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Abstract 

The staggered quark formulation is one of many ways to include fermions on the 

lattice. Dynamical simulations are now routinely done with improved staggered quark 

actions which are more efficient than other popular formalisms. In this thesis two 

research works on improved staggered fermions are presented. 

A systematic study of the staggered Dirac operator's spectral properties is first 

presented. It is a long standing belief that staggered fermions do not feel gauge 

field topology because of the lack of zero eigenvalues of the operator at finite lattice 

spacing. The existence of fermionic zero modes in topological nontrivial background 

gauge fields is required by the Atiyah-Singer index theorem. In this study we observe 

that eigenmodes with very small eigenvalue and large chirality appear if improved 

staggered operators are used. These small eigenmodes can be identified as the "zero 

modes" associated with the topology of the gauge fields. We have also compared the 

distribution of the remaining nonchiral modes with the predictions of Random Matrix 

Theory. Satisfactory agreement is obtained. 

In the second project perturbative expansions of Wilson loops are computed in 

full QCD from Monte Carlo simulations with improved staggered fermions. This 

approach provides a much simpler alternative to diagrammatic perturbation theory, 

and has previously been shown to be successful in reproducing the perturbation series 

in pure gauge theory. This method is applied here for the first time to unquenched 

QCD. Twisted boundary conditions are used to eliminate effects of zero momentum 

modes and to suppress tunneling between the degenerate Z3 vaccua. A new simulation 

algorithm, the rational hybrid Monte Carlo algorithm, with no finite step size error 

is also employed. This is the first time this algorithm has been used in a numerical 

application. Results are in excellent agreement with analytic perturbation theory; 

this provides an important cross-check of the perturbation theory input to a recent 

determination of the strong coupling am(MZ) by the HPQCD collaboration. 
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Chapter 1 

Introduction 

1.1 Quantum Chromodynamics (QCD) and Lat- 

tice QCD 

The Quark Model, Colour Symmetry and QCD 

The development of quantum field theory over the past few decades has sub- 

stantially improved our understanding of the fundamental interactions in nature [I]. 

Quantum electrodynamics (QED), perhaps the best fundamental physical theory we 

have, describes the electromagnetic interaction between charge particles. On the 

other hand, the strong interaction, which is responsible for nuclear binding and the 

interaction of the constituents of nuclei, is well described by the theory of quantum 

chromodynamics (QCD) . 

In the early 60's before QCD was invented, the quark model was very successful in 

classifying the many strongly interacting particles (collectively called hadrons). The 

quark model utilizes the symmetries known from classical and quantum mechanics and 

suggests that hadrons are composed of elementary spin-l/2 fermions called quarks. 

Hadrons constituted from a quark anti-quark pair are called mesons (e.g. pions) and 

bound states of three quarks are called baryons (e.g., protons and neutrons). There 

are six different kinds of quarks: up (u ) ,  down (d),  strange (s). charm (c) ,  top ( t )  
and bottom (b ) .  Some of their properties are listed in Table 1.1. Different kinds of 

quarks are called flavours and they are indistinguishable in the limit of equal quark 

masses. The corresponding symmetry is a global flavour symmetry. In reality only 

an approximate SU(3) flavour symmetry (see Fig. 1.1) can be realized in the hadron 



- 
Table 1.1: Properties of different quark flavours. The quark masses are the M S -  
masses evaluated at scale 2GeV, see Ref. [2] (the 2004 Review of Particle Physics) for 
details. 

Quark flavour 

Charge (e) 

Mass (MeV) 

Iso-spin I3 
Hyper-chargeY 

spectrum because the c, t and b quarks are much heavier. In addition, the SU(2) 

symmetry of the u and d quarks is a better symmetry because of their similar masses. 

u d s c b t 
- 

+2/3 -113 -113 +2/3 -113 +2/3 

1-5 3-9 75-170 1150-1350 4000-4400 174300 

112 -112 0 0 0 0 

113 113 -213 113 113 113 

There is one major problem of the original quark model. The quark scheme assigns 

the resonance state A++ a uuu configuration with zero orbital angular momentum 

and all three quark spins parallel. This violates the Pauli exclusion principle. In 

other words the wavefunction of A++, a spin-312 particle, is symmetric under particle 

exchange which is inconsistent with the spin-statistics theorem. The solution to  this 

problem was provided by Han and Nambu, Greenberg and Gell-Mann in the late 

60's. They proposed that quarks should carry an additional quantum number called 

"colour7'. There are three colours and they obey exact SU(3) symmetry. Since colour 

charges do not reveal themselves in nature, hadrons must be colour neutral, i.e., colour 

singlet states. This implies that mesons should have a colour-anti-colour configuration 

while the three quarks in baryons must be completely antisymmetric in their colour 

indices. This resolves the spin-statistics problem because the colour wavefunction of 

A+ + is antisymmetric making the overall wavefurlction also antisymmetric. 

Despite the phenor~~enological success of the quark model and colour symmetry, 

a theory which connects the dynamics of colour and the strong interaction was still 

missing. The development of QCD was further stimulated by two experimental ob- 

servations. First, the failure to isolate a free quark experimentally suggests that there 

exists some underlying dynamics assuring the confinement of quarks, i.e., quarks 

can only exist in bound states to form colour singlet hadrons. Secondly, by probing 

the inner structure of the proton with high energy electron beams, particle physicists 

determined that the strong interaction becomes weak at short distances (high 

energy). Consequently for a theory to correctly describe the strong interaction, it 

must exhibit both quark confinement in the low energy regime and a weak 



Figure 1.1: The quark model and the lightest meson and baryon multiplets (a) the 
approximate SU(3) flavour symmetry (b) nonet of spin-0 pseudo-mesons (c) octet of 
spin-112 baryons. The hadron masses (in MeV) are given in brackets. In the quark 
model, proton and neutron are assigned with a uud and udd configuration respectively, 
T+ is ud and K' is US.  

coupling limit at high energy. 

In the early 701s, Politzer, Gross and Wilczek [3, 41 discovered a class of theo- 

ries which has the property that the coupling becomes weak at  high energy (this is 

known as asymptotic freedom) - the non-Abelian gauge theories. Non-Abelian gauge 

theories are theories with a local gauge symmetry, similar to that of QED but with 

non-Abelian gauge group structure. The colour symmetry was immediately identified 

as the gauge group, i.e., a local SU(3) colour symmetry. The colour quarks serve as 

the "charges" of QCD while gluons, the quanta of SU(3) gauge fields, play the role 

of photons in QCD. This quantum theory of colour charges is known as quantum 

chromodynamics (QCD). 

For future reference we put down the Euclidean version of the QCD Lagrangian 

here : 

flavours f 

Euclidean field theory is considered because of two reasons. First, topological solutions 

are classical solutions of the Euclidean field equations. More importantly, changing 

to imaginary time converts QCD to a statistical system so that correlation functions 

'Throughout this thesis, Latin letters a, b, . . .denote colour indices and Greek letters a ,  and 
p,  v label spinor indices and space-time indices respectively. 



can be computed numerically by Monte Carlo techniques '. In (1.1), Piy is the colour 

field strength tensor and D =- ypD, is the Dirac operator 

The colour gauge fields are labeled by A; and yjb, are the quark fields. Here, f abc are 

the structure constants and t" are the generators of the SU(3) gauge group. The y 

matrices (Euclidean version) are Hermitian and satisfy the following anti-commutation 

relations 

{YP, Y V )  = 2 d p V 1  Pl ' = '7 2> 3 J  4' (I.3] 

The chirality matrix y5 is defined by 

which is also Hermitian. The Lagrangian is invariant under a local SU(3) transforma- 

tion, V(x) = exp (ia"(z)tu), with phases aa (x)  

The strong coupling constant is a, I 2. Notice the similarity between (1.1) and the 

standard QED Lagrangian. Note that since ( 7 3 , ~ ~ )  = 0, D anti-commutes with the 

chirality matrix also 

{ Y ~ ,  D )  = 0. (1.6) 

Lattice QCD 

Because of asymptotic freedom the strong coupling constant a, becomes small 

in the high energy regime or a t  short distances. This allows precision tests of QCD 

where perturbative QCD gives accurate calculations of certain processes that can be 

observed in high energy experiments. An example is the jet production in hadron 

collisions [I]. On the other hand, quark confinement and other low energy properties 

"his is because the original oscillatory factor exp [ i s ]  = exp [i S d 4 x l ]  in the partition function 
becomes a Boltzrnann weight exp [ - S E ]  = exp [- S d 4 x l ~ ]  in Euclidean field theory. 



of hadrons, such as their masses and decay rates, cannot be demonstrated or computed 

from a perturbative calculation. Non-perturbative treatment is required. 

Lattice QCD was originally invented by Wilson around 1974 [5] (see Ref. [6] for a 

review on the origins of lattice field theory) to  study non-perturbative physics. The 

continuum gauge theory is replaced by a discrete statistical mechanical system on a 

4-dimensional Euclidean lattice. The lattice not just provides an integration grid but 

also a cutoff in momentum, i.e., a regularization scheme. With this formulation of 

QCD, Wilson showed that QCD exhibits confinement of colours in the strong coupling 

limit. In fact, numerical simulations [7,8] confirmed a linearly rising potential between 

a static quark anti-quark pair a t  moderate separation. 

The major challenge of lattice QCD is to reduce the discretization errors and 

lattice artifacts introduced by the lattice spacing a.  Computational cost scales as 

best as a-6 [9] and hence reducing the lattice spacing is not feasible. Until recently 

it was not possible to  do lattice simulations of sufficient precision even on the largest 

available computer clusters. Fortunately the proposal of improved lattice actions 

with better continuum properties and smaller discretization errors in the last decade 

dramatically reduced the amount of computer power that is required. Accurate lattice 

calculations are now available [lo]. An example is the accurate determination of the 

value of the strong coupling constant [ll, 12, 131. This will be discussed in Section 4.1. 

Another example is the precise determination of the CKM matrix elements [14], which 

is important to the search for new physics. 

24 brief introduction to lattice QCD will be given in Chapter 2. 

1.2 Chiral Symmetry, QCD Topology and the In- 
dex Theorem 

Another non-pcrturbative aspect of QCD where lattice models have provided impor- 

tant insights is topological effects. Topological solutions are finite energy classical 

solutions to the non-linear field equations of the system. In QCD, the Euclidean 

version of the self-coupled pure gauge theory, i.e., the first term in (1. I ) ,  possesses 

topological solutions. The first project of the thesis is the study of QCD topology 

on the lattice with improved staggered fermions. These finite energy solutions have 

important phenomenological consequences because they are directly related t o  the 

chiral symmetry of QCD. We are now going to give a brief review on this subject. 



Chiral Symmetry in QCD and the [U(l)], Problem 

As mentioned before, the QCD Lagrangian (1.1) has an approximate SU(3) flavour 

symmetry, i.e., it is invariant under the following global transformation 

where ra are the generators of the SU(3) flavour symmetry group " This symmetry is 

reflected in the particle spectrum where hadrons fall into easily recognizable multiplets 

as shown in Fig. 1.1. The Lagrangian is also invariant under a global U(l )  phase 

transformation 

[U(l)Iv : $(x) -+ eiU$(x). (1.8) 

This symmetry can be realized physically as the conservation of baryon number. 

Overall the symmetry group is SU(3) xU(1). 

Aside from these symmetries there are two additional "chiral" symmetries in the 

limit of zero quark masses 

This is a good approximation because the masses of the u, d and s quarks are 

relatively small compared t o  the energy scale of most hadronic processes, which 

is about AQcD N 200MeV [2]. Note that the chiral symmetries are equivalent to  

the anti-commutation (1.6), {y5, D) = 0, and the symmetry group is extended to  

SU(3) x SU (3) x U(1) x U(1). However, none of these chiral symmetries can be realized 

in nature because a direct manifestation of [SU(3)], and [U(l)], would require each 

hadron multiplet to be accompanied by a mirror multiplet of the same mass, but with 

opposite parity. For example, there is not even an approximate mirror image of the 

proton and neutron. 

Assuming that the real world is well approximated by the chiral symmetric limit, 

we must conclude that the symmetries [SU(3)], and [U(l)], are spontaneously broken 

(it turns out that this is not true for [U(l)],, see below), giving rise to  a set of massless 

3We use the symbol T here in order to distinguish from the generators of the SU(3) colour 
symmetry group mentioned earlier. Also the index a refers to flavour indices instead of colour. 



particles (Goldstone bosons) associated with the generators of the broken symmetry 

group. This is indeed the case for [SU(3)IA where the Goldstone bosons are the eight 

light mesons, n, K, and q, listed in Fig. 1.1. These mesons are not exactly massless 

because the symmetry [SU(3)IA is also explicitly broken by the small quark masses 

of u, d and s. On the other hand, the next lightest pseudo-scalar meson q1(985MeV) 

would be the Goldstone boson if [U(1)IA is also considered to be spontaneously broken. 

However this Goldstone boson is expected to have a mass comparable to those of n 

because they all have the same quark configuration. In fact, using chiral perturbation 

theory, Weinberg estimated the mass to be less than a m ,  [15]. With its mass 

a t  985MeV, 7' cannot be considered as the Goldstone boson associated with the 

spontaneously breaking of [U(l)], because it violates the Weinberg's bound. This is 

the famous [U(l)IA problem: why q1 is so heavy? 

The Axial Anomaly and QCD Topology 

According to the Noether theorem (see for example [I]), classically, there is a 

conserved current associated with the [U(l)], symmetry 

j p 5  = &ypY5$ and dpjp5 = 0, (1.11) 

for massless quarks. However, the conservation of the axial current is actually spoiled 

by quantum effects. In QCD, careful analysis [16, 171 gives the following operator 

equation n 

where nf is the number of quark flavours and P ' P u  is the totally antisymmetric tensor 

with = 1 and vanished if two indices are the same. This is known as the Adler- 

Bell- Jackiw anomaly or the axial anomaly. The anomaly implies that, at the quan tum 

level, there is no [U(l)], symmetry and no associated Goldstone boson. Therefore 

strong interaction contains no light flavour-singlet pseudo-scalar meson with a mass 

comparable to those of the pions. 

The anomalous non-conservation relation (1.12) is related to one of the most fun- 

damental problems in quantum field theory. We cannot fully discuss this issue here, 

and refer the interested readers to  the original articles and Ref. [I] for further details. 

In brief, it can be shown that dpjp5 = 0 is incompatible with gauge invariance or 

charge conservation a t  the quantum level. The axial anomaly arises when one insists 



on the definition 8, j p  = 0, i.e., charge conservation. Since gauge invariance or charge 

conservation is the most important property of a field theory, we have to sacrifice 

conservation of the [U(l)], current. 

Notice that the residual on the right hand side of (1.12) depends only on the back- 

ground gauge field and can be written as a total derivative of a quantity. Hence it 

is possible to retain the global conservation law if the quantity falls off sufficiently 

rapidly a t  infinity so that its integral vanishes. This leads us to  QCD topology. As 

mentioned earlier, pure gauge theories contain topological solutions which are ex- 

tended solutions of the non-linear field equations. These solutions are stable despite 

the non-linear nature of the parent theories, and are characterized by some conserv- 

ing topological indices (topological charges). The topological index Q of a SU(3) 

configuration is precisely given by the integral of the residual in (1.12) [18] 

&=--  ""' / d P ~ r ~ ~ @ " ( x ) F ' ~ ~  (x), 
32n2 

and consequently 

Q = / d4xa, jp5 (I). 

Therefore axial current is conserved only in the world with Q = 0. For configurations 

with nontrivial topology the integral of 8,jp5(x) takes a non-zero value. 

Apparently topological effects are responsible for the non-conservation of the axial 

current, which in turn explains why the 7' meson is so heavy. In the late 70's, by 

studying the large N, ( N ,  is the number of colours) limit of the SU(N,) colour gauge 

group, Witten and Veneziano were able to extend these ideas and explicitly derive a 

formula for the 7' mass (Witten-Veneziano's formula) [19, 201 

where V is the volume of the system and f: N 93MeV [2] is the pion decay con- 

stant which can be determined experimentally. This formula shows that gauge field 

topology is indeed important to QCD phenomenology. Topological solutions are non- 

perturbative so it is not possible to obtain the topological susceptibility x from a 

perturbative calculation. Lattice QCD, on the other hand, provides a direct means 

to  which x can be determined from numerical simulations. 



The Index Theorem 

Another consequence of QCD topology is the existence of zero eigenvalues of the 

Dirac operator D = ypD, = yp (a, - igAzta) in background gauge fields with non- 

trivial topological structure. This is known as the Atiyah-Singer index theorem [21]. 

An informal derivation of the theorem will be given in Section 3.1 and here we only 

give a short summary of its implications. 

The quark field $ can be decomposed into left- and right-handed chiral components 

$L and $R 

The chirality of $ is given by x = ( $ l y 5 1 $ )  where y5 is the chirality operator defined 

in (1.4)  Since (y512 = 1, $L and $R are eigenvectors of y5 with chirality -1 and +1 

respectively. 

We are now ready to discuss the index theorem. It states that,  for gauge field 

configurations with non-zero topological charge index Q,  some of the eigenmodes of 

the Dirac operator D should have zero eigenvalues and definite chirality f 1. The 

difference in the numbers of left-handed zero modes (nL) and right-handed chiral 

modes (nR) is equal Q 

Q = index(D) - n~ - n ~ .  (1.17) 

The index theorem provides a convenient definition for the topological index Q. Given 

a gauge field configuration, its topology can be determined by computing a few lowest 

eigenvalues of D and then counting how many left- and right- handed chiral modes are 

present. In the the first project of the thesis we study the validity of this procedure 

for the staggered Dirac operator. 

1.3 Fermions on the Lattice - Staggered Fermions 

The index theorem allows the topological index of the gauge field to  be determined by 

counting the number of zero chiral modes of the Dirac operator. Discretization of the 

Dirac action, however, is complicated by the so-called "fermion-doubling" problem. A 

detailed discussion of this problem will be presented in Section 2.2. In brief, the naive 

discretization scheme, where one simply replaces the continuum derivative in (1.2) by 



a finite difference on the lattice, leads to an action which describes 2d continuum-like 

fermions rather than one! Here d is the dimension of the space-time and hence the 

number of modes doubles for each additional dimension. The excess fermions are 

called doublers and their presence is a lattice artifact. When the coupling to gauge 

field is turned on, the doubler modes are allowed to interact through the exchange of 

highly virtual gluons. 

There are several approaches to the doubling problem. We will concentrate on 

the staggered quark discretization scheme in this thesis. In this formalism one ac- 

cepts fermion doubling and identifies the excess fermions with other fermion degrees 

of freedom such as quark flavours. There are two steps in constructing the staggered 

quark action (see Section 2.3 for details). First one "spin-diagonalizes" the naive ac- 

tion by making an appropriate transformation of the quark fields. Secondly, since the 

naive quark action is now diagonal in spinor space and the 4 spinor components are 

decoupled, one can throw away three components and keep only one. The resulting 

action is the standard staggered quark action, and let us call the 1-component stag- 

gered quark fields X. Because the number of degrees of freedom is reduced to 4 in the 

staggered quark scheme, the staggered quark action describes 4 equivalent flavours. 

The origin of the name "staggered" becomes clear when the action is re-written in 

terms of the four 4-component spinors [22]: the lattice is first divided into elementary 

4-dimensional hypercubes, and the Dirac spinors at each hypercube (i.e., the lattice 

spacing is effectively doubled) can be constructed by forming certain linear combina- 

tion of the 16 X-fields located a t  the 16 corners of the hypercube. Therefore the 16 

components of the four quark fields are "staggered" on the lattice. 

The major advantage of the staggered quark formulation is that it is computation- 

ally the most efficient (as the system's number of degrees of freedom is reduced) among 

the various implementations, e.g., about 10 times faster than the Wilson fermions and 

1000 times faster than the overlap fermions 4 .  

On the other hand the unconventional identification of doubler modes as quark 

flavours complicates the interpretation of staggered quark simulations. In particular 

interactions between the doublers correspond to flavour-changing interactions in the 

flavour basis, which are again purely lattice artifacts and have no continuum analogue. 

The flavour-changing interactions explicitly break the continuum SU(4) flavour sym- 

"The cost also depends on the quark masses (see Table 2.1 and Fig. 2.4 in Section 3.3). The 
comparison is made a t  the values used in present-day dynamical simulations. 



continuum 

lattice 

Figure 1.2: Splitting of zero modes on the lattice. The continuum 4-fold degeneracy 
is lifted so that any continuum zero modes will move away from zero. 

metry and can have significant impact on the phenomenology. An example is that the 

16 pions, associated with the spontaneously breaking of the flavour symmetry, are no 

longer degenerate (see Section 2.3 for more details). 

Another example which is relevant to QCD topology is the lack of zero eigenvalues 

of the staggered Dirac operator. This can be understood as follows. The staggered 

quark operator describes 4 quark flavours in the continuum limit and the eigenvalue 

spectrum has a 4-fold degeneracy in this limit. At finite lattice spacing, however, 

the flavour-changing interactions break the flavour symmetry and the degeneracy is 

lifted. Hence any continuum zero modes will move away from zero on the lattice. 

This property is demonstrated in Fig. 1.2. 

1.4 Staggered Fermion Spectral Properties 

According to the index theorem, zero eigenvalues appear when the background gauge 

fields have nontrivial topological structure. It is therefore conventional wisdom that 

staggered fermions do not feel gauge field topology because of the lack of 

zero eigenvalues of the operator. This can be easily checked in numerical simula- 

tions by inspecting the microscopic eigenvalue spectrum. In Fig. 1.3 we have plotted 

the lowest 10 eigenmodes (chirality x vs, eigenvalue A) of the unimproved staggered 

operator for 50 gauge field configurations on lo4 lattices. The lattice spacing is about 

0.123fm which is relatively coarse (see Section 3.4 for details of the simulation). The 

spectrum clearly indicates that all configurations have zero topological charge. There 

are no zero modes, otherwise a cluster of states with very small X and large x would 



Figure 1.3: Eigenvalue spectrum for the unimproved staggered operator. It  is clear 
that there are no, not even approximate, zero modes. The unimproved operator is 
insensitive to the topology a t  this lattice spacing (a = 0.123fm) and volume (V = lo4). 
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be visible. One may suspect that our lattice is too small to hold topological solutions 

(which are extended objects) so that the gauge fields really do have trivial topological 

structure. We indeed observe that the number of configurations that have Q = 0 in- 

creases with decreasing volume. However, results in Chapter 3 show that (see Fig. 3.5) 

about 70% of the configurations should have Q # 0 a t  this lattice spacing and volume. 

- approximate zero 
modes would 

- appear here 

- 

- 

This unpleasant feature of staggered fermions was further revealed in comparisons 

of the eigenvalue spectrum obtained in simulations with the predictions of Random 

Matrix Theory (RMT) [23, 24, 251. RMT gives analytic expressions for the distri- 

bution of the low-lying nonchiral modes in different topological sectors [26]. -4 short 

introduction to RMT will be given Section 3.2. In Ref. [23, 24, 251, the eigenvalue 

distribution in all topological charge sectors was found to be consistent with the 

predictions of RMT for topological charge equal to zero. 

In particular, Fig. 1.4 shows the distribution of the smallest eigenvalues, p z i n ( ~ ) ,  

of the unimproved staggered operator at a = 0.123fm and V = lo4. Here < = XCV 

where C is the infinite-volume chiral condensate (see (3.24)). Results are taken from 

Ref. [25]. The authors first calculated the topological charges of the gauge fields using 
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Figure 1.4: Distribution of the smallest eigenvalues of the unimproved staggered op- 
erator a t  a z 0.123fm and V = lo4. Results are taken from Ref. [25]. Histograms are 
simulation results and dotted curves are predictions of RMT, see (3.24). 

a discretized version of the continuum formula (1.13). The configurations were then 

classified and the distribution of the smallest eigenvalues was computed in each topo- 

logical sector (the histogram). Overall about 17,000 gauge field configurations were 

analyzed 5 .  The dotted curves are predictions of RMT (see (3.24)). It  is worrisome 

that all results agree perfectly with the Q = 0 distribution even though the configu- 

rations have been divided into different charge sectors using the naive formula (1.13). 

The unimproved staggered operator clearly fails to  see the gauge field topology a t  this 

lattice spacing and volume. 

This result should be compared with those of the overlap Dirac operator. As we 

'There is always a small renormalization of the topological charge on the lattice so that it is not 
exactly equal to an integer. About 10% of the total configurations were thrown out in this study 
because their charge indices could not be determined unambiguously using (1.13). 



Figure 1.5: Cumulative distribution of the smallest eigenvalues of the overlap operator 
a t  a z 0.123fm and V = lo4. Results are taken from Ref. [29]. Solid curves are 
predictions of RMT, see (3.25). 

will see in Chapter 2, the overlap Dirac operator satisfies the Ginsparg-Wilson rela- 

tion [27] and therefore there exists a symmetry on the lattice which can be interpreted 

as the continuum chiral symmetry [28]. Consequently, unlike the staggered Dirac op- 

erator, the overlap operator has exact chiral modes even a t  finite lattice spacing, and 

the eigenvalue spectrum shows a better agreement with the predictions of RMT. This 

can be observed in Fig. 1.5 where the cumulative distribution of the smallest eigenval- 

ues pfi,(~) (see (3.25)), after deleting the zero modes, is plotted for different charge 

indices. The results are taken from Ref. [29] with a z 0.123fm and V = lo4, exactly 

the same as those used in Fig. 1.4. One can see that there are clear distinctions 

between the results with different Q and agreement with RMT is impressive. 

Since flavour-changing interactions cause the continuum zero modes of the stag- 

gered Dirac operator to move away from zero, it has been suggested [30] that sensitiv- 

ity to gauge field topology can be increased if one can reduce flavour-changing effects. 

Significant progress on controlling flavour-changing interactions has been made over 

the past few years through the invention of improved staggered quark actions con- 

structed using fat-links [31]. In this study, we observe that the distribution of the 

low-lying eigenmodes depends quite sensitively on the way in which the operator is 

improved. Eigenmodes with very small eigenvalue and large chirality appear as the 

level of improvement increases. These small eigenmodes can be identified as the "zero 



modes" associated with the topology of the background gauge fields. We also observe 

that separation between the "zero modes" and the nonchiral modes increases even 

more if the gauge field action is also improved, or when the lattice spacing is reduced. 

These show that discretization errors and lattice artifacts are indeed responsible for 

the failure of staggered fermions to  see gauge field topology in Ref. 123, 24, 251 where 

the unimproved operator was used. Finally, after successfully identifying the "zero 

modes", the distribution of the remaining nonchiral modes is compared with the pre- 

dictions of RMT. Satisfactory agreement is obtained for all charge sectors. 

1.5 Lattice Perturbation Theory from Monte Carlo 

Sirnulat ions 

The second topic of the thesis demonstrates how perturbative quantities can be ef- 

ficiently computed from Monte Carlo simulations a t  weak coupling. In particular, 

perturbative series of Wilson loops are obtained, through third order, in full QCD 

with improved staggered fermions. 

Lattice Perturbation Theory and Its Complexity 

At first it may seem surprising to do perturbative calculations on the lattice since 

lattice QCD was originally invented to study non-perturbative physics like the hadron 

spectrum. However, lattice QCD is an effective field theory formulated on a grid with 

lattice spacing a  and is therefore different from continuum QCD at  short distance 

(< a ) .  Since QCD is an asymptotically free theory, these short distance effects can 

be studied using perturbation theory. We will encounter two applications of lattice 

perturbation theory in this thesis. Perturbative improvement of lattice actions will 

be discussed in Section 2.4. n7e will see how the missing physics can be included 

back into the lattice theory by matching perturbatively the scattering amplitudes in 

lattice QCD to those of the continuum. Lattice perturbation theory is also important 

in connecting simulation results to  physical quantities in the continuum. This will 

be illustrated in Chapter 4 where we will discuss how to extract the strong coupling 
- 

constant c v y S ( M ~ )  from simulation data using perturbation theory. 



It is worth knowing to what order perturbative calculations must be done. We are 

interested in the expansions the observable O 

Affordable dynamical simulations can only be done for lattice spacings as small as 

a = 0.lfm. The value of a at  this scale can be estimated from the typical low energy 

scale of QCD, which is AQcD = 200MeV: 

Therefore in order t o  obtain high precision predictions of physical quantities from 

lattice simulations, perturbative matching must be done through a2 (1-loop) or even 

a3 (2-loop) to  reduce systematic errors to  a few percent. 

Lattice perturbation theory can be done in the same way as continuum pertur- 

bation theory using Feynman rule techniques. Analytic calculations7 however, are 

extremely difficult because of the enormous number of diagrams that have t o  be 

evaluated. Typically, the number is of O(10) for a 1-loop calculation, and of O(100) 

for 2-loop! Perturbation theory on the lattice is even more challenging because lat- 

tice actions have complicated structure and have complicated Feynman rules. Many 

of them have no continuum analogue also [22, 321. This is particular true for the 

highly improved actions that  are now commonly used in numerical simulations. To 

illustrate this problem, Fig. 1.6 and 1.7 shows some of the Feynman rules and loop di- 

agrams that appear in the 2-loop calculation for the Wilson loops [33, 321. We should 

emphasize that only a small portion of all diagrams are shown! Although many parts 

of analytic lattice perturbation theory can be automated with the help of computer 

codes [34, 321, these are still very difficult and potentially error-prone calculations. 

Given the central role of perturbative matching in many important phenomenological 

applications of lattice QCD, other methods are needed. 

Perturbation Theory from Monte Carlo Simulations at Weak 

Coupling 

A simpler alternative t o  analytic perturbation theory, proposed in Ref. [35], is to 

simulate the quantity of interest at weak coupling where QCD is perturba- 

tive, and fit perturbative expansions to the results. This alternative approach 
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Figure 1.6: Examples of lattice Feynman rules. Note that there is a 6-gluon vertex on 
the lattice. The group measure in lattice actions also gives new vertices which have 
no continuum analogue. 

Figure 1.7: Examples of 2-loop diagrams. 



to  analytic perturbation theory has been successful in reproducing perturbative series 

for many quantities in pure gauge theory [35, 36, 37, 381, but has never been applied 

to  lattice actions describing a full dynamics of QCD. For example the perturbative 

coefficients of Wilson loops are extracted from Monte Carlo simulations for the Wil- 

son gauge field action (see (2.5)) in Refs. [36, 371. Results are in excellent agreement, 

through third order, with the analytic calculation of Ref. [33]. In this project we 

extend the simulations to  include dynamical fermions. In particular, the perturbative 

series for various small Wilson loops are computed, through third order, for both the 

unimproved staggered quark action and the Asqtad action [39]. The Asqtad action 

is currently the most improved action used in dynamical simulations with staggered 

fermions [lo]. 

This numerical approach produces estimates of higher-order coefficients with far 

less effort than conventional perturbation theory. One does not have t o  keep track 

of the hundreds of diagrams (and t o  calculate them, of course) in higher-order cal- 

culations, but instead simply extracts the perturbative series from simulation data. 

With the help of constrained curve fitting (see Section 5.4), it is possible to  extract 

the third order coefficients with relatively high accuracy. In fact, by setting the first 

and second order coefficients to  the analytic results of Ref. [33] in the fitting codes, 

we obtain a more precise determination of the third order coefficients, which have 

smaller statistical errors than those of Ref. [33]. This is a major contribution because 

t o  obtain the third order coefficients in conventional perturbation theory requires a 

very difficult 2-loop calculation. 

We should also emphasize that,  although we develop our own computer programs 

in this thesis, simulation codes are publicly available, e.g., the MILC code developed 

by the MILC collaboration 6 .  Hence in principle one does not have t o  write their 

programs, and only have t o  perform the simulations. 

The major challenge of the Monte Carlo method is to  account for all the possible 

systematic errors in numerical simulations. This will be discussed in chapter 5. There 

are three major sources of errors: i) effects of zero momentum modes (or finite size 

effects), ii) tunneling between the Z3 center phases, and iii) finite step size error in 

simulation equations. Twisted boundary conditions are used in the simulations to  

eliminate the effects of zero momentum modes and to  suppress tunneling. A new 

simulation algorithm, the rational hybrid Monte Carlo algorithm (RHMC) [40], with 

'Web site: http://physics.indiana.edu/ sg/milc.html. 



no finite step size error is employed for the unimproved staggered quark action. This 

is the first time this algorithm has been used in a numerical application. However 

the RHMC algorithm is computationally much more expensive and is impractical to 

apply to highly improved actions such as the Asqtad action. In that case we use the 

standard R-algorithm [41] and results are extrapolated to zero step size. 

Perturbative series of Wilson loops are obtained, through third order, in full QCD 

with improved staggered fermions. Results are in excellent agreement with analytic 

perturbation theory [33, 321. This provides an important cross-check of the 
perturbation theory input to a recent determination of the strong coupling 

aMs(Mz)  by the HPQCD collaboration [ll, 12, 131. 

Finally, we should mention that there is another approach to lattice perturbation 

theory - the stochastic perturbation theory proposed by Di Renzo et al. [42, 431. 

This method is based on numerical simulations also, but a perturbative expansion in 

the coupling g is applied to the simulation equations themselves, which leads to a set 

of coupled stochastic equations that are truncated at some order in g. Perturbative 

expansions of Wilson loops, again through third order, have been computed in full 

QCD with unimproved Wilson fermions. A comparison on the efficiency of this method 

and the approach used in the present project was made in Ref [37] for pure gauge 

theories, which indicates that weak coupling simulations are more favourable. Also it 

is not clear how difficult to apply this stochastic method to very complex improved 

actions, such as the Asqtad staggered quark action studied here, since one must 

explicitly expand the action and the simulation equations in g. 

7Remember that g2 - 47ra,. 



Chapter 2 

Lattice QCD 

An introduction to lattice QCD will be given in this chapter. The original proposal 

by Wilson on how to formulate pure gauge theories on a finite size lattice will be 

reviewed in Section 2.1. In Section 2.2 we will demonstrate the difficulty in includ- 

ing fermion fields on the lattice. We will see that the naive discretization scheme 

leads to the so-called "fermion doubling problem" where extra fermionic modes (the 

"doublers") appear in the continuum limit. Two different approaches to the doubling 

problem, the staggered quark formulation and overlap fermions, will be presented in 

Section 2.3. Lattice actions are different from their continuum counterparts because 

of discretization errors. In the final section of this chapter we will discuss how to  

construct improved actions which have smaller discretization errors. Many improve- 

ment programs will be considered for both gluon and fermion fields. These include 

classical improvement, tadpole improvement, perturbative improvement and actions 

constructed with "fat-links" . 



2.1 Gauge Fields on the Lattice 

In this section we concentrate on pure gauge theories, i.e., the first term in the QCD 
Lagrangian (1.1). The corresponding gauge field action is 

- 
where F,, = Fiuta.  To formulate a gauge invariant theory on a lattice with discrete 

points x = a (n l ,  n2, ns, n4), ni E integers (see Fig. 2.1), we start with the link variable 

u,,, = P { exp [ ig lx+ab dXp& M] } , 
- 

where A, = AEta and P{. . .) stands for path-ordered product. Under a local SU(3) 

transformation defined by (1.5), i.e., Q(x) + V(x)Q(x) = ei"a(x)ta $(x), the link vari- 

able transforms as 

uz,, + V(x)Ux,,V(x + b) .  (2.3) 

This can be seen from the fact that U,,, acts as a "connection" in the covariant 

derivative 

in order to  compensate for the difference in the phase transformations of Q(x) and 

$(x + 4. 
The transformation law (2.3) is very important because it tells us how to  construct 

gauge invariant lattice actions: the trace of any closed loop (Wilson loop) is gauge 

invariant. In particular, Wilson's [5] original idea is to consider the following action 

where 

is the plaquette located a t  position x (see Fig. 2.1). This is called the Wilson plaquette 

action. Expanding (2.2) in powers of the lattice spacing a 



Figure 2.1: QCD on the lattice. Fermions live on the lattice sites and gauge fields 
& ( x )  become the link variables I/,,,, on the lattice. The plaquette P,,,(x) is the 
product of link variables around the square located a t  x .  

and substituting the result into (2 .5 ) ,  one can check that the Wilson plaquette action 

reduces to  the continuum action as a + 0 with errors of 0 ( a 2 )  

2.2 Fermions on the Lattice - The "Doubling" 

Problem 

The inclusion of fermions on the lattice is complicated by the "doubling" problem. 

The problem is apparent even for free quarks so let us begin with the free continuum 

Dirac action 

S = d 4 x 4  ( y p d ,  + m) $. / (2 .9)  



On the lattice, the derivative is replaced by a finite difference with 0 ( a 2 )  errors '. 
This gives the so-called free "nai've" quark action 

The problem for this nai've discretization scheme is that SnaTv, describes more than 

one quark flavour, 16 in total in 4-dimensions, in the continuum limit when a + 0. 

This can be easily seen in momentum space 

where G(p) is the quark propagator 

Note that the momentum is allowed to have any value between - r / a  t o  r / a ,  i.e., 

the first Brillouin zone. Since the sine-function vanishes in the corners of the Bril- 

louin zone, there exists 16 regions in momentum space, C = (0,0,0,  O), (%, 0,0 ,  O ) ,  

( f ,  f ,  0,O), . . . , where G(p) is non-zero when a + 0. For p, = 0, we have 

1 
- sin up, E p, , (2.13) 
a 

7r and for p, = ;, 
1 1 .  
- sinap, = - sm [a (% - P;)] = PL, 
a a 

where p: = % - p,, is again a small momentum. Therefore the propagator splits up 

into 16 pieces in the continuum limit, labeled by 16 c's, and the naive quark action 

describes 16 fermion species in this limit. The mode with c = (0,0,0,0)  is the usual 

low energy mode and c z (:, 0,0,  O ) ,  (:, :, 0, O) ,  . . . , give the "doublers". These 

modes have very large momentum on the lattice (p, z %, the maximum on 

the lattice) but behave like a low energy mode. Since the number of degrees of 

freedom doubles for each additional dimension, this is called the "doubling" problem. 

lThe leading error can be checked by using Taylor's theorem (take p = 1): $(x  + a )  - $ ( x  - a )  = 
2aax$(z) + 0 ( a 3 )  so that ($ ( x  + a) - $ ( x  - a ) )  /2a = ax$(%) + 0 ( a 2 ) .  



2.3 Staggered Fermions and Overlap Fermions 

There are many solutions to the fermion doubling problem. Two different approaches 

will be presented: staggered fermions [44] and overlap fermions [45, 461. Another 

popular discretization scheme which has no doubler modes is Wilson fermions [47]. We 

will not, however, discuss this method here. Each formulation has its own advantages 

and disadvantages in terms of computational time and chiral properties. A comparison 

will be given a t  the end of this section. 

Staggered Fermions 

In the staggered quark discretization scheme 144, 221, one accepts fermion dou- 
bling and identifies the excess fermions with other fermion degrees of free- 

dom such as quark flavours. This unconventional way to introduce quark flavours 

has surprising phenomenological consequences as we will see below. 

The naive quark action might be fine if there were 16 flavours of quarks in Nature. 

The number of flavours is reduced to 4 in the staggered quark formulation. This 

is accomplished by "spin-diagonalizing" the naive action 1481. Consider the local 

transformation 

Note that there are only 16 R's because ( 7 ~ ) ~  = 1 (1 is the identity matrix in spinor 

space). The fl matrices have the following properties 

Applying this transformation to SnaYve given in (2.10), we obtain 

The last result is diagonal in spinor space, i.e., the transformation "spin-diagonalizes" 

the naive action! This makes each spinor component of $ equivalent to every other 



component. The staggered quark action is obtained by keeping only one spinor com- 

ponent. This effectively reduces the number of degrees of freedom from 16 to  4. Define 

x to  be the remaining component (X now carries colour index only), the staggered 

quark action Ssf reads 

where Dj!,(U) is the staggered Dirac operator 

We have put back the quark-gluon interactions by inserting the link variables. There- 

fore if one interprets the fermionic degrees of freedom as quark flavours, the staggered 

quark action describes 4 equivalent quark species in the continuum limit, i.e., an SU(4) 

flavour symmetry. The action (2.18) has the same structure as the nai've quark action 

and hence the leading discretization errors are of 0 ( a 2 ) ,  the same as that of SnaYv,. 
Two technical points should be mentioned before we further discuss the properties 

of staggered fermions. First, the representation (2.18) is not convenient for numeri- 

cal simulations because X, being a fermion field, contains Grassmann variables. To 

transform to  a complex-valued field 4 (again, 4 has colour index only) which is easy 

to  implement on computers, we notice that in the path integral formulation the con- 

tribution of fermions to the partition function is 

Consequently, the following effective action is always used in simulations 

where 4 is a complex vector. 



Secondly, the discretization scheme described above automatically fixes the num- 

ber of quark flavours to be 4. It  would then be helpful if it is possible to simulate 

staggered fermions with arbitrary number of flavours nf. This can be achieved by 

taking the nf 14-root of the determinant 

so that the action 

describes nf quark flavours. In particular, ddetM"f is required for nf = 2, which 

would be suitable for simulations where only the dynamics of the two lightest quarks, 

u and d, are considered. How to  incorporate the nf 14-root into simulation equations 

will be discussed in Section 4.2. This procedure of taking the fourth-root (or the 

nf 14-root) of the determinant raises questions on the locality of the action 149, 501. 

The search for a theoretical verification of the "fourth-root trick" is currently an 

active research area [51, 521. We will not discuss this issue in this project. However, 

we want to emphasize that this prescription of staggered quarks is able to produce 

results which agree with experimental data a t  the few percent level [lo]. In Chapter 6 

we will also see that simulations, done with the 12th-root of the determinant, agree 

order by order with perturbation theory. 

Staggered Fermions - Flavour-Changing Interactions and 

Chiral Symmetry 

The staggered quark fields are represented by one-component complex vectors 

on the lattice. This makes staggered fermions relatively inexpensive for dynamical 

simulations (see Table 2.1). The unusual identification of doubler modes as quark 

flavours, however, complicates the interpretation of staggered quark simulations. 

Flavour-changing interactions. The staggered quark action describes 4 equivalent 

quark flavours in the continuum limit. This symmetry is broken on the lattice by 

flavour-changing interactions. Since doubler modes are interpreted as quark flavours, 

if a low-energy quark absorbs momentum close to  (:, O,0, O) ,  (0, :, 0,O), . . . , it will not 

be driven far off energy shell but instead will turn into a low-energy quark of another 



Figure 2.2: Flavour-changing interactions. A low-energy quark that absorbs momen- 
tum q, = will turn to  a low-energy quark of another flavour. 

flavour. The simplest process of this kind is one-gluon exchange (see Fig. 2.2). The 
2 

gluon emitted has momentum q2 = (z) so it is highly virtual. Hence flavour-changing 

interactions are extremely short range, which allows their effects to  be analyzed in 

perturbation theory. This will be discussed in the next section. 

We have already seen that flavour-changing effects cause the eigenvalues of the 

staggered Dirac operator t o  move away from zero when a # 0. Another phenomeno- 

logical consequence is the mass splitting of the pion multiplets in the chiral sector. 

Chiral Symmetry. The spinor structure of the original fermion fields is hidden in 

the staggered quark formulation. Hence one can anticipate that not all the continuum 

y5-symmetries, (1.9) and (1.10), will be reproduced on the lattice with staggered 

fermions. In fact, only the [U(l)], symmetry is protected: when the quark masses 

are equal t o  zero, Ssf is invariant under the following global transformation 

where E(X)  EE (-1)x1+x2+x3+x4. This remnant symmetry is equivalent t o  

Notice the difference between this anti-commutation relationship and the one for the 

continuum Dirac operator {y5, D )  = 0, see (1.6). The spontaneous breaking of this 

symmetry results in a true Goldstone mode with r n ~  = 0 in the zero quark mass limit. 

On the other hand, the [SU(4)], symmetry is explicitly broken by flavour-changing 

interactions. As a result the 15 pions, associated with the spontaneous breaking of 

the SU(4) flavour symmetry in the continuum limit, are no longer degenerate, and 



Figure 2.3: The pion mass spectrum. The 16 pions are no long degenerate on the 
lattice. They organize themselves into five multiplets. The T masses were measured 
in units of m,, the mass of the p meson, and results were normalized with respect 
to the lowest state, i.e., the Goldstone mode. See Ref. [54] for more details on the 
calculation. The splitting between the various multiplets reduces substantially when 
improved operators are used. 

their masses do not vanish even when the quark masses are equal to zero. However, 

because of the [U(l)IA symmetry, m: = 13(a2) in the chiral limit [53], i.e., there is 

no additive mass renormalization. In contract the pions acquire a finite mass shift 

even when m = 0 for Wilson-type quarks [22], and one has to  tune the bare quark 

masses to  obtain massless pions. This makes dynamical simulations very expensive 

for Wilson fermions at small quark masses (see summary of this section). 

The cubic symmetry of the lattice suggests that the 15 pions should form 4 degen- 

erate multiplets [53]. Fig. 2.3 shows the pion spectrum obtained in Ref. [54]. Many 

staggered quark actions were considered. Here we only have to look a t  the "1-link" 

results, which were computed using the standard staggered quark action (2.21). We 

will discuss the other results in the next section. The data clearly shows that the 

pions organize themselves into 4 multiplets, together with the true Goldstone mode 

associated with the breaking of [U(1)IA. 



The Overlap Fermions 

Staggered quark formulation lacks exact chiral symmetry. Only a remnant of the 

symmetry is realized by the staggered quark action. We are now going see how the 

continuum chiral symmetry can be restored, as least partially, on the lattice. 

We have seen that chiral invariance requires { Y ~ ,  D )  = 0, see (1.6). In Ref. [27], 

Ginsparg and Wilson suggested t o  replace the continuum anti-commutation relation 

with the following criterion on the lattice 

i.e., the condition for the right-hand-side to vanish is relaxed t o  a term of O(a), but 

the relation {y5, D )  = 0 is recovered in the continuum limit. This is known as the 

Ginsparg-Wilson relation. Later on, Liischer showed that any operator that satis- 

fies (2.26) induces a continuous symmetry on the lattice which can be interpreted as 

the continuum chiral symmetry [28]. Let us consider the following global transforma- 

tion 

It is not difficult to check that  the usual chiral Lagrangian (i.e., zero quark masses), 

$D+, is invariant under (2.27) if D satisfies the Ginsparg-Wilson relation 

The same is also true if we consider axial-vector transformation. 

The Ginsparg-Wilson relation not only gives a precise definition of chiral symme- 

try on the lattice but also indicates how the Dirac operator should be constructed. 

Unfortunately, it is not until recently that a solution of (2.26) has been found. In 

1998, Neuberger [45, 461 showed that the following operator, called the overlap Dirac 



operator 2 ,  satisfies the Ginsparg-Wilson relation 

where E(H) is the matrix sign function 

A popular choice for the kernel H is the Hermitian Wilson Dirac operator [22], H E 

y5DW-f, with 

where n is called the hopping parameter. To avoid fermion doubling n has to be 

appropriately adjusted. .A detail description of how n must be chosen can be found 

in Refs. [55, 56, 571. The overlap action is 

It has been shown that the leading discretization errors of Sou are also of C3(a2) [58]. 

In practice, the sign function can be implemented using the optimal rational ap- 

proximation (I-order Zolotarev expansion) [59] 

where bi and ci are constants. Because each term in the expansion requires an inversion 

of H t H ,  a very large matrix 3 ,  computational cost for overlap fermions is many order 

of magnitudes larger than the other formulations. 

21t is called the "overlap" operator because the operator is originally written as an overlap of 
two state vectors in an auxiliary 5-dimensional space-time. We will not go into the details of the 
derivation but rather simply adopt the definition presented here. 

3The matrix Hz,y = y 5 ~ y /  has dimensions 4ncN x 4ncN,  where n, is the number of colours 
and N is the total number of lattice sites which is usually of 0(104). 



Action 

Staggered 

Wilson 

Overlap 

Continuum 

Cost I Chiral 
Symmetry 

1 a remnant 

10 explicitly broken 

1000 preserved 
- exact 

Anti-commutation 
Relation 

{E(z), DSf)  = 0 
(Dwf) t  = y5DWf y5 

{y5, DOv) = aDy5D 

b5, D )  = 0 

Table 2.1: Comparison among the various fermion actions. The computational cost 
is normalized by that of staggered fermions, and comparison is made a t  the quark 
masses used in today's dynamical simulations. 

Summary 

We finish this section by comparing the various discretization schemes, including 

Wilson fermions, in terms of their chiral properties and computational cost (see Ta- 

ble 2.1). Wilson's ideas on how t o  construct lattice fermion action that has no doubler 

modes are explained in Ref. 1221. 

Chiral Symmetry. Among the three discretization schemes discussed in this sec- 

tion, the overlap action is the only formulation which reproduces a chiral symmetry 

on the lattice. The overlap Dirac operator satisfies the Ginsparg-Wilson relation, 

and chiral zero modes exist even at finite lattice spacing. On the other hand, only a 

remnant of the continuum chiral symmetry is retained in the staggered quark action, 

and the staggered Dirac operator lacks exact zero modes on the lattice. The chiral 

symmetry is explicitly broken for Wilson fermions 1221. 

Computational cost. The advantage that  the continuum chiral symmetry is ex- 

plicitly realized by the overlap action is overshadowed by its high computational cost. 

In comparison to  staggered fermions, dynamical simulation with Wilson fermions is 

about 10 times slower (because of the spinor structure of the quark field and the 

presence of exceptional configurations, see next paragraph), and is about 1000 times 

slower with overlap fermions (because of the many matrix inversions in computing 

the sign function)! This comparison is made a t  the values of quark masses used in 

present-day simulations, where mu and md, the masses of the u and d quarks, are 

about half of the physical s quark mass. In general the computational cost also de- 

pends on the quark masses, and all formalisms exhibit a sharp increase in the cost 

at small mu and md (a "cost wall"). Simulations therefore are always done at rela- 

tively large values of mu and md, and results are extrapolated to  the physical quark 



Figure 2.4: The estimated computational cost for dynamical simulations, as a function 
of m,/m,, with staggered fermions and Wilson fermions. 

masses in post-simulation analysis. Chiral extrapolation, however, is not trivial and 

introduces fitting errors [60]. 

This problem is illustrated in Fig. 2.4 (this figure is taken from Ref. [49]), which 

shows the estimated computational cost for dynamical simulations with staggered 

fermions and Wilson fermions as a function of m,/mp (ratio of the 7r and p meson 

masses). The physical value is at m,/mp = 0.174. Results are shown for two lattice 

spacings, a z 0.lfm which is the typical value used in today's dynamical simulations, 

and a z 0.05fm. One can see that the "cost wall" appears at a much larger value 

of m,/mp for Wilson fermions. This is due to  the presence of "exceptional configu- 

rations" [61], related to the fact that one has to set the bare quark masses a t  some 

critical value t o  obtain massless pions. On the other hand there is no such compli- 

cation for staggered fermions. The [U(1)IA symmetry of the staggered quark action 

protects the pions from acquiring an additive mass renormalization, and hence one 

can go deeper toward the chiral limit before the computational cost explodes. Note 

also the dramatic increase in the cost when the lattice spacing is halved. This reflects 

the scaling a-6 in computational cost mentioned earlier. Improvement of lattice ac- 

tions, which will be discussed in the next section, therefore becomes very important 

for small quark masses because it allows simulations to be done on relatively coarse 

lattices. 

The situation for overlap fermions is not clear since dynamical simulations so 

far have only been done on very small lattices, e.g. 44 [62]. On the other hand, it is 

believed that overlap fermions and staggered fermions become equally efficient a t  very 



small quark masses [63] (perhaps a t  the physical mu and md), because the overlap 

action has the correct chiral properties. These values, however, will not be reached in 

the near future, for both staggered fermions and overlap fermions. 

In conclusion, dynamical simulations can now be done a t  realistically small quark 

masses with staggered fermions (with improvement), and it is the only discretiza- 

tion scheme which is capable of delivering accurate simulation results that 
can be compared with experiments in the near future. 

2.4 Improvement 

We have now seen that lattice actions contain discretization errors and lattice arti- 

facts. It is therefore necessary to minimize their effects in order to  obtain precise 

measurements from lattice simulations. This is particularly important when working 

on coarse lattices with large lattice spacing. In this section several improvement pro- 

grams will be discussed: classical improvement, tadpole improvement, perturbative 

improvement and fat-link improvement. Actions used today in dynamical simulations 

often employ a combination of these improvement methods. 

The general idea of improvement is very simple. One adds higher dimensional 

operators to  the original action so to  eliminate the leading discretization errors. The 

analogue of this is the use of a better finite difference in the approximation of the 

continuum derivative. For example, we can instead use the following approximation 

in the nai've quark action so the leading errors become 0 ( a 4 )  

where Ax$(x) = "xfa)-'(x-a) 2 is original finite difference. The coefficients of the 

additional terms have t o  be adjusted carefully so that the lattice model reduces back 

to  the continuum theory when a  + 0. Perturbative improvement, on the other hand, 

gives O(a,) corrections to  these coefficients, which allows short distance physics (< a) 

t o  be restored a t  finite lattice spacing. 

Classical Improvement 

Classical improvement corrects the leading discretization errors in lattice spacing. 

Consider the improvement of the Wilson plaquette action (2.5) as an example. We 



Figure 2.5: Operators used in the improved gluon action: the plaquette P,,(x), the 
rectangle R,,(x) and the cubic chair term C,,,(x). 

have shown that any closed loop on the lattice is gauge invariant and can therefore 

be used to construct gauge invariant lattice actions. The Wilson action uses the 

plaquettes and has 0 ( a 2 )  errors. An improved action [64] can be obtained by including 

the next largest loops - the rectangles 

where R,,(x) is the trace of the 1 x 2  rectangle at position x (see Fig. 2.5) 4. This 

action has leading errors of 0 ( a 4 ) ,  which again can be checked by expanding the link 

variables in powers of the lattice spacing using (2.7). 

Tadpole Improvement 

The improved action (2.35) was originally designed to eliminate the 0 ( a 2 )  errors 

in the Wilson plaquette action. Simulations with Simp, however, indicated that im- 

provement in many cases was not as significant as would be expected. The solution of 

this problem was provided by Lepage and Mackenzie [65]. They showed that quantum 

corrections that would be suppressed by a2g2, suggested from a classical analysis, are 

actually only suppressed by g2. To see this, consider the expectation value of the link 

variables, i.e., the mean link uO. Taking the average of (2.7), we have 

where "g f" stands for gauge fixing. Gauge fixing is necessary because the expectation 

value of a gauge non-invariant quantity always vanishes in lattice theory [66]. However 

4Note that the second sum is over rectangles with all possible orientations. 
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Figure 2.6: Tadpole diagram. 

as we will see shortly, this gauge fixing procedure can be eliminated by using a gauge 

invariant definition of uo. 

Now, the linear term (&(x)) = (AE(x)ta) vanishes under the trace because the 

generators ta of the colour group are traceless. The last term corresponds to a tad- 

pole diagram, a higher-order quantum correction (see Fig. 2.6). The virtual gluon 

propagator is - l / q 2  where q is the momentum going through the loop. Hence on the 

lattice the tadpole diagram is proportional to 

NaYvely one would expect the tadpole to  be suppressed by a2g2. However, since (A;) 

is proportional to a-2, it is actually suppressed by g2 only. 

Notice that it is the integration over the high momentum modes q z ;rr/a of the 

gluon that gives (A:) - a-2.  This suggests the possibility of removing these quantum 

effects by a mean field renormalization of the links 

To see this, split up the gauge field into a long distance part A,(x) l i r  (infrared) and a 

short distance part A,(x) l u v  (ultraviolet): A,(x) = A,(x) l i r  + A,(x) luv. This implies 

that the link variable can be factorized as Ux,, = Ux,,lil. x Ux,,IuU. Since u0 is short- 

range, it gives a good approximation to  (Ux,,luv). Therefore division of each link by 

u0 removes the short distance fluctuations in the gauge fields and consequently the 

tadpole effects. Applying this idea to the classically improved gauge field action (2.35), 



the tadpole improved version reads 

which has leading errors of 0 ( a 2 g ,  a4). 

As mention above, computation of uo = ( U , ( X ) ) ~ ~  requires gauge fixing because 

link variables are not gauge invariant objects. An alternative definition of u0 which 

does not require gauge fixing is to  take the 4th-root of the average plaquette, u0 = 
(P,,(x))"~. Since the plaquette P,,(x) is the smallest gauge invariant object on the 

lattice, it also gives a good measure of the ultraviolet quantum fluctuations. 

Perturbative Improvement 

Lattice provides a hard cutoff in the momentum ( t )  so lattice models are different 

from the continuum theories a t  short distance (less than the lattice spacing). We 

are now going to  present a systematic procedure to add in renormalizations due to 

contributions from p > physics. Tadpole improvement discussed above is the first 

step to  include these short distance effects. In that case the couplings are renormalized 

by powers of UO. 

Again consider the gauge field action as an example. It has been shown that [64] 

the most general action that can be constructed from operators up t o  dimension 6 (6 

links) can be expressed as 

where C,,, is the 6-link cubic chair term defined in Fig. 2.5. The improved ac- 

tions (2.35) and (2.39) are special cases with PC, = 0. Asymptotic freedom guaran- 

tees that we are in the perturbative phase when p > t .  Therefore to incorporate 

the missing short distance (< a)  physics, the coefficients are tuned (renormalized) 

in such a way that physical quantities, like scattering amplitudes, computed using 

lattice perturbation theory match with the analogous quantities in the continuum. 

The improved action obtained this way should have an overall better resemblance to  

the continuum theory. 

As discussed in the introduction, lattice perturbation theory is done in the same 

way as continuum perturbation theory using Feynman rule techniques. Analytic per- 



turbative theory, however, is very challenging because lattice Feynman rules are gen- 

erally much more complicated. An alternative method to  analytic calculations will be 

presented in the second part of the thesis. Here we simply report the results without 

going any further into the details of the matching calculation. To 1-loop order in 

perturbation theory, the coefficients are given by [67] 

where ppl is a free parameter. The leading errors are of order O(a2a;, a4).  This 1-loop 

improved action will be used in the next chapter to  generate gauge field configurations. 

Fat-link Improvement 

The fat-link improvement program [68, 691 was designed to  suppress flavour- 

changing interactions for staggered quarks. The central idea is to  suppress the transfer 

of high momentum gluon (q, - t)  by "smoothing out" the quark-gluon vertex. To 

see how this might be done, consider the following replacement of the gauge field [69] 

In momentum space, this reads 

It  reduces back to A,(q) for low momentum transfer q, z 0. On the other hand 

the right hand side vanishes when a single gluon with momentum q, z t is ex- 

tracted. Hence this removes quark-gluon coupling with momentum close to : in the 

v-component. To eliminate contributions from other q's, (:, 0,0,  O) ,  (0, :, 0, O) ,  . . . , 
one simply applies (2.43) to  all directions. This suggests the use of "fat-links" in the 

staggered operator (see Fig. 2.7) 

The coefficients cl, w3 can be determined from the classical and perturbative im- 

provement schemes described earlier. The staggered quark action that employs this 



replacement is called "Fat3" because neighboring sites are connected by 3-link staples. 

This idea can be extended to  include staples with more links [31, 701 

x + x + V [ W S X  + ( W S X  + w 7 s x ) ]  , (2.45) 
P u 

where S(3), s(~),  S(7) are the 3-staples, 5-staples and 7-staples respectively 

sE) (x )  = u V ( x ) u p ( x + q u ~ ( x + p ) ,  

sKL (x) = u, (x) sE) (x + fi) u: (x + p) , 
sEPu (x) = U, (x) sEL (x + fi)  U: (x + p) . (2.46) 

The action constructed using s (~)  and s (~)  is called "Fat5", and the "Fat7" action 

includes all staples up to  7 links. Finally, one can also add a 3-link coupling (the Naik 

term), and another 5-link staple similar to s (~)  but with v = p (the Lepage term) to  

the action. This gives the "Asq" action. The tadpole improved version is called the 

"Asqtad" action. This is the most improved staggered quark action used in today's 

dynamical simulations of QCD [lo]. The path coefficients for the various improved 

staggered quark actions are listed in Table 2.2. 

A good way to  see how effective these fat-link improved actions are in flavour 

symmetry restoration is to  study the level of pion mass splitting (see Fig. 2.3 on 

P. 27). Clearly the levels are less spread out when improved actions are used. Results 

also indicate that the splitting becomes smaller as the links get "fatter", e.g., Fat5 + 
Fat7. The Asqtad operator was studied in Ref. [39] and even less flavour-symmetry 

breaking effect was observed. 

Naik 

U X , P  - 
1 -link rfflr'~n 3-staple 5-staple 7-staple Lepage 

Figure 2.7: Paths used in fat-link improved staggered quark actions. 



Action 

1-link (unimp) 

Fat3+Naik 

Fat5 
Fat7 

Asq 
Asqt ad 

Link 3-staple 5-staple 7-staple Lepage Naik 
C 1  w3 w5 w7 W ~ P  C3 

1 0 0 0 0 0 
9 - 9 - 0 0 0 1 -- 

32 6 4  2 4  
1 - 1 - 1 - 
7 14 56 0 0 0 
1 - 1 - 1 - 1 - 
8 1 6  6 4  384 0 0 
5 - 1 - 1 - 1 - - 1 - - 1 - 
8 16 64 384 1 6  2 4  
5 1 1 1 - 1  - 1 

8uo E$ 6 4 u i  @ z@ 
Table 2.2: Path coefficients for the various improved staggered quark actions [39]. 

Further Improved Staggered Quark Action 

It has been found that further improvement is possible with multiple fattening 

using unitarized fat-links [71], i.e., the fat-links are projected back to  the SU(3) 

group manifold before they are used in the next fattening process. An example is the 

improved Asq action (UFat7)n x Asq 

(UFat7)" x Asq I Asq x . . . (projSu(,) x Fat7) x (~roj,,(,) x Fat7) (2.47) 

n times 

where the order of operations is from right to  left and ProjSu(,) labels SU(3) reunita- 

rization. 

Another class of actions which use unitarized fat-links are the HYP-improved 

(hypercubic blocking) staggered quark actions [72]. In this case only those links within 

the hypercube containing the original link are included in the fattening process. 

These improved actions were studied in Ref. [73]. Results are given in Fig. 2.8 

where the mass square difference between the multiplets and the Goldstone pion is 

plotted. It can be observed that the splitting is reduced considerably with the UFat7 x 

Asq and the HYP operator. Additionally, results seem to indicate that improvement 

using UFat7 links or hypercubic blocking are equally efficient in suppressing flavour- 

changing effects. 

From (2.47) one can see that unitarized fat-link actions generally have very com- 

plicated structure. Also to  derive simulation algorithms we need (see Section 5.3). 

However the standard iterative method for SU(3) reunitarization [74] is not differen- 

tiable hence an alternative implementation of ProjsU(,) is required. All these make 

5Fat-links are not SU(3) elements because the sum of two SU(3) matrices is not an SU(3) matrix. 
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Asqtad 

Figure 2.8: Pion spectrum computed using unitarized fat-link operator. The mass 
squared difference, i.e., a2Am: - a2(m: - m;), between the higher multiplets (m:) 
and the Goldstone pion (m;) is shown. Results are taken from Ref. [73]. 

code development for dynamical simulations very difficult. Until now only one group 

has successfully performed dynamical simulations with unitarized fat-link actions [75]. 

The study, however, used a relatively simple action (containing 3-staples only). We 

have developed computer codes for the (UFat7)" x Asq action. Some test runs were 

also done on 44 lattices [76]. Given the success of the Asqtad action, which has been 

shown to  reproduce results that agree with experimental data a t  the few percent level 

(see for example Ref. [lo]), the next step certainly is to  do full QCD simulations 

with the UFat7xAsq action or the HYP-improved action. Our computer program, 

although is not used in this project, is the first step toward this goal. A short sum- 

mary of how to  incorporate the reunitarization step into the simulation equations is 

given in Appendix A. 

Figures 2.3 and 2.8 show that flavour-symmetry breaking lattice artifacts can be 

strongly suppressed by using improved staggered operators. Since flavour-changing 

effects also cause the continuum zero modes to  spread out when a f 0 and make the 

index theorem invalid for staggered fermions on the lattice, it is interesting to  study 

how improvement in staggered quark operator affects the distribution of the low-lying 

eigenmodes. This is the subject of the next chapter. 



Chapter 3 

QCD Topology and Spectral 
Properties of the Staggered Dirac 

Operator 

A systematic study of the spectral properties of a variety of improved staggered op- 

erators is presented in this chapter. Previous studies showed that the index theorem 

cannot be reproduced by the unimproved staggered operator on the coarse lattices be- 

cause the operator has no, not even approximate, zero eigenvalues. This problem was 

further revealed in comparisons of the distribution of the small eigenmodes obtained 

in simulations with the predictions of Random Matrix Theory (RMT). The eigenvalue 

spectrum in all topological sectors was found to be consistent with the prediction of 

RMT for topological charge equal to zero. Therefore it is conventional wisdom that 

staggered fermions do not feel gauge field topology. 

Many systematic effects on the spectral properties have been considered in this 

thesis. These include i) improvement in the staggered operator, ii) improvement 

in the gauge field action, iii) lattice spacing, and iv) lattice volume. It  has been 

observed that eigenmodes with small eigenvalue and large chirality appear as the 

level of improvement increases. These small eigenmodes can be identified as the "zero 

modes" associated with the topology of the background gauge field. This indicates 

that lattice art ifacts and discretization errors are responsible for the failure 

of the unimproved operator to show the proper topological properties. We 

have also compared the distribution of the remaining nonchiral modes against the 

predictions of RMT. Excellent agreement is obtained not only for the zero charge 



sector but for Q = 1, 2 also. 

This chapter is organized as follows. An informal derivation of the index theorem 

will first be presented in the next section. Application of RMT to  QCD Dirac spectrum 

will be reviewed in Section 3.2. In Section 3.3, we will discuss previous simulation 

results and explain why the unimproved operator did not see gauge field topology 

in these studies. We will argue that the correct topological properties should be 

reproduced if one uses improved operators. Details of the simulations will be given in 

Section 3.4 and results will be presented in Section 3.5. 

3.1 The Index Theorem 

An informal derivation of the index theorem is given in this section. We will fol- 

low the proof presented in Ref. [18]. The index theorem states that,  when massless 

fermions couple to  a gauge field with nontrivial topology, some of the eigenvalues of 

the corresponding Dirac operator D necessarily vanish ((1.17) repeated here) 

where Q is the topological charge of the background gauge field and nL,  n~ are the 

numbers of zero eigenmodes of D with -1, +1 chirality. 

For simplicity, let us prove the theorem in QED (Euclidean). We will also approach 

the massless case by starting with a massive (mass m) Dirac field. In this case the 

chiral symmetry [U(l)], is explicitly broken and the axial current (1.14) acquires a 

new source term - 2 m q ( ~ ) ~ ~ ( x ) $  additional to the topological charge density Q(x) 

of the gauge field 

Integrating over the entire 4-dimensional space-time and assuming that J p 5  (x) + 0 

at infinity, we have 

Q = m 1 d ' ~ q ( x ) ~ ~ $ ( x ) .  

'The reason why there is an extra factor of 2 multiplying the charge density Q(x) is that, in 
QED, the topological charge is Q = -A S d4x@"puF,,F,, , while the QCD formula (1.13) has an 
extra factor of 112 (nf = 1) which comes from taking the trace of the colour matrices. 



Taking the expectation value of the above equation gives 

where 

and 

is the Euclidean QED action. Notice that $, 4 are the only dynamical variables so 

(Q)  = Q. We want to  show that the right hand side of ( 3 . 4 )  reduces to n~ - n ~ .  To 

proceed, expand the Grassmann fields $, 4 in the eigen-basis of the massless Dirac 

operator D 

where a,, a, are Grassmann numbers and f ,  are orthonormal eigenfunctions of D with 

The functions f, are also eigenmodes of the massive operator D + m with eigenvalues 

A, + m 

[D + m] f , ( x )  = [AT + m] f , ( x ) .  (3 .9 )  

Using the following rules for Grassmann variables 

it can be checked that the denominator of ( 3 . 5 )  gives det [D  + m] 

T 

= det [D + m ] .  



Similarly, the numerator gives 

=%In da,da, (1 - a,a,(A, + m)) asaslf,y5 fs, 

Dividing (3.12) by ( X l l ) ,  the right hand side of (3.4) becomes 

Now, since D f, = A, f, and {Dl -y5) = 0, -y5 f, is also an eigenfunction of D with 

eigenvalue -A, 

Hence the orthonormal condition J d4x f, f , ~  = 6,,1 implies 

/d4xfs(x)y5fs(x) = 0 for As # 0, 

and only those terms with As = 0 (i.e., zero modes) survive in the sum in (3.13), so 

Finally, because zero modes have definite chirality, i.e., -y5 fs = f fs for As = 0, we 

have 

where n ~ ,  n~ are the numbers of zero modes with +I, -1 chirality. Substituting this 

back into (3.4), we obtain the index theorem. 



3.2 Random Matrix Theory 

Applications of Random Matrix Theory (RMT) to QCD will be reviewed in this 

section. We have seen that the index theorem relates the number of zero modes of 

t h e  D i r ac  ope ra to r  t o  t h e  topological charge of t h e  background gauge  fields. R a n d o m  

Matrix Theory, on the other hand, gives analytic expressions for the distribution of 

low-lying nonchiral modes in different topological sectors. 

RMT was originally invented to study the distribution of energy levels of complex 

nuclei [77]. Random matrix models that have the general symmetries of nuclear inter- 

actions (e.g., time reversal symmetry) were able to describe experimental data with 

high accuracy. Nowadays RMT finds applications in many branches of physics [78]. 

In this section the QCD Dirac spectrum will be studied within the context of chiral 

Random Matrix Theory. As we will see below the matrix theory reflects the chiral 

structure of QCD. 

Consider the matrix model with partition function 

where 

which plays the role of the Dirac operator. Here W is a n x m matrix with In -ml = Q 

and n + m = N. The constant C is the chiral condensate which will act as a fitting 

parameter in our analysis (see (3.23)) . This model reproduces the following chiral 

properties of QCD: 

Spontaneous symmetry breaking of chiral symmetry. The partition 

function (3.18) describes nf equivalent massless quark flavours. The SU(nf)  

flavour symmetry is spontaneously broken with chiral condensate C. This is 

analogous to the breaking of the chiral [SU(3)], symmetry in QCD. 

0 The [U(l)], symmetry. The non-zero eigenvalues of the random matrix Dirac 

operator D come in pairs *A. This represents the [U(l)], symmetry of QCD 

2To see that C is the chiral condensate, introduce a quark mass mf such that D + D +mi.  The 
chiral condensate is defined by lim,,,o limN,, - k & ln Z which is equal to C. 



which is realized through the continuum commutation relation ly5, D} = 0 so 

that the eigenvalues the Dirac operator D also come in pairs. 

Topology. The model satisfies the index theorem. The Dirac matrix D has 

exactly Q = In - ml zero eigenvalues. 

The conjecture of RMT is that spectral fluctuations are universal, and theories that 

have the same global symmetries should share similar spectral properties. Therefore 

one might expect the QCD Dirac spectrum to  be naturally described by the eigenvalue 

distribution function p(X) (the spectral density) of the matrix model (3.18) 

In Ref. [26], p(X) was calculated analytically so that these ideas can be checked in nu- 

merical simulations. We will only describe some of the key elements of the derivation 

here. The most important observation is that any complex matrix W can be decom- 

posed as W = UAV-l, where U, V are unitary and A is a positive definite diagonal 

matrix with entries XI, . .  . , AN. With this transformation, the eigenvalue distribution 

can be written as 

where J(X1,. . . , A N )  is the Jacobian characterizing the change of integration variables 

from matrix W (the Haar measure) to Xk. The spectral density p(X) can be obtained 

by integrating over all Xk except one 

The multiple integral can be evaluated analytically and the result is [25] 

where J,(() is the nth-order Bessel function, ( = XCV and V is the volume. Note 

that the chiral condensate C acts only as an overall scaling factor. Another useful 



statistic is the distribution pmin of the smallest non-zero eigenvalue 

where I,(<) is the nth-order modified Bessel function of the first kind. We are also 

interested in the cumulative distribution of the smallest eigenvalue, p,Uin(<), which is 

obtained by simply integrating the above equations 

Of course, QCD is much richer than the matrix model (3.18). Hence one question 

that should be asked is when QCD spectral correlations deviate from that of RMT. 

We will see later in Section 3.4 that agreement with RMT disappears if the physical 

volume of the lattice is smaller than (1 .2fm)4. 

3.3 Spectral Properties of Various Lattice Fermions 

Now we have studied the response of Dirac eigenmodes to gauge field topology, it is 

important to  check how these spectral properties are realized by the various discretiza- 

tion schemes. A summary of what we might expect to  see is given in this section. 

Problems with staggered fermions will again be highlighted. We will also argue that 

these problems are caused by flavour-changing effects and therefore should become 

less severe if improved operators are used. 

The staggered quark scheme lacks exact zero modes on the lattice. The continuum 

4-fold degeneracy in the spectrum is lifted by flavour-changing effects so zero modes 

(if there are any) are split into complex conjugate pairs, X = 0 + X z &iO(a2), at 

non-zero lattice spacing. This was demonstrated in Fig. 1.3 in Chapter 1 where the 

lowest 10 eigenvalues of the unimproved staggered operator are plotted for 50 gauge 

field configurations. No zero modes, not even approximate, are visible. Because of 

the absence of zero eigenvalues, it is a long held belief that staggered fermions do not 

feel gauge field topology: n* are always equal to  zero so Q is equal t o  zero also. 



We can further explore this problem by studying the distribution of the low-lying 

nonchiral modes. An example was given in Fig. 1.4 where the distribution of the small- 
Q est eigenvalues p,,,, again for the unimproved staggered operator, is compared with 

analytic results (3.24). The graph is taken from Ref. 1251. Overall about 17,000 gauge 

field configurations were analyzed. It is worrisome that all results agree perfectly with 
Q=O p,,, , even after the configurations have been divided into different topological sectors 

according to  their topological charges determined using the continuum formula (1.13). 

Similar conclusions were also reached in other studies [23, 24, 261. 

In contrast the overlap Dirac operator has exact zero eigenvalues a t  finite lattice 

spacing. In Ref. [79], Zhang et al. showed that the topological charges calculated 

by counting the number of zero modes agree with the results computed using (1.13), 

if one is sufficiently close to the continuum limit. Furthermore, the distribution of 

nonchiral modes was found to be consistent with RMT in all charge sectors [29, 801. 

This was shown in Fig. 1.5. 

Since the absence of zero modes for the staggered Dirac operator is related to 

the breaking of the continuum flavour symmetry by flavour-changing interactions, 

one might expect the problems described above to go away, or a t  least become less 

significant, if improved operators are used. The motive of this work is to establish this 

claim by studying the spectral properties of a variety of improved operators. Four 

different systematic effects have been considered: 

improvement in the staggered operator, 

improvement in the gauge field action, 

lattice spacing, 

lattice volume. 

We observe that eigenmodes with small eigenvalue and large chirality appear as the 

level of improvement in the operator increases. These small eigenmodes can be iden- 

tified as the continuum zero modes associated with topology of the background gauge 

fields. The separation between these "zero modes" and the nonchiral modes increases 

when the gauge field action is also improved, or when one moves closer to the con- 

tinuum limit by reducing the lattice spacing. All these suggest that discretization 

errors and lattice artifacts are indeed responsible for the failure of the unimproved 

operator to feel gauge field topology. After successfully identifying the "zero modes", 



Figure 3.1: Spectral density and lattice volume. The gap between the zero modes and 
nonchiral modes scales as 1/V while the number of zero modes increases as 8. 

the distribution of the remaining nonchiral is compared with the predictions of RMT. 

Excellent agreement is obtained not only for Q = 0 but also for nontrivial topological 

charge sectors. 

The spectral density is also found to depend sensitively on the volume (V) of the 

lattice. In general, the charge average ((QI) and consequently the number of zero 

modes scales like a. This can be seen from the fact that the topological suscepti- 

bility, x = (Q2)/V, is independent of V. On the other hand, spectral analysis [81, 821 

shows that the magnitude of the smallest nonchiral modes vanishes as 1 /V as V + 00, 

see Fig. 3.1. These scaling properties are reflected in our data. In particular, we find 

that it again becomes difficult to identify the would be "zero modes" when V becomes 

too large. The magnitude of the smallest nonchiral modes decreases faster than the 

increase in the number of zero modes and hence the tails of the two distributions, zero 

modes and nonchiral modes, mix as V increases. Nonetheless zero modes can still be 

identified without much difficulty even for lattice volume as large as 164. 

Simulations 

Gauge field configurations are generated with both the Wilson plaquette action (2.5) 

and the tadpole improved gluon action (2.39) for a range of lattice spacings and 

volumes. The lattice spacing is determined from the linearly confining static quark 

potential, V = a R .  We measure the slope in lattice units (dimensionless), 6 = a2a.  

To extract a ,  the physical string tension fi = 0.44GeV [83] is used. A sample 

calculation is given in Fig. 3.2. Simulation parameters are summarized in Table 3.1. 
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Figure 3.2: The inter-quark potential at P = 8.26 with improved gauge fields. The 
lattice spacing a can be determined from the slope 6 = 0.0724(5) and the physical 
string tension Ja = 0.44GeV. Restoring h and c, we have a2 = 6h2~2/(0.44GeV)2 
so a = 0.121fm. Only those data points ( 0 )  at  moderate separation are used in the 
fitting. 

The couplings are carefully chosen such that lattice spacings agree between simulations 

using the Wilson action and the improved gauge action. Configurations are generated 

using the standard heat bath method [84, 851 and exactly 1000 configurations are 

generated in each case. 

The eigenvalues and eigenvectors are computed using an accelerated conjugate 

gradient method with exact middle diagonalization [86]. Since the staggered operator 

is anti-Hermitian and satisfies { ~ ( x ) ,  Dsf} = 0, the eigenvalues are purely imaginary 

and come in pairs kiX. In addition, from (2.19), one can see that (D"f)2 connects only 

even-even ( ( D z , ~ ) ~ )  or odd-odd ((D:!)~) sites on the lattice. In this project, we choose 

to  compute the eigenvalues of ( D E , ~ ) ~  since it is Hermitian and has real eigenvalues X2. 

Note that the extra doubling of modes induced by squaring is canceled by working on 

even sites only. To be precise, we compute the lowest 40 eigenvalues of ( D z , ~ ) ~ ,  which 

correspond t o  the lowest 40 positive (imaginary) eigenvalues of Dsf .  

For comparison we have also computed the small eigenvalues of the overlap Dirac 

operator Do" on the smallest lattice with V = lo4. Again, we use the operator D""~D"" 

which is Hermitian and positive definite. Also D""~D"~  commutes with y5 so that 



Table 3.1: Simulation parameters and measured string tensions 6 = a2a. The cou- 
plings are carefully chosen such that lattice spacings agree between simulations using 
the Wilson action and the improved gluon action. 

they can be simultaneously diagonalized [46, 791. The eigenvalue solver is provided 

by Zhang [79], which uses the same conjugate gradient method mentioned above. The 

hopping parameter is set at r; = 0.21, which has been shown to be appropriate for our 

study of topology [79]. The matrix sign function e ( H w )  is approximated by a 14th- 

order Zolotarev expansion with maximum errors of O(10-lo) in the interval [0.04,1.5]. 

Because of high computational cost we have only computed the lowest 5 eigenvalues 

in each chiral sector. Just a note, we find that computing all 40 eigenvalues of the 

staggered operator for a lo4 configuration takes about 2 minutes, while it requires 

almost 2 days to  complete the calculation, on the same configuration, for the overlap 

Dirac operator. 

The chirality of an eigenmode IX) is defined by x - (Xly51X). The eigenvector 

IX) is a spin-singlet (only has space-time and colour indices) in the staggered quark 

scheme because of the spin-diagonalization procedure described in Section 3.3. Hence 

the usual definition of y5, which is a 4 x 4  operator acting on spinor space, becomes a 

4-link operator r5 in the staggered quark basis [81] 

where U is the average of link products over all the equivalent shortest paths joining 

the two sites. There is no such complication for overlap fermions because spinor 

structure is retained in the formulation. The operator y5 is the standard chirality 

matrix, see (1.4). 



Results 

Results of our systematic study on the staggered Dirac operator's spectral properties 

is presented in this section. We have examined the dependence of the eigenvalue 

spectrum on 

0 improvement in the staggered operator, 

0 improvement in the gauge field action, 

0 lattice spacing, 

0 lattice volume. 

It is observed that the distribution of the low-lying eigenmodes depends strongly on 

these systematic effects. 

Improvement in the Staggered Operator 

We first examine the effects of staggered operator improvement on the infrared 

eigenvalue spectrum. Four different operators have been considered: the unimproved 

operator, Asqtad, and the further improved UFat7xAsq and HYP operators. Com- 

parisons are done with unimproved gauge fields for ,B = 5.85 (a = 0.123fm) and 

V = lo4. The same comparisons with improved gauge fields (same lattice spacing 

and volume) will be presented in the next section. Results are shown in Fig. 3.3 

where the absolute value of the chirality 1x1 is plotted against the eigenvalue X for 

the different operators. The symbols "0" label the would-be zero modes and "x" are 

the nonchiral modes. The same scale is used for the chirality. It can be observed that 

the eigenvalue spectrum depends quite sensitively on the way in which the staggered 

Dirac operator is improved. Eigenmodes with small eigenvalues and relatively large 

chirality appear as the level of improvement increases. These small eigenmodes can 

be identified as the zero modes associated with the topology of the background gauge 

fields. Throughout this project the following criteria are used for an eigenstate to be 

identified as a zero mode: (i) it is a t  least a factor of 2 smaller in eigenvalue than the 

smallest nonchiral mode and (ii) the chirality is a t  least 5 times larger than that of 

the smallest nonchiral mode. 

One can see also that,  as the level of improvement increases, the continuum 4-fold 

degeneracy emerges where the scattered eigenmodes begin to form quartets. Note 
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Figure 3.3: Spectral graphs for the different staggered operators with unimproved 
gauge fields [/3 = 5.85 (a z 0.123fm) and V = lo4]. Results are shown for 50 
configurations. The symbols "0" label the would-be zero modes and "x" are the 
nonchiral modes. 

that at this lattice spacing with unimproved gauge fields the Asqtad operator is not 

sensitive to  the topology and lattice artifacts are still dominant. One only starts to see 

a separation between the zero modes and the nonchiral modes with further improved 

operators. In addition, a large renormalization is observed for the chirality of the 

would-be zero modes, which is 1x1 FZ 0.5 instead of unity. This large renormalization 

was also observed in previous studies [81, 301. Nevertheless, the zero modes can be 

identified without any difficulty in most of the cases for the UFat7xAsq and HYP 

operators. 

To quantify the separation between the "zero modes" and the nonchiral modes, 

the ratios of eigenvalues between the smallest nonchiral mode and the largest "zero 

mode" are plotted in Fig. 3.4 for a small set of configurations with nontrivial topology 

(i.e., "zero modes" exist). We should mention that the configurations in Fig. 3.4 are 
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Figure 3.4: Ratios of eigenvalues between the smallest nonchiral mode and the largest 
"zero mode" for unimproved gauge fields [/3 = 5.85 (a z 0.123fm) and V = lo4]. 

different for different operators as the topological indices obtained by using different 

operators generally do not agree on a configuration by configuration basis (see next 

paragraph). It is possible that for a given configuration there are no chiral modes for 

one operator while they exist for the others. For comparison, results of the overlap 

operator are also shown. Theoretically, the ratio is infinite for the overlap operator be- 

cause exact zero modes exist on the lattice for overlap fermions. It is finite here solely 

because of computational precision. Results here show that the staggered operators 

are less sensitive to  the topology at this lattice spacing with unimproved background 

gauge fields. The ratios are always three orders of magnitude for the overlap operator 

but only about one order of magnitude for the staggered Dirac operators. Neverthe- 

less the separation is large enough for the chiral modes to  be identified. In addition 

our results also show that improvements using UFat7 links or hyper-cubic blocking 

are equally efficient. 

The identification of the topological charge index for a given gauge field configu- 

ration is not unique. Because of lattice artifacts and the different ways the staggered 

operator is improved, it can be expected that the topological charge indices obtained 

by using different operators do not always agree on a configuration by configuration 

basis. It is only when one is close to the continuum limit that the results agree. Even 

with the overlap operator previous studies [79] showed that the topological indices 



Figure 3.5: Topological charge distributions obtained by using different operators for 
unimproved gauge fields [P = 5.85 (a = 0.123fm) and V = lo4]. 

do not agree on a configuration by configuration basis when, for example, a different 

mass parameter is used in the kernel. In the present case, we find that the topologi- 

cal charge indices determined by the different operators agree about 60%-70% of the 

time, compared to 28% if the values were completely random. More explicitly, indices 

from different operators are compared pairwise and the agreement is 63% for overlap 

and UFat7xAsq, 68% for overlap and HYP, 78% for UFat7xAsq and HYP. Note 

that the agreement between UFat7xAsq and HYP is larger than that obtained for an 

improved staggered operator and the overlap operator. It  is then important to check 

whether the charge distributions are also different because physical observables, e.g., 

the topological susceptibility, are related to the ensemble average of the topological 

charge. The distributions obtained by these operators are given in Fig. 3.5. It can be 

observed that there is no significant difference among the results. This is important 

because it indicates that physics is independent of the discretization scheme and one 

would expect topological quantities obtained by these operators to agree. 

Improvement in the Gauge Field Action 

Lattice artifacts can be further suppressed if improvement is also applied to the 

gauge field action. This can be seen in Fig. 3.6 where the infrared eigenvalue spectra 
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Figure 3.6: Same as Fig. 3.3 but with improved gauge fields [P = 8.26 (a = 00.121fm), 
v = 1041. 

of the different staggered operators are shown for configurations generated using the 

tadpole improved gauge field action (2.39). Here P = 8.26 (a = 0.121fm) and lattice 

volume is V = lo4 so that both the lattice spacing and physical volume are very 

similar to those used in the unimproved case. Results here show that  better topological 

properties are realized when the gauge field action is also improved. In particular even 

the Asqtad operator is sensitive to  the topology at this coarse lattice spacing and zero 

modes can be identified unambiguously for the UFat7xAsq and HYP operators. 

To have a quantitative picture of how improvement in the gauge field action af- 

fects the spectral flow, we again plot the ratios of eigenvalues between the smallest 

nonchiral mode and the largest zero mode in Fig. 3.7 for configurations with nontrivial 

topology. The same scale is used in Figs. 3.4 and 3.7. In comparison to  Fig. 3.4, it 

can be observed that,  for UFat7xAsq and HYP, the ratios increase from one order 

of magnitude in the unimproved case to three orders of magnitude when improved 

gauge fields are used. Hence, gauge field improvement clearly increases the separation 
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Figure 3.7: Same as Fig. 3.4 but with improved gauge fields [/3 = 8.26 (a = 0.121fm), 
v = lo4]. 

between the chiral zero modes and the nonchiral modes. We should again emphasize 

here that the ratios should be infinite theoretically for the overlap operator since exact 

zero modes exist on the lattice. 

We have also compared the topological indices obtained by the different operators 

in this case. It is found that the agreement increases significantly when the gauge field 

action is also improved: 91% between overlap and UFatYxAsq, 90% between overlap 

and HYP, and 96% between UFat7xAsq and HYP which is again the highest. The 

charge distributions are given in Fig. 3.8. It can be observed upon comparing with 

Fig. 3.5 that better agreement is obtained with improved gauge fields. Results here 

are significant because they indicate that different operators do respond the same way 

to  the topology of the background gauge fields when discretization errors and lattice 

artifacts are reduced. In particular, results here show that the charge indices obtained 

by using the staggered operators and the overlap operator, two completely different 

representations of the Dirac operator on the lattice, agree even on a configuration by 

configuration basis a t  a high percentage as the level of improvement increases. 

Dependence on Lattice Spacing 

Here we examine the dependence of the infrared eigenvalue spectrum on lattice 

spacing and study the spectral flow as one approaches the continuum limit. Calcu- 



Figure 3.8: Same as Fig. 3.5 but with improved gauge fields [P = 8.26 (a z 00.121fm), 
v = 1041. 

lations are done at three lattice spacings with fixed physical volume V z (1.2fm)~ 

(so lattice volume increases as lattice spacing decreases, see Table 3.1). Results are 

shown for the Asqtad and UFat7xAsq operators in Fig. 3.9. One sees that separation 

between the zero modes and nonchiral modes becomes more clear. In addition the 

continuum 4-fold degeneracy is better realized as one approaches the continuum limit. 

Note that the chirality of the zero modes increases as the lattice spacing decreases 

and it is larger for the UFat7xAsq operator. This gives evidence to the fact that 

discretization errors and lattice artifacts are indeed responsible for the failure of stag- 

gered fermions to  be sensitive to  gauge field topology on coarse lattices. The chiral 

zero modes associated with the topology of the background gauge fields emerge as 

one approaches the continuum limit. 

Our results also show that it is necessary to  use a lattice spacing a 5 O.lfm for 

the Asqtad operator to  be sensitive to  gauge field topology. This is similar to  the 

lattice spacings used nowadays in dynamical simulations of QCD using the Asqtad 

fermion action and the tadpole improved gauge field action. On the other hand, 

further improvement of the staggered quark action, e.g, actions with unitarized fat 

links UFat7xAsq, may be necessary when working on coarse lattices to ensure that 

continuum physics is reproduced correctly. 



Figure 3.9: Dependence on lattice spacing. Results are shown for the Asqtad (left 
column) and the UFat7 x Asq (right column) operators with improved gauge fields. 
Physical volumes are z (1.2fm)~ in all cases. 



Figure 3.10: Spectral graphs for the UFat7 x Asq operator at a fixed coupling /3 = 8.26 
( a  = 0.121fm) for volumes V = 84, lo4,  124 and 164 with improved gauge fields. The 
spectrum becomes noisy again for large volumes. 

Dependence on Lattice Volume 

As discussed earlier, we expect a strong dependence of the spectral density on the 

volume V of the lattice and the topological charge average (Q2) should scale with V. 

In Fig. 3.10 the infrared eigenvalue spectrum of the UFat7xAsq operator is given 

for lattice volumes V = 84, lo4, 1 2 ~  and 1 6 ~  a t  a fixed lattice spacing a z 0.121fm 

( p  = 8.26) with improved gauge fields. Results from previous sections showed that 

zero modes should be visibly separated from the nonchiral modes at this spacing 

for configurations generated by the improved gauge action. This is the case when 

the volume is < (l.2fm)4. The spectrum, however, becomes noisy again for larger 

volumes. A similar volume effect has been seen with the overlap fermion operator 

also [29, 801. 

Since the gap between the zero modes and the nonchiral modes scales as V-' (see 

Fig. 3.1), there are more low-lying nonchiral modes as volume increases. As Fig. 3.10 



Figure 3.11: The square root of the total number of zero modes of the UFat7xAsq 
operator as a function of lattice size L (lattice volume V = L4). The number of chiral 
zero modes increases roughly as a. Results of using different criteria for identifying 
the zero modes are shown. 

shows, a certain volume is necessary before the would-be zero modes show up and 

sensitivity to  topology is established. As the volume is increased even further, the 

number of chiral zero modes increases roughly as as can be inferred from Fig. 

3.11. In the configuration average, the tail of the chiral-mode distribution begins to  

merge with the low eigenvalue tail of the nonchiral-mode distribution. However, the 

identification of the would-be zero modes is not quite as difficult as it may appear 

from Fig. 3.10. As seen from Fig. 3.11 the criteria which we adopt for a zero mode, 

namely, a t  least a factor of 2 smaller in eigenvalue than the smallest nonchiral mode 

(Rx = 2) and a factor of 5 larger in chirality (R, = 5), are very robust even for the 

164 lattice. Imposing other values for these factors gives very similar results. 

The expected increase of (1QI) with the volume of the lattice can be seen in 

Fig. 3.12 where the topological charge distribution is shown for different lattice vol- 

umes. Most configurations have trivial topological structure when the volume is small 

and the charge average (IQI) increases gradually with the volume of the lattice. 



Figure 3.12: Topological charge distribution for different lattice volumes. Results are 
shown for the UFat7 x Asq operator at B = 8.26 (a = 0.121fm) with improved gauge 
fields. 

Comparison with RMT 

Results from our systematic analysis give strong indications that staggered fermions 

are sensitive to  gauge field topology when lattice artifacts are sufficiently suppressed. 

It is then important to  compare the distribution of the nonchiral modes, after suc- 

cessfully identifying the would-be zero modes, against the predictions of RMT. In 

particular, we study the cumulative distribution of the smallest nonchiral modes in 

different topological sectors ~ 2 , .  (c) (see (3.25)). 

Calculations are done for three different operators (UFat7xAsq, HYP, and over- 

lap) on two ensembles of configurations (unimproved and improved gauge fields with 

a = 0.12fm, V = lo4).  These ensembles are specifically chosen because the size of the 

lattice is limited by the cost in computing the eigenvalue spectra of the overlap oper- 

ator while a coarse grid is used so that the physical volume is larger than the critical 

value (l.2fm)4. This criterion is important as it ensures that topological structure is 

fully formed [29, 801. 

In our analysis, the would-be zero modes are first identified and the configurations 

are classified according to  their charge indices obtained using the index theorem. We 

should reemphasize here that the indices obtained by using different operators do not 

always agree on a configuration by configuration basis but the charge distributions are 



indistinguishable (see Figs. 3.5 and 3.8). It should also be noted that all configurations 

are used in our analysis. This is different from Ref. [25] where a small portion of the 

ensemble was discarded (see Fig. 1.3). 

Results are shown in Fig. 3.13. The solid curves are predictions from RMT (3.25). 

Because computing the spectra for the overlap operator is much more expensive, the 

sizes of the ensembles are different: 1000 configurations for UFat7xAsq and HYP but 

only 400 for the overlap operator. This is the reason that the overlap results appear 

to have poorer agreement with the predictions of RMT. Note that the agreement is 

better with improved gauge fields. The results given here contribute to the evidence 

that staggered fermions do feel gauge field topology, provided that lattice artifacts are 

suppressed considerable, as the agreement with the predictions of RMT is impressive. 

They should be compared with previous studies [23, 24, 25, 261 with the unimproved 

staggered operator which appeared to indicate the presence of only a trivial topological 

sector. 

3.6 Conclusion 

In this project we studied numerically the spectral properties of a variety of improved 

staggered Dirac operators. Four systematics have been examined: i) improvement in 

the staggered operator, ii) improvement in the gauge field action, iii) lattice spacing, 

and iv) lattice volume. 

It has been observed that  the infrared eigenvalue spectrum depends sensitively on 

the way in which the staggered fermion operator is improved. On coarse lattices the 

unimproved operator is insensitive to  gauge field topology. As the level of improve- 

ment increases, either on the operator itself or the background gauge fields, eigen- 

modes with small eigenvalues and large chirality appear. These small eigenmodes can 

be identified as the chiral zero modes associated with the topology of the gauge fields. 

Sensitivity to the topology also increases as one approaches the continuum limit. This 

gives evidence that lattice artifacts are responsible for the failure of the unimproved 

staggered operator to  reflect properly the gauge field topology on coarse lattices. Our 

results also show that a lattice spacing a 5 O.lfm is enough for the Asqtad operator 

to have a correct response to the topology with improved gauge fields. This spacing 

is of the order of the lattice spacings used in present-day state-of-the-act dynamical 

simulations of QCD. On the other hand, the next level of improved staggered opera- 



Figure 3.13: Cumulative distribution of the smallest nonchiral modes in different 
topological sectors. Results are shown for unimproved (left column) and improved 
(right column) gauge fields at a ==: 0.12fm, V = lo4. Solid curves are predictions of 
RMT. 



tors, e g ,  UFat7xAsq, may be required to  produce configurations which describe the 

correct continuum physics on coarser lattices. We also observe that the topological 

charge distribution is independent of which operator is used even though the charge 

indices do not always agree on a configuration by configuration basis. However, the 

agreement increases with the level of improvement. A minimum physical volume of 

about (1.2fm)~ seems to  be necessary in order for zero modes to show up and for 

sensitivity to topology to be established. This effect was observed earlier for overlap 

fermions [29,80]. As volume is increased the number of would-be zero modes increases 

as fl but the number of low-lying nonchiral modes increases faster so some merging 

of tails of the distributions takes place. Up to the 164 volume considered here, it 

is still possible to make a clear separation of would-be chiral modes from nonchiral 

modes. The distribution of the nonchiral modes is matched with the predictions of 

RMT. The agreement is comparable to  that obtained using overlap fermions. 

In conclusion, this work gives strong evidence that, provided one uses improved 

staggered operators and improved gauge fields, staggered fermions properly feel gauge 

field topology. 



Chapter 4 

Lattice Perturbation Theory: An 

Example 

The second topic of the thesis demonstrates how perturbative quantities can be ef- 

ficiently computed from Monte Carlo simulations at weak coupling. In particular, 

perturbative series of Wilson loops, or the logarithm of the Wilson loops 

are obtained through third order, in full QCD, with improved staggered fermions. 

Here R, T are the dimensions of the loop, and we will define the expansion parameter 

av(qi ,)  later in this chapter. Two sets of actions have been considered 

unimproved: the Wilson plaquette action (2.5) and the unimproved staggered 

quark action, 

MILC: the 1-loop improved gauge field action (2.40) and the Asqtad action. 

From now on we will simply refer to these actions as the unimproved action and the 

MILC action. The MILC ' action is currently used in one of the most extensive 

studies of non-perturbative QCD on the lattice [lo]. 

In this chapter, we will first demonstrate the important of lattice perturbation 

theory. Lattice field theory was originally invented to study the non-pert urbative 

nature of QCD. Hence there seems to be a contradiction to consider perturbation 

'It is called the MILC action because it is used in simulations done by the MILC collaboration. 
The action, however, was not proposed by the MILC collaboration. 



theory on the lattice. Nevertheless, perturbative calculations are useful and sometimes 

essential in many aspects of lattice QCD. We have already seen that perturbative 

matching plays a crucial role in the attempt to  restore short distance physics to the 

lattice actions. Perturbation theory is also important in connecting simulation results 

to physical quantities in the continuum. An example, the precise determination of the 
- 

strong coupling constant, a y S ( M z )  111, 12, 131, from lattice QCD will be presented 

in this chapter. This example will also review some of the basic ingredients of lattice 

perturbation theory. Results in this thesis are directly applicable to  this research 

problem. 
- 

An Example: Precise Determination of ~ Y ' ( M ~ )  from Lattice 

QCD 
Precise determination of the strong coupling constant is important not only t o  

QCD phenomenology but also in the search of new physics. Any discrepancy be- 

tween theoretical prediction and experimental data would signal the existence of new 
- 

theory beyond the standard model. Figure 4.1 shows the values of a y S ( M z )  ob- 

tained by various experiments and theoretical calculations [2]. The coupling constant 
- 

is evaluated a t  the scale Mz (mass of the Z-boson) in the M S  (minimal subtrac- 

tion) renormalization scheme. We will explain this terminology below. It can be 

observed that lattice QCD provides one of the most accurate determinations of the 
- 

coupling, a y S ( M z )  = 0.121(3), which agrees extremely well with the "world-average" 
- 

of a y S ( M z )  = 0.119(2). The lattice result is obtained with staggered fermions [12]. A 
- 

summary of other lattice determinations of a,n.'s(hfz) can be found in Ref. [2]. The lat- 
- 

est lattice calculation [13], again uses staggered quarks, gives ayS (Mz) = 0.1 lTO(l2) 

which has a even smaller error. This impressive agreement between lattice results 

and other determinations demonstrates that lattice QCD, which governs long-distance 

hadronic physics, is the same theory as the QCD of perturbation theory, which con- 

centrates on high energy processes such as jet production. 

Our presentation will essentially follow the works of Ref. [ll, 12, 131. Four steps 
- 

are involved in the determination of a y S ( M z )  from lattice QCD: 

0 Perform full dynamical simulation of QCD using the MILC action (the unim- 

proved action was used in the first two calculations [ll, 121). 

Determine the lattice spacing by measuring some long-distance physical quan- 

tities on the lattice such as a hadron mass, using experimental value as input. 
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Figure 4.1: The strong coupling constant (U!'~(M~) determined from various experi- 
ments and theoretical calculations. Results are taken from the 2004 Review of Particle 
Physics [2]. The coupling constant is evaluated a t  the scale Mz (mass of the Z-boson) 
- 

in the M S  (minimal subtraction) renormalization scheme. 

Choose a short distance quantity whose perturbative series is well known at 

least through second order. A good choice is the expansion of a small Wilson 

loop (4.1). To extract the coupling constant, equate the expansion to  the non- 

perturbative result -In obtained in Monte Carlo simulation. More 

explicitly, we solve for a ~ ( q ; 2 , ~ )  in 

where the momentum scale q;,, a a-' and n is the lattice spacing determined 

above. So far the perturbative coefficients have only been computed analytically. 

The purpose of this project is to give another determination of c, using 
Monte Carlo methods. 

- 
Convert the result to M S  scheme and integrate the running coupling formula 

- 
to MZ to obtain (U,~"(M~).  

We are now going to  discuss these steps in detail. 



Determination of the Lattice Spacing 

Lattice spacing is set implicitly by the value of /3. It  can be determined by comput- 

ing a physical observable on the lattice and comparing the result to  the experimental 

value. One should choose an observable which can be measured with high accuracy. 

The T mass splitting (MT - MTt) was used in Refs. [ l l ,  12, 131. These heavy-quark 

systems were chosen because they are essentially non-relativistic so that the quark 

propagators can be computed efficiently and precisely by using non-relativistic effec- 

tive field theory such as lattice non-relativistic quantum chromodynamics (NRQCD). 

They are small in physical size hence finite volume effect is negligible even on mod- 

estly sized lattice. The mass splitting was also found to  be insensitive to  the input 

bare quark masses so that fine tuning of the mass parameters is not crucial. Finally, 

MT - M y  is very well determined experimentally (=0.563GeV). On the lattice the 

mass splitting is measured in terms of the lattice spacing, i.e., (MT - MTt)a. The 

lattice spacing can be deduced by equating this value to  the experimental result. 

We should mention that a major development of the recent calculation [13] is 

the use of other physical quantities involving light quarks (e.g. pion and kaon decay 

constants), to  determine the lattice spacing. This is possible because accurate simu- 

lations can now be done, with 3 flavours of light quarks, using the MILC action. The 

lattice spacing determined from these quantities agrees with the spacing derived from 

T splitting. 

Expansion Parameter 

Choosing a proper expansion parameter is very important for perturbative calcu- 

lations. For example 2 ,  if agood produces a well behaved perturbative series for an 

observable, expansion with a b a d  = agood(l - 1000agood) of the same quantity would 

have very large higher-order corrections 

When working to  all orders in abad  the second expansion is equally correct. However, 

it gives misleading results if the series is truncated since the higher-order terms are 

also significant. 

2This argument is due to Lepage and Mackenzie [65].  



A natural choice of expansion parameter for lattice theories is the bare coupling 

ao, which is related to  /3 by a. = &. However, the nonlinear relationship between 

the link variable Ux,, and the gauge field A,(x), Ux,, - eiaAw("), leads to large renor- 

malization of the coupling. As a result, expansions expressed in terms of a. generally 

converge much slower than those using other renormalization schemes. To illustrate 

this problem, consider the expansion of - In WlI1 for the Wilson plaquette action. 

From perturbation theory [87], we have (to O(ag)) 

for /3 = 6.0 or a. = = 0.07958 while Monte Carlo simulations in Chapter 3 give 

A renormalized coupling a v  will be defined in (4.8). At /3 = 6.0, it was found that 

a v  z 0.1414 and expansion in a v  gives (to O(a$))  [37] 

Clearly series expressed in terms of a v  have much better agreement with simulation 

results. Notice that av is about a factor of 2 larger (large renormalization) than the 

bare coupling a 0  a t  this value of /3. 

To incorporate the effects of renormalization we can define a directly in terms 

of a physical process. This is equivalent to  choosing a specific renormalization 

scheme. A popular choice is the V-scheme which uses the static-quark potential 

V(q) in momentum space [88, 651. Let us consider the Wilson plaquette action as an 

example. The expansion of V(q) to  second order in a 0  is [89] 

where = 11 - inf. The large second order coefficient again indicates that a. is not 

a good expansion parameter. The renormalized coupling av(q)  is defined such that 



the potential has no higher-order corrections 

Therefore renormalization due to vacuum polarization is systematically included, re- 

sulting in a running coupling at scale q. Comparing (4.7) and (4.8), the relationship 

between a. and a ~ / ,  for the Wilson plaquette action, can be determined 

The connection between a 0  and a v  for the unimproved action and the MILC action 

is derived in [33] to third order (which requires a very difficult 2-loop perturbative 

calculation) 

a o  = ~ ( 4 )  [l + VI (q)av(q) f vz(q)a:(q)] + O(a$)-  (4.10) 

The coefficients vl, v2 can be found in the reference given above. Perturbative quan- 

tities, e.g. In WR,T, are then expanded in terms of Q ~ ( Q ; ~ , ~ )  ((4.1) repeated here) 

The scale qk,, is called the "relevant scale", which is explained below. 

Relevant Momentum Scale 

The value of a v  also depends on the scale q a t  which it is evaluated (a running 

coupling constant). It  is therefore necessary to determine the momentum scale rele- 

vant to the observable of interest. This momentum scale can be determined using the 

procedures described in Ref. [88]. The idea is to utilize the mean value theorem such 

that for 1-loop perturbative contributions 

This method essentially chooses the scale q* such that a,(q*) mimics the use of the 

fully dressed gluon propagator within the process. To solve for q*, we use the QCD 



running coupling formula (to first order in perturbation theory) [2] 

av(4*) 
a v ( d  = 

1 + h a & * )  ln (f)  

Substituting the above equation into (4.12), we obtain a convenient formula for q* 

The values of qk,, for Wilson loops are well known [65,33]. They are listed in Table 6.1 

in the next chapter. 

Connection to a f S  ( M ~ )  

The final step is to convert the lattice result av($) to ~ T ( M ~ )  so that it can 

be compared with other determinations (see Fig. 4.1). The connection between the 
- 

"V-scheme" and the continuum MS-scheme can be determined by expanding V(q) in 

terms of am(q) 

where the coefficients can be found in Ref. [go]. This gives ayS (5). Finally, to obtain 
- 

a $ r s ( ~ z )  , one numerically integrates the third order running coupling formula to  

the mass of the Z-boson [2] 

where A is a constant of integration. Here Po = 11 - anf and P1 = 102 - y n f  are 
- 

universal constants. The value of P2, however, is scheme dependent. In the MS-  

scheme it reads ,f?p = 2857 - 5033 2 
325 and in the V-scheme P r  = 4224.18 - x n f  + xnf7 

746.006~~ + 20.8719~~; [go]. 



Chapter 5 

Lattice Perturbation Theory from 

Monte Carlo Simulations at Weak 

Coupling 

- 
The key ingredients in the determination of a y S ( M z )  are the expansions of Wil- 

son loops (4.1). So far the perturbative coefficients have only been computed an- 

alytically [33]. However, as we have discussed in the introduction, diagrammatic 

perturbation theory is very difficult for lattice actions, which have very complicated 

Feynman rules. One has to evaluate an enormous number of diagrams for higher-order 

calculations. 

A simpler alternative to analytic perturbation theory, proposed in Ref. [35], is to 

simulate the quantity of interest at weak coupling (or at high B) where QCD is per- 

turbative, and fit perturbative expansions to the results. The 1-loop mass renormal- 

ization for Wilson fermions was correctly reproduced. This method was later applied 

to determine the perturbative coefficients of Wilson loops, through third order, of the 

Wilson plaquette action [37]. Excellent agreement with analytic perturbation theory 

was obtained. The tadpole improvement factor was studied at high /3 in Ref. [38]. 

Results agree with the existing 2-loop calculations and new prediction for the %loop 

perturbative coefficient was made. 

In this project we extend the calculation of Ref. [37] to compute the perturbative 

coefficients of the Wilson loops in full QCD, for the unimproved action and the MILC 

action. This is the first time that the Monte Carlo method is applied to full QCD 

'~ernember that o = d = &, see (2.5). 



lattice actions. All previous studies listed above were done for pure gauge theories 

where contributions from dynamical fermions had been neglected. 

It  is important to work a t  high enough P or small coupling so higher-order con- 

tributions are negligible, i.e., we are in the perturbative phase. The typical value 

of /3 used in simulations is /3 = 6.0, which gives a lattice spacing a z 0.lfm and 

av(q;,l) = 0.14 (see (4.6)). In this project we use couplings ranging from P = 9.5 

to  p = 80.0. For P = 9.5, we have a - 0.02fm and av(q;,,) = 0.12 (see Table 6.8 

in next chapter), and a t  P = 13.5 the lattice spacing gets even smaller, a = 0.005fm 

and av(q;,,) = 0.076 2. At P = 80.0, the lattice spacing becomes infinitesimally 

small a = 10-17fm, and av(q; z 0.01. This lattice spacing is comparable to the 

Planck scale (about 10-~Ofm [I])! Therefore any measured effects are far away from 

the confined phase of the theory, and well into the perturbative phase. 

Finally we should mention that,  although we develop our own computer programs 

in this project, simulation codes are publicly available (e.g., the MILC code developed 

by the MILC collaboration), and in principle one only has t o  perform the simulations. 

While perturbative coefficients can be computed more efficiently with high-P sim- 

ulations, a t  least for simple quantities like Wilson loops, this method produces pertur- 

bative coefficients with statistical errors and truncation errors so it  is not a complete 

substitute for conventional perturbation theory. Additionally, numerical simulations 

are subject to  various systematic effects. There are three major sources of errors: 

i) zero momentum modes (or finite size effects), ii) tunneling between the Z3 cen- 

ter phases, and iii) errors in the simulation equations. An extensive study of these 

systematic effects will be presented in this chapter. 

In Section 5.1, we will first discuss the problems with zero-momentum modes and 

tunneling. Zero modes contribute a large part of finite size effects while tunneling gives 

non-perturbative contributions. Twisted boundary conditions are employed in the 

present project to remove both of these effects. This will be discussed in Section 5.2. 

Simulation algorithms will be reviewed in Section 5.3. A new algorithm, the rational 

hybrid Monte Carlo (RHMC) algorithm [40], with no finite step size (At) error, is 

used for the unimproved action. This is the first time this algorithm has been used in 

a numerical application. However, RHMC is computationally much more expensive 

and is impractical to apply to highly improved actions such as the MILC action. In 

2The lattice spacings are estimated using the data in Table 3.1. Near the continuum limit the 
lattice spacing scales like a N e-" where Ic is a constant [22]. 



that case we use the R-algorithm [41], which has step size errors of At2. Simulations 

are done a t  several values of At and results are extrapolated to  At = 0. Finally, other 

systematic effects will be addressed in Section 5.4. 

A comment should be made here about the precision of our data. The objective 

of this project is to extract the perturbative coefficients of Wilson loops from Monte 

Carlo simulations and to  compare the results with the analytic calculation of Ref. [33]. 

We wish to  do the comparison a t  least through third order. Given cxv - O(0.01) for 

the values of p used in this project, the Wilson loops therefore must be determined 

with statistical precision of 10-~-10-~! Hence it is important to  identify all possible 

systematic effects and to have them under control. 

5.1 Zero Modes and Tunneling 

Zero Momentum Modes 

The measurement of Wilson loops on a finite-size lattice is subject to  finite volume 

effects. A large part of the effect shows up as large zero-momentum contributions in 

the perturbative expansion. This is best illustrated by the loop integral of the free 

gluon propagator. For infinite lattice volume it is well behaved 

= finite, fj2 = 4sin2 
2 ' 

On the other hand if the lattice has finite size, V = L4 = (aN)4,  the momentum is 

discrete and the integral becomes a sum 

Clearly the zero-momentum mode p = 0 creates problem. 

A proper treatment of zero-momentum modes is a very complicated problem [91]. 

Therefore their contributions are usually neglected in finite-lattice perturbation the- 

ory. This is not perfect but the error introduced can be shown t o  vanish as 1/V 

in the infinite volume limit [91]. The simplest procedure is to  simply neglect these 

effects (e.g., by not including the p = 0 term in the momentum sums, see Ref. [87] 

and references therein). Another approach, proposed by Liischer and Weisz [34], is 



to remove zero modes from the start by using twisted boundary conditions instead 

of periodic boundary conditions. We will see explicitly how this works in the next 

section. 

For proper comparison with diagrammatic perturbation theory one must use the 

same boundary conditions in simulations as used in the analytic calculations (see next 

chapter for a detailed discussion on the matching of the results obtained in the present 

project and those in Ref. [33]). Only minor modifications of the computer codes 

are required when switching from periodic boundary conditions to twisted boundary 

conditions. 

Tunneling 

The gauge field action is invariant under the transformation for which all p- 

directional links on a p-plane (i.e., a fixed x,) pick up a common element from the 

center subgroup Z3 of SU(3) 

ux,p  + Zux,pl on a particular p-plane, (5.3) 

where Z E Z3 = [I, ei2n/31, ei4n/31]. Let us consider the Wilson plaquette action as 

an example (see Fig. 5.1). For those plaquettes affected by the transformation (5.3), 

the extra phases on the opposite sides cancel leaving the action unchanged. This 

symmetry causes the gauge-field action minimum to  be degenerate. The transition 

between the degenerate ground states in the from of (5.3) is known as "tunneling". 

Perturbative calculations can be performed around any one of the three vacuum 

configurations. The usual one is defined by U,,, = I .  Tunneling effect, however, 

is non-perturbative because the value of the gauge fields shifts by a constant factor 

during the transition (remember U,,, - eiagA~(")) 

Tunneling can occur quite frequently in numerical simulations (see below and Fig. 5.2). 

These non-perturbative events must be sufficiently suppressed to  allow extraction of 

the desired perturbative effects. 

Tunneling between the Z3 phases can be detected by measuring the Polyakov loop 



Figure 5.1: Example of tunneling for the Wilson plaquette action. The bold lines 
represent links that have transformed. The extra phases on the opposite sides cancel 
leaving the action unchanged. 

which is the product of all links in the p-direction. Since the Polyakov loop cuts 

through a particular plane only once, it picks up an extra phase factor (1, ei2"I3, 

ei4"I3) when tunneling occurs. A typical run history of the temporal Polyakov loop 

Pt is given in Fig. 5.2 for the unimproved action (i.e., with unimproved staggered 

quark action) a t  ,B = 16. Periodic boundary conditions are used in this case and the 

lattice volume is V = 44. The input bare mass is m = 0.1 with nj = 1. Except for the 

volume 3 ,  these parameters are the same as those used in next chapter. Unfortunately, 

one can observe that tunneling is very severe at this ,B and volume. 

One method to  suppress tunneling is to  work a t  very large values of ,B or very large 

lattice volumes. Tunneling is more difficult a t  large ,B because fluctuations in gauge 

fields reduce as ,B increases. On the other hand more links have to  be transformed 

on larger lattices so tunneling is also suppressed. However, the example that we gave 

above is already a t  relatively high ,B. We use a larger volume in the simulations, 

V = 84, but it has been seen that tunneling is still very severe a t  this volume. 
6 

Increasing the volume further is not feasible because simulation cost scales as (4) , 
see Section 1.1. A more efficient method must therefore be utilized. We will see in the 

next section that tunneling can be strongly suppressed if twisted boundary conditions 

3The actual simulations are done on V = 84 lattices. 



-0.4 0 0.4 0.8 0 500 1000 1500 2000 

Number of configurations 
Re P, 

Figure 5.2: Run history and scatter diagram of the temporal Polyakov loop Pt on 
a 44 lattice a t  p = 16 using periodic boundary conditions. Results are obtained 
with the unimproved action (i.e., with unimproved staggered quark action) and 100 
configurations are skipped between measurements. 

are used. 

We should mention that the presence of fermions breaks the Z3 symmetry as the 

fermion actions are not invariant under the transformation (5.3). However, a t  small 

volumes and modest p, the cost of forming different phases is too small t o  prevent 

their frequent occurrence, as can be inferred in Fig. 5.2. 



5.2 Twisted Boundary Conditions 

Simulations usually employ periodic boundary conditions (PBC) 

where L is the size of the lattice. For twisted boundary conditions (TBC), extra twist 

matrices R, are inserted when one steps over the boundary 

In this project TBC are applied to  spatial directions only and the temporal direction 

is not twisted. The twist matrices R, are fixed traceless elements of SU(3) group 

satisfying 

R,R, = zR,R,, z - e i2n/3 
(5.8) 

and 

R; = 11. 

The first relation makes certain that U,,, is uniquely defined for those lying outside 

more than one boundary (i.e., independent of which boundary is crossed first) 

The second condition implies that there is a periodicity of 3L in the twist direction 

for the link variables 
3 

U X + ~ L D , ~  = f l : u ~ , p f l L  = UX,,. (5.11) 

On the other hand, the additional factor einl3 in (5.7) ensures anti-periodicity for the 

fermion field 

$ X + ~ L D  = -$x. (5.12) 

These indicate that the length of the lattice is effectively tripled in the directions 

where TBC have been employed, and therefore one would expect to  have smaller 



finite size effects. The following representation of R, is used in this project 

Note that only 0, and R, are independent. 

Because the twist is applied in a bilinear manner, the quark fields qX must become 

3 x 3  matrices similar to  the link variables. Hence in addition to the SU(3) colour 

group, a SU(3) "smell group" is needed [92]. The three "smells" are degenerate 

like the colours. These extra degrees of freedom can again be identified as quark 

flavours. This is analogous to  what we have done in the staggered quark formalism 

where doubler modes are treated as quark flavours. As a result, the same theory will 

describe 3nf quark species if TBC are employed instead of PBC. Note the simulation 

cost is tripled. This is one disadvantage of TBC for dynamical fermions. 

Twisted Boundary Conditions and Zero Modes (Gauge Field) 

The use of TBC in simulations can completely remove the zero-momentum modes 

of both the gauge field A,(x) and the quark field $(x). Let us consider the former 

case first. Since Uz,, I e'agh(z), A,(x) satisfies the TBC (5.7) also 

&(x + LD) = R , A , ( ~ ) R ~ .  (5.14) 

Now Fourier expansion gives 

1 
A, (X) = - L4 rke"Xee'kfi/2~, ( I ; ) .  

k 

The extra factor eikfil2 can be interrupted as defining the field &(x) to sit in the 

middle between x and x + ji. For PBC, the matrices rk would be the standard 

generators ta of the SU(3) colour group and are independent of the momentum I; .  

There would be a summation over colours, Ca, and there would be 8 independent 

4The representation is not unique. 

80 



colour fields A: ( k ) ,  a = 1 ,  . . . , 8 .  For TBC, however, there is an interesting mixing 

between colours and momentum. As we will see shortly, the colour degrees of free- 

dom are transformed to momentum degrees of freedom. There will be 8 times more 

momentum vectors when TBC are used. 

Applying (5.14) to (5.15), we have 

2 
Multiply the above equation on the left by fl: and on the right by 0; , and use 0: = I, 
we obtain 

This gives a quantization condition for the momentum 

The momentum appears to  be quantized in a box with length 3 L  instead of the 

physical length L .  This again indicates that the length of the lattice is effectively 

increased by a factor of 3.  Substituting (5.18) back into (5.16),  gives 

Equation (5.19) can be solved by making the ansatz 

where a,  p and y are integers and we have used Q, = fl:fly, see (5.13). Since there are 

only two independent matrices, Ox and fly, there are only two free variables, (a  + 27 )  



and (p + 7). Substituting this ansatz into (5.19), we have, for v = x, 

Similarly, for v = y and v = z 

Hence the rk matrices are given by 

Because R; = 1, there are 9 distinct I'k only: eight traceless Hermitian matrices and 

the identity. 

In summary, the Fourier decomposition of A,,(x) is 

and the momentum vectors are 

The condition that &(s) is traceless excludes the case f l ; n y f l i x  = 1. This corresponds 

to  n, = n, = n, = 0 (mod 3), i.e., zero modes are eliminated. 

In addition, there are precisely 8 times more momentum degrees of freedom com- 

pared to the case when PBC are used 5. For each momentum mode A,(k), however, 

the colour is fixed. There is only one rk matrix associated with each &(k). These 

5Equation (5.25) indicates that there are 9 times more momentum vectors but we cannot have 
zero modes n, = n, = n, = 0 (mod 3). 



show that the original colour degrees of freedom become momentum degrees 
of freedom. In the present case with SU(3) colour, there are 8 times more momenta 

because the colour group has 8 generators. 

Twisted Boundary Conditions and Zero Modes (Quark Field) 

Zero-momentum modes of the quark fields cannot be eliminated by the traceless 

requirement. Instead they are removed by the anti-periodicity condition ( 5 . 1 2 )  as we 

will see below. 

Again, expand $ ( x )  into momentum modes 

Remember that $ ( x )  is now a 3 x 3  matrix. Applying TBC ( 5 . 7 )  to those $ ( x )  that 

lie outside the boundary, gives 

1  1  i k x  i r / 3 ~  
- C I ' k e " X e i k u L $ ( k )  = - C r k e  e  
L4 L4 U $ ( k P t  

k k 

Again, multiply the above equation on the left by 0; and on the right by RL2, we 

obtain 

This implies the quantization condition 

Therefore there are no zero-momentum modes for the quark fields. Again, 

the momentum seems to be quantized in a box with length 3L. 



Twisted Boundary Conditions and Tunneling 

We have mentioned that tunneling can be suppressed by increasing the volume of 

the lattice because more links have to  be transformed simultaneously. The quanti- 

zation conditions (5.18) and (5.29) indicate that the lattice size is effectively tripled 

in the directions where TBC has been applied. Therefore one might expect to  see 

less tunneling with TBC. This is demonstrated in Fig. 5.3 and 5.4 where TBC have 

been applied to  two directions (TBC,,) and three directions (TBC,,,) respectively. 

For comparison simulation parameters are chosen to  be the same as those used in 

Fig. 5.2. It  can be observed that tunneling has already almost disappeared with 

two-way twist and there is no tunneling a t  all with TBC,,. In this project TBC are 

applied to all three spatial directions, i.e., TBC,,,. We have generated about 1 Million 

configurations (V = 84) and not even a single tunneling event has been observed. 
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Figure 5.3: Run history and scatter diagram of the temporal Polyakov loop Pt at  
p = 16, V = 44 with xy-twist. Parameters are the same as those of Fig. 5.2. 
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Figure 5.4: Same as Fig. 5.2 and 5.3 but with xyz-twist. 

5.3 Simulation Algorithms 

We want to  compute the ensemble average of the Wilson loop W R , ~  

where SG is the gauge field action and M is the staggered quark matrix 6 ,  see (2.18). 
t  M t M ] - n f " 2  

Note that we have taken the 12-th root of de tM which gives e-@ [ @. This is 

because twisted boundary conditions introduce an extra SU(3) "smell" group. There- 

fore de tM describes 12 fermion species, instead of 4 in the case when periodic bound- 

"om now on we drop the superscript "sf" on M .  



ary conditions are used. The partition function is 

The number of variables is enormous even on a relatively small lattice, e.g. lo4, with 

SU(3) links: there are 4 x lo4  links and each link has 8 real parameters so that the total 

number of degrees of freedom is about 320,000. Clearly, a direct numerical integration 

is impractical and one must use statistical methods to evaluate the expectation value. 

Because of the exponential decay in the integrand, only a small number of con- 

figurations with a small action will give appreciable contributions to  the partition 

function. Hence an efficient way of computing the ensemble average would be to  gen- 

erate a sample of configurations with Boltzmann distribution ePS, and replace (5.30) 

with the sample average 
N 

where N is the sample size and (WR,T)i is the Wilson loop measured with the i-th 

configuration in the sample. This technique is known as "important sampling". 

Many algorithms have been designed to  generate configurations with the desired 

distribution. We use the rational hybrid Monte Carlo (RHMC) algorithm [40] in 

the unimproved case and the R-algorithm [41] for the MILC action. The basis of 

these algorithms is a set of discretixed equations of motion. The system is evolved 

through the phase space using these equations along a "simulation time t" with step 

size At. Since the evolution equations are not exact, there will be a small error in the 

distribution e-s+As. This systematic error is corrected by a Monte Carlo acceptlreject 

step [93] in the RHMC algorithm so that the algorithm is exact. However RHMC is 

computationally much more expensive and can only be applied to  actions with a simple 

structure. For more complicated actions such as the MILC action the R-algorithm 

is often used. This algorithm has a disadvantage that it cannot be made exact by a 

Monte Carlo acceptlreject step. The error is A S  = 0 ( A t 2 ) .  It is therefore necessary 

to do simulations a t  several different At  and extrapolate the results to  At  = 0. 

The RHMC algorithm has so far only been used in small test cases [40, 941 and 

has never been applied to  large scale dynamical simulations. This project therefore 

is the first application of the algorithm. Our results will also serve as an important 

benchmark for future simulations. 



Some Basic Ideas: the Hybrid Monte Carlo (HMC) Method 

The RHMC algorithm and the R-algorithm are variants of the Hybrid Monte 

Carlo (HMC) method [93] so let us review some of the basics of this algorithm first. 

The central idea of HMC is to  rewrite (5.31) as the partition function of a classical 

statistical system so that configurations can be generated using the classical equations 

of motion. More explicitly, by introducing a momentum field P,,, conjugate to  the 

link variables Ux,, 

ux, ,  = .2px,,ux,,, (5.33) 

we obtain 

where ?I! is the Hamiltonian of our new statistical system. This is a 5-dimensional 

problem: the time derivative in (5.33) is with respect to  the "simulation time" and 

the four space-time dimensions of the original lattice become the 4 spatial dimensions 

of the new system. Note that Px,, is traceless and Hermitian so that it can be written 

as P,,, = C,p&ta  where ta are the generators of the SU(3) colour group. The HMC 

algorithm consists of three major components: 

1) Molecular dynamics evolution. The advantage of changing to  a classical 

statistical problem is that we can use the classical (discretized) equations of motion 

to  move through the configuration space efficiently, [U, PI I t = o  + [U, PI I t = T ,  on a 

constant '(energy" surface (see Fig. 5.5) 

0 initial half step for P 

T 
0 n,d = nt times leapfrog integration 

~ ( t  + a t )  = e ' ~ ( ' + ~ ) ~ ' U ( t )  + o ( n t 3 )  
a t  a t  (5.36) 

~ ( t  + -1 - ~ ( t  - -1 = ~ ( t ) n t  + o ( n t 3 )  
2 2 

7The word energy is in quotations because it is the energy of the statistical system and not the 
energy of the quantum system. From (5.34) the action of the quantum system is allowed to fluctuate. 
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Figure 5.5: The HMC algorithm. Note that the pseudo-fermion field 4 is held fixed 
during the integration. 

final half step for P 

Note that the pseudo-fermion field 4 is held fixed during the integration. To get P,,, 

we use the constraint 7-l = 0 

Using (5.33) we have 

Here [A]TH denotes the traceless-Hermitian part of the matrix A. The purpose of 

this step is to keep P,,, traceless and Hermitian so to maintain the unitarity of U 



throughout the integration. Note that under TH the Hermitian conjugates (h.c.) 

simply give an extra factor of 2. The derivative of the gauge field action can be 

easily computed 

where V&, V:, and v:, are the plaquette, rectangle and the cubic chair term without 

the link Ux,,. For example, V:, contains the six staples connected to  Ux,,. For 

nf = 12 the fermionic force is given by 

a M  a ~ t  Details on how to  compute -, u., are given in Appendix A. The RHMC algorithm 

and the R-algorithm generalize this step to  allow arbitrary n f .  This will be discussed 

in the next two sections. We use the stabilized bi-conjugate-gradient method [95] to 

calculate the inverse IX) = (MtM)-l(q$). Since M t M  is a very large matrix, this 

part is usually the most time-consuming (about 50% of the total cost). On the other 
a M  a ~ +  hand, to  compute G, one has to identify all the paths containing Ux,, and to 

construct the force matrix for each path. This calculation is rather trivial for the 

unimproved action and the computational cost is found t o  be < 1%. For the MILC 

action, however, - aM &?Q have very complicated structure. A single pass of the 
UX,P ' UZ,P 

derivative subroutine takes almost as much time as a matrix inversion. 

2) Heat bath updates. The molecular dynamics evolution is deterministic and 

lacks ergodicity. To introduce randomness to  the method, we interrupt the integration 

from time to time and choose a new set of P and 4 with probability distributions 

(Gaussian) given by 



3) Monte Carlo acceptlreject step. The evolution equations (5.35) - (5.37) 

have finite step size errors hence energy is not exactly conserved. As a result there 

is an error in the distribution, e-(s+As). This systematic error can be eliminated 

by inserting a Monte Carlo acceptlreject step a t  the end of the molecular dynamics 

integration: accept U' - Ult=T as the new configuration with probability [93] 

Prob(U i U') = min (1, eCdX} , (5.43) 

where 631 = Xlt=T - 311t,o is the change in energy. If the configuration U' is not 

accepted, keep the old configuration U and repeat 1) and 2). It  can be shown that 

Prob(U i U) satisfies the so-called "detailed balance" and the distribution converges 

to e-S as the sample size N i cm [22, 931. Note that the new configuration is always 

accepted if the energy is conserved, i.e., if there are no finite step size errors. 

The major drawback of the HMC algorithm is the constraint on the number of 

quark flavours, nf = 12 when TBC. We are now going to discuss the RHMC algorithm 

and the R-algorithm which are applicable to any number of flavours. However, as we 

will see below, the R-algorithm cannot be made exact by a Monte Carlo acceptlreject 

step. Simulation results have to be extrapolated to At = 0. 

The Rational Hybrid Monte Carlo (RHMC) Algorithm 

The reason for fixing nf = 12 in (5.41) is that ( ~ ~ M ) - " f / l ~  is an inverse of a 

matrix, IX) = (MtM)-'I$), which can be computed using well known numerical 

subroutines. On the other hand, there is no exact solution to  IX) = ( M t ~ l ) - " f / ~ ~ 1 $ )  

when nf is not a multiple of 12. The idea of the RHMC algorithm is to approximate 

the nf/12-root by a rational expansion 

We are therefore looking for an optimal rational approximation of x-"//I2 (and x " J / ~ ~ ,  

see below) in the interval [Amin, A,,,] where Amin and A,,, are the smallest and largest 

eigenvalues of M t M .  The lower bound is set by the quark mass Amin = (2m)2 and 

one can show that A,,, = 32 + (2m)2 [82]. Optimal rational approximations can be 

found using the Remes algorithm [96] and numerical packages are available on the 



Figure 5.6: Quality of the optimal rational approximation to x-l/12 and x1/24. The 
N absolute error, I E l = ,  al / (x+P1) - f (x) 1 ,  is plotted. Solid lines represent the magnitude 

of statistical errors, 0 ( 1 0 - ~ ) .  

World-Wide-Web. The Netlib's Remes library is used in this project '. In Fig. 5.6 

we plot the error of the approximation to  x-'/I2 and x1lZ4 over the range [0.16,32.16]. 

These correspond to nf  = 1 and m = 0.02 which are the actual parameters used in 

the next chapter. Solid lines represent the magnitude of the statistical errors, which 

are of 0 ( 1 0 - ~ ) ,  see Section 5.5. It can be seen that rational approximations often 

converge quickly to the target functions. Our simulations use a 10-term expansion to  

make certain that approximation errors are always smaller than the statistical errors. 

The rational approximation (5.44) changes the action back to the form e- @ + ( ~ + n r ) - l @  

so that the HMC algorithm is again applicable. The fermionic force is modified to 

where (Xl) = ( M t M  + ~ ) - ' l $ ) .  We also need to change the Gaussian update of I $ )  

'Web site: http://www.netlib.org. 



and I R) is again a random Gaussian vector. Note that in the original HMC algorithm 

we wrote 14) = MIR) for nf = 12, see (5.42). The Hermitian form M t M  is used here, 

with an additional square-root, because rational approximation requires the matrix 

t o  be Hermitian (i.e., t o  have real eigenvalues). Hence we also need an approximation 

of ~ " f / ' ~ .  These two steps both require the computation of N inverses of M t M  

with mass shifts or a[. Fortunately this can be done efficiently with a multi-mass 

solver [97] so that only one conjugate-gradient inversion is necessary. In the present 

case with N = 10 we found that the multi-mass solver is about 30% more expensive 

than a single stabilized bi-conjugate-gradient inversion. On the other hand we have 

to  repeat the fermionic force calculation N times. This is not a major problem for the 

unimproved staggered quark action. For highly improved actions such as the Asqtad 

action this step, however, becomes extremely time consuming. This is the reason why 

the RHMC algorithm is used only in the unimproved case, and we found that overall 

RHMC is about two times slower than the conventional HMC algorithm. 

The R-Algorithm 

The R-algorithm [41] takes a completely different approach. Instead of writing 

[det(MtM)] "'/I2 as a path integral over a pseudo-fermion field 4 as in (5.30), we use 

[detMt(U)M(U)] "'/I2 = exp [%tr ln Mt (U)  M(u)] . 
12 

The partition function becomes 

Note that the q5 field is completely absent. Phase space evolution can again be done 

using the discretized equations (5.35) - (5.37), but with a different fermionic force 

-- nf a t r  In ( M ~ ( u )  M(u)) = -tr 1 a 
- ( M t  (U) M(u)) ]  . (5.49) 

12 dux,, ;i: [ M t ( u ) M ( u )  mX,, 
Clearly it is impractical to  compute the fermionic force because we would have to 

calculate all elements of the inverse of Mthf rather than just the inverse applied to a 



vector. The solution is to estimate ( M t M ) - '  using a Gaussian noise IR) [98] 

The fermionic force is then given by 

f 1  a a -tr [ - M u ]  -+ x - ( M ~ M ) ~ x ) .  (5.51) 
12 ~t (u)  M (u) dux, ,  12 dux, ,  

Note that the definitions of I $ )  and IX)  are exactly the same as before, see (5.41) 

and (5.42), and we are back to the HMC algorithm. There are, however, two major 

differences. First, I $ )  is held fixed during the leapfrog integration in the HMC al- 

gorithm. Here, being a noisy estimator, l $ )  = MIR)  is re-evaluated every time we 

compute the fermionic force. The second difference which is more important is that 

energy is not conserved anymore. This is because we only estimate the fermionic force 

instead of calculating it. Consequently the R-algorithm cannot be made exact by a 

Monte Carlo acceptlreject step. The acceptance rate would be extremely small. It 

can be shown that measurements have leading errors of 0 A t 2  [41], therefore results 

have to be extrapolated to At = 0. 

5.4 Other Systematic Errors 

There are two other systematic errors: autocorrelation and inaccuracy in the evalua- 

tion of ( M ~ M ) ~ ' .  Statistical errors and fitting errors will also be discussed. In this 

project fitting is done with the constraint curve fitting program [99]. 

Autocorrelation 

The sequentially generated configurations are not statistically independent to  each 

other. Each configuration remembers the configurations that generate it. As a re- 

sult successive measurements are correlated, and statistical errors would be under- 

estimated. Correlation reduces to an acceptable level only after a sufficiently large 

number of updates. Correlation can be measured by the autocorrelation function (for 



Figure 5.7: Plaquette autocorrelation functions a t  ,l3 = 11.0 and ,l3 = 47.0 in the MILC 
simulations. 

observable O with average (3) [loo] 

where Nskip is the number of configurations skipped between measurements. In gen- 

eral, Corr(Nsk,) decays exponentially 

The decay constant N, is called the autocorrelation time, which is the time for the 

correlation function to  decay a factor of e. It  is evidence that different observables 

have different autocorrelation times. In particular the correlation is expected t o  be 

longer for a larger Wilson loop since more links have to  lose their memory of the 

previous configurations. 

We only tested the correlation for the plaquette where the autocorrelation func- 

tions a t  ,l3 = 11.0 and ,/3 = 47.0 (the smallest and largest P) in the MILC simulations 

are given in Fig. 5.7. Note that the autocorrelation time is longer for larger P. This 

is the problem of critical slow down: it becomes more difficult to get statistically 

independent configurations when one moves closer to  the continuum limit [9]. In 

this project 20 configurations are skipped between measurements, as Fig. 5.7 indi- 

cates that this is enough for the autocorrelation function to  reduce t o  zero within 

statistical errors. 



Figure 5.8: Dependence of the average plaquette on E .  

Inaccuracy in the Evaluation of (M+M)- '  

Both the RHMC algorithm and the R-algorithm require many matrix inversions 

in the form of IX) = (MtM)-'l4).  The stabilized bi-conjugate-gradient method [95] 

is used in this project to  compute the inverses. It  is an iterative method and the 

convergence criterion is 

IIM+MIx) - l#N < 6 .  (5.54) 

We have studied the dependence of measured quantities on E .  Figure 5.8 plots the 

average plaquettes obtained with different values of E at  P = 11.0 and P = 47.0 in the 

unimproved case. One can see that all results agree within statistical errors (O(loP5))  

for E < lop3. In this project we choose a value which is comparable to the magnitude 

of the statistical errors, E = 1 x 

Truncation Errors and Fitting Errors 

In principle perturbative expansions have infinitely many parameters ((4.1) re- 

peated here) 

On the other hand, simulations were done at 7 and 9 values of couplings for the 

unimproved action and the MILC action respectively (see next chapter) hence there 

is only a small number of data points. Clearly we cannot fit an infinite number of 

parameters using only 7 or 9 data points. The perturbative expansion therefore has to  



be truncated. An important aspect of the fitting procedure is how to account for the 

truncation errors in the fitting function. Choosing an expansion with too few terms 

results in a poor fit of the data, while including too many higher-order terms leads 

to poor determination of the lower-order coefficients which should, if the perturbative 

series is well behaved, make dominant contributions to the data. This problem can 

be circumvented by using constrained curve fitting [99]. 

Traditional least square fits minimize 

data i data i " Y, 

by varying the perturbative coefficients cl, . .  . , CN,  where N is the order a t  which we 

have made the truncation, and (aVi, K  & ax), i = 1 , .  . . , 7  or 9, are the data points. 

In constrained curve fitting X2 is augmented by 

The extra terms in X:rg favour en's in the interval En & an, which are inputs to  the 

fitting subroutine and are collectively known as "priors". The values of En must be 

chosen based on theoretical expectation, and the optimal widths an can be determined 

from the data by maximizing the probability of obtaining the measurements (aVi,  K &  
ax) given the prior information. We will not discuss the theoretical aspects of this 

method but instead simply describe the fitting procedures. We set = 0 and all an 
equal, and determined an optimal an to be ~1 .0 -1 .5 .  This reflects the fact that cn7s 

t o  be of O(1) if perturbation theory is reliable. In addition, the priors for cl, c2 can 

be fixed to  the existing analytic results to obtain a better constraint on higher-order 

coefficients. We observe that the errors on c j  generally reduce by a factor of ~ 4 - 5  

compared to  the case when there is no input from analytic calculation. 

Convergence plays a crucial role in constrained curve fitting. For those coefficients 

whose values and errors are insensitive to  en, and to  the number of terms in the 

expansion ( N ) ,  we can say that they are largely determined by the Monte Carlo data. 

On the other hand, if the coefficients are controlled mostly by the priors, i t  means that 

the data cannot resolve the coefficients. Therefore we do not have to worry a t  what 

'See Ref. [99] for an overview of Bayesian statistics and constrained curve fitting. 
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order the truncation should be made, but instead the data should tell us how much 

it can determine. In this project we observe that cl, c2 and c3 are very insensitive to 

N, while the fitting program simply reproduces the priors for higher-order coefficients 

c4, c5, . . . This means that our data can only resolve the first three order coefficients. 

If the statistics of the data is increased, more coefficients can be determined. 

Explicit examples on how the fitting is done will be given in next chapter. Con- 

strained curve fitting is also used for At extrapolation for the R-algorithm. The 

fitting program is provided by Lepage [99]. Constrained curve fitting has now became 

a lattice industry standard. 

Statistical Errors and Summary 

We have presented an extensive study of systematic errors in the last few sections. 

The reason for such a detailed analysis is that Wilson loops must be determined with 

extremely high statistics so that the third order coefficients can be extracted with a 

reasonable error. Statistical errors are estimated by the Jackknife method [ lol l ,  a 

variant of the bootstrap method, 

where N is the number of configurations and ((7); is the average excluding Oi 

As we will see in the next chapter, statistical errors are of (7(10-6 - Approx- 

imately 2 months of computational time on 25 Pentium 4 processors is required to 

reach this level of accuracy for the unimproved action (with 7 values of P), and it 

took a total of 5 months computation, on the same number of processors, to finish 

the MILC simulations (with 9 values of P) .  Note that 4 times more configurations 

have to be generated to  reduce the errors by half. Table 5.1 compares the size of the 

statistical errors with other systematic effects. 



Source of errors I Magnitude 

Zero modes I unknown 

Tunneling I unknown 

At errors 

in simulation 

equations 

Rational approx. 

of [Mt M]" f / l2  

Autocorrelation 

At2 

< lop6 in 

[Amin, Amax] 

unknown 

Inaccuracy in I convergence 

evaluation of ( M ~ M ) - ~  criterion 

Solut ion/Remark 

Fitting and 

truncation errors 

Statistical errors 

apparently eliminated by using TBC 

data are 

sensitive to a3 

l0-~-10-~ 

strongly suppressed by using TBC 

RHMC: removed by Monte Carlo 

acceptlreject steps 

R-algorithm: extrapolation to At = 0 

10th-order expansions which have 

errors < lop6 in [Amin,  Amax] are used 

20 configurations are skipped 

between measurements 

there is no significant difference on 

measured quantities for E as large 

as lop3 

fitting is done by constrained 

curve fitting 

4 times more configurations have to 

be generated to reduce error by half 

Table 5.1: Summary of the various systematic effects. 



Chapter 6 

Results 

Simulation results are reported in this chapter. Simulations were done a t  7 and 9 

values of couplings for the unimproved action and the MILC action respectively. The 

logarithms of the Wilson loops were measured, and results are fitted with 

to extract the perturbative coefficients cn. Our data can only resolve the first three 

order coefficients, which agree very well with those obtained analytically in Ref. [33]. 

T h i s  provides an i m p o r t a n t  cross-check of the analyt ic  results ,  which are 

used in a recent determination of the strong coupling am(MZ) by the HPQCD col- 

laboration [13]. 

This chapter is organized as follows. We will first describe how the analysis is done 

(e.g., how to determine the renormalized coupling aV(q;,,)) in the next section. The 

comparison between the results of Ref. [33] and our Monte Carlo results is compli- 

cated by the fact that the analytic calculations were done on 84 lattices with twisted 

boundary conditions for cl,  but a t  infinite volume for cz and cj. A discussion on this 

issue will be given. Results for the unimproved action are presented in Section 6.2 

and for the MILC action in Section 6.3. The R-algorithm is used in the latter case 

so Wilson loops must first be extrapolated to  At = 0. A conclusion will be given in 

Section 6.4. 



6.1 Analysis 

Determination of cuv (q&,,) 

Before fitting we must first of all determine the renormalized coupling av(qk,,) for 

each ,B. The connection between the bare coupling a. and av(q;,,) is given by (4.10). 

Since it is the same 2-loop calculation of the Wilson loops of Ref. [33], we instead 

use the expansion of the plaquette to serve as a simpler definition of the renormalized 

coupling. For the unimproved action (see below for a discussion on the volume and 

mass parameter used in the analytic calculations), it is 

and for the MILC action 

The renormalized coupling av(q;,,) can be solved by inserting the measured plaquette 

value (Wl,l)EVIC into the above equations. Note that we are using the expansion of 

- In St; , l  in Ref. [33] to define av(q;,,), but at the same time checking the results for 

large Wilson loops in the same calculation. Our analysis therefore is not completely 

independent of Ref. [33]. Nonetheless it serves as an important consistency check of 

the perturbative calculations. 

After solving av(g;,l), the intrinsic scale A in the running coupling formula (4.16) 

can be determined, and one can then run the scale to q;,, to obtain aV(qk,,). The 

values of q;,, are computed in Refs. [65, 331 and are given in Table 6.1. 

Uncertainty in cuv (q;,,) 

A note should be added here. The values of av(q; ,) determined from (6.2) 

and (6.3) are subject to systematic errors, due to the statistical errors in (W1,l)MC and 

the perturbative coefficients '. The errors then propagate to other values of av(qk,,). 

This induces an additional error, beyond its own statistical error, on (In WR,,)EVIC. 

' Although Ref. [33] is an analytic calculation, not a simulation, the coefficients have statistical 
errors because loop integrations at higher-order were computed using a Monte Carlo integrator, e.g., 
VEGAS [102]. 



Loop &,T 
(unimproved) 

Table 6.1: Relevant momentum scale for various small Wilson loops [65, 331. 

To estimate this induced error, approximate - InWR,T/2(R + T) by its first order 

expansion 

Define A[X] to be the uncertainty in X ,  we have 

This equation reflects that statistical error of (Wl,l)MC dominates at  high P. With 

C Y ~ ( Q ; , ~ )  M L L ~ ( Q ; ~ , ~ )  and A[av(q;,l)] M A[aV (q;l,T)], the induced error on In WRjT is 

Table 6.2 shows A[ln WR,TIMC and A[ln WR,T]induced for one of the simulations. It can 

be observed that A[ln WR,T]induced grows, but becomes less significant compared to 

the Monte Carlo error A[ln WR,TIMC when the loop size increases. The sums of the 

two errors are used in the fitting. 

A Discussion on the Analytic Calculation 

The analytic calculations of Ref. [33] were done at infinite volume (to avoid zero 

momentum modes) with massless quarks (i.e., m = 0). On the other hand we work 

on 84 lattices with twisted boundary conditions and set m = 0.2 for the unimproved 



Table 6.2: Comparison of A[ln WR,~IMC and A[ln WR,T]induced. Results are shown for 
the unimproved action a t  p = 16.0 and nf  = 1. 

Loop 

1 x 1 

1 x 2  

1 x 3  
2 x 2  

2 x 3  

3 x 3  

action and m = 0.1 for the MILC action 2. Finite volume effects are proportional 

to  1/V N 0(10-4) [91] while c2 suffers from 0 ( m 2 )  N O(O.O1) corrections3 [33]. 

Therefore for proper comparison with the Monte Carlo results in this thesis, my 

supervisor (one of the authors of Ref. [33]) repeated the perturbative calculations on 

8"attices with twisted boundary conditions for cl ,  and with the same quark masses 

as in the simulations for c2 and c3. It is important to  correct the finite volume effects 

for cl, since we will fix cl and c2 to  their analytic values in the fits to obtain a better 

determination of the third order coefficients. Given that our a ' s  are of 0(0.01), an 1/V 

error in cl induces an error of O(1) in c3. Similarly analytic perturbation theory for 

c2 must be done a t  the same masses as used in the simulations because m2 corrections 

in c2 also lead to  an error of O(1) in c3. 

6.2 The Unimproved Action 

-(In WR,T) 

0.13976 

0.24382 

0.34158 
0.39270 

0.52235 

0.66857 

Simulation Parameters 

Perturbative Wilson loops for the unimproved action (the Wilson plaquette action 

and the unimproved staggered quark action) are studied in this section. Simulation 

parameters are summarized in Table 6.3. Simulations were done a t  7 values of cou- 

plings ranging from p = 11.0 t o  p = 47.0. These values are much larger than those 

4 [ l n  WR,T]MC 
( x ~ o - ~ )  

2.2 

4.6 

7.9 

8.8 

13.7 

20.2 

2Remember that the RHMC algorithm is used in the unimproved case, which requires the ap- 
proximations of x -n~ /12  and x n ~ / 2 4  in [(2m)2, 32 + (2m)2]. Generally the rational approximation is 
less efficient if the lower limit is too small. This is the reason why a larger quark mass is used for 
the unimproved action. 

3The first order coefficients are independent of n f  and the quark masses. 

A[ln WR,T] induced 

( ~ 1 0 ~ )  

2.2 

3.8 

5.3 

6.1 

8.1 

10.4 



Number of flavours: nf  = 1 

Measure- 
ments 

849 
902 

992 

98 1 

1066 

1180 

1261 - 

Acceptance 
rate 

92% 
90% 

87% 
81% 

69% 

58% 

53% 

Number of flavours: nf = 3 

Measure- 
ments 

Acceptance 
rate 

Table 6.3: Simulation parameters for the unimproved action. Simulations were 
done on 84 lattices with quark mass m = 0.2. The RHMC algorithm is used with step 
size At = 0.01 and n m d  = 50. 

used in conventional simulations ( p  - 6.0) so that the coupling constants a 0  = & 
are purely perturbative, of CJ(0.1-0.01). Notice the differences between a 0  and the 

renormalized coupling av(q;,,). For comparison two sets of simulations, with nf  = 1 

and nf  = 3, were done. The volume of the lattice is 84. Twisted boundary conditions 

are applied to  all three spatial directions while periodic boundary conditions are used 

in the temporal direction. 

Configurations were generated using the RHMC algorithm with At = 0.01 and 

n m d  = 50. The acceptance rate is about 90% for P = 11.0 and reduces to  50% for 

p = 47.0 Since the algorithm is exact, no zero step size extrapolation is required. 

Simulations were started from a cold start (all links are set to  the identity) and the 



I Dependence on N (en = 1.5) 1 Dependence 

Table 6.4: Dependence on N and the prior width a, for constrained curve fitting. The 
priors are always set equal to & = 0 and the same width is used for all n. Results are 
shown for the 2x2  loop, n f  = 1. The quality of the fits, x2 per degree of freedom, is 
also shown. 

first 1000 configurations are discarded for thermalization. To minimize autocorrela- 

tion 40 configurations are skipped between successive measurements 4 .  About 1000 

measurements are taken for each simulation. It required 2 months to  complete the 

simulations on 25 Pentium 4 processors. 

Results 

The renormalized coupling c~v(q ;2 ,~ )  for each Wilson loop can be solved using the 

procedures described in the last section. Results are analyzed using the constrained 

curve fitting program with 

To see how sensitive our data are to  the higher-order terms in the expansion, we vary 

N (from N = 4 to  N = 6) and the prior width a, (a, = 1 .O, 1.5, 5.0). The priors are 

always set equal t o  C, = 0 and the same width is used for all n. Results are shown 

in Table 6.4 for the 2 x 2  loop and n f  = 1. Perturbative calculations of Ref. [33] give 

cl = 1.4339(0), c2 = -1.400(2), cs = -0.52(7). One can see that el, Q and c3 are 

4Since the Monte Carlo acceptlreject step keeps the old configuration about half of the time for 
the largest P,  we expect the correlation time to  be longer in this case. Therefore we skip 40 instead 
of 20 configurations between measurements. 
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Number of flavours: nf = 1 

Perturbation Theory Monte Carlo Method I 
Loop 

Table 6.5: 
action. 

Number of flavours: nf = 3 

Perturbation Theory Monte Carlo Method 

Perturbative coefficients of various small Wilson loops for the unimproved 

very insensitive to N and a,, while the fitting subroutine simply reproduces the priors 

for higher-order coefficients. This indicates that our data can resolve the first three 

coefficients only. Table 6.4 also shows the important of choosing an appropriate prior 

width a,. Over constraining the coefficients results in a poor fit of the data (bad 

x2). On the other hand a large value of a, gives coefficients with large errors, e.g., 

changing from a, = 1.5 to a, = 5.0 increases the error in c2 from 0.56 to  0.77, but 

its value is essential unchanged. As discussed in Section 5.4 the optimal width can 

be determined by maximizing the probability of obtaining the data given the prior 

information. We find that the value an = 1.5 is the most favourable in this case. In 

summary we use N = 6 and priors & f a, = 0 f 1.5 for the fitting. 

Results are reported in Table 6.5. Agreement with the analytic calculations is 

impressive, although the statistical errors are much larger for the Monte Carlo results. 

Note that the first order coefficients are independent of the number of flavours. On the 

other hand, results for c;? and c3 clearly show that the effects of dynamical fermions 



Figure 6.1: Plots of K ~ ,  4, ~3 [2x2 loop, nf = 1, the unimproved action]. The symbols 
0  and label the Monte Carlo results c F C  and the analytic results respectively. 

are correctly reproduced in the simulations. We again want to  emphasize that this 

is the first time the Monte Carlo method is applied to  lattice fermion actions. All 

previous studies were done for pure gauge theories where contributions from dynamical 

fermions had been neglected. 

To visualize the quality of the fits, we plot the following quantities 

for the 2x2 loop (nf = 1) in Fig. 6.1. The open squares (0) are the Monte Carlo 

results c F C  in Table 6.5 and the filled circles ( 0 )  are the perturbative results of 



Number of flavours: nf = 1 

Monte Carlo Method Perturbation Theory 

Number of flavours: nf = 3 

Perturbation Theory Monte Carlo Method 

c3 

-1.10(3) 
-0.95(6) 

-0.52(8) 

-0.26(12) 

0.67(25) 

Loop 

1 x 2  
1 x 3  

2 x 2  

2 x 3  

3 x 3  

Table 6.6: Second and third order coefficients with cl fixed to  the analytic results. 

c2 

-1.335(0) 
-1.277(1) 

-1.400(2) 

-1.351(3) 

-1.298(6) 

Ref. [33]. Note again how well the analytic results are reproduced by the Monte Carlo 

data. The 4th-order term is included in the plots also, and the almost zero slope of 

~3 indicates that cYC is small (in this case cYC = -0.1 f 1.5). In fact, we found that 

all the 4th-order coefficients are equal to  zero within errors. 

To improve the accuracy of c2 and c3, we set the priors of the first order coefficients 

to the analytic results. Again the expansion is truncated a t  a6, and & f a n  = 0 f 1.5 

are used for the undetermined coefficients. Results are reported in Table 6.6. One 

can see that the errors in c2 and c3 reduce by a factor of 3 and 2 respectively, and the 

agreement with perturbation theory becomes even more clear. 

The uncertainty in the third order coefficients can be further reduced by setting 

the priors of both cl and c2 to  their analytic values. Results are shown in Table 6.7. 

In comparison to  the original fits in Table 6.5, it can be observed that the errors 

decrease substantially, by almost a factor of 5. Some of the Monte Carlo results even 

have a smaller error than those obtained analytically. Results here clearly show that 

perturbation theory and Monte Carlo simulations agree through third order. 

c3 Loop I c2 c3 I c2 



I Loop I c3 (PT) I c3 (MC) ( c3 (PT) 1 c3 (MC) I 

Table 6.7: Third order coefficients with both cl and c2 fixed to  the analytic results. 

6.3 The MILC Action 

We have extended the Monte Carlo method to  determine the perturbative expansions 

of the Wilson loops for the MILC action. This is the action used in today's state-of- 

the-art numerical simulations of QCD [ lo] .  Our results provide an important cross- 

check of the perturbation theory input to  a recent determination of the strong coupling 

a m ( M z )  by the HPQCD collaboration [13]. 

Simulation Parameters 

Simulation parameters are summarized in Table 6.8. Simulations were done a t  9 

values of /3. Again the corresponding bare couplings a0 = -4 In ~ ~ 1 3 . 0 6 8 4  (see (2.41)) 

are of O(0.1-0.01) so that we are well into the perturbative regime. Note that the cou- 

plings experience a smaller renormalization compared to  the unimproved case. This 

is expected since the MILC action is highly improved and has smaller discretization 

errors. The volume of the lattice is V = 84,  and twisted boundary conditions are 

adopted in all spatial directions while periodic boundary conditions are used in the 

temporal direction. Simulations were done with nf = 1 and m = 0.1. We want 

to  reemphasize that the perturbative calculations of Ref. [33] used the same set of 

parameters, with the only exception that c2 and C J  were computed a t  infinite lattice 

volume. 

Configurations were generated using the R-algorithm so that extrapolation to  At = 

0 is required. Simulations were done a t  4 values of step sizes, At = 0.005, 0.01, 0.02, 

0.03 with n,d = 100, 50, 25, 15. The results are fitted to  ~ : = f a , ( A t ) " .  We use 

N = 6 and priors a, f a, = 0 f 5 except for al .  For a1 we set al = 0 since the 



Input uo 
[At  = ,0051 

0.91690 

0.93166 

0.94704 

0.95661 

0.96433 

0.97243 

0.97978 

0.98652 

0.99220 

Measured uo 
[At  = ,0051 

0.916922(98) 

0.931687(73) 

0.946986(55) 

0.956614(53) 

0.96431 l ( 3 8 )  

0.972453(29) 

0.979785(23) 

0.986526(15) 

Q O  

[At  = ,0051 

0.113 

0.092 

0.071 

0.058 

0.047 

0.036 

0.027 

0.018 

av (q;, l)  
[At = .005] 

0.127 

0.101 

0.076 

0.061 

0.050 

0.038 

0.027 

0.018 

0.010 

Measurements 
At = ,005, .01, .02, .03 

461,457,836,1335 

281,633,1090,1038 

290,635,1122,1078 

296,634,1145,1100 

298,643,1123,1172 

308,645,1191,1113 

315,652,1205,1204 

215,709,1227,963 

Table 6.8: Simulation parameters for the MILC action. Only the parameters for 
At = 0.005 are shown. The number of flavours is nf = 1 with m = 0.1. 

leading errors of the R-algorithm are of 0(At2) .  Some examples of the extrapolation 

are given in Table 6.9 and Fig. 6.2. 

The thermalization process is much more complicated for the MILC action be- 

cause the tadpole factor (the mean link) u0 I ( w ~ , ~ ) ' ' ~  has to  be determined self- 

consistently. It is set at uo = 1 at the beginning of the simulation. After 500 trajec- 

tories uo is re-calculated from the 500 configurations just generated. This process is 

repeated for 10 times. At the end of the thermalization the final running average of 

uo is saved and used for the entire simulation. This value is verified for consistency 

with the final value of uo determined from the entire simulation (see Table 6.8).  To 

minimize autocorrelation 20 configurations are skipped between measurements. Again 

about 1000 measurements are obtained in each case. Simulations were done on 25 

Pentium 4 for a total of 5 months, which required 250GB of hard-drive storage space. 

Results 

The procedures to  extract the perturbative coefficients are the same as those used 

in the last section. The renormalized coupling ~ ~ ( q ; , ~ )  can be determined from (6.3) 

and the couplings at other q*'s can be computed using the running coupling for- 

mula (4.16). Results are fitted to 



Table 6.9: Zero step size extrapolation for the R-algorithm. The priors a, f an = O f  5 
are used except for a l ,  for which al = 0. 

Figure 6.2: Zero step size extrapolation for the R-algorithm. 
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Dependence on N  (a, = 1.0) Dependence on a, ( N  = 6) - 
- 

Table 6.10: Dependence on N and the prior width a, for constrained curve fitting. 
Results are shown for the 2x2 loop, nj = 1. 

with constrained curve fitting. In Table 6.10 we again check the dependence of the 

fits on N and a, to  see how sensitive our data are to  the higher-order terms in the 

expansion. As before the priors are always set equal to  En = 0 and the same width 

is used for all n. Results are shown for the 2x2  loop. Perturbative calculations of 

Ref. [33] give cl = 1.1499(0), c2 = -0.643(2), c3 = 0.59(9). Once again cl ,  c2 and 

c3 are very insensitive t o  N and a,. Note that the prior & f a, = 0 f 5.0 clearly 

under-constraints the coefficients, although the results are still statistically consistent 

with those obtained using other values of a,. The optimal value of a, is determined 

to  be s 1.0 in this case. 

Fit results are presented in Table 6.1 1 with N = 6 and En f a, = 0 f 1.0. The 

agreement with the analytic results is remarkable! Note that the coefficients are much 

better determined here than in the unimproved case: errors are almost a factor of 3 

smaller for c2 and c3. In fact we are able to obtain high precision predictions for these 

coefficients even with no input from perturbation theory. Since the precision 

of the Wilson loops is similar in the two simulations, this illustrates that  more data 

points are helpful (we have two more p7s  for the MILC action) in improving the 

accuracy of the coefficients. To visualize the quality of the fits, we again plot 61, 6 2  

and 6 3  in Fig 6.3 for the 2x2  loop. No signal for c y C  was found, as indicated from 

the flatness of the CQ graph. All 4th-order coefficients were found to be equal to  zero 

within errors. 



I Number of flavours: nf  = 1 I 
I Perturbation Theory Monte Carlo Method 1 

Table 6.11: Perturbative coefficients of various small Wilson loops for the MILC 
action. 

Figure 6.3: Plots of 61, K ~ ,  and K~ [2x 2 loop, nf  = 1, the MILC action]. The Monte 
Carlo results c F C  are labeled by symbols 0 and the analytic results are labeled by 
symbols e. 



Number of flavours: nj = 1 

Perturbation Theory Monte Carlo Method 

Table 6.12: Second and third order coefficients with cl fixed to  the analytic results. 

Loop 

1 x2  

1 x 3  

2 x 2  

2 x 3  

Loop 

Table 6.13: Third order coefficients with both cl and c2 fixed to  the analytic results. 

c2 

-0.646(0) 
-0.595(1) 

-0.643(2) 

-0.595(3) 

Once again we can set the priors of the lower-order coefficients to the analytic re- 

sults to  enhance the statistics of higher-order coefficients. This is done in Table 6.12 

where only cl is fixed, and in Table 6.13 where both cl  and c2 are set to the per- 

turbative values. The expansion is again truncated a t  06, and En f a, = 0 f 1.0 are 

used for the undetermined coefficients. In the latter case, all Monte Carlo results have 

a smaller error than those obtained analytically. The agreement with perturbation 

theory remains impressive. 

6.4 Summary and Discussion 

c3 

0.23(5) 

0.38(6) 

0.59(9) 

0.85(16) 

The perturbative coefficients of Wilson loops are extracted in full QCD, with the 

unimproved and Asqtad staggered quark actions, from Monte Carlo simulations at 

weak coupling. This is the first time that this method is applied to lattice actions 

where effects of dynamical fermions are included. Impressive agreement with the 

analytic calculations of Ref. [33] is obtained through third order. Results clearly show 

that Monte Carlo simulations are sensitive to fermion loops. 

As mentioned earlier, Monte Carlo method is not a complete substitute for con- 

c2 

-0.649(5) 
-0.600(6) 

-0.642(7) 

-0.594(7) 

c3 

0.26(12) 
0.39(13) 

0.59(14) 

0.82(15) 



ventional perturbation theory. It produces perturbative coefficients with statistical 

errors and truncation errors. However, accuracy can be greatly improved by using 

constrained curve fitting, and using perturbation theory input for lower-order coeffi- 

cients. We observed that by setting the first order coefficients to  the analytic results, 

t h e  uncer ta in ty  in cz is on ly  a b o u t  a factor  of 2 larger  t h a n  those  compu ted  analyt i -  

cally; if both cl and cz are fixed, numerical simulations even give better predictions 

for the third order coefficients with smaller errors. This is significant since 2-loop per- 

turbative calculations are extremely difficult. An alternative is to  combine analytic 

calculations with Monte Carlo simulations: one can stop a t  1-loop in perturbation 

theory, insert the results into the expansion, and allow simulations to  determine cj or 

even higher-order coefficients. This approach avoids the evaluation of the hundreds 

of diagrams that could appear in higher-order calculations. 

Another advantage of the Monte Carlo method is that many simulation codes 

are publicly available and one does not have to write their own program 5 .  One 

simply have to  choose an appropriate set of parameters, and do the simulations. 

Also the configurations can be reused to  computed perturbative expansions of other 

observables: measure the observable of interest on the same set of configurations, 

and repeat the fitting procedures presented in the last two sections. In contrast 

it is a completely new problem to  compute the expansion of another observable in 

conventional perturbation theory. The processes involved are completely different. 

The biggest challenge of the Monte Carlo method is t o  have precise measurements 

of the observable. This requires an extensive study of all the possible systematic 

errors. Two distinct techniques are used in the present project to  reduce the various 

systematic effects. First, twisted boundary conditions are employed in the 

simulations. This completely eliminates zero momentum modes which contribute 

a large part to  the finite volume effect. Tunneling between the Z3 phases is also 

strongly suppressed when twisted boundary conditions are applied to  all three spatial 

directions. Secondly, a new simulation algorithm, the rational hybrid Monte 

Carlo algorithm, is used for the unimproved staggered quark action. The 

inclusion of an Monte Carlo acceptlreject step makes this algorithm exact, i.e., there 

is no discretized time step error in measured expectation values. This is the first time 

that  this algorithm is used in a large-scale simulation. We use the R-algorithm for 

the MILC action. In this case the finite step size errors are corrected by extrapolating 

5Adapting the codes to twisted boundary conditions requires only minor modifications. 



the results t o  At = 0. We have also discussed other sources of errors in Section 5.4, 

e.g., truncation errors, autocorrelation, and inaccuracy in matrix inversions. Since 

simulations and perturbation theory agree through third order, this shows that all 

systematic effects have been made smaller than the statistical errors, which are of 

0 ( 1 0 - ~  - 

Finally we want t o  make a comment on the "fourth-root trick". Simulations were 

done with nf = 1 and nf = 3 hence the 12th-root and the 4th-root of the stag- 

gered quark determinant were taken. This procedure raises questions on the locality 

of the resulting action. Also the number of quark flavours has completely different 

interpretations in perturbation theory and Monte Carlo simulations: in perturbation 

theory nf appears naturally in Feynman diagrams with fermion loops, while in nu- 

merical simulations the number of flavours is regarded as a parameter, which can be 

adjusted to  any value by taking the appropriate root of the fermion determinant. Our 

study here, however, shows that this procedure of reducing quark flavours reproduces 

perturbative coefficients which agree, order-by-order, with perturbation theory. In 

particular simulations were done with nf = 1 and nf = 3 for the unimproved action, 

and results clearly show that Monte Carlo simulations are sensitive to  fermion loops, 

with the correct value of nf. Certainly we cannot consider this as a proof of the 

"fourth-root" trick. Nonetheless our work serves as another example where accurate 

results can be obtained with this formulation of staggered quarks. 

In conclusion, this study not only provides an important cross-check of the per- 

turbation theory input t o  a recent determination of the strong coupling am(MZ)  by 

the HPQCD collaboration, it also illustrates that perturbative series can be efficiently 

computed from Monte Carlo simulations a t  weak coupling. 



Chapter 7 

Conclusions 

Two studies on improved staggered fermions have been presented in this thesis. 

In the first project a systematic study of the spectral properties of a variety of 

improved staggered Dirac operators is presented. We observe that the distribution 

of low-lying eigenvalues depends sensitively on the way in which the operator is im- 

proved. Eigenmodes with very small eigenvalues and large chirality emerge as the 

level of improvement increases. These small eigenmodes can be identified as the chi- 

ral zero modes which contribute to  the index theorem. The separation between these 

would-be zero modes and nonchiral modes becomes more clear when the gauge field 

action is also improved, or when one moves toward the continuum limit by reducing 

the lattice spacing. The distribution of the remaining nonchiral modes, after deleting 

the would-be zero modes from the spectrum, matches with the predictions of Random 

Matrix Theory not just for the trivial topological sector, but for Q = 1, 2 also. All of 

these give very strong evidence that staggered fermions do respond properly to gauge 

field topology, provided that discretization errors and lattice artifacts are significantly 

suppressed. 

In the second project we computed the perturbative coefficients of Wilson loops, 

through third order, in full QCD from Monte Carlo simulations at weak coupling. Two 

lattice actions have been considered: the Wilson plaquette action and the unimproved 

staggered quark action, and the 1-loop improved gauge field action and the Asqtad 

quark action. This method is applied here for the first time to full QCD lattice 

actions. Twisted boundary conditions are used to  eliminate zero momentum modes 

and to suppress tunneling between the Z3 center phases. A new simulation algorithm, 

the rational hybrid Monte Carlo algorithm, is used for the unimproved action to  



remove finite step size errors in simulation equations. This is the first time that this 

algorithm has been used in a numerical application, and our results will serve as an 

important benchmark for future simulations. Impressive agreement with perturbation 

theory is obtained. By setting the first and second order coefficients to  the analytically 

known results in the fitting process, accuracy on the third order coefficients is greatly 

improved; all the third order coefficients have smaller errors than those obtained 

analytically. Results here provide an important cross-check of the perturbation theory 

input to  a recent determination of the strong coupling am(MZ) by the HPQCD 

collaboration. 

This thesis demonstrates the importance of i) lattice action improvement, and ii) 

lattice perturbation theory, for reliable and high precision lattice calculations. 

We have seen that the computational cost increases dramatically for small quark 

masses and small lattice spacings. Therefore simulations cannot be done a t  realistic 

quark masses, and discretization errors cannot be reduced by na'ively reducing the 

lattice spacing. Improved actions have smaller errors and better continuum properties, 

which allow simulations to be done a t  relatively coarse spacing. This is explicitly 

shown in the first project where the unimproved staggered quark operator is insensitive 

to  gauge field topology even a t  a lattice spacing as small as 0.08fm, but results show 

that a lattice spacing a 5 O.lfm is enough for the Asqtad operator to  have a correct 

response to  the topology with improved gauge fields. This spacing is of the order 

of the lattice spacings used in present-day state-of-the-act dynamical simulations of 

QCD. 

The importance of lattice perturbation theory for high precision calculations was 

illustrated in Chapter 4 where we discussed in detail how t o  extract the strong cou- 

pling constant am(Mz)  from lattice simulations. To reduce systematic errors to 

the few percent level perturbative matching must be done through 2-loop. However 

higher-order analytic perturbation theory is very difficult because of the large number 

of diagrams that have to be evaluated. The second project of the thesis demonstrates 

that perturbative quantities can be efficiently computed from Monte Carlo simula- 

tions a t  weak coupling. This numerical approach produces estimates of higher-order 

coefficients with far less effort than conventional perturbation theory. We have also 

shown that accurate results for higher-order coefficients can be obtained by using 

perturbation theory input for lower-order coefficients. 

The development of improved staggered quark actions over the past few years made 



dynamical simulations possible a t  realistically small quark masses. Lattice perturba- 

tion theory, on the other hand, provides the connection between simulation results 

and continuum physical quantities. High precision lattice QCD is now possible, with 

improved staggered quarks [lo]. Although the locality problem of staggered quark 

action is still to be resolved, the staggered quark formalism is the only discretiza- 

tion scheme which is capable of delivering accurate simulation results that can be 

compared with experiments in the near future. 



Appendix A 

Fermion Force in Molecular 

Dynamics Evolution 

This appendix explains how to compute the matrix derivative ' where 

is the staggered quark matrix (see (2.19)). For the unimproved staggered quark 

action S, St are the usual link variables U, Ut. In general S, St are effective links, 

i.e., functions of U, ~ t .  

The explicitly form of for the unimproved staggered quark action is given 

in Ref. [41]. An elegant implementation of the derivatives in numerical simulations 

for fat-link actions is given in Ref. [54]. This appendix concentrates on actions with 

unitarized fat-links, in particular the (UFat7)" actions, which were studied recently 

by Kamleh et al. for FLIC fermions [75]. Dynamical simulations with the HYP 

action, which also utilizes unitarized links, were studied by Alexandru, Hasenfratz 

and Knechtli in Refs. [103, 1041. 

Let us consider the case with only one level of fattening/reunitarization as an 

example. The UFat7 = Proj,,(,) x Fat7 action is in this form, and S, St are unitarized 

'since pf is anti-&rmitian, the formula for is exactly the same as that of but with 
an extra negative sign. 



Fat7-links UR, U R ~  constructed from Fat7 links UF, UF1 

We treat U, Ut as independent variables, i.e. (restoring matrix indices a, b, p, q ,  . . . ) ,  

Note also that 

" L b  = ( a A 7 )  * - 8Aab = ($)*. 
dB,, aB, , aBP9 

Applying the chain rule to  (A.2), we obtain 

Hence the problem is reduced t o  the computation of two different types of derivatives, 

R,  R and F, F .  

auF - a p t  Derivatives of fat-links F = m, F = 

It is relatively straightforward t o  compute F and F since fat-links are simple 

products of U, Ut. For example, for Fat3 fattening, UF, UFt are 3-staple effective 

links 
x u # P  ux,JJx+idJL+b,u 

u g  = x u # P  L~,+P,U~!,,,,~!,~ ' 

(A.6) 

To construct (F~;L)$ or (p:;~)$, one simply has to  identify all the fat-links U h  and 

UC which contain Ux,P, and to  delete that link from each path (see Ref. [54] for 

details). 



dUR - dUR Derivatives of unitarized links R = w, R = - a u ~ +  

First of all note that  R and R are local since reunitarization is local 2.  

Traditional SU (3) projection, which is done by maximizing R ~ T ~ U R U F '  using an 

iterative procedure [74], is not differentiable. In Ref. [75], Kamleh et al. proposed to 

use the polar decomposition [I051 

so that the derivatives can be computed using standard matrix differentiation rules [106]. 

Kamleh et al. showed that these two methods produce unitarized fat-links which are 

numerically close even after many steps of smearing. The square-root in (A.7) can 

again be approximated by a Zolotarev expansion 

Therefore 

The derivative of the determinant is 

ddet W 
= detW 

"A 
where matrix multiplication and trace are 

Combining (A.9) and (A.10), gives 

: taken with respect to  the indices on W .  

The derivative ( R ~ , ~ ) ; :  = can be obtained in a similar fashion. 
WJ:t),, 

2Because of this we will drop the space-time indices "x, p" on the link variables in this section. 
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Summary 

Gathering all the information, the derivative reads 

The calculation can be largely simplified if one contracts the upper indices a, b and 

space-time indices y, v with those of the random source IX) first (see (5.41)). The 

lower indices p, q will be contracted with the indices of Ux,, at  the last step (see (5.39)). 

Although the formula for A!L looks very complicated, its structure is very con- 
~ U Z , P  

venient for numerical computation. In fact one only has to  write two subroutines, 

one for R ,  R and the other for F, F .  These subroutines calculate the current deriva- 

tives, and multiply the results to  the overall "chain" of derivatives. This procedure is 

very general and can be applied to  almost any action. One simply has to  rearrange 

the sequence in which the subroutines are called, and perform the appropriate index 

contraction (see also Ref. [75]). 

We have developed computer codes for the (UFat7)" x Asq action. Some test runs 

were also done on 44 lattices [76]. 
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