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Abstract

Natural language processing tasks assume that the input is tokenized into individual words.

In languages like Chinese, however, such tokens are not available in the written form. This

thesis explores the use of machine learning to segment Chinese sentences into word tokens.

We conduct a detailed experimental comparison between various methods for word seg­

mentation. We have built two Chinese word segmentation systems and evaluated them on

standard data sets.

The state of the art in this area involves the use of character-level features where the

best segmentation is found using conditional random fields (CRF). The first system we

implemented uses a majority voting approach among different CRF models and dictionary­

based matching, and it outperforms the individual methods. The second system uses novel

global features for word segmentation. Feature weights are trained using the averaged

perceptron algorithm. By adding global features, performance is significantly improved

compared to character-level CRF models.

Key words: word segmentation; machine learning; natural language processing.
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Chapter 1

Introduction

Word segmentation refers to the process of demarcating blocks in a character sequence

such that the produced output is composed of separated tokens and is meaningful. For

example, "we live in an information age" is a segmented form of the unsegmented text

"weliveinaninformationage". Word segmentation is an important task that is prerequisite

for various natural language processing applications. For instance, only if we have identified

each word in a sentence, can part of speech tags (e.g. NNP or DT) then be assigned and

the syntax tree for the whole sentence be built. In systems dealing with English or French,

tokens are assumed to be already available since words have always been separated by

spaces in these languages. While in Chinese, characters are written next to each other

without marks identifying words. As an illustration, the character sequence "ft1f1j:1%1:Effi

Jj~J~'1i::" in Chinese written text has the same meaning as "we live in an information age"

in English; nevertheless, no white-space is used between the noun "ft1f1"(we), the verb "j:

1%" (live), the preposition "1:E"(in) and the nouns "f"8",§:'(information), "at1i::"(age). To

better understand Chinese and to achieve more accurate results for machine translation,

named entity recognition, information extraction and other natural language tasks dealing

with Chinese, segmentation has to be performed in advance so that words are isolated from

each other.

1.1 Challenges of Chinese Word Segmentation

Chinese word segmentation is considered to be a significantly challenging task for the fol­

low~ng reasons:

1



CHAPTER 1. INTRODUCTION 2

• First, it is challenging to produce the most plausible segmentation output. For ex­

ample, given the Chinese character sequence "~tffi*$':~It~"(Competitionamong

university students in Beijing), a plausible segmentation would be "~tffi(Beijing)/*

$':~(universitystudents)/ItJf(competition)". On the other hand, the character se­

quence "~tffi*$':"(Beijing University) is a named entity word, representing an insti­

tution. If we recognize "~tffi*$':" as the institution name, the segmentation for the

above character sequence would become "~tffi*$':(BeijingUniversity)/~(givebirth

to)/tt~(competition)"(BeijingUniversity gives birth to the competition), which is

not plausible. Also, there may be other segmentation results, such as "~tffi(Beijing)/*

$':(university)/~(givebirth to)/tt~(competition)",many of which, however, are not

plausible, either. Thus, different technical approaches can produce different segmen­

tations, and picking up the most plausible one is desirable while challenging.

• Second, out-of-vocabulary words are a major bottleneck in the segmentation process.

Resources are scarce, and the Chinese word repository is huge. As a result, any piece

of Chinese text may include character sequences that do not appear in dictionaries.

This greatly complicates the task of segmentation. For example, suppose we encounter

an unknown Chinese character, there are at least two possibilities: (1) this character

itself is an out-of-vocabulary word; (2) this character combining with the preceding

sequence of characters form an out-of-vocabulary word. In addition, various productive

processes can derive words that are inevitably omitted by any dictionary, for instance,

including morphologically derived words "$':~11"1" (students), derived by appending

the suffix "111" to the singular noun "$':~"(student). Moreover, new words are created

every day reflecting the political, social and cultural changes of the world. For example,

before the year 2002, the word "~~:!14-" (Severe Acute Respiratory Syndrome) was never

in the dictionary. As a consequence, it is expensive and unfeasible to frequently update

dictionaries, collecting and inserting these newly appearing words; therefore, there are

always going to be out-of-vocabulary words.

1.2 Motivation to Study This Problem

Due to the challenges it encounters, Chinese word segmentation is never considered a closed

problem, and in spite of the above difficulties, this task becomes more attractive for the

following reasons:
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• Accurately segmenting text is an important preprocessing step for related applications,

such as Chinese named entity recognition and machine translation. Before either of

these tasks can take place, it is convenient to segment text into words [4, 5, 50]. Also,

in speech synthesis applications, word boundary information is central to identify

tone changes in Mandarin spoken language. To illustrate, the character "-,, (one) is

pronounced in its first-tone if it is a single-character word, but changes to second-tone

when it is combined in front of a fourth-tone character to form a word, such as in ,,­

}l" (one piece). In order to make the correct tone modification, the speech generator

must be aware of word boundaries in text.

• Similar to Chinese, certain other human languages, such as Thai and Japanese Kanji,

don't contain spaces in their writing system, but display similar properties, such as

word length distribution, as in Chinese. Therefore, by exploring approaches to Chi­

nese word segmentation, given sufficient data, we can easily transfer segmentation

algorithms onto these other unsegmented writing systems to achieve more accurate

segmentation results, and better support various natural language processing tasks on

these other languages as well.

• The Chinese word segmentation task has similarities with certain other sequence learn­

ing problems. If we understand the word segmentation problem, we will be able

to apply the underlying technique to these other problems. For instance, in speech

recognition, an important sub-problem is automatic speech segmentation, in which

the sound signals are broken down and classified into a string of phonemes for pho­

netic segmentation. Also, another sub-problem, lexical segmentation, decomposes a

complex spoken sentence into smaller lexical segments. Other sequence learning tasks

include part-of-speech tagging, in which a word sequence is associated with a part­

of-speech tag sequence, which corresponds to grammatical categories like noun, verb,

and etc. Similar to tagging, another sequence learning task is finding non-recursive

phrasal chunks in a word sequence. Research into sequence learning can be re-used in

these different natural language processing tasks.
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1.3 Introduction to SIGHAN Bakeoff

4

To encourage and to promote better research in Chinese word segmentation, SIGHAN, the

Association for Computational Linguistics (ACL) Special Interest Group on Chinese Lan­

guage Processing, has been holding the International Chinese Word Segmentation Bakeoff

for several years.

The first bakeoff was held in 2003, and the results were presented at the second SIGHAN

Workshop at ACL 2003 in Sapporo, Japan [39]. The second bakeoff was held in 2005, and

the results were presented at the fourth SIGHAN Workshop at IJCNLP-05 on Jeju Island,

Korea [12]. The third bakeoff was held in 2006, and the results were presented at the fifth

SIGHAN Workshop at ACL 2006 in Sydney, Australia [25].

In each bakeoff, several corpora are available for the word segmentation task. For ex­

ample, in the third bakeoff, four corpora, one from Academia Sinica (CKIP), one from City

University of Hong Kong (CityU), one from Microsoft Research Asia (MSRA) and the other

one from University of Pennsylvania/University of Colorado (UPUC), were evaluated. The

participating teams may return results on any subset of these corpora. The only constraint

is that they are not allowed to select a corpus where they have previous access to the testing

portion of the corpus. Each training corpus is provided in the format of one sentence per

line, separating words and punctuation by spaces; while the corresponding test data is in

the same format, except that the spaces are absent.

Each bakeoff consists of an open test and a closed test. In the open test, the participants

are allowed to train on the training set for a particular corpus, and in addition, they may use

any other material including material from other training corpora, proprietary dictionaries,

material from the world wide web and so forth. In the closed test, however, they may only

use training material from the training data for the particular corpus they are testing on. No

other material or knowledge is allowed, including, but not limited to, part-of-speech infor­

mation, externally generated word-frequency counts, Arabic and Chinese numbers, feature

characters for place names, and common Chinese surnames.

Each submitted output is compared with the gold standard segmentation for that test

set, and is evaluated in terms of precision (P) l recall (R), evenly-weighted F-score(F), out-of­

vocabulary recall rate (Roov), and in-vocabulary recall rate (RIV)' In each year's bakeoff,

a scoring script, implementing the standard evaluation methodology, is officially provided.

Precision is defined as the number of correctly segmented words divided by the total
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number of words in the segmentation result, where the correctness of the segmented words

is determined by matching the segmentation with the gold standard test set. Recall is

defined as the number of correctly segmented words divided by the total number of words

in the gold standard test set. Evenly-weighted F-score is calculated by the following formula:

F
Precision x Recall x 2

-score = ---------=,-----,....­
Precision + Recall

The out-of-vocabulary recall rate is defined as the number of correctly segmented words

that are not in the dictionary, divided by the total number of words which are in the gold

standard test set but not in the dictionary. The in-vocabulary recall rate is defined as the

number of correctly segmented words that are in the dictionary, divided by the total number

of words which are in the gold standard test set and also in the dictionary.

1.4 Approaches and Contributions

In this thesis, two approaches solving the Chinese word segmentation problem are proposed.

The first approach adapts character-level majority voting among outputs from three different

methods to obtain performance higher than any of the individual methods. The second

approach uses global features, such as the sentence language model score, along with local

features in a discriminative learning approach to word segmentation. We use the averaged

perceptron as a global linear model over the N-best output of a character-based conditional

random field. Both systems are evaluated on the CityU, MSRA and UPUC corpora from

the third SIGHAN Bakeoff.

The main contributions of this thesis are as follows:

• We show that the majority voting approach improves the segmentation performance

over the individual methods. The voting procedure combines advantages from each of

its individual methods and produces results with high in-vocabulary recall rate and

high out-of-vocabulary recall rate.

• We discover that by including global features and combining them with local features

in averaged perceptron learning, the segmentation F-score is improved significantly,

compared to the character-based one-best CRF tagger and the perceptron algorithm

merely applying local features.
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1.5 Thesis Outline

6

The rest of the thesis is organized as follows. In Chapter 2, we provide an overview of

general approaches in Chinese word segmentation problem. In Chapter 3, the majority

voting method and its experimental results on the three corpora from the third SIGHAN

bakeoff are described in detail, and in Chapter 4, training a perceptron with global and local

features for Chinese word segmentation is explored. Finally, in Chapter 5, we summarize

the methods of this thesis and point out possible future work.



Chapter 2

General Approaches

In the literature, different methods have been proposed to deal with Chinese word segmen­

tation problem. In this chapter, we provide a general review of various types of approaches,

classified into three main categories: the dictionary-based matching approach, the character­

based or subword-based sequence learning approach, and the global linear model approach.

The dictionary-based matching approach is simple and efficient. It uses a machine­

readable lexical dictionary, which can be prepared beforehand, and it maps possible words

in sentences to entries in the dictionary. One major difficulty of this kind of approach is that,

in order to get a high-quality result, the dictionary has to be as complete as possible. Also,

dictionary matching using the greedy longest match can ignore plausible word sequences in

favor of implausible ones.

In the sequence learning approach, each character is assigned a particular tag, indicating

the position of that character within a word. Patterns or statistical information are obtained

from the tagged training examples with machine learning techniques, and this information is

then used to predict tags for unseen test data so that the optimal tag sequence is produced.

A global linear model, on the other hand, attempts not to attach probabilities to de­

cisions, but instead to compute scores for the entire word segmentation sentence using a

variety of features from the training set. It tends to choose the highest scoring candidate

y* as the most plausible output from GEN(x), a set of possible outputs for a given input x.

That is,

y* = argmax <I>(x, y) . W
yEGEN(x)

where <I>(x, y) represents the set of features, and w is the parameter vector assigning a

7



CHAPTER 2. GENERAL APPROACHES 8

weight to each feature in <I>(x, y).

Having briefly introduced these three general categories, in the subsequent sections of

this chapter, a few common methods from each category will be explained in detail.

2.1 Dictionary-based Matching

2.1.1 Greedy longest matching algorithm

The simplest and easiest-to-implement algorithm for Chinese word segmentation is the

greedy longest matching method. It is a dictionary-based approach, by traversing from

left to right in the current test sentence, greedily taking the longest match based on the

words in the lexical dictionary.

The basic form is quite simple, and it has been officially used as the model to produce

baseline scores in all SIGHAN bakeoffs [12, 25, 39]. It starts from the beginning of a sentence,

matches a character sequence as long as possible with words in the dictionary, and then it

continues the process, beginning from the next character after the identified word, until the

entire sentence is segmented. Suppose we have a character sequence "C1C2C3 ...". First,

we check to see whether "C1" appears in the dictionary. Then, "C1C2" is matched with

words in the dictionary, and "C1 C2C3" is examined, and so on. This process continues

until a character sequence with length longer than the longest word in the dictionary is

encountered. After that, the longest match will be considered as the most plausible one and

be chosen as the first output word. Suppose "C1C2" is the most plausible word, then we

start from the next character "C3" and repeat the above process over again. If, however,

none of the words in the dictionary starts with the character "C1", then "C1" is segmented

as a single-character word, and the segmentation process continues from "C2". This whole

procedure is repeated until the character sequence is completely segmented.

As an example, suppose the dictionary, extracted from the training set, contains the

following words: "ft1f1"(we), ":tE"(in), "m,Iffi:'(information), and "at1l;;"(age). For the un­

segmented test sentence "ft1f11:$:tEfi1LIffiJ~'1l;;"(we live in an information age), starting from

the beginning of this sentence, we find the first longest character sequence "ft1f1" , matching

entries in the dictionary, and we identify it as a word. Next, the character "1:" doesn't

have a corresponding entry in the dictionary; therefore, we output it as a single-character

word. Similarly, "$" is determined to be a single-character word as well. Continuing this

matching process from the character ":tE", we eventually produce the segmentation result
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as "ftfr1/1::/n5/tE/f§)~-/stf--c". This example shows the simplicity of the greedy longest

matching algorithm, and in addition, by comparing the segmentation result with the gold

standard "ftfl'1/1::n5/tE/f§,@,/stf--c", produced by human experts, we observe that it is

different from the gold standard and clearly realize the necessity of a large dictionary in

order to achieve the correct segmentation.

2.1.2 Segmentation using unigram word frequencies

At the Linguistic Data Consortium (LDC), Zhibiao Wu implemented a Chinese word seg­

mentation system1, which uses the dictionary words together with their unigram frequencies,

both of which are extracted from the training data set. Given an unsegmented sentence, its

segmentation is no longer based on the greedy longest match alone. Instead, the sentence is

segmented into a list of all possible candidates using the dictionary. Then, words from these

candidates are connected to form different segmentation paths for the whole sentence, and

dynamic programming is adapted to find the path which has the highest score. The score

for a sentence is the product of the unigram probabilities of the words in that sentence:

n

Yi,···, Y~ = argmaxP(Y1,"" Yn) = argmaxII P(Yi)
Yl,· .. ,Yn Yl,···,Yn i=l

If two paths return the identical score, then the one which contains the least number of

words is selected as the final path.

Here is a simple example. Suppose from the training data set, dictionary words and

their frequency counts are summarized in Table 2.1. We can also easily calculate each

word's probability.

To segment the sequence "abed", we first produce all its possible segmentations using

words in the dictionary. That is,

• a/b/c/d

• ab/c/d

• a/bc/d

Figure 2.1 shows all paths from the start towards the end of this sentence.

Ihttp://projects.ldc.upenn.edu/Chinese/LDC_ch.htm
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I Word ~ Frequency Count I Probability I
a 2 0.2
b 3 0.3
c 1 0.1
d 2 0.2
ab 1 0.1
bc 1 0.1

I TOTAL ~L--__1O 1_.0__

Table 2.1: An example for segmentation using unigram word frequencies

10

~ab~

start ~ a .. b .. c ~ d

~bC-~
---..~ end

Figure 2.1: Graph with different paths for segmentation using unigram word frequencies
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Given the words' probability information, the score for each path in Figure 2.1 is deter­

mined:

• a ----t b ----t C ----t d: 0.2 x 0.3 x 0.1 x 0.2 = 0.0012

• ab ----t C ----t d: 0.1 x 0.1 x 0.2 = 0.002

• a ----t be ----t d: 0.2 x 0.1 x 0.2 = 0.004

Thus, the path "a ----t be ----t d" has the highest score, and "abed" is segmented as "a/bc/d".

Comparing it with the greedy longest match which produces the result "ab/c/d", we can

see that these two algorithms are different.

In our experiments for Chinese word segmentation, to evaluate the above algorithm, we

uses the Perl program which implements the unigram word frequency segmenter, originally

written by Zhibiao Wu. The version we used in our experiments was a revision, kindly

provided to us by Michael Subotin2 and David Chiang3 , that has been fixed to work with

UTF-8 and to do full Viterbi for finding the best segmentation. However, as we shall see in

the experimental results in Section 3.7, it does not perform better than the greedy longest

matching algorithm.

2.2 Sequence Learning Algorithms

Chinese word segmentation can also be treated as a sequence learning task in which each

character is assigned a particular tag, indicating the position of that character within a

word. Patterns or statistical information is obtained from the tagged training examples

with machine learning techniques, and this information is then used to predict tags for

unseen test data so that the optimal tag sequence is produced.

Various tagsets have been explored for Chinese word segmentation [48]. Although differ­

ent tagsets can be used to recognize different features inside a word, on the other hand, the

choice of tagset has only a minor influence to the performance [35]. Combining the tagsets

in a voting scheme can sometimes lead to an improvement in accuracy as shown in [37]. The

two most typical types of tagset are the 3-tag "lOB" set and the 4-tag "BMES" set. In the

"lOB" tagset, the first character of a multi-character word is assigned the "B" (Beginning)

2msubotin@umiacs.umd.edu

3 chiang@isi.edu
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tag, and each remaining character of the multi-character word is assigned the "I" (Inside)

tag. For a single-character word, that character is assigned the "0" (Outside) tag, indicat­

ing that character is outside a multi-character word. While in the "BMES" tagset, for each

multi-character word, its first character is given the "B" (Beginning) tag, its last character

is given the "E" (End) tag, while each remaining character is given the "M" (Middle) tag.

In addition, for a single-character word, "S" (Single) is used as its tag (same as the "0" tag

in "lOB" tagset). For instance, the sentence "i,lTif;HjL#lJj=A jT S jfl!" (Report from

Xinhua News Agency on February 10th in Shanghai) is tagged as follows:

• With "lOB" Tagset: WJT-B if;-I H-I L-B #lJ-I =-B A -I T-B S -I fl!-O

• With "BMES" Tagset: WJT-B if;-M H-E L-B #iJ:-E =-B A -E T -B S-E fl!-S

After assigning tags to the training data, generative modeling or discriminative modeling

can be used to learn how to predict a sequence of character tags for the input unsegmented

sentence.

2.2.1 HMM - A Generative Model

A generative model is one which explicitly states how the observations are assumed to have

been generated. It defines the joint probability Pr(x,y), given the input x and the label y,

and it makes predictions by calculating Pr(y I x) and Pr(x), and then picks the most likely

label y E y. The Hidden Markov Model [32] is the typical model for Pr(x,y).

The Hidden Markov Model (HMM) defines a set of states. Suppose N is the number of

states in the model so that we can denote the individual states as s = {S1' S2, ... , SN}, and

the state at time t as qt. Also, M, the number of distinct observation symbols per state,

is known, and the individual symbols are denoted as v = {VI, V2, ... , VM }. In addition,

the transition probability a = {aij} where aij = P(qt+l = Sj I qt = sd, and the emission

probability b = {bj(k)} where bj(k) = P(Vk at t I qt = Sj) (1 ~ j ~ Nand 1 ~ k ~ M) are

given. Moreover, the initial state distribution 7T = {7Td, where 7Ti = P(ql = Si) (1 ~ i ~

N), is defined.

For example, the sentence "ft-B 11'1-1 ~-B $-1 ft-O ffi-B ,@,-I at-B 11::-1" can be de­

scribed as follows in Figure 2.2. Inside this figure, there are 3 states: B, I, and O. For this

sentence, the state sequence is (B, I, B, I, 0, B, I, B, I), and (ft, 1fl, ~, $, ft, is, ,@" at,

11::) represents its observation sequence (01,02,03,04,05,06,07,08,09), where each observa­

tion 0t is one of the symbols from v. Every arrow from one state to another state introduces
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Figure 2.2: An HMM example
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a transition probability, and every arrow from one state to its observation introduces an

emission probability.

In HMM, only the observation, not the state, is directly observable, and the data itself

does not tell us which state Xi is linked with a particular observation. An HMM computes

Pr(x1, X2," ., XT, 01, 02,· .. , aT) where the state sequence is hidden. Once we have an HMM

>. and an observation sequence 0 = 01, 02, ... , aT, there are three problems of interest as

originally stated in [32]:

• The Evaluation Problem: What is the probability that the observations are gen­

erated by the model? In other words, what is Pr(o I>')?

• The Decoding Problem: What is the most likely state sequence xi, x2' ... ,xT in

the model that produced the observation? In other words, we want to find the state

sequence that satisfies argmax Pr(XI,X2,'" ,XT,01,02,· .. ,aT).
XI,X2,···,XT

• The Learning Problem: How should we adjust the model parameters in order to

maximize Pr(o I>.)?

There are some crucial assumptions made in HMMs. First, in first order HMMs, the

next state is dependent only on the current state. That is, aij = P(qt+l = Sj I qt = Si)'

Even though the next state may depend on the past k states in a kth order HMM, due to the

high computational complexity, first order HMMs are the most commonly applied model.

Second, it is assumed that state transition probabilities are independent of the actual time at

which the transitions take place. That is, P(%+l = Sj 1% = Si) = P(qt2+1 = Sj Iqt2 = Si)

for any t1 and t2. Third, the current observation is statistically independent of the previous
t

observations. Mathematically, Pr(01, 02, ... ,at I q1, q2, ... , qt) = II P(0i I qi)'
i=l
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The Chinese word segmentation task can be treated as an example of the decoding

problem, finding the most likely state(tag) sequence given the observed character sequence:

Xi,X2"",XT = argmax Pr(x1,x2, ... ,XT,Ol,02, ... ,OT)
Xl,X2,···,XT

(2.1)

t

where Pr(x1,x2, ... ,XT,Ol,02,·.· ,OT) = II P(Xi+1 I Xi) X P(Oi I Xi) by the above Markov
i=l

assumptions.

A formal technique to solve this decoding problem is the Viterbi algorithm [45], a dy­

namic programming method. The Viterbi algorithm operates on a finite number of states.

At any time, the system is in some state, represented as a node. Multiple sequences of

states can lead to a particular state. In any stage, the algorithm examines all possible paths

leading to a state and only the most likely path is kept and used in exploring the most likely

path toward the next state. At the end of the algorithm, by traversing backward along

the most likely path, the corresponding state sequence can be found. Figure 2.3 shows the

pseudo-code for the Viterbi algorithm.

Initialization:

for i = 1, ... , N do
¢l(i) = 7fi' bi(Ol)
Sl (i) = i

end for

Recursion:

for t = 1, ... , T-1 and j = 1, ... , N do
¢t+1(j) = maXi=l, ... ,N(¢t(i) . aij . bj(ot})
St+1(j) = st(i).append(j), where i = argmaxi=l, ... ,N(¢t(i). aij . bj(ot})

end for

Termination:

p* = maxi=l, ... ,N(¢T(i))
s* = sT(i), where i = argmaxi=l, ... ,N(¢T(i)), and s* is the optimal state sequence.

Figure 2.3: The Viterbi algorithm

For example, suppose we have the character sequence "flt(I)1:E(at)~(here)£(in)" (I am

here). Table 2.2 shows the transition matrix, and Table 2.3 shows the emission matrix.

Suppose the initial state distribution is {7fB = 0.5, 7f1 = 0.0, 7fo = 0.5}.

The Viterbi algorithm to find the most likely tag sequence for this sentence proceeds as
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B 0.0 1.0 0.0
I 0.3 0.5 0.2
0 0.8 0.0 0.2

Table 2.2: Transition matrix

ft(l) 0.4 0.2 0.4
:tE(at) 0.1 0.1 0.8
JZ(here) 0.6 0.2 0.2
.m(in) 0.2 0.7 0.1

Table 2.3: Emission matrix

follows:

15

1. Suppose we have an initial start state s. For the first observation character "ft(I)" ,

the score Score ({of}) for leading to the state "B" equals

1rB X p(OI = ft IXl = B) = 0.5 x 0.4 = 0.2

Similarly, the score Score({of}) for leading to the state "0" can be calculated, and

it equals 0.2. Since there is no transition from the start state s to the state "I", its

corresponding path is ignored. This step is shown in Figure 2.4, in which the bold

arrows represent the most likely paths towards each of the two possible states "B" and

"0".

2. For the second observation character ":tE(at)", the path score from each of the previous

paths to each of the current possible states is examined. For example, the path score

Score({of ,o~}) is calculated as

Score({of}) X p(X2 = I IXl = B) X p(02 = 1£ I X2 = 1) = 0.2 x 1.0 x 0.1 = 0.02

Similarly, Score({of ,o~} ), Score({of ,of} ), Score({of ,o~} ), Score({of, on), and

Score({of, of}) are calculated as well, and the most likely paths towards each of the

three possible states "B", "I" and "0" are recorded (See Figure 2.5).
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0.2

8

~
~ 0.2

G
ft(l)

Figure 2.4: Step 1 of the Viterbi algorithm for the example

0.02

8
~ 0.2 0.02

G~G

:f:lI.(I) tE(al)

Figure 2.5: Step 2 of the Viterbi algorithm for the example

16
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3. Continuing this procedure for each of the remammg observations ":i!(here)" and

".£(in)", we eventually reach the final state j, and the best path to each interme­

diate state is produced (See Figure 2.6).

0.010752 0.010752

8~8

1Jt(1) a(at) ~(here) .£(in)

Figure 2.6: Step 3.2 of the Viterbi algorithm for the example

4. Then, starting from this final state j, we traverse back along the arrows in bold so that

the optimal path, which is the tag sequence we would like to get, is generated (See

Figure 2.7). In our example, it is the tag sequence "ft-o :tE-O :i!-B .£-1", representing

the segmentation result "ft/:tE/:i!'£" (I am here).

1Jt(1) a(at) ~(here) .£(in)

Figure 2.7: Back Traversing Step of the Viterbi algorithm for the example
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Although the generative model has been employed in a wide range of applications [1, 17,

29, 44], the model itself, especially a higher order HMM, has some limitations due to the

complexity in modeling Pr(x) which may contain many highly dependent features which are

difficult to model while retaining tractability. To reduce such complexity, in the first order

HMM, the next state is dependent only on the current state, and the current observation is

independent of previous observations. These independence assumptions, on the other hand,

seriously hurt the performance [2].

2.2.2 CRF - A Discriminative Model

Different from generative models that are used to represent the joint probability distribution

Pr(x, y), where x is a random variable over data sequences to be labeled, and where y is a

random variable over corresponding label sequences, a discriminative model directly models

Pr(y I x), the conditional probability of a label sequence given an observation sequence,

and it aims to select the label sequence that maximizes this conditional probability. For

many NLP tasks, the current most popular method to model this conditional probability is

using the Conditional Random Field (CRF) [24] framework. The prime advantage of CRF

over the generative model HMM is that it is no longer necessary to retain the independence

assumptions. Therefore, rich and overlapping features can be included in this discriminative

model.

Here is the formal definition of CRF, described by Lafferty et al. in [24]:

Definition Let g = (v, e) be a graph such that y = (Yv)vEv, so that y is indexed by the

vertices of g. Then (x, y) is a conditional random field in case, when conditioned on x, the

random variable Yv obey the Markov property with respect to the graph: P(Yv I x,yw, w =l­
v) = P(Yv I X,Yw,w rv v), where Wrvv means that wand v are neighbors in g.

As seen from the definition, CRF globally conditions on the observation x, and thus,

arbitrary features can be incorporated freely. In the usual case of sequence modeling, g is

a simple linear chain, and its graphical structure is shown in Figure 2.8.

The conditional distribution Pr(y I x) of a CRF follows from the joint distribution

Pr(x, y) of an HMM. This explanation of CRF is taken from [43]. Consider the HMM joint

probability equation:
T

Pr(x, y) = IT Pr(Yt I Yt-I) Pr(Xt I Yt)
t=l

(2.2)
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Q-Q-Q
j j

Figure 2.8: Graphical structure of a chained CRF
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(2.4)

We rewrite Equation 2.2 as

Pr(x, y) = ~ exp {L L Aijl5(Yt = i)8(Yt-l = j) + L L L J-Loi 8(Yt = i)8(xt = o)}
t i,jEs tiEs oEo

(2.3)

where () = {>.ij, J-Loi} are the parameters of the distribution, and they can be any real

numbers. 8 represents a set of features. For instance,

( )
{

I If Yt is assigned the tag B
8 Yt = B = o Otherwise

Every HMM can be written in Equation 2.3 by setting Aij = log P(Yt = i IYt-l = j) and J-Loi

= log P(Xt = 0 I Yt = i). Z is a normalization constant to guarantee that the distribution

sums to one.

If we introduce the concept of feature functions:

f ( ) {
fij(Y,y',x) = 8(y = i)8(y' = j) for each transition (i,j)

k Yt,Yt-l,Xt = ,
Jio(Y,Y ,x) = 8(y = i)8(x = 0) for each state-observation pair (i,o)

then Equation 2.3 can be rewritten more compactly as follows:

P(x,y) ~ ~ exp {t, .ld,(Yt, Yt-l, Xt )} .

Equation 2.4 defines exactly the same family of distributions as Equation 2.3, and therefore

as the original HMM Equation 2.2.

To derive the conditional distribution P(y Ix) from the HMM Equation 2.4, we write

P(x, y) exp { ~f=l Ak!k(Yt, Yt-I, xt} }
P(y Ix) = , = (2.5)

~y' P(x, y ) ~y' exp {~f=l Ak!k(y~, Y~-l' Xt) }
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This conditional distribution in Equation 2.5 is a linear chain, in particular one that includes

features only for the current word's identity. At this point, the graphical structure for the

CRF is almost identical to the HMM, allowing features that condition only on the current

word. However, the graphical structure can be generalized slightly to allow each feature

function to optionally condition on the entire input sequence. This new graphical structure

is shown in Figure 2.9. This leads to the general definition of linear chain CRFs:

(2.6)

where the subscript t in Yt-l and Yt refers to the graphical structure of the linear-chain CRF

as in Figure 2.9, and Z(x) is an instance-specific normalization function

Z(x) = I:yexp{I:f=l>'kfk(Yt,Yt-l,X)}.

Figure 2.9: Graphical structure of a general chained CRF

For example, in Chinese word segmentation, given an input sentence x=:m~*:i:~, the

CRF calculates conditional probabilities of different tagging sequences such as

(t ' SBMMEI' t ) exp{I:f=l>'kfk(Yt,Yt-l,X)}p aggmg = mpu = x = ,
Z(all possible taggings for x)

and picks the tag sequence that gives the highest probability. During this calculation,

various features are applied. For instance, one possible feature !k might be

f ( ) - {I if Yt-l=B, Yt=M, X-2=~(tO), xo=:i:(heavy)
100 Yt, Yt-l, x - o otherwise

where "X_2=~(tO)" represents that the character two positions to the left of the current

character is the character "~(to)", and where "xo=:i:(heavy)" represents that the cur­

rent character is ":i:(heavy)". The estimation of the parameters>. is typically performed
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by penalized maximum likelihood. For a conditional distribution and training data D =

{Xi, yi}f:, l' where each Xi is a sequence of inputs, and each yi is a sequence of the de­

sired predictions, we want to maximize the following log likelihood, sometimes called the

conditional log likelihood:
N

L(A) = L logp(yi Ixi).
i=l

(2.7)

After substituting the CRF model (Equation 2.6) into this likelihood (Equation 2.7) and

applying regularization to avoid over-fitting, we get the expression:

N T K .. T K A2

L(A) = LLLAk!k(y~1)'Y~~1,X(i») - LlogZ(x(i») - L 2:2 ' (2.8)
1=1 t=l k=l t=l k=l

Regularization in Equation 2.8 is given by the last term ~;;=1 #X. To optimize L(A),

approaches such as the steepest ascent along the gradient, Newton's method, or BFGS

algorithm, can be applied.

CRF has been widely adopted in natural language processing tasks. For example, part­

of-speech tagging with CRF such as in [11], base noun-phrase chunking with CRF such as

in [36], or named entity extraction with CRF such as in [21, 55]. Moreover, the toolkit,

CRF++4 [23], coded in C++ programming language, has successfully implemented the

CRF framework for sequence learning, and it is used extensively in our experiments.

2.3 Global Linear Models

For sequence learning approaches, tagged training sentences are broken into series of deci­

sions, each associated with a probability. Parameter values are estimated, and tags for test

sentences are chosen based on related probabilities and parameter values. While a global

linear model [9] computes a global score based on various features.

A global linear model is defined as follows: Let x be a set of inputs, and y be a set of

possible outputs. For instance, x could be unsegmented Chinese sentences, and y could be

the set of possible word segmentation corresponding to x .

• Each y E Y is mapped to a d-dimensional feature vector <I>(x,y), with each dimension

being a real number, summarizing partial information contained in (x, y) .

4available from http://crfpp.sourceforge.net/
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(2.9)

• A weight parameter vector w E ~d assigns a weight to each feature in <I>(x,y), repre­

senting the importance of that feature. The value of <I>(x,y) . w is the score of (x,y).

The higher the score, the more plausible it is that y is the output for x.

• In addition, we have a function GEN(x), generating the set of possible outputs y for

a given x.

Having <I>(x,y), w, and GEN(x) specified, we would like to choose the highest scoring

candidate y* from GEN(x) as the most plausible output. That is,

F(x) = argmax <I> (x, y) . W

YEGEN(x)

where F(x) returns the highest scoring output y* from GEN(x).

To set the weight parameter vector w, different kinds of learning methods have been

applied. Here, we describe two general types of approaches for training w: the perceptron

learning approach and the exponentiated gradient approach.

2.3.1 Perceptron Learning Approach

A perceptron [34] is a single-layered neural network. It is trained using online learning,

that is, processing examples one at a time, during which it adjusts a weight parameter

vector that can then be applied on input data to produce the corresponding output. The

weight adjustment process awards features appearing in the truth and penalizes features not

contained in the truth. After the update, the perceptron ensures that the current weight

parameter vector is able to correctly classify the present training example.

Suppose we have m examples in the training set. The original perceptron learning

algorithm [34] is shown in Figure 2.10.

The weight parameter vector w is initialized to O. Then the algorithm iterates through

those m training examples. For each example x, it generates a set of candidates GEN(x),

and picks the most plausible candidate, which has the highest score according to the current

w. After that, the algorithm compares the selected candidate with the truth, and if they

are different from each other, w is updated by increasing the weight values for features

appearing in the truth and by decreasing the weight values for features appearing in this

top candidate. If the training data is linearly separable, meaning that it can be discriminated

by a function which is a linear combination of features, the learning is proven to converge

in a finite number of iterations [13].
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Inputs: Training Data ((Xl, Yl), ... , (Xm,Ym)); number of iterations T
Initialization: Set W = 0
Algorithm:

for t = 1, , T do
for i = 1, , m do

Calculate Y~, where Y~ = argmax <I> (Xi , y) . W
yE GEN(x)

if Y~ i- Yi then
W = W + <I>(Xi, Yi) - <I>(Xi, Y~)

end if
end for

end for

Output: The updated weight parameter vector W

Figure 2.10: The original perceptron learning algorithm
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This original perceptron learning algorithm is simple to understand and to analyze.

However, the incremental weight updating suffers from over-fitting, which tends to classify

the training data better, at the cost of classifying the unseen data worse. Also, the algorithm

is not capable to deal with training data that is linearly inseparable.

Freund and Schapire [13] proposed a variant of the perceptron learning approach ­

the voted perceptron algorithm. Instead of storing and updating parameter values inside

one weight vector, its learning process keeps track of all intermediate weight vectors, and

these intermediate vectors are used in the classification phase to vote for the answer. The

intuition is that good prediction vectors tend to survive for a long time and thus have larger

weight in the vote. Figure 2.11 shows the voted perceptron training and prediction phases

from [13]' with slightly modified representation.

The voted perceptron keeps a count Ci to record the number of times a particular weight

parameter vector (Wi, Ci) survives in the training. For a training example, if its selected top

candidate is different from the truth, a new count cHl, being initialized to 1, is used, and

an updated weight vector (WHl' Ci+d is produced; meanwhile, the original Ci and weight

vector (Wi, Ci) are stored.

Compared with the original perceptron, the voted perceptron is more stable, due to

maintaining the list of intermediate weight vectors for voting. Nevertheless, to store those

weight vectors is space inefficient. Also, the weight calculation, using all intermediate weight

parameter vectors during the prediction phase, is time consuming.
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Training Phase
Input: Thaining data ((Xl, Yd, ... , (xm,Ym)), number of iterations T
Initialization: k = 0, WQ = 0, CI = 0
Algorithm:

for t = 1, , T do
for i = 1, , m do

Calculate y~, where y~ = argmax <I>(Xi,Y)' Wk
yEGEN(x)

if y~ = Yi then
Ck = Ck + 1

else
Wk+l = Wk + <I>(Xi, Yi) - <I>(Xi, y~)
Ck+l = 1
k=k+1

end if
end for

end for
Output: A list of weight vectors ((WI,CI), ... ,(Wk,Ck))

Prediction Phase
Input: The list of weight vectors ((WI, cd, ... , (Wk, Ck)), an unsegmented sentence x
Calculate:

y* = argmax (t ci<I>(x, y) . Wi)
YEGEN(x) i=l

Output: The voted top ranked candidate y*

Figure 2.11: The voted perceptron algorithm

24
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The averaged perceptron algorithm [7], an approximation to the voted perceptron, on

the other hand, maintains the stability of the voted perceptron algorithm, but significantly

reduces space and time complexities. In an averaged version, rather than using w, the aver­

aged weight parameter vector / over the m training examples is used for future predictions

on unseen data:

1
'V '"""" wi,t
1= mT L...J

i=l. ..m,t=I...T

In calculating /, an accumulating parameter vector (J is maintained and updated using w

for each training example. After the last iteration, (J / (mT) produces the final parameter

vector /. The entire algorithm is shown in Figure 2.12.

Inputs: Training Data ((Xl, Yd, ... , (xm,Ym)); number of iterations T
Initialization: Set w = 0, / = 0, (J = 0
Algorithm:

for t = 1, , T do
for i = 1, ,m do

Calculate Y:, where Y: = argmax <I> (Xi ,y) . W
yEGEN(x)

if Y: i= Yi then
w = w + <I>(Xi, Yi) - <I> (Xi ,Y:)

end if
(J=(J+W

end for
end for

Output: The averaged weight parameter vector / = (J / (mT)

Figure 2.12: The averaged perceptron learning algorithm

When the number of features is large, it is expensive to calculate the total parameter

(J for each training example. To further reduce the time complexity, Collins [8] proposed

the lazy update procedure. After processing each training sentence, not all dimensions

of (J are updated. Instead, an update vector T is used to store the exact location (p,t)

where each dimension of the averaged parameter vector was last updated, and only those

dimensions corresponding to features appearing in the current sentence are updated. p

represents the training example index where this particular feature was last updated, and

t represents its corresponding iteration number. While for the last example in the final
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iteration, each dimension of T is updated, no matter whether the candidate output is correct

or not. Figure 2.13 shows the averaged perceptron with lazy update procedure.

2.3.2 Exponentiated Gradient Approach

Different from the perceptron learning approach, the exponentiated gradient (EG) method [22]

formulates the problem directly as the margin maximization problem. A set of dual vari­

ables (ti,y is assigned to data points x. Specifically, to every point Xi 'E x, there corresponds

a distribution (ti,y such that (ti,y 2:: 0 and L y (ti,y = 1. The algorithm attempts to optimize

these dual variables (ti,y for each i separately. In the word segmentation case, Xi is a training

example, and (ti,y is the dual variable corresponding to each possible segmented output y

for Xi.

Similar to the perceptron, the goal in the EG approach is to find

F(x) = argmax cI>(x, y) . w
yEGEN(x)

as well, and the weight parameter vector w is expressed as

w = L (ti,y [cI>(Xi, Yi) - cI>(Xi, y)]
i,y

(2.10)

where (ti,yS are dual variables to be optimized during the EG update process.

Given a training set {(Xi, Yi)}f=l and the weight parameter vector w, the margin on the

segmentation candidate y for the i th training example is defined as the difference in score

between the true segmentation and the candidate y. That is,

M' = iF.(x' Y') . W - cI>(x' y) . W'l,Y 'J.' 1., 1. 1.,

For each dual variable (ti,y, a new (t~,y is obtained as

where

{
0 for Y = Yi

V'i,y =
1 - Mi,y for Y I=- Yi

(2.11)

(2.12)
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Inputs: Training Data ((Xl, YI), ... , (Xm,Ym)); number of iterations T
Initialization: Set w = 0, 'Y = 0, a = 0, T = 0
Algorithm:

for t = 1, , T do
for i = 1, , m do

Calculate y~, where y~ = argmax If>(Xi, y) . W
yEGEN(x)

if t #- T or i #- m then
if y~ #- Yi then

/ / Update active features in the current sentence
for each dimension s in (If>(Xi,Yi) -If>(Xi,Y~)) do

if s is a dimension in T then
/ / Include the total weight during the time
/ / this feature remains inactive since last update
as = as + W s . (t . m + i - tTs . m - iT.)

end if
/ / Also include the weight calculated from comparing y~ with Yi
Ws = Ws + If>(Xi, Yi) - If>(Xi, y~)
as = as + If>(Xi,Yi) -If>(Xi,Y~)
/ / Record the location where the dimension s is updated
Ts = (i,t)

end for
end if

else
/ / To deal with the last sentence in the last iteration
for each dimension s in T do

/ / Include the total weight during the time
/ / each feature in T remains inactive since last update
as = as + W s . (T. m + m - t Ts . m - iTs)

end for
/ / Update weights for features appearing in this last sentence
if y~ #- Yi then

w = w + If>(Xi, Yi) - If>(Xi, y~)
a = a + If>(Xi, Yi) - If>(Xi, y~)

end if
end if

end for
end for

Output: The averaged weight parameter vector 'Y = a/(mT)

Figure 2.13: The averaged perceptron learning algorithm with lazy update procedure

27
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and 'fJ is the learning rate which is positive and controls the magnitude of the update.

With these general definitions, Globerson et al. [15] proposed the EG algorithm with two

schemes: the batch scheme and the online scheme. Suppose we have m training examples. In

the batch scheme, at every iteration, the aiS are simultaneously updated for all i = 1, ... , m

before the weight parameter vector w is updated; while for the online scheme, at each

iteration, a single i is chosen and its ai's are updated before the weight parameter vector

w is updated. The pseudo-code for the batch scheme is given in Figure 2.14, and that for

the online scheme is given in Figure 2.15.

Inputs: Training Data ((Xl, Yd, ... , (x rn ,Yrn)); learning rate 'fJ > 0; number of iterations T
Initialization: Set ai,y to initial values; calculate w = I:i,y ai,y [<I>(Xi, Yi) - <I> (Xi , y)]
Algorithm:

for t = 1, , T do
for i = 1, , m do

Calculate Margins: Vy, Mi,y = <I> (Xi , Yi) . w - <I> (Xi , y) . w
end for
for i = 1, ... , m do

, Q' eTJ'Vi,y
Update Dual Variables: Vy, a i y t-- L ',M 1)V.

, y Oi,ye t,y

end for
Update Weight Parameters: w = I:i,y a:,y [<I> (Xi , Yi) - <I> (Xi , y)]

end for

Output: The weight parameter vector w

Figure 2.14: The batch EG algorithm

Hill and Williamson [16] analyzed the convergence of the EG algorithm, and Collins [7]

also pointed out that the algorithm converges to the minimum of

(2.13)

where

(
. ) _ { (1 - Mi,y) if (1 - Mi,y) > 0

I-M~y+-
, 0 otherwise

While in the dual optimization representation, the problem becomes choosing ai,y values to

maximize

'" 1 2Q(a) = L...J ai,y - "2llwll
i,YoFYi

(2.14)
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Inputs: Training Data ((Xl, YI),"" (Xm,Ym)); learning rate 1] > OJ number of iterations T
Initialization: Set ai,y to initial values; calculate w = Ei,y ai,y [<I> (Xi ,Yi) - <I>(Xi, y)]
Algorithm:

for t = 1, , T do
for i = 1, , m do

Calculate Margins: Vy, Mi,y = <I>(Xi, Yi) . w - <I>(Xi, y) . w
, Q_ e l1 "Vi,y

Update Dual Variables: Vy, ai y +- 2:: '.Y 1]V.
, y Qi,ye 1. , Y

Update Weight Parameters: w = Ei,y a:,y [<I>(Xi, Yi) - <I> (Xi , y)]
end for

end for

Output: The weight parameter vector w

Figure 2.15: The online EG algorithm

where

Here is a simple example for updating dual variables and the weight parameter vector

in one iteration. Suppose for a particular training example, there are four segmentation

candidates, each with its feature vector f containing three features iI, 12 and 13. Let's

assume that segmentation candidate 1 (i.e. Seg #1) is the truth. Table 2.4 shows the

update that occurs in one iteration.

Seg #1 (truth) Seg #2 Seg #3 Seg #4
f {iI = 2,12 = 2} {iI = 2,13 = I} {12 = 1,13 = I} {iI = 1,12 = 3}

Initial a 0.25 0.25 0.25 0.25
Initial w {0.5, 1.5, -1.25}
Margin 0 1.5 2 6.75

V7 0 1 - 1.5 = -0.5 1 - 2 = -1 1 - 6.75 = -5.75
e V

, with 1] = 1 eU = 1 e -U.5 ~ 0.61 e ·1 ~ 0.37 e -5:r5 ~ 0.0032

Updated a 0.5042 0.3076 0.1866 0.0016
Updated w {0.1882, 0.3764, -0.1914}

Table 2.4: Example for updating dual variables and the weight parameter vector in EG
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2.4 Summary
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In this chapter, various general methods that deal with Chinese word segmentation have been

explained. The dictionary-based matching methods, used in [12, 25, 39, 52]' are simple and

efficient. However, the performance is dependent on the size of the dictionary. On the other

hand, sequence learning approach does not carry out word matching, but rather it considers

segmentation as a character or subword tagging task, attaching probabilities to tagging

decisions. This state-of-the-art type of approach is applied extensively in segmentation

systems such as [24, 29, 30, 48, 52, 54]. In addition, global linear models compute global

scores based on features computed over the whole sentence [19, 26, 53].



Chapter 3

Majority Voting Approach

In this chapter, we discuss our Chinese word segmentation system, which is based on ma­

jority voting among three models: a greedy longest matching model, a conditional random

field (CRF) model with maximum subword-based tagging [52], and a CRF model with mini­

mum subword-based tagging. In addition, our system contains a post-processing component

to deal with data inconsistencies. Testing our system in the third SIGHAN bakeoff on the

closed track of CityU, MSRA and UPUC corpora, we show that our majority voting method

combines the strength from these three models and outperforms the individual methods.

3.1 Overall System Description

Our majority voting word segmentation system proceeds in three steps. In the first step, the

greedy longest matching method, which is a dictionary-based matching approach, is used

to generate a segmentation result. Also at the same time, the CRF model with maximum

subword-based tagging and the CRF model with minimum subword-based tagging, both of

which will be explained later in this chapter, are used individually to produce segmentation

results. In the second step, a character-level majority voting method takes these three seg­

mentation results as input and creates the initial output. In the last step, a post-processing

procedure is applied on this initial output to correct certain data inconsistency errors and

to get the final output. This post-processing procedure merges adjoining word candidates

to match with the dictionary entries and splits word candidates which are inconsistent with

entries in the training corpus. The overview of the whole system is shown in Figure 3.1.

This chapter is organized as follows: In Section 3.2, we provide a brief review of the

31
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Input Sentence
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Greedy CRFwith CRFwith

Longest Maximum Minimum

Matching Subword-based Subword-based

Tagging Tagging

Majority Voting

Post-processing

Result

Figure 3.1: Overview of the majority voting segmentation system
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greedy longest matching method. Section 3.3 describes the CRF model using maximum

subword-based tagging. Section 3.4 describes the CRF model using minimum subword­

based tagging, and in Section 3.5, the majority voting process is discussed. Section 3.6

talks about the post-processing step, attempting to correct the mistakes. Section 3.7 shows

the experimental results and analyzes the errors. Section 3.8 briefly discusses a modified

majority voting system in which minimum subword-based CRF-tagged candidate is substi­

tuted with character-based CRF-tagged candidate, while Section 3.9 summarizes this whole

chapter.

3.2 Greedy Longest Matching

Recall from Chapter 2 that the greedy longest matching algorithm is a dictionary-based

segmentation algorithm. It starts from the beginning of a sentence and proceeds through

the whole sentence, attempting to find the longest sub-sequence of characters matching any

dictionary word at each point. This algorithm is simple to understand, easy to implement,

efficient, and it maximizes the usage of dictionary. However, limited dictionary sizes com­

bined with frequent occurrences of unknown words become a major bottleneck if the greedy

longest matching approach is applied by itself.

3.3 CRF Model with Maximum Subword-based Tagging

Conditional random field, the discriminative sequence learning method, has been widely

used in various tasks [11, 21, 36, 55], including Chinese word segmentation [30, 52, 54].

In this approach, most existing systems apply the character-based tagger. For example,

"t~(all)/~*:I:~(extremelyimportant)" is labeled as "t~-o ~-B *-1 :1:-1 ~-I", using the

3-tagset.

In 2006, Zhang et al. [52] proposed a maximum subword-based "lOB" tagger for Chinese

word segmentation. This tagger proceeds as follows:

• First, the entire word list is extracted from the training corpus. Meanwhile, the

frequency count for each word in the list is recorded, and the words are sorted in

decreasing order according to their frequency count.

• Next, all the single-character words and the most frequent multi-character words are

extracted from this sorted list to form a lexicon subset.



CHAPTER 3. MAJORITY VOTING APPROACH 34

• Then, this subset is applied on the training data to tag the whole corpus in subword

format. For example, suppose we have the single-character words ":g~" (all), "~" (to)

and "*" (close), and the most frequent multi-character word ":I:~" (important) in

the lexical subset, then ":g~/~*:I:~" in the previous example is labeled as ":g~-O

~-B *-1 :I:~-I" instead.

• After that, the tagged corpus is fed into CRF++, for training the discriminative model.

At the same time, the test data is segmented with the greedy longest matching method,

using the lexicon subset as the dictionary.

• In the last step, CRF++ labels these initially segmented test data, according to the

learnt model, to produce the final segmentation result.

We implemented this maximum subword-based CRF learning as one of our three systems

to produce an initial segmentation for majority voting. Also, in all our experiments, we

defined the most frequent words to be the top 5% in the sorted multi-character word list.

Zhang et al. [52] observed in their experiments that, with the CRF-based tagging approach,

a higher out-of-vocabulary recall rate is achieved, at the cost of getting a very low in­

vocabulary recall rate. We claim that the majority voting procedure will take advantage

of the dictionary information used in the greedy longest matching method and that of the

frequent word information used in this maximum subword-based CRF model to raise the

low in-vocabulary recall rate. Also, the voting procedure will benefit from the high out-of­

vocabulary recall rate achieved from the CRF-based tagging algorithms.

The feature template for sequence learning in this method and in all our CRF-related

experiments is adapted from [52] and summarized in Table 3.1, defining the symbol c to be

character in a character-based CRF method or word in a subword-based CRF method, and

defining the symbol t to be the observation. 0 means the current position; -1, -2, the first

or second position to the left; 1, 2, the first or second position to the right.

3.4 CRF Model with Minimum Subword-based Tagging

In our third model, we apply a similar approach as in the previous model. However, instead

of using the maximum subwords, we explore the minimum subword-based tagger. At the

beginning, we build the dictionary using the whole training corpus. Without extracting

the most frequent words as is done in the maximum subword tagger, the whole dictionary
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Co

C-I

CI

C-2

Word features
C2

C-ICO

COCI

C-ICI

C-2 C-l

CQC2

Context features LIto

Table 3.1: CRF feature template
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is used to recognize subwords with minimum length in the training corpus. Each training

sentence is tagged in the same "lOB" format as before. Suppose "a", "ac", "de" and "acde"

are the only entries in the dictionary, and let us assume that "ac" and "de" are the top

frequent words appearing in the training corpus. Then, for the word "acde", here is the

comparison between the maximum subword tagging and the minimum subword tagging:

• Maximum subword tagging: aclB dell

• Minimum subword tagging: alB cll dell

After tagging the training corpus, the CRF++ package is used to train this type of model,

using feature templates identical to the ones in the maximum subword tagging approach.

Meanwhile, the greedy shortest matching algorithm is applied on the unsegmented test

data to produce the initial segmentation. When the CRF model training finishes, this

initial segmentation is fed into the CRF model for labeling, assigning the "lOB" tags for

each entity.

The whole process in this step can be represented as shown in Figure 3.2.
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Minimum Subword
Matching
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Figure 3.2: Overview of the minimum subword-based tagging approach
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3.5 Character-level Majority Voting

3.5.1 The Voting Procedure
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In this next step, with the segmentation results from the greedy longest matching, from the

CRF model with maximum subword-based tagging, and from the CRF model with minimum

subword-based tagging in hand, we apply the character-level majority voting algorithm.

First, for each character in a segmented sentence, we tag it either as "B" if it is the first

character of a word or a single-character word, or as "I" otherwise. (In word segmentation,

there is no "0" tag required - it can be always replaced with "B" tag. So for example,

"OBI" can be written as "BBI" without loss of information.) Then, for each corresponding

character from a specific sentence, if at least two of the models provide the same tag, that

specific tag will be assigned as the final tag for that character. For instance, considering the

character sequence "acde", Table 3.2 illustrates the voting procedure. Suppose "a/c/de"

Method Output

Greedy Longest Matching alB c/B d/B e/I
CRF model with Maximum Subword Tagging alB c/I d/I e/B
CRF model with Minimum Subword Tagging alB c/I d/B e/B

_V_OT_I_N_G_R_E_SU_L_T ---l~

Table 3.2: An example for the character-level majority voting

is the segmentation result from the greedy longest matching. "acd/e" is the result from

the CRF model with maximum subword-based tagging, and "ac/d/e" is the result from the

CRF model with minimum subword-based tagging. Then, for "a", since all segmentation

results assign "B' to it, "a" is tagged as "B"; for "c", because two of the segmentation

methods tag it as "I", "c" is tagged as "I". Similarly, the tag for each remaining character

is determined by this majority voting process, and we get "ac/d/e" as the final output in

this example.

3.6 Post-processing Step

To test the performance of each of the three models and that of the majority voting, we

divide the MSRA corpus into a training set and a held-out set. The training set takes 80%
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of the whole MSRA training corpus sentences, and the held-out set takes the remaining

20% of the MSRA training corpus sentences. Table 3.3 shows the performance on the held­

out set. Throughout the experiments we conduct, we discover that those two CRF models

produced segmentation results with high F-scores, and that the voting process improves the

performance further.

~Roov~
Greedy Longest Matching 91.9 95.7 93.7 2.1 98.3
CRF with Maximum Subword Tagging 95.6 95.4 95.5 68.9 96.1
CRF with Minimum Subword Tagging 95.5 95.0 95.3 68.6 95.8
Majority Voting 96.2 96.3 96.2 65.2 97.1

Table 3.3: Performance (in percentage) on the MSRA held-out set

While analyzing errors with the segmentation result from the held-out set, we find two

types of inconsistency problem: first, the inconsistency between the dictionary and the

segmentation result: that is, certain characters that consistently appear together as a single

word in the dictionary are separated into consecutive word candidates in the test result.

Second, the inconsistency among words in the dictionary. For instance, both "W~ tilf

JL"(scientific research) and "W~(science)/tilfJL(research)"appear in the training corpora,

reflecting different semantic meaning or being merely an error made by the human expert.

To deal with the first phenomena, for the segmented result, we merge adjoining word

candidates to match the dictionary entries, if the frequency of the adjoined word in the

training corpus is higher than that of the separated word sequence in the same corpus. Sup­

pose "a/b/c/de" is the original voting result, and the word "abc" appears more frequently

than the word sequence "a/b/c" in the training corpus. Then, we merge "a", "b" and "c"

together to form the output "abc/de".

For the second problem, we introduce the split procedure, which examines the word and

word sequence frequencies in the training corpus as well. In our system, we only consider

two consecutive word candidates. First, all word bigrams are extracted from the training

corpus, and their frequencies are counted. After that, for example, if the word bigram

"a/b" appears more often than the word candidate "ab", then whenever in the test result

we encounter "ab", we split it into "a/b".

The post-processing steps detailed above take word and word sequence frequencies into
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consideration, attempt to maximize the value of known words in the training corpus as

well as deal with the word segmentation inconsistencies in the training corpus. The perfor­

mance after post-processing on MSRA held-out set is shown in Table 3.4 with bold numbers

representing the highest F-score. From the table, we see that, after post-processing, the

performance catches up with that produced by the character-based CRF method.

Majority Voting 96.2 96.3 96.2 65.2 97.1
After Post-Processing 96.5 96.4 96.5 65.2 97.3
Character-based CRF 96.5 96.4 96.5 65.2 97.3

Table 3.4: Performance (in percentage) after post-processing on the MSRA heldout set

3.7 Experiments and Analysis

3.7.1 Experiment Corpora Statistics

The majority voting system is evaluated with the CityU corpus, the MSRA corpus, and the

UPUC corpus from the third SIGHAN bakeoff. The statistics, including sentence, word,

and character information for each training corpus, is summarized in Table 3.5. In addition,

Table 3.6 shows their corresponding test set sizes, counting the number of sentences.

I CityU corpus I MSRA corpus I UPUC corpus I

Number of Sentences 57,275 46,364 18,804
Number of Words 70,290,106 1,266,171 1,144,899
Number of Word Types 151,180 125,266 74,764
Number of Characters 15,074,091 2,169,879 1,235,673
Number of Character Types 10,224 9,534 8,586

Table 3.5: Statistics for the CityU, MSRA and UPUC training corpora

3.7.2 Results on the Experiment Corpora

To observe the result of majority voting and the contribution of the post-processing step, the

experiment is run on each corpus by first producing the result of majority voting and then
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I I CityU test set I MSRA test set I UPUC test set I
I Number of Sentences I 7,511 I 4,365 I 5,117 I

Table 3.6: Number of sentences for the CityU, MSRA and UPUC test sets
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producing the result from the post-processing step. In addition, the performance from the

standard character-based CRF method is recorded for comparison. In each experiment, the

precision (P), recall (R), evenly-weighted F-score (F), out-of-vocabulary recall rate (Roov),

and in-vocabulary recall rate (RIV) are recorded.

Tables 3.7, 3.8, 3.9 and Figures 3.3, 3.4, 3.5 show and compare the scores for different

algorithms applied on the CityU corpus, on the MSRA corpus, and on the UPUC corpus,

respectively, with bold numbers representing the highest F-score on each corpus.

ITIJO F I Roov [&J
Greedy Longest Matching 88.2 93.0 90.6 0.9 96.9
CRF with Maximum Subword Tagging 95.8 96.0 95.9 75.2 96.9
CRF with Minimum Subword Tagging 95.5 95.9 95.7 73.2 96.8
Majority Voting 95.8 96.5 96.1 69.9 97.6
After Post-processing 96.1 96.5 96.3 69.9 97.7

_C_h_a_r_a_ct_e_r-_b_a_se_d_C_R_F ---'~ 95.7 I 78.3 ~

Table 3.7: Performance (in percentage) on the CityU corpus

ITIJO F I Roov [lliiJ
Greedy Longest Matching 90.0 94.9 92.4 2.2 98.1
CRF with Maximum Subword Tagging 94.9 94.6 94.8 64.9 95.7
CRF with Minimum Subword Tagging 94.9 94.3 94.6 65.5 95.3
Majority Voting 95.3 95.5 95.4 61.6 96.6
After Post-processing 95.7 95.6 95.7 61.6 96.8

L-C_h_a_r_ac_te_r_-b_as_e_d_C_R_F ------'~ 94.7 I 66.9 ~

Table 3.8: Performance (in percentage) on the MSRA corpus
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Figure 3.3: Comparison for F-scores on the CityU corpus, with histogram representation
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Greedy Longest Matching 79.0 86.9 82.8 1.1 95.1
CRF with Maximum Subword Tagging 91.0 92.7 91.8 66.6 95.2
CRF with Minimum Subword Tagging 90.8 92.5 91.7 66.9 95.0
Majority Voting 90.9 93.2 92.0 63.0 96.1
After Post-processing 91.0 93.2 92.1 62.9 96.0

_C_h_a_ra_c_te_r-_b_as_e_d_C_R_F -----'~ 92.7 I 71.4 ~

Table 3.9: Performance (in percentage) on the UPUC corpus
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Figure 3.5: Comparison for F-scores on the UPUC corpus, with histogram representation
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From those tables, we observe that a simple majority voting algorithm produces an F­

score that is higher than each individual system. In addition, the post-processing step indeed

helps improve the performance. Also, we see that the system benefits from the CRF-based

taggers in that Roov is significantly higher than the greedy longest matching algorithm,

and it also benefits from the dictionary-based algorithms in that RIV is much higher than

the CRF-based taggers. Moreover, comparing with the state-of-the-art character-based

CRF algorithm, our majority voting system has higher F-scores in the CityU corpus and

the MSRA corpus, although it has lower performance in the UPUC corpus. In particular,

we observe that for each of these three corpora, RIV from our system is higher than the

value achieved from the character-based CRF algorithm, indicating that our system makes

better use of the dictionary. On the other hand, Roov is lower than the character-based

CRF algorithm, showing that the character-based CRF algorithm is still a sophisticated

algorithm for dealing with out-of-vocabulary words.

Next, with the MSRA corpus, we compare the performance of segmentation algorithm

using unigram word frequencies to that of the greedy longest matching algorithm. Also,

by substituting the greedy longest matching algorithm with the unigram word frequency­

based algorithm, the performance of majority voting is re-examined. Table 3.10 shows the

performance.

~Roov~
Segmentation using unigram word frequencies 88.7 94.7 91.6 2.2 97.9
CRF with Maximum Subword Tagging 94.9 94.6 94.8 64.9 95.7
CRF with Minimum Subword Tagging 94.9 94.3 94.6 65.5 95.3
New Majority Voting 95.3 95.5 95.4 61.6 96.7

Original Majority Voting ~ 61.6 ~
=:::=~==::-,=====~===:=:========~

=G:::::=re=e=dY==L=o=:=n~ge=s=:t;=M:::=a=t==c;=hl=·n=g========!~i==2.=2==[]IT]
_C_h_a_r_ac_t_er_-_ba_s_ed_C_R_F -l~ 66.9 ~

Table 3.10: Performance (in percentage) on the MSRA corpus, substituting the greedy
longest matching method with the unigram word frequency-based method in majority voting

From Table 3.10, we find that the segmentation algorithm with unigram word frequen­

cies has lower performance than the greedy longest matching algorithm, and also that by

substituting the greedy longest matching algorithm with the unigram word frequency-based
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algorithm in majority voting, the F-score does not have any improvement. Thus, in the re­

maining experiments of this thesis, we will ignore the segmentation algorithm using unigram

word frequencies.

3.7.3 Error analysis

Examining the segmentation result from these three corpora, we find that the errors that

occur in the system are mainly caused by the following factors:

First, there is inconsistency between the gold segmentation and the training corpus,

and even within the training corpus or within the gold segmentation itself. Although the

inconsistency problem within the training corpus is intended to be tackled in the post­

processing step, we cannot conclude that the segmentation for certain words in the gold

test set always follows the convention in the training data set. Moreover, errors made

by human experts in the gold standard test set contribute to the inconsistency issue as

well. For instance, in the UPUC gold set, the person name "'ffl~mt"(Lai, Yingzhao) has

two distinct segmentations, "ij1/~mt", and "'ffl~mt". In addition, the inconsistency issue,

perhaps as a result of some subtle context-based differences, is hard to model by current

methods. For example, in the MSRA training corpus, "~1lI !&Jff" (Chinese government)

and "~IlI/!&Jff" both appear, but in distinct surrounding context. Either of these two

segmentations is acceptable. For instance, in the phrase "~IlI!&Jff:fQAR:xtjGiJX:§ fjj;ftmffi

I~\" (Chinese government and people are confident to achieve the goal), it is segmented as "~

III (Chinese) I!&Jff(government) 1:fQ (and) IAR:(people) Ixt( to) IjGiJX:(achieve) I § fjj;(goal)1ft
m(fulfill)/f81~\(confidence))" since the adjective "~IlI"(Chinese) is related to both the

nouns "!&Jff"(government) and "AR:"(people). On the other hand, for the phrase "~IlI!&

Jff1ff81~\jGiJX:i!- § fjj;" (Chinese government is confident to achieve this goal), "~IlI!&Jff"

is considered as a single unique entity and thus is not separated. This inconsistency issue

lowers the system performance.

Second, we don't have specific steps to deal with words having common suffixes such as

"~" (person). Compared to our system, Zhang et al. [5:1.] proposed a segmentation system

that contains a morphologically derived word recognition post-processing component to

solve this problem. We only focus on the closed track and thus we cannot include such a

step. This prevents us from identifying certain types of words such as "9¥ii1J~"(worker).

In addition, unknown words are still troublesome because of the limited size of the

training corpora. In the class of unknown words, we encounter person names, numbers,
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dates, organization names and words translated from other languages. For example, in the

CityU test results, the translated person name "*P€f1jT¥4H1E~"(Mihajlovic) is incorrectly

separated as "*P€f1jT¥~" and "~1E~". Moreover, in certain cases, person names can also

create ambiguity. Take the person name ";jiJdt:1J"(Qiu, Beifang) in the UPUC test set for

example, without understanding the semantic meaning of the whole sentence, it is difficult

even for human to determine whether it is a person name or it represents ";jix"(autumn),

"~t:1J" (north), with the meaning of "the autumn in the north".

3.8 Minimum Subword-based CRF versus Character-based

CRF

From the experiments with the MSRA held-out set and with the CityU, MSRA and UPUC

test sets, we observe that although the minimum subword-based CRF algorithm produces

result whose F-score is relatively high, the character-based CRF algorithm still outperforms

it. Moreover, combining the greedy longest matching algorithm with the maximum subword­

based CRF algorithm is already capable to improve the in-vocabulary recall rate by including

the dictionary information. We propose that by replacing the result from the minimum

subword-based CRF algorithm with that from the character-based CRF algorithm, whose

Roov is much higher, during the voting process, the performance should be increased by

raising the Roov .

3.8.1 Experiments

To examine the above hypothesis, once again, we first use the MSRA held-out set for the

majority voting. The comparison result is shown in Table 3.11, with the bold number

representing the highest Roov.

~Roov~
~====:=:==:===:===:;=::==:======i
I New Majority Voting~ 66.3 []IQ]
I Original Majority Voting~ 65.2 ~

Table 3.11: Performance (in percentage) for majority voting using character-based CRF
algorithm on MSRA held-out set
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From the statistics, we see that, comparing with our previous voting strategy, after

voting, with sightly changes in Rand RIV, Roov increases more than 1%.

Then, we applied this new majority voting system with the CityU, MSRA and UPUC

test sets. Tables 3.12, 3.13, 3.14 and Figures 3.6, 3.7, 3.8 show and compare the scores for

different algorithms applied on the CityU corpus, on the MSRA corpus, and on the UPUC

corpus, respectively, with bold numbers representing the highest F-score on each corpus.

~ F IRoov~
Greedy Longest Matching 88.2 93.0 90.6 0.9 96.9
CRF with Maximum Subword Tagging 95.8 96.0 95.9 75.2 96.9
Character-based CRF 95.7 95.7 95.7 78.3 96.5
New Majority Voting 96.3 96.6 96.4 74.1 97.5
After Post-processing 96.5 96.6 96.6 74.1 97.6

..
I_O_n..::.g_ln_a_I_M_a-"-J_or_lt-"-y_y;_o_t_m-'g:::....- ---I~ 96.1 I 69.9 ~

Table 3.12: Performance (in percentage) on the CityU corpus, voting using the character­
based CRF algorithm

~ F I Roov c:&iJ
Greedy Longest Matching 90.0 94.9 92.4 2.2 98.1
CRF with Maximum Subword Tagging 94.9 94.6 94.8 64.9 95.7
Character-based CRF 95.2 94.3 94.7 66.9 95.3
New Majority Voting 95.4 95.4 95.4 62.9 96.6
After Post-processing 95.8 95.6 95.7 62.9 96.8

I_O_ri..::.g_in_a_I_M_a-'J_o_n-'ty'--y;_o_t_m--=g ---I~ 95.4 I 61.6 ~

Table 3.13: Performance (in percentage) on the MSRA corpus, voting using the character­
based CRF algorithm

We observe that by replacing the minimum subword-based CRF algorithm with the

character-based CRF algorithm during the voting process, the Roov for the MSRA test set

increases 1.1%. Moreover, the F-score for the CityU test set increases 0.3%, and its Roov

increases 4.2%. In addition, for the UPUC test set, its F-score even increases 0.7%, and its

Roov increases 2.6%.
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Figure 3.6: Comparison for F-scores on the CityU corpus, voting using the character-based
CRF algorithm, with histogram representation
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Figure 3.7: Comparison for F-scores on the MSRA corpus, voting using the character-based
CRF algorithm, with histogram representation
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Greedy Longest Matching 79.0 86.9 82.8 1.1 95.1
CRF with Maximum Subword Tagging 91.0 92.7 91.8 66.6 95.2
Character-based CRF 92.2 93.1 92.7 71.4 95.2
New Majority Voting 91.4 93.3 92.4 65.6 96.0
Post-processing 91.5 93.3 92.4 65.6 96.0

..
I_O_r---'lg=--m_a_I_M_a....::.J_or_lt..:....y_Y,_o_tl_ng-=--- ~ 92.0 I 63.0 ~

Table 3.14: Performance (in percentage) on the UPUC corpus, voting using the character­
based CRF algorithm
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Figure 3.8: Comparison for F-scores on the UPUC corpus, voting using the character-based
CRF algorithm, with histogram representation
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3.8.2 Significance Test
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To test whether the improvement is significant, comparing the majority voting method

containing the character-based CRF(i.e. Vote_ChaLCRF) to the method containing the

minimum subword-based CRF(i.e. Vote_Min_CRF), we carry out McNemar's Test! [14].

We assume that the errors are independent.

The distributions of errors, counted by words, for the CityU test set, for the MSRA test

set, and for the UPUC test set are listed in Table 3.15, 3.16 and 3.17, respectively.

Vote-Min_CRF
Correct Incorrect Total

Correct 211,971 (noo) 639 (nOl) 212,610
Vote_ChaLCRF Incorrect 426 (nlO) 7,143 (nll) 7,569

Total 212,397 7,782 220,179

Table 3.15: Word error distribution on the CityU corpus, from majority voting methods

Vote-Min_CRF
Correct Incorrect Total

Correct 95,655 (noo) 109 (nod 95,764
Vote_Char_CRF Incorrect 149 (nlO) 4,447 (nll) 4,596

Total 95,804 4,556 100,360

Table 3.16: Word error distribution on the MSRA corpus, from majority voting methods

Vote-Min_CRF
Correct Incorrect Total

Correct 143,879 (noo) 667 (nod 144,546
Vote_Char_CRF Incorrect 392 (nlO) 9,926 (nll) 10,318

Total 144,271 10,593 154,864

Table 3.17: Word error distribution on the UPUC corpus, from majority voting methods

lScript applied from http://www.fon.hum.uva.nl/Service/Statistics/McNemars_test.html
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With these statistics, we can perform the McNemar's test, which tests the null hy­

pothesis that the performance improvement between the Vote_ChaLCRF method and the

Vote_Min_CRF method is simply by chance, and which computes a 2-tailed P-value to test

this hypothesis based on the following formula:

{

2I:~~o (~)(~)k
P-value= 2",k (k)(l)k

L...-m=nlO m 2

1.0

when nlO < k/2

when nlO > k/2

when nlO = k/2

(3.1)

where k = nlO + nm. Note that nOl and nlO are defined in Tables 3.15, 3.16 and 3.17.

I Data Set I P-Value

CityU :::; 8.28e-ll
MSRA :::; 0.0152
UPUC :::; 3.82e-17

Table 3.18: P-values computed using the McNemar's test on the CityU, MSRA and UPUC
corpora, for comparison of majority voting methods

From the calculated P-values in Table 3.18, we are therefore confident to conclude that,

by replacing the minimum subword-based CRF algorithm with the character-based CRF

algorithm, the Roov from the majority voting increases, and the overall performance also

increases significantly.

3.9 Summary of the Chapter

In this chapter, the Chinese word segmentation system, which is based on majority vot­

ing among initial outputs from the greedy longest matching, from the CRF model with

maximum subword-based tagging, and from the CRF model with minimum subword-based

tagging, is described in detail. Our experimental results show that the majority voting

method takes advantage of the dictionary information used in the greedy longest match­

ing algorithm and that of the subword information used in the maximum subword-based

CRF model, and thus raises the low in-vocabulary recall rate. Also, the voting procedure

benefits from the high out-of-vocabulary recall rate achieved from the two CRF-based tag­

ging algorithms. Our majority voting system improved the performance of each individual
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algorithm. In addition, we experimented with various steps in post-processing which effec­

tively improved the overall performance. Moreover, we examined that by substituting the

minimum subword-based CRF model with character-based CRF model during the majority

voting, we can make better usage of its higher out-of-vocabulary recall rate to raise Roov
and the overall performance.



Chapter 4

Global Features and Global Linear

Models

In this chapter, we propose the use of global features to assist with local features in training

an averaged perceptron on N-best candidates for Chinese word segmentation. Our experi­

ments show that by adding global features, performance is significantly improved compared

to the character-based CRF tagger. Performance is also improved compared to using only

local features. Testing on the closed track of the CityU, MSRA and UPUC corpora from

the third SIGHAN bakeoff, our system obtains a significant improvement in F-score from

95.7% to 97.1%, from 95.2% to 95.8%, and from 92.8% to 93.1%, respectively, comparing

with the character-based CRF tagger.

The chapter is organized as follows: Section 4.1 provides an overview of the system;

Section 4.2 describes the system architecture in depth; Section 4.3 shows and analyzes the

experimental results; Section 4.4 explores the weight learning for global features; Section 4.5

compares the N-best list re-ranking method with the beam search decoding approach; while

Section 4.6 briefly explores another global linear model - the exponential gradient learning

approach; Section 4.7 discusses related works, and Section 4.8 gives the summary for this

chapter.

52
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4.1 Averaged Perceptron Global Linear Model

Our averaged perceptron word segmentation system implements the re-ranking technique.

The overview of the entire system is shown in Figure 4.1. For each of the training corpora,

we produce a 10-fold split: in each fold, 90% of the corpus is used for training and 10% is

used to produce an N-best list of candidates. The N-best list is produced using a character­

based CRF tagger. The true segmentation can now be compared with the N-best list in

order to train with an averaged perceptron algorithm. This system is then used to predict

the best word segmentation from an N-best list for each sentence in the test data.

Conditional Random
Field

Global Features

Conditional Random
Field

Output

Training With
Average Perceptron

Decoding With
Average Perceptron

Local Features

Figure 4.1: Overview of the averaged perceptron system
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4.2 Detailed System Description
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Recall from Chapter 2 that, given an unsegmented sentence x, the Chinese word segmenta­

tion problem can be defined as finding the most plausible output sentence F(x) from a set

of possible segmentations of x:

F(x) = argmax <lJ(x, y) . W
yEGEN(x)

where GEN(x) is the set of possible segmentations for the input sentence x. The weight

parameter vector w, being initially set to 0, is maintained and updated while iterating

through the training set during the perceptron learning process (See Figure 2.10).

In our system, the averaged perceptron algorithm, which is capable of r-educing over­

fitting on the training data and producing a more stable solution, is implemented. Also, the

lazy update process is adapted to reduce the time taken for training.

4.2.1 N-best Candidate List

In Figure 2.10, in order to calculate GEN(Xi) in argmaxyEGEN(Xi) , the naive method can be

implemented to first generate all possible segmented candidates for the character sequence.

For a sentence with L characters, there are 2£-1 possible segmentations. For example,

suppose we have a sentence with 3 characters "abc", then the following 4 candidates are to

be generated: "abc", "a/be", "ab/c", and "a/b/c". When L is large, however, generating

those segmentations and picking the one with the highest score is time consuming. For

instance, if L=20, then over 500,000 candidates are required to be produced and examined.

Our system makes use of the re-ranking approach. Re-ranking has been broadly applied

in various natural language tasks such as parsing [6] and machine translation [38]. The

general intuition of any re-ranking method is to apply a separate model to re-rank the

output of a base system. For each input sentence, this base system produces a set of

candidate outputs, and defines an initial ranking for these candidates. The second model

attempts to improve upon this initial ranking so that candidates that are closer to the truth

get a higher rank. In our system, only a small portion of all possible segmentations, that

is, the N-best ranked candidate segmentations, are produced by the CRF++ package, and

the perceptron learning model tends to re-rank these candidates to pick the one closest to

the truth.
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We use the standard method for producing N-best candidates in order to train our re­

ranker which uses global and local features: lO-folds of training data are used to train the

tagger on 90% of the data and then produce N-best lists for the remaining 10%. This process

gives us an N-best candidate list for each sentence and the candidate that is most similar

to the true segmentation, called yb. Notice that in this modeling process, the characters in

the training sentences are assigned "BMES" tags l , and the same feature templates listed in

Table 3.1 are applied in CRF tagging.

Figure 4.2 shows the modified averaged perceptron algorithm on the N-best candidate

list.

Inputs: Training Data ((Xl, YI), ... , (xm,Ym)/; number of iterations T
Initialization: Set w = 0, , = 0, (j = 0
Algorithm:

for t = 1, , T do
for i = 1, , m do

Calculate Y;, where Y; = argmax <I>(y) . W
YEN-best Candidates

if y; =I- yb then
W = W + <I>(yb) - <I>(y;)

end if
(j=(j+W

end for
end for

Output: The averaged weight parameter vector, = (j j(mT)

Figure 4.2: The averaged perceptron learning algorithm on the N-best list

4.2.2 Feature Templates

The feature templates used in our system include both local features and global features.

For local features, the 14 feature types from Zhang and Clark's paper [53] in ACL 2007 are

adapted, and they are shown in Table 4.1.

While a local feature indicates the occurrence of a certain pattern in a partially seg­

mented sentence, a global feature provides information about the entire sentence. Our

Iperformance of the CRF tagger might be improved with the use of other tagsets. However, this does
not affect our comparative experiments
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1 word W

2 word bigram WlW2

3 single character word W

4 space-separated characters Cl and C2

5 character bi-gram ClC2 in any word
6 a word starting with character C and having length l
7 a word ending with character C and having length l

8 the first and last characters Cland C2 of any word
9 word W immediately before character C

10 character C immediately before word W

11 the starting characters Cl and C2 of two consecutive words
12 the ending characters Cl and C2 of two consecutive words
13 a word of length l and the previous word W

14 a word of length l and the next word W

Table 4.1: Local feature templates
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global features are different from commonly applied "global" features in the literature, in

that they either enforce consistency or examine the use of a feature in the entire training

or testing corpus. In our system, two specific global features are included: the sentence

confidence score feature and the sentence language model score feature, shown in Table 4.2.

sentence confidence score
sentence language model score

Table 4.2: Global feature templates

Sentence confidence scores are calculated by CRF++ during the production of the N­

best candidate list, and they measure how confident each candidate is close to the true

segmentation. They provide an important initial rank information, which cannot be ignored

in the re-ranking phase, for each candidate in the N-best list. The scores are probabilities,

which means that for the N-best candidate list {Cl, C2, ... , cn} of a particular example, 0::::;

Pc; ::::; 1 and Per + PC2 + ... + PCn = 1.
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Sentence language model scores are produced using the SRILM [41] toolkit2 . They

indicate how likely a sentence can be generated given the training data, and they help

capture the usefulness of features extracted from the training data. The n-gram word

statistics, where n is between 1 and 3, for the whole training corpus, is generated by this

toolkit and is then applied on each N-best candidate to calculate its language model score.

It is normalized using the formula pIlL, where P is the probability-based language model

score and L is the length of the sentence in words (not in characters). Since SRILM returns

the score in log-probability form, the value we will use for this feature is I (log(P)) j L I.
In our perceptron learning process, the weights for local features are updated so that

whenever a mismatch is found between the best candidate yb and the current top-scored

candidate Ctop , the weight parameter values for features in yb are incremented, and the

weight parameter values for features appearing in Ctop are decremented. For the global

features, however, their weights are not learned using the perceptron algorithm but are

determined using a development set.

4.2.3 A Perceptron Learning Example with N-best Candidate List

To illustrate the process of perceptron training using N-best candidate list, we provide an

example for weight learning, assuming that only local features are applied and that the

weights for global features are all zero. For simplicity, only Features 1-5 in Table 4.1 are

applied in this example.

Suppose the whole training set only contains one training example, and its N-best list

includes 6-best possible segmentation sentences, as shown below, and the number of iteration

t is set to be 3:

• The Best Candidate: ft1f1(we)j1:.m(live)j:tE(in)jf§,~,(information)jat1-t(age)

• Candidate 1: ft1fl (we) j1:. (born)jm (alive) j:tE(in)jf§,~,(information)jat1-t(age)

• Candidate 2: ft1l'1(we)j1:.m:tE(live in)jf§,~,(information)jat1-t(age)

• Candidate 3: ft1l1(we)j1:.m(live)jft(in)j1i~L~Jt1-t(information age)

• Candidate 4: ft11'1(we)j1:.m:tE(live in)jf§,~,at1-t(information age)

2available from http://www.speech.sri.com/projectsjsrilmj
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• Candidate 5: ft1f1(we)/-±'(born)/$(alive)/1:E(in)/f§,IffiJtf~(information age)

• Candidate 6: ft1f1 (we) /-±.$(live) /1:E(in) /f§,Iffi,(information)/at1~(age)
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During the first iteration, since W is initialized to zero, all those six candidates have

equal possibility of being chosen as the top-scored one because the score for each of them

is zero. We choose Candidate 1 to be our candidate. Comparing the best candidate and

Candidate 1,

• The Best Candidate: ft1n(we)/-±'$(live)/1:E(in)/f§,Iffi,(information)/at1~(age)

• Candidate 1: ftff1 (we)/-±.(born) /$(alive)/1:E(in) /f§,Iffi,(information) /at1~(age)

we see that they are not identical. Thus, we reward features appearing in the best candidate

and penalize features in this chosen candidate, and achieve the following weight vector WI:

F 1
-±.$(live) : 1 -±'(born) : -1
ffl(alive) : -1
(fItir1(we), ±ffl(1ive)) : 1 (±$(live), 1:i:(in)) : 1

F2 (1:JG1IJ(we), ~(born)) : -1 (~(born), ~(alive)) : -1
(ffl(alive), tE(in)) : -1

F3 ±(born) : -1 $(alive) : -1
F4 (±(born), $(alive)) : -1
Fs (±(born), $(alive)) : 1

Table 4.3: Updated weight vector WI in the perceptron learning example

In the second iteration, each candidate in the 6-best list is re-scored using this updated

weight vector. For example, for Candidate 3, its weight corresponding to each feature is

summarized to be:

• Weight for F 1 in Sentence 3: -±.$(live) : 1

• Weight for F2 in Sentence 3: (ft1f1(we) , -±.$(1ive)) : 1 ; (-±.$(1ive), 1:E(in)) : 1

• Weight for Fs in Sentence 3: (-±.(born), $(alive)) : 1

Therefore, the score for Candidate 3 is 4 (Le. Score (S3) = 4). Similarly, we calculate

scores for the remaining sentences in this 6-best list, and get Score(sd = -8, Score(s2) = 1,
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Score(s3) = 4, Score(s4) = 1, Score(s5) = -8, and Score(s6) = 4. From these scores, we see

that, Candidate 3 and Candidate 6 have the highest score. We choose Candidate 3 to be

our top candidate.

Comparing the best candidate with Candidate 3:

• The Best Candidate: fJ<:fr1(we)/1:m(live)/:tE(in)/f§)~,(information)/a11"t(age)

• Candidate 3: fJ<:1I'1(we)/1:m(live)/:tE(in)/1§,@J11"t(information age)

we realize that these two sentences are not identical, either. Therefore, we again reward

features appearing in the best candidate and penalize features in Candidate 3, and achieve

the following updated weight vector W2, with the boldfaced part being the updated or newly

added features:

1
-1
1
1

-1
-1

(age»: 1
-1
-1
1

-1
1

-1
1

-1
1

-1
-1
1

-1

Table 4.4: Updated weight vector W2 in the perceptron learning example

In the third iteration, each candidate in the 6-best list is re-scored using this freshly

updated weight vector, and get the score for each sentence in the 6-best list: Score(sI) = -3,

Score(s2) = 5, Score(s3) = 1, Score(s4) = -2, Score(s5) = -11, and Score(s6) = 9. Due to the

highest score Candidate 6 gets, it is selected as the current top candidate. By comparing

the best candidate with Candidate 6, we find that they are identical, and therefore, the

weight vector does not change: W3 = W2. The updating for the weight vector is finished,

and in the averaged perceptron learning, the final target vector is calculated by

to become the one in Table 4.5.
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~$(live) : 1 ~(born) : -1
F 1 rtS(alive) : -1 fj:j)~,(information) : 2/3

a'T1l:: (age) : 2/3 is }~,a'T1l::(informationage) : -2/3
(ft1f1(we), :±m(live)) : 1 (:±$(live), 1'±(in)) : 1

F2
(1Jt1l'J(we), ':f(born)) : -1 (':f(born), rtS(alive)) : -1
(m(alive), {±(in)) : -1 (T:t:(in), is)~,(information)) : 2/3
(1s}i!!,(information), a'T1l::(age)) : 2/3 U±(in), 1s)i!!,a'T1l::(information age)) : -2/3

F3 :±(born) : -1 rtS(alive) : -1
F4 (:±(born), $(alive)) : -1 U~,(breath), a'T(hour)) : 2/3
F5 (:±(born), $(alive)) : 1 (,~,(breath), a'T(hour)) : -2/3

Table 4.5: Final weight vector in the perceptron learning example

4.3 Experiments

To test the performance of our system, the CityU, MSRA and UPUC corpora from the third

SIGHAN bakeoff are used once again, following the closed track.

4.3.1 Parameter Pruning

First, we experimented on the development set of the UPUC corpus to find a suitable value

for the parameter n, the maximum number of N-best candidates. This oracle procedure

proceeds as follows: 80% of the training corpus is used to train the CRF model, which is used

to produce the N-best outputs for each sentence on the remaining 20% of the corpus. Then,

these N candidates are compared with the true segmentation, and for each training sentence,

the candidate closest to the truth is chosen as the final output. As we increase the value of

n, for some sentences, its n-best candidate list is more likely to contain a segmentation that

will improve the overall F-score (Figure 4.3). However, the cost of choosing a larger value

of n leads to increased time complexity in the perceptron learning algorithm. To balance

accuracy and speed, we choose n to be 20 in all remaining experiments.

Next, the weight for sentence confidence score Serf and that for language model score

Sim are determined. In this step, each training corpus is separated into a training set, which

contains 80% of the training corpus, and a development set containing the remaining 20%

of the training corpus. Then, the perceptron algorithm is applied on the training set with

different Serf and Sim weight values, and for various number of iterations. The weight values
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Figure 4.3: F-score on the UPUC development set with different n

we test include 2, 4, 6, 8, 10, 15, 20, 30, 40, 50, 100 and 200, across a wide range of scales. As

we can see, there will be a significant number of testing scenarios (i.e. 12 x 12 = 144 testing

scenarios) in order to pick the most suitable weight values for each corpus. To simplify the

process, we assume that the weights for both Serf and Sim are equal. Figures 4.4, 4.5, 4.6

show the F-scores on each of the three corpora using different Serf and Sim weight values

with different number of iterations t. From the tables, we observe that when the weight for

Serf and Sim increases, F-score improves; however, if the weight for Serf and Sim becomes too

large to overrule the effect of weight learning on local features, F-score drops down. For the

remaining experiments, the weight for Serf and Sim is chosen to be 15 for the CityU corpus,

to be 15 for the MSRA corpus, and to be 20 for the UPUC corpus.

While determining the weights for global features, the number of training iterations can

be determined as well. The trends from Figures 4.4, 4.5, 4.6 show that, as the number of

iterations increases, F-score stabilizes for most cases, reflecting convergence of the learning

algorithm. From the learning curves, we can fix the number of training iterations to be 7

for the CityU and MSRA corpora, and to be 9 for the UPUC corpus.
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Figure 4.4: F-scores on the CityU development set
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Figure 4.5: F-scores on the MSRA development set
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Figure 4.6: F-scores on the UPUC development set

4.3.2 Experiment Results

The performance is measured using F-score(F) , precision(P), recall(R), in-vocabulary recall

rate(Rlv) and out-of-vocabulary recall rate(Roov). We compare our approach with the

averaged perceptron using only local features, the character-based CRF method, and the

base-line performance using the greedy longest matching method, and the results are listed

in the Table 4.6. For each corpus, the bold number shows the highest F-score. Figure 4.7

intuitively compares the F-score results among these various methods.

From these experimental results, we see that our system outperforms the dictionary­

based greedy longest matching method. Also, our system improves the performance of the

character-based CRF. In addition, using global features, our model achieved better overall

performance than the perceptron algorithm using only local features.

4.3.3 Significance Test

To test whether the improvement is significant, compared to the character-based one-best

CRF result, we carry out McNemar's test and assume that the errors are independent.
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I Corpus I Setting

Averaged Perceptron with global 97.1 97.1 97.1 97.9 78.3
and local features
Averaged Perceptron with only local 96.7 96.7 96.6 97.5 77.4

CityU features
Character-based conditional random 95.7 95.7 95.8 96.6 77.7
field
Greedy longest matching 90.6 88.2 93.0 96.9 0.9

Averaged Perceptron with global 95.8 95.9 95.7 96.9 62.0
and local features
Averaged Perceptron with only local 95.5 95.6 95.3 96.3 65.4

MSRA features
Character-based conditional random 95.2 95.6 94.8 95.8 67.1
field
Greedy longest matching 92.4 90.0 94.9 98.1 2.2

Averaged Perceptron with global 93.1 92.5 93.8 96.1 69.4
and local features
Averaged Perceptron with only local 92.5 91.8 93.1 95.5 68.8

UPUC features
Character-based conditional random 92.8 92.2 93.3 95.5 70.9
field
Greedy longest matching 82.8 79.0 86.9 95.1 1.1

Table 4.6: Performance (in percentage) on CityU, MSRA, and UPUC Corpora
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The distributions of the errors, counted by words, for the CityU test set, for the MSRA

test set, and for the UPUC test set are listed in Table 4.7,4.8 and 4.9, respectively.

one-best CRF result
Correct Incorrect Total

Correct 209,583 (noo) 4,175 (nod 213,758
perceptron re-ranking Incorrect 1,337 (nlO) 5,084 (nu) 6,421

Total 210,920 9,259 220,179

Table 4.7: Word error distribution on the CityU corpus

With these statistics, we can perform the McNemar's test, which tests the null hypothesis

that the performance improvement between the global-feature-based averaged perceptron

and the character-based CRF is simply by chance, and which computes a 2-tailed P-value

to test this hypothesis.

From the calculated P-value in Table 4.10, we are therefore confident to conclude that, for

all CityU, MSRA and UPUC test sets, the difference in performance between the averaged

perceptron using global features and the character-based CRF is significant.
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one-best CRF result
Correct Incorrect Total

Correct 94,308 (noo) 1,763 (nol) 96,071
perceptron re-ranking Incorrect 835 (nlO) 3,454 (nll) 4,289

Total 95,143 5,217 100,360

Table 4.8: Word error distribution on the MSRA corpus

one-best CRF result
Correct Incorrect Total

Correct 142,581 (noo) 2,636 (nOl) 145,217
perceptron re-ranking Incorrect 1,932 (nlO) 7,715 (nll) 9,647

Total 144,513 10,351 154,864

Table 4.9: Word error distribution on the UPUC corpus

I Data Set I P-Value

CityU ~ 2.04e-319
MSRA ~ 7e-74
UPUC ~ 2.5e-25

66

Table 4.10: P-values computed using the McNemar's test on the CityU, MSRA and UPUC
corpora, for comparison between the averaged perceptron using global features and the
character-based CRF



CHAPTER 4. GLOBAL FEATURES AND GLOBAL LINEAR MODELS

4.3.4 Error Analysis
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By analyzing segmentation results, we discover that, for the CityU output, errors repeatedly

involve punctuation as well as numbers. For instance, the front double quote in ["/ /\ - /"] is

mistakenly combined with its following word to become ["7\-/"]. As another example, the

number "18" as in "18/ E3" (the 18th day in a month) in certain sentences is broken into two

words "1" and "8". However, we notice that these errors also happen in the output produced

by character-based conditional random field, from which our N-best list is generated.

In addition to punctuation and number errors, personal names are another major source

of errors, not only in the CityU output, but also in the MSRA as well as the UPUC seg­

mentation results.

While for the UPUC output, the suffix character "-%" (date) as in '(5)1 /15-%" (May 15th)

also tends to cause errors to happen. In the UPUC's training set, the character "-%" with

the context of "date" seldom occurs; therefore, there are few patterns that contain "-%" and

thus, not only for producing N-best candidates using CRF++ but also in weight update

during perceptron learning, its related patterns cannot be emphasized. However, this suffix

frequently appears in the test set, and it is therefore segmented incorrectly (e.g. to become

"15/-%").

4.4 Global Feature Weight Learning

The word segmentation system, designed by Liang in [26], incorporated and learned the

weights for mutual information (MI) features, whose values are continuous. In the weight

learning process, in order to deal with the mismatch between continuous and binary features,

Liang transformed the MI values into either of the following forms:

• Scale the MI values into some fixed range [a, b], where the smallest MI value maps to

a, and the largest MI value maps to b.

• Apply z-scores instead of their original MI values. The z-score of an MI value x is

defined as 7- where J-L and (]' represent the mean and standard deviation of the MI

distribution, respectively.

• Map any MI value x to a if x < J-L, the mean MI value, or to b if x ~ J-L.
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Testing with those various transformations, Liang shows that the weight for the MI

feature can be learned in the same way as the weight for the binary features and that the

word segmentation performance increases by normalizing the MI values. Especially, the

highest increase is obtained by normalizing them with z-scores.

For our global features, both sentence confidence score and sentence language model

score have the property that their values are also continuous rather than discrete. There­

fore, we try to see whether Liang's method to incorporate MI features could be applied to

automatically learn weights for our two global features during perceptron training, instead

of manually fixing their weight using the development set.

We experiment with the transformations on those two global features with the UPUC

and CityU corpora. Table 4.11 provides the performance on their development sets as well

as test sets.

I Method IF-score (UPUC corpus) IF-score (CityU corpus) I

held-out set test set held-out set test set
Without global features 95.5 92.5 97.3 96.7
Fixed global feature weights 96.0 93.1 97.7 97.1
Threshold at mean to 0,1 95.0 92.0 96.7 96.0
Threshold at mean to -1,1 95.0 92.0 96.6 95.9
Normalize to [0,1] 95.2 92.1 96.8 96.0
Normalize to [-1,1] 95.1 92.0 96.8 95.9
Normalize to [-3,3] 95.1 92.1 96.8 96.0
Z-score 95.4 92.5 97.1 96.3

Table 4.11: F-scores (in percentage) obtained by using various ways to transform global
feature weights and by updating their weights in averaged perceptron learning. The exper­
iments are done on the UPUC and CityU corpora.

Different transformations give different performance. Among the normalization meth­

ods, the one with z-scores has the highest F-score. However, all of those accuracies are worse

than our previous method for fixing global feature weights using the development set. As

a result, better methods to perform weight updates for global features need to be explored

further in the future.
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4.5 Comparison to Beam Search Decoding

4.5.1 Beam search decoding
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In Zhang and Clark's paper [53], instead of applying the N-best re-ranking method, their

word segmentation system adapts beam search decoding [10, 33], using only local features.

In beam search, the decoder generates segmentation candidates incrementally. It reads

one character at a time from the input sentence, and combines it with each existing candidate

in two ways, either appending this new character to the last word, or considering it as the

beginning of a new word. This combination process generates segmentations exhaustively;

that is, for a sentence with k characters, all 2k- 1 possible segmentations are generated.

We implemented the decoding algorithm following the pseudo-code described by Zhang

and Clark [53]. According to their pseudo-code (see Figure 4.8), one source agenda and one

target agenda, both being initially empty, are used. In each step, the decoder combines the

character read from the input sentence with each candidate in the source agenda, and puts

the results into the target agenda. After processing the current character, the source agenda

is cleared, each item in the target agenda is copied back into the source agenda to form the

new candidates which will be used to process the next character, and then, the target agenda

is cleared. After the last character in the current input sentence is processed, the candidate

with the best score in the source agenda is returned by the decoder for training the averaged

perceptron.

To guarantee reasonable running speed, the beam size is limited to be B, a value that is

usually much less than 2k - 1, which means that after processing each character, only the B

best candidates are preserved.

4.5.2 Experiments

During training with the Peking University corpus (PU), which contains 19,056 sentences,

from the first SIGHAN bakeoff, we observe that the running speed for this beam search

decoding based segmentation system is low. To examine whether we can use only a partial

training corpus in the averaged perceptron learning without downgrading the accuracy, we

divide the PU corpus into a training set (80% of the corpus) and a development set (20% of

the corpus). Initially, only 1,000 sentences from the training set are used in the perceptron

learning. Then, 1,000 more sentences are incrementally added in each following experiment



CHAPTER 4. GLOBAL FEATURES AND GLOBAL LINEAR MODELS

Inputs: raw sentence sent - a list of characters
Initialization: Set agendas src = [[]], tgt = I:J

Variables: candidate sentence item - a list of words
Algorithm:

for index = O... sent.length-l do
var char = sent[index]
for each item in src do

/ /append as a new word to the candidate
var iteml = item
iteml.append( char.toWord0)
tgt.insert(iteml)
/ /append the character to the last word
if item.length > 1 then

var item2 = item
item2[item2.length-l] .append( char)
tgt. insert (item2)

end if
src = tgt
tgt = []

end for
end for

Outputs: src.bestjtem

70

Figure 4.8: Beam search decoding algorithm, from Figure 2 in Zhang and Clark's paper [53]
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to observe the changes in the F-score. For all experiments, the number of iterations are set

to be 6, and the beam size is fixed to be 16, matching the parameters used in [53]. Table 4.12

and Figure 4.9 show the performance.

Number of Training Sentences 1,000 2,000 3,000 4,000 5,000
F-score on the held-out set 86.6 89.6 91.0 92.0 92.6

Number of Training Sentences 6,000 7,000 8,000 9,000 10,000
F-score on the held-out set 93.1 93.4 93.8 94.1 94.2

Number of Training Sentences 11,000 12,000 13,000 14,000 15,244
F-score on the held-out set 94.5 94.7 94.8 95.0 95.2

Table 4.12: F-scores (in percentage) with different training set sizes for the averaged per­
ceptron learning with beam search decoding
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Figure 4.9: F-scores (in percentage) on the PU development set with increasing training
corpus size

From Figure 4.9, we see that, by increasing the number oftraining examples, the F-score

increases instead of converging to a certain value. As a result, despite low running speed,

the whole training corpus has to be involved in order to produce the highest accuracy.



CHAPTER 4. GLOBAL FEATURES AND GLOBAL LINEAR MODELS 72

Then, we applied this system to the PU corpus to confirm the correctness of our imple­

mentation and to replicate the experimental result produced in [53] on the PU corpus.

Finally, the performance of this system is compared with that of the N-best re-ranking

system on the PU corpus from the first SIGHAN bakeoff, and on the CityU, MSRA, UPUC

corpora from the third SIGHAN bakeoff. For simplicity, the beam size was set to be 16 for

all corpora, and the number of iterations was set to be 7, 7 and 9 for the CityU, MSRA

and UPUC corpora, respectively, corresponding to the iteration values we applied on each

corpus in the re-ranking system.

For N-best re-ranking method on the PU corpus, we applied the same parameter pruning

process as before to select the weight value for global features and the iteration number.

Figure 4.10 compares the F-scores using different Serf and Sim weight values with different

number of iterations t on the PU development set. We chose the global feature weight values

to be 40 and the number of iterations to be 6.
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Figure 4.10: F-scores on the PU development set

Figure 4.11 shows the comparison results between the averaged perceptron training

using the beam search decoding method and that using the re-ranking method. For each

corpus, the bold number represents the highest F-score. From the result, we see that on
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[Corpus I Setting F ~Roovl
Averaged perceptron with beam search 94.1 94.5 93.6 69.3 95.1
decoding
Averaged perceptron with re-ranking, 93.1 93.9 92.3 94.2 61.8

PU containing global and local features
Averaged perceptron with re-ranking, 92.2 92.8 91.7 93.4 62.3
containing only local features

Averaged perceptron with beam search 96.8 96.8 96.8 97.6 77.8
decoding
Averaged perceptron with re-ranking, 97.1 97.1 97.1 97.9 78.3

CityU containing global and local features
Averaged perceptron with re-ranking, 96.7 96.7 96.6 97.5 77.4
containing only local features

Averaged perceptron with beam search 95.8 96.0 95.6 96.6 66.2
decoding
Averaged perceptron with re-ranking, 95.8 95.9 95.7 96.9 62.0

MSRA containing global and local features
Averaged perceptron with re-ranking, 95.5 95.6 95.3 96.3 65.4
containing only local features

Averaged perceptron with beam search 92.6 92.0 93.3 95.8 67.3
decoding
Averaged perceptron with re-ranking, 93.1 92.5 93.8 96.1 69.4

UPUC containing global and local features
Averaged perceptron with re-ranking, 92.5 91.8 93.1 95.5 68.8
containing only local features

Table 4.13: Performance (in percentage) Comparison between the averaged perceptron train­
ing using beam search decoding method and that using re-ranking method

the CityU, MSRA and UPUC corpora, although the beam search decoding based system

still outperforms the re-ranking based system using only local features, the re-ranking based

system containing global features performs as good as or even better than the beam search

decoding based system. Therefore, it confirms again that global features have great influence

on performance in most cases.

On the other hand, for the PU corpus from the first SIGHAN bakeoff, the re-ranking

based method has worse performance than the beam search decoding based one. To explore

the rationale behind this phenomena, for each of the CityU, MSRA, UPUC, and PU test

sets, we examine how many sentences in the gold standard also appear within the 20-best

candidate list. Table 4.14 shows the corresponding ratios. From this table, we find that
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Figure 4.11: Comparison for F-scores between the averaged perceptron training using beam
search decoding method and that using re-ranking method, with histogram representation

CityU

Ratio 88.2%

MSRA

88.3%

UPUC

68.4%

PU

54.8%

Table 4.14: The ratio from examining how many sentences in the gold standard also appear
within the 20-best candidate list, for the CityU, MSRA, UPUC, and PU test sets

for the PU test set, almost half of the true segmentations are not seen in the 20-best list,

which seriously affects the re-ranking process to pick up the correct candidate. While for the

CityU and MSRA corpora, nearly 90% of the gold standard appear in the 20-best candidate

lists, which provide better chances for the correct candidates to be picked up. Thus, in

order for the re-ranking method to have high performance, the quality of its candidate list

is extremely important. In comparison, for the beam search decoding based method, the

process of incremental character concatenation can produce more candidates to be examined,

without limiting itself to certain pre-defined 20-best candidates.



CHAPTER 4. GLOBAL FEATURES AND GLOBAL LINEAR MODELS

4.6 Exponentiated Gradient Algorithm
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In the next experiment, we implement the batch exponentiated gradient (EG) algorithm

(see Figure 2.14) containing those two global features, explore the convergence for primal

(Equation 2.7) and dual (Equation 2.8) objective functions, and compare the performance

with the perceptron learning method, on the UPUC corpus.

In implementing the batch EG algorithm, during the initialization phase, the initial

values of ai,y are set to be l/(number of N-best candidates for Xi)' Also, in the dual

variable update stage, considering Equation 2.6

where

{ ° for Y = Yi
'Vi y =

, 1 - Mi,y for Y i=- Yi

In order to get a~,y, we need to calculate e""'Vi,y. When each 'V in the N-best list is positively

or negatively too large, numerical underflow occurs. To avoid this problem, 'V is normalized,

and the above equation is modified to become

(4.1)

in our implementation.

As before, the weight for global features is pre-determined using the development set

and is fixed during the learning process. Taking the difference on learning efficiency between

online update for perceptron learning and batch update for EG method into consideration,

the maximum number of iterations is set to be larger (T = 25) in the latter case during

parameter pruning. The weight for the global features are tested with 2, 5, 10, 30, 50,

70, and 90. Figure 4.12 shows the performance on the UPUC held-out set with various

parameters.

The experimental result tells us that, initially, as the number of iteration increases, the

F-score produced by EG method increases as well. However, larger numbers of iterations

could introduce over-fitting, causing the F-score to drop. In addition, the figure shows that

a larger weight for the global features produces better segmentation result. Therefore, we

select the number of iterations to be 22 and the weight for global features to be 90, and
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Figure 4.12: F-scores on the UPUC development set for EG algorithm
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apply these parameters on the UPUC test set. Table 4.15 lists the resulting performance. In

this table, not only do we show the performance produced by the EG method using global

features, but also we list the performance from the EG method with only local features and

that from perceptron learning methods. Moreover, performance of the EG method with the

same number of iterations (t = 9) as the averaged perceptron method and that from the

character-based CRF method are listed as well. The bold number represents the highest

F-score.

From Table 4.15 and Figure 4.13, we see that the averaged perceptron with global

features still gives the highest F-score. Although the EG algorithm with global features

has better performance than the character-based CRF method, it takes more iterations in

achieving that result, and also it still performs worse than the averaged perceptron with

global features.

Continuing to run the EG algorithm for more iterations (T = 120) with the weight

of global features being fixed at 90, Figure 4.14 gives us the changes in primal and dual

objective functions. From the figure, we can see that the algorithm does in fact converge

to the maximum margin solution on this data set. However at iteration 120, the F-score
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I Setting ~ F ~Roovl
EG algorithm with global and local features 93.0 92.3 93.7 96.1 68.2
EG algorithm with only local features 90.4 90.6 90.2 92.2 69.7
EG algorithm with global and local features, 92.4 91.7 93.1 95.5 67.6
with number of iterations being 9
Averaged Perceptron with global and local 93.1 92.5 93.8 96.1 69.4
features
Averaged Perceptron with only local fea- 92.5 91.8 93.1 95.5 68.8
tures
Character-based CRF method 92.8 92.2 93.3 95.5 70.9

Table 4.15: Performance (in percentage) from the EG algorithms, comparing with those
from the perceptron learning methods and the character-based CRF method
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Figure 4.13: Comparison for F-scores from the EG algorithms, with those from the percep­
tron learning methods and the character-based CRF method, using histogram representation
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remains 0.930, which is the same as the F-score produced in the 22nd iteration.
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Figure 4.14: EG algorithm convergence on the UPUC corpus

4.7 Related Work

Re-ranking over N-best lists has been applied to so many tasks in natural language that it is

not possible to list them all here. Closest to our approach is the work done by Kazama and

Torisawa [19], for named entity recognition (NER). They proposed a max-margin perceptron

algorithm that exploited non-local features on an N-best list. Instead of using averaged

perceptron, their method for NER tries to maximize the margin between the best scoring

candidate and the second best scoring candidate, applying the original perceptron algorithm

with local features and non-local features that are defined on partial sentences. In contrast,

the averaged perceptron algorithm is used in our system, and global features are used to

examine the entire sentence instead of partial phrases. For word segmentation, Wang and

Shi [46J implemented a re-ranking method with POS tagging features. In their approach,

character-based CRF model produces the N-best list for each test sentence. The Penn
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Chinese TreeBank is used to train a pas tagger, which is used in re-ranking. However, the

pas tags are used as local and not global features. Note that our experiments focus on the

closed track, so we cannot use pas tags. In machine translation, Shen et al. [38] investigated

the use of perceptron-based re-ranking algorithm, looking for parallel hyper-planes splitting

the top r translations and the bottom k translations of the N-best translations for each

sentence, where r + k ~ n, instead of separating the one-best candidate with the rest. Also

in the tagging task, Huang et al. [18] modified Collins' re-ranking algorithm [6], utilizing

n-gram features, morphological features and dependency features, for the Mandarin pas
tagging task.

4.8 Summary of the Chapter

In this chapter, we described our system for training a perceptron with global and local

features for Chinese word segmentation. We have shown that by combining global features

with local features, the averaged perceptron learning algorithm based on re-ranking pro­

duces significantly improved results, compared with the algorithm only using local features

and the character-based one-best conditional random field method. Also, we attempted to

automatically learn weights for global features. In addition, by comparing our system with

the beam search decoding based perceptron learning, we show again that global features are

useful. Moreover, the performance of the perceptron training is compared with that of the

exponentiated gradient method. We show that the averaged perceptron with global features

gives higher performance.



Chapter 5

Conclusion

In this thesis, we looked at the Chinese word segmentation problem, and reviewed various

common approaches applied in the literature. Also, we provided and evaluated two specific

Chinese word segmentation systems. This final chapter summarizes the contents of the

thesis in Section 5.1, re-emphasizes the contributions of our proposed approaches in Section

5.2, and points out certain possibilities for future work in Section 5.3.

5.1 Thesis Summary

In Chapter 2, various approaches dealing with Chinese word segmentation were described.

We classified these approaches into three main categories: the dictionary-based matching

approach, the character-based or subword-based sequence learning approach, and the global

linear model approach. Each of these categories, together with certain specific algorithms,

were explained in detail.

Chapter 3 described a character-level majority voting Chinese word segmentation sys­

tem, which voted among the initial outputs from the greedy longest matching, from the

CRF model with maximum subword-based tagging, and from the CRF model with min­

imum subword-based tagging. In addition, we experimented with various steps in post­

processing which effectively improved the overall performance. Moreover, a related voting

system, replacing the minimum subword-based CRF model with the character-based CRF

model during the majority voting, was described and compared.

Chapter 4 proposed the use of two global features, the sentence confidence score global

feature and the sentence language model score global feature, to assist with local features

80
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in training an averaged perceptron on N-best candidates for Chinese word segmentation.

We performed extensive experiments to compare the performance achieved from our system

with that achieved from the character-based CRF tagger, and also with that achieved from

perceptron learning using only local features. In addition, the beam search decoding algo­

rithm and the exponentiated gradient algorithm were implemented and compared with our

averaged perceptron learning system.

5.2 Contribution

The main contributions of this thesis in general are as follows:

• We show that the majority voting approach helps improve the segmentation perfor­

mance over its individual algorithms. The voting procedure successfully combines the

dictionary information used in the greedy longest matching algorithm and in the max­

imum subword-based CRF model, and thus raises the low in-vocabulary recall rate

produced by the two CRF-based discriminative learning algorithms. Also, the voting

procedure benefits from the high out-of-vocabulary recall rate achieved from these two

CRF-based algorithms. Thus, our majority voting system raises the performance of

each individual algorithms .

• We discover that by combining global features with local features, the averaged percep­

tron learning algorithm based on re-ranking produces significantly improved results,

compared to the character-based one-best CRF algorithm and the averaged perceptron

algorithm with only local features.

5.3 Future Research

There are many aspects of Chinese word segmentation that need to be further explored. For

instance, how should we effectively solve the unknown word problem, or at least what new

strategies could help to minimize its negative consequence and thus produces a significantly

higher out-of-vocabulary recall rate?

Also, in our perceptron training system, only two global features, the sentence confidence

score and the sentence language model score, are considered. Are there any other meaningful

global features that can also be included? In the future, we would like to explore more global
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features that are useful for perceptron learning. Also, the weight for the global features are

pre-determined and fixed in our system. Although we tried to update the weight for these

features during the learning process, the experimental accuracies were not encouraging.

Finding better methods for updating weights for the global features so that the perceptron

learning process can be done without a development set is an important topic for future

work.

In addition, during beam search based perceptron learning, only local features are in­

cluded. The language model score, as one of the global features, is able to provide additional

information about partial sentence candidates, and can be computed through the use of a

language model (e.g. use SRILM to score the partial sentence). In our experiments, we

attempted to involve the language model score feature in the beam search decoder: First,

SRILM is set up on the server side; then, the word segmentation system with beam search

decoder is run on the client side. For each sentence, after combining the next character

with all candidates up until the current character, the updated candidate list is sent to the

server, producing the language model score for each candidate, and then these language

model scores are sent back to the client system; After combining the language model fea­

ture score with other local feature scores, the top B best candidates in the list, where B

is the beam size, are retained and carried on to the next step. During the whole process,

the weight for the language model score feature is selected using the development set and

is fixed afterward. However, due to the delay caused by client-server communication and

the time spent on the calculation of language model score for each candidate, the running

speed is extremely slow. Also, the exhaustive weight determination for the global feature on

development set takes long time to complete as well. Thus, we have to regrettably abandon

this experiment and try to find a faster way to proceed. Effectively using not only the

language model score feature but also other global features inside beam search decoding

and then comparing its performance with other methods is an interesting experiment that

we leave for future work.
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