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Abstract

Intersecting convex sets by rays

What is the smallest number T = Td(n) such that for any collection C of n pairwise disjoint

compact convex sets in ]Rd, there is a point such that any ray (half-line) emanating from it

meets at most T sets of the collection? In this thesis we show an upper and several lower

bounds on the value Td(n), and thereby we completely answer the above question for ]R2, and

partially for higher dimensions. We show the order of magnitude for an analog of T2(n) for

collections of fat sets with bounded diameter. We conclude the thesis with some algorithmic

solutions for finding a point p that minimizes the maximum number of sets in C we are able

to intersect by a ray emanating from p in the plane, and for finding a point that basically

witnesses our upper bound on Td(n) in any dimension. However, the latter works only for

restricted sets of objects.

Keywords: convex set, regression depth, Centerpoint Theorem, Helly Theorem
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Chapter 1

Introduction

Suppose we have an environment with a bunch of objects distributed in it, which we consider

as the obstacles. Our goal is to find a position p in the environment such that the visibility

between any location and p is not blocked by too many obstacles, i.e. the straight line

connecting a location with p does not intersect too many obstacles. In the real world

situation we assume that we want to set up in our environment a mobile wireless sensor

network. The heart of our network is the. base station, which has to be able to communicate

with the sensor nodes, regardless of their position in the environment. According to a model

of wireless positioning service recently patented by Liu and Hung [14], the signal sent by a

sensor can penetrate only at most a certain number, t, of obstacles and will not be received

by the base station if there is more than t obstacles between the sensor and the base station.

They call this predetermined threshold the obstacle number of the network.

Based on this model we will investigate the following question asked by Jorge Urrutia

[20]: What is the smallest number Td(n) such that for any set of n pairwise disjoint convex

compact sets in the d-dimensional Euclidean space there is always a point p, for which every

ray emanating from it intersects at most Td(n) ofthese sets. So, basically we investigate the

worst case scenario with respect to the obstacle number. Formally, we can express Td(n) as

follows.

Let C be a collection of n convex sets in d-dimensional Euclidean space. For any point

p we denote by r(p) the set of all rays emanating from p. Let T( r, C) denote the number of

sets in C intersected by a ray r, i.e. the number of sets C in C such that r n C i=- 0. Then

T(p, C) = max T(r, C) is the maximal number of sets from C we can intersect by a ray
rEr(p)

1



CHAPTER 1. INTRODUCTION 2

emanating from p. The obstacle number of a given collection of sets is expressed as follows

T(C) = min T(p,C). Finally, let Td(n) = maxT(C), where C varies over all collections of n
pERd C

pairwise disjoint compact convex sets in d-dimensional Euclidean space. In our model the

abstraction of an obstacle is a convex set living in the Euclidean space, and the base station

and sensor nodes are represented by points in that space.

In this thesis, we study the asymptotic growth of the functions Td(n). We start, in

Chapter 2, with presentation of some related problems, along with results that were obtained

recently. In Chapter 3, we show an upper bound on Td(n). In Chapter 4, we provide

some constructions attaining (or almost attaining) this bound in ]R2 and we give a general

construction that works in any dimension, but leaves a large gap between the lower bound

it provides and the general upper bound. Moreover, in Chapter 5 we study a restricted

version of our problem in ]R2, in which we allow only fat convex sets with bounded diameter

to be in our collection. We conclude this thesis with the presentation of some algorithms in

Chapter 6 that for a collection of n pairwise disjoint compact convex sets C in ]R2 return a

point p minimizing T(p, C), or for a collection C in ]Rd, for d > 1, return a point that has

T(p, C) not much higher than our upper bound on Td(n). However, in the latter case we

have only algorithms that works for collections of sets of some restricted kind. The results

in this thesis, most of which are from author's joint work [11] with Andreas Holmsen and

Janos Pach, are as follows.

Theorem 1.1 ([11]). Td(n) ::; ld;:/ J

Theorem 1.2. Td(n) ~ in -g+11
Theorem 1.3 ([11]). For any kEN, k > 0, there exists a collection of 3k pairwise disjoint

discs in the Euclidean plane such that from any point there is a ray that intersects at least

2k - 2 of them.

Theorem 1.4 ([11]). For any kEN, k > 0, there exists a collection of3k pairwise disjoint

equal length segments in the Euclidean plane such that from any point there is a ray that

intersects at least 2k - 1 of them.

Theorems 1.3 and 1.4 show that our upper bound from Theorem 1.1 is tight (up to an

additive constant) in two dimensions, and by Theorem 1.2 it is also tight in]R. However, the

problem in ]R is much more simpler than in higher dimensions, as any collection of pairwise

disjoint closed intervals gives us matching lower bound.
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Moreover, for an analog T2(n) of T2(n) for fat sets with bounded diameter we prove the

following theorem.

Theorem 1.5 ([11]). T2(n) E 8(Vn log n)

Finally, we show that the computational problem of finding a point p witnessing T(C),

for a given set C of pairwise disjoint bounded complexity polygons in ]R2 having n sides in

total, can be solved in deterministic polynomial time with respect to n.

Theorem 1.6. There is an algorithm that computes a point p minimizing T(p, C) in O(n4 log n)

time using O(n4 ) space.
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1.1 Notation

In this section we summarize our notation.

4

We denote by ]R and N the set of real and natural numbers, respectively. ]Rd stands

for the d-dimensional Euclidean space. The points (vectors) in ]Rd, d > 1 are typeset in

boldface. If A ~ ]Rd, by cA, where c E ]R, we mean the set {cpl pEA}. 0 denote the origin

of]Rd, d>1.

We call a ray from a point p E ]Rd the set of points {p+tvl t E ]R, t > O}, for v E ]Rd, v =I- 0

(the direction). A ray r intersects a set S if r n S =I- 0. By a hyperplane H in ]Rd we mean

(d - I)-dimensional affine subspace, i.e. a set of points x = (Xl, ... Xd) E ]Rd satisfying

b = 2::1=1 aiXi, for some b, ai E ]R, 1 :::; i :::; d, and a = (al'" . ad) =I- O. We call a a normal

vector of the hyperplane H. Bya vertical hyperplane we mean a hyperplane having ad = O.

We call a closed half-space defined by H the union of H with a connected component of its

complement in ]Rd.

By the point/hyperplane duality we will understand an injective mapping D that takes

a point a = (al,'" ad) E ]Rd to a non-vertical hyperplane defined by the equation Xd =
2::~~t-l aiXi - ad. The hyperplane corresponding to a point a is D(a), and the point corre

sponding to a hyperplane is D-l(a). Note that this correspondence preserves incidence.

The Euclidean distance between two points p = (PI, ... Pd), q = (ql,'" qd) in ]Rd is

denoted by Ipql = V2::t=l (pi - qi)2. A ball in ]Rd is a set of the form {x E ]Rd I Ixal :::; b},

for a E ]Rd (the centre) and b E ]R, b > 0 (the radius). We call a two dimensional ball a

disc. We call a sphere the boundary of a ball in ]Rd, i.e a set {x E ]Rd I Ixal = b}, for a E ]Rd

(the centre) and bE]R, b> 0 (the radius). We call a two dimensional sphere a circle. By

projection of a set A in ]Rd on a sphere S with a centre c we mean the set of intersection

points with S of the rays emanating from c and intersecting A. We denote by Sd-l the unit

radius sphere in ]Rd with the centre at O.

We call a (simple) graph G(V, E) a pair of two finite sets, a set of vertices V = V(G),

and a set of edges E = E(G), such that E ~ {{u,v}1 u,v E V, v =I- u}. We will refer to an

edge e = {u, v} shortly by uv. The edge e = uv is incident to u and v.

The set C ~ ]Rd is convex, if for every x, y E C the line segment xy is contained in C.

By the convex hull of a set S ~ ]Rd, denoted by conv(S) , we mean the smallest (with respect

to inclusion) convex set containing S. By the affine hull of a set S ~ ]Rd we understand
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the smallest (with respect to inclusion) affine subspace of IRd containing S. By a relative

boundary of a set S in IRd we mean the boundary of S with respect to its affine hull. A

compact set is a set that is bounded and closed. Let A and B denote two compact subsets of

IRd . By Hausdorff distance between A and B we understand max{sup inf labl, sup inf labl}.
aEA bEB bEB aEA

We assume the reader to be familiar with the basic properties of the above notions,

which could be found in many textbooks, e.g. [16, 23].



Chapter 2

Connections to regression depth

Recently robust statistics (see e.g. [17, 18]) became an active sub-area of the computational

geometry due to the natural geometric formulation of many of its problems. Its motiva

tion is to produce estimators that are not too much affected by small deviations from our

model assumptions, i.e. estimators that are not much affected by outliers (in statistics: an

observation distant from the rest of the data) presented in our data. The application of

classical statistical methods (e.g. least square regression) turned out to be in some practical

situation inappropriate, because their outcome was too much affected by these occasional

exceptions.

The question we study is closely related to the statistical notion of regression depth of

a hyperplane introduced by Rousseeuw and Hubert (1996) as a quality measure for robust

linear regression. The robust linear regression in comparison with the least square regression,

which assumes that error is normally distributed, allows some data to be affected by the

completely arbitrary errors. Another robust estimators is e.g. slope selection [15, 8].

Let H be a non-vertical hyperplane in ]Rd. Any vertical hyperplane (as defined in Section

1.1) H' in ]Rd together with H defines two pairs of opposite connected parts (double wedges)

of the complement of H U H' in ]Rd. Let us denote by R 1 = Ri(H, H') and R2 = R2(H, H')

the closure of the unions of these two pairs, respectively. Geometrically, the regression depth

of a non-vertical hyperplane H with respect to a finite set of points P is min{IP n Ril, IP n
R21 : R i = Ri(H, H'), R2 = R2(H,H' ), H' is vertical hyperplane}. If H is a vertical

hyperplane its regression depth with respect to P is IH n PI.

In the dual settings of the hyperplane arrangement, this notion is equivalent to the notion

of the undirected depth of a point in an arrangement of hyperplanes in ]Rd. The undirected

6
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depth of a point p E JRd gives us the minimum number of hyperplanes in the arrangement

any ray emanating from p intersects. Here we consider a hyperplane to be intersected by a

ray that the hyperplane is parallel to. More formally, if P is a set of points in JRd then the

regression depth of a hyperplane H with respect to P equals to the undirected depth of a

point D-I(H) in {D(p)1 pEP}.

Given a collection of n hyperplanes H in JRd notice that any ray r from a point p having

undirected depth m in H intersects at most n - m hyperplanes of H not containing p that

are not parallel to r. To see this just observe that every ray is an opposite ray of some

other ray starting at p. Hence, a lower bound len) on the maximal undirected depth for an

arrangements of n hyperplanes H would give us the upper bound n - len) for an analog of

T( n) for hyperplanes, where we consider rays to not contain their starting points. Thus, as

we can convert any statement about regression depth into the statement about undirected

depth (using the properties of the point/hyperplane duality), it is not hard to see that the

following result gives us the same (up to an additive constant depending on d) upper bound

as that of Theorem 1.1 for an analog of Td(n) for collections of flat sets in JRd and, in some

sense, in "general position ". What do we mean by general position in this case will be

explained later. By a flat set we mean a set that is contained in a hyperplane. The proof

of Theorem 2.1 from [3] relies on the same classical result as our proof of the general upper

bound: Brouwer's fixed point theorem [5].

Theorem 2.1. For any d-dimensional set of n points P there exists a hyperplane having

regression depth at least rd~ I 1·
Although the proof of the above theorem is quite involved, the main argument can be

formulated quite easily in terms of the projective transformation. First we embed Euclidean

space containing our set of points P into the projective space as a hyperplane HI (see Figure

2.1) in JRd+1 avoiding the origin and thereby enriching it by the points at infinity and the

hyperplane at infinity.

Theorem 2.2 (Centerpoint Theorem). Let P be the finite set of points in JRd. Then

there exists a point p E JRd (centerpoint) such that for all hyperplanes H, such that p E H,

any closed half-space defined by H contains at least rd~l1points in P.

Using the above Centerpoint Theorem (for the proof see e.g. [9]) observe that all we

need to do is to prove that for any P there exists a projective transformation t of HI taking
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Figure 2.1: Projective transformation t

vertical 00

8

a point at the vertical infinity to the centerpoint c of the transformed set t(P). The space

containing the trasformed set t(P) of points P is embeded into the projective space as a

hyperplane H2 (see Figure 2.1) in ]Rd+l. As the inverse of t takes the hyperplane at infinity

to a deep hyperplane hi (on Figure 2.1 their common corresponding projective hyperplane

is denoted by h), the deep hyperplane exists. To see that hi has a regression depth at least

rd~ll it is enough to observe that a vertical hyperplane in HI corresponds to the same

projective hyperplane as some hyperplane through c in H2.

We show how to obtain a similar upper bound as that in Theorem 1.1 for an analog of

Td(n) for collections of flat sets in ]Rd.

If C is a collection of n flat sets in ]Rd, by 'H (C) we denote one of the smallest collections

of hyperplanes each of which contains a set from C, and covering all sets in C. Let C be

a collection of n pairwise disjoint flat compact convex sets, so that we can choose 'H(C)

such that none of the hyperplanes in 'H(C) is vertical (we can achieve this by choosing an

appropriate coordinate system), and no k hyperplanes in 'H(C) have non-empty intersection.

If 'H(C) can be chosen such that k = d + 1, we say that C is in general position.

We apply the dual version of Theorem 2.1 on 'H(C) thereby obtaining a point p E ]Rd.

Let pi E ]Rd be p, if p does not belong to any hyperplane in 'H(C). Otherwise let pi be

a point very close to p that does not belong to any hyperplane in 'H(C), i.e. a point so

that for all H E 'H(C), such that p rt H, pi and p belong to the same half-space defined

by H. For any ray r' let p(r' ) denote its translation starting at p. We show that pi is

the point having T(p, C) ::; li~1J+ k - 1. If there were a ray r' from pi intersecting more
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than ld~i J + k - 1 sets in C, the opposite ray of r = p(r/) would not intersect enough

hyperplanes and thereby contradicts Theorem 2.1. Indeed, as p' does not belong to any

hyperplane from 'H(C), r' must intersect more than ld~i J+ k - 1 hyperplanes not parallel

to r ' , Hence, r must intersect more than ld~iJ :2: ll~~;ld J hyperplanes in H E 'H(C) not

containing p that are not parallel to r. Thus, the opposite ray of r must intersect less than

r'~l?1hyperplanes and thereby yielding contradiction.

On the other hand, if we allow to have in our collection only d-dimensional balls, almost

the same upper bound, i.e. ld~iJ + 1, as that in Theorem 1.1 is obtained by a simple

application of the Centerpoint Theorem (Theorem 2.2). The argument is explained in the

proof of Theorem 6.13.

It is interesting to note that we have basically the same upper bound for Td(n) as for its

analog for collections of flat sets (not necessarily bounded) that are allowed to intersect, if

we consider rays to not contain their starting points (otherwise the trivial upper bound n

would be tight). In Chapter 4, we explain that this is due to the fact that we can place the

objects in a way, so that they behave almost like hyperplanes with respect to the lines going

through one point, Le. any line through that point intersect almost all of them. Since each

construction attaining the best known bound is based on the above idea, there is a strong

reason to think that it is not possible to avoid some esoteric properties, such as exponential

growth of the sizes of objects or the distances among them, in the constructions approaching

the upper bound. On the other hand, simple examples show that there are less artificial

configurations with Td still linear in the number of sets, whilst the situation is considerably

different, if we consider just fat objects of bounded diameter (see Chapter 5).

The question solved by Theorem 2.1 was raised as a conjecture by Rousseeuw and Hubert

in [19], where they observed that this bound is basically tight as witnessed by a set of n

points on the moment curve, 'Y = {(t, t 2 , ... td ) I t E 1R}.

Theorem 2.3. Every hyperplane H has regression depth at most l~+tJ+ d with respect to

any set of n points on the moment curve 'Y.

Proof. Let P denote a set of n points on 'Y. To see that every hyperplane H has regression

depth at most m = m(n, d) = l~+tJ + d with respect to P, it is enough to introduce for

each non-vertical hyperplane H a vertical hyperplane H', such that for Ri = Ri(H, H') and

R2 = R2(H, H'), min{IP n Ril, IP n R21} ::; m (Ri , R2 are defined as above).

First assume that H divides 'Y into less than d + 1 continuous parts by intersecting it
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with closed half-spaces defined by H ignoring the parts that are single points. As a vertical

hyperplane can be determined by any d - 1 points on "I, it is not very hard to see that we

can choose H' such that either all points in P not belonging to H belongs to Rl or all these

points belong to R2 . We simply choose H' such that it passes through all endpoints of the

considered connected parts of "I, and if we have less than d - 1 of these endpoints, none of

the other possible intersections of H' with "I lie between a pair in P with respect to "I, nor

coincides with a point in P.

Otherwise, we can obtain d + 1 subsets of P (some of which might be empty) whose

union is P, such that each subset belongs to the same continuous part of "I in a closed half

space defined by H. Note that now none of the parts could be a single point as otherwise

we would end up in the previous case. One of these subsets S has to consist of at most

ld+~J + 2 points, where i is the number of points from P contained in H. Similarly as in

the previous case, now, we can choose a vertical hyperplane H' such that either R1 or R2

contains at most lSI - 2 + i = ld+; J + i points. Clearly, this expression is maximized, if

i = d. We choose H' such that it passes through all endpoints of the considered continuous

parts of "I except one part that contains S. Moreover, if we have d - 1 of these endpoints,

one more possible intersection of H' with "I does not lie between a pair in P with respect

to "I, nor coincides with a point in P.

o

Seeing all these similarities between regression depth and Td function, not to mention

The Centerpoint Theorem, one would be quite surprised, if the upper bound in Theorem

2.1 were not tight. So far, we do not even have a proof that Td(n) is monotone with respect

to the dimension. As we have indicated in the introduction, for our general case, we have

only configurations that match the upper bound of Td(n) in less than 3 dimensions.



Chapter 3

General upper bound

In this section we give the proof of the general upper bound of Theorem 1.1. The main source

of inspiration for the following proof is Chakerian's topological proof of Helly's Theorem

from [6] using two classical results: Brouwer's Fixed Point [5] Theorem and CaratModory

Theorem (see e.g. [16]). Let IL(A), for A ~ IRd , denote the Lebesgue measure (see e.g. [22]).

Let us define the center of mass m(A), for A ~ IRd such that IL(A) > 0, as the center of

mass with respect to the Lebesgue measure IL, Le. m(A) = /./A) JaEA adlL.

Proof. (Theorem 1.1 ) Let C be a collection of n convex compact pairwise disjoint sets

in IRd. Without loss of generality we can assume that all sets in C are properly contained in

a unit ball B d in IRd centred at O.

In the following we define a continuous mapping f from 2Bd (our choice of domain for

f will be explained later) to itself that depends on the positioning of the sets in C. We

proceed in several stages.

For each S ~ IRd , let Ks(p) be the convex hull of S U {p}. Let Kc'(p) denote

nSEC' Ks(p), for any 0 f. C' ~ C. We define an auxiliary function fc' for any 0 f. C' ~ C

from 2Bd to IRd :

fc'(p) = { ILo(Kc,(p))(mc,(p) - p) IL(Kc'(p)) > 0
otherwise

where mc'(p) = m(Kc'(p)).

In what follows we show that fc' is continuous for any 0 f. c' ~ C.

Let {pd~o be the sequence of points in IRd converging to p (in Euclidean distance

11
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metric). To prove that fc' is continuous, it is enough to show that

To demonstrate this we first prove, that for SEC'

12

(3.1)

(3.2)

in Hausdorff metric.

Let IpPjl < E, E E JR., j E No For every point q E Ks(p), q = ap + (1 - a)r, where

a E JR.,O < a < 1 and rES, we can choose the point q' E Ks(pj) where q' = apj + (1- a)r.

It is easy to see that Iqq'l < E. By reversing the role of P and Pj in the above argument we

show that Hausdorff distance between Ks(p) and Ks(pj) is at most E. That completes the

proof of (3.2).

If J.L(Kc'(p)) > 0, using (3.2) and convexity of KS(Pi), for every i E Nand SEC, one

can show that lim KC'(Pi) = Kc'(p), in Hausdorff metric, as KC'(Pi) = nsEC' KS(Pi) for
1->00

every i E N. We skip rather lengthy proof of this fact, as to prove it one can proceed by a

straightforward application of some standard techniques.

Otherwise, i.e. if J.L(Kc' (p)) = 0, we will show that the limit is the same. To see this it

is enough to show that for any E > 0 we can choose a 8 > 0 so that if Ipql < 8, for some

q E JR.d, then J.L(Kc,(q)) < E.

Clearly, we have

J.L(Kc,(q)) = J.L( nKs(q)) ::; J.L( UKs(q) \ Ks(p)) ::; L J.L(Ks(q) \ Ks(p))
SEC' SEC' SEC'

On the other hand by (3.2) for any SEC' and E/IC'I we can choose 8s such that if Ipq'j < 8s,

for some q' E JR.d, then by boundedness of S J.L(Ks(q') \Ks(p)) < E/IC'I. We let 8 = min 8s.
SEC

Hence, lim J.L(KC'(Pi)) = J.L(Kc'(p)), for all P E JR.d.
1->00

It is a routine to show that lim mC'(Pi) = mc'(p), whenever J.L(Kc'(p)) > O. Again we
1->00

omit the proof, because it is just too technical. We finish the proof of (3.1) by considering

separately the cases when J.L(Kc'(p)) > 0 and J.L(Kc'(p)) = O. In the former case we use the

fact that the sequences {J.L(KC'(Pi))}~O' {Pi}~O and {mc'(Pi)}~Oconverge to J.L(Kc' (p)), P

and mc'(p), respectively, if {Pi}~O converges to p. The latter case is resolved by observing

that we have io E N such that mC'(Pi) is inside of 2Bd for any i > io. Moreover, as now

{J.L(KC'(Pi))}~O converge to 0, we have lim fC'(Pi) = 0 = fc'(p), and that concludes the
1->00

proof of the fact that f c' is continuous for any 0 =I- c' <;;; C
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Before we define the function f we need to slightly enhance our collection of sets as

follows. We inflate each set in C by a small f obtaining a new collection C€, in which every

pair of sets is still disjoint. By inflating by f we mean conversion of a set S into the set

infl€(S) = {p E JRdl ~q E S Ipql :S f}. We can do that, because by compactness of our

sets there exists f > 0 such that the minimal distance between the points of every pair of

sets in C is more than 2f. Clearly, inflating preserves the compactness, and by the following

proposition we know that inflating preserves convexity as well.

Proposition 3.1. If S <:;; JRd is convex then infl€(S) is also convex.

Proof. Let 0: E [0,1]. Ifp' E Sis f-close to p E infl€(S), and q' E Sis f-close to q E infl€(S),

then (o:p' + (1 - o:)q') E S is f-close to (o:p + (1 - o:)q). So, (o:p + (1 - o:)q) E infl€(S). D

We will use, that by inflating the sets in C we make every non-empty cone Kc'(p),

C' <:;; C, have Lebesgue measure greater than O. It is also clear that a ray from any point

intersects at least as many sets of C€ as of C. Hence, we do not lose any generality by this

enhancement.

Let T be the greatest number such that for any point p there is a ray emanating from

p that intersects T sets in C. Now, we define the function f' from 2Bd to JRd using the

previously defined functions fc'· We have f'(p) = L fc'(p)·
C'C;C., IC'I=r

Finally, we define f from 2Bd as follows:

f'(p)
f(p) = p + If'(p)1 + 1

It is easy to see that the image of f belongs to 2Bd , as the ray emanating from p E 2Bd

having direction f'(p) i- 0 intersects B d , and the length of a vector by which p is shifted by

f is less than 1. Since f is continuous and maps 2Bd to 2Bd , we can apply the Brouwer's

Fixed Point Theorem to f to obtain a fixed point of f, p, Le. f(p) = p. Let:F' = {C' <:;;

C€I fc'(p) i- 0, IC'I = T}. Since T is the obstacle number of C, at least one non-empty

cone Kc'(p), C' <:;; C, IC'I = T, exists for p. This cone cannot have Lebesgue measure 0

after inflating. Thus,:F' is non-empty. Clearly, mc, (p) i- p, if T > 1, as p has to be on

the boundary of Kc'(p), because the sets in C€ are disjoint. Moreover, we know that p is

contained in a convex hull of the set {mc' (p) IC' E :F'}. This can be derived as follows. Let
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ac"(p) = j.L(Kc"(p))/ I:C'EF', IC'I=r j.L(Kc'(p)), C" E F'. Thus, I:C'EF', IC'I=r ac'(p) = 1.

0 f'(p)

L j.L(Kc'(p))p L j.L(Kc,(p))mc'(p)
C'EF', IC'I=r C'EF', IC'I=r

p L ac, (p)mc' (p)
C'EF', IC'I=r

14

Using CaratModory Theorem we can choose a subset F of F' having size at most d+ 1 such

that p belongs to the convex hull of the set {mc' (p) Ic' E F}. Let us denote RF the set of

rays from p having the direction mc, (p) - p, for some C' E F. It is easy to see that a ray

in RF corresponding to C' E F intersects all sets in C'.

We finish the proof using double counting argument to count the number of pairs (r, S),

where r E RF, SEC', and r has the direction mc'(p) - p.

Since a set in C, cannot be intersected by all rays in RF, unless p is contained in it, and

the sets in C, are pairwise disjoint, we can have at most one set in C, intersected by all rays

in RF . Thus, we have

r(d+1)S:; L IC'IS:;(n-1)d+d+1
C'EF

The above inequality concludes the proof. o



Chapter 4

Lower bounds

A common feature of all collections of pairwise disjoint compact convex sets presented in

this chapter is that all lines through certain points intersect almost all sets in it or almost

all sets in a sub-collection. Therefore we introduce a notion of centre with respect to the

collection of sets in lRd . By the centre of a collection of sets in lRd we understand a point in

lRd such that any line through it intersects all but at most d - 1 sets in the collection.

4.1 General bound

We present a simple general construction providing relatively good lower bound on Td(n).

The interesting fact about this construction is the presence of a variant of it as a building

block in both known configuration that match the upper bound in lR2 . Therefore one might

suspect that it is unavoidable in such constructions.

Let H = {HI, ... H n } be the set of n hyperplanes in lRd containing 0 in general position.

We note that 0 will be the centre of our construction.

Let E E lR be the minimum of the function f: Sd-l --+ lR that for a given point returns its

(Euclidean) distance from dth closest hyperplane in H. As each d-tuple of the hyperplanes

in H has only 0 in its intersection, f (p) > 0 for all p E Sd-l. Hence, by the compactness

of Sd-l we have E > O.

Our construction consists of n pairwise disjoint (d - I)-dimensional balls living in the

hyperplanes parallel to the hyperplanes in H. Let B = {B I , .. . Bn } denote the collection

of these balls. We construct the balls in B one by one as follows. Having constructed

Bi = {B I , ... Bi- l }, i < n, we choose a hyperplane HI parallel to Hi such that it is disjoint

15
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from UBEBi B. Then we choose Bi ~ H: so that its projection Pi on Sd-l together with -Pi

cover all points p E Sd-l having distance from Hi equal to t or more than Eo An appropriate

B i always exists as we can obtain it e.g. by lifting a spherical cap on Sd-l defined by a

hyperplane parallel to Hi at distance t/2 from Hi to H:. By lifting to H: we mean the

mapping that maps a point r E Sd-l to the intersection with HI of the line through 0 and

r. The property of 8 we are interested in is expressed by the following observation.

Observation 4.1. Prom any point p E JRd there is a my that intersects at least rn-g+1l
elements of 8.

Proof. Let L be the line through 0 and p E JRd, if 0 i=- p, and any line through 0, otherwise.

If an intersection point q of L with Sd-l were disjoint from ~ U -Pi for more than (d - 1)

balls B i , 1 :::; i :::; n, we would have f(q) < t. Hence, L intersects all elements of 8 but at

most (d - 1). Thus, one of the rays from p contained in L intersects at least rn-g+1l sets

in 8. D

The above observation proves Theorem 1.2.

Note that our general construction can easily suit any type of objects, such as d

dimensional balls, simplices etc. We only require that the projections on Sd-l of objects in

a construction almost cover their corresponding hemispheres of Sd-l.

4.2 Constructions in 2 dimensions

As we have said previously our best constructions in lower dimensions use the idea of the

general construction in Section 4.1. However, to prove T(C) > n/2, that construction,

because of its generality and freedom in positioning the sets, is not good as is as a building

block. Therefore we need to make the construction more deterministic.

Let us introduce some new terminology needed in the sequel. Bya wedge with the apex

p we mean a convex hull of two non-colinear rays emanating from p. By a tangent to a

wedge W we mean a disc D inside W such that both rays defining Ware tangents to D.

First, we present the construction in JR2 that consists of pairwise disjoint discs, but can

be modified to suit other shapes such as line segments, triangles etc.

We construct a collection V of 3k discs in JR2, for some fixed kEN, k > O. We partition

V into two subsets: VI and V2, consisting of 2k and k elements, respectively.
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x-axis

Figure 4.1: First two discs in VI

L
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The collection VI is constructed similarly as our general construction. Hence, we have

a centre p of VI and the set of 2k lines through p that divide a circle S' centred at pinto

4k arcs. However, contrary to the general construction, where the projection of a ball in

it covers all points in one hemisphere except those that were very close to its boundary, a

projection of each disc in VI on S' covers all 2k arcs belonging to one closed hemisphere

except at most one arc having one end on its boundary.

V 2 is the collection of discs whose elements are tangents to a certain wedge.

We start with the description of VI = {Do, ... D2k-d (Figure 4.1). Let p = (1,1) and

let Lo t::::: ~2 be the line through 0 and p. We place Do as a tangent to the wedge with the

apex 0 having the negative part of x-axis as one boundary ray, and with another boundary

ray inside Lo containing the point p. Moreover, we require that p E Do. Having constructed

Vi = {Do, ... D i}, for some i < 2k - 1, we put the next disc as a tangent to the wedge

with the apex Xi, where Xi is the point of Di on x-axis. One boundary ray of this wedge

is contained in the negative part of x-axis, and the other one contains p. Since the union

of the discs in Vi is bounded, we can always place Di+1 such that it is disjoint from all

previous discs.

Let us call Li+1 the line through Xi and p, for 0 :S i < 2k, and let L be a line through 0

passing below all intersections Di n Li+2, for 0 :S i < 2k - 1, and above the negative part of

x-axis. The second sub-collection V2 consists of k discs that are tangents to the wedge with

the apex 0, with one boundary ray being the negative part of x-axis and another boundary

ray being the ray below x-axis belonging to L. Moreover, all discs in V2 touch x-axis in the

points, whose x-coordinates are less than the x-coordinate of X2k-l' To bound T(V) from
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L

x-axis

Figure 4.2: Illustration of the proof of Lemma 4.2

below we prove the following.

Lemma 4.2. For every point q E ]R2 there is a ray starting at q that intersects at least

2k - 2 discs in V.

Proof. We do a simple case analysis according to the region, which q belongs to.

First suppose that q lies below or on the x-axis. In this case any ray through p intersects

at least all sets in Vl but at most one. As IV11 = 2k we are done with this case.

Otherwise, assume that q belongs to the wedge bounded by half of L from above and by

the negative part of the x-axis from below. Similarly as in the previous case any ray r from

q through p intersects all sets in V l but at most two. To see this consider m = max{j E

NI q lies above or on L j }. It is easy to see that r has to intersect all sets in V l except Dm

and Dm - l , if m > 0, and all sets in V l , otherwise.

The rest of the points will have a desired ray through either 0 or X2k-1, if its y coordinate

is less than or equal to 1, and through either 0, p or X2k-1, if its y coordinate is more than

1 (Figure 4.2). Observe that now every ray from q through any point of the line segment

OX2k-l intersects all discs in V2.

In the former case a ray r from q through either 0 or X2k-l intersects at least k discs

in Vl. As r intersects all discs in V2, we are done.

To see the latter case consider the line L' through p and q. One of two rays from q

contained in L' intersects at least k elements in Vl. Let us call it r. If r does not contain p,

the ray r' from q through X2k-l intersects all elements in V2 and at least k elements in Vl.
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Indeed, if we call Y a point in the intersection of a disc Di, for some q rf: Di, 0 :::: i < 2k,

in VI with r then the line segment yXj, and therefore also D i , is intersected by r'. This

follows from the fact that in this case YXj lies in the same closed half-plane defined by L' as

X2k-l. If r contains p, we choose as a desired ray r provided, that r intersect all elements

in V 2 • Otherwise, r has to intersects x-axis in a point (a,O) with a less than x-coordinate of

X2k-l or a > O. If a> 0 (the other case is treated analogously), we choose as a desired ray

a ray r' through O. The ray r' has to intersect every disc in VI intersected by r by the same

argument as we use above. Trivially, r' has to intersect all discs in V2, and that concludes

the proof. 0

The above Lemma proves Theorem 1.3.

We present another construction in]R2 (see Figure 4.3 as an illustration). The objects in

this construction are congruent but they are not fat. This complements the first construction

where the objects were discs, but their sizes were different.

Intuitively, we take an equilateral triangle, extend all its sides in one direction preserving

symmetry and lop off the small part from the beginning of each extended side in order to

make them disjoint. It is easy to see that for each point in the plane there is a ray that meets

at least two of these three adjusted sides of the triangle. Our construction is a blow up of

this simple formation, in which we replace each segment by k almost parallel line segments

that are very close to each other, and that are placed as in our general construction. Thus,

our new construction £/:; can be partitioned into three disjoint collections of line segments

£/:;1, £/:;2 and £/:;3 with equal number of elements, i.e. 1£/:;11 = 1£/:;21 = 1£/:;31 = k.

We note that in the following construction the fact that the line segments are tangents

to a circle is not essential. We chose this way of presentation just to make the argument

more precise. Any collection of k line segments as in the general construction sufficiently

close to each other would be equally fine.

First, we construct £/:;1' The line segments L lj E £/:;1 with endpoints alj E 51 and

a~j' j = 1, ... k, are tangents to some unit circle 51 with the centre Cl and their length is

2. All line segments in £1 leave the circle 51 in the clockwise direction and the endpoints

alj, j = 1, ... k, on 51 are ordered counterclockwise preserving the following exponential

growth of the central angles defined by these points. We let a' = an, as this point will be a

centre of £/:;1. Let LanClalk = 0: E (0,Jr/100), then LanClau = 0:/3k- 1, 2 :::: I:::: k. Let

a denote a point on the line L l containing L ll , a rf: L ll , such that Lalkcl a = 0:. Next we
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Figure 4.3: 3k line segments (k=3)
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construct the equilateral triangle abc, c E L 11 , whose each side has unit length and that

belongs to the same half plane defined by L1 as the circle Sl. Having constructed L1 we

can easily obtain Li, i = 2,3, by the rotations ri of L1 around the centre point Cabc of the

triangle abc that send point a to b, if i = 2, and to c, if i = 3. Clearly, L is invariant under

r1 and r2. We denote the line segments in L6i, i = 2,3 and their endpoints according to

their preimages in ri, i.e. L1j,alj,a~j ----> Lij ,aij, aij. Analogously we label as L2 and L3 the

lines containing L 21 and L 31 , respectively. The following Lemma proves Theorem 1.4.

Lemma 4.3. We can choose a > 0 such that for every point p E ]R2 there is a ray starting

at p that intersects 2k - 1 sets in L6.

Proof. We call L the line through a' and a~k' As we found it convenient to make the

construction depicted on Figure 4.3 look more comprehensible at a cost of loss in precision,

the line L on it does not look like going through a~k'

Clearly, L crosses all line segment in L62'

Let 8 be the smaller angle that is defined by Land L 2k. It is routine to show that a ----> 0

implies 8 ----> O. Let U E a'c, such that la'ul = 2a and let L' be the line through u such that

La'uvk = 2-rr/3 - a - 8 = (3, Vi = L' n L 1i , 1 :S i :S k. Clearly, L' intersects all segments

in L61. We denote by w the intersection w = L' n L. Let W denote the wedge (on Figure

4.3 indicated by grey lines) with the apex w, and with one boundary ray Rw containing the

line segment wu and the other, inside L, not containing a~k' Clearly, the angle defined by

W has the size 2-rr/3. Moreover, as with a ----> 0 also 8 ----> 0 and w ----> a, we can choose a,

o< a such that W contains Cabc' From now on let a > 0 be so that W contains Cabc'

The rotations r2 and r3 of W gives us two wedges that together with W cover the whole

plane. As our construction is invariant under these rotations, to prove the lemma, it will

be enough to show that for every point p in W the ray from p through a' meets at least

2k - 1 members of L6. Moreover, it suffices to consider only the case when p E Rw, as the

ray from p in W through a' meets Rw. Since L and the line parallel to L' through a' meets

all members of L62, also a ray through a' from some point in W meets them. Thus, it is

enough to show that the ray through a' from every point p on Rw meets all but at least

one line segments in L61. We proceed as follows.

If we draw a line L" (Figure 4.4) through an = a' and al(i+2), for some 1 :S i < k - 1,

L" intersects L 1(i+1) and L 1i in the points d; and di, respectively. The existence of these

intersections is guaranteed by an exponential growth of the sizes of the central angles defined
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L1(i+2)

L1(i+1)
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Figure 4.4: Illustration for the proof of Lemma 4.3

a1(i+1)

,,,,,,,
a1(i+2) T:---'--I__~V

Figure 4.5: The triangle a1(i+1)a'd~

by the touching points of the line segments. The straightforward geometric argument, based

on the fact that the triangle a'd~al(i+I) is isosceles with the base a1(i+1)d~ and the base

angle 1j2La'CIal(i+I) (Figure 4.5), shows that Id~al(i+I)1 is less than 2sina. As we have

Idialil < Id~a1(i+1)1 < 2a = lanul < laliVil < lal(i+1)Vi+1l, the ray through a' starting

at p E ViVi+I, for any 1 ~ i < k - 1, intersects L 11 , ... L 1i on the way to a' and after it

meets the circle Sl for the second time, it intersects the rest of the line segments in L/':,l

with possible exception of not intersecting L i+1 . Trivially, a ray through a' from every point

on Rw not between VI and Vk meets all segments in L/':,l and L/':,2, and that concludes the

proof.

o
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It is a natural idea to generalize the construction £/:; into higher dimensions. However,

our attempts to do it failed, because in the higher dimensions we are unable to make sure

that all points below some 'good' hyperplane with respect to the one of the sub-collections

(think of an analog of L' with respect to £/:;1) have rays intersecting all objects in more

than one other sub-collection. A better potential for generalization seems to have the

construction V, especially when we replace discs by fiats, i.e. sets living in hyperplanes. So

far, we were able to extend it to three dimensions, but the construction giving us the lower

bound 2/3n - 4, where n is the number of sets in it, is quite complicated and not very nice.

Therefore we omitted its presentation. Nevertheless, there is still hope that nice and simple

general construction proving lower bound roughly 2/3n can be obtained by a generalization

ofV.

Finally, it is worth to mention that Theorems 1.1, 1.3, and 1.4 together with the treat

ment in Chapter 5 gives the complete characterization of the behaviour of 72 (C) with respect

to the fatness and boundedness of our objects.

We conclude this chapter with an open problem.

Open Problem 4.4. Provide a lower bound on 7d(n) higher than ~ +0(1) e; +0(1)) in

more than 3 dimensions (in 3 dimensions), or an upper bound smaller than dr::1 + 0(1) in

more than 2 dimensions



Chapter 5

Fat objects

Up to this point we have studied the worst case behaviour of an obstacle number for a

collection C of pairwise disjoint compact convex sets without taking into account some

realistic assumptions about sets in C, under which it is more likely that C could directly

model some real world situation, e.g. an environment in which we want to establish a

wireless network. To address the above clearly reasonable objection, in this chapter, we

study the worst case behaviour of the obstacle number for collections consisting of sets in

]R2 having, roughly speaking, similar size.

Formally, our restriction on convex sets is expressed by (a, b)-boundedness defined as

follows. We call a convex set A E JRd, (a, b)-bounded, where 0 < a < b, a, bE JR, if it contains

a d-dimensional ball of diameter a, and it is contained in a d-dimensional ball of diameter

b.

From now on in this Chapter we consider all convex sets to belong to JR2. We show that it

is not a coincidence that none of the constructions attaining the upper bound from Theorem

1.1 in the previous section is a collection of (a, b)-bounded sets, because it turns out that

the maximum value of T(C), if C consists of n (a, b)-bounded convex sets, is 8( In log n)

with the constants hidden in the upper bound of 8-notation depending on a, b.

Both the upper and lower bound are simple corollaries of the work [2] by N.Alon,

M.Katchalski and W.R.Pulleyblank. In that paper they studied the asymptotic behaviour

of the function f(n) that returns the minimum integer f such that for any family of n pair

wise disjoint (a, b)-bounded convex sets, for fixed 0 < a < b, there is a direction a such that

any line having the direction a intersects at most f convex sets. Let us state their result by

the subsequent theorem (follows from Theorem 1.1, Lemma 3.4, and concluding remarks in

24
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Figure 5.1: Illustration of the proof of Theorem 5.2

[2]).

Theorem 5.1. There exist two positive constants d1 and d2 = d2(a, b) such that

for all n > O.

25

The proof of the upper bound of f(n) is by a simple counting argument, that could be

applied to our case as well. However, in our argument we actually use only the existence

of this bound. The construction for the lower bound, that consists of unit discs, is more

involved and relies heavily on the famous construction of Besicovitch [4] from his solution

to the Kakeya Needle Problem.

Let T~(n) = maxc T(C), with C varying over all collections consisting of n pairwise disjoint

convex (a, b)-bounded sets, for fixed 0 < a < b, in ]Rd. The aim of the following is to show

that the order of magnitude of T~(n) and f(n) is the same, i.e. to prove Theorem 1.5. This

result follows immediately from Theorems 5.2 and 5.3.

Theorem 5.2. Let C be a collection of n > 0 pairwise disjoint (a, b)-bounded sets, for some

fixed 0 < a < b. Then there exists a point p in the plane such that any ray starting at p

intersects O( yin log n) sets in C with the constant in O-notation depending on a and b.

Proof. We denote by D a disc with the centre c containing all elements of C. Let 0: be

the direction, whose existence is guaranteed by Theorem 5.1, such that any line having this
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Figure 5.2: Illustration of the proof of Theorem 5.3

direction intersects f(n) E O( yin log n) sets in C. We call L the line through c with the

direction a. Let p denote a point such that PEL, and p ~ D. Given a ray r from p

intersecting the interior of D we denote ql, q2 its two intersections with the boundary of

D. We call L q1 and L q2 the lines parallel to L through ql and q2, respectively.

If Ipcl ---t 00 then ILq1 L q2 1 ---t O. Hence, we can choose pEL so that for any ray r from

p intersecting the interior of D the distance between Lq1 and Lq2 is less than a.

Hence, r intersects only the sets intersected by Lq1 or Lq2 , Le. O( yin log n) sets, and

that concludes the proof. D

Theorem 5.3. For each n > 0 there exists a collection £ of n pairwise disjoint unit discs

in the plane such that for every point p in the plane there exists a ray starting at p that

intersects O( yin log n) discs in £.

Proof. Let V be the collection of ln /2J pairwise disjoint unit discs satisfying the lower

bound in Theorem 5.1. We denote by D a disc with the centre c containing all elements of

V.

Let p denote a point in the plane such that p ~ D. Let L' denote the line through

p and c. We call rl, r2 the two intersection points of the boundary of D with the line
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through c perpendicular to L' . Given a ray r from p intersecting D we denote by ql, q2 its

intersections with the boundary of D. We consider ql = q2 if r is a tangent to D. Given

a point s we denote by Ls the line parallel to L ' through the point s. It is easy to see that

there exists d E ]R such that if Icpl > d, then holds the following. For any ray r from p that

intersects the interior of D the distance between Lq1 and Lq2 is less than 1/2, and for any

ray r from p that is a tangent to D the minimum of the distances between Lql and Lrj , for

i, j E {I, 2}, is less than 1/2. We label by D] a disc with the centre c and the diameter d.

It holds that for every direction Q there exists a line with direction Q intersecting

O( yIn log n) discs. Let p be an arbitrary point in the Df = ]R2 \ D I . Using the above

property of V we obtain a line L having the same direction as the line containing p and c,

and intersecting O(y'n log n) discs in V. Let Pl and P2 denote the two intersection points

of L with the boundary of D. It can be easily checked (see Figure 5.2) that a ray from P

either through Pl or P2 has to intersect at least half of the discs intersected by L. Indeed,

every disc in VI intersected by L is intersected by the ray from P through Pl or P2.

Next, we obtain the collection V' of Ln/2J pairwise disjoint unit discs by a translation t of

V by the distance of at least diam(Dd and the addition of one more arbitrary disc if n is odd.

Now, using similar argument as for V, we can show that every point in t(D])C = ]R2 \ t(Dd

has a ray emanating from it and intersecting enough elements of V'. As Df u t(DdC= ]R2,

setting £ = V U V' concludes the proof.

Alternatively, one can obtain a better constant hidden in our bound by constructing V'

as a collection of discs with the centres on one line through c far enough from c. 0

As for the higher dimensions d, d > 2, it is not hard, using the counting argument

from [2], to impose on T~(n) the upper bound O(y'nlogn). However, the straightforward

generalization of this argument is pretty loose, and hence, leaves room for an improvement.

On the other hand, so far, we were able to put only trivial lower bound O( {Yn) on T~(n), for

d> 2. The construction C proving this bound can be obtained by cutting d-dimensional cube

regularly with the hyperplanes parallel to the hyperplanes defining its sides. By regularly

we mean that by this process we obtain a partition of the cube into many smaller congruent

cubes. Thus, C is the set of these congruent cubes perturbed slightly so that they are

pairwise disjoint.

Open Problem 5.4. Find the right order of magnitude for T~(n), for d > 2, or at least

provide a lower bound better than O( {Yn) or an upper bound better than O( yIn log n).



Chapter 6

Algorithms

In this chapter we address the following computational problem: Given a collection C of

pairwise disjoint compact convex sets in IRd , we want to find a point in IRd that either

witnesses our general upper bound from Theorem 1.1, or witnesses T(C), i.e. a point that

minimizes the maximum number of sets intersected by a ray emanating from it.

For the description and analysis of most of the algorithms in this chapter we use a

theoretical model, in which every basic algebraic operation (+ ,-,*,j) is assumed to be carried

out in a constant time. Our algorithms are deterministic.

We present an algorithm that for a given collection C of pairwise disjoint convex polygons

in IR2 finds a point minimizing T(p, C) in a polynomial time. For any dimension we have

two algorithms, but these require as an input restricted collections of objects. Both are the

reductions to other problems. The first reduction works for collections of pairwise disjoint

balls, and basically gives us a witnessing point for the upper bound from Theorem 1.1, i.e.

a point p with T(p, C) :s: ldr::l + 1J. The second reduction requires our sets to be flat and

in general position (see Chapter 2) to give us a point having T(p, C) at most ldr::l J+ d. In

fact for this reduction we do not need to have sets in general position, but if we relax this

constraint, the point p we obtain can have T(p, C) bigger than ldr::l J + d.

Let us introduce a standard notion of hyperplane arrangement, which will be needed in

the sequel.

Let H be a collection of hyperplanes in IRd . Let H' ~ H, and let i, 0 :s: i < d, be the

dimension of an affine subspace A = nHE'H' H. If H' = 0 we set A = IRd. We call a cell

C defined by H with H' a connected component of the complement of An UHE'H\'H' H in

28
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A. Then the dimension of C is i. Clearly, the cells defined by H (with any H' ~ H) form

a partition of ]Rd. We denote by A(H) the arrangement of hyperplanes in H, that is a set

that consists of all cells defined by H. By the boundary of a cell C we will understand the

relative boundary of C.

6.1 Algorithm in 2 dimensions

In this section we present an algorithm running in time 0 (n 4 log n) that returns a point

p E ]Rz witnessing T(C) for a collection C of pairwise disjoint convex polygons having n sides

in total. In fact, we do not have to restrict ourselves to polygons, but we do it to avoid

some technicalities, that would distract our presentation.

Let 5 C ~z denote a circle. We call a closed arc I c 5 a cyclic interval. We denote two

endpoints of I by el (I) and ez(I) so that traversing 5 in the positive direction from el (I) to

ez(I) takes place in I. Let us define the ternary relation :S;C on 5, such that u :S;C v :S;C w, iff

v is contained in the cyclic interval with el (I) = u and ez(I) = w. We say that two n-tuples

of arcs I = (h, ... Im ) and I' = (If, ... I:n), Ii c 5, II c 5', for I:S; i:S; m, 5,5' C ~z

are the circles, have the same combinatorial arrangement, if the cyclic order along 5 of the

endpoints ei(Ij), for i E {I,2} and 0 < j :s; m, is the same as the cyclic order along 5' of

the corresponding endpoints ei(Ij), for i E {I,2} and 0 < j :s; m. It is easy to see that

if I and I' have the same combinatorial arrangement, then ell (Ii!) :S;c eh (Ii2) :S;c e13 (Ii3)

iff ell(IU :S;C eh(IIJ :S;C e13 (II3), for jl,jz,J3 E {I,2} and il,iz,i3 E {I, ... m}. Thus, a

combinatorial arrangement of I is defined by the restriction of :S;C on the set of all endpoints

of the intervals in I. Let us denote by II(I) this restriction of :S;C.

Let C = {CI , ... Cm} be a collection of pairwise disjoint compact convex sets in ]Rz.

Given a point p E ~z, we denote by Ic(p) the n-tuple of arcs (Ic! (p), ... Icm(p)) we get by

projections of all elements in C. ICi is the projection of Ci , for 1 :s; i :s; m, on a unit circle

5 centred at p, if P ~ Ci , and by definition we set ICi = 0, otherwise. Let Ie,p be the set

of cyclic intervals covering 5, whose elements are bounded by two consecutive endpoints in

the cyclic ordering of the endpoints of intervals in Ie(p). Let d(I), for I E Ie,p, denote the

number of intervals in Ic(p) covering I.

Observation 6.1. The values of d(I), for IE Ie,p, are determined by II(Ic(p)).

Proof. Follows easily from the fact that d(I) = I{I' E Ie,pl el(I') :S;C el(I) :S;C ez(I) :S;c

ez(I')} I 0
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Observation 6.2. T(p,C) = maxIEIc,pd(I), if p ¢ C, for all C E C, and T(p,C)

maxIEIc,p d(I) + 1, otherwise.
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In the light of the above observations all we need to do in order to find a point p

minimizing T(p, C) is to partition lR2 into finitely many connected components such that

within each region R combinatorial arrangements of Ie (q), q E R, do not change, and then

traverse those regions while computing maxIEIc,qER d(I), for each region R. It turns out

that such partition can be obtained by cutting lR2 with polynomially many lines with respect

to the total number of sides of polygons in C.

By a tangent to a convex set C we will understand a line L having a non-empty intersec

tion with C such that C is contained in a closed half-plane determined by L. Let C1 and C2

denote two disjoint compact convex sets in lR2 . The following observation about common

tangents of C1 and C2 in lR2 is well-known.

Observation 6.3. C1 and C2 have at most 4 common tangents.

We have another simple observation telling us how to partition lR2 such that the combi

natorial arrangement of I{Cl,C2}(P) is invariant for all p within any part (see Figure 6.1 for

an illustration). Let £ = £(C1, C2) = {Li liE {O, ... 3}} be the set of common tangents of

C1 and C2. We denote by A'(£) the set of regions in lR2 \ (C1 U C2) we get by intersecting

the cells in A(£) by lR2 \ (C1 UC2 ). Thus, A'(£) contains every cell in A(£) that is disjoint

from C1 and C2, and the connected parts of the intersections of other cells in A(£) with

lR2
\ (C1 U C2).

Observation 6.4. Let R be a region in A'(£). Then for all q E R, I{Cl,C2}(q) have the

same combinatorial arrangement.

Proof. Let p and r denote two points in lR2 such that I{Cl,C2}(P) and I{Cl,C2}(r) have

different combinatorial arrangement. Thus, we have three endpoints a, b, c of intervals in

I{C1 ,C2}(P) having different cyclic order as the order of their corresponding endpoints in

I{Cl,C2}(r). For the sake of contradiction let us assume that p,r E R.

As R is connected, we can get from p to r by a continuous motion, which takes place in R.

Thus, during such motion we are not allowed to meet C1, C2 or their common tangents not

containing p and r. On the other hand, by a standard argument one can show that during

such motion we have to visit a point s, in which two of three endpoints of cyclic intervals

in I{Cl,c2}(S) corresponding to a, b, c become identical. Moreover, these two points are



CHAPTER 6. ALGORITHMS

Figure 6.1: Observation 6.4
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not the endpoints of the same cyclic interval in {C1, C2}' It is easy to see that s belongs

to a common tangent of Cl and C2, that does not contain p and r. Thus, we obtain a

contradiction. 0

From now on let C be a collection of pairwise disjoint convex polygons in lR2 . Let n be

the total number of sides of polygons in C. Moreover, we suppose that the polygons in C

are given by the vertices on their boundaries, and that for each polygon those vertices are

sorted according to their appearance on the boundary.

We denote by LC a set of common tangents of pairs of objects in C and the lines deter

mining the boundaries of the polygons in C. Note that by Observation 6.3 we know that

the size of LC is O(n + ICI 2
) = O(n2

).

We present a lemma, which generalize Observation 6.4, and which our algorithm mostly

depends on.

Lemma 6.5. Let C be a cell in A(LC)' Then all collections of cyclic intervals Ic(p), for

p E C, have the same combinatorial arrangement.

Proof. Assume that we have two points rand q in C such that Ic(r) and Ic(q) have

different combinatorial arrangements. By the proof of Observation 6.4, during a continuous
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motion that takes us from r to q we have to cross either a common tangent, not containing

rand q, of a pair of sets in C, or a boundary segment of a set in C. Hence, rand q cannot

belong to the same cell of A(£c). Thus, we obtain a contradiction. D

Note that in the above observation instead of cells in A(£c) one can consider a partition

of the plane into smaller number of regions determined only by the common tangents of

every pair of objects in C and the boundaries of the polygons in C. However, the asymptotic

complexity of this partition in the worst case would be the same. Therefore this inefficiency

does not bother us.

We abuse our notation and define I1(Ic(R)) = I1(Ic(p)), where R is a region in 1R2 such

that, for all pER, Ic(p) have the same combinatorial arrangement.

By cyclic binary search we will understand an analog of the binary search for cyclically

ordered array described as follows. Let A[O], . .. A[m - 1] denote elements in a cyclically

ordered array A. Thus, elements in A are ordered according to the ternary relation :Sc, i.e.

A[i] :Sc A[(i + j) mod m] :Sc A[(i + k) mod m], for all i,j, k E {O, ... m - I}, 0 < j < k.

Given an element e the position of which in A we want to determine at one step of a cyclic

binary search we find out whether A[l] :Sc e :Sc A[fm/2l1 or A[l] :Sc Af[m/2l] :Sc e holds,

and thereby we decrease the length of A for the next recursive step at least by half.

Observe that I1(Ic(p)) for some p can be represented (in a data structure) by a linear

order of the endpoints of the intervals in Ic(p) accompanied by an information indicating

which of the endpoints coincide. Thus, by computing (determining) I1(Ic(p)) we mean

obtaining of the above representation of I1(Ic(p)).

The following observation allows us to perform a cyclic binary search in O(log2 n) to

find a position of an endpoint in II(Ic(p)), for p E 1R2.

Observation 6.6. Let PI, P2 and P3 denote three polygons in C. Given a point p E 1R2 we

can determine II(I{hhP3}(P)) in O(logn).

Proof. Follows easily from the fact that we can compute the tangents to every polygon

PI, P2 and P3 through p in 0 (log n). D

We call G' = G'(V, E) a graph fully representing A(£c), Le. the vertices in V(G')

represent the cells in A(£c) , and each vertex in V(G') corresponding to an i-dimensional

cell of A(£c), i E {I, 2}, is joined with every vertex corresponding to an (i -I)-dimensional

cell of A(£c) on its boundary.
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In what follows we define a subgraph G of G', that represents A(.cc), and that will play

an important role in computing T(C).

G = G(V, E) is obtained from G' by removing for every P E C all but one of the edges

UV, such that exactly one of v and U corresponds to a cell contained in P. Thus, we make

each subgraph induced by the vertices corresponding to the cells contained in P E C joined

with the rest of G by just one edge. Clearly, G is connected.

We define T(A, C), A ~ IRd , to be min T(p, C).
pEA

Now, we are ready to prove the existence of a polynomial algorithm that computes a

point P minimizing T2 (p, C).

Proof. (Theorem 1.6 ) Since T(p, C), P E IR2, depends only on the combinatorial arrange

ment of Ic(p) , by Lemma 6.5, for finding a point witnessing T(C) it is enough to compute

T(C,C) for each cell C in A(.cc), and output a point in a cell C with the minimum value

of T( C, C). We proceed by traversing all vertices of G such that whenever we visit a vertex

corresponding to a cell C we compute T(C,C). The reason why we use G instead of G' is

that traversing an edge for which exactly one of its incident vertices corresponds to a cell

contained in some polygons from C might take (using our approach) much more time than

traversing a typical edge, as we will see later. Thus, we want to limit the number of those

edges. It is clear that a bottleneck of our algorithm is the computation and traversing of G.

Therefore, most of our effort is put into technical details, which should convince the reader

that the time complexity of our algorithm only slightly exceeds the time complexity of the

algorithm that computes and traverses G.

First, our algorithm computes the lines in .cc. Since we are able to compute common

tangents to each pair of disjoint polygons in O(logn) by the result from [12] (Theorem 5),

this phase takes 0 (n2 log n) time in total.

By the result from [10] we are able to compute A(.cc) in 0(n4 ) time represented by

G' = G'(V, E). It is very easy to see (e.g. [10]), that in 0(n4
) time we can obtain for

all cells C E A(.cc) the points p(C) E C representing them. For each vertex in V(G') we

also store an information completely describing its corresponding cell (the lines defining its

boundary, the supporting lines) in a data structure D(V(G)). Moreover, in D(V(G)) we

store an information telling us, whether a cell belongs to a boundary of a polygon in C and

if yes, which polygon in C does it belong to. Clearly, we do not spend more than 0(n4 )

time computing D(V(G)). Using D(V(G)) we can compute G = G(V, E) in 0(n4
), as we

can decide for a given edge e E E(G'), whether e is a candidate for removal, in 0(1).
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In another data structure D('cc) we will store for each common tangent L to a pair

of polygons in C the order of appearance on L of its touching points with polygons in C.

Notice, that again one common tangent in 'cc can be a common tangent to many (>> 2)

polygons in C. For each tangent L E 'cc we will store in D('cc) two ordered lists of its

touching points. Each of them stores touching points of L with the polygons living in one

closed half-plane defined by L. Clearly, D('cc) can be prepared in O(n2nlogn) time.

Our algorithm uses a data structure DB that stores an ordered array, and allows updating

(deleting, inserting) in O(logk) and searching in O(clogk) time per item, where O(c) is a

time needed to carry out a comparison, and k is the number of stored values (there are

plenty of such data structures, see e.g. [1]).

To store the cyclic ordering defined by TI(Ic(C)), C E A('cc), our algorithm maintains

one instance of DB, D(Ic) , whose each stored value is dedicated to one endpoint. The

representation of each endpoint in D(Ic) is also accompanied by an information indicating,

whether it coincides with its predecessor and successor in the ordering. Hence, we have

the full description of TI(Ic(C)) stored in D(Ic). For each endpoint we also keep pointer

to its representation in D(Ic). Our algorithm stores in another instance D'(Ic ) of DB a

representation of the set of cyclic intervals Ic,p sorted according to d(I). For each Ic,p we

also keep pointer to its representation in D'(Ic). By Observation 6.2 the maximal element

of Ic,p in D'(Ic) witnesses T(C,C).

During its main phase our algorithm performs a depth-first search (DFS) in the graph

G to compute T(C,C) for each cell C in A('cc). In fact instead of DFS we could use any

search that visit every vertex in G and traverse each edge at most twice. In what follows we

describe behaviour of our algorithm according to the cell that corresponds to the currently

visited vertex during DFS. For convenience by the relative position of a vertex in V with

respect to the lines in ,cc or a polygon in C we mean the relative position of its corresponding

cell with respect to those objects.

Let C be a cell in A('cc) that corresponds to a currently visited vertex v of V (G) during

DFS. Let p = p(C) E C.

If C corresponds to the starting vertex of DFS our algorithm performs, we initialize

D(Ic), and D'(Ic). Thus, we need to add to D(Ic ) one by one representations of all

endpoints of intervals in Ic(p), while updating D'(Ic). To find a right position in D(Ic) for

the representation of an endpoint in Ic (p) we perform a cyclic binary search. By Observation

6.6, using p the initialization can be performed in O(n log2 n), as one comparison in a cyclic
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Figure 6.2: A common tangent L to the polygons PI, P2, P3, P4
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binary search costs us O(logn). The initialization of D'(Ic) takes O(n2 logn) time, as by

an addition of new cyclic interval from Ic(p) we can affect O(n) intervals in Ie,p.

Otherwise, C does not correspond to the starting vertex. Let e denote an edge in E(G)

we have traversed to get to the currently visited vertex v that corresponds to C. Let us

assume that the number of lines we have changed the relative position to by traversing e is

k = k(e), if we do not count the lines that coincide with multiplicity, and if we count only

the lines that are common tangents to a pair of polygons in C. Let us denote these lines by

L l , ... Lk. We denote by ij = ij(e) EN the multiplicity of Lj, 1 ::::; j ::::; k, in £e, i.e. a line

that is a common tangent to m polygons is counted (r;). Let k' = k'(e) = l:l::;j::;k jrj.
We update the representations of at most O(k') endpoints in D(Ic) affected by the latest

step in DFS, while updating D'(Ie) accordingly. Moreover, by taking the advantage of an

information stored in D(£e) we can update D(Ie) in O(k') time. Indeed, in the case, that

the affected endpoints do not coincide anymore, they can be divided into at most 2k parts,

such that the endpoints in each of these parts follow consecutively one after another in the

ordering defined by TI(Ic(p)) (see Figure 6.2). Moreover, their orders according to TI(Ic(p))

corresponds to the orders of the lists of its corresponding touching points representing L j , for

1 ::::; j ::::; k, in D(£e). Thus, by taking into account the position of C with respect to the line

Lj, for some 1 ::::; j ::::; k, we can determine the relative order among the affected endpoints in

O( y'ij) time, as we keep for each affected endpoint a pointer to its representation in D(Ic).
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If by moving to C we leave a polygon P from C, we insert to D(Ie) the representations

of two endpoints of a cyclic interval, which corresponds to P in Ic(p). That can be done in

0(log2 n), by the same argument as we used in the initialization step. If, on the other hand,

by moving to C we enter a polygon in C, we delete the representations of its endpoints in

D(Ie ) in O(1ogn) time. Notice that both of these events can be detected in 0(1) time by

querying D(V(G)).

In the case that we do not leave or enter a polygon from C the updating of D'(Ic) takes

O(k'log n) time (we delete and re-insert O(k') items), since we stored for each affected

interval a pointer to its representation in D'(Ie). The changed values d(I), I E Ie,p, in

D'(Ic) are adjusted in a straightforward way in O(k') time. Otherwise, the update of D'(Ie)

costs O(n log n), because O(n) cyclic intervals in Ie,p could be affected.

Since during DFS we traverse each edge of E(G) at most twice and only O(n) edges

cause addition or deletion of a representation of a cyclic interval to D(Ie),

O( n2 log n+ log n LeEE(G) (k'( e) + 1)) is, clearly, its worst case time complexity. The claimed

time complexity of our algorithm easily follows if the lines in £e are in general position, as

k'(e) = 0(1), for all e E E. However, we show that always we have LeEE(G)(k'(e)) = 0(n4
).

Let Eo(G) ~ E(G) denote the set of all edges that are incident to a vertex correspond

ing to a O-dimensional cell in A(£e). For e E Eo(G), the corresponding O-dimensional

cell of its incident vertex contributes to the decrease in the number of cells of A(£e) by

n((L~~l ij (e))2 - L~~l iJ(e))) in comparison with the case when there are no degenera

cies in A(£e), Le. when A(£e) consists of 0(n4 ) cells. Let v be a vertex in G. We

denote by deg(v) the number of edges in G incident to v. Let e' be the edge having the

maximal k'(e') among the edges containing v. As for each vertex v that corresponds to a

O-dimensional cell we have Le=vw,wEV k'(e) :s deg(v)k'(e') and k(e') = (deg(v) - 2)/2, then

Le=vw,wEV(k'(e)) = O((L~~~) ij(e'))2 - L~~~) iJ(e')). Hence LeEEo(G)(k'(e)) = 0(n4
). It

is easy to see that we can put the same bound on LeEE(G)\Eo(G) k'(e) = 0(n4
). Therefore,

a total time needed for traversing whole G is O(n4 log n).

Notice that each of the finitely many above described stages of the algorithm can be

carried out in 0(n4 Iogn) time. Thus, a total running time of our algorithm is 0(n4 Iogn).

D

Note that the algorithm in Theorem 1.6 would work for any collection C' of pairwise

disjoint convex sets in ]R2, such that we can effectively compute a common tangent to a pair
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in C', and for a given line Land C E C' we can effectively compute the intersection points

of L with the boundary of C.

Because our solution of the problem of finding one of the points witnessing an obstacle

number for a collection C (of pairwise disjoint polygons with bounded complexity) seems

to waste computational resources, it is highly likely that a more effective algorithm for this

problem exists. Despite some effort so far we were not able to devise any specific geometric

properties of A(.cc) to reduce the order of magnitude of the algorithm. However, it should

not be hard to get rid of the logarithmic factor in our bound by some preprocessing, or by

performing clever updating of the data structures as we traverse the arrangement. On the

other hand the worst case running time of our algorithm might be still close to an optimal

one in the case, when one wants to determine all regions containing the points witnessing the

obstacle number. It is easy to see that the union of these regions (cells in A(.cc)) does not

have to be connected. Moreover, this union could consist of 8(n4 ) connected components.

In order to see that we consider the case, when C is the set of n points in the plane in general

position.

Our approach seems to be not so easily extensible to the higher dimensions, because the

analogous partition of a higher dimensional space, such that T(p, C') is invariant within each

part for an input collection C', gives us the regions that do not have to have hyperplanes

defining its boundaries, but rather some more complicated surfaces.

We conclude this section with some open problems.

Open Problem 6.1. Provide an algorithm with the running time in o(n4 log n) that finds

a point p minimizing T(p, C) for a given collection C.

Open Problem 6.8. Provide an algorithm that finds a point a point p minimizing T(p, C')

for a given collection of pairwise disjoint compact convex sets C' in jRd, for d > 2.

6.2 Reductions to other problems

Our task in this section is to provide an algorithm that for a given collection C in jRd, for

any d> 1, of n pairwise disjoint sets of some restricted kind finds a point p having T(p, C)

not much higher than the bound on T(n) guaranteed by Theorem 1.1.

When C consists only of n flat convex sets living in jRd, we are able to reduce our

problem, the same way as we have described it in Chapter 2, to the problem of computing
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a point having the maximum undirected depth (see Chapter 2) with respect to some finite

set of hyperplanes. Thus, for each set C in C we compute a hyperplane, which contains C.

Then it is enough to compute a point having the maximum undirected depth with respect

to obtained hyperplanes. In IR2 , this approach outperforms the running time of the above

algorithm. However, the downside of this reduction, besides the fact that it works only for

flats, is that it does not necessarily give us a point p having T(p, C) at least 'reasonably'

close to T(C), since the upper bound from Theorem 1.1 could be very far from an obstacle

number of C.

Moreover, by this approach to have a guarantee that the obtained point witnesses at

least some bound that is reasonable smaller than the trivial one (i.e. n), the sets in C must

be in general position (as defined in Chapter 2), and the number of sets in C must be more

than (d+l)2.

Recently, it was shown in [13] that there is an optimal O(n log n) running time algorithm

for finding a line that has the maximum regression depth with respect to a given set of n

points in IR2 . Thus, the point/hyperplane duality gives us O(n log n) running time algorithm

for computing a point having the maximum undirected depth with respect to n hyperplanes

in IR2 .

In the higher dimensions we compute the undirected depth for a collection 'H. of n

hyperplanes in IRd as follows. We say that two d-dimensional cells in A('H.) are neighbouring,

if their boundaries contain a common (d - I)-dimensional cell from A('H.). It is easy to see

that all points contained in one cell of the arrangement A('H.) have the same undirected

depth with respect to 'H.. Hence, by an undirected depth of a cell we can understand the

undirected depth of any point belonging to it. Thus, by the following theorem from [21] we

have an algorithm for computing maximal undirected depth in ]R.d with the running time

O(nd ).

Theorem 6.9. For a set 'H. of n hyperplanes in IRd , the undirected depth of each cell in

A('H.) can be computed in O(nd ) time by building the arrangement and traversing the graph

of adjacent cells.

Proof. The algorithm uses the same idea as that in Theorem 1.6, i.e. we traverse a

graph defined by the arrangement of hyperplanes A('H.). However, in this case the graph we

traverse is defined in a way such that its vertices correspond only to d-dimensional cells.

Let G(V, E) be the graph whose vertices correspond to the d-dimensional cells in A('H.),
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and the edges join the vertices corresponding to neighbouring cells. Moreover, we add to V

one more vertex v, and we join it with all vertices that correspond to unbounded cells.

Let us d(C) denote an undirected depth of a cell in A(1i).

Observation 6.10. Directions of the rays witnessing d(C) of a d-dimensional cell C are the

directions of the rays witnessing d( C') of its neighbouring cells C' having d(C') = d(C) - 1.

Proof. If r is a witnessing ray for d(C'), r does not cross a hyperplane separating C and

C'. Hence, we can translate it, so that it starts in C, and thereby obtain a ray with one

more intersection with hyperplanes in 1i, that is a witnessing ray for d(C).

On the other hand, given a witnessing ray for d(C), we can translate it so that it starts

in some neighbouring cell C' of C, and witnesses d(C') :s d(C) - 1. However, d(C') is not

less than d(C) - 1 as that would contradict the undirected depth of C. 0

By the above observation to obtain d(C) for every d-dimensional cell C E A(1i) it is

enough to do a breadth-first search from v in G during which we assign undirected depth to

every d-dimensional cell, which is equal to the minimum distance between its corresponding

vertex in G and a vertex that corresponds to an unbounded d-dimensional cell.

The undirected depth for the lower dimensional cells is assigned easily according to the

following observation.

Observation 6.11. Let C be a cell in A(1i) incident to k hyperplanes in 1i, and let C'

be a d-dimensional cell in A(1i) with minimal d = d(C') among the cells having C on its

boundary. Then we have d(C) = d + k.

Proof. Clearly, d(C) :s d + k, as a witnessing ray for d(C') can be translated so that

it starts in C. On the other hand, a witnessing ray for d(C), if it is not contained in a

hyperplane from 1i, can be made shorter so that it starts in some d-dimensional cell C"

having C on the boundary. Hence, d( C) - k ?: d(C") ?: d. If a witnessing ray for d( C) is

contained in a hyperplane from 1i, we can rotate it slightly, such that it no longer belongs

to a hyperplane from 1i and use the previous argument. 0

The time complexity of our algorithm follows similarly as the time complexity in Theo

rem 1.6 from the result in [10] stating that we can construct a graph representing A(1i) in

O(nd ) time. 0
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It is a challenging open problem to introduce more efficient algorithm for computing

maximal regression depth in dimensions higher than 2. So far, the only improvement was

made in by Kreveld et.al. in [21], where the space used in the former algorithm was reduced

by linear factor to O(nd - 1 ) using standard E-cutting method, see e.g. [16].

Given a collection of n pairwise disjoint convex compact flat sets C in jRd such that

we can compute 1i(C), as defined in Chapter 2 so that no k + 1 hyperplanes in 1i(C) has

non-empty intersection, in fen) deterministic time. By the previously mentioned algorithms

from [13, 21] we have.

Theorem 6.12. (i) Ifd = 2 then there exists an algorithm with the running time O(f(n)+

n log n), that computes a point p such that any ray starting at p intersects at most

l2; J + k - 1 elements in C.

(ii) If d = 2 then there exists an algorithm with the running time O(f(n) + n d ) using

O(f(n)+nd - 1 ) space, that computes a point p such that any ray starting at p intersects

at most ld~lJ+ k - 1 elements in C.

Other simple reduction pops up, when one wants to find a point basically witnessing the

general upper bound (Theorem 1.1) in the case, that our collection C of pairwise disjoint

compact convex sets consists only of balls.

Given a finite set of points P in jRd, Tukey median is a point p in jRd, which maximize

the minimum number dt (p) of points of P belonging to a closed half-space defined by a

hyperplane through p. Formally,

dt (p) = min{IP n 1'1: where I' is a halfspace defined by a hyperplane through p}.

As we have a randomized algorithm due to Chan [7] that computes Tukey median in

O(nlogn) time for jR2 and in O(nd - 1) time for jRd, the proof of the following theorem is

rather simple.

Theorem 6.13. There exists a randomized algorithm running in O(nlogn) (O(nd- 1))

time, that given a collection C of n pairwise disjoint balls in jR2 (jRd, d > 2), computes a

point p such that any ray starting at p intersects at most l2 /3nJ+ 1 (ldn / (d + 1)J+ 1)

elements in C.

Proof. The Centerpoint Theorem (Theorem 2.2) guarantees that Tukey median p satisfies

that dt(p) is at least In/(d + 1)l Hence, given a hyperplane H perpendicular to a ray r

emanating from p, each of two half-spaces it defines contains at least In/(d + 1)l centres of
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the balls in C. To this end, it is enough to show that Tukey median p, with respect to the

set of centres of the balls in C, is our witnessing point. Since r can either intersect at most

one ball with the centre in one half-space defined by H or intersect at most one ball with

the centre in another half-space defined by H, r cannot intersect more than ldnj(d+ 1)J + 1

balls of C in total. D
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