT 68GET L9STT LVETT OTOFET OT8FZT 829€1 0168921 016L1 01
6279°0 889G 8T 9¥ 0T68L9SFETT O1CECT 68CET L9STT 6LFETT OVET SFTT 8L9ET 68921 016L1 O
626€°0 126 09€ SF 0168L9GFEC] GETT 0T6LSET 69SCT 6SVELT LOFET OTLFZT 0189€T 0162921 68L1 01
LV6E0 £88C 66€ F¥  0T6SL9SPETT 69ETT OTLGET 9STT 8FEET LOFET O16LFZT 01689€T 62921 68L1 01
62790 89/G 90€ P 0T68LOSFEET SPT 9GET 0T89STT OTFEZT 6S9VET LOFTT OTSLET 6821 016291 0T
0009°0 FELG GOT TV OT68L9GVETT 0TSETT 68GET L9GTT 6LFECT OFET SFET 0TSL9ET 0168921 0T6LT 0T
0009°0 TT6S F6C OF  OT68L9SPECT 0TSETT 68SET L9CTT 6LFECT 69¥ET S¥TT 829€1 0168921 OI6LT 01
L0Z9°0 9FCG Q9T L& OT68L9GFETT 0TCETT 68CET L9STT 6LFETT OVET 8¥TT 829€1 0168921 OI6L1 01
0009°0 0665 0L1 02 0168L9SHETT 01SETT 68SET LOSTT 6LFETT OFET O18FZT 01829€T 68921 OI6LT 01
00750 L181 96 72 6SL9SFETT CPT 69SET 689GTT 6FECT 8OVET L9FLT 8LET 8TT 6291 6
8€8G°0 €12¢ 221 €2 68L9CVETT GETT 6SCET LISTT 6LYETT OFETL 6731 6L9€T 689T1 8L 6
£6£9°0 8061 SOT €2 6SLOGFECT 6SECT SCET L9GTT LFETT OFET 68PTT 68291 8921 LT 6
00S¥°0 9681 ¥91 22 6RL9CPETT GETT 6LCET 69STT 68FETT LOVET LFZT S9ET 62921 68L1 6
8€8G°0 1612 221 2T 68L9GVETT 6SETT 8SET L9GTT 6LVETT 69FET FTT L9€T 68921 68LT 6
eF0L'0 6g81 ¥11 22 68L9CFETT CFT 9GET 89STT ¥€TT 689FET LOVTT 8LET 6821 6291 6
£6£9°0 2561 601 2T 6829GVETT G821 8SET L9G21 LVETT 69VET SPTT 8L9€T 68921 621 6
0629°0 1061 €01 22 68L9SFETT GETT 6RGET L9GTT 6LFETT 69VET 8FZT 8LOET 68921 621 6
£6£9°0 0€8T 001 1¢ 68L9GTETT G8T1 68GET L9STT LPeC] 9VE1 STl 8LOE1 68921 611 6
0629°0 €S0z 89 ¢1 68L9SVETT G€TT 6SCET L9STT 6LVETT OFET S¥TT 8L9ET 68921 6.1 6
Z697°0 Q¥ OF 11 8L9GVETT GETT LCET 89CTT SPETT LOVET LFTT 89ET 82971 8L1 8
1299°0 6SC 2€ 11 8L9CFETT GETT 8CET L9STT LVETT OFET ¥TT L9€1 8921 8L1 8
86710 90g 1€ 11 8L0CHETT GETT LGET 9STT SVETT LOVET LT S9ET 82921 8LT 8
625€°0 89F OF 01 819CFETT CETT LSET 89STT SPETT LOFET 8LFZT 89€T 2921 821 8
13790 00 82 0T 8L9GFETT GETT 8CLT L9STT LVETT 9FET F2T 8L9€T 8921 LT 8
002L°0 oLy Th 6 819SFETT SF1 9G€T 89ST1 8FETT OFET LOFTI 8LE1 ¢1 8291 8
78860 116 2€ 6 R19GFETT CETT 8CET L9STT LVETT OFET SVET 8L9€T 921 8L1 8
0008°0 209 € 8 8296F€2T 8GPT 8SET 9STT PECT OVET SLFCT 8L9€1 8921 L1 8
0008°0 809 22 L 8L9CFETT GFT 9GET 89GTT VECT SOVET LOFZT 8LET 8ZT L9T 8
1989°0 68 12 9 8/9GFETT SETT 8SET L9GTT LVETT 9FET ST 82981 8921 L1 8
fouarorffy  ((9)sam ‘(Q)sam ‘(1)saiv) suny ubisaq Y

0T > ¥ > 8 YIm sudisap SO\ uni-Og orqdowosr-uoN (T dof, 8'H 9IqBL



118

TOP NON-ISOMORPHIC MDS DESIGNS

APPENDIX E.

16220 L629C 8L9SPEZT SETT 9GE1 8L9STT SPETT LOFET OFTT 8LET £2T 81 891 8
68620 PRZ €T SLOGPETT LGPTT SCFT GETT LOGET OFET OFTT 8ETT 82927 LT 89T 8
1T.8°0 01 00 S29GTECT 8GFT GECT LGET 89GTT 8LFETT OFET F2T S9ET L92T 8LT 8
1880 0T€ 0 0 8L9GTETT SFT GETT 8LEET L9GTT |FEZT LOVET LVET ORT 97T 81T 8
L6220 SFZ 00 829GPEZT 8LGFST GFT GeTT L9SET 89FET 9FCT 8€T1 2921 821 9T 8
8TTL0 PEOT L9GPETT LGV G8T LGTT OFETT LPET ¥2T1 L9€T 2921 LT 9T L
1606°0 9200 LOGFEZT CFT GEZT LGET 9GTT LVETT OFET ¥21 9€T L98T LT L
1606°0 0L00 L9GFETT SPT GETT LSET L9STT FECT LOFET LFCT 98T 92T L1 L
61590 09 00 L9GFEZT LGFTT GFT GETT 9SET LOPET OFZT L€2T 921 L1 91 2
9¥ZZ 0 8600 LOGFEZT 2T 96T L9921 FETT LOPET OFTT 28T 22T T 9T 2
8ETF 0 1600 L9STEET GETT L9GET 9GZT LFETT OFET 9F2T €1 L9ZT 2T L9T L
6159°0 900  LOSPETT LGHTT Gegl LCET L9GTT LFETT LOVET FCT 9821 LT 91 2
9£9.°0 ¢ 00 L9GFETT LGFTT GFT GETT LOCET OFET OFZT €21 2021 L1 9T £
96920 G700 19STEET STl GETT L6ET L9CTT PETT LOFET LFTT 9821 L1 9T L
8ETT0 €00 LOSTETT SETT L9SET 9GET LFETT 9FET 9beT €1 L9021 21 91 2
8206°0 £00 9GPETT GVET SFET 9SET 99TT ¥ETT OFET OF2T €21 1 9T 9
GOFL0 €00 9GregT GF1 GET 631 9PETT ¥ET 21 981 921 T 9T 9
8L180 €00 9GFEZT CFT SST GZT ¥2T OFT €21 98T 92T 191 9
68090 000 9SPETT SPET SFET SETT 9PET 9FCT ¥1 9821 €1 21 91 9
£8/9°0 000 9GFETT GETT 9SET 9STT 83T 9FET 9F2T 9821 ¢T 191 9
G08L°0 000 9GHEZT SPCT 9SET 9STT FETT OFET 9FCT 9831 ¢1 191 9
168270 000 9SFegT 9SE1 96T1 ST 9FET 9%¢T ¥1 9621 €1 21 91 9
£€28°0 000 9G1ezT GeTT 9621 ST 9¥ET 9F2T #1961 €1 2191 9
00€8°0 000 9GFEZT SFET GETT 9SET 9G2T FEZT 9FET 9%21 9851 T 9T 9
82060 000 9GPeTT GET 62T 95T FET ¥ZT OF1 €21 981 92T 1 9
85980 000 S ARS AR TAR AN AR AR YARIRA NN AR
80.8°0 000 GheTl SEeT STT ST PEL PO PI EET €1 CI T G
80.8°0 000 GPEET GP1 GECL GET FEZT VeI PeT €8T ST 11 §
$988°0 000 GHeTT ST GET ST PECT FET FCT €T 2T 11 G
9€06°0 000 GHECT CFCT GPT CEC1 SET PRI PCT €31 1 T T &
9€06°0 000 ShEgT CFET POl GET1 62T PECl PETI FET €21 11 6
9€06°0 000 GHeTT SET SET GTPSL PEI P €CT ST 21 T 6
FOP6°0 000 GTeZT SPT GET SCT FET FET FICCI ST ST T 6
GFC6°0 000 GPETT GPT GPT GET STT PECT PET FCT ET T T 6
SFS6°0 000 SPETT GFT GECT GET G2T PECT FEI PRI €1 2T 1 &
fownodfly ((9)sa v ‘(9)SA i ‘()sa i) suny ubisaq y

8 > ¥ > ¢ Y sudisep SN uni-gg oydrowost-uoN (1 dog, :6'Hd 9[qRL



119

TOP NON-ISOMORPHIC MDS DESIGNS

APPENDIX E.

G81S0 689G 102 ¥¢  LTOTGRLOGHEST TTOTSHT GSEZT TIRLCET OTL0CTT TTOTRTETT 2OTCT TI62ESY T1G9ET 118921 016821 11
¢816°0 816G 00T 72 TTOTERLOGTETT TTOTCHL GCETE TIRZCET OT1L9CE] OINSTETT LO1ET TIGLIET TIGOET 89TT O168LT 11
00720 0969 00T ¥ TTOTGRLOGTETT RLGECE TTOTCHT 6L6Tl TT29CET ROLET TTGOIST TTOTREET 012021 116821 11691 11
GE61°0 0069 821 Z¢  TTOTGRLOCFEST RLCTET TTOLGH] GLETT 1120061 ROTET TTGOT ST TTOTREZT 0TL02T TI68LT T10169T 11
00¥2'0 G199 0€1 22T TTOT68L0GFETT 8LGHTT TTOTCTT TT16SEZT L0GET TISOTET GOFZT 0TRETT TT0TLOTT T168L1 T169T 11
GEGT'D 6.9 8F1 07 TTOTGRLIGPETT TISGHT 0T1SEET TT6LGET T10180GT1 8LFEZT GOTET TT016FCT TIOT89ET 112931 OI68LT 11
1999°0 1289 711 81 TTOT6RL9GFEZT GFT GSERT TIRLGET 01L9GZT OTSVET LOFET TT6LFZT TI0TGOET 118921 016841 11
56£1°0 11€9 091 9T TT0T68L95FEZT TT0TSPT 6SETT TT8LEET 0TL9GTT OTSPERT LOFET T16LFST 69T 118921 0168LT 11
L0290 1286 80T ¢1 TTOT6S29GVETT 0TSHT 6SETT TIRLGET 01.9G2T OTSFETT L9FET TI627ZT TT0T69€T 118921 OT68LT 11
SSHG 0 G9.900  TIOT68LOSFETT TT0TSGHT 6SETT 118LGET 0129671 OTSFETT LOPET T16.FC1 TT0TG9ET 118921 OTG8LT 11
TLET0 0192 <9 €T 0T6829GFETT 8LCFTT O1GFT 6€TT L9SET R9FET 69FCT 0TSEST 012921 68LT 691 01
8189°0 91,7 €8 21 0168L9SHETT 8CPET LSPTT 69561 0168SZT 0T29GT 0162FET 01S9FT 01£TT 829€T1 61 01
786L0 ¥61C 08 T1 0168L9SFETT 6GFET LGPTT 89SET 016861 OTL9ST OISLFET 680FT 01€ZT 629621 6841 01
TLE90 ¥61C 89 ¢1 0T68L9GFETT SFET 8LEPTT GSISET 0T6STT 0TL9ST OTGLFET OI89FT O18ETT L9EZT 01681 01
18520 7167 8F 21 0TGRLOSFETT ‘RLOGHET 68LEFTT OTSHT OT68GEZT 0T6L9GET 9SZT OTSOPETT 6FET 01629¥T1 LETT 01
£861°0 ££9Z ¥2 01 016829¢FCZT *01GFET LGPZT 0T689SET OT68STT 62961 68LFET 0169F1 66¢T OTL9ETT O18LT 0T
76.L°0 78ET LG 6 0T68LISFETT "0T6SFET 0TLGHEZT OTS9SET 68GTT LOGT 8LFET OTGOVT OTETT 629€TT OT68LT 0T
£861°0 016 96 8 0T68L9SFETT OTLOGTET ‘6RLGHTT OTCHT 0TSLEEZT 699SET 92T 6L9FETT 8FET 0189FZT 016821 01
9002°0 96£T 76 8 016829SFEZT ‘6SFET 01LGFTT 89SET 68STT LOST SLPET O169FT OTETT 629831 0168LT 01
£122°0 0€L2 0 0 DT6829GHETT ‘6SPET 0TLSPZT OTROGET 68GTT L9ST 8LFET OTGOFT 0TEZT 6L9€2T O168LT 01
81890 916 82 9 68L9GFETT 8SFET LGHTT 69SET 68GCT L9GT GLFET 89FT €21 829821 61 6
1€22°0 1$6 22 9 68LOSVETT CETT 69SET 8L0GTT GSVETT LOFET 9¥T1 8LET 6221 81 6891 6
78180 968 12 9 68L9STECT CFT GETT 8LSET LOGTT SVETT L9VET 6LFCT 6981 8921 68L1 6
Z8I80 G06 52 9 6RLOSVETT 8SHT SECT LGET 8OCTT SLVETT OFET 6721 689€T LOTT 68L1 6
L6180 178 %2 9 6RL9GTETT CFT 6eTT 8LEET 6L99CT 68VETT LOVET LFCT 69€T 89T1 68L1 6
S5PT 0 188 91 9 6829SVETT 8LSHTT GFT 6SETT LOGET SOVET 69F2T 8€TT L9271 68L1 9T 6
£0¥L°0 €98 7T G 68L9GVETT GFT 6SETT 8LGET L9GTT SVETT LOTET GLFET 9ET 8921 68LT 6
1€22°0 G06 0T ¥ GSLOSTETT 8LGPTT ST 6SETT L9SET S9FET 69FCT 8ETT LOZT 6821 691 6
£0PL 0 628 91 ¥ 68L9SFETT 8GHT €Tl 6L6€T 89STT 8LFETT 69FET G6FTT S9ET 2921 68LT 6
78180 £66 0 0 68L9GTETT SFT 6SETT 8LCET L9GZT SVETT LOVET 6LFCT 6981 8971 68L1 6
¢/88°0 062 9 € 8.0GFETT GFT GECT LGET 8L9GCT SPETT LOVET LFCT S9LT 02T 821 8
6820 e o ¢ Q1OGVETT GFT GETT 8LGET LOGTT SPETT LOVET L¥el 98T 921 821 8
TFF7°0 €02 9 € 819GVETT LGPET 8GHT 2T L9GET ROTET OFZT 88T 2921 82T 91 8
682570 RS 819¢hETT 8LGHZT GETT LCET 29GTT 8LVETT L9FET PTT 89ETT 821 91 8
68SL°0 8¥C L T 8/9GFEZT LGFTT SPT 8GECT LOGET OFET 89¥¢T €21 1921 841 89T 8
founanflg ((9)sa IV ()SA IV ‘(F)SAN) sunyf ubisaqq Yy

11>y > § Yt suSisop gy uni-gg orqduowost-uoN 07 dog, :01°d S1q8L



120

TOP NON-ISOMORPHIC MDS DESIGNS

APPENDIX E.

8¢18°0 LET ¢ €1 L9GYETT G¥T LSET LGTT VET LVel L9V1 €¢T1 LOET L9TT LT 9T L
¥e8L0 9€1 6¢ €1 L9SVETT GFET LOETT 99T OFET 9¥Cl 1 €21 L9€T LoT LT 91 L
L918°0 PIT 8C €1  L9SYETT SPET 9SPCl LSETT vECT 9FET LIvel 9€TT LOET ¢T LT 91 L
81650 CET LV 21 LOSPETT LSVET SPEl LGTT L9VETT VET VTl LECT €1 L9TT L1 9T L
¥569°0 LGT ¢b ¢l LISPETT GVCl LGET LGTT veTT 9Vl LOPT LIETT €1 ¢ LT 91 L
€269°0 6€T 9€ 1 LISPETT LGVTT LOGET GTT L99C1 9PCT L9V1 9€Cl LET LoT T L9T1 L
LveL0 PIT T €1 L9GPETT LSVel 99V1 GETI LPEc] 9FET 9val 9€Cl €1 LGl LT 9T L
£8€8°0 ST ¥ IT LOGPECT LSPET GPCT 9GET vETT LOVET 9Tl LETT 9€CT L921 L1 9T L
areLo GO1 TV 11 L9SVETT GPET GECT 9GCT IVET Lyel L9PT L9ECT €1 CT L1 9T L
S90L°0 VEL OF 1T L9SVECT SVCT L9GET LGTT 9G¢T LOVTl 9F1 96cT LET ¢1 LT 91 L
Gg8L0 vo0o 9¢reTT Shel 9S¥T 9G¢T ¥ECT 9pet 9FCT 9€¢T €1 ¢T 1 91 9
Gr8L0 V00 9SVECT 9SPT GECT 9SET 9PET P11 9621 €1 ¢T 9CT T 9T 9
11080 v00 98vETT SPel 99€T 96TT PETT 9¥ET 9¥eT 9€CT €1 ¢T T 91 9
€L18°0 v00 9¢vECT SPET 99¥T 96CT ¥ECT 9¥ET 9vel 9€¢1 €1 ¢T 1 91 9
980 ¥00 94¥ETT GPET GETT 9GET 9G¢T ¥ETT 9PET 9%l 9ecT 1 1 91 9
GGe80 ¥00 9¢veeT GPET SPel 9SET 99¢l veel 9Pel 9pel 96T ¢T 19T 9
89.8°0 v00 9e¥ECT SP1 9G€T 99GT ¥ECT 9VET 9¥Cl 9621 €1 21 1 9T 9
0€T6°0 ¥00 9SvETl SPET GPEl 9STT GECT 9GET PET 9pdl 96T ¢T 1 91 9
G618°0 ¢00 9SvECT S¥EL SPTT 9SET PETT PET 9VET 9¥el 9621 ¢T 1 91 9
18€8°0 c00 94vecl G¥el 9671 Gecl ¥eel 9vel 9¥cl 962l €1 921 1 91 9
69060 000 GYETT SP1 GPT GET GCT VECT PET VET ETCI T T &
65660 000 GYeTT G¥1 GETT GET GCT PECT VET PCT €T CI T T §
65¢6°0 000 GVETT GPET GPCT GEal GET GTT PECL VEL VL €CT T 1 &
65¢6°0 000 GYeel SPT GPT GPI GET ST vECT VET PCT €T C1 T &
G1€6°0 000 Gyecl G¥T GECT GET SC1 vECT PET PC1 €T ST T 1 &
GTE60 000 GYETT GVCT GET GOT ST PET PEI VI E€CT €1 CT T G
¥266°0 000 Gpecl GVCl GPT GECl GET PET PETVCI €Ll GT T 1 &
¥286°0 000 SYETT CPTL CFT GETT GET GO PECT VET JEI €21 T 1 ¢
7¢S6°0 000 GreeT QVI GET GET ST PEL Vel PT €CT €1 CL T G
¥256°0 000 SYECT VT GET GOl PECT PET VCT PT ECT ET €1 T G
fiouawrffry ((R)sA v ¢ (9)SA V) suny ubisaq y

L>% > G Uy sudisop SQIN UnI-Hg dtydiomost-uoN o7 doT, :TT°H [q8L



121

TOP NON-ISOMORPHIC MDS DESIGNS

APPENDIX E.

ZI8L0 £2609 9€0F 0871 OT68L9SFETT O1SHTT 69SFT 68GETT L9SET 0168LICTT BLVECT OT689FET 8L9FCT 019871 8T 0I6LT 01
€189°0 0£209 FESE CLVT OT6SL9GPETT OTGFET OT8LIGHT 8LGECT O1689SET 629STT 0168LFETT LIFET 689FZT 019€¢1 8T 016LT 01
129870 FELLE 9928 LOFT 0T6SL9GTETT 0T6SHT 0ISSET LGTT 68L9GT SLVET 68FCT 01.9FT 0162631 69€1 0T89ZT O16LT 0T
ZI8L0 88TF9 FIIF LTF1 0168L95F€TT SFET 0T69SHT 68GETT LOGET 0T68L9SCT 0T6LFETT 689FV€T 8L9FZT 0T9LTT 0T8T 64T 0T
GL89°0 19509 $F0F OTF1 OT168L9SFECT GHGT OT8L9GHT 8LGETT 0T689SE1 016,931 OT68LYEET OILOVET 689FCT 9€2T 0T8T 621 OI
eF1L0 6L9€9 9E0F 90FT  OI68L9SHETT SHTT OT8LIGHT 8LGETT 689GET 0T6L9STT 0T68LFETT LOVET 689FCT 019€TT OTST 641 OT
£18L°0 £€9TL 8LV TOFT OT68L9STETT OT6SHT OTRCET LGTT 68L9GT 8LVET 68FCT 0TLOFT 0T6LETT 6961 0T89TT 64T 0T
£F1L0 19209 2STH 2OFT  0T68L9SPECT OTSHZT 69SFT 68SETT 0TL9SET 0T68L9STT OT6LPETT O1689FET 8L9FCT 9€TT 0T8T 64T 01
12980 1¥£09 806€ TOVT 0168L9SFETT 6571 OTSSET O1LSTT 6829GT SLFET OI68YTT 0TL9FT 6.€21 0169€1 8971 O16LT 01
£F1L0 7TCLO 9LTF €861  0T68L9GFETT SHZT 0T69SHT 0168GETT 01L9SET 68L9STT 016LFEST 689FET 018L9¥CT 9ET OI8T 641 01
97870 180T €98 CI¢ 68L9GFETT SPT1 68L9GFT SLCETT 89SET 6L9GTT 68LFETT LOFET R9FTT 69€ZT 68T LT 6
S61Z°0 TTT¥T 2LET 808 68LICTETT 6LSPTT SGPT 89SEZT 6SET SLVET 69FET 9FGT LETT 921 LT 68291 6
78180 92121 0€6 80 68L9STETT SPTT 6L9GHT 82GECT 9SET 68L9GCT 6LFETT SLOVET 89VTT 69€3T 68T LT 6
19.8°0 8/811 016 805 68L96VETT 6571 8SET LGTT 68LOGT 8LYET G8FTT LOPT 62631 69€T 8921 681 6
92820 QIGTT 968 90G 68L9SHETT SPTT 8L9GPT 8LCETT BRISET 6L9GTT 6RLFETT LOFET 689VCT 9631 81 641 6
78180 8GTTT 0S6 667 6RL9GFETT GFTT 69SFT 68GETT LOSET 6829GTT 6LVECT 689FET 8L9FZT 98T 81 6LT 6
G0T20 £S7¢T 1101 96 68L9GVETT 6SEZT 89SET L9STT 8FETT LOPET 69FET 9LGT 66T 8421 T 689T 6
S612°0 96€€T 86TT £5F 68LOSTETT 6SSET 6LSTT 8LIST QLVET 68FCT 6971 LETT 69€T 8921 81 62T 6
SO1L°0 0LETT LV6 CFF 6SL9GFETT 6SETT SISET L9GTT SVETT LOVET 69FC1 68L9€C1 6LET 8LTT 68L1 6891 6
¢798°0 0€0T1 876 ST 6RL9GFETT 8LGPET GFET 6SGECT LSET 8LISTT LOVETT S¥ET 682¥C1 695CT 641 89T 6
oreeo 80ST 992 €01 829GPETT 8GHTT LOSHT LCETT 89GET 9671 8LFETT 8LIVET 9FTT 9LGE 8T LT 8
897%°0 SepT 162 €01 829GVETT SETT 8LGET L9STT FET1 LOVET RLFTT 9£CT 8ET 8931 L1 91 8
181670 TLG1 €92 20T 8L9GTETT 8SFTT LSHT CETT 9SET 89621 PETT ROFET 8L9¥TT L9ETT ST 291 8
PG 0 96€1 $61 10T 829GVET1 SPET 89GFT L9GETT 8LCET OFET] LFET 8LFZT 8€ZT 89Z1 81 L9T 8
9669°0 LT¥1 ¥61 26 8L9GFETT SFTT 9SPT 8GETT LISET 8LOGTT LVETT SOVET 8LOVCT 29621 ST LT 8
8019°0 T6ET 8LT 16 8L9GFECT 8GPTT LOSHT LGETT 89CET 89STT SLFETT 8LOPET OVTT 980T 8T AT 8
83120 €91 0.8 96 8L9GVETT 8L9SVT 8LGETT S9GET L9CTT SLVECT LOPET SOPTT 96T 8281 8T LT 8
§L61°0 6291 897 68 829¢FETT 9SHET SHTT 8GET SFETT ¥ET LOPET 82LFCT 89671 97T 8LT LOT 8
6FET 0 ZOET L0T 68 829¢HETT SPET OSHT 89GETT 8LSET LOPETT 8LFET 8FTT €21 89TT 8T L9T 8
18£2°0 0SPL 161 28 8L9CYETT LSFET 9SFTT 8GETT LFETT OFET 8LOFTT LOETT 89€T 2T L1 8.9T 8
flowoyfly ((9)sam ' (9)Sa ) suny ubsaq  y

01 > ¥ > 8 U3 suSisop SN uni-g drdrowost-uoN o1 dog :g1d O[4ERL



122

TOP NON-ISOMORPHIC MDS DESIGNS

APPENDIX E.

€9F1°0

98¢1°0

9.28°0

98¢0

L1€6°0

€9¥1°0

29990

11190

8€¢S°0

91660

11190

€EEL0

8ECS0

G9¥8°0

€eeL0

1119°0

8ETS0

0096

10496

S¥16

£688

0118

VoL

8LGL

81V

GLTY

GT8E

crse

06¢€

8LEE

L6¢€€

CITTOTE8L9SPECT CITT6STT CIOT8GET TTOTLGET 68L9GT TIRLVET
0168¥CT ¢TOTLIPT C16LECT TTOT69€T CITIR9CT 1
CITTOT68L9GVECT CITISHET OT69STT 684ECT TTLIGET CITTOT68L99CT
CTOT6LYEST CITI689VET 8L9VCT TT0T9ETT TT0I8T T16L1
CITTO168L9SVETT CITT6STT CIOIRSET TTOTLGTT 68LOGT TIRLVET
01681¢T CTOTLOFT ©16LECT TTOTE9ET ¢TTI8ICT CITTOT6LT
GITTOT6RL9GFETT GPCT CTITT0T169SYT CTOT6BSETT OTLISET T168L9GC1
TTOT6LVECT 689VET C10T8LIVCT CTTTIETT TIOIRT CT6L1
CITTOT68LI9GVECT CITTOTSYT CI68GET TT6LGTT OTRLIST TIBLVET
0T68¥¢1 ¢16L9¥T CTOTLEST TTOT69€T CLTI89CT CITIOT6S8LT
¢ITT0168L9SFECT T19¥CT ¢10169GFT OT68SETT TTOTLISET CTTI68LICTT
GITTOT6LYECT TT689VET OI8LIVPCT CI9ECT CTTI0IST 641
CTTT0TERLI9GVECT CITT6SYT CTOI8GET TTOTLSCT 68L99T TIBLVETT
0T687GT CTOTLIVT CTI6LECT TTOT69ET CTTT89GT ¢TOT6LT

4!

q!

¢l

q!

TTOT68LISTETT TIOTGPCT BLIGVT OT8LSETCT 0169%€T 116L9%C1
6.7ECT TTOTL9%ET 01689FVCT TIR9ECT T TIOT68LT
TTOT68L9STECT TT6STT OI8GET TTOTLGET 68L94T TISLVET
01687CT OTLIPT 6LETT TTIOI69CT TI8ITT 1

TTOT68L9SPECT TTOTSHT 68SET TI6LGTT OT8LIST TISLVET
0168¥CT 6.97T OTLECT TTOIG9ET TI8ICT TTOT68LT
TTOT68L9STECT OTSPCT T1694FT 685ECT OTLIGET TTOT68L9GCT
TTOT6LPECT OT689VET 8L9VCT T19¢€CT TTOI8T 641
TTOT68LISVECT TISYCT 0T69SPT 68SETT L9SET TTOT68LISTI
OT6LVETT T1689FET 8LI9FCT TTOTIECT OI8T 11641
TT0T68L9SVETT TISFCT OT8LISTT 8LGETT TT6894ET TT016L9¢¢CT
TTOT68LYECT TTLIVET 689VCT 0T9€CT TTOIST 641
TTOT68L9STETT TI6SVT OTSGET T10TLGTT 68L9ST TI8LVET
0168¥CT OTL9¥T 6LETT TTOTE9ET TTRICT TTOT6LY
TTOT68L9SYECT TI6GTT OT8SET TTOTLGCT 68L94T 118LYET
0168VCT OTLIVT 6LECT TTOTGIET TI89CT OT6L1L

TT0T68L9SVECT S¥CT TT0T69STT OI68SETT 01L9SET TT168L9¢C]
TTOT6LVECT 689FVET 018L9%CT 119€CT TTOT8I 641
TTOT68LISYETT TISYCT 01694FT OT68GECT TTOTLIGET TI68L9%¢CT
TT0T6LVECT TT689FET OT8L9VCT 9ECT TTOTST 64T

11

!

11

11

11

1T

11

11

11

1T

fiouanofly (9)SA N

suny ubisa(q Y

g1 > Y > 1T Y suSsop SN uni-pg owqdioutost-uoN 0] doT, :€1°d olqeL



Bibliography

Banerjee, K. S. and Federer, W. T. (1967). On a special subset giving an irregular
fractional replicate of a 2" factorial experiment. Journal of the Royal Statistical

Society, Series B 29, 292-299.

Bayarri, M., Berger, J. O., Higdon, D., Kennedy, M., Kottas, A., Paulo, R., Sacks,
J., Cafeo, J., Cavendish, J. and Tu, J. (2002). A framework for the validation
of computer models. Proceedings of the Workshop on Foundations for V&V in the
21st Century , D. Pace and S. Stevenson, eds., Society for Modeling and Simulation

International.

Ben-Ari, E. N. and Steinberg, D. M. (2007). An empirical comparison of kriging with
mars and projection pursuit regression in modeling data from computer experi-

ments. Quality Engineering 19, 327-338.

Bingham, D. and Chipman, H. A. (2007). Incorporating prior information in optimal

design for model selection. Technometrics 49, 155-163.

Bingham, D., Sitter, R. R. and Tang, B. (2008). Orthogonal and nearly orthogonal

designs for computer experiments. Accepted by Biometrika .

Box, G. E. P. and Hunter, W. G. (1961a). The 2*P fractional factorial designs.
Technometrics 3, 311-352.

123



BIBLIOGRAPHY 124

Box, G. E. P. and Hunter, W. G. (1961b). The 2*7? fractional factorial designs.
Technometrics 3, 449-458.

Box, G. E. P. and Wilson, K. B. (1951). On the experimental attainment of optimum
conditions. Journal of the Royal Statistical Society, Series B 13, 1-45.

Butler, N. A. (2003a). Some theory for constructing minimum aberration fractional

factorial designs. Biometrika 90, 233-238.

Butler, N. A. (2003b). Minimum aberration construction results for nonregular two-

level fractional factorial designs. Biometrika 90, 891-898.

Cheng, C. S. (1995). Some projection properties of orthogonal arrays. Annals of
Statistics 23, 1223-1233.

Cheng, C. S., Deng, L. Y. and Tang, B. (2002). Generalized minimum aberration and
design efficiency for nonregular fractional factorial designs. Statistica Sinica 12,

991-1000.

Cheng, C. S. and Mukerjee, R. (1998). Regular fractional factorial designs with

minimum estimation capacity. Annals of Statistics 26, 2289-2300.

Cheng, C. S., Steinberg, D. M. and Sun, D. X. (1998). Minimum aberration and
model robustness for two-level fractional factorial designs. Journal of the Royal

Statistical Society: Series B 61, 85-93.

Chipman, H. (1996). Bayesian variable selection with related predictors. Canadian

Journal of Statistics 24, 17-36.

Chipman, H., Hamada, M. and Wu, C. F. J. (1997). A bayesian variable selection
approach for analyzing designed experiments with complex aliasing. Technometrics

39, 372-381.



BIBLIOGRAPHY 125

Cioppa, T. M. and Lucas, T. M. (2007). Efficient nearly orthogonal and space-filling
latin hypercubes. Technometrics 49, 45-55.

Clark, J. B. and Dean, A. M. (2001). Equavalence of fractional factorial designs.
Statistica Sinica 11, 537-547.

Deng, L. Y., Li, Y. and Tang, B. (2000). Catalogue of nonregular designs with small
runs from Hadamard matrices based on generalized minimum aberration criterion.

Communication in Statistics - Theory and Methods 29, 1379-1395.

Deng, L. Y. and Tang, B. (1999). Generalized resolution and minimum aberration cri-

teria for Plackett-Burman and other nonregular factorial designs. Statistica Sinica

9, 1071-1082.

Deng, L. Y. and Tang, B. (2002). Design selection and classification for Hadamard
matrices using generalized minimum aberration criteria. Technometrics 44, 173—

184.

Fang, K., Li, R. and Sudjianto, A. (2006). Design and Modeling for Computer Ezper-
iments. CRC Press.

Fang, K. T. (1980). The uniform design: Application of number-theoretic methods in
experimental design. Acta Mathematicae Applicatae Sinica 3, 363-372.

Fries, A. and Hunter, W. G. (1980). Minimum aberration 2P designs. Technometrics

22, 601-608.
Geramita, A. V. and Seberry, J. (1979). Orthogonal designs. Marcel Dekker.

Handcock, M. S. (1991). On cascading latin hypercube designs and additive models
for experiments. Communication Statistics - Theory and Method 20, 417-439.



BIBLIOGRAPHY 126

Iman, R. L. and Conover, W. J. (1982). A distribution-free approach to inducing
rank correlation among input variables. Communication in Statistics, Part B -

Simulation and Computation 11, 311-334.

Ingram, D. K. and Tang, B. (2005). Construction of minimum G-aberration designs

via efficient computational algorithms. Journal of Quality Technology 37, 101-114.

John, P. W. M. (1962). Three-quarter replicates of 2" designs. Biometrics 18, 172~
184.

John, P. W. M. (1964). Blocking of 3(2" — k) designs. Technometrics 6, 371-376.

Johnson, M. E., Moore, L. M. and Ylvisaker, D. (1990). Minimax and maximin
distance designs. Journal of Statistical Planning and Inference 26, 131-148.

Jones, B. A., Li, W., Nachtsheim, C. J. and Ye, K. Q. (2007). Model discrimination
- another perspective on model-robust designs. Journal of Statistical Planning and

Inference 137, 1576-1583.

Li, Y., Deng, L. Y. and Tang, B. (2004). Design catalog based on minimum G-
aberration. Journal of Statistical Planning and Inference 124, 219-230.

Lin, C. D. and Sitter, R. R. (2008). An isomorphism check for two-level fractional
factorial designs. Journal of Statistical Planning and Inference 134, 1085 1101.

Loeppky, J., Sitter, R. R. and Tang, B. (2007). Nonregular designs with desirable

projection properties. Technometrics 49, 454-467.

Margolin, B. H. (1969). Results on factorial designs of resolution IV for the 2" and
2"3™ series. Technometrics 11, 431-444.

McKay, M. D., Beckman, R. J. and Conover, W. J. (1979). Comparison of three
methods for selecting values of input variables in the analysis of output from a

computer code. Technometrics 21, 239-245.



BIBLIOGRAPHY 127

Miller, A. and Sitter, R. R. (2004). Choosing columns from the 12-run plackett-
burman design. Statistics and Probability Letters 67, 193—201.

Miller, A. and Sitter, R. R. (2005). Using folded over non-orthogonal designs. Tech-
nometrics 47, 502-513.

Morris, M. D. and Mitchell, T. J. (1995). Exploratory designs for conputational
experiments. Journal of Statistical Planning and Inference 43, 381-402.

Nordstrom, A. W. and Robinson, J. P. (1967). An optimum nonlinear code. Inform
Control 11, 613-616.

Owen, A. B. (1992). Orthogonal arrays for computer experiments, integration, and

visualization. Statistica Sinica 2, 439-452.

Owen, A. B. (1994). Controlling correlations in latin hypercube samples. Journal of

the American Statistical Association 89, 1517-1522.

Plackett, R. L. and Burman, J. P. (1946). The design of optimum multifactorial
experiments. Biometrika 33, 305-325.

Sacks, J., Welch, W. J., Mitchell, T. J. and Wynn, H. P. (1989). Design and analysis

of computer experiments. Statistical Sciences .

Santner, T. J., Williams, B. J. and Notz, W. 1. (2003). The Design and Analysis of

Computer FExperiments. Spring-Verlag.

Simpson, T. W., Peplinski, J. D., Koch, P. N. and Allen, J. K. (2001). Meta-models
for computer-based engineering design: Survey and recommendations. Engineering

With Computers .

Steinberg, D. M. and Lin, D. K. J. (2006). A construction method for orthogonal
latin hypercube designs. Biometrika 93, 279-288.



BIBLIOGRAPHY 128

Sun, D. X. (1993). Estimation Capacity and Related Topics in Ezperimental Design.
Ph.D. thesis, University of Waterloo.

Sun, D. X., Li, W. and Ye, Q. (2002). An algorithm for sequentially constructing non-

isomorphic orthogonal designs and its applications. Technical Report, SUNYSB-
AMS .

Tang, B. (1993). Orthogonal array-based latin hypercubes. Journal of the American
Statistical Association 88, 1392-1397.

Tang, B. (1998). Selecting latin hypercubes using correlation criteria. Statistica Sinica

8, 965-977.

Tang, B. (2001). Theory of J-characteristics for fractional factorial designs and pro-

jection justification of minimum G, Aberration. Biometrika 88, 401-407.

Tang, B. and Deng, L. Y. (1999). Minimum G,-Aberration for nonregular fractional
factorial designs. Annals of Statistics 27, 1914-1926.

Tang, B. and Deng, L. Y. (2003). Construction of generalized minimum aberration
designs of 3, 4, and 5 factors. Journal of Statistical Planning and Inference 113,
335-340.

Vartak, M. N. (1955). On an application of kronecker product of matrices to statistical
designs. The Annals of Mathematical Statistics 36, 420-438.

Wang, Y. and Fang, K. T. (1981). A note on uniform distribution and experimetnal
design. Kezxue TongBao 26, 485—489.

Webb, S. (1968). Non-orthogonal designs of even resolution. Technometric 10, 291
299.

Wu, C. F. J. and Chen, Y. (1992). A graph-aided method for planning two-level

experiments when certain interactions are important. Technometric 34, 162-174.



BIBLIOGRAPHY 129
Wu, C. F. J. and Hamada, M. (2000). Ezperiments Planning, Analysis, and Parameter
Designs Optimization. Wiley-Interscience Publication.

Xu, H. (2002). An algorithm for constructing orthogonal and nearly-orthogonal arrays

with mixed levels and small runs. Technometric 44, 1430-1439.

Xu, H. (2003). Minimum moment aberration for nonregular designs and supersatu-

rated designs. Statistica Sinica 13, 691-708.

Xu, H. (2005). Some nonregular designs from the Nordstrom and Robinson code and

their statistical properties. Biometrika 92, 385-397.

Xu, H. and Wong, A. (2007). Two-level nonregular designs from quaternary linear

codes. Statistica Sinica 17, 1191-1213.

Ye, Q. (1998). Orthogonal column latin hypercubes and their application in computer

experiments. Journal of American Statistics Association 93, 1430-1439.



	ETD3625-001
	ETD3625-002
	ETD3625-003
	ETD3625-004
	ETD3625-005
	ETD3625-006
	ETD3625-007
	ETD3625-008
	ETD3625-009
	ETD3625-010
	ETD3625-011
	ETD3625-012
	ETD3625-013
	ETD3625-014
	ETD3625-015
	ETD3625-016
	ETD3625-017
	ETD3625-018
	ETD3625-019
	ETD3625-020
	ETD3625-021
	ETD3625-022
	ETD3625-023
	ETD3625-024
	ETD3625-025
	ETD3625-026
	ETD3625-027
	ETD3625-028
	ETD3625-029
	ETD3625-030
	ETD3625-031
	ETD3625-032
	ETD3625-033
	ETD3625-034
	ETD3625-035
	ETD3625-036
	ETD3625-037
	ETD3625-038
	ETD3625-039
	ETD3625-040
	ETD3625-041
	ETD3625-042
	ETD3625-043
	ETD3625-044
	ETD3625-045
	ETD3625-046
	ETD3625-047
	ETD3625-048
	ETD3625-049
	ETD3625-050
	ETD3625-051
	ETD3625-052
	ETD3625-053
	ETD3625-054
	ETD3625-055
	ETD3625-056
	ETD3625-057
	ETD3625-058
	ETD3625-059
	ETD3625-060
	ETD3625-061
	ETD3625-062
	ETD3625-063
	ETD3625-064
	ETD3625-065
	ETD3625-066
	ETD3625-067
	ETD3625-068
	ETD3625-069
	ETD3625-070
	ETD3625-071
	ETD3625-072
	ETD3625-073
	ETD3625-074
	ETD3625-075
	ETD3625-076
	ETD3625-077
	ETD3625-078
	ETD3625-079
	ETD3625-080
	ETD3625-081
	ETD3625-082
	ETD3625-083
	ETD3625-084
	ETD3625-085
	ETD3625-086
	ETD3625-087
	ETD3625-088
	ETD3625-089
	ETD3625-090
	ETD3625-091
	ETD3625-092
	ETD3625-093
	ETD3625-094
	ETD3625-095
	ETD3625-096
	ETD3625-097
	ETD3625-098
	ETD3625-099
	ETD3625-100
	ETD3625-101
	ETD3625-102
	ETD3625-103
	ETD3625-104
	ETD3625-105
	ETD3625-106
	ETD3625-107
	ETD3625-108
	ETD3625-109
	ETD3625-110
	ETD3625-111
	ETD3625-112
	ETD3625-113
	ETD3625-114
	ETD3625-115
	ETD3625-116
	ETD3625-117
	ETD3625-118
	ETD3625-119
	ETD3625-120
	ETD3625-121
	ETD3625-122
	ETD3625-123
	ETD3625-124
	ETD3625-125
	ETD3625-126
	ETD3625-127
	ETD3625-128
	ETD3625-129
	ETD3625-130
	ETD3625-131
	ETD3625-132
	ETD3625-133
	ETD3625-134
	ETD3625-135
	ETD3625-136
	ETD3625-137
	ETD3625-138
	ETD3625-139
	ETD3625-140
	ETD3625-141
	ETD3625-142

