
TOWARDS FINDING THE COMPLETE MODULOME:

DENSITY CONSTRAINED BICLUSTERING

by

Recep Colak

B.Sc., Bilkent University, 2006

a thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in the School

of

Computing Science

c© Recep Colak 2008

SIMON FRASER UNIVERSITY

Summer 2008

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name: Recep Colak

Degree: Master of Science

Title of thesis: Towards Finding The Complete Modulome: Density Con-

strained Biclustering

Examining Committee: Dr. Arthur (Ted) Kirkpatrick, Professor, Computer Science

Simon Fraser University

Chair

Dr. Martin Ester, Professor, Computer Science

Simon Fraser University

Senior Supervisor

Dr. Jian Pei, Professor, Computer Science

Simon Fraser University

Supervisor

Dr. Eldon Emberly, Professor, Physics

Simon Fraser University

Examiner

Date Approved:

ii

Abstract

Large-scale gene expression experiments and interaction networks have become major data

sources for discovery in systems biology. In several types of interaction networks, as is

widely established, active modules, i.e. functional, simultaneously active groups of genes,

are best encoded as highly interconnected regions that are co-expressed and show significant

changes in an accompanying set of gene expression experiments. Accordingly, inferring an

organism’s active modulome, the entirety of active modules, translates to identifying these

dense and co-expressed regions, which is NP-hard.

We provide a novel algorithm, DCB-Miner, that addresses the corresponding compu-

tationally hard problem by means of a carefully designed search strategy, which has been

specifically adapted to the topological peculiarities of protein interaction networks. Our

algorithm outperforms all prior related approaches on standard datasets from H. sapiens

and S. cerevisiae in a Gene Ontology-based competition and finds modules that convey

particularly interesting novel biological meaning.

Keywords:

Systems biology; protein interaction networks; gene expression; dense subgraphs; bicluster-

ing

Subject Terms:

Data mining; Bioinformatics; Computational biology; DNA microarrays; Graph theory data

processing

iii

To my family

iv

“I never guess. It is a capital mistake to theorize before one has data. Insensibly one

begins to twist facts to suit theories, instead of theories to suit facts.”

Sir Arthur Conan Doyle, 1859-1930

v

Acknowledgments

I would like to express my deepest gratitude to my senior supervisor, Dr. Martin Ester. I

thank him for his continuous professional and personal support. He gave me motivation,

support and patience to deal with all sorts of problems I have had during development of

this thesis. I would like to thank my supervisor Dr. Jian Pei and my examiner Dr. Eldon

Emberly for their constructive feedbacks at the initial stages of this thesis and also for

reading and improving this thesis. I also thank Dr. Ted Kirkpatrick for chairing my thesis

defense.

I would like to thank once more to Flavia Moser for the endless discussions we had, for her

patience and for improving this thesis. I am very thankful to Dr. Jack Chen, Dr. Alexander

Schönhuth and Jeffrey Shih-Chieh Chu for their help to improve the proposed model. My

special thanks go to members of the SFU Data Mining Lab for the friendly environment.

Finally, I also would like to thank to the CIHR/MSFHR Bioinformatics Training Program

and its coordinator Sharon Ruschkowski and to Val Galat and Gerdi Synder of SFU School

of Computing Science for the financial and administrative support.

This thesis would be impossible without the love and support of my dearest Pinar and

my family. I want to thank you for the happiness and meaning you bring into my life.

vi

Contents

Approval ii

Abstract iii

Dedication iv

Quotation v

Acknowledgments vi

Contents vii

List of Tables ix

List of Figures x

List of Algorithms xiv

1 Introduction 1

1.1 Contributions . 3

1.2 Thesis Outline . 4

2 Related Work 6

2.1 Gene Expression Data (Transcriptome) Based Methods 7

2.2 Interaction Data (Interactome) Based Methods 10

2.3 Methods That Jointly Mine Interactome and Transcriptome 13

2.4 How Is Our Work Different ? . 13

vii

3 Density Constrained Biclustering(DCB) Problem 15

3.1 Problem Definition . 15

3.2 Complexity . 17

3.3 Properties of DCB Constraints . 19

3.3.1 Properties of DCBs, 1
2 ≤ α ≤ 1 . 27

3.3.2 Properties of DCBs, 1
3 ≤ α <

1
2 . 28

4 Algorithm 38

4.1 Density Constrained Bicluster Miner (DCB-Miner) Algorithm 39

4.2 Completeness . 47

4.3 Post-processing . 49

5 Experimental Results 52

5.1 Data . 52

5.1.1 Yeast Dataset . 52

5.1.2 Human Dataset . 53

5.2 Gene Ontology (GO) Based Evaluation . 53

5.2.1 Competition Partners . 53

5.2.2 Module Assessment . 56

5.2.3 Results . 57

5.3 Prediction of Novel Annotation . 63

5.4 Runtime Experiments . 65

6 Conclusion and Future Work 70

6.1 Contributions . 70

6.2 Future work . 70

Bibliography 73

viii

List of Tables

1.1 Common omic data types . 2

2.1 Expression matrix from a cDNA experiment 7

5.1 Module Statistics. 62

ix

List of Figures

2.1 Plot of expression profiles of genes given in Table 2.1 8

2.2 Co-expression graph extracted from the toy dataset given in Table 2.1 by

applying an Absolute Pearson Correlation Coefficient threshold of 0.8. The

highly co-expressed genes A,B and E induce a dense subgraph, in this case a

clique of size 3, which may be a functional module. The higher the number

of co-expression graphs in which A,B and E induce a clique, the higher the

probability that A,B and E form a functional. 10

2.3 Example of a module which induces a dense subgraph in the interactome.

Cdc73/Paf1 complex associates with RNA polymerase II and general RNA

polymerase II transcription factor. It is involved in transcriptional initiation

and elongation [11]. 11

3.1 Illustration of the DCB problem. For the given attributed graph the output

contains two maximal DCBs wrt. parameters α = 0.7, θdim=3 and θh = 0.

For example, genes K,E,C,F and B form a highly connected module with the

associated subspace consisting of conditions 1,5 and 6. 18

3.2 An example of an α-critical graph with the α-critical node c, α = 0.41. . . . 20

3.3 The node permutation {d, c, e, b, a} induces connected subgraphs with den-

sities 1, 1, 1, 0.83 and 0.7 respectively. Therefore, the graph is α-strongly

connected for α ≤ 0.7. 21

3.4 G2 and G3 are leaf components and BC is the bridge component. Although

G1 is also an island component, it is not a leaf component because it is

connected to more than one bridge nodes, i.e. c1,c2 and c3, of the bridge

component BC. 26

x

3.5 Illustration of the restricted graph topology for α-critical graphs, 1
3 ≤ α <

1
2 .

The two leaf components ,G1 and G2 are connected via a simple path of i,

i ≥ 1, α-critical nodes c1, . . . ci. 29

3.6 G is α-critical for α = 0.406 and G1 and G2 are the leaf components. G∗1 and

G∗2 are are both 0.406-dense. 33

4.1 Illustration of the DCB-Miner on a toy example consisting of six genes with

logged-2 fold changes across three experimental conditions. We assume the

parameters are: α = 0.8, θh = 0.5 and θdim = 2, i.e. we want to find modules

having density 0.8, whose corresponding genes are co-expressed (i.e. within

a fold change range of 20.5 ≈ 1.4) across at least 2 experimental conditions.

The algorithm starts with (1) the Preprocessing step in which the edges A-F

and D-F are removed because genes pairs A-F and D-F satisfy the fold change

range constraint across only 1 and 0 conditions respectively. (2) Then, we

generate 2-node seed modules for every remaining edge. (3) Next, the iter-

ative Expand-By-One step is called. In every iteration, current modules are

expanded by a neighboring gene. For example, the expansion of the module

A-D results in the larger candidate modules A-B-D, A-C-D and A-D-E. Note

that, the candidate A-C-D does not satisfy the density constraint, because it

has density 2
3 < 0.8, so it is pruned. Moreover, A-D-E is also pruned because

it has only one homogeneous condition and does not satisfy the co-expression

homogeneity constraint. In this iteration only subnetworks A-B-D and B-

C-D satisfy all DCB constraints and the rest (and their super-networks) are

pruned from the search space. During the next iteration candidate mod-

ules A-B-C-D and A-B-D-E are generated. Only A-B-C-D satisfy the DCB

constraints. A-B-C-D is returned as a maximal DCB with the associated

context consisting of conditions 1 and 3. To summarize, the constraint based

prunning strategy reduces the search space from 26 = 64 to 17. 41

xi

4.2 Graph G contains two α-critical nodes (nodes 10 and 11) for α = 0.406.

Hence, G cannot be found in the Expand-by-one phase . However, G contains

at least two α-strongly-connected overlapping subgraphs, i.e. GEBO1 and

GEBO2 , which are guaranteed to be found in the Expand-by-one phase. The

Merge phase mines α-quasi-cliques of GEBO1 and GEBO2 . In this particular

example, G1 and all its subgraphs are at least 0.406-quasi-clique of GEBO1 .

Similarly, G2 and all its subgraphs are at least 0.406-quasi-clique of GEBO2 .

Hence, in the Merge phase simple paths will be searched between all 0.406-

quasi-cliques of GEBO1 and GEBO2 , which in this case consists of nodes 10 and

11. 45

4.3 A sample graph that illustrates the necessity of the maximality check step.

The graph is 7
15 -dense. For α = 7

15 , the graph is α-strongly-connected, i.e. the

permutation {A,B,C,D,E, F} induces a chain of connected α-dense graphs.

However, the permutation {F,E,D,A,B,C} fails to induce such a chain after

extending node permutation {F,E,D,A} with node B. Therefore, the graph

{F,E,D,A} is a maximally expanded-by-one graph even though it is not a

maximal α-dense graph. 47

5.1 Density distribution of well characterized yeast functional modules extracted

from the Saccharomyces Genome Database (SGD) [11] 55

5.2 Distribution of the number of homogenous dimensions wrt. θh = 1.25 of

the well characterized yeast functional modules extracted from the Saccha-

romyces Genome Database (SGD) [11]. 56

5.3 Performance of all algorithms on the yeast dataset 58

5.4 Performance of all algorithms on the human dataset 59

5.5 Distribution of number the modules a gene is involved in for the yeast (left)

and the human (right) datasets. 60

5.6 Size distribution of well characterized yeast functional modules extracted

from the Saccharomyces Genome Database (SGD) [11]. 61

5.7 Distribution of the sizes of DCBs found in the yeast (left) and the human

(right) datasets. 62

5.8 Annotation of CLSPN gene via other annotated genes in the same enriched

module . 63

xii

5.9 Annotation of LSP1 gene via other annotated genes in the same enriched

module . 65

5.10 α vs runtime . 66

5.11 θh vs runtime . 67

5.12 θdim vs runtime . 68

xiii

List of Algorithms

4.1 DCB-Miner: Densely Constrained Bicluster Miner 42

4.2 First phase: Expand-by-one . 43

4.3 Second Phase: Merge . 46

4.4 Third Phase: CheckMaximality . 48

4.5 Post-processing . 51

xiv

Chapter 1

Introduction

On the cellular level, life is driven by molecules acting in concert, in response to internal

and external signals. The investigation of the inherent complex molecular patterns has

been at the core of molecular biology since the discovery of the genetic code. The ultimate

goal is to draw detailed maps of cellular mechanisms and their interplay. However, even in

the post-genomic era, this is a hard task. Noisy experimental data and the superposition

of many such mechanisms usually make direct computational approaches impossible. For

this reason, a significant portion of the genes of the most studied model organisms lack

comprehensive functional annotation. The situation is even worse in less studied organisms

[66].

The modularity paradigm [4] facilitates to overcome these difficulties in a single step.

In short, this systemic paradigm establishes that functional subunits of the cellular maps

are encoded as modules. When mapped to the realm of biochemistry this translates to

specific cellular functionality being explained by groups of genes rather than by single genes.

Accordingly, in systems biology, a first worthwhile computational step is to identify an

organism’s modules. Provided with the modulome of an organism, that is, the entirety of its

functional subunits, one can assign functions to not yet annotated gene products modularly

associated with fully annotated functional partners. Furthermore, studying overlaps of

modules and, in an even more general fashion, their hierarchical organization will finally

help to draw more holistic pictures of an organism on the biochemical level.

Unlike other omic data types, which refer to large scale and holistic data gathered for

understanding a specific aspect of the cellular life, there is no single experimental method or

data source to be used to fully and directly annotate the modulome of an organism. As an

1

CHAPTER 1. INTRODUCTION 2

example, consider the genome of an organism, which along with other genomes is usually

a sufficient data source to find the complete set of genes of the organism to a substantial

degree of correctness. Similarly, gene expression experiments are useful, if not sufficient,

resources for constructing the transcriptome, i.e. the totality of expression profiles of genes

under various conditions. Unfortunately, there is no such data source for construction

of the modulome. Instead, the inference of modulome relies on analyzing and drawing

conclusion from singleton (or a combination of other) omic data types. For example, finding

co-expressed genes from transcriptome can yield insights into the modulome. Similarly,

finding highly interacting groups of genes in the interactome usually translates to finding

functional modules. As a final example, finding co-located clusters of genes along the genome

often correspond finding to co-transcriptionally regulated genes, i.e. functional modules. All

these translate to some form of non-trivial knowledge discovery from omic data types. This

is why molecular biology has become one of the major application and innovation domains

for data mining.

Various data mining methods, most significantly clustering and constrained pattern min-

ing algorithms, have been developed to infer modules from single omic data types. As input,

several biological omic data types are available, each describing a different aspect of the cel-

lular system. Table 1 shows some of the popular and widely available omic data types in

use today.

Data Type Type of Information
Transcriptome Expression of genes under various conditions
Interactome Gene-protein and protein-protein interactions
Proteome Activation of proteins under various conditions
Metabolome Changes in concentrations of small molecules across conditions
Phenome Gene-phenotype associations
Localizome Cellular localization of individual proteins
Textome Occurrence of genes/protein names in scientific articles

Table 1.1: Common omic data types

However, recently it became evident that joint analysis of multiple omic data types is

much more promising than making inferences based on singleton data types [29]. Algorithms

that integrate several types of datasets promise to be superior due to three important

aspects:

CHAPTER 1. INTRODUCTION 3

1. High-throughput data of any type is still noisy to a substantial degree and/or incom-

plete. For example, high-throughput protein-protein interaction (PPI) identification

experiments can contain up to 50% false positive interactions [81]. Similarly, noise in

gene expression data is a prominent problem and has many origins.

2. Single data types only provide partial, highly specific information on the underlying

biological system. For example, gene expression data only reflect cellular conditions on

the transcriptional level, whereas interaction data only yield insight about particular

features of more advanced cellular processes.

3. There is a global correlation between various omic data types [28, 30, 29]. Although

some approaches used one data type to check the results from the analysis of another

data type [76], it is sub-optimal. The global correlation between omic data types must

be exploited by the learning algorithms for better performance.

Along these lines, this thesis tries to exploit the benefits of joint mining of multiple omic

data types. We develop a novel way to efficiently combine transcriptome and interactome to

find the active modulome of an organism. We refer to the entirety of the modules that are

active with respect to the gene expression data employed as the active modulome. Supported

by abundant scientific evidence, active modules are best identified as highly interconnected

(dense) subnetworks where participating genes are co-expressed under specific biological

conditions. We focus on transcriptome and interactome because (1) they are the most

popular and widely available omic data types and (2) they serve as a basis for attribute

based (phenome, localizome, epigenetic data, etc.) and graph based (interactome, protein

structure data, gene association data, co-expression graphs, etc.) omic data types. Note

finally that activity, as defined here, is relative to the gene expression experiments under

consideration. As a consequence, completeness of the modulome is also relative to the

cellular conditions explored.

1.1 Contributions

In this thesis, we present an algorithm that addresses prevalent difficulties for inferring

modules by joint analysis of transcriptome and interactome data. As we shall see in the

related work section, our algorithm integrates all desirable properties of existing module

finding algorithms , which has not been done before. From the point of view of algorithmic

CHAPTER 1. INTRODUCTION 4

complexity, the according search problem is NP-hard. However, we demonstrate that,

on the biological instances at hand, the problem becomes tractable by carefully designing

the search strategy. We do this by combining the search for dense subnetworks with a

biclustering method applied to as much as hundreds of different expression profiles.

In sum, our major contributions are:

• We formally introduce the novel problem of finding density constrained biclusters

(DCBs), i.e. densely connected subnetworks where nodes are subject to homogeneity

constraints in a corresponding attribute space.

• We design a novel search strategy, Density Constrained Bicluster Miner (DCB-Miner)

algorithm, which can efficiently solve this computationally hard problem for biological

instances, namely PPI and genetic interactions (GI) networks on one hand and homo-

geneity constraints resulting from gene expression experiments on the other hand.

• We use DCB-Miner to compute the active modulome of human and yeast based on

standard transcriptomic and interactomic datasets which has not been done before.

• We demonstrate that our DCB-Miner algorithm clearly outperforms prior module find-

ing approaches in a Gene Ontology (GO) based evaluation procedure. This confirms

the validity of the hypothesis of an active module being a dense and co-active subnet-

work.

• We show that DCBs can be used to computationally predict novel functional annota-

tions for crudely annotated and/or un-annotated genes.

1.2 Thesis Outline

The remainder of the thesis is organized as follows:

• In Chapter 2, we survey the related work.

• In Chapter 3, we formally introduce the Density Constrained Biclustering (DCB)

problem, analyze its complexity and study the properties of the constraints a module

must satisfy.

• In Chapter 4, we propose the DCB-Miner algorithm which exploits the properties

derived in Chapter 3 and prove its correctness.

CHAPTER 1. INTRODUCTION 5

• In Chapter 5, we demonstrate the superiority of DCB-Miner algorithm in a Gene On-

tology (GO) based competition against four state-of-the-art algorithms in use. We

further present biological examples from yeast and human that convey particular in-

teresting meaning. Finally, we report the results of run time experiments that show

the scalability of DCB-Miner algorithm.

• We conclude with a summarization of our contributions and future extensions in Chap-

ter 6.

Chapter 2

Related Work

In this chapter, we give a systematic analysis of the related work. From the computer science

point of view, our work is closely related to clustering and constrained pattern mining. From

a bioinformatics application point of view, our work corresponds to the functional module

discovery from gene expression and protein interaction data.

The most widely used data mining methods for the functional module identification task

are clustering and constraint based pattern mining. Clustering is defined as the process of

grouping data objects into groups so that elements of a group are similar to each other and

dissimilar to elements of other groups [31]. Unlike classification, class labels are not given

apriori, therefore, it is an unsupervised learning process. Clustering has been widely studied

within the data mining, statistics, pattern recognition, machine learning and bioinformatics

communities. The type of the data (i.e. real-valued vectors, graphs, images, strings, etc.)

to be clustered and the type of similarity metric usually depend on the domain of the data

to be clustered. Constrained pattern mining, on the other hand, is the process of finding

patterns in the data that satisfy some user defined constraints. Although the core task of

pattern mining is the same as clustering, there exist certain differences between the two.

First, patterns are typically smaller than clusters. Second, patterns are allowed to overlap,

which might not be the case in most of the clustering algorithms. Finally, patterns are more

interpretable than clusters due to their smaller size and to the fact that they satisfy user

defined constraints.

Since both clustering and pattern mining are very broad topics, we will focus only on

works that are developed or utilized for functional module discovery. In particular, we will

give a special attention to biclustering and dense graph mining approaches as our algorithm

6

CHAPTER 2. RELATED WORK 7

combines ideas from both areas.

From this point on, we use the terms gene and protein interchangeably as a protein is

directly identifiable from the gene coding for it.

2.1 Gene Expression Data (Transcriptome) Based Methods

Gene expression profiling is the process of measuring the activity of thousands of genes in

a high-throughput manner in order to create a global picture of the cellular state. Usually,

gene expression profiling data is represented as an n ×m matrix E, containing expression

levels for n genes (rows) under m experimental conditions (columns). Depending on the

type of technology, the matrix entry Ei,j , i ∈ 1..n ,j ∈ 1..m can have different meanings. In

cDNA microarray experiments, entry Ei,j represents the (usually 2-logged) test vs. control

fold change of gene i in condition j . For example, in Table 2.1, E2,3 = −1.5 means that

expression value of gene B decreased 21.5 = 2.82-fold whereas E5,3 indicates that expression

value of gene B increased 24 = 16-fold under Condition 3. On the other hand, in oligonu-

cleotide array and SAGE (Serial Analysis of Gene Expression) based experiments, matrix

entries represent the actual amount of gene expression. Hence there is no comparison, i.e.

fold change, against the wild type.

Gene Cond-1 Cond-2 Cond-3 Cond-4
A 2 0 -1 0
B 2 0.1 -1.5 0
C 0 0.1 0 0.2
D 1.1 2.1 0 2
E -2 0 4 5

Table 2.1: Expression matrix from a cDNA experiment

Gene expression data has been the most widely used and publicly available attribute data

for gene clustering and pattern mining. Therefore, the most classical post-genomic approach

to module finding problem is to infer groups of co-expressed genes where expression patterns

usually come from microarray experiments. As an example, consider again the toy data set

given in Table 2.1, this time plotted in Figure 2.1 for easier interpretation. Gene A, B and

E seem to be highly co-expressed. Note that, expression of genes A and B are positively

correlated, whereas, E shows negative correlation with genes A and B. Moreover, D and C

does not seem to be co-expressed with other genes. In summary, genes A, B and E may be

CHAPTER 2. RELATED WORK 8

involved in the same cellular process.

Figure 2.1: Plot of expression profiles of genes given in Table 2.1

A variety of classical approaches have demonstrated that, for a group of genes, co-

expression significantly increases the likelihood of having similar function. In order to un-

cover such co-expression patterns, several clustering approaches including K-Means, Hier-

archical Clustering and Self Organizing Maps (SOM) have been tested based on expression

experiments to partition the set of genes into co-expressed groups [20, 74, 76]. Although

these methods were quite useful, it is now well-known that some genes may be involved in

different functional groups [27]. Therefore, a later generation of methods employed fuzzy

clustering or mixture models to infer overlapping groups of genes [87, 27, 60] or more specif-

ically address the challenges of clustering microarray data [34].

Classical clustering algorithms work in the full dimensional space, i.e. elements of a

cluster are required to be similar in all dimensions. This may generate severe problems in the

case of high dimensional data due to the so-called curse of dimensionality. For example, in

the context of gene expression, members of a module may be co-expressed only under certain

conditions and/or time points corresponding to a subspace of the full dimensional space.

This is due to the complex gene regulation circuitry that results in temporal and spatial

co-expression. Therefore, classical algorithms usually fail to capture subtle patterns that

exist in subspaces. To deal with this problem, a novel class of methods called biclustering

(or subspace clustering) algorithms [17, 75, 9, 91] were introduced. Due to the biological

soundness, these methods have been found to perform significantly better than classical gene

CHAPTER 2. RELATED WORK 9

clustering algorithms. Basically, biclustering allows simultaneous clustering of rows (genes)

and columns (experiments), meaning that the result is a set of genes with an associated

subspace in which some type of coherent behavior is observed. Hence a bicluster induces

a submatrix in the expression matrix. Similar to the classical clustering algorithms, the

exact formulation of the problem and the coherency metric can lead to very different types

of biclusters. The most widely used bicluster formulations are as follows [52]:

• Bicluster with constant values: The submatrix has the same values in all of the entries.

• Bicluster with constant values on rows or columns: The submatrix has constant ex-

pression values either along the rows or the columns.

• Bicluster with coherent values: Many definitions are proposed in this category. For

example, some definitions may require the expression values of all genes to either

decrease or increase simultaneously in each column. Alternative formulations may

require all of the genes to induce the same linear ordering of experiments. Yet another

definition of coherent behavior may be statistically defined. Therefore, this type of

biclustering is more flexible and much closer to the reality.

Although not explicitly classified as biclustering algorithms, pattern mining algorithms

have been utilized for the module identification problem as well. Frequent itemset mining

[3, 32] approaches were used in [43, 8] to find small, overlapping set of genes (items) that

are co-expressed (co-occur) in a large enough (i.e. satisfying a support threshold) subset of

experiments (transactions). This was done by transforming the continuous gene expression

matrix into a discrete one so that frequent itemset mining algorithms can be run on the

data. This approach can be considered as another form of subspace clustering. Similarly,

sequential patterns, which in this context are tuples consisting of a set of genes and a set

of dimensions such that all the genes (item) induce the same linear ordering of experiments

(transaction), were mined in [25].

Although gene expression data is the most publicly available omic data type, there is

a lack of standardization in representation, storage and exchange of gene expression data.

Moreover, data is produced in different research centers around the world that use various

technological platforms and produce data at a variable level of quality. All these make the

already hard problem of gene expression analysis even harder. Even the integration of these

data sets poses a big challenge, let alone reliable cluster and pattern mining analysis. To

CHAPTER 2. RELATED WORK 10

address these problems, methods have been proposed which create a co-expression graph

for each gene expression dataset, such that genes are the nodes and an undirected edge is

inserted between a pair of genes if the genes satisfy a co-expression threshold (See Figure 2.2

for an example). It has been shown in [37, 84, 56] that dense subgraphs that frequently

occur in multiple co-expression graphs correspond to functional modules. In these studies,

co-expression networks of genes are constructed from up to 105 different human microarray

datasets. Thereby, the module inference problem is transformed to that of finding dense

subnetworks in the co-expression networks. In general, the higher the frequency of a dense

subgraph, the higher the probability that the dense graph is a functional module. Com-

bining various datasets in this way prevents over confident predictions based on low quality

datasets.

Figure 2.2: Co-expression graph extracted from the toy dataset given in Table 2.1 by apply-
ing an Absolute Pearson Correlation Coefficient threshold of 0.8. The highly co-expressed
genes A,B and E induce a dense subgraph, in this case a clique of size 3, which may be
a functional module. The higher the number of co-expression graphs in which A,B and E
induce a clique, the higher the probability that A,B and E form a functional.

2.2 Interaction Data (Interactome) Based Methods

The second most widely used omic data type is the interactome, which is the whole set of

molecular interactions in the cell. Depending on the type of interaction it can be represented

as a directed, i.e. transcription factor - gene interactions, or as an undirected graph , i.e.

protein-protein interactions and genetic interactions. Interaction networks have been used

for identifying modules since they became available on a large-scale. Systematic analysis

of interaction networks revealed many topological principles on the global organization [42,

CHAPTER 2. RELATED WORK 11

14, 7, 58, 36]. Among these, the most important ones are power-law degree distribution,

small world effect, skewed graphlet distributions and the modular organization, which is of

particular interest for our work.

Figure 2.3: Example of a module which induces a dense subgraph in the interactome.
Cdc73/Paf1 complex associates with RNA polymerase II and general RNA polymerase II
transcription factor. It is involved in transcriptional initiation and elongation [11].

It is now well established that, in particular in protein-protein interaction (PPI) and

genetic interaction (GI) networks, functional modules can be identified as dense subnetworks

(See Figure 2.3 for an example) [78, 4, 92]. To infer modules from interaction networks alone,

existing approaches mostly rely on PPI data. For example, [6] assigns weights to nodes to

identify regions that are dense in terms of the weights. Others compute likelihood ratios

of a subnetwork being a complex against occurring at random or employ various network-

clustering algorithms [71, 46, 65, 90]. Many other network based prediction methods have

been reviewed in a recent comprehensive study by [66] on standard datasets that have been

proposed for evaluation and benchmarking competitions [12]. In this assessment, MCL, a

Markov chain based method [21, 47] significantly outperformed the other ones. As a result

of the underlying clustering techniques, these methods usually compute non-overlapping

groups of proteins as modules. In a recent approach, to remove false positives detected by

one method alone, modules are inferred by computing consensus clusters where clusters are

obtained from several methods [5]. This can result in proteins being assigned to several

clusters. Additional related approaches have been described in [66] and citations therein.

CHAPTER 2. RELATED WORK 12

Dense graph mining has recently became a popular topic in data mining and many

algorithms have been developed for addressing variants of the problem in various domains.

Since these algorithms have been applied to or are applicable to biological networks, we

believe it is useful to review them as well. The initial works in the data mining community

focused on the frequent subgraph problem, i.e. finding subgraphs that frequently occur in at

least a predefined number of input graphs . They usually accepted a collection of graphs and

produced the frequent subgraphs that satisfy some support (frequency) constraint [41, 48].

Gradually, the focus moved to finding frequent dense subgraphs within a collection of graphs.

In [82], an algorithm is proposed to find all frequent maximal cliques, i.e. complete graphs.

The algorithm is based on a depth-first approach exploiting the anti-monotonicity of the

clique property and the support properties, i.e. every subgraph of a frequent clique is

also a frequent clique. A more relaxed density constraint requires only that the graph

patterns are α-quasi-cliques, i.e. that every node has at least a specified percentage α,

0 < α ≤ 1 of all possible edges within the pattern. [56] and [89] proposed new search space

pruning strategies for efficiently mining all frequent, and all closed frequent resp., α-quasi-

cliques. [85] also investigated the problem of mining all closed frequent graphs with edge

connectivity at least k, where the edge connectivity is defined as the minimum cut size.

The proposed CLOSECUT algorithm follows a pattern-growth approach and works well on

datasets which contain mainly patterns with high support and low connectivity. The second

algorithm, SPLAT, targets datasets containing mainly highly connected patterns. Relaxing

the minimum support constraint, [37] presented an algorithm to mine subgraphs that are

dense, defined based on the size of the minimum cut, and exhibit correlated occurrence

across the collection of input graphs.

In the theory community, [1] proposed an approximation algorithm for finding the largest

α-quasi-clique in disk resident data. It is based on a randomized greedy search procedure

and is highly scalable to massive graphs. Although very efficient, it finds only the largest α-

quasi-clique and is not very useful in biological applications considered here. Finally, graph

partitioning algorithms such as normalized cut [68, 19] can be considered as another ap-

proach for finding some of the densest subgraphs. These algorithms partition the graph into

components with small cut size, i.e. small weight of the edges between different components,

which indirectly leads to dense components.

CHAPTER 2. RELATED WORK 13

2.3 Methods That Jointly Mine Interactome and Transcrip-

tome

Because of the availability of many large-scale datasets for an increasing number of organ-

isms, a few rather sophisticated methods have been developed [54]. They usually augment

gene expression data with metabolic [33], regulatory [63, 16, 61], PPI network [55], literature

[86] and other diverse genomic information [45]. In [79], Bayesian network based framework

was proposed for integrating diverse genomic data in order to find whether a given pair

of genes are functional related or not. The approach is highly flexible, i.e. can integrate

diverse data types and can assign weights on the reliability of the datasets based on prior

knowledge. However, it can only predict pairwise relations between genes and does not

explicitly draw conclusions at the module level. Related to our work are methods for the

combined evaluation of PPI, GI and gene expression data. Among them, module finding

approaches come closest to our work. [40] tries to find connected subnetworks which yield

a high score measured in P-values obtained from gene expression experiments. In another

classical approach by [33], a novel distance function, based on both expression and network

information, are used in standard clustering procedures to partition the genes into groups.

[62] employs more sophisticated statistical models to determine clusters of genes. In the

most recent approach, [80] can test the hypothesis of a group of genes being co-expressed

in a classical statistical procedure. Connected subnetworks which pass the test on a suffi-

ciently high significance level are output as modules. Note that all of these methods yield

non-overlapping modules as output. Density of the subnetworks is not addressed either.

Some of these approaches restrict themselves to connected subnetworks [40, 80] while other

address this requirement only implicitly [62, 33].

2.4 How Is Our Work Different ?

Based on the above discussions and the wish list for clustering algorithms [67], the following

requirements should be taken into consideration while designing a useful and biologically

meaningful module identification algorithm.

1. Algorithm should not require the number of clusters a priori, which itself is a chal-

lenging problem.

CHAPTER 2. RELATED WORK 14

2. Due to high amount of noise, the data (or some part of it) may not really include a

module. Hence, elements that are not related should not be forced to be in a cluster.

3. Most algorithms suffer from the curse of dimensionality problem. Therefore, the

algorithm’s performance should be robust to increasing dimensionality. Modules are

usually active (co-expressed) only across a subset of conditions.

4. Modules should be overlapping because it is a known fact that many genes belong to

multiple modules.

5. Algorithm should exploit the fact that elements of a module show correlation across

various omic data types.

To our best knowledge, none of the methods mentioned above simultaneously address

all of these criteria. By transforming these observations into mathematically well-defined

constraints, we developed a constraint based pattern mining algorithm that can address all

of the above mentioned challenges.

Chapter 3

Density Constrained

Biclustering(DCB) Problem

In this chapter, we formally introduce the Density Constrained Biclustering (DCB) problem.

and study its complexity. Moreover, we derive some useful properties of DCBs to be used

in Chapter 4 for designing a search strategy for DCBs.

3.1 Problem Definition

We view the interaction network of an organism combined with fold-change gene expression

data, i.e. cDNA microarray dataset, as an attributed graph.

Definition 1 (ATTRIBUTED GRAPH). An attributed graph is an undirected graph

G = (V, E ,A), in which V = {v1, . . . vn} denotes the node(gene) set, E ⊆ {{vi, vj} |vi, vj ∈
V, vi 6= vj} denotes the edge (interaction) set and A : V → D1 × . . . × Dk is an attribute

function, which assigns a k-dimensional attribute vector (expression profile) to each node

v ∈ V . D = {D1, . . . ,Dk} is called the attribute space of G and D′ ⊆ D is called the

attribute subspace.

From the works on analysis of transcriptome and interactome surveyed in Chapter 2, we

know that the following observations hold for functional modules:

1. Genes of the module are co-expressed in a subspace.

15

CHAPTER 3. DENSITY CONSTRAINED BICLUSTERING(DCB) PROBLEM 16

2. There exist a flow of information between elements of a module. Therefore, a module

induces a connected subgraph in the interactome.

3. Members of a module are highly interconnected to each other while being loosely

connected to elements of other modules.

For an induced attributed subgraph G′ = G[V ′] = (V ′, E′,A), we formalize the above facts

as follows:

1. We say G′ is homogeneous (co-expressed) in subspace D′, |D′| ≥ θdim, if for all

d ∈ D′ :
|max{Ad(v), v ∈ V ′} −min{Ad(v), v ∈ V ′}| ≤ θh (3.1)

where Ad(v) denotes the attribute value of node v in dimension d and θh the ho-

mogeneity threshold. Informally, the homogeneity of G′ requires that the attribute

values (fold changes) of its nodes (genes) are within a range of at most θh across at

least θdim dimensions. Moreover, if inequality 3.1 is not satisfied then G′ is said no

be non-homogenous on dimension d. Note that this definition of co-expression is a

fairly restrictive one. For example, it does not capture negatively correlated regulation

of genes. However, as we will elaborate in the following sections, it has very desirable

computational properties that we will exploit in Section 3.3.

2. G′ is connected if it is a connected component. This means that there exists a path

between any pair of nodes in V ′, which consists only of nodes contained in V ′.

3. The density of G′, d(G′), is defined as G′’s cliquishness, i.e. the ratio of the number

of edges in G′ over the number of possible edges in G′,

d(G′) =
|E′|(|V ′|

2

) =
2|E′|

|V ′|(|V ′| − 1)
. (3.2)

We say G′ is α-dense if d(G′) ≥ α, 0 ≤ α ≤ 1.

We call these constraints as homogeneity, connectivity and density constraints respectively.

Now, we are ready to define a density constrained bicluster.

Definition 2 (DENSITY CONSTRAINED BICLUSTER (DCB)). Given an attributed

graph G = (V, E ,A), homogeneity threshold θh, minimum dimensionality θdim and the den-

sity threshold α; an induced subnetwork G′ = G[V ′] = (V ′, E′, D′,A) is called a density

constrained bicluster (DCB) if

CHAPTER 3. DENSITY CONSTRAINED BICLUSTERING(DCB) PROBLEM 17

• G′ is homogeneous wrt. θh and θdim

• G′ is α-dense, i.e. d(G′) ≥ α

• G′ is connected.

We say that a DCB satisfies the DCB constraint.

The number of density constrained biclusters can be prohibitive, therefore we restrict

ourselves to only maximal ones, which is defined as follows.

Definition 3 (MAXIMAL DENSITY CONSTRAINED BICLUSTER). Given an attributed

graph G = (V, E ,A), a density constrained bicluster G = G[V] = (V,E,D,A) is called a

maximal density constrained bicluster , if @v ∈ V and @D′ ⊆ D such that the graph

G′ = (V ∪ {v}, E′, D′,A) also satisfies the DCB constraint.

Translated back to the realm of biology, a DCB is a set of genes that are within a θh
fold-change neighborhood of each other across at least θdim experimental conditions and

whose associated nodes, which can usually be identified with their protein products, are

densely interconnected in the interaction network (See Figure 3.1 for an illustration). Ac-

cording to our notation, we obtain the following computational problem:

Definition 4 (DENSITY CONSTRAINED BICLUSTERING (DCB) PROBLEM). Given

an attributed graph, find all maximal DCBs.

Input: Attributed graph G = (V, E ,A), density threshold α, homogeneity threshold θh and

minimum number of dimensions θdim.

Output: The set of all maximal DCBs specified by parameters α, θh and θdim.

From this point on, we assume 1
3 ≤ α ≤ 1. This is due to two reasons. First, density

of known functional modules is usually much higher than 1
3 (See Figure 5.1 and Section 5.2

for a detailed discussion). Second, α-dense graphs, α ≥ 1
3 have amenable graph theoretic

properties that makes efficient mining possible.

3.2 Complexity

Variants of dense subgraph search problems have been shown to be computationally hard

problems. For example, finding the maximum clique in a graph is is known to be NP-

complete [44] and finding the complete set of α−quasi-cliques, 0 < α ≤ 1 is shown to be

CHAPTER 3. DENSITY CONSTRAINED BICLUSTERING(DCB) PROBLEM 18

DCB

Con-1 Con-2 Con-3 Con-4 Con-5 Con-6 Con-7

A 2 -2 1 0 2 1 2

B 1 1 0 -2 0 2 1

C 1 0 0 1 0 2 1

D 0 0 -1 -1 2 1 0

E 1 1 2 0 0 2 2

F 1 1 -1 -1 0 2 0

G 0 2 -1 -1 2 0 0

H 1 1 -1 -1 1 1 0

K 1 0 2 0 0 2 1

L 2 2 -1 -1 -1 -1 0

M 2 0 1 1 1 -2 -1

Con-1 Con-5 Con-6

B 1 0 2

C 1 0 2

E 1 0 2

F 1 0 2

K 1 0 2

Con-3 Con-4 Con-7

D -1 -1 0

F -1 -1 0

G -1 -1 0

H -1 -1 0

L -1 -1 0

Figure 3.1: Illustration of the DCB problem. For the given attributed graph the output con-
tains two maximal DCBs wrt. parameters α = 0.7, θdim=3 and θh = 0. For example, genes
K,E,C,F and B form a highly connected module with the associated subspace consisting of
conditions 1,5 and 6.

NP-hard [56]. Moreover, [35] showed that even approximating the size of the maximum

clique in polynomial time within a factor of nε (ε > 0) is not possible unless P = NP. Since

both cliques and α-quasi-cliques are α-dense graphs, it is not surprising that DCB problem

is also a computationally hard problem.

Theorem 1 (COMPLEXITY). The DCB problem is NP-hard.

Proof. We do proof by restriction. Consider an instance of the DCB problem with

parameters θh = arg maxv2,v1,d {Ad(v1)−Ad(v2)} , v1, v2 ∈ V, d ∈ D, θdim ≥ 0, α = 1, i.e.

attributes are omitted. Hence, the DCB problem includes as a special case the problem of

finding the maximum clique, which is shown to be NP-hard [56].

CHAPTER 3. DENSITY CONSTRAINED BICLUSTERING(DCB) PROBLEM 19

Hence, the worst case instances of the DCB problem require an exhaustive enumeration

of all 2N subgraphs of G, which is infeasible for realistic values of N , the number of nodes

in G. The average biological instance of the DCB problem, however, has certain properties

that allow us to make the problem tractable by greatly reducing the search space. We use

the DCB constraints of homogeneity, density and connectivity to prune the exponential

search space that has to be explored. Therefore, we derive some useful properties of the

DCB constraints in the rest of this chapter.

3.3 Properties of DCB Constraints

In this section, we analyze the properties of DCB constraints, which will serve as a search

guidance for the DCB-Miner algorithm to be introduced in the next chapter. Like most

of other pattern mining problems, DCB problem is also a computationally hard problem

and therefore DCB-Miner relies on efficient search space prunning strategies based on the

properties of the used constraints.

Recall that we defined an α-dense graph as a graph having at least α percentage of all

possible edges. Next, we introduce two special types of α-dense graphs.

Definition 5 (α-QUASI-CLIQUE AND CLIQUE). Given a connected α-dense graph G =

(V,E). G is called α-quasi clique iff every node v ∈ V has degree at least α(|V | − 1). A

clique is a 1-quasi clique.

We differentiate between the following types of nodes.

Definition 6 (α-REMOVABLE NODE, BRIDGE NODE, α-CRITICAL NODE and BRIDGE

COMPONENT). Given a connected α-dense graph G = (V,E) and a node v ∈ V .

• v is called α-removable node if G− v is α-dense.

• v is called bridge node if G − v is disconnected. Moreover, each of the connected

components formed by removing non-bridge nodes from G is called a bridge compo-

nent.

• G is called α-critical, if every α-removable node is a bridge node.

We denote with CN(G) the set of α-critical nodes and B(G) the set of bridge nodes of

graph G.

CHAPTER 3. DENSITY CONSTRAINED BICLUSTERING(DCB) PROBLEM 20

Definition 7 (α-CRITICAL GRAPH AND CRITICAL COMPONENT). Given an α-dense

graph G = (V,E). G is called α-critical, iff G contains an α-critical node. The connected

components in the subgraph induced by CN(G) are called α-critical components.

Figure 3.2: An example of an α-critical graph with the α-critical node c, α = 0.41.

We illustrate some of the definitions in Figure 3.2. c is a bridge node because its removal

disconnect the graph. Moreover, it is the only 0.41-removable node and is therefore a 0.41-

critical node. Finally, the connected component consisting of node c, is the only 0.41-critical

component.

Definition 8 (ISLAND COMPONENT and LEAF COMPONENT). Let G = (V,E) be a

connected graph containing bridge nodes. The connected components induced by the nodes

in V \ B(G) are called island components. An island component which is connected to

only one bridge node is called a leaf component.

Looking at Figure 3.2 once again, we see that G1 and G2 are the only connected graphs

upon removal of the set CN(G) = {c} of critical nodes of G. Hence, G1 and G2 are island

components. Since both of them are connected to only one α-critical node, namely node

c, of only one critical component, they are also leaf components.

Definition 9 (α-STRONGLY CONNECTED GRAPH). A graph G = (V,E) is called α-

strongly connected iff there exists at least one permutation τ = (vi1 , . . . vin) over nodes in

V = {v1, · · · vn} that induces a sequence (G−{vi2 , . . . vin}, . . . , G−{vin−1 , vin}, G− vin , G),

such that all graphs in the sequence are connected and α-dense.

CHAPTER 3. DENSITY CONSTRAINED BICLUSTERING(DCB) PROBLEM 21

Figure 3.3: The node permutation {d, c, e, b, a} induces connected subgraphs with densities
1, 1, 1, 0.83 and 0.7 respectively. Therefore, the graph is α-strongly connected for α ≤ 0.7.

We illustrate the concept of α-strong connectivity in Figure 3.3. Note that the graph

given in Figure 3.2 is not α-strongly connected for α = 0.41. This is because any connected

subgraph of size greater than 6 must include node c. Hence, any connected subgraph of

size 12 contains c, which results in density smaller than 0.41. To sum up, the graph in

Figure 3.2 cannot induce any permutations of type given in Definition 9. Indeed, if a graph

is α-critical, then it cannot be α-strongly connected.

Finally, we conclude the definitions section with an interesting type of graph.

Definition 10 (MAXIMALLY EXPANDED-BY-ONE GRAPH). Given an attributed graph

G = (V, E ,A), a DCB G′ = (V ′, E′, D′,A) ⊆ G is called maximally expanded-by-one if

either G = G′ or G′ cannot be expanded by any neighboring node v ∈ V \ V ′ such that G′+v

is a DCB.

In particular, we are interested in the anti-monotonicity, one of the most widely used

constraints in pattern mining, properties of DCB constrains. Since, the characterization of

constraints, i.e. anti-monotonicity and succinctness [53], of interest is essential for constraint

based data mining, we start with defining types of constraints that are of interest in the

context of the DCB problem.

CHAPTER 3. DENSITY CONSTRAINED BICLUSTERING(DCB) PROBLEM 22

Definition 11 (ANTI-MONOTONICITY). Given that a graph G satisfies a constraint C,

C is called anti-monotone if all subgraphs of G satisfy C [53].

For example, the constraint G is a clique is an anti-monotone constraint. This is

because any subset of a clique is also a clique. It is trivial to show that simultaneous

satisfaction of two anti-monotone constraint C1, C2 is an anti-monotone constraint C3 =

C1 ∧ C2. However, this is not valid for the following family of constraints.

Definition 12 (LOOSE ANTI-MONOTONICITY). Given that a graph G = (V,E) satisfies

C. C is called loose anti-monotone if there exists at least one subgraph of G with size

|V | − 1 which fulfills C as well [10].

Implicitly, the satisfaction of a loose anti-monotone constraint C requires existence of

a permutation τ = (vi1 , . . . vin) over nodes in V = {v1, · · · vn} that induces a sequence

(G−{vi2 , . . . vin}, . . . , G−{vin−1 , vin}, G−vin , G) of the nodes in V , such that each graph in

this sequence satisfies C. Unlike anti-monotone constraints, simultaneous satisfaction of two

loose anti-monotone constraints may or may not be a loose anti-monotone constraint. As

we shall see later in this chapter, the difficulty in mining DCBs originate from the need for

simultaneous satisfaction of two loose anti-monotone constraints, namely the connectivity

and the α-density constraints. Finally, simultaneous satisfaction of a loose anti-monotone

and an anti-monotone constraint is also a loose anti-monotone constraint.

Now that we have all the definitions we need, we start discussing the properties of

α-density constraint. We start with properties of individual constraints, i.e. α-density,

connectivity and homogeneity. Then, we will move to the properties of the DCB constraint

, which requires simultaneous satisfaction of all the three individual constraints.

Theorem 2 (HOMOGENEITY). The homogeneity constraint is anti-monotone.

Proof. Let a DCB G = (V,E,D,A) satisfy the homogeneity constraint specified by

the homogeneity threshold θh and minimum number of dimensions θdim in some subspace

D ⊆ D. By definition, this requires the following:

∀d ∈ D : |max{Ad(v), v ∈ V } −min{Ad(v), v ∈ V }| ≤ θh (3.3)

Note that reduction of the node set cannot increase the range in which the attributes

fall, i.e. ∀G′ = (V ′, E′, D′,A) ⊆ G, we have max{Ad(v), v ∈ V} ≥ max{Ad(v), v ∈ V ′}.
Similarly, min{Ad(v), v ∈ V} ≤ min{Ad(v), v ∈ V ′}. Therefore, we have:

CHAPTER 3. DENSITY CONSTRAINED BICLUSTERING(DCB) PROBLEM 23

∀d ∈ D′ : |max{Ad(v), v ∈ V ′} −min{Ad(v), v ∈ V ′}| ≤ θh (3.4)

Next, we analyze graph related constraints and therefore omit the attributes.

Theorem 3 (α-DENSITY). The α-density constraint is loose anti-monotone.

Proof. Let G = (V,E) be an α-dense graph. We need to show that there exists a node

v ∈ V , such that G′ = (V ′, E′) = G− v is also α-dense.

Since G is α-dense we know that |E| = degG(v) + |E′| ≥ α |V |(|V |−1)
2 . We distinguish the

following two cases:

• There exists a node v ∈ V , such that degG(v) < dα(|V | − 1)e. Then,

|E′| = |E| − degG(v) > α
(|V | − 1)(|V | − 2)

2
= α

(|V ′|)(|V ′| − 1)
2

(3.5)

holds, which implies that G′ is α-dense.

• For every node v ∈ V , degG(v) ≥ dα(|V | − 1)e. In this case, we choose the node v

with minimum degree k. Note that, k ≥ dα(|V | − 1)e. Then, the density of G′ is

d(G′) ≥
|V |k

2 − k
(|V |−1)(|V |−2)

2

≥ (|V | − 2)k
(|V | − 1)(|V | − 2)

≥ dα(|V | − 1)e
(|V | − 1)

≥ α (3.6)

Therefore, G′ is α-dense.

We now analyze connectivity, which is the last of the three individual DCB constraints.

Lemma 1. Given a connected graph G = (V,E), |V | ≥ 2. There exist two distinct nodes

v1, v2 ∈ V such that both G− v1 and G− v2 are connected.

Proof. We use induction on the number of nodes in G. If G does not contain any

bridge node, then we are done. Otherwise, let v be a bridge node in G. Then G− v consists

of l > 1 connected components G1, . . . Gl. If G1 has only one node, say u, then this node

is not a bridge node in G hence G− u is connected. Suppose G1 has more than one node.

By induction hypothesis, there are two distinct nodes u and w in G1 such that they are not

bridge nodes in G1. We have the following cases:

CHAPTER 3. DENSITY CONSTRAINED BICLUSTERING(DCB) PROBLEM 24

• Neither (v, u) nor (v, w) is an edge in E. Then neither u nor w is a bridge node in G.

The reason is as follows: Given that u,w are not bridge nodes in G1, they can only

be bridge nodes in G if they can disconnect G and G\G1, i.e. G1 and v, which is not

the case.

• One of (v, u) and (v, w), say (v, u), is not an edge in E. Then u is not a bridge node

in G.

• Both (v, u) and (v, w) are edges in E. Then at least one of them, say u, is not a

bridge node in G. The reason is as follows: G1\u (G1\w) is connected by definition

and remains connected to G\G′ via w (u).

In any case, we have at least one node in G1 that is not a bridge in G. By symmetry, the

same reasoning holds for G2 as well and we have at least two non-bridge nodes in G.

We can immediately conclude the following:

Theorem 4 (CONNECTIVITY). The connectivity constraint is loose anti-monotone.

Proof. Let G = (V,E) be a connected graph. We need to show that ∃v ∈ V such that

G− v is connected. By Lemma 1, we have at least two such nodes.

At this point we can summarize our findings from analysis of individual DCB constraints

as follows:

• Simultaneous satisfaction of both the homogeneity and the connectivity or the homo-

geneity and the α-density constraints is a loose anti-monotone constraint.

• Simultaneous satisfaction of both the connectivity and the α-density is not a loose

anti-monotone constraint. (See Figure 3.2 for an example).

We, therefore, conclude that DCB constraint is not anti-monotone and can at best

be loose anti-monotone. As we shall see later in the text, under certain conditions, i.e.
1
2 ≤ α ≤ 1, DCB constraint is loose anti-monotone. Moreover, we shall also observe that

even though DCB constraint is not loose anti-monotone for 1
3 ≤ α <

1
2 , satisfaction of DCB

constraint requires a restricted graph topology. Therefore, we need to analyze the cases
1
2 ≤ α ≤ 1 and 1

3 ≤ α <
1
2 separately. However, before doing so we make the following three

observations, which hold for all connected graphs independent of α.

CHAPTER 3. DENSITY CONSTRAINED BICLUSTERING(DCB) PROBLEM 25

Lemma 2. Let G = (V,E) be a connected graph containing bridge nodes, i.e. B(G) 6= ∅.
G contains at least two leaf components.

Proof. We prove that there are two leaf components by induction on the number of

bridge nodes in G. If there is only one bridge node, then we have at least two island

components (See Figure 3.2 for an example). Suppose we have more than one bridge node.

Let BC be one of the bridge components in G. Let c1, c2 ∈ BC be two vertices, which

are connected to the island components G1 and G2 respectively (See Figure 3.4 for an

illustration). Note that c1 and c2 can be the same vertices, but G1 and G2 are distinct. If

G1 is connected to only one node in BC, namely c1, then let L1 be the subgraph induced

by nodes in V1 ∪ {c1}. Note that c1 is not a bridge node wrt. the subgraph L1. If G1 is

connected to a second node c3, c1 6= c3 ∈ CC, then there exists a connected component G3

which is connected to only one node in BC, namely c1 , otherwise c1 would not be a bridge

node . Let L1 be the induced subgraph on V (G3) ∪ {c1}. If L1 is an island subgraph, then

it is a leaf component. Otherwise by induction hypothesis over L1, L1 contains at least two

leaf components such that at most one of them is connected to c1. Thus, at least one of the

other island components is a leaf component in G.

By symmetry, the same argument is applied to G2 and we get another leaf component.

Therefore, G contains at least two leaf components.

Lemma 3. Let G = (V,E) be an α-critical graph and v ∈ V be a node in a leaf component.

Then, degG(v) ≥ dα(|V | − 1)e.

Proof. Let G1 = (V1, E1) be a lead component and v ∈ V1. Assume deg(v) < dα(|V | −
1)e. Recall that in the first part of the proof of Theorem 3, we showed that every node with

degree less than dα(|V | − 1)e is α-removable. We have two cases:

• Removal of v disconnects G: This means v is an α-critical node. However, by defini-

tion, leaf components cannot contain α-critical nodes. Hence, we have a contradiction.

• Removal of v does not disconnect G: This contradicts to the definition of leaf compo-

nent - a leaf component cannot contain an α-removable nodes that does not disconnect

G. Otherwise, G would not be α-critical.

Therefore, the degree of each node in an leaf component is at least dα(|V | − 1)e.

CHAPTER 3. DENSITY CONSTRAINED BICLUSTERING(DCB) PROBLEM 26

G1

G3

G3

BC

c3
c2

G2

c1

Figure 3.4: G2 and G3 are leaf components and BC is the bridge component. Although G1

is also an island component, it is not a leaf component because it is connected to more than
one bridge nodes, i.e. c1,c2 and c3, of the bridge component BC.

Lemma 4. Let G = (V,E) be an α-critical graph. Not all nodes of a leaf component are

connected to an α-critical node.

Proof. Let G1 = (V1, E1) be a leaf component in G. Assume all nodes in G are

connected to an α-critical node c. Then, trivially, degG(c) ≥ |V1| + 1. For all v ∈ V , the

degG(v) is bounded by |V1|−1 + 1 = |V1|. This is because, v can be connected to all |V1|−1

neighbors in V1 and at most one α-critical node, which is the node c in this case. Hence,

degG(v) < degG(c) holds. Note that, G−c is α-dense by definition. Since degG(v) < degG(c),

G− v must be α-dense as well. Moreover, by definition G− v is connected. Hence, we have

an α-removable node whose removal does not disconnect the graph. In this case, G cannot

vbe α-critical. Hence, we have a contradiction.

Intuitively, Lemma 4 implies that there is an upper bound on the degree of a critical

node. If all nodes of a leaf component would be connected to an α-critical node, it would

have such a high degree that it would not a be α-critical in the first place. Based on this,

we can make the following observation.

CHAPTER 3. DENSITY CONSTRAINED BICLUSTERING(DCB) PROBLEM 27

Lemma 5. Let G = (V,E) be an α-critical graph. The size of a leaf component is greater

than α(|V | − 1).

Proof. Let G1 = (V1, E1) be a leaf component in G. We know by Lemma 4 that

∃v ∈ V1 not connected to any α-critical node. Moreover, we also know by Lemma 3 that

degG(v) ≥ dα(|V |−1)e. Then, including v, the total number of nodes in the leaf component

is at least dα(|V | − 1)e+ 1 > dα(|V | − 1)e > α(|V | − 1).

3.3.1 Properties of DCBs, 1
2
≤ α ≤ 1

Below is the summary of properties of connected α-dense graphs, 1
2 ≤ α ≤ 1, that we will

investigate in this section.

1. G does not contain an α-critical node (Lemma 6).

2. G is α-strongly connected (Lemma 7).

Lemma 6. Let 1
2 ≤ α ≤ 1 and G = (V,E) be a connected α-dense graph. G does not

contain an α-critical node.

Proof. Assume G contains an α-critical node. By Lemma 2, there exist at least two

leaf components G1 and G2 and at least one α-critical node. By Lemma 5, Both G1 and

G2 contain more than α(|V | − 1) > |V |−1
2 nodes. In total, G1 and G2 contain more than

2(|V |−1
2) = |V | − 1 nodes. This is equivalent to G1 and G2 contain together at least |V |

nodes. Then, together with the α-critical node, |V | contains at least |V |+ 1, which leads to

a contradiction. Therefore, G cannot contain an α-critical node.

Lemma 7. Let 1
2 ≤ α ≤ 1 and G = (V,E) be a connected α-dense graph. G is α-strongly

connected.

Proof. By Theorem 3, G has a non-empty set R(G) ⊆ V of α-removable nodes.

Moreover, by Lemma 6, R(G) cannot contain any α-critical node. Therefore, we can find

at least one non-bridge node v ∈ R(G) such that G− v is connected and α-dense. Applying

this reasoning recursively, we can always find a connected α-dense subgraph with one node

less at each step. Therefore, G is α-strongly connected.

CHAPTER 3. DENSITY CONSTRAINED BICLUSTERING(DCB) PROBLEM 28

Theorem 5 (1
2 LOOSE ANTI-MONOTONICITY). DCB constraint is loose anti-monotone

for 1
2 ≤ α ≤ 1.

Proof. By Theorem 2, ∀v ∈ V G − v is homogenous. Moreover, Lemma 7 requires

∃v ∈ V , G−v is connected and α-dense. Hence, G−v satisfies all three individual constraints

of the DCB constraint. Applying this reasoning recursively, it is evident that DCB constraint

is loose anti-monotone.

3.3.2 Properties of DCBs, 1
3
≤ α < 1

2

In the following we analyze properties of connected α-dense graphs for 1
3 ≤ α <

1
2 . We will

make use of the notation G1 = (V1, E1) and G2 = (V2, E2), which refer to the two of the

possibly more (See Lemma 2) leaf components.

Below we summarize our major findings on properties of graphs α-dense ,13 ≤ α < 1
2 ,

that we will investigate in this section.

1. G contains contains at most one α-critical component connecting two leaf components

(Theorem 6).

2. No leaf component can contain more than twice as many nodes as the other leaf

component (Lemma 8).

3. Both G1 and G2 are at least 1
2 -dense graphs (Lemma 9), hence they are at least

1
2 -strongly-connected (Corollary 1).

4. G can be decomposed into two overlapping α-strongly-connected subgraphs G′1 and

G′2 respectively (Lemma 2).

Theorem 6 (1
3 -RESTRICTED TOPOLOGY). Let 1

3 ≤ α < 1
2 and G = (V,E) be a

connected α-dense graph. G contains at most two island components. Moreover, these

island components are leaf components.

Proof. We have the following cases:

• G does not contain an α-critical node. Then we are done.

CHAPTER 3. DENSITY CONSTRAINED BICLUSTERING(DCB) PROBLEM 29

• G contains an α-critical node with two island components. Then, by Lemma 2, there

exist at least two leaf components G1 and G2. If G1 and G2 are the only leaf com-

ponents, then we are done (See 3.5 for an example). Otherwise, there must be at

least one more island component G3. By Lemma 5, both G1 and G2, contain more

than α(|V | − 1) ≥ |V |−1
3 nodes. In total, G1 and G2 contain more than 2(|V |−1

3)

nodes. Thus, the size of the subgraph G − G1 − G2, which contains G3, at least one

α-critical node and possibly more nodes, is less than |V | − (2|V |−1
3) = |V |+2

3 . However,

by Lemma 3, ∀v ∈ G3, v must be connected to more than |V |−1
3 nodes in G−G1−G2,

which requires the size of G − G1 − G2 be more than |V |−1
3 + 1 = |V |+2

3 . Thus, we

have a contradiction and G cannot contain three or more island components.

Figure 3.5: Illustration of the restricted graph topology for α-critical graphs, 1
3 ≤ α < 1

2 .
The two leaf components ,G1 and G2 are connected via a simple path of i, i ≥ 1, α-critical
nodes c1, . . . ci.

Unlike the case of 1
2 ≤ α ≤ 1, we do not have the nice property of being loose anti-

monotone in the case of 1
3 ≤ α < 1

2 . This is because for a connected α-dense graph

G = (V,E), the existence of an α-critical node means the absence of a node such that

G − v is both connected and α-dense. Therefore, simultaneous satisfaction of connectivity

and α-density constraints is not loose anti-monotone. However, thanks to Theorem 6, we

concluded that such a graph G must have a special topology, i.e. G contains two leaf

components G1 and G2 connected via an α-critical component. Note also that, the α-

critical component must be a simple path, i.e. it cannot contain a cycle. This is because

if it contains one, then removal of one of the α-critical nodes, say v, would not make the

G− v disconnected, which contradicts with the fact that v is an α-critical node.

In the following, we will make further observations regarding the topology of α-critical

graphs. These will be very useful when we discuss strategies for mining such graphs.

CHAPTER 3. DENSITY CONSTRAINED BICLUSTERING(DCB) PROBLEM 30

Lemma 8. Let 1
3 ≤ α < 1

2 and G = (V,E) be an α-critical graph. Let also G1 = (V1, E1)

and G2 = (V2, E2) be the two leaf components. Then, 1
2 <

|V1|
|V2| < 2

Proof. We do proof by contradiction. By Lemma 5, we have

α(|V | − 1) < |V1| (3.7)

and

α(|V | − 1) < |V2| (3.8)

Assume, 2|V2| ≤ |V1|. Using this assumption, (3.7) and (3.8) result in

2α(|V | − 1) < |V1|.

adding (3.8) gives us

3α(|V | − 1) < |V1|+ |V2|

Moreover, we know that |V1|+ |V2| = |V | − |CN(G)|, therefore,

3α(|V | − 1) < |V | − |CN(G)|

α <
|V | − |CN(G)|

3(|V | − 1)

Since |CN(G)| ≥ 1, we get α < 1
3 . This contradicts with α ≥ 1

3 . Therefore, 2|V2| > |V1|.
Using the same arguments, we also have 2|V1| > |V2|.

We are now ready to investigate the following useful observation on the density of a leaf

component.

Lemma 9. Let 1
3 ≤ α < 1

2 and G = (V,E) be a connected α-critical graph containing leaf

components G1 = (V1, E1) and G2 = (V2, E2). Both G1 and G2 are at least 1
2 -dense.

Proof. Assume G1 is not 1
2 -dense. This means there exists a node v ∈ V1 which is

connected to less than |V1|−1
2 nodes within G1 and to at most one critical node. Therefore,

we have

deg(v) <
|V1| − 1

2
+ 1 =

|V1|+ 1
2

(3.9)

Since v is not an α-critical node, we also know that deg(v) > α(|V | − 1).

CHAPTER 3. DENSITY CONSTRAINED BICLUSTERING(DCB) PROBLEM 31

Since α ≥ 1
3 and |CN(G)| ≥ 1,

deg(v) > α(|V | − 1) ≥ 1
3

(|V1|+ |V2|+ |CN(G)| − 1) ≥ 1
3

(|V1|+ |V2|) (3.10)

Combining Equation 3.9 and 3.10, we have

1
3

(|V1|+ |V2|) < deg(v) <
|V1|+ 1

2
(3.11)

We distinguish between |V1| being odd and even.

• |V1| is odd: Since degree of v must be an integer,

deg(v) <
⌈
|V1|+ 1

2

⌉
⇒ deg(v) ≤ |V1| − 1

2
(3.12)

By Lemma 8, we have |V2|
|V1| >

1
2 . Since |V2| is an integer, we get

|V2| ≥
|V1|+ 1

2
.

Combining this result with (3.11) we get

deg(v) ≥
⌈

1
3

(|V1|+ |V2|)
⌉

≥
⌈

1
3

(
|V1|+

|V1|+ 1
2

)⌉
=

⌈
|V1|
2

+
1
6

⌉
=
|V1|+ 1

2

(3.12) and (3.13) are contradicting each other, therefore G1 is at least 1
2 -dense, if |V1|

is odd.

• |V1| is even:

deg(v) <
|V1|+ 1

2
⇒ deg(v) ≤ |V1|

2
(3.13)

Similarly, by Lemma 8, we have |V2|
|V1| >

1
2 . Thus,

|V2| ≥
|V1|+ 2

2
.

From (3.13) we get,

deg(v) ≥
⌈

1
3

(|V1|+ |V2|)
⌉

≥
⌈

1
3

(|V1|+
|V1|+ 2

2
)
⌉

=
|V1|+ 2

2
(3.14)

Since (3.13) and (3.14) contradict each other, G1 is 1
2 -dense, if |V1| is even.

CHAPTER 3. DENSITY CONSTRAINED BICLUSTERING(DCB) PROBLEM 32

We conclude that in both cases G1 is at least 1
2 -dense. By symmetry, we have a similar

proof for G2.

Corollary 1. Let 1
3 ≤ α < 1

2 and G = (V,E) be a connected α-critical graph containing

leaf components G1 = (V1, E1) and G2 = (V2, E2). Both G1 and G2 are at least 1
2 -strongly-

connected.

Proof. Immediately from Lemma 7 and Lemma 9.

Although, we have not discussed the algorithmic implications loose anti-monotonicity,

as we shall see in the next chapter, it is a desirable property. In this respect, leaf compo-

nents, being at least 1
2 -strongly-connected, can be mined by a carefully designed algorithm.

However, this is not enough as we need to find the maximal dense graph, which consists of

two island components plus the critical component connecting these two leaf components.

We now establish another nice property of leaf components, in which we show that we can

find supergraphs of the two leaf components such that they are α-strongly-connected and

they overlap.

We start with analyzing the density of supergraphs of leaf components that are formed by

expanding the leaf components by their immediate critical bridge neighbors (See Figure 3.6).

Lemma 10. Let G be an α-critical graph containing an α-critical component CC. Let also

c1 ∈ CC and c2 ∈ CC be the α-critical nodes that G1 and G2 respectively are connected to.

Let finally G∗1 = G1 + c1 and G∗2 = G2 + c2. G∗1 and G∗2 are both α-dense.

Proof. For every node v ∈ G1, we have deg(v) > α(|V | − 1) by Lemma 3. Therefore,

we have

|E∗1 | >
|V1|α(|V | − 1)

2
Calculating the density of G∗1, we get

d(G∗1) =
2|E∗1 |

|V1|(|V1|+ 1)

>
2(|V1|α(|V | − 1))
2(|V1|(|V1|+ 1))

=
α(|V1|+ |V2|+ |CN(G)| − 1)

|V1|+ 1
> α (3.15)

Since |V2| + |CN(G)| − 1 > 1, we conclude that G∗1 is α-dense. Analogous proof holds for

G∗2.

CHAPTER 3. DENSITY CONSTRAINED BICLUSTERING(DCB) PROBLEM 33

G

G1
G2

G1* G2*

Figure 3.6: G is α-critical for α = 0.406 and G1 and G2 are the leaf components. G∗1 and
G∗2 are are both 0.406-dense.

Before analyzing properties of supergraphs of leaf components that include more nodes

than just the immediate α-critical node neighbor, we make the following trivial observation.

Lemma 11. The size of a graph which can contain an α-critical node is at least 9. The

size of an island components is at least 4.

Proof. The smallest graph contains only one α-critical component CC consisting of

one node c ∈ CC, deg(c) ≥ 2. In order for c to be α-critical, its degree must be the lowest in

the whole graph. Since we want to get the smallest possible graph, deg(v) = 2. Therefore,

the degrees of the nodes in the island components G1 and G2 are at least 3. However, only

one node per island component can be connected to c, therefore, G1 and G2 contain at least

4 nodes.

Lemma 12. Let G be an α-critical graph containing an α-critical component CC. Let also

c1 ∈ CC and c2 ∈ CC be the α-critical nodes that G1 and G2 respectively are connected to,

G∗1 = G1+c1 and G∗2 = G2+c2. Finally, let G′1 and G′2 denote the graphs resulting by adding

CHAPTER 3. DENSITY CONSTRAINED BICLUSTERING(DCB) PROBLEM 34

one connected α-critical node (from CC) at a time to G∗1 and G∗2 until the resulting graphs

cannot be extended any further without violating the α-density constraint. G′1 overlaps with

G′2.

Proof. By Lemma 10, we know G∗1 and G∗2 are α-dense.

Assume G′1 and G′2 do not overlap, i.e. we have

|E′1|+ 1 <
α|V ′1 |(|V ′1 |+ 1)

2
(3.16)

|E′2|+ 1 <
α|V ′2 |(|V ′2 |+ 1)

2
(3.17)

Since G′1 and G′2 do not overlap, we have T ≥ 1 α-critical nodes not absorbed by either

of G′1 and G′2. Moreover, |E| = |E′1|+ |E′2|+ T − 1, |V | = (|V ′1 |+ |V ′2 |+ T). Finally, for the

sake of simplicity, let K = |V ′1 |+ |V ′2 |. The density of G is calculated as follows:

d(G) =
2|E|

|V ||V − 1|

=
2(|E′1|+ |E′2|+ T − 1)
(K + T)(K + T − 1)

<
2(
α|V ′1 |(|V ′1 |+ 1)

2
+
α|V ′2 |(|V ′2 |+ 1)

2
+ T − 1)

(|V ′1 |+ |V ′2 |+ T)(|V ′1 |+ |V ′2 |+ T − 1)

= α

 |V ′1 |(|V ′1 |+ 1) + |V ′2 |(|V ′2 |+ 1) +
2(T − 1)

α
|V ′1 |(K + T − 1) + |V ′2 |(K + T − 1) + T (K + T − 1)

 (3.18)

We have, by the assumption of no overlap, T ≥ 1. Moreover, we know from Lemma 11

that |V ′1 | ≥ 4 and |V ′2 | ≥ 4, which means K = |V1| + |V2| ≥ 8. Putting it all together, we

have

|V ′1 |(|V ′1 |+ 1) < |V ′1 |(K + T − 1)

|V ′2 |(|V ′2 |+ 1) < |V ′2 |(K + T − 1)

(3.19)

Moreover,

CHAPTER 3. DENSITY CONSTRAINED BICLUSTERING(DCB) PROBLEM 35

2(T − 1)
α

< T (K + T − 1)

Since α ≥ 1
3 , we have

2
3

(T − 1) < T (8 + T − 1)

⇔ 2
3

< T

(
1 +

8
T − 1

)
(3.20)

Since T ≥ 1, 3.20 is always satisfied.

Overall, by 3.19 and 3.20, for every term in the nominator of the ratio within the square

brackets of 3.18, we have a larger term in the denominator. Hence the nominator is smaller

than the denominator, i.e. we have d(G) < α , which contradicts with the fact that G is

α-dense. Therefore, G′1 and G′2 overlap.

Corollary 2. G′1 and G′2 are α-strongly connected.

Proof. By Lemma 9, G1 is at least 1
2 -dense and therefore by Lemma 7 G1 is α-strongly

connected. By definition, G′1 is constructed from G1 adding a one node at a time such that

no more extension is possible. Hence, by construction, G′1 is α-strongly connected. G′2 is

covered by symmetry.

Although, we now have the sufficient material for designing an algorithm for mining

DCBs for 1
3 ≤ α ≤ 1, we make the following final observation, which we will use for

developing strategies for a more efficient algorithm.

Lemma 13. Let 1
3 ≤ α < 1

2 and G = (V,E) be a connected α-critical graph containing

leaf components G1 = (V1, E1) and G2 = (V2, E2). If |V1| = |V2|, then G1 and G2 are

(2α − 1
3(|V1|−1)) quasi-cliques. If |V1| < |V2|, G1 is a (2α)-quasi clique and G2 is a (3α

2 −
1

3(|V2|−1))-quasi-clique, respectively.

Proof. By Lemma 3 any node v ∈ Vi, i ∈ 1, 2, is connected to more than α(|V | − 1)

nodes. Since, v can be connected to at most one α-critical node, v is connected more than

α(|V | − 1) − 1 nodes within Gi. We have two cases: |V1| = |V2| and |V1| < |V2| (the case

|V1| > |V2| is covered by symmetry):

CHAPTER 3. DENSITY CONSTRAINED BICLUSTERING(DCB) PROBLEM 36

• Case |V1| = |V2|:
The degree of each node v ∈ V1 is at least

degG1(v) ≥ α(|V | − 1)− 1

= α(|V1|+ |V2|+ |CN(G)| − 1)− 1

= (2α− 1
3(|V1| − 1)

)(|V1| − 1) + α(|CN(G)|+ 1)− 2
3

Since α ≥ 1
3 and |CN(G)| ≥ 1, we have α(|CN(G)|+1)− 2

3 ≥ 0. Therefore, degG1(v) ≥
(2α − 1

3(|V1|−1))(|V1| − 1), which means G1 and G2 (by symmetry) are at least (2α −
1

3(|V1|−1))-quasi-cliques.

• Case |V1| < |V2|.
Then, degree of each node in G1 (or G2) is at least α(|V | − 1) − 1. We analyze G1

and G2 separately.

– Properties of G1:

Since |V1| < |V2|, the degree of v ∈ V1 is

degG1(v) ≥ α(|V | − 1)− 1

= α(|V1| − 1) + α(|V2| − 1) + α(|CN(G)|+ 1)− 1

≥ 2α(|V1| − 1) + α(|CN(G)|+ 2)− 1 (3.21)

Since α ≥ 1
3 and |CN(G)| ≥ 1, we get α(|CN(G)| + 2) − 1 ≥ 0. Therefore

degG1(v) ≥ 2α(|V1| − 1). This means the smaller leaf component G1 is a (2α)-

quasi-clique.

– Properties of G2:

By Lemma 8, we have |V2| < 2|V1| or |V2| ≤ 2|V1| − 1, which implies (|V1| − 1) ≥
(|V2|−1)

2 . Therefore, the degree of v ∈ G2 is

degG2(v) ≥ α(|V | − 1)− 1

= α(|V1| − 1) + α(|V2| − 1) + α(|CN(G)|+ 1)− 1

≥ 3α
2

(|V2| − 1) + α(|CN(G)|+ 1)− 1

= (
3α
2
− 1

3(|V2| − 1)
)(|V2| − 1) + α(|CN(G)|+ 1)− 2

3
(3.22)

CHAPTER 3. DENSITY CONSTRAINED BICLUSTERING(DCB) PROBLEM 37

Since α ≥ 1
3 and |CN(G)| ≥ 1, we get α(|CN(G)|+1)− 2

3 ≥ 0. Hence, degG2(v) ≥
(3α

2 −
1

3(|V2|−1))(|V2| − 1). This means the larger leaf component G2 is a (3α
2 −

1
3(|V2|−1))-quasi-clique.

In summary, we showed that the DCB problem is a computational hard problem. How-

ever, we derived several important properties that a DCB must have in order to satisfy

the DCB constraint. Our most important findings are: (1) the DCB constraint is loose

anti-monotone for 1
2 ≤ α ≤ 1 and (2) a DCB must have restricted topology if it is not

α-strongly-connected, 1
3 ≤ α <

1
2 . As we shall we in the next chapter, these findings are the

key ingredients in the design of the DCB-Miner algorithm.

Chapter 4

Algorithm

In this section we describe a novel pattern mining approach based algorithm to solve the

DCB problem and prove its completeness. As surveyed in [24], typical data mining problems

such as finding clusters, patterns and correlations, are undecidable problems. Therefore,

they are computationally hard problems. Nowadays typical amount of data to be mined,

such as transactional databases and high throughput experimental data, is increasing with

a speed higher than ever. This makes the problem even harder. However, the theoretical

worst case almost never happens in real datasets and algorithms that are based on search

space prunning strategies succeed to efficiently solve data mining problems. For example,

the theoretic worst case, i.e. exponential runtime, for the famous Apriori algorithm in [3]

can be easily constructed. However, experience shows that such data never occurs in real

life. Similarly, we showed that DCB problem is NP-hard. However, we demonstrate in

the following that, on the biological instances at hand, the problem becomes tractable by

carefully designing a search space pruning strategy. Although, exponential in the worst

case, as we show in the experiments section, it is quite efficient for solving the DCB prob-

lem, especially when given parameter settings that are close to those of the real functional

modules.

We start with detailing the algorithm to show that it is correct, i.e. it finds only the

maximal DCBs and then proceed to prove that it is complete, i.e. it finds all maximal

DCBs satisfying the constraints specified by the input parameters. Finally, we will describe

a heuristic post-processing step that summarizes the result set of DCBs.

38

CHAPTER 4. ALGORITHM 39

4.1 Density Constrained Bicluster Miner (DCB-Miner) Al-

gorithm

We propose a three phase algorithm called Density Constrained Bicluster Miner (DCB-

Miner). The core strategy of the algorithm is to drastically narrow down the exponential

search space by means of the loose anti-monotonicity and other properties of DCB constraint

that are derived in Section 3. The basic idea is that we imagine that all subnetworks are

organized into a hierarchical structure (formally a lattice) where a subgraph is a child of

another one if it can be obtained by adding exactly one neighbor node and the corresponding

edges to the parent subgraph. Note that a child is larger than its parent which may be a bit

counterintuitive. Accordingly, the complete interaction network at hand can be identified

with the bottom of this structure. At the top of this structure are all pairs of genes in the

interaction network (See Figure 4.1 for an example). Then we mine this structure in three

phases as follows:

• Expand-by-one: First, we traverse the explained structure top-down, in a breadth-first

(level-wise) manner. This means that subnetworks of size n are only checked upon

having checked all subnetworks of size n − 1. The trick is that when it comes to

examining subnetworks of size n, we can restrict ourselves to checking children of

DCBs of size n− 1, as the loose anti-monotonicity of the DCB constraint guarantees

that every DCB of size n necessarily has a DCB of size n − 1 as a parent. In the

first iteration, this results in removing all pairs of genes that are either not connected

or not sufficiently co-expressed (violating the homogeneity constraint). Then, in the

second iteration, we check only children of connected, co-expressed pairs of genes and,

again, keep only 3-gene-DCBs to go to the level of 4-gene DCBs and so on. If the

underlying network is sufficiently sparse, which applies for the graphs at hand, this

greatly speeds up the search.

• Merge: Second, in the case of 1
3 ≤ α <

1
2 , Expand-by-one phase may fail to find a DCB

if it is not alpha-strongly-connected. However, such a DCB has a special topology,

i.e. its overlapping subgraphs must be found in the Expand-by-one phase. Hence, in

the Merge phase, we check for such graphs by making use of the overlapping property

along with many other constraints derived in Section 3.3.2.

• CheckMaximality : Finally, the patterns found from Expand-by-one and Merge phases

CHAPTER 4. ALGORITHM 40

are checked for maximality. This phase is necessary, because the DCB constraint

is loose anti-monotone for α ≥ 1
2 . This means that, some of the permutations of

the nodes of a DCB may fail to be α-strongly-connected. Those permutations cause

Expand-by-one phase to identify them as DCBs although they are not maximal (See

Figure 4.1). Moreover, in the Merge phase a newly found pattern may can contain

one or both of the overlapping DCBs, which are clearly not maximal.

The pseudo code of the DCB-Miner algorithm is given in Algorithm 4.1. The algorithm

starts with a preprocessing phase, in which non-homogenous edges, i.e. edges between nodes

that do not satisfy homogeneity constraint, are removed from the input graph. This is be-

cause homogeneity constraint is anti-monotone and therefore any super-graph containing of

the 2-node non-homogenous DCB will be non-homogenous. This usually results in a parti-

tioning of the attributed graph. In the reduced graph we identify all connected components

and mine them independently. Note that due to the independence of connected compo-

nents, mining of the components can be done in a parallel way. This can be useful in case of

large input graphs and availability of parallel computation resources. After preprocessing,

DCB-Miner generates a DCB for every connected pair of nodes, which are also called the

seeds. These 2-node DCBs are then fed into the Expand-by-one subroutine.

The pseudo code of the subroutine Expand-by-one is given in Algorithm 4.2. It takes as

input a set of DCBs and returns maximally expanded-by-one DCBs. Let level denote the

number of nodes of the current DCBs, which is 2 at the start. At each level, we expand

existing DCBs of size level by all neighboring nodes, one at a time. Note that for every

expanded pattern, the corresponding homogenous feature subspace is uniquely determined.

This procedure helps us to minimize the generation and testing of candidates as much as

possible. Although the details are not shown, we do an incremental testing of homogeneity.

This means that if curPattern = (V,E,D,A) and candidatePattern = curPattern + v,

then we only check whether or not candidatePattern is homogenous on dimensions d ∈ D.

This is because, as noted in the proof of anti-monotonicity of homogeneity constraint (See

Theorem-2), extension of a valid DCB can only decrease the cardinality of the homogenous

subspace. Moreover, if an expanded graph fulfills the DCB constraints, then we know that

the parent pattern is not maximal and we discard the parent pattern. Otherwise, i.e. none

of the neighbors of a the curPattern results in a larger DCB, then we add curPattern to

the result set as it cannot be extended further in the following iterations. The result set

CHAPTER 4. ALGORITHM 41

B

A

E

C D

F

BA A D EA CB B D DC E D

BA

C

BA

E

BA

D

DA

E

DA

C

DB

C

EC

D

B

A

C

D
B

A

E

D

Con-1 Con-2 Con-3

A 0.5 0 -1

B 1 1 -1

C 1 0.5 -1

D 1 1 -0.5

E 0.5 0 0

F -1 0 2
B

A

E

C D

F

Does not satisfy density

and homogeneity

Does not satisfy homogeneity

Does not satisfy density

B

A

E

C
D

P
re

-p
ro

c
e

s
s
in

g
E

x
p
a
n
s
io

n
S

e
e
d

G
e
n
e
ra

ti
o
n

Figure 4.1: Illustration of the DCB-Miner on a toy example consisting of six genes with
logged-2 fold changes across three experimental conditions. We assume the parameters are:
α = 0.8, θh = 0.5 and θdim = 2, i.e. we want to find modules having density 0.8, whose
corresponding genes are co-expressed (i.e. within a fold change range of 20.5 ≈ 1.4) across
at least 2 experimental conditions. The algorithm starts with (1) the Preprocessing step in
which the edges A-F and D-F are removed because genes pairs A-F and D-F satisfy the fold
change range constraint across only 1 and 0 conditions respectively. (2) Then, we generate
2-node seed modules for every remaining edge. (3) Next, the iterative Expand-By-One step
is called. In every iteration, current modules are expanded by a neighboring gene. For
example, the expansion of the module A-D results in the larger candidate modules A-B-D,
A-C-D and A-D-E. Note that, the candidate A-C-D does not satisfy the density constraint,
because it has density 2

3 < 0.8, so it is pruned. Moreover, A-D-E is also pruned because
it has only one homogeneous condition and does not satisfy the co-expression homogeneity
constraint. In this iteration only subnetworks A-B-D and B-C-D satisfy all DCB constraints
and the rest (and their super-networks) are pruned from the search space. During the next
iteration candidate modules A-B-C-D and A-B-D-E are generated. Only A-B-C-D satisfy
the DCB constraints. A-B-C-D is returned as a maximal DCB with the associated context
consisting of conditions 1 and 3. To summarize, the constraint based prunning strategy
reduces the search space from 26 = 64 to 17.

CHAPTER 4. ALGORITHM 42

Algorithm 4.1 DCB-Miner: Densely Constrained Bicluster Miner

1: INPUT: Attributed graph G = (V, E ,A),
Density threshold α,
Homogeneity threshold θh,
Minimum dimensionality θdim

2: OUTPUT: The complete set of maximal DCBs
3: \\ PREPROCESSING: remove non-homogenous edges from G
4: for all (edges e = {v1, v2} ∈ E) do
5: Ge ← ({v1, v2}, {{v1, v2}})
6: if Ge does not satisfy homogeneity constraint then
7: E ← E − {{v1, v2}}
8: \\ Run in parallel
9: for all (connected components Gi = (Vi, Ei) in G) do

10: currPatternsi ← ∅
11: criticalPatternsi ← ∅
12: \\ Generate 2-node DCBs
13: for all (edges e = {v1, v2} ∈ Ei) do
14: G2 ← ({v1, v2}, {{v1, v2}}, D)
15: currPatternsi.add(G2)
16: \\FIRST PHASE: expand-by-one
17: currPatternsi ← Expand-by-one(currPatternsi)
18: if (α < 1

2) then
19: \\ SECOND PHASE: merge
20: criticalPatternsi ←Merge(currPatternsi)
21: currPatternsi.addAll(Expand-by-one(criticalPatternsi))
22: \\ THIRD PHASE: remove non-maximal patterns from currPatterns
23: resultSet.addAll(CheckMaximality(currPatternsi))
24: return resultSet

is a organized as a stack data structure within the resultSet, such that when the Expand-

by-one finishes, larger patterns are on the top of stack whereas the smaller ones will be at

the bottom of the stack. This will prove to be a useful strategy in maximality check step,

which we discuss later in this section. After having considered all patterns of a certain

level (size), we move to the next iteration and continue until all patterns are maximally

expanded-by-one. Therefore, by design the Expand-by-one does a breadth-first search. The

advantage of this search is that at any point of time we only need to keep valid patterns of

two levels in memory. This reduces the amount of memory needed substantially and also

eliminates multiple generation and testing of candidate DCBs.

At this point, it is necessary to discuss a couple of implementation details regarding the

Expand-by-one phase. First, the validCandidates data structure is a hash table. It uses

the ID of a valid pattern as the key for hashing, where ID of a pattern is the string formed

CHAPTER 4. ALGORITHM 43

Algorithm 4.2 First phase: Expand-by-one
1: INPUT: currDCBs, the set of current DCBs
2: OUTPUT: the set resultSet of maximally expanded-by-one DCBs
3: resultSet← ∅
4: \\ Proceed to the next level
5: while (curPattern() 6= ∅) do
6: validCandidates← ∅
7: while (curPattern← currDCBs.pop() 6= NULL) do
8: curPattern.isExtensible← false
9: for all (neighboring nodes v of curPattern) do

10: candidatePattern← curPattern+ v
11: if (validCandidates does not contain candidatePattern AND

candidatePattern satisfies DCB constraints) then
12: validCandidates.push(G+ v)
13: G.isExtensible← true
14: if (G.isExtensible = false) then
15: resultSet.add(G)
16: currDCBs← validCandidates
17: return resultSet

by concatenation of sorted IDs of its member nodes separated by the ‘-’ character. Hence,

IDs of two graphs are different unless they contain the same set of nodes. Secondly, in its

current form Expand-by-one may test an invalid candidate pattern, i.e. not satisfying the

DCB constraint, multiple times. This is not the case for valid candidate patterns because

once a candidate is found to be a valid pattern, it is saved in validCandidates. In case of

regeneration of the same valid pattern, the algorithm first checks the validCandidates hash

map and therefore the candidate will not be checked against the DCB constraint again. In

principle, we could have a similar data structure for invalid candidates so as to eliminate

multiple check of on invalid candidates. However, as expected, we observed that the number

of invalid candidates is typically much more than valid candidates and such a data structure

occupies large amount of memory, which slows down the algorithm in practice. We found

that our strategy is more efficient than keeping track of invalid candidates.

Recall that in Theorem 5, we showed that for α ≥ 1
2 , a connected α-dense graph is

α-strongly-connected. This requires existence of at least one permutation of its nodes such

that by following this permutation the graph can be generated by adding one connected

node at a time to the current graph starting from the first node in the permutation. Indeed

that is what Expand-by-one does, i.e. tries all valid permutations and stops expanding a

CHAPTER 4. ALGORITHM 44

permutation when DCB constraint is not met. Hence, by design, it can find all α-strongly-

connected graphs. However, if 1
3 ≤ α < 1

2 , then a connected α-dense graph G may not

be α-strongly-connected, i.e. G is α-critical. In this case, the graph will be missed by

the Expand-by-one phase. However, in Section 3.3.2 we showed that, if this is the case,

then G must have a certain topology, i.e. it contains two overlapping α-strongly-connected

subgraphsGEBO1 andGEBO2 , where EBO means maximally expanded-by-one (See Figure 4.3

for an example). This means that even if the Expand-by-one phase misses the pattern G, it

is able to find GEBO1 and GEBO2 . The Merge phase make use of this observation along with

other ones derived Section 3.3.2 in order to find G.

The pseudo code of Merge phase is given in Algorithm 4.3. As input we have a set of

maximally expanded-by-one DCBs. First, we determine the pairs of DCBs that overlap by

at least one node. They must differ in at least two nodes, otherwise one would be found from

the other in the Expand-by-one phase. Assume the pair GEBO1 and GEBO2 overlaps and also

satisfies the aforementioned two conditions. We determine all α-quasi-cliques G1 contained

in GEBO1 and G2 in GEBO2 and apply the online α-quasi-cliquishness bounds derived in

Lemma 13. For all pairs G1 and G2 satisfying the conditions, we determine all simple paths

between them such that the nodes of the path have to be in {V EBO
1 ∪ V EBO

2 } \ {V1 ∪ V2}.
There is one crucial design decision that needs to be addressed. Although, not shown

explicitly for the sake of simplicity, in its present form Merge phase calls a modified version

of Expand-by-one subroutine in order to find α-quasi-cliques, i.e. G1 and G2 to be merged.

The modification is that Expand-by-one only mines GEBO1 and GEBO2 but not the complete

graph. This is indeed duplication of work, i.e. G1 and G2 were already be found in early

iterations of Expand-by-one. However, recall that, Expand-by-one only keeps maximally

expanded-by-one DCBs and hence instead of G1 and G2 we have GEBO1 and GEBO2 in the a

result of Expand-by-one. Alternatively, we can store G1 and G2 along the way in a separate

data structure. However, the case of α-critical graph hardly happens. Hence, we have a trade

of between memory and run time. We can save from run time by storing the G1 and G2 to be

used in Merge phase directly at the cost of increased memory consumption. Alternatively,

we can mine them on the fly from GEBO1 and GEBO2 . We tried both alternatives and did

not observe a significant difference.

Note that we call the Expand-by-one subroutine once more on the graphs found in the

merge phase. Although we could not find an example of such a graph, theoretically it can

exist. However, if it exists, it must be found by the second call of the Expand-by-one phase.

CHAPTER 4. ALGORITHM 45

G

G1 G2

G1EBO

G2EBO

Figure 4.2: Graph G contains two α-critical nodes (nodes 10 and 11) for α = 0.406. Hence,
G cannot be found in the Expand-by-one phase . However, G contains at least two α-
strongly-connected overlapping subgraphs, i.e. GEBO1 and GEBO2 , which are guaranteed to
be found in the Expand-by-one phase. The Merge phase mines α-quasi-cliques of GEBO1 and
GEBO2 . In this particular example, G1 and all its subgraphs are at least 0.406-quasi-clique of
GEBO1 . Similarly, G2 and all its subgraphs are at least 0.406-quasi-clique of GEBO2 . Hence,
in the Merge phase simple paths will be searched between all 0.406-quasi-cliques of GEBO1

and GEBO2 , which in this case consists of nodes 10 and 11.

CHAPTER 4. ALGORITHM 46

The reason will be clear when we discuss the proof of the completeness of DCB-Miner.

Algorithm 4.3 Second Phase: Merge
1: INPUT: currDCBs, the set of maximally expanded-by-one DCBs
2: OUTPUT: resultSet, the set of α-critical graphs
3: for all (overlapping pairs of graphs GEBO1 , GEBO2 ∈ currDCBs

such that |V EBO
1 − V EBO

2 | ≥ 2 AND |V EBO
2 − V EBO

1 | ≥ 2) do
4: for all (non-overlapping α-quasi-cliques G1 ⊂ GEBO1 , G2 ⊂ GEBO2) do
5: \\ Prunning based on α-quasi-cliquishness
6: if (|V1| = |V2|) then
7: if (G1 and G2 are not at least 2α-quasi-cliques then
8: continue;
9: else

10: if (|V1| < |V2|) then
11: if (G1 is not at least (2α)-quasi-clique OR

G2 is not at least (3α
2 −

1
3(|V2|−1))-quasi-clique) then

12: continue;
13: else
14: if (G2 is not at least (2α)-quasi-clique OR

G1 is not at least (3α
2 −

1
3(|V1|−1))-quasi-clique) then

15: continue;
16: \\ Search for paths
17: for all (simple paths P ⊂ ({V EBO

1 ∪ V EBO
2 } \ {V1 ∪ V2}) connecting G1 and G2)

do
18: if (G← G1 ∪ P ∪G2 fulfills DCB constraints and G is α-critical) then
19: resultSet.add(G)
20: return resultSet

The final step in the DCB-Miner algorithm is the maximality check (Algorithm 4.4),

which removes non-maximal DCBs from the result set. This postprocessing step is necessary,

because the DCB constraint is loose anti-monotone for α ≥ 1
2 . This means that, at least

one permutation τ1 exists such that the permutation induces a chain of subgraphs satisfying

the DCB constraint. Expand-by-one is able to construct the complete DCB by adhering

to τ1 . For other permutations, say τ2, which are also analyzed by Expand-by-one phase,

the permutation may fail to generate the full graph and therefore may result in a subgraph

rather than the complete graph. (See Figure 4.3 for an example) Therefore, such subgraphs

must be eliminated from the final result. The maximality check step makes use of a statistic

array occurence, which keeps the number of patterns each node is included in. Moreover, we

have the maximalPatterns. The key of this hash table is a node id, and the corresponding

CHAPTER 4. ALGORITHM 47

Figure 4.3: A sample graph that illustrates the necessity of the maximality check step. The
graph is 7

15 -dense. For α = 7
15 , the graph is α-strongly-connected, i.e. the permutation

{A,B,C,D,E, F} induces a chain of connected α-dense graphs. However, the permutation
{F,E,D,A,B,C} fails to induce such a chain after extending node permutation {F,E,D,A}
with node B. Therefore, the graph {F,E,D,A} is a maximally expanded-by-one graph even
though it is not a maximal α-dense graph.

bucket stores all DCBs that contain this particular node. As highlighted in the explanation

of Expand-by-one phase, the currDCBs is a stack data structure such that larger DCBs

are on top and smaller DCBs are at the bottom. Hence, when inserting new patterns,

if the DCB is not maximal, the maximal DCB will already be in the maximalPatterns.

Hence, we just move the next DCB. After inserting finishes, maximalPatterns contains

only maximal DCBs. However, a DCB is stored in each bucket corresponding to each of its

nodes. Hence, we do one more pass over maximalPatterns by inserting its elements into

the set resultSet, which eliminates the duplicates.

Note that DCB-Miner is correct by design, i.e. it returns only maximal DCBs. This

is because at each iteration of Expand-by-one phase, candidates are retained only if they

satisfy the DCB constraint (See line 11 of Algorithm 4.2). Similarly, in the Merge phase,

newly found patterns are checked against the DCB constraint (See line 18 of Algorithm 4.3).

Finally, the CheckMaximality phase assures that non-maximal DCBs are filtered out. Hence,

DCB-Miner is correct. Next, we analyze its completeness.

4.2 Completeness

Theorem 7. Let G = (V, E ,A) be an attributed graph. If G = (V,E,D,A), V ⊆ V, E ⊆
E , D ⊆ D is a DCB, then G is contained in the result set of DCB-Miner.

CHAPTER 4. ALGORITHM 48

Algorithm 4.4 Third Phase: CheckMaximality
1: INPUT: currDCBs, the set of current DCBs
2: OUTPUT: resultSet, the set of maximal DCBs
3: \\ Initialize occurrence statistics
4: for i← 0 to |V| do
5: occurence← number of DCBs including node vi
6: maximalPatterns← ∅
7: \\ Insert DCBs into buckets
8: for all (G = (V,E,D,A) of currDCBs) do
9: v ← arg minv∈V occurence(v.getID())

10: bucketv ← maximalPatterns.getBucketOf(v)
11: isMaximal← true
12: for all (insertedDCB in bucketv) do
13: if (insertedDCB is a super-pattern of G) then
14: isMaximal← false
15: if (isMaximal) then
16: for all (nodes v′ in nextDCB) do
17: bucketv′ ← maximalPatterns.getBucketOf(v′)
18: bucketv′ .insert(G)
19: \\ All DCBs are maximal
20: for all (G = (V,E,D,A) of maximalPatterns) do
21: resultSet.insert(G);
22: return resultSet

Proof. We distinguish between two ranges for α.

• 1
2 ≤ α ≤ 1. Since α ≥ 1

2 , by Lemma 7, G is α-strongly connected. By definition, α-

strong connectedness requires existence of at least one permutation of type described

in Definition 9. Since Expand-by-one , starting from 2-nodes pairs, checks all permu-

tations, it is guaranteed to find all DCBs.

• 1
3 ≤ α < 1

2 . If G is α-strongly connected, we use the same argument as in the first

case. Otherwise, let n = |V | and Gn = G be a DCB which is not α-strongly connected.

We can decompose G by removing one node at a time as follows. Let vn be an α-

removable node in Gn which is not a bridge node, i.e. G − vn = Gn−1 is a DCB.

We apply this strategy recursively until Gj , j ≤ n, contains an α-critical node, i.e.

no such vj exists. By Theorem 6, Gj contains two island leaf components G1 and

G2 and one α-critical component CC, i.e. Gj = G1 ∪ CC ∪ G2. G1 and G2 are at

least 1
2 -dense by Lemma 10 and therefore by Lemma 7 they are α-strongly connected.

CHAPTER 4. ALGORITHM 49

All α-strongly connected DCBs are discovered in the first call of the Expand-by-one

phase. However, the algorithm keeps only the maximal ones, i.e. Expand-by-one may

output supergraphs of G1 and G2, say GEBO1 and GEBO2 respectively. As discussed

in the Merge phase, G1 and G2 are guaranteed to be found from GEBO1 and GEBO2

since they are both α-strongly connected. Once we identify G1 and G2, Gj is found

by checking the simple paths in {V EBO
1 ∪ V EBO

2 } \ {V1 ∪ V2}. Once, we have Gj ,

the second call to Expand-by-one is now able to find the complete graph G. This is

because, by construction Gj is obtained from G by removing one node at a time such

that the resulting graph is connected and α-dense. Once, we have Gj , Expand-by-one

does the exact opposite operation of decomposition and therefore is able to find G.

4.3 Post-processing

A major challenge in subspace clustering and pattern mining algorithms is the size of the

result set. Recently is has been shown that compression of the frequent itemsets, i.e. se-

lection of an optimal set of representative patterns, is NP-hard and a heuristic pattern

compression approach is proposed for this problem [83]. Unfortunately, DCB-Miner is not

immune to this problem either. This is justified by the fact that currently available PPI/GI

networks are far from being complete, meaning that a substantial amount of genes, proteins

and interactions are still missing. Moreover, the gene expression experiments contain a high

amount of noise. These issues result in a significant amount of modules that are split up

into fractions.

The post-processing step, which is described in Algorithm 4.5, is a heuristic that solves

this problem to a significant degree by relaxing the density and homogeneity constraints in

such cases. In a refinement procedure, we iteratively merge pairs of DCBs if they overlap

in at least 75% of their members as well as in at least 80% of their associated subspaces.

These values were found empirically. Note that, simply relaxing the parameter of DCB-

Miner would not solve the problem, as it would not solve the problem in the context of

frequent itemset mining. This is because starting with relaxed parameters will give much

more patterns at the end. On the contrary, we need compression of patterns and we achieve

this by first finding high quality patterns and then iteratively merging them. As we will

see in Chapter 5, the post processing step succeeds to compress pattern significantly at a

CHAPTER 4. ALGORITHM 50

cost of increased runtime and possible decrease in the quality of biclusters as a result of

relaxed constraints, i.e. lower density. Note that the output of the post-processing phase

is dependent on the order that the modules are processed. However, we observed that this

does not result in any significant difference in terms of the output.

CHAPTER 4. ALGORITHM 51

Algorithm 4.5 Post-processing
1: INPUT: currDCBs, the set of current DCBs

Member merge threshold mmt,
Subspace merge threshold smt

2: OUTPUT: masterModules, the set of merged DCBs
3: mergeOccured← true
4: while mergeOccured do
5: mergeOccured← false
6: masterModules← ∅
7: for i = 1 to currDCBs.size() do
8: bestMatch← ∅
9: bestOverlapScore← 0

10: firstModule← currDCBs.get(i)
11: for j = i+ 1 to currDCBs.size() do
12: j ← j + 1
13: secondModule← currDCBs.get(j)
14: memberOverlap← firstModule.getMemberOverlap(secondModule)
15: subspaceOverlap← firstModule.getSubspaceOverlap(secondModule)
16: if memberOverlap ≥ mmt and subspaceOverlap ≥ smt AND

memberOverlap ∗ subspaceOverlap > bestOverlapScore then
17: bestOverlapScore← memberOverlap ∗ subspaceOverlap
18: bestMatch← secondModule
19: if bestMatch 6= ∅ then
20: masterModules.insert(firstModule.merge(bestMatch))
21: firstModule.setMaximal(false)
22: bestMatch.setMaximal(false)
23: mergeOccured← true
24: i← i+ 1
25: \\ Remove non-maximal modules
26: for all modules module in currDCBs do
27: if module.isMaximal() then
28: masterModules.insert(module)
29: currDCBs← masterModules
30: return masterModules

Chapter 5

Experimental Results

In the following, we analyze the performance of DCB-Miner in terms of biological soundness

and run time performance. For this, we first designed a benchmark competition, in which we

analyze the biological accuracy and usefulness of the output of various algorithms. Secondly,

we did extensive runtime analysis to verify the scalability of DCB-Miner under different

parameter settings. All experiments were performed on a PC running the Linux operating

system with a 1.86GHz CPU and 4 GB of main memory.

5.1 Data

In order to construct the input attributed graph for DCB-Miner and the comparison part-

ners, we constructed data sets from yeast and human.

5.1.1 Yeast Dataset

The interaction network under consideration was extracted from the BioGRID database

[73]. It integrates both PPI and GI interactions from multiple publicly available databases

and datasets. Gene expression data was given by the yeast compendium dataset [39]. It

reports fold changes of experiment against control in as many as 300 cDNA experiments.

In order to get rid of nodes in the network that are not active under any type of condition

under consideration, we removed genes that did not exhibit a significant expression pattern

over the 300 experiments. Namely, we discarded genes whose ratios were to be found in a

1.5 times variance interval around the mean over all conditions. This finally amounted to

52

CHAPTER 5. EXPERIMENTAL RESULTS 53

1043 variably expressed genes with 2664 interactions in the resulting network.

5.1.2 Human Dataset

Similarly, the PPI/GI network was downloaded from the BioGRID database [73]. For the

expression data, we used the comprehensive human tissue expression dataset [69], which

lists fold changes over 115 cDNA experiments across 35 different tissue types. In order to

account for activity, we only retained variably expressed genes which were with at least

2-fold ratio variation from the mean in at least 2 samples. This preprocessing was done

by the authors. As a result, the human dataset contained 3628 genes connected by 8924

interactions in the respective network.

5.2 Gene Ontology (GO) Based Evaluation

To assess the quality of the results of our algorithm, we compared it to four related pub-

licly available, state-of-the-art algorithms. These include two integrated methods and two

methods that operate on one data type (either interaction network or gene expression data)

only.

5.2.1 Competition Partners

1. SAMBA (Statistical-Algorithmic Method for Bi-Clustering) [75] is a widely used

biclustering algorithm that infers modules from expression data only. It performed

comparable, if not better, in a recent comparative study of biclustering algorithms

[57]. Basically, it finds sets of genes that jointly respond to changing conditions. To

do this, first a weighted bipartite graph G = (U, V,E) is constructed, in which U is the

set of conditions, V is the set of genes and E is the set of edges such that (u, v) ∈ E
if gene v responds in condition u. The weights are assigned based on a statistical

model that incorporate background, i.e. null, distribution of gene-condition edges. In

the second phase, k best bicliques are found from the graph constructed in the first

phase. In this context, a biclique corresponds to a functional module, whose member

genes co-respond to a subset of experimental conditions. As common in biclustering

algorithms, the result set is usually large. Therefore, in the third phase, a greedy

algorithm is utilized to select non-overlapping biclusters to minimize the overlap.

CHAPTER 5. EXPERIMENTAL RESULTS 54

2. MCL (Markov Clustering) [21] only considers interaction network data. It outper-

formed other methods of this type in the comparative study of [12]. Given a possibly

weighted graph G = (V,E) , it first transforms the graph into a Markov graph. Then

it performs a random walk, which corresponds to simulation of flow in an interaction

graph by computing successive powers of the adjacency matrix of the graph. This

step is known as expansion (multiplication) followed by scaling and it converges to

a partition of the interaction network into dense subnetworks which are output as

modules.

3. Co-Clustering [33] is one of the two integrated approaches we consider. Infact, the

authors propose a novel distance function rather than an algorithm. The proposed

distance function incorporates both similarity of gene expression profiles and network

shortest path distance using a logistic sigmoid function. The distance function then

can be plug into an arbitrary choice of a distance-based clustering algorithm. We used

the proposed distance function with K-Means algorithm.

4. Matisse (Modular Analysis for Topology of Interactions and Similarity Sets) [80] is

the most recent integrated approach available. It is a probabilistic method that finds

connected subnetworks in interaction networks that exhibit high expression similar-

ity. It starts with seed generations phase, in which a pre-specified number of highly

interconnected subgraph are selected. In the optimization step, moves including ad-

dition and deletion of a node and merging and deleting of clusters are tried in order

to improve an overall score. Finally, in a post-processing step, only top k significant

clusters are given as the output.

For all algorithms, we used the recommended parameter sets if applicable. For Co-

clustering, which is the only algorithm that requires number of modules apriori, we tried

different values and selected the one with best F-value, which we describe in next section.

For DCB-Miner, we set the parameters to values close to the properties of known functional

modules. For this, we downloaded the yeast molecular complexes and the pathways from

the Saccharomyces Genome Database (SGD) [11]. We mapped each of the modules to the

network consisting of the PPI and genetic interaction network of yeast. We only focused on

the modules that induce a connected subnetwork in the corresponding network; otherwise

we consider the module information as incomplete and removed from the rest of the analysis.

This resulted in 111 well-characterized modules. Figure 5.1 shows the density distribution

CHAPTER 5. EXPERIMENTAL RESULTS 55

Figure 5.1: Density distribution of well characterized yeast functional modules extracted
from the Saccharomyces Genome Database (SGD) [11]

of the modules. Based on the distributions of density and the number of homogenous di-

mensions (Figure 5.2), we set α = 0.65, θh = 1.25 and θmin = 140 (out of 300) for the yeast

dataset. Contrary to yeast, there is no comprehensive true human module dataset. There-

fore, we used the same density threshold, i.e. α = 0.65. Moreover, the human expression

dataset contains a high amount of missing values (> 25%) which adverts to a high amount

of noise. Therefore, we used a more relaxed fold change threshold of θh = 1.4 and θmin = 10

(out of 115). In general, in case of existence of a partial true modulome annotation, DCB-

Miner’s parameters can be approximately derived from the annotated true modules. Note

that, the results of DCB are post-processed as described in Section 4.3. Finally, for all

algorithms, only modules of size 4 or larger are considered in the analysis.

Note that none of the related methods address the problem of finding co-active, dense

subnetworks according to Definition 4. Hence, each algorithm has its own definition of a

functional module, usually corresponding to subset of properties addressed by the definition

of DCB. The only method that yields overlapping modules is SAMBA whereas the only one

that addresses the question of finding dense subnetworks is MCL. Theoretically, MCL can

also output overlapping modules, but we haven’t observed this in our analysis. However,

SAMBA and MCL are not integrated which makes them more prone to noise or missing data

CHAPTER 5. EXPERIMENTAL RESULTS 56

Yeast Connected Modules

of Homogenous Dimensions (Mean= 137.2)

F
re

qu
en

cy

0 50 100 150 200 250

0
5

10
15

Figure 5.2: Distribution of the number of homogenous dimensions wrt. θh = 1.25 of the well
characterized yeast functional modules extracted from the Saccharomyces Genome Database
(SGD) [11].

that occur in one data type only. The integrated methods, Co-Clustering and Matisse, both

do not address finding dense subnetworks and they do not produce overlapping modules.

Matisse usually outputs small number modules whereas Co-Clustering partitions the whole

dataset. Methods that assign each gene to a cluster (MCL, Co-Clustering) may also suffer

from forcibly collecting proteins into modules which, due to current amounts of noise in the

data, cannot be done reliably. These are strong hints to the quantitative and qualitative

superiority of our method.

5.2.2 Module Assessment

Due to the absence of comprehensive module annotations, testing for statistically signifi-

cantly over-represented GO terms in a group of genes of interest is the common method

used for evaluation of module inference algorithms. Basically, for each GO term T, the

occurrence distribution of the term in a given module is compared against its occurrence

distribution in the whole genome, which corresponds to the null distribution. If the term

is found to be occurred statistically significantly more frequently than expected from the

null distribution, then the module is said to be enriched with term T. This statistic can be

CHAPTER 5. EXPERIMENTAL RESULTS 57

calculated using by a chi-square test. For calculations, we used the high-throughput version

of the GoMiner tool [88].

In this GO-based evaluation procedure, applied to outputs from all methods, generated

from yeast (Section 5.1.1) and human (Section 5.1.2), we applied three different quantities

to gauge module quality.

1. Enrichment is computed as the percentage of modules found that are enriched with

at least one GO term (level 7 or higher, as suggested in [80]) with P-values, that were

corrected for multiple hypothesis testing, below a threshold of 0.01. Roughly, this

value accounts for the amount of true modules among the overall amount of predicted

modules. In other words, it can be perceived as a relative precision, where relativity

refers to the computations being done relative to a dataset.

2. Coverage is defined as the number of GO terms associated with an enriched cluster

found by the method divided by the number of all GO terms in the dataset. This

number can be perceived as as a relative recall.

3. The F-Value is a common quantity to incorporate precision and recall into a single

value. Given enrichment E and coverage C, it is computed as

F =
2EC
E + C

.

Intuitively, the F-Value captures the trade-off between enrichment and coverage.

4. To account for completeness, we juxtapose absolute numbers of inferred modules to

enrichment, coverage and F-value, as these are only relative measures.

5.2.3 Results

In Figure 5.3, we have displayed the statistics defined in Section 5.2.2 that were achieved by

our method and those listed in Section 5.2 on the yeast datasets. In terms of enrichment,

all algorithms except Co-clustering perform relatively well, but only Matisse (94%) and

DCB-Miner (94%) yield an enrichment over 90%. This agrees with the biological reasoning

that modules that are coherent in both data types are more reliable than modules that are

coherent in only one data type. Although Co-clustering is also a combined learning algo-

rithm, it forces every gene to be an element of a cluster, which is not a realistic scenario.

CHAPTER 5. EXPERIMENTAL RESULTS 58

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Coverage

Enrichment

F-Value

Figure 5.3: Performance of all algorithms on the yeast dataset

Moreover, the poor enrichment performance of Co-clustering also suggests that the pro-

posed combined distance function may not be a biologically reasonable one on the instances

considered. With regard to coverage, it is no surprise that MCL and Co-clustering, which

force every gene to belong to a cluster, perform relatively better than Matisse and SAMBA,

which output only statistically significant clusters. Although DCB-Miner does not force

every gene to belong to a cluster, it achieves the best coverage over all methods, thanks to

its completeness. This means that we compute modules of a larger range of functionalities

in yeast than prior approaches did. According to the F-value, DCB-Miner achieves the best

overall performance which gives further evidence of the superiority of the concept of active

modules being encoded as densely connected biclusters.

In Figure 5.4, we have displayed the respective statistics for the human datasets. Be-

sides from SAMBA, all methods achieve an increased coverage, thanks to the, compared to

yeast, higher overall density of the PPI/GI network. Recall that SAMBA does not utilize

the network data. MCL and Co-Clustering perform poorly in terms of enrichment, prob-

ably due to forcing all genes into modules. Only Matisse (93%), DCB-Miner (97%) and

SAMBA (94%) yield an enrichment over 90%. The explanation for the good performance of

SAMBA is that, on multiple-condition expression data only, biclustering is a highly valuable

CHAPTER 5. EXPERIMENTAL RESULTS 59

Figure 5.4: Performance of all algorithms on the human dataset

approach. As for coverage, only MCL (62%), Co-clustering (65%) and DCB-Miner (63%)

yield a coverage over 60%. Overall, DCB-Miner achieves the best F-value as a result of both

highest enrichment and comparable, if not better, coverage performance.

At this point, we would like to discuss an interesting finding. Similar to the analysis

done in [80], we sampled random connected networks so that the size distribution is the

same as the pooled size distribution of the five algorithms discussed above. We found

that, even random sampling of connected networks achieves an enrichment rate as high

as 85% in the yeast dataset and 89% in the human dataset. Although one would expect

connected random subnetworks to be partially meaningful, the achieved enrichment rates are

surprisingly comparable if not better than that performance of MCL and Co-clustering. This

further validates the idea that a functional module is densely connected and co-expressed.

Note that we did not compare the coverage performance of random sampling against other

algorithms due the fact that the coverage of random subnetworks is highly correlated with

the number of modules being sampled, i.e. one can achieve 100% coverage by sampling more

and more connected subnetworks, which would not be fair against comparison partners.

An interesting question is as follows: How do the well characterized modules of the

yeast break up into modules found by the algorithms? By merely looking at the overlap

CHAPTER 5. EXPERIMENTAL RESULTS 60

Yeast Modules

of Modules Involved

F
re

qu
en

cy

0 200 400 600 800

0
50

10
0

20
0

30
0

Human Modules

of Modules Involved

F
re

qu
en

cy

0 200 400 600 800 1000

0
20

0
40

0
60

0

Figure 5.5: Distribution of number the modules a gene is involved in for the yeast (left) and
the human (right) datasets.

between discovered modules and true modules, we found that 85 of the 111 true modules

are covered by the DCB-Modules, which can be perceived as the true positives. The closest

to this number is 81 achieved by MCL. On the other hand, this kind of analysis has certain

drawbacks. As described in the survey work of [12], if an algorithm makes more predictions

than the current level of annotation available, all novel predictions are labeled as false pos-

itives. However, such new predictions can be novel discovery rather than false predictions.

Therefore, the sparsity of the current level of annotation favors algorithms with few predic-

tions rather than algorithms that do novel predictions. Unless a more complete true module

annotation is available, we believe this kind of comparison is highly biased and therefore

did not do further analysis. Last but not least, in Figure 5.5 we give the distribution of

the number of modules a gene is involved in. It is evident that the distributions follow a

power-law distribution. Focused analysis of genes that are involved in many modules show

that these are hub genes and also there is a correlation between the out degree of a gene and

the number of modules the genes are involved in. This, on the other hand, suggests that

proteins such as chaperons, which interact with hundreds of proteins, should be removed

from the analysis as they present outliers, i.e. they interact with hundreds of genes but are

known to belong to few modules.

Finally, we display some statistics on the inferred modules in Table 5.1. These demon-

strate that DCB-Miner clearly outperforms the other algorithms with respect to absolute

CHAPTER 5. EXPERIMENTAL RESULTS 61

Yeast Connected Modules

Size (Mean=9.03)

F
re

qu
en

cy

0 20 40 60

0
20

40
60

80

Figure 5.6: Size distribution of well characterized yeast functional modules extracted from
the Saccharomyces Genome Database (SGD) [11].

numbers of highly reliable modules of various functionalities (for additional information on

size distributions of the found DCB-Miners see the Figure 5.7). As we infer the entirety of

modulome, numbers achieved by our method also reflect estimates on the sizes of both yeast

and human modulomes. Actual guesses on the numbers of complexes in yeast resp. human

are 800 resp. 3000 [92]. It can safely be assumed that respective numbers of modules, which

are not necessarily complexes, are much greater. As none of the other methods addresses

the issue of inferring the complete modulomes, it comes as no surprise that, compared to

these estimates, they fail to predict the modulomes’ sizes in terms of orders of magnitude.

Last but not least, although DCB-Miner algorithm outputs many modules, the most prob-

able use case for a molecular biologist consists of focused analysis of a set of genes, the

modules they are involved in and their interplay. The user can always select the modules

in which the genes of interest are involved in and do focused analysis of those modules.

As a result of being a complete algorithm, DCB-Miner provides the complete solution to

the user as well as the option of focused analysis. Finally, modules found by DCB-Miner

and Co-clustering seem to match the average size of the true connected modules in yeast

as shown in Figure 5.6. MCL outputs modules of very small size ,whereas SAMBA outputs

modules of very large size, which makes analysis very hard. Due to lack of comprehensive

CHAPTER 5. EXPERIMENTAL RESULTS 62

Table 5.1: Module Statistics.

Competition Partners
Yeast Human

Method # of Mod. Density Avg. Size # of Mod. Density Avg. Size
Samba 135 .02 25.06 129 .01 48.94
MCL 95 .44 7.29 312 .35 5.94

Matisse 17 .31 21.17 76 .30 17.94
Co-Clustering 103 .06 9.57 271 .01 13.12

DCB 2276 .39 8.05 5979 .46 7.12

Yeast Connected Modules

Size (Mean=9.03)

F
re

qu
en

cy

0 20 40 60

0
20

40
60

80

Human Modules Size Distribution

 Size (Mean= 7.12)

F
re

qu
en

cy

10 20 30 40

0
50

0
10

00
15

00

Figure 5.7: Distribution of the sizes of DCBs found in the yeast (left) and the human (right)
datasets.

human module annotation, it is hard to make comments on the sizes of the human modules

at this point. Still, one needs to be careful as the majority of the modules in the yeast

true connected module dataset are complexes rather than pathways. This introduces a bias

towards smaller modules. In this respect, Matisse seems to best approximate the true mod-

ule sizes, especially those of the pathways’. However, we believe that with more complete

interaction data and gene expression data of better quality, modules found by our algorithm

will be able to match the true size distribution of the real modules.

CHAPTER 5. EXPERIMENTAL RESULTS 63

HDAC1

BRCA1

RAD9A

RAD51

ABL1

[Regulation of progression
through cell cycle]

[Double-strand break repair via
homologous recombination]
[Cell cycle checkpoint]
[Positive reg. of DNA repair]
[Cell cycle]
[DNA repair]

[Chromatin modification]
[Histone deacetylation]

[Cell cycle checkpoint]
[DNA replication checkpoint]
[DNA damage checkpoint]
[DNA repair]

[Double-strand break repair via
homologous recombination]
[DNA repair]

Figure 5.8: Annotation of CLSPN gene via other annotated genes in the same enriched
module

5.3 Prediction of Novel Annotation

In this section, we illustrate how the DCB-Miner algorithm can be used for novel annotation

prediction. We present two case studies where previously crudely annotated genes can be

annotated more specifically based on the guilt-by-association principle. Basically, we find

modules that are enriched with some GO terms yet contain genes of unknown (or partially

unknown) function [66]. We then assign the functions implied by the enriched GO terms as

the function of the gene of unknown function. Note that this approach works with only GO

terms of type localization and biological process but not with type molecular function. This

is because elements of a functional module is expected to be involved in a common biological

process and also to co-localize. However, within a biological process each protein usually

has a distinct molecular function. We illustrate the guilt-by-association in the following

examples. Two modules (one in human and one in yeast) that are enriched with cell cycle

regulation and resp. cell division related GO terms were chosen as examples. The human

module (Figure 5.8) consists of six genes including CLSPN, a recently characterized yet

crudely annotated gene, and extensively annotated genes such as BRCA1. The yeast module

CHAPTER 5. EXPERIMENTAL RESULTS 64

(Figure 5.9) has eight genes including LSB1, a gene of unknown function.

Cell cycle is a tightly regulated process that depends on a host of parameters. Many

cancers are due to disruption in the cell cycle control. DNA repair is a crucial process

during cell cycle. Some of the cancer types, such as breast cancer, are associated with

disruption of the DNA repair mechanism for single stranded and double stranded DNA

breaks [22]. Claspin (CLSPN) is a recently characterized protein to function in repairing

DNA single stranded or double stranded breaks. Claspin interacts with the chromatin early

on in the replication process as well as the replication machinery [13]. At the site of damage,

replication is halted and Claspin disassociates to interact with Rad9, a member of the 9-1-1

complex [93], and promotes interaction with HDAC1 [15], BRCA1 [50] or CHEK1. CHEK1

stalls the cell cycle at the S phase until nucleosome is remodeled via HDAC1 and DNA

is repaired via BRCA1 and RAD51 [72]. In the case of severe DNA damage, apoptotic

pathways are induced and claspin is ultimately degraded by ubiquitination [64]. Based

on the enriched GO terms, we predict process annotations: DNA replication checkpoint

(GO:0000076), regulation of DNA replication initiation (GO:0030174), regulation of DNA

repair (GO:0006282), and DNA damage checkpoint (GO:0000077). We further predict the

cellular component annotation to be: chromosome (GO:0005694).

Yeast gives rise to daughter cells by budding and subsequent cytokinesis to separate the

newly budded cell from the mother. Cytokinesis depends heavily on actin assembly and

disassembly. Actin or cytoskeleton abnormalities have been observed in hematopoietic cells

of Wiskott-Aldrich syndrome patients [70]. LAS17 is the yeast homolog of the main factor

(WASP) associated with this disease. The process of actin assembly requires nucleation fac-

tors such as LAS17, HOF1, VRP1, and RVS167. LAS17 associates with VRP1 and RVS167

via its SH3 domains [51]. VRP1 then recruits HOF1 to the complex to facilitate cytokinesis

[59]. The role of ABP1 is thought to be recycling nucleation factors for further assembly

as well as attenuating the rate of assembly to ensure proper timing [18]. NCP1, a protein

involved in sterol synthesis, is also suggested to play a role in bud site selection and estab-

lishment of cell polarity [77]. LSB1, which lacks molecular function and biological process

annotation, is known to have SH3 domains that interact with LAS17 [51] and therefore it is

likely to be a novel nucleation factor participating in actin assembly process. In this respect,

our prediction for its biological process being actin polymerization and/or depolymerization

(GO:0008154), actin filament organization (GO:0007015), and establishment of cell polar-

ity (GO:0030010) agrees with the current literature. Furthermore, we are able to annotate

CHAPTER 5. EXPERIMENTAL RESULTS 65

HOF1

LAS17

VRP1

LSB1
NCP1

RVS16
7

PAC10

ABP1

[Actin cortical patch assembly]
[Establishment of cell polarity]

[Bipolar cellular bud site selection]
[Endocytosis]

[Tubulin folding]

[Actin cytoskeleton organization and biogenesis]
[Actin filament organization]

[Cytokinesis]

[Cytokinesis]
[Actin filament organization]
[Actin polymerization and/or
depoly.]
[Bipolar cellular bud site
selection]

Figure 5.9: Annotation of LSP1 gene via other annotated genes in the same enriched module

more specifically its cellular component to be actin cortical patch (GO:0030479) and cor-

tical actin cytoskeleton (GO:0030864). Interestingly, our results suggested that VRP1 and

RVS167 interact with PAC10 (YGR078C), which is a chaperone for microtubule proteins

[49]. It is likely that PAC10 may have a more general function in assisting proper folding

of proteins involved in cytoskeleton biogenesis.

Overall, DCB-Miner predicted novel GO annotations (biological process and cellular

localization at level 7 or higher) for 87 of the 188 un-annotated genes in the yeast dataset

and for the 31 out of the 84 un-annotated genes in the human dataset. to our best knowledge,

we have not observed any of our predictions to be conflicting with existing literature. This is

because an extensive analysis of our prediction requires a considerable amount of literature

survey , which is out of the scope of this thesis.

5.4 Runtime Experiments

In this section we analyze the runtime performance of DCB-Miner algorithm. We use the

yeast data set described in Section 5.1 for this purpose. Recall that DCB-Miner has three

parameters, which are the minimum density α, homogeneity threshold θh and the minimum

CHAPTER 5. EXPERIMENTAL RESULTS 66

Figure 5.10: α vs runtime

number of homogenous dimensions θmin. In the following, we analyze how the performance

of DCB-Miner changes with regards to the changes in each of the three parameters. Our

major observation is that the performance of DCB-Miner is more susceptible to the density

parameter than other parameters. This is not surprising because a density value below 1
2

requires the execution of the Merge phase which increases the runtime significantly. This

finding also implies that the majority of the search space pruning capability comes from

the graph based constraints, i.e. connectedness and the density constraints. Even in the

absence of pruning capabilities of the homogeneity constraint , i.e. setting θd = 0 or θh = 3,

the algorithm is still able to finish in a reasonable amount of time thanks to the pruning

provided by the graph based constraints.

Figure 5.10 shows the runtime results in response to changing density threshold with

homogeneity threshold fixed to θh = 1.25 and minimum number of dimensions fixed to

θmin = 140. DCB-Miner is quite efficient if density threshold is close to or greater than the

average density of the true biological modules, which is 0.79 (See Figure 5.1). There are

two significant increase points. The first one is at α = 1
2 , which is due to the fact every

connected subgraph of size 4 or less has density greater than 1
2 . Therefore, an increase

in runtime is reasonable. The second significant increase occurs when α < 0.5. This is

expected because the loose anti-monotonicity property of density constraint does not hold

below α < 1
2 and the expensive Merge phase is needs to be called in that case. In addition

to this, as the density threshold is lowered, combinatorially many more subgraphs satisfy

the density threshold. Similar to typical pattern mining algorithms, DCB-Miner is also an

CHAPTER 5. EXPERIMENTAL RESULTS 67

Figure 5.11: θh vs runtime

output dependent algorithm meaning that the more patterns exist in the data set, the higher

the run time. Finally, note that α = 1
3 is not a realistic density threshold because every

connected subgraph of size 6 or less satisfy this threshold. This means that this density

threshold would fail to separate random connected subnetworks from true modules. Still,

even in the worst case of α = 0.35, DCB-Miner takes less than 15 minutes, which is a

reasonable amount of time.

Figure 5.11 shows the runtime results with regard to the changes in the homogeneity,

i.e. fold change range, threshold with density fixed to α = 0.65 and minimum number of

dimensions fixed to θmin = 140. We see a drastic increase at θh = 1.5. This can be explained

by the fact that majority of fold change difference values are below 1.5. After 1.5, increasing

the homogeneity range does not change the runtime significantly because almost all genes

are within 1.5 fold change neighborhood of each other.

Figure 5.12 shows the runtime against the number of homogenous dimensions with min-

imum density fixed to α = 0.65 and fold change range threshold fixed to θmin = 1.25. As

expected, runtime decreases as the minimum number of homogenous dimensions increase.

If minimum number of homogenous dimensions is set close to average number of homoge-

nous dimensions of annotated complexes, which we found to be 137, performance is quite

satisfactory as the runtime is only 18 seconds. Even if homogeneity threshold is decreased

to 0, we see that DCB-Miner takes only 108 seconds. This shows that even in the absence

CHAPTER 5. EXPERIMENTAL RESULTS 68

Figure 5.12: θdim vs runtime

of prunning capabilities of attribute data, breadth-first approach of DCB-Miner is able to

mine dense subgraphs in a reasonable amount of time thanks to the loose anti-monotonicity

of density constraint.

The above runtime results contain the CheckMaximality procedure. Although the de-

signed index structure is very efficient and takes significantly lower time than the core

phases of the algorithm, i.e. the Expand-by-one and the Merge phases, we observed that

maximality is almost never a problem, i.e. only a small fraction of DCBs were found to be

non-maximal during CheckMaximality phase. This is especially the case for larger values

of density threshold, i.e. the higher the α is the higher the percentage of permutations of

a DCB that satisfy the α-strong connectedness property. In this respect, removing Check-

Maximality phase can further increase the runtime at a cost of some redundancy in the

result set. In addition to this, the above runtime results do not include the optional post

processing step which is considerably slower than DCB-Miner. However, we observed that,

even in the absence of post-processing the enrichment and coverage scores are comparable if

not better than the results obtained with post-processing. In this respect, post-processing

should be considered as a summarization phase for making it easy to analyze the found

modules. It comes with a cost of runtime and possible decrease in quality, which is due to

the relaxation of the constraints.

Finally, we would like to once more emphasize that the parameters for DCB-Miner

can be derived by doing an exploratory analysis of distributions of the parameters with

respect to a partial module annotations of the organism. We followed this approach in our

CHAPTER 5. EXPERIMENTAL RESULTS 69

experiments and this resulted in 18 and 8 seconds of runtime for the yeast and the human

datasets respectively. This is quite efficient considering the significance of the output of the

DCB-Miner, which is the modulome of the organism being analyzed.

Chapter 6

Conclusion and Future Work

6.1 Contributions

In this thesis, we proposed a novel method that can computationally infer the entirety of an

organism’s modules that are active under a variety of cellular conditions specified by a set of

gene expression experiments. This was done by defining a module as a set of genes that are

co-expressed and show significant changes in expression under a sufficiently large number

of experimental conditions on one hand and induce a dense subnetwork in the PPI/GI

network on the other hand. While the biological literature shows that this definition of a

module is most natural, the corresponding search problem has not been tackled before due

to its computational hardness. We solve the problem by a carefully designed algorithmic

search strategy. We demonstrated its effectiveness by finding large numbers of high quality

modules in both yeast and human, thereby outperforming a variety of prominent related

approaches. Moreover, we presented novel functional annotations of proteins in yeast and

human, as predicted by our method.

6.2 Future work

We finally would like to point out that there is still a lot of room for improvements and

future work. Below, we summarize some possible future extensions.

• An issue originating from the molecular biology is the still substantial rate of not yet

documented protein-protein and genetic interactions in various organisms which can

70

CHAPTER 6. CONCLUSION AND FUTURE WORK 71

result in very sparse networks. In our experience, our algorithm will yield subopti-

mal results on such instances. However, this issue is only temporary in nature and

presumably will be resolved in the near future at least for the model organisms.

• Another issue is that the homogeneity constraint used in the DCB definition is a

rough measure for co-expression and does not reflect the actual state of the art when

inferring modules on the basis of gene expression data. The integration of more suit-

able co-expression models promises to further improve the biological validity of the

DCB model. For example, Absolute Pearson Correlation Distance can be used as a

homogeneity constraint. An example constraint can be as follows: Maximum Absolute

Pearson Correlation Distance between elements of a functional module must be smaller

than 0.5. However, Pearson Correlation Distance is neither anti-monotone nor loose

anti-monotone and hence its tractability remains a challenging yet promising open

problem in the context of biclustering. Therefore, in order to use Pearson Correlation

Distance, one must stick to the full space rather than subspaces. This would be useful

if the dimensionality of the expression dataset is low. Note finally that, the longest

common increasing subsequence (LCIS) problem has recently found applications in

the biclustering area due to its biological soundness [25]. However, we observed that

for a set of genes, contrary to the homogeneity constraint used in this thesis, the LCIS

is not unique and one needs to keep all possible LCISs while doing the breadth first

search. We found this to be a computationally expensive requirement especially in

the case of high dimensional datasets. However, the LCIS based formulation may be

feasible with different approaches and hence is an open yet a very promising research

direction.

• DCB-Miner algorithm proposes a generic solution for combining attribute and re-

lational data. Homogeneity constraints could also be based on other attribute data

sources such as literature co-occurrence and/or phenotypic profiles. As long as the ho-

mogeneity constraint is anti-monotone, it can be plugged in to DCB-Miner. Similarly,

other biological network data can be used instead of (or in combination with) PPI

and/or GI networks. For example, functional modules are shown to induce densely

connected subnetworks in regulatory networks as well [92]. Metabolic and phospho-

rylation networks are also worthwhile to investigate.

• We have temporarily solved the high overlap problem in a heuristic post-processing

CHAPTER 6. CONCLUSION AND FUTURE WORK 72

step (See Section 4.3). Although, the post-processing step is able to reduce the number

of modules from 7837 and 14274 to 2125 and 4974 in yeast and human respectively, it

comes with the cost of additional runtime and sacrifice in quality of the found DCBs.

For example, the enrichment rates for the yeast dataset are 96% and 96% before and

after post-processing respectively. This can be explained by the fact that homogeneity

and density constraints are relaxed in the post-processing phase. Currently, we are

working on a statistical method for the post-processing step, which is more efficient

and can also calculate a quality score for each DCB.

• Another interesting research direction is extending the model to weighted graphs. This

would be beneficial in a lot of cases. For example, one of the ways to deal with the

noise in interaction networks is assigning confidence weights to edges based on the

number of publications in which the interaction was experimentally observed. In such

a context, finding dense regions would correspond to finding highly interacting gene

groups with high confidence.

• Finally, extending the model into multiple graph mining would also be very useful.

For example, integration of multiple microarray data sets across many platforms for

integrated analysis poses challenging problems as discussed in Section 2.1. One way to

deal with this problem is building a co-expression graphs for each dataset and mining

these graphs jointly [38, 37, 84, 56]. Our model is easily expandable to handle such

cases.

Bibliography

[1] James Abello, Mauricio G. C. Resende, and Sandra Sudarsky. Massive quasi-clique
detection. In LATIN ’02: Proceedings of the 5th Latin American Symposium on Theo-
retical Informatics, pages 598–612, London, UK, 2002. Springer-Verlag.

[2] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar Raghavan.
Automatic subspace clustering of high dimensional data. Data Mining and Knowledge
Discovery, 11(1):5–33, 2005.

[3] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association
rules in large databases. In Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo, editors,
VLDB’94: Proceedings of 20th International Conference on Very Large Data Bases,
September 12-15, 1994, Santiago de Chile, Chile, pages 487–499. Morgan Kaufmann,
1994.

[4] Reka Albert. Scale-free networks in cell biology. Journal of Cell Science, 118(21):4947–
4957, 2005.

[5] Sitaram Asur, Duygu Ucar, and Srinivasan Parthasarathy. An ensemble framework for
clustering protein protein interaction networks. Bioinformatics, 23(13):i29–40, 2007.

[6] Gary D. Bader and Christopher WV Hogue. An automated method for finding molec-
ular complexes in large protein interaction networks. BMC Bioinformatics, 4:2, 2003.

[7] Albert-Laszlo Barabasi and Zoltan N. Oltvai. Network biology: Understanding the
cell’s functional organization. Nature Reviews Genetics, 5(2):101–113, February 2004.

[8] Celine Becquet, Sylvain Blachon, Baptiste Jeudy, Jean-Francois Boulicaut, and Olivier
Gandrillon. Strong-association-rule mining for large-scale gene-expression data anal-
ysis: a case study on human sage data. Genome Biology, 3(12):research0067.1–
research0067.16, 2002.

[9] Amir Ben-Dor, Benny Chor, Richard Karp, and Zohar Yakhini. Discovering local struc-
ture in gene expression data: the order-preserving submatrix problem. In RECOMB
’02: Proceedings of the 6th Annual International Conference on Computational Molec-
ular Biology, pages 49–57, New York, NY, USA, 2002. ACM.

73

BIBLIOGRAPHY 74

[10] Francesco Bonchi and Claudio Lucchese. Pushing tougher constraints in frequent pat-
tern mining. In PAKDD ’05: Proceedings of the 9th Pacific-Asia Conference on Knowl-
edge Discovery and Data Mining, pages 114–124, 2005.

[11] David Botstein, Steven A. Chervitz, and J. Michael Cherry. Yeast as a model organism.
Science, 277(5330):1259–60, 1997.

[12] Sylvain Brohee and Jacques van Helden. Evaluation of clustering algorithms for protein-
protein interaction networks. BMC Bioinformatics, 7:488, November 2006.

[13] Marc Brondelloa, Bernard Ducommunb, Anne Fernandezc, and Ned J. Lamb. Linking
pcna-dependent replication and atr by human claspin. Biochemical and Biophysical
Research Communications, 354(4):1028–1033, 2007.

[14] Dongbo Bu, Yi Zhao, Lun Cai, Hong Xue, Xiaopeng Zhu, Hongchao Lu, Jingfen Zhang,
Shiwei Sun, Lunjiang Ling, Nan Zhang, Guojie Li, and Runsheng Chen. Topological
structure analysis of the protein-protein interaction network in budding yeast. Nucleic
Acids Research, 31(9):2443–2450, 2003.

[15] Richard L. Cai, Yan Yan-Neale, Maria A. Cueto, Hong Xu, and Dalia Cohen. HDAC1,
a Histone Deacetylase, Forms a Complex with Hus1 and Rad9, Two G2/M Checkpoint
Rad Proteins. Journal of Biological Chemistry, 275(36):27909–27916, 2000.

[16] Guang Chen, Shane Jensen, and Christian Stoeckert. Clustering of genes into regulons
using integrated modeling-cogrim. Genome Biology, 8(1):R4, 2007.

[17] Yizong Cheng and George M. Church. Biclustering of expression data. In ISMB ’00:
Proceedings of the 8th International Conference on Intelligent Systems for Molecular
Biology, pages 93–103. AAAI Press, 2000.

[18] Jessica L. D’Agostino and Bruce L. Goode. Dissection of Arp2/3 Complex Actin Nu-
cleation Mechanism and Distinct Roles for Its Nucleation-Promoting Factors in Sac-
charomyces cerevisiae. Genetics, 171(1):35–47, 2005.

[19] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. Kernel k-means: spectral clustering
and normalized cuts. In KDD ’04: Proceedings of the 10th International Conference
on Knowledge Discovery in Data mining, pages 551–556. ACM, 2004.

[20] Michael B. Eisen, Paul T. Spellman, Patrick O. Brown, and David Botstein. Cluster
analysis and display of genome-wide expression patterns. Proceedings of the National
Academy of Sciences, 95(25):14863–14868, 1998.

[21] A. J. Enright, S. Van Dongen, and C. A. Ouzounis. An efficient algorithm for large-scale
detection of protein families. Nucleic Acids Research, 30(7):1575–1584, 2002.

[22] Hannele Erkko, Katri Pylks, Sanna-Maria Karppinen, and Robert Winqvist. Germline
alterations in the clspn gene in breast cancer families. Cancer Letters, 261(1):93–97,
2007.

BIBLIOGRAPHY 75

[23] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based
algorithm for discovering clusters in large spatial databases with noise. In KDD ’96:
Proceedings of the 2nd International Conference on Knowledge Discovery and Data
Mining, pages 226–231, 1996.

[24] Christos Faloutsos and Vasileios Megalooikonomou. On data mining, compression, and
kolmogorov complexity. Data Mining and Knowledge Discovery, 15(1):3–20, 2007.

[25] Byron J. Gao, Obi L. Griffith, Martin Ester, and Steven J. M. Jones. Discovering signif-
icant opsm subspace clusters in massive gene expression data. In KDD ’06: Proceedings
of the 12th International Conference on Knowledge Discovery and Data Mining, pages
922–928, New York, NY, USA, 2006. ACM.

[26] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[27] Audrey Gasch and Michael Eisen. Exploring the conditional coregulation of yeast gene
expression through fuzzy k-means clustering. Genome Biology, 3(11):research0059.1–
research0059.22, 2002.

[28] H. Ge, Z. Liu, G. M. Church, and M. Vidal. Correlation between transcriptome and
interactome mapping data from saccharomyces cerevisiae. Nature Genetics, 29(4):482–
486, December 2001.

[29] Hui Ge, Albertha. J.M. Walhout, and Marc Vidal. Integrating ’omic’ information: a
bridge between genomics and systems biology. Trends in Genetics, 19(10):551–560,
October 2003.

[30] Andrei Grigoriev. A relationship between gene expression and protein interactions
on the proteome scale: analysis of the bacteriophage t7 and the yeast saccharomyces
cerevisiae. Nucleic Acids Research, 29(17):3513–3519, 2001.

[31] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques. Morgan
Kaufmann, September 2000.

[32] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate
generation. In SIGMOD ’00: Proceedings of the 19th International Conference on
Management of Data, pages 1–12, New York, NY, USA, 2000. ACM.

[33] Daniel Hanisch, Alexander Zien, Ralf Zimmer, and Thomas Lengauer. Co-clustering
of biological networks and gene expression data. Bioinformatics, 18(Suppl. 1):145–154,
2002.

[34] Erez Hartuv and Ron Shamir. A clustering algorithm based on graph connectivity.
Information Processing Letters, 76(4-6):175–181, 2000.

BIBLIOGRAPHY 76

[35] J. Hastad. Clique is hard to approximate within n1−ε. In FOCS ’96: Proceedings of the
37th Annual Symposium on Foundations of Computer Science, page 627, Washington,
DC, USA, 1996. IEEE Computer Society.

[36] Fereydoun Hormozdiari, Petra Berenbrink, Natasa Przulj, and Süleyman Cenk Sahi-
nalp. Not all scale free networks are born equal: The role of the seed graph in ppi
network emulation. In Systems Biology and Computational Proteomics, pages 1–13,
2006.

[37] Haiyan Hu, Xifeng Yan, Yu Huang, Jiawei Han, and Xianghong Jasmine Zhou. Mining
coherent dense subgraphs across massive biological networks for functional discovery.
Bioinformatics, 21:i213–221, 2005.

[38] Yu Huang, Haifeng Li, Haiyan Hu, Xifeng Yan, Michael S. Waterman, Haiyan Huang,
and Xianghong Jasmine Zhou. Systematic discovery of functional modules and context-
specific functional annotation of human genome. Bioinformatics, 23(13):i222–229, 2007.

[39] Timothy R. Hughes, Matthew J. Marton, Allan R. Jones, Christopher J. Roberts,
Roland Stoughton, Christopher D. Armour, Holly A. Bennett, Ernest Coffey, Hongyue
Dai, Yudong D. He, Matthew J. Kidd, Amy M. King, Michael R. Meyer, David Slade,
Pek Y. Lum, Sergey B. Stepaniants, Daniel D. Shoemaker, Daniel Gachotte, Kalpana
Chakraburtty, Julian Simon, Martin Bard, and Stephen H. Friend. Functional discovery
via a compendium of expression profiles. Cell, 102(1):109–126, July 2000.

[40] Trey Ideker, Owen Ozier, Benno Schwikowski, and Andrew F. Siegel. Discovering
regulatory and signalling circuits in molecular interaction networks. Bioinformatics,
18(Suppl.1):233–240, 2002.

[41] Akihiro Inokuchi, Takashi Washio, and Hiroshi Motoda. An apriori-based algorithm for
mining frequent substructures from graph data. In PKDD ’00: Proceedings of the 4th
European Conference on Principles of Data Mining and Knowledge Discovery, pages
13–23, London, UK, 2000. Springer-Verlag.

[42] Hawoong Jeong, Sean P. Mason, Albert-Laszlo Barabasi, and Zoltan N. Oltvai. Lethal-
ity and centrality in protein networks. Nature, 411(6833):41–42, 2001.

[43] Liping Ji and Kian-Lee Tan. Mining gene expression data for positive and negative
co-regulated gene clusters. Bioinformatics, 20(16):2711–2718, 2004.

[44] Richard M. Karp. Reducibility among combinatorial problems. In R. E. Miller and
J. W. Thatcher, editors, Complexity of Computer Computations, pages 85–103. Plenum
Press, 1972.

[45] Jyotsna Kasturi and Raj Acharya. Clustering of diverse genomic data using information
fusion. Bioinformatics, 21(4):423–429, 2005.

BIBLIOGRAPHY 77

[46] A. D. King, N. Przulj, and I. Jurisica. Protein complex prediction via cost-based
clustering. Bioinformatics, 20(17):3013–3020, 2004.

[47] Nevan J. Krogan, Gerard Cagney, Haiyuan Yu, Gouqing Zhong, Xinghua Guo,
Alexandr Ignatchenko, Joyce Li, Shuye Pu, Nira Datta, Aaron P. Tikuisis, Thanuja
Punna, Josãc M. Peregrãn Alvarez, Michael Shales, Xin Zhang, Michael Davey, Mark D.
Robinson, Alberto Paccanaro, James E. Bray, Anthony Sheung, Bryan Beattie, Dawn P.
Richards, Veronica Canadien, Atanas Lalev, Frank Mena, Peter Wong, Andrei Staros-
tine, Myra M. Canete, James Vlasblom, Samuel Wu, Chris Orsi, Sean R. Collins,
Shamanta Chandran, Robin Haw, Jennifer J. Rilstone, Kiran Gandi, Natalie J. Thomp-
son, Gabe Musso, Peter St Onge, Shaun Ghanny, Mandy H. Y. Lam, Gareth Butland,
Amin M. Altaf-Ul, Shigehiko Kanaya, Ali Shilatifard, Erin O’Shea, Jonathan S. Weiss-
man, James C. Ingles, Timothy R. Hughes, John Parkinson, Mark Gerstein, Shoshana J.
Wodak, Andrew Emili, and Jack F. Greenblatt. Global landscape of protein complexes
in the yeast saccharomyces cerevisiae. Nature, 440(7084), March 2006.

[48] Michihiro Kuramochi and George Karypis. Frequent subgraph discovery. In ICDM
’01: Proceedings of the 2001 IEEE International Conference on Data Mining, pages
313–320, Washington, DC, USA, 2001. IEEE Computer Society.

[49] Soni Lacefield and Frank Solomon. A novel step in beta-tubulin folding is important for
heterodimer formation in saccharomyces cerevisiae. Genetics, 165(2):531–541, October
2003.

[50] Shiaw-Yih Lin, Kaiyi Li, Grant S. Stewart, and Stephen J. Elledge. Human Claspin
works with BRCA1 to both positively and negatively regulate cell proliferation. Pro-
ceedings of the National Academy of Sciences, 101(17):6484–6489, 2004.

[51] Ammar Madania, Pascal Dumoulin, Sandrine Grava, Hiroko Kitamoto, Claudia
Scharer-Brodbeck, Alexandre Soulard, Violaine Moreau, and Barbara Winsor. The Sac-
charomyces cerevisiae Homologue of Human Wiskott-Aldrich Syndrome Protein Las17p
Interacts with the Arp2/3 Complex. Molecular Biology of the Cell, 10(10):3521–3538,
1999.

[52] Sara C. Madeira and Arlindo L. Oliveira. Biclustering algorithms for biological data
analysis: A survey. IEEE/ACM Transactions on Computuational Biology and Bioin-
formatics, 1(1):24–45, 2004.

[53] Raymond T. Ng, Laks V. S. Lakshmanan, Jiawei Han, and Alex Pang. Exploratory
mining and pruning optimizations of constrained association rules. In SIGMOD ’98:
Proceedings of the 17th International Conference on Management of Data, pages 13–24,
1998.

[54] David Page and Mark Craven. Biological applications of multi-relational data mining.
SIGKDD Explorations Newsletters, 5(1):69–79, 2003.

BIBLIOGRAPHY 78

[55] Jian Pei, Daxin Jiang, and Aidong Zhang. Mining cross-graph quasi-cliques in gene
expression and protein interaction data. In ICDE ’05: Proceedings of the 21st Interna-
tional Conference on Data Engineering, pages 353–354, Washington, DC, USA, 2005.
IEEE Computer Society.

[56] Jian Pei, Daxin Jiang, and Aidong Zhang. On mining cross-graph quasi-cliques. In
KDD ’05: Proceedings of the 11th International Conference on Knowledge Discovery
in Data mining, pages 228–238, New York, NY, USA, 2005. ACM.

[57] Amela Prelic, Stefan Bleuler, Philip Zimmermann, Anja Wille, Peter Buhlmann, Wil-
helm Gruissem, Lars Hennig, Lothar Thiele, and Eckart Zitzler. A systematic compar-
ison and evaluation of biclustering methods for gene expression data. Bioinformatics,
page btl060, 2006.

[58] N. Przulj, D. G. Corneil, and I. Jurisica. Efficient estimation of graphlet frequency
distributions in protein-protein interaction networks. Bioinformatics, 22(8):974–980,
2006.

[59] Gang Ren, Juan Wang, Ross Brinkworth, Barbara Winsor, Bostjan Kobe, and Alan L.
Munn. Verprolin cytokinesis function mediated by the hof one trap domain. Traffic,
6(7):575–593, 2005.

[60] Alexander Schliep, Christine Steinhoff, and Alexander Schönhuth. Robust inference
of groups in gene expression time-courses using mixtures of hmms. Bioinformatics,
20(1):283–289, 2004.

[61] E. Segal, M. Shapira, A. Regev, D. Pe’er, D. Botstein, D. Koller, and N. Friedman.
Module networks: identifying regulatory modules and their condition-specific regulators
from gene expression data. Nature Genetics, 34(2):166–176, June 2003.

[62] E. Segal, H. Wang, and D. Koller. Discovering molecular pathways from protein inter-
action and gene expression data. Bioinformatics, 19:i264–272, 2003.

[63] E. Segal, R. Yelensky, and D. Koller. Genome-wide discovery of transcriptional modules
from DNA sequence and gene expression. Bioinformatics, 19:i273–282, 2003.

[64] J. I. Semple, V. A. J. Smits, J. R. Fernaud, I. Mamely, and R. Freire. Cleavage and
degradation of claspin during apoptosis by caspases and the proteasome. Cell Death
and Differentiation, 14(8):14331442.

[65] Roded Sharan, Trey Ideker, Brian P. Kelley, Ron Shamir, and Richard M. Karp. Iden-
tification of protein complexes by comparative analysis of yeast and bacterial protein
interaction data. In RECOMB ’04: Proceedings of the 8th Annual International Con-
ference on Research in Computational Molecular Biology, pages 282–289, New York,
NY, USA, 2004. ACM.

BIBLIOGRAPHY 79

[66] Roded Sharan, Igor Ulitsky, and Ron Shamir. Network-based prediction of protein
function. Molecular Systems Biology, 3, 2007.

[67] Qizheng Sheng, Yves Moreau, Frank De Smet, and Kathleen Marchaland Bart De
Moor. Data Analysis and Visualization in Genomics and Proteomics, chapter Advances
in Cluster Analysis of Microarray Data, pages 153–173. John Wiley and Sons, 2005.

[68] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

[69] Radha Shyamsundar, Young Kim, John Higgins, Kelli Montgomery, Michelle Jorden,
Anand Sethuraman, Matt van de Rijn, David Botstein, Patrick Brown, and Jonathan
Pollack. A dna microarray survey of gene expression in normal human tissues. Genome
Biology, 6(3):R22, 2005.

[70] Scott B. Snapper and Fred S. Rosen. The wiskott-aldrich syndrome protein (wasp):
roles in signaling and cytoskeletal organization. Annual Review of Immunology, 17:905–
929, 1999.

[71] Victor Spirin and Leonid A. Mirny. Protein complexes and functional modules in
molecular networks. Proceedings of the National Academy of Sciences, 100(21):12123–
12128, 2003.

[72] Claus S. Srensen, Lasse T. Hansen, Jaroslaw Dziegielewski, Randi G. Syljůasen, Ce-
cilia Lundin, Jiri Bartek, and Thomas Helleday. The cell-cycle checkpoint kinase chk1
is required for mammalian homologous recombination repair. Nature Cell Biology,
7(2):195–201, January 2005.

[73] Chris Stark, Bobby-Joe Breitkreutz, Teresa Reguly, Lorrie Boucher, Ashton Bre-
itkreutz, and Mike Tyers. BioGRID: a general repository for interaction datasets.
Nucleic Acids Research, 34(Database issue):535–539, 2006.

[74] Pablo Tamayo, Donna Slonim, Jill Mesirov, Qing Zhu, Sutisak Kitareewan, Ethan
Dmitrovsky, Eric S. Lander, and Todd R. Golub. Interpreting patterns of gene expres-
sion with self-organizing maps: Methods and application to hematopoietic differentia-
tion. Proceedings of the National Academy of Sciences, 96(6):2907–2912, 1999.

[75] Amos Tanay, Roded Sharan, and Ron Shamir. Discovering statistically significant
biclusters in gene expression data. Bioinformatics, 18:S136–144, 2002.

[76] S. Tavazoie, J. D. Hughes, M. J. Campbell, R. J. Cho, and G. M. Church. Systematic
determination of genetic network architecture. Nature Genetics, 22(3):281–285, July
1999.

[77] Christopher Tiedje, Daniel G. Holland, Ursula Just, and Thomas Hofken. Proteins
involved in sterol synthesis interact with Ste20 and regulate cell polarity. Journal of
Cell Science, 120(20):3613–3624, 2007.

BIBLIOGRAPHY 80

[78] Amy H. Y. Tong, Guillaume Lesage, Gary D. Bader, Huiming Ding, Hong Xu, Xiaofeng
Xin, James Young, Gabriel F. Berriz, Renee L. Brost, Michael Chang, Yiqun Chen, Xin
Cheng, Gordon Chua, Helena Friesen, Debra S. Goldberg, Jennifer Haynes, Christine
Humphries, Grace He, Shamiza Hussein, Lizhu Ke, Nevan Krogan, Zhijian Li, Joshua N.
Levinson, Hong Lu, Patrice Menard, Christella Munyana, Ainslie B. Parsons, Owen
Ryan, Raffi Tonikian, Tania Roberts, Anne-Marie Sdicu, Jesse Shapiro, Bilal Sheikh,
Bernhard Suter, Sharyl L. Wong, Lan V. Zhang, Hongwei Zhu, Christopher G. Burd,
Sean Munro, Chris Sander, Jasper Rine, Jack Greenblatt, Matthias Peter, Anthony
Bretscher, Graham Bell, Frederick P. Roth, Grant W. Brown, Brenda Andrews, Howard
Bussey, and Charles Boone. Global mapping of the yeast genetic interaction network.
Science, 303(5659):808–813, February 2004.

[79] O. G. Troyanskaya, K. Dolinski, A. B. Owen, R. B. Altman, and D. Botstein. A
bayesian framework for combining heterogeneous data sources for gene function pre-
diction (in saccharomyces cerevisiae). Procedings of the National Academy of Sciences,
100(14):8348–8353, July 2003.

[80] Igor Ulitsky and Ron Shamir. Identification of functional modules using network topol-
ogy and high-throughput data. BMC Systems Biology, 1(8), 2008.

[81] C. von Mering, R. Krause, B. Snel, M. Cornell, S. G. Oliver, S. Fields, and P. Bork.
Comparative assessment of large-scale data sets of protein-protein interactions. Nature,
417(6887):399–403, May 2002.

[82] Jianyong Wang, Zhiping Zeng, and Lizhu Zhou. Clan: An algorithm for mining closed
cliques from large dense graph databases. In ICDE ’06: Proceedings of the 22nd In-
ternational Conference on Data Engineering, page 73, Washington, DC, USA, 2006.
IEEE Computer Society.

[83] Dong Xin, Jiawei Han, Xifeng Yan, and Hong Cheng. On compressing frequent patterns.
Data and Knowledge Engineering, 60(1):5–29, 2007.

[84] Xifeng Yan, Michael R. Mehan, Yu Huang, Michael S. Waterman, Philip S. Yu, and Xi-
anghong Jasmine Zhou. A graph-based approach to systematically reconstruct human
transcriptional regulatory modules. Bioinformatics, 23(13):i577–586, 2007.

[85] Xifeng Yan, X. Jasmine Zhou, and Jiawei Han. Mining closed relational graphs with
connectivity constraints. In KDD ’05: Proceedings of the eleventh ACM SIGKDD
International Conference on Knowledge Discovery in Data Mining, pages 324–333, New
York, NY, USA, 2005. ACM.

[86] Chengyong Yang, Erliang Zeng, Tao Li, and Giri Narasimhan. Clustering genes using
gene expression and text literature data. In CSB ’05: Proceedings of the 4th IEEE
Computational Systems Bioinformatics Conference, pages 329–340, Washington, DC,
USA, 2005. IEEE Computer Society.

BIBLIOGRAPHY 81

[87] K. Y. Yeung, C. Fraley, A. Murua, A. E. Raftery, and W. L. Ruzzo. Model-based cluster-
ing and data transformations for gene expression data. Bioinformatics, 17(10):977–987,
2001.

[88] Barry Zeeberg, Haiying Qin, Sudarshan Narasimhan, Margot Sunshine, Hong Cao,
David W. Kane, Mark Reimers, Robert M. Stephens, David Bryant, Stanley K. Burt,
Eldad Elnekave, Danielle M. Hari, Thomas A. Wynn, Charlotte Cunningham-Rundles,
Donn M. Stewart, David Nelson, and John N. Weinstein. High-throughput gominer,
an ’industrial-strength’ integrative gene ontology tool for interpretation of multiple-
microarray experiments, with application to studies of common variable immune defi-
ciency (cvid). BMC Bioinformatics, 6:168, 2005.

[89] Zhiping Zeng, Jianyong Wang, Lizhu Zhou, and George Karypis. Coherent closed quasi-
clique discovery from large dense graph databases. In KDD ’06: Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 797–802, New York, NY, USA, 2006. ACM.

[90] Shihua Zhang, Xuemei Ning, and Xiang-Sun Zhang. Brief communication: Identifica-
tion of functional modules in a ppi network by clique percolation clustering. Compu-
tational Biology and Chemistry, 30(6):445–451, 2006.

[91] Lizhuang Zhao and Mohammed J. Zaki. Tricluster: an effective algorithm for mining
coherent clusters in 3d microarray data. In SIGMOD ’05: Proceedings of the 24th
International Conference on Management of Data, pages 694–705, New York, NY,
USA, 2005. ACM.

[92] Xiaowei Zhu, Mark Gerstein, and Michael Snyder. Getting connected: analysis and
principles of biological networks. Genes and Development, 21(9):1010–1024, 2007.

[93] Lee Zou, David Cortez, and Stephen J. Elledge. Regulation of ATR substrate selection
by Rad17-dependent loading of Rad9 complexes onto chromatin. Genes and Develop-
ment, 16(2):198–208, 2002.

